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Résumé 

La diffusion des facteurs de transcription (FTs) dans le noyau joue un rôle crucial dans la régulation 
transcriptionnelle. La recherche par les TF d'une séquence d'ADN spécifique est l'un des principaux facteurs de 
l'expression des gènes. Ainsi, les interactions entre deux FTs dues à de faibles interactions protéine-protéine 
(IPPs) forment des clusters de FTs, influençant leur occupation à un site cible particulier. Pour comprendre 
comment la structure 3D de la chromatine affecte l'agglutination des FTs, nous avons proposé un modèle pour 
traduire la présence des IPPs dans le noyau et vérifié comment l'agglutination affecte l'allocation des FTs, en 
considérant la diffusion 3D/1D comme notre mécanisme de recherche. Ensuite, une fois qu'un FT est lié à une 
région, il recrute l'ARN polymérase (ARNP). En outre, les FTs inductibles restent dans le cytoplasme et 
translocation dans le noyau par le biais du complexe du pore nucléaire (CPN) après une signalisation 
appropriée. Afin d'intégrer ces mécanismes, nous avons proposé un autre modèle pour comprendre la 
dynamique de recherche des TF et de recrutement de l'ARNP. Nous avons obtenu des solutions déterministes 
et stochastiques vérifiant comment la transcription est renforcée à la périphérie du CPN et confirmée par 
l'analyse d'imagerie de gènes spécifiques. Enfin, nous avons incorporé le processus d'exportation de l'ARNm 
pour vérifier les différentes concentrations de transcrits cytoplasmiques, prouvant ainsi que le volume d'ARNm 
disponible dépend également du CPN. Par conséquent, notre travail montre des liens pertinents entre la 
structure de la chromatine, l'allocation des ressources transcriptionnelles et la stochasticité de la régulation 
des gènes.  

Recherche par les FTs, Interactions Protéine-Protéine, Recrutement de l’ARNP, exportation d'ARNm, modèle 
mathématique, structure de la chromatine 

 

Résumé en anglais 

The diffusion of transcription factors (TFs) within the nucleus plays a crucial role in transcriptional regulation. 
The TF search for a specific DNA sequence is one of the main factors in gene expression. Thus, the interactions 
between two TFs due to weak protein-protein interactions (PPIs) form TF clusters, influencing their occupancy 
at a particular target site. To understand how the 3D structure of the chromatin affects the TF agglutination, 
we proposed a model to convey the presence of PPIs in the nucleus and verified how the clustering affects the 
TF allocation, considering the 3D/1D diffusion as our search mechanism. Then, once a TF is bound to a region, 
it recruits RNA Polymerase (RNAP). Besides, inducible TFs remain in the cytoplasm and translocate into the 
nucleus through the nuclear pore complex (NPC) upon proper signalling. To incorporate these mechanisms, we 
proposed another model to understand the TF search and RNAP recruitment dynamics. We obtained 
deterministic and stochastic solutions verifying how transcription is enhanced at the NPC periphery and 
confirmed through imaging analysis of specific genes. Finally, we incorporated the mRNA export process to 
verify the different cytoplasmic transcripts concentrations proving how the volume of available mRNA is also 
NPC-dependent. Therefore, our work shows relevant connections between the chromatin structure, the 
allocation of transcriptional resources and the stochasticity in gene regulation. 

TF search, Protein-protein Interactions, RNAP recruitment, mRNA export, mathematical model, chromatin 
structure 
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0 Résumé Étendu de la Thèse

Introduction
Pour maintenir sa stabilité, la cellule doit optimiser ses systèmes. L’efficacité et

la précision sont donc extrêmement importantes. Par exemple, deux cellules différenciées
ayant le même ADN pourraient ne pas avoir la même synthèse protéique, car leurs besoins
sont différents (Roeder, 2019; Alberts, 2004). Le processus de production d’un modèle à
partir d’une séquence d’ADN (c’est-à-dire un gène) vers un ARN immature est appelé
transcription, qui correspond à l’un de nos principaux points d’intérêts dans cette thèse.

Chez les eucaryotes, l’ADN est très complexe et s’enroule autour des protéines
appelées histones et forme le premier niveau de compaction de l’ADN dans le noyau.
En raison de cette compacité de l’ADN, nous avons deux considérations importantes:
(i) la plupart des gènes ne sont pas accessibles à la transcription et (ii) le noyau est un
environnement encombré (Hancock, 2014). Ainsi, la modélisation de la transcription n’est
pas simple comme le laisse entendre le dogme central de la biologie moléculaire.

Pour initier la transcription, un gène doit être actif, c’est-à-dire que le brin d’ADN
à cette séquence doit être déroulé et ouvert pour la machinerie transcriptionnelle et est
défini comme un site cible. De manière simplifiée, un type spécial de protéine appelé facteur
de transcription (FT) doit trouver le site cible pour se lier et recruter l’ARN polymérase
(ARNP) pour initier la transcription (Alberts et al., 2002; Turner, 2002). Par conséquent
pour modéliser le processus de transcription il est nécessaire de considérer le mouvement
des molécules à l’intérieur du noyau.

Étant donné que le noyau est un environnement encombré, avec la chromatine et
d’autres éléments de régulation des gènes à l’intérieur, les interactions entre les molécules
influencent leur processus de recherche et de recrutement (Hancock, 2014; Woringer;
Darzacq, 2018). Les données expérimentales ont montré que le processus de recherche du
FT n’est pas diffusif. En effet, le mécanisme le plus utilisé pour le mouvement du FT est
le processus 3D/1D, également connu sous le nom de mécanisme de facilitated diffusion. Il
se base sur le fait qu’une molécule diffuse en 3D si elle est libre, mais si elle est liée, glisse
le long de la chromatine (Bénichou et al., 2011; Mirny et al., 2009; Izeddin et al., 2014;
Avcu; Molina, 2016). De plus, les interactions entre les éléments du noyau ne se limitent
pas aux interactions FT-chromatine mais les FTs interagissent aussi faiblement entre elles,
formant des clusters qui influencent l’activation de la transcription (Meeussen et al., 2022;
Zhang et al., 2019).

Pour approfondir nos connaissances sur les processus entourant la régulation des
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gènes, nous avons proposé deux extensions différentes du modèle mathématique présenté
dans (Avcu; Molina, 2016): l’une pour comprendre la formation de clusters dans les régions
chromatiniennes prolifiques et l’autre pour décrire le processus de recherche du FT et
de recrutement de l’ARNP jusqu’à la transcription. Nous avons également proposé un
modèle de vitesse de l’ARN (Manno et al., 2018) pour analyser le séquençage de l’ARN
par fractionnement (Frac-Seq).

Résultats
La transcription dépend de la vitesse à laquelle un TF trouve un site cible ; sachant

cela, comprendre comment le FT occupe les régions de la chromatine est un moyen de
mieux comprendre l’expression des gènes. Notre objectif est de comprendre la transcription
et comment d’autres éléments du noyau influencent la régulation des gènes.

Si l’on considère le mécanisme de facilitated diffusion, la structure de la chromatine
joue un rôle dans les schémas d’allocation des FTs, car les régions chromatiniennes
hautement connectées sont plus susceptibles d’être atteintes. En outre, l’accessibilité des
séquences d’ADN a également un impact sur l’accès du FT au site cible, car le noyau est
un environnement surpeuplé. Par conséquent, nous devons tenir compte à la fois de la
connectivité et de l’accessibilité pour modéliser l’allocation des FTs.

En effet, les FTs peuvent s’agglutiner dans des régions particulières, se liant
faiblement et formant des agrégats qui, à leur tour, influencent l’activité transcriptionnelle.
Ainsi nous avons proposé un modèle pour comprendre la formation d’agrégats et, pour
interdire aux FTs de s’agglutiner dans une seule région (ce qui n’est pas biologiquement
faisable). Nous avons considéré la présence d’une exclusion de volume, également appelée
capacité de charge - c’est-à-dire que nous avons supposé une quantité limite de FTs
qui s’adaptent dans les régions de chromatine. Notre modèle est un système d’équation
différentielles ordinaires pour toutes les régions chromatiniennes de notre réseau, avec I

interactions.

Nous avons implémenté des solutions numériques en utilisant ode15s de Matlab pour
obtenir des solutions considérant différents taux d’association Ka, capacités de support C

et concentrations nucléaires de FT. Suite à cela, nos résultats ont montré qu’en augmentant
les valeurs des paramètres, on augmente le groupement autour des régions plus prolifiques.

Nous avons découvert comment le processus de facilitated diffusion modélise les
recherches de FT et comment, en limitant la concentration maximale autorisée dans une
région, nous influençons les modèles d’occupation des FTs. De plus, en supposant que les
interactions protéine-protéine (IPP) sont une condition inhérente à la formation de nœuds
de transcription et à l’influence de la transcription par les FTs, nous avons découvert
que si des valeurs plus élevées de Ka semblent influencer le regroupement dans les nœuds
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prolifiques, les régions avec moins de FT attendus lorsque Ka ≡ 0 bénéficient davantage
de Ka.

En outre, en diminuant la concentration maximale de FT autorisé, nous augmentons
également l’activité dans d’autres régions moins prolifiques. De faibles concentrations de
FT nucléaires rendent également difficile l’agglutination, car la probabilité que deux FTs
se chevauchent est réduite. Cependant, ce modèle ne décrit que la formation de l’amas de
FT et, pour que la transcription ait lieu, d’autres éléments doivent être recrutés sur le site
cible, comme l’ARNP par exemple.

Puisque ce ne sont pas seulement les FTs qui s’agglutinent et que les résultats
expérimentaux ont montré que les ARNPs se regroupent également autour du site de début
de transcription pour faciliter la transcription. De cette manière, nous avons également
modélisé la recherche par les ARNP d’un FT lié et son recrutement pour la transcription.
Notre système permet deux états pour les FTs: libre et diffusant en 3D dans la chromatine
ou lié à une région. Nous avons considéré trois états de ARNP: libre et essayant de trouver
un FT lié; lié et attendant de commencer la transcription ou en cours de transcription.
L’état d’équilibre pour l’ARNP lié et en cours de transcription a montré la plus forte
influence de la connectivité sur l’occupation.

Dans le modèle précédent, nous avons montré comment la concentration de FT dans
le noyau influence l’occupation. De plus, certaines FTs sont endogènes dans le cytoplasme
et nécessitent une activation pour entrer dans le noyau et commencer la transcription.
Elles s’accumulent ensuite dans le cytoplasme, ce qui peut être compris comme un autre
mécanisme d’expression génétique (Zambrano et al., 2020). Le mécanisme de translocation
a été incorporé en sélectionnant au hasard certains nœuds actifs de notre réseau qui sont
connectés au complexe du pore nucléaire (CPN).

Nous avons implémenté des solutions en utilisant ode15s de Matlab mais, comme
l’expression des gènes d’une cellule est stochastique, nous avons intégré une version de
l’algorithme stochastique de Gillespie. De ces résultats, nous avons conclu que la proximité
du CPN augmente l’activité transcriptionnelle, de plus, aucune région n’a démontré une
activation retardée ou une réactivation après avoir été désactivée. Des expériences de
microscopie (single molecule RNA FISH et single molecule tracking) pour un TF inductible
ont corroboré l’hypothèse selon laquelle la proximité du CPN améliore la transcription.

Cependant, notre modèle ne prédit que l’allocation pour la transcription du ARNP
et non la concentration de l’ARNm produit, nous avons donc étendu notre modèle pour
prendre en compte l’ARNm nucléaire et cytoplasmique et finalement déterminer les
changements de concentration d’ARNm pour chaque gène. À partir de ces solutions,
nous avons conclu que les régions connectées aux pores présentaient des concentrations
d’ARNm cytoplasmiques plus élevées que les autres régions et cela en raison du processus
d’exportation de l’ARNm par le noyau.
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Enfin, pour modéliser l’exportation d’ARNm par gène pour les eucaryotes, nous
avons proposé une extension de la vitesse de l’ARN pour considérer trois états différents
de l’ARNm : l’ARNm non épissé qui est un ARN immature avant l’épissage et qui reste
dans le noyau, l’ARNm épissé nucléaire et l’ARNm épissé cytoplasmique, qui est l’ARNm
réellement traduit. Nous avons utilisé ce modèle pour comprendre les ensembles de données
sur les gènes de séquençage et comment le traitement à l’auxine affecte la transcription.

Nous avons utilisé l’inférence bayésienne pour obtenir les paramètres de notre
modèle et les prédictions de ce modèle ont prouvé que la plupart des gènes ne sont
pas affectés par le traitement à l’auxine. Ensuite, nous avons sous-groupés les gènes en
considérant une forte corrélation entre les lectures expérimentales et les valeurs analytiques
proposées par notre modèle. Les gènes affectés sont principalement régulés à la baisse dans
les cellules traitées à l’auxine et, de manière intéressante, la longueur du gène n’était pas
une caractéristique déterminante pour les paramètres.

Même si les techniques expérimentales actuelles ne permettent pas encore de
découvrir tous les détails de la transcription, la fusion de la recherche expérimentale et
théorique est la meilleure voie pour comprendre les mécanismes de la régulation des gènes.
En conclusion, la régulation des gènes n’est pas seulement un processus biologique mais
peut être comprise comme un phénomène mécanistique.

En ce qui concerne la modélisation, nous sommes convaincus que nos recherches
ont mis en lumière les facteurs clés de la transcription, même si nous n’avons pas pu les
mettre en œuvre à l’échelle du génome ou même à haute résolution pour nos solutions
numériques. Nous avons également confirmé que les modèles in silico peuvent être de bons
outils d’exploration pour les systèmes complexes, comme le montre souvent la biologie.
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1 Introduction

In some sense, one can say that with only four letters life is created. And not only
created but maintained, evolved to fit the environmental changes, and passed to the next
generations. How living organisms continue to survive is a question which can be answered
on different scales and in different scientific fields and infinite perspectives. In our case,
the scale is microscopic and the scientific field is mathematics.

The technology to understand and analyse molecular biology evolves every year,
presenting better ways to quantify and interpret data: for example, between (Watson; Crick,
1953) and (Marini et al., 2015), more than 60 years passed and the quality of reproducible
data increased exponentially. However, as technology becomes more accessible facilitating
reproducibility and innovations in the methods, the use of theoretical/computational tools
becomes indispensable.

Here, we aimed to integrate experimental results with theoretical models and in
silico experiments to explain, for example, how a transcription factor (TF) searches its
target site, binds the chromatin regions and recruits RNA polymerase (RNAP) to start
transcription, how the chromatin influences the occupancy patterns or which mechanisms
regulate mRNA synthesis. The theoretical setup used is by proposing mathematical
models with ordinary differential equations systems, a tool greatly used in theoretical
biology (Edelstein-Keshet, 2005; Murray, 2007).

This thesis deals with biology, more specifically gene regulation, by applying
mathematical models, which is not a new theme in biology and presents a broad range
of different techniques (Chen; He; Church, 1998; Chiu et al., 2012; Ay; Arnosti, 2011).
Furthermore, this thesis is organized as follows: here, we present key concepts and the
reasoning behind our modelling. Then, in Chapter 2, we present a model for TF searches
and how by allowing protein-protein interactions (PPI) we affect the TF allocation in the
chromatin and influence the clustering.

Once a TF binds to a target site, it recruits polymerase (RNAP) to start trans-
cription. More than that, since some TFs remain in the cytoplasm and enter the nucleus
upon activation, we also used this behaviour in our model as a gene expression control in
Chapter 3. In eukaryotes, the result of transcription, the messenger RNA (mRNA), must
be translated into a protein in the cytoplasm. Thus, we modelled the mRNA export in
Chapter 4. To verify in silico predictions from Chapter 3, we did image analysis for two
different microscopy experiments in Chapter 5.

Last, we present our conclusions and discussions in Chapter 6 for all models from
this thesis. We also present some insights about other possibilities of our model.
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1.1 Gene Regulation
From the central dogma of molecular biology, we have a simplified (and unidirectio-

nal) pathway in which from the DNA we obtain RNA (in a process called transcription)
and from the RNA we synthesize any protein (which it is called translation) (Crick,
1958; Cobb, 2017). Of course, as far as a dogma goes the order DNA → RNA → protein
is not true for every living organism: retroviruses carry an enzyme called reverse trans-
criptase which reverses the central dogma (hence the name) to RNA → DNA → RNA
→ protein (Alberts et al., 2002; Turner, 2002). We proposed a diagram for the central
dogma of molecular biology in Fig. 1.1. This diagram represents transcription/translation
in eukaryotes since we considered the existence of the nucleus. Our focus in this thesis is
to model the first three steps of this dogma.

RNA
transcription

DNA

mRNA

mRNA protein

(i)

(ii)

(iii) (iv)

Figure 1.1 – Diagram for the Central Dogma of Molecular Biology for Eukaryo-
tes. Here, we present the steps between the DNA and the protein, with
all the possible controls: (i) Initiation Control: where the cell controls
which gene is produced and its frequency of synthesis; (ii) Transcription
Control: controls the speed of transcription, the splicing and processing; (iii)
RNA Transport Control: controls the messenger RNA (mRNA) export
to the cytoplasm; (iv) Translation Control: controls the translation by
the ribosomes and, later, the protein activation/inaction. This diagram was
adapted from (Alberts et al., 2002), p.270.

A cell can control its protein synthesis by switching a gene on and off, which is a
common mechanism for almost all cellular organisms. Some genes, also known as regulatory
DNA sequences, are responsible for this switch. Then, those genes are recognized by gene
regulatory proteins (commonly known as transcription factors, TFs) that bind to the DNA,
allowing or prohibiting the transcription in this gene (Struhl, 1999).

Different from prokaryotes, eukaryotic cells package their DNA into chromosomes
to conceal its size. More than that, the compact structure of DNA with proteins (mostly
histones, i.e., proteins whose main function is to act as a reel for the DNA, creating the
nucleosomes) is called chromatin, and it prevents, for example, the entanglement of DNA
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strands (Cherstvy; Teif, 2013; Maeshima; Ide; Babokhov, 2019; Li; Carey; Workman, 2007).
Therefore, one can conclude that the DNA organization for eukaryotes acts as a control
mechanism for gene expression.

As cells turn into more complex systems, better control over gene expression is
required. For example, in multicellular cells, the differentiation process is a consequence
of this genetic switch. On top of that, it is a mechanism to control the genes each cell
produces - e.g., α and β cells are localized in the pancreas but while one is responsible
for the glucagon (a hormone that raises the glucose in the body) and insulin (a hormone
that promotes the absorption of glucose) (Peterson et al., 2020; Scharer et al., 2018). A
consequence of the differentiation is that different cells have different functions and will
produce different proteins even if any cell has the complete information from the DNA.
Besides, an important point is that given environmental changes, a cell can alter its gene
expression (Hunter, 2005; Findley et al., 2021).

Given the DNA size, for a mature cell (i.e., differentiated), most of the coding genes
are inactive; and, inside the eukaryotes DNA, most of the sequences are non-coding (Maston;
Evans; Green, 2006; Piovesan et al., 2019). However, even with this optimal condition for
gene expression, the cell must be able to control and fine-tune each gene produced.

The regulation of the gene expression (or gene regulation) is an important mecha-
nism of cell maintenance. The most fundamental step of gene regulation is the transcription
initiation, as we presented in Fig. 1.1. Next, we present an in-depth description of the
transcription process and its consequences, as this is fundamental for the understanding
of this thesis.

1.1.1 Processes around Transcription

As introduced earlier, the transcription of a gene depends on the gene regulatory
proteins. Transcription is defined as the process of copying a portion of the DNA sequence
into an RNA sequence, and the enzyme that reads the DNA sequence is the RNA
polymerase (RNAP), which we will discuss next.

We note that throughout the scope of this text when we refer to polymerase,
we mean RNA polymerase (RNAP). We are aware of the existence of DNA polymerase
(DNAP), but as we are not dealing with DNA replication in this thesis, there will be no
confusion with this other enzyme.

1.1.1.1 RNA Polymerase and Transcription

RNA Polymerase has a key role in transcription as it is responsible for recognizing
and binding the DNA sequence, with the help of the transcription factors; breaking the
bonds between the complementary nucleotides to dissociate the DNA strands; and starting
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the formation of the RNA strand (also called transcript), which is the transcription process
per se.

For prokaryotes, there is just one type of polymerase but for eukaryotes, until
now, experiments have found five different types of RNAPs, two of them (RNAP IV
and V) are plant-specific (McKinlay et al., 2017). The other three RNAPs synthesize:
(i) RNAP I (or PolI) most of the ribosomal RNA (rRNA) genes; (ii) RNAP II (PolII)
all protein-coding genes, microRNAs (miRNAs) and small RNAs (from spliceosomes, for
example); (iii) RNAP III (PolIII) transfer RNAs (tRNAs), 5S rRNA genes and small
RNAs in general (Moss; Stefanovsky, 2002; Lee et al., 2004; Guiro; Murphy, 2017; Willis,
1993). From this description, one concludes the importance of RNAP II (Pol II) for gene
regulation, as it is the polymerase responsible for the coding genes while the others are
polymerases for the structure and organization of genes. Indeed, it is important to remind
that in eukaryotes the DNA is packaged into chromatin, which explains the specificity of
eukaryotic polymerases.

RNAP II genes depend on the presence of transcription factors to bind to a DNA
sequence, as the TFs orient the RNAP II at the promoter, which are DNA sequences that
remain a few hundred base pairs near the TATA box (a non-coding DNA sequence that
contains a consensus of T and A base pairs). Most of the sequences are promoter proximal
being where the preinitiation complex (PIC) is formed (Wang; Stumph, 1995; Tsai, 2000).
In simple terms, the PIC is the protein complex responsible for orienting the RNAP II at
the transcription start sites (TSS) and prepares DNA for transcription (Kornberg, 2007;
Luse, 2013), which we exemplified in Fig. 1.2.

TATA Box TSS

TF RNAP

DNA

Figure 1.2 – Simplified Schematics for the PIC Formation.

The PIC formation is the first step towards transcription initiation and, since its
assembly is a complex process, it is one of the most susceptible steps to regulation (Petrenko
et al., 2019; Soutoglou; Talianidis, 2002). Another important fact is that the PIC remains
attached to the DNA once the RNAP starts transcription, facilitating the recruitment of
another available RNAP to transcribe at that TSS (He et al., 2013).

Once the PIC is assembled, the gene is switched on and the RNAP is released to start
the transcription, in a process called elongation (Veloso et al., 2014; Pokholok; Hannett;
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Young, 2002). Even if the main goal of the polymerase is to finish transcription, sometimes
the RNAP can be stalled waiting for the cell signals to enter the gene body, in a process
called polymerase pausing (Wade; Struhl, 2008; Core; Adelman, 2019). Environmental
changes can cause the polymerase pausing, for example, the decreasing oxygen availability
(also known as hypoxia) or the presence of proinflammatory signals cause polymerase
pausing (Liu; Kraus; Bai, 2015; Yang et al., 2022; Barboric et al., 2001).

From the RNAP front, we stated that gene regulation can occur early on in the
PIC formation, for example. However, mechanisms such as polymerase pausing can only
occur after the PIC assembly and are usually necessary to redefine chromatin accessibility
to transcription. Since the reorganization of chromatin is an important step, we need to
comprehend the mechanisms behind chromatin reorganization in the cell. One of those
mechanisms is the Enhancer-Promoter Interactions which we present next.

1.1.1.2 Enhancer-Promoter Interactions

In prokaryotes, gene regulation is a straightforward process in which the cell has
activators and repressors as the proteins that turn their genes on and off (Ishihama,
2012). As we stated previously, gene regulation is far more complex in eukaryotes but
all the eukaryotic promoters need some sort of activators to start the assembly of the
transcriptional machinery (Ma, 2011).

The DNA sequences where the activators bind are called enhancers as their presence
increases transcription rate; and, differently from the promoters that need to be upstream
to the gene (i.e., considering transcription occurs from the 5′-end to the 3′-end of the DNA,
upstream is closer to the 5′-end and downstream is closer to the 3′-end), the enhancers
do not require directionality, being found even in intronic parts of genes (Arensbergen;
Steensel; Bussemaker, 2014; Pennacchio et al., 2013). Another difference is that the distance
between an enhancer and a promoter varies: from 50-100 kb in Drosophila to 1Mb in the
Sonic hedgehog protein (SHH) (Kyrchanova; Georgiev, 2021; Lettice, 2003). In fact, given
there are plenty of enhancers in the DNA and their distance from the promoter is not
fixed, the pairing of an enhancer-promoter must not consider the linear distance between
them (Schoenfelder; Fraser, 2019).

To solve the long-distance problem, the DNA must have a mechanism to approxi-
mate the enhancer and the promoter, leading to their interaction. One accepted mechanism
for the chromatin to decrease this distance is by looping itself (Whalen; Truty; Pollard,
2016). We present a simplified version of the chromatin looping in Fig. 1.3 and show how
it facilitates Enhancer-Promoter Interactions.
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enhancer
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Transcriptional 
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Figure 1.3 – Simplified Schematics for the Chromatin Looping and Enhancer-
Promoter Interactions. Here, we can see how fairly distant enhancers and
promoters interact by looping chromatin, which facilitates their interaction.
By Transcriptional Machinery, we meant all the molecules involved in
transcription such as TFs (general and specific), RNAPs and mediators.

In broader terms, chromatin looping is a process that occurs when the enhancer
and promoter of a DNA sequence are in the same chromosome (i.e., in the cis configuration.
The trans configuration occurs when the elements are found in both chromosomal alleles
equally) and closer in proximity than its silencers (Reuveni et al., 2018; Kadauke; Blobel,
2009). Of course, different molecules play a role in chromatin looping even if not all the
key players are currently known. For example, evidence suggests CTCF (a TF involved in
insulator activity) and cohesin facilitates enhancer–promoter interactions (Ren et al., 2017).
Yet, it is clear that once all the responsible elements are identified, our comprehension of
gene regulation will increase exponentially.

However, for this thesis, the knowledge that enhancer-promoter interactions shape
the chromatin and thus gene regulation is enough. Several techniques to understand
the chromatin configuration were developed over the years, most of them based on the
chromosome conformation capture (3C), a technique that uses the contact frequencies
between two DNA sequences from a cell (Wit; Laat, 2012).

1.1.1.2.1 Hi-C and Chromatin Structure

The Hi-C technique (Lieberman-Aiden et al., 2009) is a combination of the 3C
and next-generation sequencing (NGS) - a fast parallel sequencing technology to obtain
sequencing data (Wit; Laat, 2012; Behjati; Tarpey, 2013). As stated previously, the 3C
technique measures the frequency of two DNA sequences to physically associate in 3D.
The method is based on the likelihood of those two sequences to have a formaldehyde-
crosslinking - which is a tool to detect and quantify, for example, interactions between
protein-DNA or between two chromatin fibres (Hoffman et al., 2015; Miele; Dekker, 2008)
- and, once we obtain the crosslink, the chromatin is solubilized and fragmented.
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However different from the 3C - that supports just a set of loci to quantify the
crosslinking, a technique interesting to verify enhancer-promoter interactions, for example,
the Hi-C technique accepts the sequencing of all fragmented chromatin (Belton et al.,
2012). Furthermore, as the technology improves, new uses/improvements for an established
technique shall occur (Lafontaine et al., 2021; Díaz et al., 2018; Niu et al., 2019).

With the Hi-C data, one can infer the structure of the chromatin - as previously
predicted by fractal globule or equilibrium globule experiments (Mirny, 2011; Sanborn et al.,
2015; Pal; Forcato; Ferrari, 2018). To reconstruct the structure, we use the sequencing data
to create contact maps from all the chromosomes (Pal; Forcato; Ferrari, 2018; Oluwadare;
Highsmith; Cheng, 2019; Galitsyna; Gelfand, 2021). In this thesis, we used the information
from Hi-C data available from (Rao et al., 2014) to construct our chromatin network.

From the construction of a chromatin network, we still need to understand how the
molecules explore the nucleus, as it is a crowded environment with different compartments
and proteins interacting inside, attracting and repulsing each other. Next, we present the
diffusion inside and later outside the nucleus.

1.2 Diffusion in the Nucleus
The nucleus is an organelle unique to eukaryotes, and the actual mechanism behind

its emergence is still unknown. However, without it, most of the multicellular organisms
(for multicellular prokaryotes, (Mizuno et al., 2022)) would not exist (Devos; Gräf; Field,
2014).

One can understand the nucleus as a colloidal system, with different molecules of
different sizes and functions crowding it. Therefore, the spatial nuclear organization allows
the formation of compartments with specific functions: for example, the nucleolus is where
rRNA and tRNA are transcribed, i.e., the clustering of those genes facilitates the access
of their regulatory elements (Hancock, 2014; Meldi; Brickner, 2011). It should be noted
that the nuclear compartments are dynamical elements inside the nucleus, which is also
changing - for example, cell cycle changes (Zidovska, 2020).

Therefore, analysing the mechanisms behind the diffusion of molecules in the
nucleus is a way to understand gene regulation. We define diffusion as the movement of
a molecule from a highly occupied region to a lowly or unoccupied one without outside
forces. By Fick’s law, we know the flux of diffusion is proportional to this concentration
gradient (Pollak; Siegmund, 1985; Timney et al., 2016; Leijnse et al., 2012).

The diffusion can be understood as a random walk of molecules and, in the nuclear
case, macromolecules are frequently colliding with other elements inside the nucleus
(e.g., chromatin) and slow them down, which is called an anomalous diffusion (i.e., a
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diffusive process with a non-linear in time mean squared displacement (MSD), being
subdiffusive - below diffusion - or superdiffusive - above diffusion) (Weiss, 2014; Hancock,
2014; Woringer; Darzacq, 2018). Yet, the subdiffusion is at times an optimal feature
for nuclear molecules, protein complex formation or signal propagation enhanced in a
subdiffusive condition (Guigas; Weiss, 2008; Banks; Fradin, 2005).

There are plenty of different molecules in the nucleus, with distinct movement
patterns. As one of the first steps in the PIC assembly is a TF binding to a promoter,
and understanding the TF search process is also a way to understand gene expression, we
focus on TF diffusion.

1.2.1 TF diffusion

Both gene expression and regulation depend on how the TF finds a target site, as
the first step for transcription is a TF binding a promoter. Since the distance between the
transcriptional elements is not constant and the numerous non-coding sequences in DNA
for eukaryotes, the mechanisms behind the TF finding its target site must be efficient in
order to maintain cell stability (Hager; McNally; Misteli, 2009).

Here, efficiency means not only producing the necessary gene but also fast-starting
transcription with the smallest use of energy possible. The first step is to understand how
the TF diffuses in the nucleus which is not straightforward: interactions with TF-chromatin
or TF other molecules influence the diffusion and the nuclear size and shape as well, in
which, in turn, affect the gene expression (Gorski; Dundr; Misteli, 2006; Zon et al., 2006).

Again, the nucleus is not an empty environment and all the structures inside of it
influence the movement: surprisingly, crowding or DNA looping for example accelerate
the TF (Li; Berg; Elf, 2009; Banks; Fradin, 2005). TF-chromatin interactions are more
diverse: TFs spend longer periods in more compact and redundant regions of the chromatin
(heterochromatin, responsible for gene silencing, for example) and it is faster in open
regions of the chromatin (euchromatin, responsible for active transcription), meaning a
TF can identify easily its target site in euchromatin than in heterochromatin (Bancaud et
al., 2012; Morrison; Thakur, 2021).

Therefore, the chromatin structure and its accessibility influence the TF search
process, meaning a completely diffusive process - either diffusion or anomalous diffusion
- does not represent the TF movement. To incorporate the structure regulatory poten-
tial, researchers have proposed the facilitated diffusion as a mechanism to describe TF
movement (Mirny et al., 2009; Bauer; Metzler, 2013).
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1.2.1.1 Facilitated Diffusion

The facilitated diffusion is a mechanism first proposed by Riggs in 1970 after his
experiments in vitro of the lac repressor association was around two orders of magnitude
faster than the theoretical values obtained considering a diffusion-only process. The basic
idea is that a 3D diffusion must be paired with another diffusive process on a reduced
dimensionality, explaining the other name for facilitated diffusion: 3D/1D process (Woringer;
Darzacq, 2018; Mirny et al., 2009).

The basic concept is that a molecule, in its search for a target site, binds and
unbinds the DNA and, if bound to a non-specific sequence, slides along the strand, which
is a 1D diffusion/Brownian motion process. Once unbound, this molecule is free to 3D
diffuse again (Mirny et al., 2009; Kampmann, 2005). We proposed a schematic for this
process in Fig. 1.4.

However, while as a concept is easy to understand, the understanding behind
the 3D/1D switch is non-trivial and neither is how to theoretically model the diffusion
of a chromatin-bound protein (Bénichou et al., 2011). More than that, chromatin-TF
interactions are key factors for TFs to either slide (1D) or jump (3D) and the structure of
chromatin is a complex system by itself (Woringer; Darzacq; Izeddin, 2014; Almassalha et
al., 2017; Bancaud et al., 2012).

Figure 1.4 – Facilitated Diffusion Schematics. Where a molecule (green star) once
interacting with a region (blue node) can either leave to 3D diffuse or slide
to a neighbour (which is represented by the presence of an edge between two
regions). The movement choices are represented by dotted lines.

Still, experiments have shown that the facilitated diffusion models are good des-
criptions of the reality of a molecule diffusing in the nucleus. One robust experiment to
identify this facilitated diffusion behaviour is the Single-Molecule Tracking (Izeddin et al.,
2014; Jonge et al., 2022).
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1.2.1.2 Single-Molecule Tracking

Different experiments have helped scientists to obtain snapshots of what happens
inside the cell during its life cycle: from mitosis to cell differentiation to apoptosis. Still, to
perform some experiments, the cell must be fixed - i.e., the ability to have a time evolution
of the cellular processes is lost due to the techniques killing the cell.

The advent of super-resolution microscopy (SMR) allowed scientists to obtain live
imaging from their cell lines - which facilitates the achievement of spatial and temporal
data acquisition (Hoboth; Šebesta; Hozák, 2021; Dange; Joseph; Grünwald, 2010). Usually,
experiments overlook cell stochasticity by averaging the results and assuming all cells
in the same conditions behave the same way. Of course, this is a huge assumption that
does not represent reality as gene expression is a fairly stochastic process (Elowitz, 2002;
Anink-Groenen et al., 2014).

Single-Molecule Tracking (SMT, also known as Single-Particle Tracking, SPT) is a
technique to track, as the name indicates, live-image single-molecules fused fluorescent
probes over some time, reconstructing their movement. SMT offers high precision, as each
fluorescent molecule can be tracked and is quite useful to understand the dynamics of
chromatin-associated molecules (e.g., TFs and RNAPs). However, every technique has
its drawbacks and for SMT the trajectory length, spatial precision, and the fluorescent
probe ensure we can only obtain a few seconds at a time due to the photobleaching,
and the constructed trajectory is only in two-dimensional space instead of 3D (Manzo;
Garcia-Parajo, 2015; Kuchler et al., 2022; Liu et al., 2016).

Therefore, SMT is a potent technique to verify the facilitated diffusion mechanism
from a TF searching for a target site, even if the search and the SMT times are in two
different time scales, i.e., it is not possible to track the complete TF search time in the
nucleus (Swift; Coruzzi, 2017; Mazzocca et al., 2021). In fact, SMT results have shown
that TFs can have two explorer behaviours: (i) global, in which the TF explores more
and far away regions, and (ii) local, in which the TF remains in one predetermined area,
proving the TF search is not a pure diffusive process in the random walk sense (Izeddin et
al., 2014; Liu et al., 2021; Jonge et al., 2022; Li; Varala; Coruzzi, 2015).

Eukaryotes developed the nucleus and separated the transcription and translation
process, which is one mechanism for gene regulation since mRNAs do not require the same
stability as the DNA - as the mRNA has a shorter lifespan and a fast mRNA degradation
facilitates the reuse of its ribonucleotides (Turner, 2002; Nouaille et al., 2017). Next, we
present some key concepts of the eukaryotic mRNA, as its export is the key point in
Chapter 4.
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1.3 mRNA export
Most of the eukaryotic genes have two different categories of sequences inside

themselves: the introns, intervening sequences, which are non-codding and the exons,
expressed sequences, which are coding sequences. Some genes, however, do not have introns,
for example, histones (the proteins which the DNA coils into to form chromatin) are
exonic genes. Of course, those non-codding sequences are removed from the mRNA before
translation occurs in a process called splicing, which occurs inside the nucleus (Alberts,
2004; Tilgner et al., 2012). At a first glance, the presence of introns seems a waste of
transcriptional resources, but researchers have suggested that the presence of introns
influences the alternative splicing process (in which isoforms of the mRNAs are generated
from the same gene), enhances transcription for some genes, and even helps with mRNA
export (Roy; Gilbert, 2006; Jo; Choi, 2015).

Not all mRNAs transcribed are viable for transcription, some of them are downright
dangerous to the cell if translated; thus, the cell needs a mechanism to select mature mRNA
from the debris around in the nucleus. The solution is the presence of the nuclear pore
complex (NPC), which recognizes and transports processed (mature) mRNA for translation,
with the transport being only from the nucleus to cytoplasm in this case (Magistris, 2021;
Xie; Ren, 2019; Misteli, 2007). The presence of the nucleus is another mechanism for
gene regulation, as it leads to the separation between transcription and translation in
eukaryotes, as discussed previously and represented in Fig. 1.1.

However, the nucleus is a crowded environment and the transport to the NPC is an
important mechanism, given that time and efficiency are important factors. Naked mature
mRNAs (i.e., only the mRNA molecule) are not found in the cells, and as soon as the
processing (splicing for example) starts, the assembling process of the pre-mRNA-protein
complex (pre-mRNPs) also begins by the association of the pre-mRNA with RNA binding
proteins (RBPs), that later mature to ribonucleoprotein complexes (mRNPs) (Björk;
Wieslander, 2014; Magistris, 2021). Note the functions of RBP are plenty: from alternative
splicing to RNA modification and translation (Glisovic et al., 2008).

The mRNP complex is the molecule actively transported through the NPC, and the
complete mRNA export process varies from 5 to 40 minutes (Mor et al., 2010). Another
important function of the RBP is responsible for mRNA export: as soon as the mRNA
processing ends the export must start. We can understand the mRNA export as a three-step
process for the RBPs (Björk; Wieslander, 2014; Magistris, 2021):

1. Assembling of the mRNP Complex: as the mRNA processing starts, the mRNP
complex gets concomitantly assembled.

2. Translocation through Nucleus: once the mRNP complex is released, the mRNPs
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diffuse in the interchromatin channels (i.e., a region with low average DNA concen-
tration and near the NPC (Cremer et al., 2020)). Some experimental results showed
this complex diffusion coefficient in humans is around 0.004 − 0.006 µm2/s (Mor et
al., 2010). Then, the mRNP acquires the export receptors.

3. Docking into the NPC: the mRNP docks into the NPC, rearranges itself and is
effectively exported (Becskei; Mattaj, 2005).

Thus, the mRNA export process is more complex than a molecule freely diffusing in
the nucleus. Again, there is a lot of information to uncover about the molecular interactions
and mRNA export, being either not detected mechanisms or new RBP molecules to identify.

Yet, with this knowledge of how complex the mRNA export is, the process of
developing a model to represent all the intricacies of any cellular mechanism is not
currently viable. Next, we present models proposed in previous literature to represent the
dynamics of a TF searching from a target site.

1.4 Modelling TF
When we consider the size of the datasets from gene expression/regulation, the

ability to theoretically predict some behaviours and patterns with the corroboration of
experiments is advantageous, and one especially useful technique is modelling. A model is
a representation simplified and scaled of a more complex system. In a system as broad
and complex as the TF, there are infinite ways to model it, depending always on the point
of view and/or the technique used (Ay; Arnosti, 2011).

For example, one can model biological systems as a stochastic process: a gene
expression model in which the TF role is implicitly defined, as the transcription equation
is a three-state model for DNA, RNA and protein (Robert, 2019) or the use of gaussian
processes to determine TF activity (Gao et al., 2008). Or even computational modelling
sequencing to determine TF-DNA binding sites with deep-learning (Zhao et al., 2016)
or using machine learning to predict pairwise the TF-TF complex binding the DNA
sequence (Antikainen; Heinonen; Lähdesmäki, 2022).

In this thesis, we opted for working with ordinary differential equations, a frequent
and common tool for modelling biological systems. Once we consider TF mathematical
modelling with differential equations, the field is still broad and yet to be fully explored:
for TF modelling, one can model the interaction between a gene induction that can turn off
a TF (e.g., Brn2 and Nanog (Sokolik et al., 2015)), two TFs interacting regulates the third
one (e.g., Oct4-Sox2 complexes and the positive regulation of Nanog (Glauche; Herberg;
Roeder, 2010)) or modelling the liquid-liquid phase separation of TF-droplets increasing
gene expression (Schneider et al., 2021).
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Gene regulatory network models can be used to understand TF binding and the
TFs competition, using a master equation to incorporate the cell stochasticity (Hettich;
Gebhardt, 2018). In our model, in addition to considering interactions between TFs, we
also consider how the chromatin structure influences the search process for a binding site,
as we extended the model in (Avcu; Molina, 2016) to obtain our different gene expression
models. We incorporated the stochasticity expected from the cells by applying the Gillespie
Stochastic Algorithm to our ODE system from Chapter 3.

Thus, one can conclude that the possibilities of modelling TF interactions are as
diverse and complex as the TF itself. Still, there are different and interesting methods
to fully comprehend the role of TFs in gene expression - some of them are yet to be
uncovered.
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2 Transcription Factor Searches and TF Clus-
tering

Disclaimer: Some parts of this chapter can be found in Molina’s team paper "Chromatin
structure shapes the search process of transcription factors"

Cellular processes depend on producing the suitable protein at an optimal rate; thus, the
recognition of a specific motif in the DNA is extremely important for cell maintenance and,
consequently, its permanence. From the Central Dogma, the cell transcribes DNA sequences
into RNA to start the protein synthesis, using transcription factors (TFs) (Roeder, 2019).
Given the size of the DNA, both DNA and TFs develop mechanisms to facilitate the
process of finding the right region for the right protein, like TFs condensates (Shrinivas et
al., 2018; Liu et al., 2014) or transcriptional activation or repression (Pugh; Tjian, 1990;
Mitarai; Semsey; Sneppen, 2015).

Experimental evidence suggests that the 3D structure influences the TFs’ search
processes. However, not only the structure and accessibility of chromatin influence the
binding of a TF to a region, as weak protein-protein interactions (PPI) may cause the
clustering formation of TFs, which can be defined as a high local concentration of TFs
on some specific nuclear regions (Cherstvy; Teif, 2013; Zhang et al., 2019; Gibcus et al.,
2018; Fudenberg et al., 2018; Nagamine; Kawada; Sakakibara, 2005). These transient
TF condensates help to stabilize DNA binding, recruit RNA polymerase (RNAP) and
activate transcription (Hnisz et al., 2017; Brodsky et al., 2020; Bompadre; Andrey, 2019;
Quintero-Cadena; Lenstra; Sternberg, 2020), which we will discuss in depth in Chapter 3.

In this chapter, we present the model previously developed by Molina’s team to
understand TF searches in chromatin (Avcu; Molina, 2016) and later we try to understand
how the structure creates a rich environment for cluster formation.

2.1 Transcription Factor Searches and Importance of the Structure
and Accessibility for its Occupation
As we discussed previously, the TF movement does not obey a pure diffusive

process, but rather it is a facilitated diffusion mechanism (or 1D/3D process where the
TF either slides the DNA (1D) or moves freely in solution (3D) (Mirny et al., 2009; Avcu;
Molina, 2016; Bauer; Metzler, 2012)). Such approximation to represent TF movement is
widely used in literature, (Bauer et al., 2015; Hettich; Gebhardt, 2018; Zabet; Adryan,
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2013; Slutsky; Mirny, 2004). Experiments such as in vivo Single-Molecule Tracking (SMT)
experiments (Kuhn et al., 2021; Xiao; Hafner; Boettiger, 2020), have shown that structure
is also an important component for TF occupancy in chromatin regions.

To incorporate the chromatin structure as a component for TF diffusion, we
admitted the existence of a network in which if there is a connection between two nodes
(i.e., regions), we have an edge. Thus, to reach a specific region i from region j, a path
between those regions must exist. To build our network mathematically, let N be the set
of nodes (regions) of our network. Then, we assumed our network as a symmetric matrix,
A, as for each pair of nodes of our network, i and j, we have:

A(i, j) = A(j, i) =

1, if exists a connection between region i and j;

0, otherwise.

We assumed ∀i, A(i, i) ≡ 1, i.e., we admitted the existence of self-loops for our network,
meaning each region has a connection with itself. With our mathematically proposed
network, we defined the number of connections of the region i as the sum of all the nodes
connected to region i, i.e., let L be the size of our network (the number of nodes, |N|= L),
we have:

di =
L∑
j

Aij . (2.1)

The TF movement from region to region is represented in Fig. 2.1. For example, a
TF localized in the light blue node can move to its neighbours’ nodes (magenta); in this
case, a TF has 6 different choices to move to the next nodes and another one to stay in
this node. Therefore, the number of connections each node has is important to either leave
the node or be reached.

Figure 2.1 – Representation for the TF movement in a network inside the nucleus.
Here, a TF localized in the light blue node can move in the next step to the
nodes in magenta or remain in its node, we assumed each node is equally
probable.



Chapter 2. Transcription Factor Searches and TF Clustering 41

To describe the TF movement through our network, we need to define the probability
to move from region j to region i, ∀i, j ∈ N. First, we supposed there is no bias toward
specific nodes in the network, i.e., all connected nodes have the same probability. Since
each region might a different number of connections, we assumed the probability for region
i, is the inverse of Eq. (2.1), and we defined this probability of moving from region j to
region i as:

Mi←j = Aij

dj

. (2.2)

This part of the model represents the 3D diffusion of TFs through chromatin.
However, the more accepted models for TF movements assume the mechanism of facilitated
diffusion (3D/1D process). To incorporate the sliding process (1D diffusion), we considered
the residence times, which represent how long a TF spends in a particular region before
sliding off, (Avcu; Molina, 2016). Of course, if a TF remains for longer periods in a region,
this region is more likely to recruit the transcriptional machinery (Azpeitia; Wagner, 2020;
Popp; Hettich; Gebhardt, 2020).

Thus, for our model, the waiting time should be region-specific with the length of
our network size, L. Of course, as chromatin is a complex of proteins (mainly histones) and
DNA (Alberts, 2004), the DNA sequence is region-specific. Also, the TFs are DNA-specific,
i.e., it looks for their binding sequence. Besides, chromatin is also packed and we need
open chromatin (euchromatin) for the TF to bind a region, which is more responsive to
active histone marks. To evaluate the residence times, we used the mean first-passage time
of a random walk and single molecule microscopy data to create a bimodal distribution,
for active and inactive times (Avcu; Molina, 2016). Therefore, the probability of finding a
TF in region i depends on the master equation in Eq. (2.3).

dpi(t)
dt

= −kipi(t) +
L∑
j

Mi←jkjpj(t) . (2.3)

In which ki is the region-specific exiting rate, i.e., the inverse of the residence time for
region i. Here, the time-changing probability depends on the TF that leaves the region i

and the sum of all the possibilities of the region i to be reached, given the concentrations in
those other regions. We transformed our model into a matrix form, i.e., let K the diagonal
matrix of (ki)L

i=1 and M the matrix of movement in the network,
dp(t)

dt
= −(K − MK)p(t) = −Ωp(t),

where Ω is the transition rate matrix. This ordinary differential equation (ODE) is easily
solvable with calculus techniques, and

p(t) = p0e
−Ωt . (2.4)

We used the Hi-C data for Chromosome 19 for CH12 Mouse Lymphoblasts in 5kb

resolution to generate our network (Rao et al., 2014), we threshold the values from the
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contact frequencies to create our fixed network; and, in Fig. 2.2, we present the correlation
matrix for this network. From Fig. 2.2, we can see the regions are connected in blocks,
creating sub-topologies inside the Topologically Associated Domains (TAD). Also, since
we obtained our structure from experimental data, there are some regions in which the
Hi-C could not get any reads, creating blocks of non-connected regions in our matrix.

Figure 2.2 – Correlation Matrix for Chromosome 19 for CH12 Mouse lympho-
blasts from (Rao et al., 2014). Here, we can see the formation of different
topologies in smaller intervals inside the network.

To understand the parameters for the model in Eq. (2.3), we present Fig. 2.3 the
probability density for A the number of connections and B log2 of the residence times.
The number of connections shows two different groups: the connected regions, a bigger
part of the network, and barely-connected regions, which are artefacts from the Hi-C
measurement. The residence times we can see the bi-modality of inactive and active regions
is an expected result in B, and most of the regions remain inactive.

BA

Figure 2.3 – Probability density of occurrence for the parameters in Eq. (2.3). A
Number of connection, d and B log2 of residence times, log2(τ).

We studied the steady-states for model Eq. (2.3), which is a way to obtain the
TF occupancy pattern. To do so, we admitted no variation in our system (p′(t) = 0) and
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the Laplacian matrix (Strogatz, 2015; Avcu; Molina, 2016). Thus, for any region i in the
network, the steady state in this region is:

pi = [T ] τidi∑
j τjdj

, (2.5)

in which τi is the residence time and di the number of connections for region i. The norma-
lization for the steady state is given by ∑j τjdj, and [T ] is the nuclear TF concentration.
Given Eq. (2.5), we solved our system for RelA (p65) TF binding sites and the chromatin
network from (Rao et al., 2014).

2.1.1 Simulating the steady-states

From Eq. (2.5), the number of connections and the residence times, we evaluated
the TF occupancy for Eq. (2.3), considering 2000 TFs inside the nucleus ([T ] = 2000). In
Fig. 2.4 A, we proposed the solution for all the regions, where the TF concentration is
less than 20% of the number of regions. Since accessibility and connectivity are important
factors for occupancy, we verified how some regions retain TFs and others are expected to
remain unoccupied.

CB

A

Figure 2.4 – Solutions for Eq. (2.5) given our network and residence times. A
Transcription Factor Occupancy. B - C log2 of TF Occupancy, with B, log2
of the residence times (coded by the number of connections) and C number
of connection (coded by the log2 of the residence times).
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In Figs. 2.4 B and C, we analyzed the solution in Fig. 2.4 A and compared with
the values of the residence times, B, and the number of connections, C. Fig. 2.4 B showed
how the log2 of the residence times in which each value has the number of connections.
The low connected regions (present in Fig. 2.3 A) create an outlier from the occupancy
pattern. The number of connections increases the chances of being occupied as expected
from Eq. (2.5).

To verify how the regions’ connectivity affects the occupancy, we proposed Fig. 2.4
C, where the outliers in Fig. 2.4 B are verified in the bottom left of Fig. 2.4 C. Since our
network is binary (we assumed whether there is a connection between the regions or not),
we can see the discrete values of d. Another interesting behaviour is the two clouds of the
concentration dependence of the log2(τ) by the activity (and inactivity). Both structure
and accessibility influence the TF occupancy as we presented in Eq. (2.5).

2.1.2 Specific Influences from Structure and Accessibility on the Occupancy

From Eq. (2.5), both the connectivity (di) and the accessibility/sequence (τi) affect
the TF occupancy patterns. To showcase the specific effects of the structure and the
residence times on the TF occupancy, we proposed two different conditions: (i) a fully-
connected network with the same network size L and (ii) an averaged residence time equal
in each region, i.e., we have a 3D diffusive process, instead of a facilitated diffusion one.

For the fully-connected network, we assumed all the regions are connected and
the only region-specific parameter is the residence times, creating a network in which all
the nodes are reached with only one step, facilitating, even more, the TF diffusion. This
means the structure does not influence the occupancy since, ∀i ∈ N, di = L.

We present the steady-states considering the fully-connected network in Fig.2.5 A,
in which we can see both increases and decreases in TF concentration when we compared
with Fig. 2.4 A. The increase in occupancy in some regions is explained by the connectivity
and the decrease is the effects of the TF nuclear concentration and the residence times.
The unoccupied regions around the 9000 − 10000 interval remain unoccupied considering
this network, meaning the lack of TF occupancy is due to inaccessibility/ residence times
values.

Since all the regions have the same number of connections, the only region-specific
parameter is τ . Thus, we verified the linear influence of τ in our steady-state for the
fully-connected network in Fig. 2.5 B. This means the occupancy is only affected by the
residence times, i.e., the sequence specificity and accessibility of the region.

Still, we need to verify how the occupancy was affected by the structural change in
the network and we verified the differences in concentration in Fig. 2.5 C. First, the outliers
with low concentrations had a slight increase in value due to the expansion of connectivity
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everywhere. The improvement pattern in concentration for regions with smaller residence
times in comparison with the results from Fig. 2.4. Since we have limited transcriptional
resources, the occupancy in more active regions is decreased in part of the regions showing
active transcription sites and it is a consequence of all regions being reached in one step.
This result guarantees that changes in connectivity affect how the molecules occupy the
space, which was expected.

C

BA

Figure 2.5 – Steady-state solutions considering a fully-connected network. A
Steady-state occupancy per region; B-C log2 of TF steady-state in A where
B log2 of residence times and C log2 of TF steady-state in Fig. 2.4 A, with
log2 τ values.

To improve our knowledge of the residence times and their effects on TF occupancy,
we proposed each region has the same residence time, ⟨τ⟩ = 0.7881 seconds, which is the
average of all the residence time values for our solution in Fig. 2.4. In this case, we can see
how the TF occupancy might occur in a system with only 3D diffusion, and we present
the occupancy pattern for this condition in Fig. 2.6 A.

Since we admitted [T ] = 2000, we do not have TF concentration higher than 1
in any region, i.e., ∀i ∈ N : [Ti] < 1, with an average occupancy of ⟨[Ti]⟩ = 0.1714 TF’s
molecules. From Fig. 2.6, we can see how the number of connections has an impact on the
TF distribution, and how a diffusive process creates a pattern of reduced TF concentration
everywhere, which is not biologically feasible since TFs are region-specific parameters.
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Thus, this steady-state also proves why a 3D diffusive process only is not an optimal way
to understand the TF search process.

As expected, occupancy is linearly dependent on the number of connections, as
we show in Fig. 2.6 B. However, the effects of d in the occupancy are less effective in
increasing TF occupancy per region than τ values, creating a more spread-like occupancy
pattern, with the absence of unoccupied regions.

Once we compared log2 of Fig. 2.4 A with log2 of Fig. 2.6 B, we can see two
separate clouds of TF occupancy. The two clouds represent the separation between active
and inactive regions, as we have shown in Fig. 2.3 B and how the connectivity improves
the occupancy in those two states. Another interesting result is the set of completely off
outliers with low concentration in the bottom left corner of Fig. 2.6 C: those regions were
the less occupied regions and they correlate with regions almost disconnected from our
network, represented in Fig. 2.3 A. Therefore, we can see how incorporating a facilitated
diffusion mechanism into TF search improves our abilities to predict TF occupancy.

C

BA

Figure 2.6 – Steady-state solutions considering only a diffusive process, i.e.,
all the regions have the same residence times, ⟨τ⟩. A Steady-state
occupancy per region; B-C log2 of TF steady-state in A where B number of
connections per region, d, and C log2 of TF steady-state in Fig. 2.4 A, with
d values.

The past examples were extreme and artificial conditions we created to verify how
the TF occupancy pattern can emerge from a network fully connected and without region-
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specificity for binding. To take our analysis one step further, we proposed randomizing the
parameters to maintain the same parameter set conditions from Fig. 2.3 but in different
(randomized) regions.

2.1.3 Randomizing the Network and Residence Times

As we wanted to understand how parameters changes affect the occupancy in a less
extreme way as described in the previous subsection, we defined two different networks
with the same parameters values from Figs. 2.3 A and B. We opted to randomize the
conditions in two different ways: (i) the connectivity, d, i.e., we fixed the residence time
vector τ but with different connections between regions (since connections often change
due to the chromatin movement inside the nucleus), and (ii) the residence times with the
original network, i.e., since TFs are region-specific, we consider that our system represents
a different TF.

BA

DC

Figure 2.7 – Steady-state solutions considering a new randomized version of our
network connectivity. A The connectivity changes between our initial
network and the new network B Steady-state occupancy per region; C-D
log2 of TF steady-state in A where C log2 of the residence times, and D
number of connections per region, d.

In Fig. 2.7, we present the results after rearranging the number of connections di

but maintaining the same active/inactive regions. In Fig. 2.7 A, we showed the difference
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between our initial network and the randomized version of it, to prove the changes are big
enough between both networks.

Given our new network, we showed its steady-state (Eq. (2.5)) in Fig. 2.7 B, in
which the occupancy pattern does not deviate as much from Fig.2.4 A because of the same
τ . However, as Eq. (2.5) defined, both di and τi determine the expected TF occupancy in
the region i, thus the new network created a different occupancy pattern.

We checked how the new network changed our occupancy in Figs. 2.7 C and D: in
C we verified the occupancy pattern over the log2 of the residence times and in D the
number of connections. Both figures showed a similar pattern to the ones in Figs. 2.4 B
and C.

If compared Fig. 2.7 C with Fig. 2.4 B, we obtained regions with low TF occupancy
and active regions, i.e., such regions are less accessible even if they are attractive. This
result does not mean those regions are not reached over time: TFs explore chromatin very
fast, but this subset of active regions but with a low number of connections, namely the
ones present in the left part of Fig. 2.3 A, which affects the probability of finding a TF in
those regions.

The cloud that separates the regions between active and inactive subsets is once
again present in Fig. 2.7 D, similar to the ones present in Fig. 2.4 C. The outlier from
Fig. 2.7 C is split between the two clouds of activity.

It is clear a change in the network affects the TF occupancy - as defined by Eq. (2.5);
thus, in Fig. 2.8, we proposed a comparison between the two networks. In Fig. 2.8 A, we
verified how the new network is different from the expected. Another interesting result is
the three outliers: one with increased TF concentration and the other two with reduced
TF concentrations for the network. The effects of τ are maintained in both networks since
they are the same, as we showed in Fig. 2.8 B.

BA

Figure 2.8 – log2 of TF occupancy for the randomized network over the log2 for
the TF occupancy from Fig. 2.4 A. With the values from A number of
connections d and B residence times, τ .
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Our result for a different network showed how the differences in connectivity
influence the occupation pattern, which is an interesting result since cells are stochastic
and chromatin is free inside the nucleus, creating and destroying connections between
regions. Next, we randomized the residence time values, τ , which can be understood as a
different TF exploring the same network, and presented the results in Fig. 2.9.

The randomized values of τ were present in Fig. 2.9 A to prove how different one
vector is from the other. Since those values are in log2 space, we have 4 separate clouds of
residence times. We also fixed the network from Fig. 2.4, as we aimed to create a different
pattern for a different TF. The occupancy pattern per region is present in Fig. 2.9 B and
it shows the preference to bind different regions, as this model can be understood as a
representation of another transcription factor active in the nucleus. From the steady states,
it is clear this new TF binding to our network presents a decrease in occupancy, proving
the connectivity’s importance in TF occupation.

BA

DC

Figure 2.9 – Steady-state solutions considering a new randomized version of
the residence times. A The differences between log2 τ and log2 τR, the
randomized τ B Steady-state occupancy per region; C-D log2 of TF steady-
state in A in which C log2 of the residence times, and D number of connections
per region, d.

Similar to the randomized network we previously generated, Figs. 2.8 C and D,
we proposed Figs. 2.9 C and D to compare d and τ effects on the occupancy likelihood.
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Fig. 2.9 C shows the log2 of the steady-states in Fig. 2.9 B over the log2(τR), i.e., the
randomized values of τ . The combination of τidi shows a subset outlier of low-occupied
regions for higher expected residence times (i.e., active regions). However, differently from
our previous result, we had a decrease in the maximum concentration as a consequence
of changing the TF for that fixed network, but with an increase in more highly-occupied
regions (more than 10 TFs in the region).

To compare how changes in accessible regions impact TF occupancy, we present in
Fig. 2.10 the log2 of Fig. 2.9 B over Fig. 2.4 A. Different from the randomized network,
the concentration for the system with τR behaves similarly as Fig. 2.9 A. In Fig. 2.10 A,
we showed how the low connectivity for a region does not imply low TF concentration
and how the number of connections has a weaker influence in the steady state. When we
consider the values of log2 τ , Fig. 2.10 B, we verified how our system depends on the time
a TF spends bound to a region.

BA

Figure 2.10 – log2 of TF occupancy for the randomized residence time over the
log2 for the TF occupancy from Fig. 2.4 A. Each point also presents
A number of connections d and B residence times, τ .

All our analyses showed how both the number of connections and the residence
times impact the expected behaviour of a TF. The network changes proved how structural
changes facilitate or hinder access to particular regions, as chromatin is not a stable
network as we supposed (Dion; Gasser, 2013; Soutoglou; Misteli, 2007). The activity (or
inactivity) of a region to transcription is also a mechanism of gene regulation, thus changes
in accessibility influence how a TF binds chromatin.

From all those studies, we saw some regions were so attractive to the TFs that
we had the emergence hubs of transcription factors. Those TF hubs can also interact
between themselves, i.e., those TFs cluster together to maintain the transcription in a
particular region (Wollman et al., 2017; Liu et al., 2014; Johnnidis et al., 2005). As a tool
to comprehend this mechanism, we expanded the model in Eq. (2.3) to incorporate the
TFs protein-protein interactions in the next section.
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2.2 TF Cluster Formation and the need for Volume Exclusion
In the previous section, we discussed how the structure affects the search and in

consequence the TF occupancy patterns and also how the accessibility influences the TF
binding. Both characteristics generated highly-occupied regions for TFs which is due to
how attractive those regions are to the TFs, which indicates other mechanisms are at play
than just the 3D/1D process. One answer for this clustering of TFs is the presence of weak
protein-protein interactions between the TFs as a mechanism for gene expression (Cherstvy;
Teif, 2013; Zhang et al., 2019; Gibcus et al., 2018; Fudenberg et al., 2018; Nagamine;
Kawada; Sakakibara, 2005). This difference in TF concentration through the nucleus is a
well-known feature in cells (Meeussen et al., 2022).

To model the genome-wide effects of protein-protein interactions on TF occupancy
and, eventually, transcription, we extended Eq. (2.3) from the previous section and (Avcu;
Molina, 2016). To include protein-protein interactions into the model, we assumed that
each TF molecule can interact with up to I other molecules (as the molecules’ geometry
influences the interactions, I is a small number compared with the size of the network, L -
i.e., I << L), and these interactions are formed and broken with the constant association
and dissociation rates Ka and Kd.

A cartoon representation of this system is present in Fig. 2.11. There, we assumed
four different scenarios for protein-protein interaction: (1) Zero or No Interactions (blue
star, no dashed lines); (2) One Interaction (pink star and one dashed line); (3) Two
Interactions (green star and two dashed lines); and (4) Three Interactions (yellow star with
three dashed lines). Therefore, to model this system, we first assumed that only molecules
with zero interactions are free to jump from a given region to a new one provided that
both are connected since TF-TF interactions restrain the movement to another region.

Figure 2.11 – Cartoon representation of Protein-Protein Interactions. In which
the blue star without a dashed line represents a region without protein-
protein interactions; the pink star with one dashed line one protein-protein
interaction; the green star with two dashed lines connecting it to two protein-
protein interactions; and the yellow star connected to three dashed lines
represents three protein-protein interactions.
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From the results of the previous section, we found some regions had high TF
concentration (in those cases, [Ti] > 10, even if [T ] < L). To avoid aggregation of all TF
molecules in one single region, we imposed that all regions have an equally limited space to
fill with TFs, which is feasible since each region has the same size, even if by the residence
times, τ , some regions can be more or less open to TF binding.

Thus, we introduced a constant carrying capacity C that represents the maximum
number of TFs that a region can support. The presence of a constant to limit the occupancy
in a region is also a necessity to make our model more realistic, as there are no regions with
infinite space. With our assumptions and considering Eq. (2.3) as a good approximation
for the TF search process in chromatin, we present our model in Eq. (2.6).

dp0
i

dt
= −kip

0
i +

∑
j

(C − p∗
i )Aijkjp0

j∑
q(C − p∗

q)Ajq
− Kafip

0
i + Kdp1

i ;

dpα
i

dt
= Kafip

α−1
i − Kdpα

i − Kafip
α
i + Kdpα+1

i ; 0 < α < I

dpI
i

dt
= Kafip

I−1
i − KdpI

i ;

(2.6)

where pα
i is the number of TF molecules in region i that have α interactions, (0 < α < I).

The two first terms of the first equation (α = 0) describe the search for a binding site is
similar to the one proposed in Eq. (2.3); however, here, we considered that the probability
of jumping into a region is proportional to the free space available there. The formation
of protein-protein interactions is modelled as a second-order reaction governed by the
association rate Ka, which is not region-specific, i.e., all regions have the same capability
to form clusters. We also assumed the dissociation rate, Kd, is not region-specific and we
supposed Kd = 1s−1.

A new protein-protein interaction depends on the number of available TF molecules
in the neighbourhood can establish a new protein-protein interaction. This quantity of
TF’s availability is expressed as fi = ∑

j

∑I−1
β=0 pβ

j Aij, i.e., a TF in the region i depends on
TF concentration with less than I interactions in all regions connected to itself. Finally, we
defined p∗i = ∑I

β=0 pβ
i as the total concentration of TFs in region i, since this concentration

should be smaller than the carrying capacity C. Given there is a limited amount of TFs
inside the nucleus, we also define the total TF concentration of our system as [T ] = ∑

j p∗j .

Different from Eq. (2.3), Eq. (2.6) is not easily solvable. Thus, the understanding of
its stability is the main tool to understand the patterns that can emerge from our model,
which we present in the next subsection.

2.2.1 Parameters and Stability Analysis

The first point to consider about our model in Eq. (2.6) is that the system has
(I + 1) × L equations. Of course, this means our model is more complex to solve and
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understand than the previous one, but we still can obtain its behaviour and how stable
are the solutions.

Considering the steady state for our system (i.e., when we have no variation over
time (Strogatz, 2015; Murray, 2007)), we obtained the following solution for any β ≥ 0
depending on p0

i in Eq.(2.7).
pβ

i = (Kafi)βp0
i . (2.7)

Note that this critical point is uniquely defined but not unique. More than that, fi

is still dependent on all pγ
i values except for γ = I. However, we still can write the set of

all critical points, C, as one in which the solutions obey Eq.(2.7).

Considering proteins are very complex and long compounds, the number of possible
interactions in our system must remain low enough to be biologically feasible. Thus, we
supposed the number maximum of interactions I = 3 and we defined p0 = (p0

1, ..., p0
L) ∈ RL

+

(as our system is counted as molecular concentration, we supposed only non-negative
real numbers) and f = (f1, ..., fL) ∈ RL

+ (as a direct consequence of p0). The first vector
contains all the no-interacting TF concentrations for i ∈ [1, L] and the second represents
the chances for each region to associate. We also note Ka ∈ R+.

(C0, C1, C2, C3) = (p0, KAfp0, (KAf)2p0, (KAf)3p0), (2.8)

Note that (0, 0, 0, 0) is a feasible critical point in Eq. (2.8). However, we analyzed the
behaviour in respect of Ka for the case where p0 ̸= 0, i.e., the case in which the solutions
obey Eq. (2.7). Since we assumed all the parameters are non-negative, p0, p1, p2, p3 ≥ 0.

• If 0 < Ka < 1, then ∀β, pβ−1f > pβ. So, the effect of protein-protein interactions is
present but only slightly, i.e., the TFs will occupy more places with a smaller number
of interactions between regions.

• If Ka > 1, then pβ−1f < pβ, ∀β. Then, we expect stronger effects of cluster formations
in higher levels of interactions.

• If Ka = 1, then we expect the TFs to be distributed over states as the ones present
in Eq. (2.8).

• If Ka −→ 0, then the effect of protein-protein interactions is negligible and thus not
altering the obtained on p0.

In Eq. (2.8), we proposed the steady-states for our system; however, the stability of
this critical point is not known. Since our model complexity creates a high-order polynomial
as the characteristic polynomial, we opted against furthering the analytical approach to
understand this model. Thus, we defined the matrix version of our model, i.e., let κ be
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the vector of exiting rates, with κ ∈ RL, A ∈ RL × RL, which we used in our numerical
solutions. 

T 0 = dp0

dt
= −κp0 + κ(C − p∗)Ap0

(L − [T ])A − KafAp0 + p1 ;

T 1 = dp1

dt
= KafAp0 − p1 − KafAp1 + p2 ;

T 2 = dp2

dt
= KafAp1 − p2 − KafAp2 + p3 ;

T 3 = dp3

dt
= KafAp2 − p3 .

Again, we remind that p∗ = p0 + p1 + p2 + p3 and f = p0 + p1 + p2. Thus, it
is clear that evaluating our model analytically is not as simple as our previous model.
However, a tool to understand our model is to obtain its numerical solutions.

2.2.2 Numerical Solutions and Parameter Set Exploration

To solve our protein-protein interaction model and explore how the association
rate, Ka, and the carrying capacity, C influence the TF occupancy. First, we need to
define our network and exiting rates for all our numerical solutions and, since the system
has (I + 1) × L equations, we opted to reduce the network in Fig. 2.3 A by averaging in
blocks of 7, and removing its outliers; this result is present Fig. 2.12 A. We also averaged
Fig. 2.3 B in blocks of 7 and removed the values from the outliers, and normalized the
values of τ such that ⟨τ⟩ = 1s, Fig. 2.12 B

BA

Figure 2.12 – Probability density of occurrence for the reduced network from
Fig. 2.3. A Number of connections, d and B log2 of residence times, log2(τ).

As we aim to explore cluster formation, the two parameters in Eq. (2.6) are essential
to comprehend the clustering around a specific chromatin region: the association rate (Ka)
and the carrying capacity (C), since the association rate rule, the strength of clustering
the system can achieve and the carrying capacity works as a limiting the full occupancy
to prevent the aggregation in only a few attractive regions. With that, we supposed our
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model has a fixed total concentration of 1000 TFs for our scaled network and residence
times, i.e., [T ] = 1000 TFs.

Therefore, we solved our model using the deterministic approach from Matlab’s
ode15s (Gupta; Wallace, 1975; Shampine; Reichelt, 1997), considering different values
for both Ka and C while fixing the network, ki, and [T ]. We implemented our solution
for 400 seconds, as since the movement of the TFs, and supposed the following values
for Ka = {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 1, 1.5, 2, 2.5} and C = {5, 10, 15, 20, 25, 30, 35, 40}.
We emphasize our simulations are not representatives of the steady-state but rather a
study of the expected behaviour after 400 seconds. Examples of our results for the extreme
values of Ka and C are present in Fig. 2.13.

A

C

B

D

Figure 2.13 – Numerical Solutions for Eq. (2.6) with different values and Ka and
C. A-B C = 5 with A Ka = 0 and B Ka = 2.5. C-D C = 40 in which A
Ka = 0 and B Ka = 2.5. Here, we used the result from t = 400 seconds.

From Fig. 2.13, we can see how the values Ka and C influence the occupancy:
first, for all the figures an inaccessible interval appears between regions 1200 and 1500.
Such inaccessibility being sustained in Fig. 2.13 A and B is a sign of the difficulty of
finding a TF over that region interval. In Fig. 2.13 A, the carrying capacity limits the TF
concentration, thus stimulating the occupancy in other less attractive regions. Between
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Fig. 2.13 A and B, the aggregation due to Ka increases the occupancy in some regions
while decreases in the rest, as both figures have the same low carrying capacity, C = 5
- i.e., each region can only admit 5 TF molecules maximum. This clustering reproduces
a transcription factory for genes in those specific regions, which facilitates transcription
there and debilitates in other parts of our network.

Once we compare Figs. 2.12 A and C, we verified how allowing more TF TFs to
agglutinate in C increases the occupancy in prolific regions. Thus, granting the maximum
TF concentration in our model benefits the transcription in the regions with better
connectivity and residence times, given those regions are more attractive for the TFs. Again,
the presence of a non-negative association rate increases the occupancy in prolific regions,
a result that corroborates the assumption of cluster formation improving transcription.

Fig. 2.13 showed how sensitive is the model to parameter changes. Next, we analyze
the effects of (i) the association rate and (ii) the carrying capacity given fixed values of C

and Ka, respectively.

2.2.2.1 Association rate to tune gene expression

The association rate influence on our model was previously verified in our stability
analysis and Fig. 2.13. To improve the understanding of Ka, we fixed C (i.e., we assumed
C = 15), and implemented the numerical solutions for different values of Ka. With a fixed
value for the carrying capacity and nuclear TF concentration, we validated how our model
behaves with distinct values of Ka, some solutions are present in Fig. 2.14.

Fig. 2.14 A presents a concentration of TFs lower than the carrying capacity since
the value of C considers all the protein-protein interaction levels. Since this figure is a
consequence of the low association rate, we have that numerous of the TFs remain without
protein-protein interactions. Thus, while such Ka creates clusters, the distribution of
protein-protein interactions is more even, which is not the case for the other figures in
Fig. 2.14. Another interesting result is the maximum TF concentration is less than 1/3 of
the carrying capacity after 400 seconds.

However, in Figs. 2.14 B, C and D, we can see how the association rates directly
influence the TF concentration in I = 3 and, in consequence, decrease previously occupied
regions. Thus, the TFs with a higher propensity of clustering will occupy their target
regions in transcriptional hubs, as predicted by Eq. (2.8).

More in-depth, in Fig. 2.14 B, the regions with small TF concentrations are mostly
in the zero protein-protein interactions state, I = 0. The maximum TF concentration
found in the system doubled between A and B but the values for Ka in B are five times
bigger than the Ka in A. The concentration rises for I ≥ 2 states is found in Fig. 2.14 C
and D as well, but the maximum value difference between them is less abrupt than the
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one present in Figs. 2.14 A and B.

A

C

B

D

Figure 2.14 – Numerical Solutions for our model in Eq. (2.6) for different values
of Ka and C = 15. Where, A Ka = 0.05; B Ka = 0.25; C Ka = 1 and D
Ka = 2.

It is clear that concentration and PPI are affected by the values of Ka, as it
increases the chances of two or more TFs to weakly interact. The carrying capacity C

has an indirect impact on the cluster formation since the occupancy in states with PPI
depends on the occupancy in I = 0 which is affected by C, Eq. (2.6). However, if our
system allows a higher TF concentration in its nodes, the occupancy pattern changes its
distribution opting for preferential regions, as we showed in Fig. 2.13.

As discussed earlier, the aggregation in specific (more prolific) regions forces the
eviction in less attractive regions of our network, since transcriptional resources are limiting
factors for gene expression. We present the analysis for specific regions and fixed carrying
capacities in Fig. 2.15.

In Fig. 2.15 A, we verified two characteristics for this specific region: first, we
demonstrated a fast increase in PPI once Ka in non-negative for both values of C, which
is a consequence of a region being well-connected in the network. Then, as a consequence
of the region being active but not preferential sequence-wise, while the TFs are more
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likely to occupy this region than most of the network, once the values of Ka rise, its
TF concentration drops as more attractive region recruit those TFs, clustering TFs in
more attractive than the region present in Fig. 2.15 A. The second characteristic is more
prominent for higher values of C, as it allows more Tfs per region.

A

B

C

𝐶 = 10 𝐶 = 30

Figure 2.15 – Association rate over TF occupancy for different regions and with
different values of C, C = 10 and C = 30. A Region 162. B Region 590.
C Region 850. The τ and d values for the regions are present in Table 1.

In a sense, the region from Fig. 2.15 B is the opposite of the one from Fig. 2.15 A.
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First, it shows a delay in higher states of PPI, a consequence of being less connected than
its predecessor and since it entraps TFs more efficiently and its cluster increases with more
effective values of Ka. Yet, similar to the previous region the allowance of more TFs in the
regions creates a higher tendency to bind those prolific regions (i.e., highly connected and
with better and accessible binding motifs), impacting the other regions’ allocation.

Fig. 2.15 C is a very prolific region and we verified both the overshoot of aggregation
for being highly connected and the sustained occupancy with the values of Ka. Another
important result is that for given low values of C the TF concentration in that particular
region is approximately C, which is not the case for higher values of C.

To verify how Ka affects our model on a global scale, we fixed both [T ] and C

and analyzed the occupancy pattern at t = 400s for all our values of association rate in
Fig. 2.16 A, and we verified how by increasing the efficacy in clustering, bigger clusters
form around specific regions, reducing the TF occupancy in other regions, as we verified
also in Fig. 2.15. More so, we compared the occupancy changes between efficient clustering
(Ka = 2.5) and the absence of clustering (Ka = 0) by evaluating the log of the ratio
between their allocation patterns t = 400s in Fig. 2.16 B, which we explicitly show how
most of the regions in our network are negatively impacted by the presence of clustering
formation, since few regions hoard more TFs inside, arresting the TF search.

A B

Figure 2.16 – Impact of the association rate over TF occupancy for fixed [T ] and
C (1000 TFs and 10 TFs, respectively) at t = 400s A Heatmap for all
values of Ka in which we can see how the effectiveness of cluster formation
influences the occupancy pattern B log of the ratio between the maximum
Ka considered in our simulations (Ka = 2.5) and the absence of clustering
(Ka = 0), showing the steep decrease in concentration in the less attractive
regions to favour other regions.

Thus, the results from Figs. 2.15 and Fig. 2.16 justify an in-depth analysis of the
carrying capacity effects for our model and in gene regulation.
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2.2.2.2 Carrying Capacity as a mechanism to control the transcription levels

By limiting the maximum concentration of a TF in any chromatin region, we clearly
affect the TF search process. In the previous subsection, we verified how the association
rate impacts the cluster formation, hoarding available transcription factors in specific
regions with higher PPI states.

To understand the global behaviour that emerges from varying the values of C, we
implemented the numerical solutions for the same Ka and [T ] but with different values of
C. This result is in Fig. 2.17, in which we admit Ka = 1 and [T ] = 1000.

As discussed earlier, allowing more TFs to allocate in the regions create an im-
poverishment of transcriptional resources in less prolific regions and such a pattern is
once again verified when we compared all the subfigures in Fig. 2.17. More than that, as
expected, peaks of TF concentration also increase with C. It is important to notice that
with Ka = 1, the cluster formation is strong but not all the regions have a maximum
concentration in I = 3, as Fig. 2.17 A shows. Since the total nuclear concentration is fixed
in all the numerical solutions, regions with low TF concentrations further reduce their
concentration which is transferred to more attractive regions.

A

C

B

D

Figure 2.17 – Numerical Solutions for our model in Eq. (2.6) for different values
of C and Ka = 1. In which, A C = 15; B C = 20; C C = 30 and D
C = 40.
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Another interesting result is that while our numerical solutions admitted up to 40
TFs/region, even the most occupied region does not reach C - as shown in Figs. 2.17 C and
D, for example. Thus, we concluded that while C helps to control the TF’s agglutination in
a particular set of regions (or even just one), the search mechanism (Eq. (2.3)) used by the
TF also works as an auto-regulating tool for TF allocation. The evolution of the C values
also shows how groups of chromatin regions with higher concentrations in the highest
PPI state (I = 3) were also reduced by allowing more TFs per region, i.e., increasing the
clustering.

In the previous subsection, we verified how different values of Ka influence TF
behaviour and cluster formation. Thus, we demonstrated how a lower than 1 association rate
and low C influence the sum over all PPI states, cluster formation and, as a consequence
of it, transcription in Fig. 2.18.

An important feature of this numerical solution is that since we consider a low
value of C, the regions are more spread through less active/connected regions than the
results in Fig. 2.17. Since we considered Ka < 1, this result helps us to understand how C

influences the occupancy pattern and how regions with less expected activity are active if
there is any limitation on the number of molecules allowed in each chromatin region.

Figure 2.18 – Sum over all PPI states of the numerical solution for our model
in Eq. (2.6) for C = 5 and Ka = 0.25.

This result implies C can be used as a mechanism to regulate gene expression and
as a way to understand the TF placement considering regions with small binding affinity.
Even in a case where the occupancy in a node is limited, some regions maintain their
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unoccupied features, as the regions inside the interval 1200 − 1400 show; i.e., some regions
are so unlikely to be open to transcription in our model that even in a restricted system,
we did not find TF occupancy.

A

B

C

𝐾! = 0.15 𝐾! = 1.5

Figure 2.19 – Carrying Capacity over TF occupancy for different regions and
with different values of Ka, Ka = 0.15 and Ka = 1.5. A Region 162. B
Region 590. C Region 850.

However, the Ka value considered does not increase the cluster formation only in
the highly active regions and the total nuclear TF concentration is low enough to force
the TF occupancy everywhere. And it is clear that by increasing [T ], one also affects TF
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occupancy.

In Fig. 2.17, we showed how different values of C affect the TF allocation. To
verify how specific regions are affected by parameter changes, we propose Fig. 2.19, using
the same regions from Fig. 2.15, but for two fixed values of Ka : (i) Ka = 0.15 and (ii)
Ka = 1.5. We emphasize that the τ and d values for the regions are present in Table 1.

In Fig. 2.19 A, which has a well-connected region with a small residence time, we
have the majority of the TFs in this region in the maximum PPI as possible (I = 3). The
other states of PPI show higher concentration for the smaller value of Ka (Ka = 0.15),
which is expected since Ka is responsible for the clustering in our model. For Ka = 1.5 the
clustering in this region is high thus for β ≤ 2, pβ → 0; however, when we compare both
p3, the one with smaller association rate is bigger than the other, i.e., the clustering in
the first condition is less effective everywhere, but this region benefits from it.

The effectiveness to form clusters is a behaviour we obtained in Fig. 2.19 B, in a
low-connected region with small Ka values, we obtained that pβ−1 > pβ, ∀β. The same
result was shown in Fig. 2.15 B. Yet, with higher values of Ka the pattern has the same
behaviour as Fig. 2.19 A.

Last, in Fig. 2.19 C we have a similar pattern from Fig. 2.19 A, but with more
than twice the concentration for p3 in C and an almost linear pattern for Ka = 0.15 for
the maximum PPI, i.e., p3 ∝ C. For Ka = 1.5 in C, the concentration in the p3 state
remains bigger since C = 5 TFs, but at C = 40 TFs, the concentration is slightly less than
the one for Ka = 0.15.

A B

Figure 2.20 – Carrying Capacity over TF occupancy for all the regions with
[T ] = 1000 TFs and Ka = 1.0 at t = 400s. A Heatmap to analyze how
the occupancy landscape changes by allowing more TFs into the regions,
resulting in bigger clusters. B log of the occupancy from C = 40 TFs over
the obtained in C = 5 TFs.

To understand the global effects of C on TF occupancy, we propose in Fig. 2.20
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a similar analysis to the one in Fig. 2.16. Thus, we fixed the values for [T ] and Ka and
analyzed how by increasing more TFs to occupy a region, we deplete other regions of TFs,
i.e., by increasing C, the even TF spread showed in Fig. 2.19 is less likely.

In Fig. 2.20 A, we can see this increase in occupancy in specific regions as we
allow more TFs to occupy the regions at the same time. Then, we compared simulations
with the highest (C = 40 TFs) and the lowest (C = 5 TFs) values of C by dividing the
occupancy profile at t = 400s of C = 40 by the one from C = 5 and applying the natural
logarithm, Fig. 2.20 B. Fig. 2.20 B again showed that few regions are favoured and, as a
consequence, most of the regions decrease their TF numbers.

From the results in Fig. 2.20, one can conclude that the limited space inside active
chromatin regions can be understood as a mechanism to control gene expression and force
the TF to remain in the search process for a target site, which corroborates the fact gene
activity is not increased given clustered TFs. In other words, one can understand the
carrying capacity as a mechanism to control the TF allocation and, as a direct consequence
of this allocation, polymerase (RNAP) recruitment to start transcription. Besides, since
the structure and accessibility also regulate the occupancy, one can inquire about the
consequences of increasing the total TF concentration in our numerical solutions, a result
we present next.

2.2.2.3 Nuclear TF Concentration is an internal control for TF occupancy

By limiting transcriptional resources available, the cell can regulate transcrip-
tion levels by itself, as we showed the TF preference for clustering around prolific
regions. To analyze the impact of [T ] in our model, we implemented numerical solu-
tions considering different nuclear concentrations, i.e., [T ] = {10, 30, 50}⋃{100 : 100 :
500}⋃{700, 900}⋃{1000 : 50 : 1600} for 400 seconds.

To demonstrate how the concentration influences our numerical solutions, we
proposed Fig. 2.21 with fixed values of Ka and C and changing the TF nuclear concentration.
In our model, a TF must occupy a region, any increase of TFs in the system increases the
TF allocation in the regions, which is shown in Fig. 2.21. As expected, the concentration
effect also affects TF clustering, and the lack of available TFs reduces the chances of two
TFs to interact, Fig. 2.21 A.

By increasing the values of [T ], we also favour clustering, meaning higher concen-
trations of nuclear TFs improve the chances of two (or more) TFs clustering. Besides, the
direct impact of a TF concentration in the nucleus on the gene expression is a well-known
feature and we showed how regions with low TF concentrations in Figs. 2.21 A and B for
example had a boost in higher [T ] environments - Figs. 2.21 C and D - proving the lack of
resources can be used as a gene regulatory tool even if the fast increase in concentration
may not be optimal for the cell (Koşar; Erbaş, 2022).
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Thus, we verify the global effects of changing the TF concentration in Fig. 2.22 by
presenting the total TF occupancy per region at t = 400 seconds in the function of the
total TF, [T ] for fixed values of Ka and C. Fig. 2.22 shows how changes in the volume
of TFs available influence the occupancy and how the efficiency of clustering, Ka, and
the maximum TF allowed in a region, C, also play roles in the TF organization in the
chromatin.
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Figure 2.21 – Numerical Solutions for our model in Eq. (2.6) for different values
of [T ] and fixed Ka = 1 and C = 15. In which, A [T ] = 50; B [T ] = 500;
C [T ] = 1000 and D [T ] = 1500.

In Figs. 2.22 A and B, we assumed the same carrying capacity for different values
of Ka and we demonstrated how the association rate affects the TF occupancy, stimulating
the clustering in some regions and decreasing the TF concentration in other occupied
regions. We previously showed how a smaller value of C increases the activity in less
attractive regions which decreases for higher values of C as more TFs are allowed in each
region - Figs. 2.22 C and D - and we verified this result for different [T ] values. Therefore,
we proved how lowering the global TF availability decreases the chances of clustering and
impacts the transcription.

In Fig. 2.22, we showed how each region is occupied once we increase the TFs
available, showing how most of the regions present low TF concentrations as the clustering
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around specific regions increases. To check the average patterns from the regions, we
propose the cluster analysis in Fig. 2.23 for a low value of C to force a higher occupancy
in less preferential regions, given two different Ka values, Ka = 0.15 in Fig. 2.23 A and
Ka = 1.5 in Fig. 2.23 B. Notice the existence of an inactive cluster in both Fig. 2.23 A
and B, which represents most of the regions (since in Figs. 2.22 A and B, we verified a
consistent low to no TF occupancy in most of the regions).
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Figure 2.22 – Heatmap of total TF concentration over the different values of [T ]
and fixed values for Ka and C. A Ka = 0.15 and C = 10; B Ka = 1.5
and C = 10; C Ka = 0.15 and C = 30; and D Ka = 1.5 and C = 30.

The other clusters show different occupancy behaviours depending on Ka. The
highly concentrated clusters in Fig. 2.23 A show a sigmoidal behaviour and the less
concentrated clusters present a slower increase in TFs as the concentration of TFs increases,
i.e., while all the regions are favoured by the more TFs available in the sense of occupation,
attractive regions have a preference for the extra TFs. Fig. 2.23 B has a more stringent
increase for the higher occupied clusters, with some averages approaching the maximum
number of TFs allowed, and the increase in occupancy is verified in different levels for all
the clusters except the low TF concentration cluster, which decreases. Figs. 2.23 A and
B showed how the increase Ka depletes the TFs from less prolific regions to increase the
clustering around more attractive regions.
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To understand how each value from Figs. 2.22 A and B deviates from the mean,
we calculate their z-score and then clustered the results - Figs. 2.23 C and D. Fig. 2.23 C
showed an increasing tendency for each cluster, i.e., for this Ka value all the regions benefit
from the increase of [T ], even if not linearly. However, for Fig. 2.23 D we uncovered that for
some regions the increase of [T ] is not beneficial for its TF allocation, demonstrating how
the increase in Ka facilitates the TF clustering and, in turn, decreases the TF concentration
in less attractive regions since we have a limited amount for [T ]. More so, the regions with
low TF concentration showed a linear behaviour for both z-scores.
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Figure 2.23 – Cluster analysis of the TF occupancy over the nuclear TF con-
centration and fixed C = 10 and different values of Ka. A-B the
clustering of averaged TF occupancy and C-D the clustered averages of
z-scores. With the following values for A-C Ka = 0.15 and B-D Ka = 1.5.

Similar to what we proposed in Figs. 2.15 and 2.19, we select specific regions to
see how increasing [T ] affects the TF allocation in those regions for two different carrying
capacities. Here, we omitted the difference in PPI levels to verify how the values of Ka

compare per region. Those results are present in Fig. 2.24, with the values of τ and d

available in Table 1.

Fig. 2.24 A shows the linear behaviour as [T ] increases for Ka = 0 - i.e., no presence
of protein-protein interactions and the increase in TF allocation between the two subfigures
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of A is due to the increase in C. The presence of Ka increases the total TF occupancy
at this region but with different behaviours: for smaller values of [T ], Ka = 0.15 behaves
as Ka = 0, which is explained by the low number of TFs available and low efficiency
of our system to form clusters, which is not the case for Ka = 1.5. Interestingly, the
TF concentration at this region is higher for the Ka = 0.15 once we have [T ] = 200 TF
molecules. This means low efficiency in form clusters is advantageous for this region, as it
entraps more TFs inside.

Higher values of Ka increases the occupancy for Fig. 2.24 B and lower values of Ka

present a TF occupancy lower than without the presence of association rates (Ka = 0),
except for higher values of [T ] and allowing more TF molecules per region. Besides, for
lower values of [T ] all values of Ka present the same concentration of TFs. Thus, this
region requires higher efficiency in the formation of TF-TF interactions to benefit from
the clustering, a different result from Fig. 2.24 A.

Last, Fig. 2.24 C showed both benefiting from both types of values for Ka: while
for C = 10 Ka = 1.5 increased the TF concentration up to the maximum allowed for
higher values of [T ], for C = 30, Ka = 0.15 presented higher TF allocation for the interval
200 ≤ [T ] ≤ 1400. Again, for smaller values of [T ], Ka = 0.15 presented the same occupancy
as Ka = 0.

The results in Fig. 2.24 demonstrated how higher association rates increase the
clustering around the more prolific regions, other regions are impaired by the lack of
transcriptional resources available. Of course, by increasing the maximum of TFs inside a
region, we also favour the higher propensity of clustering of those regions. More so, by
changing the values of nuclear TFs available in the system, we corroborated the [T ] effects
on the TF allocation, proving how this value can be also understood as a mechanism to
control gene expression and how [T ] impacts to cluster formation.

In this chapter, we understood how the presence of volume exclusion leads to
different TF occupancies and how cluster formation impacts gene expression. We found
that while C is a structural parameter that directly affects the p0 its presence force the TF
to allocate in less prolific regions. More than that, in cases with small C, the association
rate increases concentration around those prolific regions.

The number of TFs available also influences clustering, as lower TF concentrations
block PPIs from occurring and higher TF concentrations allow less attractive regions to
be occupied by TFs; both affect transcription in the long run. Thus, the cell can regulate
its expression by regulating the number of TFs for transcription.

Therefore, we proved how the cluster of TFs can be used in transcription as a
mechanism for gene regulation if combined with limiting the TF occupancy in the regions
to avoid over-clustering in just a few regions. In Chapter 6, we present a more in-depth
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discussion of our results.
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Figure 2.24 – Total TF concentration over TF occupancy for different regions
and with different values of C, C = 10 and C = 30. A Region 162. B
Region 590. C Region 850.

From both models - Eqs. (2.3) and (2.6) - we understood how the TF searches and
occupies chromatin, which is the first step in transcription. The next biological step is
to consider the polymerase recruitment and actual transcription. Thus, we incorporated
those two steps in Chapter 3 and Chapter 4, respectively to our model of TF search. We
aim to understand gene regulation, in which we opted to adapt the search dynamics and
limited the TF occupancy by lowering the nuclear TF concentration.
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3 Modelling Transcription Factor searches
and RNA Polymerase recruitment

Disclaimer: Some parts of this chapter can be found in my paper "Modelling
Transcription Factors Search and Polymerase Recruitment Dynamics within a complex

chromatin structure"

One of the main objectives of this thesis is to present a mathematical model that
explains some of the intricacies of gene expression using simple techniques that still make
biological sense. To achieve that, we split the two fundamental steps of protein production
(i.e., Transcription - where the cells copy the DNA into RNA and Translation - the cells
use the RNA as a template for protein production) as we described in Chapter 1. In this
chapter, we present a model for the transcription mechanism in which one key point for
controlling gene expression is the presence of RNA polymerase II (RNA Pol-II) since it is
a fundamental protein complex in messenger RNA (mRNA) production (Alberts et al.,
2002; Coulon et al., 2013; Hager; McNally; Misteli, 2009).

We can think of the eukaryotic transcription process as the following five steps:
(i) preinitiation complex (PIC) formation, in which the PIC is a complex of Pol-II and
TFs, Fig. 1.2; (ii) PIC activation; (iii) transcription initiation; (iv) Promoter liberation; (v)
elongation (Roeder, 1996; Nikolov; Burley, 1997; Roeder, 2019; Petrenko; Struhl, 2021).
With this complex mechanism in mind, we incorporated our TF search model into the PIC
formation process, since the accessibility of a region is essential for transcription (Avcu;
Molina, 2016) and Chapter 2.

The effectiveness of a TF in finding a target site is a turning point for understanding
gene expression and facilitating gene regulation, the PIC formation is an interesting
mechanism to model per se (Wunderlich; Mirny, 2009; Bruneau, 2010). However, since
this model proposes a mechanistic way to understand transcription, we also incorporated
steps (ii), (iii) and (iv). We ignored step (iv) because we decided to not explicitly work
with enhancer-promoter interactions for this model as they are intrinsic to our network
structure (Schoenfelder; Fraser, 2019).

Given what we already discussed in Chapters 1 and 2, in vivo single-molecule
tracking (SMT) experiments proved diffusion is not a good approximation to describe the
TF search process (Kuhn et al., 2021; Xiao; Hafner; Boettiger, 2020) and the most common
method to model this process is by assuming the facilitated diffusion mechanism (also called
1D/3D process), i.e., a TF randomly searches the chromatin structure (3D diffusion) but
also slides towards the region’s nearest neighbours (1D) plenty of examples of this method
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being used for TF search mechanisms models (Mirny et al., 2009; Avcu; Molina, 2016;
Bauer; Metzler, 2012; Bauer et al., 2015; Hettich; Gebhardt, 2018). However, no other model
considered RNAP recruitment as an integral part of TF search mechanism/transcription
and how RNAP fine-tunes gene expression (Dergai; Hernandez, 2019).

In layman’s terms, once a searching TF (i.e., a TF looking for an accessible DNA
sequence, an on gene) finds such a target site, this TF attracts the RNA Polymerase
(RNAP), forming the preinitiation complex, and eventually leading to transcription. In
Fig. 3.1, we present a simplified representation for TF search (represented by the cherry)
in chromatin (in which each node is a chromatin region and each edge represents the
connections between two regions similar to the presented in Fig. 2.1), trying to find an
active region (here, represented by the light blue node) and an RNAP (the green PAC-man
type) explores the network searching the active TF. We emphasize that even if a protein
such as TF or RNAPs is considered inside a closed region, we meant they are nearby not
effectively bound.

Figure 3.1 – Cartoon representation for RNAP recruitment. Here, we present the
chromatin structure in two different states: (i) Open or "active"(light blue)
and (ii) Closed or "inactive"(dark blue) the interactions between chromatin
regions are represented by the edges. Considering the PIC formation, we
present the TF as the red cherry in an open region and recruit an available
RNAP (the green PAC-man type).

Since both the TF and the RNAP explore the chromatin, both proteins need a
structural component in their searching/recruiting processes; thus, we used the same
mechanism described in Chapter 2, coupling TF/RNAP dynamics in only one model. Once
again, we integrated high-resolution information of the 3D structure of chromatin with
DNA-protein interactions from Hi-C data (Lieberman-Aiden et al., 2009; Berkum et al.,
2010).

Similar to any other biological process, the volume of available resources impacts
the final volume of the product. Thus, limiting transcriptional resources surely affects
transcriptional activity. More so, while some transcription factors remain inside the nucleus
at all times, for example, the basal transcription factors or the Sp1 transcription factor
which is involved in cell differentiation and growth, and, in this case, we can assume the
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total concentration of this TF over time remains constant; other transcription factors
need activation to function in two different ways: (i) developmental (e.g., GATA) or (ii)
signal-dependent, which requires an external signal to get activated (e.g., p53) (Brivanlou;
Darnell, 2002).

The signal-dependent transcription factors have a subgroup of TFs that remain
outside the nucleus and, upon activation, they start a translocation process and the
transcription of their target genes to later re-accumulate in the cytoplasm. One TF family
that presents translocation behaviour is the nuclear factor κb (NF-κb). NF-κb is a rapid-
acting TF and was originally identified in the immunoglobulin regulation in κ-light chain
expression in B lymphocytes but now is a known TF for inflammatory and immunity
mechanisms, being also a key TF for human cancer studies.

NF-κb can induce and maintain a chronic inflammation leading to tumour initiation
by stimulating cell proliferation and preventing apoptosis, for example (Xia; Shen; Verma,
2014; Liu et al., 2017). After NF-κb receives any activation stimuli (cytokines, DNA
damage, UV radiation, etc), it translocates into the nucleus, starts transcription and
re-accumulates in the cytoplasm in around 60 minutes. Since NF-κb can be activated
by proinflammatory cytokines (i.e, small proteins used in cell communication used for
upregulation of inflammatory processes), it is an excellent example of extracellular stimuli
affecting transcription activation (Trask, 2012; Zhang; An, 2007; Noursadeghi et al., 2008;
Zambrano et al., 2020; Xia; Shen; Verma, 2014; Liu et al., 2017).

In this chapter, we proposed a model considering two TF flux dynamics: one with the
TF import and the other with a translocation/re-accumulation process or an import/export
mechanism. We solved our model using deterministic and stochastic techniques.

3.1 Mathematical model for TF diffusion and RNAP recruitment
Literature has proposed a myriad of gene regulation mechanisms for eukaryotes.

For example, the existence of the nuclear membrane separating cytoplasm and nucleus
also separates transcription from translation, which means a huge number of mRNAs are
degraded before translation, creating a fail-safe protocol for the cell.

One extremely important mechanism is chromatin, which condenses DNA and
inhibits transcription unless the cells demand it and the remodelling process occurs. Besides
that, the interactions between chromatin regions create a complex 3D structure that we
can reconstruct from Hi-C experiments, as presented in the previous chapter (Pal; Forcato;
Ferrari, 2018; Lieberman-Aiden et al., 2009; Johnstone et al., 2020; Berkum et al., 2010).

Given the model proposed on (Avcu; Molina, 2016) and Chapter 2, we present
a model on how the TF explores the chromatin structure and recruits the RNAP to
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initiate transcription. Again, we defined the size of our network, which correlates with the
resolution of our model as L, meaning our network has L different chromatin regions. We
incorporated the structure by using the adjacency matrix A and that for any two regions
i, j they either have a connection or not, i.e., let Aij be the expression to evaluate the link
between i and j is aij ̸= 0 if there is a connection between i and j and 0 otherwise.

It should be noted A is a symmetric matrix (i.e., aij = aji) since we consider that
the connections between regions are non-oriented. Since the chromatin moves through the
nucleus, the connections between non-neighbouring regions (regions with linear distances
between them bigger than 1) can change, but we fixed our network, which can be accepted
in small time scales (smaller than the cell cycle).

Each region has a different number of connections with the other regions as not
all regions are connected. Considering the contact degree of a node, the probability of a
protein jumping from region j to region i depends on their connection and the number of
associations of the region j, dj , i.e., a highly connected region has higher chances of being
reached, as exemplified in Fig. 3.2 (Avcu; Molina, 2016) and Chapter 2,. Once more, we
express this probability as:

Mi←j = Aij

dj

.

We propose the TF search mechanism for this model as a Free TF (T f ) explores the
chromatin network with an effective diffusion rate, kT

3D independent on the structure, i.e.,
it is the same everywhere in our network. Upon reaching a target site, the binding process
occurs and the TF leaves this free state to enter the bound state with a binding rate kT

b .
Any TF has a specific genomic sequence to bind, also called motif and the sequence of
nucleotides affects the likelihood of a TF binding a region. Even if a sequence is a good
motif for a TF, if there are no active histone marks in that particular region transcription
can not start (Guertin; Lis, 2013; Aptekmann et al., 2022).

Therefore, one may conclude some target sites are more prolific than others - either
by the region’s accessibility or the sequence motifs - implying some regions have lasting
effects on TFs. Given how the promiscuity of a region affects the time a TF remains at
that particular region, we can use single-molecule microscopy techniques to obtain that
TF binding times (Izeddin et al., 2014). Since each TF has its preferred motif, the binding
times are also motif dependent and, by consequence, structure-dependent. Similarly to
the proposed in Chapter 2, we used this motif-sensibility as the rate of a bound TF
freeing itself, i.e., an exiting rate, ki, where we also incorporated the chromatin region and
accessibility (i.e., k = (ki)L

i=1 for a L−sized network).

To model the recruitment of RNAP binding to a region occupied by a bound TF
and transcribing, we should consider an intermediate state between free and transcribing
since transcription initiation is not immediate, i.e., in our model, we consider three
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different states for the RNAP: (i) Free RNAP (P f); (ii) Bound RNAP (P b) and (iii)
Transcribing RNAP (P t). To start transcription, the RNAP needs to be recruited by a
bound TF (Brouwer; Lenstra, 2019); our RNAP dynamics is the following: a free RNAP
P f diffuses with an effective diffusion rate kP

3D looking for a bound TF (T b) to bind. Once
this free RNAP finds a Bound TF, it binds the region with a binding rate kP

b ; P f then
becomes a bound RNAP P b. Then, this P b initiates transcription at an initiation rate kI

entering the transcribing state P t. Note the transition between Bound and Transcribing
RNAP is independent of T b presence because the bound TF role is to recruit the RNAP to
a region, being allowed to unbind itself after the RNAP binds it. While transcribing, the
RNAP reads the strand of DNA in that region to produce mRNA. After the production is
finished, the transcribing RNAP re-enters the free state with an elongation rate, kε. The
final product, mRNA is not considered in our model in this Chapter since our interest
is in where transcription is more likely to occur but in the next chapter, we present an
extension of our model considering the presence of mRNA export.

After a gene gets activated, the TF needs to find it and then bind this target site.
Later, the bound TF shall recruit the RNAP, so we propose in Fig. 3.2 the interaction
between regions i and j within a representation of the 3D structure in a non-oriented
graph in which each node is a chromatin region and each edge is a connection between
two regions, and in Fig. 3.2 inset, we present the interactions of the state for region i, in
which we can see the three steps for eukaryotic transcription: the TF search and RNAP
recruitment are the first step, PIC formation; the RNAP actively binding to a region is
the PIC activation and once it enters the transcribing state we have the transcription
initiation step and finally once the RNAP is released, we have the final transcription step,
elongation.
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Figure 3.2 – Our model TF/RNAP schematics. The graph represents our network
where the nodes are the regions and the edges are the connections between
them. The node in black represents the region i and all nodes in green
represent potential regions j from where i can be reached. In the black box
(inset) we can see all the reactions between the TF (cherries) and RNAP
(PAC-men) states and how each state interacts with the other.
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From Fig. 3.2 inset and our dynamics description, we present our mathematical
model in Eq. (3.1), which is an ordinary differential equation (ODE) system for the
concentration of TF/RNAP states over time in all L chromatin regions. Here, each state
has L equations, which means that instead of working with equations dependent on time
and space, we used only ordinary differential equations to represent our dynamics, following
our aim to model a complex process as transcription as a simple mathematical model.

We decided to not change the network over time - i.e., the time scale is short
enough for us to not enter in the cell-cycle chromatin changes, and we do not consider the
presence of chromatin remodellation. We also defined our system as a closed one - i.e.,
our system does not produce or degrade TFs and RNAPs. Another feature is we do not
consider loss between states, i.e., if we sum over all states, we return the description of
the TF and RNAP movements through our network.

dT f
i

dt
= −kT

3DT f
i +∑

j
kT

3DMi←jT
f
j − kT

b T f
i + kiT

b
i ;

dT b
i

dt
= kT

b T f
i − kiT

b
i ;

dP f
i

dt
= −kP

3DP f
i +∑

j
kP

3DMi←jP
f
j − kP

b T b
i P f

i + kεP
t
i ;

dP b
i

dt
= kP

b T b
i P f

i − kIP b
i ;

dP t
i

dt
= kIP b

i − kεP
t
i .

(3.1)

From experimental results, we know that the TF diffuses faster than the RNAP
(Gorski; Dundr; Misteli, 2006; Klumpp, 2013), which considering TFs are smaller proteins
than the RNAPs and have smaller weights this difference in speed is a consequence of
classical mechanics (Maeshima et al., 2015). From this, we considered different search
rates (effective diffusion rates) and also that the binding rates are affected by their size
differences (Sun et al., 2020).

Our model in Eq. (3.1) has had too many parameters; so, for the TFs we assumed
two things: (i) the search and binding rates for the TF are proportional, and, (ii) 70%
of the TFs remain in the free state, since not all regions have a good motif and/or are
accessible. With those two assumptions, we define kT

b as a function of kT
3D. However, since

the RNAP’s binding mechanism is dependent on the presence of a bound TF in the region
to occur, it is non-linear and we defined this parameter as proportional to the product of
its search rate and the effectiveness of finding a bound TF. With this in mind, we present
in Eq. (3.2) expressions for the binding rates.

kT
b = αkT

3D ; kP
b = kP

3D

(
kP

b

kP
3D

)
= kP

3Dq . (3.2)

From the assumptions in Eq. (3.2) and the model in Eq. (3.1), we present the
simplified model, which is still a dimensional model (i.e., we retain our dimensions in each
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equation and represent the concentration in molecules/s for all the regions) with all the
dimensions maintained. We present our working model in Eq. (3.3) which can be used to
explain the occupancy patterns that can emerge considering the structure and accessibility
of chromatin regions, as literature has described (Li; Carey; Workman, 2007; Woringer;
Darzacq; Izeddin, 2014), with constant concentrations of TFs and RNAPs.

dT f
i

dt
= −kT

3DT f
i (1 + α) +

∑
j

kT
3DMi←jT

f
j + kiT

b
i ;

dT b
i

dt
= αkT

3DT f
i − kiT

b
i ;

dP f
i

dt
= −kP

3DP f
i (1 + qT b

i ) +
∑

j

kP
3DMi←jP

f
j + kεP

t
i ;

dP b
i

dt
= kP

3DqT b
i P f

i − kIP b
i ;

dP t
i

dt
= kIP b

i − kεP
t
i .

(3.3)

However, as we discussed previously, our interest lies in understanding how depleting
a transcriptional resource as important as the available TF affects cell activity. Thus, we
defined a translocation function for the transcription factor to represent this activation
process, which we also numerically implemented, but first, we present our studies for the
equilibrium of Eq. (3.3).

3.2 TF/RNAP occupancies are affected by chromatin structure and
residence times
The first study we did with our model an ODE system is to analyze its equilibrium

and stability, as we can use these results to understand global behaviours from our model,
helping us to predict and interpret the patterns emerging from our system and how the
network and parameters can affect transcription (Strogatz, 2015). Since our system is a
closed one, we define the fixed concentration for all time t as the sum over all TF and
RNAP states respectively, i.e., [T ] = ∑

T f
i + T b

i and [P ] = ∑
P f

i + P b
i + P t

i .

Then, we define the search time as the time a protein spends looking for its target:
for the TF, this means looking for a target site (thus, τT

3D = (kT
3D)−1) and for the RNAP,

it means looking for a bound TF (similarly, τP
3D = (kP

3D)−1). Next, we can define the
time a TF stays at a specific region is called the residence time, τi = k−1

i . Since ki is
sequence-dependent, this means the time spent in a particular node of our network is
also region-specific (Zabet; Adryan, 2013). As transcription is not immediate, we need
to consider a waiting time for the transcription to begin after it’s bound to a target site,
i.e., the initiation time, τI = k−1

I (Butler; Kadonaga, 2002; Mao et al., 1992). Finally, the
elongation time is the time measure for mRNA synthesis and RNAP liberation, τε = k−1

ε

(Tang et al., 2009; Wade; Struhl, 2008; Pokholok; Hannett; Young, 2002).
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We present the steady-state expressions for all TF and RNAP states in Eq. (3.4).
From our equations, we can see the dependency on the number of connections a node has,
meaning any occupancy pattern will closely obey the network’s connectivity pattern. The
values of di and τi are the same present in Fig. 2.12 A and B, respectively to facilitate the
numerical integration. As discussed earlier, τi is a region-specific parameter and affects the
steady-state occupancy for non-free states (namely, Bound TF and RNAP and Transcribing
RNAP). This means the accessibility of a chromatin region, a mechanism eukaryotic cells
possess to protect the cell from misproducing a protein, affects the occupancy for protein
complexes, which later affects the transcriptional activity.

Thus, the structure is an important component for gene expression in two different
levels: (i) in the nucleotide level, which is derived from the motifs and (ii) in the chromatin
level, i.e., the number of connections. In addition, from the non-linearity to enter the
Bound RNAP state, the dependency of di is squared and represents a higher impact from
the network for this state and the following state, Transcribing RNAP.

T f
i = [T ]τ

T
3Ddi

NT
; T b

i = [T ]ατidi

NT
; P f

i = [P ]τ
P
3DdiN

T

NP
;

P b
i = [P ] ([T ]qατiτI) d2

i

NP
; P t

i = [P ] ([T ]qατετi) d2
i

NP
(3.4)

with the following normalization expressions: (i) for the TF, NT = ∑
k

(
τT

3D + ατk

)
dk; and

(ii) NP = ∑
k

(
τP

3D + qα[T ]τkdk

NT (τI + τε)
)

dk , for the RNAP.

It is clear how the region-specific parameters affect the states’ occupancies. Proving
our linearity claim for the Free states (TFs and RNAPs), we present Figs. 3.3 A and
B. We show the linear dependence of the log2 of the free states have on the log2 of the
number of connections, log2(d), labelling them with the different values of τ , proving their
independence from the residence times - i.e., the time a TF( or RNAP) spends bound in a
region does not influence the occupancy for the free state. Between Figs. 3.3 A and B,
there is a difference of amplitude for the values which are caused by the fact τT

3D ̸= τP
3D

and their different concentrations, [T ] < [P ].

From Eqs. (3.4) and Fig. 3.2, we know the Bound states are both dependent on τi

and di, we see the non-linearity in the form of the product τidi which proposes occupancy
is a consequence of a combination of (a) motif/accessibility and (b) connections between
regions. This relation for the bound states is found in Figs. 3.3 C-D. In Fig. 3.3 C, we
confirm the TF’s tendency to bind prolific regions, by plotting the log2 of the steady-states
over log2(τ), labelled by the number of connections, in which we show the occupancy is
affected by both parameters - this means two regions with the similar residence times
are occupied depending on their connectivities. In Fig. 3.3 D, we present the log2 of the
Bound RNAP steady-state over log2(τ) again labelled with the number of connections,
proving the squared effect for d. Still, we need to verify the stability of this occupancy
and, to achieve that, which we present next.
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BA

DC

Figure 3.3 – Our model characteristics and equilibrium. A-B log2 of the steady-
states values for Free states over the log2 number of connections labelled with
the τ values, verifying its linearity, where: A Free TFs and B Free RNAPs.
C-D Steady-states values for Bound states over the residence times labelled
with di, proving both di and τi affect the occupancy, and the squared effect di

have on Bound RNAP, as presented in (3.4). C Bound TF. D Bound RNAP.

3.2.1 Stability studies and the dependency on the Bound TF state

From Eq. (3.3), we calculated our model Jacobian Matrix which t∗i = T ∗
′

i and
p∗i = P ∗

′
i with ∗ representing the different states (Strogatz, 2015; Edelstein-Keshet, 2005).

J =



A B 0 0 0
C D 0 0 0
0 E F 0 G

0 H I J 0
0 0 0 K L


,

with the following non-zero terms and δik being the Dirac delta between i and k (i.e.,
δik = 1 iff i = k):

A = −kT
3Dδik +

∑
j

Mk←jk
T
3Dδkj − αkT

3Dδik ;

B = kiδik ;

C = αkT
3Dδik ;

D = −kiδik ;

E = −kP
3DqP f

i δik ;
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F = −kP
3D(1 + qT b

i )δik +
∑

j

Mk←jk
P
3Dδkj ;

G = kεδik ;

H = kP
3DqP f

i δik ;

I = kP
3DqT b

i δik ;

J = −kIδik ;

K = kIδik ;

L = −kεδik .

From this, we calculate the characteristic polynomial by p(λ) = det(J − λId),
which Id is the 5L × 5L identity matrix (as our network has L regions).

p(λ) = det(J − λId) =

−kT
3Dδik +

∑
j

Mk←jk
T
3Dδkj − αkT

3Dδik − λ


∣∣∣∣∣∣∣∣∣∣∣∣

D − λ 0 0 0
E F − λ 0 G

H I J − λ 0
0 0 K L − λ

∣∣∣∣∣∣∣∣∣∣∣∣
−

− kT
3Dαδik

∣∣∣∣∣∣∣∣∣∣∣∣

B 0 0 0
E F − λ 0 G

H I J − λ 0
0 0 K L − λ

∣∣∣∣∣∣∣∣∣∣∣∣
.

Calculating the determinants from this system, we obtained the following expression for
the characteristic polynomial:

p(λ) =
−kT

3Dδik +
∑

j

Mk←jk
T
3Dδjk − kT

3Dαδik − λ

(−kiδik − λ)
−kP
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+
∑

j

Mk←jk
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−

−αkT
3Dδik

kiδik

−kT
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j

Mk←jk
P
3Dδik − λ

 (−kIδik − λ)(kεδik − λ)

+ kεδikkP
3DqTb

iδikkIδik

 .

We can use our parameters to evaluate the stability conditions given the roots of this
polynomial, but since it is a high-order polynomial in a complex network, we opted for
omitting the roots. However, even without presenting the roots for this polynomial, we
verified how the values of Bound TFs are explicitly found in the polynomial, which is a
surprising side-effect of the non-linearity due to this state.

More so, we conclude the stability relies strongly on the network, and the T b

occupation pattern present in Eq. (3.4), which is transcription factor specific thus forcing
any occupancy in the equilibrium to depend on the active DNA sequences. Besides, the
exiting rate, ki, is also TF-specific and, as Eq. (3.4) showed, the bound TF occupancy is
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determined by its inverse, which consequently affects RNAP recruitment. Thus far, the
chromatin network may change over time, but we opted to work with a fixed structure for
this model and we remind our system is a closed one with no TFs or RNAPs created or
degraded, because of the considered time scale that allows us to admit a fixed chromatin
network.

Next, since this model does not consider the TF translocation upon activation (Pugh;
Tjian, 1990; Noursadeghi et al., 2008; Allen et al., 2000; McBride, 2002) and how the
change between the nuclear concentration of TFs affects the transcriptional activity. We
propose two different translocation dynamics: (1) Import Flux: which the cytoplasmic
TFs translocate into the nucleus and remain inside and (2) Import/Export Flux: the
cytoplasmic TFs get activated, translocate into the nucleus and later translocate back to
the cytoplasm.

3.2.2 Transcription activity determined by the nuclear TF concentration

The translocation process depends on the nuclear pore complex (NPC), which is
responsible for transportation from the cytoplasm to the nucleus and vice-versa (Strambio-
De-Castillia; Niepel; Rout, 2010; Peters, 2005). We proposed two different flux dynamics
the import-only flux, in which the cytoplasmic TF translocates into the nucleus and
remains inside the nucleus and it can be understood as an inactive TF gets activated; and
the import-export flux, where we have two steps: the translocation and cytoplasmic
reaccumulation, like the one found in STAT TFs (Meyer; Vinkemeier, 2007; McBride,
2002) and NF-κb (Zambrano et al., 2020; Noursadeghi et al., 2008), for example.

Thus, we consider a nuclear pore translocation in which some nodes from our
network are connected to the NPC while many others do not: i.e., to enter the nucleus,
a cytoplasmic TF has to enter through those pore-connected regions. To incorporate
these dynamics in our system in (3.3), we establish that some regions of our network that
are connected to these pores (i.e., the region has a first-degree contact with the nuclear
pores since in a highly-connected network as the chromatin, any region is few jumps away
from the nuclear pore depending on the number of pores of our system), and any TF
entering the nucleus starts in the free state. In Fig. 3.4, we present the representation of
the pore connectivity from a network in which we can see different steps away from the
pore: the pink colour represents the first-degree connectivity and the following colours are
not-connected but classified by their closeness to a pore-connected node.

The Free TF diffuses fast and our network can be interpreted as highly connected
since any node needs few steps in the network to be reached; yet, we still need to verify
the influence of the pore-connectivity on the transcriptional activity. Considering fx(t)
the TF-specific flux of molecules from outside the nucleus with constant RNAP nuclear
concentration, as RNAPs are not found outside the nucleus during the cell-growth phase.
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We define the proximity to a nuclear pore as:

F i
X(t) =

fx(t), if region i is connected to a pore;

0, otherwise.

Figure 3.4 – Diagram to represent a network and nuclear pores connectivity.
Here, we represent our network inside the nucleus (defined by the brown
dashed line) and we colour-coded following its closeness to a nuclear pore, i.e.,
in pink, we represent the regions connected to pores; in red their immediate
neighbours; in light blue the 2-steps away from the pore nodes; in green
the 3-steps away nodes; and in dark blue/purple the 4-steps away nodes.

However, as stated previously, the import flux of TFs into the nucleus can have at
least two dynamics: (i) Import Flux and (ii) Import/Export Flux, in which both
consider the initial lack of nuclear TFs, but the last dynamics also state that the TF
starts its exportation after reaching a maximum transcriptional resource. Since these two
dynamics describe two different behaviours, F i

X(t) is different in each case. So, to grasp
how the different flux dynamics affect our model, we analyze these dynamics separately.

3.2.2.1 Import Flux Function

Each cell has a finite number of TFs/RNAPs molecules, so consider [T ] as the TF
nuclear concentration, with a r number of nuclear pores (r < L) from where the TFs
can enter the nucleus with a constant rate until [T ] = [Tmax], i.e., reaching the maximum
concentration of TFs for our system. After [T ] = [Tmax], we recover the dynamics from
Eq. (3.3). We represent this import dynamics in Eq. (3.5):

dT f
i

dt
= −kT

3DT f
i +

∑
j

kT
3DMi←jT

f
j − αkT

3DT f
i + kiT

b
i + F i

X

(
[Tmax] −

∑
T f

i + T b
i

)
︸ ︷︷ ︸

import

. (3.5)
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In Fig. 3.5, we present a representation of our flux dynamics, showing our initial
system without nuclear TFs (represented as green ellipses), and after some time, our
system reaches its total concentration stopping the TF import. We also convey how the
pores are a fundamental part of our model, as the TFs only enter the nucleus through a
pore-connected node.

(i) (ii)

(iii) (iv)

Figure 3.5 – Cartoon Representation for Import Flux Function. We present a cell
in which we represent the cytoplasmic TF as a red ellipse and nuclear TF as
a green ellipse. In our chromatin network, we represent regions connected to
pores as pink nodes and dark blue/purple otherwise. The different time
points represent the changes in concentration over time: (i) t = 0, where our
system does not have nuclear TFs; (ii) our system after some time. Here,
the cytoplasmic TF concentration is non-zero; (iii) at this time, our system
only has nuclear TFs; and (iv) Final time, where the TFs are diffusing in our
system, but not exporting.

Considering our model in Eq. (3.3) and the TF-flux described in Eq. (3.5), we
have our import-only TF translocation. Our model is a non-homogeneous and non-linear
ODE system; so, to facilitate the analysis, we split our model considering the two types of
protein complexes, TF and RNAP.

3.2.2.1.1 Analytical Solution for the TF

Let L be the size of our network, i.e., any region i ∈ {1, ..., L}, and consider T as
the TF variable like T = [T fT b]T . We define 1 as the L × L matrix with all entries 1,
FX [T ] = (F i

X)L
i=1 ∈ RL, as described in Eq. (3.5), we also define JX = F i

X [Tmax]. Let Id

the L × L identity matrix, κT
3D = kT

3D · Id, κ = k · Id, and M the probabilities matrix form
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(M ∈ RL×L). We rewrite our system as:

dT
dt

=
−κT

3D + MkT
3D − ακT

3D − FX · 1 κ − FX · 1
ακT

3D −κ


︸ ︷︷ ︸

B

·T +
JX

0


︸ ︷︷ ︸

FX

dT
dt

= B · T + FX ,

this system is linear, non-homogeneous and easily solvable. Then, suppose V is the
eigenvectors matrix of B, and V is invertible since det B ̸= 0. Since V is invertible it has
an inverse matrix. Let V−1 this inverse, and define T = V · G. With some calculus and
linear algebra techniques, we change our system to:

dG
dt

= DG + V−1FX ,

where D is the diagonal matrix of eigenvalues of B and V−1FX ∈ R2L. We solve the
homogeneous solution (V−1FX ≡ 0) and then the particular solution as a product of the
homogeneous and another function. From this system, we calculate the solution for G(t),
which is

G(t) = G0e
Dt + V−1FX

[
D−1(e−Dt0 − e−Dt)

]
.

In which G0 is a constant dependent on the initial conditions, and D−1 is the inverse of
D. Then, we recover the analytical solution for the TFs:

T(t) = VG(t) = V
(
G0e

Dt + V−1FX

[
D−1(e−Dt0 − e−Dt)

])
T(t) = T0e

−Dt + FX

[
D−1(e−Dt0 − e−Dt)

]
, (3.6)

which T0 is the initial condition for the TF states.

3.2.2.1.2 Analytical Solution for the RNAP

By definition, the RNAP dynamics depend on a Bound TF to be recruited. Thus,
we define in Eq. (3.7) the solution for the Bound TF:

T b(t) = Tb
0e
−Dbt + FX

[
D−1

b (e−Dbt0 − e−Dbt)
]

, (3.7)

where Tb
0 is the initial conditions for the Bound TF and T b(t) ∈ RL, and Db is the diagonal

matrix for the Bound TF. Then, we considered the equations for RNAP states using
Eq. (3.7) and we defined P = [P fP bP t]T , κP

3D = kP
3D · Id, κI = kI · Id, κε = kε · Id in

which Id the L × L identity matrix, and M the probabilities matrix form.

dP
dt

= B(t) · P ,
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in which

B(t) =

−κP
3D + MkP

3D − kP
3Dq

(
Tb

0e−Dbt + FX

[
D−1

b (e−Dbt0 − e−Dbt)
])

0 κε

kP
3Dq

(
Tb

0e−Dbt + FX

[
D−1

b (e−Dbt0 − e−Dbt)
])

−κI 0
0 κI −κε

 .

This system is non-linear and homogeneous, and the only way to obtain a solution of the
form P(t) = Pt0e

∫
B(s)ds is if B(t) is a commutative matrix; i.e, let t1, t2 ∈ R, we want to

verify in Eq. 3.8 if B(t1) · B(t2) = B(t2) · B(t1), i.e.:

B(t1) · B(t2) − B(t2) · B(t1) =


0 0 c

a 0 c

b 0 0

 , (3.8)

where:

a = −

(
Tb

0e
Dbt1 − Tb

0e
Dbt2 + e−Dbt0

(
eDbt1 − eDbt2

)
FX

)
kP

3Dq
(
κP

3D − κI − kP
3DM

)
Db

;

b = −

(
Tb

0e
Dbt1 − Tb

0e
Dbt2 + e−Dbt0

(
eDbt1 − eDbt2

)
FX

)
kP

3DκIq

Db

;

c =

(
Tb

0e
Dbt1 − Tb

0e
Dbt2 + e−Dbt0

(
eDbt1 − eDbt2

)
FX

)
kP

3Dκεq

Db

.

Thus, the commutativity in this matrix is only possible if t1 = t2, i.e., B(t) is not a
commutative matrix. Since B(t) is a function of time t, and both B(t) and

∫ t
0 B(s)ds are

non-commutative, the analytical solution for RNAP is not obtained straightforwardly as
we have for the TFs. However, since the entries of B(t) are constants in RL

+ and Eq. (3.7)
is an exponential function, we have continuity in all entries of B(t). To solve such a
system, one can think in terms of a time-oriented exponential matrix and use Magnus
Expansion (Arnal; Casas; Chiralt, 2018; Bauer; Metzler, 2012).

Therefore, given the usual commutator: [A, B] ≡ A · B − B · A (i.e., if matrices A

and B commute then [A, B] ≡ 0) and our initial conditions t0 = t(0) and P0 = P (0), we
write the analytical solution as

P (t) = P0 exp(Ω(t0, t)) ,

in which Ω(t0, t) is defined by the following series:

Ω(t0, t) =
∫ t

t0
B(s)ds + 1

2

∫ t

t0

∫ t1

t0
[B(t1), B(t2)]dt2dt1+

+1
6

∫ t

t0

∫ t1

0

∫ t2

t0
([B(t1), [B(t2), B(t3)]] + [B(t3), [B(t2), B(t1)]])dt3dt2dt1 + . . . . (3.9)

The integration of B(ti) for any i is made term by term, i.e.; considering t0 = 0,
∫ t

0 B(s)ds

is: ∫ t

0
B(s)ds =


a 0 κεt

b −κIt 0
0 κIt −κεt

 ,
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with the values:

a =
kP

3D

(
Tb

0Db

(
−1 + eDbt

)
q + (−1 + eDbtFXq − Dbt(Db(Id − M) + FXq

)
D2

b

;

b =
kP

3Dq
(
Tb

0Db

(
−1 + eDbt

)
+ FX(−1 + eDbt − Dbt)

)
D2

b

.

In the second term of this series, we calculate using the commutator presented in Eq. 3.8
and integrate:

1
2

∫ t

t0

∫ t1

t0
[B(t1), B(t2)]dt2dt1 = 1

2


0 0 c

a 0 c

b 0 0

 ,

with:

a = −kP
3D(κP

3D − κI − kP
3DMq(2 + Dbt + eDbt(−2 + Dbt))(Tb

0Db + FX)
D3

b

;

b = −kP
3DκIq(2 + Dbt + eDbt(−2 + Dbt))(Tb

0Db + FX)
D3

b

;

c = kP
3Dκεq(2 + Dbt + eDbt(−2 + Dbt))(Tb

0Db + FX)
D3

b

We can calculate higher-order terms of this series, but the technique we used is the same
one we used previously for our commutator. Trunking our solution in the first two terms
of our series already shows how complex is the solution, which we present in the following
equation:

Ω(0, t) =


ω11 0 κε + ω13

ω21 −κIt ω13

ω31 κIt −κεt

 ,

with

ω11 =
kP

3D

(
Tb

0Db

(
−1 + eDbt

)
q + (−1 + eDbtFXq − Dbt(Db(Id − M) + FXq

)
D2

b

;

ω13 = kP
3Dκεq(2 + Dbt + eDbt(−2 + Dbt)(Tb

0Db + FX)
2D3

b

;

ω21 = kP
3Dq(−(κP

3D − κI − kP
3DM)

2D3
b

(2 + Dbt + eDbt(−2 + Dbt))(Tb
0Db(−1 + eDbt) + FX(−1 + eDbt − Dbt)))

2D3
b

;

ω31 = −k3DκIq(2 + Dbt + eDbt(−2 + Dbt)(Tb
0Db + FX

2D3
b

.

This approximation solely considers two terms of the Magnus Expansion, as we discussed
the need to trunk the solution at some point since it is a series. However, since Ω(0, t) has
enough diagonal entries, this trunked solution can be numerically evaluated given a set of
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parameters if needed since the calculation is less computationally heavy than it seems. In
Eq. (3.10), we present the expression for the RNAP solution, in which P0 the RNAP’s
initial conditions for t0 and the Magnus Expansion defined by function Ω(t0, t).

P(t) = P0e
Ω(t0,t) . (3.10)

3.2.2.2 Import/Export Flux Function

Some TFs have a translocation mechanism as they are not endogenous in the
nucleus. For example, NF-κb is found mainly in the cytoplasm, and, once needed for
transcription, NF-κb translocates into the nucleus. This translocation/re-accumulation
process must be well-regulated as disruptions were observed in cancer pathways, for
example (Xia; Shen; Verma, 2014). The translocation needs the help of nuclear pores to
facilitate the TF entrance (and later mRNA export) (Allen et al., 2000). Hence, a TF
must pass through specific pores to enter the nucleus.

Therefore, let the total number of TFs inside the cell, Ttotal = [T ] + [T ]C , which
depends on the nuclear concentration inside the nucleus, [T ], and outside the nucleus,
[T ]C . We propose three steps for the translocation and represent it in Fig. 3.6:

(i) (ii)

(iii) (iv)

Figure 3.6 – Cartoon Representation for Import/Export Flux Function. Here, we
consider cytoplasmic TFs as red ellipses and nuclear TFs as green ellipses,
i.e., Ttotal = [Tgreen] + [Tred]. The network can be split into pore-connected
nodes (pink) and non-connected to pores (dark blue/purple). Here, we
present four-time points for a cell: (i) The initial time, t = 0, where the cell
does not have nuclear TFs; (ii) The Import Process; (iii) Our system reaches
the maximum nuclear concentration; (iv) The Export Process.

1. The nuclear TF concentration starts at zero, and the TFs start entering the nucleus.

2. The nuclear TF concentration reaches its maximum.
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3. The export process begins to decrease the nuclear TF concentration.

From this total concentration, we model the translocation for our flux function in the Free
TF equation:

F i
X(t) = Ki

X

(
kimTtotale

−kimt
)

︸ ︷︷ ︸
import

− Ki
XT f

i E(t)︸ ︷︷ ︸
export

, (3.11)

where Ki
X represents the presence (or absence) of a connection to a nuclear pore in the

region i divided by the total number of pores, kim is the TF import rate and E(t) is the TF
exporter function which depends on the Free TF density in the region i, and we evaluate
by integrating:

dE

dt
= µ[T ] − δE ,

with µ the export rate related to the nuclear TF concentration [T ] and δ, the exporter
degradation rate. Similarly to the Import Flux Function, we split our solutions into two:
one system for the TF and another for the RNAP.

3.2.2.2.1 Analytical Solution for the TF

To solve our system considering the Free TF in Eq.(3.11), first, we need to solve
the expression for the exporter function, which is a separable ODE with the following
solution:

E(t) = µ[T ] − e−δ(t+c1)

δ
,

with c1 an arbitrary constant dependent on the initial conditions. We can substitute this
solution in Eq.(3.11):

dT f
i

dt
= −kT

3DT f
i +

∑
j

kT
3DMi←jT

f
j −

− αkT
3DT f

i + kiT
b
i + Ki

X

(
kimTtotale

−kimt
)

− Ki
XT f

i

µ[T ] − e−δ(t+c1)

δ
.

Considering the same assumptions as the ones presented in the previous TF analytical
solution, let L be the size of our network and consider T = [T fT b]T and, given Id as the
L × L identity matrix, κT

3D = kT
3D · Id and κ = k · Id. We rewrite our TF system in the

matrix form:

dT
dt

=

kT
3D(−Id + M − αId) − KX

(
µ[T ] − e−δ(t+c1)

δ

)
κ

ακT
3D −κ


︸ ︷︷ ︸

B(t)

T +
[

KXkimTtotale
−kimt

0

]
.

Similar to the previous RNAP set of ODEs, this system is non-homogeneous so
before we go any further with the ODE solutions, we need to verify if B(t) is a commutative
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matrix (i.e, B(t1)B(t2) − B(t2)B(t1) = 0, for any t1, t2 ∈ T ):

B(t1) · B(t2) − B(t2) · B(t1) =

=

 0 e−δ(2c1+t1+t2)(eδ(c1+t1) − eδ(c1+t2))κKX

δ
αe−δ(2c1+t1+t2)(eδ(c1+t2) − eδ(c1+t2)κKX

δ
0

 ,

i.e., B(T ) is a non-commutative matrix. However, B(T ) is a continuous matrix and we
can apply the Magnus Expansion, in this case, by using the commutator [B(t1), B(t2)] =
B(t1) · B(t2) − B(t2) · B(t1) to solve the homogeneous part of our problem and then find
the particular solution. Once again, we remind that the Magnus Expansion, Eq. (3.9), is a
series of integrals, and we choose to trunk our solutions in the first two terms because we
aim to showcase the form of our analytical solution.

We calculate the first term and define t0 = 0:

Ω1(t) =
∫ t

0
B(s)ds =

−kT
3D(αId + Id − M)t + KXµ[T ]t

δ
− e−δ(c1+t)(−1 + eδt)KX κt

ακT
3Dt −κt

 .

The second term of our series is obtained by integrating twice Eq. (3.12) and multiplying
by 1/2:

Ω2 = 1
2

∫ t

t0

∫ t1

t0
[B(t1), B(t2)]dt2dt1 =

= 1
2

 0 e−δ(c1+t)κKX(2 + δt + eδt(−2 + δt))
δ3

−αe−δ(c1+t)κT
3DKX(2 + δt + eδt(−2 + δt))

δ3 0

 .

The sum of these two first terms of the Magnus Expansion for the TF is:

ΩT F (t) =

=
KXµ[T ]t

δ
− e−δ(c1+t)(−1+eδt)KX

δ2 − kT
3D(α + 1)Id − M)t κt + e−δ(c1+t)κKX(2+δt+eδt(−2+δt))

2δ3

ακT
3D − αe−δ(c1+t)κT

3DKX(2+δt+eδt(−2+δt))
2δ3 −κt

 .

Thus, the homogeneous part of our TF system is Th(t) = T0e
ΩT F (t), and the particular

solution has the form Tp(t) = Th(t)v(t).

dTp(t)
dt

= d

dt
(Th(t)v(t))

= T′h(t)v(t) + Th(t)v′(t) = B(t)Th(t)v(t) + Fx(t)
T0e

ΩT F (t)v′(t) = KXkimTtotale
−kimt

v(t) =
∫ t

0
T−1

0 e−ΩT F (s)KXkimTtotale
−kimsds

v(t) = T−1
0 KXkimTtotal

∫ t

0
e−ΩT F (s)e−kimsds .
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We can apply the integration by parts in our expression for v(t), but it does not
simplify the function, so we opted to present the solution for the TF in Eq. (3.12).

T(t) = KXkimTtotale
ΩT F (t)

∫ t

0
e−ΩT F (s)e−kimsds . (3.12)

3.2.2.2.2 Analytical Solution for the RNAP

We limit the T(t) to only the Bound state since it’s the TF important for the
RNAP dynamics, Eq. (3.13), and rewrite our system in its matrix form. First, we define
P = [P fP bP t]T , κP

3D = kP
3D · Id, κI = kI · Id, κε = kε · Id in which Id the L × L identity

matrix, and M the probabilities matrix form.

Tb(t) = KXkimTtotale
Ω

T F b (t)
∫ t

0
e−Ω

T F b (s)e−kimsds . (3.13)

dP
dt

=


−κP

3D + MkP
3D − kP

3DqKXkimTtotale
Ω

T F b (t) ∫ t
0 e−Ω

T F b (s)e−kimsds 0 κε

kP
3DqKXkimTtotale

Ω
T F b (t) ∫ t

0 e−Ω
T F b (s)e−kimsds −κI 0

0 κI −κε


︸ ︷︷ ︸

C(t)

·P

dP
dt

= C(t) · P .

The RNAP is an homogeneous system, we calculated C(t1)C(t2) − C(t2)C(t1) for any
t1, t2 ∈ T to verify if this matrix is commutative:

D(t1, t2) = C(t1)C(t2) − C(t2)C(t1) =


0 0 a

b 0 c

d 0 0

 ,

with

a = −κεk
P
3DKXkimTtotal

(
eΩ

T F b (t1)
∫ t1

0
e−Ω

T F b (s)e−kimsds − eΩ
T F b (t2)

∫ t2

0
e−Ω

T F b (s)e−kimsds
)

;

b = kP
3DkimKXTtotal(κP

3D + κI + kP
3DM)(eΩ

T F b (t1)
∫ t1

0
e−Ω

T F b (s)e−kimsds−

− eΩ
T F b (t2)

∫ t2

0
e−Ω

T F b (s)e−kimsds) ;

c = κεk
P
3DKXkimTtotal

(
eΩ

T F b (t1)
∫ t1

0
e−Ω

T F b (s)e−kimsds − eΩ
T F b (t2)

∫ t2

0
e−Ω

T F b (s)e−kimsds
)

;

d = kP
3DkimKXTtotal

(
eΩ

T F b (t1)
∫ t1

0
e−Ω

T F b (s)e−kimsds − eΩ
T F b (t2)

∫ t2

0
e−Ω

T F b (s)e−kimsds
)

.

Once again, our system is a homogeneous non-commutative but with continuous
terms. The solution for this system can be calculated using the commutator [C(t1), C(t2)] =
C(t1) · C(t2) − C(t2) · C(t1) and applying the Magnus Expansion, Eq. (3.9). We define
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ΩP (t) as the Magnus Expansion for our RNAP system and P0 its initial condition, the
solution has the form:

P(t) = P0e
ΩP (t) , (3.14)

with
ΩP (t) = ΩP (0, t) =

∫ t

0
C(s)ds + 1

2

∫ t

0

∫ t1

0
D(t1, t2)dt2dt1 + . . .

Even though it is possible to apply numerically the mathematical expressions in this
system, it is clear the complexity of the analytical solution. Such complexity emphasizes
the need for computational tools to analyze and understand these dynamics; and since our
solutions are a series of integrals of commutators for a L-sized vector, numerical solutions
are necessary to visualize our system. Next, we present numerical solutions for a dataset
considering our flux functions.

3.2.3 Numerical Solutions for the Flux functions verify the dependency on the
changes of transcriptional resources

We solved our model in Eq. (3.3) for the flux functions in Eqs. (3.5) and (3.11),
with two types of implementations: (i) the deterministic in which we used Matlab’s
ode15s (a multistep algorithm (Gupta; Wallace, 1975)) for both functions to understand
the likelihood of TF/RNAP states to occupy chromatin regions, and (ii) the stochastic
Gillespie Algorithm (Gillespie, 1976) to represent the stochasticity of gene expression.
Each simulation represents 180 minutes in time.

Except for the flux parameters, the other parameters (i.e., those from Eq. (3.3)) are
the same for both functions: (I) Import Flux Function and (II) Import/Export Flux
Function, with same RNAP total concentration and maximum nuclear TF concentration
(i.e., [P ] = 400 and Tmax = 200). These fixed parameters are available in Table 2. Our
network is the same as we considered in Chapter 2.

Similar to the represented in Fig. 3.4, just some regions are connected to pores.
The regions connected to the nuclear envelope are selected by randomly picking 7% regions
of the scaled network from the subset of the 50% regions with higher values of residence
times. We designated these subnetworks this way because the active regions move towards
the nuclear periphery during the transcription process (Kalverda; Röling; Fornerod, 2008).

3.2.3.1 Import Flux Function

In Eqs. (3.6) and (3.10), we showed how a continuous flux of free transcription
factors would affect the organization of the molecules over time. Initially, we consider the
concentration of TFs inside the nucleus to be zero, i.e., Tnuc = 0. Since to enter the Bound
and Transcribing states for the RNAP, the Free RNAPs need a Bound TF in a region
and RNAPs are only found in the nucleus, the only state we have for the RNAP initially
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is the Free. It is clear that, as the TF nuclear concentration increases, the Free RNAP
changes its state to Bound and, eventually, Transcribing. We can see the concentration
changes in Fig. 3.7, we verified the Free RNAPs decrease for all regions because of the
number of TFs in the Bound state, with a faster change in states since our system reaches
the steady-state before the 5 minutes mark, i.e., our simulation converges to Eqs. (3.4).

A

B

C

Figure 3.7 – Average Concentration for TF/RNAP states for our Import Flux
Function. A All Chromatin Regions; B Active Regions not connected to
pores; C Regions connected to pores. The overshoot of TFs for regions
connected to pores is a direct consequence of the pore.

We present the global behaviour, calculating the average for all regions, Fig. 3.7 A
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for TF and RNAP states, showing how the states organize themselves after 20 minutes
(even if we simulated our model to represent 180 minutes). The low increase for Bound TF
attests that most TFs in the nucleus remain in the free state by our assumptions (around
70% of free TFs). Since our network size, L, is bigger than the nuclear concentration of
TFs and RNAPs, the residence times present a bimodality in inactive, and active regions
(by construct) and our steady-states (Eqs. (3.4)), in Figs. 3.7 B and C we present studies
for active regions, with B being those active but not connected to pores and C the regions
connected to pores.

The pore connectivity causes an overshoot of TF states in regions connected to
pores, but since our model reaches the equilibrium before reaching the 5 minutes mark and
the fast diffusivity of Free TF/RNAP, we proved the pore connectivity is less important for
the occupancy later in the implementations. More so, since the choice of pore-connected
regions was random, we can see the effects of the parameters in our simulations and
how active regions not connected to pores present on average more activity than regions
connected to pores, when we compare RNAP states in Fig. 3.7 B and C.

However, this is an averaged result and we cannot affirm that all the active
regions present higher activities than the pore-connected ones. To verify this, we present
different subnetworks in Fig. 3.8 in form of heatmaps from 0 to 20 minutes for our
deterministic solution for the Transcribing RNAP as it represents the actual transcription
process (Roeder, 1996; Petrenko; Struhl, 2021). With this analysis, we compared the
strength of the occupancy for all the nodes inside a subnetwork.

We present the following subnetworks: A All the chromatin regions - proving the
inactivity expected in some regions; B Active regions not connected to pores; C Regions
connected to pores (which are active regions). Comparing the patterns between B and C,
we have seemingly more regions with reduced activity in B than C, which makes sense
considering the B corresponds to 43% of our network and C to 7%, which means we only
consider the half or the regions with higher chances of being active from Fig. 3.8 A.

Fig. 3.8 D shows the subnetwork for regions with more than one step away from a
nuclear pore and E Regions connected to pores and their nearest neighbours. This means
we calculated how many steps away each node is from a pore-connected node and then
split our network between one step away maximum (Fig. 3.8 E) and more than one step
away, Fig. 3.8 D. We also uncovered the RNAP clustering around some prolific regions a
result justified by the transcriptional machinery as expected.

Besides, Bound TF is a limited resource and it affects the non-free RNAPs states.
While comparing Fig. 3.8 D and E, we see most of the activity remains in the regions
close to pores. Thus, the closeness to a pore is beneficial for Bound and Transcribing
RNAPs states as their increase is more prominent. The closeness to a pore highlights the
activation of the Transcribing state, which seems to corroborate experimental observations
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that we studied more closely in Chapter 5.

A

B C

ED

Figure 3.8 – Heatmaps for our Import Flux Function for different subnetworks.
A All chromatin regions; B Active regions not connected to pores; C Regions
connected to pores; D Regions with more than 1 step away from a nuclear
pore; and E Regions with 1 step maximum from a nuclear pore (i.e., pore-
connected regions and their nearest neighbours).

As a form of understanding the patterns our model can have, we propose a cluster
analysis for the Transcribing RNAP. In fact, even if the connection to a pore influences
how the occupancy occurs, we verified if other patterns emerge from the region, e.g.,
non-transcribing regions.

The cluster of our Transcribing RNAP solution is presented in Fig. 3.9 A. Most
of our system clusters stabilize early and only two show a strong transcriptional activity
increase, clearly accumulating resources in these clustered averages. The remaining averaged
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clusters show a difference in activity levels, similar to the ones we presented in Fig. 3.8
with one cluster representing all inactive regions.

To understand how the solutions deviate from the average, we calculated the z-score
for the Transcribing RNAP, clustering the results in Fig. 3.9 B. We demonstrated how
some clusters show later activation while some present an overshoot in concentration which
later stabilizes. This difference between clustered z-scores proves not all regions behave the
same, showing how the transcriptional activities change, as we presented in Fig. 3.9 A.

A B

DC

Figure 3.9 – Behaviours for our Deterministic Solution. A is the clusters for the
Transcribing RNAP, with 7 different clustered averages. B The clustered
z-score for our Transcribing RNAP solutions. C-D Time for reaching the
maximum concentration over the log2 of the maximum Transcribing RNAP
concentration labelled with the number of connections (d) of the region, C
and D log2 the residence times, log2(τ).

Our system seemingly reaches the equilibrium before 5 minutes (Figs. 3.7 and 3.8).
Furthermore, in Eqs. (3.4), we defined the importance of the number of the connections,
di, and the residence times τ ′is. To check the effects of τ and d in our model, we present
in Figs. 3.9 C and D the time for maximum concentration and log2 of the maximum
Transcribing RNAP concentration for the number of connections, d (Fig. 3.9 C) and the
log2 of residence times (Fig. 3.9 D).
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From these results, we see how most of the less connected regions reach their
maximum early and they present smaller Transcribing RNAP maximum occupancies.
We also see how the residence times affect the occupancy by stratifying with its values,
numerically proving how important is this parameter for transcription as the TF binding
to a region is fundamental for RNAP activation. The maximum values being further than
expected in our numerical solutions are explained by infinitesimal variations from our
solver, but the different concentration values are a direct consequence of τi and d.

Gene regulation is a stochastic process (Elowitz, 2002; Kærn et al., 2005) and a
deterministic solution allows us to have continuous values for Transcribing RNAP molecule
allocation, which is not feasible in a cell since the transcriptional activity is a discrete
process (more than that, it is a binary process - the cell is either transcribing or not). To
represent this, we implemented a Gillespie Stochastic Algorithm for our model in Eq. (3.3)
with the flux function Eq. (3.5) (Gillespie, 1976), and we simulated for 70 cells.

Our aim was to verify how the stochasticity and discreteness affect our system and
on a deeper level, transcription. In Fig. 3.10, we present the fraction of active transcription
for different subnetworks sorted by the number of connections (i) and residence times (ii).
The subnetworks considered are the same present in Fig. 3.8, and by activity we mean the
presence of at least one Transcribing RNAP in that region, ignoring the RNAP clustering.

From Fig. 3.10, we can see in A (i) and (ii) how the residence times have a strong
influence on the fraction of active target sites than the number of connections and this can
be explained by the fast diffusivity of TF and RNAP complexes. Besides, similar to the
deterministic results, we verified how half of our network is inactive - which is explained
by the bimodality from our exiting rates, Fig. 2.12. The network connectivity also impacts
the transcriptional activity but on a small scale.

The subnetwork in Fig. 3.10 B represents all the active regions not connected
to nuclear pores. Once again, the residence times are a stronger parameter to control
transcription, but in this subnetwork, the connectivity is more relevant for active regions,
as there is a need to be reached. However, in Fig. 3.10 C we can see how is a factor less
relevant for regions connected to pores. Since the active regions and nearest neighbours
are not the same subnetworks, in Fig. 3.10 D we present the regions with 1 step maximum
to a nuclear pore and we recovered that almost half of these regions remain inactive,
which is also present in Fig. 3.10 E, which we show regions more than 1 step away from
a nuclear pore. With these results, we verified how the time a TF spends bound to a
particular chromatin region impacts the transcription for this model and why even though
the structure is fundamental to the whole transcriptional machinery, the residence time is
a key factor to control gene expression.

We propose Fig. 3.11 A and B to analyze region-specific patterns: in A, we see
how many transcriptions occur in a region per minute, and in most of our network we have



Chapter 3. Modelling Transcription Factor searches and RNA Polymerase recruitment 96

A

B

C

D

E

(i) (ii)

Figure 3.10 – Fraction of Active Target Sites For Different Subnetworks sorted
by (i) the number of connections and (ii) the residence times. A All
Chromatin Networks. B Active Regions not connected to pores. C Regions
connected to pores. D Regions with a maximum of 1 step away from a
nuclear pore. E Regions with more than 1 step away from a pore.
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less than one transcription event per minute, mostly because the transcriptional resources
are limited, thus the system occupies their preferential regions for transcription; in B,
we present the On-time average in seconds for our model - i.e., the time spent between
initiation and an elongation reaction. Both figures also recovered a block of completely
inactive regions, which are regions closed to transcription. We also determined a set of
prolific regions.

Since we expect variation between cells, in Fig. 3.11 C, we can see how our model
predicts the transcriptional activity meaning we can predict an array of different likelihoods
for all our network regions (as shown in Fig. 3.10). However, in Fig. 3.11 C facilitates the
visualization of how transcription is stochastic but also consistent: i.e., once the RNAP
gets activated the variation between time steps for each region is less than 20% for the
region in small activities and around than 10% for regions with strong activity.

BA

DC

Figure 3.11 – Behaviours for our model stochastic implementation. A Effective
Initiation Rate. B On-time Average (s). C Probability of Transcriptional
Activity for three different regions. D Log-log plot of average of stochastic
solution over deterministic solutions for connected to pores (black squares)
and all the regions not connected to pores (red circles). In blue, we have the
identity function and in lime green, we have the smooth function for our
system.
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Given Fig. 3.10, we see at least two patterns: (i) active (probability of being active
is 50% or higher) or (ii) inactive (otherwise). Besides, our deterministic solution presents
continuous values and our stochastic implementations have discrete expressions: meaning
while deterministically it is possible to create a split evenly between two regions of the
TF/RNAP complexes, it is impossible stochastically, forcing our system to choose between
those regions. Yet, we did not uncover any tendency of pore connected regions to be more
enriched than active regions not connected to pores, meaning the pore connectivity is not
increasing activity.

So, we compared in Fig. 3.11 D the log2 of the averages of stochastic and determi-
nistic solutions for all the regions given two different subsets: (1) connected to pores,
the black squares, and (2) not connected to pores, the red circles. Here, we decided to
consider all the regions not only the active ones, but the separation between active/inactive
regions is easily distinguishable by the two separate clouds in the regions not connected to
pores, the bottom one being the inactive regions (by the τi values). In the other cloud, we
have the active regions and we checked how enriched and impoverished the regions get
between the solutions, as the smooth function (lime green dots) split in Fig. 3.11 D.

This model showed the structure and the region’s promiscuity influence the trans-
cription. However, the translocation process in this model does not consider depleting
the nuclear TF concentration and limiting resources impact the transcription as a whole.
Thus, we propose next the simulations of our model in Eq. (3.3) with the flux functions in
Eq. (3.11).

3.2.3.2 Import/Export Flux Function

We implement our numerical solution for the import/export flux function in
Eq. (3.11), the model in Eq. (3.3), with the parameters in Table 2. Differently from
Eq. (3.5), this new flux function is explicitly time-dependent. Because of this, implementing
the classic version of the Gillespie Algorithm is not optimal. Thus, we implemented a
hybrid Gillespie Algorithm (Vestergaard; Génois, 2015), by integrating the reactions to
determine the following reaction and time.

More so, our model describes a TF translocation and NF-κb is a good candidate
for this, since it is a well-studied TF in cancer pathways with well-defined translocation
dynamics (Trask, 2012; Noursadeghi et al., 2008; Zambrano et al., 2020). Using the data
available in (Zambrano et al., 2020), we fitted the parameters kim, µ, δ and Ttotal from
Eq. (3.11), and the results are available in Table 3, we present the TF flux dynamics in
Fig. 3.12.
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Figure 3.12 – Fitting for Nuclear TF Concentration from Experimental Data
and our flux function in Eq. (3.11). From this, we can see the three
steps for TF translocation: (1) The import begins, (0 ≤ t < 20); (2) The
maximum is reached t = 20; and (3) The export occurs, 20 < t ≤ 180.

With all the parameters set, we implemented our deterministic and stochastic
numerical solutions. First, we solved the deterministic solution and we calculated the
averages concentrations for all the complex states and all regions, Fig. 3.13 A, showing
that most of the TFs remain free, with a small peak of Bound states around the 20 minutes,
following the experimental peak presented in Fig. 3.12. After this peak in concentration,
the TF concentration decreases because of the cytoplasmic reaccumulation process.

When analysing the RNAP dynamics, Fig. 3.13 A presents a fast drop in the Free
RNAP state and an increase in Transcribing RNAP with the same intensity with strong
deactivation of Transcribing RNAP after the 20 minutes mark but delayed in comparison
with TF states because of the whole transcription machinery. The Bound RNAP state
also presents a slight overshoot around the same time but remains stable even after the
re-accumulation dynamics start, which represents an intermediate state between being
free and effectively transcribing.

We analyze the behaviours of the two active subnetworks: connected to a nuclear
pore, C, and not connected, nC. We present average solutions for the nC subnetwork
in Fig. 3.13 B and the average solution for the regions of subnetwork C in Fig. 3.13
C. Since both subnetworks represent active regions and the protein complexes are fast,
the activation of RNAPs (from Free to Bound/Transcribing) is not delayed by being
not connected to a nuclear pore, and we have similar behaviours for both Fig. 3.13 B
and C. Here, we consider as activation of the RNAP complex as the presence of the
Bound and Transcribing states and its deactivation as the decreasing Transcribing RNAP
concentration.
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A

B

C

Figure 3.13 – Average State Occupation in three different subnetworks for the
flux dynamics in (3.11). A All Regions with the average TF Occupancy
and the average RNAP Occupancy; B Active Regions not connected to a
pore; C Regions connected to pores.

Still, the activation was more robust in those regions close to nuclear pores, for
our model with import flux function Fig. 3.8. Thus, we verified the global behaviour over
our time interval in Fig. 3.14, focusing on how the non-constant transcriptional resources
influence transcription, since we analyzed the Transcribing RNAP solution. In Fig. 3.14 A,
we present all nodes in our network and we can see that the inactivity is more prominent in
this flux function than in Eq. (3.5). We can predict three primary behaviours: (i) inactive
regions, (ii) regions with fast activation/inactivation, and (iii) regions with fast activation
that remain active. Note that our network does not reactivate (increase in concentration)
after the deactivation starts. These behaviours can be easily verified in Figs. 3.14 B and
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C, in which we analyze the active subnetworks, nC and C. And in those subfigures, we see
how the exportation wave affects transcription over time and the intensity of this process.

We uncovered for our previous flux function that the closeness to a nuclear pore
plays a role in transcription. So we calculated how many steps a region is from a nuclear pore
and represented these subnetworks in Figs. 3.14 D and E. Looking closely, we demonstrated
how being close to the nuclear pore increases transcription, with few exceptions.

A

B C

ED

Figure 3.14 – Heatmaps for our Import/Export Flux Function (Eq. (3.11)) for
different subnetworks. A All chromatin regions; B Active regions not
connected to pores, nC; C Regions connected to pores, C; D Regions with
more than 1 step away from a nuclear pore; and E Regions with 1 step
maximum from a nuclear pore.
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To understand how the Transcribing RNAP solutions behave, we clustered our
solutions in Fig. 3.15 A, where we obtained overshoots around the TF maximum concen-
tration (t = 20 minutes), without delays for all the clusters. Once the exportation process
starts, we will have the deactivation process - i.e., the concentration of Transcribing RNAP
decreases, which is a direct consequence of the TF nuclear concentration decreasing - and
this deactivation pattern on average follows the same behaviour for all regions and this
means the loss of available TFs affects the regions in similar ways. Another interesting
result is the absence of reactivation which is a result consistent with the ones in Figs. 3.14.

The results in Fig. 3.13 represent average concentrations for the protein complex
and we need to check how far our solutions deviate from the average, we calculated the
z-score for our Transcribing RNAP and clustered the solutions in Fig. 3.15 B. In this
subfigure, we verified how the regions behave, with the regions reaching their maximum in
different time points (but no later than the 80 minutes mark), but we can see that the
activation is not delayed anywhere. Interestingly, the deactivation pattern is similar for all
regions.

A

C

B

D

Figure 3.15 – Behaviours for our Deterministic Solution. A is the clusters for the
Transcribing RNAP, with 7 different clustered averages. B The clustered
z-score for our Transcribing RNAP solutions. C-D Time for reaching the
Maximum concentration over the log2 of the Maximum Transcribing RNAP
concentration sorted by the number of connections (d) of the region, C, and
the log2 the residence times, log2(τ), D.
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To verify this prediction of maximum values over time, we propose Figs. 3.15 C
and D, in which we plot the log2 of maximum Transcribing RNAP values over the time
spent to reach such concentration sorted by the number of connections of the network,
C, and the log2 of the residence times, D. We can see the lowly connected regions reach
their maximum earlier than highly connected regions (Fig. 3.15 C) and how the values of
d influence the concentration, a result predicted in the steady-states (Eqs. (3.4)) even if
our model does not stay in equilibrium.

However, the residence time is an active player in import/export dynamics and
transcriptional activity and our system relates strongly to higher values of τ , as shown
in Fig. 3.15 D, which is more stratified by the values than d. With this result, we can
affirm that active histone marks and good binding motifs might affect the concentration
levels of the transcriptional machinery but they do not impose the system to be reached
early. Besides, most of the regions attain their maximum until the 30 minutes mark and
no earlier than the 10 minutes mark.

The deterministic solutions proved how fast the exploration mechanism for TF/
RNAP molecules is, how this affects the transcription activation, and how the parameters
play a role in transcription. Likewise, the depleting level of TFs inside the nucleus shows
how the deactivation gradually occurs. However, we still need to consider the stochasticity
in our model; after all, transcription is a stochastic process so next, we present our
Hybrid-Gillespie Algorithm.

Since the exporter reaction is time-dependent, we implemented an adapted Gillespie
Algorithm. In this case, we integrate the exporter function and calculate the next time,
ti+1, from the sum of the reactions at time ti. This algorithm is implemented 70 times, i.e.,
we generated a set of 70 cells to analyze, in which we verified how our stochastic solutions
correlate with the deterministic one in Fig. 3.13. Even so, our algorithm recovers the
Nuclear TF Concentration from the flux function considered which we present in Fig. 3.16.

Considering the Transcribing RNAP state describes the transcription process in
our model, we focus our analysis on this state to understand how the activity levels
change in a system with a translocation/reaccumulation process. Our flux in this model
is non-constant and we have three different stages concerning the transcription process
similar to a response to a proinflammatory trigger (Meier-Soelch et al., 2021): (i) Fast
increasing of nuclear TF concentration; (ii) Maximum concentration inside the nucleus,
Tmax = [T ]; and (iii) Fast decreasing TF concentration.

These three steps are present in Fig. 3.16 and the transcription activity pattern
follows these three stages: first, transcription increases proportional to the number of
available TFs, up to its maximum. Then, we see a reduction in transcriptional activity
due to the depletion of resources.
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Figure 3.16 – Comparison between our deterministic and stochastic solutions for
the Nuclear TF Concentration. Proving our Hybrid-Gillespie simulation
on average recovers the same concentration behaviour as a deterministic
solution.

We analyze the fraction of active cells for our model over time considering different
subnetworks and sorting by the main parameters for gene expression, d and τ in Fig. 3.17.
The subnetworks we considered are the same ones from Fig. 3.14, i.e., in A, we have
our whole network; in B, the active regions not connected to pores; in C, the regions
connected to pores; in D, the regions in C and their immediate neighbours; in E, regions
with more than one step away from the pore. In Fig. 3.17 A, the fraction of activity for all
the network shows that at least half of our network is inactive through all our simulations,
i.e., the probability p(i) of the region i being active is smaller than 20%. Then, 2/3 of the
remaining regions represent what we can call middle-range active, i.e., 20% ≤ p(i) < 50%.
High-active regions correspond to the rest of our system, p(i) ≥ 50%. Again, the residence
times correlate with the activity more than the connectivity. Overall, the regions present
maximum activity of around 20 minutes before starting their deactivation process.

We verified how the translocation affects the active regions in Figs. 3.17 B and C,
with the subnetworks nC and C, respectively. In Fig. 3.17 B, we again see the importance
of τ in our system activity and also that more than 1/3 of those regions present an inactive
behaviour, for example and it is easily identifiable in column (ii). For the regions connected
to nuclear pores, Fig. 3.17 C, we can see that while the activity is higher in those regions
there is no correlation between parameter and activity. This is a consequence of these
particular regions not having to attract TFs to themselves, because in the import and
export processes they receive Free TFs, which bind them because they are by definition
prolific regions, and then they can recruit RNAPs to start transcription. Figs. 3.17 D and
E show that while we do not have a huge difference in numbers of active/inactive regions
for these complementary subnetworks, we verified that regions with more than 1 step away
from a nuclear pore deactivate faster and also regions close to a pore show more regions in
a high probability of being active.
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(i) (ii)

Figure 3.17 – Fraction of Active Transcription for our Flux Function in Eq. (3.11)
sorted by (i) number of connection, d and (ii) residence times, τ .
A All Chromatin Networks. B Active Regions not connected to pores. C
Regions connected to pores. D Regions with a maximum of 1 step away
from a nuclear pore. E Regions with more than 1 step away from a pore.
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We present global behaviours for our stochastic implementations in Fig. 3.18 A
and B, as a way to verify how limiting resources influence transcription, if we compare
with the results in Fig. 3.11 A and B. In Fig. 3.18 A, we evaluate the Average Effective
Initiation Rate profile to verify how many initiations per minute we have in our model,
which decreased in comparison with Fig. 3.11 A, which only one region has one initiation
per minute, which is a consequence of the smaller concentration of TFs available in this
model: after 60 minutes, we have less than half of the maximum TF concentration for our
model Figs. 3.12 and 3.16. Of course, the activation is a consequence of these numbers,
proving how an ongoing limitation of resources affects the transcription volume. In Fig. 3.18
B, we calculate the average on-time interval between the initiation and the elongation
reactions for all the regions and the time does not change much between the two flux
functions since we considered the same elongation time for both, being less than 2 minutes
on average, i.e., transcription is a fast process.

BA

DC

Figure 3.18 – Behaviours for the stochastic implementation of our model consi-
dering the flux function in Eq. (3.11). A Effective Initiation Rate. B
On-time Average (s). C Probability of Transcriptional Activity for three
different regions. D Log-log plot of average of stochastic solution over deter-
ministic solutions for connected to pores (black squares) and all the regions
not connected to pores (red circles). In blue, we have the identity function
and in lime green, we have the smooth function for our system.
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Therefore, our model proves that the sequence motif and active histone marks are
fundamental to transcription, mostly for regions not connected to pores. As experimental
results have shown, some genes (in our model, chromatin regions) are more likely to
transcribe than others (Zambrano et al., 2020), but experiments only can show the specific
genes studied and our model can predict a continuous array of different transcriptional
activities, Fig. 3.17. To facilitate the visualisation of some activity probability, we have
Fig. 3.18 C which we can see that the decreasing TF concentration affects transcription,
as expected.

The short activity periods and strong deactivation from our simulations guarantee
that while some regions will have enriched transcription, many others will present smaller-
than-expected activity. We may not call this pattern explicitly upregulation/downregulation
in the strict biological sense as this behaviour is a consequence of some regions having
more transcriptional resources, hoarding the machinery impairing other regions instead of
being a direct consequence of the transcribed genes. We decided to call the consequence
of the lack of resources for all regions favouring a few specific nodes of our network an
enrichment/impoverishment pattern. We verify the stochasticity effects by comparing the
average stochastic with the deterministic solution in Fig. 3.18 D for regions connected
to pores (black squares) and regions not connected to pores (red circles). The separation
between active and inactive regions can be seen by the two different clouds of values. We
can see by the smoothing (lime green points) of our results how some regions get enriched
or impoverished.

Our model predicts the presence of flux input affects the transcription, and the
volume of transcription decreases proportionally to the nuclear concentration of TFs
which is derived from experimental results. The limited resources autoregulate themselves,
enforcing different activity levels in all the target sites.

We have experimental results to verify the existence of pore-placed regions, i.e.,
regions near the nuclear envelope and we analyze the microscopy data in Chapter 5. Another
point is that we only considered transcription in this Chapter without evaluating the
mRNA concentration each region might synthesize. Since the central dogma of molecular
biology states two processes: (1) Transcription and (2) Translation, next chapter, we present
an extension of our transcription model to consider the changes in mRNA concentration
per gene and how it affects the eventual translation process.
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4 Incorporating mRNA export into gene regu-
lation and RNA Velocity model

In the previous chapter, we proposed a model for transcription and showed how
some regions are more prolific than others. However, our model did not consider the volume
of transcription each region can achieve, i.e., while we could predict how promiscuous
a node in our network and where the transcription is more likely to occur, we did not
show the mRNA concentrations in the model, and it is clear the mRNA cytoplasmic
concentration is one of the mechanisms behind translation regulation.

As discussed previously, the central dogma of molecular biology, we have two
processes for protein production: (i) Transcription, where the mRNA is produced, and
(ii) Translation, where this mRNA is coded into a gene by a ribosome (Carmody; Wente,
2009; Livingstone et al., 2010; Grünwald; Singer; Rout, 2011; Cobb, 2017). The presence
of the nuclear envelope in eukaryotes is a fail-safe mechanism to separate transcription
(nucleus) from the translation (cytoplasm), being a fundamental element for gene regula-
tion (Magistris, 2021; Vargas et al., 2005; Wickramasinghe; Laskey, 2015). We present a
simplified schematics for this separation between Transcription and Translation in Fig. 4.1.

(i)

(ii)

Figure 4.1 – Cartoon Representation for Gene Expression Mechanisms. Here, a
DNA strand is transcribed in step (i) and translated in step (ii).

Previous results predicted the TF clustering and the RNAP transcription activation
pattern, Chapters 2 and 3 respectively. Both models showed how chromatin connectivity
and accessibility create differences in promiscuity and TF/RNAP allocation. Yet, we
did not consider the actual volume of the mRNA produced per region. Thus, explicitly
incorporating the mRNA in our mathematical model creates a more mechanistic way to
understand those biological processes and predict in silico the concentration of each protein
from our network. We proposed two different mRNA export models: (i) Incorporating
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the mRNA export in our model from Chapter 3 (Eq. (3.3) considering the translocation
function from Eq. (3.11)) and (ii) an ODE model for unspliced/spliced mRNA export
based on the RNA velocity model (Manno et al., 2018) which we split the spliced state
between nuclear-spliced mRNA and cytoplasmic spliced mRNA, in a collaboration with
Mendoza’s lab from IGBMC.

4.1 Incorporating mRNA export to our translocation/reaccumulation
flux model from Chapter 3
Given our model with import/export flux function in Eq. (3.11), we proposed

the Transcribing RNAP in a node i produces a nuclear mRNAi that diffuses with an
effective diffusive rate, kr

3D through the network using the same probability of movement of
TF/RNAP, until it finds a pore-connected region to be exported, becoming a cytoplasmic
mRNAi. We represent our mRNA export dynamics in Fig. 4.2.

Figure 4.2 – Cartoon Representation for mRNA exportation. Where nuclear mR-
NAs are represented as the green suns and the cytoplasmic ones brown suns
and we used the same network and pore connectivity from Chapter 3, with
the equations from Eq. (4.1).

From Fig. 4.2 and Eqs. (3.3) and (3.11), we incorporate the Eqs. (4.1) to our
TF/RNAP model. We used the variable m to represent the mRNA, δig is the Dirac-
delta for gene g in the region i, and K is the number of nuclear pores. Here, a nuclear
mRNA (mN

gi) that generates gene g in the region i is produced after the elongation process
for the Transcribing RNAP and it is region-specific. This nuclear mRNA explores our
network, being exported to the cytoplasm, entering the cytoplasmic state, mC

g , which can
be degraded with a rate γ. Here, we assume the mRNAs from all the regions have the
same parameters.

dmN
gi

dt
= −kr

3DmN
gi +∑

j kr
3DMi←jm

N
gj + δigkεP

T
i − (kr

3DK)Ki
XmN

gi ;
dmC

g

dt
= ∑

i kr
3DKi

XmN
gi − γmC

g .

(4.1)
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As this model is an extension of our previous model from the Chapter 3, we know
the analytical solutions are determined by a Magnus Expansion and are represented by a
series of integrals, we decided to omit the analysis for this model and only proposed the
deterministic numerical solutions using ode15s from Matlab (Gupta; Wallace, 1975) for all
genes g in our network, i.e., we implemented L times our model. We did not implement
stochastic simulations as the number of cells necessary to obtain a significant result is
linearly dependent on L.

4.1.1 Deterministic Solution for our model

We implemented the deterministic solution considering the parameters from Ta-
bles 2, 3 and 4. We present the global effects for different mRNAs produced in Fig. 4.3 -
i.e., we verified how different regions have different mRNA concentration levels. This also
shows the regions each mRNA moves - proving the preference of moving inside the TAD
and visiting the nearest neighbours.

A B

C

Figure 4.3 – Nuclear mRNA concentration for 3 different regions of our network.
Here, we considered the same regions from Figs. 3.11 and 3.18 C. Where A is
region 1142, B 1638 and C 850. The concentration changes per mRNA type
at different levels.

We are using the flux function that represents the NF-κb translocation process,
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and we verified the spike in concentration around 20 to 40 minutes and a decrease in
mRNA concentration as the nuclear TF concentration decreases. The reason behind the
mRNA movement through the nearest neighbours is explained by the fact those regions
are more likely to be connected. We also remember we considered mRNAs to be slower
than RNAPs, so they diffuse slower. The average nuclear concentration for those regions
can be found in Fig. 4.4 and we can see how some regions have a more strong production
of mRNA than others.

Figure 4.4 – Average Nuclear mRNA concentration for the different regions of
our network from Fig. 4.3. The volume of mRNA produced changes given
the promiscuity of a node.

In Chapter 3, we showed how the Transcribing RNAP has different occupancy
patterns for different subnetworks, and how being close to a pore increases the chances
of being an active region even if the TF/RNAP complexes diffuse fast and we proved
the absence of late activation/reactivation. Since mRNA is modelled as a product of the
elongation process in a region i, we verified in Fig. 4.5 the occupancy of the mRNA from
region i in heatmaps for different subnetworks: A all chromatin regions; B active regions
not connected to pores; C regions connected to pores; D Regions with more than 1 step
from a nuclear pore; E Regions connected to pores and their immediate neighbours. Here,
we only considered the concentration in all the regions per gene even if mRNA is moving
in our network since we want to understand the mRNA production and how the network
affects it. In Fig. 4.5 A we show the concentration of nuclear mRNA is low in most of
the regions (> 1000 different regions show [mN

i ] < 0.1), but the colour bar shows we have
regions with higher concentrations of mRNA we do not see in Fig. 4.5 A because we have
few regions with higher concentrations not identified.

We verified this is not the case in Fig. 4.5 B and C, where we studied the
subnetworks of active regions not connected and connected to pores, respectively. Those
active regions show the expected heterogeneity of mRNA production and also the peaks
of production around the peak of transcriptional resources and a decrease in consequence
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of limiting TF concentrations. Our heatmap proves how the residence times increase the
volume of transcription per region.

Again, to check how being close to a pore affects transcription, we propose the last
subnetworks: D Regions with more than 1 step away from a nuclear pore and E Regions
with 1 step maximum from a pore in Fig. 4.5. From those two complementary subnetworks,
we can see how the proximity to a nuclear pore increases the chances of a region producing
more mRNA, with few exceptions. From all subnetworks present in Fig. 4.5, we can see
how the activation/deactivation process of the TF affects the transcription machinery.

A

B C

D E

Figure 4.5 – Heatmap for Nuclear mRNA Concentrations for different sub-
networks. A All regions. B Active regions not connected to pores. C Regions
connected to nuclear pores. D Regions with more than 1 step way from a
pore. E Regions with 1 step maximum from a pore.
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The global view of deterministic behaviours can difficult the understand intrinsic
patterns from our model. Therefore, we proposed clustered solutions to help us with the
visualization of changes in the nuclear mRNA concentration in Fig. 4.6: in A the averaged
cluster of nuclear mRNA solutions and B the cluster of the z-score of the variable.

BA

Figure 4.6 – Cluster Analysis for the nuclear mRNA concentration. A Clustered
values for the nuclear mRNA concentration. B Clustered z-score of the nuclear
mRNA.

Analyzing Fig. 4.6 A, we can see highly-expressed genes grouped with a maximum
before the 30-minute mark and regions with somewhat stable production of mRNA over
time in different levels of concentration. Similar to previous studies in Chapter 3, we
proposed seven different clusters. To verify how skewed the average mRNA concentrations
per region are, we calculated the z-score and clustered the results in Fig. 4.6 B. We can
see how the nuclear mRNA z-score correlates with the Transcribing RNAP in Fig. 3.15
B in Chapter 3, and we can see the mRNA production follows the Transcribing RNAP
behaviour, as expected.

Figure 4.7 – Concentration of Cytoplasmic mRNA for different regions of our
network, the ones presented in Fig. 4.4. We can see the delay in
accumulation from nuclear to cytoplasmic mRNAs.
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This analysis only follows the nuclear mRNA concentration and one of the funda-
mental functions of mRNA is to be exported to the cytoplasm, starting translation. Thus,
we analyzed the concentration in Fig. 4.7, for the same regions presented in Figs. 4.3 and
4.4. The concentration reaches the maximum after the reaccumulation process started, as
shown in the previous chapter. This means there is a delay between the mRNA produ-
ced in the nucleus and its accumulation in the cytoplasm because of the degradation of
cytoplasmic mRNA and the diffusivity of nuclear mRNA.

A

B C

D E

Figure 4.8 – Heatmaps for the cytoplasmic mRNA concentrations and different
subnetworks. A All chromatin regions; B Active regions not connected to
pores; C Regions connected to pores; D Regions with more than 1 step away
from a nuclear pore; and E Regions connected to pores and their immediate
neighbours.
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Since those three regions do not represent the array of different behaviours we
can see in our model, we proposed in Fig. 4.8 for different subnetworks the same from
Fig. 4.5: A, all the nodes of our network; B, Active regions not connected to pores; C,
Regions connected to pores; D, Regions with more than 1 step away from a pore, which
we can call S1; and E, Regions with 1 step maximum from a pore - the pore connected
regions and their neighbours, S0. Similar to Fig. 4.5 A, most of the regions present small
mRNA concentrations, but approximately 1/3 of the regions show [mC

i ] > 0.05, meaning
the inactive/low-activity regions are a bigger portion of our system.

From previous results, we know active regions produce different concentration
patterns as some genes must be produced more frequently than others, verifying these
results in Figs. 4.8 B and C. Most regions with higher mRNA production present a
strong peak in production which is reduced once the TF exportation is amplified reducing
the overall transcription by limiting the resources. Hence, we proved some regions might
produce in smaller volumes but more perennially, even if infinitesimal.

In the previous chapter, we discussed how positioning close to a nuclear pore
optimizes transcription. Thus, once we analyzed the complementary subnetworks S1 and
S0 and the more prolific regions are found in S0 but the highest concentration found are
in the S1 subnetwork.

Given that we have limited transcriptional resources and a non-constant TF
concentration for our model, we cluster the mC

i solutions into seven different clusters to
verify the concentration patterns that might emerge in the cytoplasmic mRNA or even if
there is an unexpected late accumulation due to being in not optimal nodes and a result
for delayed transcription, which is not expected from Fig. 3.15 A. These clustered values
are shown in Fig. 4.9 A.

Once again, we can see there is no delayed accumulation of mRNAs, which means
they are fast diffusing proteins, and different levels of concentration follow the same peak
around the 30 minutes mark, with the system being inactivated. Besides, mRNAs with
smaller concentrations are more constant over time than highly-active ones.

From the previous chapter, we know some regions present a delayed maximum and
overshoots in concentration that stabilizes after the reaccumulation process starts (Fig. 3.15
B). Since this translocation pattern affects transcription, we expected to see similar
behaviour in Fig. 4.9 B. In this subfigure, we show how most of the nodes peak at 30
minutes (as expected from Fig. 4.9 A) except for one delayed subset of more lasting mRNA
production than the others, meaning this particular cluster proposes a lasting transcription
in low concentrations, in which is true for the continuous space of a deterministic model
since in a discrete space (a more biologically feasible space) this means transcription is
not occurring in those particular regions.
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BA

Figure 4.9 – Cluster analysis for cytoplasmic mRNA. A Clustered values for mC(t)
and B Cluster of the z-score for the same variable. Each subfigure has 7
clusters and they are not correlated.

Furthermore, we need to compare the nuclear and cytoplasmic mRNA concentrati-
ons to check the emergence of a pattern from the export process. Thus, we present the
difference between nuclear and cytoplasmic mRNA in a log2 scale and we labelled with
the number of connections, d, and residence times, τ , in Fig. 4.10 A and B, respectively.
From both subfigures, we can see a cloud of inactive regions (lower dots in dark blue).
In Fig. 4.10 A, we proved that regions with more connections produce higher levels of
mRNA, which is verified in Fig. 4.10 B. From those subfigures, we proved the mRNA
synthesis occupancy is also determined by the parameters, which is explained by the
Transcribing RNAP occupancy, as described in Chapter 3. The outliers in both images are
the pore-connected regions, the export process is facilitated in those regions, increasing
their cytoplasmic concentration in comparison with the nuclear one.

BA

Figure 4.10 – Comparison between nuclear and cytoplasmic mRNA concentrati-
ons labelled with A number of connections, d and B residence times, τ .
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This expansion of our import/export model from Chapter 3 incorporating the
mRNA expressions in Eq. (4.1) did not consider different gene lengths, which can affect
the mRNA, for example. Yet, our model predicted interesting results for regions connected
to pores, which we believe should be further explored experimentally and theoretically.

The difference in the size of an mRNA produced also affects the diffusive rate of a
protein. Since those parameters are gene-specific, we proposed next a model to describe
the unspliced/spliced dynamics of mRNA.

4.2 Model for RNA velocity with mRNA exportation
Disclaimer: This model is part of a collaboration with Mendoza’s lab from IGBMC.

As Fig. 4.1 represented, the protein synthesis has two physically separated processes:
Transcription, in which the transcriptional machinery located in the nucleus produces
a non-mature mRNA, i.e., the mRNA was transcribed together with long noncoding
sequences, called introns (the coding sequences are called exons), and Translation,
which the mature mRNA (an mRNA without introns) is translated into a protein in
the cytoplasm (Roy; Gilbert, 2006; Alberts et al., 2002; Alberts, 2004; Lee et al., 2020).
The process of removing the introns from non-mature mRNAs is called splicing. Hence,
a non-mature mRNA is called unspliced and a ready-to-translation mRNA is a spliced
mRNA.

One way to predict the unspliced/spliced dynamics is by using RNA velocity
models (Manno et al., 2018; Gorin et al., 2022; Bergen et al., 2019). Those models
however do not consider the mRNA export process and how it can impact translation. To
incorporate the export dynamics, we proposed a model with three different mRNA states:
(1) Unspliced, i.e., the mRNA is non-mature and nuclear; (2) Spliced Nuclear in which
the mRNA was spliced but not exported yet; and (3) Spliced Cytoplasmic, where the
mRNA is ready to be translated. We represent these dynamics in Fig. 4.11.

𝛼!

𝛽!

𝑘!

𝛾!

Figure 4.11 – Cartoon representation for our RNA velocity model. Here, we can
see how the three states of our model are related, in which a produced
unspliced mRNA is spliced inside the nucleus gets exported and eventually
degraded.
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Therefore, a specific mRNA that codes gene g has the following dynamics: the
unspliced mRNA, uN

g is produced by a transcription rate, αg. Then, with a splicing rate
βg, uN

g is spliced and enters the spliced state, remaining in the nucleus, which we defined
as sN

g . This sN
g is exported with an export rate, kg, entering the cytoplasmic spliced state,

sC
g , which is degraded with a degradation rate, γg.

For our RNA velocity model, we need to consider gene-specific parameters since
from the models presented in Chapter 2 and 3, transcription is a region-specific process. We
opted for constant parameters instead of time-dependent functions, thus making our model
a linear ODE-system, proposed in Eq. (4.2), in which all the parameters are non-negative,
i.e., αg, βg, kg, γg ≥ 0.



duN
g

dt
= αg − βguN

g ;
dsN

g

dt
= βguN

g − kgsN
g ;

dsC
g

dt
= kgsN

g − γgsC
g .

(4.2)

The state of the art of this model relies on the experimental sequencing for
thousands of genes (precisely, different 55400 genes) using three different techniques:
(i) RNA-Sequencing (RNA-Seq); (ii) Single-cell RNA-Sequencing (TT-Seq); and (iii)
Fractionation RNA Sequencing (Frac-Seq), (Saliba et al., 2014; Sterne-Weiler et al., 2013;
Stark; Grzelak; Hadfield, 2019). We aim to understand how the gene expression changes
from the control and auxin-treated cell lines, a plant hormone known for reprogramming
the pluripotency in mammalian cells (Palomo et al., 2014).

We used our model in Eq. (4.2) to estimate the parameters for both Control and
Auxin-Treated cell lines and then we verified how the treatment affects the cell type. Since
time evolution is not possible in sequencing, first we need to estimate our system’s steady
states.

4.2.1 Steady-states, transcription rate dependency and stability

Our model in Eq. (4.2) is a simple three-state model for each gene g is independent
of each other. We estimated the steady-states for our model in Eq. (4.3), and we can see
all the states are directly dependent on the transcription rate αg. Considering αg shows
how prolific is the gene, we can see how the equilibrium interacts with this value: more
mRNAs produced mean more proteins synthesized.

UN
g = αg

βg

; SN
g = αg

kg

; SC
g = αg

γg

. (4.3)
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From Eq. (4.3), we assume βg, kg and γg should be more than just non-negative.
Those parameters have to be strictly positive.

More so, since we use steady-states to estimate the parameter set for each gene
g in our sequencing data, we need to prove the stability of our model as the sequencing
techniques assume a stable accumulation of RNAs. Next, we present the stability analysis
for our model in Eq. (4.2) considering the steady states in Eq. (4.3).

4.2.1.1 Characteristic Polynomial and Stability

We calculated the stability of our model in Eq. (4.2) by first calculating its Jacobian
Matrix and then studying its characteristic polynomial (Murray, 2007; Edelstein-Keshet,
2005; Strogatz, 2015). Next, we present the Jacobian Matrix, J(UN

g , SN
g , SC

g ):

J(UN
g , SN

g , SC
g ) =



∂

∂uN
g

duN
g

dt

∂

∂sN
g

duN
g

dt

∂

∂sC
g

duN
g

dt

∂

∂uN
g

dsN
g

dt

∂

∂sN
g

dsN
g

dt

∂

∂sC
g

dsN
g

dt

∂

∂uN
g

dsC
g

dt

∂

∂sN
g

dsC
g

dt

∂

∂sC
g

dsC
g

dt


=


−βg 0 0
βg −kg 0
0 kg −γg .



Since our system is linear, we do not have a dependency on any equilibrium point,
which is uniquely defined in Eq. (4.3). We calculated the characteristic polynomial for our
model, i.e., p(λ) = det(J − λId), where Id represents the identity matrix:

p(λ) = (−βg − λ)(−kg − λ)(−γg − λ) ,

with three distinct polynomial roots λ1 = −βg, λ2 = −kg and λ3 = −γg. The roots of this
system define a stable node, and this means that given enough time, the system will reach
its steady state and remain in those evaluated points. This result guarantees the feasibility
of using Eq. (4.3) to estimate the parameters of our model.

We verified our model in Eq. (4.2) and its steady state by applying the ode45
function from Matlab based on the Runge-Kutta method (Shampine; Reichelt, 1997). As
an initial test, we proposed random parameters for our parameter set, P , in Table 5. The
result of this simulation is present in Fig. 4.12.

From this simulation, we can see our model reaching stability even if it takes longer
(around 120 minutes for the cytoplasmic spliced). The unspliced reached the equilibrium
first, followed by the nuclear spliced and then the cytoplasmic mRNAs, which makes sense
by the mRNA production steps (as we described in Fig. 4.11).
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Figure 4.12 – Simulation for our model, Eq. (4.2), and our steady-states, Eq. (4.3).
Our model reaches the steady state (which is a stable node) and the mRNA
concentrations remain constant once we reach the equilibrium.

Since our steady-state is a stable node and we have experimental values from
sequencing to propose parameters for specific genes, we can use them as a tool to estimate
the parameters. The sequencing experiments were done to understand mRNA splicing are:

• RNA-Seq, which evaluates the unspliced and spliced mRNAs in equilibrium, i.e.,
[URNA-Seq] = UN

g and [SRNA-Seq] = SN
g + SC

g ;

• TT-Seq, which proposes the unspliced/spliced nuclear mRNA concentration after
15 minutes of stimulation, [UTT-Seq] = uN

g (15) and [STT-Seq] = sN
g (15);

• Frac-Seq, unspliced and spliced (nuclear and cytoplasmic) mRNAs in equilibrium,
i.e., [UFrac-Seq] = UN

g , [SFrac-Seq
N ] = SN

g , and [SFrac-Seq
C ] = SC

g .

As the TT-Seq experiments need the evaluation of our model for t = 15 minutes
and our system is a linear ODE system, we solved the ODE system in Eq. (4.2). Next, we
present the analytical solutions for our model.

4.2.2 Analytical Solution and Parameter Set

The model in Eq. (4.2) is a first-order linear ODE system, which is solvable.
Different from our models in the previous chapters, this model is easily solvable with basic
calculus. One way to solve it is by solving the unspliced equation first, then applying the
solution to the nuclear-spliced equation to finally obtain the cytoplasmic equation.
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To obtain a specific expression for our model, we need the initial conditions for
our system. Since the experimental results consider the absence of mRNA concentration
before the experiment, we assumed uN

g (0) = 0, sN
g (0) = 0 and sC

g (0) = 0.

4.2.2.1 Unspliced Equation

The unspliced equation for our model in Eq. (4.2), with the proposed initial
condition uN

g (0) = 0 is:
duN

g

dt
= αg − βguN

g .

Unfortunately, this equation is not separable. However, we can solve it by assuming
h = αg − βguN

g , with dh = −βgduN
g . Thus, our unspliced equation is separable and we can

integrate our system: ∫
− 1

βgh
dh =

∫
dt

eln(αg−βguN
g ) = e−βg(t+Cu)

αg − βguN
g = e−βg(t+Cu)

uN
g (t) = αg − e−βg(t+Cu)

βg

.

Since uN
g (0) = 0, we found that e−βgCu = αg. Thus, in Eq. (4.4) we have our solution.

uN
g (t) = αg

βg

(
1 − e−βgt

)
. (4.4)

From that, we find the first condition which is βg ̸= 0. With the solution in Eq. (4.4), we
can apply the solution in the nuclear-spliced equation.

4.2.2.2 Nuclear-Spliced Equation

The nuclear-spliced equation from the model in Eq. (4.2) has the initial condition
sN

g (0) = 0. Since this equation depends on the unspliced expression, Eq. (4.4), we write
the nuclear-spliced ODE as:

dsN
g

dt
= αg

(
1 − e−βgt

)
− kgsN

g .

To solve this equation, we proposed the integrating factor, µ(t) as µ(t) = e
∫

kgdt = ekgt.

We multiplied both sides by µ(t) and obtain:

ekgt

(
kgsN

g +
dsN

g

dt

)
= ekgt

(
αg(1 − e−βgt)

)
.
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With that and the product rule (i.e., d(fg)
dt

= g df
dt

+ f dg
dt

) and the fundamental theorem of
calculus (Stewart, 2015), we obtained:

d

dt

(
ekgsN

g

)
= ekgt

(
αg(1 − e−βgt)

)
ekgsN

g = αg

(∫
ekgt(1 − e−βgt)

)
sN

g (t) = αg

(kg − βg)kg

(
kg(1 − e−βgt) − βg

)
+ Csne−kgt .

Since sN
g (0) = 0, we can find the expression for Csn, which is Csn = αgβg

kg(kg−βg) . Then, the
solution for our nuclear-spliced equation is in Eq. (4.5).

sN
g (t) = αg

(kg − βg)kg

(
kg(1 − e−βgt) + βg(e−kgt − 1)

)
. (4.5)

From this solution, two other conditions emerge to obtain a determined solution: kg ̸= 0
and βg ̸= kg. Thus, we applied Eq. (4.5) to the cytoplasmic spliced equation.

4.2.2.3 Cytoplasmic Spliced Equation

Last, we used the same techniques described above to calculate our cytoplasmic
spliced equation, i.e., we substituted Eq. (4.5) in our ODE from Eq. (4.2), considering the
initial condition sC

g (0) = 0. Thus, the ODE expression for the cytoplasmic spliced mRNA
is:

dsC
g

dt
= αg

(kg − βg)
(
kg(1 − e−βgt) + βg(e−kgt − 1)

)
− γgsC

g .

Given the same techniques we used for the nuclear-spliced equations, i.e., we started by
defining the integrating factor µ(t) = e

∫
γgdt = eγgt. Then, we used the product rule and

finally the fundamental theorem of calculus to obtain the solution for this ODE, which we
show the steps in the following:

eγgt

(
γgsC

g +
dsC

g

dt

)
= αgeγg

kg − βg

(
kg(1 − e−βgt) + βg(e−kgt − 1)

)
eγgtsC

g = αg

kg − βg

(∫
eγgt(kg(1 − e−βgt) + βg(e−kgt − 1))dt

)

sC
g (t) = αg

γg

+ αg

kg − βg

(
kge−βgt

βg − γg

+ βge−kgt

γg − kg

)
+ Csce

−γgt .

Given the initial condition, sC
g (0) = 0, we calculated the expression for Csc as being:

Csc = −αg

(
1
γg

+ 1
kg − βg

(
kg

βg − γg

+ βg

γg − kg

))
.

Thus, we present in Eq. (4.6) the solution for our ODE. We also found another set of
constraints for our system. From this equation, our model is only solvable if γg ̸= 0, βg ̸= γg

and kg ̸= γg.
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sC
g (t) = αg

γg

+ αg

kg − βg

(
kge−βgt

βg − γg

+ βge−kgt

γg − kg

)
−

− αg

(
1
γg

+ 1
kg − βg

(
kg

βg − γg

+ βg

γg − kg

))
e−γgt . (4.6)

We verified the analytical solutions by evaluating Eqs. (4.4), (4.5) and (4.6) with
the parameters from Table 5 and compared with the built-in ODE solver (ode45) from
Matlab. This test is present in Fig. 4.13, and it is possible to verify how both the solver
and our equations have the same values.

Figure 4.13 – Comparison between Eqs. (4.4), (4.5) and (4.6) and the numerical
solution for our model Eq. (4.2). With the same parameters from
Fig. 4.12, just to prove the analytical solution found is right.

From our analytical solutions (Eqs. (4.4), (4.5) and (4.6)) we found six different
constraints for the parameters of our model, for the splicing rate (βg), the export rate (kg)
and degradation rate (γg): all those parameters must be non-zero and different between
each other.

Moreover, we proposed non-negative values for our parameters because our model
deals with real experimental sequencing data, which means each gene is counted in the
batch, we can rethink our constraints as:

• αg ≥ 0; • βg, kg, γg > 0; • βg ̸= kg ̸= γg.

With those conditions and analytical solutions, we can evaluate our parameters
from sequencing data.
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4.2.2.4 Bayes’ Theorem and Parameter Finding

Again, our model aims to predict parameters for 55400 different genes that were
sequenced from three different experiments with replicas. Since it is a count of gene reads,
our set is a positive enumerable set of how many times each gene was counted and the
volume of reads per gene is gene-dependent. Thus, we can understand the number of
reads of gene g normalized by the total number of reads as the probability of randomly
selecting gene g. However, we still need to find a way to correlate our parameters with the
experimental data from the sequencing.

From the steady-states equations, Eq. (4.3), all the experimental values are directly
dependent on αg. To estimate αg, we used Eq. (4.4) and supposed βg << 15 minutes.
From this assumption, we obtained uN

g (15) ≈ αg, and we used the TT-Seq data to obtain
the values of αg considering Bayesian Inference (Viertl, 1987; Bayesian. . . , 2007; Breda;
Zavolan; Nimwegen, 2019).

Let uT
i the number of TT-Seq reads for gene i, αi the transcription rate of gene

i and NT the total number of reads from a single TT-Seq experiment. Since they are
experimental reads, NT and uT

i are natural numbers.

Therefore, from the Bayes’ theorem we have P (αi|uT
i ) = P (uT

i |αi)P (αi)
P (uT

i ) . Then, since
we can either select gene i or any other gene that is not i and gene i depends on its
transcription rate, αi, we assumed P (uT

i |αi) is a beta distribution, i.e.,

P (uT
i |αi) =

NT

uT
i

α
uT

i
i (1 − αi)NT−uT

i ,

which the number of reads for i, uT
i are related to the transcription rate and NT − uT

i is all
the reads that are not for gene i from the sequencing experiment. Besides this probability,
we need to define both P (uT

i ) and P (αi). For P (uT
i ), we have:

P (uT
i ) =

∫ 1

0
P (uT

i |αi)dαi

P (uT
i ) =

NT

uT
i

∫ 1

0

(
α

uT
i

i (1 − αi)NT−uT
i

)
dαi

P (uT
i ) =

NT

uT
i

(Γ(uT
i + 1)Γ(NT − uT

i + 1)
Γ(NT + 2)

)
,

in which Γ(X) is the gamma function in X. Since both uT
i and NT are enumerable natural

numbers, we have Γ(X) = (X − 1)! , for uT
i and NT . Thus,

P (uT
i ) = (NT )!

(uT
i )! (NT − uT

i )!

(
(uT

i )! (NT − uT
i )!

(NT + 1)!

)
.

Since NT is a large number, we assumed (NT + 1)! ≈ NT !. Therefore, P (uT
i ) = 1. From

this, we obtained P (αi|uT
i ) = P (uT

i |αi)P (αi)
P (uT

i ) = P (uT
i |αi)P (αi). Then, we estimated P (αi) by
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assuming, again, it is a beta distribution, i.e., let m, n ∈ N,

P (αi) = fB(αi; m, n) = αm−1
i (1 − αi)n−1

B(m, n) ,

which B(m, n) is the beta function.

Since m, n ∈ N, we can write it as B(m, n) = Γ(m)Γ(n)
Γ(m+n) . Besides, we assumed

m = n = 1, thus P (αi) = 1. From these results, we have P (αi|uT
i ) = P (uT

i |αi) =
fB(αi; uT

i + 1, NT − uT
i + 1). With this expression in our hands, we could evaluate the

mean and variance for αi. As the measurement from different experiments is independent
of each other, we consider all the replicas as parts from the same experiment - i.e.,
NT = NT

1 + NT
2 + ... + NT

r and uT
i = uT

i1 + uT
i2 + ... + uT

ir
. In Eqs. (4.7) and (4.8), we present

the expressions for our parameters.

αi = µ = E[αi] = uT
i + m

NT + m + n
, (4.7)

V ar(αi) = E[(αi − µ)] = (uT
i + m)(NT − uT

i + n)
(NT + m + n)2(NT + m + n + 1) . (4.8)

For our fittings, we assumed m = n = 1. Thus, those are the expressions for evaluating αi.

Similarly, we can approximate the other parameters by their analytical expressions,
Eqs. (4.3). From the steady-states, αi values, and the Frac-Seq experiments we found
our splicing rate for gene i, βi, the export rate ki and the degradation rate γi. Since each
parameter depends only on a specific sequence read and αi, we can describe the mechanics
behind these parameters by using a dummy variable, ηi, which represents the inverse of
either β, k or γ for gene i.

Let Θi be any steady-state from Eq. (4.3) such that Θi = αiηi and NF
ρ as the

total number of reads from Frac-Seq experiments for each type of genes read. We define
the number of reads for gene i from Frac-Seq as ρ∗i , which ∗ denotes either nuclear or
cytoplasmic reads, and we assume Θi ≈ ρ∗i . From this expression, we also assumed beta
distribution and obtained similar expressions from Eqs. (4.7) and (4.8) for ηi. Assuming
m, n ∈ N, the expressions are:

ηi = µ = E[ηi] = ρ∗i + m

NF
ρ + m + n

,

V ar(ηi) = E[(ηi − µ)] =
(ρ∗i + m)(NF

ρ − ρ∗i + n)
(NF

ρ + m + n)2(NF
ρ + m + n + 1) .

The expressions for βi, ki and γi are found by dividing the αi by ηi. However, the
standard deviation expression is found by applying the following expression:

Std(∗) =
√

1
(η∗i )2 V ar(ηi) + V ar(αi)

αi

((η∗i )2)2 .
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Given the expressions, we can estimate all the parameters from the experimen-
tal data. Some genes are histone genes (non-intronic), i.e., some genes do not require
splicing (Fedorov, 2001; Volanakis et al., 2013) and for those genes, we assumed βi is a
non-number, and we evaluated αi by using the spliced TT-Seq. In Fig. 4.14, we present
the parameter space for control and auxin-treated cells. The behaviours from Control and
Auxin-treated cells are similar, where smaller genes are closer to the outliers from the
measurements and more spread for longer genes, even if more randomly spread.

A B

C D

E F

AuxinControl

Figure 4.14 – Parameters Space for Control and Auxin-treated cells, coded by
the gene lengths (log10). A and B, log2 of the transcribing rate, αg, over
log2 of the splicing rate, βg, where A Control and B Auxin. C and D, log2
of the transcribing rate, αg, over log2 of the export rate, kg, with C Control
and D Auxin. E and F, log2 of the transcribing rate, αg, over log2 of the
degradation rate, γg, in which E Control and F Auxin.
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Fig. 4.14 shows how splicing is a process unaffected by gene lengths as export and,
more strongly, degradation is more affected. The export of longer genes has an apparent
separation for gene lengths, as bigger genes occupy more space, have bigger masses, and,
as a consequence, are slower than smaller genes. Yet, the separation by the length of a
gene is more prominent in small genes than for the other genes, implying the length of a
gene is less important for the parameter set.

The agglutination of values for γ creates a separation between smaller genes and
the rest, which can be explained as longer genes take longer to be fully read and its
production must be optimized, thus longer times to be degraded. Those results proved
that even if the values are more spread for producing and splicing, the size is important
for the export (where the mRNA is made available for use) and degradation (after the
use) processes when we compare the small genes (log10(gene length) < 4) with the rest.

Next, we need to verify if gene length plays a role in our parameters and compare
the effect of the auxin treatment on the cells, to verify if the treatment affected the cells,
as Fig. 4.14 shows the same behaviour for both control and auxin.

4.2.3 Comparison between Control and Auxin-treated cells

To compare both treatments, we present a comparison between the parameters
in both control and auxin in Fig. 4.15. We compared the log2 for all the parameters,
evaluating the correlation between the parameter sets - if the highest correlation between
the values and the treatments close to the identity function is the system. Besides, since
our dataset is big enough to make it difficult to differentiate between values, we also
evaluated the correlation between control and auxin-treated parameters. The gene length
was used as means to check the correlation between parameters, but no strong correlation
was found as expected from Fig. 4.14.

In Fig. 4.15 A, we have a high correlation between the parameters, even if the plot
does not look similar to a line, as compared to the other parameters. The length of a gene
seems to amplify the differences between control and auxin, as the longer genes seem to
be in the periphery of the plot, but given the size of the parameter set this result is not
significative enough to affirm the importance of the gene length in our model.

The correlation decreases in Fig. 4.15 B for the splicing rates even if it is high. The
parameters created an ellipsoid pattern, with longer genes having smaller rates, implying
for those longer genes are more effective in splicing. The random distribution of the gene
length values persists in this parameter as expected by the definition of β.

Fig. 4.15 C shows again a high correlation between parameters and a pattern closer
to the identity function. Again, longer genes were found in the pattern periphery proving
the randomness of these values. The same result is found in Fig. 4.15 D, which has a more
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spread behaviour than the others and the lowest correlation. Thus, Fig. 4.15 proved while
some parameters are not affected by the auxin treatment (αg and kg), other parameters
were affected (βg and γg)

Such a result implies a strong effect of the auxin on splicing and degrading mRNA.
More than that, we concluded the gene length does not influence our parameters, meaning
the size of a gene does not impact the mRNA dynamics for this cell type - an impressive
result per se.

A B

C D

𝑟 = 0.9704 𝑟 = 0.8205

𝑟 = 0.6913𝑟 = 0.9657

Figure 4.15 – Comparison between control and auxin for our model parameters
in log2 scale and coded by its gene lengths, and the correlation
between the parameters. A, transcription rate, αg; B, splicing rate, βg;
C, export rate, kg; and D, degradation rate, γg.

To check how auxin affected the genes, we studied our system log2 fold-change in
Fig. 4.16 for all the parameters in which the correlation between the experimental reads
from the sequencing and our model analytical values is bigger or equal than 40%, reducing
our dataset to 9094 genes. This analysis helped us to understand how the auxin treatment
influenced the dynamics of the mRNA. Again, for all the parameters the gene lengths
have no impact whatsoever.

In Fig. 4.16 A, we can see how auxin influences the z-score for the transcription rate,
α. Thus, the number of genes downregulated in auxin-treated cells (i.e., log2 (fold-change
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for α) < −1) represents 879 genes, with average z-score in this subset (
〈
Zα

fc<−1

〉
) 6.7110,

while the upregulated genes (log2 (fold-change for α) > 1) represents 703 genes, and〈
Zα

fc>1

〉
= 5.0678, meaning the z-score is higher on the downregulated subset. By the total

number of actual changes in behaviour from the treatment, we verified around 82% of the
genes remain unchanged by auxin. We conclude the auxin treatment downregulates more
genes than the genes it upregulates, meaning an auxin treatment decreases transcription
rates more than increases them. Note max(zscore(α)) >> 1, meaning α has parameters
that deviate greatly from the standard deviation.

A B

C D

Figure 4.16 – Volcano plot for all our model parameters. Here, we calculated the
z-score for each gene and the log2 of auxin-control fold change, coded by
gene length. A, transcription rate, αg. B, splicing rate, βg. C, export rate,
kg. D, degradation rate, γg.

In Fig. 4.16 A, we can see how auxin influences the z-score for the transcription rate,
α. Thus, the number of genes downregulated in auxin-treated cells (i.e., log2 (fold-change
for α) < −1) represents 879 genes, with average z-score in this subset (

〈
Zα

fc<−1

〉
) 6.7110,

while the upregulated genes (log2 (fold-change for α) > 1) represents 703 genes, and〈
Zα

fc>1

〉
= 5.0678, meaning the z-score is higher on the downregulated subset. By the total

number of actual changes in behaviour from the treatment, we verified around 82% of the
genes remain unchanged by auxin. We conclude the auxin treatment downregulates more
genes than the genes it upregulates, meaning an auxin treatment decreases transcription
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rates more than increases them. Note max(zscore(α)) >> 1, meaning α has parameters
that deviate greatly from the standard deviation.

The other parameters - namely, β, k and γ - were found by evaluating α, meaning
those parameters are influenced by α. Fig. 4.16 B, the interval of the fold-change is
bigger and the values are more spread than we showed in Fig. 4.16 A. We emphasize
that intronic genes were removed from this figure since they do not have real values for
splicing, as they do not splice. Similar to α, more genes are downregulated due to auxin
treatment than upregulated, i.e., let Dβ be the number of genes downregulated in β (log2

(fold-change for β) < −1) and Uβ the number of genes upregulated in β (log2 (fold-change
for β) > 1), we have Dβ = 2015 (in which (

〈
Zβ

fc<−1

〉
= 2.4034) and Uβ = 1392 (with

(
〈
Zβ

fc>1

〉
= 2.3932). From the averages, we can see the z-score in β does not change

much between the downregulated and upregulated genes. Thus, the percentage of genes
unaffected by auxin decreases to 62%.

For Fig. 4.16 C the export rate parameter k, the z-score is lower than. However, the
standard deviation for k is very high when compared with the other parameters, thus this
small change within the standard deviation does not mean there is no variation between
genes. Interestingly, some longer genes are more prominent in the downregulated fold-
change, Dk = {i : (log2 (fold-change for ki) < −1)} than in the upregulated fold-change,
Uk = {i : (log2 (fold-change for ki) > 1)}. More than that, Dk is almost two times bigger
than Uk (i.e., Dk = 2276 and Uk = 1141), with a similar to the β values of the proportion
of the non-changing genes (more than 62% of unaffected genes). Their averages are also
similar between themselves and the values of β:

〈
Zk

fc<−1

〉
= 2.2456 and

〈
Zk

fc>1

〉
= 2.3263,

but for k the z-score averages for upregulated are slightly bigger.

Finally, in Fig. 4.16 D, we saw a more confined fold-change with a small deviation
from the standard deviation for the degradation rate γ. Even if the fold-change is more
confined, we saw more evenly spread values for γ, with no visual influence from the gene
length. We evaluated the number of downregulated and upregulated genes, Dγ = 1262
and Uγ = 479 with two times more genes being downregulated than upregulated. The
z-score for the degradation rate is lower than the other parameters, with the following
averages:

〈
Zγ

fc<−1

〉
= 1.8362 and

〈
Zk

fc>1

〉
= 1.0003. Again, the percentage of genes that

remain unchanged is approximately 80%.

Fig. 4.16 proved most of the genes were not strongly affected by auxin treatment
since the minimum percentage of fold-change between -1 and 1 is 62%, but the genes that
were affected can be split between 56 − 72% downregulated to 28 − 44% upregulated. This
means most of the genes were downregulated with the auxin treatment. We also verified
the z-score averages for all parameters and subsets and α, β and γ the downregulated
subsets have higher z-score averages compared with the upregulated genes (the export rate
had the opposite behaviour). Therefore, we conclude auxin might decrease transcription
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in most of the transcriptional sites.

From the theoretical front, our model is an improvement from the RNA velocity
models by incorporating the delay of the mRNA export and differing between mRNA
in the nucleus and cytoplasm. Our model also proved to be a great tool to understand
experimental data and predict the behaviours of thousands of genes.

Besides, incorporating mRNA synthesis into our model from Chapter 3 helped us
to uncover concentration differences per chromatin region, even in simulations with the
same parameters everywhere, which is not true from experimental results. Thus, more
than just incorporating structure and residence times, we ought to consider the specificity
of each gene to understand gene regulation.
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5 Image Analysis: Exploring Theoretical pre-
dictions via Experimental results

Disclaimer: Some parts of this chapter can be found in my paper "Modelling
Transcription Factors Search and Polymerase Recruitment Dynamics within a complex

chromatin structure".

In Chapters 3 and 4, we predicted how the closeness to a nuclear pore increases
transcriptional activity. However, those results were only from mathematical models and
we still need experimental results corroborating our claims.

Therefore, in this chapter, we present all the Image Analyses we did for different
experiments realized either by the PhD student during her secondment at Ospedale San
Raffaele in Milan, Italy or by collaborators from the same institute. We decided to split our
results here by the experimental setup used, i.e., we present two different image analyses
to confirm our theoretical predictions: (i) Single-Molecule FISH for HeLa-MS2 cells for
the transcription factor p65 (RELA); (ii) Single-Molecule Tracking for the same cell line
and TF.

5.1 Single-Molecule FISH (HeLa Cells)
Single-Molecule fluorescence in situ hybridization (smFISH) is a more and more

common technique to visualize gene expression for a single cell, as it presents a way to detect
mRNA molecules individually. Ignoring in our analysis the count of mRNA per probe, we
can detect the localization of those mRNA spots and transcriptional sites (Pharris et al.,
2017; Femino et al., 1998). Different algorithms to obtain smFISH image segmentation
are proposed yearly, e.g. (Tsanov et al., 2016; Imbert et al., 2021), however, we opted for
doing our own code for image analysis as our dataset was small enough to allow us to do
it by ourselves.

Our models predict activity in specific regions (Chapter 3) and different volumes
of mRNA in the cytoplasm (Chapter 4). Thus, this technique was considered to test
some of our theoretical results. By using the facilities from our collaborators in Ospedale
San Raffaele in Milan Italy, we obtained the smFISH for a translocating TF family, NF-
κb, more specifically, p65 (RELA), which reactions in this TF are required for NF-κb
activation (Chen; Greene, 2004).

Besides, the closeness to the nuclear pore complex (NPC) seems to optimize
transcription, as we predicted in Chapters 3 and 4. Yet, we needed empirical proof
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to confirm our hypothesis. Given the NF-κb is an inducible TF, we realized smFISH
experiments for HeLa-MS2 cells in different time points of TNF-α treatments and for
different NF-κb genes, with replicas of the stacks.

To represent the smFISH and our generated masks, we present Fig. 5.1, in which
different time points for the same NF-κb gene, NF-κbia. The choice for NF-κb as our TF
for this analysis is due to its translocation pattern and correlation with both Chapter 3
and (Zambrano et al., 2020). The time points are dependent on times after the TNF-α
treatment our cells were fixed, i.e., in t = 0 (no TNF-α treatment), t = 20 minutes after
treatment (the expected time for NF-κb) to reach the maximum TF concentration), t = 30
(where the exportation process is occurring), and t = 60 minutes (i.e., the expected time
to finish translocation in some cell lines) (Trask, 2012). As this specific TF is endogenous
to the cytoplasm, we expected not to find many active TSs, as opposed to the other time
points.

In Fig. 5.1, we used the smFISH maximum projection to create one image to
represent all the stack of the data. Here, we have two channels: the nucleus channel (DAPI)
in blue and the mRNA channel (mCherry) in red. We emphasize that all the image analyses
were done by using the built-in functions of Matlab.

From those 2D smFISH images, we segmented the nucleus by using a gaussian
filter first to reduce our image noise due to the image acquisition (Haddad; Akansu, 1991).
Later, we thresholded the image, removing the background noise and filling any holes the
connected pixels might have.

Then, we proceeded to the nuclei segmentation by applying the water-shedding
algorithm, which is a known algorithm for separating two nuclei (i.e., basins) (Kowal et
al., 2019; Malpica et al., 1998; Meyer, 1994). Once we segment the different nuclei, we
give them different masks to differentiate between nucleus #3 and #17, for example. This
process is only for segmenting the nucleus (blue channel). After the water-shedding, we
consider our nuclei segmented.

By hybridizing our probes with mCherry, we obtain numerous mRNA spots, as
each transcript is also fluorescent. However, we want to detect only the brighter spots in
the cell, since those are the transcription sites (TS). To detect those specific spots, we
binarize the image and select all the spots.

Then, we evaluated the pixel size of the detected spot, their mean intensity, and if
they are found inside a nucleus or not, because a TS should be inside the nucleus and it
accumulates mRNAs, so we expected big and bright spots, our choice for detecting only
the TSs is to find where transcription of a gene g occurs in the nucleus for a given cell.
Another condition we imposed for our spot identification code was no nuclei should have
more than four TSs, and this requirement was derived from the fact each TS should be
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doubled by the number of chromosome pairs, but since our cell line is a non-healthy one,
we accept more than two TSs.
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Figure 5.1 – Image Segmentation for smFISH in different time-points of treat-
ment for NF-κbia gene. Here, we proposed the maximal projection of
smFISH stacks and compared it with our generated mask from the experi-
mental data collected, and the centroid of the spots identified. The window
size represents 1024 × 1024.
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Fig. 5.1 shows how effective is our segmentation by comparing our segmented masks
to our smFISH data. For such a simple pipeline we obtained good results, even if some
small TS can be detected in the smFISH image and not found in our masks. This is a
direct consequence of the pixel size of the spot, as we deleted any detected spot with less
than 12 pixels in size, as we considered those spots too small to be a TS. Of course, we
considered only big spots as TSs, so we determined their position by calculating their
centroid. Here, most of the found spots were not considered due to being too faint or
small for our image analysis (e.g., t = 0 min smFISH image, Fig. 5.1), which we consider
transcripts floating in the environment.

Our aim with this segmentation is to uncover how far from the nuclear border are
our TSs, as our model in Chapter 3 predicted the closeness to the nuclear pore complex as
an optimal feature for transcription. To evaluate the distance from the nuclear border, we
create a distance map, where we calculate how far the pixels from our mask are from the
edge of the mask, Fig. 5.2.

Figure 5.2 – smFISH mask and its distance map. From our mask, we calculated how
far from the border is all nucleus pixels with our TS spots. Here, we present
the t = 30 minutes mask for NF-κbia from Fig.5.1.

From those distance maps from all our smFISH images, we evaluated the distance
from the edge for all the spots found. As the stochasticity of a gene influences the volume
of transcription, we tested our pipeline for the data set from (Zambrano et al., 2020),
since they proposed a set of four different genes (namely, NF-κbia, IL6, TNF and CCL5)
and in four different time points after TNF-α induction (0 (no treatment), 20, 60 and 180
minutes, time points that represent NF-κb translocation dynamics).

As the maximum TF nuclear concentration is found around 20 minutes after
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translocation induction, e.g. Fig. 3.12, we analyzed how the genes were localized at this
time point and verified how the target sites are more likely to be close to the nuclear border
than random positions inside the cell. We defined random positions as the generated spots
with the same size as the TS spots we run inside the nuclei, only calculating the distance
if those generated spots were completely inside a nucleus.

Given a spot and nuclei, we can estimate how far the spot is from the edge, for all
the spots and nuclei from a smFISH picture. However, this is a quantitative measure and we
want to understand the behaviour more qualitatively. Thus, we evaluated the probability
density function for the spots’ distances. In Fig. 5.3 A, we present the probability density
of the TS localization for different genes.

As expected by the differences in mRNA produced we found in Chapter 4, we
wanted to check how active genes occupy the nucleus: some genes are more spread inside the
nucleus (e.g., NF-κbia) than others (e.g., TNF). This proves the differences in positioning
between genes but also that the activity is still found near the border and this experimental
result corroborates our model prediction. In Fig. 5.3 B, we verify how the random spots
(i.e., spots from the same size of the transcription sites spots fitted in all cells from a
smFISH picture) calculated inside all cells from each cell mask. There is no bias from the
random positions.

BA

Figure 5.3 – Experimental data corroborate our assumption of closeness to the
nuclear envelope. smFISH data for HeLa cells with NF-κb for different
genes (i) NF-κbia (ii) IL6; (iii) TNF; and (iv) CCL5 after 20 minutes of
treatment. Here, we calculate the log of the distance from the nuclear border
for A transcription sites (spots) and B random positions. We see that there
are no changes per gene for random positions, which is verified in A, proving
the distance from the nuclear envelope is not an artefact.

Those results are a comparison between genes in the maximal NF-κb concentration.
To understand the translocation process and the activation for our data, we proposed the
probability density function for all the time points, obeying gene-specificity, in Fig. 5.4.
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Each gene has a different translocation pattern. The random spot studies proved the
absence of artefacts from the cell segmentation.

B

A

D

C

Figure 5.4 – log of the distance from the nuclear border calculated from our
watershed algorithm for spots from different genes and time points
in µm. In which: A NF-κbia; B IL6 C CCL5 D TNF. From this figure,
we can recover different behaviours from the genes over time: some genes
present a late activation (TNF, for example), the movement inside/outside
the nucleus (NF-κbia for example) and even potential reactivation (IL6).
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The gene from Fig. 5.4 A, NF-κbia (NF-κb inhibitor alpha) is a known gene for its
high-activity upon NF-κb activation, as it helps the binding of the NF-κb in the IkB kinase
(IKK) complex (Courtois et al., 2003). Thus, its fast activation is expected. Besides, the
translocation pattern for this gene shows how this gene is found the furthest in time t = 20
minutes, where the NF-κb peaks its concentration in the nucleus and re-accumulates near
the nuclear border in later points.

Interleukin-6 (IL6) is a gene involved in inflammation (either acute or chronic) and
maturation of B cells (Chou et al., 2010). As we analyzed its localization pattern, Fig. 5.4
B, we found a late activation pattern, in which in later time points we find more TS spots
inwards the cell, showing a late activation and re-activation behaviours.

In Fig. 5.4 C, we analyzed the translocation for the Tumor Necrosis Factor (TNF,
also known as TNF-α), a gene known for encoding proinflammatory cytokines ranging
from cell proliferation, differentiation and apoptosis (Rzeszotarska et al., 2021). This gene
presents late activation and a stronger tendency to be found deeper inside the nucleus.

Finally, the C-C Motif Chemokine Ligand 5 (CCL5 or RANTES: Regulated on
Activation, Normal T cell Expressed and Secreted) gene and chemokines are also involved
in inflammatory processes, being involved in transplantation and tumour development, for
example (Selvaraj et al., 2011; Krensky; Ahn, 2007). From the control (t = 0), we can see
how more accumulated near the nuclear membrane this gene is after TNF-α treatment.

Those gene-specific results proved how despite the fact a gene has its specific
activation pattern, the closeness to a nuclear pore facilitates transcription. This result
corroborates both our model from Chapter 3 and its expansion from Chapter 4.

5.2 Single-Molecule Tracking (HeLa Cells)
As presented previously, single-molecule techniques are good techniques to unders-

tand gene regulation, as we can track small volumes in temporal resolution, revealing
patterns and cell stochasticity. Single-molecule tracking (SMT) is a technique based on
total-internal-reflection fluorescence (TIRF) microscopy, which is different from fluores-
cence microscopy (widefield) where the sample is fully excited, the samples are excited in
smaller lengths, remaining on a surface level, which increases the quality of the molecules
tracked (Vrljic; Nishimura; Moerner, 2007; Moerner, 2015). The use of TIRF microscopy
is the first generation SMT. Since the excitation length is smaller than the widefield
microscopy, SMT techniques only recover 2D information from the samples (Liu et al.,
2016; Fish, 2009).

To create a widefield for the sample while tracking the molecules, one of the
techniques is to use a highly-inclined and laminated optical (HiLO) sheet, in which the
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laser has a sharp angle than the traditional light beam, and improving the SMT (Garcia
et al., 2019; Tokunaga; Imamoto; Sakata-Sogawa, 2008). Incorporating HILO into SMT,
we have a second-generation SMT.

In smFISH experiments, we can quantify the mRNA produced and identify the TSs,
but the experiment has to fix the cell, meaning we do not have temporal changes inside
the same cell. Thus, we wanted to verify the translocation process in one cell over some
time. However, we cannot acquire images for longer intervals (more than a few seconds at
a time) because the fluorescent components are photobleached - i.e., the fluorescence is
damaged by the light.

In Fig. 5.5, we present reference pictures for the HeLa cell line we used in our
smFISH experiments. Here, we can see how the TFs (magenta) in the cell are plenty and
how the nucleus (blue) has different TF concentrations at different time points, starting
without nuclear TFs, to a maximum concentration during the exportation process. The
colours were digitally added to the reference channels.

0 min 03 min 11 min 20 min

29 min 59 min 77 min 91 min

Figure 5.5 – Merged channels for the references pictures for HeLa cells and
different time points and p65 as our target TF. Here, we consider the
TFs in magenta and the nucleus in blue. We can see the different concentrations
of TFs at different time points, following the translocation-reaccumulation
pattern proposed for NF-κb. The window size is 256 × 256.

We aim to determine the distance between all TFs in the nucleus and the nuclear
membrane. Thus, we need to create an image analysis algorithm that takes into account
two steps: (i) Nuclei Definition and (ii) Spot Detection. We exemplified our image
analysis for SMT experiments in Fig. 5.6.

For Nuclei Detection, we started detecting the nucleus by the brightest pixels,
binarizing them, and creating a connected-component label then filling the gaps between



Chapter 5. Image Analysis: Exploring Theoretical predictions via Experimental results 140

those components, which represents the nucleus (Rosenfeld; Pfaltz, 1966; Dillencourt;
Samet; Tamminen, 1992; Cloppet; Boucher, 2010). However, this analysis by the brightness
of a pixel is not fully efficient as the microscopy images might have brighter debris than
the nucleus or even another brighter nucleus out of focus. In most of the experimental
image analyses, we can delete the debris by thresholding the minimum size of a nucleus,
which is not an optimal solution for some of our SMT images.

A B

DC

Figure 5.6 – Steps of our image analysis. A, reference of the nucleus channel (blue).
B, nucleus mask. C, TF spots in the reference channel (magenta). D, spots
found from the SMT stacks. Here, we can see how the debris/not-centralized
nucleus affects our image analysis. This figure represents our data after 40
minutes of TNF-α treatment.

Since we run all our image analysis in Matlab, which already has enough image
analysis tools built-in and the number of images is small enough (48 nuclei split between 12
before TNF-α treatment and 26 different after induction), we used a built-in tool to draw
by hand a region of interest (ROI) from each SMT image, which helps us to define the
nucleus. To facilitate the detection, we created two different ROIS from the two reference
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images (e.g. Fig. 5.5): the nuclei channel (blue, Fig. 5.6 A) and the TF spots (magenta,
Fig. 5.6 C). We combine both ROIs and generate our initial nucleus, to which we apply a
gaussian filter, to minimize the noise and filled the eventual holes our binarized images
may have. With that, we have our nuclear mask, Fig. 5.6 B.

The Spot Detection part considers all the 4000 image slices (2 reads per cell, with
2000 milliseconds reads) from our SMT data. Then, our first step is to apply a gaussian
filter to the image, to reduce the noise and found the maximum pixel in all rows of our
image, and average those values to obtain our threshold for the signal. As this binarized
image is dependent on the threshold, we find the number of connected components for the
slice, calculating the number of pixels for each connected component. Again, we opted to
remove all spots without a minimum number of pixels (in this case, the minimal spot size
is 20 pixels). From those selected spots, we calculated their centroids, the volume of found
spots is in Fig. 5.6 D.

From our segmentation pipeline, we can create a distance map for each nucleus,
i.e., we evaluate how far a pixel from a nucleus is from the nuclear envelope. In Fig. 5.7,
we show a nucleus mask with all the spots (in red) and its distance map with the same
spots (in black). At this time point, most of the found spots were outside the nucleus (i.e.,
their distance d(x, y) ≡ 0).

Figure 5.7 – Distance Map from the nucleus mask. In the generated mask, the nucleus
is white and the spots are red, but in the distance map, since the colour red
represents a big distance from the NPC edge, we opted to represent the spots
as black dots. Most of the found spots are outside of the nucleus for this time
of treatment.

The smFISH data provided us insights about how close to the NPC is a TSs. Hence,
we used the SMT experiments to calculate the distance from the edge as represented by
Fig. 5.8, for both the spots found and the random positions inside the nucleus. Since the TFs
are fast diffusing, we analyzed the early treatment SMT images. Note those measurements
were made in different live cells and this means we have cell-to-cell variability in volume
and size, affecting the maximum distances inside a nucleus. Another important detail to
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consider is the live cells allow TF diffusion, which is faster than our time points (Izeddin
et al., 2014).
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Figure 5.8 – Probability density for the earlier time points of our SMT experi-
ment with their respective p-values. As a time progression, we can see
how at the beginning most of the spots are found near the nuclear membrane
(t = 0 (untreated cell) and t = 3 minutes after induction). Later (t = 5
minutes), we had an increase in TFs in the interior of the nucleus and, in
later times (t = 9, t = 11 and t = 16 minutes), the TFs are completely
inside the nucleus and randomly occupying positions inside the nucleus, until
p65 reaches its expected maximum in t = 20 minutes and the TFs found to
correlate with the random pixels from the distance map, which shows its
randomized occupancy. Finally, we can see the re-accumulation in t = 22
minutes as the TFs accumulate near the nuclear border.
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For each cell and spot, we evaluated their Wilcoxon Rank sum test (Or Mann-
Withney test), which is a non-parametric version of the Student’s t-test and a tool to
compare the location of two independent populations, and the size of the samples can
be different (Heiberger; Holland, 2015). We used a function from Matlab to estimate the
values from the TFs and the random spots, to verify if the patterns found are significant,
and in most of the sets (the whole cell, the localized spots) the p-values were close to 0.
This means the results are significant, and the distances (the random and the detected
TFs) are independent. The p-values from the probabilities densities show how the random
behaviour found in t = 20 minutes where the values between the random pixels and the
detected TFs showed how correlated both results are, meaning the nuclear TFs around 20
minutes are localized randomly.

We started estimating the behaviour for a condition before the TNF-α treatment,
i.e., t = 0 minutes. Meanwhile, the random spots distribute themselves between 0 and 60
pixels (red line), and most of the spots (black line) found are closer to the edge, between 0
and 20 pixels, meaning the real spots are more localized in nuclear pore complex edges.
The TFs remain in the periphery of the NPC, an expected behaviour for p65, as it is a TF
from NF-κ b family, which are known signal-dependent TFs.

After 3 minutes of TNF-α induction, the occupancy behaviour changes from being
more localized in the border to entering the nucleus efficiently. This significant increase
in the spot localization is explained by the fast TF dispersion upon activation, even if
most of the spots remain closer to the nuclear border, a result we discussed in depth for
our smFISH image analysis. The next cell recorded, 2 minutes later, showed an increased
probability of finding a TF in the interior of the nucleus, splitting the probability into
two peaks: one very close to the nuclear pore and the other (higher valued) inward of the
NPC. It should be noted that this cell has a bigger nucleus than the previous ones and its
maximum probability is still around 20 pixels.

After 9 minutes of treatment, we can see a more evenly TF occupation pattern,
with the two peaks separating themselves close to the edge and the other to the nucleus
centre. This cell is also a bigger cell than the previous ones, which means the TFs have
more space to occupy. As the TFs diffuse inside the nucleus, we can see more peaks of
probability density formed. For example, in time point t = 11 minutes, we have three
different expected occupancies: (i) near the border (less than 20 pixels) which has a
stronger probability, (ii) middle of the way (more than 20 pixels but less the 60 pixels),
and (iii) in the centre (more than 60 pixels). The occupancy spread somewhat follows the
randomized pattern (red line).

This randomized localization for the TFs is verified in t = 16 minutes as a potential
occupancy pattern with the five detected peaks in the previous cell seeming to smooth
towards the random positions of the distance map. The predicted behaviour occurs in the
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t = 20 minutes video, a time point known for being when our system reaches its maximum
TF nuclear concentration (Zambrano et al., 2020). In this time point, the TFs are found
in all the areas of the nucleus with the same occupancy pattern of the random positions,
meaning at this point all the nucleus is fully occupied with p65. The re-accumulation
process is shown in t = 22 minutes after induction, since after the signal-induced TF
reaches its maximum the exportation process occurs. Thus, the TFs are found closer to
the nuclear border.

We proposed in Fig. 5.9 a comparison between all the probability densities from
Fig. 5.8, where all the random of the spread is achieved in the time-lapse and the eventual
re-accumulation process. We colour-coded the probabilities to facilitate the visualization
of the localization patterns the TFs have, showcasing the flux to the interior of the nucleus
and the re-accumulation in the cytoplasm.

BA

Figure 5.9 – Probability density for all the time points of our SMT experiment.
All the time densities from Fig. 5.8 for A All the Distance from Edge conside-
red (100 pixels) and B the 20 pixels from the border, to facilitate visualization
of the behaviour around the NPC.

The SMT image analysis helped us to understand more about our system: for
example, we verified that even if the TF disperses randomly in the nucleus, most of the
TFs found remain closer to the nuclear edge. The experimental results proved the claims
from our model in Chapter 3 about the influence of the position of a transcription site and
its distance from the nuclear membrane and how being close to a nuclear pore increases
transcriptional activity.

From our experimental data, we can use our image analysis algorithms to differen-
tiate, for example, if the mRNA floating in smFISH experiments are inside or outside the
nucleus and, with this, we can have an estimate of the cytoplasmic and nuclear mRNA
concentrations, for example. However, since we do not have a current interest in such
results, we did not present this analysis. Moreover, our image analysis was a great tool for
validating our mathematical models, being a great starting point for further experiments.
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6 Discussions

Chromatin is a compact environment for any molecule to explore, e.g., the process
of a TF searching its target site, i.e., there are many key factors to consider in gene
expression than just a gene being on or off, some of them yet to be discovered. TFs are
motif-specific, so they must bind specific DNA sequences in order to transcribe and this
sequence specificity influences the TF search mechanism as TFs do not represent a diffusive
process. Thus, most of the models of this mechanism assume the facilitated diffusion
process (3D/1D) (Zabet; Adryan, 2012; Mirny et al., 2009; Woringer; Darzacq; Izeddin,
2014).

We started Chapter 2 by presenting our own analysis of the model proposed by
Molina’s lab in Eq. (2.3), (Avcu; Molina, 2016). To incorporate the facilitated diffusion
mechanism, we supposed the search through the chromatin network (which we constructed
using Hi-C data to estimate the connection between two regions) represented the 3D
diffusion process, and the accessibility/good binding motifs to estimate the TF residence
times, which represent the 1D sliding process. We based our studies on the Hi-C data for
chromosome 19 in 5kb resolution from (Rao et al., 2014) and the residence times based on
p65 binding motifs. We presented the probability density for our network from our model
is present in Fig. 2.3 A and the residence times in Fig. 2.3 B, in which we demonstrated
the constructed bimodality of active/inactive regions.

Even if the model in Eq. (2.3) is easily solvable, we opted for studying the steady
states (Eq. (2.5)) to test how the structure and the residence times influence the TF
occupancy pattern. First, with a biologically defined parameter set, we obtained Fig. 2.4,
where we uncovered its occupancy pattern and also two separate clouds of allocated TFs
that represent active/inactive chromatin regions (Fig. 2.4 C), defined by the values of τ .

Then, we generated two artificial conditions and two randomized ones to unders-
tand Eq. (2.3). The artificial conditions helped us to understand the separate roles of
the residence times and structure. First, we proposed a fully-connected network, which
facilitates the TF diffusion, as any region is one step away, i.e., τi is the only parameter
that affects the TF occupancy Fig. 2.5 A (the linearity due to the values of τ was shown
in Fig. 2.5 B).

Later, we considered all regions had the same residence time (i.e., ∀i ∈ N, τi = ⟨τ⟩),
thus the search process is a 3D diffusion through the chromatin network and the TF
occupancy depends on the connectivity of a node. This condition spreads more of the
TFs in the chromatin network than the results we had previously. By comparison, we
did not obtain transcription hubs in specific - more attractive to the TFs - regions, as
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one might conclude by comparing Figs. 2.4 A and Fig. 2.5 A with Fig. 2.6 A. Again, we
verified the linearity in the TF allocation with the remaining region-specific parameter,
the connectivity, Fig. 2.6 B.

We assumed a randomized condition as rearranging the positions inside N to obtain
a different system but the same values from Fig. 2.3. Then, we fixed one of the values to
explore the consequences of the other in our system.

First, we randomized the nodes of our network (Fig. 2.7 A), creating a different
network with the same connectivity. Since the chromatin moves inside the nucleus and is
not fixed as our model assumes, a change in the network with the same residence time
values can be understood as a different chromatin network but the same TF, as the TF
occupancy pattern in Fig. 2.7 B, where we had a similar split between inactive and active
regions from Fig. 2.4 C in Fig. 2.7 D.

Then, we randomized the values of τ maintaining our initial network, Fig. 2.9 A,
which one might understand as a different TF - with a different motif in the cell. The TF
occupancy pattern (Fig. 2.9 B) showed a decrease in concentration for the highly occupied
regions when we compare with Figs. 2.4 A and 2.7 B.

In addition, when we evaluated the log2 of Fig. 2.4 A over log2 Fig. 2.9 B (Fig. 2.10),
we obtained the same pattern from the randomization, Fig. 2.9 A, which it did not occur
for the randomized network. Thus, from our steady-state studies, we conclude that while
both structure and residence times play important and complementary roles in the TF
search process, accessibility is a key feature for gene expression, further confirming the
need for a facilitated diffusion process to represent TF searches in the nucleus.

As the results from our steady states showed, some regions are more prone to
accumulate TFs than others, and TFs in such regions might interact with each other in
weak protein-protein interactions (PPI), which facilitates the recruitment of more TFs.
Therefore, to understand the TF occupation process in the chromatin, we assumed the
TFs can form PPI between themselves. However, since chromatin is limited in space, we
also opted to include the presence of volume exclusion in our model, Eq. (2.6), and, despite
accessibility being an important factor for the search for target sites, we considered all
regions allow the same maximum TF concentration, C. We are aware open regions have
more space to fit a TF than closed ones but we decided to maintain the constant values
for C and leave this region-specific volume exclusion for a later extension of our model.

To understand cluster formation, we implemented deterministic solutions for
Eq. (2.6), fixing the dissociation rate (Kd = 1s−1), and assuming a reduced network,
which we presented the probability density in Fig. 2.12. We run Matlab simulations for
t = 400 seconds, in which the system is still far from the steady-states (Eq. (2.8)) for
different association rates, Ka, carrying capacities, C, and total TF concentrations, [T ].
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By analyzing the association rate with a fixed C, we verified how the increase in
the Ka values (Fig. 2.14) creates well-connected (clusters with higher PPI, I = 3) clusters
around regions with better residence times. We deepened our analysis in three different
regions, all active but with different values of τ and d (Table 1): (i) highly-connected
regions with a low residence time; (ii) a region with relatively low connectivity but a high
residence time; and (iii) a region with high values of both τ and d, Fig. 2.15 A, B and C,
respectively. Here, we restricted our analysis to the highest PPI, I = 3, as it represents
the strongest cluster formation our system can achieve.

In Fig. 2.15, we established that for regions with good residence times, non-negative
values of Ka impact the TF concentration in I = 3, yet the number of connections can
accelerate the maximum formation of protein-protein interactions. Meanwhile, regions with
smaller residence times but high connectivity showed a strong increase in TF concentration
that, with the increase in the efficiency of Ka in forming clusters and allowing a greater
concentration of TFs in all regions (by expanding the carrying capacity), this region has
its concentration reduced, as TFs occupy other, more attractive, regions.

Since the maximum allowed occupancy influences TF activity, we also studied the
effects of C in our system, Fig. 2.17, in which we verified again that the clustering around
prolific regions is enhanced depending on the values of C, even if the region does not reach
its upper bound, Fig. 2.18. We considered the same regions from Fig. 2.15 to analyze how
changes in C affect our system and obtained Fig. 2.19.

We could exemplify how the Ka influences the TF allocation for different values
of C: as expected high values of Ka enhanced the regions with good motifs (higher τ ′s).
However, once we analyzed the connected regions, we found that lower values of Ka are not
enough to obtain the I = 3 as the biggest TF concentration, which is a result depending on
d. Therefore, structure and residence times continue to be key factors for the TF occupancy
that are later regulated by the carrying capacity and association rate.

Finally, since the number of TFs available affects the contact between two or more
TFs, we decided to verify the cluster formation for different values of [T ] as present the
global effects of the total TF concentration in Fig. 2.22 for different values of Ka and
C. Once we analyzed [T ], we found how by changing the concentration we improve or
worsen the clustering and how the benefit or harm is also region-specific depending on
[T ], Fig. 2.24. Thus, we can consider the total nuclear TF concentration as an internal
mechanism to control gene expression.

By analyzing the same regions from Figs. 2.15 and 2.19 in Fig. 2.24, we once again
obtained that smaller values of Ka favour regions with better residence times, which must
be bigger for regions with smaller τ ′s. Interestingly, the TF concentrations drop for active
regions as other regions organize their clusters. Once more, our simulations were stopped
before reaching stability, so the rearrangement pattern just showed our model tendencies,
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and not the equilibrium.

Chapter 2 helped us to comprehend how the facilitated diffusion process models TF
searches and how by limiting the maximum concentration allowed in a region we influence
the TF occupancy patterns increasing the number of TFs on less attractive regions. More
than that, by assuming the PPI as an inherent condition for the TF to form transcription
hubs and influence transcription, we uncovered that while higher values of Ka seemed to
influence cluster in prolific nodes, regions with less expected TFs when Ka ≡ 0 benefit
more from smaller values of Ka. Still, the volume of TFs available also impacts the TF
organization in the chromatin.

Thus, even with the limitations in scale, Eq. (2.6) is a good model to explore TF
occupancy conditions and potential interactions inside chromatin. Yet, the TF search
process is the first step in gene regulation and this TF still needs to recruit polymerase to
start transcription and produce mRNA. We studied this recruitment in Chapter 3 and the
mRNA export, which eventually leads to protein production in Chapter 4.

In Chapter 3, we regulated the TF occupancy by limiting the transcriptional
resources; thus, our model considered different states for the TF/RNAP to represent their
interactive dynamics and mathematically understand transcription. The TF two-state
model (Free and Bound) and three states for RNAP (Free, Bound and Transcribing) seem
sufficient to represent the complexities of this system in the same scaled network from
Chapter 2 and with our working model present in Eq. (3.3).

We expressed our model steady-states in Eqs. (3.4), which intrinsically depends on
the number of connections between regions, d and the residence times, τ . Such dependency
means transcription should be more prolific in active regions (i.e., regions with higher
values of τ), which are usually more connected, and thus easily reached, even if TF/RNAP
molecules are fast diffusing, a similar result from previous models.

It is clear from Eqs. (3.4) that the Bound TF state influences both Bound and
Transcribing RNAP states because of the nonlinearity present in the RNAP Free equation.
This non-linearity also increased the structural effects on the other states of RNAP, as we
showed in Fig. 3.3. The Bound TF state is fundamental to our system equilibrium as we
showed in our characteristic polynomial which is the only explicit value from our variables.

Eq. (3.3) is good to predict the occupancy pattern from a given fixed network
without degradation of TF/RNAP. However, some transcription factors remain outside
the nucleus and need an activation mechanism to enter the nucleus and start transcription.
NF-κb, for example, is a family of TFs with a translocation mechanism and its non-constant
concentration inside the nucleus affects transcriptional volume for their target genes, as it
influences the TF binding and RNAP recruitment.

To incorporate the change in TF concentration in our model, first, we proposed
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the presence of regions connected to the nuclear pore, i.e., regions from our network that
are so close to the nuclear pore complex (NPC) we can consider to be connected. Since
RNAP does not translocate to the nucleus because it is found only in the nucleus during
the cell-growth phase, we only consider TFs can leave cytoplasm and enter the nucleus.
Once a TF enters the nucleus, it starts exploring our network in the Free state before
binding to a region and recruiting a Free RNAP.

To verify how the depleting TF concentration affects the transcriptional activity,
we proposed two different flux import functions: Import Function, in which the TF
translocates into the nucleus and remains inside, eventually reaching its equilibrium
(Eqs. (3.4)), as represented in Fig. 3.5 and Eq. (3.5); and Import/Export Function,
where a TF enters the nucleus, its maximum concentration is reached and then the
exportation process starts, proposed in Eq. (3.11) and represented in Fig. 3.6.

For both flux functions, we calculated their analytical expressions, which is not a
straightforward result given our system is a non-linear and non-homogeneous ODE system
with 5L equations (L being our network size), but we can split our solutions in TF solution
and RNAP solution. The solution depends on the flux function considered.

For import-only flux, the TF equations are linear and non-homogeneous, and
the linearity of the system guarantees the existence of a well-posed analytical solution,
Eq. (3.6). This is not a possibility for the RNAP solution, given our system is a non-linear
homogeneous ODE system, we depended on the commutativity of our system to solve it.
Unfortunately, our system is not commutative (Eq. (3.8)). To solve this commutativity
problem, we proposed the usual commutator and used the Magnus Expansion to obtain
an infinite series of integrals that represents our RNAP solution, Eq. (3.10). Therefore,
the solution depends on the solution convergence, which is dependent on the parameters
considered.

However, to calculate the TF/RNAP analytical solutions for the import-export flux,
we encountered non-linearity in both systems. Besides being non-linear, the TF equations
are also non-homogeneous, meaning the expression for its solution is more complex than
just a Magnus Expansion expression, Eq. (3.12). Since we need the TF equation to obtain
the RNAP expression and how complex is the solution for the TF, Eq. (3.14) is expected
to be very complex.

Again, it is numerically possible to evaluate our model in higher resolution networks
by using our proposed solutions, if we can prove the convergence of the series ΩX(0, t),
for both TF and RNAP, where it fits. The analytical expressions are a tool to exemplify
why numerical solutions are needed in mathematical modelling: a seemingly simple model
having such complex analytical expression.

Yet, we opted to numerically evaluate our model using both flux functions with two
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different methods, first with an ODE solver (ode15s from Matlab) and then implementing a
Gillespie Stochastic Algorithm. Both implementations used the same parameters (Table 2).

For the first case, the Import Flux, our system reaches the steady state early
on, Fig. 3.7, and regions connected to pores present an overshoot of TF states before
stabilising. The activity is higher in the active regions connected to pores. Most of the
regions showed inactivity, i.e., the concentration is considered too low to be significant.
Comparing different subnetworks, we can see the regions close to a nuclear pore (i.e.,
regions connected to a pore and their immediate neighbours) are more prolific than other
regions.

Since our model reaches the steady state, we proved no regions present a late-
activation or deactivation in these conditions, a result that proves TF/RNAP diffusive rates
are fast as expected Fig. 3.9 and its ability to reach the equilibrium. After we analyzed how
long it takes for each node in our network to reach its maximum concentration, we showed
some regions reach their maximum at the end of our simulation, which is a consequence
of the infinitesimal differences between the time points of implementation from an ODE
solver continuity.

The importance of the τ and d are explicitly shown and our model proved the
residence time is a more fundamental component to transcription than the number of
connections a node has, an expected result in fast-diffusing molecules. Those results were
continuous and gene regulation (and transcription for that matter) are stochastic in nature.
Thus, we implemented a classical Gillespie SSA 70 times, to mimic 70 different cells and
from this implementation, we verified the fraction of active target sites in our network,
Fig. 3.10.

The importance of the τ values in the activity is shown for all the subnetworks
except for the pore-connected ones, which means that regions connected to pores will
receive enough TFs to sustain their transcriptional machinery. However, this importance
on the residence time of a region implies that the facilitated diffusion model was correct
and there are different components in transcription that a 3D diffusion model will not
capture.

When we compared the deterministic (continuous) with the stochastic (discrete)
implementations Fig. 3.11 D, we found most of the regions are impoverished by the
limited resource of TF/RNAP molecules in our system. Active regions, however, are
regions enriched by the stochasticity of our system. Therefore, our model can represent
the stochasticity found in gene expression and explain well why some genes are more likely
to be transcribed than others.

It is expected that the volume of TF/RNAP molecules present in the nucleus
influences the volume of transcription. To simulate the TF translocation/re-accumulation
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process, we used NF-κb translocation dynamics to understand how a non-constant TF
concentration affects transcription. For this flux function, our system does not reach
stability since there is either an import or export process occurring.

In the analysis of the averages of TF/RNAP molecules in our system, Fig. 3.13,
we verified that while on average our system is deactivated (i.e., the concentration of
Free RNAPs surpasses the Transcribing again), active regions remain activated after 180
minutes. From our model, we predicted that around the 80-minute mark, the TF nuclear
concentration is half of its maximum, which is verified in a change of behaviour for all the
subnetworks with a stronger decrease in activity. However, our model allows the proportion
of 1 : 4 for Free and not Free (Bound and Transcribing) RNAPs. As a consequence, our
system is highly prolific even with smaller concentrations of TFs.

Once more, active regions produce stronger activities with regions not connected to
pores presenting higher averages. Thus, we verified different subnetworks as they showed
the optimal choice of being close to a nuclear pore for the import-only flux function.
Fig. 3.14 exemplified how is preferential for a region to be close to a nuclear pore (i.e., one
step away maximum from a pore-connected region), even if, as we discussed exhaustively,
TF/RNAP are fast diffusing through chromatin to find good binding sites.

Differently from the previous model, we encountered a deactivation process in our
simulations due to the decreasing TF concentration. In an import-only condition, we found
an absence of late activation in our model, which is replicated for this flux function. Since
this model has a deactivation process, the re-activation was a possibility but we did not
find it, probably because the active regions secure the available TFs to themselves in
order to maintain their transcription function. We uncovered the importance of a good
binding site from the residence times values, i.e., attractive regions are more likely to be
transcribed.

Deterministic solutions are useful to obtain fast results and to understand averaged
patterns from our model, but the solutions assume the possibility of splitting molecules
between regions which are not biologically feasible. Therefore, given the discrete occupancy
of TFs and the stochasticity experimentally observed in cells, we proposed a Gillespie SSA.
However, Gillespie assumes the next reaction is time-dependent and our flux function
(Eq. (3.11)) is explicitly time-dependent. To solve this time dependency, we proposed a
Hybrid Gillespie SSA.

Since we proposed a model for transcription, we analyzed the fraction of active
target sites in our stochastic simulations, Fig. 3.17 for different subnetworks and sorted by
both the network’s connectivity and residence times. As the previous results showed, the
residence times impact more the transcriptional activity than the connectivity for all the
subnetworks except the pore-connected subnetwork, C.
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This seeming lack of importance for the parameters is explained by the definition of
a pore-connected region: by construct, we randomly selected active regions, which means
transcription has a strong probability to occur in those particular regions. Since those
regions receive the Free TFs on at least two different occasions, the import and the export
processes and they are attractive regions by definition, transcription is expected. However,
the presence of inactivity is a consequence of fast diffusing TFs and other active regions
available to transcription.

When we compared Figs. 3.11 and 3.18, we saw the on-time averages (the interval
between initiation and an elongation reaction) were similar, but the effective initiation rate
is reduced in the import/export flux model as a consequence of less available transcriptional
resources. Another interesting result is the lack of variation of active regions for the import-
only function, which is explained by its lack of late-activation/ deactivation. Even if late
activation is not found in our import-export function, the effects of deactivation are visible
even in prolific regions. The pattern of enrichment/impoverishment for the regions is also
found in Eq. (3.11).

Therefore, our model reproduces well gene expression with the given conditions but
fails to consider the changing in connections and accessibility a region might present during
interphase. Our simulations considered a small time frame to ignore those changes, thus
forgoing chromatin condensation and bookmarking, both important for gene regulation (Luo
et al., 2017; Engeland, 2017; Schmitz; Higgins; Seibert, 2020). Thus, a model that considers
longer periods of the cell life cycle, must consider the chromatin remodellation process.

In Chapter 2, we proposed the presence of volume exclusion in the chromatin
regions, which we ignored in our model, allowing regions to hoard as many TFs as Eq. (3.4)
allowed since we restrained our system by limiting the number of available TFs. However,
even if the clustering in specific regions was allowed, the depleting TF concentration was
the only explicit mechanism to regulate transcription in the flux function in Eq. (3.11).

Another important point is our model in Chapter 3 predicts transcription activity
but not how much mRNA each region is producing. Thus, we proposed an extension of
our model to admit mRNA synthesis and exportation to the cytoplasm, incorporating
translation into our model in Eq. 4.1 in Chapter 4.

There is no cell maintenance without the translation process and, in eukaryotes,
this part of protein synthesis occurs in the cytoplasm while transcription is a nuclear
process, which is a mechanism to troubleshoot protein synthesis, and involves the active
transport of mRNA from the nucleus to the cytoplasm. In Chapter 4, our focus was the
comprehension of the mechanisms behind mRNA export. We proposed two different types
of modelling in Chapter 4: (i) incorporating mRNA export to our model in Chapter 3 and
(ii) an expansion of the RNA Velocity model in collaboration with Manuel Mendoza’s lab
from IGBMC.
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First, we want to understand how the structure and pore-connectivity influence the
mRNA export. Therefore, our model in Chapter 4 is an extension of our model in Eq. (3.3)
with the flux dynamics from Eq. (3.11) incorporating the mRNA synthesis and export
dynamics with Eq. (4.1), which we implemented deterministic solutions for all the genes
our network. Since this model is an extension of the one proposed in Chapter 3, solving it
analytically requires the use of the Magnum’s expansion for the Transcribing RNAP state,
a mathematically heavy system to solve by itself. Thus, we implemented the deterministic
solutions for all genes g in our network with the use of the ode15s tool from Matlab.

The nuclear mRNA from any region must be exported to the cytoplasm which
means the chromatin network plays a fundamental role in the mRNA dispersion in the
nucleus leading to its exportation. As the regions have bigger averages of connectivity with
their neighbours because of the TAD formation, if we analyzed the concentration of nuclear
mRNA for all genes g in our network in Fig. 4.3. The results in Fig. 4.3 showed how different
regions are active in different ways, a result we uncovered with distinct mechanisms in
Chapters 2 and 3, meaning our model captures the differences in transcriptional activity
per region even if our current resolution does not allow us to predict specifically which
gene is active. The array of different activities is more easily verified in Fig. 4.4.

Globally, we verified how each subnetwork behaved with its nuclear mRNA con-
centration for each gene g, Fig. 4.5. There, we obtained an interesting result: while the
regions connected to a nuclear pore showed activity, high mRNA concentration was not an
exclusivity of those regions. Once we clustered our results, Fig. 4.6 A, we found that despite
the distinct concentration levels, there are no changes in behaviour, a result expected
given Fig. 3.15 and the mRNA dependency on the Transcribing RNAP allocation patterns.
The z-score, Fig. 4.6 B showed all the regions activate around the same time, reaching
their maximum at distinct points, but deactivating similarly.

We proposed the same analysis for the cytoplasmic mRNA. Of course, the peak in
mRNA concentration is shifted as the mRNA must travel through chromatin to find a
nuclear pore and get exported, in Fig. 4.7, for example, the peak of concentration is found
around 40 minutes. This delay in maximum concentration for the cytoplasmic mRNA
is verified in Fig. 4.8 for different subnetworks. The accumulation in the cytoplasm is
increased for regions connected to pores since once an mRNA is produced, it is exported.

Once more, the cluster analysis (Fig. 4.9 A) showed that we obtained a difference in
concentration levels. The z-score (Fig. 4.9 B) showed that the activation is not delayed but
each clustered z-score reaches its maximum at different time points. Yet, the deactivation
process is similar, as we obtained previously in Fig. 4.6 B.

To conclude our analysis in Eq. (4.1), we compared the mRNA concentration
inside and outside the nucleus in Fig. 4.10, comparing with values of d and log2 τ . As we
extensively discussed in Chapters 2 and 3, the structure and residence times control the
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occupancy pattern for TF/RNAP that leads to transcription. The structure and DNA
sequence influence remains for the mRNA. This analysis showed an outlier of regions
connected to pores accumulating more strongly in the cytoplasm. Therefore, our model
helped us to understand mRNA export and, given only cytoplasmic mRNAs get translated,
gene regulation. More so, we proved how pore connectivity improves the transcript levels
in the cytoplasm. We believe further experiments confirming this result are necessary and
welcome.

However, our model in Eq. (4.1) does not consider region-specific parameters, and
we know some genes are more prolific than others - some are necessary in bigger volumes
for example, we need to consider gene-specific parameters for mRNA export. To do so, we
opted for ignoring the chromatin structure and binding/unbinding processes and focusing
on RNA velocity models, Eq. (4.2). This model was used to understand sequencing data
from our collaborator, Manuel Mendoza.

Based on RNA velocity models, we proposed a three-state model for mRNA
production to represent the unspliced mRNA, the nuclear-spliced mRNA and the
cytoplasmic spliced mRNA, Eq. (4.2). We used this model to analyze sequencing data
from 55400 genes and three different sequencing methods:(i) RNA-Sequencing (RNA-Seq) -
represents unspliced and spliced mRNA in the equilibrium; (ii) single-cell RNA-sequencing
(scRNA-Seq) - unspliced/spliced mRNA after 15 minutes of stimulation; (iii) Fractionation
RNA-sequencing (Frac-Seq) - nuclear and cytoplasmic unspliced/spliced reads. To obtain
significative results, all the experiments have at least three replicas of both control and
auxin-treated cells.

In Eq. (4.3), we proposed the steady-states values for our model, in which the
steady-states are global attractors, i.e., it describes a stable node, which means that given
enough time, all solutions converge to Eq. (4.3). We verified this behaviour in Fig. 4.12
with random parameters from Table 5.

Our model is analytically solvable if we solved it in the following order: the unspliced,
the nuclear spliced and the cytoplasmic spliced. We also admitted there are zero mRNAs
at time t = 0. Therefore, we organized the solution as (i) unspliced mRNA, Eq. (4.4);
(ii) nuclear spliced mRNA, Eq. (4.5) and (iii) cytoplasmic spliced mRNA, Eq. (4.6).
Using the same parameters in Table 5, we verified our solutions and the numerical solution
we implemented by using the Matlab tool ode15s, the results available in Fig. 4.13.

Given the sequencing data, we used the reads to estimate the parameters using
Bayesian Inference, we obtained the values for the transcription rate for gene g, αg in
Eq. (4.7) and the unspliced scRNA-Seq data. Given the steady-states stability proposed
in Eq. (4.3) and what each sequencing experiment represents, we verified the reads for βg,
kg and γg are inverse to the values of UN

g , SN
g and SC

g respectively. Thus, we obtained the
expression for ηg for each parameter by applying again Bayesian inference and obtained
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the desired values by dividing αg by ηg. An important distinction to make is that some
genes do not require splicing; thus, we consider the spliced scRNA-seq values to evaluate
αg and considered βg → ∞ and, as a consequence, UN

g → 0. We presented the parameter
space in Fig. 4.14.

The experimental setup was to comprehend how the auxin treatment affects the
transcription for different genes. Thus, in Fig. 4.15, we proposed a comparison of the
parameters in control cells and auxin-treated ones. The correlation between auxin-treated
and control cells is higher than 0.5 and we also proved how auxin affected each parameter:
the transcription and export rate, αg and kg, for example, were not as affected as the
splicing and degradation rates, βg and γg. This means that while the transcription and
the export rate remain unchanged - i.e., the cells produce similar values of gene g and
such gene is exported with the same efficiency. However, auxin affects the splicing of
exonic genes (not evaluated for intronic genes, as they do not require splicing) and gene
degradation.

Therefore, we verified how the auxin influenced our genes by evaluating its z-score
and fold-change, Fig. 4.16. However, to obtain high-quality values for better-fitted genes,
we evaluated the correlation between the reads from sequencing experiments (experimental
data) and the values we obtained from the steady-states (analytical data) and selected the
values with the correlation between analytical and experimental values with higher than
0.4. As a result, we obtained 9094 genes to analyze in Fig. 4.16.

Corroborating our correlation between control and auxin-treated cells in Fig. 4.15,
we found that the percentage of genes that were not affected by the auxin treatment is
more than 60% for all the parameters. More than that, most of the affected genes are
downregulated instead of upregulated (between 56 − 72% against 28 − 44%) by the auxin
treatment. Thus, we conclude that by treating a cell line with auxin we can arrest the
mRNA synthesis for most of the genes. Another interesting result was the gene length
independence in mRNA export as we did not find any correlation between the parameters
and the gene length.

From Chapter 4, we obtained insights about gene expression from Eqs. (4.1) and
(4.2). Even with simple deterministic models, we verified how the volume of mRNA
synthesis is gene-specific and should be considered as such and how with simple inferences
and data analysis we can understand the effects of treatment in a cell line. Therefore,
merging both experimental and theoretical research is the best path to understanding the
mechanisms behind gene regulation.

To incorporate experimental results in our theoretical claims, we considered our
results in Chapter 3, where we had two main hypotheses to experimentally verify with
image analysis: (1) Active target sites remain in the periphery of the nuclear envelope
and (2) The expected localization for TFs in the nucleus change over time because of the
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translocation process. We used two different microscopy experiments to corroborate our
claims, smFISH and SMT both for MS2 fused HeLa cells and p65 (RELA) as the target
TF. The choice of TF was due to the fact p65 is a TF from the NF-κb family, which are
inducible TFs that remain in the cytoplasm if not activated, giving us the control to know
how much time elapsed after the activation.

The first experiment was smFISH for the cell line in which we fixed the cells after
different moments of TNF-α treatment - a cytokine that induces NF-κb translocation to
the nucleus - and different probes to target different genes. Thus, we had different genes at
different time points (with replicas) to analyze the distance between a target site and the
nuclear membrane of a cell. To segment the maximum projection of our cell, we used the
watershed algorithm from Matlab to separate the nuclei and selected the target site as the
maximum four bigger and brighter spots (as HeLa might have more than two chromosomes
in the nucleus), since a TS is crowded with transcripts, increasing its size and intensity in
comparison with a sole transcript, as we exemplified in Fig. 5.1.

With the nucleus and target sites properly detected, we evaluated the distance of a
pixel from the edge of this nucleus and positioned our the centre of the TS inside of the
cell, Fig. 5.2. From this result, we saved all the distances from the edge and calculated the
probability density (Fig. 5.3 A) and, to eliminate the possibility of our result being an
artefact, we also found the distance for generated (random) spots with the same size of
the TSs (Fig. 5.3 B).

In Fig. 5.4, we proposed the time evolution for different genes and random spots.
We verified the localization patterns for the genes in which we found different activation
patterns being early or late depending on the gene function. However, most of the detected
spots were found in the periphery of the nucleus, which indicates the conclusion in Chapter 3
(and its later expansion in Chapter 4) are experimentally justified.

Thus, we conclude that for an inducible TF, the target sites can be found closer to
the nuclear envelope, as it facilitates the produced mRNA to export to the cytoplasm and
accelerates the translation. For other TFs, further experimentation is necessary.

We used the single-molecule tracking (SMT) for the same TF and cell line to
understand the translocation pattern and TF occupancy inside the nucleus, Fig. 5.5.
We confirmed the changes in the TF density gradient between cytoplasm and nucleus:
initially, there is a separation between the TFs (magenta) and the nucleus (blue) which
disappears due to TF import of the translocation process and reappears because of the
re-accumulation process.

For the image analysis, since we dealt with short videos of live cells, and we can
only track one cell per time point - we exemplified the nucleus definition and spot tracking
in Fig. 5.6. As this experiment is live-imaging for the TF and each stack has 2000 images,
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we can see how many spots are detected from one stack in Fig. 5.6 D. Another important
factor is that we calculated the distance from inside the nucleus, i.e., any TF found outside
the nucleus is not considered to not create a bias towards the nuclear border.

Once more, we evaluated the distance in pixels from the nucleus towards the nuclear
centre (Fig. 5.7 B) and then analyzed the TF localization for different time points with
the detected spots and random spots, Fig. 5.8. From this result, we verified the absence of
artefacts influencing the TFs to be localized near the nuclear border and we also uncovered
the changing pattern of TF accumulation.

Before the TNF-α treatment, the TFs are more likely to be found around the
nuclear membrane, with the translocation activated, the probability to find TFs in central
parts of the nucleus increases until the random spots and the real TFs have virtually the
same probability density (around the known maximum TF concentration for p65); then,
the cytoplasmic re-accumulation starts and the probability indicates a tendency of being
near the edge once again. This description was found in a time evolution in Fig. 5.9.

Through this thesis, we tried to understand gene regulation not only as a biological
process but rather as a mechanistic phenomenon. As far as modelling goes, we are confident
our research brought to light key factors for transcription, even if we could not implement
it genome-wide or even in higher resolutions. We also proved how in silico models can be
good exploratory tools for complex systems as biology often shows itself. Furthermore, this
project was the result of both an internal and external search for more interdisciplinarity
in the sciences and can indeed be considered a success within this scope.
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APPENDIX A – Appendix

The values of the residence times (τ) and number of connections (d) from specific
regions in Figs. 2.15, 2.19 and 2.24 are available in Table 1.

Parameter Value Unit Name
τ162 0.8454 s residence time for region 162
d162 9.4694 - number of connections for region 162
τ590 2.9863 s residence time for region 590
d590 5.0000 - number of connections for region 590
τ850 4.0076 s residence time for region 850
d850 9.7143 - number of connections for region 850

Table 1 – Values of τ and d for the regions in Figs. 2.15, 2.19 and 2.24.

We present the parameters for the model from Eq. (3.3) in Table 2.

Parameter Value Unit Name
kT

3D 240/7 s−1 TF effective diffusing rate
α 4.8452 × 10−2 - TF effectiveness binding

kP
3D 19.20/7 s−1 RNAP effective diffusing rate
q 0.27 (molecules × s)−1 RNAP success binding rate
kI 1/10 s−1 initiation rate
kε 4/500 s−1 elongation rate

Table 2 – Parameters for our model from Eq. (3.3).

The parameters for the flux function in Eq. (3.11) are available in Table 3

Parameter Value Unit Name
kim 1.5797 × 10−3 s−1 TF import rate

Ttotal 269.9929 molecules TF total concentration
µ 5.3394 × 10−3 s−1 exporter production rate
δ 2.3075 × 10−5 s−1 exporter degradation rate

Table 3 – Parameters for the flux function in Eq. (3.11).

Parameters for the mRNA exportation Eq. (4.1) are available in Table 4.

Parameter Value Unit Name
kr

3D 19.20/14 s−1 mRNA effective diffusive rate
γ 1/480 s−1 mRNA degradation rate

Table 4 – Parameters for the mRNA exportation function in Eq. (4.1).

The random Parameters for the RNA Velocity model (4.2) are available in Table 5.
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Parameter Value Unit Name
α 0.9572 s−1 mRNA transcription rate
β 1/3 s−1 mRNA splicing rate
k 0.1429 s−1 mRNA export rate
γ 1/15 s−1 mRNA degradation rate

Table 5 – Parameters for the RNA Velocity in Eq. (4.2).
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Résumé 

La diffusion des facteurs de transcription (FTs) dans le noyau joue un rôle crucial dans la régulation 
transcriptionnelle. La recherche par les TF d'une séquence d'ADN spécifique est l'un des principaux facteurs de 
l'expression des gènes. Ainsi, les interactions entre deux FTs dues à de faibles interactions protéine-protéine 
(IPPs) forment des clusters de FTs, influençant leur occupation à un site cible particulier. Pour comprendre 
comment la structure 3D de la chromatine affecte l'agglutination des FTs, nous avons proposé un modèle pour 
traduire la présence des IPPs dans le noyau et vérifié comment l'agglutination affecte l'allocation des FTs, en 
considérant la diffusion 3D/1D comme notre mécanisme de recherche. Ensuite, une fois qu'un FT est lié à une 
région, il recrute l'ARN polymérase (ARNP). En outre, les FTs inductibles restent dans le cytoplasme et 
translocation dans le noyau par le biais du complexe du pore nucléaire (CPN) après une signalisation 
appropriée. Afin d'intégrer ces mécanismes, nous avons proposé un autre modèle pour comprendre la 
dynamique de recherche des TF et de recrutement de l'ARNP. Nous avons obtenu des solutions déterministes 
et stochastiques vérifiant comment la transcription est renforcée à la périphérie du CPN et confirmée par 
l'analyse d'imagerie de gènes spécifiques. Enfin, nous avons incorporé le processus d'exportation de l'ARNm 
pour vérifier les différentes concentrations de transcrits cytoplasmiques, prouvant ainsi que le volume d'ARNm 
disponible dépend également du CPN. Par conséquent, notre travail montre des liens pertinents entre la 
structure de la chromatine, l'allocation des ressources transcriptionnelles et la stochasticité de la régulation 
des gènes.  

Recherche par les FTs, Interactions Protéine-Protéine, Recrutement de l’ARNP, exportation d'ARNm, modèle 
mathématique, structure de la chromatine 

 

Résumé en anglais 

The diffusion of transcription factors (TFs) within the nucleus plays a crucial role in transcriptional regulation. 
The TF search for a specific DNA sequence is one of the main factors in gene expression. Thus, the interactions 
between two TFs due to weak protein-protein interactions (PPIs) form TF clusters, influencing their occupancy 
at a particular target site. To understand how the 3D structure of the chromatin affects the TF agglutination, 
we proposed a model to convey the presence of PPIs in the nucleus and verified how the clustering affects the 
TF allocation, considering the 3D/1D diffusion as our search mechanism. Then, once a TF is bound to a region, 
it recruits RNA Polymerase (RNAP). Besides, inducible TFs remain in the cytoplasm and translocate into the 
nucleus through the nuclear pore complex (NPC) upon proper signalling. To incorporate these mechanisms, we 
proposed another model to understand the TF search and RNAP recruitment dynamics. We obtained 
deterministic and stochastic solutions verifying how transcription is enhanced at the NPC periphery and 
confirmed through imaging analysis of specific genes. Finally, we incorporated the mRNA export process to 
verify the different cytoplasmic transcripts concentrations proving how the volume of available mRNA is also 
NPC-dependent. Therefore, our work shows relevant connections between the chromatin structure, the 
allocation of transcriptional resources and the stochasticity in gene regulation. 

TF search, Protein-protein Interactions, RNAP recruitment, mRNA export, mathematical model, chromatin 
structure 
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