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Disclaimer

An Habilitation à Diriger des Recherches (HDR) shows that one is fit to teach and conduct indepen-
dant research. For that reason, this thesis presents some of the research works I conducted during
my career, focusing on the contributions to the theory and practice of state-machine replication.
On purpose, this document does not delve into all the technical details but instead provides an
overview of this research.





Acknowledgments

First of all, I would like to thank warmly the rapporteurs of this HDR thesis: Petr Kuznetsov (Pro-
fesseur, Télécom Paris, France) Roberto Palmieri (Associate Professor, Lehigh University, USA),
and Étienne Rivière (Professeur, Université catholique de Louvain, Belgium). I am also grateful
to the examinateurs who accepted to review this work: Annette Bieniusa (Professor, University
of Kaiserslautern-Landau, Germany), Michel Raynal (Professeur Émérite, Université de Rennes,
France), and Gaël Thomas (Directeur de Recherche, Inria, France).

This research would not have been possible without the help of the many people with who I
have co-authored papers, debated, and shared ideas. Many thanks to all of you!

I want also to thank the members of the various universities, research institutes, and companies
where I have had the chance to spend some time.

Last but no least, I am much grateful to the members of the Benagil group and the département
INF at Télécom SudParis where I have the chance to work.





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Content and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The Dawn of Leaderless State-Machine Replication 3
2.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Early history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 The golden age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Complexity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Modern era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.5 Hardware-based solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.6 Leveraging commutativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Leaderless SMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Genesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Deciding a command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Properties and limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.5 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Partial Replication 21
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Early days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Middleware solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Classification and comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.5 Modern designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.6 Recent solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Partial State-Machine Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Programming with PSMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 Existing solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Resolubility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Atomic multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

V



3.3.2 Relation with PSMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Genuineness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.4 Minimal synchrony assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 On Agreeing in Shared Memory 39
4.1 Computability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 The FLP impossibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 About progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.3 Solutions for agreeing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.4 The consensus hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Space and Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Memory consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 How fast can processes agree? . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Conclusion and Perspectives 47
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

VI



Chapter 1
Introduction

1.1 Background

Computers are playing a central role in our daily life. They are now everywhere, from the smallest
processing unit in wearables to blades and supercomputers in the datacenter. These computers allow
to accelerate exchanges and our modern economy crucially depends on them. As a consequence they
must be highly available. To achieve this, modern computing infrastructures implement principled
approaches for reliable (dependable) computing. One of them is data replication. In this approach,
a logical item (e.g., a row in a database table) is physically copied across multiple computers.

Data replication brings two key benefits. The first and foremost one is to avoid data loss. If
a copy fails, the others survive, possibly taking over shortly after the initial copy is unresponsive.
The second benefit is with respect to performance. Client processes accessing a replicated item may
do so by contacting any of its copies. For instance, in a geo-distributed context where data resides
at different locations, a client can access the closest copy.

The history of data replication is rich, with early appearances dating back from the 70s. Since
then, techniques and principles for data replication have appeared across a variety of domains
in computer science including hardware design, operating system, storage and databases, cloud
infrastructures, or more recently blockchain. Depending on the considered system, data replication
comes in various flavors. If data is immutable (such as in a web cache, or in a content-sharing
peer-to-peer system), this mainly boils down to an addressing problem, that is finding one machine
having a copy. Once mutations are possible data replication becomes arduous. One of the key
difficulties is that real systems are subject to (hardware or software) failures and asynchrony. To
mask these, the machines replicating data must solve complex distributed problems.

An astonishing fact here is that several of these problems are sometimes not solvable. More
precisely, the frontier between the solvable and the unsolvable depends on the considered problem
and the assumptions on the underlying distributed system. Furthermore, this frontier is very thin.
In fact, it was not understood before the 80s, and came at the surprise of many of the researchers
and engineers working in the field. As of today, some substantial amount of work remains to be
done to properly characterize the resolubility of these distributed problems and relate them one to
another.

Data replication is a cornerstone paradigm in modern computing infrastructures, while jointly
being a hairy problem to solve. For these reasons, it has been extensively studied both in industry

1



and academia. Data replication is closely related to the term “data consistency” which refers to how
data is perceived from the perspective of the clients. Depending on data consistency, replication
protocols fall generally into two families: weak and strong consistency. Weak consistency proto-
cols chose to answer quickly to the client, sometimes at the cost of losing the side effects of her
operations. On the contrary, strongly-consistent approaches prefer to update enough copies of the
datum and coordinates them before providing an answer. One of the most successful techniques for
strong consistency is state-machine replication. In this approach, client operations that access the
replicated item are first ordered then play in this order against the local copy at each replica.

1.2 Content and Contributions

This habiliation thesis focuses on the state-machine replication problem and its variations. As
detailed below, the document is split into three parts. In each part, we present historical perspectives
on the covered topic, and underline our contributions (the citations in bold).

- The first part of this thesis unfolds the history of state-machine replication (SMR), from its
early appearance in aircraft systems to its usage in modern cloud computing infrastructures.
After this background presentation, we focus on leaderless solutions. This class of protocols
parallelizes the task of ordering client accesses to replicated data. We present a framework
to decompose and understand leaderless state-machine replication (LSMR) and assemble new
protocols. Using this framework, several properties that characterize an implementation are
stated. Based on these properties, we survey prominent LSMR protocols and analyze their
design choices at the light of a trade-off between reliability and efficiency.

- When a data replica does not hold all the data items accessible in the system, one talks about
partial replication (PR). The second part of this thesis provides an historical overview on PR
and details past and present solutions to implement it. Two canonical approaches exist for
PR: Execute-then-Order and Order-then-Execute. SMR belongs to the second category and it
generalizes into partial state-machine replication (PSMR) when a machine may not replicate
all the data items. We present PSMR in detail, underlines the interest of such an intermediate
abstraction, and detail some possible implementations. Further we present a characterization
of the minimal synchrony assumptions to solve PSMR in the unreliable failure detectors model.

- State-machine replication is closely related to the problem of agreement, aka. consensus, in
distributed systems. The last part of this thesis offers a perspective on this problem with a
focus on the shared-memory model. We first consider the conditions under which this task,
and some of its key variations, are solvable. Then, when a solution exists, we discuss its cost
in terms of time and space complexity.

1.3 Thesis Outline

Chapter 2 covers state-machine replication and the leaderless variation. In this approach, every
machine has a physical copy of every data item. The natural generalization to partial replication is
investigated in Chapter 3. Chapter 4 is about agreement in shared memory. Chapter 5 provides a
brief summary of the content of this thesis, lists possible future research directions, then closes.

A full bibliography of my research work is available on pages 81–86. Page 87 lists open problems
related to the research topics addressed in this thesis. (In the text, they appear with a sign (Q).)
The interested reader may also access online the software artifacts mentioned in this thesis.
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Chapter 2
The Dawn of Leaderless State-Machine
Replication

Distributed services form the basic building blocks of modern computing infrastructures. A large
number of clients access these services, and when a client performs a request to a service, she usually
expects it to be responsive and consistent.

The seminal state-machine replication (SMR) approach offers the above two guarantees. By
replicating the service across multiple servers, client requests progress despite failures, and by exe-
cuting them in the same order at all the replicas, service data remains consistent. Internally, SMR
implements the service as a deterministic state machine together with a set of commands (the client
requests). Each server maintains its own local copy of the state machine. An SMR protocol co-
ordinates the execution of the commands applied to the copies, ensuring that the replicas stay in
sync.

This section recalls the fundamentals of SMR, introduces its generalization that leverages the
commutativity of state-machine commands and the leaderless variation. Further, we define some
key properties for leaderless state-machine replication (LSMR) and use them to state some of its
limits. We close this section with a brief review of existing LSMR protocols. Notice that for the
sake of conciseness, we will focus mainly on the crash-stop failures model.

2.1 Foundations

2.1.1 Early history

State-machine replication (SMR) is introduced in the late 70s, early 80s [10, 14, 16, 19]. At that
time, replication protocols are either synchronous, or require some form of perfect failure detection—
sometimes without clearly stating it. In [3, 39], the authors describe Software Implemented Fault
Tolerance to provide SMR-like redundancy in aircraft systems. A few years later Borg, Baumbach,
and Glazer [16] describe a hardware implementation of SMR over a cluster of Motorola M6800s
using Unix System III.

The first historical definition of SMR appears in the seminal paper of Lamport [10] on causality
in distributed systems. In this paper, Lamport proposes an algorithm to “order totally the events” in
a distributed system. The base idea of this algorithm is to compute for each event all the events that
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are either causally before or concurrent. For this, each event (e.g., a lock request) is disseminated
to all the processes in the system. When a process receives an event, all the events that follows it at
that process are ordered after. This mechanism constructs a partial order which can be linearized
arbitrarily and stored in a monotonically-growing queue at each replica. In [10], the queue is used
to implement a mutual exclusion algorithm. Lamport also mentions that a generalization where
“the synchronization is specified in terms of a state machine” is possible. This allows “to implement
any desired form of multiprocess synchronization”. State-machine replication (SMR) was born. The
seminal SMR protocol in [10] is failure free. As we shall see later, the key difficulty in building SMR
consists in handling failures and asynchrony.

The tutorial of Schneider [47] introduces the general problem of replicating a state machine
and surveys existing techniques to build it. Schneider covers both fail-stop and Byzantine failures.
The tutorial underlines the link between agreement, that is the consensus problem, and SMR. Two
requirements are identified:

(Agreement) Every non-faulty copy of the state machine receives every command; and

(Order) Commands are processed in the same order by every non-faulty copy of the state machine.

The conjunction of these requirements ensures that all the copies make the exact same state tran-
sitions. Notice that SMR differs from primary replication [6] in the sense that SMR orders first
commands before applying them.

The tutorial [47] also introduces the common proxy model, where server replicas disseminate
the state-machine commands on behalf of the clients. Another interesting abstraction is the notion
of stable command. Once a command is stable, it can be applied to the local copy of the state
machine. This happens when no command lower than it (in the global order) can be received. The
problem of reconfiguring the replica set is also mentioned in [47].

Notice that the above decomposition into an agreement and an order property is not exactly the
usual one. In today’s terms, SMR is defined as a replicated log. With more details, each process p
holds a log, logp. Initially, each entry i > 0 in logp[i] is empty. Every run of SMR must satisfy the
properties below:

(Validity) A command appears in logp at process p once, and only if it was submitted before.

(Stability) If logp[i] = c holds at some point in time, for some command c, it is also true at any
later time.

(Consistency) For any two processes p and q, if logp[i] and logq[i] are both non-empty, then they
are equal.

Commands are applied to the local copy of the state machine following the log order, that is log[i]
may execute provided log[i−1] is already executed or i = 0. In what follows, we call this abstraction
Classic SMR.

The above definition is better than the one provided in [47], which misses for instance that
a command executes only once. Moreover, it is in some sense clearer: Validity and stability are
both local properties. Hence, the sole property to construct is consistency which is immediate with
consensus: each log entry is implemented with one consensus instance.
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Relation with atomic broadcast In fact, the definition of SMR in [47] is the one of atomic
broadcast. Atomic broadcast is a group-communication primitive that permits to disseminate mes-
sages in a distributed system and to deliver them in a total order. This abstraction extends natu-
rally the FIFO and causal-order broadcast. From a computability perspective, SMR is equivalent to
atomic broadcast: to execute a state-machine command, one simply broadcasts it and upon delivery
applies it; conversely, atomic broadcast can be defined as a state-machine [77]. In fact, the mod-
ern definition of SMR as a totally-ordered log clarifies this relation between the two abstractions.
Because the main usage of atomic broadcast is to replicate data, nowadays it is less frequent to
encounter new results about it, state-machine replication being favored.

The ISIS project [49] describes the ABCAST protocol that packages both the agreement and
ordering guarantees on message delivery. Amoeba [80] is a distributed operating system that uses
internally an atomic broadcast protocol to order message between groups of processes. Published
in 2004, the survey of Défago, Schiper, and Urbán [123] is still a reference work on existing ap-
proaches to implement atomic broadcast. Another key survey is by Hadzilacos and Toueg [66].
These two works classify the protocols based on their guarantees, such as uniformity, validity and
ordering. They also identify several classes of algorithms depending on how the order is constructed.
Sequencers (such as in Amoeba [80], or more recently in Corfu [236]) are leader-driven protocols.
Another approach (at work in e.g., [10]) is to deterministically merge concurrent messages. Some
solutions [17] use a token to queue the messages to deliver, in a similar fashion that how distributed
mutual exclusion is solved [38].

2.1.2 The golden age

The impossibility result of Fischer, Lynch, and Paterson [21] establishes that consensus is not
solvable in a purely asynchronous distributed system even if a single crash may happen. As a
consequence, state-machine replication requires some form of partial synchrony. Over the past 40
years, there have been many proposals to define partially-synchronous systems. Popular models
include, unreliable failure detectors [77], round-by-round models [86, 189], and various form of
eventual synchrony [33].

In particular, Dwork, Lynch, and Stockmeyer [33] show that consensus is solvable when there
exists eventually a stable period, that is a moment after which message delay and computation
time are both upper-bounded—such bounds are unknown initially. The algorithm in [33] works in a
sequence of rounds, or ballots, each ballot is led by a process. During a ballot, the leader attempts
to take a lock by contacting a majority of processes. If this succeeds, the leader enacts a decision
based on the decision of the previous ballots, or proposes its own value.

The algorithm of Dwork, Lynch, and Stockmeyer [33] is a non-parallel version of the seminal
Paxos consensus protocol invented by Lamport [88]. The Paxos algorithm is concurrently discovered
by Oki and Liskov [34] under the name viewstamped replication. In Paxos, a new ballot is started
only when the current leader is not responsive. Moreover, when the leader takes a decision, it
broadcasts a commit message to inform all the processes in the system. With those changes,
latency is in O(1) message delays instead of O(n) as in [33].

We mentioned earlier that consensus is repeated to implement the replicated log in SMR. The
leader of Multi-Paxos, the repeated variation of Paxos, drives all such instances as long as it is
responsive. In particular, the next consensus instance starts directly at the ballot of the previous
one. This permits to skip the locking phase (aka., phase 1 in Paxos) in which the proposals of prior
ballots are discovered. The leader directly executes phase 2 for all the next consensus instances. If
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a quorum of replicas accepts the proposed command (or a batch of them) in phase 2, the decision
is committed.

In [77], the authors describe an algorithm similar to Paxos that uses an unreliable failure detector
(namely, ♦S). Failure detector ♦S ensures that (i) every failure is eventually detected at every
correct process, and (ii) that eventually some correct process is never mistakenly detected as faulty
by the correct processes. An improved version of the solution in [77] is proposed by Schiper [83].
Essentially, the improvement in [83] is the classical idea in Paxos where phase 2B messages are
broadcast to all the processes; this cuts one message delay. ♦S is equivalent to ♦W , that is itself
equivalent to Ω, the eventual leader oracle. Chandra, Hadzilacos, and Toueg [76] show that, when a
majority of processes is correct, Ω is the weakest failure detector to solve consensus. (The work in
[371] describes a proof à la Chandra et al. but based on constructive arguments to find the critical
configuration.)

The solutions in [77, 83] require reliable communication channels. In practice, this is expensive
and engineers prefer Paxos which does not make any assumption over the underlying message-
passing system.

All the above partially-synchronous consensus protocols work similarly. In the parlance of failure
detectors, they are indulgent [95]. This means that they are at all time safe, even if the conditions
under which they progress are not met yet. Here, we need to stress out that this departs from early
works on consensus (as well as on atomic broadcast) which demand strong synchrony assumptions,
e.g., perfect failure detectors, or do not handle failures at all. There is thus a logical gap between
these early works and indulgent algorithms.

2.1.3 Complexity results

Many authors study the complexity of consensus. Of course, any complexity lower bound regarding
consensus also applies to SMR.

Time lower bounds. In [146], Lamport shows that executing a command in SMR requires three
message delays in the general case. This can be lowered to two message delays in the conflict-free
case, that is when no command is concurrently submitted to the replicated state machine. These
measures are taken when clients are co-located with replicas. An additional message delays is
required otherwise. Moreover, they are for the good case, that is when the system is synchronous
and failure free.

In general, consensus requires one less message delay than SMR for a decision to be taken at all
the processes. A single message delay can even be achieved under good conditions. Starting with
[23, 60, 378], several works (e.g.,[179]) study these conditions which can be on the input values or
the failure pattern (aka., early-stopping).

Halpern, Moses, and Waarts [105] introduce the notion of unbeatable consensus, that is a con-
sensus protocol which strictly dominates others in terms of decision timing whatever the adversary
and input values are. In [363], the authors propose matching (non-uniform and uniform) proto-
cols for the synchronous model. The unbeatable property is established using knowledge-based
reasoning [18]. The work in [129] studies how to solve consensus quickly once the system behaves
synchronously.

About space usage. Dolev and Lenzen [252] show that any crash-resilient consensus algorithm
deciding in exactly f + 1 rounds has Ω(n2f) worst-case message complexity, where n is the number
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of processes in the system and f is the number of actual failures in the run. Of course, it is possible
to solve consensus with lower message complexity but higher time complexity. A base illustration of
this trade-off is when Paxos acceptors send 2B messages directly to the learners instead of the leader
sending a commit message—that is, the optimization in [83]. (Q) To the best of our knowledge,
the trade-off between time and space complexity has not been fully characterized yet, nor all the
Pareto-optimal solutions found.

Ring Paxos [206] chains the messages addressed from the leader to the acceptors in order to
improve bandwidth usage in SMR. Many other works explore how to achieve low message complexity
(or bits complexity) in consensus (such as, recently [364]). At the very least, each process needs
to send one message, that is Ω(n) is an obvious lower bound. Galil, Mayer, and Yung [72] develop
an algorithm that runs in O(n1+ε) rounds, for any 0 < ε < 1, and sends the optimal number of
messages (that is, Θ(n)).

In the case of Byzantine failures, an Ω(n2) message-complexity lower bound exists [13]. It
holds whatever is the time complexity of the underlying protocol and comes from the problem of
equivocation.1

2.1.4 Modern era

A plethora of SMR protocols were published over the last decade, many of them being variations of
(multi-)Paxos. We survey some of the key designs and ideas below.

Zookeeper Atomic Broadcast (Zab) [203, 221] is the replication protocol at core of the Apache
Zookeeper coordination kernel. The authors of Zab mention that the protocol “follows the abstract
description of Paxos by Lampson [108]”. However, Zab differs from Paxos over two important
aspects: First, during a consensus instance, Zab agrees on a sequence of commands, instead of a
unique command (or a batch of them). A new instance starts only if the leader is suspected. Hence,
Zab is more related to Generalized Consensus [132] where c-structs are sequences of commands—
more details about this shortly. The second difference is that Zab follows an Execute-Then-Order
schema: upon receiving a command, the leader executes it first (tentatively), then appends its
updates at the end of the sequence. Such a schema allows to execute non-deterministic commands
at the leader and (in the specific case of Zookeeper) reduces bandwidth usage.2

Raft [269] implements a replicated log interface. The protocol is very similar to Paxos, only
differing it in the way it elects a new leader: to reduce data movement, Raft tries to elect the most
up-to-date replica. Raft is more understandable than Paxos essentially because the paper is easier
to read than e.g., [88, 107], and because Ongaro and Ousterhout detail the logic from a system’s
perspective.

In Paxos, as long as the leader is responsive, it is in charge of all the upcoming consensus
instances. In contrast, some protocols rotate the responsibility of instances, that is the first ballot
of the instance is led by a specific replica. A base example is [33, 178] where replica pk∈N is in
charge of all the instances l ≡ k (mod n). Such a rotation is also used to deal with Byzantine
failures and mitigate performance attacks (such as in [196]). A key observation here is that the
ordering of consensus instances in these protocols is static. This means that instance k comes
before instance k + 1. Another class of protocols dynamically order instances. In that case, each
replica independently commits commands in its instances. The ordering of two instances is then

1Equivocation refers to the ability of a Byzantine node to lie regarding the messages it has sent. The lower bound
also holds in the message omission failures model.

2To some extend, this approach is more akin to primary-backup replication than SMR.
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decided by a distributed services, such as a sequencer. As an example, in SDPaxos [323], instance
(123, p3) may precede (5, p42) if it arrives first at the sequencer. We will return shortly to approaches
that rotate the leader, as this is one of the key ingredient to build leaderless SMR.

As observed in [108], Paxos can be rewritten to distinguish read and write quorums. Write
quorums enact decisions, while read quorums serve to retrieve such decisions—or more precisely,
a safe approximation of them. This rewriting requires that (i) any two write quorums of the
same ballot intersect, and (ii) any write quorum of a ballot intersects with any read quorum of a
higher ballot. It is possible to leverage such a decomposition to boost performance [193, 226].
In particular, Flexible Paxos [290] allows a narrow 2B phase where just f + 1 (possibly, < bn+1

2 c)
replicas are contacted by the leader.

Multicoordinated Paxos [152] uses more than one leader per ballot. During a multicoordinated
ballot b, an acceptor accepts a value only if it is received from a quorum of leaders. If a collision oc-
curs during such a ballot, a higher ballot is started. Multicoordinated Paxos increases dependability
at the cost of latency: any minority of leaders can be slow without impacting progress. Another
protocol resilient to asynchrony is [344].

Some researchers try to relate SMR protocols one to another. For instance, Renesse, Schiper,
and Schneider [280] compare the Zab, Paxos and Viewstamped replication protocols. In [340], the
authors explain how Raft and Paxos relate one to another. Such a comparison is also drawn in
[332], where the authors present refinement mappings between the two protocols.

In practice The Paxos consensus, Multi-Paxos, and their many variations are complex protocols.
Implementing these protocols in a way that the system is always-on for long periods of time is
challenging. There are plenty of difficulties including memory management, system membership,
and re-configuration.

On that matter, the code bases of Raft [389] and Zookeeper [397] are reference implementations.
Chandra, Griesemer, and Redstone [153] present an engineering perspective on the problem. In
[148], the authors describe a reconfiguration mechanism to change dynamically the set of SMR
replicas. This mechanism is proved correct using the Temporal Logic of Actions (TLA) model
checker. Lamport, Malkhi, and Zhou [193] suggest to use an external consensus service to handle
system (re-)configuration. Interestingly, consensus is not always necessary in this task, as a quorum
system suffices to implement dynamic atomic storage [213].

2.1.5 Hardware-based solutions

Leveraging hardware properties to solve SMR is a recurring topic in distributed systems. In [16],
the network conveys a single message at a time. Anker et al. [140] propose a design based on two
network adapters at each replica and two switches: replicas send their messages to the first switch
that propagates them to the second switch which sends them back to the replicas using the second
adapter. István et al. [291] implement Zab on an FPGA, achieving orders of magnitude higher
performance than the standard Apache Zookeeper code base.

Recently many works have tried to refresh SMR protocols for the modern datacenter. Some of
these works try to leverage the advent of software-defined networks (SDN).

NOPaxos [293] revisits the agreement and ordering properties of Schneider (see §2.1.1): the
network is in charge of ordering, while reliability (agreement) stays a responsibility of the replication
protocol. Ordering is done with a sequencer implemented at the network level with P4, a language to
program software-defined switches. A failure of the sequencer is detected by the network controller
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that spins a new one. At a replica, for each sequence number either the associated message or a
drop notification is received. NOPaxos is a leader-based protocol. Each request is optimistically
run at the leader, and a client knows the response once it receives the optimistic result and f + 1
acknowledgments from replicas. A replica asks the leader about the messages it missed. When
the leader is suspected, NOPaxos transitions to a new one using a mechanism à la viewstamped
replication.

NetPaxos [276] also explores ways to use the network layer to improve the performance of data
replication. That work moves Paxos’ logic into the switches, with one switch serving as the leader,
while the others are Paxos acceptors. To implement NetPaxos, the authors rely on the OpenFlow
API, with some specific ad-hoc extensions. The downside of such an approach is that it requires
switches to store potentially large amounts of application state. In a follow-up work, the authors
implements Paxos in P4 [286]. Interestingly, because P4 cannot synthetizes messages, the replication
protocol is essentially a routing one.

Remote Direct Memory Access (RDMA) allows computers in a network to exchange data in
main memory without involving the processor [255, 303]. Akin to Direct Memory Access (DMA),
RDMA improves throughput and performance as it frees up resources. RDMA comes initially from
high-performance computing environments, and it is now commonly found in datacenters.

Mu [339] is a recent proposal to execute fast consensus atop RDMA. Building upon Paxos [88],
Mu executes the accept phase in a single one-sided round trip from the leader to the replicas. All-
Concur [309] does not rely on a leader replica but instead permits any replica to issue an operation.
The protocol allows reads to be executed at the local replica, but this comes at the price of data
consistency.

Hermes [341] is another recent SMR protocol that relies on RDMA. The protocol uses a times-
tamping mechanism to order state-machine commands. At a replica, commands are applied in
timestamp order, similarly to many prior replication schemes (e.g., [28]). The protocol timestamps
each command at the machine proposing it. For read-modify-write (RMW) operation, this requires
to re-submit them if the timestamp is outdated, degrading latency. As a consequence, just a base
shared counter is problematic to implement with Hermes.

2.1.6 Leveraging commutativity

In their seminal works, Pedone and Schiper [117], and concurrently Lamport [132], introduce an
alternative approach to Classic SMR. They make the key observation that if commands submitted
to the state machine commute (e.g., increments over a counter), there is no need to order them.
Leveraging this, they replace the totally-ordered log used in Classic SMR with a partially-ordered
one. We detail this approach below, which we term Generic SMR.

Two commands c and d do not commute when for some state s, applying cd to s differs from
applying dc. This means that either both sequences do not lead to the same state, or one of the
two commands does not return the same response value in the two sequences. Generic SMR relies
on the notion of conflicts which captures an over-approximation of the non-commutativity of two
state-machine commands.3 In Generic SMR, each variable logp at some process p is a partially-
ordered log, that is a directed acyclic graph [132]. In this graph, vertices are commands and any
two conflicting commands have a directed edge between them. A command is decided once it is

3Some papers (such as [256]) may use the term non-commutativity, or interference, instead of conflicts. Alter-
natively, the database community considers that commands are in conflict when they are both non-commuting and
concurrent.
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in the partially-ordered log. As with Classic SMR, a decided command gets executed once all its
predecessors are executed.

Leveraging commutativity in replicated systems is an old idea—Ellis [8] mentions this for dis-
tributed databases in a paper as early as 1977. Another interesting work on commutativity is due
to Weihl [35], where the author investigates its use for concurrency control. In [117, 132], the key
motivation is the lower-bound result on the time complexity to solve consensus. Indeed, recall from
§2.1.3 that consensus requires 3 message delays in the contended case. If everything commutes just
2 message delays, that is a round-trip, are necessary. Generic SMR thus offers the promise to always
reach the lower bound of the uncontended case. Furthermore, there is no need of a leader to decide
the ordering, which also avoids a potential bottleneck. Hence, taking into account commutativity
at the application level can boost SMR performance.

In typical application workloads [142, 202, 254], conflict rate is low. When this happens, the
protocols proposed in [117, 132] are efficient. Unfortunately, this is no more the case when contention
increases—such as with hot objects if the access distribution is skewed. To commit a contended
command, Generalized Paxos [132] necessitates six message delays, which is a round-trip slower
than Paxos.

For one-shot consensus, some works propose approaches to leverage contention-free scenarios,
while not degrading contended ones [114, 144]. When consensus is repeated, FGGC [226] reaches
the optimal latency, that is the protocol allows to commit a command in two message delays in
contention-free scenarios and three message delays otherwise. The protocol also maintains optimal
resiliency, allowing up to f ≤ bn−12 c crash failures. To achieve this, FGGC requires to have a single
fixed (write) quorum per ballot, centered around the leader.

As with Generalized Paxos, when a collision happens at ballot b, FGGC starts a fresh ballot.
At ballot b+ 1, each replica spontaneously sends in a 2B message a merge of its proposal at ballot
b with the one of the leader. Despite that this protocol reaches the theoretical lower bound, it is in
practice expensive. This comes from the fact that FGCC requires frequent checkpointing to trim
metadata [226].

A recent protocol called SwiftPaxos [391] alleviates the above problem. The protocol permits
replicas to vote on the order in which they receive state-machine commands. Differently from prior
works, SwiftPaxos permits a replica to vote twice at a ballot: first for its own ordering proposal, and
then to follow the leader. This mechanism avoids restarting the voting process when a disagreement
occurs among replicas, saving computation time and message delays. It also removes the need to
do frequent checkpointing.

The quest for a latency-optimal SMR protocol is also followed by Zielinski [139]. His optimistic
generic broadcast runs concurrently three algorithms: a broadcast protocol, an atomic broadcast
protocol, and a set of consensus instances. The broadcast protocol is used for dissemination. The
consensus instances are in charge of ordering conflicting commands, each instance defining a pair-
wise order between two commands. If these decisions form a cycle, atomic broadcast is used to
resolve them. This much original approach is one of the very first attempt to construct a leaderless
protocol for SMR. We cover this family of protocols in the next section.

Characterization An intriguing question is to distinguish Classic and Generic SMR. On paper,
Generic SMR should order commands only when conflicts occur. Unfortunately, it is difficult in
general to track the exact causal path that led to the execution of a command.

In [226], the authors propose that in conflict-free (synchronous) runs, genuine Generic SMR
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protocols deliver all the commands in two message delays. Aguilera et al. [92] propose another
characterization based this time on the way the protocol uses the failure detector oracles. The
protocol is said thrifty when there exists a time after which the oracle is not used in every run
where the number of conflicting commands is bounded.

Summary

State-machine replication (SMR) takes its roots in redundancy for aircraft systems. The early history
is rich, with the FLP impossibility result [21] and the discovery of the very first solutions under partial
synchrony [33, 34, 88]. Since then, many SMR protocols have been designed and used in computing
infrastructures, ranging from small networked devices to the Cloud. Some of these protocols leverage
the semantics of the replicated service for higher performance. Others are specific to a given replication
schema (e.g., geo-replication), or to a given hardware (such as RDMA). These solutions are closely
related one to another. To a few exceptions (such as [352]), they follow a ballot-based mechanism
in which replicas repeatedly attempt to agree over the next state-machine command to process. In
practice, SMR protocols are difficult to program due to their many interleavings and corner cases,
and because these systems have to run over long periods of time.

2.2 Leaderless SMR

Leaderless state-machine replication is a recent family of replication protocols, introduced in [139,
178, 256]. This section presents the high-level framework of [345] to decompose and understand
these protocols, as well as to assemble new ones. To this end, we first define the notion of dependency
graph and explain how commands are decided in Leaderless SMR. Using the framework, three key
properties are then introduced: Reliability, Optimal Latency and Load Balancing. The ROLL
theorem that captures an inherent trade-off between these properties is detailed. Further, several
Leaderless SMR protocols are presented and their designs explained at the light of this trade-off.

2.2.1 Genesis

Some recent works [139, 256] push one step further the idea of partially-ordered log, as proposed
in Generic SMR. In a leaderless state-machine replication protocol, there is no primary to arbitrate
upon the ordering of commands. Instead, any process may contribute to the order. A command is
stable, and thus executable, once the transitive closure of its predecessors is known locally. As this
transitive closure can be cyclic, the log is replaced with a directed graph.

2.2.2 Definition

Leaderless state-machine replication (LSMR) relies on the notion of dependency graph, a directed
graph that records the constraints defining how commands are executed. For some command c,
the incoming neighbors of c in the dependency graph are its dependencies. As detailed shortly, the
dependencies are executed either before or together with c.

In LSMR, a process holds two mapping: dep and phase. The mapping dep is a dependency
graph storing a relation from Cmd to 2Cmd ∪ {⊥,>}, where Cmd is the set of commands. For a
command c, phase(c) can take five possible values: pending, abort, commit, stable and execute. All
the phases, except execute, correspond to a predicate over dep.
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Figure 2.1: (from [345]) An example run of LSMR– (left) processes p1 and p2 submit respectively
the commands {a} and {b, c, d}; (right) the dependency graphs formed at the two processes.

Initially, for every command c, dep(c) is set to ⊥. This corresponds to the pending phase.
When a process decides a command c, it changes the mapping dep(c) to a non-⊥ value. Operation
commit(c, D) assigns D taken in 2Cmd to dep(c). Command c gets aborted when dep(c) is set to
>. In that case, the command is removed from any dep(d) and it will not appear later on. Let
dep∗(c) be the transitive closure of the dep relation starting from {c}. Command c is stable once it
is committed and no command in dep∗(c) is pending.

Figure 2.1 depicts an example run of LSMR that illustrates the above definitions. In this run,
process p1 submits command a, while p2 submits in order c, d then b. The timeline in Figure 2.1
indicates the timing of these submissions. It also includes events during which process p1 and p2
commit commands. For some of these events, we depict the state of the dependency graph at each
process (on the right of Figure 2.1). At the end of the run, the two processes obtain graph g4. In g4,
a, b and c are all committed, while d is still pending. We have dep(a) = {b} and dep(b) = {a, d, c},
with both dep∗(a) and dep∗(b) equal to {a, b, c, d}. Only command c is stable in g4.

Similarly to Classic and Generic SMR, Leaderless SMR protocols requires that validity holds. In
addition, processes must agree on the value of dep for stable commands, and conflicting commands
must see each other. More precisely,

(Validity) If command c is not pending then c was submitted.

(Stability) For each command c, there exists D such that if c is stable then dep(c) = D.

(Consistency) If a and b are both committed and conflicting, then a ∈ dep(b) or b ∈ dep(a).

An aborted command is abandonned and later possibly later by its client. A committed com-
mand c gets executed once it is stable. In detail, to execute command c, a process first creates a
set of commands, or batch, β that executes together with c. This grouping of commands serves to
maintain the following invariant:

Invariant 1. Consider two conflicting commands c and d. If p executes a batch of commands
containing c before executing d, then d /∈ dep∗(c).

Satisfying Invariant 1 implies that if some command c is in batch β, then β also contains its
transitive non-executed dependencies. Inside a batch, commands are executed according to →. Let
< be a canonical total order over Cmd . Then, c → d holds iff (i) c ∈ dep∗(d) and d /∈ dep∗(c); or
(ii) c ∈ dep∗(d), d ∈ dep∗(c) and c < d. If there is a one-way dependency between two commands,
LSMR plays them in the order of their transitive dependencies; otherwise the algorithm breaks the
tie using the arbitrary order <. This guarantees the following invariant.
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Invariant 2. Consider two conflicting commands c and d. If p executes c before d in the same
batch, then c ∈ dep∗(d).

One can show that the above two invariants together with the properties of LSMR ensure that
the execution is linearizable [45]. This is the very same consistency property as Classic SMR, which
ensures that data replication is transparent to the clients.

Generic and Leaderless SMR are very similar. In fact, [345] shows that Generic SMR reduces
to LSMR without requiring any message exchange (what we call a strong reduction). Notice that
such a reduction does not hold between Classic and Generic SMR. Indeed, computing a total order
on commuting commands would require processes to communicate.

2.2.3 Deciding a command

The above reduction is of interest to relate the two abstractions that are Leaderless and Generic
SMR. Yet, it offers a much incomplete picture on how the they compare in practice. Indeed,
because the dependency graph might be cyclic, LSMR does not compute an ordering over conflicting
commands. Instead, such commands must simply observe one another (Consistency property). This
fundamental difference explains the absence of a leader in this class of SMR protocols, a feature
that we capture in our framework below.

In LSMR, processes have to agree on the dependencies of stable commands. Thus, a subsequent
refinement leads to consider a family of consensus objects (CONSc)c∈Cmd for that purpose. For
some command c, processes use CONSc to decide either the dependencies of c, or the special value
(>) signaling that the command is aborted. This agreement is driven by the command coordinator
(coord(c)), a process initially in charge of submitting the command to the replicated state machine.
In a run during which there is no failure and all processes are responsive, only coord(c) calls CONSc.

To create a valid proposal for CONSc, coord(c) relies on the dependency discovery service (DDS).
This shared object offers a single operation announce(c) that returns a pair (D, b), where D ∈
2Cmd ∪ {>} and b ∈ {0, 1} is a flag. When the return value is in 2Cmd , the service suggests to
commit the command. Otherwise, the command should be aborted. When the flag is set, the
service indicates that a spontaneous agreement occurs. In such a case, the coordinator can directly
commit c with the return value of the DDS service and bypass CONSc; this is called a fast path. A
recovery occurs when command c is announced at a process which is not coord(c).

The DDS service ensures two safety properties. First, if two conflicting commands are announced,
they do not miss each other. Second, when a command takes the fast path, processes agree on its
committed dependencies.

More formally, assume that announcep(c) and announceq(c
′) return respectively (D, b) and

(D′, b′) with D ∈ 2Cmd . Then, the properties of the DDS service are as follows.

(Visibility) If c � c′ and D′ ∈ 2Cmd , then c ∈ D′ or c′ ∈ D.

(Weak Agreement) If c = c′ and b = true, then D′ ∈ 2Cmd and for every d ∈ D ⊕ D′, every
invocation to announcer(d) returns (>,−).

To illustrate these properties, consider that no command was announced so far. In that case
(∅, true) is a valid response to announce(c). If coord(c) is slow, then a subsequent invocation of
announce(c) may either return ∅, or a non-empty set of dependencies D. However in that case,
because the fast path was taken by the coordinator, all the commands in D must eventually abort.
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Algorithm 1 Deciding a command c – code at process p
1: submit(c) :=
2: pre: p = coord(c) ∨ coord(c) ∈ D
3: eff: (D, b)← DDS.announce(c)
4: if b = false then D ← CONSc.propose(D)
5: dep(c)← D
6: send(c, dep(c)) to P \ {p}
7:
8: when recv(c, D)
9: eff: dep(c)← D

Based on the above decomposition of LSMR, Algorithm 1 depicts an abstract protocol to decide
a command. This algorithm uses a family of consensus objects ((CONSc)c∈Cmd ), a dependency
discovery service (DDS) and a failure detector (D) that returns a set of suspected processes.

To submit a command c, a process announces it then retrieves a set of dependencies. This set is
proposed to CONSc if the fast path was not taken (line 4). The result of the slow or the fast path
determines the value of the local mapping dep(c) to commit or abort command c. Notice that such
a step may also be taken when a process receives a message from one of its peers (line 8).

During a nice run, the system is failure-free and the failure detector service behaves perfectly.
As a consequence, only coord(c) may propose a value to CONSc and this value gets decided. In our
view, this feature is the key characteristic of LSMR.

2.2.4 Properties and limits

State-machine replication helps to mask failures and asynchrony in a distributed system. As a
consequence, a first property of interest is the largest number of failures (parameter f) tolerated by
a protocol. After f failures, the protocol may not guarantee any progress.4

(Reliability) In every run, if there are at most f failures, every submitted command gets eventually
decided at every correct process.

LSMR protocols exploit the absence of contention on the replicated service to boost performance.
In particular, some protocols are able to execute a command after a single round-trip, which is clearly
optimal [146]. To ensure this property, the fast path is taken when there is no concurrent conflicting
command. Moreover, the command stabilizes right away, requiring that the DDS service returns
only submitted commands.

(Optimal Latency) During a nice run, every call to announce(c) returns a tuple (D, b) after two
message delays such that (i) if there is no concurrent conflicting command to c, then b is set
to true, (ii) D ∈ 2Cmd , and (iii) for every d ∈ D, d was announced before.

The replicas that participate to the fast path vary from one protocol to another. Mencius use
all the processes. On the contrary, Egalitarian Paxos (EPaxos) solely contacts b3n4 c of them (or

4When f failures occur, the system configuration must change to tolerate subsequent ones. If data is persisted,
the protocol simply stops when more than f failures occurs and awaits that faulty processes are back online.
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equivalently, f + f+1
2 when n = 2f +1). For some command c, a fast path quorum for c is any set of

n−F replicas that includes the coordinator of c. Such a set is denoted FQuorums(c) and formally
defined as {Q | Q ⊆ Π∧ coord(c) ∈ Q ∧ |Q| ≥ n−F}. A protocol has the Load Balancing property
when it may freely choose fast path quorums to make progress.

(Load Balancing) During a nice run, any fast path quorum in FQuorums(c) can be used to an-
nounce a command c.

The previous properties are formally defined in [345]. Table 2.1 indicates how they are imple-
mented by well-known leaderless protocols. The columns ’Reliability’ and ’Load Balancing’ detail
respectively the maximum number of failures tolerated by the protocol and the size of the fast
path quorum. Notice that by CAP [115], we have F, f ≤ bn−12 c when the protocol matches all of
the properties. Table 2.1 also mentions the optimality of each protocol with respect to the ROLL
theorem. This theorem is detailed below:

Theorem 1 ([345]). Consider a protocol that satisfies all the ROLL properties. Then, it is true
that 2F + f − 1 ≤ n.

Theorem 1 captures an inherent trade-off between performance and reliability. For instance,
tolerating a minority of crashes, requires accessing at least b3n4 c processes. This is the setting under
which EPaxos operates. On the other hand, if the protocol uses a plain majority quorum in the fast
path, it tolerates at most one failure.

A protocol is ROLL-optimal when the parameters F and f cannot be improved according to
Theorem 1. In other words, they belong to the skyline of solutions (i.e., Pareto optimal). As an
example, when the system consists of 5 processes, there is a single such tuple (F, f) = (2, 2). With
n = 7, there are two tuples in the skyline, (2, 3) and (3, 2). The first one is attained by EPaxos,
while Atlas offers the almost optimal solution (3, 1) (see Table 2.1). (Q) We note here that the
question of finding a ROLL-optimal protocol for all values of the pair (n, f) is still open.

2.2.5 Protocols

This section surveys several LSMR protocols. It details their respective implementations of the DDS
and CONS services, and indicates their optimality wrt. ROLL. Table 2.1 recapitulates.

Rotating coordinator For starters, let us consider a rotating coordinator algorithm (such as
[196]). In this class of protocols, commands are all conflicting and ordered a priori by some relation
�. Such an ordering is usually defined by timestamping commands at each coordinator and breaking
ties with the process identities. When coord(c) calls DDS.announce(c), the service returns a pair
(D, false), where D are all the commands prior to c according to �. Upon recovering a command,
the DDS service simply suggests to abort it. In spirit, such a fault-tolerance mechanism is similar
to the consensus algorithm on transaction commit by Gray and Lamport [145].

Clock-RSM This protocol improves upon the above schema by introducing a fast path [264].
It also uses physical clocks to speed-up the stabilization of committed commands. In detail, a
command is first associated with a timestamp. Its coordinator then broadcasts this information to
the other processes in the system. When it receives such a message, a process waits until its local
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Properties

Protocols Load Balancing
(n− F )

Reliability
(f)

Optimal
Latency ROLL-optimal

Rotating coord. 0 Min × ×
Clock-RSM [264] n Min × ×
Mencius [178] n Min

√
×

Caesar [302] d 3n4 e Min
√

×
EPaxos [256] LMaj Min

√
if n = 2f + 1

Alvin [271] LMaj Min
√

if n = 2f + 1
Atlas [338] bn2 c+ f any

√
if n ∈ 2N ∪ {3} ∧ f = 1

Tempo [350] bn2 c+ f any × ×

Table 2.1: The properties of several leaderless SMR protocols – Min stands for a minority of replicas
(bn−12 c), Maj a majority (dn+1

2 e), and LMaj a large majority (b3n4 c).

clock passes the command’s timestamp to reply. Once a majority of processes have replied, the
DDS service informs the coordinator that the fast path was taken.

Clock-RSM considers that any two commands conflict. The protocol recovers all the commands
below a certain timestamp at once. Because a command might now take the fast path, recovery
cannot simply suggest to abort it—as with the rotating coordinator. Instead, Clock-RSM asks a
majority of replicas if the command was seen. If this happens to be the case, the command is
returned by the DDS service to be proposed to consensus.

Mencius The above two protocols require a committed command to wait all its predecessors
according to �. Clock-RSM propagates in the background the physical clock of each process. A
command gets stable once the clocks of all the processes is higher than its timestamp. Differently,
Mencius [178] aborts prior pending commands at the time the command is submitted. In detail,
announce(c) first approximates D as all the commands prior to c according to�. Then, command c
is broadcast to all the processes in the system. Upon receiving such a message, a process q computes
all the commands d smaller than c it is coordinating. If d is not already announced, q stores that
d will be aborted. Then, q sends back this information to coord(c) which removes d from D. Upon
recovering c, if the command was received, the over-approximation based on� is returned together
with the flag false. Otherwise when c is unknown, the DDS service suggests to abort it.

EPaxos In [256], the authors present Egalitarian Paxos (EPaxos), a family of efficient LSMR
protocols. For simplicity, we now cover the variation which does not involve sequence numbers.

To announce a command c, the coordinator broadcasts it to a quorum of processes. Each process
p computes (and records) the set of commands Dp conflicting with c it has seen so far. A call to
announce(c) returns (∪pDp, b), with b set to true iff processes in the fast-path quorum spontaneously
agree on dependencies (i.e., for any p, q, Dp = Dq). When a process in this initial quorum is slow
or a recovery occurs, c is broadcast to everybody. The caller then awaits for a majority quorum to
answer and returns (D, false) such that if df+1

2 e processes answer the same set of conflicts for c,
then D is set to this value (with n = 2f + 1). Alternatively, if at least one process knows c, the
union of the response values is taken.

Correctness. Surprisingly, both the TLA+ specification and the Golang implementation of
EPaxos [380] use a single variable to track progress across ballots. The work in [347] proves
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Figure 2.2: (from [345]) Performance comparison of EPaxos, Paxos and Mencius – 5 sites: South
Carolina (SC), Finland (FI), Canada (QC), Australia (AU), Taiwan (TW, leader); 128 clients per
site; no-op service.

that this is not sufficient: it exhibits an admissible execution in which replicas disagree on the de-
pendencies of a command, breaking the agreement property of LSMR. Adding the missing variable
and managing recovery properly correct the problem [382]. A fixed implementation of EPaxos is
available online [379].

Performance. When contention increases, Egalitarian Paxos exhibits a long tail latency [335,
337, 345]. This is illustrated in Figure 2.2. where we ran an experimental evaluation of EPaxos,
Paxos and Mencius in Google Cloud Platform. Figure 2.2a plots the cumulative distribution func-
tion (CDF) of the command latency for each protocol. In this experiment, the system spans five
geographical locations distributed around the globe, and each site hosts 128 clients that execute no-
op commands in closed-loop. Figure 2.2b indicates the distance between any two sites. The conflict
rate among commands varies from 0% to 30%.5 We measure the latency from the submission of
a command to its execution (at steady state). Two observations can be formulated at the light of
the results in Figure 2.2. The tail of the latency distribution in EPaxos is larger than for the other
protocols. Furthermore, it increases with the conflict rate.

To alleviate the above problems, Tollman, Park, and Ousterhout [358] propose two modifications
to the EPaxos algorithm: First, the authors introduce some delay before returning the dependencies
of a command at each replica. When the delay expires, the command is re-ordered wrt. the other
concurrent conflicting commands. This helps to have the exact same dependencies reported by the
fast path replicas. The delay is based on the average latency measured between pairs of replicas.
Second, stability is computed by ignoring part of the dependencies of a command. This mechanism
works in the case where EPaxos computes for each command a sequence number together with a
dependency set. In detail, a committed command c is stable when for every command d ∈ dep(c),
either d is also stable, or c has a higher sequence number than d. This idea clearly works when
c and d have the same coordinator and commands are received in FIFO order. However, in our
opinion, the general case remains unclear.

5Each command has a key and any two commands conflict, that is they must be totally ordered by the protocol,
if they have the same key. When a conflict rate ρ is applied, each client picks key 42 with probability ρ, and a unique
key otherwise.
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Atlas In a geo-distributed setting, natural disasters leading to the loss of a full data center are
rare, and planned downtimes can be handled by reconfiguring the unavailable replicas out of the
system [88, 229, 243]. Furthermore, temporary data center outages (e.g., due to connectivity issues)
typically have a short duration [294], and they rarely happen concurrently [337]. Leveraging these
observations, [337] proposes Atlas, a leaderless protocol tailored for planet-scale deployments. Like
Flexible Paxos [289], Atlas allows choosing the maximum number of replicas that can fail (f)
independently of the overall number of replicas (n).

Atlas uses fast quorums of size bn2 c+f , and it is optimized for small number of failures (typically,
f ≤ 3). In detail, consider that a fast quorum Q returns the set of dependencies (Dp)p∈Q to the
coordinator. The f -threshold union of Q, written ∪f Q , are all the commands reported at least f
times by the replicas in Q. Atlas allows the coordinator to take the fast path when ∪p∈QDp equals
∪f Q Dp In particular, the protocol always takes the fast path when f = 1 (for any value of n). Such
an approach is safe for the following two reasons: (i) any Dp contains the dependencies computed
at the coordinator (which are sent initially), and (ii) because there are at most after f failures,
recovery retrieves the dependencies taken in the fast path by contacting either the coordinator
which is obviously informed of this, or some subset of |Q| − (f − 1) replicas in Q.

Caesar The work in [345] shows that long chains in the dependency graph cannot be avoided
when the leaderless replication protocol is ROLL-optimal. In practice, these chains impair latency by
delaying the execution of committed commands. They explain the tail latency phenomena reported
in Figure 2.2.

To solve this issue, Caesar [302] orders commands with the help of logical timestamps, like a
rotating coordinator. However, differently from it and much like in Mencius, it tries to abort prior
instances faster. In detail, upon submitting a command c, the coordinator timestamps it with its
logical clock then it executes a broadcast. As with EPaxos, when it receives c a process p computes
the commands Dp received so far conflicting with c. Then, p awaits until there is no conflicting
command d with a higher timestamp than c such that c /∈ dep(d). If such a command exists, p
replies to the coordinator that the fast path cannot be taken. The DDS service returns (∪pDp, b),
where b = true iff no process disables the fast path.

Consider two conflicting commands c and d with timestamp tc and td. A core invariant of Caesar
is: tc < td ⇒ c ∈ dep(c). This invariant ensures the visibility property of the DDS service.

Tempo Another timestamp-based protocol is Tempo [350]. Tempo borrows to Atlas the narrow
path idea based on the threshold union operator. To take the fast path, f replicas must return the
highest timestamp among all the timestamps returned by the fast quorum. This is similar to the
condition in Atlas, where every dependency is returned f times: in both cases the supremum of all
the reported values should be reported (at least) f times.

In the rotating coordinator approach, stability is sensitive to failures. Indeed, to stabilize a
command, the coordinator needs to receive a message from all replicas. Clock-RSM removes this
limitation by relying on loosely-synchronized clocks. Tempo does not make any assumption on the
clocks. Instead, a command committed with timestamp t is stable once a large-enough quorum of
replicas has bumped its local clock above t.

The stability check of Tempo is implemented as a background mechanism. When a replica
bumps its clock to some value t′ > t, it sends the promise to reject any command submitted with
a timestamp in [t, t′]. Promises are sent synchronously, or asynchronously at a given rate. For
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faster decisions, replicas in the fast quorum piggyback theirs promises on their responses to the
coordinator. Detecting stability in Tempo relies on a plain majority of replicas. This ensures that
the stability-detection quorum intersects with any fast path quorum, as such quorums contain n

2 +f
replicas. We note here that it would be possible to tailor these two quorums, further narrowing
the fast path quorum at the cost of a larger stability-detection quorum. (This variation is not
investigated in [350].)

Tempo can timestamp commands at arbitrary fine grain, e.g., a single state-machine variable.
This permits to leverage commutativity and boost parallelism. The protocol also manages partial
replication, that is when each replica contains only part of the state machine. We cover such a
variation in §3.2. To conclude our analysis on Tempo, let us note two drawbacks of the protocol:
First, once committed a command has to wait for enough promises to get collected before execution.
This can introduce a delay in some pathological (but rare in practice) cases. In the parlance of the
framework in §2.2.2, Tempo is not latency optimal. Second, Tempo cannot leverage commutativity
in the general case—for instance, two reads on the same state-machine variable. This problem is
partly fixable using a more complex timestamping mechanism [365].

Accord Accord [377] is a recent proposal to enhance Apache Cassandra [205], a widely-known
distributed data store. This replication protocol relies on the very same invariant as Caesar: replicas
agree on the final timestamp of a command, but not on the dependencies. Dependencies are solely
used during execution. They over-approximate the commands with a lower final timestamp. Before
execution, commands that have a higher timestamp are trimmed from dep, that is aborted in our
framework. Accord reaches optimal resilience, tolerating a minority of failures among the replicas.
As in [290] the authors of Accord observe that one may reduce the size of the fast path quorum, as
long as any two fast path quorums intersect over f + 1 replicas. (This idea is named an electorate
in [377].) A glitch was found in an early version of the Accord replication protocol [390].

Summary

In leaderless state-machine replication (LSMR), each replica contacts a quorum of its peers and may
contribute to the ordering of commands. This approach removes the bottleneck due to to the leader
in protocols such as Paxos, Viewstamped Replication and Raft. It also boosts availability: when
a replica is slow or has failed, commands that commute with all of the pending commands it has
submitted so far can still progress.
LSMR is better understood with the help of a framework in which the discovery of the dependencies
of a command and the agreement on their final values is split into two disjoint services. Many existing
protocols are decomposable this way. These protocols offer various trade-offs in the design space, each
offering a compromise between complexity, speed, and availability.
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Chapter 3
Partial Replication

State-machine replication, and its leaderless variation studied in the previous section, provide a
general solution to replicate data. These techniques need to be adjusted when data is partially
replicated, that is when system nodes store only a subset of the full dataset. A canonical example
is a key-value store that both replicates and distributes data among a set of machines. Replication
provides fault-tolerance, while distribution increases performance as well as the maximum number
of bytes stored in the system. Many NoSQL storage systems (e.g., [164, 205, 227, 229, 239, 242,
333, 396] to cite a few) abide by such a design.

This section presents the context and general problem of partial replication, as well as our
contributions to that matter. We first provide some historical background on the problem, link-
ing it to distributed transactions and group communication primitives. Then, we present partial
state-machine replication (PSMR) which, much like SMR, provides an intermediary abstraction to
construct linearizable shared objects. We relate PSMR to the two notions of service partitioning
and disjoint access parallelism. Further, we cover several PSMR protocols and lists some of their
limits. This section closes with a characterization of the minimal synchrony assumptions under
which PSMR is solvable.

3.1 Background

3.1.1 Motivation

Modern computing infrastructures are massively distributed, with billions of interconnected ma-
chines and devices. In these infrastructures, replication plays a key role by providing two funda-
mental properties. First, replication hides failures (whether they be hardware or software faults),
allowing distributed services to be always on, or highly available. This is a pivotal property for
the modern Cloud. Besides that, replication also permits to move data closer to its customers
(for instance, a cache for web pages). Replication improves performance by cutting latency and/or
providing additional computing power to process data.

Partial replication (PR) occurs when the machines in the system do not hold the dataset in full.
Such a situation takes place when the dataset is too large to fit in, e.g., a petabyte-scale key-value
store. In that case, data is sharded (aka., partitioned) across multiple machines. A central index
(such as the metadata server in HDFS [211]) can help to locate which machine is holding what.
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1 T(x) :=
2 y ← read(x)
3 write(y,42)

(a) Interactive

1 void raiseAllSalaries(int r,
DataStore<String, Employee>
store) = {

2 store.newQuery().build()
3 .list().stream().map(
4 e -> {e.raise(a);}
5 );
6 store.flush();
7 }

(b) One-shot (Apache Gora [375])

1 db.pizzas.insertMany( [
2 { _id: 0, type: "pepperoni", size:

"small", price: 4 },
3 { _id: 1, type: "cheese", size: "

medium", price: 7 },
4 { _id: 2, type: "vegan", size: "

large", price: 8 }
5 ] )

(c) Bulk write (MongoDB [201])

1 T1(x) :=
2 y ← read(x)
3 run(new T2(x, y))
4
5 T2(x, y) :=
6 y1 ← read(x)
7 if y1 6= y then
8 abort()
9 else

10 write(y,42)

(d) Non-interactive

1 doubleCAS(a,u,v,b,x,y) :=
2 tmp ← read(a)
3 tmp2 ← read(b)
4 if tmp = u and tmp2 = x then
5 write(a,v)
6 write(b,y)
7 return 0
8 return 1

(e) Two-phase

1 insert into cycling.cyclist_name (id,
lastname, firstname)

2 values (7bd2, ’knetemann’, ’roxxane’)
3 if not exists;
4
5 update cycling.cyclist_name
6 set firstname = ’roxane’
7 where id = 7bd2
8 if firstname = ’roxxane’;

(f) Lightweight (CQL [205])

Figure 3.1: Various classes of transactions in different programming languages and frameworks.
Sub-figures (b), (c) and (f) are actual examples taken from tests and/or the documentation. Sub-
figures (a), (d) and (e) are in pseudo-code.

Another popular approach is to use (a variation of) consistent hashing [81], that allows to compute
locally the owners of a data item. PR may also happen “naturally” because data is spread across
several geographical locations. This situation is common nowadays with global services serving
thousands to millions of clients around the globe [225]. A client operation can require the freshest
version of a data item to execute (e.g., when booking a plane ticket). Depending on the locality
of the workload and the spread of the access distribution, the item is replicated at some of the
datacenters, but not all.

A first and foremost starting point to understand PR is the locality property of linearizability.
Indeed, Herlihy and Wing [45] prove that linearizable objects are composable. Hence, when there
is no invariant across partitions (shards), the overall system is consistent provided it is consistent
per partition.1 In that case, we can divide and conquer the PR problem: maintaining each data
partition consistent is enough.

However, in the general case this is not sufficient. If an operation crosses the boundaries of two
partitions, it is commonly expected that the operation is atomic, that is its effects at each partition
should happen all, or none of them. Moreover, as in the single partition case, commands should be
consistent across all partitions. A property termed isolation in database systems community (the
“I” in ACID). We are interested with this general formulation of the PR problem here.

1Such a property is not free with other consistency criterion, e.g., sequential consistency [64].
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3.1.2 Early days

The question of data replication is raised after the introduction of packet switching networks [2].
Researchers and engineers propose protocols to maintain the database constraints at each replica,
and across them [7, 9]. Early consistency criteria require, e.g., that replicas converge eventually
toward the same state [6].

Two key approaches, primary-copy and distributed locking, quickly emerge. In primary-copy
replication, transactions are applied locally at a leader replica and then propagated to secondaries
(backups). This approach is principled by Alsberg and Day [6] in a geo-distributed protocol à la
chain replication [126]. Distributed locking consists in taking appropriate locks at the replicas,
before applying the transaction [26]. One first such solutions is the protocol of Ellis [8]: replicas are
organized into a ring, each transaction circulates in the ring, grabbing a (database-wide) lock at the
replica, and once it returns to its originator, the transaction is executed everywhere. Garcia-Molina
[11] refines this protocol to take only the necessary locks at each replica, improving parallelism.
Such a variation works for non-interactive transactions, that is transactions whose variables do not
depend from the result of a read within the transaction. Figures 3.1a and 3.1d illustrate respectively
an interactive and a non-interactive transaction.

Quorum-based replication is introduced in [12]. Abbadi and Toueg [36] design an extension to
the PR case built atop the view synchrony paradigm [27]. The protocol is very conservative in
the sense that two conflicting transaction are likely to abort both. The same restriction happens
in [119]. This replication protocol exchanges transactions in the background (via gossip) between
partial replicas of a database. If two concurrent conflicting transactions are detected, they have to
abort and restart.

Exception handling is common in programming languages. For databases, it takes the form of
an abort statement, which essentially transforms the transaction into a no-op (transaction T2 in
Figure 3.1d is an example). In modern terms, transactions belong to the larger class of abortable
objects [253]. When a transaction executes without aborting, it commits. PR and data sharding
introduces an additional complexity when dealing with aborts: Because execution do not happen
at a single replica, it is necessary that all of the involved replicas agree to commit (or abort) the
transaction. This is the atomic commitment (AC) problem [118]. The seminal two-phase commit
protocol [9] solves AC in a failure-free environment. When failures can be perfectly detected, an
additional third phase is required [217]. The most general (partial-synchrony) case is tricky, as it
requires solving some form of agreement among the replicas. In fact, all of the partially-synchronous
AC protocols designed in these early days of data replication were wrong according to Gray and
Lamport [145].

Bubba [42] is a distributed transactional PR system built with AC and distributed locking.
Each SQL transaction compiles to a dataflow whose distributed execution happens at run-time over
a shared-noting distributed infrastructure.2 Execution occurs using distributed locks followed by
two-phase commit. The system is robust to failures thanks to logging techniques. Nonetheless, if a
failure happens, it must halt until the failed machine restarts. Many seminal database systems that
support PR designed in the 80s and early 90s, follow a similar approach [22, 25, 51, 65].

2Shared-nothing is the de facto standard today. However, at that time (80s-90s), mainframes were the dominant
computing infrastructure.
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3.1.3 Middleware solutions

At the turn of the 21st century, database is already a mature technology with rich capabilities
(such as indexing, fault-tolerance, and query processing.) However, replica control, that is keeping
copies consistent despite updates, in these systems is quite complex. Most text book replication
protocols (e.g., [26]) have low performance and are, therefore, hardly ever used in practice [79].
Typical problems plaguing these solutions are lack of scalability, unacceptable response times, high
deadlock probability, and high network traffic. To solve these problems, several papers investigate
middleware-based techniques. Below, we survey some of these techniques for PR.

Clustered JDBC (C-JDBC) is a database connector for Java that supports PR [121]. Internally,
C-JDBC wires multiple JDBC connectors to replicate a database table across multiple (possibly
heterogeneous) backends. C-JDBC is made fault-tolerant thanks to a logging mechanism and the
JGroups communication library [151]. SI-Rep [116] is also implemented as a JDBC connector. In
this approach, each transaction is first forwarded to a database that executes it tentatively. SI-Rep
then inspects the writeset. If it is empty, the transaction commits right away and the result is sent
back to the client. Otherwise, the transaction is validated to prevent write-conflicts as required by
Snapshot Isolation (SI).

Middle-R [136] is a family of protocols for full replication built atop the seminal Postgres-R
system [98, 138].) For performance, a protocol pipelines execution and ordering of the transactions
using an optimistic delivery signal at the replicas. Middle-R also permits concurrent non-conflicting
transactions to run in parallel while read-only transactions execute against a snapshot. Notice that
this might break serializability because snapshots are not guaranteed to be monotonic [160]. One
protocol in the family allows reordering transaction after they are delivered; this is similar to [120]
which is used in MySQL Group Replication [387]. Such a technique is extended to PR in [109].

3.1.4 Classification and comparison

In [100], and then [101], Wiesmann et al. describe a framework to understand and compare repli-
cation techniques. They distinguish various forms: active, passive, eager, and lazy. In passive
replication, aka. primary backup [194, 207], execution takes place first at a leader replica that then
disseminates the result. This is functionally similar to (eager) primary-copy replication in database
systems, as described above. Executing first permits to support non-determinism, because sending
updates suffices, and a richer programming model (e.g., interactive transactions). In active repli-
cation, operations are first disseminated to the replicas before execution. In the database world,
such an approach is called (eager) update everywhere replication. It encompasses techniques like
distributed locking and mechanisms based on total order broadcast, and timeout (e.g., [135]). SMR
is a form of active replication. However, it can also be adjusted to order operations that are executed
first (like for instance in the database state-machine approach [120]). As common with optimistic
replication, when a conflict occurs, the operations are aborted and have to re-execute. Of course,
this technique weakens the programming model (e.g., I/Os are not always possible). Contrary to
the previous approaches, lazy replication [55] chooses availability over data consistency in the CAP
trade-off [115]. The system answers to the client as soon as possible, and the data replicas are
reconciliated in the background. For conciseness, this thesis does not cover weak consistency in
detail.

The classification in [100] does not mention PR directly. Instead, it considers variations of the
aforementioned techniques when operations are transactions and cannot execute at a single node.
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Interestingly, Wiesmann et al. [100] distinguish database and distributed systems. They argue that
replication in distributed systems is to ensure fault-tolerance, while in database the objective is
to boost performance. With the arrival of the NoSQL movement and cloud infrastructures, both
concerns matter. Wiesmann and Schiper [137] compare the aforementioned replication techniques
in practice. The authors show that distributed locking does not scale with the conflict rate—as
previously diagnosed in [79]. Techniques based on group-communication primitives (e.g., [97, 120])
are the most efficient. We will come back to the pivotal role of such primitives in modern replicated
systems shortly.

The work in [260] presents a framework to decompose deferred update replication (DUR). DUR
encompasses all the techniques where transactions are executed then their updates propagated to
be applied upon commit. DUR improves parallelism because transactions may execute concurrently
at several replicas. This is particularly beneficial to long transactions (e.g., a stock query). On the
other hand, as DUR is inherently optimistic, it is efficient when the workload exhibits a low to
medium conflict rate. When the propagation of updates is ordered, DUR permits to at least one
conflicting transactions to survive and commit. This is better than aborting unilaterally conflicts, as
in e.g., [119]. In the parlance of [172], such an approach is more permissive to correct interleavings
of transactions.

In [208], the authors coin the term genuine partial replication. Genuineness characterizes pro-
tocols in which only the replicas that store items accessed by the transaction take steps to order it.
This prevents bottlenecks to appear in the system, ensuring that such protocols scale better. We
will come back to this notion in greater detail in §3.3.3.

3.1.5 Modern designs

PR protocols propel the data storage systems at core of nowadays computing infrastructures. They
build upon a vast prior art, stretching over a period of roughly 40 years, bridging lessons from
the past and nowadays requirements. In particular, most of these protocols are designed with the
following concerns in mind:

(Elastic Shared-nothing) Commodity servers are the base building blocks of current computing
infrastructures. Most data sets (e.g., AI, OLTP) fits in the main memory of these systems,
which now have a few TBs per machine. PR protocols scale up and down on such infrastruc-
tures, depending on demand.

(Partial synchrony) In these systems, synchrony assumptions are difficult. This comes from the
complexity of the software stack and the use of commodity hardware. Moreover, protocols
are using general-purpose language runtimes and operating systems that are not made for
real-time.

(Non-interactive workload) Application workloads are now automated with very few human
input. As a consequence, transactions are often non-interactive. For instance, Kallman et al.
[177] identifies a large class of real-world applications that are made up of one-shot and/or
two-phase transactions. One-shot means that the transaction can be split into independent
chunks that run in parallel (that is, there is no dependencies among the chunks). Two-phase
means that the transaction can be (re-)written as a sequence of reads followed by a sequence
of writes: Phase one is a collection of queries. Based on the result of these queries, the
transaction may be aborted. If it does not, phase two is executed which consist in queries and
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updates where there is no possibility of an integrity violation. Figures 3.1b and 3.1e illustrate
respectively a one-shot and a two-phase transaction.

(Geo-replication) The very first replication protocols for the early packet-switching networks
are geo-distributed (such as [6]). This comes from the fact that these infrastructures were
connecting machines in different locations. Current trends in distributed applications require
always-on distributed services. As a consequence, it is now common to have storage systems
stretched over several geographical sites, to tolerate failures (or the maintenance) of a full
datacenter. One talks about geo-replication. A canonical example of such systems is Google
Spanner [229].

Part of these design decisions are discussed in [175]. Its authors investigate the architecture of
relational databases from the 90s, and show that they do not match recent needs, workloads and
hardware. In particular, Harizopoulos et al. [175] observe that typical applications have large online
transaction processing (OLTP) volumes. These transactions are non-interactive, short-lived and
access small amounts of data per transaction. They also use heavily indexed lookups (scans are
rare), and the database schema is often a star or a snowflake.

These design considerations are key in the birth of the NoSQL movement, started at the end
of the 2000’s. Many storage systems remove the one-size-fits-all SQL interface in favor of better
scalability and higher availability. They offer limited transactionality, such as single-row transac-
tional, or no transaction at all. Early examples of such NoSQL systems are Amazon’s Dynamo
[154], MongoDB [201], Megastore [214], BigTable [143] and PNUTS [169].

Around the same period of time, the distributed systems community introduces the first prac-
tical systems relying on (partially-synchronous) state-machine replication. Coordination kernels,
such as Chubby [142] and ZooKeeper [203], are designed with the Cloud in mind. These highly-
available systems simplify the task of coordination in replicated and highly-parallel systems (e.g.,
Yarn [268] and HDFS [244]). Coordination kernels have evolved today into cloud-native solutions
such Etcd [381] and Atomix [376] that are built atop Raft [269] and Kubernetes [285]).

3.1.6 Recent solutions

Today, PR protocols follow most of the above design decisions. They are constructed from the
experience accumulated at the end of the 2000’s when, carried by the NoSQL movement, a blossom
of new storage systems appeared. At core, these protocols rely on group-communication primitives
for fault-tolerance and conflict resolution. In the spirit of Wiesmann et al. [100], we may consider
the following two (coarse-grained) classes of solutions:

(Execute-then-Order.) This first class of solutions implements deferred update replication (DUR).
In a nutshell, DUR works as follows: A transaction executes tentatively at one or more data replicas,
buffering writes. Once the transaction commits, and if it succeeds, updates are applied across the
system. Below, we detail some prominent PR protocols that follow such an approach.

Serrano et al. [161] depict a DUR protocol that supports interactive snapshot-isolated (SI)
transactions. When a transaction starts, it gets assigned a timestamp set to the value of the local
clock. This timestamp is used to read consistent versions when executing reads. Each new operation
is forwarded to an appropriate replica where it executes. In case the operation is a write, it starts a
dummy transaction at the replica. Upon commit, a read-only transactions commits right away, while
an update one is atomic broadcast to all the replicas. When delivering such a transaction, a replica
performs a certification test and decides locally to commit/abort the transaction. If the transaction
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commits, the associated dummy transaction commits and the local clock is incremented. In [181],
the authors refine this protocol to make it fault-tolerant. Fault-tolerance is ensured by delegating
commit decision to a distinguished replica, called the certifier. SIPRe [165] bears similarities with the
previous approach: When a transaction starts, a message is atomically broadcast to all the replicas.
This message defines a consistent snapshot for the transaction. Like the above two solutions,
a read-only transaction commits locally without any synchronization. An update transaction is
atomic broadcast to all replicas when it commits, where it is certified locally.

GMU [241] enforces Extended Update Serializability (EUS), a consistency criterion where up-
dates are serializable but queries may disagree on the order in which they take place. To achieve
this, GMU employs a particular vector clock to compute consistent snapshots for read operations.
Read-only transactions commit locally, and GMU commits update transactions with 2PC; all repli-
cas holding an item read or written by the transaction participate in 2PC. P-store [208] supports
interactive transactions. Reads may access any replica holding the appropriate data item. Updates
are buffered locally. Upon commit, the transaction is atomic multicast to all the replicas holding
a data item accessed by the transaction. These replicas votes to commit the transaction if it reads
no outdated data; otherwise it aborts.

Scatter [219] organizes groups of data replicas as a distributed hash table (DHT) [111]. Each
group runs Paxos to maintain its integrity and consistently replicate data. Inside a group, the leader
define primaries that can read locally data with leases. Depending on the load of the subset of keys
a group replicates, it can split, merge with another group or be re-partitioned. A transactions that
touches several data replica groups is implemented with two-phase commit (2PC). Because there is
no concurrency control for these transactions, they execute at the read-committed level of isolation.

Walter [225] generalizes SI to drop the necessity to see globally-monotonic snapshots—a consis-
tency criterion named parallel snapshot isolation (PSI). Internally, this PR protocol uses a primary-
copy approach and 2PC. Walter is tailored for geo-replication, each data item having a primary
site. When a transaction starts, the local site assigns a vector of timestamps to the transaction
to define its snapshot. An update transaction commits either in the fast or the slow path. If the
transaction only modifies local items, it uses the fast path and commits if there is no write-conflicts
with an already committed transaction. Otherwise, the transaction takes the slow path and Walter
executes a (geo-distributed) 2PC protocol. Once a transaction is committed, it is propagated in the
background to all the concerned replicas before it becomes visible.

Jessy [246] weakens PSI to permit reading versions created after the start of the transaction.
The associated consistency criterion is called non-monotonic snapshot isolation (NMSI). To commit
a transaction, Jessy uses atomic multicast followed by a voting phase. (A 2PC-based variation is
also presented and evaluated in [260]).

Before going further, we note here that there are vivid debates [274, 307, 374] over the definition
of snapshot isolation (SI), its generalization (GSI), and the more permissive versions that are PSI and
NMSI. This comes from the fact that various specifications and/or variations have been proposed
over the years, with different system models in mind. Elle [342] is a software based on Jepsen [386]
to verify that a database implements a given transactional consistency criteria. The verification
uses the graph-based specification of a consistency criterion proposed by Adya [89].

Spanner [229] is a geo-distributed transactional data store that follows the DUR approach.
Each partition (tablet in [229]) is replicated with Paxos. When a transaction is submitted, Spanner
timestamps it using synchronized clocks that rely internally on the GPS signal (TrueTime API).
Writes are buffered locally while reads happens at the leader replica (of the concerned partition),
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taking locks there. At commit time, Spanner executes a fault-tolerant 2PC among the Paxos leaders
of the partitions concerned with the transaction. During 2PC, each participants locks the items
updated by the transactions. The protocol then assigns a second timestamp to the transaction.
Commit happens once this timestamp has passed everywhere in the system. If the transaction
commits, its updates are propagated and applied at the appropriate partitions. The timestamps
also allow to execute lock-free (strongly-consistent) queries.

Researchers [328, 357] have studied how to reduce the time complexity at commit time in
Spanner. The design of Spanner has also inspired many follow-up works, some of them reaching
the level of industrial-grade systems such as YugabyteDB [396]. CockrochaDB [348] relies on Raft
(instead of Paxos) to implement each partition. Much like Spanner, this system uses leases to
execute fast strongly-consistent reads at the leader. For transactions crossing partitions, Cockroach
offers serializability, but not strict serializability as Spanner. Nonetheless, clients that stick to the
same replica are ensured to see transactions in the order they execute them (that is, they have
session guarantees [70]).

(Order-then-Execute.) This second class of PR protocol orders transactions a priori, before
attempting to execute them at the concerned partitions.

Built atop the seminal observations in [175], H-Store [177] kick-starts the NewSQL movement
at the end of the 2000s. This database system is designed at core for in-memory computing atop
a cluster of shared-nothing machines. Transactions are non-interactive, written as a sequence of
stored procedures, each targeting a single partition. At each machine, a partition is assigned to
a single-threaded execution engine, run by one (or more) CPU cores. As noted by Cowling and
Liskov [230], the original H-Store paper [177] does not provide a functional protocol for coordinating
transactions. In a follow-up work, Jones, Abadi, and Madden [204] describe a PR protocol that
relies on a central coordinator to order and forward transactions to the appropriate partitions. Each
partition is replicated using primary-backup, and commit/abort happens using two-phase commit
(2PC). This protocol logic is implemented in the C++ prototype [383].

A second example of such protocols is Calvin [245]. Calvin offers to the programmer a non-
interactive transactional API for two-phase transactions. At regular intervals, input transactions
are ordered with the help of a deterministic merge function, named sequencer. This sequencer is
implemented as a fault-tolerant service atop Paxos. The merge output defines an order used to
deterministically execute the different parts of the transaction across the system. At each partition,
execution is identical thanks to a deterministic locking manager. The design of FaunaDB [394], a
relational geo-distributed database, follow the one of Calvin.

Granola [230] resembles to Calvin in the sense that the system is also tailored for two-phase
transactions. However, this system is even more restrictive, as it solely supports one-shot transac-
tions. This means that there is no dependency among transaction chunks, except at most a single
abort/commit message. This class of transactions is illustrated in Figure 3.1b. In Granola, each
transaction is timestamped using a Skeen-like atomic multicast protocol: each partition computes
a timestamp for the transaction, and the highest one among all is chosen. This schema is made
fault-tolerant with Paxos, in a manner similar to [104] and [195].

CorfuDB [249, 250, 313] is a distributed storage that provides strongly-consistent shared objects.
Objects can be composed into transactions that are executing against multiple partial replicas.
Transactions are opaque [174], that is a transaction reads always a consistent snapshot even if it
aborts, and committed transactions form a sequential execution that respects real time. CorfuDB
offers a convenient Java API that allows the programmer to indicate whether a method is a mutator,
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an accessor, or a mix of the two. This indication is used to execute client operations at lower
cost, e.g., using leases for reads (accessors). The PR protocol in CorfuDB relies on a central
sequencer to order operations. In spirit, this is similar to timestamp-based transactional memory,
such as TinySTM [171]. CRESON [311] is a a storage system whose functionalities resemble to
the ones of CorfuDB. It permits to create custom shared Java objects, compose them, and decorate
their methods that are accessors for higher performance. Each object is linearizable and partially
replicated for fault-tolerance. Internally, CRESON relies on SMR which is implemented atop a
novel NosQL abstraction called listenable key-value store.

Janus [296] extends the leaderless Egalitarian Paxos (EPaxos) protocol to the PR case. This
protocol targets one-shot transactions, written as stored procedures, similarly to Granola. To
commit a transaction, Janus runs the same steps as EPaxos at each partition. Upon commit,
the protocol computes the transitive closure of the dependency relation across all partitions, to
complete locally the dependency graph. Transactions are run like in EPaxos, that is in the order
defined by the graph, synchronizing partitions where necessary. The authors of Janus [296] compare
extensively their protocol against prior art, including MDCC [254], Tapir [282] and the approach
in Spanner, that is 2PC over Paxos. They show that Janus is consistently faster in a range of
micro-benchmarks and benchmarks (including TPC-C [392])

Summary

For about two decades, storage systems (transactional or not) are built atop shared-nothing infrastruc-
tures of commodity servers. These systems replicate data for higher availability and fault-tolerance
sometimes over several geo-distributed locations. Strong consistency is becoming a de facto standard
in these systems as it simplifies the life of the programmer. It is implemented with the help of a
replication protocol that relies on some form of state-machine replication (SMR), using underlying
deterministic components (e.g., a single threaded execution in H-Store [177]). Partial replication
(PR) is used both to increase performance by parallelizing accesses, and to store more data. When
consistent operations across partitions are required, storage systems implement transactions. Modern
applications (e.g., OLTP) that use these systems execute mostly non-interactive transactions.

3.2 Partial State-Machine Replication

From a system perspective, we notice a discrepancy between the single and multi-partition case:
SMR defines a replication protocol, upon which one can implement linearizable objects, while trans-
actions are client-level abstractions. In other words, we lack an intermediary abstraction for PR
that would help to build correct-by-design protocols. In this section, we try to bridge this gap with
the notion of partial state-machine replication.

3.2.1 Definition

Partial state-machine replication (PSMR) is defined in [350]. In this generalized version of SMR,
each process replicates only part of the service state. With more details, the service state is divided
into partitions, so that each variable defining the state belongs to a unique partition. Partitions are
arbitrarily fine-grained; for instance, just a single state variable. Each command accesses one or
more partitions. A process replicates a single partition, but multiple processes may be co-located
at the same machine. We write Pp for the set of all the processes replicating a partition p, Pc for
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the set of processes that replicate the partitions accessed by a command c, and P for the set of all
processes.

A PSMR protocol allows a process i to submit a command c on behalf of a client. For simplicity,
we assume that each command is unique and the process submitting it replicates one of the partitions
it accesses: i ∈ Pc. For each partition p accessed by c, the protocol then triggers an upcall
executep(c) at each process storing p, asking it to apply c to the local state of partition p. After
c is executed by at least one process in each partition it accesses, the process that submitted the
command aggregates the return values of c from each partition and returns them to the client.

PSMR ensures the highest standard of consistency of replicated data – linearizability [45] – which
provides an illusion that commands are executed sequentially by a single machine storing a complete
service state. To this end, a PSMR protocol has to satisfy the specification that follows. Given two
commands c and d, we write c 7→i d when they access a common partition and c is executed before
d at some process i ∈ Pc ∩ Pd. We also define the following real-time order: c d when c returns
before the command d was submitted. Let 7→ = (

⋃
i∈P 7→i) ∪ . A PSMR protocol ensures the

following properties:

(Validity) If a process executes some command c, then it executes c at most once and only if c
was submitted before.

(Ordering) The relation 7→ is acyclic.

(Liveness) If a command c is submitted by a non-faulty process or executed at some process, then
it is executed at all non-faulty processes in Pc.

Ordering ensures that commands are executed in a consistent manner throughout the system.
For example, it implies that two commands, both accessing the same two partitions, cannot be
executed at these partitions in contradictory orders.

As expected, when there exists a single partition, PSMR boils down to SMR. Indeed, the
difference with §2.1 is purely cosmetical. Instead of appending a command to the local copy of the
log, it can be executed. Conversely, calling execute(c) in PSMR can append c to a local log. In more
formal terms, the two abstractions are strongly equivalent: local computation suffices to reduces
one to another. (We write A � B when we may use B to implement A with only local computation.
A and B are strongly equivalent when A � B and B � A.)

PSMR allows to process commuting commands in parallel in many cases, e.g., if two commands
access unrelated data items in a storage system. However, PSMR does not capture commutativity
in general. For instance, two concurrent increments over the same variable are needlessly ordered
by PSMR. A simple fix is to modify the definition of 7→ to track conflicts, as with LSMR (§2.2).

3.2.2 An example

To illustrate the above, consider Infinispan [239]. This key-value store implements a concurrent
map: operation put(k, x) associates x to the key k, get(k) returns the last value associated with k,
and remove(k) deletes any association with k. Each PSMR partition corresponds to a namespace,
or cache in Infinispan parlance. Within a given cache, operations are executed exactly once, and in
the same order at all its replicas. These two properties are captured by the PSMR abstraction.

Infinispan also supports the (so-called) distributed caches, where data within a cache is replicated
following a consistent hashing strategy [81]. Because partitions are arbitrarily fine-grained, PSMR
can also model this configuration of the system. In that case, a key corresponds to one partition.
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1 transfer(x,y,α) :=
2 t=get(x)
3 put(x,t-α)
4 t=get(y)
5 put(y,t+α)

i {a}

j {b, c}

k {a, c}

submit(t)

execute(t)

submit(t′′)

execute(t′′)

submit(t′)

execute(t)

execute(t′′) execute(t) execute(t′)

7→= {t′′  t′,
t′′ 7→j t,
t′′ 7→k t,
t 7→k t

′}

Figure 3.2: Using PSMR in a banking application. From left to right, the command
transfer(x, y, α), an example run, and the order relation ( 7→) in this run.

Additionally to the CRUD operations over a map, Infinispan provides transactions—including
JTA ones from the J2EE standard [257]. Figure 3.2 illustrates such transactions in the context
of a simple bank application. Operation transfer(x, y, α) moves an amount α of some asset
from account x to y. Implementing this operation in Infinispan in depicted in Figure 3.2(left).
Figure 3.2(middle) presents a (failure-free) run during which three concurrent transfers take place:
t = transfer(a, b, $10), t′ = transfer(b, c, $5), and t′′ = transfer(c, a, $3) These transactions
are executed in different orders at the processes i, j, and k. Process i replicates account a, j
replicates both b and c, while k replicates a and c. The ordering relation 7→ in this run appears in
Figure 3.2(right). Since 7→ is acyclic, this (partial) run is sound for the PSMR abstraction.

3.2.3 Programming with PSMR

PSMR is expressive enough to cover a wide spectrum of programming models. Figure 3.2(left) is an
example of one-shot transaction. This type of transaction consists of independent pieces of code,
such as stored procedures, each accessing a different partition [267]. A typical example of one-shot
transactions is a query against multiple data structures (e.g., a set of relational tables) [177]. A
batch of updates is another form of one-shot transaction. Figure 3.1c illustrates this case with the
bulk write API of MongoDB [201, 385]. One-shot transactions are frequently executed in modern
web services [295]. Implementing this class of transactions with PSMR is straightforward: each
command defines the piece of code it executes at a given partition.

In [185], the authors introduce mini-transactions which consists of reads followed by conditional
writes. All the conditions must be true for the writes to execute. Lightweight transactions in
Apache Cassandra [205] are a similar abstraction written in the Cassandra Query Language (CQL).
Figure 3.1f illustrates this class of transactions using CQL. Each statement is restricted to a single
partition. These transactions provide a restricted form of conditional updates to the programmer.
Notice that for both types of transactions (mini and lightweight) data items are known in advance
by looking at the source code; that is, these transactions are non-interactive. PSMR may also
implement non-interactive transactions. In that case, as explained in [296], the execution of a
transaction at each partition is deferred until its dependencies (e.g., the content of a variable) are
known.

The most general type of transactions are interactive. In that case, the data items are not
known in advance, as illustrated in Figure 3.1a. It is possible to rewrite transactions of this type
into non-interactive ones, using the technique of Thomson and Abadi [212]. Figure 3.1d illustrates
the transformation of Figure 3.1a into a sequence of non-interactive transactions.

Starting with sagas [30], many proposals exist to transform, or chop, transactions [75]. In
Figure 3.1d, the base idea is to execute the transaction optimistically, buffering its output locally—
this first transaction is called a reconnaissance query in [245]. Once the transaction finishes, the
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side effects are applied at the appropriate partitions, provided that none of the data items the
transaction read in the first phase is outdated. This is the classical termination phase in deferred-
update replication [260]. If any such read fails, the transaction aborts, which usually leads to
a retry. Notice that such a transformation does not work when the transaction contains I/Os.
This limitation also exists with hardware transaction, e.g., with Intel TSX [393]. In such a case,
transactuations [343] offer a possible solution where writes to the outside world are executed after
commit.

3.2.4 Existing solutions

As reviewed above, there are a plethora of distributed transactional systems. Some of them, e.g.,
Granola [230] and Calvin [245], implement PSMR for restricted classes of state-machine commands.
More recently, Bezerra, Pedone, and Renesse [263] proposes a replication protocol that relies on
atomic multicast. This protocol works in two phases: During the first phase a command c is
atomic multicast to all replicas in Pc. Upon delivery, each replica executes c at its local partitions
according to the command’s logic. In case c requires data from a different partition, the replica
blocks expecting an appropriate message from a distant replica. When c terminates its execution,
the replica awaits that, for every partition p of c, a replica in Pp also finishes executing c. This
signaling phase is necessary to maintain linearizability—more details about this shortly.

As mentioned in §3.1.6, Janus [296] adapts EPaxos to the context of PR. To execute some
command c, coord(c) sends c to all the partitions it accesses in the pre-accept phase. In each
partition p, a fast quorum in Pp tries to agree optimistically on the value of dep[c] in p. If this
fails at any partition, coord(c) executes the accept phase of Paxos at all partitions. Agreement
takes place on the union of the dependencies returned in the pre-accept phase by some quorum
in each partition. Once committed, a multi-partition command awaits that it forms a strongly-
connected component in the dependency graph. Notice that at a replica, the transitive closure of
a component might require to inquiry replicas outside of Pc. The work in [182] uses a similar
technique for sharded databases: Each transaction execute optimistically, buffering writes (DUR).
The transaction is then atomic broadcast within each of its partitions. A partition maintains locally
a serializability graph. To certify the transaction, the transitive closure of its serializability graph
is computed across all partitions.

Tempo [350] is an LSMR protocol specifically tailored for PR. The single partition case was
covered in §2.2.5. With multiple partitions, Tempo starts similarly to when there is a single-
partition, except that the protocol now uses one coordinator per partition. Once the command
is committed at each partition, replicas exchange the corresponding timestamps. The command’s
final timestamp is computed as the maximum of these timestamps. A command executes once it is
stable at all the partitions it accesses. As in the single partition case, commands are executed in
timestamp order.

Built upon Atlas [337], Tempo is efficient when simultaneous failures are rare. In Tempo, each
partition is replicated at r processes, of which at most f may fail. Following Flexible Paxos [289],
f can be any value such that 1 ≤ f ≤ b r−12 c. This allows using small values of f regardless of
the replication factor r, which is appropriate in a geo-distributed setting [229, 350]. Tempo uses
fast path quorums of bn2 c + f processes. As detailed in §2.2.5, such an assumption makes sense
when data replicas are independent (e.g., in a geo-distributed system). In this context, failures are
uncorrelated and considering small values for f makes sense.

Accord [377] is built with different assumptions in mind, where replication happens also within
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each data center. Consequently, it matters that the protocol survives a higher number of faults.
Accord is the new replication layer at core of the upcoming version 5 of Apache Cassandra, a popular
distributed data store [205]. The protocol achieves the highest availability (f < r/2 per partition)
thanks to a complex recovery procedure, akin of EPaxos’. As indicated in §2.2.5, a bug was found
in an early version of this procedure [390].

3.2.5 Related work

In the definition of PSMR, a command is projected over a partition, where it defines its effects there.
For instance in Figure 3.2(left) , transfer(x, y, α) projected over account a leads to: t← get(a);
put(a, t+α). A dual take is to consider that a command is composed of a sequence of sub-commands,
each applying to a partition. This is the proposal of Marandi, Primi, and Pedone [222], in which
they define the notion of state partitioning ordering.

There is a small mistake in [222] that is corrected in [266]. This paper also defines the notion
of consistent partitioning for a service. It formulates two theorems that state when a partitioning is
consistent, that is when commands composed of sub-commands are linearizable. The first theorem
is simply a re-writing of the locality property of linearizability: if there is no invariant linking
partitions, then any interleaving of the sub-commands is correct. The second theorem relies on the
notion of semantic graph. This graph generalizes the serializability graph in database theory: For
some history h, the nodes in this graph are the commands in h. An edge exists between c and d
either if c precedes (in real-time) d in h, or some sub-command of c precedes some sub-command of
d and it does not commute with it. The theorem establishes that a partition is consistent when for
every history h, there exists a linearization l such that the semantic graph induced by l is acyclic.
This second theorem is used to construct Zoofence, a partitioned Zookeeper service.

Service composition for coordination kernel services is also studied in ZooNet [292] and Wan-
Keeper [301]. A follow-up work of [222] is [263], in which the authors define the notion of scalable
state-machine replication (S-SMR). [326] investigate the problem of dynamically partitioning S-
SMR and [373] how to apply this idea to disaggregated memory systems. Unfortunately, S-SMR is
not an intermediary abstraction but an actual algorithm. In all of these follow-up work, proving a
protocol requires to show that it implements SMR.

Summary

SMR is a widely-used notion in distributed storage systems. PSMR offers a similar intermediary
abstraction when data is partially replicated (sharded). In PSMR, partitions are arbitrarily fine-
grained, which permits to capture parallelism in the system. Compared to prior works such as
serializability theory, PSMR also models durability and progress. PSMR is already at work in many
storage systems that implement an Order-then-Execute approach.

3.3 Resolubility

SMR reduces to atomic broadcast, which itself reduces to consensus. In the failure detector model,
consensus requires the Σ and Ω failures detectors to be solvable when processes crashes. This section
answers the same question for PSMR, by first reducing it to the atomic multicast problem.
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3.3.1 Atomic multicast

Atomic multicast (AMcast) is a group communication primitive that allows to disseminate messages
between distributed processes. As mentioned earlier, this primitive is used to build transactional
systems, such as P-store [208]. In what follows, we consider the most standard definition for this
problem [49, 66, 122]. In the parlance of Hadzilacos and Toueg [66], it is named uniform global
total order multicast. Other variations are detailed later.

Given a set of messagesM, the interface of atomic multicast consists of operations multicast(m)
and deliver(m), with m ∈M. Operation multicast(m) allows a process to multicast a message m to
a set of processes denoted by dst(m). This set is named the destination group of m. When a process
executes deliver(m), it delivers message m, typically to an upper applicative layer. Consider two
messages m and m′ and some process i ∈ dst(m) ∩ dst(m′). Relation m i7→ m′ captures the local
delivery order at process i. This relation holds when, at the time i delivers m, i has not delivered
m′. The union of the local delivery orders gives the delivery order, that is 7→= ∪i∈P

i7→. The runs
of atomic multicast must satisfy:

(Integrity) For every process i and message m, i delivers m at most once, and only if i belongs
to dst(m) and m was previously multicast.

(Termination) For every message m, if a correct process multicasts m, or a process delivers m,
eventually every correct process in dst(m) delivers m.

(Ordering) The transitive closure of 7→ is a strict partial order overM.

Integrity and termination are two common properties in group communication literature. They
respectively ensure that only sound messages are delivered to the upper layer and that the commu-
nication primitive makes progress. Ordering guarantees that the messages could have been received
by a sequential process.

If the sole destination group is P, that is the set of all the processes, the definition above is the
one of atomic broadcast.

3.3.2 Relation with PSMR

With an appropriate mapping between partitions and destination groups, atomic multicast and
PSMR are strongly equivalent. In detail, atomic multicast reduces to PSMR when for every partition
p there exists a destination group g with g ⊆ Pp. Conversely, if for each partition p, Pp is a subset of
some destination group g, one may solve PSMR with atomic multicast. However there is a subtlety.
As observed by Bezerra, Pedone, and Renesse [263], the common definition of atomic multicast is
not strong enough for this second reduction: if some command d is submitted after a command c get
delivered, atomic multicast does not enforce c to be delivered before d, breaking linearizability. To
sidestep this problem, a stricter variation must be used. Let us writem m′ whenm is delivered in
real-time before m′ is multicast. Atomic multicast is strict (AMcaststrict) when ordering is replaced
with:

(Strict Ordering) The transitive closure of (7→ ∪ ) is a strict partial order overM.

Notice that strictness is free when there is a single destination group. Indeed, if i delivers m before
j broadcasts m′, then necessarily m i7→ m′. This explains why atomic broadcast does not mention
such a property.

34



Proposition 1. PSMR and AMcaststrict are strongly equivalent.

Proof. (PSMR � AMcaststrict) For each command c, we define a message mc that contains c in its
payload and dst(mc) = Pc. Upon submitting c, mc is multicast. When this message is delivered,
c is unpacked from mc and applied at the local partition. To see why such an implementation is
correct, observe that if c 7→i d then mc

i7→ md. Indeed by definition of relation 7→i, commands
c and d have a common partition, say p, and at process i ∈ Pp, c is executed before d. Hence,
we have i ∈ dst(mc) ∩ dst(md), and mc is delivered first at process i. Similarly, we may establish
that: (c d)⇒ (mc  md). From what precedes, by the acyclicity of (7→ ∪ ) overM, relation
(7→ ∪ ) over Cmd is also acyclic. This shows that the ordering property of PSMR holds. Validity
and liveness then follow respectivly from the integrity and termination properties of AMcaststrict.

(AMcast � PSMR) For each message m, we define a command cm. The state machine is an
automaton that returns message m upon executing command cm. Let G be all the destination
groups induced by the messages inM. We consider a partitioning function P(G) ⊆ 2P such that:
(i) for every destination group g ∈ G, there exists (gi)i ⊆ P(G) with g = ∪igi, (ii) for any two
g, h in P(G), g ∩ h is empty. A process i replicates the (at most single) partition it belongs to.
Command cm accesses all the partitions induced by its destination group. When m is multicast,
cm is submitted to the replicated state machine. Message m is delivered locally when command cm

gets executed. The correctness of such a construction is established as follows: If m i7→ m′ then i
delivers m first from the state machine. Let g ∈ P(G) be the partition i belongs to. Partition g is
accessed by both cm and cm′ , leading to cm 7→i cm′ . Such a relation over the messages also holds
wrt. real time, that is (m m′)⇒ (cm  cm′). Consequently, the strictness of the delivery order
is a consequence of the ordering property of PSMR. Integrity and termination are also maintained
by the PSMR abstraction and our mapping from messages to commands.

From what precedes, we may study the resolubility of atomic multicast in lieu of PSMR. This
is the approach we follow hereafter.

3.3.3 Genuineness

At first glance, atomic multicast boils down to the atomic broadcast problem: to disseminate a
message it suffices to broadcast it, and upon reception only messages addressed to the local machine
are delivered. With this approach, every process takes computational steps to deliver every message,
including the ones it is not concerned with. (As expected, the very same observation can be made
with SMR and PSMR.)

In practice, the above approach does not scale: when messages are addressed to small destination
groups in a large distributed system, atomic broadcast bottlenecks [195] [238]. Guerraoui and
Schiper [104] defines a minimality property to rule out such solutions. In detail, A is a genuine
atomic multicast protocol when it satisfies:

(Minimality) In every run ρ of A, if some correct process i sends or receives a (non-null) message
in ρ, there exists a message m multicast in ρ with p ∈ dst(m).

This definition is appealing because it is unambiguous in a formal sense. In particular, it rules
out naive approach to solve the problem using atomic multicast. However, we also observe that
once a process is in the destination group of a message, it may start helping others. Thus, from a
performance perspective this is not fully satisfactory.
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In [208], the authors try to address this shortcoming with the notion of genuine partial repli-
cation. Similarly to [104], they try to capture the parallelism of a solution to implement PR. The
definition is given for distributed transactional systems that implements DUR. This means that
a transaction executes first without concurrency control then it is certified during a termination
phase.

(Genuine PR) For any submitted transaction T , only database sites that replicate data items
read or written by T exchange messages to certify T .

The work of [350] introduces a similar definition in the context of PSMR.

(Genuine PSMR) Only the processes in Pc take steps to order and execute command c.

At first glance, the above two definitions look better than [104]. Unfortunately, both [208] and
[350] lack a proper formalization.

A possible solution is to use the causal past and future operators introduced in [345]. In
detail, let � and � be respectively the reflexive closure of the happen-before relation (≺) and the
reflexive closure of the converse of ≺. Then, for some run ρ, we note (ρ|c) the sub-sequence of
steps in ρ to submit command c and execute it at the coordinator, that is (ρ| � submitcoord(c)(c)| �
executecoord(c)(c)).

(Genuine PSMR) For every run ρ, for every command c, if s ∈ (ρ|c) then proc(s) ∈ Pc, where
proc(s) is the process taking step s.

Again, this is also not satisfactory. Indeed, some execution paths in (ρ|c) may contain events related
to the ordering of other commands than c.

A recent paper [371] introduces strong genuineness that captures precisely the desired paral-
lelism in a genuine solution. This notion characterizes solutions to the atomic multicast problem as
follow. A run ρ is fair for some correct process i when i executes an unbounded amount of steps in
R. By extension, ρ is fair for P ⊆ Correct(R), or for short P -fair, when it is fair for every i in P .

(Group parallelism) Consider a message m and a run ρ. Note P = Correct(ρ) ∩ dst(m). If m
is delivered by a process, or atomic multicast by a correct process in ρ, and ρ is P -fair, then
every process in P delivers m in ρ.

Group parallelism bears similarity with x-obstruction freedom [312], in the sense that the system
must progress when a small enough group of processes is isolated. A protocol is said strongly-
genuine when it satisfy both the minimality and the group parallelism properties. Similarly, strong
genuineness can be defined in the context of PSMR. In this case, this captures that a command
may progress with only the replicas of the partitions it accesses.

A notion related to genuineness is disjoint-access parallelism (DAP) [67]. DAP demands that
processes operating on disjoint parts of the logical state do not interfere with each other. More
precisely, it is defined in terms of a conflict graph whose nodes are the operations in an execution. An
edge exists between two operations when they conflict, that is they access the same part of the logical
state (such as the same item in a key-value store). Two processes contend when they access the
same base object and one of these accesses is non-trivial (i.e., it modifies the state). DAP demands
that processes contend only if their operations conflict, avoiding any need for synchronization [233].
Ellen et al. [231] prove that no universal construction can be both DAP and wait-free in the case
where the implemented shared object can grow arbitrarily. Many other definitions of DAP exist,
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Genuiness Order Weakest
× Global Ω ∧ Σ [76, 124]√

· /∈ U2 [104]
· · ≤ P [180]
· · µ

[371]
· Strict µ ∧ (∧g,h∈G 1g∩h)
· Pairwise (∧g,h∈G Σg∩h) ∧ (∧g∈G Ωg)√√

Global if F = ∅ then µ ∧ (∧g,h∈G Ωg∩h)
else ≥ µ ∧ (∧g,h∈G Ωg∩h)

Table 3.1: (from [367]) Weakest failure detector for atomic multicast. (
√√

= strongly genuine )

e.g., for transactional memory (TM) [173]. In [186], the authors prove that DAP is not attainable
for TM when read-only transactions make progress without writing the shared memory. The PCL
theorem [315] further generalizes this result to visible read-only (non-interactive) transactions, and a
larger panel of consistency criteria. Following this line of works, [248] studies DAP in the context of
distributed transactional systems. It is shown that DAP and SI are mutually exclusive. To achieve
this, SI is decomposed into three key properties over transactional histories. [248] establishes that
two of these properties cannot be maintained if the transactional system ensures DAP.

3.3.4 Minimal synchrony assumptions

Existing genuine atomic multicast algorithms that are fault-tolerant have strong synchrony assump-
tions on the underlying system. Some protocols (such as [180]) assume that a perfect failure detector
is available. Alternatively, a common assumption is that the destination groups are decomposable
into disjoint groups, each of these behaving as a logically correct entity (as in the proof of Proposi-
tion 1). Such an assumption is a consequence of the impossibility result established in [104]. This
result states that genuine atomic multicast requires some form of perfect failure detection in inter-
secting groups. Consequently, almost all protocols published to date (e.g., [94, 106, 306, 325, 354])
assume the existence of such a decomposition.

A key observation in [371] is that the impossibility result in [104] is established when atomic
multicast allows a message to be disseminated to any subset of the processes. However, when there
is no such need, weaker synchrony assumptions may just work. For instance, when each message is
addressed to a single process, the problem is trivial and can be solved in an asynchronous system.
Conversely, when every message is addressed to all the processes in the system, atomic multicast
boils down to atomic broadcast, and thus ultimately to consensus. Now, if no two groups intersect,
solving consensus inside each group seems both necessary and sufficient. Following this line of
thoughts, the work in [371] characterizes the necessary and sufficient synchrony assumptions to
solve genuine atomic multicast. The results are established when the asynchronous message-passing
system is augmented with unreliable failure detectors [77, 216].

In a nutshell, the characterization in [371] is as follows (see Table 3.1 for a summary): Let
G be all the destination groups and F be the cyclic families in it, that is the subsets of G whose
intersection graph is hamiltonian. The weakest failure detector to solve genuine atomic multicast is
µ = (∧g,h∈G Σg∩h) ∧ (∧g∈G Ωg) ∧ γ, where ΣP and ΩP are the quorum and leader failure detectors
restricted to the processes in P , and γ is a new failure detector that informs the processes in a cyclic
family f ∈ F when f is faulty.

Regarding strongly-genuine atomic multicast, [371] establishes that µ ∧ (∧g,h∈G Ωg∩h) is the
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weakest when F = ∅. The case F 6= ∅ is a bit more intricate. First of all, [367] observes that in
this case the problem is failure-free solvable: given a spanning tree T of the intersection graph of G,
we can deliver the messages according to the order <T , that is, if m is addressed to g intersecting
with h, h′, . . . with h <T h′ <T . . ., then g∩h delivers firstm, followed by g∩h′, etc.3 A failure-prone
solution would apply the same logic. This is achievable using µ ∧ (∧g,h∈G Ωg∩h) ∧ (∧g,h∈F 1g∩h),
where g ∈ F holds when for some family f ∈ F , we have g ∈ f, and 1P is the indicator failure
detector that signals if all the processes in P are faulty or not. (Q) It is conjectured in [367] that
this failure detector is the weakest.

Summary

PSMR is equivalent to the strict atomic multicast problem. As a consequence, the solvability of
PSMR follows from the one of atomic multicast in partially-synchronous systems. There is a range
of protocols to solve this last problem. A genuine protocol relies only on the destination group of
a message to deliver it. Conversely, a non-genuine solution may use additional processes outside
the destination group. A protocol is strongly-genuine when a message can progress with just the
destination group taking steps. All of these approaches have distinct minimal synchrony assumptions.

3Strictly speaking, a spanning tree is required per connected component of the intersection graph.
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Chapter 4
On Agreeing in Shared Memory

Previous chapters underline that distributed agreement (consensus) is a central problem when data
is replicated. This chapter studies consensus, with a focus on the shared-memory model. First, we
consider the conditions under which this task, and some of its key variations, are solvable. Then,
when a solution exists, we discuss its cost in terms of time and space complexity. As previously,
our contributions on these questions are put in perspective with respect to existing works.

4.1 Computability

4.1.1 The FLP impossibility

Charting the boundary between solvable and unsolvable tasks is a central topic in distributed
computing literature. Maybe the most acclaimed result on this matter is the FLP impossibility
result by Fischer, Lynch, and Paterson [21]. FLP [21] establishes that (binary) consensus is not
possible even if a single process may fail in an asynchronous message-passing distributed system.
The result of Loui and Abu-Amara [32] extends FLP to the shared-memory model. In this model,
the impossibility also holds when n > 2 processes have access to test-and-set but only two values
can be stored in a memory cell.

An interesting path to obtain FLP is the Borowsky-Gafni simulation, or BG simulation [58].
An algorithm is f -resilient, with 1 ≤ f ≤ n− 1, if it solves some problem even in executions where
up to f processes crash. The BG simulation permits a (f + 1) distributed system that supports
f failures to wait-free simulate a f -resilient system of n > f processes. As a consequence, a proof
about the impossibility of consensus in a 2-processes shared-memory system gives us the result in
[32]; this is much simpler. In other words, the BG-simulation tells us that computability questions
with f crash failures reduce to wait-free computability questions with (f + 1) processes.

In [43], the author introduces a natural generalization of consensus, called k-set agreement. In
this task, each process proposes a value and it is required that each correct process decides on a
value proposed by a process and at most k distinct values are decided. For k = 1, k-set agreement is
exactly consensus, and for k = n, the number of processes in the system, k-set agreement is trivial,
since every process can decide its own proposed value. Chaudhuri [43] shows that k-set agreement
can be solved by a f -resilient asynchronous algorithm, when f < k. This means that if the number
of failures is strictly smaller than the number of possible decision values, then k-set agreement is
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solvable. Chaudhuri [43] also conjectured that k-set agreement is unsolvable if f ≥ k. For the case
k = 1, this conjecture matches FLP, namely, 1-set agreement, with a single crash failure. Notice that
for the wait-free case, i.e., f = n− 1, this conjecture says that only the trivial n-set agreement task
has a wait-free solution. [58], [61], and [63] prove the wait-free case of Chaudhuri’s conjecture. These
three papers all use topological arguments, linking the fields of algebraic topology and distributed
computing [90]. (This nature is “palpable” in earlier works that rely on combinatorial arguments,
such as [48].) The work in [58] also proves that the f -resilient case follows from the impossibility of
the wait-free case. To this end, the authors introduce and use the BG simulation presented earlier.

4.1.2 About progress

An important observation is that the FLP impossibility proof breaks liveness but not safety. In
fact, consensus is obstruction-free solvable when enough processes are correct. Obstruction-freedom
requires that a process makes progress when it runs in isolation. The work in [314] considers the
case of anonymous processes, that is processes without identities that execute the exact same code.
This paper shows that n multi-writer multi-reader (MWMR) registers of unbounded values are
enough for any colorless task that is obstruction-free solvable with identifiers and any number of
registers. Colorless tasks are the ones that do not involve some kind of symmetry breaking argument
[298], in contrast to e.g., the renaming problem [69].

In [220], the authors classify liveness properties along two dimensions. First which methods of
the shared object progress, one or all of them. Second, how benevolent the scheduler is in this
task—the scheduler is sometimes called an adversary [4]. Taubenfeld [312] introduce x-obstruction-
freedom which requires the system to progress when at most x processes are taking steps. The k-set
agreement problem is x-obstruction-freedom solvable when x ≤ k. A matching algorithm for x ≤ k
that uses (n− k + x) shared MWMR registers is detailed in [314].

Let us note that in message-passing systems, safety can also always be maintained as long as
a quorum of processes is correct [124]. This comes from the fact that a shared memory can be
implemented with the help of a space-bounded simulation in these systems [71]. (As a consequence,
the impossibility in the 2-processes shared-memory case of consensus implies FLP.) Conversely, if
the system can be partitioned, this construction is not attainable, as shown in, e.g., the proof of
Brewer’s conjecture [115].

4.1.3 Solutions for agreeing

Randomized protocols can solve consensus with probability 1, where deterministic protocols fail.
The seminal algorithm of Ben-Or [15] is a randomized consensus protocol for Byzantine message-
passing distributed systems. The protocol tolerates up to 5f < n failures and has exponential
expected running time—this reduces to constant time when f ≤

√
n. Bracha and Toueg [20] show

that randomness does not help with handling more failures in the distributed case: For crash failures,
at most bn−12 c faults are tolerated. This reduces to b

n−1
3 c when processes are byzantine. Both lower

bounds are tight, and Bracha and Toueg describe matching protocols for the two cases.
Aspnes and Herlihy [41] describes a randomized algorithm for shared memory, in which pro-

cesses reach agreement after (in expectation) O(n4) total operations. The authors start from an
exponential algorithm and refine it into a polynomial one using a (weak) shared coin. The coin is im-
plemented with the help of an atomic counter. The Lambda of consensus [125] is a safe-agreement
object that abstracts the round structure of many consensus protocols. The implementation of
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Lambda using randomness in [125] is essentially the crash-tolerant algorithm in [20].
More recently, the DAG-rider distributed protocol [353] relies on randomness to implement BFT

SMR against an adaptive adversary—that is, an adversary who can dynamically corrupt up to t
processes. To avoid equivocation, this algorithm is built atop a reliable BFT broadcast protocol
(such as Bracha’s [29]). Execution is split into rounds, during which each process broadcasts a single
proposal. A process may move to round r + 1 once it has heard from 2f + 1 proposals in round r.
When it moves to round r+ 1, the process chains its new proposal to the 2f + 1 proposals in round
r. Once enough rounds have passed, DAG-Rider decides locally by just looking at the DAG of the
execution and querying a random oracle.

As mentioned earlier in §2.1.2, another approach to sidestep FLP is to use unreliable failure
detectors [77]. The alpha abstraction [156] extracts the safety part of Lambda and captures the safe-
agreement property of round-based consensus algorithms. alpha can be built atop Σ, the quorum
failure detector. This abstraction is designed to be used complementary to Ω, the weakest failure
detector for consensus in shared memory. For k-set agreement, Bouzid and Travers [199] propose
an extended version called alphak, which permits up to k values to be returned across rounds. The
paper also describes an implementation for message-passing systems atop Σk, a generalization of Σ
in which any k + 1 quorums intersect. One can show that Σk is necessary to solve k-set agreement
[188]. Progress in [199] is made with Ωk. This failure detector introduced by Neiger [74] outputs a
sets of k processes that eventually converge to include one non-faulty process.

In message-passing systems, Σn−1 ∧ Ωn−1 is equivalent to the loneliness failure detector (L)
[170]. This detector is the weakest for set agreement, that is (n − 1)-set agreement. (Q) In the
message-passing system model, the weakest failure detector for 1 < k < n− 1 has so far eluded the
community [149, 240].

In shared memory, the weakest failure detector for k-set agreement was found by Gafni and
Kuznetsov [192]. This failure detector is called anti-omega k (¬Ωk). Informally, ¬Ωk outputs sets
of n− k processes such that some non faulty processes eventually never appear in the output; this
is computationally equivalent to the Ωk and vector-Ωk [184] failure detectors.

Other approaches exist to enrich an asynchronous system and make agreement possible. For
instance, the heard-of (HO) model of Charron-Bost and Schiper [190] principles and extends the
round-by-round failure detectors [86]. In this model, a predicate defines what is received and by
who at a each asynchronous round. This is particularly a good fit for agreement because of the
communication-closed nature of these protocols. HO was used successfully to establish formal
verification results about consensus and state-machine replication protocols [287]. In this model, a
necessary and sufficient condition to solve agreement is that a neck round exists, that is a round
during a majority of processes heard of each other.

Several works try to bridge the models in which agreement is solvable. For instance, there are
multiple randomized algorithms (e.g., [159]) to implement leader election. Charron-Bost, Guerraoui,
and Schiper [93] show that a synchronous system is strictly stronger than an asynchronous one
augmented with P , the perfect failure detector. Unreliable failure detectors are appealing from the
perspective of comparing problems [176, 218]. However, they also have clear limitations. One of
them is that processes are still asynchronous, that is there is no upper bound on their processing
speeds. As a consequence, these oracles must have liveness properties that hold asymptotically
forever [200], and not during some period of time (as in, e.g., HO). There is thus a logical gap with
real life since actual computing infrastructures do not satisfy this behavior. (Q) To date, there is
no model of partial synchrony that satisfies both theory and practice on all aspects.
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4.1.4 The consensus hierarchy

Another approach to sidestep FLP consists in adding synchronization primitives, such as compare-
and-swap. A central result on the use of synchronization primitives is [50]. In this paper, Herlihy
studies the relative computability power of synchronization objects. Computability is there defined
in terms of consensus number. An object o has a consensus number of k when it may solve consensus
among k processes, but not with k+ 1. Herlihy [50] proves that objects such as test-and-set have a
consensus number of 2, whereas compare-and-swap has an infinite consensus number. The existence
of an object at each level of the consensus number hierarchy is proved in [54], with the notion
of k-bounded peek queue. An object quite similar, called the k-sliding object, is discovered by
Mostéfaoui, Perrin, and Raynal [320]. At a given consensus level, objects are also comparable. The
works in [283, 316] show that there are infinite hierarchy of deterministic objects at a given level,
each weaker than the next. There are also proposals to consider other hierarchies, such as the one
based on k-set agreement [305].

Kruskal, Rudolph, and Snir [24] as well as Ruppert [82] study read-modify-write objects. Objects
in this class are expressed as a function which first reads the state of the object, then updates it based
on the value read, before returning an appropriate response to the caller. Ruppert [82] establishes
that objects of this class may solve consensus among n processes when they are n-discerning. In a
nutshell, this characterization says that the object is able to discriminate two teams of processes.
This permits to solve the team consensus problem where each team proposes a given value. Team
consensus is stronger than weak consensus [131], a feeble form of distributed agreement, which is
itself stronger than consensus. In weak consensus, processes decides on a common value in {0, 1}
so that there is an execution in which 0 is decided, and another in which 1 is decided.

The implication of the consensus hierarchy is that modern machines need to provide objects
with infinite consensus number. Otherwise, these objects are not universal, that is, they cannot
implement all objects or solve all coordination tasks in a wait-free manner for any number of
processes/threads. This motivates the inclusion of strong-enough synchronization primitives in
hardware. For instance, the instruction set of Intel x86 includes compare-and-swap and test-and-set
[210], ARMv6 processors provide load-and-store exclusives [130], and IBM POWER8 as well as the
Rock processor include a double compare-and-swap on two (non-necessarily contigüous) memory
locations [395].

They are some inherent limitations to the consensus hierarchy. In [50], the consensus number of
an object is defined with respect to an implementation that may use a single instance of the object.
This hierarchy is not robust, in the sense that two close levels k and k + 1 of the hierarchy never
collapse. Jayanti and Toueg [54] show that, in fact, none of h1, hm and hr1 are robust (where r
denotes that read/wrte registers are available and m that multiple copies of an item are available).
The robustness is solely possible in the hrm case, that is when any amount of objects might be
used in conjunction with registers. In fact, robustness was established only for deterministic one-
shot objects [96] and deterministic read-modify-write and readable objects [82]. For some non-
deterministic constructions, the hierarchy is not robust [84, 99]. (Q) The general question whether
the consensus hierarchy is robust for deterministic objects is open.
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Summary

The line between computable and non-computable is thin in distributed computing. For agreement,
it might be crossed by a slight change on either how processes share information, i.e., under which
paradigm, how many of them may fail, and/or under which conditions they make progress. When
agreement is not possible, proposals have been made to augment the system to permit it. There are
several lines of approach, including randomness and failure detectors, each with its pros and cons.
In practice, machines provide hardware support to the programmer under the form of one or more
synchronization primitives. These primitives need to be strong enough to permit arbitrary forms of
coordination in a parallel program. Agreement is a key reference to compare shared abstractions. To
date, the terms of the comparison (e.g., bounded vs. unbounded object copies) are subject to debate.

4.2 Space and Time Complexity

4.2.1 Memory consumption

To avoid the aforementioned problems in comparing shared objects using the consensus hierarchy,
Ellen et al. [336] propose to compare objects based on their ability to implement abstraction-free
consensus. More precisely, this work suggests to use the minimum number of memory locations of
unbounded size which are needed to solve obstruction-free consensus when using different sets of
instructions.

Counting the number of memory locations to implement a higher-level abstraction is a well-
established field of research. A landmark result is [59] which shows that n registers are necessary
for a critical section. The proof invents the (so-called) covering argument: In a nutshell, the idea is
to run the algorithm until a process is poised to write a register. When this happens, this process is
parked and the run further extended by considering other processes until another register is covered.
The previous argument is repeated until the desired number of registers are exhausted.

Several authors investigate the space complexity of obstruction-free consensus (or variations of
it) when only registers are available. Some of these works rely on a covering argument. In particular,
using this technique Fich, Herlihy, and Shavit [85] show that Ω(

√
n) registers are necessary for (non-

deterministic solo terminating) consensus. Despite the existence of a Paxos-like algorithm that uses
exactly n registers (see, e.g., [155]), this lower bound did not improve during two decades. In
a breakthrough result, Gelashvili [278] proved that any consensus algorithm has to access Ω(n)
registers in some execution. This bound is tightened a year later to n − 1 registers by Zhu [299,
360]. The gap between the upper and lower bounds for consensus is closed in [317]. The authors
prove that any x-obstruction-free protocol solving k-set agreement must use

⌊
n−x
k+1−x

⌋
+ 1 or more

registers. Departing from prior approaches that use a covering argument, this bound is established
via a reduction to the impossibility of deterministic wait-free k-set agreement. (The lower bound
also applies to non-deterministic solo terminating algorithms.) In [314], the authors solves x-
obstruction-free k-set agreement with just (n−k+x) atomic registers when processes are anonymous.
(Q) The authors of [317] conjecture that this value is tight. The algorithm developped in [314] can
be seen as a generalization of the leaky register [251]. Intuitively, n− k+ 1 registers allows to store
that many facts, leading to a k-leaky register. For agreement, each fact corresponds to a proposal,
its round, and a flag indicating whether this round is conflicting or not.

The Ω(
√
n) lower bound actually applies to all history-less objects, that is objects which do not
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have a memory of past operations. Ovens [368] establishes a higher Ω(n) bound on all objects of
this class. In particular, he shows that n− 1 swap objects, that is objects which permit to read the
content of a register while atomically writing to it, are necessary.

4.2.2 How fast can processes agree?

Modern computers are multi-core and it is not uncommon today to have 100+ hardware threads on
a server machine.1 At the scale of a socket, cores share various levels of cache (L1-L3) and contend
for the access to the (distant) main memory. The memory model of these modern architectures
is not atomic. Instead hardware designs implement a weaker form of consistency such as PRAM,
cache consistency, and TSO [297]. At a higher level, programming languages also offers various
forms of memory consistency (e.g., [134] for Java). When a program is compiled, the consistency
model of the programming language is mapped to the target machine architecture.

On modern hardware, ensuring consistency of even a single memory word is expensive. In the
worth case, it requires to synchronize all the caches (across one or more sockets) which hold a
copy. This cost hundreds to thousands of CPU cycles [275]. As a consequence, synchronization
may lead to serious bottlenecks in programs. For that reason, programmers tend to avoid where
possible synchronization. This makes memory contention in many practical case a rare event, just
like asynchrony is a somewhat rare event in today’s networks.

As long as the workload exhibits a good locality and fits into the first levels of the cache (≤ L2),
computation takes pace at the speed of the CPU clock. For that reason, one commonly measures
time complexity as a function of the number of non-local steps, that is steps which access the
shared memory. The number of steps required to implement a given abstraction depends on both
the adversary model and the progress condition.

For agreement, several authors look to identify how fast can processes agree when communicating
with just MWMR registers. The seminal algorithm of Aspnes and Herlihy [40] uses a weak shared
coin and runs in polynomial expected time. A bounded variation of this algorithm is presented in
[37, 56]. These algorithms are followed by the works of Saks, Shavit, and Woll [52] then Bracha
and Rachman [53], with respectively O(n3) and O(n2log(n)) total step complexity. Improving
upon these results, [167] proves that the total step complexity of randomized consensus is θ(n2)
in the standard shared-memory model. Besides that, Attiya and Censor [166] show that for every
integer k, the probability that an f -resilient randomized consensus algorithm does not terminate the
agreement within k(n− f) steps is at least 1

ck
, for some constant c. The lower bound also holds for

asynchronous systems, where processes communicate either by message passing or through shared
memory, under a very weak adversary that determines the schedule in advance, without observing
the algorithm’s actions.

As mentioned above, contention in practice is rare. Thus, we can sidestep a (worth-case) lower
bound on time complexity by adjusting the algorithm to the environment. In detail, we mean
here adapting the algorithm to the actual contention on the (shared) memory locations. As an
example, consider the seminal Bakery algorithm of Lamport [5] (or the Boulangerie variation [319])
which solves mutual exclusion using only registers. This algorithm requires to have an upper bound
on the number of processes that may access the mutual exclusion object. First, one could adapt
the algorithm to adjust on the actual number of processes using it. This is possible by using a
snapshot object during the read busy phase of the algorithm. In a second refinement, we may

1In early 2020s, common general-purpose multiprocessors have up to a few dozen cores. A core embeds one or
more hardware threads, each having its own registers, that share execution resources (e.g., the system bus interface).
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add a fail-safe fast path. This is the idea developped by Lamport in [31] where a process running
alone may enter in O(1) steps the critical section. Constructing adaptive implementations of shared
objects is a prolific topic in distributed computing (see, e.g., [102, 112, 141] for adaptive algorithms
implementing respectively a mutual exclusion, a collect, and a lattice agreement object). In that
case, the time complexity becomes a function of the actual contention encountered by the caller of
the object. In some sense, this notion is similar to the one of fast path in SMR (see Chapter 2).

The adopt-commit object is introduced by Gafni [87] in his work on round-by-round fault detec-
tors. This object models an attempt of the processes to agree on some common value, and precisely
captures the cost of the fast path a process takes during a solo run. Aspnes [197] decomposes con-
sensus into a sequence of adopt-commit objects and conciliators, an object that produces agreement
with some probability. Fast paths are further explored in [261] with the notion of conflict detector,
an object that indicates when a section of code is accessed concurrently. The fast path idea of
Lamport is principled under the name of splitter in [69]. In this paper, Moir and Anderson [69] use
the splitter object to solve the renaming problem. The work of Capdevielle et al. [304] generalizes
the splitter to add a value parameter. [270] proposes the notion of grafarius as an abstraction for
weak agreement, with a fast path when a process runs solo or a decision is already taken. Attiya,
Guerraoui, and Kouznetsov [128] study the complexity of solo-fast algorithms, that is algorithms
which execute only read/write operations in the absence of contention.

In this context, a central question is to measure precisely the cost of the fast path. This problem
is partly answered in [361], where the authors present an adopt-commit object that executes the
minimal number of write operations. This work considers that the number of processes (n), their
identities (c), as well as the size of the input set (m) may all vary. Two algorithms are proposed.
One that executes three write operations, a value optimal in the general case. This can be reduced
to two when either m is known and bounded, or n identities are available. In the corner case where
n = 2, and either c = 2 or the input set is finite, a single write suffices. However, this lower bound
is only achievable with large amount of reads. (Q) An interesting open question is how to make
the algorithm adaptive and consume less memory. The second algorithm in [361], called Janus, is
an adopt-commit implementation that executes O(n) operations, including O(

√
n) writes. This last

value is tight when the number of registers in use is bounded and m is unknown—a result proved
previously by Aspnes and Ellen [261].

Summary

Many authors study the time and space complexity of agreement in the shared-memory model. The
conjecture that n registers are minimal for consensus was solved recently. For k-set agreement,
there is still a gap between the best lower and upper bounds. As pointed above, modern machines
provide synchronization primitives that have (often) an infinite consensus number and use a single
memory location. Consequently, theoretical results on the space complexity of consensus are of little
interest with current hardware. Nonetheless, they permit to map and better understand the problem
and its many variations. Regarding time complexity, recent works on the topic focus on improving
speed in the fast path. In practice, this is the common case as programmers avoid to synchronize
threads/processes too often.—because this is just too costly. When contention occurs, processes fall
back to the use of a hardware synchronization primitive. Future processors will always have more
cores. In this context, cache coherency might be too costly and programmers may resort to hand-
written synchronization (as seen e.g., with Intel Xeon Phi). All the theoretical work on the complexity
of agreement can reveal useful to find efficient solutions for these new architectures.
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Chapter 5
Conclusion and Perspectives

In what follows, we provide a summary of the content of this thesis, then we present directions for
future research and close.

5.1 Summary

This habilitation thesis contains three chapters. For each chapter, we detail our scientific contribu-
tions, putting them in the perspective of past and present research for the considered topic. The
content of these three chapters is summarized below:

Chapter 2 details the emergence of the leaderless approach to implement state-machine replica-
tion (SMR). This chapter first provides an historical perspective on SMR, covering key theoretical
and practical results over the last 50 years. The notion of leaderless state-machine replication
(LSMR) is then presented. In this approach, each replica in the system can contact a quorum of
its peers to contribute to the ordering of state-machine commands. Ordering is computed with the
help of a local (possibly cyclic) directed graph, named the dependency graph. This graph grows
monotonically over time when the replica discovers new commands and new ordering dependencies.
Chapter 2 explains how to understand LSMR as a conjunction of two services: a dependency dis-
covery service and a consensus service. Some key performance properties are listed, and the ROLL
trade-off is then established. Essentially, ROLL says that there is no free lunch and that designers
must find a compromise between reliability, latency, and leaderless-ness. Chapter 2 closes with a
survey of different LSMR protocols, detailing the choices that their designers have made wrt. the
ROLL trade-off.

When data is partially replicated at each machine, that is part of the data stored in the system
is copied locally, one talks about partial replication (PR). Chapter 3 starts by explaining the origins
of PR in the first packet-switching distributed systems. PR is also linked to the first database
systems as well as to the atomic multicast communication primitive. Two canonical approaches
exist for PR: Execute-then-Order and Order-then-Execute. SMR belongs to the first category
and it generalizes into partial state-machine replication (PSMR) when replicas do not hold all the
data items. Chapter 3 presents PSMR in detail and underlines the interest of this intermediate
abstraction (wrt. e.g., serializability theory). Several PSMR implementations are then covered.
The chapter closes with a characterization of the minimal synchrony conditions under which PSMR
is solvable in the unreliable failure detectors model.
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The last chapter of this thesis investigates the agreement problem in shared memory. First,
an historical perspective of the problem is provided with a focus on resolubility. Then, Chapter 4
covers the spectrum of solutions using various oracles (failure detectors, synchronization primitives,
and randomness). When the problem is solvable, it has a cost measured in terms of space (memory
consumption) and time (non-local steps) complexity. Chapter 4 presents several related lower and
upper bounds and lists open questions in this area.

5.2 Future Directions

This habilitation thesis already mentions several interesting open problems in the fields of distributed
computing and distributed systems. In the text, they appear with a sign (Q). Page 87 recapitulates
these open questions. Below, we list directions for future research on state-machine replication,
concurrency control, and data consistency.

Modern programming languages all offer support for synchronization and sharing among threads.
Generally, this comes as a library of parallel constructs, e.g., for bulk synchronous parallelism [103]),
synchronization primitives, and (lock-free) linearizable objects [234]. To account for their many us-
ages, these constructs offer a large application interface. From a practical point of view, applications
only use a tiny part of the interface in a piece of code. An interesting question is to evaluate the
actual usage of the interface in a program and where possible provide an efficient ad-hoc imple-
mentation of the construct. To a larger extend, this questions the ability to synthesize concurrency
control and protocols to manage data consistency from high-level invariants. We note here that
some efforts have been already made in this direction (e.g., [262, 288]).

In a near future, two paradigms might impact the way we build applications: serverless comput-
ing and edge computing. In serverless computing, an application is split into short-lived stateless
functions. In edge computing, applications execute at the border of the network, atop low perfor-
mance hardware. The infrastructures supporting these two paradigms are massively parallel. As a
consequence, they need means to support internally synchronization and coordination. In the same
manner as NewSQL was invented to supported OLTP (see §3.1.6), storage systems need to pivot to
support efficiently these new paradigms. For serverless, some recent works investigate microsecond-
scale consensus (e.g., [334]). Such a line of research needs to be further expanded, in particular to
improve cold start, and scalability. Another interesting direction is the use of persistent memory in
future storage systems [355]. For edge computing, a possible approach is to mix weak and strong
consistency. Depending on local synchrony and the availability of a (more powerful) intermittent
cloud, the application might opt for linearizable objects and state-machine replication, or resort to
weakly-consistent objects such as CRDTs [224] that synchronize in the background. The work in
[359] is an initial step in that direction, with the motivation of reducing metadata usage in weak
consistency.

Starting with the pioneering works on lazy replication [46, 78], several researchers investigate
mixing weak and strong consistency. Li et al. [235] invent the decomposition of an operation into a
generator that reads data and computes a response value, and an effector that applies side-effects..
Serafini et al. [209] study if eventually linearizable shared objects are constructable, and under which
conditions. More recently, Unistore [349] describes a fault-tolerant approach to implement a mix of
consistency. To date, these works are mainly considering the problem from a binary perspective:
either an operation is strongly consistent, or not. We believe that there is instead a rainbow of
possibilities here. Of course, one of the difficulties is to expose them in an understandable manner
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to the programmer (e.g., with different execution paths in the program). Another related perspective
is to adjust on-the-fly an SMR protocol, stretching from weakly-consistent to strongly-consistent
operations. Some modules of the protocol might run or halt, depending on the network conditions
and failures. We believe that the k-set agreement problem and abstractions related to it (e.g.,
Σk [188] and k-BO-broadcast [308]) can play an interesting role here.

Replication protocols are complex machineries. Complexity arises from the fact that these al-
gorithms need to cope with both asynchrony and failures. This leads to an exponentially large
number of interleavings that need all to be considered when establishing correctness. As a conse-
quence, many protocols have flaws and mistakes—see, e.g., [300], [347] and [390] for some recently
discovered problems. To prevent them, some protocol designers resort to formal verification such
as model checking [191] and theorem proving [1]. In this area, modularity and intermediary ab-
stractions (such as PSMR) can help to simplify proofs. We note here that there is still a lot to
accomplish on that topic because new protocols are often proved from the ground up. A related
question is the gap between specification and implementation. Of course, some simplifications in
the model are helpful when writing pseudo-code. On the other hand, coding a protocol from its
specification is a tedious task that encounters many new challenges—without mentioning here the
performance aspect. To address these challenges, some works (e.g., [324]) annotate the code with
invariants and predicates that can be verified offline. An alternative path is the use of a domain-
specific language that can be verified, and also compile to actual code. This provides confidence
into an abstraction while offering already some elements of implementation. Many efforts already
exist on that matter. For instance, Quint [388] is a specification language close to a programming
one that transpiles to TLA+ [68] and Apalache [366], a symbolic model checker. A Quint program
is also executable, producing a trace that can be used for unit and randomized testing. Another
example is PSync [287], a partially-synchronous language for fault-tolerant distributed algorithms.

Proving that a distributed protocol always makes progress is difficult. An example is the Raft
consensus protocol for which a liveness bug was found recently [384]. Difficulty arises from the fact
that partial synchrony is a low-level property. In addition, there are many definitions for partial
synchrony, each having its pros and cons, which spreads the effort. As mentioned in §4.1.3, failure
detectors are convenient from a modularity point of view and also to compare distributed problems.
Unfortunately their asymptotical properties are not implementable in real systems. Communication-
closed approaches offer a possible alternative to failure detectors. Yet, not all protocols are express-
ible this way. We believe that there is a need for new appropriate intermediary abstractions. An
example of such is the recent notion of synchronizers for BFT SMR [362].

5.3 Closing Remarks

State-machine replication (SMR) is an essential building block for modern computing infrastruc-
tures. SMR permits to store durably critical data and to construct highly-available distributed
services. In this habilitation thesis, we investigate SMR from both a theoretical and a practical per-
spective. We explore the new class of leaderless SMR protocols, and detail approaches when data is
partially replicated. SMR is closely related to the agreement problem (consensus). We survey key
computability and complexity results about agreement in the shared-memory and message-passing
distributed models. For all these topics, we present our contributions with respect to the state of
the art, list interesting open questions, as well as future research directions.
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Titre : Contributions Pratiques et Théoriques à la Réplication de Machine à États
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transactions

Résumé : La réplication de machine à états est un
des piliers fondamentaux des infrastructures informa-
tiques modernes. Cette technique assure la durabilité
des données et offre une haute disponibilité aux ser-
vices les plus essentiels. Elle est construite à l’aide de
protocoles, tels que Paxos ou Raft, qui permettent de
maintenir les répliques continûment à jour. Cette ha-
bilitation à diriger des recherches présente plusieurs
contributions à la théorie et la pratique de la réplication
de machine à états.

Dans les algorithmes usuels de la réplication de ma-
chine à états, les opérations qui accèdent au service
répliqué sont ordonnées par une machine distincte, ou
leader. Notre première contribution est l’identification
d’une nouvelle classe de protocoles dits sans leader.
Les protocoles sans leader permettent que chaque
réplique progresse indépendamment en contactant
un quorum de ses pairs. Nous introduisons plusieurs
propriétés afin de caractériser cette classe de proto-

coles et nous étudions leurs limites. Par ailleurs, nous
présentons des protocoles efficaces pour les systèmes
géo-répartis s’appuyant sur l’indépendance des fautes.

Quand les données du service sont morcelées entre
les répliques, on parle de réplication partielle. Notre se-
conde contribution est de définir la réplication partielle
de machine à états pour de tels environnements. Là
aussi, nous présentons des protocoles efficaces. Par
ailleurs, nous identifions les conditions de synchronie
minimales qui permette à une telle abstraction d’être
mise en œuvre.

D’un point de vue calculabilité, les systèmes répartis
sont équivalents à ceux à mémoire partagée dans de
nombreux cas pratiques. Notre dernière contribution
consiste en plusieurs résultats sur le coût et les condi-
tions de résolubilité en mémoire partagée de l’accord
et ses variantes (objet adopt-commit, k-accord, et par
extension, la réplication de machine à états).
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Abstract : State-machine replication (SMR) is one of
the cornerstones of modern computing infrastructures.
It ensures the durability of data and provides high avai-
lability to essential services. SMR is built atop distribu-
ted protocols such as Paxos and Raft that keep in sync
the service replicas. In this thesis, we present several
contributions to the theory and practice of SMR.

Our first contribution is to identify a new class of lea-
derless protocols. In typical SMR protocols, all the ope-
rations accessing the service are ordered by a leader
replica. On the contrary, leaderless protocols allow re-
plicas to make progress independently by contacting a
nearby quorum. We introduce several key properties for
leaderless SMR and study some of its limits. We also
contribute new protocols for geo-distributed systems

that leverage failure independence in this setting.

When data is sharded across replicas, one talks about
partial replication. Our second contribution is to de-
fine partial state-machine replication (PSMR) for such
environments. We contribute several efficient PSMR
protocols and identify the minimal synchrony assump-
tions under which such an abstraction is implementable.

Distributed systems are computationally equivalent to
shared memory ones in many practical cases. Our last
contribution consists in several results exploring the
costs and conditions under which agreement (adopt-
commit object, k-set agreement, and by extension
SMR) is solvable in shared memory.
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