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Résumé : La désambiguïsation et l’Entity Linking
sont des tâches où le but est de retrouver le sens
et l’identité d’un mot ou d’une expression au sein
d’un document : par exemple que signifie le mot
“France" dans la phrase “La France a battu le Brésil
3-0 dans la finale de 1998" (un pays ? une armée ?
une équipe de football ? etc.) ? Cette question est
difficile car elle requiert de connaitre le sens des
mots dans leur contexte. Et pourtant, l’Entity Lin-
king est une composante clé des moteurs de re-
cherche type Google, pour la traduction automa-
tisée, le fonctionnement de magasins en ligne, des
assistants virtuels comme Siri ou Alexa, ou même
au fonctionnement de la bourse due à son utilisa-
tion dans des systèmes de négociation automatisés.

L’Intelligence Artificielle Neuro-Symbolique est
sous-ensemble de l’Intelligence Artificielle (IA) qui
est particulièrement pertinent à l’Entity Linking.
Le but de ce sous-domaine est de combiner les
atouts de l’Intelligence Artificielle Symbolique avec
les avancés venant des méthodes basées sur les ré-
seaux neuronaux. Par exemple, un système Neuro-
Symbolique permet à un réseau neuronal d’accéder
à des informations symbolique sur Internet en lui
donnant accès à un explorateur web pour répondre
à des questions plutôt qu’en espérant que le réseau
neuronal ait mémorisé à l’avance tous les éléments
de réponse possible. Cette thèse présente un cor-
pus d’avancé significative pour l’Entity Linking et
l’Intelligence Artificielle Neuro-Symbolique.

En premier temps nous élaborons la première
étude mesurant la performance humaine en Entity
Linking et servant désormais comme référence.

Dans un deuxième temps avons développons
DeepType, le premier système basé sur une re-
présentation d’entité qui utilise la hiérarchie des
concepts présents dans des ontologies fabriquées
par des humains, afin d’entraîner un réseau neu-
ronal profond pour l’Entity Linking. Nous mon-

trons que de remplacer chaque entité par son
emplacement dans une hiérarchie simplifié des
concepts, plutôt qu’en utilisant directement les en-
tités, donne lieu à une représentation plus com-
pacte et ayant un plafond de performance qui un
égale ou supérieure à celui des humains dans notre
étude.

Bien que DeepType établisse un nouvel état de
l’art, le réseau neuronal entraîné n’est pas à la hau-
teur de la performance humaine ni celui du plafond
potentiel de la représentation choisie. Par consé-
quence nous avons créé DeepType 2, la première IA
surpassant l’humain en Entity Lining. Cette avan-
cée est principalement grace aux interactions de
types —une nouvelle façon de representer une en-
tité en observant les relations entre celle-ci et les
autres entités dans un document.

Une limitation restante de DeepType 2 est sa
dépendence des interactions de types sur une on-
tologie structurée (e.g. Wikidata), qui peut conte-
nir des erreurs ou être incomplète dans certaines
langues ou domaines moins représentés sur Inter-
net. Nous proposons une solution à ce problème
dans DeepType 3 en créant une base de Donnée
Relationnelle Neuronale (NeRD) : il s’agit d’une
technique permettant d’apprendre à une IA com-
ment representer des entités par leur relations avec
d’autres entités en se servant de manière équiva-
lente de données structurées ou non-structurées.

A travers ces quatre résultats clés, cette thèse
propose une nouvelle référence humaine pour me-
surer la performance en Entity Linking, et des algo-
rithmes d’IA qui établissent un nouvel état de l’art,
sont les premiers à surpasser l’humain en Entity
Linking, et permettant une meilleur croissance et
generalization vers des nouveaux domaines d’appli-
cations où l’apprentissage dépend sur des relations
implicites entre des concepts.
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Abstract : Entity linking is the task of recovering
the underlying identity of a word phrase a word
in a document : for instance what does the word
“France" refer to in “France beat Brazil 3-0 in the
1998 final" (a country ? an army ? a sports team ?
a football team ? etc.) ? This is difficult as it re-
quires to understand the meaning of the words in
their full context. And yet, Entity Linking is of criti-
cal importance for search engines such as Google,
translation, online stores, in intelligent assistants
such as Siri or Alexa, or even to the stock market
through automated trading systems.

Neuro-Symbolic Artificial Intelligence is a sub-
field of Artificial Intelligence (AI) that is especially
relevant to this task. This subfield seeks to com-
bine the the strength of Symbolic Artificial Intelli-
gence with the recent breakthroughs from Neural
methods, by for instance enabling an AI to browse
the web to answer a question without having to
memorize all the facts ahead of time.

This thesis presents a corpus of breakthrough
advances for Entity Linking and Neuro-Symbolic
Artificial Intelligence. We establish the first bench-
mark to measure human performance at Entity
Linking.

We then develop DeepType, the first system
to propose a representation of entities that takes
advantage of the hierarchy of concepts in human
knowledge bases to train a deep neural network for

Entity Linking. We prove that using our simplified
concept hierarchies rather than the prior entity-
centric approach yields a representation that is
more compact and has a performance ceiling that
is equal or higher to human accuracy.

Though DeepType sets a new state of the
art, the trained neural network is below the per-
formance ceiling and falls short of human perfor-
mance. We thus created DeepType 2, the first su-
perhuman AI entity linker. This feat was achieved
using type interactions —a novel way to charac-
terize entities by studying the relations they have
with other entities in a document.

A limitation of DeepType 2 is the reliance of
type-interactions on structured knowledge bases
such as Wikidata, which are sometimes flawed or
unavailable in low-resource languages. We address
this in DeepType 3, by creating the Neural Relatio-
nal Database (NeRD), a method that teaches the
AI to characterize entities through their relation
with others via structured or unstructured data.

With these four milestone results, this thesis
provides a benchmark to measure performance for
Entity-Linking, and AI algorithms that outperform
the state of the art, are first to achieve superhuman
performance, and enable us to scale and generalize
to other domains where learning implicit relations
between abstract concepts is required.
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Synthesis

Le sujet de cette thèse est de permettre à une machine d’apprendre à se servir
de connaissances préexistantes sous divers format pour comprendre le language
humain. L’arrivée de système tel que ChatGPT ou Siri présente des importantes
opportunités pour que l’intelligence artificielle (IA) ait la capacité d’interagir avec
des humains, et d’accomplir des tâches utiles. Le principal défaut des algorithmes
d’apprentissage utilisés dans la construction de ces systêmes est l’incapacité à
interagir ou acceder à des connaissances externes, sous forme de base de données
structurées ou non structurés (texte, image, audio, etc.). Nous proposons une
solution à ce problème : un corpus d’algorithme permettant à des systemes d’IA
basés sur des réseaux de neurones de pouvoir se servir de connaissances externes,
ce qui permet à l’IA de rester à jour et d’ameliorer sa performance sur des taches
portant sur des connaissances factuelles, comme la désambiguïsation et l’Entity
Linking.

La désambiguïsation et l’Entity Linking sont des tâches où le but est de retrou-
ver le sens et l’identité d’un mot ou d’une expression au sein d’un document : par
exemple que signifie le mot “France" dans la phrase “La France a battu le Brésil
3-0 dans la finale de 1998" (un pays ? une armée ? une équipe de football ? etc.) ?
Cette question est difficile car elle requiert de connaitre le sens des mots dans
leur contexte. Et pourtant, l’Entity Linking est une composante clé des moteurs
de recherche type Google, pour la traduction automatisée, le fonctionnement de
magasins en ligne, des assistants virtuels comme Siri ou Alexa, ou même au fonc-
tionnement de la bourse due à son utilisation dans des systèmes de négociation
automatisés.

L’Intelligence Artificielle Neuro-Symbolique est sous-ensemble de l’Intelligence
Artificielle (IA) qui est particulièrement pertinent à l’Entity Linking. Le but de
ce sous-domaine est de combiner les atouts de l’Intelligence Artificielle Symbo-
lique avec les avancés venant des méthodes basées sur les réseaux neuronaux. Par
exemple, un système Neuro-Symbolique permet à un réseau neuronal d’accéder
à des informations symbolique sur Internet en lui donnant accès à un explorateur
web pour répondre à des questions plutôt qu’en espérant que le réseau neuronal ait
mémorisé à l’avance tous les éléments de réponse possible. Cette thèse présente
un corpus d’avancé significative pour l’Entity Linking et l’Intelligence Artificielle
Neuro-Symbolique.

En premier temps nous élaborons la première étude mesurant la performance
humaine en Entity Linking et servant désormais comme référence.

Dans un deuxième temps avons développons DeepType, le premier système
basé sur une représentation d’entité qui utilise la hiérarchie des concepts présents
dans des ontologies fabriquées par des humains, afin d’entraîner un réseau neuronal
profond pour l’Entity Linking. Nous montrons que de remplacer chaque entité par
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son emplacement dans une hiérarchie simplifié des concepts, plutôt qu’en utilisant
directement les entités, donne lieu à une représentation plus compacte et ayant un
plafond de performance qui un égale ou supérieure à celui des humains dans notre
étude.

Model TAC AIDA

DeepType 3 µ 97.74 97.87
σ ±0.14 ±0.02

Human Oracle 96.86 96.78
DeepType 2 97.48 97.72
DeepType 90.9 94.9
Yang et al. [179] - 95.9
De Cao et al. [29] - 93.3
Févry et al. [42] 94.9 96.7-

Table 1 – L’état de l’art en Entity Linking sur les evaluations TAC and
AIDA (µ± σ, N = 3). La plus haute performance est indiquée en gras.

Bien que DeepType établisse un nouvel état de l’art, le réseau neuronal entraîné
n’est pas à la hauteur de la performance humaine ni celui du plafond potentiel de la
représentation choisie. Par conséquence nous avons créé DeepType 2, la première
IA surpassant l’humain en Entity Lining (Table 1). Cette avancée est principalement
grace aux interactions de types —une nouvelle façon de representer une entité en
observant les relations entre celle-ci et les autres entités dans un document.

Une limitation restante de DeepType 2 est sa dépendence des interactions de
types sur une ontologie structurée (e.g. Wikidata), qui peut contenir des erreurs
ou être incomplète dans certaines langues ou domaines moins représentés sur In-
ternet. Nous proposons une solution à ce problème dans DeepType 3 en créant une
base de Donnée Relationnelle Neuronale (NeRD) : il s’agit d’une technique per-
mettant d’apprendre à une IA comment representer des entités par leur relations
avec d’autres entités en se servant de manière équivalente de données structurées
ou non-structurées.

Cette formulation a pour effet de permettre à un systême de beneficier de
plusieurs sources d’informations et d’eliminer le travail manuel d’organisation et
d’écriture de base de données structurées, ainsi que d’avoir la capacité à ameliorer
sa performance en absorbant un corpus de données de plus en plus large (Figure 1).

A travers ces quatre résultats clés, cette thèse propose une nouvelle référence
humaine pour mesurer la performance en Entity Linking, et des algorithmes d’IA qui
établissent un nouvel état de l’art, sont les premiers à surpasser l’humain en Entity
Linking, et permettant une meilleur croissance et generalization vers des nouveaux
domaines d’applications où l’apprentissage dépend sur des relations implicites entre
des concepts.
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Figure 1 – La performance de DeepType 3’s sur AIDA et la precision
(F1) de RoBERTa-ATLOP + DeepType 3 sur DocRED augmente avec
l’inclusion de plus de données dans la base de donnée. La combinaison
de donnnées structurées et non-structurées augmente d’avantage la per-
formance de DeepType 3.
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Artificial Intelligence (AI) progress has enabled transformative changes to
the world around us. This transformation overhauled industries ranging from

journalism [12, 170], marketing [16], medecine [168, 73, 92], agriculture [11, 26],
transportation [154], to manufacturing [34, 137, 102]. The creative industries are
poised to be impacted next, thanks to breakthroughs in AI generated music [33,
149, 56], images [128, 140, 181], video [148, 158, 62], and 3D [46, 117].

Three factors explain recent progress in AI : 1) massive amounts of data, 2)
exponential growth of computing power, and 3) new Machine Learning algorithms
that leverage the additional data and computation. The explosion of data is linked
to the general availability of digital cameras, the growth of the web, crowdsourced
encyclopedias such as Wikipedia, and the technological infrastructure underpinning
social networks such as Facebook, Youtube, or Twitter. The arrival of program-
mable graphic processing units (GPUs), alongside the ability to perform datacenter
wide computing has also massively increased the amount of computation available
to run a Machine Learning experiment [4]. These shifts in the amount of data and
computation have led to the developments of Machine Learning algorithms that
embrace Richard Sutton’s Bitter Lesson [153] : general methods tend to outper-
form specialized ones in the long run. In computer vision and speech recognition,
filter banks are replaced by pre-training on large datasets, data augmentations, and
deeper neural network architectures capable of discovering better internal repre-
sentations [122, 20]. Natural language processing has also shifted from engineered
features to fine-tuning or querying Pretrained Language Models [19, 23].

Despite these extraordinary achievements, such as super-human performance
at object recognition [59], speech recognition [3, 60], language understanding [91],
or Go [147], the holy grail of AI, human level performance [17, 98, 50], remains
elusive when combining natural language and fine-grained world knowledge.

This milestone remains challenging for several reasons. Firstly, there is insuf-
ficient or inadequate data in these specialized knowledge understanding tasks to
sufficiently feed present machine learning algorithms. Secondly, the knowledge ac-
quired by existing deep learning machine learning solutions grows stale because
they lack access to external resources and human knowledge is usually in symbolic
form while neural network architectures used for natural language processing to-
day deal with distributed representations of words and documents. Thirdly, neural
network architectures have brittle reasoning due to : a) logical fuzziness caused by
operating on distributed representations rather than discrete ones, b) limitations
of memory and state representations that degrade with context length.

In practice, the research sub-area of Neuro-Symbolic Artificial Intelligence aims
to address these difficulties by combining on the one hand distributed representa-
tions and pre-trained neural networks with, on the other hand, an ability access to
symbolic resources. Within the Neuro-Symbolic context, this thesis first introduces
a human performance benchmark focused on a challenging task for present AI sys-
tems, and second presents a strategy to improve the accuracy, sample efficiency,
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and transparency of Neuro-Symbolic systems. This strategy increases reasoning
robustness, while eliminating the manual effort required to integrate symbolic in-
formation in Machine Learning systems, thanks to its ability to leverage existing
resources made by humans (Wikidata), including type hierarchies organizing the
categories of our concepts.

Neuro-Symbolic Artificial Intelligence

Neuro-Symbolic Artificial Intelligence is a subfield of Artificial Intelligence see-
king to combine the strength of Symbolic Artificial Intelligence with the recent
breakthroughs from Neural methods [8, 136, 144]. The combination of symbolic
and neural methods has become the center of attention in the field of Artificial
Intelligence, and its adoption has shown success in areas ranging from graphics to
language understanding. Implicit neural models such as NeRFs [100], combine a
symbolic model of ray casting combined with a deep neural network and learn how
to render an object from any direction. Another family of neuro-symbolic systems
combine neural network language models with external tools such as a physics
simulators [90] or web browsers [105]. Neuro-Symbolic systems are akin to the
emergence of tool use by Artificial Intelligence, and hint at systems that are robust
and adaptive. Despite these early successes, several important challenges remain
to be solved for Neuro-Symbolic systems to fulfill their promise.

Technical Challenges of Neuro-Symbolic Artificial Intelligence

Neuro-Symbolic Artificial Intelligence faces challenges to train neural networks
to manipulate symbols. A first concern, is that direct supervision of Neuro-Symbolic
systems will fail due to the non-differentiability of symbolic operations. With suf-
ficient labeled data, it is possible for the neural network to be trained without
feedback from symbol manipulation using purely supervised training.

The second challenge of Neuro-Symbolic systems is the interaction with ex-
ternal knowledge in symbolic form while neural network architectures used for
processing today deal with distributed representations. There are no general ap-
proaches available yet to enable interfacing with external symbols, however natural
language based systems using pretrained language models have shown promise at
generalizing to new domains and tasks through prompt programming.

The third challenge of Neuro Symbolic systems is that we do not know whether
the knowledge organization most useful to humans is also the best one for use by
a machine. Indeed, in the “The End of Theory" that Chris Anderson announced
[5] there is an assumption that machines can consume data in the same form
as humans. One line of research here involves experimenting with different data
organizations and understanding which lead to higher accuracy on downstream
tasks or are easiest for a machine to learn.
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Neuro-Symbolic Artificial Intelligence
(Chapter 1)

Human Performance Benchmark
(Chapter 2)

Neural Type Systems
(Chapter 3)

End-to-End Type Reasoning
(Chapter 4)

Neural Relational Database
(Chapter 5)

Figure 2 – Outline of the thesis

The focus of this thesis is on addressing these three challenges.

Outline of the Thesis

As illustrated in Figure 2, this Thesis presents four contributions addressing
issues in the quest for human level performance AI. This thesis is structured as
follows :

Chapter I focuses on the formal background of Neuro-Symbolic Machine Lear-
ning problem. Starting with the motivation and context of the work, it then presents
an overview of the state of the art and related work, followed by an introduction to
Neuro-Symbolic Machine Learning (Chapter 1). The introduction next describes
the state of the art for the Natural Language Processing tasks studied within this
thesis : Named Entity Recognition, Part of Speech Tagging, Entity Linking, and
Relation Extraction. Chapters II, III, IV, and V present the four contributions of
this thesis (details below). The thesis concludes with a summary and discussion of
the contributions, and directions for future work.
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Chapter 2 : Human Performance Benchmark We first seek to measure
human Entity Linking performance to obtain a meaningful point of comparison
for the AI. We establish the first Entity Linking human benchmark that measures
human performance and provides a milestone for algorithmic approaches. Specific
challenges of this step include ensuring the right conditions and incentives are in
place to measure peak human capability. This benchmark indicates that existing AI
systems still underperform humans. The results of this benchmark were published
at the AAAI 2022 conference [124].

Chapter 3 : Neural Type Systems In this chapter, we describe in further
detail the problem of Entity Linking within Neuro-Symbolic systems, and present
our two-stage approach : 1) discover a type system that associates types to each
entity to maximize the task objective, 2) use type prediction as a proxy for the
original task objective.

We enable AI systems to represent entities using different levels of abstractions
stored in a type system powered by an external knowledge base. We propose to
either manually design type systems that provide supervision for a neural network
type classifier, or learn how to design the type system that abstracts entities using
a mixed integer reformulation of the problem. Each entity is categorized by a set
of types (human, country, nationality, etc.).

A neural network is trained to predict for each token in a document the types of
the expected entities. The neural network type probabilities serve as soft constraints
when deciding among candidate entities.

We propose to measure the discrimination power of a type system by measuring
Oracle accuracy : assuming a type classifier perfectly predicts the type constraints,
what percentage of entities would be correctly predicted by eliminating those that
don’t match the expected types ?

Finally, we present experimental results where a system is trained on a large
multi-lingual corpora and compared to the state of the art. The proposed system
outperforms by a large margin all prior approaches, and identifies using an Oracle
a potential performance upper bound that could be reached with better type pre-
diction accuracy. DeepType, the system presented in this chapter was published in
at the AAAI 2018 conference [126].
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Chapter 4 : End-to-End Type Reasoning In this chapter, we present our
approach to end-to-end learning of a Neuro-Symbolic Entity Linking system, and
we describe the model’s architecture and the details of the experiment.

We further improve the AI system by aligning the training objective with the
target task : replace type classification followed by soft constraints by entity classi-
fication. To effect this change our neural network now receives as input a variable
number of types for each candidate entity and associates a fixed-length vector that
can be used during classification.

The types associated with each entity are replaced by Wikidata relation sub-
graphs. This eliminates the membership rules that were either manually designed
or evolved by genetic algorithms. A further benefit of this representational change
is the ability to provide entities with autoregressive relational features we call type
interactions. These features enrich types with higher order information over the full
set of entities in a document (e.g. shared employers, geographical co-occurence,
list type homogeneity), improving the ability to produce coherent document-wide
predictions.

Finally, we summarise our results by comparing the proposed approach to se-
veral ablations and the current state of the art, and discuss limitations such as
the reliance on structured knowledge bases. The proposed approach is the first
to reach super human accuracy at Entity Linking, and outperforms all prior ap-
proaches. DeepType 2, the system presented in this chapter was published at the
AAAI 2022 conference [124].

Chapter 5 : Neural Relational Database In this chapter, we present our
approach for end-to-end learning of a Neuro-Symbolic Entity Linking that can learn
from structured and unstructured knowledge bases.

Through a technique we call the Neural Relational Database (NeRD) we extend
the available external knowledge available to AI systems to include unstructured
relations. This technique works by creating a unified representation for structu-
red and unstructured relations : all relations are first converted to a unified text
representation, and second processed by a Pretrained Language Model.

The AI now accesses external knowledge to represent entities using Wikidata
relation subgraphs, and also queries relational databases to obtain autoregressive
relational features sourced from structured and unstructured relations.

Finally, we present experimental results comparing the proposed approach to
several ablations and the current state of the art on Entity Linking. We also pro-
vide an approach for using this technique to enhance the capabilities of relation
extraction systems.
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Outline Discussion

In this chapter we provided an overview of the main areas of progress and
present challenges faced by Artificial Intelligence today in making progress to-
wards human-level performance at Natural Language Understanding combined
with fine-grained knowledge. We gave a short introduction to the research area
of Neuro-Symbolic Artificial Intelligence that seeks to combine the benefits of
Neural methods with the advantages of Symbolic Artificial Intelligence to provide
new solutions for advancing the field of Artificial Intelligence. Next, we presented
the outline of the thesis. This thesis begins with background and context on the
Neuro-Symbolic Artificial Intelligence, and each chapter thereafter introduces a
different contribution to advance towards our goal of human-level performance Ar-
tificial Intelligence by proposing solutions to different challenges in Neuro-Symbolic
methods.

In the following chapter we will first describe in greater detail the relevant
context for the Neuro-Symbolic work, and second present the state of the art in
Artificial Intelligence for the Natural Language Understanding tasks studied.
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CHAPTER I

Background and
State-of-the-Art
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1 . Formal Background

Neuro-Symbolic Artificial Intelligence has become a central focus in the re-
search community, as AI systems become robust enough to interact with the out-
side world directly. This work aims to further advance Neuro-Symbolic systems to
make progress towards AI with human level performance.

This first chapter presents a formal background of the Neuro-Symbolic Artificial
Intelligence research area to contextualize for the reader the contributions presented
in this thesis. We begin in Subsection 1.1 with the context and motivation, next we
present the Neuro-Symbolic Artificial Intelligence area in Section 2. In Section 3
we provide an overview of Natural Language Processing tasks present in this work :
Language Modeling in Subsection 3.1, Part of Speech Tagging in Subsection 3.2,
Named Entity Recognition in Subsection 3.3, Entity Linking in Subsection 3.4, and
Relation Extraction in Subsection 3.5.

1.1 . Context and Motivation
1.1.1 Context

Language emerged in humans some 100,000 to 200,000 years ago and has since
evolved into the densest information mediums available [15, 22, 113]. Artificial
Intelligence has since its inception had the goal to enable machines to decode
human language. Progress has been achieved through a mix of statistical methods
and linguistic theory. In the last decade we’ve witnessed the arrival of machine
learning methods that enable machines to match or outperform the accuracy of
humans on many linguistic tasks.

The work presented in this thesis continues in this lineage, and presents a
methodology for automatically integrating symbolic information into the reasoning
process of neural networks that improves accuracy on downstream tasks.

1.1.2 Motivation

Overview This thesis is motivated by finding a solution to an open problem :
how to teach Artificial Intelligence systems to interface with external knowledge ?
Further motivation for this work comes from identifying a performance gap bet-
ween humans and machines in the natural language understanding task of Entity
Linking. Reaching human-level performance at Entity Linking has proved elusive
and especially valuable thanks to its widespread use across intelligent assistants,
search engines, translation systems, or automated trading systems.
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Closed World Assumption To understand the nature and role of this pro-
blem, we must first distinguish between Artificial Intelligence systems that operate
with a “Closed World Assumption" (CWA) [131] from those that consider an open
world [35]. In the context of Machine Learning, the former assumes that the data
distribution does not vary. However phenomenons such as concept drift [143] will
violate the CWA and can lead the system astray. Techniques that enable inter-
vention or fallbacks have been proposed to mitigate the dangers of drift on CWA
models such as online learning, periodic retraining, or Out Of Distribution Detec-
tion [10, 178].

Human Level. Despite this strong assumption, this class of Artificial Intel-
ligence systems have become pervasive in our daily lives and across many industries.
Adoption of Deep Learning-based approaches was driven by the ability to automate
feature learning and construct end-to-end systems that would outperform enginee-
red and heuristically based predecessors across diverse tasks ranging from Speech
Recognition [3], Machine Translation [173], Speech Synthesis [48, 7, 164, 116],
Image Recognition [59], Image Segmentation [129], or Protein Folding [73].

Computing Power and Gradient Descent Across these various
areas, success has been driven by growth in computing power, training data, and
model size. Indeed, growth in computing power enabled costly algorithms such as
back-propagation to become practical. The back-propagation algorithm developed
by different authors in the 1960s and later popularised in the 1980s [75, 139, 167]
enabled the discovery of the weights of a neural network by applying the chain
rule in a computationally efficient manner over arbitrary computational graphs.
Thanks to this algorithm, and its approximate variant Stochastic Gradient Descent
[133] which has become the standard for Deep Learning training, it has become
possible to learn useful spatial or temporal patterns and features by minimizing
an objective function relative to the weights of the neural network with minimal
amounts of feature engineering.

Action from Raw Inputs. As the perception capabilities of these learnt
systems reach human or superhuman levels, they can now control systems directly
from raw inputs with supervision from scalar reward signals. Noteworthy examples
of these end-to-end systems include Dexterous Robotic Manipulation [2] trained
in simulation and generalizing to real world robots, Game Playing at professional
and superhuman levels [109, 160, 147], or Computer Circuit Designs found via
reinforcement learning agents that are now being mass-produced [137, 102]. These
systems push the limits of the CWA by generalizing from simulation to the reality.
They are able to make this jump thanks to high fidelity simulators and techniques
such as Domain Randomization [155] that create a training data distribution that
is artificially broadened to handle the reality gap.
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Open World Assumption A second class of Artificial Intelligence systems
are explicitly designed for the open world.

Action in a Changing World. Neuro-Symbolic systems are designed
with an explicit open world assumption by having access to external knowledge
[47]. This bridge enables facts, examples, or instructions to be updated live. This
capability is particularly desirable as the cost to train leading machine learning
models has risen exponentially [4], and their societal impact has increased scrutiny
over their reliability [40].

While this direction is promising, it is complicated by the presence of two key
operations that are usually discrete and non-differentiable : 1) query design and
retrieval, 2) how to process, featurize, and present the received information. Present
Neuro-Symbolic systems will therefore not learn these operations but instead rely
on manual effort to control queries, retrieval, and integration of results in the
model.

Learning to Question.

If I have seen further it is by standing on the
shoulders of Giants.

Isaac Newton

The core motivation for this thesis is therefore to support a crucial next step
for artificial intelligence systems : be able to ask questions and seek additional
information as they reason. This capability is a nod to Isaac Newton, and a parallel
to the way humans find answers by reading books, searching the web, or asking
others. The volume of information that can be queried is too large for brute force
to be practical.

2 . Neuro-Symbolic Artificial Intelligence

2.1 . Definition
Neuro-Symbolic Artificial Intelligence is a sub-area of Artificial Intelligence re-

search focused on finding a synthesis between symbolic Artificial Intelligence and
present neural network approaches. A common synthesis involves teaching neural
networks to manipulate symbols. Symbol manipulation is a fairly broad concept
that can be restricted in the context of this thesis to interacting with databases,
graphs, and sets. Interaction with databases includes performing queries, inser-
tions, edits, and deletes. In the case of graphs, a model can check for connectivity
between nodes or construct graphs by specifiying edges and nodes. Finally, mani-
pulation and queries of sets enables a model to create set unions or exclusions, and
check for set membership.
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2.2 . Neural Network Reasoning with Symbolic structures

Making neural predictions symbol aware. Several approaches exist for
incorporating symbolic structures into the reasoning process of a neural network.
One approach consists in modifying a classification loss function so that it becomes
structure aware. In the work of [31] a label hierarchy is used to force a model
to make tradeoffs between specificity and accuracy. The objective leverages the
hyper/hyponymy relation to make a model aware of different granularity levels.
More recently the work of [171] use a hierarchical loss to increase the penalty for
distant branches of a label hierarchy using the ultrametric tree distance.

In this thesis, we use different objective functions to incorporate symbolic struc-
tures into the reasoning of a neural network. Our approach differs from the work
presented above because our we use standard classification losses, but design our
labels using the symbolic structure. We also aim to capture the most important
aspects of the symbolic structure, however our loss shaping is a result of discrete
optimization and incorporates a Learnability heuristic to choose aspects that can
easily be acquired.

A different direction for integrating structure stems from constraining model
outputs, or enforcing a grammar. In the work of [89], the authors use Named Entity
Recognition and FIGER types to ensure that an Entity Linking model follows the
constraints given by types. We also use a type system and constrain our model’s
output, however our type system is task-specific and designed by a machine with
a disambiguation accuracy objective, and unlike the authors we find that types
improve accuracy. The work of [81] uses a type-aware grammar to constrain the
decoding of a neural semantic parser. Our work makes use of type constraints
during decoding, however the grammar and types in their system require human
engineering to fit each individual semantic parsing task, while our type systems
are based on online encyclopedias and ontologies, with applications beyond Entity
Linking.

Differentiable Datastructures Starting with recurrent neural networks [71],
several forms of learnt memory mechanisms have been proposed to extend a mo-
del’s context. Noteworthy examples include the fixed-sized memory of the Long
Short Term Memory (LSTM) [63] and the addressable-memory of the Neural Tu-
ring Machine [52]. Core to these efforts is a differentiable storage and retrieval
mechanism. Memory control is learnt using gradient descent end-to-end alongside
other model parameters from the same supervision signal. However, the differen-
tiability constraint on insertion, deletion, and retrieval operations leads to some
limitations. Fixed-size memories tend to suffer from vanishing gradients or forget-
ting information when the context window is too large. Variable-length memories
struggle with overly large addressable spaces due to over-averaging “memories".

There have been several attempts to extend the memory of a neural network to
other data-structures. These include Stacks [72], or Neural Turing Machines [52].
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Core to these efforts is a differentiable storage and retrieval mechanism. Scaling
the memory to an entire database remains impractical due to the memory and
computation requirements.

2.3 . Extending neural network memory to external symbols

Retrieval Models By replacing differentiable retrieval with a nearest neighbor
function is then possible to include larger memories. We note the use of episodic
memory [132, 44] as a way of rapidly associating states and observations to out-
comes and actions. Nearest neighbor retrieval has also been used to broaden the
context window of language models in RETRO [14] and ATLAS [68].

In this thesis we attempt to solve a similar problem as episodic memory by
enabling neural networks to interface with external databases. This presents the
additional challenge of non-differentiable storage and retrieval. Prior work on inter-
facing with a read–eval–print loop (REPL) solves this challenge by automatically
executing queries [37]. Our approach is similar and systematically uses the entities
predicted in a document to query a database.

Retrieval Result Representation The next challenge after retrieval is the
representation of the query results. Prior approaches include Cognitive Databases,
where pretrained word embeddings are used to embed facts [13], but the repre-
sentation is not task-specific. DrugDBEmbed [9] uses a task-aware Bi-LSTM that
produces a column representation to predict drug-drug interactions, but does not
allow extending the database.

Our approach to connecting a neural network to a knowledge base is different
because it learns a task-specific projection from a task-agnostic Pretrained Lan-
guage Model representation of the stored facts. Furthermore, the knowledge base
can be extended without retraining the neural network : new facts can be inserted
into the database by using the Pretrained Language Model’s activations followed
by the learnt projection.

3 . Natural Language Processing

3.1 . Language Modeling

3.1.1 Definition

Language Modeling is an ambiguous term in Natural Language Processing,
representing tasks varying from representation learning to generation. The most
commonly accepted definition is as follows :
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Definition 3.1: Language Model

A language model is a probability distribution over a sequence of words
[111]. Progress on this task is measured by either computing the negative
log likelihood or perplexity of the target content under the proposed model.

To complete the definition of a language model we also define tokens, the
atoms that compose the modeled sequence of words :

Definition 3.2: Token

A token is the name given to the atomic components used in a language mo-
del. These can range from extremely granular, such as Bytes or characters,
to very coarse such as words or phrases.

3.1.2 Background

Origin Starting with Claude Shannon in 1948, the computational task of lan-
guage modeling begins by focusing on capturing the corpus statistics for words
following a sequence of n previous words (n-grams) [145].

Since then Language models have been integral parts of many applications from
spelling correction, optical character recognition, to speech recognition [3], and
have received heightened attention with the discovery that they can be repurposed
for a variety of downstream tasks [19, 23, 119].

Two important directions in language modeling are relevant to this thesis :
1) the use of language models to obtain distributed representations of words and
documents, 2) the use of language modeling as a form of pre-training to enable a
neural network to generalize better on a downstream task.

Distributed Representations The goal for this subarea of language mode-
ling is to learn semantically rich vectors associated with words, phrases, or do-
cuments that support operations useful for downstream tasks. The first example
of this technique can be traced to Hinton in [61], however word vectors in natu-
ral language processing gained prominence with the publication of the landmark
paper Natural language processing (almost) from scratch [25] where the authors
propose to replace many of the components in the natural language processing
toolbox with learnt distributed counterparts. Following this interest in distributed
representations, several word vector learning techniques gained popularity such as
word2vec [99] and GloVe [112]. Research has since focused on distributed repre-
sentations produced over sequences using recurrent neural networks such as CoVe
[97] and ELMo [115], or Transformers such as BERT [32]. From these works we
retain that both supervised and unsupervised tasks are able to train distributed
representations of words, phrases, and documents which capture rich semantics.
While the quality of the representation varies, it remains remarkable that no ex-
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plicit supervision is needed to induce useful topology on the vector spaces such as
encoding synonyms and translations nearby in Euclidean distance.

Language Pretraining The use of sequence models such as recurrent neural
networks [115, 65] or Transformers [157] for language modeling has created new
transfer possibilities for natural language processing tasks in two important waves.

In the first wave, Language models are recast as conditional probability distri-
butions that can be finetuned to produce novel structured outputs outside of the
original language modeling task. This finetuning paradigm has powered advances in
many downsteam tasks such as translation, parsing, summarization, or sentiment
analysis [119, 127, 159, 173].

The second wave identified existing few and zero-shot capabilities in language
models without needing to retrain them for a downstream task. Similar to the
pre-existing semantic richness found in distributed representations of words and
documents, language models have been found to possess an ability to conduct
natural language processing tasks by providing examples of the task as context, or
describing the task via natural language prompts [19, 119]. This insight has since
unlocked the ability to adapt these models using limited data onto new domains, or
take advantage of their ability to reference the prompt to provide additional facts
or context for “open-book" question answering [134].

3.2 . Part of Speech Tagging
3.2.1 Definition

Part of Speech Tagging or grammatical tagging is the task of assigning to each
word in a sentence a specific part of speech (Noun, verb, proposition, etc.). This
task has been inextricably linked to Natural Language Processing for many years
due to the related difficulties in part of speech disambiguation and meaning. The
Brown Corpus [96] has long been the gold standard for evaluation of systems, and
has since been supplanted by larger datasets including multilingual ones such as
Universal Dependencies [107].

3.2.2 Background

This task has advanced quite a lot from its use of specialized features, to
distributed rep, to stack-based. A recent paper [95] comments on the apparent
performance ceiling of 97%, presumably tied to some issues with the training data
and inconsistencies in the evaluation datasets.

Part of speech tags, are in fact quite broadly useful for downstream applications.
For instance, these tags can help detect nominal phrases, or help eliminate spurious
predictions in cases where sentences are found to ungrammatical or unsuited for
the downstream task.
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3.3 . Named Entity Recognition
3.3.1 Definition

This task consists in classifying the nominal groups in a sentence into different
coarse-grained categories. The category must be chosen according to the type of
entity referenced by the nominal group, such as “person", “organization", “place",
etc. Domain specific named entity recognition systems use specialized categories
such as “disease" in a medical setting.

3.3.2 Background

Similar to part of speech tagging, Named Entity Recognition is sometimes
used as an input to a downstream system, and is considered challenging due to
the ambiguities that require understanding of the context to resolve. Within the
context of this thesis, Named Entity Recognition tags were used as inputs to an
entity linking system [89] and resemble the fine grained types we use in Chapter III.

3.4 . Entity Linking
3.4.1 Definition

Entity Linking has certain key technical terms to describe specific important
objects which we will define below. In this task we want to recover the ground
truth entities in a knowledge base referred to in a document by specific spans of
text called mentions :

Definition 3.3: Mention

A mention is a text span in the context of an Entity Linking task that refers
to a specific entity within a knowledge base. A document can have multiple
mentions, each referring to the same or different entities.

For each mention we want to disambiguate we have to locate the correct re-
ferent entity. Commonly, we have a lookup table that maps each mention to a
proposal set of n entities for each mention m : Em = {e1, . . . , en} (e.g. “Washing-
ton" could mean Washington, D.C. or George Washington). This lookup table
is called an alias table :

Definition 3.4: Alias Table

An alias table is a lookup table that stores all the possible entities that can be
associated to a specific phrase. The Alias Table is typically obtained by using
a labeled dataset containing mentions and their entities, and aggregating
all the entities shared by the same mention. The term “alias" refers to the
fact that the table stores one or more associated entities for each phrase,
therefore the phrase is aliased by each of the potential referent entities.

Disambiguation is finding for each mention m the a ground truth entity eGT in
Em. Typically, disambiguation operates according to two criteria : in a large corpus,
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how often does a mention point to an entity, LinkCount(m, e), and how often
does entity e1 co-occur with entity e2, a proxy for the quality of the predictions
which captures the overall coherence, but with quadratic computational complexity
relative to the number of entities under consideration [101, 41, 175].

3.4.2 Background

The state of the art in entity identification and disambiguation can be struc-
tured along several dimensions we discuss below.

Abstract Entity Representations and Types. The work of [89] uses the
diverse types of Named Entity Recognition tags (e.g., persons, places) to categorize
all candidate entities in their Entity Linking system. The use of abstract entities
was further generalized in DeepType [126], considering all Wikidata classes as
potential categories, or types, and shows a type predictor suffices to disambiguate.
Abstract description-based representations are also used in [93, 106]. In [104], the
proposed Entity Linking system combines pre-trained language models with entities
described by a transcription of their Wikidata relations.

Identification and Disambiguation Loss. Most approaches rely on either
generative or constrastive losses. In the former case, the sought model is optimized
to maximize the log-likelihood of the ground truth interpretation. In the latter
case, the model is optimized to enforce a sufficient margin between the ground
truth interpretation and alternatives [55]. The two approaches have complementary
strengths and weaknesses. The generative approach is based on first principles ;
it enables to assess any interpretation at the expense of a (very) high sample
complexity ; the challenge is to define the search space. The contrastive approach,
only aims at making the good interpretation the preferred one by only requiring
that the different input spaces (images, text, knowledge graph nodes) project into
a mutual scalar comparison space [106].

SoTA and Attention. A recent trend in Entity Linking systems is instead
to perform independent predictions but use a pretrained language models with
attention to ensure long-range context informs each prediction [106, 172, 104, 87].
The features from language modeling help to ensure the model learns a rich textual
encoding, and also reduces the chances of overfitting when transferring a model
from a high supervision regime (language modeling) to a sparsely supervised setting
(Entity Linking). The high memory and computation cost limit the applicability of
these models to long documents. The current SoTA [42] circumvents this issue
by truncating the document to keep a window around a mention. This approach
approximates global context by gluing back the document title to the window.
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Coherency and Relational Information. Entity Linking selects entities
based on their individual relevance, where a key component is their compatibility
with the other document entities. In multi-mention documents, jointly predicting
entities can be helpful to improve coherency or use information from other predic-
tions to assist later disambiguation decisions [169, 101]. The connections between
entities can be measured using reciprocal link statistics from Wikipedia [101], by
analyzing the link graph using a PageRank algorithm [114, 53]. Another direction
aims to learn distributed entity representations using random walks or by using
negative sampling that also capture a measure of coherence [175, 49, 176, 84].

As the number of potential entity pairs is large, computing coherence metrics
presents a computational challenge. In [49] the authors use attention over a subset
of the document mentions to reduce the computational cost. Most similar to the
work in this thesis is the textual transcription of an entity’s structured relations
in [104]. This approach also uses relational information to represent entities but
only makes use of structured relations. Our approach uses relational information
between entities as well as attention over the mentions to improve coherence.
Unlike prior approaches, in DeepType 3 we also exploit unstructured relations to
further improve performance.

3.5 . Relation Extraction
3.5.1 Definition

The goal in this task is to predict the presence or absence of a typed direc-
ted relation between pairs of highlighted phrases (mentions) in a document. The
possible relation types change depending on the target domain or dataset. In this
thesis we focus our experiments on the DocRED [180] dataset where the relation
types are chosen among 96 Wikidata relations.

3.5.2 Background

Open information extraction [39] aims to collect unstructured relations from
natural language corpora. A triplet representation (“subject text", “relation text",
“object text") makes it way into an Open Knowledge Base (KB) [45]. The un-
structured relations can then be mapped to structured relations to perform link
prediction [18]. The unstructured relations stored in NeRD resemble those in the
Open KB, but downstream usage by NeRD operates on them directly without
requiring any alignment or mapping back to structured relations.
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Relation Extraction using Relational Information In Relation Extrac-
tion [24, 183] the goal is detect structured relations between pairs of phrases (men-
tions) in natural language text. Information about mention entities has previously
been shown to improve relation extraction performance [36], or helpful when jointly
predicting entities and relations [86]. The state of the art [174] in this task uses a
pretrained language model as its text representation, but does augment its mention
representation with entity information. Our work builds upon both of these ideas
by refining the relation predictions from [182, 183] using entity information.

30



CHAPTER II

Human Performance
Benchmark
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1 . Introduction

Benchmarks play a crucial role in measuring progress in Artificial Intelligence
(AI) towards human-level performance. The earliest AI benchmarks were designed
with the idea of a live presence of humans for evaluation, such as the “Turing test"
also known as the “Imitation Game" [156], or competitive games such as Chess with
Deep Blue [66] playing against Garry Kasparov [166], in Go with AlphaGo [147]
playing against Lee Sedol [142], or in Dota 2 with OpenAI Five [109] playing against
OG [152].

With the rise of Machine Learning, a desire for repeatable experimentation and
fair methodologies to compare the work of AI researchers motivated the creation
of standard datasets and benchmarks. Certain benchmarks have had an outsized
impact on the AI and Machine Learning fields such as the object classification
dataset Imagenet [30].

Within Natural Language processing, benchmarks serve to highlight shortco-
mings in existing systems, and also to bring attention to specific areas by creating
opportunities for publication and collaboration. The National Institute of Standards
and Technology’s Text Analysis Conference (TAC) challenges started in 2008 [28]
has included tracks to focus on specific topic areas such as the Knowledge-Base
Population track (TAC-KBP) used extensively in this thesis. Each year, the tracks
are updated to reflect progress or improvements to the framing. More recently, a se-
ries of challenges have been designed to elucidate unique common-sense reasoning
problems and tasks such as LAMBADA [110] which was a notoriously challenging
question answering task until the arrival of large-scale pretrained in the form of
GPT [120], GPT-2 [121], and GPT-3 [19]. As a consequence of the fall of previous
benchmarks, new ones were proposed such as GLUE [161] and SuperGLUE [162].
The benchmark we propose in this chapter is a continuation of this lineage, where
we identify a need for a new measurement because of saturation of earlier bench-
marks and to bring focus to aspects of natural language understanding that are
still challenging for machines.

Entity Linking is an area where human performance has not been established
or benchmarked, and where AI system performance has seemingly plateaued. Re-
searchers in the Entity Linking field have extended evaluations using new Entity
Linking datasets to focus on rare entities such as WikilinksNED [38], new contexts
such as dialog with CREL [70], or multilingual entity linking such as VoxEL [135],
but do not reveal information on whether AI systems are already at the limit of
human performance or beyond. This gap motivates the creation of the first human
performance benchmark for Entity Linking, a task that requires a combination of
fine grained natural language understanding and knowledge of real-world facts.

In this chapter we present our human performance benchmark for Entity Linking
by studying the accuracy of a panel of humans on two standard and widely studied
datasets TAC KBP 2010 [69] (TAC) and CoNLL AIDA (YAGO) [64]. The first
section presents the approach, including the selection, annotation, and technique
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used to combine responses ; the second section presents the results and observations
from the benchmark, and third we conclude with a discussion of the results and
perspectives for future work and how this fits within the rest of the thesis.

2 . Approach

In this section we present our approach to design a human performance bench-
mark for Entity Linking. First, we describe the steps involved in preparing the data
for the benchmark and human consumption. Second, we explain how we construc-
ted a panel of human annotators. Third, we introduce the software and interface
used to collect the results. Fourth, we introduce our methodology for measuring
human accuracy and agreement.

2.1 . Data preparation

Word Boundary Wikipedia URL
EU B
rejects
German B /Germany
call
to
boycott
British B /United_Kingdom
lamb
.
Peter B
Blackburn I
BRUSSELS B /Brussels

Figure II.1 – Sample data from CoNLL-AIDA (YAGO) dataset contai-
ning documents structured with the location of mentions and the asso-
ciated entity using a Wikipedia URL. The boundary column is used to
indicate starts (“B") and continuations (“I") of mentions that must be
linked to an entity, while the Wikipedia URL column provides a reference
to the correct entity in the Wikipedia knowledge base.

We design our human performance benchmark for Entity Linking using widely
studied datasets to facilitate comparisons with prior work and maximize the impact
on future research by ensuring the results are obtained on accessible and trusted
datasets. While the datasets were obtained by asking human annotators to decide
what entity specific phrases (mentions) in a document corresponded to, the output
of this annotation was designed for machine consumption, not to create a human
readable multi-choice questionnaire. In an example of the CoNLL-AIDA dataset
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shown in Figure II.1 we can immediate notice how the entity selection will be
challenging for a human annotator : is the selection of entities be done by writing
manually the Wikipedia URL, by selecting from a list of all possible Wikipedia
pages, or perhaps by providing the correct answer along with a few distractor
options ?

In our work we’ve chosen to help human annotators by making the list of entities
to choose from be selected using an alias table, a mapping we build that tells us for
each mentions what potential entities that have previously been associated. Thanks
to this approach, the number of potential options drops from 40M to less than
10 on average. We further assist annotators by taking into account the popularity
and number of inbound links that each entity has on Wikipedia to sort the options
with the most common entity shown first. These choices make the selection process
easier for a human, but mostly they ensure that each decision can be taken in a
reasonable amount of time by making the task closer to asking : “is the default
meaning correct, or do you want to look for a slightly less common meaning for
the mention ?" We experimented with turning off the ordering and found that
human performance dropped precipitously, thereby suggesting that there is a strong
priming effect given by ordering according to popularity.

A final consideration for converting the Entity Linking task from a machine to
a human-friendly task is whether annotators must disambiguate all the entities in
a document one by one or all at once. The argument in favor of having annotation
be done all at once comes from AI systems that perform better they jointly disam-
biguate entities and increase coherency. However, joint annotation is impractical
for human annotators for a variety of reasons. First, if we want to use crowd-
sourcing platforms such as Amazon Mechanical Turk to perform the annotation,
then breaking the task into small chunks that require a similar amount of time and
effort is a crucial for the work to be done in a timely and reliable manner. Second,
documents in the datasets vary widely in length and number of mentions that have
to be disambiguated, therefore it will be hard to isolate whether the accuracy of
the results will be biased positively or negatively by the length of the document or
the inherent difficult of the specific document. Indeded, certain documents contain
multiple mentions : in AIDA there are on average 15 per document. Because of
this reasons, we choose to standardize the task by having workers disambiguate
each mention in a document independently. Fortunately, we can amortize docu-
ment reading time by offering all tasks from the same document to the annotator
in consecutive order.
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2.2 . Human Panel Selection

A key component of human annotated benchmarks and datasets is the reliability
and quality of the labels. A particularly effective way to obtain high quality labels on
larger datasets is to use crowdsourcing services such as Amazon Mechanical Turk
or Crowflower. The quality of the responses varies of course with the expertise of
the annotator, the amount of time given to respond, and the clarity of the task.
In order for our benchmark to properly measure human performance we need to
ensure that workers are selected to be knowledgeable, understand the goal of the
annotation, and are sufficiently well incentivized to complete the task correctly and
with care.

2.2.1 Screening

We first improve response quality by taking particular care to screen, and brief :
they must be native English speakers and have Amazon Mechanical Turk’s Master
qualification, a recognition of prior excellence in annotation tasks.

A common strategy to further improve quality is to select participants using
a trial stage and keep only the top performing ones for the actual benchmark. A
second technique that is used for crowdsourcing quality improvement is to include a
test question and answer that verifies whether the annotators read the instructions.
In our work we apply both of these strategies : we took 10 documents and asked all
participants meeting the language and Master qualification to respond, and kept
those that did best on this trial portion.

2.2.2 Incentives

We are able to further improve annotation quality through a special incentive
structure we can put in place. Commonly crowdsourcing platforms are used to
label new data where it is hard to know with certainty whether the annotators
are making mistakes. Luckily, because we are asking annotators to relabel existing
datasets, the correct answer is already known therefore we can immediately detect
when an annotator is performing well. Thanks to this hidden label information, we
can further increase the incentive to provide accurate answers thanks to a bonus
that is paid out only when an annotator gets the right answer.
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Figure II.2 – The annotation interface in Amazon Mechanical Turk
shows a single highlighted mention at a time. Options are shown in a list
with descriptions, title, and link frequency stats. To assist annotators the
results are ordered by link frequency and a full-text search bar enables
quick filtering of the options. Instructions and tips are shown at the top of
the page. We check whether annotators click to expand the instructions
to find the most thorough annotators.
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2.3 . Annotation Interface

We develop a webpage interface to receive annotations in the Amazon Me-
chanical Turk platform. In this interface, each labelled mention is presented to
humans by highlighting the mention within the full original document. Annotators
select candidate entities from a list generated given by a Wikipedia alias table 1.
To assist the annotator, candidate entities are shown with their full title, Wikipedia
description and usage frequency, and ordered by their Wikipedia link frequency as
visible in the screenshot shown in Figure II.2.

2.4 . Annotator vs. Panel Accuracy

A potential source of error in our benchmark may come from differences in
annotator expertise, factual knowledge, or effort. Despite the efforts described ear-
lier to screen and incentivize annotators, annotators may still have inconsistencies
in their familarity with different subject matters found in Entity Linking datasets
varying from sports, to politics, to technology. To reduce the effect of annotator
expertise differences, we assign each labelled mention to three different annotators
and measure accuracy by checking whether any of the three annotators got the
answer correct. Because this measurement requires us to act like an oracle that
knows the correct answer, we name this metric the “Human Oracle accuracy".

3 . Results

3.1 . Human vs. AI Accuracy

Model TAC AIDA
Human Oracle accuracy 96.86 96.78
Human Majority accuracy 95.39 93.35
Ling et al. [87] 89.8 94.9
Mulang’ et al. [104] - 94.94
Févry et al. [42] 94.9 96.7

Table II.1 – Humans and state of the art EL system accuracy (best
results in bold).

We conduct the human performance benchmark and find that humans (Hu-
man Oracle Accuracy) reach 96.86% on TAC and 96.78% on AIDA, outperforming
the current state of the art on these tasks as shown in Table II.1. We observe an
accuracy gap remains between a human panel and prior algorithmic approaches of
1.96% on TAC and 0.08% on AIDA leaving room for algorithmic improvement. Hu-
mans have similar accuracy on TAC and AIDA, while surprisingly SoTA algorithmic
approaches until 2020 perform 4.09% higher on AIDA than TAC.

1. The alias table always contains the correct answer.
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We then study whether the benchmark’s annotators produce consistent results
by measuring their agreement. Fleiss’s κ [43] is a standard metric used for mea-
suring whether annotators make consistent decisions with each other. Fleiss’s κ

ranges from 0 to 1, with 1 indicating perfect agreement, and 0 indicating that
annotators disagree. We find that agreement is high (0.9396 on AIDA and 0.9684
on TAC), supporting the claim that annotators reached similar conclusions and did
not respond randomly. The agreement and mean response time per dataset are
given in Table II.2.

TAC AIDA
Agreement (Fleiss’ κ) 0.9684 0.9396
Mean response time (seconds) 18.49 15.68
Participants 255 5
Total Responses 2,203 13,934

Table II.2 – Statistics showing the inter-annotator agreement (Fleiss’s
κ) and mean response time for both datasets in the benchmarks. We
notice that agreement is high (close to 1) indicating that the results
collected do not show evidence of spurious or random responses.

3.2 . Response Time
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Figure II.3 – Time taken by AMT annotators grouped by correct and
incorrect response times.

We record the time taken by annotators on each mention and do not detect
a significant timing difference between correct and incorrect responses reducing
the possibility that mistakes were caused by clicking errors or gaming the task.
A histogram of the timings is shown in Figure II.3. Based on the time taken to
answer, compensation is 9.73/11.47 $/hour for TAC/AIDA, and with bonuses is
15.57/18.36 $/hour. In total, $1,307 were spent on worker wages.
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3.3 . Participant Risk and Review Board
The study presented in this work presents minimal risk to the human partici-

pants and does not ask or collect personally identifying information. As such, the
study meets the IRB exempt status (US45CFR46 §46.101). Specifically, we collect
answers to multiple choice questions along with the elapsed time.

The source material is also neutral in tone and inoffensive. We use news articles
covering neutral topics such as sports results, tabloids, and news dispatches from
the frequently studied datasets CoNLL AIDA (YAGO) dataset and TAC-KBP 2010.

4 . Discussion

4.1 . Overview
In this chapter we introduced the first human performance benchmark for Entity

Linking. Several key difficulties needed to be overcome to construct the benchmark.
We first converted a task designed for AI systems so that humans can participate.
Second, we took special care through screening, educating, and incentivizing me-
chanical turk workers to enable crowdsourced responses to faithfully measure peak
human performance. Third, a new interface and tool had to be built to support
the collection of entity selection responses where the context is complex and rich,
and where there are thousands of potential options to select from in each question.
Our results show that the task was made sufficiently accessible for participants to
answer with high inter-annotator agreement, and obtain accuracies that are higher
than present systems.

4.2 . Future Work
Establishing this benchmark opens several directions for future work. First,

the results motivate further research into Natural Language Processing on Entity
Linking given that we detect a gap between present AI systems and human perfor-
mance. One of the goals of thesis is to close this gap, which we do by obtaining
new state of the art results in Chapter III, and ultimately superhuman performance
in Chapter IV and Chapter V. Second, as part of the publication of DeepType
2 [124], we open-sourced the benchmark at this url 2 enabling others to perform
in-depth error analysis, or build new benchmarks on other languages or datasets
thanks to the framework and software we release.

2. https://github.com/deep-type/deeptype2
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4.3 . Relation to Thesis
In the following chapter (Chapter III), we develop DeepType, a first AI sys-

tem that takes advantage of human knowledge bases and hierarchies of concepts
which dramatically simplifies the task of Entity Linking. As we shall see, abstrac-
ting entities using “types" that are built from the existing concept hierarchies and
knowledge bases enables us to build Entity Linking systems that learn to distin-
guish entities purely through what “type" they belong to. Representing entities
through types has two advantages : 1) the task is simplified since there are many
fewer types (thousands) than entities (40 million), 2) thanks to the benchmark in
this chapter, we can observe that systems built with this simplified view of entities
have a performance upper bound that is slightly higher than human performance,
showing that there is sufficient discrimination power with pure “types" to build AI
systems that rival humans at Entity Linking performance.
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CHAPTER III

Neural Type Systems
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1 . Introduction

Online encyclopaedias, knowledge bases, ontologies (e.g. Wikipedia, Wikidata,
Wordnet), alongside image and video datasets with their associated label and ca-
tegory hierarchies (e.g. Imagenet [30], Youtube-8M [1], Kinetics [74]) offer an
unprecedented opportunity for incorporating symbolic representations within dis-
tributed and neural representations in Artificial Intelligence systems. Several ap-
proaches exist for integrating rich symbolic structures within the behavior of neural
networks : a label hierarchy aware loss function that relies on the ultrametric tree
distance between labels (e.g. it is worse to confuse sheepdogs and skyscrapers
than it is to confuse sheepdogs and poodles) [171], a loss function that trades
off specificity for accuracy by incorporating hypo/hypernymy relations [31], using
Named Entity Recognition types to constrain the behavior of an Entity Linking
system [89], or more recently integrating explicit type constraints within a deco-
der’s grammar for neural semantic parsing [81]. However, current approaches face
several difficulties :

— Selection of the right symbolic information based on the utility or information
gain for a target task.

— Design of the representation for symbolic information (hierarchy, grammar,
constraints).

— Hand-labelling large amounts of data.

DeepType overcomes these difficulties by explicitly integrating symbolic infor-
mation into the reasoning process of a neural network with a type system that is
automatically designed without human effort for a target task. This is achieved
by reformulating the design problem into a mixed integer problem : create a type
system by selecting roots and edges from an ontology that serve as types in a
type system, and subsequently train a neural network with it. The original problem
cannot be solved exactly, so a 2-step algorithm is used instead :

1. heuristic search or stochastic optimization over the discrete variable assign-
ments controlling type system design, using an Oracle and a Learnability
heuristic to ensure that design decisions will be easy to learn by a neural
network, and will provide improvements on the target task,

2. gradient descent to fit classifier parameters to predict the behavior of the
type system.

In order to validate the benefits of our approach, we focus on applying Deep-
Type to Entity Linking, the task of resolving ambiguous mentions of entities to
their referent entities in a knowledge base (KB) (e.g. Wikipedia). Specifically we
compare our results to prior approaches on three standard datasets (WikiDisamb30,
CoNLL (YAGO), TAC KBP 2010). We verify whether our approach can work in
multiple languages, and whether optimization of the type system for a particular
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language generalizes to other languages 1 by training our full system in a mo-
nolingual (English) and bilingual setup (English and French), and also evaluate
our Oracle (performance upper bound) on German and Spanish test datasets. We
compare stochastic optimization and heuristic search to solve our mixed integer
problem by comparing the final performance of systems whose type systems came
from different search methodologies. We also investigate whether symbolic infor-
mation is captured by using DeepType as pretraining for Named Entity Recognition
on two standard datasets (i.e. CoNLL 2003 [141], OntoNotes 5.0 (CoNLL 2012)
[118]).

Our key contributions in this chapter are as follows :

— A system for integrating symbolic knowledge into the reasoning process of a
neural network through a type system, to constrain the behavior to respect
the desired symbolic structure, and automatically design the type system
without human effort.

— An approach to Entity Linking that uses type constraints, reduces disambi-
guation resolution complexity for a document with N mentions from O(N2)

to O(N).

— The ability to incorporates new entities into the system without retraining.

— Outperforms all prior solutions to Entity Linking by a wide margin.

Moreover, we observe that disambiguation accuracy reaches 99.0% on CoNLL
(YAGO) and 98.6% on TAC KBP 2010 when entity types are predicted by an
Oracle, suggesting that Entity Linking would be almost solved if type prediction
accuracy can be improved.

The rest of this chapter is structured as follows. In Section 2 we explain how
types help us reframe the general Entity Linking task into Entity Linking with
Types as soft constraints. In Section 3 we present our approach. In Section 4 we
provide experimental results for DeepType applied to Entity Linking and evidence of
cross-lingual and cross-domain transfer of the representation learned by a DeepType
system. A discussion of results and directions for future work are given in Section 5.

2 . Entity Linking with Soft Constraints

DeepType can be used to constrain the outputs of a neural network using a type
system by extending the Entity Linking task to associate with each entity a series
of types (e.g. Person, Place, etc.) that if known, would rule out invalid answers,
and therefore ease linking (e.g. the context now enables types to disambiguate
“Washington"). Knowledge of the types T associated with a mention can also help
prune entities from the candidate set, to produce a constrained set : Em,T ⊆ Em.
In a probabilistic setting it is also possible to rank an entity e in document x

1. e.g. Does it overfit to a particular set of symbolic structures useful only in
English, or can it discover a knowledge representation that works across languages ?
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according to its likelihood under the type system prediction and under the entity
model :

P(e|x) ∝ Ptype(types(e)|x) · Pentity(e|x, types(e)). (1)

In prior work, the 112 FIGER Types [88] were associated with entities to combine
an Named Entity Recognition tagger with an Entity Linking system [89]. In their
work, they found that regular Named Entity Recognition types were unhelpful,
while finer grain FIGER types improved system performance.

3 . Approach
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Figure III.1 – Example model output : “jaguar" refers to a different
entity (car or animal) depending on the context. Predicting the type
associated with each word (e.g. animal, region, etc.) helps eliminate op-
tions that do not match, and recover the true entity. Bar charts give the
system’s belief over the type-axis “IsA", and the table shows how types
affects entity probabilities given by Wikipedia links. Each column of the
table is a different entity, and highest probability is bolded.

DeepType is a technique for integrating symbolic knowledge into the reasoning
process of a neural network through a type system. When we apply this technique
to Entity Linking, we constrain the behavior of an entity prediction model to res-
pect the symbolic structure defined by types. As an example, when attempting to
disambiguate “Jaguar" the benefits of this approach are apparent : the decision
can be based on whether the predicted type is Animal or Road Vehicle as shown
visually in Figure III.1.

In this section, we will first define key terminology, then explain the model and
its sub-components separately.
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3.1 . Terminology

instance of

city

Paris Fortaleza

Alhambra
located in

instance of

subclass of subclass of

instance of

Mona Lisa

human settlement

kibbutz neighborhood

Upper East Side

Selected Entities Other entities Active Relation Inactive Relation

Figure III.2 – Defining group membership with a knowledge graph re-
lation : children of root (city) via edge (instance of). In this example we
are looking at all children of the entity “city" (in bold) that are connec-
ted via the “instance of" relation. The selected children visible in this
example in green are Paris, Fortaleza, Alhambra. The entities that were
not selected are shown in grey.

Definition 3.1: Relation

Given some knowledge graph or feature set, a relation is a set of inheritance
rules that define membership or exclusion from a particular group. For ins-
tance the relation instance of(city) selects all children of the root city
connected by instance of as members of the group, depicted by green
boxes in Figure III.2.

Definition 3.2: Type

In this work a type is a label defined by a relation (e.g. IsHuman is the type
applied to all children of Human connected by instance of).

Definition 3.3: Type Axis

A type axis is a set of mutually exclusive types. Examples of type axes
include geographical categories (North America, South America, Europe,
etc.), typological categories (human, animal, vehicle, company, etc.), oc-
cupational categories (politician, writer, pilot, doctor, etc.), or even topical
categories (science, geography, fiction, medicine, history).
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Definition 3.4: Type System

A type system is a grouping of type axes, A. For instance a type system
with two axes {IsA, Topic} assigns to George Washington : {Person,
Politics}, and to Washington, D.C. : {Place, Geography}). In the
example shown in Figure III.2 a type system distinguishes the entities that
are children of “city" from other entities.

Definition 3.5: Oracle

The Oracle is a methodology for abstracting away machine learning perfor-
mance from the underlying representational power of a type system A.
It operates on a test corpus with a set of mentions, and the associa-
ted true entities eGT, and the candidate set of entities for the mention :
mi, e

GT
i , Emi . The Oracle prunes each candidate set to only contain entities

whose types match those of eGT
i , yielding Em,oracle. Types fully disambi-

guate when |Em,oracle| = 1, otherwise the entity prediction model is used to
select the right entity in the remainder set Emi,oracle :

Oracle(m) = argmax
e∈Em,oracle

Pentity(e|m, types(x)). (2)

If Oracle(m) = eGT, the mention is disambiguated. Oracle accuracy is
denoted Soracle given a type system over a test corpus containing mentions
M =

{
(m0, e

GT
0 , Em0), . . . , (mn, e

GT
n , Emn)

}
:

Soracle =

∑
(m,eGT,Em)∈M 1eGT(Oracle(m))

|M |
. (3)

3.2 . Model

To construct an Entity Linking system that uses type constraints this requires :
a type system, the associated type classifier, and a model for predicting and ranking
entities given a mention. Instead of assuming a joint type system, classifier, and
entity prediction model, we will instead create the type system and its classifier
starting from a given entity prediction model and ontology with text snippets
containing entity mentions (e.g. Wikidata and Wikipedia). For simplicity we use
LinkCount(e,m) as our entity prediction model.

We restrict the types in our type systems to use a set of parent-child relations
over the ontology in Wikipedia and Wikidata, where each type axis has a root node
and an edge type, that sets membership or exclusion from the axis. For instance,
if we use as root the entity “human" and the edge type “instance of" then entities
are split into human and non-human entities 2).

2. The descendants of “human" via the “instance of" relation are effectively labeled
the same way as the Named Entity Recognition label for person (PER).
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We then reformulate the problem into a mixed integer problem, where discrete
variables control which roots entities e1, . . . , ek and relation edges r1, . . . , rk among
all entities and relations will define type axes. A classifier parametrized by θ is fit
to the type system by predicting for each appearance of an entity in a corpus, the
associated inheritance labels produced by the type system. The goal in type system
design is to select parent-child relations that a classifier easily predicts, and where
the types improve disambiguation accuracy.

3.3 . Objective
To formally define our mixed integer problem, we first denote A as the as-

signment for the discrete variables that define our type system (i.e. boolean va-
riables defining if a parent-child relation gets included in our type system), θ as
the neural network weights for our entity prediction model and type classifier, and
Smodel(A, θ) as the disambiguation accuracy given a test corpus containing labeled
mentions m with their true entity eGT. We denote the set of mentions and their
associated entities in a document as M =

{
(m0, e

GT
0 , Em0), . . . , (mn, e

GT
n , Emn)

}
.

We now assume our model produces some score for each proposed entity e given
a mention m in a document D, defined EntityScore(e,m,D,A, θ). The predicted
entity for a given mention is thus :

e∗ = argmax
e∈Em

EntityScore(e,m,D,A, θ). (4)

If e∗ = eGT, the mention is disambiguated. Our problem is thus defined as the
following optimization problem :

max
A

max
θ

Smodel(A, θ) =

∑
(m,eGT,Em)∈M

1eGT(e∗)

|M |
. (5)

This original formulation cannot be solved exactly 3. To make this problem
tractable we propose a 2-step algorithm :

1. Discrete Optimization of Type System : Heuristic search or stochas-
tic optimization over the discrete variables of the type system, A, informed
by a Learnability heuristic and an Oracle.

2. Type classifier : Gradient descent over continuous variables θ to fit type
classifier and entity prediction model.

We will now explain in more detail discrete optimization of a type system, our
heuristics (Oracle and Learnability heuristic), the type classifier, and prediction in
this model.

3. There are nearly 22.4·10
7

choices if each Wikipedia article can be a type within
our type system.
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3.4 . Learnability of a Type System
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… Linear

Softmax

Figure III.3 – A neural network that receives a limited window of words
around a center-word for binary classification of membership in a par-
ticular type. In this example the sentence “prey saw a jaguar cross the
jungle" is cut into words, each of which is turned into a distributed re-
presentation using word embeddings. The word vectors from the window
are concatenated into a single vector that is then fed to a linear classifier
whose output indicates membership. In this example we are looking for
whether the entity linked by the word “jaguar" would belong to the “Is
Animal" type.

Type Systems can vary in their achievable Oracle accuracy Soracle(A) but
also in how easy they translate to a real trainable type classifier. To ensure that
the disambiguation gains observed using the measurement Soracle(A) are actually
reachable by a trained type classifier, the selected types must have some kind
of guarantee that they can be predicted. The Learnability heuristic empirically
measures the average performance of classifiers at predicting the presence of a
type within some Learnability-specific training set.

To efficiently estimate Learnability for a full type system we make an indepen-
dence assumption and model it as the mean of the Learnability for each individual
axis, ignoring positive or negative transfer effects between different type axes. This
assumption enables parallel training of simpler classifiers for each type axis. We
measure the Area Under its receiver operating characteristics Curve (AUC) for
each classifier and compute the type system’s learnability :

Learnability(A) =

∑
t∈AAUC(t)

|A|
. (6)

We use a text window classifier trained over windows of 10 words before and
after a mention. Words are represented with randomly initialized word embeddings ;
the classifier is illustrated in Figure III.3. AUC is averaged over 4 training runs for
each type axis.
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Figure III.4 – Neural network architecture for DeepType that dis-
covers long-term dependencies to predict types and jointly produces a
distribution for multiple type axes. In this example the sentence “prey
saw a jaguar cross the jungle" is cut into individual words. Each word
is sent to a word embedding layer produced a distributed representa-
tion for each word. The word vectors are processed in sequence by a
bidirectional-LSTM neural network. The hidden states produced by the
bidirectional-LSTM corresponding to each word in the sequence can then
be individually classified using k different classifiers, each corresponding
to a different Type Axis. Each Type Axis handles decisions among exclu-
sive options such as selecting : geographical class such as North America
vs. Europe, typological class such as human vs. company vs. automobile,
etc.

3.5 . Discrete Optimization of a Type System

The original objective Smodel(A, θ) cannot be solved exactly, thus heuristic
search or stochastic optimization are necessary to find suitable assignments for A.
To avoid training an entire type classifier and entity prediction model for each eva-
luation of the objective function, we instead use a proxy objective J for the discrete
optimization 4. To ensure that maximizing J(A) also maximizes Smodel(A, θ), we
introduce a Learnability heuristic and an Oracle that quantify the disambiguation
power of a proposed type system, an estimate of how learnable the type axes in
the selected solution will be. We measure an upper bound for the disambiguation
power by measuring disambiguation accuracy Soracle for a type classifier Oracle

4. Training of the type classifier takes about 3 days on a Titan X Pascal, while
our Oracle can run over the test set in 100ms.
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over a test corpus.
To ensure that the additional disambiguation power of a solution A translates

in practice, the estimate of the solution’s learnability Learnability(A) is used to
weigh improvements between Soracle(A) and the accuracy of a system that predicts
only according to the entity prediction model which is equivalent to the performance
of having an empty solution : Soracle(∅).

Selecting a large number of type axes will provide strong disambiguation power,
but may lead to degenerate solutions that are harder to train, slow down prediction,
and lack higher-level concepts that provide similar accuracy with less axes. This is
prevented using a per type axis penalty of λ.

Combining these three terms gives the equation for J :

J(A) =(Soracle(A)− Soracle(∅) · Learnability(A)− |A| · λ. (7)

3.6 . Type Classifier
After the discrete optimization has completed a type system A is produced.

This type system can now be used to label data in multiple languages from text
snippets associated with the ontology 5, and supervize a Type classifier.

The goal for this classifier is to discover long-term dependencies in the in-
put data that let it reliably predict types across many contexts and languages.
For this reason a bidirectional-LSTM [83] is chosen as the neural network archi-
tecture. Robustness to spelling and casing variability is increased with the use of
Word, prefix, and suffix embeddings as done in [6]. The network is shown picto-
rially in Figure III.4. The classifier is trained to minimize the negative log likelihood
of the per-token types for each type axis i in the document D with L tokens,
where the types given by type axis i for a token at position p is denoted ti,p :
−
∑k

i=1 logPi(ti,1, . . . , ti,L|D). When using Wikipedia as the source of text snip-
pets the label supervision is partial : labels are only found for tokens inside intra-
wiki links. In order to model only the areas that have supervision, the objective is
formulated with a conditional independence assumption :

− logP(t∀i,j |D) = −
k∑

i=1

L∑
j=1

logPi(ti,j |wj , D). (8)

5. Wikidata’s ontology has cross-links with Wikipedia, IMDB, Discogs, Music-
Brainz, and other encyclopaedias with snippets.
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3.7 . Prediction

At prediction-time classifier belief is integrated in our decision process by first
running it over the full context and obtaining a belief over each type axis for each in-
put word w0, . . . , wL. For each mention m covering words wx, . . . , wy, a type condi-
tional probability is produced for all type axes i : {Pi(·|wx, D), . . . ,Pi(·|wy, D)}.
In multi-word mentions, beliefs must be combine over multiple tokens x . . . y : the
product of the beliefs over the mention’s tokens is correct but numerically unstable
and slightly less performant than max-over-time 6, which we denote for the i-th
type axis : Pi,∗(·|m,D).

The score se,m,D,A,θ = EntityScore(e,m,D,A, θ) of an entity e given these
conditional probability distributions P1,∗(·|m,D), . . . ,Pk,∗(·|m,D), and the enti-
ties’ types in each axis t1, . . . , tk can then be combined to rank entities according
to how predicted they were by both the entity prediction model and the type sys-
tem. The chosen entity e∗ for a mention m is chosen by taking the option that
maximizes the score among the Em possible entities ; the equation for scoring and
e∗ is given below, with αi a per type axis smoothing parameter, β is a smoothing
parameter over all types :

PLink(e|m) =
LinkCount(m, e)∑

j∈Em LinkCount(m, j)
, (9)

se,m,D,A,θ = PLink(e|m) ·
(
1− β + β ·

{
k∏

i=1

(1− αi + αi · Pi,∗(ti|m,D))

})
.

(10)

4 . Results

4.1 . Training details and hyperparameters
4.1.1 Optimization

Our models are implemented in Tensorflow and optimized with Adam with a
learning rate of 10−4, β1 = 0.9, β2 = 0.999, ϵ = 10−8, annealed by 0.99 every
10,000 iterations.

To reduce over-fitting and make our system more robust to spelling changes
we apply Dropout to input embeddings and augment our data with noise : swap
input words with a special <UNK> word, remove capitalization or a trailing “s." In
our Named Entity Recognition experiments we add Gaussian noise during training
to the LSTM weights with σ = 10−6.

We use early stopping in our Named Entity Recognition experiments when va-
lidation F1 score stops increasing. Type classification model selection is different

6. The choice of max-over-time is empirically motivated : we compared product
mean, min, max, and found that max was comparable to mean, and slightly better
than the alternatives.
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as the models did not overfit, thus we instead stop training when no more impro-
vements in F1 are observed on held-out type-training data (about 3 days on one
Titan X Pascal).

Method Parameter Value

Greedy b 1
Beam Search b 8

CEM
NCEM 1000
pstart

50
|R| ≈ 0.001

kCEM 200

GA

G 200
Npopulation 1000
mutation probability 0.5
crossover probability 0.2

Table III.1 – Hyperparameters for type system discovery search.

4.1.2 Neural Network Architecture

Character representation An effective way of representing unseen or rare
words is to use character-aware representations of words. We apply this technique
by using the neural network architecture from [77] where a convolutional neural
network is applied to the input character embeddings with the following convolu-
tion filters (filter window size, filter channels) : {(1,50), (2, 75), (3, 75), (4, 100),
(5, 200), (6, 200), (7, 200)}. Following the original architecture and hyperparame-
ters, the character convolutions operate on words with a maximum length of 40
characters, and 15-dimensional character embeddings followed by 2 Highway layers
[151]. We also learn 6-dimensional embeddings for 2 and 3 character prefixes and
suffixes.
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Step Replacements Links changed
1 1,109,408 9,212,321
2 13922 1,027,009
3 1229 364,500
4 153 40,488
5 74 25,094
6 4 1,498

Table III.2 – Link change statistics per iteration during English Wiki-
pedia Anaphora Simplification.

Text Window Classifier The text window classifiers have 5-dimensional word
embeddings, and use Dropout of 0.5. Empirically we find that two passes through
the dataset with a batch size of 128 is sufficient for the window classifiers to
converge. Additionally we train multiple type axes in a single batch, reaching a
training speed of 2.5 type axes/second.

4.1.3 Data Preparation

Link statistics collected on large corpuses of entity mentions are extensively
used in entity linking. These statistics provide a noisy estimate of the conditional
probability of an entity e for a mention m P(e|m). Intra-wiki links in Wikipedia
provide a multilingual and broad coverage source of links, however annotators often
create link anaphoras : “king" → Charles I of England. This behavior increases
polysemy (“king" mention has 974 associated entities) and distorts link frequencies
(“queen" links to the band Queen 4920 times, Elizabeth II 1430 times, and
monarch only 32 times).

Problems with link sparsity or anaphora were previously identified, however
present solutions rely on pruning rare links and thus lose track of the original
statistics [41, 58, 89]. We propose instead to detect anaphoras and recover the
generic meaning through the Wikidata property graph : if a mention points to
entities A and B, with A being more linked than B, and A is B’s parent in the
Wikidata property graph, then replace B with A. We define A to be the parent of B if
they connect through a sequence of Wikidata properties {instance of, subclass
of, is a list of}, or through a single edge in {occupation, position held,
series 7}. The simplification process is repeated until no more updates occur.
This transformation reduces the number of associated entities for each mention
(“king" senses drop from 974 to 143) and ensures that the semantics of multiple
specific links are aggregated (number of “queen" links to monarch increase from
32 to 3553).

After simplification we find that the mean number of senses attached to po-
lysemous mentions drops from 4.73 to 3.93, while over 10,670,910 links undergo

7. e.g. Return of the Jedi →
series

Star Wars
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Figure III.5 – Mention Polysemy change after simplification.

changes in this process (Figure III.5). Table III.2 indicates that most changes result
from mentions containing entities and their immediate parents. This simplification
method strongly reduces the number of entities tied to each Wikipedia mention
in an automatic fashion across multiple languages. We release the software for
performing these link simplifications 8.

4.2 . Type System Discovery
In the following experiments we evaluate the behavior of different search me-

thodologies for type system discovery : which method best scales to large numbers
of types, achieves high accuracy on the target Entity Linking task, and whether the
choice of search impacts learnability by a classifier or generalisability to held-out
Entity Linking datasets.

For the following experiments we optimize DeepType’s type system over a held-
out set of 1000 randomly sampled articles taken from the February 2017 English
Wikipedia dump, with the Learnability heuristic text window classifiers trained only
on those articles. The type classifier is trained jointly on English and French articles,
totalling 800 million tokens for training, 1 million tokens for validation, sampled
equally from either language.

We restrict roots R and edges G to the most common 1.5 · 105 entities that
are entity parents through wikipedia category or instance of edges, and eli-
minate type axes where Learnability(·) is 0, leaving 53,626 type axes.

8. https://github.com/openai/deeptype
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4.2.1 Human Type System Baseline

To isolate discrete optimization from system performance and gain perspective
on the difficulty and nature of the type system design, a human-designed type
system serves as a baseline. Human designers have access to the full set of entities
and relations in Wikipedia and Wikidata, and compose different inheritance rules
through Boolean algebra to obtain higher level concepts. For instance to define the
concept of woman a membership rule which seeks the intersection of the descen-
dants of “human" via the instance of relation, and the descendants of “female"
via the sex relation. To construct a membership rule for animal which does not
contain humans, we look for the descendants of “taxon" 9 via the instance of
relation and exclude the descendants of “human" via the instance of relation.
The final human system is given in Section 1 and uses 5 type axes 10, and 1218
inheritance rules.

To assist humans with the design of the system, the rules are built interactively
in a REPL, and execute over the 24 million entities in under 10 seconds, allowing
for real time feedback in the form of statistics or error analysis over an evaluation
corpus. On the evaluation corpus, disambiguation mistakes can be grouped accor-
ding to the ground truth type, allowing a per type error analysis to easily detect
areas where more granularity would help.

4.2.2 Search methodologies

Beam Search and Greedy selection We iteratively construct a type system
by choosing among all remaining type axes and evaluating whether the inclusion
of a new type axis improves our objective : J(A∪ {tj}) > J(A). The search uses
a beam size of b and stops when all solutions stop growing.

Cross-Entropy Method (CEM) [138] is a stochastic optimization procedure
applicable to the selection of types. The CEM search begins with a probability
vector P⃗0 set to pstart, and at each iteration NCEM different vectors are sampled
from the Bernoulli distribution given by P⃗i. We denote a sampled vector st. Each
sampled vector’s fitness is measured using (7). The kCEM highest fitness vectors
form the winning population St at iteration t. The probabilities are fit to St giving
Pt+1 =

∑
s⃗∈St

s⃗

kCEM
. The optimization is complete when the probability vector is binary.

9. Taxon is the general parent of living items in Wikidata.
10. IsA, Topic, Location, Continent, and Time.
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Genetic Algorithm The best subset of type axes can be found by representing
type axes as genes carried by Npopulation individuals in a population undergoing
mutations and crossovers [57] over G generations. Individuals are selected using
(7) as the fitness function.

4.2.3 Search Methodology Performance Impact

Approach Evals Accuracy Items
BeamSearch 5.12 · 107 97.84 130
Greedy 6.40 · 106 97.83 130
GA 116, 000 96.959 128
CEM 43, 000 96.26 89
Random N/A 92.9± 0.28 128
No types 0 92.10 0

Table III.3 – Type system discovery method comparison

Model CoNLL 2003 OntoNotes
Dev Test Dev Test

Bi-LSTM [21] - 76.29 - 77.77
Bi-LSTM-CNN + emb + lex [21] 94.31 91.62 84.57 86.28
Bi-LSTM (Ours) 89.49 83.40 82.75 81.03
Bi-LSTM-CNN (Ours) 90.54 84.74 83.17 82.35
Bi-LSTM-CNN (Ours) + types 93.54 88.67 85.11 83.12

Table III.4 – Named Entity Recognition F1 score comparison for Deep-
Type pretraining vs. baselines. Best results shown in bold.

4.3 . Effect of System Size Penalty
To validate that the hyperparameter λ (Subsection 3.5) controls type system

size, and find the best tradeoff between size and accuracy, we experiment with a
range of values and find that accuracy grows more slowly below 0.00007, while sys-
tem size still increases. The effect averaged on 10 trials for a variety of λ penalties
is shown in Figure III.8. In particular there is a crossover point in the performance
characteristics when selecting λ, where a looser penalty has diminishing returns in
accuracy around λ = 10−4.

From this point on λ = 0.00007, and we compare the number of iterations nee-
ded by different search methods to converge, against two baselines : the empty set
and the mean performance of 100 randomly sampled sets of 128 types (Table III.3).
We observe that the performance of stochastic optimizers GA and CEM is similar
to heuristic search, but requires orders of magnitude less function evaluations.
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Type System size penalty λ vs. Solution Size

10 5 10 4 10 3 10 2

Penalty 

0

10

20

30

40

50

60

70

So
lu

tio
n 

siz
e

Figure III.6 – The size of the solution decreases exponentially with
increased penalty (Standard deviation across 3 seeds shown in red).

Type System size penalty λ vs. Convergence Iterations
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Figure III.7 – Systems with higher penalties require less iterations to
converge (Standard deviation across 3 seeds shown in red).
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Type System size penalty λ vs. Oracle Accuracy
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Figure III.8 – Accuracy increases with reductions in penalty, and pla-
teaus near λ = 10−4 (Standard deviation across 3 seeds shown in red).

Type System size penalty λ vs. Type System Objective J
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Figure III.9 – Objective J increases as penalty decreases, as the solution
size is less penalized (Standard deviation across 3 seeds shown in red).
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Model Wiki WKD AIDA TACen fr de es
M&W [101] 84.6
TagMe [41] 83.2 80.7 90.9
Globerson et al. [49] 91.7 87.2
Yamada et al. [175] 91.5 85.2
NTEE [176] 87.7

LinkCount only 89.1 92.0 92.0 90.0 82.7 68.6 81.5
Human Oracle [124] 96.78 96.86

manual 94.3∗∗ 93.0 91.9∗∗ 93.1∗∗ 90.7∗
manual (oracle) 97.7 98.0 98.6 98.2 95.9 98.2 98.6
greedy 93.7∗∗ 93.0 92.4∗∗ 94.2∗∗ 90.9∗
greedy (oracle) 98.0 97.2 97.9 98.3 97.3 99.0 98.3
CEM 93.7∗∗ 92.4 92.3∗∗ 94.0∗∗ 90.3∗
CEM (oracle) 97.5 96.7 97.5 97.6 96.5 99.0 96.8
GA 93.7∗∗ 92.0 92.1∗∗ 94.9∗∗ 90.3∗
GA (oracle) 97.3 96.8 97.4 97.6 96.3 98.5 96.7
GA (English) 93.0∗∗ 91.7∗∗ 93.7∗∗

Table III.5 – Entity Linking model Comparison. Significant improve-
ments over prior work (2018) denoted by ∗ for p < 0.05, and ∗∗ for
p < 0.01. Best non-oracle results shown in bold.

Next, we compare the behavior of the different search methods to a human
designed system and state of the art approaches on three standard datasets (i.e.
Wiki-Disamb30 (WKD) [41] 11, AIDA [64], and TAC KBP 2010 (TAC) [69]),
along with test sets built by randomly sampling 1000 articles from Wikipedia’s Fe-
bruary 2017 dump in English, French, German, and Spanish which were excluded
from training the classifiers. Table III.5 has Oracle performance for the different
search methods on the test sets, where we report disambiguation accuracy per
annotation. A LinkCount baseline is included that selects the mention’s most fre-
quently linked entity 12. All search techniques’ Oracle accuracy significantly improve
over LinkCount, and achieve near perfect accuracy on all datasets (97-99%) ; fur-
thermore we notice that performance between the held-out Wikipedia sets and
standard datasets sets is similar, supporting the claim that the discovered type
systems generalize well. We note that machine discovered type systems outper-
form human designed systems : CEM beats the human type system on English

11. We apply the preprocessing and link pruning as [41] to ensure the comparison
is fair.

12. Note that LinkCount accuracy is stronger than the one found in [41] or [101]
because newer Wikipedia dumps improve link coverage and reduce link distribution
noisiness.
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Figure III.10 – We plot the learnability score (AUC) for types derived
from “instance of" and “wikipedia category" inheritance relations in the
knowledge graph. Most “instance of" type-axes have higher AUC scores
those from type axes produced using “wikipedia category".

Wikipedia, and all search method’s type systems outperform human systems on
Wiki-Disamb30, AIDA, and TAC.

4.4 . Learnability Heuristic behavior
To better understand the behavior of the population of classifiers used to

obtain AUC scores for the Learnability heuristic we investigate whether certain
type axes are systematically easier or harder to predict. We find that type axes
with a instance of edge have on average higher AUC scores than type axes
relying on wikipedia category as visible in Figure III.10.

Furthermore, we also wanted to ensure that our methodology for estimating
learnability was not flawed or if variance in our measurement was correlated with
AUC for a type axis. We find that the AUC has low standard deviation as visible
in the histogram in Figure III.11, and observe no relation between the standard
deviation of the AUC scores for a type axis and the AUC score itself as visible in
Figure III.12.
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Figure III.11 – We construct a histogram of the standard deviation of
the learnability score (AUC), and find that the standard deviation for
AUC scoring with text window classifiers is below 0.1.
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Figure III.12 – We plot the the learnability score (AUC) vs. the stan-
dard deviation of the learnability score (AUC) using 3 different random
seeds to train the Learnability metric. AUC is not correlated with AUC’s
standard deviation.
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4.4.1 Search Methodology Learnability Impact

To understand whether the type systems produced by different search me-
thods can be trained similarly well we compare the type system built by GA, CEM,
greedy, and the one constructed manually. Entity Linking Disambiguation accu-
racy is shown in Table III.5, where we compare with recent deep-learning based
approaches [49], or recent work by Yamada et al. for embedding word and enti-
ties [175], or documents and entities [176], along with count and coherence based
techniques Tagme [41] and Milne & Witten [101]. To obtain Tagme’s Feb. 2017
Wikipedia accuracy we query the public web API 13 available in German and En-
glish, while other methods can be compared on CoNLL(YAGO) and TAC KBP
2010. Models trained on a human type system outperform all previous approaches
to entity linking, while type systems discovered by machines lead to even higher
performance on all datasets except English Wikipedia.

4.5 . Multilingual Transfer
4.5.1 Entity Linking Transfer

Type systems are defined over Wikidata/Wikipedia, a multi-lingual knowledge
base/encyclopaedia, thus type axes are language independent and can produce
cross-lingual supervision. To verify whether this cross-lingual ability is useful we
train a type system on an English dataset and verify whether it can successfully
supervize French data. We also measure using the Oracle (performance upper
bound) whether the type system is useful in Spanish or German. Oracle performance
across multiple languages does not appear to degrade when transferring to other
languages (Table III.5). We also notice that training in French with an English type
system still yields improvements over LinkCount for CEM, greedy, and human
systems.

Because multi-lingual training might oversubscribe the model, we verified if
monolingual would outperform bilingual training : we compare GA in English +
French with only English (Row “ GA (English)" in Table III.5). Bilingual training
does not appear to hurt, and might in fact be helpful.

4.5.2 Multilingual Representation

We follow-up by inspecting whether the bilingual word vector space led to
shared representations. Multilingual data creation is a side-effect of the ontology-
based automatic labeling scheme. In Table III.6 we present nearest-neighbor words
for words in multiple languages. We note that common words (he, Argentinian,
hypothesis) remain close to their foreign language counterpart, while proper nouns
group with country/language-specific terms (French and US politicians cluster se-
parately).

We hypothesize that common words, by not fulfilling a role as a label, can
therefore operate in a language independent way to inform the context of types,

13. https://tagme.d4science.org/tagme/
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Word k
1 2 3

Argentinian argentin (0.259) Argentina (0.313) Argentine (0.315)
lui he (0.333) il (0.360) him (0.398)
Sarkozy Bayron (0.395) Peillon (0.409) Montebourg (0.419)
Clinton Reagan (0.413) Trump (0.441) Cheney (0.495)
hypothesis paradox (0.388) Hypothesis (0.459) hypothèse (0.497)
feu killing (0.585) terrible (0.601) beings (0.618)
computer Computer (0.384) computers (0.446) informatique (0.457)

Table III.6 – Top-k Nearest neighbors (cosine distance) in shared
English-French word vector space.

while proper nouns will have different type requirements based on their labels, and
thus will not converge to the same representation.

4.5.3 Multilingual Part of Speech Tagging
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Figure III.13 – Model trained jointly on monolingual Part of Speech
corpora detecting the multiple meanings of “car" (shown in bold) in a
mixed English-French sentence. Words shown on the first row, and part-
of-speech tags shown in the second row.

Finally the usage of multilingual allows some amount of subjective experiments.
For instance below we show some samples from the model trained jointly on english
and french correctly detecting the meaning of the word “car" across three possible
meanings :

4.6 . Named Entity Recognition Transfer
The goal of our Named Entity Recognition experiment is to verify whether

DeepType produces a type sensitive language representation useful for transfer
to other downstream tasks. To measure this we pre-train a type classifier with
a character-CNN and word embeddings as inputs, following [76], and replace the
output layer with a linear-chain CRF [83] to fine-tune to Named Entity Recognition
data. Our model’s F1 scores when transferring to the CoNLL 2003 Named Entity
Recognition task and OntoNotes 5.0 (CoNLL 2012) split are given in Table III.4.
We compare with two baselines that share the architecture but are not pre-trained,
along with the state of the art at the time of DeepType’s publication [21].

We see positive transfer on Ontonotes and CoNLL : our baseline Bi-LSTM
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strongly outperforms [21]’s baseline, while pre-training gives an additional 3-4 F1
points, with our best model outperforming [21] on the OntoNotes development
split. While our baseline LSTM-CRF performs better than in the literature, our
strongest baseline (CNN+LSTM+CRF) does not match the state of the art with
a lexicon. We find that DeepType always improves over baselines and partially
recovers lexicon performance gains, but does not fully replace lexicons.

5 . Discussion

5.1 . Overview

In this chapter we introduced DeepType, a method for integrating symbolic
knowledge into the reasoning process of a neural network. We’ve proposed a mixed
integer reformulation for jointly designing type systems and training a classifier
for a target task, and empirically validated that when this technique is applied
to Entity Linking it is effective at integrating symbolic information in the neural
network reasoning process. When pre-training with DeepType for Named Entity
Recognition, we observe improved performance over baselines and improvements
over the 2017 state of the art on the OntoNotes dev set, suggesting there is cross-
domain transfer : symbolic information is incorporated in the neural network’s
distributed representation. Furthermore we find that type systems designed by
machines outperform those designed by humans on three benchmark datasets,
which is attributable to incorporating learnability and target task performance goals
within the design process. Our approach naturally enables multilingual training, and
our experiments show that bilingual training improves over monolingual, and type
systems optimized for English operate at similar accuracies in French, German,
and Spanish, supporting the claim that the type system optimization leads to the
discovery of high level cross-lingual concepts useful for knowledge representation.
We compare different search techniques, and observe that stochastic optimization
has comparable performance to heuristic search, but with orders of magnitude less
objective function evaluations.

The main contributions are a joint formulation for designing and integrating
symbolic information into neural networks, that enable us to constrain the out-
puts to obey symbolic structure, and an approach to Entity Linking that uses type
constraints. Our approach reduces Entity Linking resolution complexity for a do-
cument with N mentions from O(N2) to O(N), while allowing new entities to be
incorporated without retraining, and we find on three standard datasets (WikiDi-
samb30, CoNLL (YAGO), TAC KBP 2010) that our approach outperforms all prior
solutions by a wide margin, including approaches that rely on a human-designed
type system [89] and the more recent work by Yamada et al. for embedding words
and entities [175], or document and entities [176]. As a result of our experiments,
we observe that disambiguation accuracy using Oracles reaches 99.0% on CoNLL
(YAGO) and 98.6% on TAC KBP 2010, suggesting that Entity Linking would be
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almost solved if we can close the gap between type classifiers and the Oracle.

5.2 . Future Work
These results suggest many directions for future research : could DeepType

be applied to other problems where incorporating symbolic structure is beneficial ?
Would additional expressivity in the type system such as hierarchy help close the
gap between trained model and Oracle accuracy ? Are there benefits to relaxing
the type classifier’s conditional independence assumption ?

5.3 . Relation to Thesis
In the following chapter (Chapter IV), we show how we can build upon the

results presented here. First, we remark that the use of types enabled superior
performance while increasing transparency, reducing parameters, and improving
sample efficiency. However, the use of human annotation for type system design
and the use of a proxy objective make the system more prone to error and misa-
lignment. By relaxing the conditional independence assumption, we show how we
can eliminate human annotation, and use the disambiguation objective directly to
train the entire system.
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CHAPTER IV

End-To-End Type Reasoning
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1 . Introduction

Breakthroughs in Natural Language Understanding from high-capacity lan-
guage models with mask-based losses [32] and pre-training on web-sized corpuses
[123] have produced a massive shift in the number of examples needed to ta-
ckle NLP tasks thanks to finetuning and world-knowledge pre-encoded in model
weights. Entity linking similarly benefited from this wave of pre-trained language
models [42, 87, 93] where systems without task-specific features match the ac-
curacy of those with Entity Linking features and structured data [126, 146]. Des-
pite advances from novel architectures and pre-training, Entity Linking systems
fall short of human performance with accuracies ranging from 90% to 96% on
standard benchmark datasets [87, 126], while other NLP tasks such as sentiment-
analysis [123], named entity recognition [177], or part of speech tagging rival human
performance with accuracies above 97%.

Have we reached a performance ceiling on Entity Linking ? We split this ques-
tion into two parts : what is human performance on this task, and can we match
it ?

We answer the first question in our human performance benchmark in Chap-
ter II where we find a gap between algorithmic and human performance. In this
chapter we answer the second question through our key contribution : DeepType 2.

DeepType 2 is an Entity Linking system that improves over the state of art
(SoTA) on seven standard Entity Linking datasets and attains higher than human
accuracy from our benchmark on TAC and AIDA. Most of our gains are explained by
type interactions : an entity representation that captures rich inter-entity relations
by encoding entities using their typed Wikidata neighbors. Predictions are coherent
thanks to a document-wide score trained by a contrastive loss ; the score retains
type-system’s explanatory power by capturing the per-type contribution to each
prediction. The system also enables practical use of document coherency features
by materializing them on-the-fly during search with a knowledge base in the loop.

This chapter is structured as follows : Section 1 describes our approach ; Sec-
tion 2 presents experiments that show how DeepType 2 profits from type-based
representations, negative sampling, and global normalization ; Section 3 contains
a discussion of the results and future work directions.

2 . Approach

2.1 . Neural Network Architecture
DeepType 2 uses a neural network that takes as input entire documents with

their mentions. An illustration of the architecture is given in Figure IV.1.

68



…

Occupation EmbeOccupation Embed

Ada

CANDIDATE 
LOGITS

Select

Decoder 
LSTM

Ada Lovelace 
(Q7259)

MatMul

Select

Decoder 
LSTM

Computer Program 
(Q40056)

LSTM 
RECURRENCE

Instance of 
human Embed

Latitude/Longitude

Birthdate

“Ada” wikipedia link 
stats

Type neighborhoods

C
oncatenate

MaxPool

Type interactions

related via employer to 
another?

same instance of as 
previous?

related via US State to 
another?

Decoder LSTM 
State

FC MatMul

C
oncatenate

Candidate representation

Bucket + 
Embed

Predicted 
Entities + KB

computer program

FC tanh

Embed + text features + Bi-LSTM

MatMul

MaxPool

Linear

QKV Attention

MaxPool

Linear

QKV Attention

Ada wrote the first computer program

3) Update state

2) Pick entity

1) Represent 
“Ada”’s 
candidate 
entities

Figure IV.1 – An LSTM reads text, while a separate graph NN produces
candidate entity representations used for prediction. Entity predictions
are fed to a Decoder LSTM. The decoder LSTM and predicted entities
produce type interaction features for future predictions.

2.1.1 Document Representation

The tokenized input document D is represented using word, prefix, and suffix
embeddings and a capitalization bit. Tokens are processed by a stacked bidirectional-
Long Short Term Memory (LSTM) RNN [51].

2.1.2 Mention Representation

For each mention an alias table generates candidate entities. The alias table
is generated using the same approach as prior work [41] : intra-wiki links from
Wikipedia provide a mapping from mention to linked entities. The link statistic
features from the alias table are also exploited : 1) prior probability of linking to
a particular entity given a particular alias table entry, 2) prior probability a given
mention was seen for a given entity.

For each document-mention pair Dm a fixed-length representation hm(Dm) is
obtained from the variable number of mention tokens. First a max-pool operation is
applied on the associated Bi-LSTM hidden states to produce hpool,m(Dm). Second,
longer-range context for this set of tokens is obtained using QKV Attention [157]
(Att(·)) over the full document with hpool,m(Dm) as query. The result of the
attention operation is linearly projected into the same space as the max-pooled
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Figure IV.2 – By spoofing “Isthmus" candidates across the globe we
observe the lat/long feature score grows in the Southern hemisphere.

and attended vector into the same space via a learnt matrix W to obtain hm :

hm(Dm) = W · hpool,m(Dm) + Att(hpool,m(Dm)). (1)

2.1.3 Entity Representation

Neighborhood relation Wikidata relations
Admin. territorial entity P131
Instance/Subclass of P31, P279
Occupation P106
Country P27, P17, P495
Sport/Industry P101, P425, P1995, P641, P2578, P452
Continent P30
Gender P21
Lat/Long P625
Birthdate P569, P571, P585, P580, P577

Table IV.1 – Wikidata relations for each type neighborhood.

Next, we associate to each candidate entity multiple sets of Wikidata neigh-
bors (e.g. human, United Kingdom, mathematician) coming from different typed
relations such as occupation or origin country. These neighborhood relations are
chosen based on usage frequency in Wikidata. See Table IV.1 for the list of type
neighborhood relations. The neighbors obtained from these relations can be enti-
ties, real values (e.g. latitude/longitude), or dates (e.g. birthdate).

We refer to neighbors that are up to ndepth steps away as the type neighborhood
representation of an entity. See Figure IV.3 for an example of Ada Lovelace’s type
neighborhood.

To recover a fixed length entity representation from the type neighborhood we
use a Graph Neural Network (GNN). In this work ndepth = 2, which enables us to
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Figure IV.3 – Disambiguating “Ada" in the sentence “Ada wrote the
first computer program. She..." Type neighborhoods for candidate enti-
ties are computed by finding depth 2 neighbors via different typed Wi-
kidata edges. An entity’s score is the sum of its type neighborhood and
interaction scores. This acts as a rationale for DeepType 2’s decisions.
We see wikipedia probs, gender, occupation, instance, and work had the
largest impact.

take advantage of a basic GNN consisting of an embedding layer and a max-pool.
For deeper neighborhoods, a depth or edge-aware GNN might be preferable [163].

2.1.4 Type Interactions

We perform joint predictions over all mentions in a document. In order to do
this, we augment the entity representation with two sets of features related to past
predictions : latent and discrete type interactions.

Latent type interactions are obtained by computing the scalar product between
the type neighborhood representation of a candidate and the hidden state of a
decoder LSTM (3 in Figure IV.1). The decoder LSTM receives as input the chosen
entity’s type neighborhood representation after each prediction. Latent interactions
measure if the candidate’s type neighborhoods match the memory using a learnt
function.

Discrete type interactions are boolean features corresponding to the result of
multiple knowledge graph queries. For each relation in a prefined set, a knowledge
graph query checks if any past entity is connected to the candidate entity by this
relation. Using these features it is possible to measure list type-homogeneity or
answer questions such as “is this candidate of the same sport / team / league/ etc.
as past entities ?" As with type neighborhoods, relations were chosen based on their
Wikidata usage frequency. As we later discuss in Section 3.3.2, certain relations are
redundant, and the system is robust to removing those. See Table IV.2 for the list
of Wikidata relations used in the type interactions. The discrete interactions access
outside information from a KB to answer factual inter-entity questions. We provide
in Figure IV.4 an example of these interactions to disambiguate John Gorst.
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Type Interaction Entity relation
Identity same entity
League P118
Season P5138
Educated at P69
Political Party P102
Spouse P26
Sibling P3373
Employer P108
Member of sports team P54
Sport (sport) P641, (occupation) P106, (field

of this occupation) P425 and connec-
tive node inherits from Q31629 (sport).

US State P131 and connective node inherits from
Q35657.

Contemporary overlap in (birthdate P569, deathdate
P570).

Table IV.2 – Wikidata relations for each type interaction.

2.1.5 Scoring

Candidate probabilities are obtained from the dot product between the men-
tion and the entity representation : with c0, . . . , cn candidate entities, s the dis-
crete/latent state, and ft(ci, Dm, s) the concatenation of type neighborhood and
F different interaction features :

Score(ci, Dm, s) = hm(Dm) · ft(ci, Dm, s), (2)

P(ci|Dm, s) =
exp (Score(ci, Dm, s))∑n
j=0 exp (Score(cj , Dm, s))

. (3)

The feature-vector Score(ci, Dm, s) is formed by concatenating the F interaction
features : I0(ci), . . . , IF (ci). Based on the (arbitrary but fixed) concatenation order
feature Ij(ci) will be elementwise multiplied with a different subset of the vector
hm. Let us define IIj(ci) to be the set dimensions of hm that will be element-wise
multiplied with Ij(ci), and hm,z to scalar at dimension z of hm, then, we can
recover feature scores as follows :

Score(ci, Dm, s) =

F∑
j=0

(hm,z∈IIj(ci)(Dm)) · Ij(ci, s))︸ ︷︷ ︸
feature Ij ’s score

, (4)

=
F∑

j=0

ScoreIj (ci, Dm, s). (5)
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Figure IV.4 – In AIDA, type interactions with past predictions give us
hints about “John Gorst"’s candidate entities : candidate 2 is contempo-
rary to John Major and his political party is previously mentioned.

Rewriting Score(ci, Dm, s) as a sum of feature scores reveals each type neigh-
borhood or interaction’s contribution to the overall score. Feature scores may serve
as decision justifications as we show in Figure IV.3 and Figure IV.2.

2.1.6 Objective Function

Model parameters θ are learnt by minimizing L(θ), the negative log likelihood
of the ground truth entity e relative to alias table candidates for the mention m :

L(θ) =
∑

{e,Dm,s}

− logP(e|Dm.s; θ). (6)

2.2 . Contrastive Loss
Our objective function profits from becoming a contrastive loss. When too

many candidates are returned by the alias table we subsample to reduce computa-
tional cost, and when there are too few, we supply negative samples [55]. Negative
samples massively increase the supervision signal as over 45.4% of Wikipedia men-
tions are unambiguous.

A further reason to use a contrastive loss is its ability to focus model capa-
city towards only resolving actual ambiguities from the alias table. By comparison,
a generative loss for predicting types independently wastes capacity on modeling
all type combinations (e.g. about 2128 in DeepType [126]) most of which are im-
possible. A contrastive loss focuses the learning on discriminative features : the
gradient is zero for features common between candidates (see proof of Lemma 1).
Indeed, the likelihood of a candidate entity is computed by computing an exponen-
tial normalization (Softmax) over the scores of all candidates. Because exponential
normalization is shift invariant, a feature that is common across multiple candidates
is a constant that can be factorized and removed.

Lemma 1. Given candidates c0, . . . , cn, represented by features I0(ci), . . . , Ij(ci),
and the probability of a candidate ci defined by P(ci|Dm, s) ∝ exp(

∑F
j=0 ScoreIj(ci)),
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then if feature Ij is equal for all candidates, Ij(ci) = Ij(ck)∀(i,k)∈[0,n], then
∇IjP(ci|Dm, s) = 0.

Proof. Consider candidates c0, . . . , cn sharing a common type neighborhood or
interaction feature Ik, making all type scores are equal to a constant C :

C = ScoreIk(ci) = · · · = ScoreIk(cn), (7)

(8)

then the feature Ik has 0 gradient as we can see by rewriting the probability
of a candidate ci using C :

P(ci|Dm, s) ∝ exp(
F∑

j=0

ScoreIj(ci)), (9)

∝ exp(
F∑

j=0,j ̸=k

ScoreIj(ci)) · exp(C) (10)

=
exp(

∑F
j=0,j ̸=k ScoreIj(ci)) · exp(C)(∑n

i=0 exp(
∑F

j=0,j ̸=k ScoreIj(ci))
)
· exp(C)

(11)

=
exp(

∑F
j=0,j ̸=k ScoreIj(ci)))∑n

i=0 exp(
∑F

j=0,j ̸=k ScoreIj(ci))
. (12)

Having eliminated Ik from the equation our result follows :

∇IkP(ci|Dm, s) = 0. (13)

While the shift-invariance of Softmax is well known, it is however useful to
note that this elimination of the gradient for Ik from our loss is thanks to expo-
nential normalization. This property does not show up in a margin loss without
normalization unless the score of negative samples is averaged.

2.3 . Densification

Property Original Dense
Number of Tokens 1.2B 2.8B
Number of Mentions 74M 220M
Paragraphs with 1+ Mentions 21.7M 68.6M

Table IV.3 – Wikipedia corpus densification statistics

In order to observe type interaction features we densify mentions in documents.
For training, we densify Wikipedia articles by creating new links to entities already
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present in the page. We filter new links with a classifier trained on 300 hand-
collected labels. As articles do not refer to themselves, the subject of the article
can be used to create many additional links. Keeping the high confidence new
links increases dramatically the size of our training corpus by 2.97x from 74M to
220M mentions as detailed in Table IV.3. As some phrases are overly generic or
ambiguous, we use a binary classifier to decide on new links. A similar technique
was employed in DAWT to [150] to increase the number of links by 4.8x to ob-
tain a mention detection and entity co-occurence dataset, but to the best of our
knowledge we are the first to use this for Entity Linking.

2.3.1 Link Densification Network Architecture
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Figure IV.5 – ROC Curve for the synthetic link classifier.

The classifier is 2-layer Multi-Layer-Perceptron with 5 hidden units, a ReLu
nonlinearity, using 400 manually collected labels with a 2 :1 train test split. and
trained with the Adam optimizer [78]. The classifier has an accuracy of 71%, and
its ROC curve is shown in Figure IV.5.

2.3.2 Distributional Shift from Densification

Wikipedia negative log likelihood
Training data Original Densified
Original 0.73 1.13
Densified 0.81 0.84

Table IV.4 – Impact of Wikipedia Densification on negative log likeli-
hood.

To understand whether this densification produces data that prevents transfer
to original Wikipedia data we look at the negative log likelihood of links when
training with and without the densification in Table IV.4. We see a small change
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in negative log likelihood when transferring to original Wikipedia data after trai-
ning on the augmented set. A model trained only on the original set has a much
greater increase in negative log likelihood when evaluated on densified data. From
this investigation, we conclude that densification generalizes well to the original
Wikipedia data. Densifying does not prevent a model from operating on infrequent
mentions, but enables better handling of increased self-links. Conversely, the poor
generalization to the densified data suggests that models trained purely on unden-
sified Wikipedia data do not handle well an increase in mentions.

2.4 . Coherency

The New Yorker’s Steve Coll looked into more 
than $54 million allegedly stashed…

Norm (NYC) (NYC, Steve Coll)
Local Prob 0.60 0.6=0.60 ⨉ 1.0

Global Prob 0.60 0.16

Norm (New  Yorker) (New Yorker, Steve Coll)
Local Prob 0.38 0.38=0.38 ⨉ 1.0

Global Prob 0.38 0.83

New York City (Q60) 
largest city in USA

The New Yorker 
(Q217305) magazine

Steve Coll (Q128771) 
Journalist, author, executive

Steve Coll (Q128771) 
Journalist, author, executive

EMPLOYER

Start 
Beam 

Search

Prob=
0.6

Prob=
0.38

Prob
=1.0

Prob
=1.0

Figure IV.6 – Global normalization effect in TAC : Steve Coll, although
unambiguous, reinforces the likelihood of picking his employer New Yor-
ker magazine when scores are summed before being normalized.

Type interaction Syntax pattern Entity relation
city/county , state/region P131
city/county/state/region , country P17
list-like : A and B or A,B, and C etc. P31
human, (team) P54
human, (nationality) P495

Table IV.5 – Wikidata relations used within syntactic patterns.

To make coherent predictions we jointly predict entities while taking into ac-
count interactions between all predicted entities :

— Discrete type interactions act as constraints to prune the candidate search
space : in the context of syntactic structures such as “Venice, California" we
expect a located-in relation, or “Paris and London" where we expect list type
homogeneity. These patterns are given in Table IV.5 with syntax in bold.

— Beam search with autoregressive features increases increases coherency with
limited computational cost : DeepType 2’s pairwise entity features are only
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materialized during search. For k search beams, and document D with ND

input tokens, Nm mentions, Mc candidates per mention, and Nm ·ND at-
tention features, the computational complexity is O(Nm ·Mc ·k+Nm ·ND)

instead of O(N2
m ·M2

c ) if all features had to be pre-computed. The practical
implications is that this system can process all AIDA with 16 search beams
in 23s (187.3 mentions/s and 2178 tokens/s) on an NVIDIA GeForce GTX
1080.

— Global normalization enables every decision, regardless of order, to increase
or decrease the joint likelihood of the prediction sequence. This is achieved
by summing all decision scores before normalizing, rather than multiplying
locally normalized probabilities as shown in Figure IV.6. This conversion from
local to global was previously proposed to improve expressivity and overcome
label bias [6, 125], an autoregressive model pitfall [82].

3 . Results

We evaluate DeepType 2 on standard benchmarks and on the human bench-
mark we presented earlier in Chapter II. Second, we investigate through ablations
what aspects of the proposed approach are the most important.

In all our experiments DeepType 2 is trained for 2 million gradient steps using
as annotations intra-wiki links from the December 2017 English Wikipedia dump
with densification, as well as AIDA’s train split. Unless otherwise noted, we use
16 search beams and global normalization. Training takes approximately 6 days on
a single NVIDIA GTX 1080Ti on a computer with 128GB of RAM and 28 core
3.3Ghz Intel i9 CPUs. To facilitate comparisons with prior work on AIDA we use
the PPR4NED alias table [114], otherwise our alias table is built from intra-wiki
links.

DeepType 2’s neural network dimensions and learning rate schedule were se-
lected using a Wikipedia-based validation set and are provided in Table IV.6. Type
neighborhoods use the embedding dimensions in Table IV.7. We also construct
type neighborhoods that are a combination of these neighborhoods in Table IV.8.
To obtain a representation for combinations we concatenate the max-pooled result
of the individual type neighborhoods and process them using a fully connected
layer and a ReLu nonlinearity. Dimensions for these fully connected (FC) layers are
given in Table IV.8.

We use the Adam optimizer [78]. We resize training batches to contain at most
12,800 tokens per batch. If an out of memory error occurs we sample another batch
and keep training. We accumulate gradients across 2 mini batches to fit within GPU
memory when training with 100 negative samples.
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Hyperparameter name Value
Input Bi-LSTM size 512
Input Bi-LSTM layers 2
Attention Heads 2
Attention Query size 128
Word embedding size 200
Word UNK Probability 0.25
Word Vocab Size 750,000
Word {Prefix,Suffix}-{2,3} embedding size 6
Word {Prefix,Suffix}-{2,3} vocab size 100,000
Wikipedia link stats Layer size 20
Wikipedia link stats Dropout probability 0.3
Wikipedia link stats power 0.18
Decoder LSTM size 128
Learning Rate 0.001
LR Decay/33,000 gradient steps 1%
LR Decay/400,000 gradient steps 80%
AIDA Train data oversampling 10
Negative Samples 100
Training max candidate entities 100

Table IV.6 – Neural Network Hyperameters

3.1 . Evaluation on Standard Datasets
We compare Human performance, DeepType 2, and the current Entity Linking

state of the art on the standard benchmark datasets TAC and AIDA and report
our results with average and standard deviation across 6 runs in Table IV.9. In
Table IV.10 we report evaluations of our system on five additional well known Entity
Linking datasets WNED-WIKI [54], WNED-CWEB [54], MSNBC [27], AQUAINT
[101], and ACE 2004 [130].

DeepType 2 improves accuracy over the SoTA on all evaluated datasets, and
outperforms the human oracle accuracy by 0.62% on TAC and 0.74% on AIDA. The
largest gains relative to prior work are observed on TAC (2.58%), AIDA (1.02%
), WNED-CWEB (3.77%), while the smallest is WNED-WIKI. (0.43%).
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Neighborhood relation Vocab size Min count d
Admin. territorial entity 17003 10 10
Instance/Subclass of 14624 5 40
Occupation 1421 10 10
Country 759 3 10
Sport/Industry 599 10 40
Continent 12 10 10
Gender 3 10 10

Table IV.7 – Type neighborhood used to represent entities.

Neighborhood relations Merge FC Dimension
Gender, Occupation, Instance 20
Sport/Industry, Instance 20

Table IV.8 – Type neighborhoods with cross-terms.

3.1.1 Mention Densification

One of the largest gains relative to prior work is observed on TAC, greatly
thanks to the way mention “densification" provides additional contextual entities
that power type interaction : we add mentions to the document to increase their
frequency from TAC’s original single mention/document. Mentions are detected
by greedily taking the longest alias table matches linkable to persons, places, or
activities. Accuracy increases by 3.97% from 93.51% to 97.48%.

3.1.2 Joint Decision Making

The score given to a sequence of predictions is heavily dependent on type in-
teraction features to make coherent decisions. We report the result of independent
predictions versus joint predictions in Table IV.11. We observe a massive impro-
vement over independent decisions when jointly predicting entities. A smaller but
noticeable improvement is visible when switching from locally to globally normali-
zed scores.

We also study the effect of varying the number of search beams in Table IV.12.
We find that a small percentage of search errors in TAC and AIDA can be mitigated
by considering more hypotheses.
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Model TAC AIDA
Human Oracle 96.86 96.78
DeepType 2 (ours) 97.48 ±0.06 97.72 ±0.04
Ling et al. [87] 89.8 94.9
Raiman and Raiman [126] 90.85 94.88
Mulang’ et al. [104] - 94.94
Févry et al. [42] 94.9 96.7

Table IV.9 – Humans and state of the art Entity Linking system accu-
racy (µ± σ). Best results shown in bold.

Dataset DeepType 2 (ours) Yang et al. (2018) De Cao et al. [29]
W-CWEB 85.57±0.24 81.8 77.3
W-WIKI 87.83±0.08 79.2 87.4
MSNBC 95.12±0.23 92.6 94.3
AQUAINT 92.74±0.27 89.9 89.9
ACE 2004 92.23±0.19 89.2 90.1

Table IV.10 – Entity Linking system accuracy on standard datasets
(µ± σ). Best results shown in bold.

Decision Method TAC AIDA
Independent 93.51±0.07 96.76±0.08
Joint Local Score 97.44±0.08 97.62±0.07
Joint Global Score 97.48±0.06 97.72±0.04

Table IV.11 – Impact (µ ± σ) of decision method on accuracy. Best
results shown in bold.

3.2 . Error Analysis
DeepType 2 has the ground truth entity in its top-3 responses over 99% of the

time (99.10% on TAC, 99.35% on AIDA). The main remaining mistakes made by
DeepType 2 and humans fall into the same category : confusing places and sports
teams due to journalistic shorthand overloading the meaning of place names as
visible in Table IV.13.
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k TAC AIDA
1 97.44±0.08 97.69±0.06
8 97.44±0.08 97.71±0.04
16 97.48±0.06 97.72±0.04

Table IV.12 – Impact (µ ± σ) of varying search beams k on accuracy.
Best results shown in bold.

Confusion TAC (%) AIDA (%)
DT2 Human DT2 Human

Place vs. Sports Team/Club 22.2 32.6 8.9 20.2
Business vs. Business 18.5 7.0 2.4 0.8
Ethnic group vs. Country 3.7 3.1 0.8 27.4
Sports team vs. Sports team 3.7 9.3 0.0 13.7
Remainder 51.9 48.1 37.5 37.9

Table IV.13 – Typed confusions for DeepType 2 (DT2) and humans.
The biggests source of errors is shown in bold.

3.3 . Ablations
3.3.1 Entity Representation

The comparison of different entity representations in DeepType 2 shows that
the best one uses both type neighborhoods and type interactions as visible in
Table IV.14. We empirically verify the effect of replacing type neighborhoods by
same dimension unique Entity-Vectors used in state of the art approaches [42, 87,
146, 175]. Type neighborhoods have 6 times less parameters (166M vs. 998M), get
the same accuracy as Entity-Vectors after training on a 1/4 of data and 10 times
less updates (150k vs. 1.5M), and reach higher accuracy model on TAC and AIDA.
We also ablate the use of type interactions and find that they also contribute to a
large portion of the Entity-Vectors system’s performance.

Representation TAC AIDA
type neighborhoods + type interactions ∗ 97.48 97.72
unique entity vector + type interactions 94.07 94.57
unique entity vector 89.60 92.73
∗Our proposed approach.

Table IV.14 – Impact of entity representation on accuracy. Best results
shown in bold.
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3.3.2 Type Interaction Features
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Figure IV.7 – Type interactions are domain dependent as visible in (A)
by looking at the impact of using a single relation in TAC vs. AIDA. In
(B) we test the redundancy of type interactions by removing one from
the system.

Our entity representation ablation above shows type interactions are crucial,
begging the question : what are the most important type interactions ? We compare
the impact of using a single type interaction on TAC and AIDA accuracy in the
(A) pyramid plot in Figure IV.7. We observe that type interactions are domain-
dependent : relations such as “League" matter more in sports-heavy AIDA, and
geographical relations (e.g. “Located in") benefit the newswire-based TAC.

As type interactions can have overlapping roles, we look at the sensitivity to
removing a single type interaction as an indication of its redundancy and report
the results in the (B) pyramid plot of Figure IV.7. “Located in" has the largest
negative impact when removed and thus is least redundant. Conversely, “League"
appears redundant as it individually increases AIDA accuracy by 0.58% accuracy,
but only causes a 0.12% decrease if removed when all other type interactions are
present.
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3.4 . Training Ablations

Training data TAC AIDA
Original 96.75 96.47
Densified 97.48 97.72

Table IV.15 – Impact of Wikipedia Densification on accuracy. Best
results shown in bold.

Negative Samples Max entities per mention (training) TAC AIDA
0 20 95.41 95.63

20 20 96.98 97.99
100 100 97.48 97.72

Table IV.16 – Negative sampling impact on Entity Linking perfor-
mance. Best results shown in bold.

3.4.1 Wikipedia Densification

We compare the quality of models trained with and without densification.
With densification models obtain higher accuracy on TAC and AIDA as shown in
Table IV.15.

3.4.2 Negative sampling

As entity representations are only learnt through comparisons, the unambiguous
mentions provide no supervision potentially leaving representations untrained. In
Table IV.16 we show that increased negative samples and training candidate entities
improve final accuracy. Some negative samples are critical to performance, while
increasing the number of training candidates from 20 to 100 is more helpful on
TAC than AIDA.

4 . Discussion

4.1 . Overview
Through our human performance benchmark introduced in Chapter II, we ob-

serve that previous systems approach human performance but still underperform.
We close the performance gap thanks to a new Entity Linking system, DeepType 2.
The proposed approach removes the need for a pre-trained language model and
improves over the human accuracy on the benchmark datasets and reaches a new
state of the art on five other commonly used Entity Linking datasets.

The performance gains are explained by a novel abstract entity representa-
tion built on Wikidata relation subgraphs. Through ablations we show that this
entity representation uses 80% fewer parameters than equivalent entity vectors,
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and reaches higher accuracies thanks to an ability to share learning between en-
tities of the same type. The strongest contributor to performance is the set of
autoregressive relational features we call type interactions. These features enable
the system to produce coherent document-wide predictions through higher order
reasoning over the entity types (e.g. shared employers, geographical co-occurence,
list type homogeneity). A further benefit of DeepType 2 is that it eliminates two
major difficulties of existing type based systems such as DeepType [126] : 1) the
type representation is now automatically generated by embedding subgraphs rather
than curated type labels, 2) a single task-aligned objective function replaces prior
use of a proxy multi-objective type classification.

4.2 . Future Work
The work presented in this chapter has several limitations. First, DeepType 2

relies solely on structured relations and cannot make use of the wealth of unstruc-
tured relations. Second, the presented system DeepType 2 does not take advantage
of pre-trained language models. A useful line of investigation would be to test the
effect of pre-training and alternate text encoding mechanisms.

4.3 . Relation to Thesis
The presented system reaches one of the thesis goals of attaining human level

performance. However, the proposed approach can only access external knowledge
using structured knowledge bases designed by humans. In the next chapter (Chap-
ter V) I show how this system can be improved by combining DeepType 2 with a
Pretrained Language Model to take advantage of unstructured relations.

The main strength of the system presented in this chapter is type interactions :
these features enable the system to use external facts and reason about the full
document context. This is greatly facilitated by the typing information associated
with relations, enabling separation between uninformative relations, while providing
shared features that a neural network can be trained to recognize when relevant
relation types are present. Because unstructured relations lack this typing informa-
tion, their inclusion may either hurt performance or be altogether ignored by the
neural network. To overcome these difficulties, I propose to instead unify the re-
presentations of structured and unstructured relations : the neural network cannot
distinguish the two sources of data, and must then learn to operate indifferently
with either source present.

84



CHAPTER V

Neural Relational Database
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1 . Introduction

The ability for large pretrained language models such as T5, PaLM, or GPT-3
[19, 23, 123] to implicitly recognize tasks using prompts has caused a massive shift
in the way we think and design Natural Language Understanding systems that must
change given the context or external facts.

Prior to prompt programming, the bulk of a task’s definition and relevant facts
were baked into the model during training. A model had to be retrained to alter
its behavior, or built with externally controllable features informing the task such
as gazeteers [94] or databases [165]. The reliance on external resources added
resiliency and longevity by providing ways to perform updates and have the model
react accordingly.

With prompt programming, it becomes possible to include external resources
directly in the inputs of the model by using the idea of “open-book" [134] reasoning.
The model’s input can contain parenthetical and dynamic information regarding
the user, time of day, or facts relevant to the main input that are impractical to
memorize or may have changed since training. This capability has led to state of
the art results in many Natural Language Processing (NLP) tasks thanks to zero
or few-shot capabilities [19, 23, 85]. These works show that accuracy on few-shot
tasks grows with the addition of prompting examples. However, including an entire
training set as a prompt becomes impractical due to computation and memory
constraints.

Retrieval-augmented models offer a solution by enabling a model to reference
entire knowledge bases without growing the input. Using this approach, language
models can attend to billions of tokens of unstructured data and reach equivalent
performance with 15 to 25 times less parameters [14, 68]. The same trend is visible
with retrieval over structured knowledge bases containing millions of entities and
relations : DCA-SL+Triples[104] and DeepType 2 [124] greatly improve in Entity
Linking accuracy by featurizing query results containing external facts and entity
relations.

Unfortunately, retrieval-based approaches face a significant scaling challenge :
while there is an abundance of unstructured data collectible on the web, we lack
an equivalent way to automatically collect and curate structured data.

We overcome this limitation by using Pretrained Language Models to obtain
a unified representation for structured and unstructured data. This lets us train
retrieval models that can perform inference with either modality present. Our key
contributions are twofold :

1. We present the Neural Relational Database (NeRD), a technique that en-
ables retrieval models to learn how to perform inference using either a natu-
ral language representation of structured data, or unstructured data directly.
We achieve this by requesting subject-relation-object triplets from structu-
red and unstructured knowledge bases : structured results have a fixed set
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(b) Relation Extraction using RoBERTa-ATLOP + DeepType 3

Figure V.1 – DeepType 3’s accuracy on AIDA and RoBERTa-ATLOP
+ DeepType 3’s F1 on DocRED improves as we increase the size of the
unstructured data knowledge base. Providing DeepType 3 with structu-
red relations provides additional gains.

of potential relations (e.g. {“Maryam Mirzakhani", occupation, “Mathemati-
cian"}), while the unstructured results are made of text snippets found bet-
ween the subject and object in a text corpus (e.g. {“Maryam Mirzakhani",
“was awarded the", “Fields Medal"}). We unify the representation for these
two modalities by embedding the triplet with the same frozen Pretrained
Language Model and pooling all the results.

2. We propose DeepType 3, an Entity Linking system made by replacing the
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relation retrieval from DeepType 2 with NeRD, and test its performance
on Entity Linking and Relation Extraction and show improvements in both
cases. We establish a new state of the art in Entity Linking performance
when evaluating on seven commonly used datasets. Relation Extraction per-
formance is measured on the DocRED dataset [180] where we obtain gains
by combining existing Relation Extraction systems with DeepType 3. On
both tasks, we demonstrate how NeRD’s performance improves with addi-
tional structured or unstructured relations as visible in Figure V.1.

This chapter is structured as follows : Section 2 describes the NeRD technique
and how it integrates in DeepType 3’s neural network architecture. Section 3 pre-
sents our experiments comparing DeepType 3 to the Entity Linking and Relation
Extraction state of the art and uses ablations to demonstrate the impact of struc-
tured and unstructured data in query results. In Section 4 we provide a discussion
of the results and future work directions.

2 . Approach

2.1 . Unified Structured and Unstructured Relation Representation
Our proposed technique, NeRD, for unifying structured and unstructured re-

lations relies on storing subject-relation-object triplets using natural language. We
collect unstructured relations by finding text snippets between pairs of entities in
a text corpus without any additional kind of pre or post-processing. Structured
relations are converted to sound more natural and resemble unstructured relations
(e.g. employer → “was employed by").

Results of either modality are turned when we query the knowledge base for
relations between pairs of entities. Each triplet is converted into a sentence where
the subject and object are replaced by a special “[BLANK]" token such as the mask
token from BERT [32] before being embedded by a Pretrained Language Model
Figure V.4. Because the natural language representation of a relation can be am-
biguous or uninformative (See Figure V.5), we augment the relation representation
by adding information about the type of subject and object. Specifically we obtain
the neighboring Wikidata entities by following the “instance of" relation (e.g. hu-
man, country, etc.) and embed them. We concatenate the Pretrained Language
Model activations with the “instance of" embeddings and project both of them to a
common representation space using a fully connected layer as shown in Figure V.4.
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Figure V.2 – DeepType 3’s neural network architecture showing how
a document is read. DeepType 3’s architecture builds upon the one used
by DeepType 2, and adds the ability to obtain relational features by que-
rying the Neural Relational Database as visible in the shadowed box at
the bottom-left of the Figure. Starting from the top : an LSTM reads a
document, while a separate graph neural network produces entity repre-
sentations from the entity relations (1, 4). Each entity prediction (2) is
fed to a Decoder LSTM (3) and added to the set of past predictions to
perform future queries. Queries into the knowledge base seek relations
between entities predicted so far and the next mention’s candidate enti-
ties.
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using text. For unstructured relations we collect inter-entity text as a
potential relation (1). To make relation representation more general we
replace subject and target tokens by special mask tokens (2). The masked
text outside its original context could lose crucial semantic information :
we attempt to recover it with related entities from Wikidata about the
subject and target (3). Variable-length representations for BERT and
graph embeddings are max-pooled and linearly projected into a relation
representation (4).
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2.2 . DeepType 3’s Neural Network Architecture
Overview We modify the current state of the art DeepType 2’s architecture to
accomodate features produced by NeRD when querying structured and unstructu-
red relations. The mention and decoder LSTM components are unchanged.

Mention Representation DeepType 3’s neural network architecture shown
in Figure V.2 builds upon the one used in DeepType 2. As input the model receives
a document Dm containing mentions. The document is tokenized, and each token
is used to obtain a word, suffix, prefix embedding, and processed by a bidirectional-
LSTM [51]. For mention in the document, a representation for mention is produced
using a combination of max-pooling the Bi-LSTM hidden states for the relevant
token positions, and using a QKV Attention operation [157] to augment the men-
tion representation. The mention representation is then used as input to a dot
product with candidate entity vectors (1). The result of this operation is a series
of logits for each candidate entity (2).

After each mention, the state of the document is updated to reflect the newly
selected entity (3). Newer candidate entities now also include contextual informa-
tion such as the relation between newer candidates and past predictions.

In DeepType 3, the relation with past predictions is augmented to include
unstructured relations obtained using the Neural Relational Database. At each
prediction, a query is made into the database looking for matches for the candidate
entity and a past prediction. The results of this query are unstructured textual
relations shown in yellow boxes. The relation text is processed by a pretrained
BERT model before being max-pooled and combined with the other candidate
entity features to form the full candidate entity vector used to make a prediction
in (4).

The bidirectional-LSTM activations corresponding to particular document-mention
pair serve as an initial mention representation. To obtain a fixed size representation
from the variable number of mention tokens, we apply a max-pooling procedure
resulting in the mention vector : hpool,m(Dm).

Influence from longer range context can be induced on the mention repre-
sentation by using the pooled vector hpool,m(Dm) as a key to a QKV Attention
[157] operation over all document tokens. The result of this attention operation
is the mention representation hm(Dm) that is used to score candidate entities in
Figure V.2).

We also associate to each mention a set of candidate entities using a lookup
table, known as an alias table in the Entity Linking literature. The alias table maps
the mention string to potential entities collected on a training corpora. Using an
alias table enables a system to consider a small subset of entities from its KB when
choosing which one might be present.
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Candidate Entity Representation Entities are represented purely with re-
lational features (Figure V.2.1, Figure V.2.4). We distinguish three sources for
these features : 1) independent structured relations with neighbors, 2) relations
with previously predicted entities returned by NeRD, 3) dot product with Decoder
LSTM’s hidden state.

Group Name (relations) Vocab size Cmin d

Admin. territorial entity (P131) 17003 10 10

Instance/Subclass (P31, P279) 14624 5 40

Occupation (P106) 1421 10 10

Country (P27, P17, P495) 759 3 10

Sport/Industry (P101, P425, P1995, P641,
P2578, P452)

599 10 40

Continent (P30) 12 10 10

Lat/Long (P625) n/a n/a -

Birthdate (P569, P571, P585, P580, P577) 725 n/a 20

Gender (P21) 3 10 10

Table V.1 – Relations used for finding surrounding features and en-
tities during entity representation. Embedding for the entities for has
dimension d. Cmin is the minimum occurence of a surrounding entity to
be included in the embedding table.

1. Independent structured relations are obtained by finding all the entities sur-
rounding the represented entity by following different Wikidata relations (e.g.
instance of, nationality) detailed in Table V.1. Each relation produces a small
set of entities that characterize the original entity as visible in Figure V.2a.
We retain only the most frequently found related entities and embed those.
We then max-pool each relation’s group of entities, and concatenate the
result.

2. The knowledge base is queried for relations between any previously predicted
entity and the candidate entity e. The returned results use NeRD’s relation
representation to mask the differences between structured and unstructu-
red relations. The results are max-pooled into a single vector summarizing
the candidate entity e’s relations with all previously predicted entities (Fi-
gure V.2.4). We subsample matches to only keep at most Ntrain relations of
them. This accelerates training and prevents the model from favoring one
kind of relation modality over another.
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3. We compute the dot product between the candidate entity e’s representa-
tion and the hidden state of a Decoder LSTM (Figure V.2.3). After each
prediction the Decoder LSTM updates its state using as input the selected
entity’s representation.

We concatenate these three feature groups into a candidate entity representa-
tion. We denote the history of past predictions by s, and the entity e’s representa-
tion by E(e, s,Dm).

Entity Prediction The mention representation Dm scores the candidate enti-
ties c0, . . . , cn returned by the alias table for this mention. The score is computed
using the same approach as done in DeepType 2 (Subsubsection 2.1.5) using the
dot-product between the mention and the candidate entity representation.

We jointly disambiguate document mentions Dm by selecting in left to right
order the highest likelihood candidate. We either greedily pick the highest scoring
entity or use beam search to approximately maximize the sequence of predictions
(Figure V.2.2, Figure V.2.5). We treat the score of an entity ci as an un-normalized
log-likelihood among candidate entities c0, . . . , cn from the alias table :

P(ci|Dm, s) =
exp (hm(Dm) · E(ci, s,Dm))∑n
j=0 exp (hm(Dm) · E(cj , s,Dm))

. (1)

Objective function The DeepType 3 Entity Linking (EL) system model pa-
rameters θEL are learnt using the same objective function as used in DeepType 2
defined in Subsubsection 2.1.6. The objective is to minimize mathcalLEL(θEL),
the negative log likelihood of the ground truth entity e relative to the other can-
didates :

LEL(θEL) =
∑

{e,Dm,s}

− logP(e|Dm.s; θ). (2)

Certain examples have only the correct option available in the alias table, so no
gradient would be provided by LEL(θEL). We are able to avoid this issue by reusing
the negative sample technique from DeepType 2 [124] described in Subsection 2.2 :
we sample additional entities uniformly from our KB and use them as negative
samples.
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2.3 . Relation Extraction
Augmenting Relation Extractors With Entity Linking We use the En-
tity Linking system DeepType 3 to filter the predictions from a pretrained relation
extraction model. We experiment with two relation extractors : RoBERTa-ATLOP
[183] and DocuNet-RoBERTa [182]. We start by increasing the recall of the pre-
trained Relation Extractors at the expense of precision by lowering the prediction
threshold. With this change the relation extraction now outputs “candidate rela-
tions" illustrated in Figure V.3.

We train a binary classifier fRE(·) to predict which of these candidate relations
is correct (Figure V.3.2). The classifier is a multi-layer perceptron with ReLU
activations and a sigmoid output activation. This classifier receives as input multiple
features for each candidate relation :

— DeepType 3’s entity representation for the entities detected in a mention
pair,

— Boolean indicating whether the alias table had more than one match for
either mention,

— Boolean indicating whether the predicted relation is present in Wikidata
for : 1) this entity pair, 2) any pair of entities chosen among the mention
candidates,

— One-hot vector for the predicted relation identifier.

The classifier filters the candidate relations.

Objective function In the Relation Extraction instantiation, we first train
DeepType 3 to perform Entity Linking by minimizing LEL(θEL) on an Entity Lin-
king corpus. Next we use a pretrained Relation Extraction model to generate can-
didate relations on an Relation Extraction training corpus.

A binary classifier for Relation Extraction (RE) filtering fRE(·) with parameters
θRE is trained to minimize the negative log likelihood LEL(θRE) of the ground truth
labels Yr = {y0, . . . , yn} for each proposed relation Xr = {r0, . . . , rn} given the
entities predicted by DeepType 3 :

LRE(θRE) =

n∑
i=0

− logP(yi|ri), (3)

=

n∑
i=0

− log(fRE(ri)) · yi − log(1− fRE(ri)) · (1− yi). (4)
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2.4 . Populating Structured Databases With Unstructured Data
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Figure V.5 – Frequency for the 10,000 most common text relations
collected on the densified Wikipedia. Most are list-like (“*" is Wikipedia
list markup). Noteworthy are employment, co-location, or competition
(e.g. “against") relations.

Mirzakhani was honored with the Fields  for work on Riemann surfaces

Predicted entities

STRUCTURED RELATIONS

Candidate entities

1
Field (Q190109) 
algebraic structure.

2 Fields Medal (Q28835) 
Prize for mathematicians.

Fields

AWARD RECEIVED (P166)

“[Mirzakhani] won it the year before 
she won the  [Fields Medal]”UNSTRUCTURED RELATIONS

Maryam Mirzakhani 
(Q1771279)

Figure V.6 – Structured and unstructured relations between “Fields
Medal" and past predictions provide clues : candidate 2 has been refe-
renced in the award received structured relation as well as in unstructured
relations.

The knowledge base used by DeepType 3 contains structured and unstructu-
red relations. Structured relations in this work come from Wikidata, but any other
relational data between entities could also be used. The unstructured relations
are obtained in an unsupervised fashion by taking all inter-entity strings from any
sentence in external corpora such as Wikipedia. This collection procedure is high
recall, containing both semantically meaningful relations such as “located in" or
“hired" as visible in Figure V.5, but also more run-on sentences or compound sta-
tements of questionable utility. We empirically observe a difference in the content
of these relations : structured relations describe a directed relation between subject
and object (e.g. {“A", parent, “B"}), while unstructured relations are both directed
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or reference a common third party (e.g. “is born in the same country as"). Iden-
tifying commonalities is particularly predictive of document coherency, and might
help explain why structured and unstructured relations can be complementary. We
illustrate the structured and unstructured relations in Figure V.6.

Source Structured ? Count Unique
NeRD’s Wikidata relations ✓ 12M 21
Wikipedia ✗ 37M 14M
Wikipedia Densified ✗ 96M 36M
AIDA (train split) ✗ 30,834 22,637

Table V.2 – Number of relations for each corpora.

Using Wikidata we obtain 12 million structured relations. These relations stem
from 21 unique relation types such as occupation or employer, see Table V.3 for the
full list. Next the strings containing between intra-Wikipedia links provide us with
37 million unstructured relations. We increase the number of extracted relations to
96 million as shown in Table V.2 by using the link densification strategy proposed
in DeepType 2[124] described in Subsection 2.3.

3 . Results

3.1 . Experimental Setup

We train DeepType 3 to perform Entity Linking and Relation Extraction. We
first evaluate the trained system on standard datasets. Second, we ablate the data
stored in the knowledge base. Third, we investigate the effect of introducing novel
unstructured data into the knowledge base.

In all our Entity Linking experiments DeepType 3 is trained for 1 million gra-
dient steps on intra-wiki links using the same training corpus as DeepType 2 :
the December 2017 English Wikipedia dump and AIDA’s train split. For AIDA we
use the PPR4NED alias table from [114] to facilitate comparisons with prior work.
On other datasets, the alias table is constructed from the intra-wiki links on the
English Wikipedia.
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Hyperparameter name Value
Input Bi-LSTM size 512
Input Bi-LSTM layers 2
Attention Heads 2
Attention Query size 128
Word embedding size 200
Word UNK Probability 0.25
Word Vocab Size 750,000
Word {Prefix,Suffix}-{2,3} embedding size 6
Word {Prefix,Suffix}-{2,3} vocab size 100,000
Wikipedia link stats Layer size 20
Wikipedia link stats Dropout probability 0.3
Wikipedia link stats power 0.18
Decoder LSTM size 128
Learning Rate 0.001
LR Decay/33,000 gradient steps 1%
LR Decay/400,000 gradient steps 80%
AIDA Train data oversampling 10
Negative Samples 20
Training max candidate entities 20
Ntrain relations 128

Table V.4 – Neural Network Hyperameters

Each experiment is conducted using two NVIDIA GTX 1080Ti on a compu-
ter with 128GB of RAM and 28 core 3.3Ghz Intel i9 CPUs. Training the model
to completion takes about 9 days. The pretrained language model used to em-
bed relations is a 104-language 768-dimensional, 12-layer, 12-head BERT [32].
DeepType 3’s neural network dimensions and learning rate schedule are provided
in Table V.4. The binary classifier fRE(·) used to filter relations has two 100-
dimensional hidden layers. Optimization uses the Adam optimizer with a learning
rate decay schedule empirically determined using a Wikipedia-based validation set.
Training batches are resized to contain at most 12,800 tokens per batch. If an out
of memory error occurs, another batch is sampled instead, and training continues.
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3.2 . Relation Extraction Evaluation

Model Dev
F1 F1ign

BERT ATLOP [183] 61.09 59.22
BERT ATLOP (ours) 61.18 59.27
+ DeepType 3 62.94 61.42
DeepType 3 ∆ +1.76 +2.15

RoBERTa-ATLOP [183] 63.18 61.32
RoBERTa-ATLOP (ours) 63.28±0.21 61.41±0.23
+ DeepType 3 64.53±0.05 63.04±0.06
DeepType 3 ∆ +1.25 +1.63

DocuNet-RoBERTa [182] 64.12 62.23
DocuNet-RoBERTa (ours) 63.67±0.05 61.73±0.06
+ DeepType 3 65.71±0.07 64.11±0.08
DeepType 3 ∆ +1.95 +2.38

SSAN-RoBERTa [174] 62.08 60.25
SSAN-RoBERTa + Adapt. [174] 65.69 63.76

Table V.5 – Relation Extraction results on DocRED Development da-
taset (µ ± σ, N = 2). Note : SSAN-RoBERTa + Adapt. uses additional
data. Best results shown bold.
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Model Test
F1 F1ign

RoBERTa-ATLOP [183] 63.40 61.39
RoBERTa-ATLOP (ours) 62.96 60.92
+ DeepType 3 63.56 61.47
DeepType 3 ∆ +0.60 +0.55

DocuNet-RoBERTa [182] 64.55 62.39
DocuNet-RoBERTa (ours) 63.52 61.36
+ DeepType 3 64.31 62.37
DeepType 3 ∆ +0.79 +1.01

SSAN-RoBERTa [174] 61.42 59.47
SSAN-RoBERTa + Adapt. [174] 65.92 63.78

Table V.6 – Relation Extraction results on DocRED Test dataset .
Note : SSAN-RoBERTa + Adapt. uses additional data. Best results
shown bold.

We apply DeepType 3 to relation extraction on the DocRED [180] dataset.
Specifically we investigate two setups where DeepType 3 performs false positive
relation rejection on the results of BERT-E/RoBERTa + ATLOP from [183], and
DocuNet-RoBERTa [182]. We first reproduce the author’s results and report their
development set F1 scores in Table V.5. We then combine DeepType 3 with these
trained models and observe gains in both setups. We submit our test set predictions
to the online leaderboard, and show improvements on the Dev and Test sets for both
BERT-E/RoBERTa + ATLOP and DocuNet-RoBERTa when they are combined
with DeepType 3 in Table V.6.
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3.3 . Entity Linking Evaluation

Model TAC AIDA

DeepType 3 µ 97.74 97.87
σ ±0.14 ±0.02

Human Oracle 96.86 96.78
DeepType 2 97.48 97.72
DeepType 90.9 94.9
Yang et al. [179] - 95.9
De Cao et al. [29] - 93.3
Févry et al. [42] 94.9 96.7-

Table V.7 – State of the art Entity Linking system accuracy on TAC
and AIDA (µ± σ, N = 3). Best results shown in bold.

Model CWEB WIKI MSNBC AQ. ACE

DeepType 3 µ 85.80 88.43 95.21 93.00 93.86
σ ±0.21 ±0.55 ±0.15 ±0.94 ±0.94

DeepType 2 85.57 87.83 95.12 92.74 92.23
Yang et al. [179] 81.8 79.2 92.6 89.9 89.2
De Cao et al. [29] 77.3 87.4 94.3 89.9 90.1

Table V.8 – State of the art Entity Linking system accuracy on other
datasets (µ± σ, N = 3). Best results shown in bold.

We evaluate DeepType 3 on seven standard entity linking datasets and compare
to the human performance, DeepType and DeepType 2 and the current state of
the art on TAC and AIDA in Table V.7, and other standard datasets in Table V.8.
We report the mean and standard deviation across 3 training runs. Specifically
we study the performance on the Wikipedia-based dataset WNED-WIKI [54], and
news corpora datasets TAC-KBP 2010 [69], CoNLL (YAGO) AIDA [64] (test-b
split), WNED-CWEB [54], MSNBC [27], AQUAINT (AQ.) [101], and ACE 2004
(ACE) [130]. Note that TAC-KBP 2010 documents only contain a single mention,
so in order to use inter-entity relations we create additional mentions when phrases
are found in our alias table. DeepType 3 attains superhuman performance on TAC
and AIDA and we observe an improvement over the state of the art on all datasets.
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3.4 . Memory Ablation

Memory TAC AIDA DocRED Dev
F1 F1 IGN

No relations 94.62 96.73 63.73 62.18
Unstructured 96.42 97.28 64.48 62.95
Structured 95.75 97.34 63.92 62.38
Structured + Unstructured 97.74 97.87 64.53 63.04

Table V.9 – Performance impact of changing the relations stored in the
knowledge base. Best results shown in bold.

On TAC, AIDA, and DocRED removing all relations from the knowledge base
degrades performance. For the three data sets adding either Unstructured or Struc-
tured relations is a major improvement. TAC and DocRED profit most from un-
structured relations and AIDA from structured relations. Adding both Structured
and Unstructured relations provides the biggest boost as visible in Table V.9.

We now seek to validate whether our proposed technique to unify the repre-
sentation of structured and unstructured data accomplishes the goal of making
retrieval-models operate with either modality. We test this by toggling access to
structured relations and varying the amount of structured relations returned by
each query. As the unstructured relations return may change during subsampling,
we report the mean performance and the min and max across 3 runs. In Figure V.1a
we see Entity Linking performance improves with additional unstructured relations.
A similar behavior is visible in Figure V.1b when the same experiment is run on
relation extraction. The strongest performance in either task is reached when both
relations kinds are present.

3.5 . Novel Relations
To truly test the ability for NeRD to enable extending structured databases

with unseen unstructured data, we form new unstructured relations by collecting
inter-entity text on AIDA’s train split. Without retraining, we add these relations
to the knowledge base and measure the performance in Figure V.1a. We find that
DeepType 3 is able to leverage unseen relations to further improve its accuracy.
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4 . Discussion

4.1 . Overview
NeRD creates a unified representation for structured and unstructured relations.

This enables retrieval models to rely on either modality to solve a task. We achieve
this by first converting all relations to a unified text representation, and second
processing them by a Pretrained Language Model. To evaluate this technique we
train DeepType 3, an Entity Linking system that performs retrieval over structured
and unstructured data, and measure its performance on two tasks : Entity Linking
and Relation Extraction. Capitalizing on over 108 million relations, this system
improves the Relation Extraction performance of two different architectures and
reaches a new state of the art in Entity Linking.

Ablations show how Entity Linking and Relation Extraction performance im-
proves when additional structured or unstructured relations are added to the know-
ledge base. Peak performance is reached by combining structured and unstructured
relations. We also investigate whether DeepType 3 can zero-shot use additional un-
structured data : we add unstructure relations collected on AIDA’s training split
and observe that these lead to a slight performance gain.

4.2 . Future Work
The scope of our results is limited to commonly used Entity Linking datasets

and the largest document-level Relation Extraction dataset. A useful extension is
to verify whether these results hold in other domains where a rich mix of structured
and unstructured relations is also present. A promising future work direction is to
study how to continue scaling up the knowledge base by integrating non-relational
unstructured data, and detect whether there is an emergent organization to the
unstructured relations.

4.3 . Relation to Thesis
In this chapter we provided a solution to one of the Neuro-Symbolic challenges

that motivates this thesis : enable an Artificial Intelligence system to self learn
how to organize and represent external knowledge without human intervention.
Moreover, experiments with the proposed approach indicate that structured and
unstructured knowledge sources are complimentary, and the combined system still
reaches superhuman accuracy. While the experiments focus on a only two downs-
tream tasks, we can envision future Neuro-Symbolic systems that share the same
capability to remain up to date, and organize information in a task-driven way in
neural databases without human input.
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Relation Type Entity relation Template
Identity same entity is the same as/is the

same instance as

League P118 is from the same league
as/is in the

Admin Territorial Entity P131 is located in/is from the
same location as

Educated at P69 was educated at

Political Party P102 is a member of the po-
litical party/is from the
same political party as

Spouse P26 is married to

Country P17 is from the country/is
from the same country
as

Sibling P3373 is the sibling of

Employer P108 worked at

Member of sports team P54 is from the same team
as/is a team member of

Sport P641 plays the same sport as

US State P131 (+ Q35657
is a parent)

is in the state of/is in
the same state as

Table V.3 – Wikidata relations and their associated string templates
when converting to a unified text representation. Note that certain tem-
plates exist either in a direct form (e.g. A is related to B through relation
R) or indirect form (e.g. A and B both relate to C through R).
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Discussion and Conclusion
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Artificial Intelligence is impacting the world in many transformative ways
from industrial applications, to jobs requiring reasoning or even creativity.

Present systems now exceed human performance in a wide variety of perception
tasks, from speech recognition to object recognition, as well as challenging strategy
games such as Go, Chess, or even Dota 2 [109].

However, progress in areas combining natural language understanding and fine
grained knowledge about the world have been held back by the reliance of these
systems on knowledge that grows stale, and the human effort required to ingest
the vast amount of human knowledge available in symbolic form. Neuro-Symbolic
systems have emerged as a solution to this challenge.

Advances in Neuro-Symbolic systems have come from two different research
directions : 1) teaching a machine to control a symbolic structure or access external
symbols, 2) modeling and representational improvements such as new actions,
architectures, abstractions, or interfaces.

In this thesis, the two directions have been considered, yielding four contribu-
tions, respectively described in Chapter II, Chapter III, Chapter IV, and Chapter V.

In Chapter II, we introduce a human benchmark for Entity Linking. To the
limits of our understanding we are the first to construct such as benchmark. The
benchmark presented several difficulties because human performance can be un-
derestimated when relying on non-expert crowd-sourced annotators. Specifically
annotators can lack context, be distracted, or lack background knowledge. We
were able to overcome these difficulties by performing an extensive trial, mea-
suring group performance, and supplying annotators with suggestions ordered by
Wikipedia usage frequency. Through this benchmark we noticed that performance
on the TAC-KBP 2010 [69] dataset is abnormally lower for Artificial Intelligence
systems due to the presence of single mentions per document. This benchmark
also researchers to now perform a thorough error analysis such as the one done in
Subsection 3.2.

In Chapter III, we contribute a new representation, neural type systems, that
is based on the hierarchy of concepts present in online ontologies. This new repre-
sentation presents several advantages relative to prior work, namely : transparency,
sample efficiency, and higher accuracy. The representation is used to construct the
state of the art Entity Linking system DeepType [126].

This work also showed connections with named entity recognition, and multi
lingual representations. Specifically this forms of large scale trainings learn interlin-
gual pivots. Similar observations have been made lately regarding different trainings
leading to similarly structured latent spaces in [103].

In Chapter IV, we build upon the results of DeepType and extend the work to
enable direct optimization of disambiguation accuracy. This work eliminates the
manual effort required in DeepType such as membership rules, tuning, and the
design of a type system. Instead, we are able to use the neighborhood surrounding
an entity as its representation and a contrastive loss to favor one neighborhood
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over another, without having to predict types. This enables richer types to exist,
as they no longer have to be predicted.

Furthermore, this work introduce type interactions - abstract features that are
typed, and describe relations between candidate entities and past predictions. These
features highlight similarities such as shared employers, nationalities, or teams. We
observe that this feature set is responsible for the majority of the gains.

Thanks to these new modeling improvements, we are better able to inte-
grate external symbols without human effort. The added accuracy makes Deep-
Type 2 [124] the first system to reach superhuman accuracy, outperforming the
performance recorded in our human benchmark from Chapter III.

In Chapter V, we eliminate the reliance on structured knowledge bases by
enabling a system to learn to become indifferent to stuctured and unstructured
relations while retaining most of the performance of DeepType 2. In order to
achieve this, we build upon DeepType 2’s architecture and representation. Type
interactions using typed relations are replaced by a unified text representation of
structured and unstructured relations. The textual representation is processed by
pre-trained Language Models providing a stable source of fixed length distributed
representations encoding seen and unseen relations in a similar space. The neural
network has no explicit signal indicating the source of the relations, and hence
learns to interpret both sources of relations indifferently in the reasoning process.

We provide multiple ablations and experiments scaling the amount of relation
data available in the database. We see improvements in performance with additional
relation data, and gains from combining structured and unstructured relations.

The proposed approach is the new state of the art on standard entity linking
datasets. As this systems receives a rich set of relation information, we experiment
with combining DeepType 3 with pre-trained relation extraction systems. Deep-
Type 3 is then trained to accept or reject proposed relations from the pre-trained
relation extractor. The combined system outperforms the baseline, demonstrating
gains from enabling access to entity and relation information when performing
other downstream tasks.

Throughout the thesis we have proposed several directions of further research,
such as representational extensions, additional languages and application domains,
or scaling experiments in Chapters 2-5.

Future Perspectives
Several lessons can be taken from the work presented in this thesis. From the

perspective of Artificial Intelligence progress towards human-level performance,
we observe that approaches that are too reliant on human data are too fallible
to omissions and mistakes, and systems that enforce exclusive reasoning using
symbols often suffer from excessive rigidity and modeling errors. Neuro-Symbolic
systems are able to make progress and even surpass human level performance when
two conditions are met : 1) the training data has adequate coverage and diversity,
2) the neuro-symbolic reasoning process enables access to human knowledge with
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sufficient fidelity, but retains sufficient flexibility to deviate when necessary.

Human Inspiration The first lesson concerns the importance of human bench-
marks which push the field forward and inform us of new ways to design Artificial
Intelligence systems. The works presented here showcase how abstracted models,
coherency models based on relations, or even the design of a human benchmark
surface strong inductive biases that unlock performance gains.

As future work in the short term, it would be valuable to extend reasoning
benchmarks such as the Human Benchmark for Entity Linking presented into new
settings and languages. The studied datasets TAC-KBP 2010 [69] and CoNLL AIDA
(YAGO) [64] showcased difficulties with disambiguating journalistic shorthand and
geographical ellipses (refering to a country by its capital city, or a sports team by
the associated town) and we suspect that domains such as code-switching, multi-
speaker, or with historical text will pose further difficulties by relying on context
that is not always on the written page.

In the medium term, a useful extension would explore whether the Neuro-
Symbolic framework can better approximate human inductive biases such as sup-
porting more relaxed or dynamic forms of modeling of symbolic knowledge. Current
practices use rigid decoding schemes, fixed neural network architectures, and static
objective functions, whereas humans are effective as using a portfolio of different
strategies to reason. Future work could explore whether a model can meta-learn bet-
ter decoding algorithms, such as mixing Diffusion, Beam-Search, Mask Denoising,
or changing the decoding order based on the inputs. Neural network architectures
are generally fixed because deep neural network rely on layer inputs and outputs
that have compatible shapes and are trained jointly. However, as we have presented
in this work, a future neural network architecture could instead connect different
sub-models using shared invariant representational spaces such as language, pixels,
or even sound. Finally, a benefit of a changing objective function would be to em-
phasize current events, or specific reasoning patterns, or to reflect confidence in
weakly supervised data. In the works presented we saw how enabling a model to
treat type labels as inputs rather than supervision can induce better training by
ignoring issues in the type label supervision. A future system could be iteratively
retrained based on which patterns were effective in practice, or learn to discard
data that is unreliable. Thanks to these developments, it would then become a
lot easier for online-learning systems to take advantage of the Neural Relational
Database’s extensible nature while minimizing the risk that erroneous data poisons
the rest of the model.
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...being able to compress well is closely
related to acting intelligently...

Marcus Hutter

Abstraction and Symbol Manipulation Another direction that is parti-
cularly important within Artificial Intelligence research is the ability to meta-learn
through abstraction and symbol manipulation. Indeed, the impressive gains from
prompt-programming of language models, or those observed from DeepType sys-
tems come from enabling systems to operate a higher level of abstraction than just
the entities or words. In this work we show how allowing machines to observe and
manipulate human hierarchies of concepts provides new reasoning capabilities that
improve accuracy beyond what was possible before. Similar gains were observed
by providing symbols to manipulate as scratch pads to language models [108], or
forcing models to elucidate their reasoning by asking to think step by step [79].

In the short term future work involves simplifying certain modeling decisions to
increase the meta-reasoning and abstraction of a task. All present Entity Linking
systems make instance-level decisions for each mention, however many of these
decisions are repetitive and obfuscate complex causal factors such as coreference,
speaker order, or external context. Following the intuition of the Hutter Prize and
the work that inspired it [67] we can seek to obtain a more compressed prediction
format that focuses model capacity towards the more important aspects of the
problem. For instance, future work could opt to make a first sequence of decisions
seeking to discover which mentions refer to the same entity, and second, what that
entity should be. By performing several rounds of these meta predictions, such as
enforcing specific relations between entities each mention refers to, we constrain
the search space and eliminate many spurious possibilities. Because the number of
potential meta-predictions is limited, an entire corpus could be distilled into several
general prediction patterns that a model has to capture. Each step in this direction,
further increases the ability for a model to perform the bulk of its reasoning in an
abstract way.

In the medium term, the ability to relabel datasets to support abstract reasoning
is bottle-necked by the availability of relational datasets that can augment the
original labels. In order to supervise abstract meta-reasoning in new domains such
as computer vision or speech recognition we will need new sources of augmentation,
such as teaching models to self-rewrite the label without access to the external
relational datasets as augmentation. Future work could investigate whether the
ability to zero and few-shot learn in large language models can be applied towards
label meta-rewriting.
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End-to-End Robustness We have also seen how end-to-end learning of a
model enables higher accuracy by eliminating issues with errors or omissions in the
knowledge base. While DeepType relies heavily on a human designed type system,
and makes decisions using soft constraints based on existing concept hierarchies,
DeepType 2 is able to outperform by being able to reweigh aspects of the types
directly without the need for rules to organize the type system. DeepType 3 goes
one step further, and complements knowledge bases such as Wikidata and Wiki-
pedia with unstructured relations obtained from text corpora. This addition of new
relations increases coverage, while also ensuring that the modeling of relations is
continuous and able to generalize better between similar relations or adapt to un-
seen ones. Future Artificial Intelligence systems that scale and improve will require
DeepType 2’s robustness to errors and omissions in their data, and DeepType 3’s
ability to extend a knowledge base online.

In the short term an obvious extension of the DeepType systems involves in-
creasing the scope of the prediction to include mention detection. The supervision
and benchmark datasets in Entity Linking have historically broken the tasks into
mention prediction and entity linking, however recent works such as [80] propose
to construct systems that perform both tasks. Future work in this direction is
meaningful because it greatly simplifies the Entity Linking systems, and eliminates
a huge source of error and variability. However, end-to-end entity linking is also
challenging because present evaluation methodologies will become incompatible
with the outputs of models that may disagree on the document mentions and their
spans. A further difficulty in developing end-to-end Entity Linking systems is the
inability to constrain the solution space by considering the joint set of mentions
and an alias table, rather constraints will have to be discovered by a model or
made possible by allowing a model to query an external knowledge base for those
explicitly. Finally, rare mentions and entities are currently greatly assisted by relying
on explicit lookup tables such as alias tables, which do not have any of the recall
and learning capacity issues of neural networks.

In the medium term, future work should instead focus on the downstream tasks
where entity linking is currently a useful feature. Today the output of an Entity
Linking system is a feature for information retrieval, machine translation, automa-
ted trading systems, or one component in a larger natural language understanding
system. Switching the metrics in Entity Linking from accuracy on specialized da-
tasets to improving the precision and recall of information retrieval systems will
better align the incentives and ensure that progress is being made towards the
true end goals. In practice this means that an extension could use an objective
function where certain labels matter less, such as minor technical terms in a larger
document in an information retrieval system, while others are emphasized, such as
ensuring that central concepts such as characters in a story are perfectly detected
when translating or summarizing a story.
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AI is whatever hasn’t been done yet.

Larry Tesler

Closing Remarks Artificial Intelligence is advancing at an unbelievable pace,
overcoming challenges that were thought to be still years away from protein fol-
ding [73], to playing Go [147], or generating photorealistic images [140]. Each of
these advances brings us closer to moonshot goals such as Artificial General Intel-
ligence, but in the words of Larry Tesler “AI is whatever hasn’t been done yet" the
appearance of intelligence vanishes whenever a milestone is reached.

A glimmer of hope is nonetheless visible in a new class of Artificial Intelligence
systems. These new Artificial Intelligence systems have capabilities that are not fully
revealed upon their design and construction. Rather, we see Artificial Intelligence
systems for strategic games that use moves and tactics that human experts had not
even imagined, large language models that can imitate new patterns and tasks on
the fly, and image generation models that can make associations and compositions
unseen in their training data. These Artificial Intelligence systems demonstrate
much broader skills than ever before.

These breakthroughs can be seen through the lens of two key Neuro-Symbolic
attributes : a meta-learning inductive bias, and massive training corpora. The Meta-
learning inductive bias is caused by forcing models to manipulate symbolic struc-
tures such as game boards, language scratch pads, or image canvases. While the
massive amounts of training data act like an online learning setup which further
reinforces the ability to meta-learn, and the data volume and diversity give the
models robust priors about the world. Throughout this thesis we have studied
the effects of these ideas on our own Artificial Intelligence systems and unlocked
superhuman capabilities.

We leave the reader with the following open question : is scale all we need to
unlock the next leap in Artificial Intelligence ?
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1 . Human Type System

Shown below are the 5 different type axes designed by humans.

Post-1950
Pre-1950
Other

Table A.1 – Human Type Axis : Time

Africa
Antarctica
Asia
Europe
Middle East
North America
Oceania
Outer Space
Populated place unlocalized
South America
Other

Table A.2 – Human Type Axis : Location
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Activity Genre Radio program
Aircraft Geographical object Railroad
Airport Geometric shape Record chart
Algorithm Hazard Region
Alphabet Human Religion
Anatomical structure Human female Research
Astronomical object Human male River
Audio visual work International relations Road vehicle
Award Kinship Sea
Award ceremony Lake Sexual orientation
Battle Language Software
Book magazine article Law Song
Brand Legal action Speech
Bridge Legal case Sport
Character Legislative term Sport event
Chemical compound Mathematical object Sports terminology
Clothing Mind Strategy
Color Molecule Taxon
Concept Monument Taxonomic rank
Country Mountain Title
Crime Musical work Train station
Currency Name Union
Data format Natural phenomenon Unit of mass
Date Number Value
Developmental biology period Organization Vehicle
Disease Other art work Vehicle brand
Electromagnetic wave People Volcano
Event Person role War
Facility Physical object Watercraft
Family Physical quantity Weapon
Fictional character Plant Website
Food Populated place Other
Gas Position
Gene Postal code

Table A.3 – Human Type Axis : IsA
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Archaeology Health insurance Science histology
Automotive industry Health life insurance Science meteorology
Aviation Health medical Sex industry
Biology Health med activism Smoking
Botany Health med doctors Sport-air-sport
Business other Health med society Sport-american football
Construction Health organisations Sport-athletics
Culture Health people in health Sport-australian football
Culture-comics Health pharma Sport-baseball
Culture-dance Health protein Sport-basketball
Culture-movie Health protein wkp Sport-climbing
Culture-music Health science medicine Sport-combat sport
Culture-painting Heavy industry Sport-cricket
Culture-photography Home Sport-cue sport
Culture-sculpture Hortculture and gardening Sport-cycling
Culture-theatre Labour Sport-darts
Culture arts other Law Sport-dog-sport
Culture ceramic art Media Sport-equestrian sport
Culture circus Military war crime Sport-field hockey
Culture literature Nature Sport-golf
Economics Nature-ecology Sport-handball
Education Philosophy Sport-ice hockey
Electronics Politics Sport-mind sport
Energy Populated places Sport-motor sport
Engineering Religion Sport-multisports
Environment Retail other Sport-other
Family Science other Sport-racquet sport
Fashion Science-anthropology Sport-rugby
Finance Science-astronomy Sport-shooting
Food Science-biophysics Sport-soccer
Health-alternative-
medicine

Science-chemistry Sport-strength-sport

Health-science-
audiology

Science-computer science Sport-swimming

Health-science-
biotechnology

Science-geography Sport-volleyball

Healthcare Science-geology Sport-winter sport
Health cell Science-history Sport water sport
Health childbrith Science-mathematics Toiletry
Health drug Science-physics Tourism
Health gene Science-psychology Transportation
Health hospital Science-social science other Other
Health human gene Science chronology

Table A.4 – Human Type Axis : Topic
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