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Abstract
Continuum parallel robots (CPRs) are manipulators employing multiple flexible

beams arranged in parallel and connected to a rigid end-effector. CPRs promise
higher payload and accuracy than serial CRs while keeping great flexibility. As the
risk of injury during accidental contacts between a human and a CPR should be
reduced, CPRs may be used in large-scale collaborative tasks or assisted robotic
surgery. There exist various CPR designs, but the prototype conception is rarely
based on performance considerations, and the CPRs realization in mainly based
on intuitions or rigid-link parallel manipulators architectures. This thesis focuses
on the performance analysis of CPRs , and the tools needed for such evaluation,
such as workspace computation algorithms. In particular, workspace computation
strategies for CPRs are essential for the performance assessment, since the CPRs

workspace may be used as a performance index or it can serve for optimal-design
tools. Two new workspace computation algorithms are proposed in this manuscript,
the former focusing on the workspace volume computation and the certification of
its numerical results, while the latter aims at computing the workspace boundary
only. Due to the elastic nature of CPRs , a key performance indicator for these
robots is the stability of their equilibrium configurations. This thesis proposes the
experimental validation of the equilibrium stability assessment on a real prototype,
demonstrating limitations of some commonly used assumptions. Additionally, a
performance index measuring the distance to instability is originally proposed in
this manuscript. Differently from the majority of the existing approaches, the clear
advantage of the proposed index is a sound physical meaning; accordingly, the index
can be used for a more straightforward performance quantification, and to derive
robot specifications.



Résumé

Les robots parallèles continus (RPCs) sont des manipulateurs utilisant plusieurs
tiges flexibles disposées en parallèle et connectées à une plateforme rigide. Les RCPs
promettent des capacités de charge et une précision plus élevées que les robots sériels
continus, tout en gardant une grande flexibilité. Puisque le risque de blessure lors
d’un contact accidentel entre un humain et un CPR devrait être réduit, les RCPs

peuvent être utilisés dans des tâches collaboratives à grande échelle ou dans de
tâches de chirurgie robotique assistée. Différentes architectures de RCP existent,
mais la conception du prototype est rarement basée sur des considérations de perfor-
mance, et la réalisation de RCPs est principalement à partir d’intuitions en utilisant
d’architectures de manipulateurs parallèles rigides. Les themes de recherche de cette
thèse portent sur l’analyse des performances des RCPs, et sur les outils nécessaires à
une telle évaluation, ainsi que sur les algorithmes de calcul de leur espace de travail.
En particulier, les stratégies de calcul de l’espace de travail pour les RCPs sont es-
sentielles pour l’évaluation du performances, car l’espace de travail peut être utilisé
comment un indice de performance, par example pour des outils de conception opti-
male. Deux nouveaux algorithmes de calcul de l’espace de travail sont proposés dans
ce manuscrit, le premier se concentrant sur le calcul du volume de l’espace de travail
et la certification de ses résultats numériques, et le second sur le calcul des bords
de l’espace de travail uniquement. En raison de la nature élastique des RCPs, un
indicateur de performance essentiel pour ces robots est la stabilité de leurs configura-
tions d’équilibre. Cette thèse propose la validation expérimentale de l’évaluation de
la stabilité des équilibres sur un prototype réel, démontrant les limites de certaines
hypothèses couramment utilisées. De plus, un indice de performance mesurant la
distance à l’instabilité est proposé dans ce manuscrit. Contrairement à la majorité
des approches existantes, l’avantage évident de l’indice proposé est une signification
physique bien défini.
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Introduction

Continuum parallel robots (CPRs in short) are manipulators made by a parallel
arrangement of several flexible beams connected to a rigid end-effector. These ma-
nipulators promise to alleviate the main limitation of serial-like continuum robots,
that is, the reduced payload capacity. As parallel manipulators, CPRs promise
higher payload and greater accuracy while keeping great flexibility. The latter char-
acteristic and reduced moving mass due to the placement of the actuators at the
robot’s base may reduce the risk of injury during accidental contact between a hu-
man and a CPR. Considering the expected advances of CPRs , possible applications
of these manipulators may include large-scale collaborative tasks or assisted robotic
surgery.

CPRs are relatively new, and several research directions still need to be ex-
plored. The majority of the related works focus on the static modelling of these
robots: as a cause of their intrinsic elasticity, the geometry of CPRs is not sufficient
to describe the pose of the whole robot, the CPRs configuration is defined by the
elastic deformation of the links, and the position problems of CPRs do not admit
any analytical solution, in general. The complexity of the CPRs modelling approach
further complicates other aspects, such as control, trajectory planning, and perfor-
mance quantification. In particular, this thesis focuses on the latter aspect, the
performance analysis of CPRs .

Performance analysis of CPRs is currently exploited by utilizing rigid-link robot
performance indices readapted to the continuum robotics framework; the majority
of the existing performance indices are based on analysis of the Jacobian matrix or
stiffness matrix separately, and the intrinsic coupling between geometry and elas-
ticity of CRs is frequently neglected. In particular, two major research directions
are identified: the workspace evaluation and the equilibrium stability assessment.
On the one hand, the workspace computation problem of CPRs plays a crucial role
in the performance evaluation of CPRs . The CPRs workspace may be used to
get useful metrics (e.g. workspace volume), and it could be used as an objective
for optimal design tools. However, at the time of this thesis started, workspace
computation techniques are based on time-consuming approaches, and no work is
devoted explicitly to the workspace computation of CPRs . On the other hand,
equilibrium stability analysis is important for the practical usability of CPRs . Most
of the state of the art performs the equilibrium stability assessment by employing
optimal control approaches, but the complexity of these techniques is relevant. How-
ever, alternative methods exist, such as the evaluation Hessian matrix to assess the
equilibrium stability, but these techniques still need to be experimentally verified.
Additionally, metrics to measure the distance to instability are essential, but the
few existing works lack a physical meaning of the measure.

This thesis focuses on the performance analysis of CPRs , and the contributions
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Contents

of this thesis concern two topics: the workspace computation strategies of CPRs
and the equilibrium stability assessment. Two workspace computation strategies
are proposed in this thesis, focusing on i) the workspace computation and the cer-
tification of the numerical results, and ii) the workspace boundary reconstruction.
Regarding the equilibrium stability assessment, the first contribution is related to
the experimental validation of the equilibrium stability of a newly-proposed pro-
totype. On the same topic, a performance index is also proposed in this thesis
to measure the distance to the instability. To better highlight the contribution of
this thesis, the manuscript is structured in three parts. Each part comprises two
chapters.

• Part I. This part is dedicated to state-of-the-art analysis. Chapter 1 starts
with an illustration of the existing CPRs architectures. Then, the state of
the art concerning performance evaluation of CRs is analysed, with a focus on
workspace evaluation and equilibrium stability assessment. Then, Chapter 2
illustrates the state-of-the-art modelling framework employed in this thesis.

• Part II. This part illustrates the advancement in the workspace evaluation
of CPRs proposed in this thesis. Chapter 3 proposes a new algorithm for the
workspace evaluation of planar CPRs . Thanks to an energy-based modelling
strategy, and derivative approximation by finite differences, the Kantorovich
theorem is applied to certify the existence, uniqueness, and convergence of the
solution of the inverse geometrico-static problem at each step of the workspace
computation. In Chapter 4, a new algorithm for the computation of workspace
boundaries of continuum parallel robots (CPRs) is proposed. The proposed
algorithm is based on a free-space exploration strategy and a boundary recon-
struction algorithm to reconstruct the workspace borders while also identifying
voids and holes in the workspace, in reduced computational time with respect
to full workspace reconstruction techniques.

• Part III. This part illustrates the contribution of this thesis on the equilibrium
stability assessment. Chapter 5 proposes the experimental validation of CPRs
equilibrium stability prediction based on discretised modelling techniques. Un-
stable configurations that limit the robot workspace are theoretically and ex-
perimentally investigated. A new CPR prototype for planar applications is
proposed, designed, and tested for the scope. Experiments demonstrate that,
even though the prototype is theoretically planar, a model neglecting out-
of-the-plane phenomena is inadequate to assess equilibrium stability limits.
Chapter 6 introduces a new performance indices for the distance-to-instability
measurement. The proposed index, namely, the critical load index, estimates
the magnitude of a force that perturbates the CR equilibrium and it is pro-
posed as a measure of the distance to instability. The major advantages of
this metric are the intrinsic physical meaning, the practical interpretation of
the results and the well-defined unit.

At the end of Part III, Chapter 7 draws conclusions of this thesis, highlights
the contributions and limitations of the proposed works, and it illustrates possible
future-work directions.

The work presented in this thesis results from a co-tutorship agreement (co-
tutelle) between the University of Bologna and the École Centrale de Nantes: the
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work has been partially developed at the Department of Industrial Engineering in
Bologna (Italy) and at the Laboratoire de Sciences du Numéque in Nantes (France).
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Chapter 1

Architecture and Performance
Analysis

Nowadays, most robots are mechanisms constructed from a series of rigid links con-
nected by discrete single or multiple degrees of freedom (DoFs in short) joints, and
a controlled movement is generated at some of these joints. The need for accuracy
creates heavy mechanisms with stiff links and large passive sections supporting their
own weight. Although this design might be essential for many practical operations
where speed and accuracy play a key role, many practical applications exist where
different attributes are required [1]. For instance, when dextrous manipulation in
highly constrained and cluttered environments is required, hyper-redundant ma-
nipulators are well-suited [2] because they can conform to the environment shape
(Fig. 1.1); this is achieved thanks to their peculiar structure, and thanks to their
multiple actuated DoFs that exceed the minimal number required for the manipu-
lator task. Another example is human-robot collaboration or cooperation [3], where
the operative speed of the collaborative robots is usually reduced to comply with risk
management rules, which are based on the limitation of the robot linear momentum.

As the complexity of the task or the environmental constraints increases, it is
common to increase the degree of redundancy [2]. However, robot’s joints possess a
finite dimension, and there exists a minimum limit on their dimension, posing design
challenges to create compact and dextrous hyper-redundant manipulators when the
number of DoFs increases. Continuum robots are introduced to mitigate this issue.
In the theoretical case, when the number of joints approaches infinity and the link
length zero, the robot resembles a continuous structure where the joint dimension is
negligible. In fact, continuum robots are manipulators that achieve the movement
of their end-effector (EE ) through the controlled displacement and deformation of
slender elastic links, such as rods. Their design is inspired by biological structures
like trunks, tentacles, snakes, and tendrils, and the morphology of their design has
motivated researchers to model flexible robots [5]. Even if the term continuum
robot is quite intuitive and it describes with simplicity the characteristics of these
manipulators, some different definitions are available in the literature, such as the
concept of continuously bendable structures [1], infinite degree of freedom structures
[6], or systems that do not contain rigid links and identifiable joints [7]. Alternatively,
it is possible to use the inclusive definition of [8], where continuum robots (CRs in
short) are described as structures that can be deformed in a controllable way to
perform a task.
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Chapter 1. Architecture and Performance Analysis

Figure 1.1: An hyper-redundant manipulator working in a confined environment,
courtesy of [4].

(a) The CR presented in [9] (b) The concentric tube robots of [10]

Figure 1.2: Two examples of continuum robots: a tendon-driven CR in a), and
concentric tube robots in b).

There exist various CRs designs that suit different application scenarios. Tendon-
driven continuum robots employ multiple tendons, or cables, to generate a controlled
displacement of a highly flexible central backbone [9] (Fig. 1.2a). Concentric tube
robots are made from several tubes that are nested within one another concentrically
(Fig. 1.2b). These tubes are precurved and made of elastic material. When the
tubes are grasped at their respective bases, and linear insertion/retraction and axial
rotation motions are applied, tubes interact elastically and make one another bend
and twist, thus determining the EE motion [10]. Also, continuum robots can be
devised by installing several magnets on a flexible beam and governing the beam
shape by applying a controlled magnetic field [11].

As in traditional robots, the classification between serial and parallel architec-
tures also exists in continuum robots. CRs have historically been considered as
serial devices [12] because they usually display long and slender shapes. Despite
serial architectures being more famous for their applications in surgical tasks, con-
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1.1. Continuum Parallel Robots

(a) (b)

Figure 1.3: First CPRs prototypes: the Festo Bionic Tripod 3.0 in a), and the
Nyloid sculpture in b).

tinuum parallel architectures are starting to be employed in research activities [13].
The interest in continuum parallel manipulators is due to the possibility of com-
pactness, compliant motion, precision, and stability of parallel architectures. This
thesis focuses on the performance analysis of continuum parallel robots (CPRs):
this topic is of vital importance to enable performance-based design of CPRs . This
Chapter, which aims to give an overview of the current state of the art in perfor-
mance analysis, is structured as follows. Sec. 1.1 introduces CPRs design, and a
summary of the existing prototypes is proposed, while Sec. 1.2 discusses the ex-
isting methodologies for the performance analysis of continuum robots. Then, the
focus of the state-of-the-art analysis is restricted to two major areas: the workspace
computation (Sec. 1.3), and the equilibrium stability assessment (Sec. 1.4).

1.1 Continuum Parallel Robots

A CPR is a manipulator made by several flexible beams arranged in parallel and
connected to a rigid EE [13]. Thanks to passive joints or rigid connections, the distal
ends of the beams are connected to the EE , while each link is independently actuated
by actuators placed at the base or by distributed actuation (e.g. tendons). Thus, the
CPR motion is obtained by the controlled displacement and deformation of each link.
CPRs promise a higher payload than serial CRs and greater accuracy [14]. Instead,
compared with rigid-links parallel manipulators, CPRs display greater compliance
and easier miniaturization to the scale of a few millimetres [15]. Additionally, CPRs
intrinsic flexibility and reduced moving mass (due to the placement of the actuators
at the base) can reduce the risk of human injury during accidental contacts for
large-scale applications. Rigid-link parallel robots hardly ensure this important
safety feature.

This flexible structure makes CPRs mechanically simple, lightweight, and com-
pliant by design providing interesting features for robotic surgery [16] or large-scale
collaborative tasks [17]. In this direction, CPR applications may include larger-
scale industrial tasks traditionally performed by commercial cobots and may fa-
cilitate safer operations in human-shared environments. Thanks to their inherent
lightweight and compliant design, collisions should result in reduced injury to the
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(a) Picture from [13] (b) Picture from [16] (c) Picture from [23]

.

(d) Picture from [24] (e) Picture from [15]

Figure 1.4: Illustration of the existing extensible CPRs . These CPRs employ actua-
tors that vary the length of the beam, employing a Gough-Stewart-like arrangement.

human operator.

As CPRs are a relatively new kind of manipulators, numerous scientific questions
are still open. In particular, the static modelling of CPRs received great attention
from the scientific community [18]. In CPRs , this task is not trivial, since the
geometry of the manipulator is not sufficient to describe the pose of the whole
robot, and its configuration is defined by the elastic deformation of the links. This
problem is called geometrico-static and, in CPRs , forward and inverse problems
do not generally admit an analytical solution. Consequently, the geometrico-static
model is usually simplified by introducing numerical approximations [19] with the
approximate solution being computed by numerical schemes (chapter 2 is devoted
to the description of CRs modelling strategies). Other open questions include the
optimal design of CPRs , the feedback-control strategies [20], the trajectory planning
[21], dynamic modelling [22], and the performance quantification [18]. In particular,
the work of this thesis focuses on the performance analysis of CPRs .

To better understand the importance of performance analysis, let us first analyze
the existing state of the art regarding CPRs design. Before the first academic CPR
prototype of [13], proposed in 2014, the Festo Bionic Tripod [25] was proposed as
a research prototype in 2010. The Bionic Tripod 3.0 (see Fig. 1.3a), resemble the
current CPR paradigm in all its aspects: several flexible links are translated at the
base and connected to a rigid platform to obtain a controlled EE displacement. In
2013, the Nyloid sculpture appeared as a large-scale CPR with 6-meter-long legs
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(a) Picture from [27] (b) Picture from [28]

(c) Picture from [29] (d) Picture from [30]

Figure 1.5: Illustration of the existing extensible CPRs . These CPRs employ inter-
mediate disks.

[26] (Fig. 1.3b). Beams are actively rotated at the base, and CPRs instabilities are
used to create artistic movements and sound effects. Then, the academic interest
in CPRs increased after the work of Bryson and Rucker [13]. Various designs have
been proposed, which differ by the actuation strategy, the beam arrangement, the
prototype size, and the intended application. The following non-exhaustive list is
dedicated to the description of the existing CPR prototypes.

Extensible CPRs. The term extensible CPRs defines CPRs architectures
that employ actuators varying the beam’s active length, namely the portion of each
leg that can undergo deformations inside the robot workspace, as the first CPR

prototype of [13], illustrated in Fig. 1.4a. Extensible CPRs claim to attain a large
workspace concerning both position and orientation abilities [16] (Fig. 1.4b), but the
actuator size is relevant, and the required installation size is frequently comparable
to the reachable EE workspace [16]. Moreover, the sliding nature of the beam’s
actuation makes installing sensors over the beams difficult, and frictional effects may
increase the required actuation efforts [18]. Usually, the beam arrangement follows a
Gough-Stewart-like topology [23] (Fig. 1.4c). Extensible CPRs have been proposed
and tested for surgical tasks [16], haptics [24] (Fig. 1.4d), and for miniaturized-scale
applications [15] as the glass-made prototype of Fig. 1.4e. Except for the prototype
of [15], where a few design considerations are illustrated, the prototype design is
never conducted following optimal design rules based on performance analysis.
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(a) Picture from [31] (b) Picture from [32]

(c) Picture from [33] (d) Picture from [34]

Figure 1.6: CPRs with fixed beam length actuated at the robot’s base, using pris-
matic motors

Intermediate constraints. As described in [27], using intermediate disks be-
tween the tip and base of the beam considerably increases the robot’s orientation
ability without compromising the translational capabilities in the case legs are ex-
tensible. Firstly proposed in [27] (Fig. 1.5a), the use of intermediate disk has been
widely accepted as a design feature to increase the CPR performances at the cost of
higher design complexity. Intermediate disks are used in [28] to constrain the CPRs
passive beams (Fig. 1.5b). Moreover, the CPRs proposed in [29] and [30] employ an
actively commanded intermediate disk to increase the robot’s translational capabili-
ties (Fig. 1.5c and 1.5d). Despite intuition led the researchers to this interesting and
performance-enhancing feature, no design analysis or comparison with alternative
solutions has been proposed.

Inextensible CPRs actuated at one beam’s extremity. Extensible CPRs ,
which resemble traditional Gough-Stewart platforms, promise large workspaces.
However, many CPRs prototypes are actuated differently using prismatic or rotative
actuators at each beam’s base, bringing complementary advantages, such as greater
attainable velocities [17] and simpler mechanical design. The prototypes of [14], [31],
[33] (illustrated in Figs. 1.6a, 1.6b, and 1.6c, respectively) use prismatic actuators
to obtain the CPRs motion. Instead, rotative actuators are used in [34] and [17] for
large-scale CPRs (Figs. 1.7b and 1.7a, respectively). Ultimately, prismatic-rotative
drives (PR-drives) are tested in [35] for a spatial quasi-translational CPRs , and in
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(a) Picture from [17] (b) Picture from [34]

(c) Picture from [35] (d) Picture from [36]

Figure 1.7: CPRs with fixed beam length actuated at the robot’s base: a),b) use
revolute actuations, while c),d) employ PR drives.

[36] for investigations on actuation redundancy (Figs. 1.7c and 1.7d respectively).
As for the previous prototypes, also the inextensible CPRs design is never based on
the optimization of some CPR performances.

Tendon-actuated CPRs. In the previously described CPRs , each beams de-
forms in a passive manner as a consequence of the actuation actions localized at the
robots base. In contrast, tendon-actuated CPRs are made by assembling multiple
tendon-driven CRs arranged in parallel and connected to a rigid EE [37]. Each link
is actuated by cables coiled and uncoiled at the robots base. As the tendons are
routed in disks placed over the flexible link, the actuation action is distributed all
over the beams length, and each flexible link is actively deformed. A planar 3 DoFs

tendon-driven CPR is presented in [38] with a focus on its modelling and calibra-
tion (Fig. 1.8a), and a reconfigurable tendon-driven spatial CPR is described in [39]
(Fig. 1.8b). The work of [37] compares different designs in relation to the expected
kinematic performances (manipulability).

Origami structures. A recent trend in robotics proposes the use of origami
structures as structural components to create robust and lightweight CRs . An
origami structures connects the robots’ base and the EE , while several beams are
arranged in parallel inside the origami backbone. This design has been utilized
in CPRs in the works of [40] and [41] (Figs. 1.9a, 1.9b, respectively), promising
significant payload capabilities obtained without compromising the overall robot
size.

CPRs received significant attention in the last decade: this is demonstrated by
the significant number of different prototypes that emerged. However, by investigat-
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(a) Picture from [38] (b) Picture from [39]

Figure 1.8: Tendon actuated CPRs designs

(a) Picture from [40] (b) Picture from [41]

Figure 1.9: Origami-based CPRs designs

ing the currently existing designs, few works (probably only [15], [37]) considered
performance indices to drive the design selection. Although the experience and
common sense rules may guide the design process, introducing performance-based
analysis may critically improve CPRs design. However, as illustrated in the next
section, the performance-analysis tools of CPRs are relatively immature and under-
developed. This motivates further study in this direction. It is common to discuss
the CRs modelling strategies after the design descriptions. However, Chapter 2 is
dedicated to the model descriptions, and the focus of this Chapter is maintained on
the performance quantification of CRs , which is the main topic of this thesis.

1.2 Performance Analysis

Performance indices are metrics designed to quantify the different performances
of robot manipulators [42]. Performance indices help researchers and engineers to
evaluate and compare different robot designs, their potential applications, and their
limits. The literature on rigid-link robot’s performance measurement is vast, and
here the terminology of [42] is followed. Performance indices can be classified into
local indices or global indices: the formers depend on the robot configuration, while
the latters are associated with a specific robot design. The robot workspace volume
or area is widely used as a global performance index, usually focusing on the reach-
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able, translational or dexterous workspace1. Instead, the local performance analysis
is usually associated with some metrics of the robot Jacobian matrix. In this Chap-
ter, the term Jacobian matrix identifies the matrix relating the input velocities to
the EE twist [44]. The dexterity analysis, that is, the capability to move the robot’s
end-effector in all directions with ease, is usually measured by evaluating the rela-
tive conditioning of the Jacobian matrix, or the value of its minimum singular value
[45]. However, the dexterity measurement provides only directionality information,
and does not consider the magnitude of the measured abilities. To overcome this is-
sue, the manipulability index measures the determinant of the Jacobian matrix [46],
quantifying the magnitude of the measured abilities. Still, also the determinant is
inadequate to measure the closeness to the singularity of the Jacobian matrix [44]2.
Additional performances of interest are the force transmission ability, the robot’s
stiffness and accuracy [43].

The main difference between CRs and rigid-links robot is the intrinsic elastic na-
ture of CRs . Moreover, CRs are intended for different tasks than rigid-link robots.
Still, most of the literature related to the performance analysis of CRs is based on
the readaptation of existing rigid-link indices. In the following, we classify exist-
ing CRs indices between local and global indices. Moreover, local indices between
measurement based on the geometrico-static problem linearization, and indices that
uses the geometrico-static problem solution only, are illustrated separately.

Local Indices based on the geometrico-static model linearization:

• Dexterity. In CRs , the dexterity is measured by considering the ratio between
the minimum and maximum eigenvalue of the Jacobian matrix [47]. This
dexterity measurement is used in [48] on a novel concentric tube robot, and
the main disadvantages of using such a metric are illustrated in [47];

• Manipulability. as in rigid-links robots, a commonly used performance index
in CRs is the manipulability, measured by the determinant of the Jacobian
matrix. The manipulability ellipsoid was first formulated in [49] for CRs by
adapting the existing approaches of rigid-links robot to the CR framework.
Still, this approach is limited to the planar case and to the specific modelling
assumptions presented in the paper. Manipulability is studied in [48] in rela-
tion to a novel concentric tube robot. CPRs manipulability is investigated in
[37] on a 3-DoFs planar CPRs actuated by tendons, an in [15] on a spatial
micro-scale CPR by computing the Jacobian matrix with a finite-differences
approach.

• Stiffness measurements. As CRs are flexible by design, their stiffness plays
a crucial role in their performance evaluation. The term stiffness matrix iden-
tifies the matrix relating the input actions (e.g. motor torques-forces) with the
platform wrench. Since the CRs stiffness matrix is not equal to the transpose

1According to the terminology of [43], the reachable workspace is the set of all the positions
that may be reached with at least one orientation of the platform. The translational workspace
is the set of all possible locations that can be reached with a given orientation. The dextrous
workspace is the set of all the locations for which all orientations are possible.

2As an example, consider the identity matrix of dimension three, whose determinant is unitary.
However, multiplying the identify matrix by an arbitrarily small constant (e.g. 10´5) drastically
reduces the determinant, but still, the matrix is full rank.
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of the Jacobian matrix [18], the CRs stiffness matrix is derived from the robot
kinemato-static model in [35] or by ODEs integration in [50]. Passive elements
compliance [51] or actuation redundancy [36] are considered in relation to the
stiffness of the robot. Also, a global stiffness performance index is proposed
in [52] to optimize the CRs stiffness in a defined direction.

• Singularity. Near singularities, robots lose some abilities [43]. Using the con-
stant curvature assumption, singularities are investigated over the workspace
of a 3-DoFs planar CPR actuated by tendons, obtaining similar results to the
equivalent rigid-link parallel robot. Alternatively, using Plücker lines to inves-
tigate singularities was proposed for CPRs in [53], [54]. Instead, within the
variable curvature framework, sufficient conditions for the forward singularities
of serial CRs are formulated in [55], and a comprehensive singularity classifi-
cation is proposed in [56] for CPRs by analyzing the second order derivatives
of the robots’ energy;

• Equilibrium Stability. The characterization of the equilibrium stability is
a primary issue in CRs . The possible stable-to-unstable transitions that CRs
may admit due to the intrinsic elasticity or load exchange with the environment
complicates the use of CRs in tasks where safety and human-robot interactions
are mandatory. Instability is a great concern in concentric tube robots [57] as
well as in CPRs [58].

• Other measurements. Adapting the existing approaches of rigid-link robots
to the CR framework creates intuitive performance indices. However, it should
be considered that, due to the inherent compliance and elasticity of continuum
robots, the common force-velocity duality does not govern their motion, and
the optimal direction for exerting force is not necessarily the optimal direc-
tion for controlling velocity [59]. In this direction, the work of [60] proposes
a unified force-velocity ellipsoid to consider simultaneously the effect of the
Jacobian and the compliance matrix on the CRs power transmission. Alter-
natively, linearising the CRs geometrico-static modelling approaches provides
useful matrices that correlate actuator and platform velocities, platform ap-
plied wrenches and actuation actions [18]. The resulting matrices are exploited
to measure quantities specific to CRs , such as how a platform wrench is re-
flected on an actuation velocity. However, the robot performances in terms
of velocity and force transmission are analyzed separately, and the instrinsic
coupling between geometry and elasticty is ultimately neglected;

Local Indices based on the geometrico-static model solution

• Orientability Analysis. Orientability plays a crucial role, particularly in se-
rial CRs , and the orientation ability is frequently measured by solving geometrico-
static problems with different EE orientations until a limit of the orientation
capability is reached (e.g. unsolvability of the geometrico-static problem, me-
chanical limits). An orientability index is computed in [61] as the ratio between
the accessible and the full surface of a target sphere or as the ratio between
the accessible and the full surface of a target anatomical volume [62]. Design
optimization is also done in [63] by maximizing robot orientability. The main
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difficulties in the quantification of the orientation abilities are due to the com-
plexities of the workspace computation: how to explore the orientation space?
How to efficiently compute the orientation ability boundaries?

Global indices:

• Workspace. As in rigid-link manipulators, the CRs workspace is also fre-
quently used as a performance index. In particular, workspace measurements,
such as the translational workspace size [64], have been widely used for design
optimizations. Similarly, design optimization has been carried out by mini-
mizing the difference between a target workspace and the CR workspace for
tasks where the robot enter a confined space by a single location and large
orientation abilities are required [65] or by considering the reachability of a
target workspace by the robot [66]. Additionally, the workspace size is used as
a performance metric by considering the reachability of a target volume in the
presence of anatomical physical constraints [67]. Workspace-based indices are
promising for CPRs performance analysis. However, the use of these indices
is limited by the complexities of the workspace computation, that in CPRs is
not trivial due to the geometrico-static nature of the CPRs analysis;

Most of the research effort has been directed toward the derivation of local in-
dices based on the geometrico-static model linearization. Local indices based on
the Jacobian matrix evaluation (dexterity, manipulability) or the stiffness matrix
evaluation are straightforward. Indeed, these indices are simple to interpret because
they are similar to rigid-link-robot indices. However, the elastic nature of CRs poses
questions: is it adequate to measure the CRs performances by considering measure-
ments of the Jacobian and the stiffness matrix independently and not to evaluate
geometry and elasticity performances simoultaneously? Moreover, equilibrium sta-
bility assessment is fundamental for the use of CPRs in real tasks, but its modelling
and quantification is still not deeply investigated. Finally, workspace computation
algorithms are of great interest to the scientific community but are still problematic.
These algorithms may play a crucial role in performance analysis.

Thus, the focus of this Chapter and, ultimately, the thesis contributions, is
restricted from the general performance analysis to i) the workspace computation
problem and ii) the equilibrium stability assessment. Accordingly, Section 1.3 details
the current state of the art related to the workspace computation algorithms of
CRs , while Sec. 1.4 illustrates the current approaches for the equilibrium stability
assessment.

1.3 Workspace Computation: state of the art

Workspace evaluation, which can be briefly described as identifying all the config-
urations where the robot may rest in a stable equilibrium, is a well-known topic in
robotics. However, the application of state-of-the-art techniques for rigid-link par-
allel robots [43] to CRs is precluded by the complexities related to their inherent
flexible nature: their geometry is not sufficient to describe the pose of the whole
robot since the deformation of several elastic links defines the configuration. For
instance, rigid-link parallel robot approaches based on the geometry of the manipu-
lators (known as geometric approaches [68]) cannot be used in CPRs since the robot
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configuration also depends on the external forces that act on the system and the
geometrico-static problems do not admit an analytical solution in general.

Workspace computation algorithms for CRs are commonly based on two fun-
damental tools: a workspace exploration strategy and the repeated solution of the
geometrico-static problem. In the next Sections, some of the most popular ap-
proaches for the workspace evaluation of CRs are listed, discussing the employed
exploration strategy, the modelling techniques employed, and the main advantages
and drawbacks of each algorithm. Table 1.1 collects the state-of-the-art findings.
The next section illustrated algorithms that may evaluate the full workspace of
CPRs (Section 1.3.1) and algorithms designed to find the boundaries of the CPR

workspace only (Section 1.3.2).

1.3.1 Full Workspace Computation Algorithms

Full workspace computation algorithms evaluate the CPR workspace by calculating
each robot configuration that lies in the workspace. Two popular approaches can
be found in the literature: i) actuation space sampling techniques and ii) task space
sampling techniques.

Actuation space sampling techniques are generally based on the discretiza-
tion of the CPRs actuation space and the iterative solution of the forward geometrico-
static-problem (FGSP). These approaches bring general applicability and reduced
complexity as advantages while their computational time can be significantly high
since it increases with the sampling density and the number of actuators [69].
Actuation-space sampling approaches have been used in [70] for the workspace
computation of a pneumatically actuated CRs , and then employed in [71] for the
workspace computation of concentric tube CRs (CTRs), and also in [72] for a 6-DoFs
CPR. Several sampling strategies are proposed (with uniform or random distribu-
tions), but the computational time is considerably high if good accuracy is required
or the number of actuators increases. Moreover, strain limits are considered only
after the workspace computation. This leads to a considerable increase in the overall
time due to the computation of unreachable (and unnecessary) points. To mitigate
these drawbacks, an approximation of the CPRs workspace was obtained by sam-
pling the actuation space of each leg, computing its workspace, and then obtaining
the robot workspace as the intersection of the leg’s workspaces. However, the wrench
exchanged between each leg and the end effector cannot be considered, and this may
be a strong source of inaccuracy in the obtained results. This technique was applied
for the workspace computation of a CPR made by three compact bionic manip-
ulators [73] by uniformly sampling each leg actuator space and then intersecting
the three resulting workspaces. A similar approach, with the same advantages and
drawbacks, was proposed in [38] for the workspace computation of a CPR made by
three independently-actuated tendon-driven CRs .
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On the other side, task space3 sampling techniques are based on the dis-
cretization of the CPRs task space and the iterative solution of the inverse geometrico-
static problem (IGSP). This way, the computational time can be reduced with re-
spect to (w.r.t.) actuation-sampling strategies since the overall time depends only
on the sampling density but not on the number of actuators. This was shown in [69],
where the proposed approach considerably reduced the computational time w.r.t.
actuation-sampling techniques in the case of a soft manipulator driven by three ca-
bles. Preliminary results on the workspace evaluation of a 2-DoFs CPR were also
shown in [78]. Still, the generality of their approach is reduced by the modelling
strategy strictly limited to planar cases. Another task space sampling approach was
employed in [14] for the workspace computation of a 3-DoFs planar CPR: this ap-
proach ensures generality and the inclusion of mechanical limits, but not singularity
and equilibrium-stability analyses. Using a simplified mathematical modelling ap-
proach, singularity analysis was performed in [37] during workspace computation.
Still, the employed modelling technique is simplified w.r.t. the real physics of the
problem, and it may be inaccurate in terms of pose prediction. A flooding algorithm
was proposed in [56] for the workspace computation of general planar CPRs , sin-
gularity identification, and equilibrium stability assessment. Flooding approaches
are algorithms based on a fixed grid exploration: the direction on which the grid
is explored is not fixed, and it depends on a neighborhood analysis performed at
each step. Consequently, flooding algorithms provide general tools for the computa-
tion of complex workspace volumes. However, the computational time significantly
increases when the desired accuracy is high. Finally, a task space exploration strat-
egy has recently been proposed in [30], with the workspace computation algorithm
being based on the generation of several trajectories on the task space and the it-
erative solution of the IGSP over these trajectories. This approach has shown to
be computationally efficient, but the identification of singularity loci has not been
considered.

In summary, full workspace computation algorithms are applicable for general
CPRs . Computational time may be high (hours or even days), particularly if an
actuation sampling strategy is employed. Even if most of the workspace exploration
strategies are not dependent on the CPR modelling strategy, the latter determines
the capability to evaluate several features, such as singularities and equilibrium
stability. Moreover, the analysis of pose occurrences within the workspace is not
trivial when employing task-space sampling techniques, while actuation sampling
techniques do not suffer of this issue. The same problem is valid when analyzing
possible robot redundancy.

1.3.2 Boundary Workspace Computation Algorithms

Because the computational time of full workspace computation algorithms is signifi-
cant, workspace computation algorithms that identify only the boundaries are often
used. In this Section, the analysis is limited to boundary-computation strategies
based on i) the identification of closed-form analytical solutions, ii) continuation
approaches, and iii) optimization approaches.

3With the term task space, we denote a subspace of the robot configuration space. This space
is usually defined by some variables of the robot end-effector pose, such as its position or its
orientation.
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The closed-form equations of the workspace boundary may often be identified
for rigid-link robots [87]. However, the complexity of the CPR modelling techniques
makes such an identification particularly challenging, and exact solutions were found
only in a few special cases. A relevant example in this direction is provided in [81],
where the analytical condition for border detection is based on singularity conditions,
unfortunately the method was limited to a specific serial CR design (a CR with two
indipendently actuated segments).

Continuation algorithms [88],[82] provide common and computationally effi-
cient tools. Still, they are generally limited to planar cases and three-dimensional
workspaces are obtained only by superimposition of several planar slices. Addition-
ally, inequality constraints (e.g. related to strain limits or stability assessment) are
hard to include, and the identification of voids or holes in the workspace is tricky.

Finally, optimization approaches are a class of powerful tools for the compu-
tation of workspace boundaries, firstly introduced in [89] for rigid-link robots. These
approaches find boundary location by solving an optimization problem, where the
optimization target is the distance between the EE position and a given point to be
reached: inequality and equality constraints can be included, leading to general for-
mulations. However, if the robot admits multiple solution for the same geometrico-
static problem considered in the optimization process, the numerical optimization
may be directed toward a different working mode, leading to incorrect predictions
of the workspace; the same as for continuation methods, where voids are challeng-
ing to individuate. Optimization algorithms for CRs were proposed with different
modelling strategies in [86], [84]. In summary, boundary workspace computation
algorithms offer better computational performances than full workspace algorithms.
As a drawback, these algorithms are strongly influenced by the selected modelling
strategy and computational methodology, which affects not only the performance of
the algorithm but also their applicability.

In conclusion, in the author’s opinion there is a significant margin for improve-
ment concerning the state of the art. Concerning the full workspace computation,
the state of the art is mainly directed toward actuation sampling techniques, which
are generally time-consuming if a large number of workspace candidates are to be
tested, the latter increasing with the number of actuators employed. The few works
related to task-space sampling are preliminary and frequently lack generality. The
workspace boundary computation is even more challenging since no work has been
directed in this direction for CPRs at the current date. Few works have been directed
in this direction for CRs , with each approach’s relative advantages and disadvan-
tages, such as the inability to detect holes in the workspace, the difficult application
to three-dimensional volumes, or inability to generalize to CPRs models.

1.4 Equilibrium Stability Assessment: state of the

art

A fundamental problem in both serial and parallel CR design and analysis is the
assesment of equilibrium stability: stable-to-unstable configuration transitions are
possible due to the elastic structure of CRs . For instance, CTRs exhibit instabilities
with significant impact on the usability and controllability of the robot [57]. As the
tubes rotate and translate w.r.t. each other, elastic potential energy accumulates
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until an unstable configuration is met, and the energy is released with a dangerous
snapping [90]. To avoid instability, the tube curvature can be optimized [91], but
design anisotropies can also be introduced [92]. Alternatively, [93] discusses design
rules which aim at ensuring the absence of instabilities. In the same fashion, CPR
designs displayed stable-to-unstable transition [58], which limits the CPR motion
abilities and their potential intrinsic safety. It should be mentioned that stability
assessment is a relevant problem not only in robotics: the Euler’s buckling load
[94] established the foundations for the elastic stability assessment of rigid beam
structures. Successive works focused on different aspects of equilibrium stability,
such as secondary bifurcations [95], post-buckling instabilities [96], and investigation
of stability bifurcations [97].

1.4.1 Equilibrium Stability Characterization

Energetic considerations are necessary to characterise equilibrium stability because
stable CR configurations are associated with a minimum of the total CR potential
energy [74], [56]. Two prevalent approaches have been identified in the literature:
optimal control approaches and the analysis of the Hessian matrix of the CR energy.

When continuous (not discrete) CRs modelling approaches are used (e.g. [18],
[78]), equilibrium stability is frequently studied using optimal control approaches
(OC ) [57]. These approaches derive stability conditions through non-discretized CR

equations, and the resulting numerical test, based on the integration of differential
equations, determines the robot’s stability. OC approaches provide a rigorous ap-
proach minimally affected by discretization issues at the cost of increased mathe-
matical complexity. State-of-the-art methods on CTRs determine the equilibrium
stability by the use of OC approaches [98], [57], and OC is also used in [58] to show
that CPRs admits stable-to-unstable transitions. Equilibrium stability of planar
CPRs also received significant attention, and OC theory is used preliminary in [99],
and on a family of three-actuated-DoFs planar CPRs in [100]. Indeed, other robotic
systems benefit from OC approaches for the equilibrium stability assessment. Sag-
ging cables of cable-driven parallel robots are analogous to long and slender flexible
beams frequently modelled with Irvine’s model (a particular subcase of the Cosserat
beam’s model) and OC can be used to assess the equilibrium stability of sagging
cable-driven parallel robot [101].

Alternatively, when the CRs configuration is described by a finite number of
variables (e.g. when using discretized CRs equations), equilibrium stability can be
characterized by evaluating the positive definiteness of the Hessian matrix of the
potential energy [56]. In contrast to OC approaches, stability assessment based on
the Hessian matrix provides intuitive mathematical derivation and simplicity, but
the accuracy depends on the number of discretization coordinates. The approach
proposed in [102] established a numerical method (based on the reduced Hessian
matrix evaluation) to assess the CTRs stability, follow stable paths by continu-
ation, and determine bifurcations where instabilities occur. Equilibrium stability
assessment plays a crucial role in the workspace evaluation of CRs , and unstable
configurations define the attainable workspace boundaries. During the workspace
computation, the equilibrium stability of each configuration is to be verified, and the
positive definiteness of the reduced Hessian matrix is a straightforward and effec-
tive strategy that avoids differential equation integrations proper of OC approaches.
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The same approach is used for different problems, such as equilibrium stability as-
sessment of underconstrained cable-driven robots [103] (assuming cables as straight)
or stable equilibrium continuation of elastic beams [97].

1.4.2 Stability metrics

Stability metrics defining a distance to instability are essential in many cases, such as
when planning stable CRs trajectories [21], or when an external load is to be applied
to the CR [57]. However, stability metrics were rarely investigated, and only a few
works were proposed in this direction. Based on the OC framework, an index for the
equilibrium stability measurement of CTRs is given in [98]. Except for the two-tubes
case, the proposed index is based on the use of a matrix determinant which cannot
meaningfully indicate the closeness to non-optimality in general [44]. One may use
the condition number as an alternative to the matrix determinant to solve this issue.
However, when the matrix is made of non-homogeneous units, the condition number
may fail in indicating the closeness to rank deficiency. The work of [104] proposed to
measure the equilibrium stability of CTRs from a different perspective. As S-curves
describes the input-output relation of a two-tubes CTR, the observation that stable
CTRs S-curve do not exhibit a negative slope suggests using the S-curve slope as
stability metric. However, this approach is limited to the two-tubes case. In the
case of CPRs , a heuristic index is proposed in [75] within the OC framework. The
proposed index is based on an equivalent integration length to make appear the
so-called conjugate points where instability should occur. The proposed index is
heuristic, and its use is limited by the fact that there is no straghtforward proof
that the mechanism reaches the limit of stability when the conjugate points appears
at the abscissa zero. Additionally, the sensitivity of this metric to small changes in
other model parameters could be high, and the index should be used with caution
[58].

The equilibrium-stability analysis of CPRs is a crucial topic for their real ap-
plication since stable-to-unstable transitions need to be avoided for practical tasks.
The work of [58] was the first to investigate the equilibrium stability assessment of
CPRs , and rigorous results are obtained with the OC approach also in serial CRs
[98]. However, the alternative approach of the Hessian matrix evaluation is com-
petitive for its more straightforward and effective applicability; a deep experimental
investigation of its accuracy is currently missing. Moreover, investigating the causes
of the instability of CPRs , and the underlying physical phenomena happening when
the CPR equilibrium becomes unstable is of interest. Additionally, a few works
proposed distance to instability metrics, but the existing indices frequently lack of
physical meaning.

1.5 Summary of the state of the art and associ-

ated perspectives

CPRs are a recently proposed class of manipulators with many open research direc-
tions. CPRs modelling [18], design [105] and control [20] requires further investiga-
tions, and this thesis focuses on the performance analysis of CPRs .
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Performance analysis of CRs (and of CPRs) is frequently carried out by re-
adapting existing indices proper of rigid-links robots. Most of the performance
investigation focuses on the CRs Jacobian matrix or stiffness matrix separately,
and the intrinsic coupling between geometry and elasticity of CRs is frequently
neglected. In particular, two major limitations in the state of the art are identified,
that is, i) efficient workspace computation strategies for CRs and ii) techniques for
the assessment and measurement of the equilibrium stability.

The workspace computation problem of CPRs plays a crucial role in the perfor-
mance evaluation of CPRs , since the CPRs workspace may be used to get useful
metrics such as the workspace volume, and it could be used as an objective for
optimal design tools. Full workspace computation is mainly performed by using
actuation sampling techniques at the cost of high computational time. On the other
hand, task-space sampling is still at a preliminary level of development. Workspace
boundary computation of CPRs is even more challenging. Despite some technique
for serial CRs exists, no work is specifically devoted to the boundary workspace
computation of CPRs . As shown in Sec. 1.3.2, few works have been directed in
this direction for CRs , with relative advantages and disadvantages that each ap-
proach brings, such as the inability to detect holes in the workspace and the difficult
application to three-dimensional volumes.

The second topic of interest is the equilibrium stability analysis. OC approaches
are mostly used in the state of the art. In the author’s opinion, this is mainly due to
the popularity of continuous modelling approaches (discussed in the next chapter)
that fit the OC formalism. However, the alternative approach of the Hessian matrix
evaluation is competitive for its effectiveness and simplicity of derivation once the
discretized robot model is derived. The major shortcoming of the state of the art
is the almost complete absence of equilibrium stability indices. Metrics to measure
the distance to instability are essential, but the few existing works lack a physical
meaning of the measure.

In this thesis, the following topics are explored and contributions are proposed
in these directions:

• The workspace full exploration. New full workspace computation algorithms
that bring generality in terms of algorithm applicability to different CRs archi-
tecture are necessary, and an improvement of the computational performances
w.r.t. the state-of-the-art approaches is desired. Additionally, it is investi-
gated how to efficiently certify the numerical results in terms of the existence
and uniqueness, and continuity of the numerical solutions at each workspace
point, in contrast to state-of-the-art time-consuming approaches. Chapter 3
focuses on these aspects;

• The workspace boundaries computation. The goal is to develop a new bound-
ary computation algorithm for CPRs . The focus is directed on the general
applicability of the algorithm and on the possibility of detecting holes in the
CPR workspace, in constrast to existing approaches that may fail in these
directions. Chapter 4 describes these contributions;

• The experimental equilibrium assessment on a new CPR prototype (chapter
5). It is of interest to verify the accuracy of the equilibrium stability assessment
based on the Hessian matrix evaluation and to better understand the physical
phenomena of the stable-to-unstable transitions;
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• The distance to instability measurement. The scope is to propose a new index
to measure the distance of a CR configuration from the instability (Chapter
6). The scope is to obtain an index with a the physical meaning of distance
measurement, rather than existing metrics lacking in physical meaning of the
results.

The next chapter concludes the state-of-the-art analysis, as it will discuss the
modelling techniques for CRs . Despite the thesis focuses on performance analysis, it
is fundamental to describe the modelling state of the art and the employed modelling
strategies to better understand the contributions of this thesis.
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Chapter 2

Geometrico-Static Modelling of
Continuum Parallel Robots

This Chapter focuses on the geometrico-static modelling of CPRs . Although the
topic of this thesis is the performance analysis of CPRs , the choice of the CPRs

modelling techniques plays a crucial role in robot analysis. Selecting the appro-
priate CPRs modelling approach for the robot analysis among the vast literature
[106] is a complex task. Section 2.1 presents a concise state-of-the-art analysis of
CRs modelling strategies to illustrate the existing possibilities. Then, Section 2.2
describes the energy-based discretized modelling technique used in this thesis.

2.1 Brief State of the art on Continuum Robot

Modelling

The geometrico-static modelling of CRs received great attention from the scien-
tific community, and the literature is vast [106]. Most of the currently employed
CRs modelling approaches focus on largely deformable components, and the CRs

flexible components are frequently represented as slender beams. Beam-like struc-
tures historically received great interest from the community: the early works of
Bernoulli and Euler, Kirchhoff [107], Love [108], Cosserat [109], and Reissner [110]
can be considered as the origin of beam’s modelling strategies that undergo large
displacements and rotations. However, the application of three-dimensional elas-
ticity results in complex beam equations. The resulting mathematical models are
computationally expensive, and, usually, assumptions are introduced to obtain a
simplified modelling approach that can be adequate for practical applications [111].
In the following Sections, the frequently introduced assumptions that transform the
three-dimensional beam problem into a simplified numerical problem are illustrated.

2.1.1 Assumptions

Classical small-deformation theories assume that the deformed beam configuration
is close enough to the undeformed one. However, CRs achieve motion through the
controlled large displacement of some elastic beams, and it is not possible to rely
on the small-deflection assumption, in general. Several simplifications need to be
introduced to transform the three-dimensional elasticity beams problem into a math-
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Figure 2.1: The different levels of assumptions that transforms the three-dimensional
beams’ elasticity into a simplified mathematical problem.

Figure 2.2: A slender beam undergoing large deformations.

ematically solvable problem. Figure 2.1 resumes the different levels of assumptions
[19]:

• the three-dimensional beams elasticity problem is converted into a mono-
dimensional beam problem introducing the rigid cross-section assumption;

• the mono-dimensional beams elasticity is eventually simplified by introducing
physical assumptions that restrict the possible strains acting on the beam.
The resulting model is named physical model;

• the physical model is further simplified by using numerical approaches to ob-
tain a mathematically solvable model.

Each assumption level is detailed in the following.
First, let us focus on the beam representation of Fig. 2.2. The beam is con-

sidered as a three-dimensional continuum body B, and a one-dimensional domain
CL represents the beam’s centerline. CL is parametrized with s P r0;Ls, and L

is the length of the beam at the reference configurations. For each value of s, a
two-dimensional space As called cross-section is considered, which is a subset of B,
and which intersects CL in the cross-sections centre of gravity. In particular, B is
assumed to be a the disjoint union of all the cross-sections. At each s a floating
frame Fs, called local frame, is attached with the origin placed at the centroid of
the cross-section. A frame F0 is considered an inertial fixed frame. In this frame-
work, the rigid cross-section assumptions is introduced [111]: each cross-section is
assumed to remain rigid, and thus it can only rotate and translate as a rigid body.
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This assumption implies that no change in the shape or size of the cross-section is
allowed. Moreover, let us consider:

• A set of unitary vectors ei, i “ 1, 2, 3 associated to Fs, whose values are
expressed w.r.t. the local frame, namely e1 “ r1, 0, 0s, e2 “ r0, 1, 0s, e3 “
r0, 0, 1s. In particular, e3 is assumed to be orthogonal to As;

• The vector Xspt1, t2q “ t1e1 ` t2e2 P R
3 that defines the position of a point P

over As w.r.t. the local frame.

• ppsq P R
3, that is the position of Fs w.r.t. F0;

• Rpsq P SOp3q, that is the matrix expressing the orientation of Fs w.r.t. F0.

Under these assumptions, the position of any point P w.r.t. F0 can be obtained as
(see Fig. 2.2):

xps, t1, t2q “ ppsq ` RpsqXspt1, t2q (2.1)

Thus, the set of the cross-section poses C can be defined as:

C “
"
Gpsq “

„
Rpsq ppsq
0 1

ȷ
| G : r0;Ls Ñ SEp3q

*
(2.2)

which is a non-linear differentiable manifold [112]. Equation (2.1) shows that, in
order to recover the position of each point of the beam, it is sufficient to know
the manifold C: the three-dimensional beams elasticity problem is simplified into a
mono-dimensional problem in the variable s. Since the configuration of the beam is
defined by the set of all the matrices G P SEp3q from 0 to L, the space variation of
G is governed by a twist field ξ P R

6, defined by:

pξpsq “ G´1psqG1psq (2.3)

with p.q1 “ d
ds
, the vector ξ, whose components are expressed in Fs, is structured as

ξ “ ru,vs, and pξ P sep3q is defined as:

pξpsq “
„

pupsq vpsq
01ˆ3 0

ȷ
(2.4)

where pu P sop3q is the skew-symmetric representation of u. Moreover, ξ is a strain
measure of the beam [19], u P R

3 represents bending and torsion of the beam, and
v P R

3 describes shear and extensibility. Since the director e3 is considered as
orthogonal to the cross-section, v1, v2 represent the shear, and v3 the extensibility,
u1, u2 represents the bending, and u3 the torsion. Assuming material properties
as elastic, linear, isotropic, and constant over the length of the beam, the beam
constitutive law, namely the relation between the beams stresses and strains, is
written as:

Γpsq “ Kpξpsq ´ ξ˚psqq (2.5)

where Γ P R
6 is the beam internal stress whose components are expressed in the

local frame Fs, ξ
˚ P R

6 denotes the undeformed strain configuration and the matrix
K P R

6ˆ6 is structured as:

K “
„
KBT 03ˆ3

03ˆ3 KSE

ȷ
(2.6)
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Name Cosserat Kirchoff
Kirchhoff

Inextensible

Untorsionable
Inextensible
Kirchhoff

Strain ξ “

»
——————–

ux

uy

uz

vx
vy
vz

fi
ffiffiffiffiffiffifl

ξ “

»
——————–

ux

uy

uz

0
0
vz

fi
ffiffiffiffiffiffifl

ξ “

»
——————–

ux

uy

uz

0
0
1

fi
ffiffiffiffiffiffifl

ξ “

»
——————–

ux

uy

0
0
0
1

fi
ffiffiffiffiffiffifl

Table 2.1: Summary of the most frequent allowed-strain models. For each case, ξ is
written by imposing to zero the non-allowed components.

Matrices KBT ,KSE P R
3ˆ3 are diagonal and frequently KBT “ diagpEIx, EIy, GIzq,

KSE “ diagpEA,EA,GAq, E is the Young modulus, G is the shear modulus, and
Ix, Iy, Iz are the principal inertia moments of the cross-section, and A is the cross-
section area. Then, let us consider the beam equilibrium. A distributed wrench
wd P R

6, whose components are expressed in the local frame Fs, acts on the beam,
and the beams equilibrium in Fs is stated as [22]:

Γ1psq “ adT
ξ psqΓpsq ´ wdpsq (2.7)

where the matrix adξ P R
6ˆ6 is structured as:

adξpsq “
„

pupsq pvpsq
0psqpsq pupsq

ȷ
(2.8)

By collecting Eq. (2.7), Eq. (2.6), and by rearranging Eq. (2.3) the algebraic-
differential equations that govern the beams pose are obtained as follows1:

$
’&
’%

G1psq “ Gpsqpξpsq
Γ1psq “ adT

ξ psqΓpsq ´ wd

Γpsq “ Kpξpsq ´ ξ˚psqq
(2.9)

Thus, to find a beam configuration, it is necessary to find a set C that satisfies
Eq. (2.9) and given boundary values of G,Γ.

Depending on the beam’s properties, it is legitimate to neglect some components
of ξ. In this thesis, physical assumptions are defined as the simplifications intro-
duced to approximate ξ, and Table 2.1 collects the most frequent simplifications:

• Full Cosserat. No simplification is introduced in ξ. This model is required
for medium to large cross-sections, where the shear is important (e.g. silicon
made CRs);

• Kirchoff. Neglecting the shear components of ξ usually holds when the cross-
section dimension is small, but still extensibility is present (e.g. cables);

1These equations are also known as the strong form of the Cosserat beams equilibrium conditions
[111]
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• Kirchhoff inextensible. A Kirchhoff beam model neglects shear and ex-
tensibility of ξ. This assumption holds for long and slender beams that are
inextensible (e.g. NiTinol, fibreglass beams);

• Untorsionable inextensible Kirchhoff. In addition to the shear and ex-
tensibility, also the torsion may be neglected in some cases (e.g. when the
torsional stiffness is considerably greater than the flexural stiffness).

Physical assumptions may reduce the model’s complexity, and the resulting
model is named physical model in this thesis. In particular, only inextensible
Kirchhoff beams are considered in this manuscript, and thus shear and extensibil-
ity are considered to be negligible. Since the goal is to model CPRs with small
cross-sections where extensibility is not important, it seems to be adequate to ne-
glect shear and extensibility. Still, the integration of Eq. (2.9) in the SEp3q group
is not trivial, and numerical approaches are further introduced to find beam solu-
tions. Some of the possible approaches are illustrated in the next Section, and the
interested reader is addressed to specialized review papers for a more comprehensive
overview (e.g. [106])

2.1.2 Literature

In this Section, some of the currently employed numerical approaches used
to approximate the CRs physical model of Eq. (2.9) are outlined. In this the-
sis, three groups of approaches are described: continuous approaches, physically-
approximated approaches, and discretized approaches

Continous Approaches: these techniques do not simplify Eq. (2.9) to find its
solutions.

• The shooting method is widely used to obtain accurate solutions in CRs

applications. This approach does not introduce further assumptions than
physical models, and it provides significant accuracy and computational ef-
ficiency [74]. CPRs massively employ the shooting method to find solutions of
Eq. (2.9), perhaps because of their variable curvature by design, and [13],[18]
introduce the use of shooting methods for CPRs . A multiple shooting is pro-
posed in [27] to simulate CPRs with intermediate disks and intermediate loads.
However, when using multiple shooting, the model’s complexity considerably
increases. Computational efficiency is improved with an ad-hoc procedure
for the computation of the shooting Jacobian matrix [75]. The accuracy of
the shooting method is tested on a planar CPR in [14], and in tendon-driven
parallel continuum robots in [113]. Continuous approaches based on the shoot-
ing method are accurate and computationally efficient, but the robot perfor-
mance analysis is not immediate when using these approaches (as discussed in
Sec. 2.1.3);

• Elliptic Integral solutions of the beam’s physical models are available in a
few cases. Assuming planar displacements only, shear, extensibility to be neg-
ligible, no external distributed loads, and only tip loads, the elliptic integral
solutions are available to describe the configuration of the beam without any
further computational effort [114]. The elliptic integral solutions have been
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identified for the kinematic analysis of planar CPRs [115], for the solution of
the forward and inverse kinematostatic problem of CPRs [116],[78], for pre-
liminary investigation on stability and singularity analysis [117],[99], shape
modelling of panel-made CPRs [118], and for a certified solution of the CPRs
static problem in combination with interval analysis [79]. Elliptic integral so-
lutions provide accuracy and computational efficiency as an advantage, but
their application is extremely limited due to the considerable amount of as-
sumptions to be satisfied (planar motions only and loads applied only at the
rod’s tip);

Despite the fact that continuous approaches use Eq. (2.9) with no additional
approximation, there exists no analytical solution in the general case and numerical
integration approaches must be employed to obtain an approximated solution to
the exact one. Alternatively, additional simplifications can be introduced to further
simplify the modelling approach.

Physically-approximated Approaches: these techniques introduces further
assumptions to get simplified CRs models. However, physically-approximated ap-
proaches simplifies the CRs physical representation, introducing assumptions that
limit the possible cross-section motion and/or the allowed motions of the CR.

• The constant curvature assumption has been successfully applied to many
CRs applications: the overall beam curvature is assumed to be constant
(or made by several constant-curvature segments), and thus the beam cross-
sections are allowed to move accordingly. In the review work of [7], the main
features of constant curvature models are recalled, and the simplified represen-
tation is the paramount advantage [119]. Constant curvature approximation
achieve good results when a constant moment is applied to the EE [120], and
this perfectly fits tendon-driven CRs [121]. However, if the CR does not fit the
constant curvature assumption, the accuracy of this approach may be limited.
Constant curvature approximation has been successfully employed in CPRs

for modelling and workspace enhancement [38], and for the comparison of var-
ious designs [37]. In conclusion, constant curvature approximations provide
simplified models as an advantage at the price of a decreased accuracy;

• Lumped parameter models for CRs represent the natural transition of
traditional rigid-link robot modelling approaches [122]. These approaches fur-
ther simplify the physical representation of the system by assuming the CR to
be represetable as a set of springs, masses and dampers connected in series.
When used for a relatively few rigid segments, lumped models avoid the com-
plex expressions intrinsic in continuum descriptions, leading to efficient results
[123]. Lumped parameter models have been used in [35] for the CPRs kine-
tostatic modelling. As for constant curvature approaches, lumped parameter
approaches requires additional computational effort to accurately represent
the complex dynamics of CRs [124], but the resulting mathematical models
resemble traditional rigid-link robot models;

Discretized Approaches: these techniques are based on the use of additional
numerical simplifications added on the CRs physical model, but the allowed CR
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motion is in accordance with Eq. (2.9). The following non-exhaustive list proposes
some of the most popular discretized approaches.

• Finite differences approach introduces further assumptions on the top of
physical models to get simplified modelling representation. As finite differ-
ences approximate derivatives [125], the resulting beams equilibrium equa-
tions do not require any ODE integration and it can be written explicitly
[80], thus simplifying mathematical manipulation of these equations (e.g. for
derivative computations). However, a large number of elastic coordinates is
frequently required to achieve CRs accuracy. Finite differences approxima-
tion is successfully employed for CRs in concentric tube modelling [126], for
their stability analysis, and for the quantification of the number of stable so-
lutions [102]. Also, beams computer graphics simulations benefit from the use
of finite-differences [127]. This approach has been applied for the forward and
inverse position problem of planar CPRs [80]. As an advantage, finite differ-
ences provide analytical formulations of the CRs geometrico-static problem,
but other discretization techniques offer a better trade-off between accuracy
and computational cost [128];

• Collocation methods are a powerful class of techniques for the solution of
differential problems [125]. Starting with the discretization of the strong form
and the approximation of the configuration variables with basis functions,
several interpolatory functions are used in the context of beam modelling to
simplify the geometry of the beam. Basis functions include Chebyshev polyno-
mials [129], B-Splines [130], magnus expansion [131], and NURBS [132] (also
known as isogeometric collocation). To the author’s knowledge, collocation
methods are not currently used in CPRs ;

• The finite element method of slender elastic rods received significant at-
tention since the early development of the beams model’s [111]. Finite-element
approaches discretize the continuum beam into a finite set of deformable seg-
ments. Thanks to the use of powerful numerical tools [133], promising com-
putation performances and accuracy can be achieved [134]. Finite-element
methods provide useful tools for model-based closed-loop control of contin-
uum robots [135], and for the dynamic modelling of CPRs [136]. The main
advantage of the finite-element approach is the possibility of modelling various
geometries, but the implementation of finite-element methods is not trivial;

• Piecewise constant strain approaches provide a good tradeoff between ac-
curacy and computational cost [137]. Piecewise constant strain approaches
approximate the beam’s strain field into a finite set of constant strain seg-
ments [138]. However, in contrast to the constant curvature assumptions, also
constant extensibility, shear and torsion can be simulated [85]. Piecewise con-
stant strain provides advantages for the dynamic simulations of CRs [85] and
for their static closed-loop control [139]. To the author’s knowledge, piecewise
constant strains have not been used in CPRs ;

• Assumed strain modes approaches introduce discretizations at the beams
strain level, providing accurate results with a reduced number of elastic co-
ordinates [22]. However, the model’s mathematical complexity is high. As-
sumed strain modes approaches have been tested for the simulation of soft
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and continuum robots [140], for the dynamics of variable length beams [141],
for the simulation of CPRs [128]. Assumed strain mode approaches promise
an excelent accuracy-computational cost ratio: the expected model accuracy
is comparable to shooting-based approaches, while the computational-cost is
drastically lower than other discretization approaches (e.g. finite-differences).
However, the complexity of the approach is significant;

In this thesis discretized approaches are preferred to physically-approximated
approaches. This decision is mainly driven by the need to get high accuracy of
the CPRs models for simulation and analysis purposes. In particular, i) the finite-
differences approach and ii) the assumed-strain mode approach are selected. Before
going into the model description, it is necessary to better justify the decision of
using discretized model instead of continuous approaches.

2.1.3 Why Using Discretized Models?

The current state of the art in CPRs modelling is mainly focused on the use of
shooting approaches [13]. Shooting approaches provide the following paramount
advantages in the case of quasi-static simulations2:

• Accuracy. Since no additional assumptions are introduced, shooting approaches
provides accurate results [18];

• Computational cost. It has been demonstrated that shooting approaches per-
form well in relation to the computational cost [75];

Instead, the major drawbacks of shooting approaches are here listed:

• Complex inclusion of intermediate constraints and intermediate loads. As pre-
viosly mentioned, multiple shooting approaches are used to include intermedi-
ate constraints or intermediate loads, and the complexity of these approaches
is significant.

• Differential equation integration. When dealing with shooting approaches,
differential equations should be integrated considering the SOp3q (or SEp3q)
group structure as shown in Eq. (2.3), with further complications on the nu-
merical integration process.

• Equilibrium stability assessment. In the case shooting approaches being em-
ployed, complex OC techniques are required to characterize the equilibrium
stability.

In relation to the same mentioned points, discretized techniques perform differ-
ently depending on the selected discretization approach. The inclusion of interme-
diate loads or constraints requires complex multiple-shooting approaches if shooting
techniques are used while, to the author’s experience, discretized techniques includes
these load in a simpler manner. Additionally, the equations of different discretiza-
tion techniques may be written with the same formalism, and the discretization

2In the case of dynamic simulations, these advantages are not valid anymore: the shooting
approach for dynamics simulation as described in [142] may lack in accuracy, and the stability of
the numerical approach is complex to be guaranteed [140]
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(a) (b)

Figure 2.3: (a) Continuous parametrization of a slender beam, and (b) schematics
of a CPR.

technique is decided only in relation to the predefined model’s scope (e.g. com-
putational performances [128], analytical formulation of the model equations [80]).
Finally, no matter the selected discretization approach, discretized techniques enable
simpler but effective equilibrium stability assessment, and this is a fundamental
aspect in performance evaluation CRs . While the equilibrium stability assessment
requires complex OC techniques in the case shooting approaches are employed, dis-
cretized CRs equation provides straightforward equilibrium stability conditions by
the evaluation of the Hessian matrix of the CRs potential energy. These are the
reasons that motivated our selection.

2.2 Energy-Based Discretized Modelling Approach

In this Section, the CPRs modelling framework employed in this thesis is described.
The energy-based discretized modelling of CPRs3 can be found in the state of the
art, but it is described to clarify the notations and the concept later used during
CPRs analysis. The description starts by deriving the potential energy of an isolated
flexible beam in Sec. 2.2.1. Then, the CPR model is introduced as an assembly of
several rigid and flexible components: configuration variables, the CPR energy, and
geometric constraints are described in Sec. 2.2.2. The discretization process and
discretized robot equations are introduced in Sec. 2.2.3, while the configuration
analysis (in terms of equilibrium stability and singularity analysis) are discussed
in Sec. 2.2.4. Finally, Sec. 2.3 discusses two discretization techniques employed in
this thesis and highlights how to formulate geometrico-static problems with these
approaches.

2.2.1 Beams potential energy

Instead of imposing the beam’s equilibrium by considering the differential equations
Eq. (2.7), an equivalent and alternative approach is based on the use of energetic

3Energy-based approaches are the starting point for the so called weak-form approaches [111].
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considerations. For the scope of this thesis, let us consider a clamped slender beam
as illustrated in Fig. 2.3a. The index i -th i “ 1, ¨ ¨ ¨ , nb labels variables of the i -th
beam, with nb the total beams number composing the CPR. As previously men-
tioned, a variable-curvature Kirchhoff beam model is employed. The deformation
energy of the i -th beam is given by [143]:

Vei “ 1

2

ż Li

0

ΓT
i psqξipsqds (2.10)

Assuming material properties as elastic, linear, isotropic, and constant over the
length of the beam, the expression of Γi of Eq. (2.6), and Eq. (2.10) simplifies as
follows:

Vei “ 1

2

ż Li

0

pξipsq ´ ξ˚
i psqqT K pξipsq ´ ξ˚

i psqq ds (2.11)

where, according to Eq. (2.3), ξi P R
6 is obtained from pξipsq “ G´1

i psqGipsq. In
the case a Kirchhoff inextensible strain model is used, vi “ e3 “ r0; 0; 1s, and Ve

simplifies as:

Vei “ 1

2

ż Li

0

puipsq ´ u˚
i psqqT KBT puipsq ´ u˚

i psqq ds (2.12)

This assumption usually holds for long and slender beams. Moreover, in the case of
an initially straight beam, u˚

i “ 0.
Then, let us consider external loads. Assuming that only a distributed con-

servative force fd P R
3 (expressed in global coordinates) acts on the beam, the

contribution of distributed loads Vdi can be obtained as:

Vdi “ ´
ż Li

0

fTd pipsqds (2.13)

Instead, the contribution of a concentrated conservative force fc P R
3 applied at

pipsnq, whose components are represented in F0, is formulated as:

Vci “ ´fTc pipsnq (2.14)

Three-dimensional distributed or concentrated moments that are non-conservative
by essence are considered to not appear [144]4. The total potential energy of the
beam is obtained as the sum of deformation energy and external loads energy, that
is:

Vbeami
“ Vei ` Vdi ` Vci (2.15)

2.2.2 CPRs potential energy, constraints

In this Section, the CPRs energy expression is derived. Let us consider a CPR

composed of nb flexible beams (Fig. 2.3b). Each beam is connected at one extremity
to a motor and, at the opposite end, to a rigid platform with a passive joint. The
beam is considered as clamped at the actuator sections: these assumptions do not
limit the generality of the approach, and prismatic, rotative or actuators that varies

4Instead, one-dimensional moments normal to the displacement plane are conservative and have
an associated potential energy function. This frequently happens in planar models.
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the beam length can be considered [13]. The robot base frame is denoted with F0,
and a frame Fp is attached to the rigid platform. Under these assumptions, the
following CPRs variables are considered:

• Actuated variables. The i -th actuated variable is called qai, and the vector
qa “ rqa1, ¨ ¨ ¨ , qans P R

n collects the actuated variables. In the general case
n ‰ nb since beams can be passive or actuated by the same motor;

• Platform pose variables. The vector qp collects the pose variables, and in
general qp “ rpp,φs P R

nc , where nc “ 3 for the planar case, nc ě 6 for the
spatial case, and pp,φ represent the position and the orientation parameters
of the platform w.r.t. F0, respectively

5. The platform orientation matrix Rp P
SOp3q is obtained from φ in relation to the chosen orientation parametrization;

• Controlled variables. Assuming the same number of controlled and actuated
variables, qc P R

n collects the controlled variables. Usually, qc is a subset of
qp;

• Uncontrolled platform variables. In the case n ď nc, some variables of
qp are not controlled. These variables are grouped into qu P R

nc´n for later
convenience.

After this variables classification, it is possible to compute the total CPR energy.
In particular, considering only a concentrated force fp P R

3 applied at the CPRs

platform, the contribution of fp to the CPR energy is given by:

Vp “ ´fTp pp (2.16)

Three-dimensional platform moments, which are non-conservative, are considered
to not appear. The total potential energy of the CPR is finally obtained as:

Vtot “
nbÿ

i“1

Vbeami
` Vp (2.17)

Due to the closed-loop architecture of CPRs , position and orientation geomet-
ric constraints have to be enforced. CPRs passive joints, which connect the rigid
platform to the passive beams, serve as a connection to create the parallel robot ar-
chitecture. For instance, revolute joints [34], spherical joints [39], cylindrical joints
[27] and fixed joints [13] can be modelled. Without loss of generality, the constraint
of the i -th beam Φi P R

nφi can be represented by:

Φi “ Ci

„`
RT

pRipLiq ´ RT
i pLiqRp

˘
q

pipLiq ´ ppp ` Rppfiq

ȷ
(2.18)

where pfi P R
3 is a vector pointing from the i -th joint position to the platform

centre, and constant w.r.t. Fp, pp,Rp are the position and the orientation matrix
of Fp w.r.t. F0, respectively. The vector pipLiq is the position of the i -th beams at
the coordinates Li and RipLiq is the orientation matrix at Li of the same beam. The

superscript |p.q indicates the extraction of the three independent components of its

5In the case the platform orientation is parametrized by using a minimal representation (e.g.
Euler’s angles), nc “ 6 while, if quaternions are used, nc “ 7.
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Name Fixed Spherical Revolute Local z Cylindrical Local z
n˝ DoFs 0 3 1 2

C I6
“
03ˆ3 I3

‰ „
I2 02ˆ4

03ˆ3 I3

ȷ „
02 02ˆ1 I2ˆ2 02ˆ1

I2 02ˆ1 02 02ˆ1

ȷ

Table 2.2: Values of C for different platform constraints. The number of DoFs is
indicated with n˝ DoFs , Ik is the identify matrix of dimension k, and 0kˆh denotes a
matrix of dimension k ˆ h full of zeros. Revolute and Cylindrical pairs are assumed
to be aligned with the z local axis.

argument, assumed to be a skew-symmetric matrix. Matrix Ci P R
nφiˆ6 is named

joint matrix, and Table 2.2 summarizes how Ci is structured for different kinds of
passive platform joints. Finally, the vector Φ P R

nφ , nφ “ řnψ
i“1 nφi is introduced

to stack all the geometric constraints Φi in a single vector, and nφ is the number of
constraints to be considered.

2.2.3 Discretized CPR equations and equilibrium conditions

CPRs equilibrium configurations are associated with critical points of the robot
potential energy Vtot of Eq. (2.17) [56]. In particular, by inspecting Vtot and its
terms, it is possible to note that Vtot depends on, the actuated variables qa, the
platform variables qp, a set of continuous functions ξi and pi,Ri, related together by
the differential equations (2.3). Finding the values of qa,qp and the exact functions
ξi that lead to equilibrium conditions of the CPR is not trivial. A practical way
to solve this problem is to employ discretization strategies. To obtain a discretized
form of Vtot, the following variables are introduced:

• Discretization variables. These variables are used to represent Vtot and Φ
with a finite set of coordinates (instead of using the continuous functions ξi
and pi,Ri). To keep the modelling description general, the details on how
the discretization coordinates are chosen are addressed in Sec. 2.3. The dis-
cretization coordinates of each beam are collected into qei P R

mi , with mi

the number of discretization coordinates of the i -th beam, and the vector
qe P R

m, m “ řnb
i“1

mi stacks all the discretization variables.

• Passive variables. The vector qd “ rqu,qes P R
m`nc´n groups the variables

that are not actuated and not controlled.

• Non-actuated variables. The vector x is introduced to collect all the vari-
ables that are non-actuated. Thus, x “ rqd,qcs P R

m`nc .

After introducing the discretization variables, Vtot, that was a functional, be-
comes a discrete function of the previously defined variables, that is Vtot “ Vtotpqa,xq.
A robot configuration is an equilibrium configuration if, for fixed values of qa, x is
a critical point of Vtot [145]. However, critical points of Vtot are subjected to the
verification of geometric constraints Φ, and x can be identified by the solution of a
constrained minimization problem. A pratical way to identify critical points of Vtot

is to consider Lagrange conditions [145], which defines sufficient conditions for x to
be a critical point of Vtot subjected to Φ. Let us first define the Lagrangian function
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L as:
L “ Vtot ` ΦTλ (2.19)

with λ P R
nΦ a vector of Lagrange multipliers. Assuming that ∇xΦ is full rank, x

is a critical point if there exist λ P R
nφ such as [145]:

#
∇xL “ ∇xVtot ` ∇xΦ

Tλ “ 0

∇λL “ Φ “ 0
(2.20)

Equations (2.20) represent the implicit geometrico-static model of a CPR, and it is a
set ofm`nc`nφ equations inm`nc`nφ`n unknowns. Thus, by fixing n variables, a
square problem is obtained to be solved numerically . The configuration variables
of the robot are defined by the vector y “ rqa,x,λs P R

n`m`nc`nφ . Typically, two
geometrico-static problems are of interest. On the one hand, the forward geometrico-
static problem (FGSP) consists in the evaluation of qd,qc,λ for given external loads
and assigned qa, that is

Fpyq “

$
’&
’%

∇xVtot ` ∇xΦ
Tλ “ 0

Φ “ 0

qa ´ qd
a “ 0

(2.21)

where qd
a P R

n is the assigned motor values. On the other hand the inverse
geometrico-static problem (IGSP) consists in the evaluation of qd,qa,λ for given
external loads and assigned qc, that is:

Fpyq “

$
’&
’%

∇xVtot ` ∇xΦ
Tλ “ 0

Φ “ 0

qc ´ qd
c “ 0

(2.22)

and qd
c P R

n is the assigned controlled variables value. In the general case, geometrico-
static problems can be formulated in a unified way:

Fpyq “

$
’&
’%

∇xVtot ` ∇xΦ
Tλ “ 0

Φ “ 0

e “ 0

(2.23)

with e P R
n the equations that fix n variables of y (or a combination of its variables)

to a defined value. Equations (2.23) form a square system of equations of n ` m `
nc `nφ equations in y and, since Eq. (2.23) is nonlinear, and root-finding techniques
are employed to identify numerical solutions. In particular, the Jacobian matrix J
of the forward/inverse geometrico-static problems can be supplied to the solver to
accelerate the computation. This matrix is structured as follows [56]:

J “ BF
By “

»
–
A1 U1 P1 ΛT

A2 U2 P2 0nφˆnφ

E 0nˆpm`nc´nq In ´ E 0nˆnφ

fi
fl (2.24)

where J is square of dimension m ` nc ` nφ ` n, matrix In is the identity matrix
of dimension n. The matrix E is equal to In if the forward problem is considered
(Eq. (2.21)) or equal to 0pnˆnq if the inverse problem of Eq. (2.22) is solved. The
other matrices are defined as:
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1. A1 “ ∇qa p∇xLq P R
pm`ncqˆn, U1 “ ∇qd

p∇xLq P R
pm`ncqˆpm`nc´nq

2. P1 “ ∇qc p∇xLq P R
pm`ncqˆn, Λ “ ∇x p∇λLq P R

pm`ncqˆnφ

3. A2 “ ∇qaΦ P R
nφˆn, U2 “ ∇qdΦ P R

nφˆpm`nc´nq, P2 “ ∇qcΦ P R
nφˆn

It should be also noted that rU2,P2s “ Λ, since derivatives w.r.t. λ,x are commu-
tative.

2.2.4 Equilibrium Configuration Analysis

If a solution y‹ of Eq. (2.22) is found, the practical feasibility of this configuration
must be checked: equilibrium stability and singularity conditions should be consid-
ered. Moreover, strains over the beams and actuation torques are important for the
pratical feasibility of the robot configurations.

A linear approaximation of conventional strain quantities ϵ P R
3 used in beam

mechanics is recovered as:

ϵpsq “ rγxz, γyz, ϵzs “ ´rpsq ˆ upsq (2.25)

where r “ rxs, ys, 0s P R
3 is the position of a point that lies over the cross-section in

s, and it has coordinate xs, ys, 0 w.r.t. the local frame Fs. γxz, γyz represent shear
strains approximation, and ϵz is the normal strain. The i -th actuation torque τi P R

is computed computed as [56]:

τi “ ∇qaiVtotpqa,xq ` ∇qaiΦ
T pqa,xqλ (2.26)

To analyze equilibrium stability and singularity conditions, a linearization of
Eq. (2.20) around the solution y‹, fp results in [56]:

„
A1

A2

ȷ
∆qa `

„
U1

U2

ȷ
∆qd `

„
P1

P2

ȷ
∆qc `

„
ΛT

0

ȷ
∆λ `

„
W1

0

ȷ
∆fp “ 0 (2.27)

where W1 “ ∇fP p∇xLq P R
pm`ncqˆ3. It should be noted that matrices defined in

Eq. (2.27), are the same matrices necessary for the Jacobian matrix of Eq. (2.24),
and thus these matrices are directly available as an output of the solver after the
evaluation of the solution y‹.

For the singularity analysis, there is little interest in the variation ∆λ, since
degeneracies ofΛ are unlikely to occur, in practice [56]. Being Z P R

pm`ncqˆpm`nc´nφq
the matrix spanning the right nullspace of Λ, that is:

ΛZ “ 0 (2.28)

∆λ is eliminated by multiplying the first row of Eq. (2.27) by ZT leading to:

A∆qa ` U∆qd ` P∆qc ` W∆fp “ 0 (2.29)

where:

A “
„
ZTA1

A2

ȷ
,U “

„
ZTU1

U2

ȷ
,P “

„
ZTP1

P2

ȷ
,W “

„
ZTW1

0

ȷ
(2.30)

To derive singularity conditions, the inverse and forward kinematostatic problems
are established [56]. The inverse kinematostatic problem means to evaluate how
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a variation of the controlled variables ∆qc and the external platform force ∆fp is
reflected on the actuated variables ∆qa and on the passive variables ∆qd, that is:

„
∆qa

∆qd

ȷ
“ ´rA Us´1pP∆qc ` W∆fpq (2.31)

Equation (2.31) is solvable as long as T1 “ rA Us P R
pm`ncqˆpm`ncq is full-rank, and

rank deficiencies of T1 are named Type-1 singularities [56]. These singularities are
related to limits of IGSP and impossible motions of qc. On the other hand, the
forward kinematostatic problem consists in evaluating ∆qp,∆qd for given ∆qa,∆fp,
that is: „

∆qc

∆qd

ȷ
“ ´rP Us´1pA∆qa ` W∆fpq (2.32)

Equation (2.32) is solvable as long as T2 “ rP Us P R
pm`ncqˆpm`ncq is full-rank, and

degeneracies of T2 are named Type-2 singularities [56]. Robot configurations where
T2 is degenerated are related to the limits of the FGSP solution and uncontrollable
∆qc motions.

Then, equilibrium stability is evaluated by determining the reduced Hessian ma-
trix Hr of the total potential energy as [56]:

Hr “ ZT B2L

Bx2
Z “ ZTHZ P R

pm`nc´nφqˆpm`nc´nφq (2.33)

where H “ rP1,U1s. The configuration is stable if Hr is positive definite [145].
Please note that, as long as Z is full rank, T2 is singular if and only if Hr is rank
deficient (see [56] for the proof). Thus, Type-2 singularities are associated with the
variation of the stability pattern.

2.3 Selected Discretization Techniques

This Section illustrates the two discretization techniques employed in this thesis: the
assumed strain mode discretization [22] and the finite-differences discretization [127].
The core assumptions of these approaches is here briefly described as well as the
final equations for the geometrico-static problems formulations. Instead, dedicated
appendices illustrate the derivation of these equations in detail.

2.3.1 Assumed Strain Modes Approach

The assumed strain mode approach promises good level of accuracy (comparable
to shooting-like approaches [128]), while keeping reduced the computational time
(e.g. in comparison with finite-differences methodologies [80]). Thus, a good trade-
off between computational performances and accuracy is expected. However, the
derivation of the model terms requires the integration of ODEs, further increasing
its complexity. In this Section, the final results of the geometrico-static model equa-
tions are reported, and Appendix A is dedicated to the derivation of these equations.

In the case of shear and extensibility being negligible, the i -th beams curvature
uipsq P R

3 is approximated as:

uipsq “ Npsqqei (2.34)
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where qei P R
mi is the set of discretization coordinates of the i -th beam. The

matrix N, which collects basis functions, is structured as:

Npsq “

»
–
bT psq 01ˆNf 01ˆNf

01ˆNf bT psq 01ˆNf

01ˆNf 01ˆNf bT psq

fi
fl P R

3ˆmi (2.35)

where b P R
Nfˆ1 is a base function vector, Nf is the number of base functions

employed in b, and mi “ 3Nf . Common base function selections involve standard
monomials [22]:

bpsq “
“
1, s, s2, s3, ¨ ¨ ¨ , sNf´1

‰
(2.36)

However, when using standard monomials, the matrix J of Eq. (2.24) is frequently
ill-conditioned [128], and orthogonal Legendre monomials are selected to alleviate
this issue [146]:

bpsq “
“
1, s, 1

2
p3s2 ´ 1q, 1

2
p5s3 ´ 3sq, ¨ ¨ ¨ , p2 ` 1{Nf qsbNf´1 ´ bNf´2

‰
(2.37)

where bj is the j -th component of b. According to this choice of parametrization
of the beam strain, the vector ξ can be computed as:

ξipsq “
„
Npsqqei

e3

ȷ
(2.38)

and the position and orientation of each beams cross-section is obtained by inte-
grating Eq. (2.3). However, preserving the structure SEp3q of matrix G during
the integration of Eq. (2.3) requires the use of structure-preserving integrators,
which are computationally expensive [147]. Instead, by parametrizing the cross-
section orientation with unit quaternions hi P R

4, hi “ hi1 ` hi2e1 ` hi3e2 ` hi4e3,
e1 “ r1, 0, 0s, e2 “ r0, 1, 0s, e3 “ r0, 0, 1s, simplifies Eq. (2.3) as follows:

#
h1
ipsqpsq “ 1

2
Qipsqhipsq

p1
ipsq “ Ripsqe3

(2.39)

with pip0q,hip0q initial values at the beams’ base usually computed from qai. The
matrix Qi is structured as follows:

Qi “

»
——–

0 ´ui1 ´ui2 ´ui3

`ui1 0 `ui3 ´ui2

`ui2 ´ui3 0 `ui1

`ui3 `ui2 ´ui1 0

fi
ffiffifl (2.40)

After integrating Eq. (2.39) from s “ 0 to s “ Li for a given qei, the position pipLiq
and the orientation matrix RipLiq of the beam at the section s “ Li are known,
and the vector Φi can be evaluated as in Eq. (2.18). Then, to obtain the term
∇xL “ r∇qeL,∇qpLs of Eq. (2.23), the term ∇qeL is first considered. In particular,
the following equation is the final expressions of the i -th beam equilibrium equation,
and its derivation is reported in Appendix A:

∇qeiL “ Keiqei ` Qci “ 0 (2.41)
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where Kei P R
miˆmi is a constant matrix obtained by integration as follows:

Kei “
ż Li

0

NT psqKBTNpsqds (2.42)

and Qci P R
mi containts the influence of external loads and tip-constraints of the

beam. Qci is obtained by integrating from s “ Li to s “ 0 the following differential
equations: #

Γ1
ipsq “ adT

ξi
psqΓipsq ´ wdpsq

Q1
cipsq “ pBNpsqqT Γpsq

(2.43)

with initial values ΓipLq “ Ciλi and QcipLq “ 0, B “ rI3;03s P R
6ˆ3. It should be

stressed that wd,λi are expressed in the local beam frame.
Then, concerning ∇qpL, the following equation is derived in Appendix A, and

here reported only the final expression:

∇qpL “
˜

´wp `
nbÿ

i“1

Adt´iCiλi

¸
M (2.44)

where wp “ r03ˆ1; fps is the platform wrench in global frame coordinates, Adt´i P
R

6ˆ6 is structured as follows:

Adt´i “
„
RipLq xpfiRipLq
03ˆ3 RipLq

ȷ
(2.45)

where pfi P R
3 is a vector pointing from the i -th joint position to the platform

centre, and constant w.r.t. Fp. The matrix M P R
6ˆ6 relates an infinitesimal

variation of qp P R
nc with the platform twist ∆η P R

6, that is:

∆η “ Mqp (2.46)

Its expression depends on the selected orientation parametrization, and it is not
reported here for brevity. Additional details on the derivation of the assumed mode
equations are proposed in Appendix A.

2.3.2 Finite-Differences Discretization

Finite differences are a straightforward numerical approach for the analytical ap-
proximation of first-order derivatives [125]. When CPRs equations are derived by
introducing a finite-difference approximation, the resulting model equations are writ-
ten in an analytical way, providing the possibility to compute second and third
derivatives of the energy analytically. However, to get accuracy, a large number of
discretization variables is required, and the computational time drastically increases.

As in the assumed strain mode approach, it is convenient to parametrize the
beam’s orientation by using unit quaternions hi “ hi1 ` hi2e1 ` hi3e2 ` hi4e3. In
this case, the curvature of the i -th beam can be computed as:

uik “ 2hT
i Bkh

1
i, k “ 1, 2, 3 (2.47)

where the matrix Bk P R
4ˆ4 is:

B1 “

»
——–

0 ´1 0 0
1 0 0 0
0 0 0 1
0 0 ´1 0

fi
ffiffifl ,B2 “

»
——–

0 0 ´1 0
0 0 0 ´1
1 0 0 0
0 1 0 0

fi
ffiffifl ,B3 “

»
——–

0 0 0 ´1
0 0 1 0
0 ´1 0 0
1 0 0 0

fi
ffiffifl (2.48)
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Then, by inserting Eq. (2.47) into Eq. (2.12), the deformation energy of the i -th
beam Vei simplifies as:

Vei “ 1

2

ż Li

0

˜
3ÿ

i“1

Kk

`
2hT

i Bkh
1
i ´ u˚

ik

˘2
¸
ds (2.49)

with Kk the k -th diagonal term of KBT . In this Section, distributed loads are
omitted for brevity, and the detailed expressions including also these efforts are
reported in Appendix B. Then, the finite differences assumptions is introduced.
First, let us discretize the rod into Nelt elements of equal length Lei “ Li{Nelt.
In this case, the expression of Vei becomes the sum of each element’s deformation
energy, that is:

Vei “
Neltÿ

j“1

Veij, Veij “ 1

2

ż Lei

0

˜
3ÿ

k“1

Kk

`
2hT

ijBkh
1
ij ´ u˚

k

˘2
¸
ds (2.50)

the term hij is the orientation of the j -th element, and the Nelt quaternions that
discretize the i -th beams energy are collected into qei P R

mi , with mi “ 4Nelt .
After this, h1

ij is approximated by using first-order finit differences:

h1
ij “ hij ´ hij´1

Le

(2.51)

By inserting Eq. (2.51) into Eq. (2.50) a simplified expression of Veij is obtained:

Veij “ 1

2

˜
3ÿ

k“1

Kk

Le

ˆ
2hT

ijBk

hij ´ hij´1

Le

´ Leu
˚
k

˙2
¸

(2.52)

The orientation matrix Rij of the j -th element can be recovered by the knowledge
of hij, while the position can be obtained by the use of the following formula:

pipsq “ pij ` sRije3 (2.53)

where p0,h0 are the base position and orientation of the beam, computed by qai.
By using Eq. (2.53), the position of the beam at s “ L can be computed, and
the constraints Φi are evaluated according to Eq. (2.18). Then, to derive ∇xL “
r∇qeL,∇qpLs of Eq. (2.23), the term ∇qeL is first considered, and the i -th compo-
nent, ∇qeiL is structured as follows:

∇qeiL “ ∇qeiVei ` ∇qeipλT
i Φiq (2.54)

where:

∇qeiVei “

»
———–

ai1 ` bi2

...
aipNelt´2q ` bipNelt´1q

aipNelt´1q

fi
ffiffiffifl (2.55)

and the terms aij,bik, Aijk can be computed as:

aij “ `2
3ÿ

k“1

Kk

Lei

BkhijAijk, aij P R
4 (2.56)

bij “ ´2
3ÿ

k“1

Kk

Lei

Bkhipj`1qAijk, bij P R
4 (2.57)

Aijk “ ´2hT
ipj`1qB

T
khij ´ u˚

ijk, Aijk P R (2.58)
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Instead, to derive the expression of ∇qeipλT
i Φiq, the case of a fixed constraint is

considered since the other cases can be derived from these results. Consequently,
Ci “ I6, λi P R

6. Let us compute the j -th component of ∇qeipλT
i Φiq, namely,

∇hijpλT
i Φiq:

∇hijpλT
i Φiq “ cTij ` dT

ij (2.59)

where cij P R
4:

cij “ Leirλ4i, λ5i, λ6isD3ij (2.60)

The term dij P R
4 is non-null only if j “ Nelt, and it is structured as follows:

dij “ λ1i

`
dT
p1D2ij ´ dT

p2D1ij

˘
` λ2i

`
dT
p1D3ij ´ dT

p3D1ij

˘
`

` λ3i

`
dT
p2D3ij ´ dT

p3D2ij

˘
, j “ Nelt (2.61)

where dpi P R
3 are the columns of Rp “ rdp1,dp2,dp3s and Dkij P R

3ˆ4 are defined
as follows:

D1ij “ 2

»
–

`h1ij `h2ij ´h3ij ´h4ij

`h4ij `h3ij `h2ij `h1ij

´h3ij `h4ij ´h1ij `h2ij

fi
fl (2.62)

D2ij “ 2

»
–

´h4ij `h3ij `h2ij ´h1ij

`h1ij ´h2ij `h3ij ´h4ij

`h2ij `h1ij `h4ij `h3ij

fi
fl (2.63)

D3ij “ 2

»
–

`h3ij `h4ij `h1ij `h2ij

´h2ij ´h1ij `h4ij `h3ij

`h1ij ´h2ij ´h3ij `h4ij

fi
fl (2.64)

Then, the term ∇qpL can be computed as:

∇qpL “ ∇qpVtot ` ∇qppλT
i Φiq (2.65)

where ∇qpV “ ´r03ˆ1; I3s and, being qp “ rpp,αs P R
nc with pp P R

3 the platform

position and α P R
nc´3 the platform orientation parameters, the term ∇qppλT

i Φiq
is structured as follows:

∇qppλT
i Φiq “ ´rλ4, λ5, λ6s

„
I3
mp1

ȷ
`

„
03ˆ1

mp2

ȷ
(2.66)

the vector mp1 P R
nc´3 is:

mp1 “ B
Bα pRppfiq (2.67)

and its expression depends on the specific platform orientation parametrization. The
expression of mp2 P R

nc´3 depends on the platform orientation parametrization as
well, and it is structured as:

mp2 “ λ1

˜
BdT

p1

Bα d2ij ´
BdT

p2

Bα d1ij

¸
` λ2

˜
BdT

p1

Bα d3ij ´
BdT

p3

Bα d1ij

¸
`

` λ3

˜
BdT

p1

Bα d3ij ´
BdT

p3

Bα d2ij

¸
, j “ Nelt (2.68)
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with BdT
pk{Bα to be computed in relation to the selected platform orientation parametriza-

tion.
This derivation concludes the part related to the state-of-the-art analysis. In

the following, the contributions of this thesis are highlighted, starting with the
workspace computation problem.
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Scientific Contributions to the
Workspace Evaluation of

Continuum Parallel Robots
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Chapter 3

Full Workspace Computation and
Numerical Results Certification

Contributions of this chapter: this chapter proposes a methodology for the workspace

evaluation of planar CPRs (PCPRs), with a focus on the constant-orientation workspace.

An explorative algorithm, based on the iterative solution of the inverse geometrico-static

problem, is proposed for the workspace computation of a generic PCPR. Thanks to an

energy-based modelling strategy, and derivative approximation by finite differences, it is

possible to apply the Kantorovich theorem to certify the existence, uniqueness in a neigh-

borhood of the initial guess and convergence of the solution of the inverse geometrico-static

problem at each step of the procedure. Three case studies are shown to demonstrate the ef-

fectiveness of the proposed approach. The contributions of this chapter have been published

in [148].

Workspace evaluation of CPRs , i.e. the identification of all poses where the robot
may lie in a stable equilibrium, is a crucial performance assessment tool. Though
several geometrical, discretization and numerical methods are available in the litera-
ture for rigid-link manipulators [43], workspace computation algorithms for CRs are
at a preliminary stage. As highlighted in Sec. 1.3, actuation sampling approaches are
applicable for general CPRs , but the computational time may be high. Task-space
approaches perform better in relation to the required computational effort but fre-
quently lack in generality. Even if most of the workspace exploration strategies are
not dependent on the CPR modelling strategy, the latter determines the capability
to evaluate several features, such as singularities and equilibrium stability.

A fundamental part of each workspace evaluation algorithm is the computation
of the robot pose. In CPRs , this task is not trivial, as it requires the solution
of geometrico-static problems of Eq. (2.21) or (2.22) usually solved by numerical
schemes (e.g. Newton-based methods). However, it may happen that no or multiple
solutions exist for the same problem, and it is important to avoid jumps between a
solution to another during the workspace evaluation. Thus, for the workspace evalu-
ation problem, it is important to certify the existence, uniqueness, and convergence
of the solution in a neighbourhood of a given initial guess. Interval analysis (IA)
[79],[149],[150] applies a branch-and-prune approach to solve a set of equations and
to certify that all solutions are found in a bounded region. However, this approach
is computationally expensive and time-consuming in comparison to non-certified
approaches. Moreover, IA can efficiently handle a reduced number of independent
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variables, which is usually not compatible with discretized continuum-robot equa-
tions when good accuracy is required. To obtain results in a reduced computational
time and to be able to handle a large set of robot variables, the Kantorovich the-
orem [151] can be applied: this theorem establishes conditions on the initial guess
of the Newton iteration to certify the existence, uniqueness, and convergence of the
solution on a defined region (see [152] as a relevant example of the application of
the Kantorovich theorem).

In this chapter, a general approach for the computation of the constant-orientation
workspace of planar continuum parallel robots (PCPRs), a class of CPRs which
recently obtained higher scientific interest [14],[37], is proposed. An ad hoc adap-
tive workspace-exploration algorithm, based on the iterative solution of the inverse
geometrico-static problem (IGSP), is employed to identify stable workspace regions,
to discover unstable regions, and to detect singularities that determine the workspace
boundaries [56]. By employing an energy-based modelling strategy combined with
finite differences, it is possible to employ the Kantorovich theorem to certify the
existence, uniqueness and convergence of the solution of the IGSP , at each step of
the workspace computation algorithm. A preconditioning matrix for the Newton
iteration is proposed to enlarge the regions where the IGSP solution is certified and
to reduce the overall computational time.

The chapter is structured as follows. Section 3.1 recalls the PCPR modelling
strategy and discusses the application of the Kantorovich theorem. Section 3.2
describes the novel workspace exploration algorithm in detail. Section 3.3 proposes
three case studies to show the effectiveness of our approach. Section 3.5 draws
conclusions and outlines future work directions.

3.1 Numerical certification of the IGSP solution

This section focuses on the IGSP solution and its numerical certification for planar
CPRs only. In particular, a finite-differences approach for the discretization of the
planar flexible beams (see Sec. 2.3.2 and Appendix B.2 for its implementation). This
choice is mainly due to the analytical formulation of the geometrico-static problems
that finite differences bring, which allows for a more straightforward computation
of the terms needed for the numerical certification of the results.

This chapter focuses on PCPRs only: the rigid platform position is described
by pp P R

2, and its orientation is described by the angle ϕ P R. As previously
mentioned, the focus is directed on the task-space exploration, and the goal is to
solve the IGSP of Eq. (2.22), reported here for clarity:

Fpyq “

$
’’’&
’’’%

∇xVtot ` ∇xΦ
Tλ “ 0

Φ “ 0

pP ´ pd
P “ 0

ϕ ´ ϕd “ 0

(3.1)

The detailed expression of IGSP equations for a PCPR is reported in Appendix
B.2. Since no analytical solution is available, the IGSP is solved numerically. In
particular, if a Newton method is employed for the solution of the IGSP , the Kan-
torovich theorem establishes sufficient conditions for the existence and uniqueness
of the solution [153] near a given initial guess y0. Let χ, δ, γ P R

`, y0 be the initial
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guess given to the numerical solver, and Bpy0, 2δq “ ty : }y ´ y0} ď 2δu a ball of
radius 2δ centred in y0. For convenience, let the infinite norm be used. Let Jpyq be
the Jacobian matrix of Fpyq w.r.t. y, that is:

Jpyq “ BFpyq
By (3.2)

Thanks to the analytical formulation of Eq. (3.1) when using finite-differences, all
the terms of J can be computed analytically as well. These terms are detailed in
Appendix B.2. Then, three constants χ, δ, γ are chosen such as:

χ ě }J´1py0q}8 (3.3)

δ ě }J´1py0qFpy0q}8 (3.4)

γ ě max
yPB

˜
max

hPr1,¨¨¨ ,n`m`nc`nφs

˜ÿ

i,j

ˇ̌
ˇ̌B2Fhpyq

ByiByj

ˇ̌
ˇ̌
¸¸

(3.5)

The Kantorovich theorem states: if χ, δ, γ exist such that 2χδγ ď 1, a solution
y˚ P Bpy0, t

˚q exists, where:

t˚ “ 1 ´
?
1 ´ 2χδγ

γχ
P rδ, 2δs (3.6)

Moreover, the solution is unique inside Bpy0, 2δq, and the Newton iteration, starting
from y0, converges to y˚. Kantorovich constants have a numerical meaning: χ is
related to the absolute conditioning of the problem, δ represents the closeness to the
linearized solution, and γ is influenced by the non-linearity of the problem.

However, if a finite difference discretization approach is used for modelling PCPRs ,
the Jacobian matrix J is usually large and ill-conditioned, resulting in high values of
χ. Therefore, the certification of the existence, uniqueness, and convergence of the
IGSP solution holds only for y0 sufficiently close to y˚. To overcome this difficulty,
a preconditioner can be used to reduce the value of χ. First, let us consider the first
Equation in the set of Eq. 3.1, where x “ rqe,pp, ϕs. In the case a finite difference
approximation is used, the vector qe and ϕ physically represent orientation angles,
while pp is a position. The physical units of the terms of Eq. (3.1), then, are J{rad
and J{m (or any equivalent energy, orientation and position units).

Concerning the second equation in the set of Eq. 3.1, it is convenient to split
Φ “ rΦp,Φθs, where Φp,Φθ represent position and orientation constraints, respec-
tively. While Φp has the units as the geometrical position constraints, namely m

or any equivalent position units, Φθ has rad or any other orientation unit. Thus,
to alleviate the ill-conditioning of the problem and to reduce χ, an equivalent and
modified inverse geometrico-static problem (MIGSP) is solved, where each IGSP

equation is multiplied by a physical constant related to the PCPR geometry, struc-
tural properties, and each equation unit:

FMpyq “

$
’’’’’’’’’’’&
’’’’’’’’’’’%

0 “ 1

EI
p∇qeVtot ` ∇qeΦ

Tλq
0 “ L

EI
p∇pPVtot ` ∇pPΦ

Tλq
0 “ 1

EI
p∇φVtot ` ∇φΦ

Tλq
0 “ 1

L
Φp

0 “ Φθ

0 “ 1

L
ppP ´ pd

P q
0 “ ϕ ´ ϕd

(3.7)
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or equivalently:

FMpyq “ MFpyq (3.8)

where M is a diagonal matrix collecting the coefficients that multiply each equation
of Eq. (3.7). The Jacobian matrix of the MIGSP w.r.t. y is:

JMpyq “ BFMpyq
By “ M

BFpyq
By “ MJpyq (3.9)

The Kantorovich constants of theMIGSP can be obtained from Eqs. (3.3), (3.4),
(3.5) by employing FM ,JM instead of F,J. While the computation of χ, δ is straight-
forward, the computation of γ requires analytically computing all the second deriva-
tive of MIGSP equations, which is long and involved, and the detailed equations are
reported in Appendix D. According to Eq. (3.5), it is necessary to identify where
the sum of the absolute values of the second-order derivatives of Fm assumes the
maximum value inside the ball for each equation. However, this sum is not constant
w.r.t. y, and the maximum may be identified by solving a constrained optimiza-
tion problem at the cost of high computational time. Alternatively, it is possible
to approximate γ with absolute value inequalities [145]: in this way, the worst-case
scenario is considered and an expression of γ it is obtained that depends on y0, δ,
separately. The details of this computation are reported in Appendix D.

It is now important to stress why discretized robot equations are necessary for
the computation of γ in Eq. (3.5), and why continuous approaches for the CPR

geometrico-static problem solution do not fit well for this scope. According to the
continuous formulation, the second derivatives of the robot equilibrium equations
are analytically computed since they can be computed by employing a derivative
propagation approach (as described in [75]). However, their numerical values are
obtained by integrating the underlying differential equations, and it is not trivial to
establish where the quantity

ÿ

i,j

ˇ̌
ˇ̌B2Fhpyq

ByiByj

ˇ̌
ˇ̌ (3.10)

assume the maximum value in Bpy0, 2δq, as required by Eq. (3.5) without the nu-
merical solution of an optimization problem. Therefore, discretized robot equations
are preferred because second derivatives of robot equations can be computed ex-
plicitly and the identification of the maximum inside Bpy0, 2δq can be addressed by
employing absolute value inequalities and trigonometric functions.

3.2 Full Workspace Evaluation

This Section describes in detail the innovative workspace-computation strategy,
namely, the Adaptive Flooding Algorithm (Alg. 1 lines 1-19). In particular, the
proposed algorithm is a modification of the Flooding Algorithm of [128] by intro-
ducing a grid-adaptation procedure: during each iteration, the grid size is adjusted
when the certification is not feasible with the initial grid size. This is done in order
to certify as much workspace as possible since the Kantorovich constant δ depends
on the distance of the initial guess from the solution. The attention is restricted to
the constant-orientation workspace of PCPRs , i.e. the set of all possible locations
of the robot EE that can be reached with a given orientation, though our approach
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(a) (b) (c)

Figure 3.1: Workspace algorithm: (a) representation of the grid, points along the
grid and condition for the neighbourhood, (b) grid refinement strategy; (c) situation
when neighbour radius should be enlarged.

can be easily extended to other types of workspace. A discretization approach is
employed, and the MIGSP is solved iteratively over a grid of EE locations.

The first step of the algorithm requires the initialization of some entities: a 2-
dimensional uniform grid is generated accordingly to an initial stepsize (si). The
grid discretizes a user-defined box (assumed to fully include the workspace), and
in the middle of each square of the grid, a point representing the EE position is
placed (Fig. 3.1a). An initial point (named pP ) where the explorative algorithm
starts is selected within the grid. For the first solution of the MIGSP, an initial
guess obtained through a constant-curvature modelling approach is employed. As
shown in [37], the inverse problem under the constant-curvature approach admits
a finite number of solutions (but usually low solution accuracy), and the solution
to be used as an initial guess is decided in order to let the algorithm converge to
the desired working mode [154]. The resulting output configuration is stacked in
the Config list to be employed as a future guess. Then, neighbouring EE positions
(Fig. 3.1a) are computed and saved in the toDo list, which contains points to be
processed. The toDoEnd list, which contains points that are neighbours to Type 2
singular configurations, is initialized as empty. Then, the iterative algorithm starts,
and a new pP is obtained from the first element of the toDo list and employed as the
EE location to be reached. The initial guess y0 for the MIGSP, the Kantorovich flag
associated to y0 and neighbors of pP are obtained through the FindGuess procedure.
The latter, which plays an important role in the certification of the MIGSP solution,
is detailed in subsection 3.2.1.

If the current step sc (i.e. the edge size of the square centred in pP ) is greater to
the minimum stepsize allowed for the computation (sm), the value of the Kantorovich
constants is checked to certify the solution: if 2χδγ ď 1, the MIGSP is solved
and new points to be processed are created in the Compute procedure (detailed
in subsection 3.2.2). If the manipulator is not cuspidal [155], and the solution is
certified, the working mode of the initial guess is also preserved on the configuration
resulting from the MIGSP solution. In the case of the solution is not certifiable,
the grid is refined: the square centred in pP is divided into four new equal squares
(Fig. 3.1b), and four new points pnew are placed in the middle of each new square.
Then, the original EE location pP is replaced with pnew and added to the toDo list.
In the case, the minimum stepsize is reached (sc ď smq, the Compute procedure is
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Algorithm 1: Adaptive flooding algorithm.

1 Initialize grid, toDo, toDoEnd, Config, Results;
2 while toDo‰ H or toDoEnd‰ H do

3 if toDo“ H then

4 toDo Ð toDoEnd; toDoEnd Ð H ;
5 end

6 pP = toDo(1), toDo Ð toDozpP ;
7 [flagk,y0,n] = FindGuess(pP , sc);
8 if sc ą sm then

9 if flagk ď 1 then

10 Compute(y0,n);
11 else

12 pnew = Generate points(pP ,sc);
13 Replace pP with pnew;
14 toDo Ð toDo Y pnew

15 end

16 else

17 Compute(y0,n);
18 end

19 end

executed even if the MIGSP solution is not certified in order to fully compute the
workspace. Finally, the algorithm restarts until some elements are present in the
lists toDo and toDoEnd. If toDo is empty, then it is refilled with toDoEnd (how
toDo and toDoEnd are managed is explained in subsection 3.2.2).

3.2.1 Choice of the Initial Guess

The choice of the initial guess at each iteration plays an important role in the
MIGSP solution certification. The routine of the initial guess selection is described
in lines 1-13 of Alg. 2. Given a desired EE location pP , it is necessary to identify
an initial-guess configuration y0 to be used for the MIGSP solution. Initially, the
distance rN for which two EE locations are considered to be neighbours is set as?
2sc (Fig. 3.1a). This way, neighbours of pP are identified in the grid and stacked

in the array n. Neighbours in the workspace are extracted from n and collected in
the array nWK . However, caused by the grid refinement process, it can happen that
no neighbours are in the workspace (Fig. 3.1c): in this case, the radius rN for which
points are considered to be neighbours is multiplied by two, and the selection of n
is repeated until workspace points are found.

In order to increase the possibility of certifying the MIGSP solution, the Kan-
torovich constants for the configurations associated with nWK EE locations are
computed. Then, the EE location that ensures the lowest value of 2χδγ (named
nbest) is identified, and the robot configuration y0 associated to nbest is extracted
from Config. If the solution certification is not required, nbest can be chosen as the
one that ensures the best inverse conditioning of J to speed up the computation.
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Algorithm 2: Ausiliary functions for the adaptive flooding algorithm.

1 Function FindGuess(pP , sc):

2 Set neighbors radius rN “
?
2sc;

3 do

4 n “ Find neighbors EE positions to pP P grid;
5 nWK “ n PWK;
6 if (nWK “ H) then

7 rN Ð 2rN ;
8 end

9 while (nWK “ H);
10 Compute Kantorovich flag for each nWK ;
11 nbest “ nWK with best Kantorovich flag;
12 y0 “ Config(nbest);
13 return [flagk,y0,n];

14 Function Compute(y0,n):
15 y = Solve IGSP starting from y0;
16 [T1, T2] = Singularity(y);
17 if (Solver Converged & T1 ă TOL & mechconstr(yq) then

18 Values = CalculateOutputs(y);
19 Save Values in Results, Save y in Config;
20 n1 = select n R(WK,toDo,toDoEnd);
21 if T2 ă TOL then

22 toDo Ð toDo Y n1;
23 else

24 toDoEnd Ð toDoEnd Y n1;
25 end

26 end

27 return;

3.2.2 Computation Process

This subsection describes the routine for the computation of theMIGSP solution and
for the creation of new points to be processed (lines 14-27 of Alg. 2). Starting from a
given initial guess y0 and a set of neighbouring EE locations n, the MIGSP is solved
by a Newton scheme. Then, T1,T2 are computed according to Eq. (2.31), (2.32). In
particular, the inverse condition number of T1,T2 is used in order to identify their
degeneracy. Then, it is verified if the Newton solver converges and the resulting
configuration is not Type-1 singular. Moreover, mechanical constraints are verified
in mechconstr : these include strain limits on the legs, as well as joint limits. If the
check succeeded, outputs associated with the resulting configuration y (e.g. internal
energy of the robot, equilibrium stability, number of inflexion points) are computed
in Values. These results, as well as singularity flags and Kantorovich constants, are
saved in Results and y is stored in Config as a future initial guess. Subsequently,
neighbours not in the workspace and not in toDo,toDoEnd, are stored in n1. If
the actual configuration y is not T2-singular, n1 is added to the toDo list, else in
toDoEnd.

In this way, Type 1 singularities, associated with boundaries of the workspace,
are not crossed but only approached. Type 2 singularities, which delimit stable from
unstable regions, are crossed in a second stage of the algorithm (only when toDo is
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empty) in order to discover possible stable regions separated by unstable transitions.

3.3 Case Studies

(a) RFRFR (b) 3 ´ RFR (c) 3 ´ PFR

Figure 3.2: Three PCPRs object of our case studies: the RFRFR (a), the 3´RFR

(b), and the 3 ´ PFR (c). Relevant design dimensions are displayed.

In this Section, three case studies focusing on different PCPRs (Fig. 3.2), are
reported. Workspace evaluation is discussed with a focus on the identification of
different regions (e.g. stable, unstable, regions where stress limits are exceeded)
and certification of the IGSP solution. The algorithm is compared to the flooding
algorithm of [56], to demonstrate the benefit of the grid-adaptation routine in terms
of computational time. For all case studies, beams are made of harmonic steel with
Young modulus E “ 210 GPa, maximum stress σmax “ 1800 MPa, density ρ “ 7800
kg/m3, length L “ 1m, circular cross-section of radius r “ 1mm. Simulations are
performed in the Matlab environment.

3.3.1 RFRFR robot

This subsection investigates the workspace of a RFRFR robot. The aim of this
case study is twofold: on the one hand, it shows the capability of the algorithm to
detect singularities and unstable regions, as well as to include external loads and
strain limits in the model; on the other hand, it investigates the influence of the
stepsize and the preconditioner on the IGSP solution certification.

This manipulator, borrowed from [78],[80], has two actuated revolute joints in
A1, A2 (R) and two flexible links (F ) connected by a passive revolute joint centered
in B (Fig. 3.2a). The distance between the actuators is LA1A2

“ 0.4m. An external
force of 1.5N is applied on the EE , and legs are subjected to gravity. Simulations
are performed with N “ 50, ensuring sufficient MIGSP solution accuracy.

The workspace of the RFRFR, computed by the algorithm presented in Section
3.2, is shown in Figs. 3.3a, 3.3b, 3.3c. Configurations are marked as singular when
the inverse condition number of matrices reported in Eq. (2.31), (2.32) is lower than
a certain threshold TOL. Practically, TOL “ 10´6 correctly identify singularities
when a finite-differences approximation is used. Stress limits are considered by
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3.3. Case Studies

(a) RFRFR: working mode
1, sm “ 2mm

(b) RFRFR: working mode
1, sm “ 1mm

(c) RFRFR: working mode
2, sm “ 1mm

(d) 3-RFR: φ “ ´π
3
, sm “

1mm
(e) 3-RFR: φ “ ´π

6
, sm “

1mm
(f) 3-PFR:φ “ `π

6
, sm “

1mm

Figure 3.3: Workspaces of PCPRs . Type 1 and Type 2 singularities are drawn in
red and black, respectively. Certified workspace is depicted in blue, non-certified
workspace in light blue and non-certified unstable regions in yellow. Non-certified
stable regions where stress limits or joint limits are exceeded are represented in green
and grey, respectively.

evaluating whether a first-order approximation of stress σ [143] on each element
does not overcome σmax, that is:

σ “ Eϵz ď σmax (3.11)

where ϵz is given by Eq. (2.25). By considering stress limits, the workspace is
considerably reduced, in particular in the working mode showed in Fig. 3.3c (0.96
m2 without considering stress limits to 0.36 m2 with stress limit included).

Then, the influence of the minimum stepsize sm and the influence of the pre-
conditioner on the MIGSP certification of the workspace is tested, with a focus on
the stable and feasible workspace (i.e where stress limits or joint bounds are not
exceeded). To quantify how many configurations are computed in a certified way,
the certified percentage of the workspace C% is introduced as:

C% “ 100 ¨ AC{AW (3.12)

where AC is the certified area and AW is the workspace area. These areas are
obtained by summing the area of each square of the grid that lies in the workspace
(for AW ) and by summing the area of each square that is computed in a certified
way and belongs to the workspace for AC . Results are reported in Table 3.1. With
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RFRFR

sm
With preconditioning Without preconditioning

Certified
r%s

Total Time
rmins N˝ points

Certified
r%s

Total Time
rmins N˝ points

4 33.8 11 1.3 ¨105 0 13 1.3 ¨105
2 80.4 32 4.0 ¨105 5.5 80 5.4 ¨105
1 92.1 84 7.1 ¨105 35.1 383 18.9 ¨105

Table 3.1: Influence of the preconditioner and the stepsize on the certification of the
workspace. Simulations, relative to the workspace displayed in Fig. 3.3a, 3.3b, are
performed with si “ 4mm, and N “ 50.

si “ 4mm, by passing from sm “ 2mm (Fig. 3.3a) to sm “ 1mm (Fig. 3.3b), C%

grows from 80.4% to 92.1%. As expected, the computational time1 increases from 32
min to 84 min. To achieve C% “ 92.1%, the flooding algorithm of [56] required 192
min with 1 mm stepsize, which is considerably higher. If the preconditioner is not
used, C% drops to 35.1% (with sm “ 1mm) and at the same time, the computational
time reaches 383 min. The increase of the computational time is due to the higher
number of processed points (18.9 ¨ 105 compared to 7.1 ¨ 105 in the preconditioned
case) for the adaptation of the grid and not to a considerable increase in the MIGSP

solution time. This is confirmed by the data relative to the case of sm “ si “ 4mm
(where no grid refinement is possible), with the same grid being employed with and
without the preconditioner, and the resulting computational times are comparable.
Also in the case of a different working mode (Fig. 3.3c), a significant amount of the
workspace (70.2%) is certified in a reduced time (44 min) with sm “ 1mm.

3.3.2 3-RFR robot

This subsection investigates the workspace of the 3 ´ RFR robot. This case study
shows the possibility of identifying the workspace and certifying the IGSP solution
with different EE orientations. This manipulator borrowed from [37] has three
actuated revolute joints A1, A2, A3 (R) and three flexible links (F ) connected by
passive revolute joints B1, B2, B3 at a rigid EE . Actuators are equally placed along
a circumference of radius rb “ 0.6m, whereas passive revolute joints are placed on
a circumference of radius rp “ 0.15m (Fig. 3.2b). Simulations are performed with
N “ 30, and no external loads are included.

The workspace of the 3´RFR robot is illustrated in Fig. 3.3d and 3.3e by fixing
ϕ “ ´π

3
, ϕ “ ´π

6
, respectively. In both cases, no unstable regions and Type-2

singularities are detected. Stress limits are included, but no point exceeds σmax. As
before, sm “ 1mm is chosen to guarantee a sufficient value of C% (81% and 84.6%)
in a reasonable computational time (11 and 10 min). Again, the flooding algorithm
of [56] required higher computational time to obtain the same C% (20 and 18.5 min
with 1 mm stepsize).

1Results are obtained by a CPU Intel Core i7-8700K,3.7GHz,32Gb RAM
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3.3.3 3-PFR robot

This subsection studies the workspace of the 3 ´ PFR robot. This case study
shows the possibility of analyzing PCPRs with different actuators and including
joint limits. This manipulator is similar to the one proposed in [14], except for
the connection of the flexible links with the platform (passive revolute joints in our
case, in contrast with fixed connections in [14]). The 3 ´ PFR robot has three
actuated prismatic joints A1, A2, A3 (P ) and three flexible links (F ) connected by
passive revolute joints B1, B2, B3 at a rigid EE . Actuators are equally spaced along
a circumference of radius rb “ 0.65m, and passive revolute joints are placed on the
platform of radius rp “ 0.15m (Fig. 3.2c). Simulations are performed with N “ 30,
and no external loads are included.

The workspace of the 3 ´ PFR robot is illustrated in Fig. 3.3f, where the EE

orientation is ϕ “ π
6
and 1.4m-long rails are symmetrically placed around a circle of

radius rb. As for the 3 ´ RFR robot, maximum strain limits are included but not
exceeded. With sm “ 1 mm, we reached C% “ 94.5% in 5.2 min of computational
time, whereas the algorithm of [56] required 17 min with 1 mm stepsize.

3.4 Discussion on the Extension to Spatial CPRs

The work presented in this chapter is limited to planar CPRs only workspaces
of dimension two. However, there is no theoretical limitation that precludes the
extension of this work to spatial CPRs :

• the modelling strategy, based on a finite-differences approximation, could be
equivalently used also for spatial CPRs (see Appendix B.1 for the details);

• the Kantorovich theorem can be applied in the same fashion, since the geometrico-
static model equations assumes the same formulation. The derivation of the
constants χ, δ, γ is performed in the same manner as described in Appendix
D;

• thus, the adaptive flooding algorithm can be easily extended to the spatial
case. A three-dimensional grid can be generated, neighborhood analysis, and
grid bisection can be performed as well.

However, preliminary author’s investigations have shown that, by using a finite-
differences approximation, results are not as good as in the planar case. To achieve
sufficient EE position accuracy, a large number of elements is required (ě 200 per
CPR leg). Consequently, the IGSP system of equations is large and ill-conditioned,
resulting is high values of χ. Therefore, the certification of the results hold only
for significantly dense grids (grid stepsize grealy lower than 1mm), and the com-
putational time increases. Under these perspectives, other approaches (e.g. inteval
analysis) become competitive. A possible solution would require to investigate other
modelling strategies that allows the analytical computation of derivatives, while
keeping reduced the number of variables requires to accurately represent the CPR

pose, such as differential quadrature methods [145].
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3.5 Conclusions

This chapter presents an adaptive flooding algorithm for the workspace computa-
tion of PCPRs . The algorithm may identify unstable regions, and singularity loci,
incorporate external loads, and set maximum stress limits and joint bounds. Thanks
to an energy-based modelling strategy approximated through finite differences for
derivatives, the IGSP solution was certified in terms of existence, uniqueness, and
convergence of the solution by verifying Kantorovich conditions during the Newton-
based problem-solving procedure. With this approach, the IGSP solution is certified
over a large percentage of the workspace in a reduced computational time in com-
parison with previous algorithms, also in the case of external loads being included.

However, with large workspaces and/or small stepsizes, the flooding approach
may require the computation of a large number of points, which may not be compu-
tationally efficient. This problem is further relevant in the case of three-dimensional
workspaces. Preliminary investigations demonstrated that the resulting compu-
tational time for the full workspace computation in three-dimensional domains is
considerably higher than many hours. This motivates the work of the next chapter,
which is directed toward the computation of the workspace boundaries only.
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Boundary workspace computation
algorithm

Contributions of this chapter: a new algorithm for the computation of workspace

boundaries of continuum parallel robots (CPRs) is the contribution of this chapter. The

proposed approach for the computation of the workspace boundaries is based on i) a free-

space exploration strategy and ii) a boundary reconstruction algorithm. The former is

exploited to identify an initial workspace boundary location (exterior, interior boundaries,

and holes), while the latter is used to reconstruct the complete boundary surface. Moreover,

the algorithm is designed to be employed with CPRs modelling strategies based on general

discretization assumptions in order to increase its applicability for various scopes. The

proposed method is compared with two state-of-the-art algorithms in four case studies to

validate the results and to establish its merits and limitations. The results of this chapter

have been published in [156]

Full workspace computation algorithms provide great applicability at the cost
of high computational time. In particular, if an actuation sampling strategy is em-
ployed, the computational cost explodes with an increasing number of actuators.
In the previous chapter, an algorithm for the full workspace computation of planar
CPRs was proposed. Its application to three-dimensional task-spaces is possible,
but at the cost of high computational time. For practical purposes (e.g. design
iterations), it is desired to reduce the computational time of workspace computa-
tion algorithms, and a popular approach is to compute the workspace boundaries
only. As illustrated in Sec. 1.3.2, boundary workspace computation algorithms offer
better computational performances than full workspace algorithms but are strongly
influenced by the selected modelling strategy, which affects not only the performance
of the algorithm but also their applicability. Few works were directed toward the
workspace boundary computation, and none of them was dedicated to CPRs .

For these reasons, a boundary workspace computation algorithm for CPRs is
proposed in this chapter. The aim is reducing the computational time w.r.t. full
workspace computation algorithms while preserving their general applicability. The
proposed algorithm is suitable for the boundary computation of any type of planar
CPRs workspace, but only for translational (i.e. constant orientation) and orienta-
tion (i.e. constant position) workspace of spatial CPRs [43], since it is based on a
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(a) (b) (c)

Figure 4.1: General overview of the BFA. (a) initial grid exploration, (b) bound-
ary computation, and (c) successive iteration of the algorithm. Points on the task
space that lie in the workspace are represented in blue, while points outside of the
workspace in red.

three-dimensional grid exploration1. To do this, i) a suitable exploration strategy
for identifying all borders and ii) a boundary reconstruction algorithm is proposed.
The exploration strategy is introduced in order to identify a first boundary location,
starting from a guess initial point. The exploration strategy is repeated several
times in different directions, depending on the location of previously identified bor-
der locations. This way, not only exterior borders but also interior borders, voids
or holes (that may occur within the CPRs workspace) can be identified efficiently.
Then, a boundary reconstruction algorithm is proposed to compute the boundary
surface: the border is identified over a fixed grid by exploring the neighbourhood of
previously identified border points, with the exploration being based on the solution
of the IGSP over several EE locations. In comparison to the state of the art, this
algorithm requires reduced computational time w.r.t. full workspace computation
algorithms while preserving general applicability.

The chapter is structured as follows. Section 4.1 describes in detail the pro-
posed workspace computation algorithm. In Section 4.2, the proposed approach is
applied to four different CPRs and compared with state-of-the-art workspace com-
putation algorithms. Section 4.3 draws conclusions and discusses the limitations of
the proposed works.

4.1 Boundary Flooding Algorithm

This Section describes the workspace computation methodology introduced in this
paper, called the boundary flooding algorithm (BFA). First, a general overview of
BFA is given to ease the reader’s comprehension. Then, boundary identification is
discussed in Sec. 4.1.1, and details of the algorithm are given in Sec. 4.1.2.

Similarly to conventional discretization approaches (e.g. [14]), our algorithm
is a task-space discretization algorithm, and a grid of dimension at most three is

1Reachable, total orientation and dextrous workspace would require six-dimensional grid explo-
rations. Three-dimensional task spaces only are explored because i) this covers the most frequent
cases of interest in parallel robots, ii) the possibility of a graphical representation of the results,
and iii) to keep the computational cost of the algorithm reasonable.
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(a) (b) (c)

Figure 4.2: Boundary identification over a discrete grid. (a) IGSP solution over the
grid, (b) border identification, and (c) border reconstruction.

generated to discretize the task-space of the robot. The IGSP of CPRs is solved
repeatedly over the grid, but not on all its locations since the goal of the algorithm
is to reconstruct the workspace boundaries only. Task spaces of dimensions at
most three are explored, thus excluding reachable, total orientation and dextrous
workspace of spatial CPRs , because i) this covers the most frequent cases of interest
in parallel manipulators, ii) the possibility of graphical visualization of the results,
iii) to keep the computational cost of the algorithms reasonable, and iv) to compare
with state-of-the-art results. The author believes that a possible extension of the
BFA to six-dimensional cases may be developed, but this is not considered in this
thesis. The algorithm is designed as a two-sequential-stage process:

1. starting from a known location, the grid is explored by repeatedly solving the
IGSP over different points until a border point of the workspace is reached,
as shown in Fig. 4.1a. This stage is described in detail in Sec. 4.1.2.1;

2. then, the border is computed thanks to a flooding algorithm specifically de-
signed for this scope. This algorithm is based on the repeated solution of
the IGSP (Fig. 4.1b), and the determination of new points to explore in the
neighbourhood of previously identified borders. This stage is illustrated in
Sec. 4.1.2.2

These two stages can be repeated several times: successive exploration directions
are pointed toward different regions of the grid to possibly identify holes and voids
that the CPRs workspace may possess (Fig. 4.1c). The exploration strategy takes
advantage of previously detected borders to scan only regions on the grid where no
borders were identified.

4.1.1 Boundary Identification

A crucial point of the BFA is how boundaries are identified. As shown in Fig. 4.2a,
points are placed at the centre of each box of the grid. Then, the point Q0 is
assumed to lie in the workspace, and the goal is to verify whether a neighbour point
Q1 is included in the workspace as well. To do that, being y0 the robot configuration
at Q0, the IGSP is solved with initial guess y0, and the resulting configuration y1

is obtained. Then, it is verified if Q1 lies within the workspace: this is done by
verifying:
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Algorithm 3: Space Exploration Strategy.

1 Function Space Exploration(QAk,B,Qstart):
2 Qinit “ Qstart;
3 while flag = true do
4 Qend = getNewPoint(Qinit,QAk,B, iter);
5 flag = GetWKconditions(Qinit,Qend);
6 if flag = true then
7 Save Results;
8 iter = iter + 1;
9 Qinit “ Qend;

10 end

11 end
12 Stack rQinit,Qends P toDo;
13 Stack Qend in B;
14 return

15 Function GetWKConditions(Q0,Q1):
16 y0 = robot configuration at Q0;
17 y = Solve IGSP starting from y0;
18 flag = evaluate if Q1 P WK;
19 return flag;

1. singularity conditions, identified by the conditions reported in Eq. (2.31), (2.32);

2. equilibrium stability conditions, verified thanks to Eq. (2.33);

3. strain limits, checked by ensuring that each point over the beams do not exceed
prescribed strain limits. Strains are computed by following Eq. (2.25);

4. actuator limits, by checking motors actions satisfies prescribed limits, in terms
of actuation values qai, and actuation torques τi. Actuation torques are com-
puted in accordance with Eq. (2.26).

Other conditions may delimit the robot workspace, and general inequalities (and
equalities) can be considered, but the analysis is limited to the aforementioned
criteria.

Then, if the configuration y1 violates one of the aforementioned conditions,
the boundary of the workspace is crossed, and Q1 is considered as an out-of-the-
workspace configuration. Since the task space is discretized with a grid, the real
boundary is placed in a location between Q0 and Q1, as represented in Fig. 4.2b.
Thus, the boundary can be approximately reconstructed as shown in Fig. 4.2c, and
the accuracy of the workspace boundary estimation depends on the grid sampling
size.

4.1.2 Detailed Description

In this section, details of workspace computation algorithm objectives are given.
Sec. 4.1.2.1 first illustrates the space exploration strategy, and Sec. 4.1.2.2 proposes
the boundary computation strategy.
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(a) (b) (c)

Figure 4.3: Exploration strategy: (a) first exploration, (b) subsequent exploration
and influence of previously computed points, (c) conditions for which an equilibrium
is reached without attractive points.

4.1.2.1 Space Exploration Strategy

The main goal of the space exploration strategy (Alg. 3) is to explore the grid and to
identify a point that lies on the workspace boundary. As previously mentioned, the
exploration attempts to scan unexplored grid regions by considering where previous
explorations were directed. In order to explain how the exploration directions are
obtained, two different concepts are introduced: the unitary space and the attractive
points.

• Unitary Space: to explore task spaces that may involve positions and ori-
entations at the same time, the computation of the exploration direction is
performed on a unitary space (Fig. 4.4), that is, a space with r0, 1s limits for
each coordinate, which is algebraically similar to the Euclidean space. Given
a generic point in the task-space Q, its similarity transformation S into the
unitary space point H is given by:

H “ SpQq (4.1)

As an example, beingQ “ rx, y, zs, and xlim “ ra, bs, ylim “ rc, ds, zlim “ re, f s
the task-space limits, the point H is obtained as:

H “
ˆ
x ´ a

b ´ a
,
y ´ c

d ´ c
,
z ´ e

e ´ f

˙T

(4.2)

• Attractive Points : these points are introduced in order to define exploration
directions, and they are positioned at the limits of the grid. These grid limits
are usually placed at regions not reachable by the manipulator (e.g. at a
distance greater than the robot leg lengths), and attractive points are placed
uniformly over the grid perimeter. Being nexp the total number of explorations,
A “ rQA1, ¨ ¨ ¨ ,QAnexps collects the attractive points.

After unitary space and attractive points are introduced, let us explain how
the exploration works. To do that, let us consider a task-point Qstart that lies
in the workspace where the exploration starts2. The algorithm seeks to solve the

2The identification of the first point is not trivial, since IGSP Eqs. (2.22) are nonlinear. An
efficient heuristic employs constant curvature assumptions [37], where the inverse problem admits
simple (and possibly not accurate) purely geometric solutions. These constant curvature solutions
are employed as initial guesses for the first solution of Eqs. (2.22).
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Figure 4.4: Space exploration strategy. On the left, points to the physical space. In
the middle, points are converted into the unitary space. On the right computation
of the new exploration direction.

IGSP over different grid locations until a border of the workspace is reached. Thus,
two operations are performed sequentially: i) the solution of the IGSP and ii) the
computation of a new task-space point where to solve the IGSP . The latter is the key
point of the exploration strategy: at each step, it is required to find an exploration
direction on the task space that defines the new IGSP point by taking into account
the previous explorations (not to explore the same grid regions).

During the first exploration (k “ 1, with k “ 1, ¨ ¨ ¨ , nexp the index representing
the exploration number), the grid is explored by solving the IGSP over sequential
new locations in the direction of QA1 until a border is identified (Fig. 4.3a). Being
QB1 the point where the border is identified, the exploration is then stopped, and
QB1 is stored in B, which is the set of all the border points. The number of points
stored in B is named Nb. Then, for the second exploration, it is consider QA2

and the exploration restart from Qstart. However, it is important to also consider
the influence of QB1, and the exploration should also be directed in a direction
opposite to QB1 to explore a different region than the previous one. Therefore, the
exploration direction is obtained as a combination of the direction that points toward
QA2 and the direction opposite to QB1, as qualitatively represented in Fig. 4.3b.

To obtain the mathematical expression of the exploration direction, let us con-
sider the generic k -th exploration, where B “ rQB1, ¨ ¨ ¨ ,QBpk´1qs collects out-of-
the-workspace point locations identified in the previous k ´ 1 iterations. During the
k -th exploration, Qinit represents the current workspace point, and it is necessary
to select a new point in its neighbourhood where to solve the IGSP , with initial
guess Qinit. Thus, a direction dT is to be identified in the task space to be used to
select the next IGSP point. To do that, the unitary space is employed: all the points
of interest in the task space are mapped into the unitary space by employing the
transformation S, and Hinit,HAk,HB1, ¨ ¨ ¨ ,HBpk´1q are the unitary space counter-
parts of Qinit,QAk,QB1, ¨ ¨ ¨ ,QBpk´1q (Fig. 4.3c). Then, the exploration direction
is given by:

dT “ S
´1pdUq , dU “ cAdA ´ cBdB

}cAdA ´ cBdB} (4.3)

with dU the exploration direction in the unitary space (Fig. 4.4), dA the unitary
vector defined by the k -th attractive point, dB the unitary vector defined by the k´1
border points, cA “ 1 ´ expp´iter{τq, cB “ expp´iter{τq, iter being the cumulative
number of IGSP solved during the k -th exploration, and τ a constant that defines
the behaviour of the exploration. This way, at the start of the exploration, the
influence of previous computation is relevant, and only after several IGSP solutions,
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the direction is pointed mainly toward the attractive point.

Now the details of the terms of Eq. (4.3) are illustrated. Attractive point direc-
tion dA is given by:

dA “ Hinit ´ HAk

}Hinit ´ HAk} (4.4)

Then, for the computation of dB the following heuristic is proposed:

dB “
řNb

j“1
cBjdBj

} řNb
j“1

cBjdBj}
, dBj “ Hinit ´ HBj

}Hinit ´ HBj}
(4.5)

Good results are obtained by employing this heuristic during the simulations of
Sec. 4.2. From Eq. (4.5) it is noticeable that dB is a weighted sum of the directions
dBj defined by each border point, with weights cBj defined as:

cBj “ }1 ´ pHinit ´ HBjq } (4.6)

The meaning of the coefficient cBj is not trivial: since the operations are performed
in the unitary space, each component of pHinit ´ HBjq is bounded between 0, 1.
Thus, when Hinit approaches HBj the value of cBj increases and HBj have a larger
influence on the calculation of dB. This way, if the exploration approaches a previ-
ously identified border, its weight on dB increases, and dU is modified accordingly.

To resume, at each step of the exploration k -th :

1. all the point of interest (attractive point QAk, current workspace point Qinit,
and border points B), are mapped into the unitary space;

2. then, the exploration direction is computed into the unitary space and mapped
back into the task space by employing Eq. (4.3);

3. given the exploration direction dT , the neighbor of Qinit that points in the
direction closer to dT is selected as new point. This task-space point is called
Qend.

These three steps are performed at line 4 of Alg. 3. Then, the IGSP is solved, and it
is verified if Qend lies on the workspace. The computation continues point-by-point
until a border is identified. Once the boundary is found, QBk is saved in B for the
next explorations, and Qinit,Qend are stored in toDo for the boundary computation
phase described in Sec. 4.1.2.2. Before going to the description of the boundary
computation strategy, some remarks are necessary:

‚ Necessity of attractive points: even if attractive points seem to be unnecessary
after the first exploration (the exploration direction could be defined by points
in B only), it can happen that previously computed borders define directions
for which the computation stalls. An example is reported in Fig. 4.3c: since
Qstart is placed in the middle of the two border points QB1,QB2, the direction
dB of Eq. (4.5) is indeterminate. Thus, attractive points are required to ensure
the algorithms do not stall and to drive the exploration away from the stall
condition.
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(a) (b) (c)

Figure 4.5: Boundary computation strategy: (a) boundary conditions, (b) sorting
strategy, (c) point evaluation.

‚ Exploration parameter. The coefficient τ is user-defined, and it should be se-
lected in relation to the scope of the workspace exploration. A high value of
τ causes a more complex exploration path at the cost of more iterations. On
the other hand, a reduced value of τ should be employed when the user has
a previous knowledge of the workspace shape (e.g. slight robot design modifi-
cations), the exploration is mainly pointed toward attractive points placed at
locations useful to identify all the workspace boundary components. Typical
values of τ are related to the grid sampling size sg, and the grid size. Empir-
ically, the authors experienced optimal results when initializing τ so that sgτ
is approximately half of the grid size.

‚ Number of explorations. nexp is a user-defined parameter, and it depends on
the scope of the workspace exploration. In the case no previous knowledge of
the workspace shape is available, the authors experienced optimal results with
high values of nexp (nexp ě 20); even though this number is quite high and
results in a higher computational time than needed most of the times, it gives
higher assurance to find all the workspace borders sought. However, if the
algorithm is supposed to be used several times (e.g. when performing slight
design variations), nexp should and could be reduced to save computational
time since there is a-priori knowledge of the workspace borders3.

4.1.2.2 Boundary Computation Strategy

In this subsection, the algorithm for the reconstruction of the workspace boundaries
is detailed. The pseudocode of this routine is reported in Alg. 4. The algorithm
starts from a situation where a point Qi outside the boundary is identified after
the solution of the IGSP , with initial guess Qg (Fig. 4.5a). These two points are
extracted from toDo, an array that stores out-of-the-workspace points and their
previously employed initial guesses. Subsequently, the goal is to explore the grid in
order to identify new points outside the workspace, and to reconstruct the complete
boundary. To do that, neighbouring points to Qi where the IGSP has not been
computed are identified over the grid and stored in N i (Fig. 4.5b).

Points in N i represent possible candidates to be out-of-the-workspace points: in
order to verify whether they lie or not in the workspace, the IGSP should be solved,
and an appropriate initial guess should be identified for each point. However, the

3Some workspace slices can be computed a priori with the algorithm of [56], or [148], to detect
the presence of eventual holes, and then nexp adjusted consequently
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Algorithm 4: Boundary Computation Strategy.

1 Function Boundary Computation(toDo):
2 while toDo ‰ H do
3 Extract Qg,Qi from toDo;
4 N i = get neighbors of Qi not yet computed.;
5 Sort N i w.r.t. distance from Qg;
6 while N i ‰ H do
7 Qn1 “ N ip1q;
8 N i Ð N izQ1;
9 Nw1 = get neighbors of Q1 P WK;

10 if Nw1 ‰ H then
11 Qw “ N w1 with best conditioning of J;
12 flag = GetWKconditions(Qw,Qn1);
13 if flag = true then
14 Save Results.
15 else
16 Stack rQw,Qn1s P toDo
17 end

18 end

19 end

20 end
21 return

order in which points in N i are treated may influence the resulting prediction,
since a point may have an appropriate initial guess that is not yet found during the
workspace computation. In this work, points N i are tested w.r.t. to their distance
from Qg, starting from the closest one in the Euclidean sense4 (see Fig. 4.5b).
Authors experienced good results with this approach, but other heuristics may be
proposed.

The next step requires solving the IGSP for all the points in N i. Being Qn1 the
first point to be computed in N i, the goal is to solve the IGSP , and an initial guess
should be identified. To do that, neighbor points of Qn1 that lie in the workspace
are collected in Nw1

(Fig. 4.5c). In case Nw1
is not empty5, the point with the

best conditioning of T1 (Eq. (2.31)) is extracted among the possible initial guesses
in Nw1

, and named as Qw (Fig. 4.5c). By selecting the initial guess with this
heuristic, a high probability that the new configuration preserves the working mode
of the initial guess is obtained, but no analytical proof is available. Finally, it is
verified if Qn1 lies on the workspace. In case Qn1 is included in the robot workspace,
no additional points are stored in toDo. On the opposite case, Qw,Qn1 are stored
in toDo for next computation.

The algorithm continues by at first evaluating all the points in N i and solving
the IGSP at all these points. Once N i is empty, new points are extracted from
toDo. When also toDo is empty, the algorithm stops. In the next Section, the
proposed algorithm is tested for the workspace computation of four different CPRs .

4In case points have the same distance, a random selection is performed.
5In case Nw1

“ H, the point Qn1 is skipped, and the IGSP not solved.
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4.2 Case Studies

This Section proposes four case studies to show the main features of the proposed
workspace border computation algorithm. A comparison between two workspace
algorithms and the approach introduced in this chapter, is proposed to validate the
applicability of our method, highlight its merits, and also show its main limitations.
The BFA is compared with the full workspace algorithm [56] that supports three-
dimensional investigations (in contrast to our previous work [148] that focuses on
planar cases only), to verify the correctness of the results. Also, the BFA is com-
pared with the boundary computation algorithm of [84], since it presents interesting
features in terms of computational time and, even if it is designed for serial CRs , it
can also be used for CPRs .

The assumed strain mode approach is selected as a discretized modelling tech-
nique. As the IGSP is to be solver several times during the workspace evaluation,
computational efficiency is mandatory. For the same EE position accuracy, the
assume strain mode approach is considerably faster in the solution of the IGSP

in comparison to a finite-difference modelling technique [128]. At the same time,
both approaches enable the equilibrium stability assessment through the Hessian
matrix evaluation [128], and thus the assumed strain mode approach is preferred
for its better computational performances. This same modelling strategy is kept
for each workspace algorithm, and four assumed modes for each curvature compo-
nent are used in Eqs. (2.34) (uk, k “ 1, 2, 3 is approximated with four orthogonal
Legendre polynomials). However, any other discretized modelling strategy may be
employed at the price of different computational performances. The derivation of the
geometrico-static model equations for the assumed strain mode modelling approach
is reported in Appendix A.1 for the interested reader.

For all case studies, beams are made of harmonic steel with Young modulus
E “ 210 GPa, beam length is equal to L “ 1 m. Beams are of circular cross-
section with radius r “ 1 mm. The simulations of this Section are performed
with a PC equipped with a CPU Intel Core i7-6700, 3.4GHz, 32Gb RAM, in a
Matlab environment. The IGSP is solved by Matlab fsolve routine, and equations
are precompiled as .mex function to speed up the computation. A trust-region
algorithm is selected since it requires less computational time than other available
algorithms (e.g. Levenberg-Marquardt), and the maximum allowed iteration number
for the trust-region algorithm is set as 20. If the number of iterations reaches 20, no
solution to the IGSP is considered to exist. Despite a reduced number of iterations
is usually required in regions not close to the border (e.g. 4-5 iterations), the IGSP

solution in regions near workspace boundaries related to singularities of the IGSP

problem (Type-1 singularities [56], namely the rank deficiency of T1 of Eq. (2.32))
usually requires numerous iterations that could slow down the algorithm. In this
way, Type-1 singularities can be detected more rapidly.

4.2.1 RFRFR robot

The RFRFR robot has been introduced in [78], and its workspace computation
was investigated in our previous work [148]. The RFRFR robot has two revolute
actuators (R) placed at the base (points A1, and A2 in Fig. 4.6a) that rotate the
base of two flexible beams (F ). Beams are connected at the opposite side through
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(a) RFRFR robot
(b) RFRFR robot working
mode 1

(c) RFRFR robot working
mode 2

Figure 4.6: Workspace computation of the RFRFR robot: the robot architecture
(a), and the workspace computation of two different working modes (b),(c). Explo-
ration trajectories are depicted in light blue, results obtained with the approach of
[56] in dark blue, Type-1 and Type-2 singularities are represented in red, and black,
respectively.

a passive revolute joint (R). For this case study, the distance between the motors
LA1A2

is chosen as 0.4 m. No external forces and gravitational effects are included.

At first, the results obtained by the BFA are compared with the flooding algo-
rithm of [56], which computes the full workspace, and not the borders only. The xy
plane is discretized with a sampling size sg “ 5mm over the range r´1,`1s m in
both directions. Then, τ is initialized so that sgτ is approximately half of the grid
size, that is τ “ 200 (in accordance with the heuristic proposed in Sec. 4.1.2.1). The
results obtained by choosing nexp “ 8 are reported in Fig. 4.6b, where workspace
borders caused by Type-1 and Type-2 singularities are depicted in black and red,
respectively, while the results of [56] are reported in dark-blue, and the exploration
trajectories in light blue. The computational time is significantly reduced, passing
from the approximately 12 mins of [56] to the 48 s for the BFA. Also, a different
working mode has been considered by starting from a second initial robot config-
uration obtained with a different constant-curvature initial guess. The BFA has
been employed to obtain the workspace depicted in Fig. 4.6c, the obtained results
are in accordance with the one provided by [56] (dark-blue in Fig. 4.6c), and the
computational time has been reduced from 130 s to 31 s. Then, the influence of the
material strain limit on the workspace size is investigated, as shown in Fig. 4.7a:
the RFRFR robot workspace is computed with strain limit equal to 0.60%, 0.75%,
0.90% and the results are superimposed. By increasing the material resistance, the
workspace area increases consequently, and regions closer to the workspace centre
become more accessible.

Then, the BFA has been compared with the optimization algorithm proposed in
[84]. The proposed approach is compared with [84] because of the interesting per-
formances of the optimization algorithm, its simplicity, and the possible application
to CPRs . The optimization algorithm is an iterative algorithm for the computa-
tion of CRs boundaries, based on the selection of some points v˚ placed in regions
assumed out of the workspace (Fig. 4.7b). Then, an optimization problem is set
up to find the robot configuration y for which the distance between the EE posi-
tion pp and v˚ is minimum, subjected to the verification of equilibrium Eq. (2.20).
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(a) Strain investigation (b) Results with [84] (c) Comparison

Figure 4.7: Workspace computation of the RFRFR robot. The influence of strain
limits on the robot workspace is reported in (a), where the inner borders generated
with different strain limits are depicted in green. In (b), the results obtained with
the approach of [84]. In (c), a comparison of the external border prediction between
our approach and the approach of [84].

Additional constraints may be included in the optimization problem as well (e.g.
equilibrium stability, strain limits). The solution of the constrained optimization
problem is solved repeatedly with various v˚ to reconstruct the workspace bound-
ary. At first, the reconstruction of the external workspace border of Fig. 4.6b is
considered: to achieve comparable accuracy in the workspace prediction, the opti-
mization approach required 300 points placed over a circumference of radius of 1.3 m
and a total computational time of 22 s whereas the proposed algorithm required 48 s.
The optimization approach performs a reduced computational time since it requires
the solution of a single optimization problem to find points on the border while the
border reconstruction strategy of the BFA requires multiple IGSP solutions to ap-
proximate the border as shown in Fig. 4.2c. In the author’s opinion, this limitation
is the price to be paid for a more generally applicable algorithm, with the additional
benefits outlined in this chapter. However, the optimization algorithm [84] is not
capable of identifying holes in the workspace (as the one present in the RFRFR

robot workspace), and a different placement of points v˚ is required to attempt the
inner hole identification. This is a known limitation of the optimization algorithm,
previously mentioned in [84] and, in this direction, the BFA performs better since
it is able to identify the workspace hole by running a second exploration routine
thanks to the proposed space exploration strategy.

A second issue worthy to be mentioned is related to the prediction of the ex-
terior border: the optimization approach may fail when the robot admits multiple
working modes (Fig. 4.7c). In general, the optimization approach finds the robot
configuration that minimizes the distance between the EE and a user-selected outer
point, but there is no constraint that prevents the change in the robot working
mode. An example of this issue is reported in Fig. 4.7c: the optimization approach
individuates stable solutions that present a shorter distance from points v˚, but
these configurations are reachable only by crossing the Type-1 singularity that the
optimization approach is not able to individuate. On the other hand, the BFA does
not suffer from this issue since it is based on the exploration of the boundary by
successive iteration in the vicinity of previously detected boundary configurations.
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(a) 3-PFR
(b) Total orientation workspace of 3-PFR
with θ P r´π, 0s

(c) Slice at θ “ ´30˝ (d) Slice at θ “ ´80˝ (e) Slice at θ “ ´90˝

Figure 4.8: Workspace computation of the 3´PFR robot: the robot schematics (a),
total orientation workspace in θ P r´π, 0s (b), constant orientation slices at θ “ ´30˝

(c) ,´80˝ (d) ,´90˝ (e). Type-1 singularities are represented in red, results obtained
with the approach of [56] in dark blue, and boundaries generated by actuator limits
are represented in green.

4.2.2 3-PFR robot

This subsection investigates the workspace of a 3 ´ PFR robot. This case study
shows the capability of the proposed algorithm to investigate a workspace that
involves the position and the orientation simultaneously. The goal is to compute
the total orientation workspace of a planar CPR, following the terminology of [43]

The 3´PFR robot has been the focus of Chapter 3 where its workspace has been
analyzed: in this work, a different arrangement of the prismatic actuators has been
employed (Fig. 4.8a) with the goal of obtaining wider workspaces. The 3 ´ PFR

robot has three prismatic actuators (P ): Lr “ 2 m denotes the finite length of
the actuators. The beam extremity is actuated by the movement of the prismatic
joint, and the beam tip is passively connected to a platform of diameter dP “ 0.15
m through passive revolute joints. Joint limits are taken into account during the
workspace evaluation.

In order to investigate the orientation ability of the 3 ´ PFR robot over the
workspace, the total orientation workspace is computed by exploring the end-effector
position p “ rx, ys and orientation θ over a three-dimensional grid that discretizes
xyθ. The xy plane is sampled with a grid size of 10 mm, while θ is discretized
by a 2˝ sampling over the range r´180, 0s˝, and τ “ 100, nexp “ 20 according to
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(a) 6-RFS (b) Translational workspace
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(c) xz slice at y “ 0m
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(f) xy slice at z “ 0.500m.

Figure 4.9: Workspace computation of the 6 ´ RFS robot: the robot schematics
(a), the translational workspace at Rp “ I (b), xz slice at y “ 0m (c), xy slices at
z “ 0.65m (d), z “ 0.59m (e), z “ 0.50m (f). Results obtained with the approach of
[56] in dark blue, Type-1 and Type-2 singularities are represented in red, and black,
respectively.

the heuristics of Sec. 4.1.2.1. The resulting total orientation workspace is displayed
in Fig. 4.8b. Even if the workspace is connected in the interval θ P r´90, 0s˝, by
increasing the EE orientation, the constant orientation workspace splits into three
non-connected components, as highlighted in Figs. 4.8d,4.8e: these slices may be
difficult to compute with state-of-the-art approaches based on the iterative compu-
tation of several xy slices with different orientations. The BFA required 53 mins.
while 4h 33 min are required with the approach of [56].

4.2.3 6-RFS robot

This subsection investigates the workspace of a 6 ´ RFS robot. As commonly
done in parallel robots [43], there is limited interest in the evaluation of the 6-
DoFs capabilities simultaneously and frequently, position and orientation abilities
are evaluated separately. Thus, following the terminology of [43], this case study
shows the possibility of efficiently evaluating translational workspace and orientation
workspace of spatial CPRs .

The 6 ´ RFS robot (Fig. 4.9a) was previously characterized in [56], and it has
six revolute actuators that actuate the beams proximal section placed at the robot
base over a circle of diameter dB “ 0.8 m. Flexible beams are connected to a rigid
platform through passive spherical joints (S), such as the one employed in the design
of [39]. The platform diameter is dP “ 0.4 m, and its overall mass is 100 g. Beams
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(a) Orientation workspace at
pp “ r0; 0; 0.8sm

(b) Zero torsion workspace
(γ “ 0˝).

(c) Constant torsion slice at
γ “ 25˝

Figure 4.10: Workspace computation of the 6 ´ RFS robot: the orientation
workspace at pp “ r0; 0; 0.8s (a), the zero-torsion workspace (b), the constant torsion
workspace at γ “ 25˝ (c). Results obtained with the approach of [56] in dark blue,
Type-1 and Type-2 singularities are represented in red, and black, respectively.

are arranged over the platform as described in Fig. 4.9a, with do “ 0.1 m being
the distance of adjacent joints on the same corner. Platform and leg weight are
considered during the simulations.

The investigation of the 6 ´ RFS robot workspace starts with the translational
workspace computation where the platform orientation is fixed as Rp “ I3. A
three-dimensional uniform grid samples the xyz space with grid limits of r´1,`1s
m at each direction and a sampling size of 10 mm. The exploration parameters are
selected as τ “ 100 and nexp “ 20. The translational workspace is displayed in
Fig. 4.9b: by employing the BFA, the computational time is reduced to 2h and 30
mins in comparison to the 14 h 30 mins required by [56]. Moreover, state-of-the-
art approaches based on slice evaluation of the workspace boundaries may difficultly
evaluate the robot workspace in cases of slices as the one represented in Fig. 4.9e,4.9f
since holes or not connected components are present.

Then, the orientation workspace of the 6 ´ RFS robot is evaluated at pP “
r0, 0, 0.8s m. To perform the evaluation, a Tilt-and-Torsion orientation parametriza-
tion is employed [157], and the platform rotation matrix Rp is defined as:

Rp “ Rapα, βqRzpγq (4.7)

Ra “ RzpαqRypβqRzp´αq (4.8)

with Rz,Ry being elementary rotation matrices and α, β, γ three orientation angles:
while α, β defines the tilt of the platform, the angle γ defines it torsion. A uniform
grid of step 2˝ discretized the angle values, with α P r´180, 180s˝, β P r0, 90s˝, γ P
r´90, 90s˝. In this case, to define τ , the larger task-space direction is considered (α
direction), which results in a higher τ and more complex exploration paths. Thus,
τ “ 45 and nexp “ 20.

The resulting orientation workspace, displayed in cylindrical coordinates, is re-
ported in Fig. 4.10a. The BFA required 1 h and 52 mins while the flooding algorithm
[56] employed 10 h and 3 mins. Then, the zero torsion slice is extracted from the
volume and reported in Fig. 4.10b. Maximum tilt abilities (β “ 59˝) are reached
with γ “ 25˝ (Fig. 4.10c).
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(a) 6 ´ FR with an interme-
diate constaint. (b) Side view. (c) Top view.

Figure 4.11: The 6 ´ FR with an intermediate constraint. The robot architecture
is shown in (a); side and top views of the robot are proposed in (b), and (c),
respectively, to illustrate beam connections and relevant design dimensions.

(a) Lb “ 0.6 m (b) Lb “ 0.4 m (c) Lb “ 0.2 m

Figure 4.12: Comparison of translational workspaces atRp “ I by varying Lb. Type-
1 singularities are represented in red, Type-2 singularities in black, results obtained
with the approach of [56] in dark blue, and boundaries generated by actuator limits
are represented in green.

4.2.4 6-FR with an intermediate constraint

This subsection focuses on the workspace evaluation of a CPR with a more complex
structure than the previous case studies to further demonstrate the generality of
the BFA, focusing on a 6 ´ FR with an intermediate constraint (Fig. 4.11a). This
architecture is similar to the prototype of [27] and, as before, position and orientation
abilities are investigated separately.

The 6 ´ FR has six linear actuators that vary the lengths of the beams placed
at the robot base over a circle of diameter dB “ 0.12 m (Fig. 4.11b). Beam distal
sections are connected to a rigid platform through passive revolute joints (R), with
platform diameter dP “ 0.08 m, and an overall mass of 100 g. An intermediate disk
of diameter dd “ 0.10 m, which prevents large nonlinear beam deflections [27], is
placed between the base and the platform. Cylindrical pairs are mounted over the
disk and, differently from [27], the disk is mounted over a passive flexible beam of
constant length Lb. Beams are arranged as described in Fig. 4.11c: the i -th beam
is actuated by the linear motor installed on Ai. Then, the beam passes through the
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(a) Lb “ 0.6 m (b) Lb “ 0.4 m (c) Lb “ 0.2 m

Figure 4.13: Comparison of zero torsion workspaces at pp “ r0; 0; 0.8sm by varying
Lb. Type-1 singularities are represented in red, Type-2 singularities in black, re-
sults obtained with the approach of [56] in dark blue, and boundaries generated by
actuator limits are represented in green.

cylindrical disk pair placed in Di, and the distal section of the beam is connected to
the platform revolute joint in Bi. The distances between adjacent joints on the same
corner are dOp “ dOb “ 0.02 m for the platform and the base, respectively. Platform,
legs, and disk weights are considered during the simulations. Linear actuator bounds
are considered of r0.2, 1.0s m.

As done for the previous case study, position and orientation capabilities are
studied separately. Focusing on the translational workspace computation, the plat-
form orientation is fixed as Rp “ I. A three-dimensional uniform grid of dimension
r´1,`1s in each direction samples the xyz space, with a sampling size of 10 mm in
each direction and τ, nexp initialized to 100, 20, respectively.

The translational workspace is computed by considering three different values of
Lb (Fig. 4.12) and, for each simulation, workspace volume (obtained by using the
boundary Matlab function) is considered to measure the workspace extension. With
Lb “0.6 m (Fig. 4.12a), the BFA required approximately 1h 40 mins compared to the
approximately 12 h of [56]. The workspace volume, mainly delimited by the actuator
limits boundary, is 0.0137 m3. Instead, a larger volume of 0.0376 m3 is obtained
by lowering the disk to Lb “0.4 m (Fig. 4.12b). In this case, the BFA required
4h 46 mins and the flooding algorithm of [56] almost 28 h. By further reducing
Lb to 0.2 m, the workspace represented in Fig. 4.12c is obtained. The workspace
volume is reduced to 0.0175 m3 and the required computational time is 202 min
for the BFA (almost 13h for [56]). In both Lb “0.2, Lb “0.6 similar workspace
volumes are obtained, but the computational time drastically differs: for Lb “ 0.2,
the workspace is mainly delimited by Type-1 singularities where the solver requires
several iterations to converge while, for Lb “ 0.6, the boundary is defined mostly by
mechanical limits where the IGSP can be solved with reduced computational cost.

For evaluating the orientation capabilities, the platform orientation is described
by employing a Tilt-and-torsion description and the platform orientation matrix
Rp is obtained by Eq. (4.8). Figure 4.13 compares zero torsion workspace at pp “
r0; 0; 0.8s by varying Lb. The maximum tilt angle of β “ 48˝ is reached with Lb “0.6
m (Fig. 4.13a), but the orientation abilities are more uniform w.r.t. α if Lb “0.4 m
(Fig. 4.13b). The orientation abilities are instead reduced for Lb “0.2 m (Fig. 4.13c).
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4.3 Conclusions

In this chapter, an algorithm for the computation of workspace boundaries of CPRs
is proposed. The proposed algorithm, based on a free-space exploration strategy
and a boundary reconstruction algorithm, reduced the computational time w.r.t. to
actuation or task-space discretization strategies by identifying only the boundaries
of CPRs ’ workspace. Additionally, the BFA included several kinds of constraints,
(singularities, equilibrium stability, joint and material limits), and the BFA provided
the capability to identify holes in the workspace. The BFA works with CPRs mod-
elling strategies based on general discretization assumptions, which increases the
algorithm generality. Four case studies demonstrated the effectiveness of the pro-
posed approach in terms of computational-time reduction and general applicability.
The proposed algorithm is well suited for design explorations, where the reduced
computational time and the algorithm generality are relevant advantages. However,
some limitations need to be acknowledged. First, the use of attractive points is effec-
tive, but it may fail when parameters are defined improperly. As with any heuristic
method, the parameter tuning is critical for the best performance of the algorithm
and nexp, τ require trial-and-error tuning. Then, even though our algorithm is able
to identify internal workspace boundaries, there is no certainty of identifying all of
them.

The work of this thesis on the workspace computation problem is concluded in
this chapter. The next part discusses advancements proposed in this thesis related
to the equilibrium stability assessment of CPRs .
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Scientific Contributions to the
Equilibrium Stability Assessment
of Continuum Parallel Robots
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Chapter 5

Experimental Assessment of the
Equilibrium Stability

Contributions of this chapter: this chapter proposes the experimental validation of

CPRs equilibrium stability prediction. A new CPR prototype for planar applications is

proposed, designed, and tested for the scope. Unstable configurations that limit the robot

workspace are theoretically and experimentally investigated. A singularity type, related

to out-of-the-plane uncontrolled motions of the planar CPR, is experimentally identified

for the first time. Experiments demonstrate that, even though the prototype is theoreti-

cally planar, a planar model neglecting out-of-the-plane phenomena is inadequate to assess

equilibrium stability limits. The contributions of this chapter have been published in [158]

Experimental validation of CRs models received significant attention from the
research community, and the literature is vast [106]. Alternative models provide
a different trade-off between accuracy and computational complexity, and choos-
ing the appropriate model for the problem at hand is an open question. To this
end, experimental data and simulations of different models have been compared in
many works [159], [160], [161]. Pose accuracy, namely, the model ability to correctly
predict the position and orientation of the robot’s end-effector (EE ), received signif-
icant attention: lumped parameter approximations [162], [163], piecewise constant
strains models [138], and shooting approaches [74], [164], are some of the most rele-
vant examples of experimentally verified CRs models. For CPRs , the pose accuracy
of the shooting method was investigated in [17] and [32] on 2 and 3-DoFs planar
CPRs , respectively, and in [72] on a 6-DoFs CPR; additionally, [28] focused on
model parameter calibration. The constant curvature approach, which is suitable
for tendon-driven links, was also tested in [38] and, finally, discretization through
small segments was experimentally validated for spatial CPRs in [35].

Although pose accuracy is a significant issue for control, other robot properties
are relevant for characterization and performance evaluation. Due to the high elas-
ticity and possibly limited payload capability of CRs , robot stiffness and workspace
(WS ) extension are widely investigated. A CPRs stiffness prediction obtained by
a discretization approach was experimentally validated in [36], and the WS of a 6-
DoFs prototype experimentally verified in [29] by comparing theoretical and actual
posed on several WS slices. Recently, the phenomena limiting CPRs workspace be-
came of interest since their understanding may produce better-performing designs.
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At WS limits, CPRs may experience stable-to-unstable transition [58], analogously
to serial CRs [98]. An optimal control approach was proposed in [58] to assess
CPRs equilibrium stability, and experiments were conducted to verify the correct
equilibrium stability prediction. Even though optimal control approaches bring rig-
orous derivation of equilibrium stability conditions, the complexity of the analysis
is relevant. Conversely, discrete energy-based methods [56] bring simplicity to the
equilibrium stability analysis.

The novel contribution of this chapter is related to the experimental validation
of CPRs equilibrium stability assessment using discretized modelling methods. In
particular, it is demonstrated that models based on planar displacement assumptions
may fail in the equilibrium stability prediction, even though the CPR is nominally
planar. To this end, a CPR prototype for planar applications is originally proposed.
The prototype has a RFRFR overall topology [78], [148] and, thanks to its novel
actuation system, links interference with each other is avoided throughout the robot
WS , leading to a large attainable Cartesian WS area. Moreover, the EE motion
is planar by design since the forces exchanged between the links and the EE are
parallel to the motion plane, and the overall torque applied on the mechanism is
normal to the motion plane. The robot capability in terms of joint-space range (JS ),
Cartesian WS size, and equilibrium stability (verified with the energetic approach
of [56]) are compared by using i) a model that assumes planar displacements, and
ii) a full spatial model. Experiments are conducted to i) verify that a model using
planar displacement assumptions is not adequate to predict the equilibrium stability
of the proposed prototype and ii) to assess the accuracy of our equilibrium stability
prediction. A singularity type, related to out-of-the-plane uncontrolled motions of
the planar CPR, is experimentally identified for the first time.

The chapter is structured as follows. Section 5.1 illustrates the robot design and
its prototyping. Then, Section 5.2 recalls the specific modelling of the proposed
prototype. Section 5.3 is devoted to the robot JS/WS analysis. Section 5.4 is
dedicated to the experimental verification of equilibrium stability prediction, and
results are discussed in Section 5.5.

5.1 Prototype Design

This Section focuses on the RFRFR prototype design proposed in this chapter.
The RFRFR topology was introduced in [78], and its WS computation was studied
in Chapter 4.9b. The RFRFR robot has two rotative motors (R) whose axes are
attached to the proximal section of two flexible beams (F ). The distal sections of
the beams are connected through a passive revolute joint (R), and the robot EE

is coincident with the passive revolute joint R. All the R joint axes are nominally
parallel.

5.1.1 Architecture Selection

The proposed design aims at realizing a nominally planar CPR with the largest
workspace possible. To keep the EE displacement planar, the external forces applied
to the EE and the forces exchanged between the legs and the EE need to belong to
the motion plane, and their resultant torque need to be orthogonal to the motion
plane. In addition, the EE , the links, and the motor axes should not mechanically
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(a) Design 1 (b) Design 2 (c) Design 3

(d) (e) (f)

Figure 5.1: Three different possible designs of the RFRFR robot. (a) two motors
on the same side in distinct locations, (b) two motors on opposite sides on distinct
locations, (c) two motors on the same side, same location. Figure (d) qualitatively
illustrates how mechanical interference reduces the WS with Design 1. Figure (e)
shows the trend of out-of-the-plane EE displacement (∆pz) with Design 2, and (f)
illustrates the WS with Design 3. The links length is 0.560 m, while lAB “ 0.2 m
for (d),(e), and lAB “ 0 for (f).

interfere with each other: this feature is a great limiting factor for parallel robots
WS size [165]. Some design candidates are the 2-DoFs pick-and-place continuum
robot of [17], and the RFRFR of [34], but also many rigid-link five-bar mechanisms
may be a source of inspiration [166]. The three most straightforward solutions are
hereby discussed:

• Design 1 (Fig. 5.1a). The two R motors are attached on the same side of
the working plane at a distance lAB ą 0. This design brings simplicity and
great accessibility. Thanks to a clevis fastener, flexible links are aligned at
the same EE cross-section and connected to the passive joint R [17], and
the EE is in static equilibrium. However, mechanical interference between
the links and motor shafts reduces the robot WS . The boundary workspace
algorithm of Chapter 4 is used to compute the WS boundaries generated by
mechanical interferences, and a reduction of the WS to roughly half of the xy
plane occurs (Fig. 5.1d reports the robot WS obtained with lAB “ 0.2 m, links
length 0.56 m and no external loads). Preliminary design explorations showed
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that the influence of mechanical interference reduces by lowering lAB; on the
other hand, lAB cannot be reduced to zero due to actuators encumbrance;

• Design 2 (Fig. 5.1b). The two R motors are attached on the opposite side of
the working plane at a distance lAB ě 0. The flexible beams are connected
at different EE cross-sections (as [166], [34]), and there is no potential me-
chanical interference between robot links and motor axes. Unfortunately, the
links wrenches will generate a resultant torque which is not normal to the
motion plane, and the EE cannot lie in the nominal plane without additional
constraining systems. This phenomenon is studied by computing the robot
WS with a spatial robots model (the assumed mode approach of Sec. 2.3.1),
and the EE out-of-the-plane displacement ∆pz, namely the distance of the EE
reference point from the reference motion plane, is measured. For instance,
Fig. 5.1e illustrates ∆pz over the robots WS in the case lAB “ 0.2, links length
0.56 m, no external loads and offset between the plane of the motors 0.020 m.
When the EE points toward the WS centre, ∆pz increases to unacceptable
values. This issue may be solved by considering EE -constraining systems (e.g.
the vacuum system of [14]). However, such a constraining system modifies the
external actions acting on the robot. In this design, lowering lAB reduces ∆pz,
but even with lAB “ 0, ∆pz remains at unacceptable values;

• Design 3 (Fig. 5.1c). The two actuated revolute joints R are placed on the
same side of the working plane, and they are coaxial (lAB “ 0). Flexible
links 1 and 4 are synchronously moved by the same motor, whereas the other
actuator rotates links 2,3. This design ensures no mechanical interference, and
the EE can maintain a planar configuration, ensuring a large accessible WS

(Fig. 5.1f). However, the design complexity increases.

Design 3 is the most favourable for realizing a nominally planar 2-DoFs system
with the largest workspace, without requiring the addition of external constraints,
and thus is selected for experiments.

5.1.2 Prototype Manufacture

The proposed prototype is illustrated in Fig. 5.2. To facilitate its description, the
robot is subdivided into three groups: flexible chains, the EE , and the actuation
unit.

Flexible Chains: the beams that transmit the motion from the actuators to the
EE form the flexible chains. As represented in Fig. 5.2a, one inner and two outer
chains are distinguished. While four flexible beams make the former, each outer
chain is made by two flexible beams. Beams are made of fibreglass rods of 2 mm
diameter. Several possible materials are well suited for CRs (e.g. NiTinol alloys [16],
Nylon [17], spring steel [36]), and fibreglass is selected mainly for its good tradeoff
between lightweight, compliance, and widespread availability on the market. Even if
a single beam of a larger diameter could be used to realize each flexible chain, several
beams in parallel are installed. For a given flexural inertia moment, a single beam
with a larger diameter is highly stressed since strains are proportional to the cross-
section diameter. Instead, many small-diameter beams may guarantee an equivalent
inertia moment, but the strain on each beam is reduced. Connecting constraints are
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(a) Prototype’s overview (b) End effector (c) Actuation unit

Figure 5.2: The CPR prototype is shown in (a), a top view of the prototype is given
in (b) to highlight the actuation unit, and a view of the EE is provided in (c).

Figure 5.3: Transmission system axonometric view.

also mounted on each chain to increase the stiffness of the robot in the orthogonal
direction to the working plane. This way, each flexible chain resembles a beam with
a rectangular cross-section1.

End-effector: the EE is illustrated in Fig. 5.2b. The distal sections of the
kinematic chains are connected to rigid clamps, as is done for the proximal section.
The inner chain is clamped at the EE on EA, while outer chains are connected to
EB,EC . Two marker supports are attached at both sides of the EE to balance the
EE load statically. The total mass of the EE is 218 g.

Actuation Unit: the actuation unit (Fig. 5.2c) is composed of Two DC Maxon
motors DCX32L, equipped with a three-stage planetary gearbox (reduction ratio
150:1), and a transmission system specifically designed to drive the flexible chains

1A single beam with a rectangular cross-section would be a good design solution, but the market
availability of beams with rectangular cross-section whose constitutive material has high admissible
strains is significantly lower than circular beams.
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Figure 5.4: Transmission system cross-section: components that rotate at the same
angular velocity are shaded with the same colour.

Figure 5.5: Low-level motor control of the prototype.

according to Design 3. The transmission working principle is the following (see
Fig. 5.3): a rotation of the shaft S1 causes an angular displacement of pulley P1A.
A synchronous belt transmits the rotation of P1A to the pulley P2A. Similarly,
shaft S2 actuates pulleys P1B, P1C and synchronous belts transmits the rotations
to pulleys P2B, P2C , respectively. A set of three concentric shafts (see Fig. 5.4) is
used to transmit the rotation of the pulley to the beam clamps (named CA, CB, CC).
Shaft SA connects pulley P2A to CA and, in a similar fashion, shafts SB, SC connects
pulleys P2B, P2C to CB, CC , respectively. Since P2B, P2C rotate synchronously, also
CB, CC , display the same angular motion. The proximal section of the inner chain
is installed on CA, while the proximal sections of the outer chains are placed at
CB, CC .

Finally, a dSPACE 2018-B board completes the automation, controlling the DC
motors. The low level control scheme is illustrated in Fig. 5.5, and it is composed by
a pair of encoders, a joint-space trajectory planner, a PID regulator, and an error-
to-tension converter with saturation limits included. Incremental encoders ENX10
read the current motor angles with a sampling frequency of 200 Hz. Then, the
planner receives the user-defined final angles, and a rest-to-rest 5th order polynomial
trajectory is build to reach the final angles by starting from the current position in
a user-defined time. At each sampling step, the planner provides a target angle to
be reached by the motors. The PID controller compares the target angle and the
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(a) Prototype Modelling Schemat-
ics (b) Derivation of distributed parameters

Figure 5.6: Prototype Modelling: schematics of the simplified prototype represen-
tation (a), and derivation of the distributed coefficients for the flexible link (b).

current angle to calculate the PID error. The PID regulator parameters are selected
according to the Ziegler-Nichols empiric procedure. An error-to-tension converter
provides the tensions value to be supplied to the motors. In order to avoid too high
tension values, a tension saturation is included in the error-to-tension converter.

5.2 Prototype Modelling

This Section describes the peculiarity of the modelling strategy employed for this
prototype. As a modelling technique, the assumed strain mode approach of Sec. 2.3.1
is used for its good tradeoff between accuracy and computational cost. However,
the prototype’s flexible links are made by several flexible beams arranged in parallel,
and Sec. 5.2.1 proposes a specific modelling approach. Moreover, since the prototype
is theoretically planar, additional details on the validity of a model based on planar
displacement are reported in Sec. 5.2.2.

5.2.1 Distributed Material Coefficients Computation

The specific design of the flexible chains needs to be accounted for in the robot model
(Fig. 5.6a). Each chain comprises a rigid base attached to the motor shaft, rigidly
rotating with it, some flexible beams fixed to the motor shaft, several connecting
constraints between the flexible beams, and finally another rigid tip attached to
the EE revolute joint. As previously mentioned, connecting constraints increase the
robot stiffness in the orthogonal direction to the motion plane. However, accounting
for their effect in the robot model is not trivial. Each beam and each connecting
constraint could be simulated using the assumed mode approach [22], leading to
computationally expensive models. Alternatively, other modelling strategies may
be used: piecewise constant curvature approaches [7], or piecewise constant strains
[85] fit well, but they may require a large number of elastic coordinates. Thus,
each flexible chain is considered as a single equivalent beam (Fig. 5.6a) modelled
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using the assumed strain mode approximation [22]. In this way, the number of
elastic variables in qe necessary to represent the flexible chains is reduced while
simultaneously considering the effect of connecting constraints.

To represent each flexible chain as a single equivalent beam, it is necessary to
calculate an equivalent matrix KBT (Eq. (2.12)) that represents the overall effect
of several beams in parallel connected by the intermediate constraints. Assuming
linear isotropic elasticity of the equivalent beam, rules of springs in series and in
parallel are used to evaluate two flexural stiffness and the torsional modulus for each
flexible chain. As shown in Fig. 5.6b, the flexible chain is modelled as a series of
flexible segments, with s “ 1, ¨ ¨ ¨ , nb indicating the index of each segment, and nb the
number of segments. Segments are assumed to have the same length Ls “ L{nb and,
since the beams have circular cross-section beams, Ix “ Iy “ I. Let us consider the
inner chain made by four links: assuming the width of the intermediate constraints
on the z direction to be negligible, the flexible chain is equivalent to four beams in
parallel, and kx is given by:

kx “
4ÿ

i“1

kxi “ 4
EI

L3
; kxi “ EI

L3
(5.1)

After kx, let us consider ky: under small deformation assumptions2, each segment is
equivalent to four parallel beams clamped at both ends. Thus, the stiffness of each
segment kys can be simply obtained as:

kys “ 4
12EI

L3
s

“ n3
b

48EI

L3
(5.2)

and the overall stiffness ky is the stiffness of nb elements in series:

1

ky
“

nbÿ

s“1

1

kys
ñ ky “ n2

b

48EI

L3
(5.3)

The computation of the torsional stiffness is not as straightforward, and it is detailed
below. First, let us consider Fig. 5.6b, where h is the distance between the beams,
assumed to be equal for each of them. Due to the symmetry of the system, we can
obtain the kzs of s-th segment by considering only half system:

kzs “ 2kb (5.4)

where kb is the contribution of two beams. In order to characterize the torsional
stiffness, it is necessary to relate the torsion angle θ to the external moment M . An
external moment M is equivalent to two forces F1, F2 applied to the beams, that is:

M “ F1d1 ` F2d2 (5.5)

where d1, d2 are the beams distances to the link centerline (see Fig. 5.6b). Then, by
the application of F1 and F2, the beams display tip displacements x1 and x2, respec-
tively. By considering beams as clamped at both ends, assuming small deformations

2Please note that small deformations do not implicate small displacements.

100



5.2. Prototype Modelling

and the local beam torsion over its own axis to be negligible, F1, F2 are proportional
to the tip displacements x1, x2 as follows:

F1 “ 12EI

L3
s

x1;F2 “ 12EI

L3
s

x2 (5.6)

By inserting Eq. (5.6) into Eq. (5.5):

M “ 12EI

L3
s

px1d1 ` x2d2q (5.7)

Since the prototype is nominally planar, it is legitimate to consider the torsion angle
θ on each segment to be small. Thus, the displacements x1, x2 can approximate by
considering the portion of circurmference depicted by d, θ, that is x1 » d1θ, x2 » d2θ.
Then, by introducing d1 “ h{2, d2 “ 3h{2, results in:

M “ 30EI

L3
s

h2θ (5.8)

and kb by the definition of the torsional stiffness, kb results in:

kb “ M

θ
“ 30EI

L3
s

h2 (5.9)

by inserting Eq. (5.9) into Eq. (5.4):

kzs “ 60EI

L3
s

h2 “ n3
b

60EI

L3
h2 (5.10)

Then, kz is the stiffness of nb torsional springs in series, that is:

1

kz
“

nbÿ

s“1

1

kzs
ñ kz “ 60n2

bh
2EI

L3
(5.11)

Finally, KBT is obtained by normalizing over L:

KBT´in “ EI diagp4, 48n2
b , 60n

2
bh

2q (5.12)

where the subscript pqin individuates the inner chain with four beams and diag the
3ˆ3 diagonal matrix whose entries are placed over its principal diagonal. Similarly,
the stiffness of a single outer chain KBT´out is:

KBT´out “ EI diagp2, 24n2
b , 12n

2
bh

2q (5.13)

By looking at the expressions of KBT´inn,KBT´out, it is clear that adding con-
necting constraints increases the robot stiffness in the direction orthogonal to the
motion plane. Also, since the torsion that acts on each beam is neglected, the
equivalent parameters depend on Young’s modulus only: this parameter should be
identified appropriately to obtain accurate results.
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(a) Young’s’s modulus setup (b) Strain limit setup
(c) Cross-secton of the
strain-limit setup

Figure 5.7: Experimental benchmarks. Figure (a) illustrates the Young’s modulus
estimation setup, Figure (b) shows the strain limit estimation setup and Figure (c)
gives details on the strain limit estimation setup.

5.2.2 Remarks on Planarity Assumptions

The proposed prototype (Fig. 5.2) is theoretically planar, and using a planar model
to simulate it appears legitimate. A planar model brings mathematical simplicity
and a reduced number of variables to be considered [80]. However, as shown later
with experiments, a planar model neglecting out-of-the-plane phenomena is inade-
quate to assess equilibrium stability limits and, ultimately, the workspace size. This
Section highlights the most relevant differences between a spatial model and a planar
CPR model.

Let us consider Fig. 5.6a. For a prescribed CPR motion plane, a planar CPR

model assumes that:

• the cross-section of each beam and the EE only perform planar displacements
belonging to the reference plane;

• the cross-section of each beam and the EE rotate about an axis orthogonal to
the reference plane;

• all the forces belong to the reference plane, and all the torques are orthogonal
to the said plane only;

If these assumptions hold, it is legitimate to use a simplified model assuming planar
model displacements for the solution of the FGSP and IGSP . The interested reader
is addressed to Appendix A.2 for the detailed description of the assumed strain
mode approach in a planar case. A major advantage of using a planar model is the
reduced number of discretization variables employed. When using Eq. (2.34), the
three components of u need to be interpolated with assumed mode while, in a planar
model, only a single scalar component u P R is to be discretized. Consequently,
Eq. (2.23) is formulated equivalently, but the number of equations reduces since
the dimension of x reduces. Singularity conditions and the equilibrium stability
assessment are performed in the same fashion in a planar or spatial model but with
different dimensions of T1,T2 and Hr.
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5.3. Robot Analysis

5.3 Robot Analysis

In this Section, material characterization and JS/WS evaluation of the proposed
prototype are described. To obtain accurate JS/WS predictions, model parameters
should be identified appropriately.

5.3.1 Material Characterization

While robot geometric parameters can be directly measured with limited uncer-
tainty, material parameters are affected by greater variability. Therefore, this sub-
section focuses on material parameters calibration. It is well known from material
science that standardized tests for fibreglass may be conducted to evaluate Young’s
modulus E, and the strain limit ϵmax [167]. These experimental setups require com-
plex and expensive equipment that may not be available. On the other hand, a
simple model-based bending test may be conducted for flexible beams to identify at
least E [18], [168], [113]. In this test, a clamped beam is subjected to several known
loading conditions, and Young’s modulus is selected as the one that minimizes the
error between model predictions and experimental measures (Fig. 5.7a). To this end,
nL loads are applied to the tip of a clamped beam. Being j “ 1, ¨ ¨ ¨ , nL the index
representing the j -th different load condition, pej is the experimentally measured
tip deflection, and pmj the model predicted tip position, which depends on E. The
Young’s modulus is found by solving the nonlinear least squares problem [113]:

E “ argminE

nLÿ

j“1

}pmj ´ pej}22 (5.14)

or, equivalently, as the solution of the following nonlinear equations:

GpEq “ B
BE

nLÿ

j“1

}pmj ´ pej}22 “ 2
nLÿ

j“1

ppmj ´ pejqT Jmj “ 0 (5.15)

with Jmj “ Bpmj
BE

. The terms pmj,Jmj depend on the selected beam model: in this
work, pmj, and Jmj are obtained thanks to the use of the assumed strain mode
approach of [22], but their expression is not reported for brevity. The Young’s’s
modulus evaluation is performed with ten different beams, and each beam was sub-
jected to nL “ 20 different load conditions. As shown in Fig. 5.7a, a known tip load
was applied to the beam, and the corresponding tip position pej was measured with
a measurement grid. The resulting Young’s modulus was determined as E “ 36.1
GPa, in agreement with the provider range of r25, 40s GPa.

Since measurement errors may potentially influence the calibrated value, a method-
ology to estimate how a measurement error is reflected on the calibrated E is pro-
posed. Being pmes “ rpm1, ¨ ¨ ¨ ,pmi, ¨ ¨ ¨pmns P R

2nL the vector that collects the
measurements, linearizing Eq. (5.15) yields:

BG
BEdE ` BG

Bpmes

dpmes “ 0 (5.16)
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with:

BG
BE P R ;

BG
BE “ 2

nLÿ

i“1

ˆ
JT
miJmi ` ppmi ´ peiqT

BJmi

BE

˙
(5.17)

BG
Bpmes

P R
1ˆ2nL ;

BG
Bpmes

“ ´2 rJm1, ¨ ¨ ¨ ,Jmi, ¨ ¨ ¨ ,Jmns (5.18)

By further manipulations, dE simplifies as:

dE “ ´
ˆBG

BE

˙´1 ˆ BG
Bpmes

˙
dpmes “ Wdpmes (5.19)

The matrix W P R
1ˆ2nL correlates dE to dpmes, Assuming W as deterministic,

and assuming each component of pmes to be affected of a measurement error with
normal distribution N p0, σ2

xq, the Young’s modulus error follows a normal distribu-
tion N p0, σ2

Eq, where σE [169]:

σE “
?
WWTσx “ wσx (5.20)

By considering the measurements used for the Young’s modulus calibration, w “
12.3 ¨10´2GPa

mm
, and w represent how a measurement error is projected on a variation

of the calibrated E. For instance, a measurement error of 2 mm (which is realistic
with the employed methodology) results in a variation of 0.246 GPa of E, which is
less than 1% of the computed values of E. Thus, the simple methodology employed
fits the system at hand, which would not significantly benefit from more accurate
tip position measurements.

The second material parameter to be evaluated is the strain limit ϵmax, which
will be used during the JS/WS evaluation to verify that no leg rupture will occur.
As before, instead of performing standard tests, a simplified procedure that can
be easily reproduced for fragile materials is proposed. The setup is represented in
Fig. 5.7b: a flexible beam of radius r is placed between a V-shaped component and
a tool with a circular tip of radius R (see Fig. 5.7c). The tool is pressed onto the
beam, which then assumes the same curvature of the tool u “ 1{R, where pressed.
Therefore, the strain on the constant curvature portion is:

ϵ “ ru “ r

R
(5.21)

To estimate ϵmax, the beam is tested with several tools characterized by decreas-
ing R until a brittle fracture of the beam occurs. Then, the last value of R where
the beam deforms without damage is used to compute ϵmax with Eq. (5.21). This
procedure is performed with the same beams used for the Young’s modulus cali-
bration, and we obtained ϵmax “ 2.75%, which is in accordance with the provider
specification of ϵmax ě 2%. Please also note that this simplified procedure ensures
an underestimation of the real ϵmax: a finite number of tools is used, and the exact
ϵmax is only approximated by the last value of ϵ where the beam deforms without
damage. In the case more accurate characterization of ϵmax is required, which is not
our case, standard tests are recommended [167].
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(a) Cartesian Workspace (b) Jointspace Range

Figure 5.8: Jointspace and Cartesian workspace obtained by using planar dis-
placements assumptions. The Cartesian workspace is represented in (a), and the
jointspace in (b). Stable and unstable configurations are depicted in blue and yel-
low, respectively. Type-1 singularities are shown in red, and Type-2 singularities in
black.

5.3.2 Joint space and Cartesian workspace Analysis

Once the robot model is established and the material parameters identified, we can
evaluate the robot motion capabilities in terms of JS/WS computation. Several
phenomena define the JS/WS limits, and in this Chapter the following phenomena
are considered:

• Singularities. As explained in Section 2.2.4, singularities define the JS/WS

boundaries. A configuration is considered singular if the inverse condition
number of T1 or T2 is below a defined threshold (10´5 in our case)3;

• Equilibrium stability. Stability is checked by looking at the positive definite-
ness of Hr;

• Strain limits on the flexible links, evaluate if the strain on each leg does not
exceed ϵmax “ 2.75 %.

The results of the JS and WS of our prototype are reported in Figs. 5.8,5.9. The
evaluation is performed by considering planar displacement assumptions (Fig. 5.8)
and by using a full spatial model (Fig. 5.9). The discretization through assumed
mode is performed by using four modes on each allowed deformation mode, and
thus m “ 12 ¨ 3 for the spatial model and m “ 4 ¨ 3 for the planar model. Gravi-
tational loads such as EE weight and beams distributed weight are considered. No
configuration exceeded the strain limit of ϵmax “ 2.75 %.

First, let us consider the case where planar displacement assumptions are in-
troduced in the robot model: Fig. 5.8a illustrates the WS , and Fig. 5.8b the JS .
Region 1 is a region where the robot assumes stable configurations. Singularity
curve T1a, that is, a Type-1 singularity where T1 is degenerate with A and U full
rank, delimits 1 from one side and represent the external WS boundary (Fig. 5.8a):

3Matrix T1,T2 have nonhomogeneous units: the use of the inverse condition number is valid as
long as it is intended to detect the degeneracy of the corresponding matrices, and not to analyze
robots performances.
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(a) Cartesian Workspace (b) Jointspace Range

Figure 5.9: Jointspace and Cartesian workspace obtained using a full spatial model.
The Cartesian workspace is represented in (a), and the jointspace in (b). Stable
and unstable configurations are depicted in blue and yellow, respectively. Type-1
singularities are shown in red, and Type-2 singularities in black. Singularities, where
U is degenerate, are plotted in green.

there is no solution to the IGSP at each point of T1a, and the robot EE cannot
exceed T1a with imposed EE position. Singularity curve T2a is a Type-2 singu-
larity where T2 is degenerate with P and U full rank, and it defines the inner JS

limits (Fig. 5.8b): at each point of T2a there exists no static solution to the FGSP

and, by crossing T2a, the robot equilibrium becomes unstable [56]. Between T1a
and T2a, there exists a small stable region named 2 (magnified in Fig. 5.8b) where
the robot equilibrium is stable. These configurations can be reached by command-
ing the robot joints, but region 2 cannot be reached by imposing the EE position
since T1a cannot be crossed with the imposed EE position. On the other side, the
singularity curve T2b, which delimits the JS limits, is a parallel singularity where
T2 is singular. Singularity curve T2b encircles a small WS region named 3 where
the robot equilibrium is unstable4.

Second, the case where a full spatial model is used is considered: the WS

and the JS are illustrated in Fig. 5.9a, Fig. 5.9b, respectively. Singularity curve
T1a, T2a, T2b are equally predicted by a model with planar displacement assump-
tions and by a full spatial model. However, the use of a full spatial model reveals
an additional singularity curve named TL, which is a curve where both T1 and T2

are singular because U is singular. The singularity curve TL defines a new region
4 , where the spatial model predicts an unstable equilibrium, and the extension of
the stable region 1 is consequently reduced.

For each point inside 4 , both planar and spatial model predicts the same robot
configuration in terms of qa,x, but the equilibrium stability is predicted differently.
This discrepancy between a model with planar displacement assumptions and a full
spatial model is remarkable and, to the best of our knowledge, identified for the
first time in CPRs . Thus, experiments are conducted to verify which simulation
prediction is realistic.

4Since T2 defines the JS limits, 3 is not visible in Fig. 5.8b
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Figure 5.10: The experimental setup used for experiments.

5.4 Experiments

The aim of this Section is to experimentally validate the analysis conducted in
Sec. 5.3 about the JS/WS prediction of the proposed prototype. First, the question
of whether a model with planar assumptions is adequate or not to model our proto-
type is addressed. Then, the experimental reconstruction of singularity curves that
delimit the prototype range of motions, namely T2a and TL, is performed by com-
paring the simulation with experimental data to assess the accuracy of the model
prediction.

To acquire experimental data, the experimental setup illustrated in Fig. 5.10
is illustrated. A fixed camera was used to record images of the Charuco Board
marker attached to the EE , and these pictures were then processed using an OpenCV
Python library [170] to reconstruct the EE pose. For each reconstructed pose of
the EE , the motors’ angular position was also logged, assuming the motors’ PID
controller steady-state error to be negligible.

5.4.1 JS and WS verification

In this subsection, the correctness of the JS/WS simulation performed in Sec. 5.3
is verified. To do this, the robot is moved in several stable configurations with
EE positions equally distributed over the WS , and motor angles and EE positions
at each configuration are stored. Also, the robot is moved to reach exterior WS

limits by moving the EE as far as possible from the motor axis and inner WS

limits by moving the EE toward the motor axis. Figures 5.11, 5.12 display the
superimposition between experimental data and simulations. Experimental joint
angles are superimposed over the computed JS , while measured EE positions over
the theoretical WS . The model with planar displacements assumptions is used in
Figs. 5.11a, 5.11b and the full spatial model is employed in Figs. 5.12a, 5.12b.

By looking at Fig. 5.12, experimental data qualitatively agrees with the simu-
lations obtained by using a full spatial model is used, while the experiments are
in disaccordance with a model that employs planar displacement assumptions. In
particular, it is possible to state that the stable motion capabilities of the robot
are delimited by singularity curves T2a, TL. While T2a is equally predicted by
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(a) Jointspace Range, planarity assumptions
(b) Cartesian Workspace, planarity
assumptions

Figure 5.11: Superimposition between theoretical and experimental data. Results
for the model with planar displacement assumptions are reported in (a) for the
jointspace range and (b) the Cartesian workspace. Stable and unstable configura-
tions are depicted in blue and yellow, respectively. Type-1 singularities are shown
in red, and Type-2 singularities in black. Singularities, where U is degenerate, are
plotted in green.

both models, TL is only visible by using a spatial model. An analogy between the
constraint singularities appearing in rigid-link lower-mobility parallel robots [171],
and the singularity curve TL is noticeable. For some rigid-link lower mobility par-
allel robots, constraint singularities do not appear in the reduced kinematics model,
which neglects the possibilities of the robot platform to move along certain (a priori)
constrained directions of the space. They may be found if and only if the complete
static-equilibrium model, allowing all possible motions in 3D, is analyzed. Analo-
gously to what happens for these constraints singularities, singularities characterized
by the curve TL in the present work may be observed if and only if the full (spatial)
kinemato-static model of the robot is analyzed.

In the next Sections, singularity curves T2a and TL are analyzed separately, to
understand the physical phenomena happening when crossing singularities and to
assess the accuracy of our equilibrium stability reconstruction.

5.4.2 Exterior WS boundary

The exterior WS boundary is defined by singularity curve T2a, which is a Type-
2. As theorized in [56], Type-2 singularity delimits stable-to-unstable transitions.
In particular, it is experimentally observed that T2a is associated with a snapping
phenomenon5. When quasi-statically reaching a singular configuration, a non-null
motion of the EE occurs even though the motors are braked, and the robot dynam-
ically snaps, as shown in Fig. 5.13. The snapping motion occurring about the T2a
curve belongs to the motion plane: this is reasonable since both planar and spatial
models equally predicted the phenomenon. To reconstruct the T2a curve, the robot
is placed in stable configurations as close as possible to the stability limit. The

5See the accompanying video of [158], min.0 sec.7, available at https://doi.org/10.1016/j.
mechatronics.2023.103064
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(a) Jointspace Range, full spatial model
(b) Cartesian Workspace, full spa-
tial model

Figure 5.12: Superimposition between theoretical and experimental data. Results
for the spatial model are reported in (a) the jointspace range and (b) the Cartesian
workspace. Stable and unstable configurations are depicted in blue and yellow,
respectively. Type-1 singularities are shown in red, and Type-2 singularities in
black. Singularities, where U is degenerate, are plotted in green.

(a) (b) (c)

Figure 5.13: Snapping phenomenon at the T2a curve: when quasi-statically reaching
the singular configuration (a), the robot dynamically snaps (b), and it reaches a new
stable configuration (c).

motor angles are slowly adjusted to move near T2a, aiming not to cross it. Once
the robot snaps, the joint values and the Cartesian configuration prior to snapping
are recorded as JS or WS border points. Some examples of these configurations
near the T2a are depicted in Figs. 5.14a, 5.14b, 5.14c.

To assess the accuracy of our equilibrium stability prediction, 38 different config-
urations are tested near T2a, with EE positions equally distributed over theWS . For
each test, qexp,pexp, namely the experimental motor angle and the camera-acquired
EE position where the singularity happens, are acquired. Also, qt is introduced
to represent the theoretical motors angles where the instability should happen: qt

is defined as the point that lies over T2a closest to qexp. Finally, pt defined the
Cartesian point that corresponds to qt (see Fig. 5.15 for a graphical illustration).
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(a) (b) (c)

Figure 5.14: External border reconstruction. Three different configurations close to
the singularity curve T2a are illustrated.

Figure 5.15: Graphical representation of the variables necessary for the errors defi-
nitions.

For each configuration, the following errors are defined:

eq “ }qexp ´ qt}2 (5.22)

ep “ }pexp ´ pt}2 (5.23)

where eq, ep are named motor angles error and EE position error, respectively. Table
5.1 summarizes the results: a mean eq “ 2.68˝ is obtained, which corresponds to a
mean ep “ 23, 13 mm (4.10 % w.r.t. total link length of 564mm).

The causes of error are numerous: hardware inaccuracies (e.g., friction, belt
elasticity, gearbox clearance) and model errors (such as parameter uncertainties,
distributed parameter assumption, and discretization inaccuracy). To investigate
the discretized model errors, the vector pm, that is the EE position obtained by
solving the FGSP with motor angles qexp (see Fig. 5.15), is computed. Additionally,
the error em is defined:

em “ }pexp ´ pm}2 (5.24)

where em represents the model error. The mean value of em, obtained with the use
of four assumed modes [56], is 18,56 mm (3,29 %), which is comparable to ep. To
exclude the discretization model by the causes of inaccuracy, the em obtained by
the shooting-based model of [18],[172] is compared with the one obtained with the
assumed mode approach [128]. By solving the FGSP over each qexp, the model of
[18] results in a mean em “ 17,71mm, comparable to the results of our model.
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eq [
˝] ep [mm] em [mm]

Mean 2,68 23,13 19,37
Median 2,78 17,04 16,46
Max 6,56 67,53 45,50

Dev.Std 1,59 14,28 10,63

Table 5.1: Motor angles, EE position, and model errors for the T2a reconstruction.

(a) (b) (c)

Figure 5.16: Instability at the TL curve: when quasi-statically reaching the singular
configuration (a), the robot EE moves out-of-the-plane (b). The EE is manually
blocked (c) to not brake the robots legs.

5.4.3 Inner WS boundary

The inner WS boundary is defined by singularity curve TL, where both T1,T2 are
rank deficient since U is rank deficient. According to the terminology of [56], this
is a leg singularity. This elastic equilibrium limit is different from the snapping
phenomena of T2a6. Similarly to T2a, a non-null EE motion occurs about the
singularity curve even if the motors are braked. However, the uncontrolled EE

motion results in an out-of-the-plane link deflection and EE motion (as illustrated
in Fig. 5.16). When the robot lies in 1 , the motors rotations generate only in-plane
EE motion but, after crossing TL, the motors rotations generate an out-of-the-
plane EE motion that was not possible before crossing TL (even if this motion is
not controllable).

6See the accompanying video of [158], min.0 sec.38, available at https://doi.org/10.1016/
j.mechatronics.2023.103064

(a) (b) (c)

Figure 5.17: Inner border reconstruction. Three different configurations close to the
singularity curve TL are illustrated.
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eq [
˝] ep [mm] em [mm]

Mean 4,17 27,86 20,59
Median 3,99 26,75 19,50
Max 8,03 44,77 31,52

Dev.Std 1,98 8,44 5,89

Table 5.2: Motor angles, EE position, and model errors for the TL reconstruction.

(a) nb “ 8 (b) nb “ 20 (c) nb “ 50

Figure 5.18: Comparison of WS by varying the number of connecting constraints
(nb). (a) the actual solution, nb “ 8, (b) nb “ 20, (c) nb “ 50. Stable and unstable
configurations are depicted in blue and yellow, respectively. Type-1 singularities are
shown in red, and Type-2 singularities in black. Singularities, whereU is degenerate,
are plotted in green.

Different configurations (22) are tested with the EE uniformly placed on TL (see
Figs.5.17a, 5.17b, 5.17c for some near-singular configuration examples). As in the
previous case, the focus is directed on the motor error eq, the EE position error ep,
and the model error em (Table 5.2 summarizes the results). A mean eq “ 4.17˝,
which corresponds to a mean ep “ 27.86 mm (4.94 % w.r.t. total link length of
564 mm), is obtained.

As for T2a, the discretized-model error is investigated: the mean values of em,
obtained with the use of four assumed modes [128], is 20,58 mm (3,65 %). A similar
result is obtained with the shooting-based model of [18], with a mean error of em “
19.11 mm (3,39 %).

5.5 Discussion of the results

Globally, a significant agreement between the experimental data and the equilibrium
stability prediction provided by a full spatial model is obtained, as qualitatively
illustrated in Fig. 5.12. In particular, singularity curve TL is correctly predicted
by a spatial model only: this is reasonable since a planar model disregards out-of-
the-plane phenomena. Although planar CPRs are frequently analyzed with planar
models ([78],[80],[38]), this chapter clearly showed that planar models are insufficient
in predicting stability limits, and thus JS/WS limits of such robot.

The experimental reconstruction of T2a and TL curves confirm the accuracy of
our equilibrium-stability prediction approach since the difference between theoretical
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and experimental motor angles at singularities (eq) is very low (ď 5˝). The EE

position error ep, less than ď 5% of the length of the link, is acceptable considering
the current state-of-the-art (see [113]). As causes of errors, model simplification
is one of the possible reasons, but it should be primarily considered that all the
measurements are conducted in the proximity of singular configurations, where any
small error (e.g. belt elasticity, gearbox clearance) may be possibly reflected in
significant variations of the configuration variables. The model accuracy is tested
in several stable positions far from singularities (see Fig. 5.12, stable points), and
the average model error with four assumed modes is em “ 12.81 mm (2.27 % of the
length of the link), significantly lower than 19.37 mm and 20.59 mm of configurations
near T2a and TL, respectively.

To the authors’ knowledge, this is the first time a singularity of matrix U is
discovered and experimentally verified for CPRs with actuation at their base. In
tendon-driven CPRs , singularities of U were identified in [113]. In that case, de-
generacies of U were associated with leg singularities where multiple tendons were
slack. However, the physical phenomena experienced is different. To better under-
stand what happens in our case, let us consider the forward kinemato-static problem
of Eq. (2.32), here reported for simplicity:

»
–
∆qc

∆qu

∆qe

fi
fl “ ´rP Us´1 pA∆qa ` W∆fpq “ Jk∆qa ` C∆fp (5.25)

where Jk “ ´rP Us´1A P R
pnc`mqˆn is called Jacobian matrix, andC “ ´rP Us´1W P

R
pnc`mqˆ3 is named compliance matrix. When the manipulator approaches the sin-

gularity curve TL, matrix U becomes rank deficient. Then, by inspection of C,
we noted that submatrix Cu relating ∆qu “ Cu∆fp is ill-conditioned, displaying
negligible stiffness in the direction orthogonal to the robot motion plane. This fur-
ther confirms the inability of the model with planar displacement assumptions in the
identification of TL since it fails to detect the lack of stiffness in the out-of-the-plane
direction.

As the manipulator displays negligible stiffness in the direction orthogonal to
the robot motion plane when approaching TL, it is interesting to explore how the
stiffness of the links influences this phenomenon. To do this, the number of con-
necting constraints nb is varied, increasing the torsional stiffness of the beams (see
Eq. (5.12), (5.13)). Starting from the current solution with nb “ 8, by increasing the
number of nb, the unstable WS area reduces, as shown in Fig. 5.18. In particular,
by selecting nb ě 50, almost all the Cartesian WS is theoretically reachable.

5.6 Conclusions

This chapter addressed the experimental validation of equilibrium stability of CPRs
predictions, and it demonstrated the inability of a model based on planar displace-
ment assumptions to predict the equilibrium stability of a planar CPR. A new
planar CPR was proposed for the scope. The prototype was designed to be nom-
inally planar and such that no mechanical interference between robot components
could occur. Because of the prototype architecture, a material parameter modelling
methodology for the specific design of the flexible chains employed was originally
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proposed. Finally, a singularity related to out-of-the-plane uncontrolled motions of
the planar CPR is experimentally identified for the first time. The next chapter
further investigates the equilibrium stability assessment of CPRs , by proposing a
performance index to measure the distance to instability.
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Chapter 6

Performance Assessment:
Directional Critical Load Index

Contributions of this chapter: this chapter proposes to use the magnitude of a force

that brings instability to the CR equilibrium as a measure of the distance to instability.

The major advantages of this metric are the intrinsic physical meaning, the practical inter-

pretation of the results and the well-defined unit of the measurements. The proposed index

(named directional critical load index) is based on energetic considerations and discretiza-

tion techniques, including a wide range of currently employed models. Three different case

studies (buckling of straight beams, a two-tube concentric tube robot, and a spatial con-

tinuum parallel robot) illustrate and demonstrate the main results of this chapter. The

contributions of this work has been submitted as a research paper to [173]

A major limiting factor of serial and parallel CR designs is the possibility of
incurring in equilibrium instabilities: the elastic structure of CRs enables possible
stable-to-unstable transitions, which ultimately depends on the CR loading condi-
tions. Thus, stability metrics, measuring the distance to instability, are a potentially
powerful tool for design optimization, trajectory planning and control of CRs . How-
ever, as shown in Sec. 1.4.2, only a few works explored this topic. According to [42],
a good performance metric should i) not involve mixed units of measurement, ii)
admit an analytical expression (to be used for optimization), iii) be bounded in
magnitude, and iv) attain a physical meaning to enable effective comparison and
quantifications. However, except for the two-tube concentric tube robot case in
[104], none of the previously discussed indices ([98], [58]) satisfy these requirements.
In this chapter, the focus is directed toward a methodology for the measurement of
CRs distance to instability. A criterion for said measurement is introduced, which
is based on the magnitude of the force that brings instability to the CR equilibrium;
such criterion has a physical meaning and a well-defined unit (Newton) intuitively,
and it can be analytically computed.

The index proposed in this chapter, named the directional critical load index

(DCLI ), estimates the magnitude of an external load that will cause a stable-to-
unstable transition of the CR when applied in a given direction. The derivation
of the DCLI is based on the energy-based modelling formalism described in Chap-
ter 2, and its formulation can be applied to CRs of different architectures, serial
and parallel alike, as it will be shown in the Case Studies in Sec. 6.3. The for-
mulation of DCLI does not depend on the selected discretization strategy, and a
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finite-differences modelling technique (Sec. 2.3.2) is used for its efficacy in com-
puting successive model-equations derivatives. However, any discretized modelling
approaches described in Sec. 2.1.2 could also be used. A major advantage of the
DCLI is its well-defined measurement unit (Newton) and its intuitive lower and crit-
ical bound zero: these characteristics lead to practical physical interpretations of the
index results. Although it would be beneficial to have an upper bound of DCLI ,
there may exist no force in a given direction, namely a force of infinite magnitude
to cause the CR instability, and this is further confirmed in Sec. 6.3.

In this chapter, DCLI is defined by considering only external forces as a cause
of the CR instability, as they cover many practical cases (e.g. gravitational loads
applied to the EE or at a specific CR location, contacts forces). Moreover, the
derivation of DCLI assumes to know the application point and direction of the
force that causes instability. Although this may seem a limiting factor, guidelines
for selecting the application point and direction of the force may come from the
practical scope of the CR. For instance, when the CR is used for manipulation
tasks, a possible source of instability may be an additional EE load aligned with the
gravity. Finally, the DCLI is computed by investigating the influence of an external
force on the equilibrium stability when the motors are fixed, considering a practical
case where the robot is moved by imposing motor values. In practice, the DCLI

is derived via a linearization of the eigenvalues of the reduced Hessian matrix of
the potential energy. Accordingly, an analytical expression of the external load for
which instability occurs, i.e. for which an eigenvalue vanishes, can be established.
As an additional benefit, the index derivation is based on algebraic computations
only, and differential equations integration typical of OC approaches are avoided
[98], [75].

The chapter is structured as follows. Section 6.1 recalls the energy-based mod-
elling approach by introducing slight modifications useful for the DCLI derivation.
Section 6.2 is devoted to the stability index derivation, and case studies are pro-
posed in Section 6.3 to verify the capability of DCLI to measure the distance to the
instability and to quantify the closeness of DCLI to the exact critical load. Finally,
conclusions and limitations are highlighted in Section 6.4.

6.1 Modelling and Equilibrium Stability Assess-

ment

This section recalls the energy-based modelling approach of Chapter 2 by introducing
slight modifications that simplify the DCLI derivation. In particular, let us consider
the total CRs energy of Eq. (2.17), here reported for clarity:

Vtot “
nbÿ

i“1

Vbeamsi ` Vp (6.1)

where Vbeami
is the i -th beam energy (comprising deformation energy and external

loads acting on the beam), nb is the number of beams, and Vp is the platform energy.
Since the index proposed in this chapter estimates the magnitude of an external load
that will cause a stable-to-unstable transition of the CR, let us consider an additional

external concentrated force f applied at an application point Papp, denoted by the
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(a) (b)

Figure 6.1: Illustration of the application point papp. (a) force applied at the plat-
form centre (pp), (b) force applied at the i -th beam on a generic coordinates sapp
(pipsappq

position vector papp, whose energetic contribution is:

Vf “ ´fTpapp (6.2)

For instance, when the force is applied to the EE , papp “ pp (Fig. 6.1a) while, if f
is applied to a specific point of the i -th beam, papp “ pipsappq (Fig. 6.1b). For the
derivation of the proposed index, it is convenient to introduce f and df , which are
the magnitude and the direction unitary vector of f , respectively. Thus, Eq. (6.2)
becomes:

Vf “ ´fTpapp “ ´fdT
f papp “ ´fh (6.3)

with h “ dT
f papp. Thus, the term Vf is added into the total potential energy Vtot:

Vtot “
nbÿ

i“1

Vbeamsi ` Vp ` Vf (6.4)

Once the total potential energy is defined, the derivation of the CRs geometrico-
static model is performed as reported in Chapter 2: qa P R

n collects the n actu-
ated variables, qc the n controlled variables, qu the uncontrolled platform variables.
Then, Vtot of Eq. (6.4)) is discretized with a finite set of m variables qe P R

m, and
vector x “ rqe,qu,qcs P R

m`nc is defined accordingly to Sec. 2.2.3, where nc is 3
for the planar case, and 6 for the spatial case. Since the goal is to evaluate the
influence of an external load on the equilibrium stability for fixed motor values, a
solution to the forward problem is computed by considering Lagrange conditions
and Eq. (2.21), here reported for clarity:

F “

$
’&
’%

∇xVtot ` ∇xΦ
Tλ “ 0

Φ “ 0

qa ´ qd
a “ 0

(6.5)

with qd
a desired actuation values, and λ P R

nφ being Lagrange multipliers which
enforce the constraints Φ. The Jacobian matrix of F that can be supplied to the
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solver to speed up the computation was previously defined in Eq. (2.24), and it is
here reported for later convenience:

J “ BF
By “

»
–
A1 U1 P1 ΛT

A2 U2 P2 0
I 0 0 0

fi
fl (6.6)

Once a solution of Eq. (6.5) is found, the equilibrium stability is checked by verifying
the positive definiteness of Hr introduced in Sec. 2.2.4:

Hr “ ZTHZ; Hr P R
nzˆnz (6.7)

where nz “ nc ` m ´ nφ, matrix Z is provided in Eq. (2.28), and H in Eq. (2.33).
In practice, equilibrium stability is assessed by verifying that all eigenvalues of Hr

are strictly positive. Being σk the k -th eigenvalue of Hr, the configuration is stable
if the minimum eigenvalue σmin is positive:

σmin “ min
k

pσkq ą 0 (6.8)

6.2 Directional Critical Load Index

This section derives the DCLI focus of this chapter. First, the distance to stability
index is originally proposed in Section 6.2.1. Then, the index computation is dis-
cussed in Section 6.2.2, while Section 6.2.3 illustrated how to practically compute
Z of Eq. (2.28). In order to assess the benefits and limitations of the DCLI perfor-
mance quantification, Section 6.2.4 proposes a numerical approach that, at a greater
computational cost than DCLI , calculates the exact load that causes instability.

6.2.1 Distance to Instability Index

As previously mentioned, the proposed index measures the distance from instability
by investigating the influence of an external load f on the equilibrium stability of a
configuration obtained by the solution of Eq. (6.5), and thus for fixed motor values1

The force direction df and the application point papp are considered as known and

fixed (see Eq. (6.3)), and the goal is to compute the force magnitude f that causes
instability in a given direction. The selection of df ,papp is guided by the scope of
the robot in order to consider possible scenarios where an external load is applied to
the robot (e.g. an EE load during a pick and place operation, or a possible load on
the CPR leg during a contact). Nevertheless, it is possible to compute exactly the
critical load that causes instability by varying f and solving the FGSP until a value
of f that causes instability is met. This approach is computationally expensive, and
it will be discussed in Sec. 6.2.4. Instead, the scope of this chapter is to provide an
index approximating the exact value of f with further computational efforts.

1It is possible also to measure the influence of an external load on the equilibrium stability of
configurations obtained by the solution of the IGSP . However, there is little practical interest in
the investigation of the case where the values of some controlled variables are assigned: maintaining
fixed the value of controlled variables when varying f in practical cases is not trivial as it requires
complex force-estimation techniques [20]. Instead, it is more frequent for practical applications in
the case of assigned motor values. Thus, only the FGSP solutions are considered in the following.
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To do this, let us consider Eq. (6.8). The value of σk for a given f “ f ‹
k , namely

σ‹
k, can be approximated by first-order Taylor’s expansion of σk around a generic f :

σ‹
k “ σk ` Skpf ‹

k ´ fq (6.9)

where Sk can be obtained as [174]:

Sk “ dσk

df
“ νT

k

dHr

df
νk (6.10)

and νk is the eigenvector associated with the k -th eigenvalue of Hr, namely σk.
Please note that σk, Sk are computed for a given value of f , but their dependence
on f is dropped for simplicity’s sake. To estimate the force magnitude for which
instability occurs, let us compute the value of f ‹

k for which σ‹
k “ 0. This is obtained

by fixing σ‹
k “ 0 in Eq. (6.9), and rearranging its terms as:

f ‹
k “ f ´ σk

Sk

(6.11)

f ‹
k represents a value of f for which, approximately, at least one eigenvalue of Hr

is zero, and thus the matrix is not positive definite anymore. By using Eq. (6.11)
for each k, nz different values of f ‹

k are obtained. Thus, the directional critical load

index (DCLI ) is defined as:

DCLI “ mink

ˆ
σk

Sk

˙
(6.12)

DCLI represents the smallest additional magnitude of f that causes a zero eigenvalue
and, consequently, a limit of the stable equilibrium. DCLI has a well-defined unit
(Newton), and it can be used to measure and physically understand the distance
from the instability, where larger values indicate greater distance. Moreover, it
should be stressed that DCLI is directional since df is known and fixed, and DCLI

represents the additional load applied at papp in a given direction df that causes
instability.

6.2.2 Index Computation

This Section discusses how to compute the DCLI in practice, as several steps are nec-
essary, and differentiating Hr is not straightforward. The required steps to calculate
the DCLI are schematically summarized in Alg. 5, and the detailed methodology
for computing its terms is shown in the following. For a given external load, the
solution of Eq. (6.5) gives the CR configuration. However, the resulting configura-
tion depends on the value of f that is, y “ ypfq. Additionally, after a solution to
Eq. (6.5) is found, matrix J is obtained from Eq. (6.6), and Λ and H, are extracted
as blocks of J without further computations. Then, Z can be computed from Λ, and
Hr is obtained from Eq. (6.7). It is noteworthy that even though there is an infinite
possibility of computing Z, a specific one is required for properly computing DCLI ,
as it will detailed in Sec. 6.2.3. To check the positive definiteness of Hr, an eigen-
value decomposition is performed to get i) the vector σ collecting nz eigenvalues,
and ii) the matrix V whose columns are nz eigenvector. Suppose the equilibrium is
stable (verified by Eq. (6.8)): in that case, the index computation continues. If the
configuration is unstable, the DCLI is not defined.
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Algorithm 5: DCLI computation.

1 ry,Js “ Solve Geometrico-Static Problem;
2 Extract Λ,H from J ;
3 Z “ NullspaceComputation(Λ);
4 Compute Hr “ ZTHZ;
5 rσ,Vs “ Eigenvalue decomposition of Hr;
6 if Equilibrium is Stable then

7 Compute C and By
Bf “ ´J´1C;

8 Compute BH
Bf ,

BZ
Bf ,

BHr

Bf ;

9 for k = 1: nz do

10 σk “ σpkq, νk “ Vp:, kq;
11 Compute Sk “ νT

k
BHr

Bf νk;

12 f‹pkq “ σk
Sk

13 end

14 DCLI = minkpf‹q
15 else

16 DCLI = 0 ;
17 end

Then, Eq. (6.10) requires computing dHr{df : a finite-difference approximation
may be used as a straightforward solution (see [145], Chapter 8, Section 1), but an
analytical formulation for dHr{df can also be derived when using discretized robot
model equations, as shown in the following. Employing a finite-difference approx-
imation for dHr{df is simple but time-consuming, and, depending on the selected
finite-difference approximation strategy, multiple FGSP solutions are required at
the cost of higher computational time. Instead, an analytical formulation of dHr{df
is preferred when DCLI has to be computed several times, such as for workspace
characterization. To obtain an analytical formulation of dHr{df , the use of the
product derivative rule on Eq. (6.7) results in:

dHr

df
“ dZT

df
HZ ` ZT dH

df
Z ` ZTH

dZ

df
(6.13)

The differentiation of H is addressed here first, and the computation of dZ{df is
addressed in Sec. 6.2.3. Matrix H is computed after the solution of Eq. (6.5) and,
in general, H depends on ypfq and f , that is:

H “ Hpypfq, fq (6.14)

Consequently, the total derivative of H w.r.t. f is obtained as the sum of two terms:

dH

df
“ BH

Bf `
n`nc`m`nφÿ

i“1

BH
Byi

Byi
Bf (6.15)

Since L “ Vtot ` ΦTλ and Vf only explicitly depends on f (see Eq. (6.3)), the first
term of Eq. (6.15) simplifies as follows:

BH
Bf “ B

Bf

ˆ B2L

BxBx

˙
“ ´

ˆ B2h

BxBx

˙
(6.16)
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where h “ dT
f papp is previously defined in Eq. (6.3). Instead, the term BH{Byi can

be computed analytically, and its expression depends on the specific discretization
technique employed. Due to its lengthy expression, its formulation is reported in
Appendix C in the case of the finite-difference modelling approach of Sec. 2.3.2 being
used.

To compute the second term of Eq. (6.15), it is necessary to evaluate By{Bf , and
the implicit functions theorem is used for the scope. Let us consider Eq. (2.21): F
is a set of equations in the unknowns y and dependent on the parameter f . F is
assumed to be a set of continuous and differentiable functions w.r.t. y, f . Given
a pair py, fq that satifies Fpy, fq “ 0, and assuming BF{By full rank, there exists
a unique function r : R Ñ R

n`nc`m`nφ such as y “ rpfq. Moreover, the partial
derivative of r w.r.t. f (and thus By{Bf) is given by:

Br
Bf “ By

Bf “ ´
ˆBF

By

˙´1 BF
Bf “ ´J´1C (6.17)

where J is defined in Eq. (6.6), and C “ BF{Bf “ r´∇xh;0s.

6.2.3 Nullspace Computation

This subsection introduces a specific computation methodology of Z, which allows
for a streamlined derivation of BZ{Bf , that is ultimately needed in Eq. (6.13).
Nullspace bases are frequently computed using numerical techniques, such as sin-
gular value decomposition. The resulting nullspace basis is orthonormal, that is,
ZTZ “ I and Z is dense. However, since Z is obtained numerically, this approach
leads to a cumbersome derivation of BZ{Bf , which depends on the specific numer-
ical algorithm employed, and which may not ensure continuity of Z with respect
to variations of f [175]. On the other side, fundamental nullspace basis [176] of-
fers a non-orthonormal alternative that can be computed analytically. Thus, the
analytical formulation of Z enables the possibility to calculate BZ{Bf more easily.

To get a fundamental basis of Z, it is necessary to permute the columns of Λ to
obtain Λp “ ΛP, where P P R

pm`ncqˆpm`ncq is a permutation matrix. The scope of
P is to get a full rank and well-conditioned matrix Λd P R

nφˆnφ from:

Λp “
“
Λd Λu

‰
(6.18)

with Λu P R
nφˆnz . Matrix P can be found by inspecting Λ and identifying a set of

nφ linearly independent columns that form a well-conditioned Λd. However, when
the dimension of Λ increases, no trivial full-rank partition is available in general. As
stated in [177], any choice of P ensuring Λd full-rank is adequate and, by randomly
scanning the columns of Λ until a well-conditioned partition is found, matrix P can
be computed. However, the computational cost of this strategy drastically increases
with nφ. For instance, when using finite-difference techniques for the geometrico-
static modelling, the quaternion-unitarity constraints must be enforced for each
beam’s cross-section, leading to a large value of nφ.

To overcome this issue, a heuristic approach is proposed in the following for the
computation of P. However, other approaches may be equivalently proposed for
the scope. The proposed approach requires scanning nφ times the columns of Λ,
aiming to determine a matrix P that maximizes the inverse conditioning of Λd. A
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Algorithm 6: Permutation Matrix Computation

1 Function rPs = GetPermutation(Λ):

2 ra, bs = size Λ;
3 P “ 0, Λd “ H;
4 for i “ 1 : a do

5 Rv “ 0;
6 for j “ 1 : b do

7 Λm “ rΛdp1 : i, :q,Λp1 : i, jqs;
8 Rvpjq “ inverse conditioning of Λm;

9 end

10 idx = column of Λ where max of Rv occurs;
11 Λd “ rΛd,Λp:, idxqs;
12 Set Ppi, idxq “ 1;
13 Set b “ b ´ 1;
14 Remove Λp:, idxq from Λ;

15 end

16 return

pseudocode of the algorithm is reported in (Alg. 6). First, the algorithm starts by
initializing P “ 0 and Λd “ H. The goal is to select nφ columns of Λ to create a full-
rank and well-conditioned Λd. The algorithm starts by scanning the first row of Λ to
select the term with the higher inverse conditioning, and the corresponding column
of Λ is selected. This column (labelled with idx) is inserted in Λd and removed from
Λ to avoid repetitions. Matrix P is updated accordingly to put the column idx as
the first column of Λd. Then, the second row is considered. For each column of Λ,
a p2 ˆ 2q matrix Λm is obtained by collecting Λd and the considered column of Λ
(see line 12 of Alg. 6). The second column to be put in Λd is the one that maximises
the inverse conditioning of Λm. Matrix P is updated to put the selected column as
the second of Λd. The algorithm proceeds in the same fashion for the next rows by
building Λm, selecting columns that maximise the inverse conditioning of Λm, and
creating P consequently. The algorithm stops when all the nφ rows of Λ have been
considered.

As long as Λd is full rank, a fundamental nullspace basis of Λp is obtained as:

Zp “
„
Zd

Inz

ȷ
(6.19)

with Zd “ ´Λ´1

d Λu. Finally, Z is obtained by permutating the columns of Zp as
done for the rows of Λp, that is Z “ PZp.

To analytically calculate dZ{df , the first step requires to compute dΛ{df . Since
Λ depends on ypfq and not on f explicitly, dΛ{df is expressed as follows:

dΛ

df
“

m`nc`Ne`nφÿ

i“1

BΛ
Byi

Byi
Bf (6.20)

The expression of BΛ{Byi depends on the specific modelling strategy, and its de-
tailed expression is reported in Appendix C.1 for the case of a finite-differences
approximation. Then the derivative of Λd,Λu w.r.t. f are obtained by using P as
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6.2. Directional Critical Load Index

Figure 6.2: Schematics of the numerical approach for the computation of the exact
critical load.

follows:
dΛp

df
“ dΛ

df
P “

„
dΛd

df
,
dΛu

df

ȷ
(6.21)

The term dZp{df is obtained by deriving Eq. (6.19) w.r.t. f :

dZp

df
“ ´

«
dΛ´1

d

df
Λu ` Λ´1

d
dΛu
df

0

ff
(6.22)

where dΛ´1

d {df “ Λ´1

d pdΛd{dfqΛ´1

d . Finally, dZ{df is recovered as dZ{df “ PdZp{df .

6.2.4 Exact Directional Critical Load Computation

The DCLI estimates the magnitude of an external load for which instability occurs.
Except for a few cases where analytical results are available (such as initially straight
beams), the exact load is computed numerically. This section proposes a numerical
approach to compute the exact critical load fCRIT , based on the schematics proposed
in Fig. 6.2. This approach, which requires a higher computational cost than DCLI ,
will be used to quantify how well the DCLI approximated the exact fCRIT .

This section aims to propose a strategy for the identification of the exact value
of f for which Hr has a null eigenvalue, that is, σmin “ 0. For the scope, starting
from f “ 0, the value of f is gradually incremented with a fixed increment δf until
instability occurs. First, the FGSP is solved with a given initial guess y0 and f0 “ 0
to get the configuration y. Then, Hr is built from the output of the FGSP , and
σmin is computed. If σmin ‰ 0, f0 is incremented of a user-defined quantity δf , that
is:

fnew “ f0 ` δf (6.23)

After the force update, the algorithm restarts by repeating the FGSP solution, and
an initial guess for the robot configuration is required. The previous FGSP solution
may be used as an initial guess, but it is convenient to update better y accordingly
to fnew. In this way, at the next iteration, the convergence of the solver is faster
since the given initial guess is in accordance with the new value of f . For the scope,
the tangent vector tf is defined as:

tf “ By
Bf {

››››
By
Bf

›››› (6.24)
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Figure 6.3: Illustration of when solving σmin “ 0 with a root-finding technique may
not be effective.

where By
Bf

is obtained by using Eq. (6.17). Then, tf is used to update y accordingly
to δf :

ynew “ y ` tfδf (6.25)

The values ynew, fnew are used as y0, f0 to solve again the FGSP . The algorithm is
repeated until a value of f is found so that σmin “ 0, or the maximum number of
allowed iterations is reached.

The proposed numerical approach is iterative and, depending on the choice of δf ,
several FGSP solutions are required with a consequent increase in the overall com-
putational cost for the identification of fCRIT . An alternative numerical approach,
aiming at a more efficient computation of fCRIT , employs a nonlinear root-finding
technique (e.g. the Newton method) to identify the value of f for which σmin “ 0,
with σmin being computed at each iteration by solving the FGSP . Although this ap-
proach seems to be more efficient, it may be ineffective: let us consider for simplicity
a Newton method for the solution of σmin “ 0. As shown in Fig. (6.3), starting from
f0, the force update may select a new value of fnew that corresponds to unstable
regions where no FGSP solution is numerically reachable. As illustrated in [56],
passing from positive to negative σmin, there exists a value of f for which σmin “ 0,
that is, fCRIT . This value of f is a stable-to-unstable transition corresponding to
a Type-2 singularity (see Eq. (2.32)), also defining a limit of the FGSP solvability.
Thus, it may happen that no solution of the FGSP is found and incorrect values of
fCRIT are predicted. For this reason, a constant and limited update of f by using
δf is preferred rather than using nonlinear rootfinding techniques.

6.3 Case Studies

This Section proposes three different case studies: initially straight beams and their
elastic buckling (Sec. 6.3.1), a two-tubes CTR with four controlled DoFs (Sec. 6.3.2),
and a spatial CPR with two controlled DoFs (Sec. 6.3.3). These case studies are
selected to illustrate how the proposed formulation of the DCLI can be applied to
different scenarios (passive elements, serial CRs , and parallel CRs). Finite differ-
ences are used [56] as discretization techniques to obtain the geometrico-static model
of Eq. (2.23) for each case study. However, any other discretization technique can
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: Buckling of straight beams: (a) clamped beam with free distal sec-
tion, (b) clamped beam with pinned distal section, and (c) two clamped beams
connected by a passive revolute joint. Then, the values of the DCLI (dotted line)
and σmin (continuous line) are displayed by varying f for the scenario (a),(b),(c)
in in (d),(e),(f), respectively. The decreasing trend of DCLI when approaching the
critical load confirms the correctness of the distance-to-instability measurement.

be used. Even though finite differences do not offer the best performances in terms
of computational time [128], the analytical formulation of Eq. (2.23) considerably
simplifies the computation of Equations (6.15) and (6.20).

6.3.1 Buckling of beams

This Section proposes the analysis of initially straight beam instability and the
comparison of the DCLI with Euler’s critical for the beams buckling to verify the
correctness of the equilibrium stability prediction and the DCLI . For each beam,
DCLI has been computed by performing a finite-differences discretization with Ne “
200. As shown in [80], a planar beam Ne ě 50 ensures sufficient accuracy in the
geometrico-static problems solution. The early work of Euler [94] defined analytical
conditions for the buckling of ideal elastic beams subjected to axial loads. For each
considered beam, L “ 1 m, the cross-section is circular with diameter 2 mm, and
E “ 210 GPa.

First, let us consider a clamped-free beam as illustrated in Fig. 6.4a: the beam
is clamped at the proximal section, initially straight, and parallel to the fixed-frame
x axis. Euler’s buckling formula provides the value of the axial force magnitude f

to be applied at the tip of the beam to cause elastic instability. Under the assump-
tions that shear and extensibility are negligible, the Euler’s critical load fEUL for a
clamped-free beam can be computed as:

fEUL “ EIπ2

p2Lq2 (6.26)
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for the selected beams parameters, fEUL results in 0.407 N. When no load is applied
at the beam, DCLI “ 0.407 N in accordance with fEUL, and the difference between
DCLI and fEUL is negligible up to four digits.

Then, the exact critical load fCRIT is computed by using the numerical algorithm
proposed in Sec. 6.2.4. The force applied at the beam tip is gradually increased with
a δf “ 0.001N, and, for each step, σmin and DCLI are measured. The results of
this computation are reported in Fig. 6.4d. The exact critical load value results in
fCRIT “ 0.407 N, obtained in 407 steps (and thus 407 geometrico-static problem
solutions). In particular, σmin becomes negative and the equilibrium unstable when
the Euler’s load is reached, confirming the correctness of fCRIT . DCLI is computed
at each step of the numerical algorithm, and DCLI correctly measures the distance
from instability: as shown in Fig. 6.4c, when increasing f , the value of DCLI de-
creases, reaching zero at fEUL. Moreover, for each value of f , the sum DCLI ` f is
constant and equal to fEUL: as the beam remains straight and undeformed at each
step, the value of DCLI `f truly represents the critical load. Similar results were
obtained in [75], where the index based on an equivalent integration length gives
the exact beam length for which instability should occur for a given load.

Then, let us consider the beam of Fig. 6.4b: the beam is clamped at the proximal
section, initially straight, parallel to the fixed-frame x axis, and pinned at the distal
section. In this case, the Euler’s critical load is obtained as:

fEUL “ EIπ2

p0.699Lq2 (6.27)

and, with the selected beams parameters, fEUL “ 3.322 N and DCLI “ 3.322. The
difference between DCLI and fEUL is negligible up to four digits. The exact critical
load fCRIT is computed with the numerical algorithm proposed of Sec. 6.2.4: the
value of fCRIT “ 3.322 is obtained with 3322 steps, with δf “ 0.001 N. As shown
in Fig. 6.4e. To confirm the correctness of fCRIT , it is possible to note that σmin

becomes negative when the Euler’s load is reached. As before, DCLI tends toward
zero when σmin decreases, and DCLI ` f is constant and equal to fEUL.

Finally, the case of two clamped beams connected by a passive revolute joint is
considered (Fig. 6.4c). Beams are initially straight and arranged to form an angle
α w.r.t. the x fixed-frame axis (see Fig. 6.4c), and a load f “ rf, 0s is applied to the
passive joint. According to Euler’s formula, the critical load to be applied at the
revolute joint to cause instability of at least one beam is:

fEUL “ 2cospαq EIπ2

p0.699Lq2 (6.28)

By considering the beams parameters and α “ 30˝ DCLI “ Fcrit “ 5.771 N. The
value of fCRIT is computed with δf “ 0.001 N, and the value of σmin becomes
negative exactly at the Euler’s load (see Fig. 6.4f). Thus, fCRIT “ 5.771 N. DCLI
effectively measures the distance from the instability, reaching the zero value at the
Euler’s load. As before, DCLI ` f “ fEUL.

6.3.2 A two tubes CTR with four controlled DoFs

This Section introduces the application of DCLI for a two-tube CTR: CTRs are a
well-known class of CRs where instability occurs [93]. Even though the main focus
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(a) (b)

Figure 6.5: a two-tube CTR. (a) relevant dimensions and variables, (b) a cross-
section of the tubes to highlight the torsion angles.

of this thesis is CPRs , the formulation of this index also encompasses serial-like
CRs , and Appendix E describes how to formulate geometrico-static problems of
CTRs as in Eq. (2.23). The two-tube case is a simple but effective benchmark to
test the DCLI since an analytical condition exists for the stability assessment. A
CTR made by n “ 2 concentric tubes is considered (Fig. 6.5a). A fixed frame F0 is
attached to the robot base, the CTR centerline is parametrized with the coordinate
s, and the index i represents the i -th tube, where i “ 1 is the inner tube, and i “ 2
is the outer tube. Tubes are of length Li (measured from s “ 0) and actuated at
s “ ´βi. The tubes are actuated in translation and rotation: θ0i is the rotation of
the tube’s base, and βi is called transmission length. The CTR energy is obtained
by considering shear-less and inextensible tubes, and the discretization process is
performed by using finite differences, with 50 points for CTR sections from 0 to L2

and from L2 to L1.
As previously mentioned, the two-tube CTR is a well-known situation where

analytical conditions exist for the global stability of the CTR. Assuming planar
precurvature only (u˚

i “ ru˚
ix, 0, 0s), and no external load applied to the robot, the

CTR equilibrium is globally stable if the following inequality is verified [93]:

ζγ “ cotpγq?
γ

ă ζlim (6.29)

where ζγ is computed by the knowledge of γ, defined as follows:

γ “ L2
2u

˚
1xu

˚
2x

k1bk2bpk1t ` k2tq
k1tk2tpk1b ` k2bq

(6.30)

The term kbi is the flexural stiffness, and kti is the torsional stiffness of the i -th
tube. Instead, the term ζlim of Eq. (6.29) is equal to zero in the case β1 and β2 are
assumed to be zero. Equation (6.29) determines conditions for the global stability
of two-tube CTRs , and S-curves were introduced to practically visualize the CTR

motion abilities. S-curves describe the relationship between the base orientations
and the resulting CTR tip orientation, providing an intuitive representation of the
robot motion abilities [93]. First, let us define ϕ0 “ pθ10 ´ θ20q as the rotation offset
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(a) (b) (c)

Figure 6.6: S-curves of a two-tube CTR. σmin is depicted over a globally stable S-

curve, and on a unstable case (b). Instead, for the same unstable case, (c) displays
the value of the stability index of [104].

of the tubes at the base, while ϕL “ pθ1pL2q ´ θ2pL2qq is the rotation offset of the
tubes at L2. Then, S-curves are built by fixing θ20 “ 0, repeatedly solving the FGSP

with ϕ0 P r0, 2πs and measuring ϕL for each ϕ0.
First, the correctness of equilibrium stability prediction is verified by computing

S-curves with no load applied to the robot (f “ 0). Tubes parameters are selected
as E “ 80 GPa, u˚

1x “ 1{0.50 m´1, u˚
2x “ 1{0.70 m´1. The first tube has inner

diameter d1inn “1.0 mm, and outer diameter d1out “1.5 mm, while the second tube
has d2inn “1.5 mm, and d2out “ 2.0 mm. Computing the S-curves for L2 “ 0.4 m
ensures globally stable equilibrium since ζγ “ ´0.164 ă 0. This is confirmed by
the always positive value of σmin, as shown in Fig. 6.6a. Instead, the S-curves for
L2 “ 0.6 m violates the inequality of Eq. (6.29) (ζγ “ `0.242 ą 0), and σmin goes
toward negative values (Fig. 6.6b). Moreover, the observation that S-curves of stable
CTRs are monotonic (the slope of the curve is always positive) motivated [104] to
consider the slope of S-curves as a stability metric. In particular, the stability metric
based on the slope SL is defined as:

SL “ π ´ atan

ˆBϕL

Bϕ0

˙
(6.31)

The index SL has a well-defined unit (radiants), SL ą 0, as long as the equilibrium
is stable and larger values of SL indicate greater distance from instability. Fig. 6.6c
illustrates the values of SL for the case L2 “ 0.6 m, and these values will be later
used to verify the correctness of DCLI w.r.t. state-of-the-art indices, such as SL.

To compute DCLI , the influence of a tip load on the equilibrium stability is con-
sidered. The agreement of DCLI with the state-of-the-art is checked by selecting the
unstable case L2 “ 0.6 m, and computing the S-curves highlighting DCLI over dif-
ferent directions df and no external load applied on the CTR. Figure 6.7 illustrates
six S-curves : for each curve, df is aligned to one of the fixed-frame axes F0, con-
sidering both positive and negative directions. No matter the director df is chosen,
DCLI tends toward zero when the instability approaches. This is further confirmed
by comparing the trend of SL (Fig. 6.6a) with DCLI : SL approaches null values
when DCLI tends to zero, confirming the coherence of DCLI w.r.t. state-of-the-art
results.

Then, the estimation provided by DCLI is compared with the exact value of
fCRIT by computing the absolute error eabs “ |fCRIT ´ DCLI|. For instance, let us
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(a) df “ `r1, 0, 0s (positive
x)

(b) df “ ´r1, 0, 0s (negative
x)

(c) df “ `r0, 1, 0s (positive
y)

(d) df “ ´r0, 1, 0s (negative
y)

(e) df “ `r0, 0, 1s (positive
z)

(f) df “ ´r0, 0, 1s (negative
z)

Figure 6.7: For the same S-curve, different values of DCLI are obtained by changing
df . However, DCLI tends toward zero when approaching the instability, no matter
the df is selected.

consider df “ `r1, 0, 0s, and the corresponding values of DCLI over the S-curve of
Fig. 6.7a. For each point of the S-curve, fCRIT is computed with δf “ 0.001 N, and
a maximum number of steps equal to 2000, thus exploring forces up to 2 N. The
resulting value of eabs is displayed in Fig. 6.8a, and two scenarios can be identified.
In a first scenario, there exist no fCRIT between [0,2] N: this happens between ϕ0 P
r0, 140s˝, and in the upper branch of the S-curve. As an example, Fig. 6.8b reports
the trend of σmin when using the numerical algorithm of Sec. 6.2.4 for ϕ0 “ 60˝: the
value of σmin varies when changing f but it never goes to negative values. Instead,
between ϕ0 P r140, 190s˝, there exist values of fCRIT P r0, 2s N: in this region, when
increasing f , the value of σmin reaches negative values, as illustrated in Fig. 6.8c
for ϕ0 “ 160˝. Thus, when there exists a load fCRIT that causes instability, DCLI
displays reduced values and, when approaching the stability limits on the S-curve,
the difference between DCLI and fCRIT reduces: this is confirmed by the value of
eabs which decreases when approaching the instability.

Instead, when DCLI is low, it does not necessarily means that fCRIT is low. This
is evident in the upper part of Fig. 6.8a where no fCRIT P r0, 2s N exists, but DCLI
is low in the proximity of the instability. However, it should be considered that the
S-curve of Fig. 6.7 (and thus the values of DCLI ) are computed with f “ 0, and the
instability phenomenon is happening as a cause of the torsional energy accumulated
in the CTR, as described in [57]. When varying f during the computation of fCRIT ,
the shape of the S-curves varies consequently, and it may happen that previously
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(a) df “ `r1, 0, 0s (b) φ0 “ 60˝ (c) φ0 “ 160˝

Figure 6.8: Comparison between fCRIT and DCLI . Figure (a) displays the value of
eabs for the S-curve computed with L2 “ 0.6 and df “ `r1, 0, 0s. In grey zones, no
fCRIT exists between r0, 2s N. Figure (b),(c) display the value of σmin when using
the numerical algorithm of Sec. 6.2.4, for ϕ0 “ 60˝, 160˝, respectively.

(a) φ0 “ 60˝ (b) φ0 “ 160˝

Figure 6.9: Influence of the inclination angle α and the azimuth angle β of the tip
force direction df on DCLI . Figure (a) is relative to ϕ0 “ 60˝, while figures (b)
corresponds to ϕ0 “ 160˝. Minimums of DCLI are highlighted by a red circle.

unreachable values of ϕ0 becomes accessible: the application of the external load
may increase the stability of some configurations. This aspect will be the objective
of future investigations.

Then, the influence of the tip force direction df on the values of DCLI is in-
vestigated. For the scope, df is parameterized by using spherical coordinates as
follows:

df “

»
–
sinα cos β
sinα sin β

cosα

fi
fl (6.32)

where α is the inclination angle, and β is the azimuth. For a given ϕ0 and given
CTR configuration, a two-dimensional grid that discretizes uniformly α P r0, 2πs, β P
r0, 2πs is generated, and DCLI computed for each pair of α, β.

First, let us consider the case of ϕ0 “ 60˝ illustrated in Fig. 6.9a. By changing
α, β, the value of DCLI modifies accordingly, and a minimum of DCLI “ 0.149 N is
found at α “ 1.84, β “ 5.17 rad, corresponding to df “ r0.47,´0.86,´0.27s. At the
minimum, DCLI and fCRIT are comparable, with 0.214 N and 0.149 N, respectively.
Instead, the previously investigated direction df “ r`1, 0, 0s Ñ α “ π{2, β “ 2π
is far from the minimum, high values of DCLI are displayed, and no fCRIT exists.
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Figure 6.10: The CPRs prototype modelling schematics, with the terminology em-
ployed in this chapter.

When considering a configuration closer to the instability (ϕ0 “ 160˝, Fig. 6.9b),
the direction where DCLI is minimum modifies to α “ 1.663 rad, β “ 6.098 rad
and DCLI at the minimum is 0.136N. fCRIT is 0.078 N for the same direction. In
this case, the previously considered direction df “ `r1, 0, 0s is much closer to the
minimum, and thus a fCRIT exists in Fig. 6.8a at ϕ0 “ 160˝. It should also be noted
that, since polar coordinates are employed, the trend of DCLI is periodic, and the
same minimum is found twice in Fig. 6.9.

As a summary, DCLI effectively measures the distance to instability since i)
DCLI goes to zero when the instability occurs, and ii) DCLI is in accordance with
state-of-the-art indices. Moreover, DCLI can also be used to characterize the direc-
tions of f for which instability easily occurs.

6.3.3 A spatial CPR with two controlled DoFs

This case study aims to illustrate the application of DCLI on a more complex con-
tinuum structure, that is, a CPR. In particular, the two-controlled DoFs CPR that
was proposed in Chapter 5 (illustrated in Fig. 6.10 for brevity) is considered as a
benchmark. This CPR is considered because its workspace and its equilibrium sta-
bility limits have been experimentally validated. The geometrico-static modelling of
this robot has been discussed in the previous chapter, and in the following, the EE

mass m “ 0.216 g is considered as a concentrated EE load aligned with the gravita-
tional acceleration g “ r0,´9.81, 0s, and the links weight is included as distributed
loads. The resulting EE force is fEE “ 2.11 N.

The evaluation of the equilibrium stability of the considered CPR is crucial since
unstable configurations define the limits of the mobility of the robot, DCLI is used
to measure the distance from the experimentally validated instability. Let us first
consider the prototype workspace (WS ), computed in Sec. 5.3.2, and illustrated in
Fig. 6.11a for clarity. Region S is a stable equilibrium region, where the assigned
motor values correspond to attainable static robot configurations, while region U
corresponds to an unstable region. The outer border of the WS is associated with
a Type-1 singularity [56], which is a limit of the inverse geometrico-static problem
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(a) Workspace (b) df “ ´r0, 1, 0s (c) df “ `r0, 1, 0s

Figure 6.11: The workspace of the CPR prototype. Figure (a) highlights the stable
region S and the unstable region U. On the same workspace, the trend of DCLI is
reported in b),c), with df “ r0,´1, 0s for b), and df “ r0,`1, 0s for c). Type-1
singularities are depicted in red, and leg singularities in black.

solvability. Instead, the inner border of S is associated with a leg singularity [56],
and after crossing it, the robot equilibrium becomes unstable. In particular, when
the equilibrium becomes unstable, the EE pose is not more controllable since an
uncontrolled out-of-the-plane motion occurs.

This phenomenon is highly undesirable for practical applications of this proto-
type, and the goal is to measure the distance from the instability by using DCLI . To
characterize the robots WS in terms of DCLI , the influence of a tip external load
with direction aligned to the gravity is investigated by considering both positive and
negative directions (df “ ˘r0, 1, 0s accordingly to the F0 of Fig. 6.10). Results are
illustrated in Fig. 6.11b, 6.11c, where the values of DCLI are displayed. In particu-
lar, the attention is directed to values of DCLI ď 5 N: as DCLI is used to measure
the distance to instability, and since fEE “ 2.11 N, variations of more than 200% of
the EE load are not of practical interest, since the resulting CPR workspace may
considerably differ from the one of Fig. 6.11a. Values of DCLI greater than 5 N are
undisplayed (part in yellow of Fig. 6.11).

First, let us consider df “ r0,´1, 0s, which corresponds to f aligned with gravity.
As displayed in Fig. 6.11b, approaching the instability in the upper WS region
causes DCLI values which tend to zero. Instead, the other WS regions display
values greatly higher than fEE, indicating a larger distance from the instability. On
the other hand, when consider df “ r0,`1, 0s, the resulting DCLI is illustrated in
Fig. 6.11c. As approaching the instability at the lower WS region, DCLI goes to
zero.

Then, the closeness of DCLI to fCRIT is quantified. To do this, at each step of the
workspace computation DCLI and fCRIT and the absolute error eabs “ |fCRIT ´CLI|
are computed. In particular, to compare DCLI with fCRIT , the computation of
fCRIT is performed as follows. First, let us consider the workspace of Fig. 6.11a
obtained with fEE “ 2.11 N aligned with ´y. At each stable workspace point, the
motor angles qa are extracted from the CPR configuration and consider these values
as fixed. Then, the numerical procedure of Sec. 6.2.4 is used: the FGSP is repeatedly
solved with desired motor angles qa by increasing the tip load until instability is
met or the maximum allowed iterations number is reached. Since fCRIT is to be
computed at each workspace point, δf is selected as 0.01 N as a trade-off between
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(a) df “ ´r0, 1, 0s (b) df “ `r0, 1, 0s

Figure 6.12: Comparison between fCRIT and DCLI . Figure (a) displays the value of
eabs for df “ ´r0, 1, 0s, while Figure (b) for df “ `r0, 1, 0s. Grey zones are region
where no fCRIT exists between r0, 10s N.

accuracy and computational cost, and the maximum number of iterations is set as
500 to explore forces up to 5 N.

The results of this computation are displayed in Fig. 6.12a,6.12b for df “
´r0, 1, 0s and df “ `r0, 1, 0s, respectively. As for the two-tubes CTR case, some
regions exist where no fCRIT P r0, 5s N exists. However, it is important to note
that when DCLI is low, fCRIT is in accordance with DCLI , and eabs is reduced.
In particular, regions close to the instability where DCLI ď 1 N, display reduced
absolute errors eabs (eabs ď0.1 N). This confirms the capability of DCLI to measure
the distance to the instability and, close to the instability, estimate the true load to
be applied at the CPR to cause unstable transitions.

6.4 Conclusions

This chapter proposes a criterion to measure the distance-to-instability of CRs . In
contrast to state-of-the-art approaches, the DCLI does not involve the use of mixed
units, and it provides the physical meaning of the results. As DCLI represents the
additional load to be applied at a defined robot location to cause instability, DCLI
possesses a well-defined unit (Newton). The applicability of DCLI is demonstrated
over different case studies, namely the buckling of straight beams, instability of
CTRs , and the stable-to-unstable transitions of an existing CPR prototype. No
matter whether the case study is considered, as the instability is approaching, DCLI
tends toward zero, confirming the correctness of the distance-to-instability measure-
ment. To further verify this, DCLI is compared with a state-of-the-art index for
CTRs and, as DCLI goes to zero near instability, also the index of [21] vanishes.
Finally, the accuracy of DCLI on the critical force estimation is assessed by com-
paring DCLI with the exact force that causes instability, the latter computed by
an ad hoc numerical approach proposed in this chapter. It is shown that, as the
instability is approaching, the distance between DCLI and the exact load reduces,
and DCLI can be used to effectively estimate the critical instability load. However,
further tests should be conducted to verify whether the estimation of DCLI is safer.
This aspect will be the objective of future development.
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Conclusions

Continuum parallel robots (CPRs) are manipulators that employ multiple flexible
beams arranged in parallel and connected to a rigid platform. CPRs promise to
solve the main disadvantages of serial CRs , such as the reduced payload capacity
and accuracy, while keeping great flexibility by design. As CPRs are relatively new,
several research directions still need to be explored, and this thesis focused on the
performance analysis of CPRs . In this Chapter, conclusions of this thesis are drawn.
Section 7.1 summarizes the contributions of this thesis, while Sec. 7.2 describes open
research directions and future development of the contents of this thesis.

7.1 Summary of the Contributions

In this Section, the main scientific contributions of this thesis are resumed and listed
about the specific topics.

• Full Workspace Computation and Numerical Results Certification.
Chapter 3 presented an adaptive flooding algorithm for the workspace compu-
tation of PCPRs . The algorithm may identify unstable regions and singular-
ity loci, incorporate external loads, and set maximum stress limits and joint
bounds. Thanks to an energy-based modelling strategy approximated through
finite differences for derivatives, the IGSP solution was certified in terms of ex-
istence, uniqueness, and convergence of the solution by verifying Kantorovich
conditions during the Newton-method-based problem-solving procedure. With
this approach, the IGSP was solved in a certified way over a large percentage
of the workspace in a reduced computational time compared to state-of-the-art
algorithms. The main limitation of the proposed approach is the high compu-
tational cost where large workspaces and small stepsizes are investigated, and
the flooding approach may require the computation of many points.

• Boundary workspace computation Chapter 4 proposed an algorithm for
the computation of workspace boundaries of CPRs . The algorithm, based on
a free-space exploration strategy and a boundary reconstruction algorithm,
reduced the computational time w.r.t. to actuation or task-space discretiza-
tion full-workspace computation strategies by identifying only the boundaries
of CPRs ’ workspace. Additionally, the algorithm included several constraints,
such as singularities, equilibrium stability, and joint and material limits, all
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simultaneously during the workspace computation. Compared to state-of-the-
art boundary computation approaches, the algorithm provided a useful tool
to identify holes in the workspace that may occur in CPRs : this is possible
thanks to the proposed space exploration strategy. Intending to be a general
workspace evaluation tool, the algorithm works with CPRs modelling strate-
gies based on general discretization assumptions, which increases the algorithm
generality. However, some limitations need to be acknowledged. First, attrac-
tive points are effective, but they may fail when their values and numbers are
set improperly. As with any heuristic method, parameter tuning is critical
for the best performance of the algorithm. Then, even though the algorithm
can identify internal workspace boundaries (namely, holes in the workspace)
thanks to the proposed exploration strategy, there is no certainty of identifying
all of them. However, to the author’s knowledge, no state-of-the-art algorithm
for the boundary computation of continuum robots demonstrated the ability
to identify holes in the workspace.

• Experimental Equilibrium Stability Assessment Chapter 5 addressed
the experimental validation of equilibrium stability of CPRs predictions. The
results demonstrated the inability of a model based on planar displacement as-
sumptions to predict the equilibrium stability of a planar CPR. A new planar
CPR was proposed for the scope. The prototype was designed to be nomi-
nally planar so no mechanical interference between robot components could
occur. Because of the prototype architecture, a material parameter modelling
methodology was originally proposed for the specific design of the flexible
chains. Finally, a new singularity related to out-of-the-plane uncontrolled mo-
tions of the planar CPR is experimentally identified for the first time.

• Distance-to-Instability measurement Chapter 6 proposed a criterion to
measure the distance-to-instability of CRs . In contrast to state-of-the-art ap-
proaches, the directional critical load index (DCLI ) does not involve the use
of mixed units, and it provides the physical meaning of the results. As DCLI
represents the additional load to be applied at a defined robot location to cause
instability, DCLI possesses a well-defined unit (Newton). The applicability of
DCLI was demonstrated over different case studies, namely the buckling of
straight beams, instability of CTRs , and the stable-to-unstable transitions of
an existing CPR prototype. No matter the case study considered, as the in-
stability is approaching, DCLI tends toward zero, confirming the correctness
of the distance-to-instability measurement. To further verify this, DCLI was
compared with a state-of-the-art index for CTRs , and, as DCLI goes to zero
near instability, state-of-the-art indices vanish. Finally, the accuracy of DCLI
on the critical force estimation is assessed by comparing DCLI with the exact
force that causes instability, the latter computed by an ad hoc numerical ap-
proach proposed chapter 6. It is shown that, as the instability is approaching,
the distance between DCLI and the exact load reduces, and DCLI can be
used to estimate the critical instability load.
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7.2 Future Perspectives

In this section, future perspectives and possible extensions of the work of this thesis
are detailed in the following list:

• Workspace Computation. Two chapters of this thesis focused on the
workspace computation problem of CPRs . Still, there is a great margin for im-
provement concerning workspace computation algorithms. The development
of fast-workspace computation tools is essential to enable optimal designs of
continuum robots. However, the proposed approaches require between sev-
eral minutes (for planar CPRs) and hours (for spatial CPRs) to compute the
workspace boundary once. Thus, using these algorithms for optimal design
is impossible, and the application of this algorithm is limited to design ex-
plorations only. Developing an algorithm that accurately computes the CPRs
workspace in times of few seconds would be a great contribution. Concerning
the numerical certification of the results during the workspace computation,
the strategy proposed in Chapter 3 can be easily extended to spatial cases.
However, preliminary tests demonstrated that the results were not as good as
in the planar case. Thus, a modelling technique alternative to finite differences
may be investigated to certify the results of spatial CPRs .

• Distance-to-instability measurement. The directional critical load index
of Chapter 6 is proposed in this thesis to measure the distance-to-instability.
However, measurement is directional, and measuring the overall distance-to-
instability, regardless of the force direction to be selected, would be interesting.
In this direction, a distance-to-instability ellipsoid may be envisioned to cap-
ture the overall stability performances together. At the same time, it is not
trivial how to represent the distance-to-instability performance in such a way.
Then, it would also be interesting to investigate better how to compute the
real critical load that causes instability efficiently. Continuation techniques
may offer a possible tool for the scope.

• Design for large payload capabilities. The design of a CPR with large pay-
load capabilities would be a great future contribution. The tools proposed in
this thesis concerning the workspace evaluation and the distance-to-instability
measurement may be used to guide the design of a new CPR. Although a
design only based on flexible components is preferable for safety reasons, some
preliminary author’s investigation has shown that it is not trivial to build
such a prototype, and a hybrid design including both rigid and flexible com-
ponents may considerably increase the CPR payload capability while keeping
the flexibility by design.

• Other Performance aspects. This thesis focused on two major performance
aspects: the workspace computation problem and the equilibrium stability as-
sessment. However, other performance characteristics still need to be explored,
such as the accuracy and the force transmission ratio. In particular, it would
be interesting to develop a power transmission ratio for CPRs to represent how
the input power is transferred to the CPR end-effector. Since the CPR con-
figurations depend on both forces and geometry, the power would be a great
performance indicator since it includes geometry and forces simoultaneosly.
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Appendix A

Geometrico and Kinemato Static
Models Derivation: Assumed
Strain Mode Approach

This appendix derives the geometrico-static model equations and the necessary steps for
the derivation of the kinemato-static model equations when using the assumed strain mode
approach of [128], for the spatial case in Sec. A.1, and for the planar case in Sec. A.2.

A.1 Spatial Case

This Section derives the geometrico-static and kinemato-static terms when using the as-
sumed strain mode approach for a spatial CPR case. Additional details on this derivation
are reported in [178] for the interested reader. The first part (Sec. A.1.1) focuses on the
geometrico-static model derivation, while the second part (Sec. A.1.2) derives the terms
necessary for the kinemato-static model evaluation.

A.1.1 Geometrico-static model

This section derives the geometrico-static model equations of Eq.(2.23) of a CPR when
the assumed strain mode approach is used, here reported for clarity:

#
∇xL “ 0

∇λL “ 0
Ñ

$
’&
’%

∇qeVtot ` ∇qe

`
λTΦ

˘
“ 0

∇qpVtot ` ∇qp

`
λTΦ

˘
“ 0

Φ “ 0

(A.1)

To derive the expression of these equations, let us consider the deformation energy of
the i -th beam of Eq. (2.12) that assumed shear and extensibility to be negligible. The
expression is reported here for clarity:

Vei “ 1

2

ż Li

0

puipsq ´ u˚
i psqqT K puipsq ´ u˚

i psqq ds (A.2)

In the case of an assumed strain mode approach is employed, the i -th beams curvature
uipsq P R

3 is approximated by the use of basis functions as follows:

uipsq “ Npsqqei (A.3)
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where qei P R
mi is the set of discretization coordinates of the i -th beam and the matrix

N collects basis functions. In particular, N is structured in the following manner:

Npsq “

»
–
bT psq 01ˆNf 01ˆNf

01ˆNf bT psq 01ˆNf

01ˆNf 01ˆNf bT psq

fi
fl P R

3ˆmi (A.4)

where b P R
Nfˆ1 is a base function vector, Nf is the number of base functions employed

in b, and mi “ 3Nf . Common base function selections involve standard monomials [22]:

bpsq “
“
1, s, s2, s3, ¨ ¨ ¨ , sNf´1

‰
(A.5)

However, when using standard monomials, the matrix J of Eq. (2.24) is frequently ill-
conditioned [128], and orthogonal Legendre monomials are selected to alleviate this issue
[146]:

bpsq “
“
1, s, 1

2
p3s2 ´ 1q, 1

2
p5s3 ´ 3sq, ¨ ¨ ¨ , p2 ` 1{Nf qsbNf´1 ´ bNf´2

‰
(A.6)

where bj is the j -th component of b. Then, by inserting Eq. (A.3) into Eq. (A.2), and by
assuming u˚

i “ 0 for simplicity1, the following expression of Vei is obtained:

Vei “ 1

2

ż Li

0

qT
eiN

T psqKNpsqqeids (A.7)

since qei does not depend on s, it is possible to further simplify Vei:

Vei “ 1

2
qT
ei

ˆż Li

0

NT psqKNpsqds
˙
qei “ 1

2
qT
eiKeiqei (A.8)

whereKei P R
miˆmi is a constant matrix obtained by numerically integrating the following

expression:

Kei “
ż Li

0

NT psqKBTNpsqds (A.9)

Once the term Vei is obtained, to compute L, it is necessary to evaluate the influence of
distributed loads Vdi (Eq. (2.13)) and the geometric constraints of the i -th beam Φi. Since
Vdi,Φi depends on the beam’s pose, it is necessary to recover the position and orientation
of the i -th beam at each s. For the scope, let us first recover the beam strain ξi as follows:

ξipsq “
„
Npsqqei

e3

ȷ
(A.10)

and the position and orientation of each beam’s cross-section are obtained by integrating
Eq. (2.3). However, preserving the structure SEp3q of matrix G during the integration of
Eq. (2.3) requires the use of structure-preserving integrators, which are computationally
expensive [147]. Instead, by parametrizing the cross-section orientation with unit quater-
nions hi P R

4, hi “ hi1 ` hi2e1 ` hi3e2 ` hi4e3, e1 “ r1, 0, 0s, e2 “ r0, 1, 0s, e3 “ r0, 0, 1s,
simplifies Eq. (2.3) as follows:

#
h1
ipsq “ 1

2
Qipsqhipsq

p1
ipsq “ Ripsqe3

(A.11)

1It is possible to use the assumed strain mode approach also for initially-curved beams, such
as for concentric tube robots. However, this is out of the scope of this thesis, and the interested
reader is addressed to [179]
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Figure A.1: Virtual opening of the CPR closed loop

with pip0q,hip0q initial values at the beams’ base usually computed from qai. Eq. (A.11)
are named forward equations in the following.

At this stage, the derivation of the geometrico-static model equations starts. Comput-
ing Φi is possible after integrating the forward equations, since it is sufficient to compute
the rotation matrix RipLq from hipLq, and insert the values of pipLq,RipLq in Eq. (2.18),
here reported for clarity:

Φi “ Ci

„`
RT

pRipLiq ´ RT
i pLiqRp

˘
q

pipLiq ´ ppp ` Rppfiq

ȷ
(A.12)

Then, let us derive the first of Eq.(A.1) for the i -th beam by considering separately
the contribution of the deformation energy, distributed loads, and constraints:

∇qeiL “ ∇qeiVei ` ∇qei

`
Vdi ` ϕT

i λi

˘
(A.13)

The term ∇qeiVei can be computed by deriving Eq. (A.8) w.r.t. qei:

∇qei pVeiq “ Keiqei (A.14)

Instead, for the derivation of the second term, it is convenient to virtually open the
CPRs closed loops, as illustrated in Fig. A.1. This representation simplifies the model
derivation and implementation. At each passive platform joint, the exchanged wrench
between the platform and the beam is named as wti. In particular, to satisfy the joint
connection, wti “ Ciλi [128], where Ci is illustrated in Tab. 2.2, and λi is the set of
Lagrange multipliers associated with the i -th joint. Let us simplify the notation by
introducing Qci as

Qci “ ∇qei

`
Vdi ` ϕT

i λi

˘
(A.15)

Qci P R
mi contains the influence of external loads and the geometrical constraints on

the beam equilibrium. To compute Qci, it is convenient first to evaluate the stress Γ

that balances the distributed loads fd and the beam’s tip wrench wti. This is done by
numerically integrating Eq. (2.7) from s “ Li to s “ 0, here reported for the reader’s
convenience:

Γ1
ipsq “ adT

ξi
psqΓipsq ´ wdpsq (A.16)

with initial values ΓipLq “ wti “ Ciλi
2 Then, according to [22], Qci is obtained by

integrating the following differential equation from s “ Li to s “ 0:

Q1
cipsq “ pBNpsqqT Γpsq (A.17)

2Please note that, in this way, the components of wti are in the local beam’s tip frame by
default.
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with QcipLq “ 0, B “ rI3;03s P R
6ˆ3. It should be stressed that wd is expressed in the

local beam frame. For instance, in the case of gravitational loads naturally defined in the
global frame, its values must be recovered in the local beam frame at each integration step
by considering the cross-section orientation matrix Ri obtained by the forward integration
of hi. Being w

f
d the distributed load wrench in the global frame, wdpsq is obtained as

follows:

wdpsq “
„
Ripsq 03ˆ3

03ˆ3 Ripsq

ȷ
w

f
d (A.18)

The, let us compute the second of Eq.(A.1) (∇qpL). To do this, it is convenient to compute
the platform equilibrium by considering a generic platform twist variation ∆η P R

6. Being
wp “ r03ˆ1; fps the platform wrench in global frame coordinates, and ´wti the i -th beam’s
wrench applied to the platform, imposing the platform equilibrium results in:

´wp `
nbÿ

i“1

Adt´iwti “ ´wp `
nbÿ

i“1

Adt´iCiλi “ 0 (A.19)

where Adt´i P R
6ˆ6 is the matrix that expresses wti in global frame coordinates and

translates the wrench to the platform origin, which is structured as follows:

Adt´i “
„
RipLq xpfiRipLq
03ˆ3 RipLq

ȷ
(A.20)

and pfi P R
3 is a vector pointing from the i -th joint position to the platform centre,

constant w.r.t. Fp. Moreover, it should be noted that imposing the platform equilibrium
is equivalent to calculating ∇∆ηL “ 0 [128]. Thus, to calculate ∇qpL required for the
geometrico-static model solution, the composite function rule derivatives can be used as
follows:

∇qpL “ p∇∆ηLq
ˆB∆η

Bqp

˙
“ p∇∆ηLq M (A.21)

where the matrix M P R
6ˆ6 relates qp P R

nc with an infinitesimal variation of the platform
twist ∆η, that is:

∆η “ Mqp (A.22)

Since matrix M is full-rank by definition, for the geometrico-static problem solution

only, it is equivalent to impose ∇ηL “ 0 or ∇qpL “ 0. However, when assessing the
equilibrium stability, it is important to use ∇qpL to obtain correct equilibrium stability
predictions.

The final expression of the geometrico-static model equations of Eq. (2.23) is obtained
by collecting ∇qeiL,∇qpL,∇λL together:

$
’&
’%

∇qeiL “ Keiqei ` Qci “ 0; @i “ 1, ¨ ¨ ¨ , nb

∇λiL “ Φi “ 0; @i “ 1, ¨ ¨ ¨ , nb

∇∆ηL “ ´wp ` řnb
i“1

Adt´iCiλi “ 0

(A.23)

A.1.2 Kinemato-static model

The derivation of the kinemato-static model requires the computation of the first derivative
of each of Eq. (A.1) w.r.t. y “ rqa,qe,qp, λs. In particular, the derivative of Eq.(A.1)
w.r.t. y is structured as follows:

»
–
∇qa p∇qeLq ∇qe p∇qeLq ∇qe p∇qeLq ∇λ p∇qeLq
∇qa

`
∇qpL

˘
∇qe

`
∇qpL

˘
∇qe

`
∇qpL

˘
∇λ

`
∇qpL

˘

∇qaΦ ∇qeΦ ∇qeΦ ∇λΦ

fi
fl (A.24)
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• The first of Eq.(A.1) qei, qai,λi and ∇qp p∇qeiLq “ 0.

• The second of Eq.(A.1) depends on all the variables in y.

• The last of Eq.(A.1) depends on qai,qei and qp, and thus ∇λi “ 0.

In the following, the derivatives of pi,hi,Γi,Qci are calculated since are the necessary
terms for the derivation of the kinemato-static model terms, while the expression of the
terms in Eq.(A.24) are not reported here for brevity sake. A derivative propagation ap-
proach is used in the following, as done in [58]. For instance, let us consider the first of
Eq. (A.11), and the goal is to compute Bhi{Bqei. Since derivatives w.r.t. s and qei are
commutative, and h1

i is governed by Eq. (A.11), the following expression governing the
evolution of Bhi{Bqei over s is obtained:

ˆ Bhi

Bqei

˙1

“ B
Bqei

`
h1
i

˘
“ B

Bqei

ˆ
1

2
Qihi

˙
“ 1

2

ˆ
DkiN ` Qi

Bhi

Bqei

˙
(A.25)

where:

Dki “

»
——–

´hi2 ´hi3 ´hi4
`hi1 ´hi4 `hi3
`hi4 `hi1 ´hi2
´hi3 `hi2 `hi1

fi
ffiffifl (A.26)

Eq. (A.25) is integrated from s “ 0 to s “ L to get Bhi{BqeipLq, with initial value
Bhi{Bqeip0q “ 0. Proceeding in a similar fashion, and considering for simplicity only
actuators placed at the robot’s base, the following differential equations that govern the
derivatives of pi,hi can be obtained:

ˆ Bpi

Bqei

˙1

“ Dhi
Bh

Bqei
(A.27)

ˆ Bhi

Bqei

˙1

“ 1

2

ˆ
DkiN ` Qi

Bhi

Bqei

˙
(A.28)

ˆ Bpi

Bqai

˙1

“ Dhi
Bhi

Bqai
(A.29)

ˆ Bhi

Bqai

˙1

“ 1

2
Ai

Bhi

Bqai
(A.30)

with

Dhi “ 2

»
–

`hi3 `hi4 `hi1 `hi2
´hi2 ´hi1 `hi4 `hi3
`hi1 ´hi2 ´hi3 `hi4

fi
fl (A.31)

Eq. (A.30) is integrated from s “ 0 to s “ L with initial values Bpi{Bqeip0q “ Bhi{Bqeip0q “
0. Instead, Bpi{Bqaip0q, Bhi{Bqaip0q can be obtained by the knowledge of the specific actu-
ator to be employed. The derivative of pi,hi w.r.t. λi are null since λi does not influence
the integration of the forward equations.

Proceeding in the same fashion, the following set of differential equations governing the
evolution of the derivatives of Λi,Qci can be obtained by using a derivative propagation
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approach:

ˆ BΓi

Bqei

˙1

“
B

´
adT

ξi
Γi

¯

Bqei
´ Bwd

Bqei
(A.32)

ˆBQci

Bqei

˙1

“ pBNqT BΓi

Bqei
(A.33)

ˆ BΓi

Bqai

˙1

“ adT
ξi

BΓi

Bqai
´ Bwd

Bqai
(A.34)

ˆBQci

Bqai

˙1

“ pBNqT BΓi

Bqai
(A.35)

with the equations integrated from s “ L to s “ 0 with all null initial values. The term
B padξΓq{Bqe can be obtained by first computing the product adT

ξi
Γi component wise, and

then calculating the derivative w.r.t. qei, resulting in the following final expression:

B
´
adT

ξi
Γi

¯

Bqei
“

«
{Γ1:3´i

T

{Γ4:6´i

T

ff
N ` adT

ξi

BΓi

Bqei
(A.36)

and the terms Bwd{Bqe, Bwd{Bqai can be computed by the knowledge of Bh{Bqe,Bh{Bqai
from the forward integration. Finally, the last necessary term is BQci{Bλi obtained by
first considering the following composite functions rule derivative:

BQci

Bλi
“ BQci

Bwti

Bwti

Bλi
“ BQci

Bwti
Ci (A.37)

and the term BQci{Bwti obtained by a derivative propagation approach:

ˆ BΓi

Bwti

˙1

“ adξi

BΓi

Bwti
(A.38)

ˆBQci

Bwti

˙1

“ pBNqT BΓi

Bwti
(A.39)

with initial values BΓi{BwtipLq “ I6, and BQci{BwtipLq “ 0.

A.2 Planar Case

This Section derives the geometrico-static and kinemato-static terms when using the as-
sumed strain mode approach for a planar CPR case. Additional details on this derivation
are reported in [178] for the interested reader. The first part (Sec. A.2.1) focuses on the
geometrico-static model derivation, while the second part (Sec.A.2.2) derives the terms
necessary for the kinemato-static model evaluation.

A.2.1 Geometrico-static model

This section derives the geometrico-static model equations of Eq.(2.23) of a CPR when
the assumed strain mode approach is used in a planar case, here reported for clarity:

#
∇xL “ 0

∇λL “ 0
Ñ

$
’&
’%

∇qeVtot ` ∇qe

`
λTΦ

˘
“ 0

∇qpVtot ` ∇qp

`
λTΦ

˘
“ 0

Φ “ 0

(A.40)
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To derive the expression of these equations, let us consider the deformation energy of the
i -th beam of Eq. (2.12) when i) shear and extensibility are neglected, and ii) in a planar
displacement case, here reported for clarity:

Vei “ 1

2

ż Li

0

Kb puipsq ´ u˚
i psqqT puipsq ´ u˚

i psqq ds (A.41)

with Kb being the material stiffness (usually equal to EI). In the case of an assumed
strain mode approach is employed, th i -th beams curvature uipsq P R is approximated by
the use of basis functions as follows:

uipsq “ Npsqqei (A.42)

where qei P R
mi is the set of discretization coordinates of the i -th beam and the vector

N “ bT P R
1ˆNf collects basis functions, Nf is the number of base functions employed in

b, and mi “ Nf . The definition of b is the same for the spatial case of the previous section.
Then, by inserting Eq. (A.42) into Eq. (A.41), and by assuming u˚

i “ 0 for simplicity, the
following expression of Vei is obtained:

Vei “ 1

2
Kb

ż Li

0

qT
eiN

T psqNpsqqeids (A.43)

since qei does not depend on s, it is possible to further simplify Vei:

Vei “ 1

2
qT
ei

ˆż Li

0

KbN
T psqNpsqds

˙
qei “ 1

2
qT
eiKeiqei (A.44)

whereKei P R
miˆmi is a constant matrix obtained by numerically integrating the following

expression:

Kei “
ż Li

0

KbN
T psqNpsqds (A.45)

Once the term Vei is obtained, to compute L, it is necessary to evaluate the influence of
distributed loads Vdi (Eq. (2.13)) and the geometric constraints of the i -th beam Φi. Since
Vdi,Φi depends on the beam’s pose, it is necessary to recover the position and orientation
of the i -th beam at each s. For the scope, let us first recover the beam strain ξi as follows:

ξipsq “
„
ui
e
p
2

ȷ
(A.46)

with ui “ Npsqqei, e
p
2 “ r0; 1s, and the tangent to the beam’s centerline is assumed to

be aligned to the local y axis. Since the beam is planar, the pose of each cross-section is
described by a position vector pipsq P R

2, and an orientation angle θpsq P R. To recover
position and orientation of the beam, the following differential equations are integrated

#
θipsq1 “ ui “ Npsqqei

pipsq1 “ Ripsqep2
(A.47)

with pip0q, θip0q initial values at the beams’ base usually computed from qai. Eq. (A.47)
are named forward equations in the following.

At this stage, the derivation of the geometrico-static model equations starts. Comput-
ing Φ is possible after the forward equations integration, since it is sufficient to insert the
values of pipLq, θipLq in Eq. (2.18), simplified for the planar case and reported here for
brevity:

Φi “ Ci

„
θipLq ´ θp

pipLq ´ ppp ` Rppfiq

ȷ
(A.48)
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with θp the platform orientation angle, and Ci P R
nφiˆ3 the joint matrix. Let us de-

rive ∇qeiL, by considering separately the contribution of the deformation energy and the
remaining terms:

∇qeiL “ ∇qeiVei ` ∇qei

`
Vdi ` ϕT

i λi

˘
(A.49)

The term ∇qeiVei can be computed by deriving Eq. (A.44) w.r.t. qei:

∇qei pVeiq “ Keiqei (A.50)

Instead, for the derivation of the second term, it is convenient to virtually open the
CPRs closed loops, as illustrated in Fig. A.1. This representation simplifies the model
derivation and implementation. At each passive platform joint, the exchanged wrench
between the platform and the beam is named as wti P R

3. As in the previous case, to
satisfy the joint connection, wti “ Ciλi P R

3 [128]. The vector Qci is introduced to
simplify the notation:

Qci “ ∇qei

`
Vdi ` ΦT

i λi

˘
(A.51)

Qci P R
mi contains the influence of external loads and the geometrical constraints on the

beam equilibrium. To compute Qci, it is convenient first to evaluate the internal beam
stress Γ P R

3 that balances the distributed loads fd and the beam’s tip wrench wti P R
3.

This is done by numerically integrating Eq. (2.7) from s “ Li to s “ 0, here reported for
the reader’s convenience:

Γ1
ipsq “ adT

ξi
psqΓipsq ´ wdpsq (A.52)

with initial values ΓipLq “ wti “ Ciλi
3. In particular, in the planar case, adξi

simplifies
as follows:

adξ “

»
–
0 0 0
0 ui 0
1 0 ui

fi
fl (A.53)

Then, according to [22], Qci is obtained by integrating the following differential equation
from s “ Li to s “ 0:

Q1
cipsq “ pBNpsqqT Γpsq (A.54)

with QcipLq “ 0, B “ r1, 0, 0s P R
3ˆ1. It should be stressed that wd is expressed in the

local beam frame. For instance, in the case of gravitational loads naturally defined in the
global frame, its values must be recovered in the local beam frame at each integration
step by considering the cross-section orientations hi obtained by the forward integration.
Being w

f
d the distributed load wrench in the global frame, wdpsq is obtained as follows:

wdpsq “
„

1 01ˆ2

02ˆ1 Ripsq

ȷ
w

f
d (A.55)

The, let us compute∇qpL. To do this, it is convenient to compute the platform equilibrium
by considering a generic platform twist variation ∆η P R

3. Being wp the platform wrench
in global frame coordinates, and ´wti the i -th joint wrench applied to the platform,
imposing the platform equilibrium results in:

´wp `
nbÿ

i“1

Adt´iwti “ ´wp `
nbÿ

i“1

Adt´iCiλi “ 0 (A.56)

where p̂fi “ r´pfiy,`pfixs, Adt´i P R
3ˆ3 is the matrix that converts wti in the global

frame and translates the wrench to the platform origin, structured as follows:

Adt´i “
„

1 xpfiRipLq
02ˆ1 RipLq

ȷ
(A.57)

3Please note that, in this way, the components of wti are in the local beam’s tip frame by
default.
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and pfi P R
2 is a vector pointing from the i -th joint position to the platform centre,

constant w.r.t. Fp. Moreover, it should be noted that imposing the platform equilibrium
is equivalent to calculating ∇qpL “ 0 [128], in the planar case.

The final expression of the geometrico-static model equations of Eq. (2.23) is obtained
by collecting ∇qeiL,∇qpL,∇λL together:

$
’&
’%

∇qeiL “ Keiqei ` Qci “ 0; @i “ 1, ¨ ¨ ¨ , nb

∇λiL “ Φi “ 0; @i “ 1, ¨ ¨ ¨ , nb

∇∆ηL “ ´wp ` řnb
i“1

Adt´iCiλi “ 0

(A.58)

A.2.2 Kinemato-static model

The derivation of the kinemato-static model requires the computation of the first derivative
of each of Eq. (A.40) w.r.t. y “ rqa,qe,qp, λs. In particular, the derivative of Eq.(A.40)
w.r.t. y is structured as follows:

»
–
∇qa p∇qeLq ∇qe p∇qeLq ∇qe p∇qeLq ∇λ p∇qeLq
∇qa

`
∇qpL

˘
∇qe

`
∇qpL

˘
∇qe

`
∇qpL

˘
∇λ

`
∇qpL

˘

∇qaΦ ∇qeΦ ∇qeΦ ∇λΦ

fi
fl (A.59)

• The first of Eq.(A.40) qei, qai,λi and ∇qp p∇qeiLq “ 0.

• The second of Eq.(A.40) depends on all the variables in y.

• The last of Eq.(A.40) depends on qai,qei and qp, and thus ∇λi “ 0.

In the following, the derivatives of pi, θi,Γi,Qci are calculated since are the necessary
terms for the derivation of the kinemato-static model terms, while the expression of the
terms in Eq.(A.59) are not reported here for brevity sake. These derivatives are calculated
by using a derivative propagation approach as done in [58]. For instance, let us consider
the first of Eq. (A.47), and the goal is to compute Bhi{Bqei. Since derivatives w.r.t. s and
qei are commutative, and θ1

i is governed by Eq. (A.47), the following expression governing
the evolution of Bθi{Bqei over s is obtained:

ˆ Bθi
Bqei

˙1

“ B
Bqei

`
θ1
i

˘
“ B

Bqei
pNqeiq “ N (A.60)

Eq. (A.60) is integrated from s “ 0 to s “ L to get Bθi{Bqei, with initial value Bθi{Bqeip0q “
0. Proceeding similarly, and considering for simplicity only actuators placed at the robot’s
base, the following differential equations that govern the derivatives of pi, θi can be ob-
tained:

ˆ Bpi

Bqei

˙1

“ Rπ{2e
p
2

Bθi
Bqei

(A.61)

ˆ Bθi
Bqei

˙1

“ N (A.62)

ˆ Bpi

Bqai

˙1

“ Rπ{2e
p
2

Bθi
Bqai

(A.63)

ˆ Bθi
Bqei

˙1

“ 01ˆmi
(A.64)

with Rπ{2 “ Rzpθi ` π{2q. Eq. (A.64) is integrated from s “ 0 to s “ L with initial
values Bpi{Bqeip0q “ Bθi{Bqeip0q “ 0, and Bpi{Bqaip0q, Bθi{Bqaip0q can be obtained by
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the knowledge of the specific actuator to be employed. Moreover, it should be noted that
the derivative of pi, θi w.r.t. λi is null since λi does not influence the integration of the
forward equations.

Proceeding in the same fashion, the following set of differential equations governing the
evolution of the derivatives of Λi,Qci can be obtained by using a derivative propagation
approach:

ˆ BΓi

Bqei

˙1

“
B

´
adT

ξi
Γi

¯

Bqei
´ Bwd

Bqei
(A.65)

ˆBQci

Bqei

˙1

“ pBNqT BΓi

Bqei
(A.66)

ˆ BΓi

Bqai

˙1

“ adT
ξi

BΓi

Bqai
´ Bwd

Bqai
(A.67)

ˆBQci

Bqai

˙1

“ pBNqT BΓi

Bqai
(A.68)

with all the equations integrated from s “ L to s “ 0 with null initial values, and the
term B padξΓq{Bqe can be obtained as:

B
´
adT

ξi
Γi

¯

Bqei
“

»
–
01ˆNf

N

N

fi
flΓ ` adT

ξi

BΓi

Bqei
(A.69)

and the terms Bwd{Bqe, Bwd{Bqai can be computed by the knowledge of Bθ{Bqe,Bθ{Bqai
from the forward integration. Finally, the last necessary term is BQci{Bλi obtained by
first considering the following composite functions rule derivative:

BQci

Bλi
“ BQci

Bwti

Bwti

Bλi
“ BQci

Bwti
Ci (A.70)

and the term BQci{Bwti obtained by a derivative propagation approach:

ˆ BΓi

Bwti

˙1

“ adξi

BΓi

Bwti
(A.71)

ˆBQci

Bwti

˙1

“ pBNqT BΓi

Bwti
(A.72)

with initial values BΓi{BwtipLq “ I3, and BQci{BwtipLq “ 0miˆ3.
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Appendix B

Geometrico and Kinemato Static
Models Derivation:
Finite-Differences Approach

This appendix derives the geometrico-static model equations and the necessary steps for
the derivation of the kinemato-static model equations when using the finite-difference
approach of [56] for the spatial case (Sec. B.1), and for the planar case of [80] (Sec. B.2).

B.1 Spatial Case

This Section derives the geometrico-static and kinemato-static terms when using the finite-
differences approach for a spatial CPR case. Additional details on this derivation are
reported in [180] for the interested reader. The first part (Sec. B.1.1) focuses on the
geometrico-static model derivation, while the second (Sec. B.1.2) derives the terms neces-
sary for the kinemato-static model evaluation.

B.1.1 Geometrico-static model

This section derives the geometrico-static model equations of Eq.(2.23) of a CPR when a
finite-differences modelling approach is used, here reported for clarity:

#
∇xL “ 0

∇λL “ 0
Ñ

$
’&
’%

∇qeVtot ` ∇qe

`
λTΦ

˘
“ 0

∇qpVtot ` ∇qp

`
λTΦ

˘
“ 0

Φ “ 0

(B.1)

To derive the expression of these equations, let us consider the deformation energy of the
i -th beam of Eq. (2.12) when shear and extensibility are neglected, here reported for
clarity:

Vei “ 1

2

ż Li

0

puipsq ´ u˚
i psqqT K puipsq ´ u˚

i psqq ds (B.2)

In the case the finite-differences approach is employed, it is convenient to parametrize the
orientation of each cross-section by using unit quaternions hi P R

4, hi “ hi1 ` hi2e1 `
hi3e2 ` hi4e3, e1 “ r1, 0, 0s, e2 “ r0, 1, 0s, e3 “ r0, 0, 1s. In this case, the i -th beams
curvature uipsq P R

3 is computed as follows:

uikpsq “ 2hT
i B

T
k h

1
i; k “ 1, 2, 3 (B.3)

151



Appendix B. Geometrico and Kinemato Static Models Derivation:
Finite-Differences Approach

with the matrices Bk structured as follows:

B1 “

»
——–

0 ´1 0 0
1 0 0 0
0 0 0 1
0 0 ´1 0

fi
ffiffifl ,B2 “

»
——–

0 0 ´1 0
0 0 0 ´1
1 0 0 0
0 1 0 0

fi
ffiffifl ,B3 “

»
——–

0 0 0 ´1
0 0 1 0
0 ´1 0 0
1 0 0 0

fi
ffiffifl (B.4)

Thus, inserting Eq. (B.3) into Eq. (B.2), and by assuming u˚
i “ 0 for simplicity, the

following expression of Vei is obtained:

Vei “ 1

2

ż Li

0

˜
3ÿ

k“1

Kk

`
2hT

i Bkh
1
i

˘2
¸
ds (B.5)

The finite-difference approximation is introduced by first discretizing the rod into Nelt

elements of equal length Lei “ L{Nelt, with the orientation of the j -th element of the
i -th beam being defined by hij . The vector qei collects the Nelt quaternions hij of the
i -th beam. The expression of Vei becomes:

Vei “
Neltÿ

i“1

Veij ; Veij “ 1

2

ż Lei

0

˜
3ÿ

k“1

Kk

`
2hT

ijBkh
1
ij

˘2
¸
ds (B.6)

The expression of h1
ij is then approximated by the use of a first-order backward finite

difference approximation:

h1
ij » hij ´ hij´1

Lei
(B.7)

Inserting Eq. (B.7) into Eq. (B.6) and integrating in s results in the following expression
of Veij :

Veij “
3ÿ

k“1

Kk

Le

ˆ
2hT

ijBk
hij ´ hij´1

Le

˙2

(B.8)

Once the term Vei is obtained, to compute L, it is necessary to evaluate the influence
of distributed loads Vdi (Eq. (2.13)) and the geometric constraints of the i -th beam Φi.
First, the position of each beam’s element pij is recovered by the use of the following
formula:

pipsq “ pij ` sRije3 (B.9)

with Rij the orientation matrix of the j -th element, recovered by the knowledge of hij .
p0,h0, that are the base position and orientation of the beam, are usually computed from
qai, depending on the employed actuator. To compute Vdi, let us recall its expression of
Eq. (2.13) for clarity:

Vdi “ ´
ż L

0

fTd pids (B.10)

By discretizing the beam into Nelt equal elements, inserting Eq. (B.9) into Eq. (B.10), and
integrating in s, the following expression is obtained:

Vdi “
Neltÿ

j“1

Vdij Vdij “ ´fTd ppij ` LeRije3q (B.11)

At this stage, the derivation of the geometrico-static model equations starts. Comput-
ing Φi is possible by inserting the values of pij ,Rij of the last beams element computed
from Eq. (B.9) in Eq. (2.18), here reported for clarity:

Φi “ Ci

„`
RT

pRij ´ RijRp

˘
q

pij ´ ppp ` Rppfiq

ȷ
j “ Nelt (B.12)

152



B.1. Spatial Case

Let us derive ∇qeiL, by considering separately the contribution of the deformation energy,
distributed loads energy, and geometrical constraints:

∇qeiL “ ∇qeiVei ` ∇qeiVdi ` ∇qeiΦiλi (B.13)

For each term, the expression of ∇hij p.q, that is the j -th component of ∇qeip.q, is derived.
For the scope, let us expand the expression of Vei as follows to illustrate where hij appears
in Vei:

Vei “
Neltÿ

j“1

3ÿ

k“1

Kk

Lei

˜
¨ ¨ ¨ `

ˆ
2hT

ijBk
hij ´ hij´1

Le

˙2

`
ˆ
2hT

ij`1Bk
hij`1 ´ hij

Le

˙2

` ¨ ¨ ¨
¸

(B.14)
The term hij , as a cause of the finite-difference approximation, appears in the term j and
j ` 1. Thus, ∇hijVei is structured as the sum of two terms:

∇hijVei “ aij ` bi (B.15)

and the terms aij ,bik, Aijk can be computed as follows:

aij “ `2
3ÿ

k“1

Kk

Lei
BkhijAijk, aij P R

4 (B.16)

bij “ ´2
3ÿ

k“1

Kk

Lei
Bkhipj`1qAijk, bij P R

4 (B.17)

Aijk “ ´2hT
ipj`1qB

T
k hij , Aijk P R (B.18)

Then, the term ∇hijVdi is calculated by differentiating Eq.(B.11) w.r.t. hij :

∇hijVdi “
Neltÿ

r“1

fTd
`
∇hijpir ` Lei∇hij pRire3q

˘
(B.19)

with the terms ∇hijpir and ∇hij pRire3q compute as follows:

∇hijpir “ LeiD3ij ; j ď r; ∇hijpir “ 0; j ą r (B.20)

∇hij pRire3q “ D3ij ; j “ r; ∇hij pRire3q “ 0; j ‰ r (B.21)

The matrix D3ij (and D1ij ,D2ij introduced for later convenience), are structured as:

D1ij “ 2

»
–

`h1ij `h2ij ´h3ij ´h4ij
`h4ij `h3ij `h2ij `h1ij
´h3ij `h4ij ´h1ij `h2ij

fi
fl (B.22)

D2ij “ 2

»
–

´h4ij `h3ij `h2ij ´h1ij
`h1ij ´h2ij `h3ij ´h4ij
`h2ij `h1ij `h4ij `h3ij

fi
fl (B.23)

D3ij “ 2

»
–

`h3ij `h4ij `h1ij `h2ij
´h2ij ´h1ij `h4ij `h3ij
`h1ij ´h2ij ´h3ij `h4ij

fi
fl (B.24)

Finally, to compute ∇qei

`
ΦT

i λi

˘
, the j -th component ∇hij

`
ΦT

i λi

˘
is calculated.

For the following derivation, it is convenient to simplify the expression of the orienta-
tion contraints. Being dp1,dp2,dp3 the columns of the platform rotation matrix Rp “
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rdp1,dp2,dp3s, and di1,di2,di3 the columns of the i -th beam rotation matrix at s “ L

(Rij “ rdi1,di2,di3s,j “ Nelt), it is possible to obtain the following expression:

`
RT

pRipLiq ´ RT
i pLiqRp

˘
q“

$
’&
’%

dT
p1d2 ´ dT

p2d1

dT
p1d3 ´ dT

p3d1

dT
p2d3 ´ dT

p3d2

(B.25)

Thus, λT
i Φi is explicitly computed as follows:

λT
i Φi “ rλ4i, λ5i, λ6is ppipLiq ´ ppp ` Rppfiqq ` λ1i

`
dT
p1d2 ´ dT

p2d1

˘

` λ2i

`
dT
p1d3 ´ dT

p3d1

˘
` λ3i

`
dT
p2d3 ´ dT

p3d2

˘
(B.26)

Deriving Eq. (B.26) w.r.t. hij results in two terms:

∇hij pλT
i Φiq “ cij ` dij (B.27)

where cij P R
4:

cij “ Leirλ4i, λ5i, λ6isD3ij (B.28)

Instead, the term dij P R
4 is non-null only for j “ Nelt, and it is structured as follows:

dij “ λ1i

`
dT
p1D2ij ´ dT

p2D1ij

˘
` λ2i

`
dT
p1D3ij ´ dT

p3D1ij

˘
`

` λ3i

`
dT
p2D3ij ´ dT

p3D2ij

˘
, j “ Nelt (B.29)

Finally, the last required term for the geometrico-static model derivation is ∇qpL, that
can be computed as:

∇qpL “ ∇qpVtot ` ∇qppλT
i Φiq (B.30)

where ∇qpV “ ´r03ˆ1; I3s and, being qp “ rpp,αs P R
nc with pp P R

3 the platform

position and α P R
nc´3 the platform orientation parameters, the term ∇qppλT

i Φiq is
structured as follows:

∇qppλT
i Φiq “ ´rλ4i, λ5i, λ6is

„
I3
mp1

ȷ
`

„
03ˆ1

mp2

ȷ
(B.31)

the vector mp1 P R
nc´3 is:

mp1 “ B
Bα pRppfiq (B.32)

and its expression depends on the specific platform orientation parametrization. The
expression of mp2 P R

nc´3 depends on the platform orientation parametrization as well,
and it is structured as:

mp2 “ λ1i

˜
BdT

p1

Bα d2ij ´
BdT

p2

Bα d1ij

¸
` λ2i

˜
BdT

p1

Bα d3ij ´
BdT

p3

Bα d1ij

¸
`

` λ3i

˜
BdT

p1

Bα d3ij ´
BdT

p3

Bα d2ij

¸
, j “ Nelt (B.33)

with BdT
pk{Bα to be computed in relation to the selected platform orientation parametriza-

tion.
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B.1.2 Kinemato-static model

The derivation of the kinemato-static model requires the computation of the first derivative
of each of Eq. (B.1) w.r.t. y “ rqa,qe,qp,λs. In particular, the derivative of Eq.(B.1)
w.r.t. y is structured as follows:

»
–
∇qa p∇qeLq ∇qe p∇qeLq ∇qe p∇qeLq ∇λ p∇qeLq
∇qa

`
∇qpL

˘
∇qe

`
∇qpL

˘
∇qe

`
∇qpL

˘
∇λ

`
∇qpL

˘

∇qaΦ ∇qeΦ ∇qeΦ ∇λΦ

fi
fl (B.34)

Let us start by computing the derivatives of ∇qeiL: its first derivative w.r.t. qei is
obtained by considering separately Vei, Vdi and λT

i Φi. The term∇qeiVei depends on qei, qai
only, and it derivative w.r.t. qei is computed according to Eq. (B.27) as a diagonal block
matrix:

∇qei p∇qeiVeiq “

»
—————–

Ei1 FT
i2 ¨ ¨ ¨ 0 0

Fi2 Ei2 ¨ ¨ ¨ 0 0
...

...
. . .

...
...

0 0 ¨ ¨ ¨ EiNelt´1 FT
iNelt

0 0 ¨ ¨ ¨ FiNelt EiNelt

fi
ffiffiffiffiffifl

(B.35)

in which:

Eij “ Mij ` Nij`1 (B.36)

Fij “ ´4
3ÿ

k“1

Kk

Lei
ppBkhijqpBkhij`1qT ´ BkAijk{2q (B.37)

Mij “ ´4
3ÿ

k“1

Kk

Lei
pBkhijqpBT

k hijqT (B.38)

Nij “ ´4
3ÿ

k“1

Kk

Lei
pBkhij`1qpBkhij`1qT (B.39)

Concering ∇qaip∇qeiVeiq, this derivative depends on the specific actuators employed. In
the case a prismatic actuator is used, ∇qaip∇qeiVeiq “ 0 while, for rotative actuators:

∇qaip∇qeiVeiq “ B
Bh0

p∇qeiVeiq
Bh0

Bqai
(B.40)

with the term B{Bh0p∇qeiVeiq obtainable from Eq. (B.39), and Bh0{Bqai depends on the
specific actuator installation. All the other derivatives successive derivatives of ∇qeiVei

are null.
Let us consider now ∇qeiVdi, that depends on qei only. In particular, only hij ap-

pears. To compute derivative of ∇hijVdi w.r.t. hij , it is first convenient to insert fd “
rfdx, fdy, fdzs inside Eq. (B.19), to obtain the following expression:

∇hijVdi “
Neltÿ

r“1

∇hij

`
fTd pir

˘
` Lei∇hij

`
fTd Rire3

˘
(B.41)

For the derivation, it is convenient to define the following operator that transforms the
generic z “ rz1, z2, z3s P R

3 into a 4 ˆ 4 matrix structured as follows:

rz “

»
——–

`z3 ´z2 `z1 0
´z2 ´z3 0 `z1
`z1 0 ´z3 `z2
0 `z1 `z2 `z3

fi
ffiffifl (B.42)
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The derivative of ∇hijVdi w.r.t. hij is expressed as follows:

∇hij

`
∇hij

`
fTd pir

˘˘
“ 4rfd (B.43)

Then, let us consider ∇qeiλ
T
i Φi of Eq.(B.27), that depends on qei,λi. First, let us

compute the derivative of Eq.(B.27) w.r.t. hij , that is:

∇hij

`
∇hij pλT

i Φiq
˘

“ ∇hici ` ∇hidi (B.44)

Considering Eq.(B.28), and by introducing λ4:6i “ rλ4i, λ5i, λ6is, the expression ∇hici is
obtained as follows:

∇hicij “ 2Lei
Ćλ4:6i (B.45)

The term ∇hijdij is non-null only for j “ Nelt, and it is structured as follows:

∇hijdij “ λ1i

´
Ądp1 ´ Ądp2

¯
` λ2i

´
Ądp1 ´ Ądp3

¯
` λ3i

´
Ądp2 ´ Ądp3

¯
, j “ Nelt (B.46)

Let us calculate∇λip∇qeiλ
T
i Φiq. Please note that this term also correspond to∇qeiΦi.

Derivating cij w.r.t. λi results in:

∇λicij “ Lei

„
03ˆ4

D3ij

ȷ
(B.47)

while, by differentiating dij w.r.t. λi, the following expression is obtained:

∇λidij “

»
——–

dT
p1D2ij ´ dT

P2
D1ij

dT
p1D3ij ´ dT

P3
D1ij

dT
p2D3ij ´ dT

P3
D2ij

03ˆ4

fi
ffiffifl , j “ Nelt (B.48)

Let us compute the derivatives of ∇qpL, which depends on λ,qe and qp. In particular,

∇qpVtot is constant, and its first derivatives vanishes. Instead, let us consider ∇qpλ
T
i Φi of

Eq.(B.31), where a differentiation w.r.t. λ results in:

∇λi

`
∇qp

`
λT
i Φi

˘˘
“

„
03ˆ3 ´I3ˆ3

∇λ4:6i
mp2 03ˆ3

ȷ
(B.49)

where:

∇λ4:6i
mp2 “

”
BdTp1
Bα d2ij ´ BdTp2

Bα d1ij ,
BdTp1
Bα d3ij ´ BdTp3

Bα d1ij ,
BdTp1
Bα d3ij ´ BdTp3

Bα d2ij

ı
(B.50)

Please note that ∇λi∇qp

`
λT
i Φi

˘
also corresponds to ∇qpΦi. The derivative of ∇qpλ

T
i Φi

w.r.t. hij is non-null only for j “ Nelt, and it computed as follows:

∇hij

`
∇qpλ

T
i Φi

˘
“

„
03ˆ4

∇hijmp2

ȷ
(B.51)

in which:

∇hijmp2 “ λ1i

˜
BdT

p1

Bα D2ij ´
BdT

p2

Bα D1ij

¸
` λ2i

˜
BdT

p1

Bα D3ij ´
BdT

p3

Bα D1ij

¸
`

` λ3i

˜
BdT

p1

Bα D3ij ´
BdT

p3

Bα D2ij

¸
, j “ Nelt (B.52)

The derivative of Eq.(B.31) w.r.t. qp depends on the specific orientation parametrization,
and the derivation of its expression is left to the interested reader.
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B.2 Planar Case

This Section derives the geometrico-static and kinemato-static terms when using the finite-
differences approach for a planar CPR case. The first part (Sec. B.2.1) focuses on the
geometrico-static model derivation, while the second (Sec. B.2.2) derives the terms neces-
sary for the kinemato-static model evaluation.

B.2.1 Geometrico-static model

This section derives the geometrico-static model equations of Eq.(2.23) of a CPR when
the assumed strain mode approach is used in a planar case, here reported for clarity:

#
∇xL “ 0

∇λL “ 0
Ñ

$
’&
’%

∇qeVtot ` ∇qe

`
λTΦ

˘
“ 0

∇qpVtot ` ∇qp

`
λTΦ

˘
“ 0

Φ “ 0

(B.53)

To derive the expression of these equations, let us consider the deformation energy of the
i -th beam of Eq. (2.12) when shear and extensibility are neglected, and a planar case is
considered, here reported for clarity:

Vei “ 1

2

ż Li

0

Kb puipsq ´ u˚
i psqqT puipsq ´ u˚

i psqq ds (B.54)

with Kb being the material stiffness (usually equal to EI). As in a planar case, the pose
of each cross-section is described by a position vector p P R

2 and the angle θ P R. In this
case, the i -th beams curvature uipsq P R is computed as follows:

uipsq “ θ1psq (B.55)

The finite-difference approximation is introduced by first discretizing the rod into Nelt

elements of equal length Lei “ L{Nelt, with the orientation of the j -th element of the i -th
beam being defined by θij . The expression of Vei becomes:

Vei “
Neltÿ

i“1

Veij ; Veij “ 1

2

ż Lei

0

`
Kbθ

2
ij

˘
ds (B.56)

The expression of θ1
ij is then approximated by the use of a first-order backward finite

difference approximation:

θ1
ij » θij ´ θij´1

Lei
(B.57)

Inserting Eq. (B.57) into Eq. (B.56) and integrating in s results in the following expression
of Veij :

Veij “ Kb

Le
pθij ´ θij´1q2 (B.58)

Once the term Vei is obtained, to compute L, it is necessary to evaluate the influence
of distributed loads Vdi (Eq. (2.13)) and the geometric constraints of the i -th beam Φi.
First, the position of each beam’s element pij is recovered by the use of the following
formula:

pipsq “ pij ` sRije
b
2 (B.59)

with Rij the orientation matrix of the j -th element, recovered by the knowledge of θij
and eb2 “ r0, 1s, with the tangent to the beam’s centerline assumed to be parallel to the
local y axis. p0, θ0, that are the base position and orientation of the beam, are usually
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computed from qai, depending on the employed actuator. To compute Vdi, let us recall its
expression of Eq. (2.13) for clarity:

Vdi “ ´
ż L

0

fTd pids (B.60)

By discretizing the beam into Nelt equal elements, inserting Eq. (B.59) into Eq. (B.60),
and integrating in s, the following expression is obtained:

Vdi “
Neltÿ

j“1

Vdij Vdij “ ´fTd ppij ` LeRije3q (B.61)

At this stage, the derivation of the geometrico-static model equations starts. Let us
first consider the geometrico-static model of Eq. (2.20), reported here for clarity:

#
∇xL “ 0

∇λL “ 0
Ñ

$
’&
’%

∇qeiVtot ` ∇qeiΦ
Tλ “ 0; @i

∇qpVtot ` ∇qpΦ
Tλ “ 0

Φi “ 0; @i
(B.62)

In particular, qei collects the Nelt angles θij of the i -th beam. Computing Φi is possible
by inserting the values of pij , θij of the last beams element in Eq. (2.18) computed from
Eq. (B.59).

Let us derive ∇qeiL, by considering separately the contribution of the deformation
energy, distributed loads energy, and geometrical constraints:

∇qeiL “ ∇qeiVei ` ∇qeiVdi ` ∇qeiΦiλi (B.63)

For each term, it is sufficient to calculate ∇hij p.q for each j to obtain ∇qeip.q. To derive
∇hijVei, let us expand the expression of Vei as follows:

Vei “
Neltÿ

j“1

Kb

Lei

´
¨ ¨ ¨ ` pθij ´ θij´1q2 ` pθij`1 ´ θijq2 ` ¨ ¨ ¨

¯
(B.64)

The term θij , as a cause of the finite-difference approximation, appears in the term j and
j ` 1. Thus, ∇θijVei is structured as follows:

∇θijVei “ Kb

Lei
p´θij´1 ` 2θij ´ θij`1q (B.65)

Then, let us compute ∇θijVdi:

∇θijVdi “
Neltÿ

r“1

fTd

´
∇θijpir ` Lei∇θij

´
Rire

b
2

¯¯
(B.66)

with the terms ∇θijpir and ∇θij

`
Rire

b
2

˘
computed as follows:

∇θijpir “ LeiRπ{2e
p
2; j ď r; ∇θijpir “ 0; j ą r (B.67)

∇θij pRire
p
2q “ Rπ{2e

p
2; j “ r; ∇θij pRire3q “ 0; j ‰ r (B.68)

with Rπ “ Rzpθij ` πq.
Finally, to compute ∇θijΦ

T
i λi, it is convenient to recall the expression of Φi from

Eq. (2.18). In this Appendix, the results are derived for fixed joints only (Ci “ I3) since
this case includes all the others, and thus Eq. (2.18) is written as follows:

Φi “
„

θipLq ´ θp
pipLiq ´ ppp ` Rppfiq

ȷ
(B.69)
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with θp being the platform orientation angle that defines Rp. Calculating λT
i Φi with

λi “ rλ1i, λ2i, λ3is results in:

λ1ipθipLq ´ θpq ` rλ2i, λ3isT ppipLiq ´ ppp ` Rppfiqq (B.70)

Deriving Eq. (B.70) w.r.t. θij results in two terms:

∇θij pλT
i Φiq “ cij ` dij (B.71)

where cij :

cij “ Leirλ2i, λ3isT
`
Rπ{2e

p
2

˘
(B.72)

The term dij is non-null only if j “ Nelt, where in that case is dij “ 1.
Finally, the last required term for the geometrico-static model derivation is ∇qpL, that

can be computed as:

∇qpL “ ∇qpVtot ` ∇qppλT
i Φiq (B.73)

where ∇qpV “ ´I3 and, being qp “ rθp,pps P R
3 the term ∇qppλT

i Φiq is structured as
follows:

∇qppλT
i Φiq “ ´λT

i

„
01ˆ2 1
I2 Rzpθp ` π{2qpfi

ȷ
(B.74)

B.2.2 Kinemato-static model

The derivation of the kinemato-static model requires the computation of the first derivative
of each of model equation w.r.t. qa,qe,qp and λ.

Let us start with ∇qeiL “ 0: its first derivative w.r.t. qei is obtained by considering
separately Vei, Vdi and λT

i Φi. The term ∇qeiVei depends on qei, qai only, and it derivative
w.r.t. qei is computed according to Eq. (B.27) as a three-diagonal matrix:

∇qei p∇qeiVeiq “ Kb

Le

»
———–

´1 2 ´1 0 0 ¨ ¨ ¨ 0 0 0
0 ´1 2 ´1 0 ¨ ¨ ¨ 0 0 0
...

...
...

. . .
...

...
...

0 0 0 0 0 ¨ ¨ ¨ 0 0 ´1

fi
ffiffiffifl (B.75)

Concering ∇qaip∇qeiVeiq, this derivative depends on the specific actuators employed. In
the case a prismatic actuator is used, ∇qaip∇qeiVeiq “ 0 while, for rotative actuators:

∇qaip∇qeiVeiq “ B
Bθ0

p∇qeiVeiq
Bθ0
Bqai

(B.76)

with the term B{Bθ0p∇qeiVeiq obtainable from Eq. (B.75), and Bθ0{Bqai depends on the
specific actuator installation. All the other derivatives successive derivatives of ∇qeiVei

are null.
Let us consider now ∇qeiVdi, that depends on qei only. In particular, only θij appears,

and derivating Eq.(B.66) w.r.t. θij results in:

∇θij

`
∇θijVdi

˘
“

Neltÿ

r“1

fTd

´
∇θij

`
∇θijpir

˘
` Lei∇θij

´
∇θij

´
Rire

b
2

¯¯¯
(B.77)

with the terms ∇θij∇θijpir and ∇θij∇θij

`
Rire

b
2

˘
computed as follows:

∇θij

`
∇θijpir

˘
“ LeiRπe

p
2; j ď r; ∇θij

`
∇θijpir

˘
“ 0; j ą r (B.78)

∇θij

`
∇θij pRire3q

˘
“ Rπe

p
2; j “ r; ∇θij

`
∇θij pRire

p
2q

˘
“ 0; j ‰ r (B.79)
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with Rπ “ Rzpθij ` πq. All the derivatives w.r.t. the other variables are null.
Then, let us consider ∇qeiλ

T
i Φi of Eq.(B.27), that depends on qei,λi. First, let us

compute the derivative of Eq.(B.27) w.r.t. θij , that is:

∇θij

`
∇θij pλT

i Φiq
˘

“ Leirλ2i, λ3isT pRπe
p
2q (B.80)

Let us now calculate ∇λip∇qeiλ
T
i Φiq. Please note that this term also correspond to

∇qeiΦi. Derivating cij w.r.t. λi results in:

∇λicij “ Lei

„
0

Rπ{2e
p
2

ȷ
(B.81)

while, since dij is constant, its derivatives are null.
Finally, let us compute the derivatives of ∇qpL, which depends on λ,qe and qp. In

particular, ∇qpVtot is constant, and its first derivatives vanishes. Instead, let us consider

∇qpλ
T
i Φi of Eq.(B.31), where a differentiation w.r.t. λ results in:

∇λi

`
∇qp

`
λT
i Φi

˘˘
“ ´

„
01ˆ2 1
I2 Rzpθp ` π{2qpfi

ȷ
(B.82)

Please note that∇λi

`
∇qp

`
λT
i Φi

˘˘
also corresponds to∇qpΦi. The derivative of Eq.(B.31)

w.r.t. qp is structured as follows:

∇qp

`
∇qp

`
λT
i Φi

˘˘
“

„
02ˆ3

rλ2i, λ3isTRzpθp ` πqpfi 01ˆ2

ȷ
(B.83)
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Appendix C

Derivatives of the kinemato-static
model terms with respect to f

This appendix derives the derivatives of the kinemato-static model terms w.r.t. a parame-
ter f useful for the DCLI computation of Chapter 6. In particular, the goal is to compute
the following terms when a finite-differences approximation is used:

BH
Bf “ B

Bf

„
∇qe p∇qeLq ∇qp p∇qeLq
∇qe

`
∇qpL

˘
∇qp

`
∇qpL

˘
ȷ

(C.1)

BΛ
Bf “ B

Bf
“
∇λ p∇qeLq ∇λ

`
∇qpL

˘‰T
(C.2)

Sec. C.1 derives the expressions of these terms for the spatial case, while Sec. C.2 for the
planar case.

C.1 Spatial Case

Let us first consider ∇qei p∇qeiLq which is structured as:

∇qei p∇qeiLq “ ∇qei p∇qeiVeiq ` p∇qei p∇qeiVdiqq `
`
∇qei

`
∇qei

`
λT
i Φ

˘˘˘
(C.3)

The derivative of ∇qei p∇qeiVeiq w.r.t. f is obtained by derivating Eq. (B.35):

B
Bf p∇qei p∇qeiVeiqq “

»
———————–

B
Bf pEi1q B

Bf

`
FT
i2

˘
¨ ¨ ¨ 0 0

B
Bf pFi2q B

Bf pEi2q ¨ ¨ ¨ 0 0

...
...

. . .
...

...

0 0 ¨ ¨ ¨ B
Bf pEiNelt´1q B

Bf

´
FT
iNelt

¯

0 0 ¨ ¨ ¨ B
Bf pFiNeltq B

Bf pEiNeltq

fi
ffiffiffiffiffiffiffifl

(C.4)
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in which:

BEij

Bf “ BMij

Bf ` BNij`1

Bf (C.5)

BFij

Bf “ ´4
3ÿ

k“1

Kk

Lei

ˆ
pBk

Bhij

Bf qpBkhij`1qT ` pBkhijqpBk
Bhij`

Bf qqT ´ Bk
1

2

BAijk

Bf

˙
(C.6)

BMij

Bf “ ´4
3ÿ

k“1

Kk

Lei

ˆ
pBkhijqpBT

k

Bhij

Bf qT ` pBkhijqpBT
k

Bhij

Bf qT
˙

(C.7)

BNij

Bf “ ´4
3ÿ

k“1

Kk

Lei

ˆ
pBk

Bhij`1

Bf qpBkhij`1qT ` pBkhij`1qpBk
Bhij`1

Bf qT
˙

(C.8)

BAijk

Bf “ ´2

˜
Bhipj`1q

Bf
T

BT
k hij ` hT

ipj`1qB
T
k

Bhij

Bf

¸
(C.9)

Let us consider the j -th term of ∇qei p∇qeiVdiq. Since ∇hij

`
∇hijVdi

˘
of Eq.(B.43) is

constant, if derivative w.r.t. f is null:

B
Bf∇hij

`
∇hijVdi

˘
“ 0 (C.10)

To compute the j -th term of ∇qei

`
∇qei

`
λT
i Φ

˘˘
, let us calculate the derivative w.r.t. f

of Eq.(B.44):
B

Bf∇hij

`
∇hij pλT

i Φiq
˘

“ B
Bf p∇hicijq ` B

Bf p∇hidijq (C.11)

in which:
B

Bf p∇hicijq “ 2Lei

ČˆBλ4:6i

Bf

˙
(C.12)

and:

B
Bf

`
∇hijdij

˘
“ Bλ1i

Bf
´

Ądp1 ´ Ądp2

¯
` Bλ2i

Bf
´

Ądp1 ´ Ądp3

¯
` Bλ3i

Bf
´

Ądp2 ´ Ądp3

¯
`

` λ1i

˜
ĆBdp1

Bf ´
ĆBdp2

Bf

¸
` λ2i

˜
ĆBdp1

Bf ´
ĆBdp3

Bf

¸
` λ3i

˜
ĆBdp2

Bf ´
ĆBdp3

Bf

¸
, j “ Nelt (C.13)

In particular, the derivatives of the rotation matrix columns dpi are computed by first
calculating BRp{Bf and then extracting the columns:

BRp

Bf “
nc´3ÿ

i“1

BRp

Bαi

Bαi

Bf (C.14)

where αi i “ 1, ¨ ¨ ¨ , nc ´ 3 is the i -th parameter of the platform orientation. Since the
term ∇qp

`
∇qp

`
λT
i Φi

˘˘
depends on the specific orientation parametrization, its derivative

w.r.t. f is not reported here for brevity.
Let us know compute the derivative of ∇λi

`
∇qei

`
λT
i Φi

˘˘
w.r.t. f . This term is

structured as follows:

B
Bf∇λip∇qeiλ

T
i Φiq “ B

Bf p∇λicijq ` B
Bf p∇λidijq (C.15)

where:

∇λicij “ Lei

«
03ˆ4
BD3ij

Bf

ff
(C.16)
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and:

B
Bf∇λidij “

»
———–

B
Bf

`
dT
p1

˘
D2ij ´ B

Bf

`
dT
P2

˘
D1ij

B
Bf

`
dT
p1

˘
D3ij ´ B

Bf

`
dT
P3

˘
D1ij

B
Bf

`
dT
p2

˘
D3ij ´ B

Bf

`
dT
P3

˘
D2ij

03ˆ4

fi
ffiffiffifl`

»
———–

dT
p1

B
Bf pD2ijq ´ dT

P2
B

Bf pD1ijq
dT
p1

B
Bf pD3ijq ´ dT

P3
B

Bf pD1ijq
dT
p2

B
Bf pD3ijq ´ dT

P3
B

Bf pD2ijq
03ˆ4

fi
ffiffiffifl , j “ Nelt

(C.17)
where BDkij{Bf, k “, 1, 2, 3 are computed according to Eq.(B.24) by using Bhij{Bf .

Then, the derivative of∇λi

`
∇qp

`
λT
i Φi

˘˘
w.r.t. f is calculated by derivating Eq.(B.49)

w.r.t. f :
B

Bf
`
∇λi

`
∇qp

`
λT
i Φi

˘˘˘
“ `

„
03ˆ3 03ˆ3

B
Bf p∇λ4:6i

mp2q 03ˆ3

ȷ
(C.18)

where:

B
Bf p∇λ4:6i

mp2q “
”

B2dTp1
BαBf d2ij ´ B2dTp2

BαBf d1ij ,
B2dTp1
BαBf d3ij ´ B2dTp3

BαBf d1ij ,
B2dTp1
BαBf d3ij ´ B2dTp3

BαBf d2ij

ı
`

`
”

BdTp1
Bα

Bd2ij

Bf ´ BdTp2
Bα

Bd1ij

Bf ,
BdTp1
Bα

Bd3ij

Bf ´ BdTp3
Bα

Bd1ij

Bf ,
BdTp1
Bα

Bd3ij

Bf ´ BdTp3
Bα

Bd2ij

Bf

ı
(C.19)

where the term B2dT
pk{BαBf depends on the specific platform orientation parametrization,

and Bdkij{Bf is obtained as follows:

Bdkij

Bf “ Dkij
Bhij

Bf k “ 1, 2, 3 (C.20)

C.2 Planar Case

Let us first consider ∇qei p∇qeiLq. Since ∇qei p∇qeiVeiq of Eq.(B.75) is constant, its deriva-
tive w.r.t. f is null. Then, let us consider ∇qei p∇qeiVdiq of Eq.(B.77). The derivative of
its j -th components w.r.t. f is structured as follows:

B
Bf

`
∇θij

`
∇θijVdi

˘˘
“

Neltÿ

r“1

fTd

ˆ B
Bf

`
∇θij

`
∇θijpir

˘˘
` Lei

B
Bf

´
∇θij

´
∇θij

´
Rire

b
2

¯¯¯˙

(C.21)
where:

B
Bf

`
∇θij

`
∇θijpir

˘˘
“ LeiR3π{2e

p
2

Bθij
Bf ; j ď r;

B
Bf

`
∇θij

`
∇θijpir

˘˘
“ 0; j ą r (C.22)

B
Bf

`
∇θij

`
∇θij pRire3q

˘˘
“ R3π{2e

p
2

Bθij
Bf ; j “ r;

B
Bf

`
∇θij

`
∇θij

˘˘
pRire

p
2q “ 0; j ‰ r

(C.23)

with R3π{2 “ Rzpθij ` 3π{2q.
The next considered term is ∇θij

`
∇θij pλT

i Φiq
˘
, where its derivative w.r.t. f is struc-

tured as follows:

∇θij

`
∇θij pλT

i Φiq
˘

“ Lei

„Bλ2i

Bf ,
Bλ3i

Bf

ȷT

pRπe
p
2q ` Leirλ2i, λ3isT

ˆ
R3π{2e

p
2

Bθij
Bf

˙
(C.24)

Let us now calculate the derivative of ∇λip∇qeiλ
T
i Φiq w.r.t. f . Its expression is

obtained by derivating Eq.(B.81) w.r.t. f :

B
Bf p∇λicijq “ Lei

«
0

Rπ
Bθij
Bf e

p
2

ff
(C.25)
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The derivative of ∇λi

`
∇qp

`
λT
i Φi

˘˘
w.r.t. f is computed as:

B
Bf

`
∇λi

`
∇qp

`
λT
i Φi

˘˘˘
“ ´

«
01ˆ2 0

02 Rzpθp ` πqpfi
Bθp
Bf

ff
(C.26)

Finally, the derivative of the last required term∇qp

`
∇qp

`
λT
i Φi

˘˘
w.r.t. f is calculated

as follows:

B
Bf

`
∇qp

`
∇qp

`
λT
i Φi

˘˘˘
“

«
02ˆ3”

Bλ2i

Bf , Bλ3i

Bf

ıT
Rzpθp ` πqpfi

ff
`

«
02ˆ3

rλ2i, λ3isTRzpθp ` 3π{2qpfi
Bθp
Bf

ff

(C.27)
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Appendix D

Kantorovich’s Constant Derivation

This appendix describes the detailed derivation of the Kantorovich constant γ, of Chapter
3. In this appendix no distributed loads are considered, and only passive revolute joints are
included in the geometrico-static model derivation. These assumptions are in accordance
with the necessary derivation of Chapter 3.

D.1 Computation of the First and Second IGSP

Derivatives

The scope of this section is to compute the second derivatives of the geometrico-static
model equations necessary for the computation of the Kantorovich’s constant γ, here
reported for clarity:

γ ě max
yPB

˜
max
hPNeq

˜ÿ

i,j

ˇ̌
ˇ̌B2Fhpyq

ByiByj

ˇ̌
ˇ̌
¸¸

“ max
yPB

pmax pUγpyqqq (D.1)

with

Uγpyq “
«ÿ

i,j

ˇ̌
ˇ̌B2F1pyq

ByiByj

ˇ̌
ˇ̌ , ¨ ¨ ¨ ,

ÿ

i,j

ˇ̌
ˇ̌B2Fhpyq

ByiByj

ˇ̌
ˇ̌ , ¨ ¨ ¨ ,

ÿ

i,j

ˇ̌
ˇ̌B2FNeqpyq

ByiByj

ˇ̌
ˇ̌
ffT

(D.2)

being the vector stacking the sum in absolute value of all the non-null second derivatives
for each equation. For later convenience, we recall some important properties of absolute
values ([145], Appendix A). Given two generic scalars a, b P R, we have:

|ab| “ |a| |b| (D.3)

|a ` b| ď |a| ` |b| (D.4)

In the next subsections, all the terms of Uγ are approximated in a worst-case scenario
(considering the Kantorovich’s certification) and their expressions are explicitly computed.

Let us first consider ∇qei p∇qeiLq: by considering Eq.(B.75), no distributed loads, and
passive joints in Eq.B.80, the following expression of ∇θij∇θijL is obtained:

B
Bθij

ˆ BL
Bθij

˙
“ 2keq ´ Lei pλ2i cos θij ` λ3i sin θijq (D.5)

where keq “ Kb{Lei. Eq. (D.5) depends on θij , λ2i, λ3i. By derivating Eq. (D.5) w.r.t. θij
we obtain:

B2

Bθ2ij

ˆ BL
Bθij

˙
“ ´Lei p´λ2i sin θij ` λ3i cos θijq (D.6)
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Appendix D. Kantorovich’s Constant Derivation

By employing properties of Eqs. (D.3), (D.4), the absolute value of Eq. (D.6) can be
obtained as:

ˇ̌
ˇ̌
ˇ

B2

Bθ2ij

ˆ BL
Bθij

˙ˇ̌
ˇ̌
ˇ “ Lei |p´λ2i sin θij ` λ3i cos θijq| ď (D.7)

Le p|λ2i sin θij | ` |λ3i cos θij |q “ Lei p|λ2i| |sin θij | ` |λ3i| |cos θij |q (D.8)

Instead, differentiating Eq.(D.5) w.r.t. λ2i and considering its absolute value results is:

ˇ̌
ˇ̌ B2

Bλ2iBθij

ˆ BL
Bθij

˙ˇ̌
ˇ̌ “ Lei |cos θij | (D.9)

In the same fashion, differentiating Eq.(D.5) w.r.t. λ3i and considering its absolute value:

B2

Bλ3iBθij

ˆ BL
Bθij

˙
“ Lei |sin θij | (D.10)

By considering Eqs. (D.8), (D.9), (D.10), the sum in absolute value of all the non-null
derivatives of Eq. (D.5) can be expressed as:

ÿ

i,j

ˇ̌
ˇ̌ B2

ByiByj

ˆ BL
Bθij

˙ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ˇ

B2

Bθ2ij

ˆ BL
Bθij

˙ˇ̌
ˇ̌
ˇ ` 2

ˇ̌
ˇ̌ B2

Bλ2iBθij

ˆ BL
Bθij

˙ˇ̌
ˇ̌ ` 2

ˇ̌
ˇ̌ B2

Bλ3iBθij

ˆ BL
Bθij

˙ˇ̌
ˇ̌ “

Lei pp|λ2i| ` 2q |sin θij | ` p|λ3i| ` 2q |cos θij |q (D.11)

The terms in Eq. (D.11) are not constant w.r.t. the robot variables, because it depends
on θij , λ2i, λ3i.

Let us consider Eq. (B.83), where the only non-null term is simplified as follows:

B
Bθp

ˆ BL
Bθp

˙
“ ´

nÿ

i“1

p´ppfix cos θp ` ppfiy sin θpqλ2i ` p´ppfix sin θp ´ ppfiy cos θpqλ3i

(D.12)
Eq. (D.12) depends on θp and λ. A successive derivative of Eq. (D.12) w.r.t. θp results in:

B2

Bθ2p

ˆ BL
Bθp

˙
“ ´

nÿ

i“1

p`pfix sin θp ` pfiy cos θpqλ2i ` p´pfix cos θp ` pfiy sin θpqλ3i (D.13)
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and its absolute value, by employing properties of Eqs. (D.3), (D.4), can be obtained as:

ˇ̌
ˇ̌ B2

Bθ2p

ˆ BL
Bθp

˙ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ˇ
nÿ

i“1

pp´pfix sin θp ` pfiy cos θpqλ2i ` p´pfix cos θp ` pfiy sin θpqλ3iq
ˇ̌
ˇ̌
ˇ ď

(D.14)
nÿ

i“1

|pp´pfix sin θp ` pfiy cos θpqλ2i ` p´pfix cos θp ` pfiy sin θpqλ3iq| ď

(D.15)
nÿ

i“1

p|p´pfix sin θp ` pfiy cos θpqλ2i| ` |p´pfix cos θp ` pfiy sin θpqλ3i|q “

(D.16)
nÿ

i“1

p|p´pfix sin θp ` pfiy cos θpq| |λ2i| ` |p´pfix cos θp ` pfiy sin θpq| |λ3i|q ď

(D.17)
nÿ

i“1

pp|pfix sin θp| ` |pfiy cos θp|q |λ2i| ` p|pfix cos θp| ` |pfiy sin θp|q |λ3i|q “

(D.18)
nÿ

i“1

pp|pfix| |sin θp| ` |pfiy| |cos θp|q |λ2i| ` p|pfix| |cos θp| ` |pfiy || sin θp|q |λ3i|q

(D.19)

The derivative of Eq.(D.12) w.r.t. λ2i can be obtained as follows:

B2

Bλ2iBθp

ˆ BL
Bθp

˙
“ ´ p´pfix cos θp ` pfiy sin θpqλ2i (D.20)

and, as before, its absolute value is computed:

ˇ̌
ˇ̌ B2

Bλ2iBθp

ˆ BL
Bθp

˙ˇ̌
ˇ̌ “ |p´pfix cos θp ` pfiy sin θpqλ2i| “ (D.21)

|p´pfix cos θp ` pfiy sin θpq| |λ2i| ď (D.22)

p|pfix cos θp| ` |pfiy sin θp|q |λ2i| “ (D.23)

p|pfix || cos θp| ` |pfiy| |sin θp|q |λ2i| (D.24)

In the same fashion, the derivative of Eq.(D.12) w.r.t. λ3i can be obtained as;

B2

Bλ2iBθp

ˆ BL
Bθp

˙
“ p´pfix sin θp ´ pfiy cos θpqλ3i (D.25)

and its absolute value:

ˇ̌
ˇ̌ B2

Bλ2iBθp

ˆ BL
Bθp

˙ˇ̌
ˇ̌ “ |p´pfix sin θp ´ pfiy cos θpqλ3i| “ (D.26)

|p´pfix sin θp ´ pfiy cos θpq| |λ3i| ď (D.27)

p|pfix| |sin θp| ` |pfiy| |cos θp|q |λ3i| (D.28)

The sum in absolute value of all non-null derivatives of Eq.(D.12), by considering Eqs. (D.19),
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(a) (b)

Figure D.1: (a) Prismatic and (b) revolute actuators.

(D.24), (D.28), is:

ÿ

i,j

ˇ̌
ˇ̌ B2

ByiByj

ˆ BL
Bθp

˙ˇ̌
ˇ̌ “

ˇ̌
ˇ̌ B2

Bθ2p

ˆ BL
Bθp

˙ˇ̌
ˇ̌ ` 2

nÿ

i“1

ˆˇ̌
ˇ̌ B2

Bλ2iBθp

ˆ BL
Bθp

˙ˇ̌
ˇ̌ `

ˇ̌
ˇ̌ B2

Bλ3iBθp

ˆ BL
Bθp

˙ˇ̌
ˇ̌
˙

“

(D.29)
nÿ

i“1

p|pfix| ` |pfiy|q p|cos θp| ` |sin θp|q p|λ2i| ` |λ3i|q (D.30)

Again, the sum of the non-null second derivative is not constant, and it depends on θp and
all the multipliers λ.

Then, let us consider the generic closure equation: in the case only revolute joints are
considered:

Φi “ p0i ` Lei

nÿ

i“1

„
cos θij
sin θij

ȷ
´ ppP ` Rzpθpqpfiq (D.31)

which depends on all the θij , qai,pP and θp. In this report two kinds of actuators are
considered: revolute and prismatic. For the prismatic actuator (Fig.D.1a), the position of
the connection point p0i is defined by the actuated variable qai:

p0i “ pfk ` Rzpαiq
„
qai
0

ȷ
(D.32)

where αik is a constant orientation of the prismatic joint, pfi the fixed position of the
origin of the prismatic joint. In this case, since Eq. (D.31) depends linearly on qai, the
second derivative w.r.t. qai two times is null. In the case of a revolute motor (Fig.D.1b),
θi1 “ qai and p0i a constant vector indicating the position of the revolute joint. Taking
the first derivative of Eq. (D.31) w.r.t. qai results in:

B
Bqai

Φi “ Le

„
´ sin qai
cos qai

ȷ
(D.33)

and the absolute value of the second derivatives w.r.t. qai two times is:
ˇ̌
ˇ̌ B2

Bq2ai
Φi

ˇ̌
ˇ̌ “ Le

„
| cos qai|
| sin qai|

ȷ
(D.34)

Then, consider the dependence of the closure loop equations w.r.t. intermediate angles
θij . Taking the first derivative of Eq. (D.31) w.r.t. θij :

B
Bθij

Φi “ Le

„
´ sin θij
cos θij

ȷ
(D.35)
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and the absolute value of the second derivative w.r.t. θij two times:
ˇ̌
ˇ̌
ˇ

B2

Bθ2ij
Φi

ˇ̌
ˇ̌
ˇ “ Le

„
| cos θij |
| sin θij |

ȷ
(D.36)

Since Eq. (D.31) depends linearly on pP , its second derivatives are null. Considering the
dependence on θp, by taking the first derivative of Eq. (D.31) w.r.t. θp, we obtain:

B
Bθp

Φi “ ´
„

´pfix sin θp ´ pfiy cos θp
pfix cos θp ´ pfiy sin θp

ȷ
(D.37)

and the second derivative w.r.t. θp two times:

B2

Bθ2p
Φi “ ´

„
´pfix cos θp ` pfiy sin θp
´pfix sin θp ´ pfiy cos θp

ȷ
(D.38)

The absolute value of each Eq. (D.38) is:

ˇ̌
ˇ̌ B2

Bθ2p
Φi

ˇ̌
ˇ̌ “

„
|´pfix cos θp ` pfiy sin θp|
|´pfix sin θp ´ pfiy cos θp|

ȷ
ď

„
|pfix cos θp| ` |pfiy sin θp|
|pfix sin θp| ` |pfiy cos θp|

ȷ
“

„
|pfix| |cos θp| ` |pfiy| |sin θp|
|pfix| |sin θp| ` |pfiy| |cos θp|

ȷ

(D.39)
Proceeding as before, the sum of all absolute values of the second derivatives of Eq.(D.31)
is:

ÿ

i,j

ˇ̌
ˇ̌ B2

ByiByj
pΦiq

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌ B2

Bθ2p
Φi

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌ B2

Bq2ai
Φi

ˇ̌
ˇ̌ `

Nÿ

i“2

ˇ̌
ˇ̌
ˇ

B2

Bθ2ij
Φi

ˇ̌
ˇ̌
ˇ (D.40)

In the case of a prismatic actuator the term w.r.t. qai is null:

ÿ

i,j

ˇ̌
ˇ̌ B2

ByiByj
pΦiq

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌ B2

Bθ2p
Φi

ˇ̌
ˇ̌`

Nÿ

i“2

ˇ̌
ˇ̌
ˇ

B2

Bθ2ij
Φi

ˇ̌
ˇ̌
ˇ “

„
|pfix| |cos θp| ` |pfiy| |sin θp|
|pfix| |sin θp| ` |pfiy| |cos θp|

ȷ
`

Nÿ

i“2

Le

„
| cos θij |
| sin θij |

ȷ

(D.41)
Whereas, in the case of a revolute actuator:

ÿ

i,j

ˇ̌
ˇ̌ B2

ByiByj
pΦiq

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌ B2

Bθ2p
Φi

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌ B2

Bq2ai
Φi

ˇ̌
ˇ̌ `

Nÿ

i“2

ˇ̌
ˇ̌
ˇ

B2

Bθ2ij
Φi

ˇ̌
ˇ̌
ˇ “ (D.42)

„
|pfix| |cos θp| ` |pfiy| |sin θp|
|pfix| |sin θp| ` |pfiy| |cos θp|

ȷ
` Le

˜„
| cos qai|
| sin qai|

ȷ
`

Nÿ

i“2

„
| cos θij |
| sin θij |

ȷ¸
(D.43)

The sum of the second derivative depends on θp all the θij and, in the case of a revolute
motor, also on qai.

D.2 Kantorovich’s Constants Computation

In this Section, we demonstrate how to obtain the Kantorovich constant λ. For the
computation of λ accordingly to Eq.(3.5), we have to identify where:

max
hPr1,Neqs

˜ÿ

i,j

|B2Fhpyq
ByiByj

|
¸

“ max pUγpyqq (D.44)

assumes the maximum value inside a ball B centered in ȳ of radius 2δ. We decide to
employ infinite norm, the vector y can be expressed as:

y “ ȳ ˘ ∆ (D.45)
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where the superscript p̄.q indicate the values at the center of the ball. Equations (D.45)
implies that:

}y ´ ȳ}8 “ }∆}8 ď 2δ (D.46)

Because of Eq. (D.46), each term of ∆ can assume values P r0, 2δs in the case of infinite
norm is employed.

In order to obtain the value of λ, we have to determine which term of Uγ assume the
highest value inside the ball. To do that, we consider the case of revolute actuator, since
the prismatic-actuator case is included. The set of the non null terms of Uγ can be written
as:

Uγpyq “

$
’’’’’&
’’’’’%

Le pp|λ2i| ` 2q |sin θij | ` p` |λ3i| ` 2q |cos θij |q @i “ 2, ¨ ¨ ¨ , N , @k “ 1, ¨ ¨ ¨n
|pfix| |cos θp| ` |pfiy| |sin θp| ` Le

´
| cos qai| ` řN

i“2
| cos θij |

¯
@k “ 1, ¨ ¨ ¨ , n

|pfix| |sin θp| ` |pfiy| |cos θp| ` Le

´
| sin qai| ` řN

i“2
| sin θij |

¯
@k “ 1, ¨ ¨ ¨ , n

řn
i“1

` p|pfix| ` |pfiy|q p|cos θp| ` |sin θp|q p|λ2i| ` |λ3i|q
(D.47)

We note that Uγ of Eq. (D.47) depends on some components of y. Therefore, we have
to determine for which value of y P Bpy0, 2δq the highest value in Uγ is obtained. It
is convenient to separate the value at the center of the ball ȳ from the increment ∆ as
follows. For the multipliers:

|λ2i| “ |λ̄1k ˘ ∆λ2i
| ď |λ̄1k| ` |∆λ2i

| (D.48)

|λ3i| “ |λ̄2k ˘ ∆λ3i
| ď |λ̄2k| ` |∆λ3i

| (D.49)

For the angles (qai, θij , θp), since they are embedded in trigonometric functions, we employ
basic trigonometric expressions. As an example, for the angle θij :

| sin θij | “| sin pθ̄ik ˘ ∆θij q| “ | sin θ̄ik cos∆θij ˘ cos θ̄ik sin∆θij | ď (D.50)

| sin θ̄ik|| cos∆θij | ` | cos θ̄ik|| sin∆θij | (D.51)

| cos θij | “| cos pθ̄ik ˘ ∆θij q| “ | cos θ̄ik cos∆θij ¯ sin θ̄ik sin∆θij | ď (D.52)

| cos θ̄ik|| cos∆θij | ` | sin θ̄ik|| sin∆θij | (D.53)

and the same strategy is used for qai, θp Then, we study each equation of Uγ separately.
Considering the first of Eq. (D.47), by substituting Eqs. (D.48),(D.49),(D.51),(D.53), we
obtain:

Le

`
|λ̄2i| ` |∆λ2i

| ` 2
˘ `

| sin θ̄ij || cos∆θij | ` | cos θ̄ij || sin∆θij |
˘

`
Le

`
|λ̄2i| ` |∆λ3i

| ` 2
˘ `

| cos θ̄ij || cos∆θij | ` | sin θ̄ij || sin∆θij |
˘

(D.54)

At this point, we cannot define the exact increments ∆θij ,∆λ2i
,∆λ3i

inside the ball for
which the function is maximum. This is caused by the presence of trigonometric functions.
The maximum may be found by solving a constrained optimization problem, to identify
the maximum inside the ball, but it is time consuming and not adequate for being iterated
several times (as in the case of a workspace computation algorithm). Alternative, an upper
bound that ensure safety in the quantification of the maximum value is obtained as follows.
A majorizer for the maximum value that Eq. (D.54) is given by:

Le

`
`|λ̄2i| ` 2δ ` 2

˘ `
| sin θ̄ik| ` 2δ| cos θ̄ik|

˘
`Le

`
`|λ̄2i| ` 2δ ` 2

˘ `
| cos θ̄ik| ` 2δ| sin θ̄ik|

˘

(D.55)

170



D.2. Kantorovich’s Constants Computation

where we selected:

∆λ2i
“ 2δ (D.56)

∆λ3i
“ 2δ (D.57)

cos∆θk “ 1 (D.58)

sin∆θk “ 2δ (D.59)

Proceeding in the same way for the second of Eq. (D.47) we obtain:

|pfix|
`
| cos θ̄p|| cos∆θp | ` | sin θ̄p|| sin∆θp |

˘
` |pfiy|

`
| sin θ̄p|| cos∆θp | ` | cos θ̄p|| sin∆θp |

˘

`Le

˜
| cos q̄ai|| cos∆qai | ` | sin q̄ai|| sin∆qai | `

Nÿ

i“2

| cos θ̄ij || cos∆θij | ` | sin θ̄ij || sin∆θij

¸

(D.60)

As before, a majorizer for the maximum value of .Eq. (D.60) is:

|pfix|
`
| cos θ̄p| ` 2δ| sin θ̄p|`

˘
` |pfiy|

`
| sin θ̄p| ` 2δ| cos θ̄p|

˘

` Le

˜
| cos q̄ai| ` 2δ| sin q̄ai| `

Nÿ

i“2

| cos θ̄ij | ` 2δ| sin θ̄ij |
¸

(D.61)

where we selected:

cos∆qai “ 1 (D.62)

sin∆qai “ 2δ (D.63)

cos∆θk “ 1 (D.64)

sin∆θk “ 2δ (D.65)

cos∆θp “ 1 (D.66)

sin∆θp “ 2δ (D.67)

With the same procedure, the majorizer for the maximum of the third of Eq. (D.47) is
given by:

|pfix|
`
| sin θ̄p| ` 2δ| cos θ̄p|`

˘
` |pfiy|

`
| cos θ̄p| ` 2δ| sin θ̄p|

˘

` Le

˜
| sin q̄ai| ` 2δ| cos q̄ai| `

Nÿ

i“2

| sin θ̄ij | ` 2δ| cos θ̄ij |
¸

(D.68)

And finally, for the last of Eq. (D.47), the majorizer can be written as:

nÿ

i“1

p|pfix| ` |pfiy|q
`
| cos θ̄p| ` sin θ̄p|

˘
p2δ ` 1q

`
|λ̄2i| ` |λ̄12| ` 4δ

˘
(D.69)

Then, the value of the constant λ can be obtained by evaluating the maximum between
Eq.(D.55) @i, k, Eqs.(D.61),(D.68) @k and Eq.(D.69).
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Appendix E

Concentric tube robot
geometrico-static modelling

In order to derive a geometrico-static model formulation analogous to the one presented
in Chapter 6, this appendix derives the geometrico-static model of a concentric tube robot
(CTR) based on energetic considerations.

E.1 Tubes energy

Let us consider a CTR made by n concentric tubes (Fig. E.1a). A fixed frame F0 is
attached to the robot base, and the coordinate s is used to parametrize the robot centerline.
We use i as the index representing the i -th tube, numbered from the innermost to the
outermost. The length of the i -th tube, measured from the arc length s “ 0, is Li. The
tubes are actuated at the coordinate s “ ´βi in translation and rotation: we name θ0i the
rotation of the tube’s base, and βi is called transmission length.

As done in [102], a frame Fb is attached to the robot centerline at each s, and ppsq
defines the position of Fb with respect to (w.r.t.) F0. Then, the orientation of Fb is
described by Rb, that is a rotation matrix obtained by sliding the base frame orientation
matrix along the robot centerline without any rotation about the local z axis, assuming
the z axis to be aligned with the centerline tangent vector. Since the tubes are concentric,
the position of the i -th tube is pipsq “ ppsq. However, the concentric tube arrangement
let each tube to be free to twist around the local z axis of an angle θipsq (see Fig. E.1b).
Thus, we can recover the i -th tube orientation w.r.t. F0 as Ripsq “ RzpθipsqqRbpsq,
where Rz is an elementar rotation around z. Then, we consider ubpsq, which represents
the angular rate of change of Rbpsq w.r.t. s. We can recover the i -th tube curvature uipsq
as [102]:

uipsq “ RT
z pθipsqqubpsq ` θ1

ipsqez (E.1)

where p.q1 “ d{ds, and ez “ r0; 0; 1s. In the following, the variables explicit dependence
from s is dropped for brevity sake.

In order to derive the CTR geometrico-static model, let us consider the deformation
energy of the tubes Vt. By assuming linear elasticity, and by neglecting shear and exten-
sibility on the tubes, we can compute Vt as [74]:

Vt “
nÿ

i“1

Vi; Vi “ 1

2

ż Li

Li´1

˜
mÿ

j“1

`
uj ´ u˚

j

˘T
Kt

`
uj ´ u˚

j

˘T
¸
ds (E.2)

where L0 “ 0, m “ n ` 1 ´ i, u˚
i is the initial tube precurvature, Ki “ diagpkbi, kbi, ktiq,

is the local stiffness matrix, kbi the flexural stiffness, and kti the torsional stiffness of the
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(a) CTR representation (b) Tubes twist angles

Figure E.1: Representation of a CTR: relevant configuration variables are displayed
in (a), and the tubes twist angles are illustrated in (b).

i -th tube. By introducing Eq. (E.1), into Eq. (E.2) we have:

Vi “ 1

2

ż Li

Li´1

mÿ

j“1

`
RT

z pθjqub ` θ1
jez ´ u˚

j

˘T
Kj

`
RT

z pθjqub ` θ1
jez ´ u˚

j

˘T
ds (E.3)

Thus, the tubes energy depends on ub, all the θi of the tubes and the actuated lengths Li.

E.2 CTR energy

In order to deduce CTR energy, some configuration variables classification is necessary.
First, we introduce the vector qa P R

2n to collect the actuated variables (base rotation θi0
and length Li of each tube, two motors for each tube). Then, we introduce qp “ rpp,αps P
R
6 to represent the CTR tip pose: pp P R

3 is the tip position, and αp P R
3 are three

orientation angles of the tip that define Rp “ Rppαpq. For later convenience, we introduce
qc the set of controlled variables: we assume to have the same number of controlled and
actuated variables, and thus qc P R

2n. In general, qc is a subset of qp, and the remaining
tip variables are stacked into qu P R

6´2n. To evaluate the CTR energy, we consider the
energy associated with a tip force fp, constant w.r.t. F0, that is

1.

Vtip “ ´fTp pp (E.4)

and the total CTR potential energy is obtained as:

Vtot “ Vtip ` Vt (E.5)

Although we introduced qp to represent the CTR tip pose, we can also recover the
CTR tip pose as inner tube distal section pose:

gtip “ g0 `
ż L1

0

gξ̃ds; ξ̃ “
„

pu1 ez
0 0

ȷ
(E.6)

with pu1 P sop3q is the skew-symmetric matrix obtained from u1, and g,g0,gtip P SEp3q
are the matrices expressing the pose the first tube at s, the pose of the base frame, and the

1Generic concentrated loads or distributed load are neglected for simplicity, but their inclusion
is possible. Moments which are not conservative are not considered.
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tip pose, respectively. Thus, since qp must represent the same pose as the one obtained
in Eq. (E.6), the following constraint is introduced:

Φ “
#
pp ´ ptip “ 0

pRT
pRtip ´ RT

tipRp
qq “ 0

, Φ P R
6 (E.7)

where ptip,Rtip are the tip position and orientation obtained from Eq.(E.6), and the

operator p.qq extracts the three independent components from its argument.

E.3 Geometrico-static model

CTRs equilibrium configurations are associated with critical points of the robot energy Vtot

[74]. The function Vtot depends on qa,qp, and the continuous functions ub and θi. More-
over, constraints Φ must be enforced. Discretization techniques offers a straightforward
way to numerically identify critical points of Vtot [106], and a finite set of discretization
coordinates qe P R

m is introduced to parametrize the tubes elastic deformations [106].
For convenience, we define qd “ rqu,qes P R

m`6´2n to collect the uncontrolled variables
after the discretization of the tubes, and x “ rqd,qcs P R

m`6 the non actuated variables.
Please note that this way of parametrizing the CTR is true regardeless of the discretization
technique employed.

After the discretization process, Vtot “ Vtotpqa,xq and Φ “ Φpqa,xq. Due to the
presence of constraints, critical points of Vtot are characterized by Lagrange conditions
[145]: assuming ∇xΦ is full row rank, x is a critical point of Vtot if there exists a vector
of Lagrange multipliers λ P R

6 such as:

#
∇xVtot ` ∇xΦ

Tλ “ 0

Φ “ 0
(E.8)

Equation (E.8) represents the geometrico-static model of a CTR, which is an undetermined
system of m ` 6 ` 6 system of equations in 2n ` m ` 6 ` 6 unknowns. As in [56], forward
and inverse problems are stated in a unified formulation:

F “

$
’&
’%

∇xVtot ` ∇xΦ
T
p λ “ 0

Φ “ 0

e “ 0

(E.9)

where e “ qa ´ qd
a for the forward problem, e “ qc ´ qd

c for the inverse problem, and
the superscript p.qd indicates a desired value. Eqs. (E.9) is a system of 2n ` m ` 6 ` 6
non-linear equations that can be solved with appropriate root-finding techniques [145] (e.g
the Newton-Raphson method). It should be noted that Eqs. (E.9) are formulated in the
same fashion as Eq. (2.23) of Chapter 2
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• F. Zaccaria, E. Idá, S. Briot, and M. Carricato, “Workspace computation of
planar continuum parallel robots,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 2700–2707, 2022
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chen Stabes.” In: Journal für die reine und angewandte Mathematik 1859.56 (1859), pp. 285–
313.

[108] A. E. H. Love. A treatise on the mathematical theory of elasticity. Cambridge university
press, New york, 1892.

[109] I. Vardoulakis. Cosserat Continuum Mechanics. Springer International Publishing, 2019.

[110] E. Reissner. “On finite deformations of space-curved beams”. In: Zeitschrift für angewandte
Mathematik und Physik ZAMP 32.6 (1981), pp. 734–744.

[111] J. Simo. “A finite strain beam formulation. The three-dimensional dynamic problem. I”.
In: Computer methods in applied mechanics and engineering 49.1 (1985), pp. 55–70.

[112] R. M. Murray et al. A mathematical introduction to robotic manipulation. CRC press, Boca
Raton, 1994.



Bibliography

[113] S. Lilge and J. Burgner-Kahrs. “Kinetostatic Modeling of Tendon-Driven Parallel Contin-
uum Robots”. In: IEEE Transactions on Robotics 39.2 (2022), pp. 1563–1579.

[114] A. Zhang and G. Chen. “A comprehensive elliptic integral solution to the large deflection
problems of thin beams in compliant mechanisms”. In: Journal of Mechanisms and Robotics
5.2 (2013).

[115] O. Altuzarra et al. “Kinematic Analysis of a Continuum Parallel Robot”. In: Wenger, P.,
Flores, P. (eds) New Trends in Mechanism and Machine Science. Mechanisms and Machine
Science. Vol. 43. 2016, pp. 173–180.

[116] O. Altuzarra et al. “Forward and Inverse Kinematics in 2-DOF Planar Parallel Continuum
Manipulators”. In: Corves, B., Wenger, P., Hüsing, M. (eds) EuCoMeS 2018 . EuCoMeS
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Titre : Contributions à l’analyse de la performance des robots parallèles continus. 

Mots clés: Robots parallèles continus, analyse de performances, espace de travail, stabilité des 
equilibres. 

Résumé:  Les robots parallèles continus (RPCs) 
sont des manipulateurs utilisant plusieurs tiges 
flexibles disposées en parallèle et connectées à une 
plateforme rigide. Les RCPs promettent des 
capacités de charge et une précision plus élevée que 
les robots sériels continus, tout en gardant une 
grande flexibilité. Puisque le risque de blessure lors 
d’un contact accidentel entre un humain et un CPR 
devrait être réduit, les RCPs peuvent être utilisés 
dans des tâches collaboratives à grande échelle ou 
dans de tâches de chirurgie robotique assistée. 
Différentes architectures de RCP existent, mais la 
conception du prototype est rarement basée sur des 
considérations de performance, et la réalisation de 
RCPs est principalement à partir d’intuitions en 
utilisant d’architectures de manipulateurs parallèles 
rigides. Les thèmes de recherche de cette thèse 
portent sur l’analyse des performances des RCPs, et 
sur les outils nécessaires à une telle évaluation, ainsi 
que sur les algorithmes de calcul de leur espace de 
travail.  En particulier, les stratégies de calcul de 
l’espace de travail pour les RCPs sont essentielles 

pour l’´évaluation de la performance, car l’espace 
de travail peut être utilisé comment un indice de 
performance, par exemple pour des outils de 
conception optimale. Deux nouveaux algorithmes 
de calcul de l’espace de travail sont proposés dans 
ce manuscrit, le premier se concentrant sur le calcul 
du volume de l’espace de travail et la certification de 
ses résultats numériques, et le second sur le calcul 
des bords de l’espace de travail uniquement. En 
raison de la nature ´élastique des RCPs, un 
indicateur de performance essentiel pour ces robots 
est la stabilité de leurs configurations d’équilibre. 
Cette thèse propose la validation expérimentale de 
l’´évaluation de la stabilité des équilibres sur un 
prototype réel, démontrant les limites de certaines 
hypothèses couramment utilisées. De plus, un 
indice de performance mesurant la distance à 
l’instabilité est proposé dans ce manuscrit. 
Contrairement à la majorité des approches 
existantes, l’avantage évident de l’indice proposé 
est une signification physique bien défini 

 

Title:  Contributions to the Performance Analysis of Continuum Parallel Robots  

Keywords: Continuum parallel robots, performance analysis, workspace, equilibrium stability. 

Abstract:  Continuum parallel robots (CPRs) are 
manipulators employing multiple flexible beams 
arranged in parallel and connected to a rigid end-
effector. CPRs promise higher payload and 
accuracy than serial CRs while keeping great 
flexibility. As the risk of injury during accidental 
contact between a human and a CPR should be 
reduced, CPRs may be used in large-scale 
collaborative tasks or assisted robotic surgery. 
There exist various CPR designs, but the prototype 
conception is rarely based on performance 
considerations, and the CPRs realization in mainly 
based on intuitions or rigid-link parallel manipulators 
architectures. This thesis focuses on the 
performance analysis of CPRs, and the tools 
needed for such evaluation, such as workspace 
computation algorithms. In particular, workspace 
computation strategies for CPRs are essential for 
the performance assessment, since the CPRs 
workspace may be used as a performance index or 
it can serve for optimal-design tools.  

 
 

 Two new workspace computation algorithms are 
proposed in this manuscript, the former focusing on 
the workspace volume computation and the 
certification of its numerical results, while the latter 
aims at computing the workspace boundary only. 
Due to the elastic nature of CPRs, a key 
performance indicator for these robots is the 
stability of their equilibrium configurations. This 
thesis proposes the experimental validation of the 
equilibrium stability assessment on a real prototype, 
demonstrating limitations of some commonly used 
assumptions. Additionally, a performance index 
measuring the distance to instability is originally 
proposed in this manuscript. Differently from the 
majority of the existing approaches, the clear 
advantage of the proposed index is a sound 
physical meaning; accordingly, the index can be 
used for a more straightforward performance 
quantification, and to derive robot specifications. 

 


