
The role of aesthetics in understanding

source code

Pierre Depaz

under the direction of

Alexandre Gefen (Paris-3)

and Nick Montfort (MIT)

Université Sorbonne Nouvelle

ED120 - THALIM

Comparative Literature Doctorate

2023-09-18

Résumé

Cette thèse examine comment les propriétés esthétiques du code source

permettent la représentation d’espaces sémantiques programmés, et

leur implication dans la compréhension de la fonction de processus

computationels. Se basant sur un corpus de programmes-textes et des

discours les accompagnant, nous montrons en quoi l’esthétique du

code source est contingente d’autres domaines esthétiques littéraires,

architecturaux et mathématiques, tout en demeurant dépendante du

contexte au sein duquel circulent les programmes-textes, et se trans-

formant à différentes échelles de lecture. En particulier, nous mon-

trons que les propriétés esthétiques du code source permettent une

certaine expressivité, en vertu de leur appartenance à une interface

linguistique partagée et dynamique permettant de calculer le monde.

Enfin, nous montrons comment une telle interface, organisée formelle-

ment, favorise la compression sémantique et l’exploration spatiale.

Mots-clés: Esthétique, Code source, Programmation, Cognition, Épisté-

mologie

Summary

This thesis investigates how the aesthetic properties of source code

enable the representation of programmed semantic spaces, in relation

with the function and understanding of computer processes. By ex-

amining program texts and the discourses around it, we highlight how

source code aesthetics are both dependent on the context in which

they are written, and contingent to other literary, architectural, and

mathematical aesthetics, varying along different scales of reading. Par-

ticularly, we show how the aesthetic properties of source code manifest

expressive power due to their existence as a dynamic, functional, and

shared computational interface to the world, through formal organi-

zations which facilitate semantic compression and spatial exploration.

Keywords: Aesthetics, Source Code, Programming, Cognition, Epis-

temology

Zusammenfassung

Diese Arbeit untersucht, wie die ästhetischen Eigenschaften von Quell-

code die Repräsentation von programmierten semantischen Räumen

ermöglichen, in Bezug mit der Funktion und dem Verständnis von Com-

puterprozessen. Durch die Untersuchung von Programmtexten und

den sie umgebenden Diskursen wird aufgezeigt, wie die Ästhetik von

Quellcode sowohl von dem Kontext abhängt, in dem sie geschrieben wird,

als auch mit anderen literarischen, architektonischen und mathematis-

chen Ästhetiken kontingent ist und sich auf verschiedenen Leserebenen

unterscheidet. Insbesondere zeigen wir, wie die ästhetischen Eigen-

schaften von Quellcode ihre Ausdruckskraft dadurch manifestieren, dass

sie eine dynamische, funktionale und gemeinsam genutzte Computer-

schnittstelle zur Welt darstellen, und zwar durch formale Organisationen,

die semantische Kompression und räumliche Erkundung erleichtern.

Keywords: Ästhetik, Quellcode, Programmierung, Kognition, Erken-

ntnistheorie

Acknowledgements

No work is created alone1. I would like to thank first and foremost Alexan-

dre Gefen and Nick Montfort, who accompanied my journey into the in-

tricacies of reading and writing machine languages. I am grateful for their

complementarity and availability, and for the attentive support and help-

ful challenges they provided throughout these years.

My thanks also go to Matt Parker and Bennett Foddy who, at the NYU

GameCenter, kickstartedmy interest in designing programs and program-

ming designs—andwhoseweekly homework assignment I turned into this

doctoral thesis; to Craig Protzel and Scott Fitzgerald who trusted me to

explore burgeoning ideas around systems, meanings and programming in

the form of undergraduate courses at NYU Abu Dhabi; to Michael Shiloh,

for his introduction to his network of hackers.

I have had the privilege of being surrounded by friends and peers who,

even though some knew very little about programming, contributed in

many ways to this work: Pauline Donizeau, for helping navigate the hoops

of academia; Tobias Schmidt, for sharing his passion and skill for software

engineering; Vadim Poulet, for arguing that this whole thing was worth-

while; Maxime Monin, for discussions on modernism and the validity of

patterns; Clemens Schöll, for inquiries into the point of art, the function

thereof, and the quirks of programming; Helin Ulas, for her expertise on

object-oriented ontology and her disdain of textual code; Gabriel Mester,

for typographical advice; Nicolas Grefenstette, for his careful eye and flaw-

less syntax; Justyna Popławska, for all the exchange, support and love. Fi-

nally, thank you tomymother, whoknew that I could endupbeing awriter,

and who did not know that it would be of machine languages.

Merci.

1And as I built on the research of others, I am deeply indebted to Alexandra Elbakyan, for

her ”awe-inspiring act of altruism or [...] massive criminal enterprise, depending on whom you

ask”.

1

https://en.wikipedia.org/wiki/Sci-Hub

Foreword

A thesis on source code would not be complete without access to its

own source code. You can find the history of the notes, drafts and

references that constituted this research process in the repository at

https://gitlab.com/periode/thesis.

In a way, digital writing renders invisible the attempts, erasures and

countless rephrasings which accompany the coming-into-existence of a

typescript; however, it also enables a different kind of historical unfold-

ing, via version control systems. A visualization of such unfolding can be

seen at https://thesis.enframed.net.

A thesis in comparative studies on the role of formal presentation for

the comprehension of computational text would also not be complete

without an alternative presentation. You can find the web version of this

thesis, with different kinds of navigational affordances and semantic lay-

out, at https://source.enframed.net.

2

https://gitlab.com/periode/thesis
https://thesis.enframed.net
https://source.enframed.net

Contents

Acknowledgements . 1

Foreword . 2

1 Introduction 7

1.1 Context . 9

1.1.1 The research territory: code 9

1.1.2 Beautiful code . 14

1.1.3 Literature review . 21

1.2 Research questions . 36

1.3 Methodology . 41

1.4 Roadmap . 44

1.5 Implications and readership . 48

2 Aesthetic ideals in programming practices 50

2.1 The practices of programmers . 51

2.1.1 Software developers . 52

2.1.2 Hackers . 68

2.1.3 Scientists . 83

2.1.4 Poets . 97

2.2 Ideals of beauty . 111

2.2.1 Introduction to the Methodology 112

2.2.2 Lexical Field in Programmer Discourse 115

2.3 Aesthetic domains . 133

3

2.3.1 Literary Beauty . 134

2.3.2 Scientific beauty . 145

2.3.3 Architectural beauty . 150

3 Understanding source code 163

3.1 Formal and contextual understandings 165

3.1.1 Between formal and informal 166

3.1.2 Knowing-what and knowing-how 174

3.2 Understanding computation . 183

3.2.1 Software ontology . 183

3.2.2 Software complexity . 191

3.2.3 The psychology of programming 202

3.3 Means of understanding . 209

3.3.1 Metaphors in computation 210

3.3.2 Tools as a cognitive extension 220

4 Beauty and understanding 232

4.1 Aesthetics and cognition . 233

4.1.1 Source code as a language of art 234

4.1.2 Contemporary approaches to art and cognition 244

4.2 Representing textual worlds in literature 249

4.2.1 Literary metaphors . 249

4.2.2 Literature and cognitive structures 254

4.2.3 Words in space . 260

4.3 Function, style and matter in architecture 270

4.3.1 Form and Function . 271

4.3.2 Patterns and structures . 277

4.3.3 Material knowledge . 294

4.4 Aesthetics and heuristics in mathematics 299

4.4.1 Beauty in mathematics . 300

4.4.2 Epistemic value of aesthetics 306

4

4.4.3 Aesthetics as heuristics . 313

5 Machine languages 323

5.1 Linguistic interfaces . 324

5.1.1 Programming languages 325

5.1.2 Qualities of programming languages 334

5.1.3 Styles and idioms in programming 353

5.2 Cognitive aesthetics in program texts 361

5.2.1 Between humans and machines 362

5.2.2 Matters of scale . 365

5.2.3 Semantic layers . 380

5.3 Functions and aesthetics in source code 394

5.3.1 Functional beauty . 395

5.3.2 Functions of source code 400

5.3.3 Aesthetic and ethical value in program texts 407

6 Conclusion 414

6.1 Findings . 415

6.2 Contribution . 429

6.2.1 Limitations . 433

6.3 Opening . 435

Bibliography . 485

Listings . 494

Figures . 496

5

To me, programming is more than an

important practical art.

It is also a gigantic undertaking in the

foundations of knowledge.

Grace Hopper

6

Chapter 1

Introduction

This thesis is an inquiry into the formal manifestations of source code,

into howparticular configurations of lines of code allow for aesthetic judg-

ments and on the functions that such configurations fulfill with regards to

understanding. This inquiry will lead us to consider the different ways in

which source code can be represented, depending on its aims and on the

contexts in which it operates. This study on source code involves the dif-

ferent groups of people which read and write it, the purposes for which

they write it, the programming languages they use to write it, and the

natural language they use to speak about it. Most importantly, this the-

sis focuses on source code as a material and linguistic manifestation of

a larger digital ecosystem of software and hardware to which it belongs.

Since source code is only one component of software, this thesis focuses

on studying the reality of written code, along with its conceptual interpre-

tations.

Starting from concrete instances of source code, this thesis will aim at

assessing what programmers have to say about it, and attempt to identify

howone ormore specific aesthetic fields are used to refer to it. This aimde-

pends on two facts: first, that source code is amedium for expression, both

to express the programmer’s intent to the computer (E. W. Dijkstra, 1982)

7

and the programmer’s intent to another programmer (Abelson, Sussman,&

Sussman, 1979)—throughout this study, we also consider the same individ-

ual at two different points in time as two different programmers. Second,

source code is a relatively new medium, compared to, say, paint, clay or

natural language. As such, the development and solidification of aesthetic

practices—that is, of ways of doing which focus on the presentation on an

artefact at least asmuch as on its function—is an ongoing research project

in computer science, software development and the digital humanities (see

our literature review in subsection 1.1.3). Formal judgments of source code

are therefore existing and well-documented, and are related to a need for

expressiveness, as we will see in chapter 2, but their formalization is still

an ongoing process.

Source code can thus be written in a way that makes it subject to aes-

thetic judgments by programmers; that is, code has aesthetics, but it is un-

clear exactly which aesthetics. Indeed, these aesthetic judgments as they

exist today rely on different aesthetic domains to assess source code, as

a means to grasp the artefact that is software. These draw on metaphors

ranging from literature, architecture, mathematics and engineering. And

yet source code, while related to all of these, isn’t exactly any of them. Like

the story of the seven blind men and the elephant1, each of these domains

touch on some specific aspect of the nature of code, but none of them are

sufficient to entirely provide a solid basis for the aesthetic judgments of

source code. It is at the crossroads of these domains that this thesis situ-

ates itself.

The examination of source code, and of the discourses around source

code will integrate both the variety of ways in which source code can ex-

ist, and the invariant aspects which underline all diverse approaches of

source code. Particularly, wewill see howeach groups of practitioners tend

1In which seven blind men all attempt to identify the same elephant by each touching a

different part of the animal. The analogy to software is that it can be considered fromdiverse,

non-overlapping and non-exclusive perspectives (Chun, 2008).

8

to deploy references to conceptual metaphors drawing from the domains

above, but also how these references overlap across groups. The point of

overlap, as we will demontrate, is that of using a formal linguistic system

to communicate the understanding of complex cognitive structures, at the

interface of the computational and of the natural. Through an interdisci-

plinary approach, we will attempt to connect this formal symbol system

to the broader role of aesthetics as a cognitive mechanism to deal with

complexity.

The rest of this introduction will consist in establishing a more com-

plete viewof the context inwhich this research takes place, fromcomputer

science to digital humanities and science and technology studies. With

this context at hand, we will proceed to highlight the specific problems

which will be tackled regarding the current place of aesthetics in source

code. After outlining our methodology and the theoretical frameworks

which will be mobilized throughout this study, we will sketch out how the

different chapters of this thesis will address our research questions.

1.1 Context

1.1.1 The research territory: code

Most of our modern infrastructure depends, to a more or less dramatic ex-

tent, on software systems (Kitchin &Dodge, 2011), from commercial spaces

to classrooms, transport systems to cultural institutions, scientific produc-

tion and entertainment products. Software regulates and automates the

storage, communication and creation of information which support each

of these domains of human activities. These complex processes are de-

scribed in source code, a vast and mostly invisible set of texts. The num-

ber of lines of code involved in supporting human activity is hard to esti-

mate; one can only rely on disclosures from companies, and publicly avail-

able repositories. To give an order of magnitude, all of Google’s services

9

a = 4
b = 6

def compute(first, second):
return (first * 2) + second

compute(a, b)

Listing 1: simple.py - Example of the basic elements of a computer program,

written in Python

amounted to over two billions source lines of code (SLOC) (@Scale, 2015),

while the 2005 release of the OSX operating system comprised 86 millions

lines of code, and while the version 1.0 of the Linux kernel (an operating

system which powers most of the internet and specialized computation)

totalled over 175,000 SLOC, version 4.1 jumped to over 19.5 million lines of

code in the span of twenty years (Wikipedia, 2021).

Given such a large quantity of textual mass, one might wonder: who

reads this code? To answer this question, we must start looking more

closely at what source code really is.

Source code consists in a series of instructions, composed in a particu-

lar programming language, which is then processed by a computer in order

to be executed, often resulting inmechanical action (e.g. a change inmove-

ment, display or sound). For instance, using the language called Python,

the source code in Listing 1 consists in telling the computer to store two

numbers in what are called variables (here, a and b), then proceeds with

describing the procedure for adding the double of the first terms to the

second term (here, compute), and concludes in actually executing the above

procedure.

Given this particular piece of source code, the computer will output the

number 14 as the result of the operation (4 * 2)+ 6. In this sense, then,

source code is the requirement for software to exist: since computers are

procedural machines, acting upon themselves and upon the world, they

10

need a specification of what to do, and source code provides such a speci-

fication. In this sense, computers are themain ”readership” of source code.

However, it is also aby-product of software, since it is no longer required

once the computer has processed and stored it into a binary representa-

tion, a series of 0s and 1s which symbolize the successive states that the

computer has to go through in order to perform the action that was de-

scribed in the source code. Executable code is whatmost of the individuals

who interact with computers deal with, in the form of packaged applica-

tions, such as a media player or a web browser. They (almost) never have

to inquire about the existence or appearance of such source code. In this

sense, then, source code onlymatters until it gets processed by a computer,

through which it realizes its intended function.

From another perspective, source code isn’t just about telling comput-

ers what to do, but also a key component of a particular economy: that

of software development. Programmers are the ones who write the source

code and this process is first and foremost a collaborative endeavour. They

write code in successive steps, because they add features over time, or they

fix errors that have shown up in their software, or they decide to rewrite

parts of the source code based on new ideas, requirements, skills or pref-

erences. In this case, source code is not used to communicate to the com-

puter what it does, but to other software developers what the intent of the

software is. Source code is then the locus of human, collaborative work; it

represents iterations of ideas, formalization of processes and approaches

to problem-solving. As Harold Abelson puts it,

Programsmust bewritten for people to read, andonly incidentally

for machines to execute. (Abelson et al., 1979).

Official definitions of source code straddle this line between the first

role of source code (as instructions to a computer) and the second role of

source code (as indications to a programmer). For instance, a definition

within the context of the Institute of Electrical andElectronics Engineering

11

(IEEE) considers source code any fully executable description of a software

system, which therefore includes various representations of this description,

from machine code to high-level languages and graphical representations

using visual programming languages (Harman, 2010). This definition fo-

cuses on the ability of code to be processed by a machine, and mentions

little about its readability (i.e. processability by other humans).

On the other hand, the definition of source code provided by the Linux

Information Project focuses on source code as the version of software as it

is originally written (i.e. typed into a computer), by a human in plain text (i.e.

human-readable, alphanumeric characters). (Linux Information Project,

2006). The emphasis here is on source code as the support of human ac-

tivity, as software developers need to understand the pieces of code that

they are creating, or modifying. Source code thus has two kinds of read-

abilities: a computer one, which is geared towards the correct execution

of the program, and a human one, which is geared towards the correct un-

derstanding of the program. In the lineage of this human-readability, we

can point to the Free Software Foundation’s equation of the free circula-

tion and publication of source codewith the free circulation of publication

of ideas. Particularly, Freedom 1 (The freedom to study how the program

works, and adapt it to your needs) and Freedom 3 (The freedom to improve

the program, and release your improvements to the public, so that the whole

community benefits.) as stated in the FSF’s definition of Free Software stip-

ulates that access to source code is required to support these freedoms, a

version of source code that is not concealed, i.e. readable by both human

and machine (Stallman & Free Software Foundation (Cambridge, 2002).

Source code, in addition to this ability to communicate ideas, is also an

always potentially collaborative object, and can thus be the locus of mul-

tiple subjectivities coming together. As Krysa and Sedek state in their def-

inition, source code is where change and influence can happen, and where

intentionality and style are expressed (M. Fuller, 2008). In their understand-

ing, source code shares some features with natural languages as an inter-

12

subjective process (Voloshinov & Bachtin, 1986), and as such is different

from the binary representation of a program, an object which we do not

consider fitting to the frame of our study due to its unilaterality—among

computers and humans, only humans can effectively read it. The intelligi-

bility of source code, they continue, facilitates its circulation and duplica-

tion among programmers. It is this aspect of a socio-technical object that

we consider as important as its procedural effectiveness.

In this research, we build on these definitions to propose the following:

Source code is defined as one or more text files which are written

by a human or by amachine in such away that they elicit amean-

ingful and succesfully actionable response from both a computer

and a human, and describe a software system. These text files

are the starting point to producing an execution of the system de-

scribed, whether they are the very first starting point, or an inter-

mediate representation used for subsequent compilations. These

files are collectively called program texts.

This definition takes into account a broad view of source code, includ-

ing steps such as intermediate representations (transitory representations

from one version of the source to another one), but also obfuscations (de-

liberately complicating the code to prevent human-readabilitywhilemain-

taining machine-readability) and minifications (reducing the amount of

characters used in source code to its minimum). This will allow us to com-

pare human-authorship of source code, machine-authorship, and hybrid

modes, in which a human writes unreadable code with the help of tools.

One aspect that is being more narrowly defined for the purpose of this

study is the actual manifestation of code: while multiple media for source

code exist, we exclude here all of those that are not written in the UTF-8

character set—i.e. textual representations. Since one of the questions of

this study is to examine the literariness of source code aesthetics, other

forms of source code, such as visual programming languages or biologi-

13

cal computation, stand outside the scope of this study and should be in-

vestigated in subsequent work. Similarly, the recent development of large

language models in deep learning have ushered a new kind of source: a

well-formed statistical representation of source code, aggregated fromvar-

ious sources into an answer to a specific problems. While these do pose

interesting questions in terms of creativity, intentionality and style, we

nonetheless also reserve this kind of source code to a subsequent study.

As for the term program text, it is chosen in order to highlight the dual

nature of source code: that of a computational artefact to be formally

processed and unambiguously understood (Detienne, 2001), and that of a

open-ended, multi-layered document, in the vein of Barthes’ distinction

between a text and a work (Barthes, 1984). We will refer to the general

medium of a textual interface to computation as source code, and to the

coherent, practical instance of software manifested through source code

as program texts.

1.1.2 Beautiful code

From this definition of source code textually represented, we now turn to

the existence of the aesthetics of such program texts. To contextualize

this existence, we first need to touch upon the history and practice of soft-

ware development. As an economic activity, software development came

from a bottom-up dynamic, a de facto activity which was not expected in

the early days of computing, where most of the work was divided between

mathematics and engineering. Its earliest manifestation can be found in

the physical rewiring process of mainframes in order to perform a specific

computation, something more akin to firmware than to software. These

rewiring tasks were done by mostly female assistants, under the direction

of mostly male mathematicians (Chun, 2005), and consisted in translation

tasks from thought tomachine, andwhich requiredmoremechanical than

notational skill. The recognition of software engineering as its own field

14

came as its unique domain of expertise was required in larger engineer-

ing projects—for instance, the term software engineeringwas coined in the

late 1960s byMargaret Hamilton and her team as theywereworking on the

Apollo 11 Lunar Module software (Mindell, 2011). In the same decade, the

first volume of The Art of Computer Programming, by Donald Knuth, ad-

dresses directly both the existence of programming as an activity separate

frommathematics and engineering, as well as an activity with an ”artistic”

dimension.

The process of preparing programs for a digital computer is es-

pecially attractive, not only because it can be economically and

scientifically rewarding, but also because it can be an aesthetic

experiencemuch like composing poetry ormusic. This book is the

first volumeof amulti-volume set of books that has beendesigned

to train the reader in the various skills that go intoaprogrammer’s

craft. (D. E. Knuth, 1997)

Considered one of the most canonical textbooks in the field, The Art of

Computer Programminghighlights two important aspects of programming

for our purpose: that it can be an aesthetic experience and that it is the

result of a craft, rather than of a highly-formalized systematic process, as

we will see in section 2.3.3.

Craftsmanship is an essentially fleeting phenomenon, a practice rather

than a theory, in the vein ofMichel De Certeau’s tactics, bottom-up actions

informally designed and implemented by the users of a situation, prod-

uct or technology as opposed to strategies (de Certeau, Giard, & Mayol,

1990), in which ways of doing are deliberately prescribed in a top-down

fashion. Craft is hard to formalize, and the development of expertise in

the field happens more often through practice than through formal edu-

cation (Sennett, 2009). It is also one in which function and beauty exist in

an intricate, embodied and implicit relationship, based on subjective qual-

itative standards and functional purposes rather than strictly quantitative

15

measurements (Pye, 2008). Approaching programming as a craft has been

a recurrent perspective (E. W. Dijkstra, 1982; Lévy, 1992), and connects to

the multiple testimonies of encountering beautiful code, some of which

have made their ways into edited volumes or monographs (Chandra, 2014;

Gabriel, 1998; Oram &Wilson, 2007).

Additionally, informal exchanges among programmers on forums,

mailing lists, blog posts and code repositories often mention beautiful

code, either as a central discussion point or simply in passing. These tes-

timonies constitute the first part of our corpus, as sources in which pro-

grammers comment on the aesthetic dimension of their practice. The sec-

ond part of the corpus is composed of selected program texts, which we

will examine in order to identify and formalize which aspects of the tex-

tual manifestation of software can elicit an aesthetic experience.

So the existenceof something akin to art, somethingbeautiful andplea-

surable emerging from the reading and writing of source code has been

acknowledged since the 1960s, in the early days of programming as a self-

contained discipline, and is still discussed today. However, the formaliza-

tion of an aesthetics of source code first requires a working definition of

the concept of aesthetics as used in this study.

There is a longhistory of aesthetic philosphical inquiries in theWestern

tradition, from beauty as the imitation of nature, moral purification, dis-

interested appreciation, cognitive perfection, or sensible representations

with emotional repercussions. The common point of these definitions is

that of sensual manifestation, that is the set of visible forms which can

enable an aesthetic experience, a cognitive state of pleasure relying on,

amongst others, an object, a sense of unity and of discovery (Beardsley,

1970), as well as an aesthetic judgment, a value judgment which assess the

particular goodness of an artefact under specific criteria.

The definition of aesthetics that we will use in this thesis starts from

this requirement of sense perception, and then builds upon it using two

theoretical frameworks: Nelson Goodman’s theory of symbols (Good-

16

man, 1976) and Gérard Genette’s distinction between fiction and diction

(Genette, 1993). The former provides us with an analysis of formal systems

in aesthetic manifestations and their role in a cognitive process, while the

second offers a broadened perspective on what qualifies as textual arts, or

literature.

Goodman’s view on aesthetics is an essentially communicative one:

we use aesthetics to carry across more or less complex concepts. This

communication process happens through various symbol systems (e.g.

pictural systems, linguistic systems, musical systems, choreographic sys-

tems), the nature and organization of which can elicit an aesthetic expe-

rience. His conception of such an aesthetic experience isn’t one of self-

referential composition, or of purely emotional pleasure, but a cognitive

one, one which belongs to the field of epistemology (Goodman, 1976). The

symbol systems involved in the aesthetic judgment bear different kinds

of relations to the worlds they refer to—such as denoting, representing,

ressembling, exemplifying— and their purpose is to communicate a truth

about these worlds (Goodman, 1978). In Goodman’s view, the arts and the

sciences are, in the end, two sides of the same coin, as they aim at pro-

viding conceptual clarity through formal, systematic means. The arts—

understood here in the broad, Renaissance sense of liberal arts—can and

should be, according to him, approached with the same rigor as the sci-

ences. In our case, programming, with its self-proclaimed craft-like status

and its mathematical roots, stands equally across the arts and sciences.

Goodman’s use of the term languages implies a broader set of linguis-

tic systems than that of strictly verbal ones. This approach will support

our initial conception of programming languages as verbal systems, but

will allow us not to remain constrained by traditional literary aesthetics

such as verse, rhyme or alliteration. Th extent to which programming is

a linguistic activity is going to be one of the main inquiries of this thesis,

andGoodman’s extended, yet rigorous definition leaves us room to explore

the semantic and syntactic dimension of source code as one of those lan-

17

guages of art.

With this analytical framework allowing us to analyze the matter at

hand—program texts composed by a symbol system with an epistemic

purpose—we turn to a more literary perspective on aesthetics. Genette’s

approach to literature, which he calls the art of language, results in the es-

tablishment of two dichotomies: fiction/diction, and constitutivity/condi-

tionality. In Fiction and Diction (Genette, 1993), he extends previous con-

ceptions of literature and poetics, from Aristotle to Jakobson, in order to

broaden the scope of what can be considered literature, by questioning the

conditions under which a text is given a literary status. As such, he estab-

lishes the existence of conditional literature alongside constitutive litera-

ture: the former gains its status of a literary text from the individual, sub-

jective aesthetic judgment bestowed upon it, while the latter relies on pre-

exisiting structures, themes and genres. Focusing on conditionality, this

approach paves theway for an extension of the domain of literature (Gefen

&Perez, 2019), and amore subtle understanding of the aestheticmanifesta-

tion in an array of textual works, while keeping in mind the broad stylistic

and functional categories which program texts can fall under.

Genette also makes the distinction between fiction, with the focus be-

ing the potentiality of a text’s object, its imaginative qualities and themes,

and diction, with an emphasis on the formal characteristics of the text.

Since code holds two existences, one as executed, and one aswritten, I pro-

pose to map Genette’s concept of fiction on to source code when the latter

is considered as a purely functional text—i.e. what the source code ulti-

mately does in its domain of application, through its execution. Because

source code always holds software as a potential within itsmarkings, wait-

ing to be actualized through execution, one has to imagine what this code

actually does. Written source code, then, could either be judged primarily

on its fiction or on its diction—on what it does, or on how it does it. Since

we focus on the written form of source code, and not on the type of its

purpose, an attention to dictionwill be the entry point of this thesis.

18

Afirst approach to source code could be constitutive, inGenette’s terms:

a given program text could be considered aesthetically pleasing because

the software it generates abides by some normative definitions of being

aesthetically pleasing, or because the software itself is considered a piece

of art in the socio-economic sense, shown in exhibitions and sold in gal-

leries. However, our empirical approach to source code aesthetics, by ex-

amining various program texts directly, and our inquiry into the possibil-

ity of multiple aesthetic fields co-existing within source code as a symbol

system, asks us to forgo this constitutive definition of an aesthetic work

as normative categories within software development. Our focus on sense

perception thus starts froma conditional approach, inwhichprogrammers

emit an aesthetic judgment on a program text, with an emphasis first on

what the source code is, and only secondly on what it does2. This condi-

tional approach implies that we use a conception of the aesthetic that is

broader than the artistic and the beautiful, encompassing less dramatic

qualifiers, such as good or nice, and reaching into the domain of everyday

aesthetics (Saito, 2012).

Diction, then, focuses on the formal characteristics of the text. The

point here is not to assume an autotelic, or self-referential, mode of ex-

istence for source code, but rather to acknowledge that there is a certain

difference between the content of software and the form of its source—

aesthetically pleasing source code does not guarantee great software. This

thesis chooses to focus on the formal aspects of code such as not to restrict

ourselves to any specific kind, or genre, of program texts, leaving open the

possibility for these categories to emerge after our analysis.

So, following Genette’s re-asking of the Goodman’s question ofWhen is

art? rather than the historicalWhat is art?, we can now proceed with our

understandingof aesthetics asa set of physicalmanifestationswhich canbe

grasped by the senses, akin to ”the movement of a light, the brush a fabric,

2As we have seen with Goodman, there is nonetheless a tight connection between those

to states.

19

the splash of a color” (Ranciere, 2013), which aim at enabling a cognitive,

communicative purpose, andwhich are not exclusively constituted by pre-

existing categories. Such physical manifestations can, in turn, support an

evaluative appraisal of their objects of the concern, enabling an aesthetic

judgment.

We also distinguish the aesthetic from the beautiful, which implies an

emotional response and is closely tied to the artistic status of an artefact;

we instead focus on the positive properties in everyday encounters, rather

than in an art-historical context.

This overview of the theoretical frameworks of this thesis is already

implicitly setting the boundaries of this study. The domain we are inves-

tigating here is one that is delimited by both medium and purpose. First,

the medium limitations is that of text, in its material sense, as mentioned

above in our definition of source code. Second, the purpose limitation

is that of computable code, rather than computed code: we are examin-

ing latent programs, with their reality as texts and their virtuality as ac-

tions, rather than the other way around. Executed software and its set of

digital affordances (e.g. graphical user interfaces (Gelernter, 1998), real-

time interactivity (Laurel, 1993) and process-intensive developments (Mur-

ray, 1998)) differ from the literary and architectural ones that software,

in its written form, is claimed to exhibit. However, executable and exe-

cuted software, being two sides of the same coin, might suggest causal

relationships—e.g. the aesthetics of source code affecting the aesthetics

of software—but we reserve such an inquiry for a subsequent study.

Now thatwe have explicited our object of study—the formalmanifesta-

tions of software under its textual form—we can turn to a review of the re-

search that has alredy been done on the subject, before highlighting some

of the current limitations.

20

1.1.3 Literature review

A literature review on this topic must address the dualistic nature of stud-

ies on source code, as research can be distinguished between the fields of

computer science and engineering on one side, and that of the humanities

on the other. This overviewwill provide us with a better sense of which as-

pects of code and aesthetics have been explored until now, and will invite

us to address the remaining gaps.

We have seen that most technical literature, starting from The Art of

Computer Programming, acknowledges the role that aesthetics have to

play in the writing and reading of program texts. Along with the posi-

tions of Knuth and Dijkstra regarding the importance of paying atten-

tion to the aspects of programming practice (E. W. Dijkstra, 1972) which go

beyond strictly mathematical and engineering requirements, Kerninghan

and Plauer publish in 1978 their Elements of Programming Style (Kernighan

& Plauger, 1978). In it, they focus on how code snippets with a given intent

could be rewritten in order to keep the same intent but gain in quality—

that is, in readability and understandability. For instance, the program

in Listing 2 can be rewritten into the program in Listing 3, which keeps

the exact same functionality, but exhibits different formal manifestations.

Specifically, the first listing involves a special case for each single digit,

while the second listing reduces the syntax, allowing the program text to

gain not just in concision but also in generality.

Why it becomes much clearer, though is not explicited by the authors

in terms of concepts such as cognitive surface, repleteness of a symbol sys-

tem or metaphorical representation of the main idea(s) at play (promoting

an integer to a character, rather than individually checking for each inte-

ger case). As the authors do employ terms which will form the basis of

an aesthetics of software development, such as clarity, simplicity, or ex-

pressiveness, there are nonetheless no overarching principles deployed to

systematize themanifestation of such principles, only examples are given.

21

void leftpad(int i)
{

char* c;
if (i == 0)

c = '00';
if (i == 1)

c = '01';
if (i == 2)

c = '02';
if (i == 3)

c = '03';
if (i == 4)

c = '04';
if (i == 5)

c = '05';
if (i == 6)

c = '06';
if (i == 7)

c = '07';
if (i == 8)

c = '08';
if (i == 9)

c = '09';
}

Listing 2: verbose.c - A very verbose way to left pad a digit with zeroes in

the C language.

void leftpad(int i)
{

char *c;
if (i >= 0 && i < 10)

c = '0' + i;
}

Listing 3: verbose_refactored.c - A very terse way to left pad a digit with

zeroes in the C language.

22

While Kernighan and Plauer do not directly address the depth of the

relationship of source code and aesthetics, this is something that Peter

Molzberger undertakes five years later through an empirical, qualitative

study aimed at highlighting the role aesthetics play in an expert program-

mer’s practice (Molzberger, 1983). Molzberger’s study touches upon ideas

of over-arching structure, tension between clarity and personality, and lev-

els of expertise in aesthetic judgment. This short paper highlightsmultiple

instances of code deemed beautiful which will be explored further in this

thesis, without providing an answer as to why this might be the case. For

instance, a conception of code as literature does not explain instances in-

volving switch in scales and directions of reading, or a conception of code

asmathematics does not explain the explicitly requiredneed for a personal

touch when writing source code (Molzberger, 1983). This is an identifica-

tion of symptoms, but without explicit connection to a possibly common

cause.

In the context of formal academic research, such as the IEEE or the As-

sociation for Computing Machinery (ACM), subsequent work focuses on

how to quantitatively assess a given quality of source code either through

a social perspective on stylistic stances (Oman & Cook, 1990a), on the pro-

cess of writing (Norick, Krohn, Howard, Welna, & Izurieta, 2010), a seman-

tic perspective on the lexicon being used (Fakhoury, Roy, Hassan, & Ar-

naoudova, 2019; Guerrouj, 2013), an empirical study of programming style

in the efficiency of software teams (R. Coleman, 2018; Reed, 2010) or on

the visual presentation of code in the comprehension process (Marcus

& Baecker, 1982) or through direct interviews (Hermans, Chahchouhi, &

Al-Ers, 2020). These focus on the connection of aesthetics with the per-

formance of software development—beautiful code as being related to a

productive programmer and good end-product. These methodologies are

mostly quantitative, and do not take into account the ”artistry” and ”craft”

component as laid out by Knuth and Molzberger, but are rather a big-data

representation of Kernighan and Plauer’s approach. In the emerging field

23

of the psychology of aesthetics, we canpoint to thework of Kozbelt, Dexter

et. al., who conducted quantitiative surveys of programmers’ relationship

with aesthetics (Kozbelt, Dexter, Dolese, & Seidel, 2012), as well as quali-

tative analyses of the relationship between embodiment, aesthetics and

code (Dexter, Dolese, Seidel, & Kozbelt, 2011). The latter study also investi-

gated the metaphorical references that programmers make to code, show-

ing howprogrammers use terms likeflow, balance, flexible to refer to beau-

tiful code (Dexter et al., 2011). The parallel they establish between lexical

uses and embodied cognition also draws on the work of Lakoff et. al. to

consider these metaphors as having a cognitive purpose, a methodology

we also follow. This research aims to build on their research and develop,

from their discussion of metaphor and embodiment, howwe can conceive

an aesthetics of source code with a relationship to various understandings

of space.

The development of software engineering as a profession has led to the

publication of several books of specialized literature, taking a more prac-

tical approach to writing good code. Robert C. Martin’s Clean Code’s au-

dience belongs to the fields of business and professional trade, drawing

on references from architecture, literature and craft in order to lay out the

requirements of what he considers to be clean code. These specific mech-

anisms are highlighted in terms of how they will support a productive in-

crease in the quality of software developed, as opposed as being satisfying

in and of themselves. Clean Code was followed by a number of additional

publications on the same topic and with the same approach (Arns, 2005;

Fowler et al., 1999; Hunt & Thomas, 1999). Here, these provide an interest-

ing counterpoint to academic research on the formal quality of code by

relying on different traditions, such as the practical handbook, to explain

why the formal aspect of code is important.

Technical and engineering literature, then, establish the existence of

and need for aesthetics, presented as formal properties which then con-

stitute quality code. The methodology of these studies is often empirical,

24

in the case of academic articles, looking at large corpora or interviewing

programmers in order to draw conclusions regarding this relationship be-

tween formal properties and quality. Monographs and business literature

drawon the experiences of their authors as programmers to provide source

code examples of specific principles, without extending on the rationale

and coherence of these principles, let alone within a source code-specific

aesthetic framework. A particularly salient example is Greg Oram’s edited

volume Beautiful Code, in which expert programmers are invited to pick a

pieceof codeandexplainwhy they like it, sometimes commenting it lineby

line (Oram&Wilson, 2007). This very concrete, empirical inquiry intowhat

makes source code beautiful does not, however, include a comprehensive

and consistent conclusion as to what actually makes code beautiful, but

rather writing why they like the idea behind the code, or manifestoes such

as Matz’s Code as an Essay, in which he develops a personal perspective

based on experience. As such, this monograph will be integrated in our

corpus, as commentary rather than academic research. Another limita-

tion to these studies is that they only address one specific group of pro-

grammers, and one specific type of software being written. In effect, those

who write and read source code are far from being a homogeneous whole,

and canbe placed along distinct lineswith distinct practices and standards

(Hayes, 2015) (see section 2.1). None of these studies considers whether the

conclusions established for one group would be valid for the others.

One should also note the specific field of philosophy of computer sci-

ence, which inquires into the nature of computation, from ontological,

epistemological and ethical points of view. These are useful both in the

meta positioning they take regarding computer science as they well as in

their demonstration that issues of representation, interpretation and im-

plementation are still unresolved in the field. Particularly, Rapaport’s Phi-

losophy of Computer Science provides an exhaustive literature review of

the different fields which computer science is being compared to, from

mathematics, engineering and art but—interestingly—few references to

25

computer science as having any kind of relation with literature (Rapaport,

2005). Another, more specific perspective is given by Richard P. Gabriel in

his Patterns of Software, in which he looks at software as a similar endeav-

our as architecture, drawing on the works of Christopher Alexander and

focusing on its relationship to patterns, a subject we will investigate more

in chapter 3. Finally, Brian Cantwell-Smith’s introduction to his upcoming

The Age of Significance: An Essay on the Origins of Computation and Inten-

tionality touches upon these similar ideas of intentionality by suggesting

both that computationmight bemore productively studied from a human-

ities or artistic point of view than form a strictly scientific point of view

(Smith, 1998). These philosophical inquiries into computation mention

aesthetics mostly on the periphery, but nonetheless challenge the notion

of computation as strictly functional andmechanical, and suggest that ad-

ditional perspectives on the topic are needed, including that of the arts.

From a humanities perspective, recent literature taking source code as

the central object of their study covers fields as diverse as literature, sci-

ence and technology studies, humanities and media studies and philos-

ophy. Each of these monographs, edited volumes, catalog articles, book

chapters or PhD theses, engage with code in its multiple intricacies. Soft-

ware applications, source code excerpts, programming environments and

languages are included as primary sources, and are considered as texts to

be read, examined and interpreted.

A first look at Aesthetic Computing, edited by Paul A. Fishwick allows

us to highlight one of the important points of this thesis: the collection of

essays in this collected volume focus more often on the graphical output

of the software’s work from the end-user’s perspective than on the textual

manifestations of their source (e.g. Nake and Grabowski’s essay on the in-

terface as aesthetic event) (P. A. Fishwick, 2006). As formost studies of aes-

thetics within computer science, the main focus is on Human-Computer

Interaction (HCI) as the art and science of presenting visually the output

and affordances of a running program. While a vast and complex field, it

26

is not the topic of this thesis which, rather than focusing on the aesthet-

ics of the computable and executable, is limited to the aesthetics of the

computed (texts).

The following works, because of their dealing with source code as text,

and due to the background of their authors in literature and comparative

media studies, incorporate some aspect of literary theory and criticism,

and authors such as N. Katherine Hayles, Maurice J. Black and Alan Sond-

heim rely on it as their preferred lens. Black, in his PhDdissertationTheArt

ofCode (M. J. Black, 2002) initiates the ideaof a cross betweenprogramming

and literature, and hypothesizes that writing source code is an act that is

closer to modernism than postmodernism, as it relies on concepts of au-

thorship, formal linguistic systems and, to some extent, self-reference. The

aim of the study is to show how code functions with its own aesthetic, one

which is distinct and yet closely related to a literary aesthetic. After high-

lighting how the socio-political structures of computing since the 1950s

have affected the constitutionof the idea of a code aesthetic both in profes-

sional and amateur programmers, Black moves towards the examination

of code practices as aesthetic practices. Here, Black limits himself to the

presentation of coding practices insofar as they are identified and referred

to as aesthetic practices, but exclusively through a social, second-hand ac-

count, rather than formal, definition of a source code aesthetic through the

close reading of program texts.

Black establishes programming as literature, and vice-versa, he as-

sumes that it is possible towrite about literature through the lens of source

code. However, the actual analysis of source code with the help of formal

literary theories is almost entirely side-stepped, mentioning only Perl po-

etry as an overtly literary use of code, even though it represents only a mi-

nor fraction of all program texts. In summary, Black provides a first study

in code as a textual object and as a textual practice whose manifestations

programmers care deeply about, but does not address what makes code

poetry different in its writing, reading and meaning-making than natural-

27

language poetry.

N. Katherine Hayles, in My Mother Was A Computer: Digital Subjects

and Literary Texts (Hayles, 2010), and particularly in the Speech, Writing,

Code: Three Worldviews essay temporarily removes code from its imme-

diate social and historical situations and establishes it as a cognitive tool

as significant in scale as those of orality and literacy (Ong, 2012), and at-

tempts to qualify this worldview both in opposition to Saussure’s parole

and Derrida’s trace, following cybernetics andmedia studies scholars such

as Friedrich Kittler and Mark B. Hansen. Specifically, she introduces the

idea of a Regime of Computation, which relies on the conceptual speci-

ficities of code-based expression (among which: depth, dynamism, frag-

mentation, etc.). Source-code specific contributions touch upon literary

paradigms and cognitive effect in two ways. First, she highlights the way

code recombines some traditional dialectics of literary theory, namely

paradigmatic/syntagmatic, discrete/continuous, compilation/interpreta-

tion, and flat/stacked languages, clearly acting as a different mode of ex-

pression. Second, she draws on a comparison between twomain program-

ming paradigms, object-oriented programming and procedural program-

ming, and on the syntax of programming languages, such as C++, in order

to show a novel relationship between the structure and the meaning of

programming texts, a structure which depends on its degree of similarity

with natural languages.

While Hayles provides the basis for a much deeper analysis of source

code’s formal literary properties, she alsomaintains that source code stud-

ies should keep in mind the ever-underlying materiality that this very

source code relies on; and then locates this materiality in the embodiment

of users and readers, along with authors such as Mark Hansen (Hansen,

2006) and Bernadette Wegenstein (Wegenstein, 2010). Beyond the brief ac-

knowledgment that she has of the political and economical conditions of

software development and their impact on electronic texts, Hayles also

stops short of considering programming languages in their varieties, and

28

the concrete apparatuses and traces which support them (documentation,

architectures, compilers, tutorials, conferences and communities). Build-

ing on these material approaches, we will include in our research a con-

ception of programming languages as not just medium, but also material,

in order to investigate the formal possibilities they afford in the writing of

source code.

Alan Sondheim’s essay Codework (Sondheim, 2001), as the introduction

of the American Book Review issue dedicated to this specific form, pro-

vides another aspect of poetrywhich integrates source code as a creole lan-

guage emerging from the interplay of natural andmachine languages. Yet,

this specific aspect of literary work scans the surface of code rather than

its structure and therefore provides more insight as to how humans repre-

sent code through speech, rather than representing speech through code.

This presents a somewhat postmodern view of programming languages,

approaching them as a relational, mutable conception of language as as

series speech-acts, and leaving aside their structural and post-structural

characteristics. Codework is essentially defined by its content andmilieu,

one which focuses on human exchanges and bypasses any involvement of

machine-processing.

Another perspective on the relationship between speech and code is ex-

ploredbyGeoff Cox andAlexMclean in SpeakingCode: CodingasAesthetic

andPolitical Expression (Cox&McLean, 2013). They establish reading, writ-

ing and executing source code as a speech-act, extending J.L. Austin’s the-

ory to a broader political application by includingArendt’s approach of hu-

man activities and labor (Arendt, 1998), from which coding is seen as the

practice of producing laboring speech-acts.

They consider source code as a located, instantiated presence, under-

stood as a semantic object with a political load affecting the multiple eco-

nomic, social and discursive environments in which it lives. Focusing on

speech particularly, this study doesn’t quite address the syntactic speci-

ficities of codes, for example by looking at the use of loops, arrays, or other

29

syntactical structures briefly touched upon by Hayles, and focusing on its

imperative qualities. Side-stepping the particular grammatical features of

that speech, the authors nonetheless often illustrate the points they are

working through, or begin developing those points, with snippets of code

written by either McLean or software artists, thus engaging with details of

source code and taking a step away from the dangers of fetishizing code,

or sourcery (Chun, 2008). They include both deductive code (commenting

existing source code) or inductive code (code written to act as an example

to a point developed by the authors), in a show of the intertextuality of

program texts and natural texts.

Away from the cultural relevance of code as developed by Cox and

McLean, Florian Cramer focuses on the cultural history of writing in com-

putation, tying our contemporary attention to source code into an older

web of historical attempts at integrating combinatorial and supernatu-

ral practices from Hebraic texts to Leibniz’s universal languages (Cramer,

2003). It is in this space between magic and logic that Cramer locates to-

day’s experiments in source code (i.e. source code poetry, esoteric lan-

guages and codeworks). Such a positioning of technology across the

realms of art, religion and knowledge can also be found in Simondon’s

definition of a technical object’s essence (Simondon, 1958). By relocating it

betweenmagic and reality, code is no longer just arbitrary symbols, or ma-

chine instructions but also ideal execution, a set of discrete forms which

relate to the totality of the world. As formal execution is considered a

cosmogonical force, it becomes synonymouswith performative execution,

throughwhich it ties back to cultural practices throughout the ages, within

both religious and scientific contexts.

Cramer extracts five gradients along which to apprehend code-based

works: totality/fragmentation, rationalization/occultation, hardware/-

software, syntax/semantics, artificial/natural language. While all these

axes overlap each other, it is the syntax/semantics axis which aligns most

with this research, given our particular attention to textuality. Yet, we will

30

see how how themes of obfuscation, fragmentation, language and mate-

rial will come into play as we develop our inquiry. Towards the end of the

book, his development of the concept of speculative programming is also

particularly fruitful as the attempt to become a figure of thought and re-

flection in theory and artistic practice. Cramer states:

formalisms […] have a cultural semantics of their own, even on the

most primitive and basic level. With a cultural semantics, there

inevitably is an aesthetics, subjectivity and politics in computing.

(Cramer, 2003)

This points to the relationship between the formal disposition of source

code within program texts and the cultural communities composed of the

writers and readers of these program texts. As such, it highlights that code

does have social components of varying natures, insofar as it operates as

an expressive medium between varying subjects.

Adrian Mackenzie takes on such a social approach to source code, as

part of a broader inquiry on the nature of software, through this social

lens in Cutting Code: Software and Sociality (Mackenzie, 2006). The au-

thor focuses on a relational ontology of software, rather than on a phe-

nomenology: it is defined in how it acts upon, and how it is being acted

upon by, external structures, from intellectual property frameworks to de-

sign philosophies in software architectures; it only provides an operational

definition—software is what it does. His analysis of source code poetry fo-

cuses on famousPerl poems, Jodi’s code-based artworks andAlexMcLean’s

forkbomb.pl (see Listing 80), concerned with the executability of code as its

dominant feature, dismissing Perl poetry as ”a relatively innocuous and in-

consequential activity” (Mackenzie, 2006). While software could indeed be

a ”patterning of social relations” (Mackenzie, 2006), these social relations

also take place through highly-constrained linguistic combinations in pro-

gram texts. Such an ethnographic study of programmers has also been

conducted by Pierre Lévy, in which je draws a fertile line between litera-

31

ture and architecture when it comes to considering the making of source

code, as well as a tight coupling of technology, fine arts and intellect (Lévy,

1992); yet he focuses on the material processes of writing code, the inter-

actions between programmers and between programmers and machines,

leaving aside the specific features of the program texts resulting from such

work.

This tending to the material realities of software embedded within so-

cial and cultural networks and traditions is echoed in DavidM. Berry’s The

Philosophy of Software: Computation and Mediation in the Digital Age. His

definition ofmaterialities, however, focuses on the technical and organiza-

tional processes around code (e.g. work management, specifications, test

suites), rather than on the processes within code (e.g. styles, files and lan-

guages). While this former definition results in what he calls a semiotic

place (D. M. Berry, 2011), a location in which those processes are organized

meaningfully, such a semiotic sense of space also applies, as we will see in

section 5.2, to those intrinsic properties of source code.

Focusing specifically on the category of code poetry, Camille Paloque-

Bergès published, a couple of years later, Poétique des codes sur le réseau in-

formatique (Paloque-Bergès, 2009). This work deploys both linguistic and

cultural studies theorists such as Barthes and De Certeau in order to ex-

plain these playful acts of source code poetry, along with works of esoteric

languages and net.art. The first chapter focuses on digital literature as the

result of executed code in order to develop a heuristic to approach source

code, while the third and last chapter focusing on the means of distribu-

tion of these works, particularly on the development of net.art, 1337 5p43k

and codeworks. In the second chapter, PaloqueBergès provides an intro-

duction to creative acts in source code on both a conceptual level (drawing

from Hayles andMontfort) and on a technical, syntactical level. She looks

at specific programming patterns and practices (hello world, quines), tech-

nical syntax (e.g. $, @ as Perl tokens for expressing singular or plurals) and

cultural paradigms (De Certeau’s tactics and strategies), as she attempts

32

to highlight the specificities of source code for aesthetic manifestation

and invites further work to be done in this dual vein of close-reading and

theoretical contextualization, beyond specific instances of poetic program

texts.

Honing in on a minimal excerpt, 10 PRNT CHR$(205.5+RND(1)): GOTO 10;

(Montfort, Baudoin, Bell, Bogost, & Douglass, 2014), is a collaborative work

examining the cultural intertwinings of a single line of code, throughhard-

ware, language, syntax, outputs and themes. The whole endeavour is a rig-

orous close-reading of source code, in a deductive fashion, working from

thewords on the screen and elaborating on the contextwithinwhich these

words exist, in order to establish the cultural relevance of source code.

While the study itself, being a close-reading of a single work, and particu-

larly a one-liner, itself a specific genre, is restricted in terms of broad aes-

thetic statements, it does show how it is possible to talk about code not as

an abstract construct but as a concrete reality. Particularly interesting is

the section dedicated to the history of the BASIC programming language,

and how particular languages afford particular statements and actions in

a given historical context, a point often glossed over in other studies.

A current synthesis of these approaches,Mark C.Marino’sCritical Code

Studies (Marino, 2020) and the eponymous research field it belongs to fo-

cuses on close-reading of source code as amethod for interpreting it as dis-

course. Particularly, it is organized around cases studies: each with source

code, annotations and commentary. This structure furthers the empirical

approach we have seen in Cox and McLean’s code, or in Paloque-Bergès’s

examples, starting from lines of source code in order in order to deduce

cultural and social environments and intents through interpretation. This

particular monograph, as is stated in the conclusion, offers a set of possi-

blemethodologies rather than conclusions in order to engagewith code as

its textualmanifestations, assuming that the source code, viewed fromdif-

ferent angles, can reveal more than its functional purpose. While Marino,

with a background in the humanities, focuses mostly on the literary prop-

33

erties of code as a textual artifact, this thesis builds here on some of his

methodologies. Particularly, we will focus our reading on how the form

of the code complements its process and output, and will pay close atten-

tion to clever re-purposing or insight. However, while Marino mentions

the aesthetics of code, he does not address the systematic composition of

these aesthetics—focusingprimarily onwhat the codemeans andonly sec-

ondarily on how the code means it.

From a more historical perspective, Warren Sack’s The Software Arts

(Sack, 2019) historicizes software development as an epistemological prac-

tice, rather than as a strictly economic trade. Connecting some of themain

components of software (language, algorithm, grammar), he demonstrates

how these are rooted in a liberal arts conception of knowledge and prac-

tice, particularly visible as a continuation of Diderot and D’Alembert’s en-

cyclopedic attempt at formalizing craft practices. By examining this other,

humanistic, tradition in parallel with its dominantly acknowledged scien-

tific counterpart, Sack shows the multiple facets that code and software

can support. Starting from the concept of ”translation” as an updated ver-

sion of Manovich’s ”transcoding”, Sack analyzes what is being translated

by computing, such as analyses, rhetoric and logic, but does not how-

ever address the nature of the processes into which these concepts are

translated—algorithmsas (liberal) ideas, but not as texts. Nonetheless, this

work offers a switch in perspective which will be helpful when we come to

consider the relationship of source code with domains that are not pri-

marily related to the sciences—i.e. the literary and the architectural, ap-

proached from a craft perspective—as well as with the problem domain

which code aims at depicting.

This activity of programming as craft, already acknowledged by pro-

grammers themselves, is further explored in Erik Piñeiro’s doctoral thesis

(Pineiro, 2003). In it, he examines the concrete, social and practical justi-

fications for the existence of aesthetics within the software development

community. Departing from specific, hand-picked examples such as those

34

featured in Marino’s study, his is more of an anthropological approach, re-

vealing what role aesthetics play in a specific community of practitioners.

Outlining references to ideas such as cleanliness, simplicity, tightness, ro-

bustness, amongst others, as aesthetic ideals that programmers aspire to,

he does not however summon any specific aesthetic field (whether from

literature, mathematics, craft or engineering), but rather frames it in terms

of instrumental goodness, with the aesthetics of code being an attempt to

reach excellence in instrumental action. While he carefully lays out his ar-

gument by focusing on what programmers actually say, as they exchange

about there practice online, he uncovers some aesthetic ideals underpin-

ning a certain practice of programming. However, there remains two lim-

itations: it is not clear how source code as a textual material can afford to

reach such aesthetic ideals, andwhether or not these aesthetic ideals apply

to other groups ofwriters of code, such as code poets, hackers or scientists.

Nonetheless, this empirical approach from the discourses of programmers

is a methodology which this study shares.

In summary, this literature review allows us to have a better grasp of

how the relationship between source code and aesthetics has been studied,

both from a scientific and engineering perspective, and from a humanities

perspective.

In the former approach, aesthetics are acknowledged as a component of

reading and writing code, and assessed through practical examples, quan-

titiative analysis and, to a lesser extent, qualitative interviews. The re-

search focus is on the effectiveness of aesthetics in code, rather than on

unearthing a systematic approach to making code beautiful, even though

issues of cognitive friction and understanding, as well as ideals of clean-

liness, readability, simplicity and elegance do arise. As such, they form

a starting point of varied, empirical investigations, but do not consider

how source code aesthetics might overlap with various other aesthetic do-

mains.

On a more metaphysical level, works in the field of philosophy of com-

35

puter science point at the fact that the nature of computing and software

are themselves evasive, straddling different lineswhile not aligning clearly

with either science, engineering or arts—pointing out that software is in-

deed something different.

As for the humanities, the focus is predominantly on literary heuristics

of a restricted corpus or on socio-cultural dynamics, and the details and

examples of the actual code syntax and semantics are often omitted, even

though the aesthetic aspects of a literary or cultural nature are equated

with a new kind of writing. There is a potential for beauty and art in source

code, particularly salient in code poetry, but such potential is not assessed

through the same empirical lense as the former part of our literature re-

view, even though it also addresses which intrinsic features of code can

support aesthetic judgments and experiences.

Still, some recent studies, such as those by Paloque-Bergès,Montfort et.

al, Cox and McLean and Marino, do engage directly with source code ex-

amples, and these constitute important landmarks for a code-specific aes-

thetic theory and methodology, whether it is as poetic language, speech-

act, or critical commentary. Source code is taken as a unique literary de-

vice, yet it remains unclear in which aspects, besides its executability, it is

different from both natural languages and low-level machine languages,

and how this literary aspect relates to the effective, mathematical and

craft-like nature of source code, as considered in the computer science and

engineering literature.

1.2 Research questions

We can now turn to some of the gaps and questions left by this review.

These can be grouped under three broad areas: dissonant aesthetic fields,

lack of correspondance between empirical investigations and theoretical

frameworks, and an absence of close-reading of program texts as expres-

36

sive artifacts.

First, we can see that there aredifferent aestheticfields referred towhen

assessing aesthetics in source code. By aesthetic field, we mean the set of

medium-specific symbol systems which operate coherently on a stylistic

and thematic level. The main aesthetic fields addressed in the context of

source code are those of literature, architecture as well as craft and math-

ematics. Each of these have specific ways to structure the aesthetic expe-

rience of objects within that field. For instance, literature can operate in

terms of plot, consonance or poetic metaphor, while architecture will mo-

bilize concepts of function, structure or texture. While we will reserve a

more exhaustive description of each of these aesthetic fields in chapter 4,

the first gap to highlight here is how these multiple aesthetic fields are

used to frame the aesthetics of source code, without this plurality being

explicitely addressed. Depending on which study one reads, one can see

code as literature, as architecture, as mathematics or as craft, and there

does not seem to be a consensus as to how each of these map to various

aspects of source code.

Second, we can see a disconnect between empirical and theoretical

work. The former, historically more present in computer science litera-

ture, but more recently finding its way into the humanities, aims at ob-

serving the realities of source code as a textual object, one which can be

mined for semantic data analysis, or as a crafted object, one which is pro-

duced by programmers under specific conditions and replicated through

examples and principles. Conversely, the theoretical approach to code, fo-

cusing on computation as a broad phenomenon encompassing engineer-

ing breakthroughs, social consequences and disruption of traditional un-

derstandings of textuality, is rarely confronted with the concrete, physical

manifestations of computation in the form of source code.

In consequence, there are theoretical frameworks that emerge to ex-

plain software (e.g. computation, procedurality, protocol), but no compre-

hensive frameworks which tend to the aesthetics of source code. In the

37

light of the history of aesthetic philosophy, literature studies and visual

arts, defining such a precise framework seems like an elusive goal, but it

is rather the constellation of conflicting and complementing frameworks

which allow for a better grasp of their object of study through a dialec-

tical approach. In the case of the particular object of this study, the es-

tablishment of such framework taking into account both the specifically

textual dimension of source code and the various practices of all sorts of

programmers is yet to be done. Following the software development and

programming literature, such a framework could productively focus on the

role and purpose that aesthetics play within source code, rather than as-

suming their autotelic nature as art-objects.

Finally, and related to thepoint above, we can identify amethodological

gap. Due to reasons such as access and skill, close-reading of source code

from a humanities perspective has been mostly absent, until the recent

emergence of fields of software studies and critical code studies. The result

is that many studies engaging with source code as a literary object did not

provide code snippets to illustrate the points beingmade. While not neces-

sary per se, I argue that if one establishes an interpretative framework re-

lated to the nature and specificity of software, such a framework should be

reflected in an examination of one of the main components of software—

source code. The way that this gap has been productively addressed in

recent years has primarily been done through an understanding of code as

a part of broader socio-technical environments, inscribing it within plat-

form studies. This focus on the context in which source code exists there-

fore leaves some room for similar approaches with respect to its textual

qualities. Despite N. Katherine Hayles’s call for medium-specificity when

engaging with code (Hayles, 2004), it seems that there has not yet been

close-readings of a variety of program texts in order to assess them as spe-

cific aesthetic objects, in addition to their conceptual and socio-technical

qualities.

Following this overview of the state of the research on this topic, and

38

having identified some gaps remaining in this scholarship, we can now

clarify some of the problems resulting from those gaps with the following

research questions.

What does source code have to say about itself?

The relative absence of empirical examination of its source component

when discussing code does not seem to be consistent with a concep-

tion of source code as a literary object. As methodologies for examining

the meanings of source code have recently flourished, the techniques of

close-reading, as focusing first and foremost on ”the words on the page”

(Richards, 1930) have been applied for extrinsic means: extract what the

lines of code have to say about the world, rather than what they have to

say about themselves, about their particular organization as source files,

as typographic objects or as symbol systems expressing concepts about

the computational entities they describe. In this sense, it is still unclear

how the possible combinations of control flow statements, abstraction lay-

ers, function signatures, data types, variable declaration and variable nam-

ing, among other syntactic devices, enable program texts to be expressive.

While close-reading will be a useful heuristic for investigating these prob-

lems, it will also be necessary to question the unicity of source code, and

take into account how it varies across writers and readers and the social

groups they constitute. This problem therefore has to be modulated with

respect to the socio-technical environment in which it exists—it will then

be possible to highlight to what extent the aesthetics of source code vary

across these groups, and to what extent they don’t.

How does source code relate to other aesthetic fields?

Multiple aesthetic fields are being mapped onto source code, allowing us

to grasp such a novel object through more familiar lenses. However, the

question remains of what it is about the nature of source code which can

39

act as common ground for approaches as diverse as literature, mathemat-

ics and architecture, or whether these references only touch on distinct

aspects of source code. When one talks about structure in source code,

do they refer to structure in an architectural sense, or in a literary sense?

When one refers to syntactic sugar in a programming language, does this

have implications in a mathematical sense? This question will involve in-

quiries into the relationship of syntax and structure, of formality and tac-

itness, ofmetaphor and conceptualmapping, and in understanding of how

adjectives such as elegant, clear and simple might have similar meanings

across those different fields. Offering answers to these questionsmight al-

lowus tomove fromamulti-faceted understanding of source code towards

a more specific one, as the meeting point for all these fields, source code

might reveal deeper connections between each of those.

Howdo theaesthetics of source code relate to its function?

The final problem concerns the status of aesthetics in source code not as

an end, but as a means. A cursory investigation on the topic immediately

reveals how aesthetics in source code can only be assessed only once the

intended functionality of the software described has been verified. This

stands contra to the way of a rather traditional opposition between beauty

and functionality, and therefore suggests further exploration. How do aes-

thetics support source code’s functional purpose? And are aesthetics lim-

ited to supporting such purpose, or do they serve other purposes, beyond

a strictly functional one? This paradox will relate to our first problem, re-

garding the meaning-making affordances of source code, and touch upon

how the expressiveness of formal languages engagewith different concep-

tions of function, therefore relating back to Goodman’s concept of the lan-

guages of art, of which programming languages can be part of. Particu-

larly, this study will investigate how aesthetic configurations aim at mak-

ing complex concepts understandable.

40

1.3 Methodology

To address such questions, we propose to proceed from looking at two

kinds of texts: program texts and meta-texts. The core of our corpus will

consist of the two categories, with additional texts and tools involved.

Due to the intricate relationship between source code and digital com-

munication networks, vast amounts of source code are available online na-

tively or have been digitized. They range from a few lines to several thou-

sands, date between 1969 and 2021, with a majority written by authors in

NorthernAmerica orWesternEurope. Onone side, code snippets are short,

meaningful extracts usually accompanied by a natural language comment

in order to illustrate a point. On the other, extensive code bases are large

ensembles of source files, often written in more than one language, and

embedded in a build system3. Both can be written in a variety of pro-

gramming languages, as long as these languages are composed in unicode-

encoded alphanumeric characters.

This lack of limitations on size, date or languages stems from our em-

pirical approach. Since we intend to assess code conditionally, that is,

based primarily on its own, intrinsic textual qualities, it would not follow

thatwe should restrict to any specific genre of program text. Aswe carry on

this study, distinctions will nonetheless arise in our corpus that align with

some of the varieties amongst source—for instance, the aesthetic proper-

ties of a program text composed of one line of codemight be different from

those exhbited by a program text made up of thousands of lines code.

We also intend to use source code in both a deductive and an induc-

tive manner. Through our close-reading of program texts, we will high-

light someaesthetic features related to its textuality, taking existing source

code as concrete proof of their existence. Conversely, wewill alsowrite our

own source code snippets in order to illustrate the aesthetic features dis-

cussed in natural language. We will make use of this technique in order to

3A build system is a series of code transformations intended to generate executable code.

41

illustrate some of our points. Rather than discussing complex code snip-

pets, we will sometimes list translated, simplified versions in the Python

programming language, and refer to the reader to the actual listings in the

annex. This use of source code snippets is widely spread among commu-

nities of programmers in order to qualify and strengthen their points in

online discussions, andwe intend to follow thisweaving in ofmachine lan-

guage and natural language in order to support our argumentation. This

approachwill therefore oscillate between theory andpractice, the concrete

and the abstract, as it both extracts concepts from readings of source code

and illustrates concepts by writing source code.

The case of programming languages is a particular one: they do not ex-

clusively constitute program texts (unless they are considered strictly in

their implementation details as lexers, interpreters and compilers, them-

selves described in program texts), but are a necessary condition for the

existence of source code. They therefore have to be taken into account

when assessing the aesthetic features of program text, as integral part of

the affordances of source code. Rather than focusing on their context-free

grammars or abstract notations, or on their implementation details, we

will focus on the syntax and semantics that they allow the programmer to

use. Programming languages are hybrid artefacts, and their intrinsic quali-

ties are only assessed insofar as they relate to the aestheticmanifestations

of source code written in those languages.

Meta-texts on source code make up our secondary corpus. Meta-texts

are written by programmers, provide additional information, context, ex-

planation and justification for a given extract of source code, and is a sig-

nificant part of the software ecosystem. Even though they are written in

natural langauge, this ability to write comments has been a core feature

of any programming language very early on in the history of computing,

linking any program text with a potential commentary, whether directly

among the source code lines (inline commentary) or in a separate block

42

(external commentary)4. Examples of external commentaries include user

manuals, textbooks, documentation, journal articles, forums discussions,

blog posts or emails. The inclusion in our corpus of those meta-texts is

due to two reasons: the practical reason of the high epistemological bar-

rier to entry when it comes to assessing source code in unfamiliar linguis-

tic or hardware environments, and the theoretical reason of including the

aesthetic judgment of programmers as it supports our conditional, rather

than constitutive, approach.

While we intend to look at source through close-reading, favoring the

role and essence of each line as a meaningful, structural element, rather

than that of the whole, our interpretation of meta-texts will take place via

discourse analysis. Building on Dijk and Kintsch’s work on discourse com-

prehension (Dijk & Kintsch, 1983), we intend to approach these texts at a

higher level, in terms of the lexical field they use, as a marker of the aes-

thetic field they refer to, as well as at a lower level, noting which specific

syntactic aspects of the code they refer to. This focus on both the micro-

level (e.g. local coherence and proposition analysis) and on themacro-level

(e.g. socio-cultural context, intended aim and lexical field usage) will al-

low us to link specific instances of written code with the broader semantic

field that they exist in. This connection between micro- and macro- relies

on the hypothesis that there is something fundamentally similar between

a source code construct, its meaning and use at the micro-level, and the

aesthetic field to which it is attached at amacro-level, a hypothesis wewill

address further when investigating the role of metaphor in source code.

In this aim, we will also mobilize metaphor theory from Lakoff to identi-

fiy some of the properties of code as a target domain through some of the

features of the aesthetic fields taken as source domains (Lakoff & Johnson,

1980).

In the end, this process will allow us to construct a framework from

4Such adistinction isn’t a strict binary, and systemsof inscription existwhich couple code

a commentary more tightly, such as WEB or Juptyer Notebook.

43

empirical observations. The last part of our methodology, after having

completed this analysis of program-texts and their commentaries, is to

cross-reference it with texts dealing with the manifestation of aesthet-

ics in those peripheral fields. Literary theory, centered around the works

of Mary-Laure Ryan, Roland Barthes and Paul Ricoeur can shed light on

the attention to form, on the interplay of syntax and semantics, of open

and closed texts, and suggest productive avenues through the context of

metaphor. Architectural theory will be involved through the two main ap-

proaches mentioned by software developers: functionalism as illustrated

by the credo form follows function and works by Vitruvius, Louis Sullivan

and the Bauhaus on one side, and pattern languages as initiated by the

work of Christopher Alexander on the other. Mathematical beauty will

be considered in its capacity to communicate complex concepts as well

as to act as a heuristic when developing proofs for complex theorems,

as explicited by scholars such as Gian-Carlo Rota and Nathalie Sinclair.

Throughout, wewill see howan approach to craft, as the enactment of tacit

knowledge in the creation of functional artefact can apply these domains.

This study therefore aims at weaving in empirical observations, dis-

course analysis and external framing, in order to propose systematic ap-

proaches to source code’s textuality. However, these will not unfold in

a strictly linear sequence; rather, there will be a constant movement be-

tween practice and theory and between code-specific aesthetic references

and broader ones: this interdisciplinary approach intends to reflect the

multifaceted nature of software.

1.4 Roadmap

Our first step, in chapter 2, is an empirical assessment of how program-

mers consider aesthetics with their practice or reading and writing it. Af-

ter acknowledging and underlining the diversity of those practices, from

44

software developers and scientists to artists and hackers, we will iden-

tify which concepts and references are being used the most when refer-

ring to beautiful code—elegance, clarity, simplicity, cleanliness, and oth-

ers. These concepts will then allow us to touch upon the field that are

being referred to when considering the practice of programming: litera-

ture, architecture and mathematics as domains in themselves, and craft

as a particular approach to these domains. Finally, we will show how the

overlap of these concepts can be found in the process of understanding—

communicating abstract ideas through concrete manifestations. Indeed,

we will see that how source code is written allows us to graspwhat it does.

After establishing the role of aesthetics as the answer to source code’s

cognitive complexity, we will proceed to analyze further such a relation-

ship between understanding, source code and aesthetics in chapter 3. We

will see that one of themain features of source code is the elusiveness of its

meaning, whether effective or intended. Beautiful code is often code that

can be understood clearly, which raises the following question: how can a

completely explicit and formal language allow ambiguity? The answer to

this question will involve an analysis of the two audiences of source code:

humans and machines. This ambivalent status will be developed through

the notion of abstract artifact, highlighting both material and cognitive

dimensions of our object of study. We will show how source code needs

to provide a gradual interface between different modes of being of source

code: source code as text, source code as structure and source code as the-

ory. The need for aesthetics arises from the tradeoffs that need to bemade

when these differentmodes of being overlap. In particular, one of theways

that enable humans to grasp computational concepts aremetaphorical de-

vices. Since metaphors aren’t exclusively literary devices, looking at them

from a cognitive perspective will also raise issues of modes of knowledge,

between explicit, implicit and tacit.

Shifting from empirical observations to a more theoretical framing, we

will then assess in chapter 4 how the different fields that are being referred

45

to when talking about source code have touched upon these issues of un-

derstanding, from rhetoric to literature, through architecture and math-

ematics. Thinking in terms of surface-structure and deep-structure, we

will establish a first connection between program texts and literary text

through their relianceon linguisticmetaphors to suggest aparticular grasp

on concepts of time and space. The understanding of beauty in architec-

ture, based on the two traditions mentioned above, will provide an addi-

tional perspective by providing concepts of structure, function and usabil-

ity. These will echo a final inquiry into mathematical beauty, drawing a

direct link between idea and implementation, theorem and proof, and pro-

viding a deeper understanding of the concept of elegance.

With a firmer grasp on the stakes of source code as a text to be under-

stood, and on how aesthetics can enable understanding, we turn to its ef-

fectivemanifestations to develop our framework in chapter 5. First, wewill

see how programming languages act as linguistic intefraces to computa-

tional phenomena, both from an objective and from a subjective perspec-

tive. Considering programming languages as formal grammars will show

that there are very different conceptions of semantics and meanings ex-

pected from the computer than those expected fromahuman, even though

a machine’s perspective on valuable code could still be based around con-

cepts of effectiveness, simplicity and performance. Human use of pro-

gramming languages reaches into the extreme of esolangs—an investiga-

tion into those will reveal that language can be considered as a material,

one whose base elements can be recombined to represent specific struc-

tures. Working through structure, syntax and vocabulary, wewill be able to

formalize a set of textual typologies involved in producing an aesthetic ex-

perience through source code. Particularly, we will highlight where those

experience differ across linguistic communities of practice, and where

they overlap, tracing connections between specific textual configurations

of source code with the ideals summoned by the programmers. Finally, we

will conclude on how aesthetics are both conditioned to the function of

46

the artefacts they are manifested in, and themselves perform a functional

role in in epistemological communication, operating through metaphori-

cal references and structural arrangements at various scales.

We will then turn back to our research questions to show how seman-

tic compression and spatial exploration are crucial components of source

code aesthetics. Indeed, the specific aesthetics of source code are those of

a constant doubling between the specificities of the human (such as natu-

ral handling of ambiguity, intuitive understanding of the problem domain,

and ability to shift perspectives) and of the machine (such as speed of ex-

ecution, and reliance on explicit formal grammars). This duality will also

be seen in the tension between surface structure, one that is textual and

readable, and deep structure, one that is made up of dynamic processes

representing complex concepts, and yet devoid of any fluidity or ambigu-

ity. It is this dynamism, both in terms of where and when code could be

executed, which suggest the use of aesthetics in order to grasp more in-

tuitively the topology and chronology, the state and behaviour of an exe-

cuted program text. Wewill show how particular formal configurations, at

the level of vocabulary, syntax, structure and style, ultimately involve the

compression of human semantics and computer semantics, in conjunction

with the ability to enable non-linear, writerly exploration of the program

texts.

Finally, we will relate Goodman’s conception of art as cognitively effec-

tive symbol system, and of Simondon’s consideration of aesthetic thought

as a link between technical thought and religious thought. Starting from a

practical perspective on aesthetics taking from the field of craft—the thing

well done—, aesthetics also highlight functionality on a cognitive level—

the thingwell thought. Beauty in source code seems tobedominantlywhat

is useful and thoughtful, evenwhen they are reflected in the distortingmir-

rors of hacks and esoteric languages, broadening our possible conceptions

of what aesthetics can do, and what functionality can be.

47

1.5 Implications and readership

This thesis fits within the field of software studies, and aims at clarifying

what we mean when we refer to code as…. Code as literature, architec-

ture or mathematics, code as philosophy or as craft, are metaphors which

can be examined productively by looking at the texts themselves and the

discourses around them, an approach that has only been deployed in rela-

tively recent work.

This relationship between practice, function and beauty is the broad,

underlying question of this study. In the vein of the cognitive approach to

art and aesthetics, this study is an attempt to show how aestethics play

a communicative role, and how concrete manifestations can, through a

metaphorical process, hint at broader effective ideas. In this sense, this

study is not just about the relation of aesthetics and function, but also

about the function of aesthetics. While this idea of aesthetics as a way

of communicating ideas could be equally applied across artistic and non-

artistic domains, another aim of this thesis is to highlight the context-

sensitivity of aesthetic standards: practices, uses and purposes determine

as much, if not more, of the aesthetic value of a given program text, than a

shared medium.

By examining the object of the practice of programmers at a close-level,

this study hopes to contribute to a clarification ofwhat exactly is program-

ming, along with the consequences of the embedding of software in our

social, economic and political practices. In order to address the question

of whether algorithms are political in themselves, or if it is their use which

is political, it is important to define clearly what it is that we are talking

about when discussing algorithms. A clarification of source code on a con-

crete level will clarify what this essential component of algorithms is, and

opens up potential for further work in terms of thinking no longer of the

aesthetics of source code, but of its poetics; that is, in the way source code,

as a language of art, can also be a way of worldmaking.

48

To this end, this thesis is aimed at a variety of readers and audience.

From the humanities perspective, digital humanists and literary theo-

rists interested in the concrete manifestations of source code as specific

meaning-making techniques will be able to find the first steps of such an

approach being laid out, and contrast these specific technique with the

broader poetics of code studied by other scholars, or with the aesthetics

of natural language texts.

Programmers and computer scientists will find an attempt at formal-

izing something they might have known implicitly ever since they started

practicing writing and reading code, and the approach of languages as po-

etics and structuremight help them think through these aspects in order to

write perhaps more aesthetically pleasing, and thus perhaps better, code.

Conversely, anyone engaged seriously in an activity which involves a cre-

ative process could find here a rigorous study of what goes on into a spe-

cific craft, asking how their own practice engages with tools andmodes of

knowledge, and how they approach the communicative function of their

work as an aesthetic endeavour.

Finally, such a study of aesthetics, then, will also be of interest to artists

and art theorists. By investing aesthetics without a direct relation to the

artwork, but rather within a functional purpose, this study suggests that

one can think through beauty and artworks not as ends, but as means to

accomplish things that formal systems of explanationmight not be able to

achieve. An aesthetics of source code would therefore aim at highlighting

the purpose of functional beauty within a textual environment.

49

Chapter 2

Aesthetic ideals in

programming practices

The first step in our study of aesthetic standards in source code will iden-

tify the aesthetic ideals ascribed by programmers to the source code they

write and read; that is, the syntactic qualifiers and semantic fields that they

refer to when discussing program texts. To that end, we first start by clari-

fying whom we refer to by the term programmers, revealing a multiplicity

of practices and purposes, frommassively-distributed codebases to ad hoc,

one-line solutions, cryptic puzzles and printed code.

We then turn to the kinds of beauty that these programmers aspire to.

After expliciting our methodology of discourse analysis, we engage in a

review of the various kinds of publications that make up programmers’

discourses, in which they qualify their practice. Out of these, we identify

a cluster of adjectives and comparisons which will provide an empirical

basis for considering the desirable and undesirable aesthetic properties of

source code.

We then move to a description of which aesthetic fields are being ref-

erenced by programmers on a broader level, and consider how multiple

50

kinds of beauties, from literary, to scientific and architectural conceptions

of beauty can overlap and be referred to in the same medium. Such an

overlap will reveal the importance of function, craft and knowledge in the

disposition and representation of code. Our conclusion focuses on how

understanding plays a central role in an aesthetic approach to source code,

and results from the specificity of code as a cognitive material.

2.1 The practices of programmers

The history of software development is that of a practice born in the after-

math of the second world war, one which trickled down to broader and

broader audiences at the eve of the twenty-first century. Through this

development, various paradigms, platforms and applications have been

involved in producing software, resulting in different epistemic commu-

nities (Cohendet, Creplet, & Dupouët, 2001) and communities of practice

(Hayes, 2015), in turn producing different types of source code. Each of

these write source code with particular characteristics, and with differ-

ent priorities in how knowledge is produced, stored, exchanged, transmit-

ted and retrieved. In this section, we take a socio-historical stance on the

field of programming, highlighting how diverse practices emerge at differ-

ent moments in time, how they are connected to contemporary technical

and economic organizations, and for specific purposes. Even though such

types of reading and writing source code often overlap with one another,

this section will highlight a diversity of ways in which code is written, no-

tably in terms of origin—how did such a practice emerge?—, references—

what do they consider good?—, purposes—what do they write for?—and

examples—how does their code look like?.

First, we take a look at the software industry, to identify professional

software developers, the large program texts they work on and the specific

organizational practices within which they write it. They are responsible

51

for the majority of source code written today, and do so in a professional

and productive context, where maintainability, testability and reliability

are the main concerns. Then, we turn to a parallel practice, one that is

often exhibited by software developers, as they also take on the stance

of hackers. Disambiguating the term reveals a set of practices where cu-

riosity, cleverness, and idiosyncracy are central, finding unexpected solu-

tions to complex problems, sometimes within artificial and playful con-

straints. Scientists operate within an academic environment, focusing on

concepts such as simplicity, minimalism and elegance; they are often fo-

cused on theoretical issues, such as mathematical models, as well as pro-

gramming language design, but are also involved in the implementation

of algorithms. Finally, poets read and write code first and foremost for its

textual and semantic qualities, publishing code poems online and in print,

and engaging deeply with the range ofmetaphors allowed by this dynamic

linguistic medium.

While this overview encompasses most of the programming practices,

we leave aside some approaches to code, mainly because they do not di-

rectly engage with the representation of source code as a textual matter.

More and more, end-user applications provide the possibility to program

in rudimentary ways, something referred to as the ”low-code” approach

(Team, 2021), and thus contributing to the blurring of boundaries between

programmers and non-programmers1.

2.1.1 Software developers

As Niklaus Wirth puts it, the history of software is the history of growth in

complexity (Wirth, 2008), while also following a constant lowering of the

1For instance, Microsoft’s Visual Basic for Applications, Ableton’s Max For Live, MIT’s

Scratch or McNeel’s Grasshopper are all programming frameworks which are not covered

within the scope of this study. In the case of VBA and similar office-based high-level pro-

gramming, it is because such a practice is a highly personal and ad hoc one, and therefore is

less available for study.

52

barrier to entry to the tools through which this complexity is managed.

As computers’ technical abilities inmemory storage and processing power

increased year on year since the 1950s, the nature of writing computer in-

structions shifted as well.

Frommachine dependence to autonomous language

In his history of the software industry, Martin Campbell-Kelly traces the

development of a discipline through an economic and a technological lens,

and he identifies three consecutive waves in the production of software

(Campbell-Kelly, 2003). Starting in the 1950s, and continuing throughout

the 1960s, software developerswere contractors hired towork directlywith

a specific hardware. These mainframes were large, expensive, and rigid

machines, requiring platform-specific knowledge of the correspondingAs-

sembly instruction set, the only programming language available at the

time2. Two distinct groups of people were involved in the operationaliza-

tion of such machine: electrical engineers, tasked with designing hard-

ware, and programmers, tasked with implementing the software. While

the former historically received the most attention (Ross, 1986), the lat-

ter was mostly composed of women and, as such, not considered essen-

tial in the process (Light, 1999). At this point, then, programming remains

hardware-dependent3.

2One of the first operating systems, MIT’s Tape Director, would be only developped in

1956 (Ross, 1986), which would facilitate some of the more basic memory allocation, process

management, and system calls
3”Butmost important of all, theprogrammerhimself hadaverymodest viewofhis ownwork:

his work derived all its significance from the existence of that wonderful machine. Because that

was a unique machine, he knew only too well that his programs had only local significance and

also, because it was patently obvious that this machine would have a limited lifetime, he knew

that very little of his work would have a lasting value. Finally, there is yet another circumstance

that had a profound influence on the programmer’s attitude to his work: on the one hand, be-

sides being unreliable, his machine was usually too slow and its memory was usually too small,

i.e. he was faced with a pinching shoe, while on the other hand its usually somewhat queer or-

der code would cater for the most unexpected constructions. And in those days many a clever

53

In the 1960s, hardware switched from vacuum tubes to transistors

and from magnetic core memory to semiconductor memory, making

them faster and more capable to handle complex operations. On the

software side, the development of several programming languages, such

as FORTRAN, LISP and COBOL, started to address the double issue of

portability—having a program run unmodified on different machines—

and expressivity—expressing a program text in a high-level, English-like

syntax, rather than Assembly instruction codes. Programmers are no

longer tied to a specific machine, and therefore acquire a certain auton-

omy, a recognition which culminates in the naming of the field of software

engineering (Randell, 1996).

Campbell-Kelly concludes on a wave of mass-market production: fol-

lowing the advent of the UNIX family of operating systems, the distribu-

tion of the C programming language, the wide availability of C compilers,

and the appearance of personal computers such as the Commodore 64,

Altair and Apple II, software could be effectively entirely decoupled from

hardware. The writing of software is no longer a corollary to the design

of hardware, and as an independent field would as such become the main

focus of computing as a whole (Ceruzzi, 2003). And yet, software immedi-

ately enters a crisis, where projects run over time and budget, prove to be

unreliable in production and unmaintainable in the long-run. It is at this

time that discussions around best practices in writing source code started

to emerge.

This need for amore formal approach to the actual process of program-

ming found one of its most important manifestations in Edsger Dijkstra’s

Notes on Structured Programming (E. W. Dijkstra, 1972). In it, he argues

for moving away from programming as a craft, and towards programming

as an organized discipline, with its methodologies and systematization of

programmer derived an immense intellectual satisfaction from the cunning tricks by means of

which he contrived to squeeze the impossible into the constraints of his equipment.’ (E. W. Di-

jkstra, 2007)

54

program construction. Despite its laconic section titles4, Dijkstra’s 1972 re-

port nonetheless contributed to establish a more rigorous typology of the

constructs required for reliable, provable programs—based on fundamen-

tal heuristics such as sequencing, selection, iteration and recursion—, and

aimed at the formalization of the practice. Along with other subsequent

developments (such as Hoare’s contribution on proper data structuring

(Hoare, 1972), or the rise of object-oriented programming with Smalltalk

(A. C. Kay, 1993)) programming would solidify its foundations as a profes-

sion:

We knew how the nonprofessional programmer could write in

an afternoon a three-page program that was supposed to sat-

isfy his needs, but how would the professional programmer de-

sign a thirty-page program in such a way that he could really jus-

tify his design? What intellectual discipline would be needed?

What properties could such a professional programmer demand

with justification from his programming language, from the for-

mal tool he had to work with? (E. W. Dijkstra, 1972)

As a result of such interrogations comes an industry-wide search for so-

lutions to the intractable problem of programming: that it is a technique to

manage information which in turn produces information. To address such a

conundrum, a variety of tools, formalmethods andmanagement processes

enter themarket; they aimat acting as a silver bullet (Brooks Jr, 1975), amag-

ical solution addressing the cascade of potential risks which emerge from

large software applications5. This growth in complexity is also accompa-

nied by a diversification of software applications: as computers become

more widely available, and as higher-level programming languages pro-

vide more flexibility in their expressive abilities, software engineering en-

4See, for instance, Chapter 1: ”On our inability to do much”
5For instance, the Forum on Risks to the Public in Computers and Related Systems serves

as a publication to centralize such concerns (Neumann, 1985)

55

gages with a variety of domains, each of which might need a specific solu-

tion, rather than a generic process. Confrontedwith this diversity of appli-

cations, business literature on software practices flourishes, being based

on the assumption that the complexity of software should be tackled at its

bottleneck: the reading and writing of source code.

The most recent wave in the history of software developers is the pop-

ularization of the Internet and of the World Wide Web, a network which

was only standardized in 1982 and access to it was provided commercially

in 1989. Built on top of the Internet, it popularized global information ex-

change, including technical resources to read and write code. Software

could now be written on cloud computing platforms, shared through pub-

lic repositories and deployed via containers with a lower barrier to entry

than at a time of source code printed inmagazines, of overnight batch pro-

cessing and of non-time-sharing systems.

Engineering texts

Software developers have written some of the largest program texts to this

date. However, due to its close ties to commercial distributors, source code

written in this context often falls under the umbrella of proprietary soft-

ware, thus made unavailable to the public. The program texts written by

software developers are large, they often feature multiple programming

languages and are highly structured and standardized: each file follows a

pre-established convention in programming style, which supports an au-

thoring bymultiple programmers without any obvious trace to a single in-

dividual authorship. These program texts stand the closest to a program-

ming equivalent of engineering, with its formalisms, standards, usability

and attention to function.

The IEEE’s Software Engineering Body of Knoweldge (SWEBOK) pro-

vides a good starting point to survey the specificities of software develop-

ers as source code writers and readers (Bourque & Fairley, 2014); the main

56

features of which include the definition of requirements, design, construc-

tion, testing and maintenance. Software requirements are the acknowl-

edgement of the importance of the problem domain, the domain to which

the software takes its inputs from, and to which it applies its outputs. For

instance, softwarewritten for a calculator has arithmetic as its problemdo-

main; software written for a learning management system has students,

faculty, education and courses as its problem domain; software written

a banking institution has financial transactions, savings accounts, fraud

prevention and credit lines as its problem domain. This essential step in

software development aims at formalizing as best as possible the elements

that exist beyond software, in order to make those computable, and the

design of an adequate formalism is a fundamental requirement for a suc-

cessful software application.

Software design relates to the overall organization of the software com-

ponents, considered not in their textual implementation, but in their con-

ceptual agency. Usually represented through diagrams or modelling lan-

guages, it is concerned with understanding how a system should be orga-

nized and designing the overall structure of that system (Sommerville, 2010).

Of particular interest is the relationship that is established between soft-

ware development and software architecture. Software architecture oper-

ates both from a top-down perspective, laying down an abstract blueprint

for the implementation of a system and dictating how a program text is

structured, how its parts interact, why it’s built that way, consisting differ-

ent components of an existing system interact (Brown &Wilson, 2011).

Software construction relates to the actualwriting of software, andhow

to do so in the most reliable way possible. The SWEBOK emphasizes first

and foremost the need to minimize complexity6, in anticipation of likely

6Complexity does not exist only at the programming level, but also at the architecture

level: ”there are two ways of constructing a software design: one way is to make it so simple

that there are obviously no deficiencies, and the other way is to make it so complicated that

there are no obvious deficiencies.” (Hoare, 1981)

57

changes and possible reuse by other software systems. Here, the empha-

sis on engineering is particularly salient: while most would refer to the

creation of software as writing software, the IEEE document refers to it as

constructing software: the creation of working software through a combi-

nation of coding, verification, unit testing, integration testing, and debug-

ging. (Bourque&Fairley, 2014). The practice of software engineers thus im-

plements functional and reliable mechanical designs through, ultimately,

the act of writing in formal languages.

Software maintenance, finally, relates not to the planning or writing of

software, but to its reading. Software is notoriously filledwith bugs7which

can be fixed through the release of software updates. This means that the

life of a software doesn’t stop when its first version is written, but rather

when it does not run anywhere anymore: it can still be edited across time

and space, by other programmers whichmight not have access to the orig-

inal group of implementers: consequently, software should be first and

foremost understandable—SWEBOK lists the first feature of coding as be-

ing techniques for creating understandable source code (Bourque & Fairley,

2014). This final component of software development directs us back to

its notorious cognitive complexity, one that increases with the age of the

software.

What does this look like in practice? In order to understand the aes-

thetic preferences of software developers, we must start by assessing the

kinds of program texts they write. We look at excerpts from two code

bases: the source code for Microsoft Windows XP, which was started in

2001 (Warren, 2020), and the Kirby CMS project, started in 2011; the quanti-

tative specificities of both code bases are shown in Figure 2.1. While these

two projects differ drastically in their size, in their age, and in the number

of developers involved in their creation and maintenance, we nonetheless

choose them as the respective ends of a single spectrum of software engi-

7McConnell estimates that the industry average is about 15 - 50 errors per 1000 lines of

delivered code. (McConnell, 2004).

58

Figure 2.1: Table comparing the scale of two software development

projects.

neering. In both cases, the prime concern is with function and maintain-

ability.

First, themost striking visual feature of the code is its sheer size. In the

case of Microsoft XP, representing such a versatile and low-level applica-

tion such as an operating system results in files that are often above 2000

lines of code. In order to allow abstraction techniques at a higher-level for

the end-developer, the operating system needs to do a significant amount

of ”grunt” work, relating directly to the concrete reality of the hardware

platform which needs to be operated on. Looking at the file cmdatini.c,

reproduced partially in Listing 4, we see very long variable names, with

a rhythmic, repetitive structure where differences between lines is not

obivous at first.

The repetition of the RtlInitUnicodeString in the first part of this listing

stands at odds with the second part of the code, the for() statement, dis-

playing a contrast between between a verbose text and a compressed text.

Verbosity, the act of explicitly writing out statements which could be func-

tionally equivalent in a compacted form, is a feature of the Windows 2000

codebase, one which is a consequence of a particular problem domain, of

a particular business imperative of maintainability, and of the particular

semantic environment of the C programming language.

The problemdomain of theWindowsXPoperating system, its longevity

and its update cycle, all contribute to its complexity and have affected how

this code is written. Here, the problem domain of the program text is the

59

{
ULONG i;

RtlInitUnicodeString(&CmRegistryRootName,
CmpRegistryRootString);

RtlInitUnicodeString(&CmRegistryMachineName,
CmpRegistryMachineString);

RtlInitUnicodeString(&CmRegistryMachineHardwareName,
CmpRegistryMachineHardwareString);

RtlInitUnicodeString(&CmRegistryMachineHardwareDescriptionName,
CmpRegistryMachineHardwareDescriptionString);

RtlInitUnicodeString(&CmRegistryMachineHardwareDescriptionSystemN ⌋
ame,↪→

CmpRegistryMachineHardwareDescriptionSystemS ⌋
tring);↪→

RtlInitUnicodeString(&CmRegistryMachineHardwareDeviceMapName,
CmpRegistryMachineHardwareDeviceMapString);

RtlInitUnicodeString(&CmRegistryMachineHardwareResourceMapName,
CmpRegistryMachineHardwareResourceMapString);

// ...

//
// Initialize the type names for the hardware tree.
//

for (i = 0; i <= MaximumType; i++)
{

RtlInitUnicodeString(&(CmTypeName[i]),
CmTypeString[i]);

}

// ...

return;
}

Listing 4: ms2000_abridged.c - Unicode string initialization in Microsoft

2000 operating system, with a first part showing an explicit repeating pat-

tern, while the second part shows a more compressed approach.

60

computer hardware, and its function is to make sure the kernel knows

about the hardware it is running on (e.g. its name, its description, etc.), in

an explicit and verbose way, before more compressed writing techniques

can be used. Dealing with a specific problem domain (i.e. kernel instruc-

tions) leads to a specific kind of aesthetics; here, forcing the programmers

to repeat references to RtlInitUnicodeString() 1580 times across 336 files.

Another significant aesthetic feature of theWindows 2000program text

is its use of comments, and how those comments point to a collaborative,

layered authorship. This particular program text is written across individ-

uals and across time, each with presumably its own approach. Yet, writing

source code within a formal organization often implies the harmonization

of individual approaches, and thus the adoption of coding styles, with the

intent that all code in any code-base should look like a single person typed

it, no matter how many people contributed (Waldron, 2020). The excerpt in

Listing 5 from jdhuff.c is a example of such overlapping of styles.

Comments are specific lines of source code, identified by particular

characters (in the C programming language, they are marked using // and

/* */), which are ignored by the machine. That is, they are only expected

to be read by other programmers, and in this case primarily by program-

mers belonging to a single business organization. Here, the variety of com-

ment characters and the variety of capitalizationhint at the various origins

of the authors, or at the very least at the different moments, and possible

mental states of the potential single-author.

Treated as natural language, comments are not procedurally guaran-

teed to be reflected in the execution, of the program, and are considered by

some as misleading: they might be saying something, while the code does

something else8. Beyond the presence of multiple authors, this excerpt

also exemplifies the tension between source code as the canonical source

8This has led to the argument that only the source code has epistemological value in a

software project: ”the only document that describes your code completely and correctly is the

code itself” (Goodliffe, 2007)

61

no_more_data :
// There should be enough bits still left in the data segment;
// if so, just break out of the outer while loop.
if (bits_left >= nbits) break;

/* Uh-oh. Report corrupted data to user and stuff zeroes into
* the data stream, so that we can produce some kind of image.
* Note that this code will be repeated for each byte demanded
* for the rest of the segment. We use a nonvolatile flag to ensure
* that only one warning message appears.
*/
if (!*(state->printed_eod_ptr))
{

WARNMS(state->cinfo, JWRN_HIT_MARKER);
*(state->printed_eod_ptr) = TRUE;

}
c = 0; // insert a zero byte into bit buffer
}
}

/* OK, load c into get_buffer */
get_buffer = (get_buffer << 8) | c;
bits_left += 8;
}

/* Unload the local registers */
state->next_input_byte = next_input_byte;
state->bytes_in_buffer = bytes_in_buffer;
state->get_buffer = get_buffer;
state->bits_left = bits_left;

return TRUE;
}

Listing 5: buffer.c - Overlapping programming voices can be hinted at by

different comment styles.

62

/*++

Copyright (c) 1996 Microsoft Corporation

Module Name:

enum.c

Abstract:

This module contains routines to perform device enumeration

Author:

Shie-Lin Tzong (shielint) Sept. 5, 1996.

Revision History:

James Cavalaris (t-jcaval) July 29, 1997.
Added IopProcessCriticalDeviceRoutine.

--*/

Listing 6: enum.c - This listing shows the explicit traces ofmultiple authors

collaborating on a single file over time.

of knowledge of what the program does and how it does it and comments

as a more idiosyncratic dimension of all natural-language expressions of

human programmers.

And yet, this chronological and interpersonal spread of the program

text, combinedwith organizational practices, require the use of comments

in order to maintain aesthetic and cognitive coherence in the program.

This is the case in the use of comment headers, which locate a specific file

within the greater architectural organization of the program text (see List-

ing 6). This highlights the multiple authors and the evolution in time of

the file: comments are the only manifestation of this layering of revisions

which ultimately results in the ”final” software9.

Ultimately, the Windows XP source code shows some of the compo-

9The term ”final” is in quotes, since the Windows 2000 source contains the mention

BUGBUG 7436 times across 2263 files, a testament to the constant state of unfinishedness that

software tends to remain in.

63

nents at stake in the program texts written by software developers: ver-

bosity and compression, multi-auctoriality, and natural language writing

in the midst of formal languages. Still, as an operating system developed

by one of the largest corporations in the world, it also possesses some

specificities due to its problem domain, programming language and socio-

economic environment.

Another example of a program text written by software developers,

complementing Windows XP, is the Kirby CMS (Allgeier, 2022). With de-

velopment starting in 2011 and a first release in 2012, it developed a steady

community of users, shown in consistent forum posts and commit history

on the main repository. Kirby is open-source content management sys-

tem,meaning that it affords direct engagement of other developerswith its

architecture through modification, extension or partial replacement. Its

problem domain is therefore the organization of user-facing multimedia

assets, such as text, images and videos.

The Kirby source code is entirely available online, and the following

snippets hint at another set of formal values—conciseness, expliciteness

and delimitation. Conciseness can be seen in the lengths of the various

components of the code base. For instance, the core of Kirby consists in

1859 files, with the longest being src/Database/Query.php at 1065 lines, and

the shortest being src/Http/Exceptions/NextRouteException.php at 16 lines,

for an average of 250 lines per file 10.

If we look at a typical function declaration within Kirby, we found one

such as the distinct() setter for Kirby’s database, reproduced in Listing 7.

This function allows the developer to set whether she only wants to select

distinct fields in a database query.

Out of these 11 lines, the actual functionality of the function is focused

on one line, $this->distinct = $distinct;. Around it are machine-readable

10As a comparison, the leading project in the field, Wordpress.org, has 3466 files, with the

longest file comprising 9353 lines of code (customize-controls.js), and the shortest 1line

(such as script-loader-packages.php) (Wordpress, 2023)

64

/**
* Enables distinct select clauses.
*
* @param bool $distinct
* @return \Kirby\Database\Query
*/
public function distinct(bool $distinct = true)
{

$this->distinct = $distinct;
return $this;

}

Listing 7: query.php - The setting of whether a query should be distinct

includes some verbose details which prove to be helpful in the long run

(Allgeier, 2021b).

comment snippets, and a functionwrapper around the simple variable set-

ting. The textual overhead then comes from thewrapping itself: the actual

semantic task of deciding whether a query should be able to include dis-

tinct select clauses (as opposed to only allowing join clauses), is now de-

coupled from its actual implementation. The quality of this writing, at first

verbose, actually lies in its conciseness in relation to the possibilities for

extension that sucha formofwriting allows: the distinct() function could,

under other circumstances, be implemented differently, and still behave

similarly from the perspective of the rest of the program. Additionally,

this wrapping enables the setting of default values (here, true), a minimal

way to catch bugs by always providing a fallback case.

Kirby’s source code is also interestingly explicit in comments, and suc-

cint in code. Taking from the Http\\Route class, reproduced in Listing 8, we

can see a different approach to comments than in Listing 5 ofMicrosoft XP

operating system.

The 9 lines above the function declaration are machine-readable docu-

mentation. It can be parsed by a programmatic system and used as input

to generate more classical, human-readable documentation in the form

of a website or a printed document. This is noticeable due to the highly

65

/**
* Tries to match the path with the regular expression and
* extracts all arguments for the Route action
*
* @param string $pattern
* @param string $path
* @return array|false
*/
public function parse(string $pattern, string $path)
{

// check for direct matches
if ($pattern === $path) {

return $this->arguments = [];
}

// We only need to check routes with regular expression since all
others↪→

// would have been able to be matched by the search for literal
matches↪→

// we just did before we started searching.
if (strpos($pattern, '(') === false) {

return false;
}

// If we have a match we'll return all results
// from the preg without the full first match.
if (preg_match('#^' . $this->regex($pattern) . '$#u', $path,

$parameters)) {↪→

return $this->arguments = array_slice($parameters, 1);
}

return false;
}

Listing 8: route.php - The inclusion of comments help guide a programmer

through an open-source project (Allgeier, 2021c).

66

formalized syntax param string name_of_var, rather than writing out ”this

function takes a parameter of type string named name_of_var”. This does

compensate for the tendency of comments to drift out of synchronicity

with the code that they are supposed to comment, by tying them back to

some computational system to verify its semantic contents, while provid-

ing information about the inputs and outputs of the function. Once again,

we see that the source of truth is the computer’s ability of reading input

and executing it.

Beyond expliciting inputs and outputs, the second aspect of these com-

ments is targeted at the how of the function, helping the reader understand

the rationale behind the programmatic process. Comments here aren’t

cautionary notes on specific edge-cases, as seen in Listing 8, or on generic

meta-information, but rather natural language renderings of the thought

process of the programmer. The implication here is to provide a broader,

andmore explicit understanding of the process of the function, in order to

allow for further maintenance, extension or modification.

Finally, we look at a subset of the function, the clause of the third

if-statement: (preg_match('#^' . $this->regex($pattern). '$#u', $path,

$parameters)). Without comments, one must rely on cognitive gymnastics

and knowledge of the PHP syntax in order to render this as an extraction of

all route parameters, implying the removal of the first element of the array.

In this sense, then, Kirby’s code for parsing an HTTP route is both verbose

in comments and parsimonious in code. The reason for those comments

becomes clear: that the small core of the function is actually hard to un-

derstand.

Looking at some excerpts from the Kirby program texts, we see a small

number of files, overall short file length, short function length, consis-

tent natural language comments and concise functionality. These aes-

thetic features give an impression of building blocks: short, graspable, (re-

)usable components are made available to the developer directly, as the

open-source project relies on contributions from individuals who are not

67

// fall back to little execCommand hack with a temporary textarea
const input = document.createElement(”textarea”);
input.value = value;
document.body.append(input);

Listing 9: clipboard.js - Even in a productive and efficient open-source

project, one can detect traces of ”hacks” (Allgeier, 2021a).

expected to have any other encounter with the project other than, at the

bare minimum, the source code itself.

In conclusion, these two examples of program texts written by soft-

ware developers, Microsoft Windows XP and Kirby CMS, show particular

presentations of source code—such as repetition, verbosity, commenting

and conciseness. These are in part tied to their socio-technical ecosys-

tems made up of hardware, institutional practices ranging from corporate

guidelines to open-source contribution, with efficiency and usability re-

maining at the forefront, at least in its executed form.

Indeed, software developers are a large group of practitionerswhose fo-

cus is on producing effective, reliable and sustainable software. This leads

them towriting in a relatively codifiedmanner. And yet, wemust acknowl-

edge that idiosyncracies in source code emerge; in Listing 9, a function

handling text input uses a convoluted workaround to store text data. Even

in business environments and functional tools, then, the hack is never too

far. The boundary between groups of practitioners is not clear-cut, and so

we now turn to the correlated practice of hackers.

2.1.2 Hackers

To hack, in the broadest sense, is to enthusiastically inquire about the pos-

sibilities of exploitation of technical systems11. Computer hacking specifi-

11”HACKER [originally, someone who makes furniture with an axe] n. 1. A person who

enjoys learning the details of programming systems and how to stretch their capabilities, as

opposed tomost userswhoprefer to learnonly theminimumnecessary. 2. Onewhoprograms

68

cally came to proeminence as early computers started to become available

in north-american universities, and coalesced around the Massachussets

Institute of Technology’s TechModel RailroadClub (Levy, 2010). Computer

hackerswere at the time skilled and highly-passionate individuals, with an

autotelic inclination to computer systems: these systems mattered most

when they referenced themselves, instead of interfacingwith a given prob-

lem domain. Early hackers were often self-taught, learning to tinker with

computers while still in high-school (Lammers, 1986), and as such tend to

exhibit a radical position towards expertise: skill and knowledge aren’t de-

rived from academic degrees or credentials, but rather from concrete abil-

ity and practical efficacy12.

The histories of hacking and of software development are deeply in-

tertwined: some of the early hackers worked on software engineering

projects—such as the graduate students who wrote the Apollo Guidance

Computer routines under Margaret Hamilton—and then went on to pro-

foundly shape computer infrastructure. Particularly, the development of

the UNIX operating system by Dennis Ritchie and Ken Thompson is a key

link in connecting hacker practices andprofessional ones. Developed from

1969 at Bell Labs, AT&T’s research division, UNIXwas a product at the inter-

section of corporate and hacker culture, built by a small team, circulating

along more or less legal channels, and spreading its design philosophy of

clear, modular, simple and transparent design across programming com-

munities (E. Raymond, 2003).

Hacker culture built on this impetus to share source code, and hence

to make written software understandable from its textual manifestation.

After hardware stoppedbeing themost important component of a comput-

ing system, the shift to focusing on software development had led manu-

facturers to stopdistributing source code,making proprietary software the

enthusiastically, orwho enjoys programming rather than just theorizing about programming.

(Dourish, 1988)
12Ameritocratic stance which has been analyzed in further in (R. Coleman, 2018)

69

norm. Until then, executable softwarewas the consequence of running the

source code through a compilation process; around the 1980s, executable

software was distributed directly as a binary file, its exact contents an un-

readable series of 0s and 1s.

In the meantime, personal microcomputers came to the market and

opened up this ability to tinker and explore computer systems beyond

the realms of academic-licensed large mainframes and operating systems.

Starting with models such as the Altair 8800, the Apple II and the Com-

modore 64, as well as with easier, interpreted computer languages such as

BASIC, whose first version for such micro-computers was written by Bill

Gates, Paul Allen and Monte Davidoff (Montfort et al., 2014). While seem-

ingly falling out of the realm of ”proper” programming, themicrocomputer

revolution allowed for new groups of individuals to explore the interactiv-

ity of source codedue to their small sizewhenpublished as type-in listings.

In the wake of the larger free software movement, emerged its less rad-

ical counterpart, the open-source movement, as well as its more illegal

counterpart, security hacking. The latter is usually represented by the

types of individuals depicted inmainstream news outlets when they refer-

ence hackers: programmers breaching private systems, sometimes in or-

der to cause financial, intelligence or material harm. Security hackers,

sometimes called crackers, form a community of practice of their own,

with ideas of superior intelligence, subversion, adventure and stealth13.

These practices nonetheless refer to the original conception of hacking—

getting something done quickly, and well—and include such a practical,

efficient appoach into its own set of values and ideals. In turn, these are

represented in the kinds of program texts beingwritten bymembers of this

13For a lyrical account of this perception of the hacker ethos, see The Conscience of a

Hacker, published in Phrack Magazine: ”This is our world now… the world of the electron

and the switch, the beauty of the baud. We make use of a service already existing without

paying for what could be dirt-cheap if it wasn’t run by profiteering gluttons, and you call us

criminals. We explore… and you call us criminals. We seek after knowledge… and you call us

criminals.” (Mentor+++, 1986)

70

community of practice.

Meanwhile, the open-source movement took the tenets of hacking cul-

ture and adapted it to make it more compatible to the requirements of

businesses. Indeed, beyond the broad values of intellectual curiosity and

skillful exploration, free software projects such as the Linux kernel, the

Apache server or the OpenSSL project have proven to be highly efficient,

and used in both commercial, non-commercial, critical and non-critical

environments (E. S. Raymond, 2001). Such an approach sidesteps the po-

litical and ethical values held in previous iterations of the hacker ethos in

order to focus exclusively on the sharing of source code and open collab-

oration while remaining within an inquisitive and productive mindframe.

With the advent of corporate hackathons—short instances of intense col-

laboration in order to create new software, or new features on a software

system—are a particularly salient example of this overlap between indus-

try practices and hacker practices (Nolte et al., 2018)14.

As a community of practice, hackers are programmers which, while

overlapping with industry-embedded software developers, hold a set of

values and ideals regarding the purpose and state of software. Whether

academic hackers, amateurs, security hackers or open-source contribu-

tors, all are centered around the object of source code as a vehicle for com-

municating the knowledge held within the software, the necessity of skill

for writing such software, and a certain inclination towards ”quick and

dirty” solutions.

Program texts as puzzles

Incidentally, those political and ethical values of expertise and openness

often overlap with aesthetic values informing how their code exists in its

textual manifestation. By looking at a few program texts written by hack-

14Another overlap can be found in the address of the software corporate giantMeta’s head-

quarters: 1, Hacker Way, Menlo Park, CA 94025, U.S.A.

71

ers, we will see how their skillful engagment with the machine, and their

playful stances towards solving problems is also reflected in how they

write source code.

To hack is, according to the dictionary, ”to cut irregularly, with-

out skill or definite purpose; to mangle by or as if by repeated

strokes of a cutting instrument”. I have already said that the com-

pulsive programmer, or hacker as he calls himself, is usually a su-

perb technician. It seems therefore that he is not ”without skill”

as the definition will have it. But the definition fits in the deeper

sense that the hacker is ”without definite purpose”: he cannot set

before hima clearly defined long-term goal and a plan for achiev-

ing it, for he has only technique, not knowledge. He has nothing

he can analyze or synthesize; in short, he has nothing to form the-

ories about. His skill is therefore aimless, even disembodied. It is

simply not connectedwith anything other than the instrument on

which it may be exercised. His skill is that of a monastic copyist

who, though illiterate, is a first rate calligrapher. (Weizenbaum,

1976)

Weizenbaum’s perspective is that of a computer scientist whose the-

oretical work can be achieved only through thought, pen and paper. As

such, he looks down on hackers as experts who can get lost in technol-

ogy for its own sake. Gabriella Coleman, in her anthropological study of

hackers, highlights that they value both semantic ingenuity15 and techni-

cal wittiness(E. G. Coleman, 2012). Source code written by hackers can take

multiple shapes, from one-liners, to machine language magic and subver-

sion of best practices in crucial moments.

The one-liner is a piece of source codewhich fits on one line, and is usu-

ally intepreted immediately by the operating system. They are terse, con-

15Hackers themselves tend to favor puns—the free software GNU project is a recursive

acronym for GNU’s Not UNIX.

72

#include <stdio.h>
#include <strings.h>

int main(void){
char line[1000], line2[1000];
char *p;
double mag;

while(fgets(line, sizeof(line), stdin) != NULL) {
strcpy(line2, line);
p = strtok(line, ”\\t”);
p = strtok(NULL, ”\\t”);
p = strtok(NULL, ”\\t”);
sscanf(p, ”\%lf”, &mag);
if(mag > 6) /* $3 > 6 */
printf(”\%s”, line2);

}

return 0
}

Listing 10: select_lines.c - This program text selects all the lines from an in-

put file which is longer than 6 characters in the C programming language.

See the one-line alternative implementation in Listing 11.

cise, and eminently functional: they accomplish one task, and one task

only. This binary requirement of efficiency finds a parallel in a different

kind of one-liners, the jokes of stand-up comedy. In this context, the one-

liner also exhibits the features of conciseness and impact, with the setup

conflated with the punch line, within the same sentence. One-liners are

therefore self-contained, whole semantic statements which, through this

syntactic compression, appear to be clever. In order to understand how

compression occurs in program texts, we can look at the difference be-

tween Listing 10 and Listing 11. Both of these have the same functionality:

they select all the lines of a given input file.

In Listing 10, achieving this functionality using the C programming lan-

guage takes 20 lines. The equivalent in the AWK scripting language takes a

single line, a line which the author actually refers to in a comment in List-

ing 10, presumably as a personal heuristic as he iswriting the function. The

73

awk '$3 > 6' data.txt

Listing 11: select_lines.sh - This program text selects all the lines froman in-

put file which is longer than 6 characters in the C programming language,

in just one line of code. See the alternative implementation in 20 lines of

code in Listing 10.

difference is obvious, not just in terms of formal clarity and reduction of

the surface structure, but also in terms of matching the problem domain:

this says that it prints every line in which the third field is greater than 6,

and is easier to read, even for non-expert programmers. TheAWKone-liner

ismore efficient, more understandable because it allows for less confusion

while also reducing the amount of text necessary, and thus ultimately con-

sidered to be fitter to the task at hand.

In programming, one-liners have their roots in the philosophy of the

UNIX operating system, as well as in the early diffusion of computer pro-

grams for personal computer hobbyists (Montfort et al., 2014). On the one

side, the Unix philosophy is fundamentally about building simple tools,

which all do one thing well, in order to manipulate text streams (E. Ray-

mond, 2003), and each of these tools can then be composed in order to

produce complex results—a feature of programming languages we will

discuss in subsection 5.1.1. Sometimes openly acknowledged by language

designers—such as those of AWK—the goal is to write short programs

which shouldn’t be longer than one line. Given that constraint, a hacker’s

response would then be: how short can you make it?

Writing the shortest of all programs does become a matter of skill and

competiton, coupled with a compulsivity to reach the most syntactically

compressed version16. This behaviour is also manifested in the practice

16For instance, Guy Steele, and influential langugage designer, who worked on Scheme,

ECMAScript and Java, among others, recalls:”This may seem like a terrible waste of my effort,

but one of themost satisfyingmoments of my career was when I realized that I had found a way

74

life ← {⊃1 ⍵ ∨.∧ 3 4 = +/ +⌿ ¯1 0 1 ∘.⊖ ¯1 0 1 ⌽¨ ⊂⍵}

Listing 12: game_of_life.apl - Conway’s Game of Life implemented in APL is

a remarkable example of conciseness, at the expanse of readability.

of code golf, challenges in which programmers must solve problems by

using the least possible amount of character17, or in contests such as the

MathematicaOne-Liner Competition (Carlson, 2010). Minimizing program

length in relation to the problem complexity is therefore a definite feature

of one-liners, since choosing the right programming language for the right

tasks can lead to a drastic reduction of syntax, while keeping the same ex-

pressive and effective power.

On the other hand, however, one-liners can be so condensed that they

loose all sense of clarity for a reader who does not have a deep knowledge

of the language in which it is written, or of the problem being solved. For

instance, Listing 12 is an implementation of Conway’s game of life imple-

mented in one line of the APL programming. Conway’s Game of Life is a

well-known simulationwhere a small set of initial conditions and rules for

evolution produce unexpected emergent complexity. Its combinationwith

APL programming language, which makes an extensive use of symbolic

graphical characters to denote functions and operations, leads to particu-

larly dense and terse source code.

This particular example shows why one-liners are usually highly dis-

couraged for any sort of code which needs to be worked on by other pro-

grammers. Cleverness in programming tends to be seen as a display of

the relationship between the programmer, the language and the machine,

to shave oneword off an 11-word program that [Bill] Gosper hadwritten. It was at the expense of

a very small amount of execution time, measured in fractions of a machine cycle, but I actually

found a way to shorten his code by 1 word and it had only taken me 20 years to do it.” (Seibel,

2009)
17Here, the equivalent of par in golf would be the number of character used: the lower the

number, the better.

75

rather than between different programmers. On the other hand, the small

nature of one-liners makes them highly portable and shareable. Popular

with early personal computer adopters, at a time during which the source

code of programs were printed in hobbyist magazines and needed to be

input by hand, and during which access to computation wasn’t widely dis-

tributed amongst society, being able to type just one line in a computer

program, and resulting in unexpected graphical patterns created a sense

of magic and wonder in first-time users18, surprised by how so little can do

so much (Montfort et al., 2014).

Another quality of hacker code is the idiosyncratic solution to an in-

tricate puzzle. The listing in Listing 13 calculates the inverse square root

of a given number, a routine but computationally expensive calculation

need in computer graphics. It was found in the source code of id Software’s

Quake video game19.

What we see here is a combination of the understanding of the prob-

lemdomain (i.e. the acceptable result needed tomaintain a high-framerate

with complex graphics), the specific knowledge of low-level computers op-

erations (i.e. bit-shifting of a float cast as an integer) and the snappiness

and wonder of the comments20. The use of 0x5f3759df is what program-

mers call amagic number, a literal value whose role in the code isn’t made

clearer by a descriptive variable name. Usually bad practice and highly-

discouraged, the magic number here is exactly that: it makes the magic

happen. Paradoxically, the author GregWalsh displays a very deep knowl-

edge of how IEEE standards represent floating point numbers, to the extent

that he is able to bend such standards into productive edge cases. While

it is obvious what the program text does, it is extremely difficult to under-

stand how.

18The visual output of one of these one-liners can be seen at https://www.youtube

.com/watch?v=0yKwJJw6Abs.
19The Quake developers aren’t the authors of that function—the merit of which goes to

Greg Walsh—but are very much the authors of the comments.
20what the fuck?, indeed.

76

https://www.youtube.com/watch?v=0yKwJJw6Abs
https://www.youtube.com/watch?v=0yKwJJw6Abs

float Q_rsqrt(float number)
{

long i;
float x2, y;
const float threehalfs = 1.5F;

x2 = number * 0.5F;
y = number;
i = *(long *)&y; // evil floating point bit level

hacking↪→

i = 0x5f3759df - (i >> 1); // what the fuck?
y = *(float *)&i;
y = y * (threehalfs - (x2 * y * y)); // 1st iteration

// y = y * (threehalfs -
(x2 * y * y)); //
2nd iteration,

↪→

↪→

// this can be removed

return y;
}

Listing 13: fast_inverse_sqrt.c - This particular implementation of a func-

tion calculating the inverse square root of a number has become known in

programming circles for both its speed and unscrutability.

This playfulness at writing things that do not dowhat it seems like they

do is another aspect of hacker culture. The Obfuscated C Code Contest,

starting in 1984, is the most popular and oldest organized production of

such code, in which programmers submit code that is functional and vi-

sually meaningful beyond the exclusive standards of well-formatted code.

Obfuscated code is a first foray into closely intertwining these separate

meanings in the source code itself, making completely opaque what the

code does, and inviting the reader to decipher it.

The source code in Listing 14, submitted to the 1988 IOCCC is a proce-

dure which does exactly what it shows: it deals with a circle. More pre-

cisely, it estimates the value of PI by computing its own circumference.

While the process is far from being straightforward, relying mainly on bit-

wise arithmetic operations and a convoluted preprocessor definition, the

result is nonetheless very intuitive—the same way that PI is intuitively re-

77

#define _ -F<00||--F-OO--;
int F=00,OO=00;main(){F_OO();printf(”%1.3f\n”,4.*-F/OO/OO);}F_OO()
{

--_-_
--_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_
--_-_

}

Listing 14: westley.c - Entry to the 1988 IOCCC, it computes an approxima-

tion of π by calculating the circumference of a circle drawn as text. (West-

ley, 1988)

lated to PI. The layout of the code, carefully crafted by introducing whites-

pace at the necessary locations, doesn’t follow any programming practice

of indentation, and would probably be useless in any other context, but

nonetheless represents another aspect of the conceptbehind theprocedure

described, not relying on traditional programming syntax21, but rather on

an intuitive, human-specific understanding22.

Obfuscating practices, beyond their technical necessities (for security

and efficiency), are traditionally tied to hacking practices, prominently

with one-liners (the shorter a name, the more obscure and general it be-

comes). As such, they rely on the brain-teasing process of deciphering, and

on the pleasurable, aesthetic experience of resolving and uniting two par-

allel meanings: what we see in the code, and what it does23. What we focus

21For such a program, see for instance (Lynn, 2004)
22Concrete poetry also makes such a use of visual cues in traditional literary works.
23Also known informally as the ”Aha!” moment, crucial in puzzle design.

78

on here is the aspect of obfuscationwhich playswith the different layers of

meaning: meaning to the computer, meaning to the human, and different

ways of representing and communicating this meaning (from uglifying, to

consistent formatting, to depicting a circle with dashes and underscores).

While the aesthetics at play in hacking will be further explored below, we

focus on the fact that obfuscating code practices, beyond hiding themean-

ing and the intent of the program, also manifest an attempt to represent

such ameaning in different ways. As such, it leaves aside traditional code-

writing practices and suggests themeaning of the program by challenging

the abilities of human interpretation at play in the process of deciphering

programs.

Building on the fact that source code very often does not do what one

thinks it does when executed, initiatives such as the Underhanded C Code

contest have leaned to this tendency. In this contest, one ”must write C

code that is as readable, clear, innocent and straightforward as possible, and

yet it must fail to perform at its apparent function. To be more specific, it

should perform some specific underhanded task that will not be detected by

examining the source code.” (Craver, 2015). Hackers find value in this kind of

paradigm-shifting: if software developers spend time attempting to make

faulty, complex code easy to grasp and reliable, hackerswould rather spend

effort and skill making faulty code look deliberately functional.

Such intimate knowledge of both the language and the machine can

be found in the program texts of the demoscene. Starting in Europe in

the 1980s, demos were first short audio-visual programs which were dis-

tributed along with crackware (pirated software), and to which the names

of the people having cracked the software were prepended, in the form of

a short animation (Reunanen, 2010). Due to this very concrete constraint—

there was only somuchmemory left on a pirated disk to fit such a demo—

programmers had to work with these limitations in order to produce the

most awe-inspiring graphics effects before software boot. One notable fea-

ture of the demoscene is that the output should be as impressive as pos-

79

sible, as an immediate, phenomenological appreciation of the code which

could make this happen, within a fixed technical constraint24. Indeed, the

comp.sys.ibm.pc.demos news group states in their FAQ:

ADemo is a program that displays a sound,music, and light show,

usually in 3D. Demos are very fun to watch, because they seem-

ingly do things that aren’t possible on themachine they were pro-

grammed on.

Essentially, demos ”show off”. They do so in usually one, two, or

all three of three following methods:

• They show off the computer’s hardware abilities (3D objects,

multi-channel sound, etc.)

• They show off the creative abilities of the demo group

(artists, musicians)

• They show off the programmer’s abilities (fast 3D shaded

polygons, complex motion, etc.)

(Melik, 2012)

This showing off, however, does not happen through immediate en-

gagement with the code from the reader’s part, but rather in the thor-

ough explanation of the minute functionalities of the demo by its writer.

Because of these constraints of size, the demos are usually written in

C, openGL, Assembly, or the native language of the targeted hardware.

Source code listings of demos also make extensive use of shortcuts and

tricks, and little attention is paid to whether or not other humans would

directly read the source—the only intended recipient is a very specific ma-

chine (e.g. Commodore 64, Amiga VCS, etc.). The release of demos, usually

24For an example, see Elevated, programmed by iq, for a total program size of 4 kilobytes:

https://www.youtube.com/watch?v=jB0vBmiTr6o, winner of the 1st place at the Break-

point 2009 contest.

80

https://www.youtube.com/watch?v=jB0vBmiTr6o

Figure 2.2: The annotated representationof the compiled versionofAMind

Is Born, a demo by Linus Åkesson. The different color overlays highlight

the meaningful regions of the program (Akesson, 2017).

in demoparties, are sometimes accompanied by documentation, write-ups

or presentations. However, this presentation format acknowledges a kind

of individual, artistic feat, rather than a collaborative, explicit text which

tends to be preferred by software developers.

Pushing the boundaries of how much can be done in how little code,

Figure 2.2 shows a 256-bytes demo resulting in a minute-long music video

(Akesson, 2017) on the Commodore 64. It is first listed as a hexademical

dump by its author, without the original Assembly code25.

As a display of knowledge, the author highlights how different hex-

adecimal notations represent different parts of the software. Along with

knowledge of how hexadecimal instructions map to the instruction set of

the specific chip of of the Commodore 64 (in this case, the SID 8580), the

practical use of these instructions takes productive advantage of ambiva-

lence and side-effects26.
25The Assembly version of the source was subsequently re-assembled by J.B. Langston

(Langston, 2017), for study purposes.
26Linus Åkesson explains how he layers functionality on the same syntactical tokens: We

81

Demosceners therefore tend to write concise, deliberate code which is

hardly understandable by other programmers without explanation, and

yet hand-optimized for the machine. In addition to software developers’

attempts to make intelligible the purpose and means of the program text

via their source code, this practice adds a perspective on the relationship

between formal representation and understanding. Here, such represen-

tation does not support and enable understanding, but rather become a

proof of the mastery and skill involved in crafting such a concise input for

such an overwhelming output; it hints that one needs a degree of expert

knowledge in order to appreciate these kinds of program texts.

Hackers are therefore programmers who write code within a variety of

settings, from academia to hobbyists through professional software devel-

opment, with an explicit focus on knowledge and skill. Yet, some patterns

emerge. First, one can see the emphasis on the ad hoc, insofar as choos-

ing the right tool for the right job is a requirement for hacker code to be

valued positively. This requirement thus involves an awareness of which

tool will be the most efficient at getting the task at hand done, with a min-

imum of effort and minimum of overhead, usually at the expense of sus-

taining ormaintaining the software beyond any immediate needs, making

it available or comprehensible neither across time nor across individuals,

a flavour of locality and technical context-sensitivity. Second, this need for

knowing and understanding one’s tools hints at a material relationship

to code, whether instructions land in actual physical memory registers,

staying away from abstraction and remaining in concrete reality by using

magicnumbers, or sacrificing semantic clarity in order to ”shaveoff” a char-

acter or two. Throughout, there is the recurring requirement of doing the

need to tell the VIC chip to look for the video matrix at address $0c00 and the font at $0000.

This is done by writing $30 into the bank register ($d018). But this will be done from within the

loop, as doing so allows us to use the value $30 for two things. An important property of this

particular bank configuration is that the system stack page becomes part of the font definition.

(Akesson, 2017)

82

most with the least, of written parsimony leading to executed expansive-

ness.

Hacking therefore involves knowledge: knowledge of the hardware,

knowledgeof theprogramming languageused andknowledgeof the trade-

offs acceptable all the while exhibiting an air of playfulness. They tend to

get the job done and do it for the sake of doing it, at the expense of con-

ceptual soundness. If hacking can be considered a way of doing which

deals with the practical intricacies of programming, involving concrete

knowledge of the hardware and the language, they stand at the polar oppo-

site of another community of source code practitionners. Scientists who

write source code (of which computer scientists are a subset) engage with

progamming first and foremost at the conceptual level, with different locii

of implementation: either as a theory, or as amodel.

2.1.3 Scientists

Historically, programming emerged as a distinct practice from the com-

puting sciences: not all programmers are computer scientists, and not all

computer scientists are programmers. Nonetheless, scientists engagewith

programming and source code in distinct ways, and as such open up the

landscape of the type of code which can be written, as well as the stan-

dards which support the evaluation of formally satisfying code. First, we

will look at code being written outside of computer science research ac-

tivities and see how the specific needs of usability, replicability and data

structuring link back to standards of software development. Then, we will

turn to the code written by computer scientists and examine how ideal of

computation manifest themselves in concrete implementations.

Computation as ameans

Scientific computing, defined as the use of computation in order to solve

non-computer science tasks, started as early as the 1940s and 1950s in the

83

United States, aiding in the design of the first nuclear weapons, aerody-

namics andballistics, amongothers (Oberkampf&Roy, 2010). Calculations

necessary to the verification of theories in disciplines such as physics,

chemistry or mathematics were handed over to the computing machines

of the time for faster and more correct processing. Beyond the military

applications of early computer technology, the advent of computing tech-

nologywould prove to be of great assistance in physics and engineering, as

shown by Harlow and Fromm’s article on Computer Experiments in Fluid

Dynamics27, or the report on Man-Computer Symbiosis by J.C.R. Licklider

(Licklider, 1960).

The remaining issue is tomake computersmore accessible to scientists

who did not have direct exposure to this new technology, and therefore

might be unfamiliar to the intricacies of their use. While universities can

afford mainframe computers so that scientists do not have to wait for the

personal computer revolution, another vector for simplification and ac-

cessibility is the development of adequate programming languages. The

intent is to provide non-computer scientists with easy means to instruct

the computer on how to perform computations relevant to their work, ul-

timately aiming to situate computation as the third pillar of science, along

with theorization and experimentation (Vardi, 2010).

Such an endeavour started with the BASIC28 programming language.

Developed in 1964 at Dartmouth College, it aimed at addressing this hur-

dle by designing ”the world’s first user-friendly programming language”

(Brooks, 2019), and led the personal computer revolution by allowing non-

technical individuals to write their own software. By the dawn of the 21st

century, scientific computing had increased in the scope of its applica-

tions, extending beyond engineering and experimental, so-called ”hard”

27”The fundamental behavior of fluids has traditionally been studied in tanks and wind tun-

nels. The capacities of the modern computer make it possible to do subtler experiments on the

computer alone.” (Harlow & Fromm, 1965)
28BASIC stands for Beginners’ All-purpose Symbolic Instruction Code.

84

X = (-3:1/8:3)*ones(49,1);
Y = X';
Z = 3*(1-X).^2.*exp(-(X.^2) - (Y+1).^2) \
- 10*(X/5 - X.^3 - Y.^5).*exp(-X.^2-Y.^2) \
- 1/3*exp(-(X+1).^2 - Y.^2);
mesh(X,Y,Z)

Listing 15: mesh.m - Matlab is a specialized language, focused on scientific

and mathematical applications.

sciences, to social sciences and the humanities. It had also increased in

the time spent developing and using software (Hannay et al., 2009; Prabhu

et al., 2011), with the main programming languages used being MATLAB,

C/C++ and Python. While C and C++’s use can be attributed to their histor-

ical standing, popularity amongst computer scientists, efficiency for sys-

tems programming and speed of execution, MATLAB and Python offer dif-

ferent perspectives. MATLAB, originally amatrix calculator from the 1970s,

became popular with the academic community by providing features such

as a reliable way to do floating-point arithmetic and a friendly graphical

user interface (GUI). Along with its powerful array-manipulation features,

this ability to visualize large series of data and plot it on a display largely

contributed to MATLAB’s popularity (Moler & Little, 2020). The combina-

tion of Listing 15 and Figure 2.3 shows how concise the plotting of a three-

dimensional plane is in MATLAB. In the source code, it requires only one

call to mesh, and the output is a complete visual rendering, with reason-

able and aesthetically pleasing visual default settings in the formof graded

axes.

Along with MATLAB, Python represents the advent of the so-called

scripting languages: programming languages which offer readability and

versatility, along with decoupling from the actual operating system that

it is being executed on. System languages, such as C, are designed to in-

teract directly with the computer hardware, and to constitute data struc-

tures from the ground up. On the other hand, scripting languages were

85

Figure 2.3: Visualization of a 3D-mesh in Matlab

designed and used in order to connect existing software systems or data

sources together, most notably in the early days of shell scripting (such as

Bash, sed or awk, as seen in Listing 11) (Ousterhout, 1998). Starting with the

late 1990s, and the appearanceof languages suchasPerl andPython, script-

ing languages becamemorewidely used bynon-programmerswho already

had data to work with and only needed the tools to exploit it. The devel-

opment of additional scientific libraries such as SciKit, NumPy for math-

ematics and numerical work or NLTK for language processing and social

sciences in Python complemented the language’s ease of use by providing

manipulation of complex scientific concepts (Millman & Aivazis, 2011).

This steady rise of scientific computing has nonetheless highlighted

the apparent lack of quality standards in academic software, and how the

lack of value judgments on the software written might impact the relia-

bility of the scientific output (Hatton & Roberts, 1994). Perhaps the most

well-known instance of poor standards in programming was revealed by

the leak of the source code of the Climate Research Unit from the Univer-

sity of East Anglia in 2009 (Merali, 2010). In the leak, inline comments of

the authors show that particular variable values were chosen to make the

86

simulation run, with scientific accuracy being only a secondary concern.

Code reviews of external software developers point out to the code of the

CRU leak as being a symptom of the general state of academic software29.

In response, the beginning of the 2000s has seen the desire to re-

integrate the best practices of software engineering in order to correct sci-

entific software’s lack of accuracy, resulting in the formation of communi-

ties such as the Research Software Engineers(Woolston, 2022). As we have

seen above, software engineering had developed on their own since its es-

tablishment as an independent discipline and professional field. Such a

split, described by Diane Kelly as a ”chasm” (Kelly, 2007) then had to face

the different standards to which commercial software and scientific soft-

ware were held to. For instance, commercial software must be extensible

and performant, two qualities that do not necessarily translate to an aca-

demic setting, in which software might be written within a specific, time-

constrained, research project, or in which access to computing resources

(i.e. supercomputers) might be less of a problem.

It seems that software’s position in the scientific inquiry is no longer

that of a helpful crutch, but rather of an inevitable step. Within Landau

et. al’s conception of the scientific process as the progression from prob-

lem to theory, followed by the establishment of a model, the devising of

a method, and then on to implemementation and finally to assessment

(Landau, Páez, & Bordeianu, 2011), code written as academic software is in-

volved in the latter two stages of method and implementation. As such, it

has to abide by the processes and requirements of scientific research. First

and foremost, reproducibility is a core requirement of scientific research in

general and bugs in a scientific software systemcan lead to radically differ-

29ProfessorDarrel Ince stated to theUKParliamentaryCommittee in February 2010: ”There

is enough evidence for us to regard a lot of scientific software with worry. For example Professor

Les Hatton, an international expert in software testing resident in the Universities of Kent and

Kingston, carried out an extensive analysis of several million lines of scientific code. He showed

that the software had an unacceptably high level of detectable inconsistencies.” (Committee,

2010)

87

ent ouptuts given slightly different input data, while concealing the origin

of this difference, and compromising the integrity of the research and of

the researcher. Good academic code, then, is one which defends actively

against these, perhaps to the expense of performance andmaintainability.

This can be addressed by reliable error-handling, regular assertions of the

state of the processed data and extensive unit testing (Wilson et al., 2014).

Furthermore, a unique aspect of scientific software comes from the lack

of clear upfront requirements. Such requirements, in software develop-

ment, are usually provided ahead of the programming process, and should

be as complete as possible. As the activity of scientists is defined by an in-

complete understanding of the application domain, requirements tend to

emerge as further knowledge is developed and acquired (Segal, 2005). As

a result, efforts have been made to familiarize scientists with software de-

velopment best practices, so that they can implement quality software on

their own. Along with field-specific textbooks30 the most prominent ini-

tiative in the field is Software Carpentry, a collection of self-learning and

teaching resources which aims at implementing software best practices

across academia, for scientists and by scientists. Founded by GregWilson,

the co-editor of Beautiful Code, the organization’s title refers directly to

equivalents in the field of software development.

We see a convergence of quality standards of broad academic soft-

ware towards the quality standards of commercial software development.

Meanwhile, computer science worked towards asserting and pursuing its

own field of research, sometimes distinct from the discipline of program-

ming. Unlike other scientific fields possesses its own specific standards of

programming, taking software not as a means to an end, but as the end

itself.

30See Effective Computation in Physics (Scopatz&Huff, 2015) orAPrimer for Computational

Biology (O’Neil, 2019) covering similar software-oriented material from different academic

perspectives.

88

Computation as an end

Computer scientists are scientists whose work focuses on computation as

an object, rather than as a tool. They study the phenomenon of computa-

tion, investigating its nature and effects through the development of the-

oretical frameworks around it. Originally derived from computability the-

ory, as a branch of formal mathematical logic, computation emerged as

an autonomous field from work in mechanical design and configuration,

work on circuit and language design, work on mathematical foundations,

information theory, systems theory and expert systems, computer science

establishes its institutional grounding with the inauguration of the first

dedicated academic department at Purdue University in 1962 (Ifrah, 2001).

From this multifaceted heritage and academic interdisciplinarity, com-

puter scientists identified key areas such as data structures, algorithms

and language design as foundations of the discipline (Wirth, 1976).

Thoughout the process of institutionalization, the tracing of the ”roots”

of computation remained a constant debate as to whether computer sci-

ence exists within the realm of mathematics, of engineering or as a part of

the natural sciences. The logico-mathematical model of computer science

contends that one can do computer science without an electronic com-

puter, while the engineering approach of computer science tends to put

more practical matters, such as architecture, language design and systems

programming (implicitly assuming the use of a digital computer) at the

core of the discipline; both being a way to generate and process informa-

tion as natural phenomenon (Tedre, 2006).

The broad difference we can see between these two conceptions of

computer science is that of episteme and techne. On the theoretical and

scientific side, computer science is concerned with the primacy of ideas,

rather than of implementation. The quality of a given program is thus

deduced from its formal (mathematical) properties, rather than its formal

(aesthetic) properties. The first manifestations of such a theoretical fo-

89

cus can be found in the Information Processing Language in 1956 by Allen

Newell, Cliff Shaw and Herbert Simon, which was originally designed and

developed to prove Bertrand Russell’s Principia Mathematica (Ifrah, 2001).

While the IPL, as one of the very first programming languages, influenced

the development of multiple subsequent languages, in particular some

later languages came to be known as logic programming languages. These

are based on a formal logic syntax of facts, rules and clauses about a given

domain and whose correctness can be easily proven. We can see in List-

ing 16 an example of the Prolog logic programming language. Its syntax

appears very repetitive, a result of the few keywords used (induce, element

and clause), and drawing directly from the lexical field of logic and framing

the problemdomain. Due to its Turing-completeness, one canwrite in Pro-

log programs such as language processing, web applications, cryptography

or database programming, but its use seems to remain limited outside of

theoretical circles in 2021, according to the Stackoverflow Developer sur-

vey for popular language uses (Overflow, 2021).

Lisp—LISt Processor— is another programming language which shares

this feature of theoretical soundness faced with a limited range of actual

use in production environments. It was developed in 1958, the year of the

Dartmouth workshop on Artificial Intelligence, by its organizator, John

McCarthy, and was designed to process lists. Inheriting from IPL, it re-

tained the core idea that programs should separate the knowledge of the

problem (input data) and ways to solve it (internal rules), assuming that

the rules are independent to a specific problem.

The base structural elements of Lisp are not symbols, but lists (of sym-

bols, of lists, of nothing), and they themselves act as symbols (e.g. the

empty list). By manipulating those lists recursively—that it, processing

something in terms of itself—Lisp highlights even further this tendency

to separate computation from the problem domain, exhibiting autotelic

tendencies. This is facilitated by its atomistic and relational structure: in

order to solve what it has do, it evaluates each symbol and traverses a tree-

90

% induce(E,H) <- H is inductive explanation of E
induce(E,H):-induce(E,[],H).

induce(true,H,H):-!.
induce((A,B),H0,H):-!,
induce(A,H0,H1),
induce(B,H1,H).
induce(A,H0,H):-
/* not A=true, not A=(_,_) */
clause(A,B),
induce(B,H0,H).
induce(A,H0,H):-
element((A:-B),H0), % already assumed
induce(B,H0,H). % proceed with body of rule
induce(A,H0,[(A:-B)|H]):- % A:-B can be added to H
inducible((A:-B)),% if it's inducible, and
not element((A:-B),H0), % if it's not already there
induce(B,H0,H). % proceed with body of rule

Listing 16: inductive.pl - The Prolog programming language focuses first

and foremost on logic predicates in order to perform computation, rather

than more practical system calls.

structure in order to find a terminal symbol. Building on these features

of complex structures with simple elements, Willam Byrd, computer sci-

entst at the University of Utah, describes the Scheme interpreter written

in Scheme31 shown in (Listing 17) as ”the most beautiful program ever writ-

ten” (Byrd, 2017).

The beauty of such a program, for Byrd, is the ability of these fourteen

lines of source to reveal powerful and complex ideas about the nature and

process of computation. As an interpreter, this program can take any valid

Scheme input and evaluate it correctly, recreating computation in terms

of itself. It does so by showing and using ideas of recursion (with calls

to eval-expr), environment (with the evaluation of the body) and lambda

functions, as used throughout the program. Byrd equates the feelings he

experiences in witnessing and pondering the program above to those sug-

gested by Maxwell’s equations, which constitute the foundation of classi-

31Scheme is a Lisp dialect, designed a few years after Lisp itself, and also at MIT.

91

(define (eval-expr env)
(lambda (expr env)
pmatch expr
[,x (guard (symbol? x))
(env x)]

[(lambda (,x) ,body)
(lambda (arg)
(eval-expr body (lambda (y)

(if (eq? x y)
arg
(env y)))))]

[(,rator ,rand)
((eval-expr rator env)
(eval-expr rand env))]))

Listing 17: interpreter.scheme - Scheme interpreter written in Scheme, re-

vealing the power and self-reference of the language.

Figure 2.4: Maxwell’s equations form a terse, unified basis for electromag-

netism, optics and electric circuitry.

cal electromagnetism (see Figure 2.4), a comparison that other computer

scientists have made (A. Kay, 2004). In both cases, the quality ascribed to

those inscriptions come from the simplicity and conciseness of their base

elements—making it easy to understand what the symbols mean and how

we can compute relevant outputs—all the while allowing for complex and

deep consequences for, respectively, computer science and electromag-

netism.

With this direct manipulation of symbolic units upon which logic op-

erations can be performed, Lisp became the language of AI, an intelli-

gence conceived first and foremost as abstractly logical. Lisp-based AI

was thus working on what Seymour Papert has called ”toy problems”—

self-referential theorems, children’s stories, or simple puzzles or games

(Nilsson, 2009a). In these, the problem and the hardware are reduced from

92

their complexity and multi-consequential relationships to a finite, dis-

crete set of concepts and situations. Confronted to the real world—that is,

to commercial exploitation—Lisp’s model of symbol manipulation, which

proved somewhat successful in those early academic scenarios, started to

be applied to issues of natural language understanding and generation in

broader applications. Despite disappointing reviews from government re-

ports regarding the effectiveness of these AI techniques, commercial ap-

plications flourished, with companies such as Lisp Machines, Inc. and

Symbolics offering Lisp-based development and support. Yet, in the 1980s,

over-promising and under-delivering of Lisp-based AI applications, which

often came from the combinatorial explosion deriving from the list- and

tree-based representations, met a dead-end. In this case, a restricted prob-

lem domain can enable a particular value judgment, but also exclude oth-

ers.

”By making concrete what was formerly abstract, the code for our Lisp

interpreter gives us a new way of understanding how Lisp works”, notes

Michael Nielsen in his analysis of Lisp, pointing at how, across from the

episteme of computational truths stands the techne of implementation

(Nielsen, 2012). The alternative to such abstract, high-level language, is

then to consider computer science as an engineering discipline, a shift be-

tween theoretical programming and practical programming is the publica-

tion of Edsger Dijkstra’s Notes on Structured Programming. In it, he points

out the limitation of considering programming exclusively as a concrete,

bottom-up activity, and the need to formalize it in order to conform to the

standards of mathematical logical soundness. Dijkstra argues for the su-

periority of formalmethods through the need for a sound theoretical basis

whenwriting software, at a time when the software industry is confronted

with its first crisis.

Within the software engineering debates, the theory and practice dis-

tinction had a slightly different tone, with terms like “art” and “science”

labeling two, implicitly opposed, perspectives on programming. Program-

93

ming suffered from an earlier image of an inherently unmanageable, un-

systematic, and artistic activity, many saw programming essentially as an

art or craft (Tedre, 2006), rather than an exact science. Beyond theoretical

soundness, computer science engineering concerns itself with quantified

efficiency and sustainability, with measurements such as the O() notation

for program execution complexity. It is not so much about whether it is

possible to express an algorithm in a programming language, but whether

it is possible to run it effectively, in the contingent environments of hard-

ware, humans and problem domains32.

This approach, halfway between science and art, is perhaps best seen

in Donald Knuth’s magnum opus, The Art of Computer Programming. In

it, Knuth summarizes the findings and achievements of the field of com-

puter science in terms of algorithm design and implementation, in order

to ”to organize and summarize what is known about the fast subject of com-

puter methods and to give it firmmathematical and historical foundations.”

(D. E. Knuth, 1997). The art of computer programming, according to him,

is therefore based on mathematics, but differs from it insofar as it does

have to deal with concepts of effectiveness, implementation and contin-

gency. In so doing, Knuth takes on a more empirical approach to pro-

gramming than his contemporaries, inspecting source code and running

software to assess their performance, an approach he first inaugurated for

FORTRANprogramswhen reporting on their concrete effectiveness for the

United StatesDepartment ofDefense (Defense Technical InformationCen-

ter, 1970).

Another influential textbook insisting that computation is not to be

seen as an autotelic phenomenon is Structure and Interpretation of Com-

puter Programs. In it, the authors insist that source code ”must be written

for people to read, and only incidentally formachines to execute” (Abelson et

al., 1979). Readability is thus an explicit standard in the discipline of pro-

32Notably, algorithms in textbooks tend to be erroneous when used in production; only in

five out of twenty are they correct (Pattis, 1988).

94

function bubble_sort!(X)
for i in 1:length(X), j in 1:length(X)-i

if X[j] > X[j+1]
(X[j+1], X[j]) = (X[j], X[j+1])

end
end

end

Listing 18: bubblesort.jl - Bubble Sort implementation in Julia uses the lan-

guage features to use only a single iteration loop. (Moss, 2021a)

function nearest_neighbor(x', phi, D, dist)
D[argmin([dist(phi(x), phi(x')) for (x,y) in D])][end]

end

Listing 19: nearest_neighbor.jl - Nearest neighbor implementation in Julia

(Moss, 2021b).

gramming, along with a less visible focus on efficiency and verifiability.

Finally, looking at the number of lines involved in each of the beautiful

Julia algorithms listed, it seems that an inverse proportional relation be-

tween line numbers and complexity of the idea expressed is a part of the

standards used to determinewhatmakes such implementation of the algo-

rithm satisfying. We can see such a value at play in the series Beautiful Ju-

lia Algorithms (Moss, 2022). For instance, Listing 18 implements the classic

Bubble Sort sorting algorithm in one loop rather than the usual two loops

in C, resulting in an easier grasping of the concept at hand, rather than

being distracted by the idiosyncracy of the implementation details. The

simplicity of scientific algorithms is expressed even further in Listing 19

the one-line implementation of a procedure for finding a given element’s

nearest neighbor, a crucial component of classification systems.

According to Tedre, computer science itself was split in a struggle be-

tween correctness and productivity, between theory and implementation,

and between formal provability and intuitive art (Tedre, 2014). In the early

95

developments of the field, whenmachine timewas expensive and every in-

struction cycle counted, different conflicting standardswereused to assess

the quality of the software written, as the machine’s limitations remained

unavoidable. Ultimately, the decoupling of electric engineering and pro-

gramming enabled a certain process of autonomization when it came to

aesthetic standards33

In closing, one should note that theArt in the title of Knuth’s series does

not, however, refer to art as a fine art, or a purely aesthetic object. In a 1974

talk at the ACM, Knuth goes back to its Latin roots, where we find ars, artis

meaning ”skill.”, noting that the equivalent in Greek being τεχνη, the root

of both ”technology” and ”technique.”. This semantic proximity helps him

reconcile computation as both a science and an art, the first due to its roots

in mathematics and logic, and the second

because it applies accumulated knowledge to the world, because

it requires skill and ingenuity, and especially because it produces

objects of beauty. A programmer who subconsciously views him-

self as an artist will enjoy what he does and will do it better.

Therefore we can be glad that people who lecture at computer

conferences speak about the state of the Art. (D. E. Knuth, 1974)

When written within an academic and scientific context, source code

tends to align with the aesthetic standards of software development,

valuing reliability, reabability, sustainability, for instance through Greg

Wilson’s work on the development of software development principles

through the Software Carpentry initiative. This alignment can also be seen

in a conception of computer science as a kind of engineering, as an empir-

ical practice which can and should still be formalized in order to become
33”Therewasa tug-of-war between champions of efficiencyand champions of elegance—and

sometimes that tug-of-war was far from polite.99 The limitations of early computers provided

the efficiency side a practical high ground, but over the years, as computer systems got increas-

ingly powerful and software increasingly complex, the proponents of elegance gained foothold.”

(Tedre, 2014).

96

more efficient. There, one can turn to Donald Knuth’s Art of Computer Pro-

gramming to see the connections between the academia’s standards and

the industry’s standards.

And yet, a conception of computation as engineering isn’t the only con-

ception of computer science. Within a consideration of computer science

as a theoretical and abstract object of study, source code becomes ameans

of providing insights intomore complex abstract concepts, seen in the Lisp

interpreter, or one-line algorithms implementing foundational algorithms

in computer science. The beauty of scientific source code is thus associ-

ated with the beauty of other sciences, such asmathematics and engineer-

ing. And yet, Knuth is also known as the advocate of literate programmig,

a practice which engages first source code as a textual, rather than sci-

entific, object. To address this nature, we complete our overview of code

practitioners by turning to the software artists, who engage most directly

with program texts through source code poetry.

2.1.4 Poets

Ever since Christopher Stratchey’s love letters, programmers have been cu-

rious of the intertwining of language and computation. Electronic litera-

ture is a broad field encompassing natural language texts taking full ad-

vantage of the dynamic feature of computing to redefine the concept of

text, authorship and readership. It encompasses a variety of approaches,

including generative literature, interactive fiction, visual poetry, source

code poetry and esoteric programming languages, as well as certain as-

pects of software art. Here, we focus here only on the elements of elec-

tronic literature which shift their focus from output to input, from exe-

cutable binary with transformed natural language as a result, to static, la-

tent source. Particularly, we pay attention to the role of function, correct-

ness and meaning-making in these particular program texts.

97

Code poetry as executed literature

Electronic literature, a formbased on the playful détournement of the com-

puter’s constraints, gets closer to our topic insofar as the poems gener-

ated represent a more direct application of the rule-based paradigm to

the syntactical output of the program. Starting in 1953 with Christopher

Stratchey’s love letters, generated (and signed!) by MUC, the Manch-

esterUnivacComputer, computer poems are generated by algorithmic pro-

cesses, and as such rely essentially on this particular feature of program-

ming: laying out rules in order to synthesize syntactically and semanti-

cally sound natural language poems. Here, the rules themselves matter

only in relation to the output, as seen by their ratio: a single rule for a

seemingly-infinite amount of outputs, with these outputs very often being

the only aspect of the piece shown to the public.

These works and their authors build on a longer tradition of rule-based

composition, from Hebrew to the Oulipo and John Cage’s indeterminis-

tic composition, amongst others (Cramer, 2003), a tradition in which cre-

ativity and beauty can emerge from within a strict framework of formal

rules. Nonetheless, the source code to these works is rarely released in

conjunction with their output, hinting again at their lesser importance in

terms of their overall artistic values. If electronic literature is composed

of two texts, a natural-language output and a computer-language source,

only the former is actually considered to be poetry, often leaving the latter

in its shadow (as well as, sometimes, its programmer, an individual some-

times different from the poet). The poem exists through the code, but isn’t

exclusively limited to the human-readable version of the code, as it only

comes to life and can be fully appreciated, under the poet’s terms, once in-

terpreted or compiled. While much has been written on electronic litera-

ture, few of those commentaries focus on the soundness and the beauty of

the source code as an essential component of the work, and only in recent

times have we seen the emergence of close-readings of the source of some

98

of these works for their own sake (Brock, 2019; Marino, 2020; Montfort et

al., 2014). These constitute a body of work centered around the concept of

generative aesthetics (Goriunova & Shulgin, 2005), in which beauty comes

from the unpredictable and somewhat complex interplay of rule-based

systems, andwhosemanifestations encompassnot onlywrittenworks, but

games, visual and musical works as well.

Source code poetry is thus a form of electronic literature, but also a

form of software art. Software art is an umbrella term regrouping artistic

practices which engage with the computer on a somewhat direct, material

level, whether through hardware34 or software35. This space for artistic ex-

perimentation flourished at the dawn of the 20th century, with initiatives

such as theTransmediale festival’s’ introduction of a software art award be-

tween 2001 and 2004, or the Run_me festival, from 2002 to 2004. In both of

these, the focus is on projects which incorporate standalone programmes

or script-based applicationswhich are notmerely functional tools, but also

act as an effective artistic proposition, as decided by the artist, jury and

public. These works often bring the normally hidden, basicmaterials from

which digital works are made (e.g. code, circuits and data structures) into

the foreground (Yuill, 2004). From this perspective, code poetry is a form a

software art where execution is required, but not sufficient to constitute a

meaningful work.

The approach of code poets is therefore more specific than broad gen-

erative aesthetics: it is a matter of exploring the expressive affordances of

source code, and the overlap of machine-meaning and human-meaning,

acting as a vector for artistic communication. Such an overlap of meaning

is indeed the specific feature of source code poetry. In a broad sense, code

poetry conflates classical poetry (as strict syntactical and phonetical form,

combined with poetic expressivity) with computer code, but it is primarily

defined by its inversion of the reading and executing processes. Usually, a

34See Alexei Shuglin’s 386 DX (1998-2013)
35See Netochka Nezanova’s Nebula.M81 (1999)

99

program text is loosely assumed to be somewhat pleasurable to read, but

is expected to be executable. Code poems rather assume that the program

text is somewhat executable, but demand that it is pleasurable to read. Fol-

lowing the threads laid out by electronic literature, code poetry starts from

this essential feature of computers of working with strictly defined formal

rules, but departs from it in terms of utility. Code poems are only func-

tional insofar as they are accepted by the intepreter or compiler of the lan-

guage in which they are written, but they are functional nonetheless. The

are functional to the computer, in that they are composed in a legal syn-

tax and can be successfully parsed; but they do not need their output to

do anything of immediate and measurable use. Such formal compliance

is only a pre-requisite, a creative constraint, for their human writers, and

their formal approach to minimizing matter and maximizing concept is,

as we will see, not limited to a literary poetry, but can also be encountered

in architecture or science.

Within this reliance on creative constraints provided by a computing

environment, the emphasis here is on the act of reading, rather than on

the act of deciphering, as we have seen with obfuscated code (and in func-

tional code in general). Source code poems are often easy to read, and have

an expressive power which operates beyond the common use of program-

ming. They also make the reader reconsider the relationship to the ma-

chine, and the relationship to function. By using a machine language in

the way the machine expects to receive it, it is no longer software refer-

ring to itself, exploring its own poetics and its specific meaning-making

abilities. By forcing itself to be functional—that is, to produce meaningful

output as the result of execution, it becomes software investigating itself,

and through that, investigating the systemwithin which it exists and acts,

and the assumptionswe ascribe to it. Code poems thus shed a new light on

how and why source code is written, not as a functional artefact, but as a

poetic one, focusing on fabrication rather than production, and expressing

a subject rather than an intent (Paloque-Bergès, 2009).

100

In their different manifestations, code poems make the boundary be-

tween computer meaning and humanmeaning thinner and thinner, a fea-

ture often afforded by the existence and use of higher-level programming

languages. Startingwith the development of FLOWMATIC in 1955 byGrace

Hopper, it was shown that an English-like syntactical system could be used

to communicate concepts for the computer to process. From there, pro-

gramming languages could be described along a gradient, with binary at

the lowest end, and natural language (in an overwhelingmajority, English)

at the highest end. This implies that they could be written and read sim-

ilarly to English, including word order, pronouncation and interpretation,

similar to the error-tolerance of human laguages, which doesn’t cause the

whole communication process to fail whenever a specific word, or a word

order isn’t understood.

Layeredmachine texts

Yet, code poems from the 20th century aren’t the first time where a part of

the source code is written exclusively to elicit a human reaction, without

anymachinic side-effects. One of the earliest of those instances is perhaps

the Apollo 11 Guidance Computer (AGC) code, written in 1969 in Assem-

bly (Garry & Hamilton, 1969). Cultural references and jokes are peppered

throughout the text as comments, asserting computer code as a means of

expression beyond exclusively technical tasks36, and independent from a

single writer’s preferences, since they passed multiple checks and review

processes to end up in the final, submitted and executed document, such

as reproduced in Listing 20.

Code comments allow a programmer to write in their mother tongue,

rather than in the computer’s, enabling more syntactic and semantic flex-

ibility, and thus reveal a burgeoning desire for programmers to express

36Other files include comments such as ”Crank that wheel” or ”Burn Baby Burn” when trig-

gering the ignition subroutine.

101

663 STODL CG
664 TTF/8
665 DMP* VXSC
666 GAINBRAK,1 # NUMERO MYSTERIOSO
667 ANGTERM
668 VAD
669 LAND
670 VSU RTB

Listing 20: numero_mysterioso.asm - AGC source code for the Lunar Land-

ing Guidance Equation, 1969

themselves within their medium of choice, in the midst of an impersonal

interaction with the machine system.

Rather than limiting their lexical field to comments, some writers de-

cided to engage directly with machine keywords in order to compose po-

ems. One of the first instances of this human poetry composed with ma-

chine syntax are the Poèmes Algol by Noël Arnaud (Arnaud, 1968). As a

member of the Oulipo movement, he sets himself the constraints of only

using those reserved keywords of the ALGOL 68 programming language

to extract meaning beyond their original purpose. Reading those, one is

first struck by their playfulness in pronounciation, and subsequently by

the unexpected linguistic associations that they suggest.

More recently, this has been illustrated in the work of MOONBIT

(Mosteirin & Dobson, 2019), a series of code poems computationally ex-

tracted from the AGC’s source code, with those two program texts stand-

ing almost 50 years apart. In their work, the authors want to highlight that

software is not only functional, but also social, political and aesthetic; im-

portantly, the relation between aesthetics and function is not seen as mu-

tually exclusive, but rather as supplementary37. As programmers could al-

37”The aesthetic features of computer code—often characterized by a rigidly formal, re-

stricted syntax, and numerous paralinguistic dimensions—sometimes have a supplemental

character; they appear, at times, almost ornamental in their sheer excess beyond the functional

elements and programmed goals. At other times, these features are an intrinsic and necessary

102

ready express themselves in a language as rigid as Assembly, subsequent

programming languages would further expand poetic possibilities.

Code poetry benefited greatly from the advent of scripting languages,

such as Python, Ruby or Perl (see subsection 2.1.3 above). As we’ve seen,

scripting languages are readable and versatile; readable because their syn-

tax tends to borrow from natural languages rather than invented idioms,

at the expense of functionality38, and versatile because they often handle

some of the more complex and subtle data and platform idiosyncracies39.

The community of programmers writing in Perl40 has been one of the

most vibrant and productive communities when it comes to code poetry.

This particular use of Perl started in 1990, when the language creator Larry

Wall shared some of the poems written in the language, and it gained fur-

ther exposition through the work of Shannon Hopkins (Hopkins, 1992).

The first Perl poem is considered to have been written by Wall in 1990, re-

produced in Listing 21.

Hopkins analyzes the ability of the poem to enable dual understand-

ings of the source—human andmachine. Yet, departing from the previous

conceptions of source that we have looked at, code poetry does not aim at

expressing the same thing to the machine and to the human. The value of

a good poem comes from its ability to evoke different concepts for both

readers of the source code. As Hopkins puts it:

part of the code. We believe that these special properties of computer codemake possible imagi-

native uses ormisuses by its human programmers and that these properties and features justify

our exuberant readings, misreadings, translations, and appropriations.” (Mosteirin & Dobson,

2019)
38For instance, C’s strtok() separates a string of text in a list of strings along several

particular delimiters, while Python’s str.split() does the same thingwith amore readable

name, but with only one delimiter.
39Python and Perl are both dynamically typed languages, meaning that thewriter does not

need to bother with additional syntax and possible verbosity, but rather focus only on the

most expressive tokens, all while letting the interpreter deal with the kinds of errors which

would undermine the functionality requirement of code poetry in other languages.
40Perl programmers refer to themselves as perlmonks, with the spiritual, devoted and com-

munal undertones that such a name implies.

103

print STDOUT q
Just another Perl hacker,
unless $spring

Listing 21: japh.pl - Just Another Perl Hacker, part of a typology of program

texts showing linguistic ingenuity rather than computational efficiency.

In this poem, the q operator causes the next character (in this

case a newline) to be taken as a single quote, with the next oc-

currence of that delimiter taken as the closing quote. Thus, the

single-quoted line ’Just another Perl hacker’ is printed to STDOUT.

In Perl, the ”unless $spring” line is mostly filler, since $spring is

undefined. In poetical terms, however, ”$spring” is very impor-

tant: haiku poetry is supposed to specify (directly or indirectly)

the season of the year. As for the q operator, that reads in English

as the word ”queue”, which makes perfect sense in the context of

the poem. (Hopkins, 1992)

The poem Black Perl, submitted anonymously in 1990, is another exam-

ple of the richness of the productions of this community. It is presented

in Listing 22 in its updated form by kck, making it compatible for perl 5.20

in 2017. The effort of Perl community members of updating Black Perl to

more recent versions of the language is a testament to the fact that one of

the intrinsic qualities of the poem is its ability to be correctly processed by

the language interpreter.

Themost obvious feature of this code poem is that it can be read by any-

one, including by readers with no previous programming experience: each

word is valid both as English and as Perl. A second feature is the abundant

use of verbs. Perl belongs to a family of programming languages grouped

under the imperative paradigm, which matches a grammatical mood of

natural languages, the imperative mood. Such mood emphasizes actions

to be take rather than, for instance, descriptions of situations, and thus

104

#!/usr/bin perl
no warnings;

BEFOREHAND: close door, each window & exit; wait until time.
open spellbook, study, read (scan, $elect, tell us);

write it, print the hex while each watches,
reverse its, length, write, again;

kill spiders, pop them, chop, split, kill them.
unlink arms, shift, wait & listen (listening, wait),
sort the flock (then, warn ”the goats” & kill ”the sheep”);

kill them, dump qualms, shift moralities,
values aside, each one;

die sheep? die to : reverse { the => system
(you accept (reject, respect)) };

next step,
kill `the next sacrifice`, each sacrifice,
wait, redo ritual until ”all the spirits are pleased”;

do { it => ”as they say” }.
do { it =>

(*everyone***must***participate***in***forbidden**s*e*x*)↪→

+ }.
return last victim; package body;

exit crypt (time, times & ”half a time”) & close it,
select (quickly) & warn your (next victim);

AFTERWARDS: tell nobody.
wait, wait until time;

wait until next year, next decade;
sleep, sleep, die yourself,
die @last

Listing 22: black_perl.pl - Black Perl is one of the first Perl poems, shared

anonymously online. It makes creative use of Perl’s flexible and high-level

syntax.

105

sets a clear tone for the poem. The fact that Perl is based on stating pro-

cedures to be executed and states to be changed creates this feeling of re-

lentless urgency when reading through the poem, a constant need to be

taking actions, for things to be changed. Here, the native constraints of

the programming language interacts directly with the poetic suggestion

of the work in a first way: the nature of Perl is that of giving orders, result-

ing in a poem which addresses someone to execute something. Still, Perl’s

flexibility leaves us wondering as to who and what are concerned by these

orders. Is the poem directing its words to itself? To the reader? Is Perl just

ever talking exclusively to the computer? This ambiguity of the adressee

adds to the ominousness of each verse.

The object of each of these predicates presents a different kind of am-

biguity: earlier versions of Perl function in such a way that they ignore

unknown tokens4142. Each of the non-reserved keywords in the poem are

therefore, to the Perl interpreter, potentially inexistant, allowing for a large

latitude of creative freedom from the writer’s part. Such a feature allows

for a tension between the strict, untoucheable meaning of Perl’s reserved

keywords, and the almost infinite combination of variable and procedure

names and regular expressions. This tension nonetheless happens within

a certain rhythm, resulting from the programming syntax: kill them, dump

qualms, shift moralities, here alternating the computer’s lexicon and the

poet’s, both distinct and nonetheless intertwined to create a Gestalt, a

whole which is more than the sum of its parts.

A clever use of Perl’s handling of undefined variables and execution or-

der allows the writer to use keywords for their human semantics, while

subverting their actual computer function. For instance, the die function

should raise an exception, but wrapped within the exit () and close key-

words, the command is not interpred and therefore never reaches the exe-

41e.g. undefined variables do not cause a core dump.
42Which results in the poem having to be updated/ported, in this case by someone else

than the original writer

106

cution point, bypassing the abrupt interruption. The subversion here isn’t

purely semiotic, in the sense of what each individual word means, but

rather in how the control flow of the program operates—technical skill is

in this case required for artistic skill to be displayed.

Finally, the use of the BEFOREHAND: and AFTERWARDS: words mimick com-

puting concepts which do not actually exist in Perl’s implementation: the

pre-processor and post-processor directives. Present in languages such a

C, these specify code which is to be executed respectively before and af-

ter the main routine. In this poem, though, these patterns are co-opted to

reminisce the reader of the prologue and epilogue sometimes present in

literary texts. Again, these seem to be both valid in computer and human

terms, and yet seem to come from different realms.

This instance of Perl poetry highlights a couple of concepts that are par-

ticularly present in code poetry. While it has technical knowledge of the

language in common with obfuscation, it departs from obfuscated works,

which operate through syntax compression, by harnessing the expressive

power of semiotic ambiguity, giving new meaning to reserved keywords.

Such an ambiguity is furthermore bi-directional: the computing keywords

become imbued with natural language significance, bringing the lexicon

of themachine into the realm of the poetic, while the human-defined vari-

able and procedure names, and of the regular expressions, are chosen as to

appear in line with the rhythm and structure of the language. Such a work

highlights the co-existence of human and machine meaning inherent to

any program text43.

Following in the footsteps of the perlmonks, additional communities

around code poetry have formed, whether in university settings, such as

Stanford’s Code Poetry Slam, which ran between 2014 and 2016 (Kagen &

Werner, 2016), or as independent intiatives, like the Source Code Poetry

event, which runs annual contests (Unknown, 2017). The simple constraint

and low barrier to entry also results in collective writings where program-
43Except perhaps those which deal exclusively with scientific and mathematical concepts

107

/** Nothing compares 2 U */

public class U{
public bool Equals(object obj){

return false;
}

}

Listing 23: prince.java - #SongsInCode is an example of functional source

code poetry written to represent the tradionally non-functional domain of

pop songs.

mers engage in playful writing, such as in the #SongsOfCode trend on a

micro-blogging website where the challenge is to represent a popular pop

song in source code. In Listing 23, we can see a simple example of transla-

tion from the problem of popular pop songs into machine language. The

tension between the familiarity of the song and the estrangeness of the

Java syntax is a kind of puzzle that is also reminiscent of hackers, further

establishing cognitive engagement as a factor in the judgment of positivel-

valued source code poetry.

We saw in subsection 2.1.1 that the transition of programming from an

annexpractice to a full-fledgeddiscipline andprofession resulted in source

code being recognized as a text in its own, to which engineering and artis-

tic attention should be paid. No longer a transitional state from formula

to binary, it becomes a semantic material, whose layout, organization and

syntax are important to the eyes of its writers and readers. Pushing fur-

ther into the direction of the visual layout of the code, such an endeavour

becomes pursued for its own sake, existing parallel to the need for a pro-

gram to be functional, and echoing the practice of Guillaume Apollinaire’s

calligrammes.

There, the physical layout of the program text comes to the forefront,

along with its executed representation. Written by Kerr and Holden in

2014, water.c is a poem written in C which illustrate both of these compo-

108

#define submerge const char*_=O%239?” ”:”\t;\t”;O*=2654435761;int
#define _cOb8(...) int s,on,__VA_ARGS__;int main(int O, char**Q)

cOb8(o, _oO8ocQOcOb, _ocQbo8oo, _oO8ocOb_
){ ; { ;;; ;;} ;{
;; ;{ ; } {;;}
} float the;; static things ;; for (;;){ us :;;

; ; break; the; ;; long grass ;unsigned squall ; }
{ } ; while (1){soft:; submerge us;; in: sleep (0) ;
; ; printf (_); quietly :on ;; the; soil:; };
{{ }; ; ; ;; ;{ ; }; {

{ ; shake: time (1) ;register *_, the =clock(s);
;} ; volatile *_, winds ; ; double wills ;{
; char the ,* fire ;; short companion,*_;}

; { union {}*_, together ;; ; void *warms ;}
} ;; ;{; ;} ; ;;
; ; if (1) wet :; raise (1); struct{}ure ;; ;
; ; free (0);for(;;){ newborn :; ; daughter :; ;
;{ ; extern al, ** world ,*re;const ructed ;};

; ; ; continue;on:;; floods :; ; of: water :;};}
; ;{ ; ; ;; { ; ; } ; } ; ; }

Listing 24: water.c - This poem has a very deliberate layout and syntax,

reminiscing of calligrames (Holden & Kerr, 2016).

nents. In Listing 24, we can see that the way thewhitespace is controlled in

the source code evokes a visual representation of water as three columns

composed of ;, { and { characters, computer-understood punctuationwhich

nonetheless holds only a tiny semantic load as block and statement delim-

iters.

Once compiled and executed, water.c gains an additional quality: its

output represents moving droplets running across the screen, with a par-

ticular frame shown in Listing 25. We see that code poetry, like other forms

of writing program texts, differ from other means of expression in their

dual representatiom, as source and software, static and dynamic.

Code poetry values codewhich, while being functional, expressesmore

than what it does, by allowing for Sprachspiele, languages games where

pronounciation, syntax and semantics are playfully composed into a fluid

linguistic construct in order to match a human poetic form, such as the

haiku, or to constitute a specific puzzle. A subtle interplay of humanmean-

109

; ;
; ;

;
↪→

;
;

;

Listing 25: verbose.out - The output of Listing 24 consists in ASCII represen-

tation of water droplets, bearing a family resemblance to BASIC one liners,

and suggesting a complementary representation of water.

ing and machine meaning, layout and execution allows for a complex po-

etic emergence.

From engineers to poets, this section has shown how the set of individ-

uals who write and read code is heterogeneous, varying in practices, prob-

lems and approaches. While none of these communities of practice are

mutually exclusive—a software developer by day can hack on theweekend

and participate in code poetry events—, they do help us grasp how source

code’smanifestations in program texts and its evaluation by programmers

can bemultifaceted. For instance, software engineers prefer code which is

modular, modifiable, sustainable and understandable by the largest audi-

ence of possible contributors, while hackers would favor conciseness over

expressivity, and tolerate playful idiosyncracy for the purpose of imme-

diate, functional efficiency, with a practical engagement with the tools

of their trade. On the other hand, scientific programming favors ease of

use and reproducibility, along with a certain quest to represent the elegant

concepts of computer science, while code poets explore the semantic ten-

sion between a human interpretation and the machine interpretation of

a given source code, via syntactic games, graphical layouts and interplay

between the static and executed versions of software.

Still, there are strands of similarity within this apparent diversity. The

110

code snippets in this section show that there is a tendency to prefer a spe-

cific group of qualities—readability, conciseness, clarity, expressivity and

functionality—even though different types of practices would put a differ-

ent emphasis on each of those aspects. The question we turn to next, then,

is to what extent do these different practices of code writing and reading

share common judgments regarding their formal properties? To start this

investigation, we first analyze programmers’ discourses in section 2.2 in

order to identify concrete categories of formal properties which might en-

able a source code to be positively valued for its appearance, before we ex-

amine the aesthetic domains code practitioners refer to when discussing

beautiful code in section 2.3 to further qualifies these properties.

2.2 Ideals of beauty

Following our overview of the varieties of practices and program texts

amongst thosewho read andwrite source code, wenowanalyzemore thor-

oughly what are the aesthetic standards most valued by those different

groups. The aim here is to formalize our understanding of which source

code is considered beautiful, and to do so in a dual approach; capturing

both the specificmanifestations of beautiful code enunciated by program-

mers, and identifying the semantic contexts from which these enuncia-

tions originate. To do so, we will introduce a discourse analysis frame-

work for the empirical study of the corpus, followed by an examination

of the discourses that programmers deploy when it comes to expliciting

their aesthetic preferences of source code. What we will see is that, while

the aesthetic domains that aremobilized to justify the aesthetic standards

are clearly distinct, we can nonetheless identify recurrent sets of aesthetic

values and a set of aesthetic manifestations against which the quality of

source code can be measured.

111

2.2.1 Introduction to theMethodology

Discourse consists of text, talk andmedia, which expressways of knowing,

experiencing and valuing the world. This study builds on Kintsch and Van

Dijk’s work on providing tools to analyze an instance of discourse, and is

centered around what is said to constitute good source code. While dis-

course analysis can also be used critically by unearthing the value judg-

ments, and thus the power relationships, which occur in linguistic ex-

change (Mullet, 2018), we focus here on aesthetic value judgments, as their

are first expressed through language. Of all the different approaches to

discourse, the one we focus on here is that of pragmatics, involving the

spatio-temporal and intentional context in which the discourse is uttered.

We find this approach particularly fitting through its implication of the

cooperative principle, in which utterances are ultimately related to one

another through communicative cooperation to reveal the intent of the

speaker (Schiffrin, 1994). Practically, this means that we assume the posi-

tion of programmers talking to programmers is cooperative insofar as both

speaker and listener want to achieve a similar goal: expliciting what writ-

ing good code entails. This double understanding—focusing first and fore-

most on utterances, and then re-examining them within a broader coop-

erative context—will lead us to encompass a variety of production media

(blog post, forums, conferences, text books), in order to depict the cultural

background (software practices as outlined above aswell as additional fac-

tors such as skill levels). Our comprehension of those texts, then, will be

set in motion by a dual movement between local, micro-units of meaning

and broader, theoretical macro-structures of the text, and linked by acts

of co-reference (Kintsch & van Dijk, 1978). As the macro-structures rep-

resent certain kinds of world situations, we will connect these to specific

aesthetic fields, considering that theworld of the aesthetics of source code

is pragmatically connected, by the programmers and via their discourses,

to adjacent worlds of the aesthetics of architecture, literature and mathe-

112

matics.

Particular attention will be paid to the difference between intentional

and extensional meaning (Dijk & Kintsch, 1983). As we will see, some of

the texts in our corpus tend to address a particular problem (e.g. on fo-

rums, social media or question & answer platforms), or to discuss broader

concepts around well-written code. Particularly, figures of speech such as

metaphorical devicesmay attract attention to important concepts, provide

more cues for local and global coherence, suggest plausible interpretations

(e.g., a praise versus a critique), andwill in general assignmore structure to

elements of the semantic representation, so that [meaning] retrieval is eas-

ier (Dijk&Kintsch, 1983). Aswewill see, a reference to code as a spaghetti is

not made to connote a specific kind of food, but rather convoluted spatial

properties.

Following this idea, wewill examine discursivemarkers to deduce over-

arching concepts at the semantic level. Among those discursive markers,

we include single propositions as explicit predicates regarding source code,

lexical fields used in those predicates in order to identify their connota-

tions anddenotations, aswell as for the toneof the enunciations to identify

value judgments. At the semantic level, we will examine the socio-cultural

references, the a priori knowledge assumed from the audience, as well as

the thematic entities which underline the discourse at hand. We will also

not be limited to discourses in natural language, but also include source

code examples presented by programmers as components of their argu-

mentation.

Finally, our intepretation of the macrostructures described by Kintsch

and Van Dijk will be complemented by the work done by Lakoff and John-

son on a theory of conceptual metaphors. They argue that the metaphor

maps a source domain, made up of cognitive structures, to a target domain

and, in the process, they extend thefield of applicability ofmetaphors from

the strictly literary to the broadly cultural; metaphors work because each

of us has some conception of those domains involved in the metaphorical

113

process (Lakoff, 1980; Lakoff & Johnson, 1980). Metaphors’ essential depen-

dence on these pre-existing cognitive structures, which we associate with

familiar concepts and properties, give them an explanatory quality when

it comes to qualify foreign domains.

In particular, these sources are defined enough to not be mistaken for

something else, but broad enough to allow for multiple variants of itself

to be applied to various targets, providing both diversity and reliability in

our inquiry.

As we will see below, their approach allows us to focus not just on

textual objects, but on the vast range of linguistic devices used to make

sense in computing-related environments. Given that the source of the

metaphor should be grounded, with as little invariablity as possible, in

order to qualify a potentially ill-defined target domain, this provides us

with a first foray into the inherent elusiveness and instability of comput-

ing when presented to a broader audience.

Going beyond the role of metaphors manifested in expressions such

as the desktop, the mouse, or the cloud mentioned in subsection 3.3.1, we

will explore Lakoff’s understanding of the specifically poetic metaphor

in subsection 4.2.1 when it comes to qualifying the aesthetics of source

code. We will pay particular attention to what programmers are saying

about beautiful (or ugly) source code, which metaphors they employ to

support these value judgments, and why—focusing first on themetaphors

of source code, before moving, in the next chapter, to the metaphors in

source code.

The corpus studied here consists of texts ranging from textbooks and

trade manuals to blog posts and online forum discussions44. These con-

stitute our primary sources insofar as they are written by practitioners on

the topic of good and beautiful code. The rationale behind such a broad

44Specifically, wehave gathered 47 different online sources, from forumdiscussions to blog

posts, 26 journal articles from the Association for ComputingMachinery, 20monographs and

1 edited volume, listed in Appendix I.

114

approach is to constitute a lexical basis for what practicing programmers

consider when assessing good code, as expressed in the everyday interac-

tions of online forums and blog posts, but also inclusive of diverse sources

of communication, beyond edited volumes. We consider that authoritative

sources can be both canonical textbooks or widely-read blog posts from

well-known skilled practitioners, but also include more casual forum ex-

changes in order to support the empirical dimension of our research. This

methodology will allow us to show that there are specific ways in which

programmers qualify well-written code, and employing recurring refer-

ences.

2.2.2 Lexical Field in Programmer Discourse

There is onemajor study of the lexical field programmers use, done by Erik

Piñeiro in his doctoral thesis. In it, he argues that aesthetics exist from

a programmers perspective, decoupled from the final, executable form of

the software. While this current study draws on his work, and confirms

his findings, we also build upon it in several ways. First, Piñeiro focuses

on a narrower corpus, that of the Slashdot.org forums (Pineiro, 2003). Sec-

ond, he examines aesthetic judgment from a private perspective of soft-

ware engineers, separate from other possible aesthetic fields which might

enter indialoguewithbeautiful code (Pineiro, 2003), suchas artists or hack-

ers. Finally, his discussion of aesthetics takes place in a broader context of

business management and productivity, while this current study situates

itself within a broader interdisciplinary field including comparativemedia

studies and aesthetic philosophy and science and technology studies. Still,

Piñeiro’s work provides valuable insights in terms of identifying themani-

festations and rationales for an aesthetic experience of source code. Here,

we build on his works by highlighting the main adjectives in the lexical

field of programmers’ discourse, in and beyond software developers.

115

Clean

Already mentioned in Peter Naur’s analysis of the practice of program-

ming, clean is the first adjective which stands out as a requirement when

assessing the form taken by source code. Clean code, he says, is a reference

to howeasy it is for readers of code to build a coherent theory of the system

both described and prescribed by this source code (Naur, 1985). This pur-

pose of cleanliness is developed at great lengths a couple of decades later

in a series of best-selling trade manuals written by Robert C. Martin and

published by Prentice Hall from 2009 to 2021, the full titles of which clearly

enunciate their normative aim45. What exactly is cleanliness, in Martin’s

terms, is nonetheless defined by circumlocutions; he relies on contribu-

tions from experts, again showing the relationship between expertise and

aesthetic judgment. After asking leading programmers what clean code

means to them, he carries on in the volume by providing examples of how

to achieve clean code, while only loosely defining what it is. In general,

cleanliness is mostly a definition by negation: it states that something

is clean if it is free from impurities, blemish, error, etc. An alternative to

this definition which trade manuals such as Clean Code use consists in

providing examples on how to move from bad, ”dirty” code, to clean code

through specific, practical guidelines regarding naming, spacing, class de-

limitation, etc.. Starting at a high-level, some hints can be glimpsed from

Ward Cunningham’s answer:

You know you are working on clean code when each routine you

read turnsout tobeprettymuchwhat youexpected. You cancall it

beautiful code when the code alsomakes it look like the language

was made for the problem. (Martin, 2008) (p.10)

45Clean Code: A Handbook of Agile Software Craftsmanship, The Clean Coder: A Code Of

Conduct For Professional Programmers, Clean Architecture: A Craftsman’s Guide to Software

Structure andDesign,CleanAgile: Back to Basics,CleanCraftsmanship: Disciplines, Standards,

and Ethics.

116

along with Grady Brooch’s:

Cleancode is simpleanddirect. Clean code reads likewell-written

prose. Clean code never obscures the designer’s intent but rather

is full of crisp abstractions and straightforward lines of control.

(Martin, 2008) (p.11)

Cleanliness is tied to expressiveness: by being devoid of any extrane-

ous syntactic and semantic symbols, it facilitates the identification of the

core of the problem at hand. Cleanliness thus works as a pre-requisite for

expressivity. In a clean-looking program text, the extraneous details dis-

appear at the syntactic level, in order to enable expressiveness at the se-

mantic level.

Martin echoes Hunt when he advocates for such a definition of clean as

lack of additional syntactic information:

Don’t spoil a perfectly good program by over-embellishment and

over-refinement. (Hunt & Thomas, 1999)

Here, it is about quantity rather than quality: ornaments that are posi-

tively valued in parsimony (such as comments) can prove to be detrimental

when there are too many of them. This advice to programmers denotes a

conception of clean that is not just about removing asmuch syntactic form

as possible, but which also implies a balance. Overembellishment implies

excess addition, while over-refinement implies, on the contrary, excess re-

moval. This normative approach finds its echo in the numerous quota-

tions of Antoine de Saint-Exupéry’s comment on aircraft design across

programmer discourses (4.4.7, 2003; Jackson, 2010; Programming Wisdom

[@codewisdom], 2021):

Il semble que la perfection soit atteinte non quand il n’y a plus

rien à ajouter, mais quand il n’y a plus rien à retrancher. (de Saint-

Exupéry, 1972)46

46 In anything at all, perfection is finally attained not when there is no longer anything to

117

Obfuscation

As a corollary to clarity stands obfuscation. It is the act, either inten-

tional or un-intentional, to complicate the understanding of what a pro-

gram does by leading the reader astray through a combination of syntac-

tic techniques, a process we have already seen in the works of the IOCCC

above (see the discussion around Listing 14). In its most widely applied

sense, obfuscation is used for practical production purposes: reducing the

size of code, and preventing the leak of proprietary information regarding

how a system behaves. For instance, the JavaScript source code in List-

ing 26 is obfuscated through a process called minification into the source

code in Listing 27. The result is a shorter and lighter program text when it

comes to its circulation over a network, at the expense of readability.

Inmost cases, this process of obfuscation has very defined, quantitative

assessment criterias, such as the size of the source code file and crypto-

graphic complexity (Pellet-Mary, 2020). Nonetheless. obfuscation can also

be valued as a positive aesthetic standard, of which the IOCCC is the best

example and the most institutionalized guarantor. These kinds of obfus-

cations, as Mateas and Montfort analyze, involve the playful exploration

of the intertwinings of syntax and semantics, seeing how much one can

bend the former without affecting the latter. These textual manipulations,

they argue, possess an inherently literary quality:

Obfuscation and weird languages invite us to join programming

contexts to the literary contexts that must obviously be consid-

ered when evaluating literary code. They also suggest that cod-

ing can resist clarity and elegance to strive instead for complexity,

can make the familiar unfamiliar, and can wrestle with the lan-

guage in which it is written, just asmuch contemporary literature

does. (Mateas &Montfort, 2005)

add, but when there is no longer anything to take away [...]., translated by Lewis Galantière

(Saint-Exupery, 1990)

118

import { ref, onMounted, reactive } from 'vue';

const msg = ref(””)
const HOST = import.meta.env.DEV ? ”http://localhost:3046” : ””
const syllabi = new Array<SyllabusType>()

let start = () => {
window.location.href = '/cartridge.html'

}

onMounted(() => {
fetch(`${HOST}/syllabi/`,

{
method: 'GET'

})
.then(res => {

return res.json()
})
.then(data => {

Object.assign(syllabi, JSON.parse(data))
console.log(syllabi);
if (syllabi.length == 0)

msg.value = ”No syllabi :(”
else

msg.value = `There are ${syllabi.length} syllabi.`

})
.catch(err => {

console.error(err)
msg.value = ”Network error :|”

})
})

Listing 26: home.js - An excerpt of a JavaScript program text as it is written

by a human programmer, before minification.

119

import{_ as p,g as f,o as l,c as n,a as c,h as e,t as r,b as u,i as
b,u as _,F as y,H as g,e as w}from”./Header.js”;const
H={class:”container p-3”},N=e(”h1”,null,”Home”,-1),k={class:”syll ⌋
abi”},x=[”href”],B={class:”cta”},F=m({setup(S){const
s=v(””),d=”http://localhost:3046”,o=new Array;let
h=()=>{window.location.href=”/cartridge.html”};return f(()=>{fetc ⌋
h(`${d}/syllabi/`,{method:”GET”}).then(t=>t.json()).then(t=>{Obje ⌋
ct.assign(o,JSON.parse(t)),console.log(o),o.length==0?s.value=”No
syllabi :(”:s.value=`There are ${o.length}
syllabi.`}).catch(t=>{console.error(t),s.value=”Network error
:|”})}),(t,i)=>(l(),n(u,null,[c(g),e(”main”,H,[N,e(”div”,k,[e(”di ⌋
v”,null,r(s.value),1),e(”ul”,null,[(l(!0),n(u,null,b(_(o),a=>(l() ⌋
,n(”li”,null,[e(”div”,null,[e(”a”,{href:”/syllabi/”+a.ID},r(a.tit ⌋
le),9,x)]),e(”div”,null,r(a.description),1)]))),256))])]),e(”div” ⌋
,B,[e(”button”,{id:”cta-upload”,class:”btn btn-primary mb-4
cc-btn”,onClick:i[0]||(i[0]=a=>_(h)())},”Upload
yours!”)])]),c(y)],64))}});var O=p(F,[[”__file”,”/home/pierre/cod ⌋
e/commonsyllabi/viewer/www/src/Home.vue”]]);w(O).mount(”#app”);

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Listing 27: home_minified.js - The sameprogramas in Listing 26, aftermini-

fication. Syntactical density is gained at the expense of clarity.

Such literary connection can also be seen inNoëlArnaud’sworkPoèmes

Algol (Arnaud, 1968), in which he uses the constructs of the language Algol

68 in order to evoke in the reader something different than what the pro-

gram actually does (i.e. fail to execute anything meaningful). Here, obfus-

cation can be considered a literary value, but its negative connotations, ob-

fuscation nonetheless points at the recurring theme of ease (or difficulty)

of understanding.

Simple

This balance between too much and too little is found in another di-

chotomy stated by programmers: between the simple and clever. Sim-

plicity, argues Jeremy Gibbons, is not only a restraint on the quantity of

syntactic tokens (as one could achieve by keeping names short, or align-

ing indentations), but also a semantic equilibriumat the level of abstracted

ideas (Gibbons, 2012).

Simplicity in source code is therefore a form of parsimony and bal-

120

ance47.

This requirement of exerting balance leads us to make a difference be-

tween two kinds of simplicity: syntactical simplicity, and ontological sim-

plicity. Syntactic simplicity measures the number and conciseness of visi-

ble lexical tokens and keywords. Ontological simplicity, in turn, measures

the number of kinds of entities involved in the semantics of the program

text. Source code can have syntactic simplicity because it wrangles to-

gether complex concepts in limited amount of characters (see our discus-

sion on one-liners in section 2.1.2), or code can have ontological simplicity,

because of the minimal amount of computational concepts involved (as

explained in section 2.1.3). Syntactical simplicity also has a more immedi-

ate consequence on one’s experience when reading a program text: one of

the issues that programmers face is that there are just too many lines of

code that one can wrap its head around, thus requiring that the content be

pared down to its functional minimum (Butler, 2012).

This distinction between syntactical and ontological simplicity high-

lights this need for balance, alongwith the concrete tradeoffs between syn-

tax and semantics that might need to be done when writing code. Source

code aesthetics thus have to balance between simplicity in breadth and

simplicity in depth regarding the composition of the program text, be-

tween the precision of a use-case in a problem domain and its general-

ization, and between its self-reliability and its leveraging of external—i.e.

supposedly reliable—program texts.

In another ACM publication, Kristiina Karvonen argues for simplicity

not just as a concrete design goal, as leveraged by human-computer inter-

face designers48, but as a term with a longer history within the tradition

of aesthetic philosophy, especially the work of Johann Joachim Winckel-
47Gibbons quotes Ralph Waldo Emerson to qualify his point: ”We ascribe beauty to that

which is simple; which has no superfluous parts; which exactly answers its end; which stands

related to all things; which is the mean of many extremes.” (Gibbons, 2012)
48The field of human-computer interfacing does not limit itself to graphical user inter-

faces; a software library can act as textual interface between a human and amachine system.

121

void SomeMethod(int x, int y){
if(x != y){

//-- stuff
}

}

void SomeClearerMethod(int x, int y){
if(x == y) return;
//-- do stuff

}

Listing 28: clearer_method.c - Example of clarity differences between two

methods.

mann (Karvonen, 2000). In particular, she stresses the difficulty ”to create

significant, that is, beautiful works of art with simple means” (Karvonen,

2000). Here, we take her correlation between significance and beautiful in a

very literalmanner; a connection between significance and beauty hints at

the semantic role of beauty, and thus of simplicity as a component of the

beautiful, at the role of beauty as a means to communicate (i.e. to signify)

ideas to an audience.

Precisely, simplicity is correlatedwith clarity (ofmeaning); if the former

refersmainly to the syntactical and ontological components, it enables the

non-obfuscated representation of the ideas at play in the function of a pro-

gram text. An example of clarity is given in Listing 28 by Dave Bush in a

post titled 15 Ways to Write Beautiful Code.

Here, striving for simplicity implies removing the brackets, and flip-

ping the boolean check in the if-statement to add an early return state-

ment. Even though it is, strictly speaking, more characters than the brack-

ets and newline (six characters compared to four), the program becomes

cleaner, and thus clearer, by trading syntactical simplicity for ontological

simplicity. Bush argues that, by separating the two branching cases inher-

ent to the use of conditional logic, under the form of an if-statement, the

program-text becomes clearer. In the second version, it is made clear that,

if a condition is true, the execution should stop, and any subsequent state-

122

ment can entirely disregard the existence of the if-statement; in the first

version, the condition that is not true is entangled with code that should

be executed, since the existence of the if-statement has to be kept in mind

until the closing bracket, at the bottom of the program text (Bush, 2015).

A final insight on simplicity and programming regarding the commu-

nication of ideas is hinted at by Richard P. Gabriel in his use of the concept

of compression in both poetry and programming. He argues that program-

mers have a desire to increase the semantic charge (or significance, in Kar-

vonen’s terms) all the while reducing the syntactic load (or the quantitity

of formal tokens). Compression thus implies simplicity, but also qualifies

such simplicity in terms of how much is expressed by a simple statement.

The more complex the problem the program intends to solve, the more

important the role simplicity plays in communicating such complexity.

William J. Mitchell sums it up in his introductory textbook for graphics

programming:

Complex statements have a zen-like reverence for perfect simplic-

ity of expression. (Mitchell, 1987)

Simplicity is found in source code when the syntax and the ontologies

used are an exact fit to the problem: simple code is code that is neither too

precise, nor too generic, displaying an understanding of and a focus on the

problem domain, rather than the applied tools.

Clever

Conversely, the intellectual nature of a programmer’s practice often in-

volves technical tricks. Even though programming is both a personal and

collective activity, there is a tendency of programmers to rely on convo-

luted, ad hoc solutions which happen to be quick fixes to a given problem,

butwhich can also be difficult to generalize or graspwithout external help.

Such an external help often takes the form of explanation, and is not often

positively valued, as pointed out online by Mason Wheeler:

123

def is_unique(_list):
return len(set(_list)) == len(_list)

Listing 29: unique.py - A function to check for the uniqueness of array el-

ements, using a very specific feature of the Python syntax, and as such an

example of clever code.

When it requires a lot of explanation like that, it’s not ”beautiful

code,” but ”a clever hack.” (Overflow, 2013)

This answer, posted on the software engineering Stack Exchange fo-

rum, in response to the question ”How can you explain ”beautiful code”

to a non-programmer?” (Overflow, 2013), not only highlights the ideal for a

program text to be self-explanatory, but also points at a quality departing

from simplicity—cleverness.

Cleverness is often found, and sometimes derided, in examples of code

written by hackers, since it unsettles this balance between precision and

generality. Clever code would tend towards exploiting particularities of

knowledge of the medium (the code) rather than the goal (the problem).

Hillel Wayne presents the snippet of Python code reproduced in Listing 29

as an example of clever, and therefore bad, code:

From the name of the function, is_unique(), one can deduce that what

the program text does is returningwhether all elements of a list are unique.

However, to understand the particular way inwhich this is done, thewriter

requires knowledge of how the set() function in Python behaves. A pro-

grammer without familiarity with Python would be unable to do so with-

out consulting the Python documentation, or through external explana-

tion.

Hillel elaborates on the difference between ”bad” clever code49, which

49See, for instance, Duff’s device, an idiosyncratic and language-specific way to speed up

loop unrolling in C. The author himself feels ”a combination of pride and revulsion at this

discovery” (Duff, 1983)

124

Listing 30: smr.c - An empty program text which was awarded the IOCC’s

”World’s smallest self-replicating program” and ”Worst abuse of rules”

(Rusinkiewicz, 1970)

is essentially read-only due to its idiosyncracy and reliance on tacit knowl-

edge, and ”good” clever code, and such distinction corroborates our previ-

ous observations regarding beautiful code as ameans for expression of the

problem domain. His example is that the problem of sorting the roughly

300 million U.S. american citizens by birthdate can be made considerably

more efficient by cleverly considering that noU.S. american citizen is older

than 130 years, whereby radically reducing the computation space.

Cleverness is thus valued positively in certain contexts. Hacker prac-

tices in particular tend to put more emphasis on the technical solution

than on the problem domain, as we have saw in subsection 2.1.2. A salient

is example was the 1994 smr.c entry to the IOCCC, which aimed at being

the smallest self-reproducing program (Kanakarakis, 2022). An exact re-

production of the source code can be found in Listing 30

Consisting of a file weighing zero bytes, smr.c provides both a clever re-

duction of the problemdomain, and a clever understanding ofwhatC com-

pilers would effectively accept or not as a valid program text (Kanakarakis,

2022), resulting in a particular confusion to the reader (and jury). Because

it has since been banned under the rules of the IOCCC, this source code

entirely renounces any claim to a more general application, and finds its

aesthetic value only within a specific socio-technical environment.

Elegance

Programmers hold the idea of reaching aesthetic quality through the re-

duction of complex syntactical and ontological constructs, without mini-

125

mizing expressivity. Striving towards an inverse relationship between the

complexity of an idea and the means to express it involves another aes-

thetic criteria present in programmers’ discourse: elegance. Such an ideal

is clearly rooted in the definition of elegance given by the Jargon File, also

known as the hacker’s dictionary:

elegant: adj.

[common; from mathematical usage] Combining simplicity,

power, and a certain ineffable grace of design. Higher praise than

’clever’, ’winning’, or even cuspy.

The French aviator, adventurer, and author Antoine de Saint-

Exupéry, probably best known for his classic children’s book The

Little Prince, was also an aircraft designer. He gave us perhaps

the best definition of engineering elegance when he said “A de-

signer knows he has achieved perfection not when there is noth-

ing left to add, but when there is nothing left to take away.” (4.4.7,

2003)

Leslie Valiant, recipient of the Turing Award in 2010, considers elegance

as the explanatory power of simple principles, which might only appear

a posteriori—a solution can only be qualified as elegant once it has been

found, and very rarely during the process of its development(Anthes, 2011).

Chad Perrin, in his article ITLOG Import: Elegance, first approaches the

concept as a negation of the gratuitous, a means to reduce asmuch as pos-

sible the syntactic footprint while keeping the conceptual load intact:

In pursuing elegance, it is more important to be concise than

merely brief. In a general sense, however, brevity of code does ac-

count for a decent quick and dirty measure of the potential el-

egance that can be eked out of a programming language, with

length measured in number of distinct syntactic elements rather

than the number of bytes of code: don’t confuse the number of

126

keystrokes in a variable assignment with the syntactic elements

required to accomplish a variable assignment. (Perrin, 2006)

Perrin also hints at the additional meaningfulness of elegance, as he

compares it to other aesthetic properties, such as simplicity, complexity or

symmetry. If simplicity inhabits a range between too specific and too gen-

eral, he describes an elegant system as exactly appropriate for the task at

hand, echoing others’ definition of clean or simple source code. Elegance,

he says, relies on strong, underlying principles, but is nonetheless subject

to its manifestation through a particular, linguistic interface. While he

touches at length on the influence of progamming languages in the pos-

sibility to write elegant source code, we will only address this question in

subsection 5.1.1.

Donald Knuth adds another component required to achieve elegance in

software: along with leanness of code and the suitability of the language,

he adds that elegancenecessitates a clear definitionof theproblemdomain

(M. Fuller, 2008). Along with the appropriateness of the linguistic tooling,

one can see here that the representation of the data which is then going to

be processed by the executed source code also matters. Source code is not

only about expressing dynamic processes, but also about translating the

problemdomain into formal static representationswhichwill then be easy

to operate on. Ideally, elegant code communicates the problem it solves

and the machinery of its solution, all through a single lens.

This aspect of implying underlying principles is also present in Bruce

McLennan’s discussion of the concept. He also adds to this perspective a

certain subjective feeling.He defines his Elegance Principle as:

Confine your attention todesigns that lookgoodbecause they are

good. (McLennan, 1997)

Such a definition relies heavily on the sensual component of ele-

gance: while an underlying property of, at least, human activities, it must

127

int factorial(int n)
{
return n==0 ? 1 : n * factorial(n-1);

}

Listing 31: factorical.c - The use of recursion, rather than iteration, in the

computation of a factorial is particularly praised by programmers.

nonetheless be manifested in some perceptible way. Interestingly, he ap-

proaches elegance through the dual lens of structural and software engi-

neering, this indicates that he also considers elegance as a more profound

concept which can manifest itself across disciplines, connecting ways of

making, and ways of thinking (McLennan, 1997).

On Stackexchange, user asoundmove corroborates this conception of

achieving a simple and clean system where any subsequent modification

would lead to a decrease in quality:

However to me beautiful code must not only be necessary, suffi-

cient and self-explanatory, but it must also subjectively feel per-

fect & light. (Overflow, 2013)

Connected to simplicity by way of necessity and sufficiency, the per-

ception of elegance is also related to a subjective feeling of adequacy, of

fitness. Including some of the definitions of simplicity we have seen so

far, Paul DiLascia, writing in the Microsoft Developer Network Magazine,

illustrates his conception of elegance—as a combination of simplicity, effi-

ciency and brilliance—with recursion (DiLascia, 2019), as seen in Listing 31.

Recursion, or the technique of defining something in terms of itself, is a

very positively valued feature of programming (Abelson et al., 1979), which

wehave seen an example of in Listing 17. In so doing, itminimizes the num-

ber of elements at play and constrains the problem domain into a smaller

set of moveable pieces. Another example, provided in the same Stackex-

change discussion is the quicksort algorithm, which can be implemented

128

public static void recursiveQsort(int[] arr,Integer start, Integer
end) {↪→

if (end - start < 2) return; //stop clause
int p = start + ((end-start)/2);
p = partition(arr,p,start,end);
recursiveQsort(arr, start, p);
recursiveQsort(arr, p+1, end);

}

public static void iterativeQsort(int[] arr) {
Stack<Integer> stack = new Stack<Integer>();
stack.push(0);
stack.push(arr.length);
while (!stack.isEmpty()) {

int end = stack.pop();
int start = stack.pop();
if (end - start < 2) continue;
int p = start + ((end-start)/2);
p = partition(arr,p,start,end);

stack.push(p+1);
stack.push(end);

stack.push(start);
stack.push(p);

}
}

Listing 32: recursive_iteration.cs - The comparison two functions, one us-

ing recursion, the other one using iteration, intends to show the computa-

tional superiority of recursion. (amit, 2012).

recursively or iteratively, with the former being significantly shorter (see

Listing 32)

Going back to the personal factor in perceiving elegance, we can fol-

low Mahmoud Efatmaneshik and Michael J. Ryan who, in the IEEE Sys-

tems journal, offer a definition of elegance which relies both on a ro-

mantic perception—including subjective perception: ”gracefulness”, ”ap-

propriateness” and ”usability”—and practical assessment with terms such

as ”simple”, ”neat”, ”parsimonious” or ”efficient” (Efatmaneshnik & Ryan,

2019). In doing so, they ground source code aesthetics as a resolutely dual-

istic norm, between subjectivity and objectivity, qualitative and quantita-

tive, a duality whose implications are developed in section 3.2.

129

And yet, rather than subjectivity and objectivity being opposites, one

could also consider them as contingent. Due to the interchangeability

in the use of the some of the terms we have seen by programmers,

both qualitative—in terms of the language used—and quantitative—in

terms of the syntax/semantics ratio—assessments of source seem to be

complementary in considering it elegant. If clean, simple, elegant seem to

overlap, it is because they all seem to point at this maximization of mean-

ingwhile appropriatelyminimizing syntax, written byoneprogrammer for

another.

Smells

A complementary approach to understandwhat programmersmeanwhen

they talk about beautiful code is to look beyond the positive terms used

to qualify it, and shift our attention to negative qualifiers. We have al-

ready touched upon terms such as clever, or obfuscated, which have am-

biguous statuses depending on the community that they’re being used in—

specifically hackers and literary artists. Further examination of negative

qualifiers will enrich our understanding of what constitutes good code;

programmers have another way to refer to code that does not meet aes-

thetic criteria, by referring to material properties.

One of those hints comes from satirical accounts of how to write bad

code. For instance, Green’s post on How To Write Unmaintainable Code

suggests new kinds of obfuscation, such as double-naming in Listing 33 or

semantic interactions in Listing 34. The core ideas presented here revolve

around creating as much friction to understanding as possible, by making

it ”as hard as possible for [the reader] to find the code he is looking for” and

”as awkward as possible for [the reader] to safely ignore anything.” (Green,

2006).

By looking at it from the opposite perspective of highly-confusing code,

we see best how carefully chosen aesthetics, under the values of simplicity,

130

openParen = (slash + asterix) / equals;

Listing 33: unmaintainable.py - This listing shows variable names thatmas-

querade as mathematical operators, greatly increasing reader confusion.

for(j=0; j<array_len; j+ =8)
{
total += array[j+0];
total += array[j+1];
total += array[j+2]; /* Main body of
total += array[j+3]; * loop is unrolled
total += array[j+4]; * for greater speed.
total += array[j+5]; */
total += array[j+6];
total += array[j+7];

}
\end{minted}

Listing 34: unmaintainable_2.c - This listing shows code that masquerades

as comments, and vice-versa.

clarity, cleanliness and elegance intend first and foremost to help alleviate

humancognitive friction and facilitate understanding ofwhat the program

is doing. The opposite amounts to playing misleading tricks.

For instance, spaghetti code refers to a property of source code where

the syntax is written in such a way that the order of reading and under-

standing is akin to disentangling a plate of spaghetti pasta. While techni-

cally still linear in execution, this linearity loses its cognitive benefits due

to its extreme convolution, making it unclear what starts and ends where,

both in the declaration and the execution of source code. Rather than us-

ing a synonym such as convoluted, the image evoked by spaghetti is partic-

ularly vivid on a sensual level, as a slimy, vaguely structured mass, even if

the actual processes at play remain eminently formal (Steele, 1977). Such a

materialmetaphor is used in a similarway in Foote andYoder’s description

of code as a ”big ball of mud”:

A Big Ball of Mud is a haphazardly structured, sprawling, sloppy,

131

duct-tape-and-baling-wire, spaghetti-code jungle. These systems

show unmistakable signs of unregulated growth, and repeated,

expedient repair. Information is shared promiscuously among

distant elements of the system, often to the point where nearly all

the important information becomes global or duplicated. (Foote

& Yoder, 1997)

A broader approach to these sensual perceptions of code involve the

reference to code smells. These smells are described by Martin Fowler

as ”surface indications that usually corresponds to a deeper problem in the

system” (Fowler et al., 1999). They are aspects of source code which, by

their syntax, might indicate deeper semantic problems, without being ex-

plicit bugs. The name code smell evokes the fact that their recognition

happens through intuition and experience of the programmer reading the

code, invisible yet present, rather than through careful empirical analy-

sis50. This points to a practice-based skill system to evaluate the quality of

source code, rather than to an evidence-based one, itself circling back to

the qualifications of elegance discussed above, evaluated both as quanti-

tative metric and as qualitative one.

In conclusion, this section has clarified some of the key terms used in

programmers’ discoursewhen discussing aesthetically pleasant code. Bas-

ing our interpretation of the gathered sources through discourse analysis,

we specifically assumed a cooperative principle, in which all participants

in the discourse intend to achieve writing the best source code possible.

This analysis has confirmed and updated the findings of Piñeiro’s earlier

study: excellence in instrumental action forms the core of writing source

code, but can also vary along different contexts of reading and writing.

Across textbooks, blog posts, forums posts and trade books, the aesthetic
50It should be noted thatmore recent computer science research has recently also focused

on developing such empirical techniques (Rasool & Arshad, 2015), even though their practical

usefulness is still debated (Santos et al., 2018)

132

properties of code are widely acknowledged and, to a certain extent, con-

sistent in the adjectives used to qualify it (clean, elegant, simple, clear, but

also clever, obscure, or smelly).

While there is a consistency in describing the means of beautiful code,

by examining a lexical field with clear identifiers, this analysis also opens

up additional pathways for inquiry. First, we see that there is a relation-

ship between formal manifestations and cognitive burden, with aesthetics

helping alleviate suchaburden. Beautiful code renders accessible the ideas

embedded in it, and theworld inwhich the code aims to translate andoper-

ate on. Additionally, the negative adjectives mentioned when referring to

the formal aspects of code (smelly, muddy, entangled) are eminently ma-

terialistic, indicating some interesting tension between the ideas of code,

and the sensuality of its manifestation.

Moving beyond strict lexical tokens, we can see in the breadth of re-

sponses in a programmer’s question of ”How can you explain ”beauti-

ful code” to a non-programmer?” (Overflow, 2013) that programmers also

rely on multiple aesthetic domains to which they refer: from engineer-

ing and literature to architecture and mathematics. As such, they deploy

metaphors for what beautiful code is. Moving from a syntactical level to a

thematical level, to refer to Kintsch and Van Dijk’s framework of discourse

analysis, we now turn to an investigation of each of these domains, and

what they tell us about source code.

2.3 Aesthetic domains

The qualifiers programmers use when they relate to the aesthetic qualities

of source code (the way it looks) or the aesthetic experience that it elicits

(the way they feel) has shown both a certain degree of coherence, and a

certain degree of elusiveness. Subjectively, programmers associate their

experience of encountering well-written code as an aesthetic one. How-

133

ever, on a normative level, things become complicated to define: as we

have seen in the previous section’s discussion of forum exchanges, beauty

in source code is not explicited in and of itself.

Next, we inquire into the specific domains that programmers use to il-

lustrate the qualities of source code; we will examine in which capacity

these are being summoned in relation to code, and how they help us fur-

ther delineate the aesthetic qualities of source code. The assumption here

is that a medium—such as source code—is a means of expression, and dif-

ferentmediums can support different qualities of expression; additionally,

a comparative analysis can be productive as it reveals the overlaps between

these mediums. Since there seems to be some specific ways in which code

can be considered beautiful, these adjacent domains, and the specific parts

of these domains which create this contingency, will prepare our work of

defining source code-specific aesthetic standards.

To do so, then, we will look at the three domains most often conjured

by programmers when they mention the sensual qualities of, or the aes-

thetic experiences elicited by, source code: literature, mathematics and

architecture. While there are accounts of parallels between programming

and painting (P. Graham, 2003) or programming andmusic (McLean, 2004),

these refer to the painter or musician as an individual, rather than to the

specific medium, and there are, to the best of our knowledge, no account

of code being like sculpture, film, or dance, for instance.

2.3.1 Literary Beauty

The medium of expression most obviously similar to code is literature:

perhaps because they both require, fundamentally, the use of alphanu-

meric characters laid out on a two-dimensional plane. Similarly, they both

involve syntax and semantics interplay in order to convey meaning to a

reader. Code as literature, then, focuses on this similarity of natural lan-

guage and computer language, on its narrative, rhetorical and informative

134

properties, and even on its ability to mimick the traditional forms of po-

etry.

Code as a linguistic practice

In Geek Sublime, Vikram Chandra, novelist and programmer, lays out the

deep parallels he sees between code and human language, specifically san-

skrit. While stopping short of claiming that code is literature, he nonethe-

less makes the claim that sanskrit is, as a set of generative linguistic rules

to composemeaning, a distant ancestor to computer code (Chandra, 2014),

a fact corroboratedbyAgatheKeller inher studies of theĀryabha�a (Keller,

2021). Sanskrit, like computer code, relies on context-free rules and ex-

hibits similar properties as code, such as recursion and inheritance.

With a similar syntactic structure between sanskrit and code, the for-

mer also exhibits a ”search for clear, unambiguous understanding” through

careful study, a goal shared by the writers of source code. Specifically, the

complexity of the linguistic system presented both in sanskrit and in ma-

chine language implies that enjoyment ofworks in eithermediumhappens

not through spontaneous, subjective appreciation, but through ”conois-

seurship”, resulting from education, experience and temperament (Chan-

dra, 2014).

Similarly, inWords Made Flesh: Code and Cultural Imagination, Florian

Cramer touches upon code’s ability to do things, in order to inscribe it

differently in a historical development of linguistics, connecting it to the

symbolical works of the kabbalah and Lebniz’s Ars Combinatoria. Code,

according to Cramer, is linguistic, not just because it is made up of words,

but because itacts uponwords, influencingwhatwe consider literature and

human-language writing:

The step from writing to action is no longer metaphorical, as it

would bewith a semantic text such as a political speech or aman-

ifesto. It is concrete and physical because the very code is thought

135

to materially contain its own activation; as permutations, recur-

sions or viral infections. (Cramer, 2003)

Those permutations and recursions are used in the different ways: nat-

ural language writers have attempted to apply formulas, or algorithms,

to their works, from the Oulipo’s Poèmes Algol to Cornelia Sollfrank’s

Net.Art Generator. The properties that Cramer identifies in machine

languages—tensions between totality and fragmentation, rationalization

andoccultism, hardware and software, syntax and semantics, artificial and

natural—are ascribed to the interaction between program and expression,

through the shape of those combinatorial poetics (Cramer, 2003). This re-

semblance, or Familienähnlichkeit, to other forms of linguistic expression,

is explored further by Katherine Hayles’ work on speech, writing and code.

Specifically, she sees the linguistic practices of humans and intelligentma-

chines as influencing and interpenetrating each other, considering code as

language’s partner (Hayles, 2004).

Hayles looks at howboth literature and code can be expressive in both a

syntagmatic and paradigmatic manner. In the former, the meaning spread

across the words of a sentence is considered fixed in literature, while it is

dynamically generated in source code, depending of the execution state

and the problem domain. In the latter, the meaning across synonyms in a

(program) text is always potential in literature, but always present in code,

thus highlighting different levels of interpretation (Hayles, 2004). If code is

a form of linguistic system, then it is a dynamic one in which the semantic

charge is at least as volatile as in literature, but which possesses an addi-

tional dimension, as orality, literacy and digitality complement each other

all the while remaining media-specific.

Code can thus be considered a linguistic system in the technical sense,

having a syntactic ruleset operating on words, it seems to also be a lin-

guistic system in the cultural sense. As such, it deals with the occult, the

magical and the obscure, but also exhibits a desire to communicate and

136

execute unambiguous meaning.

This desire for explicit communication led literacy scholars to inves-

tigate source code’s relationship to rhetoric. While digital systems seem

to exhibit persuasive means of their own (Bogost, 2008) (Frasca, 2013), the

code that underpins them also presents rhetorical affordances. The work

of Kevin Brock andAnnette Vee in this domain has shown that source code

isn’t just a normative discourse to the machine, but also an argumentative

one with respect to the audience: it tries to persuade fellow programmers

of what it is doing. From points being made in large-scale software such

as Mozilla’s Firefox web browser, to more specific styles in job interviews,

source code presents worldviews in its own specific syntax (Brock, 2019).

The connections of code to linguistics happens thus at the technical

and cultural levels, insofar as it can allow for the expression of ideas and

arguments, straddling the line between the rational and the evocative. We

now turnmore specifically to two instances of program code being consid-

ered a literary text, by leading programmers in the field: Yukihiro ’Matz’

Matsumoto and Donald Knuth.

Code as text

Perhaps the most famous reference to code as a literary object is to be

found in Donald Knuth’s literate programming. In his eponymous 1984 ar-

ticle in The Computer Journal, Knuth advocates for a practice of program-

ming in which a tight coupling of documentation with source code can

allow one to consider programs as ”works of literature” (D. E. Knuth, 1984).

It is unclear, however, what Knuth entails when he refers to a work of lit-

erature51.

Literate programming, a direct response to structured programming,

enables the weaving of natural language blocks with machine language

51For instance, he refers in the rest of the article as ”constructing” programs, rather than

”writing” them.

137

blocks, in order to be able to compile a single source into either a type-

set documentation of the program, using the TeX engine, or into a source

file for a Pascal compiler. The literary, here, is only a new set of tools and

practices of writing which result in a publishable work, rather than a lit-

erary work, in which the program is described in natural language, with

source code being interspersed as snippets throughout. As this approach

fits within Knuth’s interest in typesetting and workflows of scientific pub-

lications, it first locates the relationship between literature and program-

ming beyond this formal level.

Still, his aim remains to support a clear understanding of a program

by its reader, particularly emphasizing the complexity of such tasks. If he

proposes somethingwith regards to literature, it is the process ofmeaning-

making through reading, and its cognitive implications:

This feature ofWEB is perhaps its greatest asset; it makes aWEB-

written program much more readable than the same program

written purely in PASCAL, even if the latter program is well com-

mented. [...] a programmer can now view a large program as a

web, to be explored in a psychologically correct order is perhaps

the greatest lesson I have learned from my recent experiences.

(D. E. Knuth, 1984)

For Knuth, then, code is a text: both in the traditional, publisher-

friendly way, but also in a new, non-linear way. This attention to themate-

riality of the program—layout, typesetting—foresees subsequent techno-

logical solutions to allow natural language and machine language to co-

exist52. We also note here the phrase ”psychologically correct order”, high-

lighting the psychological dimension involved in a programmer’s activity,

further developed in subsection 3.2.3. Indeed, code is never read linearly,

as most codebases might have an entrypoint but no introduction53.

52See JavaDocs, Go docs, Jupyter Notebooks
53”Having conducted interviews with several leadig programmers, Peter Seibel comes to

138

Moving away from this hybrid approach involvingbothnatural andma-

chine texts, Yukihiro Matsumoto, the creator of the Ruby programming

language, develops his notion of code as an essay in his contribution to

the edited volume Beautiful Code (Oram & Wilson, 2007). While he does

not deal directly with questions of eloquence and rhetoric, as opposed to

Brock and Vee, it does however start from the premise that code is a kind

of text, insofar as it has a message being conveyed in a written form to an

audience. However, it is not a kind of text which has a specific author, or

a specific finite state:

Most programs are not write-once. They are reworked and rewrit-

ten again and again in their lived. Bugs must be debugged.

Changing requirements and the need for increased functionality

mean the program itself may be modified on an ongoing basis.

During this process, human beings must be able to read and un-

derstand the original code. (Matsumoto, 2007)

This conception, in which a text remains open to being modified fur-

ther by subsequent voices, thus minimizing the aura of the original ver-

sion, and possibly diluting the intent of the original author, echoes the

distinction made by Roland Barthes between a text lisible (readerly text)

and texte scriptible (writerly text) (Barthes, 1977). While the former aligns

with classical conceptions of literature, with a clear author and life span

for the literary work, the latter remains open to subsequent, subjective ap-

propriations. It is these appropriations, or uses, that give a writerly text its

value.

This appropriation is such that amodified program text does not result

in a finite program text either; due to its very low barrier to modification

and diffusion, program texts can act almost as a dialogue between twopro-

grammers. As Jesse Li puts it, building the linguistic theory of Volonishov

the conclusion: ”We don’t read code, we decode it. We examine it. A piece of code is not litera-

ture; it is a specimen.” (Seibel, 2014)

139

and Bakhtin:

Themalware author is in dialogue with themalware analyst. The

software engineer is in dialogue with their teammates. The user

of a piece of software is in dialogue with its creator. A web ap-

plication is in dialogue with the language and framework it is

written in, and its structure is mediated by the characteristics of

TCP/IP and HTTP. And in the physical act of writing code, we are

indialoguewithour computer anddevelopment environment. (Li,

2020)

It is to support this act of dialogue, through code’s affordance of rapid

modification and redistribution, that Matusmoto highlights simplicity,

brevity—his term for elegance— and balance as means to write beautiful

code. His last criteria, lightness, applies not to the code being written, but

to the language being used to write such code, adding one more dimen-

sion to the dialogue: between the writer(s), the reader(s) and the language

designer(s), an additional aspect we will return to in subsection 5.1.3.

These two examples argue that source code can be considered a text

which needs to accomodate a hybrid of natural and machine languages,

newmodes of diffusion, and countless possibilities for being rewritten. In

this technological environment of programming languages (from WEB to

Ruby), the aim is to facilitate the understanding of what the program does,

and ofwhat it should do, providing cognitive cues for the programmerwho

will re-use or modify the program.

There is, however, a remnant of readerly texts in the literary conception

of source code. Beyond these theoretical and functional conceptions of

code’s textuality, a last approach to the literariness of source code can be

found in the works of code poetry, in which this ambiguity is embraced.

140

Code poetry

Daniel Temkin, in his Sentences on Code Art54, suggests the ways in which

code art (encompassing code poetry, esoteric languages and obfuscated

code, among others) touches on code’s linguistic features mentioned by

Chandra and Cramer, while coming at it from a non-functional perspec-

tive, radically opposed to Knuth and Matsumoto.

The ambiguity of human language is present in code, which never

fully escapes its status as human writing, even when machine-

generated. Webring to code our excesses of language, and anam-

biguity of semantics, as discerned by the human reader. (Temkin,

2017)

The artists whosemainmedium is source code explore the possibilities

of meaning-making through mechanisms usually associated with poetry,

in both its spoken, written and executed forms55. Code poetry is a particu-

lar kind of writing source code, one which is focused on the evokative pos-

sibilities of machine languages, and on the generative interpretation of its

human readers, and away from an explicitly productive function. This is a

step further in a direction of semantic possibilities hinted at by Richard P.

Gabriel when he mentions the parallels between writing code and writing

poetry; in an interview with Janice J. Jeiss, he states:

I’m thinking about things like simplicity – how easy is it going to

be for someone to look at it later? Howwell is it fulfilling the over-

all design that I have in mind? How well does it fit into the ar-

chitecture? If I were writing a very long poem with many parts, I

would be thinking, ”Okay, how does this piece fit in with the other

pieces? How is it part of the bigger picture?”. When coding, I’m do-

ing similar things, and if you look at the source code of extremely
54A direct reference to Sol Lewitt’s Sentences on Conceptual Art.
55Evidently, code works like poetry in that it plays with structures of language itself, as well

as our corresponding perceptions. (Cox, Ward, & McLean, 2011)

141

print”a”x++$...$”x$.,$,=_;redo

Listing 35: all_the_names_of_god.pl - A perl poem with highly condensed

syntax (Montfort, 2014)

talented programmers, there’s beauty in it. There’s a lot of atten-

tion to compression, using theunderlyingprogramming language

in a way that’s easy to penetrate. Yes, writing code and writing

poetry are similar. (Jeiss, 2002)

Further exploring the semantic possibilities of considering source code

as a possiblemedium for poetic expression, one can turn to the analyses of

code poems in publications such as Ishaac Bertram’s edited volume, code

{poems} and Nick Montfort’s collected poems in #!.

In the former’s foreword, Jamie Allen develops this ability to express

oneself via machine languages, considering that programmers can have

”passionate conversations in Python” or, ”with a line in a text file, [...] speak

directly to function, material action, and agency” (Bertram, 2012). This is

done, not by relying on the computer as a generative device, but by har-

nessing the form and subject matter of those very machine languages

which subsequently can exhibit those generative properties. Focusing on

the language part of the machine allows for an interplay between human

and machine meanings.

Still, machine semantics are considered an essential device in writing

code poetry, and exploring concepts that are not easily grasped in natu-

ral languages—e.g. callbacks, asynchronous promises or destructuring as-

signments. Additionally, the contrast between the source representation

of the poem and its execution can add to the poetic tension, as we saw in

Listing 24, and here in Nick Montfort’s All The Names of God (2010) (source

in Listing 35, and output in Listing 36).

This poem is the object of close literary critical examination by Maria

142

_atk_atl_atm_atn_ato_atp_atq_atr_ats_att_atu_atv_atw_atx_aty_atz_au ⌋
a_aub_auc_aud_aue_auf_aug_auh_aui_auj_auk_aul_aum_aun_auo_aup_a ⌋
uq_aur_aus_aut_auu_auv_auw_aux_auy_auz_ava_avb_avc_avd_ave_avf_ ⌋
avg_avh_avi_avj_avk_avl_avm_avn_avo_avp_avq_avr_avs_avt_avu_avv ⌋
_avw_avx_avy_avz_awa_awb_awc_awd_awe_awf_awg_awh_awi_awj_awk_aw ⌋
l_awm_awn_awo_awp_awq_awr_aws_awt_awu_awv_aww_awx_awy_awz_axa_a ⌋
xb_axc_axd_axe_axf_axg_axh_axi_axj_axk_axl_axm_axn_axo_axp_axq_ ⌋
axr_axs_axt_axu_axv_axw_axx_axy_axz_aya_ayb_ayc_ayd_aye_ayf_ayg ⌋
_ayh_ayi_ayj_ayk_ayl_aym_ayn_ayo_ayp_ayq_ayr_ays_ayt_ayu_ayv_ay ⌋
w_ayx_ayy_ayz_aza_azb_azc_azd_aze_azf_azg_azh_azi_azj_azk_azl_a ⌋
zm_azn_azo_azp_azq_azr_azs_azt_azu_azv_azw_azx_azy_azz_baa_bab_ ⌋
bac_bad_bae_baf_bag_bah_bai_baj_bak_bal_bam_ban_bao_bap_baq_bar ⌋
_bas_bat_bau_bav_baw_bax_bay_baz_bba_bbb_bbc_bbd_bbe_bbf_bbg_bb ⌋
h_bbi_bbj_bbk_bbl_bbm_bbn_bbo_bbp_bbq_bbr_bbs_bbt_bbu_bbv_bbw_b ⌋
bx_bby_bbz_bca_bcb_bcc_bcd_bce_bcf_bcg_bch_bci_bcj_bck_bcl_bcm_ ⌋
bcn_bco_bcp_bcq_bcr_bcs_bct_bcu_bcv_bcw_bcx_bcy_bcz_bda_bdb_bdc ⌋
_bdd_bde_bdf_bdg_bdh_bdi_bdj_bdk_bdl_bdm_bdn_bdo_bdp_bdq_bdr_bd ⌋
s_bdt_bdu_bdv_bdw_bdx_bdy_bdz_bea_beb_bec_bed_bee_bef_beg_beh_b ⌋
ei_bej_bek_bel_bem_ben_beo_bep_beq_ber_bes_bet_beu_bev_bew_bex_ ⌋
bey_bez_bfa_bfb_bfc_bfd_bfe_bff_bfg_bfh_bfi_bfj_bfk_bfl_bfm_bfn ⌋
_bfo_bfp_bfq_bfr_bfs_bft_bfu_bfv_bfw_bfx_bfy_bfz_bga_bgb_bgc_bg ⌋
d_bge_bgf_bgg_bgh_bgi_bgj_bgk_bgl_bgm_bgn_bgo_bgp_bgq_bgr_bgs_b ⌋
gt_bgu_bgv_bgw_bgx_bgy_bgz_bha_bhb_bhc_bhd_bhe_bhf_bhg_bhh_bhi_ ⌋
bhj_bhk_bhl_bhm_bhn_bho_bhp_bhq_bhr_bhs_bht_bhu_bhv_bhw_bhx_bhy ⌋
_bhz_bia_bib_bic_bid_bie_bif_big_bih_bii_bij_bik_bil_bim_bin_bi ⌋
o_bip_biq_bir_bis_bit_biu_biv_biw_bix_biy_biz_bja_bjb_bjc_bjd_b ⌋
je_bjf_bjg_bjh_bji_bjj_bjk_bjl_bjm_bjn_bjo_bjp_

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Listing 36: all_the_names_of_god.txt - A selected section of the expansive

output from 35.

143

Aquilina, who notes that [t]he contrast between the economicalminimalism

of the program and the ordered but infinite series of letter combinations it

produces is one of the aspects that make the poem striking (Aquilina, 2015).

Building on philosophy and literary theorists, Aquilina situates the expres-

sive power of the poem in its engagement with the concept of eventual-

ization, locating the semantic load of the poem in its existence both in a

human-perception of the non-human (e.g. computer time) and the dia-

logue between source, output and title (Aquilina, 2015). In between an infi-

nite output and a one-line hack,All TheNames ofGod is in the formmonos-

tiche, a natural language poem composed of a one-line stanza, where the

aesthetic quality of minimalism is correlated with its expressive power.

Not only is there an aesthetic of minimalism present in the source, the

output also represents the depth (in Hayles’s sense) of the medium of writ-

ing. In this case, source code also supports academic literary analysis, thus

reinforcing a literary conception of source code aesthetics.

From software developers to artists, different kinds of writers seem to

equate code as a text, bringing forthmultiple reasons to justify such a con-

nection. Beyond the fact that source code ismade up of textual characters,

we see that these conceptions of code as literature are multiple. One per-

spective is focused on its need to communicate explicit concepts related

to its function (Knuth, Matsumoto, Brock), while a complementary persec-

tive embraces the semantic ambiguity which exists in the use of natural

language tokens, backed-up by the potential executable semantics enabled

by its machine nature (Cramer, Hayles, Montfort, Temkin).

This tension, between functional efficiency of the text, and dramatic

expressiveness of the poem, suggests a parallel with scientific practices.

This is something that Andrei Ershov points to in his 1972 address to the

Joint Computer Conference:

”A professional aesthetic influences and is influenced by the eth-

ical code of a profession, by the technical subject matter of the

144

profession, and by the profession’s juridical status. [...] The cre-

ative nature of programming does not require special proof. In-

deed, I may assert, programming goes a little further than most

other professions, and comes close to mathematics and creative

writing.” (Ershov, 1972)

2.3.2 Scientific beauty

Rooted in computer science’s thought and practice, the aesthetic experi-

ences of source code are also related to the scientific domain. Specifically,

it seems to exist in two distinct ways: whether code is beautiful in a similar

way that mathematics is, or whether code is beautiful according to princi-

ples at play in engineering.

Mathematics

A recurring point in programmers’ discussions of beauty in programming

is oftentimes the duality of the object of discussion: is one talking about

an algorithm, or about a particular implementation of an algorithm? While

this thesis is concerned with the latter, we now turn to how this relation-

ship between algorithm and implementation presents a similar tension as

the relationship between theorem and proof in mathematics.

Among the few discourses of a direct relation between code and beauty

from a mathematical perspective, we can see Edsger Dijkstra’s discussion

of the implementation of programming languages. In it, he starts from

computer science’s strong origin in mathematics (e.g. lambda calculus), to

show that this relation exists in part through, again, the concept of ele-

gance. Theorems and subroutines are compared as being similar essential

building blocks in the construction of a correct system. Correctness as the

ultimate aimof bothmathematics andprogramming takes place, hewrites,

by the use of a limited, efficient amount of those building blocks, result-

ing in a set of small, general and systemic concepts, in an elegant structure

145

(E. Dijkstra, 1963).

This parallel between source code and mathematics becomes clearer

when looking at the kinds of aesthetic effects which mathematics pos-

sess. Gian-Carlo Rota, in his investigation into mathematical beauty, dis-

tinguishes betweenmathematical beauty, a propertywhich in turn triggers

an aesthetic experience, and mathematical elegance, the concrete imple-

mentation thereof.

Although one cannot strive for mathematical beauty, one can

achieve elegance in the presentation of mathematics. In prepar-

ing to deliver a mathematics lecture, mathematicians often

choose to stress elegance and succeed in recasting the material

in a fashion that everyone will agree is elegant. Mathematical el-

egance has to do with the presentation of mathematics, and only

tangentially does it relate to its content. (Rota, 1997)

This separation between the beauty of a mathematical concept (the-

orem) and its presentation (proof) is reflected in the separation between

algorithm and computer program, as McAllister notes. According to him,

the beauty of source code is considered closer to the beauty inmathemati-

cal proofs, and as such abides by norms of exactness (over approximation)

and transparency (over cumbersoneness) (McAllister, 2005).

Specifically, mathematical proofs are supposed to fulfill the require-

ment of whatMcAllister calls graspability, that is, the tendency for a proof

to have the theorem it depends on grasped in a single act of mental appre-

hension by the reader. This, in turn, provides genuine understanding of

the reasons for the truths of the theorem. When seen as a form a math-

ematical beauty, code is therefore praised in being to convey its function

through concrete syntax; and linking aesthetic satisfaction with an econ-

omy of thought.

The first to employ such an expression, the mathematician Henri

Poincaré describes the rigor of a mathematical process as subsequently

146

template <std::size_t V>
auto floyd_warshall(std::array<std::array<int, V>, V> const &graph) {

auto dist = graph;

for(auto k: std::views::iota(0u, V))
for(auto i: std::views::iota(0u, V))

for(auto j: std::views::iot(0u, V))
if(dist[i][k] + dist[k][j] < dist[i][j])

dist[i][j] = dist[i][k] + dist[k][j];

return dist;
}

Listing 37: floyd_warshall.cpp - Implementation of the Floyd-Warshall al-

gorithm, showing an elegant implementation of a complex theory.

obtained by combining this economy of thought, a form of cognitive el-

egance, with the concept of harmony (Poincaré, 1908). By virtue of mathe-

matics being based on formal languages, this linguistic component intro-

duces a certain kind of structure, and the complexity of the problem do-

main ismademore harmonious by the reliance on such an invariant struc-

ture (i.e. the syntax of the formal language used). Source code as mathe-

matics can thus be seen as a cognitive structure, which the elements, based

on formal linguistics, can exhibit elegant aspects in their communication

of a broader concept.

One can find such connections betweenmathematical and source code

elegance in their conciseness to express established, complex ideas. For

instance, the implementation of the Floyd-Warshall algorithm reproduced

in Listing 37 is considered by Sy Brand as eliciting an aesthetic experience

(CPPP Conference, 2022).

Brand’s discussion of his aesthetic experience highlights another as-

pect of source code beauty: intellectual engagement. In order to appreci-

ate the aesthetics of a program text, one needs to taking an active stance

and understand what it is that the code (in the case of Listing 37 does, the

function) is trying to do. Once that is understood, one can then appreciate

the way in which the algorithm is implemented—that is, its aesthetics.

147

Engineering

As we have seen in our discussion of the relationship between computer

science and programming as a relationship between the abstract and the

concrete, one can see in these two activities a parallel in mathematics

and engineering, considered as both scientific endeavours. Engineering

is, like programming, the concrete implementation backed by deliberate

and careful planning, often with the help of formal notations, of a solution

to a given problem56. Mathematics, from this perspective, can be consid-

ered as one of the languages of engineering, among sketches, diagrams,

techniques, tools, etc.

Nonetheless, one of the central concepts in the practice of mathemat-

ics, elegance, can also be found, along with its connection to source code,

in engineering. BruceMcLennan examines such a connection from amore

holistic angle than that of a single act of mental apprehension, when look-

ing at a proof. He suggests that aesthetics in engineering also play a cog-

nitive role:

Since aesthetic judgment is a highly integrative cognitive process,

combining perception of subtle relationships with conscious and

unconscious intellectual and emotional interpretation, it can be

used to guide thedesignprocess by forminganoverall assessment

of themyriad interactions in a complex software system. (Schum-

mer, MacLennan, & Taylor, 2009)

His point is that software is too complex to be easily verified, and that

tools to help us do so are still limited. This complexity sets our intuition

adrift and analytical resources are not always enough to understand what

is going on in a given program text. In order to handle this, he proposes

to shift the attention from an analytical to phenomenological one, from
56Indeed, software development is also referred to as software engineering (Bourque &

Fairley, 2014); we chose to refer to the former due to its referencing to a broader set of prac-

tictionners.

148

the details to the general impression. Engineering, like mathematics, ul-

timately aim at being correct, albeit in different ways. While the latter

can rely on succint formal propositions and representations to achieve this

purpose, engineering composes toomanymoving parts of different nature.

The specificity lies in the nature of software engineering’s materials:

All arts have their formal and material characteristics, but soft-

ware engineering is exceptional in the degree to which formal

considerations dominate material ones. (Schummer et al., 2009)

Andyet, the development of his arguments remains on thephenomeno-

logical side, distant from the standards of mathematic abstraction. In en-

gineering, he argues, the design looks unbalanced if the forces are unbal-

anced, and the design looks stable if it is stable. By restricting our attention

to designs in which the interaction of features is manifest—in which good

interactions look good, and bad interactions look bad—we can let our aes-

thetic sense guide our design, relying on concepts of efficiency, economy

and elegance (McLennan, 1997).

The sciences, and specifically mathematics and engineering, have their

own set of aesthetics standards, to which source code seems to be con-

nected to. Still, the idea of elegance remains central to both mathematical

and engineering approaches, as itmeasures thenumber and conciseness of

the theory’s basic principles, or of the structure’s basic components, while

keeping the need for an overall effect, whether as enlightenment formath-

ematics, in which larger implications are gained from a particular way a

proof of a theorem is presented, or as an ecompassing gestalt impression

in engineering, in which a program that looks correct, would most likely

be correct.

Two concepts touched upon by both approaches are that of structure

and know-how. While mathematics deal with formal structures to repre-

sent and frame the complexity of the world, engineering deals with con-

crete structures offered as solutions to a specific problem. In both do-

149

mains, there is also a reference to a certain sense of intuition, which en-

ables cognitive discovery of a functional artefact (whether amabstract the-

orem or a concrete construction), something we also find when exploring

parallels with architecture

2.3.3 Architectural beauty

Beyond a more official understanding of software architecture (see sub-

section 2.1.1), architecture is used extensively as a metaphor for code. In

this section, wewill look at architecture from two complementary perspec-

tives: as a top-down approach, and as a bottom-up practice. This will al-

low us to touch on notions of structure, form and function, and provides

us with another perspective which will bring into light the idea of craft.

Formal organization

Software architecture emerged as a consequence of the structured revolu-

tion (E. W. Dijkstra, 1972), which was concernedmore with the higher-level

organization of code in order to ensure the quality of the software pro-

duced. Such an assurance was suggested by Dijkstra in two ways: by en-

suring the provability of programs in a rigorously mathematic approach,

and by ensuring that programs remained as readable as possible for the

programmers. Structure, complementing syntax, has therefore been an

essential component of the intelligibility of software since the 1970s. It

is only in the late 1990s that software architecture has been recognized as

a distinct discipline, and completely separated from the actual act of pro-

gramming.

[...] software architectural models are intended to describe the

structure and behavior of a system in terms of computational en-

tities, their interactions and its compositionpatterns, so to reason

about systems at more abstract level, disregarding implementa-

150

tion details. (Garland, 2000)

When Mary Shaw and David Garland publish their 1996 book Software

architecture : perspectives on an emerging discipline, they mark the be-

ginning of a trend of so-called architectural practices within the field of

software development. These two fields overlap on the topic of structure.

Through rigorous, high-level formal organization, the idea was to bring in

a more normative approach to writing code, in the hope that this struc-

ture would support correctness and efficiency. Building on this need for

structure, software architecture has thus developed into an approach to

software patterns, modelling and documentation, through the overall pro-

cesses, communications, inputs and outputs of a system can be formally

described and verified.

As an example, the Linux Kernel’s architecture can be considered one

of the reasons why the project became so popular once integrated into the

GNU ecosystem. Alongwith its distribution license, two of its defining fea-

tures are speed and portability. While speed can be attributed to its use of

C code, also responsible to some extent for its portability, the architecture

of the kernel is separated in multiple components which make its exten-

sion simple. On one side is the monolithic architecture of the kernel, in

which process and memory management, virtual file systems, input/out-

put schedulers, device drivers and network interfaces are all lumped to-

gether in kernel space. This tight integrationwould result in a high-barrier

to entry for potential contributors: in such a monolithic system, it is hard

to know how a change to a part of the system would affect other parts.

However, this architecture also allows for dynamically loadable kernel

modules, software components which can be added and removed to the

operating system without interference with the core features. This pro-

vides a quality of extendability which further contributes to the success

of the ecosystem of the Linux ecosystem: there is a reliable core, but also

room for extension.

151

An architecture, such as that of the Linux kernel, thus provides signifi-

cant semantic content about the kinds of properties that developers should

be concerned about and the expected paths of evolution of the overall sys-

tem, as well as its subparts. The blueprint of the software is made clear

enough that it is simple for programmers tofinda correctway to contribute

to it. Other architectures include, for instance, the client-server architec-

ture (with the peer-to-peer architecture as an alternative), the model-view-

controller architecture (and its presentation-abstraction-control counter-

part)57. In all of those cases, a familiar organization of a program texts files

and delimitations of its functions lowers the barrier to entry for a program-

mer, and in this sense contributing to making the program texts writerly

texts.

Eric Raymond develops this praise of the Linux kernel in his book The

Cathedral and the Bazaar. This essay describes the Linux project, the open-

source philosophy it propelled into the limelight, and how the quantity of

self-motivated workers without rigid working structures (which is not to

say without clear designs) can result in better work than if made by a few,

select, highly-skilled individuals (E. S. Raymond, 2001). While the cathedral

is traditionally considered more aesthetically pleasing than the bazaar, in

terms of architectural canon, Raymond sides with a bazaar-like model of

organization, in which all development is done in public, with a very loose,

horizontal contribution structure at any stage of the software lifecycle—as

opposed to a tightly guided softwareprojectwhosedevelopment is doneby

a restricted number of developers. While he doesn’t mention specific aes-

thetic standards in his essay, he does highlight parallels in practices and

processes, laying foundations on which to build such standards. Architec-

57One can even find their source in chip design, with Friedrich Kittler famously claiming

that the last people who ever truly wrote anything where the Intel engineers laying out the

plan of the 8086 chip (which would engender the whole family of x86-based devices) (Kittler,

1997). In this case, this instance is one of the few which relates software architecture to its

physical counterpart, albeit in a very technical sense of plans and diagrams.

152

ture is thus both a model for the planning of the construction of artefacts,

and a model for the organization of the persons constructing these arte-

facts.

Concepts such asmodularity, spatial organization or inter-dependence,

it turns out, could be applied to both fields. There are only few explicit ref-

erences to beauty in software architecture design; instead, desirable prop-

erties are those of performance, security, availability, functionality, usabil-

ity, modifiability, portability, reusability, integrability and testability. Per-

haps this is due to the fact that the traditional understanding of beauty in

terms of external manifestation—decoration—isn’t here the main point of

software architecture, but rather a functional perception of it.

Overall, this functional conception of architecture can also be found in

the trade litterature. For instance, Robert Martin, in the influential Clean

Code mentions that the standards of software architecture are based on

the 5S japanese workplace organization method, namely:

• seiri (整理) - naming and sorting all components used

• seiton (整頓) - placing things where they belong

• seisō (清掃) - cleanliness

• seiketsu (清潔) - standardization and consistency in use

• shitsuke (躾) - self-discipline

This confirms the focus on efficiency, organization and proper use,

along with the requirement of cleanliness of the tools, workbench and

workplace, as a virtue of a good organization. While originally applied to

manufacture, Martin makes the case that this can also apply to the knowl-

edge economy—as in the case of programming, with correct naming, cor-

rect placement, correct appearance and correct use.

This does notmean that the a priori distant approach to software archi-

tecture, one which excludes any concrete writing of source code, negates

153

any sort of personality. Style is indeed present in software architecture. In

this context, an architectural style typically specifies a design vocabulary,

constraints on how that vocabulary is used, and semantic assumptions

about that vocabulary. For example, a pipe-and-filter style might specify a

vocabulary inwhich the processing components are data transformers (fil-

ters), and the interactions are via order-preserving streams (pipes). When it

comes down to programming such an architectural style, pipes and filters

do have a very real existence in the lines of source code. These concepts

are inscribed as the | character for pipes, or the .filter() method on the

JavaScript array type, which itself has different ways of being written (e.g.

with an anonymous callback function, or an externally defined function).

By virtue of there being different ways being written, one can always ar-

gue for whether or not one is better than the other, ultimately resulting in

better, clearer program texts.

More specifically, the aesthetic manifestations in the form of source

code enter in a dialogue with software architecture. If a good system ar-

chitecture should first and foremost exhbit conceptual integrity (Spinellis

& Gousios, 2009), one can extend this integrity to its source code mani-

festation. A message-passing architecture with a series of global variables

at the top of each file, or an HTTP server which also subscribes to event

channels, would look ugly to most, since they betray their original orga-

nizational concept. These concrete manifestations of a local texture of in-

coherence, to paraphrase Beardsley, might be more akin to a code smell, a

hint that something in the programmight be deeply wrong.

Amongarchitectural styles, it seems that brutalism is the one that tends

to be equated the most with styles of programming. Simon Yuill, in the

volume edited by Olga Goriunova and Alexei Shulgin, develop a paral-

lel between code art and this style of architecture. Characterized by its

foregrounding of the raw materials constituting the building, Brutalism

foregoes decoration or ornament to focus on direct utility. Yuill, building

on the HAKMEM document circulated at MIT’s computer science depart-

154

ment in 1972, equates this approach to a coding close to the ”baremetal” of

the computer, using the Assembly language. Contrary to higher-level lan-

guages such as C or Java, Assembly engages directly with the intricacies of

specific machines, and underlines the fundamental necessity of the hard-

ware and the need to acknowledge such a primacy. Beyond this material-

ity, he also equates other architectural values such as modularity present

in the work of architects such as Le Corbusier or Kunio Mayekawa, as well

as in programs such as the UNIX operating system (Yuill, 2004). What we

see here is yet another reference from software to architecture, focusing

this time on the reality of hardware, and on some theoretical principles

similar in postwar Western architecture.

Good source code, from a software architecture perspective, is code

which is clearly organized, respecting a formalized blueprint, but does not

need to exclude the reality of written lines of source code. A combination

of these properties, and acknowledgment of the medium used, can then

support an aesthetic experience. As Robin K. Hill mentions in her essay on

software elegance:

Brevity by itself can’t be enough; the C loop control while(i++ <

10)maybe terse, excelling in brevity, but its elegance is debatable.

I would call it, in the architectural sense, brutalism. Architecture

provides nice analogues because it also strives to construct arti-

facts that meet specifications under material constraints, prizing

especially those artifacts thatmanifest beauty as well. (Hill, 2016)

Both in Yuill and in Hill, we find an interesting parallel in the mention

ofmateriality. Source codemight at first seem to be immaterial, consisting

of layered representations of electrical current, there is nonetheless a cer-

tain kind of tangibility which can be pointed to. Lines being re-arranged,

symmetrical or out of alignment, blocks being cut and pasted, these op-

erations all hint at a certain material engagement with the program text,

rather than with its abstract model of software architecture. Considering

155

architecture as a bottom-up practice of constructing spaces, one can turn

to programmers’ discourses on craft to support this material conception.

Crafting software

Considering architecture as a strictly organizational practice does not

show the whole picture, as there is another side to architecture, concerned

with details rather than with plans, feeling rather than rationalizing.

In their introduction to the field of sofware architecture, Shaw andGar-

land summon theneed to formalise thepractice as thepracticemoves from

craft to engineering (Shaw & Garlan, 1996). Originally, the reality of care-

fully crafted, individualized code andunconstrained approaches towriting

code58 was looked down upon by Dijkstra, Knuth and other early software

practitioners, for its idiosyncracy and lack of rigor.

However, the conception of programming as a craft has become more

and more popular amongst source code writers and readers (Seibel, 2009;

Spolosky, 2003). For instance, Paul Graham, LISP programmer, co-founder

of the Y Combinator startup accelerator and widely-read blogger, high-

lights the status of programming languages as amediumand craft as away

to approach it, in his essayHackers and Painters (P. Graham, 2003). Particu-

larly, he stresses the materiality of code, depicting hackers and craftsmen

as people who:

are trying to write interesting software, and for whom computers

are just a medium of expression, as concrete is for architects or

paint for painters.

So, while links between craftsmanship and programming have existed

as self-proclaimed ones by programmers themselves, as well as by aca-

demics and writers (Chandra, 2014; Sennett, 2009), they have not yet been

elucidated under specific angles. Craftsmanship as such is an ever-fleeting
58See The Story of Mel, A Real Programmer, a folktale of early programmers where hand-

made code is both incredibly fast and incredibly hard to understand (Nather, 1983).

156

phenomenon, a practice rather than a theory, in the vein of Michel De

Certeau’s tactics, bottom-up actions designed and implemented by the

users of a situation, product or technology as opposed to strategies, in

which ways of doing are prescribed in a top-down fashion (de Certeau et

al., 1990).

Explicit knowledge, in programming as in most disciplines, is carried

through books, academic programs and,more recently, web-based content

that is either structured (e.g. MOOCs, Codeacademy, Khan Academy) or

unstructured (e.g. blog posts, forums, IRC channels), but both seem to be

insufficient to reach an expert level (Davies, 1993). As demonstrated by a

popular comic, the road to good code is unclear, particularlywhen commu-

nicated in such a highly-formal language as diagramming (Munroe, 2011).

Given the fact that an individual can become a programmer through non-

formal training—as opposed to, say, an engineer or a scientist—, the learn-

ing process must include implicit knowledge.

The acquisition of such implicit knowledge in programming is re-

interpretated through fictional accounts designed to impart wisdom on

the readers, and taking inspiration from Taoism and Zen (James, 1987;

E. S. Raymond & Steele, 1996). From higher-level programming wisdom

featuring leading programmers such asMarvinMinsky andDonald Knuth,

this sort of informal teaching by showing has been implemented in vari-

ous languages as a practical learning experience. Without the presence of

an actual master, the programming apprentice nonetheless takes the pro-

gram writer as their master to achieve each of the tasks assigned to them.

The experience historically assigned to the master craftsman is delegated

into the code itself, containing both the problem, the solution to the prob-

lem and hints to solve it, straddling the line between formal exercises and

interactive practice (Depaz, 2021).

If implicit knowledge can be acquired through a showing and copying

of code, software development as a craft presents an additional dimension

to this, a sort of piecemeal knowledge. Best represented by Stack Overflow,

157

a leading question and answer forum for programmers, on which code

snippets are made available as part of the teaching by showing method-

ology, this piecemeal knowledge can both help programmers in solving

issues as well as deter them in solving issues properly (Treude & Robillard,

2017). Code as such is freely and easily accessible as piecemeals, but often

lacks the essential context.

So while programmers are used to acquire implicit knowledge through

a process of learning by doing (realizing koans, coding small projects, re-

using copied code), wenowneed to assess howmuchof it happens through

observing. Implied in the apprentice-master relationship is that what is

observed should be of good quality; one learns through ones ownmistakes,

and through ones presentation with examples of good work59.

Considering programming a craft therefore raises questions of practice

and knowledge, but also of standards of quality. In terms of aesthetic ex-

perience, it also hints at the role that style, ornament and function play

in the value assessment of a well-crafted program text, just as in a well-

crafted program text. These themes will act as a recurring thread through-

out this study. Specifically, we will discuss the role of tacit knowledge in

the programming practice in subsection 3.1.2, and the role of tools in sub-

section 3.3.2; in terms of aesthetics, the place of style between individiual

and collective will be analyzed in subsection 5.1.3 before developing a fur-

ther approach code’s material aesthetics as refied knowledge in subsec-

tion 4.3.3

Ultimately, architecture, when referenced by software, includes at least

two distinct approaches: a top-down, formal design, and a bottom-up, ma-

terialist approach, reflected in how software also refers to architecture: as

abstract planning or as hands-on construction, both holding different, but

59Coming back to the relationship between architecture and software, Christopher

Alexander asks, in the preface of Richard P. Gabriel’s Patterns of Software: ”For a program-

mer, what is a comparable goal? What is the Chartres of programming? What task is at a high

enough level to inspire people writing programs, to reach for the stars?” (Gabriel, 1998).

158

overlapping aesthetic standards. One the one side, we have cleanliness,

orderliness and appropriateness, following interpersonal conventions; on

the other side, we have a highly individual and informal practice ofmaking

which subsists along its explicit counterpart.

Architecture is indeed a field that exists at the intersection of multiple

other fields: engineering, art, design, physics and politics. As the organiza-

tion of space, one canproject it onto non-physical spaces, such as software,

and the way that it takes shape within the medium of source code will be

more thoroughly explored in section 4.3. As such, it provides another peek

into the relationship between function and form, andhow it ismediated by

the materials in which a certain structure is built, whether it is a physical

structure, or a mental structure which only exists in a written form.

When talking about the aesthetics of source code, programmers tend

to refer to three main, different domains. Each of these both reveal and

obscure certain aspects of what they value in the reading and writing of

program texts.

By referring to code as text, its linguistic nature is highlighted, along

with its problematic relationship to natural languages—problematic inso-

far as its ambiguity can play against its desire to be clear and understood,

or can play in favor of poetic undertones. The standards expressed here

touch upon the specific syntax used towrite programming, its relationship

to natural language and its potential for expressivity.

Considering the formal nature of source code, scientific metaphors

equate source code as having the potential to exhibit similar properties

as mathematical proofs and theorems, in which the elegance of the proof

isn’t a tight coupling with the theorem to be proved, but in which an el-

egant proof can (and, according to some, should) enlighten the reader to

deeper truths. Conversely, these scientific references also include engi-

neering, in which the applicability, its correctness and efficiency are of

prime importance: the conception of elegance, accompanied by economy

159

and efficiency, becomes a more holistic one, tending to the general feeling

of the structure at hand, rather than to its specific formalisms.

These references to engineering then lead us to the last of the do-

mains: architecture. Presented as both relevant from a top-down perspec-

tive (with formal modelling languages and descriptions, among others) or

from a bottom-up (including software patterns and familiarity and appro-

priateness within a given context). These similarities between software

in architecture, both in planning, in practice and in outlook, touch upon

another subject: the place of formal and informal knowledges in the con-

struction, maintenance and transmission of those (software) structures.

In this first chapter, we laid out the ground work for our discussion

of source code aesthetics. This groundwork is composed of several as-

pects. First, we have established the diversity of who writes code: far from

a homogeneous crowd which would reflect an abstraction conception of

”code”, code writers include inviduals whomight share the practices of en-

gineers, hackers, scientists or poets. While these categories do not have

rigid boundaries and easily overlap, they do allow us to establish more

clearly the contexts and purposes within which code can be read and writ-

ten: hacker code and engineer code look different from each other, achieve

different purposes than poetic code, abide by different requirements than

scientific code. Within each of these conceptions, a judgment of what

looks good will therefore be different. A conception of the aesthetics of

code seems then, at first, to possess some degree of relativity.

Second, we built on Erik Piñeiro’s work to complete a survey of the lex-

ical fields that programmers use when they describe or refer to beautiful

code. In so doing, we have highlighted certain desirable properties, such as

clarity, cleanliness, and elegance—as opposed to, say, thrilling, moving, or

delicate. This survey involved an analysis of textual instances of program-

160

mers’ discourses: through blog posts, forum discussions, journal articles

or textbooks, showing a steadiness in the expression of a certain aesthetic

inclination since the beginning of the trade. Additionally, the study of our

negative terms pointed further to sensual metaphors of code, using paral-

lels with smell and texture. As a ”big ball of mud”, a ”pile of spaghetti” or

full of ”smelly corners”, ugly code is something where its appearance pre-

vents the reader or writer to grasp its true purpose—what it actually does.

While those terms are being recurrrently used to qualify aesthetically

pleasing code, our survey has also pointed to specific domains which pro-

grammers use as metaphors to communicate the nature of their aesthetic

appreciation: by referring to science, literature and architecture. Each

of these metaphors, sometimes simultaneously, select specific parts from

their source domain in order to adapt to inform one’s appreciation of good

source code. Literature brings linguistics, but not narrative; science brings

formalism and engineering, but not style nor individuality; architecture

brings structure and craft, but not building codes nor end-usage. These

domains are thus better understood as the different parts of a Venn dia-

gram, as practictionners attempt to define what it means to do what they

do well. This was confirmed by our investigation into the connections be-

tween craft and code, looking specifically at how craft practices inform

relations between skill, knowledge, function, space and beauty.

The overlap of these different domains has to do, it turns out, with cog-

nitive clarity. Whether wrangling with the linguistic tokens in literary ex-

ercises, as Geoff Cox puts it:

It may be hard to understand someone else’s code but the com-

puter is, after all, multi-lingual. In this sense, understanding

someone else’s code is very much like listening to poetry in a for-

eign language - the appreciation goes beyondamere understand-

ing of the syntax or form of the language used, and as such trans-

lation is infamously problematic. Form and function should not

161

be falsely separated. (Cox et al., 2011)

One function of aesthetics might thus be in structuring various pieces

of code such that their organization is robust and communicated to others

such that it allows for future maintenance and expansion. Another might

bewriting lines of code in a certainway in order to hint at some larger con-

cepts and ideas beyond their immediate execution result such as in hack-

ing or code poetry. In any case, these domains are all mentioned in their

ability to vehiculate ideas from one individual to another—as opposed to,

say, elicit self-reflection or sublime physical pleasure. It seems that beau-

tiful code is then both functional code and understandable code.

Before we investigate precisely how aesthetics enable the understand-

ing of computer programs, we will first explicit what makes software a

cognitively complex object. The next chapter first highlights the status of

software as an abstract artifact, before investigating the means that pro-

grammers use to understand the computational phenomena that happen

at their fingertips.

162

Chapter 3

Understanding source code

Aesthetics in source code are thus primarily related to understanding. In

the previous chapter, we have highlighted a focus on understanding when

it comes to aesthetic standards: whether obfuscating or illuminating, the

process of acquiring a mental model of a given computational object is a

key determinant in the value judgment as applied to source code. In this

chapter, we focus on the reason for which software involves such a cogni-

tive load, before surveying the means—both linguistic and mechanistic—

that programmers deploy in order to relieve such a load.

This requirement for understanding, whether in a serious, playful or po-

etic manner, is related to one of the essential features of software: it must

be functional. As mentioned in our discussion of the differences between

source code and software in the introduction, source code is the latent de-

scription of what the software will ultimately do. Similarly to sheet music,

or to cooking recipes1, they require to be put into action in order for their

users (musicians and cooks, respectively) to assess their value. Therefore,

buggy or dysfunctional software is always going to be of less value than

correct software (Hill, 2016), regardless of how aesthetically pleasing the

1Recipes are a recurring example taken to communicate the concept of an algorithm to

non-experts (Zeller, 2020)

163

source is. Any value judgment regarding the aesthetics of the source code

would be subject to whether or not the software functions correctly, and

such judgment is rendered moot if that software does not work.

The assessment of whether a piece of software functions correctly can

be broken down in several sub-parts: knowing what the software effec-

tively does, what it is supposed to do, being able to tell whether these two

things are aligned, and understanding how it does it. After deciding on a

benchmark to assess the functionality of the source code at hand (under-

standing what it should be doing), one must then determine the actual be-

havior of the source code at hand once it is executed (understanding what

it is actually doing). Due to its writerly nature, one must also understand

how a program text does it, in order to modify it.

This chapter examines what goes into understanding source code:

given a certain nature of knowledge acquisition, we look at some of the

features of computers that make them hard to grasp, and the kind of tech-

niques are deployed in order to address these hurdles. This will have us

investigate the relationship of knowing and doing, the nature of computa-

tion (what is software?) and its relationship to the world as it appears to

us (how does modelling and abstraction translate a problem domain into

software?), and the cognitive scaffoldings set up in response to facilitate

that task. Ultimately, we show that, given our definition of understanding,

the complex nature of software objects and the diverse techniques pro-

grammers use to grasp these objects, aesthetics of source code also hold

a significant place in this understanding process, a position we develop in

chapter 5.

The first part will lay out our definition of understanding, presenting

it as a dual phenomenon, between formalism and contextualism. Starting

with 20th century epistemology, we will see that theoretical computer sci-

ence research has favored a dominantly rational, cognitivist perspective

on the nature of understanding, eschewing another mode of understand-

ing suggested by craft practices.

164

Having highlighted this tension, we then turn to how understanding

the phenomenon of computation specifically, starting from an ontological

level. The ontological approach will show some of the features of software

give it the status of an abstract artifact (Irmak, 2012), and thus highlighting

in which ways is software a complex object to grasp. We then complement

this ontological perspective by a more practical, psychological approach.

This will show how such a comprehension takes place for situated pro-

grammers, at different skill levels, anticipating how aesthetics can fit in

this model.

Finally, we will conclude with the means that programmers deploy to

grasp the concepts at play with software: starting from metaphors used

by the general public, we will then see to what extent they differ from the

metaphors used by programmers in order to understand the systems they

build and work with. In the end, particular attention will be paid to their

extendedcognition the technical apparatusesused in thedevelopment and

inspection of source code.

3.1 Formal and contextual understandings

This section elaborates our definitionof understanding—theprocess of ac-

quiring a working knowledge of an object2. Such definition relies on two

main aspects: a formal, abstract understanding, and amore subjective, em-

pirical one. Wewill see how the former had some traction in computer sci-

ences circles, while the second gained traction in programming circles. To

support those two approaches, we first trace back the genealogy of under-

standing in theoretical computer science, before outlining how concrete

2Or, as Catherine Elgin puts it: ”The cognitive competence involved in understanding is

generally characterized as grasping. Propositional understanding involves grasping a fact; ob-

jectual understanding consists of grasping a range of phenomena. This seems right. But it is

not clear what grasping is. I suggest that to grasp a proposition or an account is at least in part

to know how to wield it to further ones epistemic ends” (Elgin, 2017)

165

complementary approaches centered around experience and situatedness

outline an alternative tradition.

3.1.1 Between formal and informal

Understanding can be differentiated between the object of understanding

and the means of understanding (Elgin, 2017). Here, we concern ourselves

with themeans of understanding, particularly as they are related to the de-

velopment of computer science. As the science of information processing,

the field is closely involved in the representation of knowledge, a represen-

tation that programmers then have to make their own.

Theoretical foundations of formal understanding

The theoretical roots of modern computation can be traced back to the

early 20th century in Cambridge were being laid by both philosophers of

logic and mathematicians, such as Bertand Russell, Ludwig Wittgenstein,

and Alan Turing, as they worked on the formalization of thinking. In

their work, we will see that the formalization of knowledge operations are

rooted in an operation representation of knowledge.

Wittgenstein, in particular, bases his argumentation in his Tractatus

Logico-philosophicus on the fact that much of the problems in philosophy

are rather problems of understanding between philosophers—if one were

to express oneself clearly, and to articulate one’s through clear, unambigu-

ous language, a common conclusion could be reached without much ef-

fort3. The stakes presented are thus those of understandingwhat language

really is, and how to use it effectively to, in turn, make oneself understood.

The demonstration that Wittgenstein undertakes is that language and

logic are closely connected. Articulated in separate points and sub-points,

his work conjugates aphorisms with logical propositions depending on

3”Most questions and propositions of the philosophers result from the fact that we do not

understand the logic of our language” (Wittgenstein, 2010).

166

one another, developing from broader statements into more specific pre-

cisions, going down levels of abstraction through increasing bulleted lists.

Through the stylistic organization of his work, Wittgenstein hints at the

possibility to consider language, itself pre-requisite for understanding, as

a form of logic This complements the older approach to consider logic as

a form of language. In this sense, he stands in the lineage of Gottfried

Leibniz’s Ars Combinatoria, since Leibniz considers that one can formal-

ize a certain language (not necessarily natural languages such as German

or Latin), in order to design a perfectly explicity linguistic system. A uni-

versal, and universally-understandable language, called a characteristica

universalis could resolve anymisunderstanding issues. Quoted by Russell,

Leibniz notes that:

If we had it [a characteristica universalis], we should be able to

reason inmetaphysics andmorals inmuch the sameway as in ge-

ometry and analysis… If controversies were to arise, there would

be no more need of disputation between two philosophers than

between two accountants […] Let us calculate. (Russell, 1950)

Centuries after Leibniz’s declaration, Wittgenstein presents a coherent,

articulated theory of meaning through the use of mathematical philoso-

phy, and logic. His work also fits with that of Bertrand Russell and Alfred

Whitehead who, in his Principia Mathematica, attempt to lay out a precise

and convenient notation in order to express mathematical notations; sim-

ilarly, Gottlieb Frege’s work attempted to constitute a language in which

all scientific statements could be evaluated, by paying particular attention

to clarifying the semantic uncertainties between a specific sentence and

how it refers to a concept (Korte, 2010).

Even though these approaches differ from, and sometimes argue with4,

4See, ironically, Frege’s critique of Russell and Whitehead’s work, quoted in the Stanford

Encyclopedia of Philosophy: ”I do not understand the English language well enough to be able

to say definitely that Russell’s theory (Principia Mathematica I, 54ff) agrees with my theory of

167

one another, we consider them to be part of a broad endeavour to find a

linguistic basis to express formal propositions through which one could

establish truth-values.

Such works on formal languages as ameans of knowledge processing a

direct influence in the work on mathematician Alan Turing—who studied

at Cambridge and followed some of Wittgenstein’s lectures—, as he devel-

oped his own formal system for solving complex, abstract mathematical

problems, manifested as a symbolic machine (A. Turing, 1936). Meaning

formally expressed was to be mechanically processed.

The design of this symbol-processing machine, subsequently known

as the Turing machine, is a further step in engaging with the question of

knowledgeprocessing in themathematical sense, aswell as in the practical

sense—a formal proof to the Entscheidungsproblem solved mechanically.

Indeed, it is a response to the questions of translation (of a problem) and

of implementation (of a solution), hitherto considered a basis for under-

standing, since solving a mathematical problem supposed, at the time, to

be able to understand it.

This formal approach to instructingmachines to operate on logic state-

ments then prompted Turing to investigate the question of intelligence

and comprehension in Computing Machinery and Intelligence. In it, he

translates the hazy term of ”thinking” machines into that of ”conversing”

machines, conversation being a practical human activity which involves

listening, understanding and answering (i.e. input, process and output;

or attention, comprehension, diction) (A. M. Turing, 2009). This conver-

sational test, which has become a benchmark for machine intelligence,

would naively imply the need for a machine to understand what is being

said.

Throughout the article, Turing does not yet address the need for a

functions of the first, second, etc. levels. It does seem so. But I do not understand all of it. It

is not quite clear to me what Russell intends with his designation ϕ!x�. I never know for sure

whether he is speaking of a sign or of its content.” (Linsky & Irvine, 2022)

168

purely formal approach of whether or not a problem can be translated into

atomistic symbols, as we can imagine Leibniz would have had it which

would be provided as an input to a digital computer. Such a process of

translation would rely on a formal approach, similar to that laid out in the

Tractatus Logico-philosophicus, or on Frege’s formal language described in

the Begriffschrift. Following a cartesian approach, the idea in both authors

is to break down a concept, or a proposition, into sub-propositions, in or-

der to recursively establish the truth of each of these sub-propositions, and

then re-assembled to deduce the truth-value of the original proposition.

Logical calculus, as the integration of the symbol into relationships of

many symbols formally takes place through two stylistic mechanisms, the

symbol and the list. Each of the works by Frege, Russell and Wittgenstein

quoted above are structured in terms of lists and sub-lists, representing

the stylistic pendant to the epistemological approach of related, atomistic

propositions and sub-propositions. A list, far from being an innate way of

organizing information in humans, is a particular approach to language:

extracting elements from their original, situated existence, and reconnect-

ing ways in very rigorous, strictly-defined ways5.

As inventories, early textbooks, administrative documents as public

mnemotechnique, the list is a way of taking symbols, pictorial language

elements in order to re-assemble them to reconstitute the world, then re-

assemble it from blocks, following an assumption that the world can al-

ways be decomposed into smaller, discrete and conceptually coherent units

(i.e. symbols). One can then decompose a thought in a list, and expect a

counterpart to recompose this thought by perusing it. As a symbol system,

lists establish clear-cut boundaries, are simple, abstract and discontinu-

ous; incidentally, this makes it very suited to a discrete symbol-processing

machine such as the computer (Depaz, 2023).

5Jack Goody develops the influence of notation on cognition: ”[List-making] […] is an ex-

ample of the kind of decontextualization that writing promotes, and one that gives the mind a

special kind of lever on ’reality’.” (Goody, 1977)

169

With these sophisticated syntactic systems developed a certain ap-

proach to cognition, as Turing clearly establishes a possibility for a digital

computer to achieve the intellectual capacities of a human brain.

But as Turing focuses on the philosophical andmoral arguments to the

possibility formachines to think, he does address the issue of formalism in

developing machine intelligence. Particularly, he acknowledges the need

for intuition in, and self-development of, the machine in order to reach a

level at which it can be said that the machine is intelligent. The question

is then whether one is able to represent such concepts of intuition and de-

velopment in formal systems. We now turn to the form of these systems,

looking at how their form addresses the problem of clearly understanding

and operating on mathematical and logical statements.

Being based on some singular, symbolical entity, the representation of

logical calculus into lists and symbols, within a computing environment,

becomes the next step in exploring these tools for thinking, in the form

of programming languages. Considering understanding through a formal

lens can then be confronted to the real world: when programmed using

those formal languages, how much can a computer understand?

Practical attempts at implementing formal understanding

This putting into practice relies on a continued assumption of human cog-

nition as an abstract, logical phenomenon. Practically, programming lan-

guages could logically express operations to be performed by themachine.

The first of these languages is IPL, the Information Processing Lan-

guage, created by Allen Newell, Cliff Shaw and Herbert A. Simon. The idea

was to make programs understand and solve problems, through ”the sim-

ulation of cognitive processes” (Newell, Tonge, Feigenbaum, Green Jr., &

Mealy, 1964). IPL achieves this with the symbol as its fundamental con-

struct, which at the timewas still largelymapped to physical addresses and

cells in the computer’s memory, and not yet decoupled from hardware.

170

IPL was originally designed to demonstrate the theorems of Russell’s

Principia Mathematica, along with a couple of early AI programs, such as

the Logic Theorist, the General Problem Solver. As such, it proves to be a

link between the ideas exposed in the writing of the mathematical logi-

cians and the actual design and construction of electrical machines acti-

vating these ideas. More a proof of concept than a versatile language, IPL

was then quickly replaced by LISP as the linguistic means to express intel-

ligence in digital computers (see section 2.1.3).

This structure of Lisp is quite similar to the approach suggested by

Noam Chomsky in his Syntactic Structures, where he posits the tree struc-

ture of language, as a decomposition of sentences until the smallest con-

ceptually coherent parts (e.g. Phrase -> Noun-Phrase + Verb-Phrase -> Arti-

cle + Substantive + Verb-Phrase). The style is similar, insofar as it proposes

a general ruleset (or the at least the existence of one) in order to construct

complex structures through simple parts.

Through its direct manipulation of conceptual units upon which logic

operations can be executed, LISP became the language of AI, an intelli-

gence conceived first and foremost as logical understanding. The use of

LISP as a research tool culminated in the SHRDLU program, a natural lan-

guage understanding program built in 1968-1970 by TerryWinograd which

aimed at tackling the issue of situatedness—AI can understand things ab-

tractly through logical mathematics, but can it apply these rules within

a given context? The program had the particularity of functioning with

a ”blocks world” a highly simplified version of a physical environment—

bringing the primary qualities of abstraction into solid grasp. The com-

puter system was expected to take into account the rest of the world and

interact in natural language with a human, about this world (Where is the

red cube? Pick up the blue ball, etc.). While incredibly impressive at the

time, SHDRLU’s success was nonetheless relative. It could only succeed

at giving barely acceptable results within highly symbolic environments,

devoid of any noise. In 2004, Terry Winograd writes:

171

There are fundamental gulfs between the way that SHRDLU and

its kin operate, and whatever it is that goes on in our brains.

I don’t think that current research has made much progress in

crossing that gulf, and the relevant science may take decades or

more to get to the point where the initial ambitions become real-

istic. (Nilsson, 2009b)

This attempt, since the beginning of the century, to enable thinking,

clarify understanding and implement it in machines, had first hit an ob-

stacle. The world, also known as the problem domain, exhibits a certain

complexity which did not seem to be easily translated into singular, atom-

istic symbols.

A critique of formalism as the only way to model understanding was

already developed in 1976 by Joseph Weizenbaum. Particularly, he argues

that the machine cannot make a judgment, as judgments cannot be re-

duced to calculation (Weizenbaum, 1976). While the illusion of cognition

might be easy to achieve, something he did in his development of early

conversational agents, of which the most famous is ELIZA, the necessary

inclusion of morals and emotion of the process of judging intrinsically

limit what machines can do6. Formal representation might provide a cer-

tain appearance of understanding, but lacks its depth.

Around the same time, however, was developed another approach to

formalizing the intricacies of cognition. WarrenMcCullough’s seminal pa-

per, A logical calculus of the ideas immanent in nervous activity, co-written

withWalter Pitts, offers an alternative to abstract knowledge based on the

embodiment of cognition. They present a connection between the system-

atic, input-output procedures dear to cybernetics with the predicate logic

writing style of Russell and others (W. S. McCulloch & Pitts, 1990). This at-

6Joseph Leighton considers judgment has a foundational aspect of understanding, which

is the construction of operational knowledge: ”knowledge begins in simple judgments, judg-

ments of feeling or sentience, as yet devoid of explicit conceptual relations, but containing the

germs of all higher order functions of thinking.” (Leighton, 1907).

172

tachment to input and output, to their existence in complex, inter-related

ways, rather than self-contained propositions is, interestingly, rooted in

his activy as a literary critic7.

Going further in the processes of the brain, McCullough indeed finds

out, in another paper with Letvinn and Pitts (Lettvin, Maturana, McCul-

loch, & Pitts, 1959), that the organs through which the world excites the

brain are themselves agents of process, activating a series of probabilistic

techniques, such as noise reduction and softmax, to provide a signal to the

brain which isn’t the untouched, unary, symbolical version of the signal

input by the external stimuli, and nor does it seem to turn it into such.

We see here the development of a theory for a situated, embodied

and sensual stance towards cognition, which would ultimately resurface

through the rise of machine learning via convoluted neural networks in

the 2000s (Nilsson, 2009b). In it, the senses are as essential as the brain

for an understanding—that is, for the acquisition, through translation, of

a conceptual model which then enable deliberate and successful action.

It seems, then, that there are other ways to know things than to rely on

description through formal propositions.

A couple of decades later, Abelson and Sussman still note, in their in-

troductory textbook to computer science, the difficulty to conveymeaning

mechanically:

Understanding internal definitions well enough to be sure a pro-

grammeans what we intend it to mean requires amore elaborate

model of the evaluation process than we have presented in this

chapter. (Abelson et al., 1979)

So, while formal notation is able to enable digital computation, it

7Even at the Chicago Literary book club, he argues for a more sensuous approach to cog-

nition: ”In the world of physics, if we are to have any knowledge of that world, there must be

nervous impulses in our heads which happen only if the worlds excites our eyes, ears, nose or

skin.” (W. McCulloch, 1953)

173

proved to be limited when it came to accurately and expressively convey-

ing meaning. This limitation, of being able to express formally what we

understand intuitively (e.g. what is a chair?8) appeared as computers ap-

plications left thedomainof logic andarithmetic, andwere applied tomore

more complex problem domains.

After having seen the possibilities and limitations of making machines

understand through the use of formal languages, and the shift offered by

taking into account sensory perception as a possible locus of cognitive pro-

cesses andmeans of understanding, we now turn to theseways of knowing

that exist in humans in a more embodied capacity.

3.1.2 Knowing-what and knowing-how

With the publication of Wittgenstein’s Philosophical Investigations, there

was a radical posture change from one of the logicians whose work un-

derpinned AI research. In his second work, he disown his previous ap-

proach to language as seen in the Tractatus Logico-philosophicus, and fa-

vors a more contextual, use-centered frame of what language is. Rather

than what knowledge is, he looks at how knowledge is acquired and used;

while (formal) language was previously defined as the exclusive means to

translation concepts in clearly understandable terms, he broadens his per-

spective in the Inquiries by stating that language is ”the totality of language

and the activities with which it is intertwined” and that ”the meaning of a

word is its use within language” (Wittgenstein, 2004), noting context and

situatedness as a important factors in the understanding process.

At first, then, it seemed possible tomakemachines understand through

the use of formal languages. The end of the first wave of AI development, a

branch of computation specifically focused on cognition, has shown some

limits to this approach. Departing from formal languages, we now inves-

8A question addressed by Joseph Kosuth in his conceptual artworkOne and Three Chairs,

1965

174

tigate how an embodied and situated agent can develop a certain sense of

understanding.

Knoweldge and situation

As hinted at by the studies ofMcCullough and Levitt, the process of under-

standing does not rely exclusively on abstract logical processes, but also

on the processes involved in grasping a given object, such as, in their case,

what is being seen. It is not just what things are, but how they are, and

how they are perceived, whichmatters. Different means of inscription and

description do tend to have an impact on the ideas communicated and un-

derstood.

In his bookMaking Sense: Cognition, Computing, Art and Embodiment,

Simon Penny refutes the so-called unversality of formulating cognition as

a formal problem, and develops an alternative history of cognition, akin to

Michel Foucault’s archeology of knowledge. Drawing on the works of au-

thors such asWilliam James, Jakob vonUexküll andGilbert Ryle, he refutes

the Cartesian dualism thesis which acts as the foundation of AI research

(Penny, 2019). A particular example of the fallacy of dualism, is the use of

the phrase implementation details, which he recurringly finds in the AI lit-

erature, such asHerbert Simon’sThe Sciences of the Artificial (Simon, 1996).

In programming, to implement analgorithmmeans tomanifest in concrete

instructions, such that they are understood by the machine. The phrase

thus refers to the gap existing between the statement of an idea, of an al-

gorithm, and a procedure, and its concrete, effective and functional mani-

festation. This concept of implementation will show how context tends to

complicate abstract understanding.

For instance, pseudo-code is a way to sketch out an algorithmic proce-

dure, which might be considered agnostic when it comes to implementa-

tion details. At this point, the pseudo-code is halfway between a general

idea and the specificity of the particular idiom inwhich it is inscribed. One

175

recognition = false
do until recognition
wait until mousedown

if no bounding box, initialize bounding box
do until mouseup
update image
update bounding box
rescale the material that's been added inside
if we recognize the material:

delete image from canvas
add the appropriate iconic representation
recognition = true

Listing 38: pseudocode.txt - Example of pseudo-code attempting to reverse-

engineer a software system, ignoring any of the actual implementation de-

tails, taken from (Nielsen, 2017)

can consider the pseudo-code in Listing 38, which describes a procedure to

recognize a free-hand drawing and transform it into a known, formalized

glyph. Disregarding the implementation details means disregarding any

reality of an actual system: the operating system (e.g. UNIX or MSDOS),

the input mechanism (e.g. mouse, joystick, touch or stylus), the rendering

procedure (e.g. raster or vector), the programming language (e.g. JavaScript

or Python), or any details about the human user drawing the circle.

Refuting the idea that pseudo-code, as abstracted representation, is all

that is necessary to communicate and act upon a concept, Penny argues on

the contrary that information is relativistic and relational; relative to other

pieces of information (intra-relation) and related to contents and forms of

presenting this relation (extra-relation). Pseudo-code will only ever make

full sense in a particular implementation context, which then affects the

product.

He then follows Philip Agre’s statement that a theory of cognition based

on formal reason works only with objects of cognition whose attributes

and relationships can be completely characterized in formal terms; and

yet a formalist approach to cognition does not prove that suchobjects exist

or, if they exist, that they can be useful. Uses of formal systems in artificial

176

intelligence in specific, and in cognitive matters in general, is yet another

instance of the map and the territory problem—programming languages

only go so far in describing a problem domain without reducing such do-

main in a certain way.

Beyond the syntax of formal logic, there are different ways to transmit

cognition in actionable form, depending on the form, the audience and the

purpose. In particular, a symbol systemdoes not need to be formal in order

to act as a cognitive device. Logical notation exists alongwithmusic, paint-

ing, poetry and prose. In terms of form, a symbol system of formal logic is

only oneofmanypossibilities for systemsof forms. Inhis Languages ofArt,

Nelson Goodman elaborates a theory of symbol systems, which he defines

as formal languages composed of syntactic and semantic rules (Goodman,

1976), further explored in section 4.1. What follows, argues Goodman, is

that all these formal languages involve an act of reference. Through dif-

ferent means (exemplification, denotation, resemblance, representation),

liguistic systems act as sets of symbols which can denote or exemplify or

refer to in more complex and indirect ways, yet always between a sender

and a receiver.

Despite the work of Shannon (Shannon, 2001) and its influence on

the development of computer systems, communication, as the transfer of

meaning fromone individual to one ormore other individuals, does not ex-

clusively rely on the use ofmathematical notation use of formal languages.

FromGoodman to Goody, the format of representation also affords dif-

ferences inwhat can be thought and imagined. Something thatwas always

implicit in the arts—that representation is a complex and ever-fleeting

topic—is shownmore recently inMarchand-Zañartu and Lauxerois’s work

on pictural representations made by philosophers, visual artists and nov-

elists (such as Claude Simon’s sketches for the structure of his novel La

Route des Flandres, shown in Figure 3.1) (Marchand-Zañartu & Lauxerois,

2022). How specific domains, including visual arts and construction, en-

gage in the relation between form and cognition is further adressed in

177

Figure 3.1: Tentative d’organisation visuelle pour le roman La Route des

Flandres, années 1960 - Claude Simon, écrivain

chapter chapter 4.

Going beyond formal understanding through logical notation, we have

seen that there are other conceptions of knowledge which take into ac-

count the physical, social and linguistic context of the agent understand-

ing, as well as of the object being understood. Keeping in mind the recur-

ring concept of craft discussed in section 2.3.3, complete this overview of

understanding by paying attention to the role of practice.

Constructing knowledge

There are multiple ways to express an idea: on can use formal notation or

draft a rough sketch with different colors. These all highlight different de-

grees of expression, but one particular way can be considered problematic

in its ambition. Formal languages rely on the assumption, that all which

can be known can ultimately be expressed in unambiguous terms. First

shown by Wittgenstein in the two main eras various eras of his work, we

know focus on the ways of knowing which cannot be explicited.

First of all, there is a separation between knowing-how and knowing-

178

that; the latter, propositional knowledge, does not cover the former, practi-

cal knowledge (Ryle, 1951). Perhaps one of themost obvious example of this

duality is in the failure of Leibniz to construct a calculating machine, as

told byMatthew L. Jones in his book Reckoning withMatter. In it, he traces

the history of philosophers to solve the problem of constructing a calcu-

lating machine, a problem which would ultimately be solved by Charles

Babbage, with the consequences that we know (Jones, 2016).

Jones depicts Leibniz in his written correspondence with watchmaker

Ollivier, in their fruitless attempt to construct Leibniz’s design; the im-

plementations details seem to elude the German philosopher as he refers

to the ”confused” knowledge of the nonetheless highly-skilled Parisian

watchmaker. The (theoretical) plans of Leibniz donotmatch the (concrete)

plans of Ollivier.

These are two complementary approaches to the knowledge of some-

thing: to knowwhat constructing a calculatingmachine entails and know-

inghow to construct suchamachne. In the fact thatOllivier couldnot com-

municate clearly to Leibnizwhat his technical difficulties, we can see an in-

stance of something which would be theorized centuries later by Michael

Polanyi as tacit knowledge, knowledge which cannot be entirely made ex-

plicit.

Polanyi, as a scientist himself, starts from another assumption: we

know more than we can tell. In his eponymous work, he argues against

a positivist approach to knowledge, in which empirical and factual deduc-

tions are sufficient to achieve satisfying epistemological work. What he

proposes, derived from gestalt psychology, is to consider some knowledge

of an object as the knowledge of an integrated set of particulars, of which

we already know some features, by virtue of the object existing in an ex-

ternal approach. This integrated set, in turn, displaysmore properties than

the sum of its parts. While formal notation suggests that the combination

of formal symbols does not result in additional knowledge, Polanyi rather

argues, against Descartes, that relations and perceptions do result in addi-

179

tional knowledge.

The knowledge of a problem is, therefore, like the knowing of un-

specifiables, a knowing of more than you can tell. (Polanyi &

Grene, 1969)

Rooted in psychology, and therefore in the assumption of the embod-

imed of the human mind, Polanyi posits that all thought is incarnate, that

it lives by the body and by the favour of society, hence giving it a physio-

social dimension. This confrontation with the real-world, rather than be-

ing a strict hurdle that has to be avoided or overcome, as in the case of

SHRDLU above, becomes one of the two poles of cognitive action. Knowl-

edge finds its roots and evaluation in concrete situations, as much as in

abstract thinking. In the words of Cecil Wright Mills, writing about his

practice as a social scientist research,

Thinking is a continuous struggle between conceptual order and

empirical comprehensiveness. (Mills, 2000)

Polanyi’s presentation of a form of knowledge following the move-

ment of a pendulum, betweendismemberment and integrationof concepts

finds an echo in the sociological work of Mills: a knowledge of some ob-

jects in the world happens not exclusively through formal descriptions in

logical symbol systems, but involves imagination and phenomenological

experience—wondering and seeing. This reliance on vision—starting by

recognizing shapes, as Polanyi states—directly implies the notion of aes-

thetic assessment, such as a judgement of typical or non-typical shapes.

He does not, however, immediately elucidate how aesthetics support the

formation of mental models at the basis of understanding, only that this

morphology is at the basis of higher order of representations.

Seeing, though, is not passive seeing, simply noticing. It is an active

engagementwithwhat is being seen. Mills’s quote above also contains this

180

other aspect of Polanyi’s investigation of knowledge, and already present

in Ollivier’s relation with Leibniz: knowing through doing.

This approach has been touched upon from a practical programmer’s

perspective in section section 2.3.3, through a historical lens but it does

also posses theoretical grounding. Specifically, Harry Collins offers a de-

construction of the Polanyi’s notion by breaking it down into relational,

somatic and collective tacit knowledges (Collins, 2010). While he lays out a

strong approach to tacitness of knowledge (i.e. it cannot be communicated

at all), his distinction between relational and somatic is useful here9. It is

possible to think about knowledge as a social construct, acquired through

social relations: learning the linguo of a particular technical domain, ex-

changing with peers at conferences, imitating an expert or explaining to a

novice. Collective, unspoken agreements and implicit statements of folk

wisdom, or implicit demonstrations of expert action are all means of com-

munication through which knowledge gets replicated across subjects.

Concurrently, somatic tacit knowledge tackles the physiological per-

spective as already pointed out by Polanyi. Rather than knowledge that

exists in one’s interactions with others, somatic tacit knowledge exists

within one’s physical perceptions and actions. For instance, one might

base one’s typing of one’s password strictly on one’smusclememory, with-

out thinking about the actual letters being typed, through repetition of

the task. Or one might be spotting a cache bug which simply requires a

machine reboot, due to experience machine lifecycles, package updates,

networking behaviour. Not completely distinct from its relational pen-

dant, somatic knowledge is acquired through experience, repetition and

mimeomorphism—replicating actions and behaviours, or the instructions,

often under the guidance of someone more experienced.

We started our discussion of understanding by defining it as the acqui-

9His definition of collective tacit knowledge touches on the knowledge present in any

living species and is impossible to ever be explicited, and is therefore out of scope here.

181

sition of the knowledge of a object—be it a concept, a situation, an indi-

vidual or an artfefact, which is accurate enough that it allows us to predict

the behaviour of and to interact with such object.

Theories of how individuals acquire understanding (how they come to

know things, and develop operational and conceptual representations of

things), have been approached from a formal perspective, and a contexutal

one. The rationalist, logical philosophical tradition from which computer

science originally stems, starts from the assumption that meaning can be

rendered unambiguous through the use of specific notation. Explicit un-

derstanding, as the theoretical lineage of computation, then became real-

ized in concrete situations via programming languages.

However, the explicit specification ofmeaning fell short of handling ev-

eryday tasks which humans would consider to be menial. This has led us

to consider a different approach to understanding, in which it is acquired

through contextual and embodied means. Particularly, we have identified

this tacit knowledge as relying on a social component, as well as on a so-

matic component.

Source code, as a formal system with a high dependence of context,

intent and implementation, mobilizes both approaches to understanding.

Due to programing’s ad hoc and bottom-up nature, attemps to formalize it

have reliedon the assumption that expert programmershave a certainkind

of tacit knowledge (Soloway & Ehrlich, 1984; Soloway, Ehrlich, & Bonar,

1982). The way in which this knowledge, which they are not able to ver-

balize, has been acquired and is being deployed, has long been an object of

study in the field of software psychology.

Before our overview of what the psychology of programmers can con-

tribute on the cognitive processes at play in understanding source code,

we must first explicit in which ways software as a whole is a cognitively

complex object.

182

3.2 Understanding computation

Software, computation and source code are all related components; re-

spectively object, theory and medium. The ability to dematerialize soft-

ware (from firmware, to packaged CDs, to cloud services) and the status

of source code as intellectual property point to an ambiguous nature: it

is both there and not there, idea and matter. This section makes explicit

some of the affordances of software which make it a challenging object to

grasp, in order to lay out what programmers are dealing with when they

read and write source code.

In order to reconcile the different tensions highlighted in the various

kinds of complexities that software exhbits, we first turn to an ontologi-

cal stance. Particularly, we will develop on Norbay Irmak’s proposal that

software exists as an abstract artifact, simultaneously on the ideal, practi-

cal and physical planes, and see how Simondon’s technical and aesthetic

mode of existence can reconcile fragmented practice with unified totality.

We then shift to the practical specifities of software, particularly in

terms of levels and types of complexity. This will highlight some of the

properties that make it hard to understand, such as its relation to hard-

ware, its relation to a specification, and its existence in time and space.

With this in mind, we will conclude this section by looking specifically

at the source code representation of software, and at how programmers

deploy strategies to understand it. Approaching it from a cognitive and

psychological perspective, wewill seehowundersanding software involves

the construction of programming plans and mental models; the tools and

helps used in order to construct themwill be explicited in the next section.

3.2.1 Software ontology

Beforewe clarifywhat software complexity consists of, wefirst frame these

difficulties in a philosophical context, more specifically the philosophy of

183

technology. We will investigate how these complexities can be seen as

stemming from the nature of technology itself, and how this connects to

an aesthetic stance. Before moving back to practical inquiries into how

specific individuals engage with this nature, this section will help pro-

vide a theoretical background, framing technology as a relational practice,

complementing other modes of making sense of and taking action on the

world. This conceptual framework will start with an investigation into the

denomination of software as an abstract artifact, followedby an analysis of

technology as a specificmode of being, and concluding on how it is related

to an aesthetic mode of being.

Software as abstract artifact

When he coins the phrase abstract artifact, Nurbay Irmak addresses soft-

ware partly as an abstract object, similar in his sense to Platonic entities,

and partly as a concrete object which holds spatio-temporal properties (Ir-

mak, 2012). This is based on the fact that software requires an existence

as a textual implementation, in the form of source code (Suber, 1988); it is

composed of files, has a beginning (start) and an end (exit); but software

also represents ideas of structure and procedure which go beyond these

limitations of being written to a disk, having a compilation target or an

execution time. Typically, the physical aspects of software (its manifes-

tation as source code) can be changed without changing any of the ideas

expressed by the software10.

Irmak complements Colburn’s consideration of software as a concrete

abstraction, an oxymoron which echoes the tensions denoted by the con-

cept of the abstract artifact. He grounds these tensions in the distinction

between a medium of execution (a—potentially virtual—machine) and a

medium of description (source code). He considers that, while any high-

10In programming, this is called refactoring. This phenomenon can also be observed in

natural languages, in which one can radically change a syntax without drastically changing

the semantics of a sentence.

184

level programming language is already the result of layers of abstraction,

such language gets reduced to the zeroes and ones input to the central pro-

cessing unit (Colburn, 2000). Here, he sees the abstraction provided by lan-

guages ultimately bound to the concrete state of being of hardware and bi-

nary. And yet, if we follow along along his reasoning, these representations

of voltage changes into zeroes and ones are themselves abstractions over

yet another concrete, physical event. Concrete and abstract are recursively

tangled properties of software.

Writing on computational artefacts, of which software is a subset, Ray-

mond Turner formalizes this specificity of in a three-way relationship.

Namely, abstract artefact A is an implementation in mediumM of the def-

inition F. For instance, concerning the medium:

Instead of properties such as made from carbon fiber, we have

properties such as constructed from arrays in the Pascal pro-

gramming language, implemented in Java. (Turner, 2018)

This metaphor provides an accurate but limited account of the place

of source code within the definition of software: the Java implementa-

tion is itself a definition implemented in a specific bytecode, while ar-

rays in Pascal are different abstractions than arrays implemented in C, etc.

Nonetheless, source code is that which gives shape to the ideas immanent

in software—through a process of concretization—and which hides away

the details of the hardware—through abstraction. This metaphor of ab-

stract artifact thus helps to clarify the tensions within software, and to lo-

cate the specific role of source code within the different moving parts of

definition, medium and model.

Software, like other artefacts, has a relation between its functional

properties (i.e. purpose that are intended to be achieved through their use)

and structural ones (both conceptual and physical configurationwhich are

involved in the fullfilment of the functional purpose) (Turner, 2018). As

such, it also belongs to the broader class of technology, and thus holds

185

some of the specifities of this lineage, into which we extend our inquiry.

Software as a relational object

The technological object underwent a first qualitative shift during the Eu-

ropean Industrial Revolution, and a second one with the advent of com-

puting technologies. The status of its exact nature is therefore a somewhat

recent object of inquiry. Here, we will start from Gilbert Simondon’s un-

derstanding of technology as amode, in order to ultimately contrast it with

the aesthetic mode.

According to Simondon, the technical object is a relation betweenmul-

tiple structures and the result of a complex operation of various knowl-

edges (Simondon, 1958), some scientific, some practical, some social, some

material. The technical object is indeed a scientific object, but also a social

object and an artistic object at the same time. Differentiated in its various

stages (object, individual, system), it is therefore considered as relational,

insofar as its nature changes through its dependance, and its influence, on

its environment.

Technology is a dynamic of organized, but inorganic matter (Stiegler,

1998). Following Latour, we also extend the conception of inorganized

matter to include social influences, personal practices, and forms of tacit

and explicit knowledges (Latour, 2007). That is, the ambiguity of the tech-

nical object is that it extends beyond itself as an object, entering into a

relation with its surrounding environment, including the human individ-

ual(s) which shape and make use of it.

Technology is generally bound to practical matter, even though such

matter could, under certain circumstances, take on a symbolic role ofman-

ifesting the abstract. This is the case of the compass, the printing press,

or the clock. The clock, a technology which produces seconds, its action

reached into another domain—that of mechanical operation on abstract

ideas (Mumford, 1934). The domain of abstract ideas was hitherto reserved

186

to different modes than technology: that of religion and philosophy, and

technology holds a particularly interesting relation with these two. Ac-

cording to Simondon, philosophy followed religion as a means of relating

to, andmaking sense of, the abstract such the divine and the ethical. Trac-

ing back the genesis of the technological object, he writes that the tech-

nical mode of existence is therefore just another mode through which the

human can relate to the world, similar to the religious, the philosophical,

and the aesthetic mode(Simondon, 1958).

Technical objects imply another mode of being, consequential to the

recognition of the limtations of magic—humanity’s primary mode of be-

ing. Technicity, according to Simondon, focuses on the particular, on the

elements, a contrario to the religious mode of being, which finds more sta-

bility in a persepective of totality, rather than a focus on individuals11.

This technicalmode of existence, based on particulars, can nonetheless

circle back to a certain totality through themeans of induction; that is, de-

riving generals from the observed particulars. As such, technical thinking,

as inverted religious thinking, stems from practice, but also provide a the-

ory Technology, religion and philosophy are all, according to Simondon,

combinations of a theory of knowledge and a theory of action, compensat-

ing for the loss of magic’s totalizing virtues. While the religious, followed

by the philosophical, approach from theory to deduce a practice, and thus

lack grounding, technology reverses the process and induces theory from

operatoins on individual elements.

Simondon complements the technical with the aesthetic mode, and as

such counter-balances the apparent split between technics and religion by

11”La pensée technique a par nature la vocation de représenter le point de vue de l’élément

; elle adhère à la fonction élémentaire. La technicité, en s’introduisant dans un domaine, le

fragmente et fait apparaître un enchaînement de médiations successives et élémentaires gou-

vernées par l’unité du domaine et subordonnées à elle. La pensée technique conçoit un fonc-

tionnement d’ensemble comme un enchaînement de processus élémentaires, agissant point par

point et étape par étape ; elle localise et multiplie les schèmes de médiation,restant toujours

au-dessous de l’unité.” (Simondon, 1958).

187

striving for unity and totality, for the balance between the objective and

the subjective. Yet, rather than being amonadic unity of a single principle,

Simondon considers the aesthetic mode as a unifying network of relation-

ships 12. He further argues that the aesthetic mode goes beyond taste and

subjective preference, into a fundamental aspect of the way in which hu-

man beings relate to the world around them. An aesthetic object therefore

acquires the property of being beautiful by virtue of its relationships, of

its connections between the subject and the objective, between one’s his-

tory and one’s perceptions, and the various elements of the world, and the

actions of the individual. Finally, the aesthetic thought when related to

the technical object consists in preparing the communication between dif-

ferent communities of users, between different perspectives on the world,

and different modes of action upon this world. Ultimately, the aesthetic

mode can therefore be seen as the revealing of a nexus of relationships

found in its environment, highlighting the key-points of in the structure

of the object 13. How aesthetics enables a holistic thought through the use

of sensual markers will be the subject of chapter 4.

Computation, as a particular kind of computation, is thus both a theory

and a practice, and can also be subject to an aesthetic impression. Partic-

ularly, one can think of computers as a form of technology through which

meaning is mechanically realized14.

12”L’impression esthétique n’est pas relative à une œuvre artificielle ; elle signale, dans

l’exercice d’un mode de pensée postérieur au dédoublement, une perfection de l’achèvement qui

rend l’ensemble d’actes de pensée capable de dépasser les limites de son domaine pour évoquer

l’achèvementde lapensée end’autres domaines ; uneœuvre techniqueassez parfaite pour équiv-

aloir à un acte religieux, une œuvre religieuse assez parfaite pour avoir la force organisatrice et

opérante d’une activité technique donnent le sentiment de la perfection.” (Simondon, 1958)
13”Là apparaît l’impression esthétique, dans cet accord et ce dépassement de la technique

qui devient à nouveau concrète, insérée, rattachée aumonde par les points-clefs les plus remar-

quables” (Simondon, 1958).
14”Sans constraints of meaning or meaningfulness (i.e., some flavour of intentionality), com-

puters would amount to nothing more than ”machines”—or even, as I will ultimately argue, to

”stuff”: mere lumps of clay. Unless it recognizes meaningfulness as essential, even the most

188

Software is a manifestation of technology as both knowledge and ac-

tion. Furthermore, it also enables ways to act mechanically on knowl-

edge and ideas, an affordance named epistemic action by David Kirsh and

Paul Maglio (Kirsh & Maglio, 1994). They define epistemic actions as ac-

tions which facilitate thinking through a particular situation or environ-

ment, rather thanhaving an immediate functional effect on the state of the

world. As technology changes the individual’s relationship to the world,

software does so by being the dynamic, manipulable notion of a state of a

process, ever evolving around a fixed structure, and by changing the con-

ceptual understanding of said world (Rapaport, 2005). Such examples of

world related to the environment in which software exists, e.g. the social

environment, or hardware environment, or the environment which has

been recreated within software. David M. Berry investigates this encap-

sulation of world in his Philosophy of Software:

The computational device is, in some senses, a container of a

universe (as a digital space) which is itself a container for the

basic primordial structures which allow further complexification

and abstraction towards a notion of world presented to the user.

(D. M. Berry, 2011)

Software-as-world is thematerial implementation of a proposedmodel,

itself derived from a theory. It therefore primarily acts at the level of epis-

teme, sometimes even limiting itself to it15. Paradoxically, it is only through

highly perfected theory of computation would devolve into neither more not less than a gener-

alized theory of the physical world. Sans some notion of efficacy of mechanism m, conversely,

no limits could be either discerned or imposed on what could be computed, evacuating the no-

tion of constraint, and hence of intellectual substance. Freed from all strictures of efficacy or

mechanism from any requirement to sustain physical realizability, computation would become

fantastic (or perhaps theistic): meaning spinning frictionlessly in the void.” (Smith, 2016).
15Functional programming languages take pride in the fact that they have no effect on the

world around them, being composed exclusively of so-called pure functions, and no external

side-effects, or input/output considerations.

189

peripherals that software can act as amechanical technology in the indus-

trial sense of the word.

Along with software’s material and theoretical natures (i.e. in contem-

porary digital computers, it consists of electrons, copper and silicium and

of logical notations), another environment remains—that of the intent of

the humans programming such software. Indeed, thinking through the

function of computational artefacts, Turner states that it is agency which

determines what the function is. He defines agency as the resolution of

the difference between the specification (intent-free, external to the pro-

gram) and semantic interpretation (intent-rich, internal to the program-

mer) (Turner, 2018). In order to understand a computer program, to under-

stand how it exists in multiple worlds, and how it represents the world, we

need to give it meaning. To make sense of it, a certain amount of inter-

pretation is required in relation to that of the computer’s—such that the

question ”what does a Turing machine do?” has n+1 answers. 1 syntactic,

and n semantic (e.g. however many interpretations as there can be human

interpreters) (Rapaport, 2005). In his investigation into what software is,

Suber corroborates:

This suggests that, to understand software, we must understand

intentions, purposes, goals, or will, which enlarges the problem

farmore thanwe originally anticipated. […]We should not be sur-

prised if human compositions that are meant to make machines

do useful work should require us to posit and understand human

purposiveness. After all, to distinguish literature from noise re-

quires a similar undertaking. (Suber, 1988)

In conclusion, we have seen that while software can be given the par-

ticular status of an abstract artifact, these tensions are shared across tech-

nological objects, as they connect theory and practice. Technology, as a

combination of a theory of knowledge and a theory of action, as an inter-

190

face to the world and a recreation of the world, is furthermore related to

other modes of existence—and in particular the aesthetic mode. We have

seen how Simondon suggests that the aesthetic mode has totalizing prop-

erties: through the sensual perception of perfected execution, it compen-

sates technology’s fragmented mode of existence.

What do these tensions and paradoxes look like in practice? In the next

section, we examinemore carefully the specific properties of software, and

the complexities that this specific object entails. Specifically, we will see

how software’s various levels of existence, types of complexities, and kinds

of actions and interpretations that it allows, all contribute to the cognitive

hurdles encountered when attempting to understanding software.

3.2.2 Software complexity

What is there to know about software? Looking at the skills that novel

programmers have to develop as they learn their trade, one can include

problem solving, domain modelling, knowledge representation, efficiency

in problem solving, abstraction, modularity, novelty or creativity (U. Fuller

et al., 2007). The variety of these skills and their connection to intellectual

work—for instance, there is no requirement for manual dexterity or emo-

tional intelligence—suggests that making and reading software is a com-

plex endeavor.

Indeed, software exhibits several particularities, as it possesses several

independent components which interact with each other in non-trivial,

and non-obvious ways. In order to clarify those interactions, we start by

looking at the different levels at which software exists, before turning to

the different kinds of complexity whichmake software hard to grasp, con-

cluding on its particular existence in time and space.

Along with different levels of existence needed to be taken into ac-

count by the programmer, software also exhibits specific kinds of com-

plexity. Our definition of complexity will be the one proposed by Warren

191

Weaver. He defines problems of (organized) complexity as those which

involve dealing simultaneously with a sizable number of factors which

are interrelated into an organic whole (Weaver, 1948)16. Specifically, there

are three different types of software complexity that we look at: technical

complexity, spatio-temporal complexity and modelling complexity.

Levels of software

Software covers a continuum from an idea to a bundled series of distinct

binary marks. One of the essential steps in this continuum is that of im-

plementation. Implementation is the realization of a plan, the concrete

manifestation of an idea, and therefore hints at a first tension in software’s

multiple facets. It can happen through individuation, instantation, exem-

plification and reduction (Rapaport, 2005). On the one side, there is what

we will call here ideal software, often existing only as a sharedmental rep-

resentation by humans (not limited to programmers), or as printed doc-

umentation, as a series of specifications, etc. On the other side, we have

actual software, which is manifested into lines of code, written in one or

more particular languages, and running with more or less bugs.

The relationship between the ideal and the actual versions of the same

software is not straightforward. Ideal software only provides an intent, a

guidance towards a goal, assuming, but not guaranteeing, that this goal

will be reached17

Actual software, as most programmers know, differs greatly from its

ideal version, largely due to the process of implementation, translating the

purpose of the software from natural and diagrammatic languages, into

programming languages, fromwhat it should do, intowhat it actually does.

16As opposed to disorganized complexity, which are dealt with statistical tools.
17A popular engineering saying is that complements this approach by stating that: ”In the-

ory, there is no difference between theory and practice. In practice, there is.”. This quote is of-

tenmis-attributed to Richard P. Feynman or Albert Einstein, but has been traced to Benjamin

Brewster, writing in the Yale Literary Magazine of 1882. (Investigator, 2018)

192

how to get the difference in character length between two words

store the first word in a variable
store the second word in a variable

store the difference between the number of characters in the first
word↪→

and the number of characters in the second word

print the difference to the console

Listing 39: level.txt - Example of a program text represented inpseudo code.

See Listing 40, Listing 41 and Listing 42 for lower level representations.

Writing on the myths of computer science, JamesMoor (Moor, 1978) al-

lows us to think through this distinction between ideal and practical along

the lines of the separation between a theory and a model. The difference

between a model and a theory is that both can exist independently of one

another—one canhave a theory for a systemwithout being able tomodel it,

while one can also model a system using ad hoc programming techniques,

instead of a coherent general theory.

Most of the practice of programmers (writing and reading code for the

purposes of creating, maintaining and learning software) depends on clos-

ing this gap between the ideal and the practical existences of software.

The third level at which software exists is that of hardware. While

the ideal version of software is presented in natural language, diagrams

or pseudo-code, and while the practical version of software exists as exe-

cutable source code, software also exists at a very physical level—that of

transistors and integrated circuits. To illustrate the chain of material lev-

els at which software exist, the series of listings in Listing 39, Listing 40,

Listing 41 and Listing 42 perform the exact same function of implementing

a FILLME algorithm, respectively in pseudo code, in C, in Assembly and in

bytecode.

The gradient across software and hardware has been examined thor-

oughly (Chun, 2008; Kittler, 1997; Rapaport, 2005), but never strictly defined.

193

#include <string.h>
#include <stdio.h>

int main(){
char* a_word = ”Gerechtigkeit”;
char* an_unword = ”Menschenmaterial”;

int difference = strlen(a_word) - strlen(an_unword);

printf(”%d”, difference);

return 0;
}

Listing 40: level.c - Example of a program text represented in a high level

language. See Listing 39 for a higher level representation and Listing 41 and

Listing 42 for lower level representations.

push %rbp
mov %rsp,%rbp
movl $0xa,-0xc(%rbp)
movl $0x2,-0x8(%rbp)
mov -0xc(%rbp),%eax
sub -0x8(%rbp),%eax
mov %eax,-0x4(%rbp)
mov $0x0,%eax
pop %rbp
ret

Listing 41: level.asm - Example of a program text represented in an Assem-

bly language. See Listing 39 and Listing 40 for a higher level representation

and Listing 42 for a lower level representation.

194

1119: 55
111a: 48 89 e5
111d: c7 45 f4 0a 00 00 00
1124: c7 45 f8 02 00 00 00
112b: 8b 45 f4
112e: 2b 45 f8
1131: 89 45 fc
1134: b8 00 00 00 00
1139: 5d
113a: c3

Listing 42: level.byte - Example of a program text represented in bytecode.

See Listing 39, Listing 40 and Listing 41 for higher level representations.

Rather, the distinction between what is hardware and what is software is

relative to where one draws the line: to a front-end web developer writing

JavaScript, the browser, operating system and motherboard might all be

considered hardware. For a RISC-V assembly programmer, only the spe-

cific CPU chip might be considered hardware, while the operating system

being implemented in C, itself compiled through Assembly, would be con-

sidered software. A common definition of hardware, as the physical ele-

ments making up the computer system, overlooks the fact that software

itself is, ultimately, physical changes in the electrical charge of the com-

ponents of the computer.

Software can be characterized the dynamic evolution of logical pro-

cesses, described as an ideal specification in natural languages, as a prac-

tical realization in programming languages, and in specific states of hard-

ware components. Furthermore, the relations between each of these levels

is not straightforward: the ideal and the practical can exist independently

of each other, while the practical cannot exist independently of amachine.

For instance, the machine on which a given program text is executed can

be a virtual machine or, conversely, a real machine managing virtual mem-

ory.

In any case, these are only the technical components underpinning

software, its specifications and formalizations. Another dimension of

195

complexity is introduced by the fact that software is supposed to interact

with entities that are not already formalized nor quantized, such as phys-

ical reality and its actors.

Spatio-temporal complexity

A rough way of describing computers is that they are extremely stupid,

but extremely fast (Muon Ray, 1985). The use of programming language

is therefore a semantic translation device between a natural problem, the

formalization of the problem in such a language, and the binary expression

of the program which can be executed by the CPU at very high speeds.

This very high speed of linear execution involves another dimension to

be taken into account by programmers. For instance, the distinction be-

tween endurants and perdurants by Lando et. al. focuses on the temporal

dimension of software components (i.e. a data structure declaration has a

different temporal property than a function call) (Lando, Lapujade, Kassel,

& Fürst, 2007). Whether something changes over time, and when such a

thing changes becomes an additional cognitive load for the programmer

reading and writing source code, a load which can be alleviated by data

types (such as the const keyword, marking a variable as unchangeable), or

by aesthetic marks (such as declaring a variable in all capital letters to in-

dicate that it should not change).

Temporal complexity relates to the discrepancy between the way the

computer was first thought of —i.e. as a Turing machine which operates

linearly, on a one-dimensional tape—and further technological develop-

ments. The hardware architecture of a computer, and its specification as

a Turing machine involve the ability for the head of the machine to jump

at different locations. This means that the execution and reading of a pro-

gramwould be non-linear, jumping from one routine to another across the

source code. Such an entanglement is particulary obvious in Ben Fry’s Dis-

tellamap series of visualizations of source code (Figure 3.2 represents the

196

execution of the source code for the arcade game Pac-Man)18.

Furthermore, the machine concept of time is different from the hu-

man concept, and different machines implement different concepts. For

instance, operations can be synchronous or asynchronous, thus positing

opposite frames of reference, since the only temporal reference is the ma-

chine itself19. While humans have somewhat intuitive conceptions of time

as a linearly increasing dimension, computer hardware actually includes

mutliple clocks, used for various track-keeping purposes and structuring

various degrees of temporality (Mélès, 2017).

Later on, the introduction of multi-core architecture for central pro-

cessing units in the late 2000s has enabled the broad adoption of multi-

threading and threaded programming. As a result, source code has trans-

formed from a single non-linear execution to a multiple non-linear pro-

cess, in which several of these non-linear executions are happening in

parallel. Keep tracking of what is executing when on which resource is

involved in problems such as race conditions, when understanding the

scheduling of events (each event every e.g. 1/18000000th of a second on

a 3.0 Ghz CPUmachine) becomes crucial to ensuring the correct behaviour

of the software.

Conversely, the locii of the execution of software creates contributes

to those issues. Even at its simplest, a program text does not necessarily

exist as a single file, and is never read linearly. Different parts can be re-

edited and re-arranged to facilitate the understanding of readers20. Mod-

18This is the kind of convoluted trace of execution which led to Edsger W. Dijkstra’s state-

ment on the harmfulness of such jumps on the cognitive abilities of programmers, especially

the GOOTO statement E. W. Dijkstra (1968)
19Baptiste Mélès analyzes this temporal ontology of the computer: ”The clock’s name is

deceptive: even if, viewed from the outside, its operation is based on the regularity of a phys-

ical phenomenon—typically the oscillation of a quartz crystal when an electric current passes

through it—it does not tell the time, as though its job were simply to measure it. Rather, it tells

the machine what time it is. From the machine’s point of view, this is not a component that

reads the time, butwrites it. ” (Mélès, 2017).
20For instance, John Lions’s Commentary On UNIX version 6 includes extensive editorial

197

Figure 3.2: Visualization of the execution of Pac-Man’s source code

198

ern programming languages also have the feature of including other files,

not directly visible to the user. The existence of those files have a textual

manifestation, such as the #include line in C or import in Python, but the

contents of the file can remain elusive.

Where exactly these files exist is not always immediately clear, as their

reference by name or by Uniform Resource Locator (URL) can obfuscate

whether or not a file exists on the current machine. As such, software can

be (dis-)located across multiple files on a single machine, on multiple pro-

cesses on a singlemachine, or onmultiple processes onmultiplemachines

(on a local-area or wide-area network) (D. M. Berry, 2011). Facilitating nav-

igation between files through the references that files hold to one another

is one way that the tools of the programmers alleviate cognitive burden, as

we will see in subsection 3.3.2.

Additionally, time and space in computation can interact in unexpected

ways, and fragments the interface to the object of understanding. For in-

stance, the asynchronicity of requesting and processing information from

distinct processes is a spatial separation of code which has temporal im-

plications (e.g. due to network latency). When and where a certain action

takes place becomes particularly hard to follow.

Modelling complexity

Modeling complexity addresses the hurdles in translating a non-discrete,

non-logical object, event, or action, into a discrete, logical software de-

scription through source code. Indeed, the history of software develop-

ment is also the history of the extension of the application of software,

and the hurdles to be overcome in the process. From translation of natu-

ral languages (Poibeau, 2017), to education (Watters, 2021) or psychological

treatment (Weizenbaum, 1976), it seems that problems that seem somehat

work tomake sense of the textualmatterwrittenbyKenThompsonandDennisRitchie (Lions,

1996)

199

straightforward fromahumanperspective becomemore intricate once the

time for implementation has come.

This translation process involves the development ofmodels; these are

abstract descriptions of the particular entities which are considered to be

meaningful in the problem domain. The process of abstracting elements

of the problem domain into usable computational entities is an essen-

tial aspect of software development, as it composes the building blocks

of software architectures (see subsection 2.1.1 for discussion of software

architects). Abstraction encompasses different levels, at each of which

some aspect of the problem domain is either hidden or revealed, and find-

ing the right balance of such showing or hiding in those models does not

rely on explicit and well-known rules. but rather on cognitive principles.

Starting from the observation that there no generalizable rules for mod-

elling classes in computer science, Parsons and Wand suggest that cogni-

tive principles can be a productive way foreward21. They base their pro-

posal on the theories of Lakoff and Johnson, insofar as metaphors operate

cognitively by mapping two entities abstracting at the same level; such a

tool for understanding is further explored in subsection 3.3.1.

For a banking system, this might involve a Client model, an Account

model, a Transfer model and a Report model, among others. The ability

to represent a Client model at a productive abstraction level is then fur-

ther complicated by the conceptual relations that themodel will hold with

othermodels. Some of these relations can bemade explicit or implicit, and

interact in unexpectedways, since they differ fromwhat our personal con-

ception of what a Client is and of what it can do22.

21”The classes we form reflect our experience with things. That is, we form our concepts by

abstracting our knowledge about instances. Furthermore, the concepts we use are not chosen

arbitrarily. Concept theory proposes that classification is governed by the two primary func-

tions of concept formation in human survival and adaptation: cognitive economy and infer-

ence.” (J. Parsons &Wand, 1997).
22”In the process of modelling some part of the world in an object-oriented fashion the fo-

cus is on identifying concepts and their mutual relations and then describing these by means

200

Working at the ”right” layer of abstraction then becomes a contextual

choice of reflecting the problem accurately, taking into account particu-

lar technical constraints, or the social environment in which the code will

circulate. For instance, choosing to represent a color value as a three-

dimensional vector might be efficient and elegant for an experienced pro-

grammer, but might prove confusing to beginner programmers. The key

aspect of being a triplet might be lost to someone who focuses on the sug-

gested parallels between points in space and a shade of red.

Let us consider a simple abstraction, such as having written publica-

tions, composed of three components: the name of an author, the date of

publication, and the content of the publication. This apprently useful and

practical abstraction becomes non-straightforward once the system that

uses it changes in scale. With a hundred publications, it is easy to reason

about them. With a million publications, the problems themselves start to

change, and additional properties such as tags, indexes or pages should be

considered in modelling the publication for the computer (Cities, 2022).

The aphorism ”All models are wrong, but some are useful” (Box, 1976)

captures the ambiguity of abstraction of a model from real-world phe-

nomena. The aim of a model is to reduce the complexity of reality into

a workable, functional entity that both the computer and the programmer

can understand. This process of abstraction is the result of judging which

parts of a model are essential, and which are not and, as we have seen in

section 3.1.1, judgments involve a certain amount of subjectivity (Weizen-

baum, 1976).

Ultimately, the concrete representation of a model involves concrete

syntax through the choice of data types, the design of member functions

and the decision to hide or reveal information to other models. Which in-

of classes and associations between them. Using existing methods and notation we usually de-

scribe all the classes and the corresponding associations between them in one, flat model, de-

spite the fact that these are typically at different levels of detail. Consequently the description

often appears confusing and disorganized ” (Kristensen, 1994)

201

dividual tokens and which combination of tokens are used in the repre-

sentation process then contribute to communicate the judgment that was

made in the abstraction process.

Software involves, through programming languages, the expression of

human-abstracted models for machine interpretation, which in turn is ex-

ecuted at a scale of time and space that are difficult to grap for individuals.

These properties make it difficult to understand, from conception to ap-

plication: software in the real-world goes through a process of implemen-

tation of concepts that lose in translation, interfacing the world through

discrete representations, and following the execution of these representa-

tions through space and time. Still, source code is the material represen-

tation of all of these dynamics and the only point of contact between the

programmer’s agency and the machine execution and, as such, remains

the locus of understanding. Programmers have been understanding soft-

ware as long as they have been writing and reading it. We now turn to the

attempts at studying the concrete cognitive processes deployed by source

code readers and writers as they engage meaningfully with program texts.

3.2.3 The psychology of programming

In practice, programmers manage to write, read and understand source

code as a pre-requisite of producing reliable source code. Being able to

write a program has for effective pre-requisite a thorough understanding

of the problem, intent and platform, making the programming activity a

form of applied understanding23.

How programmers deal with such a complex object as software has

been a research topic which appeared much later than software itself. The

field of software psychology aims at understandinghowprogrammers pro-

cess code, and with which level of success, and under which conditions.

23”We understand what we are able to program.” (Ershov, 1972)

202

How do they build up their understanding(s), in order to afford appropri-

ate modification, re-use or maintenance of the software? What cognitive

abilities do they summon, and what kind of technical apparatuses play a

role in this process? In answering these questions, we will see how the

process of understanding a program text is akin to constructed a series of

mental models, populating a cognitive map.

The earliest studies of how computer programmers understand the

code they are presentedwith consistedmostly in pointing out themethod-

ological difficulties in doing so (Sheil, 1981; Shneiderman, 1977; Weinberg,

1998). This is mainly due to three parameters. First, programming is an

intertwined combination of notation, practices, tasks and management,

each of which have their own impact on the extent to which a piece of

source code is correctly understood, and it is hard to clearly establish the

impact of each of these. Second, program comprehension is strongly in-

fluenced by practice—the skill level of the programmer therefore also in-

fluences experimental conditions24. Third, these early studies have found

that programmers have organized knowledge bases, if informal and im-

material. This means that, while programmers demonstrate epistemic

mastery, they are limited in their ability to explain the workings of such

ability.—that is, the constitution and use of their own mental models.

Marian Petre and Alan Blackwell attempted in their 1992 study to iden-

tify these mental models and their uses. They asked 10 expert program-

mers from North America and Europe to describe the thought process in

source code-related problem-solving and design solutions in code. While

this study was an investigation into the design of code, before any writ-

ing happens, one of the limitations is that it did not investigate the under-

24Weinberg establishes a connection between value and the appropriate level of skill ap-

plication: ”The moral of this tale—and a hundred others like it—is that each program has an

appropriate level of care and sophistication dependent on the uses to which it will be put. Work-

ing above that level is, a way, even less professional than working below it. If we are to know

whether an individual programmer is doing a good job, we shall have to know whether or not

he is working on the proper level for his problem.” (Weinberg, 1998)

203

standing of code, which takes places once the writing has been done (by

oneself, or someone else), and the code now needs to be read.

The main conclusion of their study is that, beyond the fact that each

programmer had slightly different descriptions of their mental process,

there are some commonalities towhat is happening in someone’s thoughts

as they start to design software. The behaviour is dynamic, but controlled;

the resolutionof that behaviourwas also dynamic, with someaspects com-

ing in and out of focus that the will of the programmer, providing more or

less uncertainty, level of details and fuzziness on-demand; and those im-

ages co-existed with other images, such that one representation could be

comparedwith another representation of a different nature (Petre & Black-

well, 1997). Finally, while most imagery was non-verbal, all programmers

talked about the need to have elements of this imagery labelled at all times,

hinting at a relationship between syntax and semantics to be translated

into source code.

Francoise Détienne, in her study of how computer programmers design

and understand programs (Detienne, 2001), defines the activity of design-

ing and understanding programs in activating schemas, mental represen-

tations that are abstract enough to encompass a wide use (web servers all

share a common schema in terms of dealing with requests and responses),

but nonetheless specific enough to be useful (requests and responses are

qualitatively different subsets of the broader concept of inputs and out-

puts). An added complexity to the task of programming comes with one

of the dual nature of the mental models needing to be activated: the com-

puter’s actions and responses are comprised of the prescriptive (what the

computer should do) to the effective (what the computer actually does).

In order to be appropriately dealt with, then, programmers must activate

and refine mental models of a program which resolves this tension. To

do so, they seem to resort to spatial activities, such as chunking and trac-

ing (Cant, Jeffery, & Henderson-Sellers, 1995), thus hinting at a need to de-

limitate some cognitive objects with a material metaphor, and connecting

204

those concepts with a spatial metaphor.

In programming, within a given context—which includes goals and

heuristics—, elements are being perceived, processed through existing

knowledge schemas in order to extract meaning. Starting from Kintsch

and Van Dijk’s approach of understanding text (Kintsch & van Dijk, 1978),

Détienne nonetheless highlights some differences with natural language

understanding. In program texts, she finds, there is an entanglement of the

plan, of the arc, of the tension, which does not happen so often in most of

the traditional narrative text. A programmer can jump between lines and

files in a non-linear, explorative manner, following the features of compu-

tation, rather than textuality. Program texts are also dynamic, procedural

texts, which exhibit complex causal relations between states and events,

which need to be kept track of in order to resolve the prescriptive/effec-

tive discrepancies. Finally, the understanding of program text is first a

general one, which only subsequently applies to a particular situation (a

fix or an extension needing to be written), while narrative texts tend to fo-

cus on specific instances of protagonists, scenes and descriptions, leading

to broad thematic appreciation.

Conversely, a similarity in understanding program texts and narrative

texts is that the sources of information for understanding either are: the

text itself, the individual experience and the broader environment inwhich

the text is located (e.g. technical, social). Building on Chomsky’s con-

cepts, the activity of understanding in programming can be seen as under-

standing the deep structure of a text through its surface structure (Chom-

sky, 1965). One of the heuristics deployed to achieve such a goal is look-

ing out for what she calls beacons, as thematic organizers which struc-

ture the reading and understanding process (Koenemann & Robertson,

1991; Wiedenbeck, 1991). For instance, in traditional narrative texts, bea-

cons might be represented by section headings, or the beginning or end of

paragraphs. However, one of the questions that her study hasn’t answered

specifically is how the specific surface structure in programming results in

205

the understanding of the deep structure—in other terms, what is the con-

nection between source code syntax, programmer semantics and program

behavior.

Détienne’s work ushers in the concept of a mental model as means of

understanding in programmers, which proved to be a fruitful, if not set-

tled field of research. Mental models are a dynamic representation formed

in working memory as a result of using knowledge from long term mem-

ory and the environment (Cañas, Antolí, & Quesada, 2001). As such, they

are a kind of internal symbolic representation of an external reality, are

a rigorous, personal and conceptual structure. They are related to knowl-

edge, since the construction of accurate and usefulmentalmodels through

the process of understanding is shaped by, and also underpins knowledge

acquisition. However, mental models need not be correlated with empiri-

cal truth, due to their personal nature, but are extensive enough to be de-

scribed by formal (logical or diagrammatical) means. Mental models can

be informed, constructed or further qualified by the use of metaphors, but

they are nonetheless more precise than other cognitive structures such as

metaphors—a mental model can be seen as a more specific instance of a

conceptual structure than a metaphor.

Further research on mental model acquisition have established a few

parameters which influence the process. First, programmers have a back-

ground knowledge that they activate through the identification of specific

recurring patterns in the source code, confirming Détienne characteriza-

tion of the roles of beacons. Second, mental models seem to be organized

either as a layered set of abstractions, providing alternative views of the

systemasneeded, or as a groups or sets of heuristics. Finally, programmers

use both top-down processes of recognizing familiar patterns, they also

make use of bottom-up techniques to infer knowledge from which they

can then construct or refine a mental model (Heinonen, Lehtelä, Hellas, &

Fagerholm, 2023).

Epistemic actions, the kinds of actions which change one’s knowledge

206

of the object on which the actions are taken, contribute to reducing the

kinds of complexities involved with software. Concretely, this involves re-

fining the idea that one has of the software system at hand, by comparing

the result of the actions taken with the current state of the idea(s) held.In

their work on computer-enabled cognitive skills, Kirsh andMaglio develop

on the use of epistemic actions:

More precisely, we use the term epistemic action to designate a

physical action whose primary function is to improve cognition

by:

1. reducing the memory involved in mental computation, that

is, space complexity;

2. reducing the number of steps involved in mental computa-

tion, that is, time complexity;

3. reducing the probability of error ofmental computation, that

is, unreliability.

(Kirsh &Maglio, 1994)

Since epistemic actions rely on engaging with a text, at the syntax

and semantics level, it has often been assumed by programmers and re-

searchers that reading and writing code is akin to reading and writing nat-

ural language. Additional recent research in the cognitive responses to

programming tasks, conducted by Ivanova et. al., do not appear to set-

tle the question of whether programming is rather dependent on language

processing brain functions, or on functions related tomathematics (which

do not rely on the language part of the brain) (Ivanova et al., 2020), but

contributes empirical evidence to that debate. They conclude that, while

language processing might not be one of the essential ways that we pro-

cess code—excluding the code is text hypothesis—, it also does not rely

on exclusively mathematical functions. Stimulating in particular the so-

called multi-demand system, it seems that programming is a polymor-

207

phous activity involvingmultiple exchanges between different brain func-

tions. What this implies, though, is that neither literature, linguistics nor

mathematics should be the only lens through which we look at code.

In a way, then, programming is a sort of fiction, in that the pinpointing

of its source of existence is difficult, and in that it affords the experience of

imagining contents of which one is not the source, and of which the cer-

tainty of isn’t defined, through a particular syntactic configuration. Both

programming and fiction suggest surface-level guiding points helping the

process of constructing mental models as a sort of conceptual representa-

tion. It is also something else than fiction, in that it deals with concrete

issues and rational problems 25, and that it provides a pragmatic frame

for processing representations, in which assumptions stemming from bur-

geoning mental models can be easily verified or falsified, through the tak-

ing of epistemic actions. It might then be appropriate to treat it as such,

simultaneously fiction and non-fiction, as knowledge and action, mathe-

matic and artistic. Indeed, it is also an artistic activitywhich, inGoodman’s

terms, might be seen as an analysis of [artistic] behavior as a sequence of

problem-solving and planning activities.” (Goodman & Others, 1972).

Remains the interpretation issue mentioned above: the interpretation

of the machine is different from the interpretation of the human, of which

there are many, and therefore what also needs to be intepreted is the in-

tent of the author(s). Such a tension between the computer’s position as

an extremely fast executer and the programmer’s position as a cognitive

agent is summer up by Niklaus Wirth in Beauty Is Our Business, Dijkstra’s

festschrift: ”What the computer interprets, I wanted to understand.” (Wirth,

1990).

One key aspect of the acquisition process seems to be mapping or link-

ing features of the actual target system to its mental representation. The

result of have been referred to as cognitivemaps or knowledgemaps. Here
25More often than not, a pestering bug

208

The complexities of software are echoed in how programmers evoke

their experience of either designing or, comprehending code. They have

shown to use multiple cognitive abilities, without being strictly limited to

narrative, or mathematic frames of understanding, and making use of no-

tions of scale and focus to disentangle complexity. For the remaining sec-

tion of this chapter, we will focus on two specific means that contribute to

this process of building amental model of software-as-source code. Based

on the reports that programmersusemental images andplaywithdynamic

mental structures to comprehend the functional and structural properties

of software, we can now say that understanding of a program text involves

the construction of mental models. This happens through a process of

mapping textual cues with background knowledge at various layers of ab-

straction, resulting in a cognitive cartography allowing for an program text

to be made intelligible, and thus functional, to the programmer.

We conclude this chapter with a look at two practical ways in which

sense inmade from computational systems. From a linguistic perspective,

we look at the role that metaphors play in translating computational con-

cepts into ones which can be grasped by an individual. From a technical

perspective, we start from the role of layout (indentation, typography) to

develop on the concept of extended cognition to see how understanding is

also located in a programmers’ tools.

3.3 Means of understanding

Drawing on the ambivalence of software’s existence—both concrete and

abstract—, as well as on the various way that software is a complex cog-

nitive object to grasp, we now investigate the means deployed to render

it meaningful to an individual. As we have seen in empirical studies, pro-

grammers resort to textual perusing in order to build up mental models.

In this section, we look at the particular syntactic tokens that are used

209

tometaphorically convey themeaning of a computational element, as well

as the medium through which the medium is perused—via integrated de-

velopment environments. This will conclude our inquiry into software’s

complexities and into how metaphors and textual manipulation facilitate

the construction ofmentalmodels, beforewe inquire specifically about the

ways in which aesthetics play a role in this process.

3.3.1 Metaphors in computation

Our understanding of metaphors relies on the work of George Lakoff

and Mark Johnson26 due to their requalification of the nature and role

of metaphor beyond an exclusively literary role. While Lakoff and John-

son’s approach to the conceptual metaphor will serve a basis to explore

these linguistic devices as a cognitivemeans across software andnarrative,

we also argue that Ricoeur’s focus on the tension of the statement rather

than primarily on thewordwill help us better understand some of the aes-

thetic manifestations and workings of software metaphors. Following a

brief overview of their contributions, we then examine the various uses of

metaphor in software, from end-users to programmers.

Theoretical background

We start from from the most commonly used definition of metaphor:

that of labeling one thing in terms of another, thereby granting addi-

tional meaning to the subject at hand. Our approach here will also bypass

some of the more minute distinctions of literary devices made between

metonymy (in which the two things mentioned are already conceptually

closely related), comparison (explicitly assessing differences and similari-

ties between two things, often fromavalue-basedperspective) and synech-

doche (representing a whole by a subset), as we consider these all subsets

of the class of metaphors.

26We also develop from Ricoeur’s conception of metaphors in subsection 4.2.1.

210

Lakoff and Johsnon’s seminal work develops a theory of conceptual

metaphors by highlighting their essential dependence on pre-existing cog-

nitive structures, which we associate with already-understood concepts.

The metaphor maps a source domain (made up of cognitive structure(s))

to a target domain. In the process, they extend the field of applicability

of metaphors from the strictly literary to the broadly cultural: metaphors

work because each of us has some conception of those domains involved

in the metaphorical process.

Metaphors rely in part on a static understanding, resulting in a fixed

meaning from the application of a given source to a given target, butwhich

can nonetheless suggest the property of dynamic evolution. These source

cognitive structures possess schemas, which are defined enough to not be

mistaken for something else, but broad enough to allow for multiple vari-

ants of itself to be applied to various targets, providing both reliability and

diversity (Lakoff & Johnson, 1980). As we will see below, their approach

allows us to focus not just on textual objects, but on the vast range of

metaphors used also in computing-related environments. Given that the

source of themetaphor should be well-grounded, with as little invariablity

as possible, in order to qualify a potentially ill-defined target domain, we

see how this is a useful mechanism to provide an entrypoint to end users

and novice programmers to grasp new or foreign concepts.

Starting with the role of metaphors manifested in expressions such as

the desktop, the mouse, or the cloud for end-users, we will then turn to the

programmers relationships to their environment as understoodmetaphor-

ically. The relationship between poetic metaphor and source code will be

developed in section 5.2.3; with the topic of syntax and semantics in pro-

gramming languages in subsection 5.1.1, wewill see thatmetaphor-induced

tensions can be a fertile ground for poetic creation through aestheticman-

ifestations.

211

Metaphors for end-users

It is interesting to consider that the first metaphor in computing might be

concommitant with the first instance of modern computing—the Turing

machine. While Turing machines are widely understood as being mani-

fested into what we call digital computers (laptops, tablets, smartphones,

etc.), and thus definitely within the realm of mechanical devices, the Tur-

ing machine is not strictly a machine per se. Rather, it is more accurately

defined as a mathematical model which defines an abstract machine. In-

deed, as we saw in subsection 3.2.1, computers cannot be proven or as-

sumed to be machines, because their terminology comes from logic, tex-

tual, or discursive traditions (e.g. reference, statement, names, recursion,

etc.) and yet they are still built (Smith, 1998). Humans can be considered

Turing machines (and, in fact, one of the implicit requirements of the Tur-

ing machine is that, given enough time and resources, a human should be

able to compute anything that the Turingmachine can compute), and non-

humans can also be considered Turing machines27. Debates in computer

science related to the nature of computing (Rapaport, 2005) have shown

that computation is far from being easily reduced to a simple mechnical

concern, and the complexity of the concept is perhaps why we ultimately

revert to metaphors in order to better grasp them.

As non-technical audiences came into contact with computation

through the advent of the personal computer, these uses of metaphors be-

came more widespread and entered public discourse once personal com-

puting became available to ever larger audiences. With the release of the

XEROX Star, features of the computer which were until then described as

data processing were given a new life in entering the public discourse. The

Star was seminal since it introduced technological innovations such as a

bitmapped display, a two-button mouse, a window-based display includ-

27See research in biological computing, using DNA and protein to perform computational

tasks (Garfinkel, 2000)

212

ing icons and folders, called a desktop. In this case, the desktop metaphor

relies on previous understanding of what a desktop is, and what it is used

for in the context of physical office-work; since early personal comput-

ers were marketed for business applications, these metaphors built on the

broad cognitive structures of the user-base in order to help them make

sense of this new tool.

PaulDuGay, in his cultural studyof theWalkman,makes a similar state-

ment when he describes Sony’s invention, a never-before-seen compound

of technological innovations, in termsof pre-existing, andwell-established

technologies (du Gay et al., 2013). The icon of a floppy disk for writing data

to disk, the soundofwrinkledpaper for removingdata fromdisk, the desig-

nation of a broad network of satellite, underground and undersea commu-

nications as a cloud, these are all metaphors which help us make a certain

sense of the broad possibilities brought forth by the computing revolution

(Wyatt, 2004). Even the clipboard, presented to the user to copy content

across applications, does not believe at all like a real clipboard (Barrera,

2022).

The work of metaphors takes on an additional dimension when we in-

troduce the concept of interfaces. As permeable membranes which enable

(inter)actions between the human and the machine, they are essential in-

sofar as they render visible, and allow for, various kinds of agency, based

on different degrees of understanding. Departing from the physically pas-

sive posture of the reader towards an active engagement with a dynamic

system, interfaces highlight even further the cognitive and (inter)active

role of the metaphor.

These depictions of things-as-other-things influence themental model

which we build of the computer systemwe interact with. For instance, the

prevalent windowsmetaphor of our contemporary desktop and laptop en-

vironments obfuscates the very concrete action of the CPU (or CPUs, in

the case of multi-core architecture) of executing one thing at a time, ex-

cept at speeds which cannot be intuitively grasped by human perception.

213

Alexander Galloway ’s work on interfaces asmetaphorical representations

suggests a similar concern of obfuscation, as he recall Jameson’s theory of

cognitive mapping. Jameson uses it in a political and historical context,

defining that a cognitive mapping is a ””a situational representation on the

part of the individual subject to that vaster and properly unrepresentable to-

tality which is the ensemble of society’s structures as a whole”” (Jameson,

1991). To do so, Jameson starts from Lynch’s inquiry into the psychic rela-

tion to the built environment (which we will return to in section 4.3), in-

sofar as a cognitive map is necessary to deploy agency in a foreign spatial

environment, an environment which Jameson associates with late capital-

ism.

Galloway productively deploys this heuristic in the context of inter-

faced computer work: cognitive mapping is the process by which the indi-

vidual subject situates himself within a vaster, unrepresentable totality, a

process that corresponds to the workings of ideology28. Here, we can see

how metaphors can act as both cognitive tools to make sense of objects,

but also as obfuscating devices to cloak the reality of the environment29.

The cognitive processes enable by metaphors help provide a certain sense

of the unthinkable, of that which is too complex to grasp and therefore

must be put into symbols (words, icons, sounds, etc.).

Nielsen and Gentner develop on some challenges that arise when one

usesmetaphors not just for conceptual understanding, but for further con-

ceptualmanipulation. InTheAnti-Mac Interface, they point out that differ-

ences in features between target domain and source domain are inevitable.

For instance, a physical pen would be able to mark up any part of a phys-

ical form, whereas a tool symbolize by a pen icon on a document edit-

ing software might restrict an average user to specific fields on the form.

28The relation between which has been explored by Galloway, Chun, Holmes and others,

and is particularly apparent in how an operating system is designated in French: système

d’exploitation, an exploitation system (Chun, 2005; Galloway, 2006).
29Indeed, data centers are closer to mines than to clouds.

214

Their study leads to assess alternatives to one kind of interface30, in or-

der to highlight how a computer systemwith similar capabilities (both be-

ing Turing-complete machines), could differ in (a) the assumptions made

about the intent of the user, (b) the assumptions made about the expertise

level of the user and (c) the means presented to the user in order to have

them fulfill their intent (Gentner & Nielsen, 1996).

Movingaway fromuserland, inwhichmost of thesemetaphors exist, we

now turn to examine the kinds ofmetaphors that are used byprogrammers

and computer scientists themselves. Since the sensual reality of the com-

puter is that it is a high-frequency vibration of electricity, one of the first

steps taken to productively engage with computers is to abstract it away.

The word computer itself can be considered as an abstraction: originally

used to designate the women manually inputting the algorithms in room-

scale mainframes, the distinction between the machine and its operator

was considered to be unnecessary. The relation between metaphor and

abstraction is a complex one, but we can say thatmetaphorical thought re-

quires abstraction, and that the process of abstraction ultimately implies

designating one thing by the name of another (a woman by amachine’s, or

a machine by a woman’s), being able to use it interchangeably, and there-

fore lowering the cognitive friction inherent to the process of specification,

freeing up mental resources to focus on the problem at hand (Chun, 2005).

Metaphors are implicitly known not to be true in their most literal

sense. Max Black inModels and Metaphors argues that metaphors are too

loose to be useful in analytic philosophy but, like models they help make

concepts graspable and render operation to the computer conceivable, in-

dependently of the accuracy of the metaphor to depict the reality of the

target domain.

Abstraction, metaphors and symbolic representations are therefore

used tools when it comes to understanding some of the structures and ob-

jects which constitute computing and software, in terms of trying to rep-
30In their study, they refer to the one designed by Apple for the Macintosh in the 1990s.

215

resent to ourselves what it is that a computer can and effectively does, and

in terms of explaining to the computer what it is we’re trying to operate on

(from an integer, to a non-ASCII word, to a renewable phone subscription

or to human language).

When they concern the work of programmers, these tools deployed

during the representational process differ from conventional or poetic

metaphors insofar as they imply some sort of productive engagement and

therefore empirically verifiable or falsifiable. These models are means

throughwhich we aim at constructing the conceptual structures on which

metaphors also operate, and explicit them in formal symbol systems, such

as programming languages.

Programmer-facingmetaphors

Programmers, like users, also rely heavily on metaphors to project mean-

ing onto the entities that they manipulate. Fundamentally, the work of

these metaphors are not different from the ones that operate in the public

discourse, or at the graphical interface level; nonetheless, they show how

they permeate computer work in general, and source code in particular.

Perhaps one of the first metaphors a programmer encounters when

learning about the discipline is the one stating that a function is like a

kitchen recipe: you specify a series of instructionswhich, given some input

ingredients (arguments), result in an output result (return value). However,

the recipe metaphor does not allow for an intuitive grasping of overload-

ing, the process through which a function can be called the same way but

do things with different inputs. Similarly, the use of the term server is con-

ventionally associated and represented as a machine sending back data

when asked for it, when really it is nothing but an executed script or pro-

cess running on said machine.

Another instance of symbolic use relying on metaphorical interpreta-

tion can be found in the word stream. Originally designating a flow of wa-

216

ter within its bed, it has been gradually accepted as designating a contin-

uous flow of contingent binary signs. Memory, in turn, stands for record,

and is stripped down of its essentially partial, subjective and fantasized as-

pects usually highlighted in literary works (perhaps volatile memory gets

closer to that point). Finally, objects, which came to prominence with the

rise of object-oriented programming, have only little to do with the phys-

ical properties of objects, with no affordance for being traded, for acting

as social symbols, for gaining intrinsic value, but rather the word is used

as such for highlighting its boundedness, states and actions, and ability to

be manipulated without interfering with other objects31. We can see one

of those computational concepts of scale, involvingmacro, global, extend,

monolith, bloat, etc. That being said, programmer-facing metaphors tend

to be less systematic than user-facing, highlighting the complexity ofmak-

ing the nature of software explicit, and the ad hoc nature of some of the

terms used to describe parts of a computational system.

Most of these designations, stating a thing in terms of another aren’t

metaphors in the full-blown, poetic sense, but they do, agains, hint at the

need to represent complex concepts into humanly-graspable terms, what

Paul Fishwick calls text-based aesthetics (P. A. Fishwick, 2006). The need

for these is only semantic insofar as it allows for an intended interaction

with the computer to be carried out successfully—e.g. one has an intuitive

understanding that interrupting a stream is anactionwhichmight result in

incompleteness of thewhole. This process of linguistic abstraction doesn’t

actually require clear definitions for the concepts involved. For instance,

example of the terminology in modern so-called cloud computing uses a

variety of terms stacked up to each other in what might seem to have no

clear denotative meaning (e.g. Google Cloud Platform offers Virtual ma-

chine compute instances), but nonetheless have a clear operativemeaning

(e.g. the thing on whichmy code runs). This further qualifies the complex-

31Other metaphors hidemore problematic etymologies, such as themaster/slave relation-

ship.

217

ity of the sense-making process in dealing with computers: we don’t actu-

ally need to truly understandwhat is preciselymeant by a particular word,

as long as we use it in a way which results in the expected outcome32. That

being said, there is a certain correlation between skills andmetaphors: the

more skilled a programmer is, the less they resort to metaphors and they

more they consider things ”as they are” (McKeithen, Reitman, Rueter, &

Hirtle, 1981).

This need to re-present the specificities of the machines has also been

one of the essential drives in the development of programming languages.

Since we cannot easily and intuitively deal with binary notation to rep-

resent complex concepts, programming helps us deal with this hurdle by

presenting things in terms of other things. Most fundamentally, program-

ming languages represent binary signs in terms of English language (e.g.

from binary to Assembly, see section 3.2.2). This is, again, by no means a

metaphorical process, but rather an encoding process, in which tokens are

being separated and parsed into specific values, which are then processed

by the CPU as binary signs.

Still, this abstraction layer offered by programming languages allowed

us to focus on what we want to do, rather than on how to do it. The

metaphorical aspect comes in when the issue of interpretation arises, as

the possibility to deal with more complex concepts required us to grasp

them in a non-rigorous way, one which would have a one-to-one mapping

between concepts. Allen Newell and Herbert A. Simon, in their 1975 Tur-

ing Award lecture, offer a good example of symbolic manipulation relates

inherently to understanding and interpretation:

In none of [Turing and Church’s] systems is there, on the surface,

a concept of the symbol as something that designates.

32For instance, the metaphor to denote an external program-text to be included into an-

other one differs according to languages: library in C, package in Go, crate in Rust,module in

Python, which all have the same operative meaning.

218

The complement to what he calls the work of Turing and Church as au-

tomatic formal symbol manipulation is to be completed by this process of

interpretation, which they define simply as the ability of a system to des-

ignate an expression and to execute it. We encounter here one of the es-

sential qualities of programming languages: the ambivalence of the term

interpretation. A machine interpretation is clearly different from a human

interpretation: in fact, most people understand binary as the system com-

prised of two numbers, 0 and 1, when really it is intepreted by the computer

as a system of two distinct signs (red and blue, Alex andMax, hot and cold,

etc.). To assist in the process of human interpretation, metaphors have

played a part in helping programmers construct useful mental representa-

tions related to computing. Keywords such as loop, wildcard, catch, or fork

are all metaphorical denomations for computing processes.

These metaphors can go both ways: helping humans understand com-

puting concepts, and to a certain extent, helping computers understand

human concepts. This reverse process, using metaphors to represent

concepts to the computer, something we touched upon in section 3.2.2,

brings forth issues of conceptual representation through formal sym-

bolic means. The work of early artifical intelligence researchers consisted

not just in making machines perform intelligent tasks, but also implies

that intelligence itself should be clearly and inambiguously represented.

The work of Terry Winograd, for instance, was concerned with language

processing—that is,intepretation and generation. Through his inquiry, he

touches on the different ways to represent the concept of language in

machine-operational terms, and highlights two possible represenations

which would allow a computer to interact meaningfully with language

(Winograd, 1982). He considers a procedural representation of language,

one which is based on algorithms and rules to follow in order generate

an accurate linguistic model, and a declarative representation of language,

which relies on data structures which are then populated in order to cre-

ate valid sentences. At the beginning of his exposé, he introduces the his-

219

torically successive metaphors which we have used to build an accurate

mental representation of language (language as law, language as biology,

language as chemistry, language as mathematics). As such, we also try to

present language in other terms than itself in order to make it actionable

within a computing environment, in a mutually informing movement.

Metaphors are used as cognitive tools in order to facilitate the construc-

tion of mental models of software systems. The implication of spatial and

visual components in mental models already highlighted by Lakoff and

Johnson, and pointed out through the psychology experiments on pro-

grammers allow us to turn to metaphors as an architecture of thought

(Forsythe, 1986). Metaphors operate cognitively, Lakoff and Johnson argue,

because of the embodiment which underpins every individual’s percep-

tion. Therefore, such a use of metaphors points to the spatial nature of the

target domain, something already suggested by the concept of mapping in

subsection 3.2.3. Complementing the semantic structure of metaphor, we

now turn to another conception of space in program texts: the syntactic

structure of source code, upon which another kind of tools can operate.

3.3.2 Tools as a cognitive extension

Metaphors make use of their semantic properties in order to allow users

to build an effective mental model of what the system is or does; as the

result, they allow programmers to build up hypotheses and take epistemic

actions to see whether their mental model behaves as expected. Some of

the keywords of programming languages are thusmetaphorical. However,

one can alsomake use of the syntactical properties of source code in order

to facilitate understanding differently. We see here how these tools take

part in a process of extended cognition.

We have seen in section 3.3.1 how interfaces decide on the way the ab-

stract entities are represented, delimited and accessed. They can nonethe-

less also go beyond representation in order to alleviate cognitive load

220

through technical affordances, by providing as direct access as possible

to the underlying abstract entities represented in source code’s structure.

Looking at it from the end-user’s perspective, there is software which

focuses on knowledge acquisition through direct manipulation. For in-

stance, Ken Perlin’s Chalktalk focuses on freehand input creation and pro-

grammatic input modification in order to explore properties and relations

of mathematical objects (e.g. geometrical shapes, vectors, matrices) (Per-

lin, 2022), while Brett Victor’s Tangled focuses in a very sparse textual rep-

resentation of a dynamic numerical model. The epistemic actions taken

within this system thus consists in manipulating the numbers presented

in the text result in the modification of the text based on these numbers

(Victor, 2011a, 2011b).

For programmers, the kind of dedicated tool used to deal with source

code is called Integrated Development Environment (IDE). With a specific

set of features developing over time, and catered to the needs and practices

of programmers, IDEs cover multiple features to support software writing,

reading, versioning and executing—operations which go beyond the sim-

ple reading of text (Kline & Seffah, 2005).

One of the first interfaces for writing computer code included the text

editor called EMACS (an acronym for Editor MACroS), with a first version

released in1976. Containing tens of thousands of commands to be input by

the programmer at the surface-level in order to affect the deeper level of

the computing system, EMACS allows for remote access of files, modeful

and non-linear editing, as well as buffer-based manipulation Vim (Green-

berg, 1996). This kind of text editor acts as an interfacing system which

allows for the almost real-time manipulation of digitized textual objects.

While software such as EMACS and Vim are mostly focused on produc-

tivity of generic text-editing, other environments such as Turbo Pascal or

Maestro I focused specifically on software development tasks in a particu-

lar programming language in software such as the Apple WorkShop (1985)

(West, 1987), or the Squeak system for the Smallktalk programming lan-

221

guage (Ingalls, Kaehler, Maloney, Wallace, & Kay, 1997). These tools take

into account the particular attributes of software to integrate the tasks

of development (such as linking, compiling, debugging, block editing and

refactoring) into one software, allowing the programmer to switch seam-

lessly from one task to another, or allowing a task to run in parallel to an-

other task (e.g. indexing and editing). Kline and Seffah state the goals of

such IDEs: ”Such environments should (1) reduce the cognitive load on the

developer; (2) free the developer to concentrate on the creative aspects of the

process; (3) reduce any administrative load associated with applying a pro-

gramming method manually; and (4) make the development process more

systematic.” (Kline & Seffah, 2005).

Oneof theways that IDEs started to achieve these goalswas bydevelop-

ing more elaborated user-interfaces, involving more traditional concepts

of aesthetics (such as shape, color, balance, distance, symmetry). At the

surface level, concerned only with the source code’s representation, and

not with its manipulation. Indeed, since the advent of these IDEs, studies

have demonstrated the impact that such formal arrangement has on pro-

gram comprehension(Oliveira, Bruno, Madeiral, Masuhara, & Filho, 2022;

Oman & Cook, 1990b). Spacing, alignment, syntax highlighting and casing

are all parameters which have an impact on the readability, and therefore

understandability of code, sometimes to the extent that the formatting ca-

pabilities of the tool influences such understandability through particular

formal configurations33.

Understanding the source code is impacted both by legibility (concern-

ing syntax, and whether you can quickly visually scan the text and de-

termine the main parts of the text, from blocks to words themselves) and

readability (concerning semantics, whether you know the meaning of the

33”If you write text under a microscope, it’s going to end up so tiny that you would only be

able to read it while looking through the microscope. What if these [IDEs] shape how we write

code to such an extent that the code becomes illegible when we approach it without the tools in

hand?” (Ball, 2020)

222

words, and their role in the group) (Jacques & Kristensson, 2015; Oliveira,

Bruno, Madeiral, & Filho, 2020). In Listing 43 and Listing 44, we show an

excerpt of a function from the Tex-Live source code (K. Berry, 2022), for-

matted and unformatted.

IDEs therefore solve some of the mental operations performed by pro-

grammers when they engage with source code, such as representing code

blocks through proper indentations. The automation of tooling and work-

flow increased in software such as Eclipse, IntelliJ, NetBeans, WebStorm

Visual Studio Code34 has led to further entanglements of technology and

appearance. By organizing and revealing code space through actions such

as self documentation, folding code blocks, finding function declarations,

batch reformatting and debug execution, they facilitate cognitive opera-

tions such as chunking, tracing, or highlighting beacons (Bragdon et al.,

2010). These technical features showhow a tool which operate at primarily

the aesthetic level has consequences on the understandability of the sys-

tem represented, even though this is, again, dependent on the skill level of

the programmer (Kulkarni & Varma, 2017).

A significant dimension in which source code is being automatically

formatted is the use of styleguides. The evolution of software engineering,

from the individual programmer implementing ad hoc and personal so-

lutions to a group of programmers coordinating across time and space to

build and maintain large, distributed pieces of software, brought the ne-

cessity to harmonize and standardize how code is written—style guides

started to be published to normalize the visual aspect of source code.

These, called linters, are programs which analyzes the source code being

written in order to flag suspicious writing (which could either be suspi-

cious from a functional perspective, or from a stylistic perspective). They

act as a sort of intermediary object, insofar as they assist individuals in the

process of creating another object (Jeantet, 1998). Making use of formal

syntax, IDEs’ automatic styling of contributes to collective sense-making,
34Through which this thesis is written.

223

void texfile::prologue(bool deconstruct)
{

if (inlinetex)
{

string prename = buildname(settings::outname(), ”pre”);
std::ofstream *outpreamble = new

std::ofstream(prename.c_str());↪→

texpreamble(*outpreamble, processData().TeXpreamble, false,
false);↪→

outpreamble->close();
}

texdefines(*out, processData().TeXpreamble, false);
double width = box.right - box.left;
double height = box.top - box.bottom;
if (!inlinetex)
{

if (settings::context(texengine))
{

*out << ”\\definepapersize[asy][width=” << width <<
”bp,height=”↪→

<< height << ”bp]” << newl
<< ”\\setuppapersize[asy][asy]” << newl;

}
else if (pdf)
{

if (width > 0)
*out << ”\\pdfpagewidth=” << width << ”bp” << newl;

*out << ”\\ifx\\pdfhorigin\\undefined” << newl
<< ”\\hoffset=-1in” << newl
<< ”\\voffset=-1in” << newl;

if (height > 0)
*out << ”\\pdfpageheight=” << height << ”bp”

<< newl;
*out << ”\\else” << newl

<< ”\\pdfhorigin=0bp” << newl
<< ”\\pdfvorigin=0bp” << newl;

if (height > 0)
*out << ”\\pdfpageheight=” << height << ”bp” << newl;

*out << ”\\fi” << newl;
}

}

// ...
if (!deconstruct)

beginpage();
}

Listing 43: formatted.cpp - Example of a program text with syntax high-

lighting andmachine-enforced indentation. See Listing 44 for a functional

equivalent, unformatted.

224

void texfile::prologue(bool deconstruct){if(inlinetex) {
string prename=buildname(settings::outname(),”pre”);
std::ofstream *outpreamble=new std::ofstream(prename.c_str());
texpreamble(*outpreamble,processData().TeXpreamble,false,false);
outpreamble->close();
}

texdefines(*out,processData().TeXpreamble,false);
double width=box.right-box.left;
double height=box.top-box.bottom;
if(!inlinetex) {
if(settings::context(texengine)) {
*out << ”\\definepapersize[asy][width=” << width << ”bp,height=”
<< height << ”bp]” << newl
<< ”\\setuppapersize[asy][asy]” << newl;
} else if(pdf) {
if(width > 0)
*out << ”\\pdfpagewidth=” << width << ”bp” << newl;
*out << ”\\ifx\\pdfhorigin\\undefined” << newl
<< ”\\hoffset=-1in” << newl
<< ”\\voffset=-1in” << newl;
if(height > 0)
*out << ”\\pdfpageheight=” << height << ”bp”
<< newl;
*out << ”\\else” << newl
<< ”\\pdfhorigin=0bp” << newl
<< ”\\pdfvorigin=0bp” << newl;
if(height > 0)
*out << ”\\pdfpageheight=” << height << ”bp” << newl;
*out << ”\\fi” << newl;
}
}
//-...
if(!deconstruct)
beginpage();
}

Listing 44: unformatted.cpp - Example of a program text without syntax

highlighting nor machine-enforced indentation. See Listing 43 for a func-

tional equivalent, formatted.

225

something that we discuss further in subsection 5.1.3.

This move from legibility (clear syntax) to readability (clear semantics)

enables a cetain kind of fluency, the process of building mental structures

that disappear in the interpretation of the representations. The letters and

words of a sentence are experienced as meaning rather than markings,

the tennis racquet or keyboard becomes an extension of one’s body, and

so forth. Well-functioning interfaces are thus interfaces which disappear

from the cognitive process of their user, allowing them to focus on ends,

rather than on means (Galloway, 2012), leading to what Paul A. Fishwick

has coined aesthetic programming, an approach of how attention paid to

the representation of code in sensory ways results in better grasping of the

metaphors at play in code. Ultimately, by enabling different modes of rep-

resentating the various processes and states that constitute computation,

interfaces enable the navigation of information space35.

Finally, IDEs also enable epistemic action, not just through represen-

tation but also through interaction. For instance, IDEs include debuggers,

very specialized developer toolswhich enable the step by step execution of

each line of code, thus understandable at human time, rather than at ma-

chine time. By slowing down the execution of the CPU, the debugger also

suggests a different representation of the program-text at runtime: one of

landscape. The debugger’s interface extends the metaphor of the step in a

further spatial manner36 and as such hints at the program text as a spatial

environment which can be explored in multiple dimensions.

Therefore, automatic tools operate at the surface-level but also with

consequences at the deep-level, helping visualize and navigate the struc-

ture of a program text. In this case, we witness how computer-aided soft-

ware engineering in the form of IDEs can be considered as a cognitive tool,
35”The computer—or more specifically, the screen—had clearly become a much more com-

plex representational space, an information space whose surface owed as much to modernist

collage as it did to brute force calculation ” (Kirschenbaum, 2004)
36the programmer can step into to inspect the body of a function call, step over to carry on

to the next function call, or step out to enclosing function

226

a combination of surface representation affording direct interaction inter-

face, whose formal arrangements and affordances facilitate direct engage-

ment with the conceptual structures underlying in a program text. Percep-

tion and comprehension of source code is thereforemore andmore entan-

gled with its automated representation.

Extended cognition

The roots of computer-enabled knowledge management can be found

in the work of the encyclopedists, and scientists in seventeenth-century

europe, as they approached knowledge as something which could, and

should be rationalized, organized and classified in order to be retrievable,

comparable, and actionable (Sack, 2019). Scholars such as Roland Barthes,

Jacques Derrida or Umberto Eco had specific knowledge-management

techniques in order to let them focus on the arguments and ideas at hand,

rather than on smaller organizational details, through the use of index

cards; whether paper or digital, technology itself is a prosthesis for mem-

ory, an external storage which offloads the cognitive burden of having to

remember things (Wilken, 2010).

Laying out his vision for a Man-Computer Symbiosis, J.C.R. Licklider,

project leader of what would become the Internet and trained psychol-

ogist, emphasized information management. He saw the computer as a

means to ”augment the human intellect by freeing it from mundane tasks”

(Licklider, 1960). By being able to delegate such mundane tasks, such

as manually copying numbers from one document to another, one could

therefore focus on the most cognition-intensive tasks at hand. While im-

proving input, speed and memory of contemporary hardware has sup-

ported Licklider’s perspective a single limitation that he pointed out in the

1950s nonetheless remains: the problem of language.

What wewant to accomplish, and how dowewant to accomplish it, are

complex questions for a computer to process. The subtleties of language

227

imply some ambiguities which are not the preferred mode of working of a

logical arithmetic machine. If machines can help us think, there are how-

ever some aspects of that thinking which cannot cannot easily be trans-

lated in the computer’s native, formal terms, and the work of interface de-

signers and tool constructors has therefore attempted to automatemost of

what can be automated away, and faciltate the more mundane tasks done

a by a programmer. Software tools are therefore used to think and explore

concepts, by supporting epistemic actions in various modalities (Victor,

2014).

The computer therefore supports epistemic actions through its use of

metaphors (to establish a fundamental base of knowledge) and of actions

(to probe and refine the validity of those metaphors) to build a mental

model of the problem domain. In the case of IDEs, the problem domain

is the source code, and these interfaces, by allowing means of scanning

and navigating the source code, are part of what Simon Penny calls, after

Clark and Chalmers, extended cognition (Penny, 2019). Extended cognition

posits that our thinking happens not only in our brains, but is also located

in the tools we use to investigate reality and to deduce a conceptual model

of this reality based on empirical results. We consider IDEs a specificman-

ifestation of embodied cognition, actively helping the programmer to de-

fine, reason about, and explore a code base. Themeans of taking epistemic

action, then, are also factors in contributing to our understanding of the

program text at hand. In this spirit, David Rokeby goes as far as qualify-

ing the computer as a prosthetic organ for philosophy, insofar as it helps

him formulate accurate mental models as he interacts with them through

computer interfaces, compensating for its formal limitations37.

37” The fact that words can be stored andmanipulated by a computer does notmean that the

referenced concepts or material reality are held in the computer. We reinvigorate a computer’s

textual output with our mind’s wet and messy renderers. The computer is just holding on to

given patterns, sets of unambiguousmeasurements of key-strokes, mouse-clicks, modem songs,

sensor reading...” (Rokeby, 2003)

228

This brings us back to our discussion of Simondon’s technical and aes-

thetic modes of existence subsection 3.2.1. As highlighted by the use of

software tools in the sense-making process of a program text, formal syn-

tax only operates on distinct, fragmented concepts, as evoked in the tech-

nologicalmode38. In turn, the aestheticmode, expressed through themore

systemic and totalling approach of metaphors and of sensual perception,

can compensate this fragmenting process. This does suggest that the cog-

nitive process of understanding technical artifacts, such as source code,

necessitates complementary technical and aesthetic modes of perception.

Programmers face the complexity of software on a daily basis, and

therefore use specific cognitive tools to help them. While our overall ar-

gument here is that aesthetics is one of those cognitive tools, we focused

on this section on two different, yet widely used kinds: the metaphor and

the integrated development environment.

We pointed out the role that metaphors play in creating connections

between pre-existing knowledge and current knowledge, building connec-

tions between both in order to facilitate the construction ofmentalmodels

of the target domain. Metaphors are used by programmers at a different

level, helping themgrasp concepts (e.g. memory, objects, package) without

having to bother with details. As we will see in the following chapters (see

subsection 4.2.1 and section 5.2.3), metaphors are also used by programmers

in the source code they write in order to elicit this ease of comprehension

for their readers.

Programmers also rely on specific software tools, in order to facilitate

the scanning and exploring of source code files, while running mundane

tasks which should not require particular programmer attention, such as

38Rokeby further develops on the computer’s fragmentation process, which he calls quan-

tification: ”The material world cannot enter into this digital nirvana except through that par-

ticular ”eye of the needle” called quantification, that most literal and unforgiving form of en-

coding.” (Rokeby, 2003)

229

linking or refactoring. The use of software to understand software is in-

deed paradoxical, but nonetheless participates in extended cognition; the

means which we use to reason about problems affect, to a certain extent,

the quality of this reasoning.

Code is therefore technical and social, andmaterial and symbolic

simultaneously. Rather, code needs to be approached in its mul-

tiplicity, that is, as a literature, a mechanism, a spatial form (or-

ganization), and as a repository of social norms, values, patterns

and processes. (D. M. Berry, 2011)

This chapter has shown that software is a complex object, an abstract

artifact, existing at multiple levels, and in multiple dimensions. Program-

mers therefore need to deal with this complexity and deploymultiple tech-

niques to do so. Psychology studies, investigatinghowprogrammers think,

have pointed out several interesting findings. First, building mental mod-

els from reading and understanding source code is not an activity which

relies exclusively on the part of the brain which reads natural language,

nor on the part which does mathematical operations. Second, the reason-

ing style is multimodal, yet spatial, involving layered abstractionsl; pro-

grammers report working and thinking at multiple levels of scale, repre-

sent parts of code as existing closer or further from one another, in non-

linear space. Third, the form affects the content. That is, the way that code

is spatially and typographically laid out helps, to a certain, with the under-

standing of said code, without affecting expertise levels, or guaranteeing

success.

In order to deal with this complexity, some of the means deployed to

understand and grasp computers and computational processes are both

linguistic and technical. Linguistic, because computer usage is riddled

230

with metaphors which facilitate the grasping of what the presented en-

tities are and do. These metaphors do not only focus on the end-users, but

are also used by programmers themselves. Technical, because the writing

and reading of code has relied historicallymore andmore on tools, such as

programming languages and IDEs, which allows programmers to perform

seamless tasks specific to source code.

In the next chapter, we pursue our inquiry of the means of understand-

ing, moving away from software, and focusing on how the aesthetic do-

mains examined in section 2.2. This will allow us to show how source

code aesthetics, as highlighted by the metaphorical domains that refer to

it, have the function of making the imperceptible understandable.

231

Chapter 4

Beauty and understanding

This chapter provides background argumentation for what beauty has to

do with understanding. First from a theoretical perspective, and then div-

ing specifically into how specific domains approach this relation. Our the-

oretical approach will be start from the aesthetic theory of Nelson Good-

man, and a lineagewhich links aesthetics to cognition,most recently aided

by the contribution of neurosciences. We will see how source codes does

qualify as a language of art—that is, a symbol systemwhich allows for aes-

thetic experiences.

After argumenting for a conception of aesthetics which tends to in-

tellectual engagement, we will pay attention to how surface structure

and conceptual assemblages relate. That is, we will highlight how each

of the domains contigent to source code— literature, mathematics and

architecture—communicate certain concepts through their respective and

specific means of symbolic representation. The identification of how spe-

cific aesthetic properties enable cognitive engagement in each of these do-

mains will in turn support the identification of how equivalent properties

can manifest in source code.

This thesis argues that aesthetics have a useful component, insofar as

formal arrangments at the surface-level can facilitate the understanding of

232

the underlying deep structure of concepts denotated. In the specific con-

text of source code, we show that aesthetic standards are contextual, as

they vary along two axes. First, they depend on whether the attention of

the writer (and thus the reader) is directed at the hardware, or at the soft-

ware (which can, in turn, address real-world ideas, or computational ideas).

Second, they depend on the socio-technical context in which source code

is written, a context constituted of whether the program text is read-only

or read-write, and of whether the intent is for the program text to be pri-

marily functional, educational or entertaining.

4.1 Aesthetics and cognition

The way that things are presented formally has been empirically shown to

affect the comprehension of content. Without engaging too directly in the

media-determination thesis, which states that what one can say is deter-

mined by the medium through which they say it, be it language or tech-

nical media (Postman, 1985), we nonetheless do start from the point that

form influences the perception of content.

Jack Goody and Walter Ong have shown in their anthropological stud-

ies that the primary means of communication of the surveyed communi-

ties does affect the engagement of said communities with concepts such

as ownership, history and governance (Goody, 1986; Ong, 2012). More re-

cently, Edward Tufte and his work on data visualization have furthered

this line of research by focusing on the translation of similar data from

textual medium to graphic medium (Tufte, 2001). Several cases have thus

beenmade for the impact of appearance towards structure, both in source

code and elsewhere. Here, we intend to generalize this comparative ap-

proach between severalmediums, by looking at how source code performs

expressively as a language of art, stemming from Nelson Goodman’s theo-

rization of such a languages.

233

4.1.1 Source code as a language of art

Moving away from the question of the nature of the aesthetic experience

from the perspective of the audience, whether as an aesthetic emotion be-

ing felt or as an aesthetic judgment being given, we shift our attention to

the object of aesthetic experience, and to the questions of how does a pro-

gram text represent? and what does a program text represent?. To answer

these, we rely on the approaches provided by Nelson Goodman in the Lan-

guages of Art: An Approach to a Theory of Symbols (Goodman, 1976).

The starting point for Goodman’s analysis is that production and un-

derstanding in the arts involve human activities that, though they differ in

specific ways among themselves and from other activities, are neverthe-

less generically related to perception, scientific inquiry, and other cogni-

tive activities, since both artistic and scientific activities involve symbolic

systems. It is those two components that Goodman aims at expliciting:

what constitutes an aesthetic symbol system, and how does such a system

express?

Goodman develops a systematic approach to symbols in art, freed from

any media-specificity (e.g. f from clocks to counters, from diagrams to

maps models, from musical scores to painters’ sketches and linguistic

scripts). A symbolic system, in his definition, consists of characters, along

with rules to govern their combination with other characters, itself cor-

related with a field of reference. These symbols and their arrangement

within a work of art supports an aesthetic experience1 and, since they are

syntactic systemwhich operate at the semantic level, they can be rigorous

communicative systems.

A symbol system is based on requirements which might indicate that

the work created in such a system would be able to elicit an aesthetic ex-

1It should be noted here that Goodman does not limit the aesthetic experience to a posi-

tive, pleasurable one. An artistic symbolic system can be seen even if the result is considered

bad.

234

perience2. Such a system should be composed of signs which are syntac-

tically and semantically disjointed, syntactically replete and semantically

dense (Goodman, 1976). This classification makes it possible to compare

theway various symbolization systems used in art and sience express con-

cepts. In our case, this provides us for a framework to investigate the ex-

tent to which source code qualifies as a language of art.

Source code is written in a formal linguistic system called a program-

ming language. Such a linguistic system is digital in nature, and there-

fore satisfies at least the two requirements of syntactic disjointedness (no

mark can be mistaken for another) and differentiation (a mark only ever

corresponds to that symbol). Indeed, this is due to the fact that these re-

quirements are fulfilled by any numerical or alphabetical system, as pro-

gramming languages are systems inwhich alphabetical characters are ulti-

mately translated into numbers. While not as syntactically dense asmusic

or paint, it is nonetheless unambiguous.

Third, the requirement of syntactic repleteness demands that relatively

fewer factors need to be taken into account during the interpretative pro-

cess3. On one hand, we can consider that any additional aspects of the

source code (such as the display font or the syntax highlighting discussed

in subsection 3.3.2) are ultimate irrelevant to the computer, thus making

it a poorly replete symbol sytem. On the other hand, the importance of

such factors, along with abilities to write a program with the same func-

tion but with different syntax, pleads for a relatively replete syntactical

system. The tendency of program text to veer towards verbosity indeed

2Goodman approaches it as such: ”Perhaps we should being by examining the aesthetic

relevance of the major characteristics of the several symbol processes involved in experience,

and look for aspects or symptoms, rather than for crisp criterion of the aesthetic. A symptom

is neither a necessary nor a sufficient condition for, but merely tends in conjunction with other

such symptoms to be present in, aesthetic experience” (Goodman, 1976)
3Goodman mentions the symptom that such a system might engender: ”[…] relative syn-

tactic repleteness in a syntactically dense system demands such effort at discrimination along,

so to speak, more dimensions” (Goodman, 1976)

235

implies this desirable state of repleteness: more subtleties and intermedi-

ate syntax can be added within any proposition, always implying the pos-

sibility of clarifying, or obfuscating—both being, aswe have seen, different

kinds of aesthetic experiences.

Finally, semantic density refers to whether or not there is a limit to the

amount of concepts that the symbol systemcan refer to. Aswehave shown

in Listing 45, the affordances that programming languages provide to rep-

resent phenomena and concepts from the problem domain fulfill this re-

quirement. While we have been previously concerned with syntax, this

ability of programming languages to refer to a problem domain which has

not yet shown its limitations at the semantic level is one which gives it

representational power beyond strict computational concepts.

As Goodman notes, the distinct signs that compose a symbols system

do not have intrinsic properties, but amark serves as a sign only in relation

to a symbol system, and to a field of reference. The field of reference is un-

derstood here as being the set of concepts which are being referred to by

a symbolic system. For instance, a symbolic system such as western clas-

sical music can refer to concepts such as lament, piety, heroism or grace,

while a chinese shanshuipainting has a landscape composed ofmountains

and rivers, as well as concepts of harmony, complementarity, presence and

absence, as its field of reference. The combination of both the problem do-

main, as evoked in section 3.2.2, and of the technological environment on

which the source code is to be executed, developed in subsection 5.1.3, are

posited here as an equivalent to the Goodman’s field of reference.

It thus seems like source code satisfies to a large extent the critieria to

be a language of art, meaning that it exhibits some of the properties which

tend to elicit an aesthetic feeling. Most notably, it does not possess a very

dense syntax, nor can it be considered replete both from the perspective

of the computer and of the human4, but it nonetheless refers possesses a

4See subsection 5.1.1 for a discussion of syntactic limitation in programming languages,

also known as orthogonality.

236

certain amount of semantic density. Its ability to connect to a particular

field of reference, such as hardware, mathematics, or the world at large is

another aspect of being a language of art, and is an important part of how

programming languages can communicate concepts.

Goodmanhighlights theways inwhich symbols systems communicate,

through the notion of reference. To refer to, in this sense, is the action by

which a symbol stands in for an item or an idea. Reference, he sketches

out, takes place through the different dyads of denotation and exemplifi-

cation, description and representation, possession and expression (Good-

man, 1976). We will see how these various means of referring can be in-

stantiated in the symbolic system of source code.

Denotation is the core of representation, a reference from a symbol to

one ormany objects it applies to and is independent of resemblance. To re-

fer, it uses a particular relationship via the use of labels, in which a symbol

stands in for an item in the field of reference. For instance, a name denotes

its bearer and a predicate each object in its extension. Names such as vari-

able names or function names thus denote a particular item in the field

of reference, and act as their label. For instance, var auth_level denotes

an ability to access and modify resources; the first token var is chosen by

the language designer, while the second token auth_level is chosen by the

programmer.

The labelling process therefore serves as the symbolic expression for a

particular field. In source code, this can happen through variable naming,

but also through type definition5, as well as additional affordances which

we look at in section 5.2, such as the layering of semantic references and

the establishment of habitable cognitive structures.

Source code also make extensive use of description. If we consider a

program text as a series of steps, a series of states, or a series of instruc-

tions, then it follows that source code is explicitly describing the algorithm

5For instance, a particular choice of a numeric value, such as int or float denote a par-

ticular level of preciseness

237

class Person {
int age;
String name;
Interest[] interests;

void greet(){
System.out.println(”hi, my name is ”+name+”!”)

}
}

class Interest {
int priority;
String name;

}

Listing 45: representation.java - An example, written in Java, of how source

code can be both a representation oif an individual, as well as exemplify

encapsulation.

used—thehowof the program, rather than thewhy. Indeed, a program text

is a description of how to solve a problem from the computer’s perspective,

written extensively inmachine language6. All source code can therefore be

said to be a description of a combination of states (data) and actions (func-

tionality).

States are also a particular case in source code: they are both a descrip-

tion and, because they are not the thing itself, they are also a representa-

tion. As one can see in Listing 45, an individual can be represented within

source code with a particular construct in which states and actions are en-

capsulated. Interestingly, this representation of a concept as an object in

soure code does not imply that it reveals the intrinsic properties of the ob-

ject; rather, these properties appear as they are given by themodelling pro-

cess of source code syntax. As a symbol system, source code thus proposes

a model of the world in which objects have properties; a slightly different

representation is therefore always possible.

This representation, in the specific instance of object-oriented pro-

6Pseudo-code is therefore a representation of a potential source code written in a specific

language.

238

gramming in Listing 45, also manifests Goodman’s aesthetic symptom of

possession. Here, the source code posseses similar properties as the thing

referenced (since our prototypal image of a person has an age, a name and

interests). Through this possession of a property, it acts as an example of

a prototypal person.

Exemplification is another aspect of Goodman’s theory, which has

nonetheless remained somewhat limited (Elgin, 2011). A symbol exempli-

fying, also called an examplar, is considered as a stand-in for an item in the

field of reference. We have seen source code act as an example in subsec-

tion 2.1.3, where a particular program text is written in order to stand in for

a broader concept. For instance, a program text can, at a lower level, exem-

plify a particular kind of procedure, such as encapsulation (see Listing 45)

or nestedness. The program text therefore exemplifies the constitutive el-

ement of the linked list7. However, a similar program text can also be an

example of cleanliness, of clarity, or elegance. A program text written by

a software developer can be seen as possessing the property of cleanliness

(see Listing 28 in section 2.2.2), by virtue of its implementation of syntactic

and semantic rules, while another program text written by a hacker can be

seen as highlighting detailed hardware knowledge s(ee Listing 30 in sec-

tion 2.2.2).

Different implementations of a concept are necessary but not sufficient

for aesthetic judgment, whether these different implementations are vir-

tual or actual. The comparative approach is the one which enables the

labelling of good or bad only insofar as there is a relative worse or better,

respectively. Additionally, the features which a symbol exemplifies always

depend on its function (or, more precisely, its functional context) (Elgin,

1993). As we show in subsection 5.3.2, a symbol can perform a variety of

functions: a piece of code in a textbook might exemplify an algorithm,

while the same piece of code in production software might be seen as a

7A linked list is a basic data structure in computer science, which consists in a succession

of connected objects.

239

liability, or denote boredom in a code poem. It is then both the possibility

of alternative implementations and the reality of the current implementa-

tion context which give the exemplification of program texts its aesthetic

potential.

Source code maintains a specific kind of relation to the field of refer-

ence. The particular class of characters employed as symbols (called to-

kens in the context of programming languages), involves a separation be-

tween name, value and address, and as such does not guarantee a direct

relationship with the items in the field of reference, we can see in the line

unsigned three = 1; of Listing 46, where the reference of the name is not

the same reference as the value. That is, in program texts, two distinct

symbols can be referring to the same concept, value, or place in memory,

something Goodman nonetheless assigns as another symptom of the aes-

thetic: multiple and complex references.

On the other hand, the representation of a field of reference is done

through a disjointed and differentiated system: the boundaries of each

items in the field of reference are clearly defined, in virtue of the specific

symbol system that programming languages are. It is their combination

which, in turn, enables complex interplay of references.

We have shown here that source code qualifies as a symbolic system

susceptible of affording symptoms of the aesthetic. We have also high-

lighted its specificities, particularly in terms of descriptions and represen-

tations through a restricted syntactic system enabling complex and mul-

tiple references, due to it being a language across human andmachine un-

derstanding. Source code is thus written in a specific kind of symbol sys-

tem, one which counts as a language of art, but does with restricted syntax

and expansive semantics.

A final aspect to investigate is the expressiveness of source code, with a

particular attention to how source code can manifest of metaphorical ex-

emplification and representation. One particular expressive power of an

aesthetic experience surfaces when the examplification involves a foreign

240

static int verify_reserved_gdb(struct super_block *sb,
ext4_group_t end,
struct buffer_head *primary)

{
const ext4_fsblk_t blk = primary->b_blocknr;
unsigned three = 1;
unsigned five = 5;
unsigned seven = 7;
unsigned grp;
__le32 *p = (__le32 *)primary->b_data;
int gdbackups = 0;

while ((grp = ext4_list_backups(sb, &three, &five, &seven)) < end)
{

//
}
return gdbackups;

}

Listing 46: multiple_references.c - An example from the Linux kernel show-

ing that the nameand the value of a variablemight refer to different things.

Here, the name of the variables three, five and seven actually refers to the

power at which the value is considered when scanning the ext4 filesystem.

It iterates through the powers of 3, 5 and 7 and the variables three, five and

seven hold the next power of each to consider for the sequence. They could

all start at the zeroth power (1 in all cases), but there is no need to consider

1 three times, so it is enough to let three start at 1 and the others at the 1st

power (5 and 7). (Linux, 2023).

241

element, an event that Goodman refers to as metaphorical exemplifica-

tion. While this approach has been broadened by Lakoff et. al., and men-

tioned in subsection 3.3.1, other philosophers of art have also pinpointed

the metaphorical event as a reliable symptom of the aesthetic.

MaxBlack initiates a viewofmetaphorswhich gobeyond a simple com-

parison; dubbed the interaction view, he considers themetaphorical device

as containing positive cognitive content, rather than simply entertaining

or limiting (M. Black, 1955). Against a traditional view of metaphor being a

word which stands in for another, Black reveals a large web of interactions

which prove harder to disentangle, beyond usual similarities between two

words8. Simply paraphrasing a metaphor, even if one captures precisely

the same connotations/associations as the metaphor, does not convey the

samemeaning as the metaphor itself. For instance, saying ”Je chavire dans

l’embrun des phénomènes”9 (Beckett, 1982) does not have the similar ex-

pressive power as listing all the properties of phénomènes. The use of the

verb capsize in conjunction with spray relates to the domain of naviga-

tion, while capsize alone tends more to a dynamic movement, and spray

to uncertainty and bluriness of shape. Phenomenas of the world are all

requalified in the light of these new kinetic and perceptual associations.

Through his contribution to aesthetic philosophy, Monroe Beardsley’s

started touching upon metaphor from a semantic perspective. Published

alongside his inquiries into the aesthetic character of an experience, The

Metaphorical Twist implies that semantics and aesthetics might be con-

nected through the structuring operation of the metaphor—that which

8”Reference to ’associated commonplaces’ will fit the commonest cases where the author

simply plays upon the stock of common knowledge (and common misinformation) presumably

shared by the reader and himself. But in a poem, or a piece of sustained prose, the writer can

establish a novel pattern of implications for the literal uses of the key expressions, prior to using

them as vehicles for his metaphors. […] Metaphors can be supported by specially constructed

systems of implications, as well as by accepted commonplaces; they can be made to measure

and need not be reach-me-downs.” (M. Black, 1955).
9Literally translated as ”I capsize in the spray of phenomena”

242

elicits an aesthetic experience can do so through the creation of unex-

pected, or previously unattainablemeaning. Beardsley’s conception is that

metaphor can have a designative role (the primary subject) which adds a

”local texture of irrelevance”, a ”foreign component”, whose semantic rich-

ness might over-reach and obfuscate the intended meaning, as well as a

connotative one (the secondary subject), in which meaning is peripheral

(Beardsley, 1962). The cognitive stimulation and enlightment takes place

through a metaphor-induced tension, between central and periphery, be-

tween illuminating and obfuscating, between evidence and irrelevance.

As Beardsley inquiries into the features necessary for an aesthetic expe-

rience, ofwhich themetaphor is part, he lists five criteria to distinguish the

character of such an experience. Besides object-directedness, felt-freedom,

detached-affect and wholeness, is the criteria of active discovery, which is

a sense of actively exercising the constructive powers of themind,

of being challenged by a variety of potentially conflicting stimuli

to try and make them cohere; exhilaration in seeing connections

between percepts and meanings; a sense of intelligibility (Beard-

sley, 1970).

As such, Beardsley highlights the possibility of an aesthetic experience

tomake understandable, to unlock new knowledge in the beholder, and he

considers metaphors as a way to do so. The stages he lists go from (1) the

word exhibiting properties, to (2) those properties being made into mean-

ing, and finally into (3) a staple of the object, consolidating into (or dying

from becoming) a commonplace. This interplay of a metaphor being inte-

grated into our everyday mental structures, of poetry bringing forth into

the thinkable, and in the creation of a tension for such bringing-forth to

happen, makes the case for at least one of the consequences of an aes-

thetic experience, and therefore one of its functions: making sense of the

complex concepts of world.

Finally, Catherine Elgin has pursued the work of Goodman by further-

243

ing the inquiry into arts as a branch of epistemology. Drawing on the work

mentioned above, she investigates the relationship between art and under-

standing, considering how interpretively indeterminate symbols advance

understanding (Elgin, 2020), and that it does so in the context of interpre-

tive indeterminacy. As syntactically and semantically dense symbol sys-

tems are used in artworks, it is this multiplicity in interpretations which

requires sustained cognitive attention with the artwork. To explain these

multiple interpretations, the metaphor is again presented the key device

in explaining the epistemic potency of aesthetics, based on an interpreta-

tive feedback loop from the viewer. And yet, in the context of source code,

this interpretation is always shadowed by its machine counterpart—how

the computer interprets the program.

4.1.2 Contemporary approaches to art and cognition

Wehave drawn fromexistingwork in philosophyof art, in order tomapout

the expressive power of a given formal representation, as a traditional pre-

requisite to the gainingof art status of anobject, andhighlighted the role of

metaphors in engaged cognition during an aesthetic experience. Contem-

porary literature, and the emergence of neuroscientific studies of such aes-

thetic experience seem to confirmempirically this approach, andhighlight

aswell two related additional components: sequential experience and skill

levels.

The aesthetic experience—that is, the positively received perception of

a natural or crafted object—has traditionally been laid out across multi-

ple axes, with more or less overlap. The axes involved in this positive per-

ception include an emotional response, a harmonious assessment, an ax-

iomatic adherence or disinterested pleasure, and have been the topic of

debates amongst philosophers for centuries (Peacocke, 2023).

Noël Carroll sums up these different directions under the broad areas

of affect, axiom and content ultimately considering a content-based ap-

244

proach as the most fruitful (Carroll, 2002). First, he underlines how an

aesthetic experience dictated by affect removes the object from one’s as-

sessment of purpose, value and effect, and limiting it to form, following

Kant’s principle of disinterested pleasure via passive contemplation. As

such, a flower, a sunset or a musical melody can evoke affective aesthetic

experiences. Yet, the supposed tendency of this kind of experience to re-

lease us from worldly concerns fails, for Carroll, to encompass aesthetic

experiences that are rooted in so-calledworldly concerns—such as a docu-

mentary photography, skillful physical performance, or delicatedly crafted

glassware—and is therefore unsatisfying as a root explanation for the aes-

thetic experience.

An axiomatic aesthetic experience is based on the sort of value that the

object is being associated with—such as depiction of religious topics or

a manifestation of a particular style. While Carroll does acknowledge a

certain virtue of this aesthetic experience in termsof contribution to group

cohesion through shared values and imaginaries, its limitations are found

in a pre-existing answer to the value judgment that is being bestowedupon

the object: the material and sensual properties of the object at hand are

irrelevant since their quality is already decided a priori.

It is in the content approach that Carroll finds the most satisfying an-

swer to what the aesthetic experience is. Content, here, is defined as the

significant forms being apprehended, along with its combinations, juxta-

positions and comparisons with other forms10. When we engage with the

sensual aspects or an object, our attention is indeed directed first and fore-

most at what the object looks like, rather than how it makes one feel, or

what value system it belongs to. More specifically, Carroll notes, if at-

tention is directed with understanding to the form of the art work or to

10”Whereas affect-oriented approaches tend to identify aesthetic experience in terms of cer-

tain distinctive experiential qualia or feeling tones, such as being lifted out of the flow of life,

content-oriented approaches proceed by distinguishing the specific objects of said experiences.”

(Carroll, 2002).

245

its expressive and aesthetic properties or to the interaction between those

features, then the experience is said to be aesthetic (Carroll, 2002).

Form, and the attention paid to it, will thus be taken as our starting

point. This content approach to form, i.e. the set of appearing choices in-

tended to realize the purpose of the artwork, also involves questions of

function, implied by the presence of purpose pertaining to an artwork.

Particulary, how does the object of aesthetic experience manifest such a

purpose, in a way that it can be correctly judged, insofar as its perceived

form and perceived purpose are aligned, distinct from any emotional or

axiomatic charge?

We can find an answer in the study conducted by Anjan Chatterjee and

Oshin Vartanian on the evaluation of the aesthetic experience from a neu-

roscientific point of view. Like Carroll, they highlight three different per-

spectives: a sensory-motor perspective, loosely mapped to an affective ex-

perience, an emotion-valuation perspective, similar to an axiological expe-

rience, and ameaning-knowledge experience, which we equate to the con-

tent approach to the aesthetic experience (Chatterjee & Vartanian, 2016).

Importantly, theymake the distinction between an aesthetic judgment,

which emanates from the process of understanding the work, and an aes-

thetic emotion, which follows from the ease of acquisition of such an un-

derstanding. Without being mutually exclusive, these two pendants are

related to the amount of engagement provided by the person who aesthet-

ically experiences the object. One can have an aesthetic emotion with-

out being able to provide an aesthetic judgment, a case in which one does

not hold enough expertise to apprehend or appreciate a particular realisa-

tion. In this sense, the aesthetic judgment, unlike the aesthetic emotion,

requires something additional. This conditioning of the aesthetic experi-

ence to a certain kind of pre-existing knowledge or skill is supported by

the authors’ mention of the theory of fluency-based aesthetics (Chatterjee

& Vartanian, 2016). This view implies that pre-existing knowledge or skill

also involvesmodels which frame aesthetic experiences as the products of

246

sequential and distinct information-processing stages, each of which iso-

lates and analyzes a specific component of a stimulus (e.g., artwork).

These stages, drawn from Leder et. al’s model, are based on empirical

observation in scientific studies which segment an aesthetic experience

in sequential steps (Leder, Belke, Oeberst, & Augustin, 2004). These evolve

form perception, to implicit classification, explicit classification, cognitive

mastering and fianlly evaluation—that is, fully-qualified aesthetic judg-

ment. This conception is concomittant to Rebert et. al.’s proposal for an

aesthetic framework based on processing fluency, which they define as a

function of the perceiver’s processing dynamics: themore fluently the per-

ceiver can process an object, the more positive is her aesthetic response

(Reber, Schwarz, & Winkielman, 2004). While they focus their study on

perceptual fluency, tending to traditional aesthetic features such as sym-

metry, contrast and balance; they also consider conceptual fluency as an

influence on the aesthetic experience, through the attention given to the

meaning of a stimulus and the relation of form to semantic knowledge

structures. Such a conceptualizing thus hints at a similar skill-based, con-

textual framework which we have seen emerge in the aesthetic judgment

of source code, and yet an additional establishment of a relation between

truth and beauty11.

This approach of cognitive ease, which we have already identified in

the conclusion of chapter 2, is finally echoed in the view that Gregory

Chaitin, a computer scientist andmathematician, offers of comprehension

as compression. By considering that the understanding of a topic is corre-

lated with the lower cognitive burden experienced when reasoning about

such topic, Chaitin forms a view in which an individual understands bet-

ter through a properly tuned model—a model that can explain more with

11”These findings suggest that judgments of beauty and intuitive judgments of truth may

share a common underlying mechanism. Although human reason conceptually separates

beauty and truth, the very same experience of processing fluency may serve as a nonanalytic

basis for both judgments.” (Reber et al., 2004)

247

less (Zenil, 2021). In this sense, aesthetics help compress concepts, which

in turn allows someone told hold more of these concepts in short-term

memory, and grasp a fuller picture, so to speak.

These studies thus show a particular empirical attention to the cogni-

tive engagement with respect to the apprehension an object from an aes-

thetic perspective, as opposed to passive contemplation or value-driven

aggreement. While these other types of experiences remain valid when

apprehending such an object, we do focus here on this specific kind of ex-

perience: the cognitive approach to the aesthetic experience. Going back

to Goodman, he describes such an experience as involving:

making delicated discriminations and discerning subtle relation-

ships, identifying symbol systems and what these characters

denote and exemplify, interpreting works and reorganizing the

world in terms of works of art and works in terms of the world.

(Goodman, 1976)

In this section we’ve glanced at an overview of research on how cogni-

tive engagement is involved in an aesthetic experience, both from thepoint

of view of the philosophy of art and from cognitive psychology. However,

highlighting this involvment does not immediately explicit the nature and

details of such cognitive engagement. Speaking in terms of form and ob-

ject are higher-level concepts tend to erase the specificities of the various

systems of aesthetic properties, and how their arrangement expresses var-

ious concepts.

Now that we have sketched out an understanding of source code as a

symbolic system supporting an aesthetic experience, we must provide a

more detailed account of the specificities of source code. To do so, we first

turn to a comparative approach, looking at the set of aesthetic domains

metaphorically connected to source code through programmer discourse,

and we analyse how each of these domains involve cognition in their for-

248

mal presentations.

4.2 Representing textual worlds in literature

The relationship between syntax and semantics is most obvious in the

written arts, and there is no doubt that textual, sensual form communi-

cates mental spaces12. Literature as a cognitive device relies, as we’ve seen

in section 2.2, in part on the use of metaphors to provide a new perspec-

tive on a familiar concept, and hence complement and enrich the under-

standing that one has of it. While Lakoff and Johnson’s approach to the

conceptual metaphor will serve a basis to explore metaphors in the broad

sense across software and narrative, we also argue that Ricoeur’s focus

on the tension of the statement rather than primarily on the word will

help us better understand someof the aestheticmanifestations of software

metaphors, without being limited to tokens, but goingbeyond to statement

and structure. Following a brief overview of his contribution, we examine

the various uses of metaphor in software and in literature, touch upon the

cognitive turn in literary studies, and concludewith an account of how this

turn involves further thinking into the spatial and temporal properties of

the written word.

4.2.1 Literarymetaphors

Writing in The Rule of Metaphor, Ricoeur operates two shifts which will

help us better assess not just the inherent complexity of program texts,

but the ambivalence of programming languages as well. His first shift re-

gards the locus of themetaphor, whichhe sawas being limited to the single

word—a semiotic element—to the whole sentence—a semantic element
12Jean Rousset starts one of his books with this obvious statement: ”L’art réside dans

cette solidarité d’un univers mental et d’une construction sensible, d’une vision et d’une forme.”

(Rousset, 1964), only to focus his study on how this connection between the sensual form and

the mental universe takes place.

249

(Ricoeur, 2003). This operates in parallel with his attention to the lived

feature of the metaphor, insofar it exists in a broader, vital, experienced

context. Approaching the metaphor while limiting it to words is counter-

productive becausewords refer back to ”contextuallymissing parts”—they

are eminently overdetermined, polysemic, and belong to a wider network

meaning than a single, Aristotelician, one-to-one relationship. Looking at

it from the perspective of the sentence brings this rich network of poten-

tial meanings and broadens the scope for and the depth of interpretation.

As we develop in subsection 5.2.3 in our reading of Listing 76, not all of the

evocative meaning of the poem are contained exclusively in each token,

and the power of the whole is greater than the sum of its parts.

Secondly, Ricoeur inspects a defining aspect of a metaphor by the ten-

sions it creates. His analysis builds from the polarities he identifies in

discourse between event (time-bound) and meaning (timeless), between

individual (subjective, located) and universal (applicable to all) and be-

tween sense (definite) and reference (indefinite). The creative power of the

metaphor is its ability to both create and resolve these tensions, to main-

tain a balance between a literal interpretation, and a metaphorical one—

between the immediate and the potential, so to speak. Tying it to the need

for language to be fully realized in the lived experience, he posesmetaphor

as ameans to creatively redescribe reality. In the context of syntax and se-

mantics in programming languages, we will see that these tensions can be

a fertile ground for poetic creation through aesthetic manifestations. For

instance, we can see in Listing 47 a poetic metaphor hinging on the con-

cept of the attribute. In programming as in reality, an attribute is a speci-

ficity possessed by an entity; in this code poem, the tension is established

between the computer interpretation and the human interpretation of an

attribute. Starting from a political target domain (the constitution of the

United States of America), the twist happens in the source domain of the

attribute. Loosely attributed by the people in writing, the execution of the

declaration (that is, the living together of the United States citizens) im-

250

title = 'Constitution of the United States'

preamble = { 'Preamble': ”We the People of the United States, \
in Order to form a more perfect Union, \
establish Justice, insure domestic Tranquility, \
provide for the common defense, promote the general Welfare, \
and secure the Blessings of Liberty to ourselves and our Posterity, \
do ordain and establish this Constitution for the United States of

America.” }↪→

WEPOTUS_power = { 'ordain_and_establish' : lambda x, y :
Constitution(x, y)}↪→

WEPOTUS = People(”We the People of the United States”, WEPOTUS_power)

WEPOTUS.GOALS = [”form a more perfect Union”,
”establish Justice”,
”insure domestic Tranquility”,
”provide for the common defense”,
”promote the general Welfare”,
”secure the Blessings of Libery to ourselves and our Posterity”
]

USConstitution = WEPOTUS.power['ordain_and_establish'](title,
preamble)↪→

AttributeError: 'People' object has no attribute 'power'

Listing 47: cynical_american_preamble.py - Cynical American Preamble, by

Michael Carlisle, published in code::art #0 (Brand, 2019)

plies and relies on the fact that power resides in the people, as is being

stated in a literal way. However, from the computer perspective, the defi-

nition is not rigorous enough and the execution of the code will throw an

error that is shown on the last line—the People class was never defined in

the poem, and thus undermines the endeavour of the program text.

In such case, the expressiveness of the program text can be said to de-

rive from the continuous threading of metaphorical references, weaving

the properties of computational objects and the properties of conceptual

objects in order to deep the mapping from one unto the other.

So while Lakoff bases poetic metaphors on the broader metaphors of

the everyday life, he also operates the distinction that, contrary to con-

ventional metaphors which are so widely accepted that they go unno-

251

ticed, the poetic metaphor is non-obvious. Which is not to say that it

is convoluted, but rather that it is new, unexpected, that it brings some-

thing previously not thought of into the company of broad, conventional

metaphors—concepts we can all relate to because of the conceptual struc-

tures we are already carry with us, or are able to easily integrate.

Poetic metaphors deploy their expressive powers along four different

axes, in terms of how the source domain affects the target domain that is

connected to. First, a source domain can extend its target counterpart: it

pushes it in an already expected direction, but does so even further, some-

times creating a dramatic effect by this movement from conventional to

poetic. For instance, a conventional metaphor would be saying that ”Juliet

is radiant”, while a poetic one might extend the attribution of positivity

and dramatic important associated with brightness and daylight by say-

ing ”Juliet is the sun13.

Poeticmetaphors can also elaborate, by addingmore dimensions to the

target domain, while nonetheless being related to its original dimension.

Here, dimensions are themselves categories within which the target do-

main usually falls (e.g. the sun has an astral dimension, and a sensual di-

mension). Naming oneself as The Sun-King brings forth the additional di-

mension of hierarchy, alongwith a specific role within that hierarchy—the

sun being at the center of the then-known universe.

Metaphors gain poetic value when they put into question the con-

ventional approaches of reasoning about, and with, a certain target do-

main. Here is perhaps the most obvious manifestation of the non-obvious

requirement, since it quite literally proposes something that is unex-

pected from a conventional standpoint. When Albert Camus describes

Tipasa’s countryside as being blackened from the sun14, it subverts our pre-

conceptions about what the countryside is, what the sun does, and hints

at a semantic depth which would go on to support a whole philosophical

13From Romeo and Juliet, Act 2, Scene 2
14”A certaines heures, la campagne est noire de soleil.” (Camus, 1972)

252

thought, knowns as la pensée de midi, or the noon-thought15.

Finally, poetic metaphors composemultiple metaphors into one, draw-

ing from different source domains in order to extend, elaborate, or ques-

tion the original understanding of the target domain. Such a tech-

nique of superimposition creates semantic depth by layering these dif-

ferent approaches. It is particularly at this point that literary criticism

and hermeneutics appear to be necessary to expose some of the threads

pointed out by this process. As an example, the symbol of Charles Bovary’s

cap, a drawn-outmetaphor in Flaubert’sMadameBovary ends up depicting

something which clearly is less of a garment and more of an absurd struc-

ture, operates by extending the literal understanding of how a cap is con-

structed, elaborating on the different components of a hat in such a rich

and lush manner that it leads the reader to question whether we are still

talking about a hat (Nabokov, 1980). This metaphorical composition can

be interpreted as standing for the orientalist stance which Flaubert takes

vis-à-vis his protagonists, or for the absurdity of material pursuit and or-

nament, one which ultimately leads the novel’s main character, Emma, to

her demise, or for the novel itself, whose structure is composed of complex

layers, under the guise of banal appearances. Composed metaphors high-

light how they exist along degrees of meanings, from the conventional and

expected to the poetic and enlightening.

We have therefore highlighted how metaphors function, and how they

can be identified. Another issue they address is that of the role they ful-

fill in our everyday experiences as well as in our aesthetic experiences.

Granted a propensity to structure, to adapt, to reason and to induce value

15Interestingly, the re-edition of L’Étranger for its 70th anniversary can itself be seen as

a form of poetic metaphor, since it was published under Gallimard’s Futuropolis collection.

While the actual Futuropolis doesn’t claim to focus on any sort of science-fiction publications,

and rather on illustrations, the very name of the collection applies onto the work of Camus,

and of the others published alongside him, can elicit in the reader a sense of a kind of avant-

gardism that is still present today.

253

judgment, metaphors can ultimately be seen as a means to comprehend

the world. By importing structure from the source domain, the metaphor

in turn creates cognitive structure in the target domains which compose

our lives. Our understanding grasps these structures through their fea-

tures and attributes, and integrates them as a given, a reified convention—

in what Ricoeur would call a deadmetaphor. This is one of their key con-

tribution: metaphors have a functionwhich goes beyond an exclusive, dis-

interested, self-referential, artistic role. If metaphors are ornament, it is

far from being a crime, because these are ornaments which, in combining

imagination and truth, expand our conceptions of the world by making

things fit in new ways.

4.2.2 Literature and cognitive structures

Building on the focus on conceptual structures hinted at bymetaphors, the

attention of more recent work has shifted to the relationship between lit-

erature (as part of aesthetic work and eliciting aesthetic experiences) and

cognition. This move starts from the limitation of explaining ”art for art’s

sake”, and inscribing it into the real, lived experiences of everyday lifemen-

tioned above, perhaps best illustrated by the question posed in Jean-Marie

Schaeffer’s eponymous work—Why fiction? (Schaeffer, 1999). Indeed, if lit-

erary and aesthetic criticism are to be rooted in the everyday, and in the

conventional conceptual metaphors which structure our lives, our brains

seem to be the lowest commondenominator in our comprehension of both

real facts and literary works (Lavocat, 2015).

This echoes our discussion in subsection 3.1.2 of Polanyi’s work on tacit

knowledge, inwhich the scientist’s knowledge is notwholly and absolutely

formal and abstracted, but rather embodied, implicit, experiential. This

limitation of codified, rigorous language when it comes to communicat-

ing knowledge, opens up the door for an investigation of how literature

and art can help with this communication, while keeping in mind the es-

254

sential role of the senses and lived experience in knowledge acquisition

(i.e. integration of new conceptual structures) (Polanyi & Sen, 2009).

Some of the cognitive benefits of art (pleasure, emotion, or understand-

ing) are not too dis-similar to those posed by Beardsley above, but shift

their rationale from strict hermeneutics and criticism to cognitive science.

Terence Cave focuses on the latter when he says that literature ”allows us

to think things that are difficult to think otherwise. We now examine such a

possibility from two perspectives: in terms of the role of imagination, and

in terms of the role of the senses.

Cave posits that literature is an object of knowledge, a creator of knowl-

edge, and that it does so through the interplay between rational thought

and imaginative thought, between the ”counterfactual imagination” and

our daily lives and experiences. Through this tension, this suspension

of disbelief is nonetheless accompanied by an epistemic awareness, mak-

ing fiction reliant on non-fiction, and vice-versa. Working on literary al-

lusions, Ziva Ben-Porat shows that this simultaneous activation of two

texts is influenced by several factors. First, the form of the linguistic to-

ken itself has a large influence over the understanding of what it alludes

to. Its aesthetic manifestation, then, can be said to modulate the concep-

tual structures which will be acquired by the reader. Second, the context

in which the alluding token(s) appears also influences the correct inter-

pretation of such an allusion, and thus the overall understanding of the

text. This contextual approach, once again hints at the change of scale

thatRicoeur points inhis shift from theword to the sentence, anddemands

that we focus on thewhole, rather than single out isolated instances of lin-

guistic beauty. Finally, a third factor is the personal baggage (a personal

encyclopedia) brought by the reader. Such a baggage consists of varying

experience levels, of quality of the know-how that is to be activated dur-

ing the reading process, and of the cognitive schemas that readers carry

with them. Imagination in literary interpretation, builds on these vari-

ous aspect, from the very concrete form and choice of the words used, to

255

the unspoken knowledge structures held in the reader’s mind, themselves

depending on varied experience levels. By allowing the reader to project

themselves into potential scenarios, imagination allows us to test out pos-

sibilities and crystallize themost useful ones to continue building our con-

ception of the fictional world.

The work of imagination also relies on how the written word can elicit

the recall of sensations. This takes place through the re-creation, the

evokation of sensory phenomena in linguistic terms, such as the percep-

tual modeling of literary works, which can be defined as (linguistic) sim-

ulations relying on the senses to communicate situations, concepts, and

potential realities, something at work in the process of creating a fiction.

This connects back to the modelling complexities evoked in section 3.2.2:

both source code and literature have at least the overlap of helping to form

mental models in the reader.

This attention to the sense calls for an approach of literary criticism as

seen through embodied cognition, starting from the postulate that human

cognition is grounded in sensorimotricity, i.e., the ability to feel, perceive,

andmove. Specifically, pervading cognitive process called perceptual sim-

ulation, which is activated when we cognitively process a gesture in a real-

life situation, is also recruited when we read about actions, movements,

and gestures in texts.

Depiciting movement, vision, tactility and other embodied sensations

allows us to crystallize and verify the work of the imaginative pro-

cess. As such, literature unleashes our imaginary by recreating sensual

experiences—Lakoff even goes as far as saying that we can only imag-

ine abstract concepts if we can represent them in space16. It seems that

the imaginative process depends in part on visual and spatial projections,

and suggests a certain fitness of the conceptual structures depicted. By

16Geoff Hinton, pioneer of modern deep-learning, has reportedly said that, to visualize

100-dimensional spaces, one should first visualize a 3-dimensional, and then ”shout 100 really

really loud, over and over again”, cited in (Akten, 2016)

256

class love{};

void main(){
throw love();

}

Listing 48: unhandled_love.java - Unhandled Love, by Daniel Bezera, pub-

lished in {code poems} (Bertram, 2012)

describing situations which, while fictional, nonetheless are possible in a

reality often very similar to the one we live in, it is easy for the reader to

connect and understand the point being made by the author. So if litera-

ture is an object of knowledge, both sensual and conceptual, offering an

interplay between rational and imaginative thought, it still relies on the

depiction of mostly familiar situations (the protagonists physiologies, the

rules of gravity, the fundamental social norms are rarely challenged).

A first issue that we encounter here, in trying to connect source code

and computing to this line of thought, is that source code has close to no

perceptible sensual existence, beyond its textual form. In trying to com-

municate concepts, states and processes related to code and computing,

and in being unable to depict them by their own material and sensual

properties, we once again resort to linguistic processes which enable the

bringing-into-thinking of the program text.

The code poem listed in Listing 48 suggests a similar phenomenon

when it comes to perceiving motions and sensations through words. The

key part of the poem here is the use of the keyword throw: as a reserved

keyword in some of themost popular programming languages, it is known

and has been encountered by multiple programmers, as opposed to a

word defined in a specific program (such as a variable name). This pre-

vious encounters build up a feeling of familiarity and of dread—indeed,

the act of the throwing in programming is as dynamic and as violent as

in human prose. To throw an object in programming, is to interrupt the

257

smooth executionflowof the program, because somethingunexpectedhas

happened,—that is, an exception. Additionally, the title of the poem hints

at a supplemental implication of the poems motion; any exception that is

thrown should be caught, or handled, by another part of the program, in

order to gracefully recover from themishap and proceed as expected. If it’s

not handled—as is the case in the poem—the program terminates and the

source code itself aborts all function.

Unhandled Love provides a commentary on the agency of the entities

involved in the execution of the program-text. Who is throwing love, and

who is receiving it? It seems that the programmer is the one instructing the

throw, but the receiving end is not clear: if the computer is not instructed

to catch the love/error (as in a try/catch) block, thenwho is, andwhere does

the call to love end up? Here, the lack of explicit handling is immediately

equated with negative uncertainty, while a human understanding of love

might account for uncertainty as a poetic and romantic approach to the

other.

Vilem Flusser considers poetic thinking as a means to bring concepts

into the thinkable, and to crystallize thoughts which are not immediately

available to us17; through various linguistic techniques, poetry allows us

to formulate new concepts and ideas, and to shift perspectives. Rendered

meaningful via this code poem, a certain conception of love is therefore

depicted here as an exception that must be handled (with care) , and the

use of a particularly dynamic keyword elicits such a feeling in a readerwho

previously had to throw and handle exceptions.

Another example of howsource code can communicate concepts canbe

seen in Listing 49. In this case, we can see in the relation between the name

17”In this sensewemay say that the intellect expands intuitively. Wemay, however, define the

intuition that results in the production of proper names better, since it is a productive intuition.

Wemay call it “poetic intuition.” The proper names are taken, through this ntuitive activity, from

the chaos of becoming in order to be put here (hergestellt), that is, in order to be brought into

the intellect.” (Flusser & Novaes, 2014)

258

package binary;

public class Finder {
public static int find(String[] keys, String target) {

int high = keys.length;
int low = -1;
while (high - low > 1) {

int probe = (low + high) >>> 1;
if (keys[probe].compareTo(target) > 0)

high = probe;
else

low = probe;
}
if (low == -1 || keys[low].compareTo(target) != 0)

return -1;
else

return low;
}

}

Listing 49: binary.java - Binary search, implemented by Tim Bray in Beau-

tiful Code highlights variable names (high, low, probe) as indicators of the

spatial component of the function’s performance (Bray, 2007).

of the function, find and the three local variables high, low and probe, that

the act of finding is going to imply some sort of search space. The search

space is going to be traversed in an alternatingway, called the binary search

in computer science terms18.

Here, we thus have two indicators, syntactical and structural. First, high

and low, imply the space in-between, a space to be explored via probe19.

Second, the use of only two statements inside the while loop represents

the simplicity of the search process itself, a search process which, as (high

- low > 1) tells us, implies a shrinking search space20.

18The author of Listing 49 said of the difference between concept and implementation:

”Nothing could be simpler, conceptually, than binary search. Youdivide your search space in two

and see whether you should be looking in the top or bottom half; then you repeat the exercise

until done. Instructively, there are a great many ways to code this algorithm incorrectly, and

several widely published versions contain bugs.” (Bray, 2007)
19Conversely these variables could have been named start, end and current, with sim-

ilar purpose, but a different denotation
20Rather than expliciting checking if the target has been found inside the loop, the code’s

259

By paying attention to the spatial and embodied implicit meanings

held in the syntactic structures used in both literature and source code,

we can start to see how a certain sense of understanding being extracted

from reading either kind of texts depends on embodiment. In the case of

program texts, the point is to reduce computational space into humanly

embodied space; similarly, literature engages in communicating different

kinds of space.

4.2.3 Words in space

Beyond the use of metaphor, literature allows the reader to engage cog-

nitively with the world of the work, and the interrelated web of concepts

that can then be grasped once they are put into words. This process of

putting down intention, through language and into written words, is also

the process of transforming a time-based continuum (speech) into a space-

based discrete sequence; a process called grammatization, explored fur-

ther in (Bouchardon, 2014). This is valid both for humanprose andmachine

languages: the unfathomably fast execution of sequential instructions is

manifested as static space in source code.

Literary theory also engages with the concept of space. We have seen

in the subsection above that there is a particular attention being given to

movement in space, through embodied cognition; in that case, the use of

simplicity relies on the fact that another definition forfinding is that of reducing search space:

”Some look at my binary-search algorithm and ask why the loop always runs to the end without

checkingwhether it’s found the target. In fact, this is the correct behavior; themath is beyond the

scope of this chapter, but with a little work, you should be able to get an intuitive feeling for it—

and this is the kind of intuition I’ve observed in some of the great programmers I’ve workedwith.

[…] You could do the math to figure out when the probability of hitting the target approaches 50

percent, but qualitatively, ask yourself: does it make sense to add extra complexity to each step

of an O(log2 N) algorithm when the chances are it will save only a small number of steps at the

end? The take-away lesson is that binary search, done properly, is a two-step process. First,write

an efficient loop that positions your low and high bounds properly, then add a simple check to

see whether you hit or missed.” (Bray, 2007)

260

a specific syntax can elicit a kinetic reaction in the incarnated reader. We

now pay attention to how spatiality interplays with meaning in literature,

looking at the spatial form of the text in general, and to spatio(-temporal)

markers in the text in specific.

First, we leave behind some traditional concepts in literary theory. We

have seen that, due to source code’s non-linearity and collaborative aspect,

concepts such as narrative and authorship are somewhat complicated to

map across fields.

We have mentioned above that the fictionality of a text provides a kind

of text-based simulation for a combination of events, characters and situa-

tions. While soure code, by its actual execution, might tend to be classified

rather as non-fiction, we nonetheless show here that, by evoking intercon-

nected entities, it also participates to the construction of mental models.

Here, we pay particular attention to fictional space: theweb of relation-

ships, connotations and suggestions that hint at a broader world than the

one immediately at hand in a work of literature. This fictional space, or

storyworld is not to be equated to what we have denotated as the problem

domain. Rather, it is what exists through, yet beyond, the text itself; we

refer to it as the world of reference.

To focus on the specific tokens denoting space, we rely on the distinc-

tion operated by Marie-Laure Ryan on the topic (Ryan, 2009). The starting

point she offers is to consider how the spatial extension of the text, its exis-

tence in a certain number of dimensions21 impacts the readers’ perception

of the narrative.

At the simplest level, we see this illustrated in Listing 50. In this list-

ing, we can see how the most direct spatial perceptions of the program

text, its indentation, actually represents semantic properties: the indent

on class_space is related to it existing at a different level (scope) than the

21An oral narrative exists in zero dimensions, a live TV news ticker exists in one dimen-

sion, a printed or digital page exists in two dimensions, while a theater play exists in three

dimensions.

261

class Space:
def __init__(self, dimensions):

self.dimensions = dimensions
alone = True

def new_space():
new = new Space(4)

Listing 50: spatial_extension.py - This bespoke snippet shows how the spa-

tial extension of the text—its indentation—corresponds to the structural

semantics of the code, in the Python programming language.

variables dimensions and alone, just like the indent before def __init__ dif-

fers from the one before def new_space also signify changes in lexical scope.

Moving beyond this immediately visual spatial component, Ryan shifts

to the spatial form of the text. Rather than looking at the space in which it

is deployed, it is considering

a type of narrative organization characteristic ofmodernism that

deemphasizes temporality and causality through compositional

devices such as fragmentation, montage of disparate elements,

and juxtaposition of parallel plot lines. (Ryan, 2009).

Narrative, in its traditional sense of coherent, sequential events whose

developments involve plot and characters, is seldommentioned in writing

source code. In source code, narrative is already deemphasized and the

spatial formof the textmentioned above is therefore better suited tomatch

the material of the code. Indeed, Ryan continues:

The notion of spatial form can be extended to any kind of de-

sign formed by networks of semantic, phonetic or more broadly

thematic relations between non-adjacent textual units. When

the notion of space refers to a formal pattern, it is taken in a

metaphorical sense, since it is not a system of dimensions that

determines physical position, but a network of analogical or op-

262

positional relations perceived by the mind. (Ryan, 2009)

Space, alongwith interactivity, is a core feature of the digital medium22.

JanetMurray also puts spatiality as one of the core distinguishing features

of digital media, at the forefront of which are digital games23.

An example of this intertwining of flat textual screen and spatial depth

is the overall genre of interactive fiction, which displays prompts for tex-

tual interaction on a screen, accompanied with the description of where

the reader is currently standing in thefictionalworld. Exploration canonly

be done in a linear fashion, entering one space at a time; and yet the sys-

tem reveals itself to contain spaces in multiple dimensions, connected by

complex pathways and relationships. The listing in Listing 51 shows how

the execution processes of a program text can be expressed spatially in the

comments, and then textually in the rest of the file. Since comments are

ignored by the computer, this depiction is only to help the human reader

in their spatial representation of the executed program.

As Murray mentions, these features are not limited to those playful

interactive systems presented as works to be explored (be it e-literature

or digital games), but are rather a core component of digitality. Beyond

the realm of fiction, one can see instances of this in the syntax used in

both programming languages and programming environments (see sub-

section 3.3.2 and our overview of IDEs). For instance, the use of the GOTO

statement in BASIC, of the JMP and MOV instructions in x86 Assembly, or

the use of the return in the C family of programming languages all hint at

movement, at going places and coming back, representing the non-linear

perception of program execution24.

22As N. Katherine Hayles states in her eponymous essay, ”print is flat, code is deep” (Hayles,

2004)
23”The computer’s spatial quality is createdby the interactive process of navigation. Weknow

that we are in a particular location because when we enter a keyboard or mouse command the

(text or graphic) screen display changes appropriately. (Murray, 1998)
24In themeantime, program execution is still considered to be linear by themachine, since

instructions are executed one after the other. The use of multi-core architecture and par-

263

* Part 1 -- Initial checks
*
* * . called by
* | MAC clients
* v . . No
* +--------+ +-----------+ . +-------------------+

+====================+↪→

* | mac_tx |->| device |-*-->| mac_protect_check |->v Is this
the simple v↪→

* +--------+ | quiesced? | +-------------------+ v case? See
[1] v↪→

* +-----------+ |
+====================+↪→

* * . Yes * failed |
* v | frames |
* +--------------+ |

+-------+---------+↪→

* | freemsgchain |<---------+ Yes . *
No . *↪→

* +--------------+ v
v↪→

* +-----------+
+--------+↪→

* | goto |
| goto |↪→

* | Part 2 |
| SRS TX |↪→

* | Entry [A] |
| func |↪→

* +-----------+
+--------+↪→

* |
|↪→

* |
v↪→

* |
+--------+↪→

*
+---------->| return |↪→

*
| cookie |↪→

*
+--------+↪→

Listing 51: mac_sched.c - This listing includes as a comment an execution

flow diagram inside the program text, testifying to the inherently frag-

mented and non-linear execution of source code. (Mustacchi, 2019)

264

And yet, Ryan hints at anothe aspect of spatial form specifically in the

digital medium:

But an even more medium-specific type of spatial form resides in

the architecture of the underlying code that controls the naviga-

tion of the user through a digital text. (Ryan, 2021)

As writers and readers of this architecture, of which source code is the

blueprint, we gather information through syntax about developments in

space and time into a cognitive map or mental model of narrative space25.

Mental maps are therefore dynamically constructed in the course of

reading and consultedby the reader to orient herself in theprogram. Avery

simple example of spatialization of meaning, both visually and conceptu-

ally, can be seen in Listing 52. There, the spatial component is rendered

specifically through the syntax of HTML. HTML, as a markup language,

has a specific ontology: it is fundamentally made up of elements who con-

tain other elements, or are self-contained. When an element is contained

into another, a specific semantic relationship occurs, where the container

influences the contained, and vice-versa. Therefore, what we see at first is

layout spatialization, which leads to this specific triangle shape. By using

the semantics of the language, in which certain elements can only exist in

the context of others, this layout spatialization26 also comes to delimit cer-

tain semantic areas. This explicitly poetic example takes religion, and the

allel processing does complicate this picture, but programmers rarely engage directly with

the specification of which CPU core executes which instruction. What they do engage with,

is parallel programming, in which things happen simultaneously, thus presenting cognitive

complexity insofar as twoprocesses being run in parallel imply some sort of distinct semantic

spaces to be reflected in the mental model of the programmer.
25The term narrative is used here to describe the effective behaviour of the program, once

executed. Since source code appreciation is subject to its function, following the narrative

of source code would then amount to following its correct execution path(s), even though

description fits better tomost program texts since, from themachine perspective, it describes

exactly what it is doing.
26While not functionally necessary, the indents added to the listing further highlight the

computational concept of nestedness through visual cues.

265

<GOD>
<universe>

<galaxy>
<solarsystem>

<earth>
<island>

<town>
<garden>

<flowerbed>
<snowdrop>

<petal>
<molecule>

<proton>
<quark>

<GOD>
</quark>

</proton>
</molecule>

</petal>
</snowdrop>

</flowerbed>
</garden>

</town>
</island>

</earth>
</solarsystem>

</galaxy>
</universe>

</GOD>

Listing 52: nested.html - Nested, by Dan Brown and published in {code po-

ems} (Bertram, 2012)

representation of God as its problem domain; its expressive force comes

by describing it as both the all-including and the all-included, and thus es-

caping the implicit rules of everyday spatiality, that a thing cannot contain

itself.

A more concrete example can be seen in Listing 53. Written in the

style of software engineers, rather than poets, this listing describes a func-

tion which gracefully shuts down a HTTP server. Essentitlly, the function

Shutdown() regularly checks if the number of connections to the server is

zero. If it reaches zero, it considers the process completed without errors;

it waits until it receives an error from the context, or if it receives a tick

from a timer setup in advance.

266

func (h *http2Listener) Shutdown(ctx context.Context) error {
pollIntervalBase := time.Millisecond
nextPollInterval := func() time.Duration {

// Add 10% jitter.
//nolint:gosec
interval := pollIntervalBase + time.Duration(weakrand ⌋

.Intn(int(pollIntervalBase/10)))↪→

// Double and clamp for next time.
pollIntervalBase *= 2
if pollIntervalBase > shutdownPollIntervalMax {

pollIntervalBase = shutdownPollIntervalMax
}
return interval

}

timer := time.NewTimer(nextPollInterval())
defer timer.Stop()
for {

if atomic.LoadUint64(&h.cnt) == 0 {
return nil

}
select {
case <-ctx.Done():

return ctx.Err()
case <-timer.C:

timer.Reset(nextPollInterval())
}

}
}

Listing 53: shutdown.go - This listing represents the various steps taken in

order to shutdown a HTTP server, and showsmultiple aspects of temporal

complexities represented spatially (WeidiDeng, 2023)

267

The first reference we can look at is mostly spatial, and takes place at

the declaration of nextPollInterval. By being another function declaration,

it is both self-contained, but also has access to variables in its declarative

environment, such as pollIntervalBase. A long, dynamic series of state-

ments which double a timer interval everytime it is called is thus com-

pressed into a single token, nextPollInterval, and can then be passed as

an argument to timer functions. Here, the space of the timer interval’s cal-

culation is compressed and abstracted away.

Interestingly, we can note the comment // Add 10% jitter, which ex-

plains the calculation of the subsequent interval. The word jitter usually

refers to a quicky, jumpy movement, but is here used to facilitate the un-

derstanding of adding a random number to the previous one, effectively

deviating the timer from its linear increase. Here, using the word jitter im-

mediately evokes feeling of small, unpredictable change.

The second reference is primarily temporal. The keyword defer in the

line defer timer.Stop() specifically marks the deferred execution of this

particular function to the specific moment at which the current function

(Shutdown()) returns. This reference is not absolute (as is the timer on the

line above, even though it might not be determinate), but rather relative,

itself dependent on when the current function will return. Here, the pro-

gramming language itselfmakes it simple to express this relative temporal

operation.

Finally, we can take a look at both the last select statement of the func-

tion to see amore complex interplay of both space and time. There are two

things happening there. With the specific <- arrow, the pictorial represen-

tation shows how a message is incoming, either from ctx.Done(), which

itself comes from outside the current function, given as an argument, or

from timer.C, which comes from the timer that has just been declared in

the current function. Both of these messages come from different places,

one very distant, and the other very local, and might arrive at different

moments. Here, the <- denotes themovement of an incomingmessage, ex-

268

pliciting where the messages come from, and in which order they should

be treated, and thus facilitates the handling of event with varying spatio-

temporal properties.

The listing Listing 53 shows not only different spaces of executions,

nor only different moments of execution, but very much the intertwining

of space and time. One of the earlier approaches to the specific tokens

which represent space in the traditional novel has also related it to time:

the chronotope is described byMikhail Bakhtin as the tight entanglement

of temporal and spatial relationships that are artistically expressed in lit-

erature. Those markers execute a double function, as they allow for the

reification of temporal events and spatial settings during the unfolding of

narrative events27.

While Bakhtin introduces the concept from a marxist-historical point

of view, analyzing notions of history, ideal, epics and folklore through that

lense, it is nonetheless useful for our purposes. Chronotopes are a kind of

marker which enable the understanding of where something comes from

(such as an explicit module declarations in header files, or inline before a

function call), or when something should happen (such as the async/await

keyword pair in ECMAscript denoting the synchronicity of an operation or

the defer keyword indicating that a specificied function will only be called

when the current function returns).

Thus, the chronotopes give flesh to the events described in (and then

executed from) source code. As such, they function as the primary means

of materializing time in space. From a network of these chronotopes,

along with metaphors and other devices that are explicited in section 5.2,

emerges a concretization of representation which the reader can use to

constitue a mental model of the program text.

Syntactical literary devices allow readers to engage cognitively with a

27”Time, as it were, thickens, takes on flesh, becomes artistically visible; likewise, space be-

comes charged and responsive to the movements of time, plot and history.” (Bakhtin, 1981)

269

particular content; they enable the construction of mental models a par-

ticular narrative, through a network of metaphors, allusions, ambiguous

interpretations and markers of space and time. We have shown that these

literary devices also apply to source code, especially how the use of ma-

chine tokens and human interpretation suggest an aesthetic experience

through metaphors, and with particular markers that are needed to make

sense of the time and space of a computer program, which differs radically

from that of a printed text. This making sense of a foreign time and space

is indeed essential in creating a mental map of the storyworld (in fiction)

or the world of reference (in non-fiction).

The use of the termmapalso implies a specific kindof territory, enabled

by the digital. As a hybrid between the print’s flatness and code’s depth,

Ryan and Murray—among many others—identify the digital narrative as

a highly spatialized one. This feature, Ryan argues, is but a reflection of the

inner architecture of source code. Pushing this line of thought further, we

now turn to architecture as a discipline to investigate how the built envi-

ronment elicits understanding, and how such possibilities might translate

in the space of program texts.

4.3 Function, style andmatter in architecture

At itsmost commondenominator, architecture is concernedwith the gross

structure of a system. At its best, architecture can support the understand-

ingof a systembyaddressing the sameproblemas cognitivemappingdoes:

simplifying our ability to grasp large system. This phrase appears in Kevin

Lynch’swork on The Image of theCity, inwhich he highlighted that our un-

derstanding of an urban environment relies on combinations of patterns

(node, edge, area, limit, landmark) to which personal, imagined identities

are ascribed. Theprocess is once again that of abstraction, but goes beyond

that, and includes a subjective perspective (Lynch, 1959). Moving from the

270

urban planner’s perspective to the architects, we see how each individual

component contributes to the overall legibility of the system. This section

considers how individual structures, through their assessed beauty, offer

a cognitive involvement to their participants.

Beauty in architecture is one of the discipline’s fundamental compo-

nents, dating back to Vitruvius’s maxim that a building should exhibit fir-

mitas, utilitas, venustas—solidity, usefulness, beauty. And yet in practice,

beauty, or the abillity to elicit an aesthetic experience, is not sufficient, and

sometimes not even required, for a building to be considered architectural.

Even though architecture is usually considered as an art, it is also a product

of engineering, and thus a hybrid field, one where function and publicness

modulate what could be otherwise a ”pure” aesthetic judgment.

This sections looks at architecture through its multiple aspects, to

highlight to which extent some of these are reflected in source code28.

Through an investigation of the tensions and overlaps of form, function,

context and materiality in the built space, we identify similarities in the

programmed space. Particularly, we will look at how an understanding of

patterns translates across both domains, in response to both architecture

and programming’s material constraints, due to the physical instantiation

of buildings and programs in a situated context.

4.3.1 Form and Function

Particularly, our interest here is with the cognitive involvement in the ar-

chitectural work. What is there to be understood in a building, and how do

buildings make it intelligible? The early theoretical answers to this ques-

tion is to be found in the work of Italian architects, such as Andrea Palla-

dio, whose conception of its discipline came from ideal platonic form, and

mathematical relation between facade and inner elements, as well as Leon

28Recall how, in section 2.3.3, programmers tended to refer extensively to themselves as

architects, engineers or craftspeople.

271

Battista Alberti, whose consideration of beauty in architecture, as such an

organization of parts that nothing can be changed without detriment to

the whole (Scruton, 2013)29.

While structure is meant to stand the test of time and natural forces30,

utility can be assessed by the extent towhich a building fulfills its intended

function. How the beauty of a building relates to its function, whether

it can be completely dissociated from it, or if it is dependent on the ful-

fillment of its function, is still a matter of debate between formalists and

functionalists. Nonetheless, the position we take here is in line with Par-

sons and Carlson, in that fitness of an object is a core component of how it

is appreciated aesthetically (G. Parsons, Carlson, Parsons, & Carlson, 2012),

and that form is hardly separable from function.

In some way, then, form should be able to communicate the function

of a building. Roger Scruton, in his philosophical investigation of architec-

ture, brings up the question of language—if buildings are to be cognitively

engaged with, then one should be able to grasp what they communicate,

what they stand for, what they express. To do so, he starts from the fact

that architectural works are often composed of interconnected, coherent

sub-parts, which then contribute to the whole, in a form of gestaltung.

Architecture seems, in fact, to display a kind of ’syntax’: the parts

of a building seem to be fitted together in such a way that the

meaningfulness of the whole will reflect and depend upon the

manner of combination of its parts. (Scruton, 2013)

Yet, he develops an argumentation which suggests that architecture is

not so much articulated as a language, than as a set of conventions and

rules, and that it is not a representative medium (which would imply valid
29Such a definition is a reminiscent of how Vladimir Nabokov defines beauty in literature:

”A really good sentence in prose should be like a good line in poetry, something you cannot

change, and just as rhythmic and sonorous” (Nabokov, 1980)
30A purpose exemplified by the still standing structures of Roman and Greek antiquities,

resulting from a particular mixing process of concrete.

272

and invalid syntax, as well as intent), but rather an expressive one. Ar-

chitectural significance, then, relies on the presence and arrangement of

those evolving conventions—that is, a style—rather than on the depiction

of a subject through an exact syntax. While architecture might not repre-

sent content the sameway literature does, it is nonetheless expressive, and

relies on particular styles—recurring formal patterns and ways of doing—

to express a tone, a feeling, or a stimmung in their dwellers.

As identified in subsection 2.3.3, the similarities between software and

architecture can be mapped as symmetrical approaches: as top-down or

bottom-up, from an architect’s perspective, or from a craftperson’s. Since

we focus on what a building expresses, we need to consider the source of

such an expression. First, we look at how modernism, and the conven-

tions that make up this architectural thought, are the top-down result of

the intersection of function, form and industry, and reveal the influence of

functional design on the aesthetic appreciation of a work.

The central modern architectural standard is Louis Sullivan’s maxim

that form follows function, devised as he was constructing the early of-

fice buildings in North America. Sullivan’s statement is thus that what the

building enables its inhabitants to do, inevitably translates into concrete,

visible, and sensual consequences.

All things in nature have a shape, that is to say, a form, an out-

ward semblance, that tells us what they are, that distinguishes

them from ourselves and from each other …It is the pervading

law of all things organic and inorganic, of all things physical and

metaphysical, of all things human and all things superhuman, of

all true manifestations of the head, of the heart, of the soul, that

the life is recognizable in its expression, that form ever follows

function. This is the law. (Sullivan, 1896)

The value of the building is therefore derived from what it allows the

individuals to do: the office building allows them to work, the school to

273

learn, the church to pray and the house to live. To do so, modernist ar-

chitecture rejects any superfluous decoration, or extraneous addition, as

a corruption of the purity of the building’s function. In a similar vein, Le

Corbusier, another fundamental actor of modern architecture, equates the

building with its function, advocating for the suppression of decorative

clutter and unnecessary furnishings and possessions, and hailing trans-

parency and simplicity as architectural virtues (Le Corbusier & Saugnier,

1923), and culminating in Le Corbusier’s assessment that the architectural

plan as a generator, and the house as a machine to be lived in.

From this perspective, architectural works are a kind of system, in that

they constitute sets of interrelated structural components, where the parts

are connected by distinctive structural and behavioral relations; and yet

the set of conventions towhich LeCorbusier contributes is an abstract rep-

resentation of this systemic nature. He focuses on the plan as the primary

source of architectural quality. For software developers, the equivalent of

an architectural plan would be a modelling system such as UML: a lan-

guage to describe structural relationships between software components,

with an example shown in Figure 4.1. Fromamodernist angle, the aesthetic

value of a building is thus directly dependent on how well it performs an

abstractly defined function for its users, assessed at a structural level.

Just as a two-dimensional floorplan and a three-dimensional building

are different, a diagram and a program text are also different. This differ-

ence is highlighted throught the process of construction in architecture,

and implementation in software development, involving respectively en-

gineers and programmers to realize the work that has been designed by

the architect.

It is clear the modernists thought of function as engineering function,

and aligned it with engineering aesthetics31. Nonetheless, such a concep-

tion of function is definitelymachinic, consisting of airflow, heat exchange

31Esthétique de l’ingénieur is the title of one of the chapters of Le Corbusier’s manifesto,

Vers une Architecture (Le Corbusier & Saugnier, 1923)

274

Figure 4.1: Description of a software component and its inner relations in

the Universal Modelling Language, (Wikipedia, 2023b)

or drainage, expressing a particular feeling of progress and achievement

through industrial manufacturing techniques allowing for new material

capabilities against contextual understandings. Here again, the human is

but a small part in a dynamic system.

Jacques Rancière, in his study of the Werkbund-inspired architecture,

offers an alternative approach, away from the strcit functionality laid out

by Sullivan and Le Corbusier before him. The simplification of forms and

processes, he writes of the AEG Turbinenhalle in Berlin, which is normally

associated with the reign of the machine, finds itself, on the contrary, re-

lated to art, the only thing able to spiritualize industrial work and common

life (Ranciere, 2013).

By paying attention to the role of a detail, and of the human subjectiv-

ity and situatedness of the people inhabiting the building, departs form the

strict function of an object or of a building, to its actual use. Such a shift

moves the aesthetic judgment from a structure-centric perspective (such

as Le Corbusier’s ideal dimensions), to a human-centric perspective (such

as Lacaton & Vassal’s practical extension of space and light). Peter Down-

275

ton reiterates this point, whenhe states that ”buildings anddesign are often

judged from artistic perspectives that bear no relation to how the building’s

occupants perceive or occupy the building.” (Downton, 1998); his conception

of the artistic here, is one that aligns with Kant’s definition of a work that

is purposive in itself, and not based on a function that it should fulfill.

One can see a translation of such a self-referential conception of art in

the class of building which encompass follies and pavillions. These kinds

of buildings are constructed first and foremost for their decorative proper-

ties, and only secondarily for its structural and functional properties. Fol-

lies, for instance, are individual buildings built on the demand of one spe-

cific individual’s desire. They aim to represent something else than what

they are, with no other purpose than ornament and the display of wealth.

Pavilions, in the modern acceptation of the term, are rather displays of

architectural and engineer prowess, demonstrating the use of new tech-

niques and materials. By focusing only on design and technical feat, it is

this prowess itself that is being represented: the function of the building

is only to represent the skill of its builders. For instance, Junya Ishigami’s

pavillion at the Venice Biennale in 2008, shown in Figure 4.2 consisted in

a very elegant and aerial structure, but whose function was depending on

the fact that no living being interacted with it32.

As an artform, architecture provides an immersive and systemic phys-

ical environment, and thus shapes human psychology and agency within

it, in turn forcing the dweller to acknowledge and engage with their en-

vironment. This suggests that, from a formal, top-down approach which

considers architecture as possessing a systematic language to be realized

exactly at a structural level, there exists a complementary, bottom-up ap-

32Indeed, the structure collapsed due to a cat’s playfulness: ”The Barbican says that the 37-

year-old Ishigami is ”internationally acclaimed”, and there is certainly a buzz and fascination

around him. Last year he won the Golden Lion, the highest prize at the Venice Architecture

Biennale, for a structure that collapsed almost as soon as it was built, following an accident

with a cat. Little was left but a scrawled note saying ”Scusate, si è rotto. I’m sorry It’s broken.”

(Moore, 2011)”

276

Figure 4.2: Pavillion built by Junya Ishigami + associates, showing a focus

on appearance and structural features, rather than habitability. Picture

courtesy of Iwan Baan, 2008.

proach, centered around human construction and function.

4.3.2 Patterns and structures

A counterpoint to this modernist approach of master planning is that

of Christopher Alexander. Along with other city planners in the United

States, such as William H. Whythe or Jane Jacobs, Alexander belongs to an

empirical tradition of determining what makes a built environment good

or not, by examining its uses and the feelings it elicits in the people who

tread its grounds. He elaborates an approach to architecture which does

not exclusively rely on abstract design and technological efficiency, but

rather takes into account the multiple layers and factors that go into mak-

ing

[...] beautiful places, places where you feel yourself, places where

you feel alive (Alexander, 1979) [...]

In The Timeless Way of Building, he focuses on how beauty is involved

277

in moving from disorganized to organized complexity, a design process

which is not, in itself, the essence of beauty, but rather the condition

for such beauty to arise. Alexander’s conception of beauty, while very

present throughout his work, is however not immediately concerned with

the specifics of aesthetics, but rather with the existence of such objects.

This existence, in turn, does require to be experienced sensually, including

visually.

In this process of achieving organized complexity, he highlights the

paradoxical interplay between symmetry and asymmetry, and pinpoints

beauty as the ”deep interlock and ambiguity” of the two, a beauty he also

finds the the relationship between static structures of the built environ-

ment, and the flow of living individuals in their midst. In his perspective,

then, architecture should take into account the role of tension between op-

posite elements, rather than the combination of rational and abstract de-

sign elements. Such an approach echoes other considerations of tension

as a source for stimulating human engagement,such as Ricoeur’s analysis

of themetaphor (see subsection 4.2.1), and the resolution of the riddles pre-

sented in works of obfuscated source code (see subsection 2.1.2).

He therefore considers a possible aesthetic experience as a conse-

quence of qualities such as appropriateness, rightness to fit, not-simplistic

and wholeness. All of these have in common the subsequent need for a

purpose, a purpose which he calls the Quality Without a Name (Alexander,

1979). This quality, he says, is semantically elusive, but nonetheless ex-

ists; it is, ultimately, the quality which sustains life, a conclusion which he

reached after extensive empirical research: no one can name it precisely,

but everyone knowswhat it refers to. It is the quality whichmakes one feel

at home, which makes one feel like things make sense in a deep, unexpli-

cable way33. This reluctance to being linguistically explicited is echoed in

33”It is always looking at two entities of some kind and comparing them as to which one has

more life. It appears to be a rank bit of subjectivity. […] It turns out that these kind of measure-

ments do correlate with real structural features in the thing and with the presence of life in the

278

the work of the craftsman, where a practitioner often finds herself show-

ing rather than telling (Pye, 2008), another domain with which software

developers identify, explicited in section 2.3.3.

Among the adjectives used to circle around this quality are whole, com-

fortable, free, exact, egoless, eternal (Alexander, 1979). Some of these quali-

ties canalsobe found in softwaredevelopment, particularlywholeness and

comfort. A whole program is a programwhich is not missing any features,

whose encounter (or lack thereof) might cause a crash. If if a function im-

plies a systematic design, such systematic design is not compromised by

the lacking of some parts. Conversely, it is also a program which does not

have extraneous—useless—features.

A comfortable program text being is a program which might be mod-

ified without fear of some unintended side-effects, without inivisible de-

pendencieswhichmight then compromise thewhole. There is enough sep-

aration of concerns to ensure a somewhat safe working area, in which one

can engage in epistemic probing assuming that things will not be breaking

in unexpected ways; being whole, it also provides a higher sense of mean-

ing by realizing how one’s work relates to the rest of the construction. The

implication here is that comfort derives from a certain kind of knowledge,

a knowledge of how things (spatial arrangements, technical specifications,

human functions) are arranged, how they relate to each other, how they

can be used and modified.

To complement this theoretical pendant, Alexander conducted empir-

ical research to find examples of such qualities, in a study led at the Uni-

versity of Berkley which resulted in his most popular book, A Pattern Lan-

guage (Alexander et al., 1977). In it, he and his team lists 253 patterns which

are presented as to form a kind of language, akin to a Chomskian genera-

tive grammar, re-usable and extendable in a very concrete way, but with-

thing measured by other methods, so that it isn’t just some sort of subjected I groove to this,

and I don’t groove to that and so on. But it is a way of measuring a real deep condition in the

particular things that are being compared or looked at.” (Alexander, 1996)

279

out a normative, quasi-biological component. It turns it out that such a

documentation, of re-usable configuration and solutions for contextual

problem-solving, had a significant echo with computer scientists.

A whole field of research developed around the idea expressed in A

Pattern Language, at the crossover between computer science and archi-

tecture34 of distinct, self-contained but nevertheless composable compo-

nents. In Alexandrian terms, they are a triad, which expresses a relation

between a certain context, a problem, and a solution. Similarly to archi-

tectural patterns, these emerged in a bottom-up fashion: individual soft-

ware developers found that particular ways of writing and organizing code

were in fact extensible and reusable solutions to common problemswhich

could be formalized enough to be shared with others. Patterns enable a

cognitive engagement based on a feeling of familiarity, and of recognizing

affordances.

Extending from the similarities of structure and function between soft-

ware and architecture mentioned above, it is the lack of learning from

practical successes and failures in the field which prompted interest in

Alexander’s work, along with the development of Object-Oriented Pro-

gramming, first through the Smalltalk language35, then with C++, until to-

day, as most of the programming languages in 2023 include some sort of

object-orientation and encapsulation. What object-orientation does, is

that it provides a semantic structure to the program, reflected in the syn-

tactic structure: objects are conceptual entities, with states and actions, as

discussed in section 3.2.2 and shown inListing 45. This enables suchobjects

to be re-used within a program text, and even across program texts.

The similarities between a pattern and an object, insofar as they are

self-contained solutions to contextual situations that emerged through

34See, for instance, the Beautiful Software Initiative as an organized effort to develop

Alexander’s theses on growth, order, artefact and computation (Bryant, 2022).
35For an extensive history of the design and development of the Smalltalk hardware and

software, see Alan Kay’s Early History of Smalltalk (A. C. Kay, 1993).

280

practice, and resulting fromempirical deductions, caught onwith software

developers as a technical solution with a social inflection, rather than a

computational focus. Writing in Patterns of Software, with a foreword by

Alexander, Richard P. Gabriel addresses this shift from the machine to the

human:

The promise of object-oriented programming—and of program-

ming languages themselves—has yet to be fulfilled. That promise

is tomake plain to computers and to other programmers the com-

munication of the computational intentions of a programmer or a

team of programmers, throughout the long and change-plagued

life of the program. The failure of programming languages to do

this is the result of a variety of failures of someof us as researchers

and the rest of us as practitioners to take seriously the needs of

people in programming rather than the needs of the computer

and the compiler writer. (Gabriel, 1998)

The real issue raised here in programming seems to be, again, not to

speak to the machine, but to speak to other humans. The programming

paradigm of object-orientation aims at solving such complexity in com-

munication. While understanding software is hard, creating, identifying,

and formalizing patterns into re-usable solutions turns out to be at least

as hard (Taylor, 2001). Part of this comes from a lack of visibility of code

bases (most of them being closed source), but also from the series of vari-

ous economic and time-sensitive constraints to which developers are sub-

ject to (and echoes those in the field of architecture), and which result in

moving frommaking something great to making something good enough

to ship. The promise of software patterns seemed to offer a way out

by—laboriously—codifying know-how. Interestingly, while the increase

in software quality has been found to result from the application of en-

gineering practices (Hoare, 1996), the discovery and formalization of the

281

software patterns takes place through the format of writers’ workshops36,

presenting a different mode of knowledge transmission.

Throughout his work, Gabriel draws from the work of an architect to

weave parallels between his experience as a software developer and as a

poetry writer, drawing concepts from the latter field into the former, and

inspecting it through the lens of a pattern languages of built concrete or

abstract structures. We develop further two concepts in particular, and

show how habitability and compression enable an understanding of such

structures.

Compression and habitability in functional structures

We have seen how source code is an inherently spatial medium, with en-

trypoints, extracted packages, parallel threads of executions, relative fold-

ers and directories and endless jumpbetweenfiles. Reading a program text

thereforematchesmore closely an excursion into a foreign territorywhose

mapmight be misleading, than reading a book from start to finish. For in-

stance, Figure 4.3 builds on a longer history of using the city as ametaphor

for large code bases, and visualizes classes, packages and version in three

dimensions.

Given this somewhat literal mapping of source code structure onto ur-

ban structure, and given the abstract structure of object-oriented code, a

reader of source code will need to find their bearings and orient them-

selves37. Once the entrypoint is found, the programmer starts to explore

the programmed maze and attempts to make sense of their surroundings,

36As taken from thewebsite of the 2022 Pattern Languages of Programming conference: ”At

PLoP, we focus on improving the written expression of patterns throughwriters’ workshops. You

will have opportunities to refine and extend your patterns with the assistance of knowledgeable

and sympathetic patterns enthusiasts and to work with others to develop pattern languages.”

(Guerra & Manns, 2022).
37”Exploring a source code repository always startswithfinding outwhat theOSwill select as

the entry point. 99% of the time it means finding the ‘int main(int,char**)‘ function” says Fabien

Sanglard on the topic of reverse-engineering code-bases (Sanglard, 2018).

282

Figure 4.3: CodeCity is an integrated environment for software analysis, in

which software systems are visualized as interactive, navigable 3D cities.

The classes are represented as buildings in the city, while the packages are

depicted as the districts in which the buildings reside. (Wettel, 2008)

as a step towards the construction of mental models.

Both inhabitants in a building and programmers in a code base have

a tendency to be there to accomplish something, whether it might be liv-

ing, working or eating for the former, or fixing, learning or modifying for

the latter. Particularly in software, one of the correlated functions of a pro-

gram text is to bemaintainable; that is, it must bemade under the assump-

tion that others will want to modify and extend source code. Other pieces

of code might just be satisfying in being read or deciphered (as we’ve seen

in source code poetry in section 2.3.1 or with hackers in subsection 2.1.2)

but this assumption of interaction with the code brings in another con-

cept, that of habitability. In Gabriel’s terms, it is

the characteristic of source code that enables programmers,

coders, bug-fixers, and people coming to the code later in its life

to understand its construction and intentions and to change it

comfortably and confidently. (Gabriel, 1998)

In a sense, then, beautiful code is also code that is clear enough to in-

283

formaction and, well-organized enough towarrant actually taking that ac-

tion. For instance, writing in the ACMQueue, an anonymous programmer

discusses the beauty in a code where the separation between which sec-

tions of the source are hardware-dependent and which are not, as seen in

Listing 54. In that example, it is clear to the programmerwhat the problem-

domain is: counter incrementation, high-performance computation, or a

specific Intel chip.

There are several things which we can identify here. First, the three

lines at the top of the listing indicate version numbers, which do not

hold any computational functionality, but rather a human functionality: it

communicates that this software considers change and evolution as core

part of its source code, inviting the programmer reader to further modify

it38

Second, the line defining the types of CPUs supported by the software is

written in human-intelligible way, rather than a cryptic hexadecimal nota-

tion39. While theCPUs are ultimately represented inhexadecimal notation,

the effort is made to render things intelligible to and quickly retrievable

from the programmer’s memory.

Finally, the struct pmc_mdep is a shorthand notation for ”machine-

dependent”. In an era in which software can theoretically be executed on

different hardware architectures, it is welcome to make the difference be-

tween the variables themselves, which apply across platform, and the val-

ues of these variables, which need to be changed per platform40. This is

38From the anonymous programmer: ”The engineer clearly knew his software would be

modified not only by himself but also by others, and he has specifically allowed for that by hav-

ing major, minor, and patch version numbers. Simple? Yes. Found often? No.” (Vicious, 2008).
39”Nothing ismore frustratingwhenworking on a piece of software than having to remember

yet another stupid, usually hex, constant. I am not impressed by programmers who can remem-

ber they numbered things from 0x100 and that 0x105 happens to be significant. Who cares? I

don’t. What I want is code that uses descriptive names. Also note the constants in the code

aren’t very long, but are just long enough to make it easy to know in the code which chip we’re

talking about.” (Vicious, 2008).
40”It would seem obvious that you want to separate the bits of data that are specific to a

284

#define PMC_VERSION_MAJOR 0x03
#define PMC_VERSION_MINOR 0x00
#define PMC_VERSION_PATCH 0x0000

/* * Kinds of CPUs known */

#define __PMC_CPUS() \ __PMC_CPU(AMD_K7, ”AMD K7”) \
__PMC_CPU(AMD_K8, ”AMD K8”) \ __PMC_CPU(INTEL_P5, ”Intel
Pentium”) \ __PMC_CPU(INTEL_P6, ”Intel Pentium Pro”) \
__PMC_CPU(INTEL_CL, ”Intel Celeron”) \ __PMC_CPU(INTEL_PII,
”Intel Pentium II”) \ __PMC_CPU(INTEL_PIII, ”Intel Pentium III”)
\ __PMC_CPU(INTEL_PM, ”Intel Pentium M”) \ __PMC_CPU(INTEL_PIV,
”Intel Pentium IV”)

↪→

↪→

↪→

↪→

↪→

↪→

// ...

/*
* struct pmc_mdep
*
* Machine dependent bits needed per CPU type.
*/

struct pmc_mdep
{

uint32_t pmd_cputtype; /* from enum pmc_cputype */
uint32_t pmd_npmc; /* max PMXs per CPU */
uint32_t pmd_npmc; /* PMC classes supported */
struct pmc_classinfo pmd_classes[PMC_CLASS_MAX];
int pmd_nclasspmcs[PMC_CLASS_MAX];

/*
* Methods
*/

int (*pmd_init)(int _cpu); /* machine dependent initalization*/
int (*pmd_cleanup)(int _cpu) /* machine dependent cleanup */

}

Listing 54: hardware_separation.h - This header file defines the structure

of a program, both in its human use, in its interaction with hardware com-

ponents, and its decoupling of hardware (mentioned in the comments)

and software elements (mentioned in the #define macro and the pmc_mdep

struct). Additionally, the header does not contain any executable code,

thus reinforcing its role as a plan rather than a full building.

285

a good example of a separation of concerns: it is made clear which parts

of the program text the programmer needs to pay attention to, and can

change, and which parts of the program texts she needs not be concerned

with. For a further example of separation of concerns, one could point

a beautiful commit is a commit which adds a significant feature, and yet

only change the lines of the code that are within well-defined boundaries

(e.g. a single function), leaving the rest of the codebase untouched, and yet

affecting it in a fundamental way.

Habitability, then, is a combination of acknowledgment by thewriter(s)

to the reader(s) of the source, by referring to the evolution over time of the

software, along with the use of intelligible names and separation of con-

cerns. This distinction relates to Alexander’s property of comfort, by af-

fording involvement instead of estrangement. Still, such a feature of hab-

itability, of supporting life, doesn’t specify at all what it could, or should,

look like. Rather, we get from Alexander a negative definition:

The details of a building cannot be made alive when they are

made frommodular parts…And for the same reason, the details of

a building cannot be made alive when they are drawn at a draw-

ing board. (Alexander, 1979)

If modularity itself is at odds with making good (software) construc-

tions, then its implementation under the terms of an object-oriented pro-

gramming paradigm becomes complicated. Indeed, the technical formal-

ization of the field came with the release of the Design Patterns: Elements

of Reusable Object-Oriented Software book, which lists 23 design patterns

implementable in software (Gamma, Helm, Johnson, Vlissides, & Booch,

1994). Its influence, in terms of copies sold, and in terms of papers, confer-

ences and working groups created in its wake, is undeniable, with Alexan-

certain type of CPU or device from data that is independent, but what seems obvious is rarely

done in practice. The fact that the engineer thought about which bits should go where indicates

a high level of quality in the code.” (Vicious, 2008).

286

der himself giving akeynote address at theACMtwoyears after the release.

It has, however, been met with some criticism.

Some of this criticism is that patterns are ”external”, they look like

they come from somewhere else, and are not adapted to the code. In this

sense, this corroborates Alexander in being wary of constructions which

do not integrate fully within their environments, which do not, in an or-

ganic sense, allow for a piecemeal growth41. If patterns express relations

between contexts, problems and solutions, then it seems that one of the

main complaints of developers is that theymight, one day, look at the code

they were working on and see chunks of foreign snippets dumped in the

middle to fix some generic problem, with no understanding for specifics,

nor fit in the existing structure. This is judged negatively due to its lack

of understanding of context offered by those proposed solutions. In this,

blindly applying patterns from a textbook might be a solution, but it’s not

an elegant one. This criticism also finds its echoes in the Scruton’s anal-

ysis of architectural styles; rules and conventions, while present in archi-

tecture, are often adopted only to be departed from—re-interpreted and

adapted to the context of the building (Scruton, 2013).

One aspect that has been eluded so far is therefore that of the program-

ming languages used by the programmer. Indeed, one doesn’t write Ruby

like onewrites Java, C++, or Lisp. Ifmateriality is a core component of elicit-

ing an aesthetic experience in an architectural context, then programming

languages are the material of source code, and offer a specific context to

the writing and reading of the program text.

A final criticism to software patterns is that they are language-

independent. As such, they are often workarounds for features that a par-

ticular programming language doesn’t allow from the get-go, or offers sim-

41Addressing this concern, the failure of strict top-down hierarchies in software develop-

ment resulted in the agilemethodology for business teams, nowone of themost popularways

of building software products.

287

pler implementations than the pattern’s42.

While patterns might operate at a more structural level, hinting at dif-

ferent parts of code, and its overall organization, one can also turn to a

moremicro-level. What can a detail do in our understanding of structures?

Sometimes decried, sometimes praised in architecture, the detail fulfills

mutliple roles: acting as ameaningful interface, compressingmeaning and

testifying for materiality.

Both Scruton and Rancière mention the detail as an essential architec-

tural element. Without contributing to the structural soundness of the

construction, it nonetheless contributes to its expressiveness. A blend of

the cognitive and sensual is also characteristic of Scruton’s ”imaginative

perception”, understood as the perception of the details of built structures,

and their extrapolation into the imaginary. Indeed, the experience of the

user is based on the points at which it sensually grasps its environment:

the detail is therefore the point of interaction between the human and the

structure. This imagination depends on the interpretative choices in pars-

ing ambiguous or multiform aspects of the built environment. The detail

contributes to the stylistic convention of the creation:

Convention, by limiting choice, makes it possible to ’read’ the

meaning in the choices that are made …for style is used to ’root’

the meanings which are suggested to the aesthetic understand-

ing, to attach them to the appearance from which they are de-

rived. (Scruton, 2013)

With many external constraints, due to both context and function, the

architect or builder does not havemuch room for personal expression, and

it is through details that their intent and their style are being shown. The

significance of a detail can be in explaining which conventions the struc-

ture adopts, as well as communicating the intent of the creator, by rely-

42For instance, Peter Norvig highlights that most patterns in the original book have much

simpler implementations in Lisp than in C++ or Smalltalk (Norvig, 1998)

288

ing on common past experiences. Such resort to known structures is then

used in understanding the approach taken to the problem, either in archi-

tecture, or in software engineering43. Beyond structural style, a significant

detail also manages to compress meaning into a restricted physical sur-

face.

Compression is a concept introduced by Gabriel in response to pattern

design. In narrative and poetic text, it is the process through which a word

is given additional meaning by the rest of the sentence. In a sentence such

as ”Last night I dreamt I went to Manderley again.” (Du Maurier, 1938), the

reader is unlikely to be familiarwith the exactmeaning ofManderley, since

this is the first sentence of the novel. However, we can infer some of the

properties of Manderley from the rest of the sentence: it is most likely a

place, and itmost likely had something to dowith the narrator’s past, since

it is being returned to. A similar phenomenon happens in source code, in

which the meaning of a particular expression or statement can be derived

from itself, or from a larger context. In object-oriented programming, the

process of inheritance across classes allows for the meaning of a particu-

lar subclass to be mostly defined in terms of the fields and methods of its

subclasses—its meaning is compressed by relying on a semantic environ-

ment, which might or not be immediately visible.

This, Gabriel says, induces a tension between extendability (to create a

new subclass, one must only extend the parent, and only add the differen-

tiating aspects) and context-awareness (one has to keep inmind the whole

chain of properties in order to knowexactlywhat the definition of an inter-

face that is being extended really is). Resolving sucha tension, by including

43”A number of different architectural styles and patterns are available to the software engi-

neer andmay be applied within a given architectural genre. Each style describes a system cate-

gory that encompasses a set of components that perform a function required by a system; a set

of connectors that enable communication, coordination, and cooperation among components;

constraints that define how components can be integrated to form the system; and semantic

models that enable a designer to understand the overall properties of a system.” (Pressman,

2014)

289

enough information to hint at the context, while not over-reaching into id-

iosyncracy, is a thin line of being self-explanatory without being verbose.

For instance, Casey Muratori explores the process of compression in

refactoring a program text, first by distinguishing semantic compression

from syntactic compression44, and then honing in on what makes a com-

pression successful45. Transitioning from uncompressed code, shown in

Listing 55 to compressed code, shown inListing 56, allows the programmer

to understandbroadpatterns about the overall architecture of the program

text—here, the function is to display a clickable panel on a user interface.

The difference we can see between the compressed and uncompressed

goes beyond the number of lines used for the same functionality. A first

clue in terms of semantics is the use of strictly syntactic block markers: {

and }. There are here stricly to delimitate a code block, with no semantic

meaning to the computer. While the uncompressed listing shows all the

separate elements needed for a button to exist (such as x0, y0, my_height,

etc.), while the compressed listings as encapsulated them into an object

called Panel_Layout, thus abstracting away from the programmer’s mind

the details of such a panel. This encapsulation then enables a further com-

pressionof the program: by adding the push_button()methodon the layout,

the compressed code realizes the same functionality of checking for but-

tonpresses for eachbutton, but ties it to a specificobject and, due to the im-

plementation, includes the name of the button being pressed on the same

line as the check happens, rather than a line apart in the uncompressed

example.

44”Like, literally, pretend you were a really great version of PKZip, running continuously on

your code, looking for ways to make it (semantically) smaller. And just to be clear, I mean se-

mantically smaller, as in less duplicated or similar code, not physically smaller, as in less text,

although the two often go hand-in-hand.” (Muratori, 2014)
45”Ah! It’s like a breath of fresh air compared to the original, isn’t it? Look at how nice that

looks! It’s getting close to the minimum amount of information necessary to actually define the

unique UI of themovement panel, which is howwe knowwe’re doing a good job of compressing.

(Muratori, 2014)

290

int num_categories = 4;
int category_height = ypad + 1.2 * body_font->character_height;
float x0 = x;
float y0 = y;
float title_height = draw_title(x0, y0, title);
float height = title_height + num_categories * category_height + ypad;
my_height = height;
y0 -= title_height;

{
y0 -= category_height;
char *string = ”Auto Snap”;
bool pressed = draw_big_text_button(x0, y0, my_width,

category_height, string);↪→

if (pressed)
do_auto_snap(this);

}

{
y0 -= category_height;
char *string = ”Reset Orientation”;
bool pressed = draw_big_text_button(x0, y0, my_width,

category_height, string);↪→

if (pressed)
{

// ...
}

}
// ...

Listing 55: uncompressed.c - An uncompressed extract of a program text

whose function is to display graphical user interface (GUI) elements. The

syntax is very granular and redundant. (Muratori, 2014)

291

Panel_Layout layout(this, x, y, my_width);
layout.window_title(title);

layout.row();
if(layout.push_button(”Auto Snap”)) {

do_auto_snap(this);
}

layout.row();
if(layout.push_button(”Reset Orientation”))
{

// ...
}

// ...
layout.complete(this);

Listing 56: compressed.c - A compressed extract of a program text whose

function is to display graphical user interface (GUI) elements. The same

functionality as in Listing 55 is achieved, but with fewer lines of code, and

a more expressive syntax. (Muratori, 2014)

By compressing the source code and abstracting some concepts, such

as the button, one can also gain understanding about the rest of the pro-

gram text. By showing details of practices and styles, a programmer can

extrapolate from a small fragment to a larger structure. Gabriel calls this

idea locality: it is

that characteristic of source code that enables a programmer to

understand that source by looking at only a small portion of it.

(Gabriel, 1998)

In poetry, compression presents a different problem since, ultimately,

the definitions of each words are not limited to the poet’s own mind but

also exist in the broad conceptual structures which readers hold. How-

ever, since all aspects of a program is always explicitly defined, program-

mers thus have the ultimate say on the definition of most of the data and

functions described in code. As such, they create their own semantic con-

292

textswhile, at the same time, having to take into account the context of the

machine, the context of the problem, and the context(s) that their reader(s)

might be coming from.

We now see that, within the same need for the appreciation of func-

tion, architecture can take opposite approaches: seeing a building as an

abstract design, or as a concrete construction. In his 1951 lecture, ”Build-

ing, Dwelling, Thinking”, Martin Heidegger offers a perspective on these

two forms of architecture. He equates top-down and bottom-up to, respec-

tively, building as erecting, and building as cultivating. Ultimately, both of

these approaches relate to human dwelling in a given location. To dwell is

an engagement of thought and of action, one which leads to the construc-

tion of buildings in particular locations, arguing for a contextual adequacy

of human structures to their environment46 (Heidegger &Hofstadter, 1975).

This active existence in time and space, allowing for deliberate thought

and action and resulting in a better structure also equates to Gabriel’s con-

cept of habitability:

Habitability is the characteristic of source code that enables pro-

grammers coming to the code later in its life to understand its

construction and intentions and to change it comfortably and

confidently …Software needs to be habitable because it always

has to change …What is important is that it be easy for program-

mers to come up to speed with the code, to be able to navigate

through it effectively, to be able to understand what changes to

make, and to be able to make them safely and correctly. (Gabriel,

1998)

As Heidegger returns to the etymological root of dwelling (bauern) in

order to connect it to the possible experience of the world humans can

46Speaking of a farmhouse in the Schwarzwald, he describes the chain of creation as such:

” A craft which, itself sprung from dwelling, still uses its tools and frames as things, built the

farmhouse.

293

have through language, he grounds our experience in context. His though,

between earth, man, techne and construction, hints at the essence that

human construction—craft—as a consequence of thought and as a prece-

dence to construction. Taking into account context and materiality, a fi-

nal connection between software and architecture is actuallywith the field

that predated, and complemented, architecture: craftsmanship.

4.3.3 Material knowledge

Architecture as afield and the architect as a rolehavebeen solidifiedduring

theRenaissance, consecrating a separation of abstract design and concrete

work. This shift obfuscates the figure of the craftsman, who is relegated to

the role of executioner, until the arrival of civil engineering and blueprints

overwhelmingly formalized the discipline (Pevsner, 1942). While computer

science, through its abstract designs, echoes the modernist architect with

its pure plans, the programmer, identifying itselfwith the craftsman, offers

different avenues for knowing artefacts.

The architect emerged fromcenturies of hands-onwork, while the com-

puter scientist (formerly known as mathematician in the 1940s and 1950s)

was first to a whole field of practitioners as programmers, followed by

a need to regulate and structure those practices. Different sequences of

events, perhaps, but nonetheless mirroring each other. On one side, con-

structionworkwithout an explicit architect, under the supervision of bish-

ops and clerks, did indeed result in significant achievement, such as Notre

Dame de Paris or the Sienna Cathedral. On the other side, letting go of

structured and restricted modes of working characterizing computer pro-

gramming up to the 1980s resulted in a comparison described in the aptly-

named The Cathedral and the Bazaar. This essay described the Linux

project, the open-source philosophy it propelled into the limelight, and

how the quantity of self-motivated workers without rigid working struc-

tures (which is not to say without clear designs) can result in better work

294

than if made by a few, select, highly-skilled individuals (Henningsen &

Larsen, 2020; E. S. Raymond, 2001).

What we see, then, is a similar result: individuals can cooperate on a

long-term basis out of intrinsic motivation, and without clear, individual

ownership of the result; a parallel seen in the similar concepts of collective

craftsmanship in the Middle-Ages and the egoless programming of today

(Brooks Jr, 1975). Building complex structures throughhorizontal networks

and practical knowledge is therefore possible, with consequences in terms

aesthetic appreciations.

Craftsmanship in our contemporary discourse seemsmost tied to a ret-

rospective approach: it is often qualified as that which was before manu-

facture, and the mechanical automation of production (Thompson, 1934),

preferring materials and context to technological automation. Following

Sennett’s work on craftsmanship as a cultural practice, we will use his def-

inition of craftsmanship as hand-held, tool-based, intrinsically-motivated

workwhich produces functional artefacts, and in the process of which is held

the possibility for unique mistakes (Sennett, 2009).

At the heart of knowledge transmission and acquisition of the crafts-

man stands the practice, and inherent in the practice is the good practice,

the one leading to a beautiful result. The existence of an aesthetic ex-

perience of code, and the adjectives used to qualify it (smelly, spaghetti,

muddy), pointed at in subsection 2.2.2, already hints at an appreciation of

code beyond its formalisms and rationalisms, and towards its materiality.

A traditional perspective is that motor skills, with dexterity, care and

experience, are an essential feature of a craftsman’s ability to realize some-

thing beautiful (Osborne, 1977), alongwith self-assigned standards of qual-

ity (Pye, 2008; Sennett, 2009). These qualitative standards which, when

pushed to their extreme, result in a craftsperson’s style, gained through

practice and experience, rather than by explicit measurements (Pye, 2008)
47. Two things are concerned here, supporting the final result: tools and

47See Pye’s account of craftsmanship, and his intent to make explicit the question of qual-

295

materials (Pye, 2008). According to Pye, a craftsperson should have a deep,

implicit knowledge of both, what they use to manipulate (chisels, ham-

mers, ovens, etc.) as well as what they manipulate (stone, wood, steel, etc).

The knowledge that the craftsman derives, while being tacit (see sub-

section 3.1.2), is directed at its tools, itsmaterials, and the function ascribed

to the artefact being constructed, and such knowledge is derived from a di-

rect engagement with the first two, and a constant relation to the third. Fi-

nally, any aesthetic decoration is here to attest to the care and engagement

of the individual in what is being constructed—its dwelling, in Heidegge-

rian terms.

This relationship to tools and materials is expected to have a relation-

ship to the hand, and at first seems to exclude the keyboard-based practice

of programming. But even within a world in which automated machines

have replaced hand-held tools, Osborne writes:

Inmodernmachine production judgement, experience, ingenuity,

dexterity, artistry, skill are all concentrated in the programming

before actual production starts. (Osborne, 1977)

He opens here up a solution to the paradox of the hand-made and the

computer-automated, as programming emerges from the latter as a new

skill. This very rise of automation has been criticized for the rise of a Os-

borne’s ”soulless society” (Osborne, 1977), and has triggered debates about

authorship, creativity and humanity at the cross-roads between artificial

intelligence and artistic practice (Mazzone & Elgammal, 2019). One av-

enue out of this debate is human-machine cooperation, first envisioned by

Licklider and proposed throughout the development of Human-Computer

Interaction (Grudin, 2016; Licklider, 1960). If machines, more and more

driven by computing systems, have replaced traditional craftsmanship’s

skills and dexterity, this replacement can nonetheless suggest program-

ity craftsmanship and ”answer factually rather than with a series of emotive noises such as

protagonists of craftsmanship have too often made instead of answering it.” (Pye, 2008)

296

ming as a distinctly 21st-century craftsmanship, as well as other forms of

cratsmanship-based work in an information economy.

Beautiful code, code well-written, is an integral part of software crafts-

manship (Oram & Wilson, 2007). More than just function for itself, code

among programmers is held to certain standards which turn out to hold

another relationshipwith traditional craftsmanship—specifically, a differ-

ent take on form following function.

A craftsman’s material consciousness is recognized by the anthropo-

morphic qualities ascribed by the craftsman to the material (Sennett,

2009), the personalities and qualities that are being ascribed to it beyond

the immediate one it posseses. Clean code, elegant code, are indicators

not just of the awareness of code as a raw material that should be worked

on, but also of the necessities for code to exist in a social world, echoing

Scruton’s analysis that architectural aesthetics cannot be decoupled from

a social sense48. As software craftsmen assemble in loose hierarchies to

construct software, the aesthetic standard is the respect of others, as men-

tioned in computer science textbooks (Abelson et al., 1979).

Another unique feature of software craftsmanship is its blending be-

tween tools andmaterial: code, indeed, is both. This is, for instance, repre-

sented at its extreme by languages like LISP, in which functions and data

are treated in the same way (McCarthy, Levin, Abrahams, Center, & Ed-

wards, 1965). In that sense, source code is a material which can be al-

most seamlessly converted from information to information-processing,

and vice-versa; code as a material is perhaps the only non-finite material

that craftspeople can work with—along with words49.

Code, from the perspective of craft, is not just an overarching, theoret-

ical concept which can only be reckoned with in the abstract, but also the

48”it is the aesthetic sense which can transform the architetct’s task from the blind pursuit of

an uncomprehended function into a true exercise of practical common sense.” (Scruton, 2013)
49This disregards the impact of programming languages, the hardware they run on, and

the data they process on the environment; see (Kurp, 2008)

297

verymaterial foundation fromwhich the reality of software craftsmanship

evolves. An analysis of computing phenomena, from software studies to

platform studies, should therefore take into account the close relationship

to their material that software developers can have. As Fred Brooks put it,

The programmer, like the poet, works only slightly removed from

pure thought-stuff. He builds his castles in the air, from air, cre-

ating by exertion of the imagination. Few media of creation are

so flexible, so easy to polish and rework, so readily capable of re-

alizing grand conceptual structures. (Brooks Jr, 1975)

So while there are arguments for developing amore rigorous, engineer-

ing conception of software development (Ensmenger, 2012), a crafts ethos

based on a materiality of code holds some implications both for program-

mers and for society at large: engagement with code-as-material opens up

possibilities for the acknowledgement of a different moral standard50. As

Pye puts it,

[…] the quality of the result is clear evidence of competence and

assurance, and it is an ingredient of civilization to be continually

faced with that evidence, even if it is taken for granted and unre-

marked. (Pye, 2008)

Codewell-done is a display of excellence, in a discipline in which excel-

lence has not been made explicit. If most commentators on the history of

craftsmanship lament the disappearance of a better, long-gone way of do-

ing things, before computers came to automate everything, locating soft-

ware as a contemporary iteration of the age-old ethos of craftsmanship

nonetheless situates it in a longer tradition of intuitive, concrete creation.

50Writing about resilient web development, Jeremy Keith echoes this need for material

honesty: ”The world of architecture has accrued its own set of design values over the years.

One of those values is the principle of material honesty. One material should not be used as a

substitute for another. Otherwise the end result is deceptive (Keith, 2016). ”

298

To conclude this section, we have seen that architecture can offer us

some heuristics when looking for aesthetic features which code can ex-

hibit. Starting from the naïve understanding that form should follow func-

tion, we’ve examined how Alexander’s theory of patterns, and its signifi-

cant influence on the programming community51, points not just to an ex-

plicit conditioning of form to its function (inwhich casewewould all write

hand-made Assembly code), but rather to an elusive, yet present quality,

which is both problem- and context-dependent.

Along with the function of the program as an essential component of

aesthetic judgment, our inquiry has also shown that program texts can

present a quality that is aware of the context that the writer and reader

bring with them, and of the context that it provides them, making it hab-

itable. Software architecture and patterns are not, however, explicitly

praised for their beauty, perhaps because they disregard these contexts,

since they are higher-level abstractions; this implies that generic solutions

are rarely elegant solutions. And yet, there is an undeniable connection be-

tween the beautiful and the universal. Departing from our investigation of

software as craftsmanship, and moving through towards a more abstract

discipline, we turn to scientific aesthetics.

4.4 Aesthetics and heuristics inmathematics

As programmers learned their craft from practice and immediate engage-

ment with their material, computer science was concomittantly develop-

ing from a seemingly more abstract discipline. Mathematicians such as

Alan Turing, John Von Neumann and Grace Hopper can be seen, not just

as the foreparents of the discipline of computing, but also as standing on

the shoulders of a long tradition of mathematicians. Computation is one

of the many branches of contemporary mathematics and, as it turns out,

51This theory has even spawned short-lived debates about his quality without a name on

stackoverflow (interstar, 2017).

299

this discipline also has reccuringly included references to aesthetics. After

the metaphors of literature and the patterned structures of architecture,

we conclude our analysis of the aesthetic relation of domains contingent

to source code by looking at how mathematics integrate formal presenta-

tion.

This section approaches the topic of aesthetics and mathematics in

three different steps. First, we look at the objective or status of beauty in

mathematics: are mathematical objects eliciting an aesthetic experience

in and of themselves, or do they rely on the observer’s perception? Con-

sidering the difference between abstract objects and their representation:

is aesthetic representation ascribed to either, or to both? And what is the

place of the observer in this judgment? Having established a particular

focus on the representations of abstract objects, we then turn to the epis-

temic value of aesthetics, and how positive aesthetic representations in

mathematics can enable insight and understanding. Finally, we comple-

ment this relation between knowledge and presentation and depart from

the ends of a proof, and an evaluative appraisal of aesthetics inmathemat-

ics, by investigating the actual process of doing mathematics, concluding

with topics of pedagogy and ethics.

4.4.1 Beauty inmathematics

The object of mathematics is to deal first and foremost with abstract enti-

ties, such as the circle, the number zero or the derivative, which can find

their applications in fields like engineering, physics or computer science.

Because of this historical separation from the practical world through

the use and development of symbols, one of the dominant discourses in

the field tended to consider mathematical beauty as something intrisic

to itself, and independent from time, culture, observer, or representa-

tion itself. Indeed, a circle remains a circle in any culture, and its aes-

thetic properties—uniformity, symmetry—do not, at first glance, seem to

300

be changing across time or space.

According to the Western tradition, mathematics are perhaps the first

art. Aristotle, in hisMetaphysics, wrote of beauty and mathematics as the

former being most purely represented by the latter, through properties

such as order, symmetry and definiteness52. By offering insight into the

harmonious arrangement of parts, it was thought thatmathematics could,

through beauty, provide knowledge of the nature of things, resulting in an

understanding of how things generally fit together. Beauty then naturally

emerges from mathematics, and mathematics can, in turn, provide an ex-

ample of beauty. At this intersection, it also becomes a source of intellec-

tual pleasure, since gainingmathematical knowledge exercises the human

being’s best power—that of the mind.

Arguing for this position of objective quality being revealed through

beautiful manifestation, Godfrey H. Hardy writes, in his Mathematician’s

Apology, that beauty is constitutive of the objects that compose the field;

their abstract quality is what removes them from the contextuality of hu-

man judgment.

A mathematician, like a painter or a poet, is a maker of pat-

terns. If his patterns aremore permanent than theirs, it is because

they are made with ideas. A painter makes patterns with shapes

and colours, a poet with words. …The mathematician’s patterns,

like the painter’s or the poet’s must be beautiful; the ideas like

the colours or the words, must fit together in a harmonious way.

Beauty is the first test: there is no permanent place for uglymath-

ematics. (Hardy, 2012)

Here, Hartman posits that it is the arrangement of ideas that possess

aesthetic value, and not the arrangement of the representation of ideas.
52”the supreme forms of beauty are order, symmetry, and definiteness, which the mathemat-

ical sciences demonstrate in a special degree. And since these (e.g. order and definiteness) are

obviously causes of many things, evidently these sciences must treat this sort of causative prin-

ciples also (i.e. the beautiful) as in some sense a cause.” (Aristotle, 2006)

301

In this, he follows the position of other influential mathematicians, such

as Poincaré (Poincaré, 1908), or Dirac (Kragh, 2002), who rely on beauty

as a property of the mathematical object in itself. For instance, Dirac

states that a physical law must necessarily stem from a beautiful math-

ematical theory, thus asserting that the epistemic content of the theory

and its aesthetic judgment thereof are inseparable; a good mathematical

theory is therefore intrinsically beautiful. Summing up these positions,

Carlo Cellucci establishes proportion, order, symmetry, definiteness, har-

mony, unexpectedness, inevitablity, economy, simplicity, specificity, and

integrations as the different properties inherent to mathematical objects,

as mentioned from an essentialist perspective (Cellucci, 2015). Ironically,

this rather seems to hint at the multiplicity of appreciations of beauty

within mathematics, with mathematicians concurring on the existence of

beauty, but not agreeing on what kind of beauty pertains to mathematics.

Nonetheless, they do agree that beauty is connected to understanding and

epistemic acquisition. John Von Neumann, writing in 1947, states that:

One expects a mathematical theorem or a mathematical theory

not only to describe and to classify in a simple and elegant way

numerous and a priori disparate special cases. One also expects

”’elegance” in its ”architectural,” structural makeup. Ease in stat-

ing the problem, great difficulty in getting hold of it and in all at-

tempts at approaching it, then again some very surprising twist

by which the approach, or some part of the approach, becomes

easy, etc…(Von Neumann, 1947)

Thepoint that VonNeumanmakes here is a difference between the con-

tent of the mathematical object and its structural form. Such a structural

form, by organizing the connection of separate parts into a meaningful

whole, makes it easy to grasp the problem. In this sense, it is both the crux

of aesthetics and the crux of understanding.

Similarly, François Le Lionnais, a founding member of the Oulipo lit-

302

erary movement in postwar France, wrote an essay on the aesthetic of

mathematics, paying attention to both the mathematical objects in and

of themselves, such as e or π, but also to mathematical methods, and how

they compare to traditional artistic domains such as classicism or roman-

ticism. Without getting into the intricacies of this argumentation, we can

nonetheless note that his descriptions ofmathematical beauty find echoes

in source code beauty. For instance, his appraisal of the proof by recur-

rence53 reflects similar lines of praise given by programmers to the ele-

gance of recursive functions, which are sharing the same mathematical

device (for instance, see Listing 32 and Listing 17 for examples of recursion

as an aesthetic property). A proof by recurrence is indeed a kind of struc-

ture, which canbe adapted todemonstrate different kinds ofmathematical

objects.

To understand is to grasp how each elements fits with others within a

greater structure (either in a poem, a symphony or a theorem), with some

or all of these elements being rendered sensible to the observer (Cellucci,

2015). The beauty of a mathematical object can then be ascribed in its dis-

play of the definite relation between its elements. For instance, the equa-

tion representing Euler’s identity (see Figure 4.4) demonstrates the relation

between geometry, algebra and numerical analysis through a restrained

set of syntactic symbols, where e is Euler’s number, the base of natural log-

arithms, i is the imaginary unit, which by definition satisfies i2�=-1, and π is

the ratio of the circumference of a circle to its diameter. Each of the sym-

bols is necessary, definite, and establishes clear relations between each

other, revealing a deep interlock of simplicity within complexity.

There is also empirical grounding for such a statement. This equa-

53”It seems to us that amethod earns the epithet of classic when it permits the attainment of

powerful effects bymoderatemeans. A proof by recurrence is one suchmethod. Whatwonderful

power this procedure possesses! In one leap it can move to the end of a chain of conclusions

composedof an infinite number of links, with the sameeaseand the same infailliability aswould

enter into deriving the conclusion in a trite three-part syllogism.”” (Le Lionnais, 1971)

303

Figure 4.4: Euler’s identity demonstrates the relation between geometry,

algebra and numerical analysis through a restrained set of syntactic sym-

bols.

tion ranked first in a column in theMathematician Intelligencer about the

beauty of mathematical objects; the columnist, David Wells, had asked

readers to rank given theorems, on a linear scale from 0 to 10, according

to how beautiful they were considered (Wells, 1990)54. Again, while this as-

sessment does show that there can be consensus, and thus some aspect

of objectivity, in a mathematician’s judgment of beauty in a mathemati-

cal object, it also showed that mathematical beauty also depends on the

observer, since mathematicians provided varying accounts.

Rather than focusing on the beauty of the mathematical entities them-

selves, then, another perspective is to consider beauty to be found in the

representation of mathematical , since conceptual entities can only gras-

pable through their manifestation.

A first approach is to consider that that the beauty ascribed to mathe-

54Alongwith, for instance, the infinite prime theorem, andFermat’s ”two squares” theorem.

304

matics and the beauty ascribed to mathematical representation are unre-

lated. This disjunctive view, that aesthetics and mathematics can be de-

coupled (e.g. there can be ugly proofs of insightful theorems, and elegant

proofs of boring theorems), was first touched upon by Kant. As Starikova

highlights, the philosopher operates a distinction between perceptual, dis-

interested beauty, and intellectual, vested beauty. Perceptual beauty, the

one which can be found in the visual representations of mathematical en-

tities, is the only beauty graspable, while intellectual beauty, that of the ob-

jects themselves, simply does not exist, ”mathematics by itself being noth-

ing but rules” (Starikova, 2018).

Such manifestation of perceptual beauty, connected to mathematical

entities themselves, can nonetheless be found in the phenomenon of re-

proving in existing proofs, in order tomake themmore beautiful. Rota, for

instance, associates the beauty of a piece of mathematics with the short-

ness of its proof, as well as with the knowledge of the existence of other,

clumsier proofs55 (Rota, 1997). Thus, it is not so much the content of the

proof itself, nor the abstract mathematical object being proven that is the

focus of aesthetic attention, but rather the process of establishing the epis-

temic validity of such an object.

What is useful here is technique, the demonstration of the knowledge

from the prover to the observer, through the proof. As such, the asssess-

ment of aesthetics in mathematics, both as a producer and as an observer,

depends on the expertise of each individual, and on the previous knowl-

edge that this indivual has ofmathematics56 (an assessment of the aesthet-

ics ofmathematics for non-expert is discussed in subsection 4.4.3 below). It

seems that the way that the mathematical object is presented does matter

55””The beauty of a piece of mathematics is frequently associated with shortness of state-

ment or of proof.” and ”A proof is viewed as beautiful only after one is made aware of previous,

clumsier proofs.” (Rota, 1997)
56”Mathematical creation is not so free, hence the contrasting analogy of the landscape gar-

dener, who needs a good grasp of the topography before getting down to creating something

beautiful which needs to be based on that topography.” (Thomas, 2017)

305

for the assessment.

If beauty is not intrinsic to the mathematical object, but rather con-

nected to the representation of the mathematician’s knowledge, there re-

mains the question of why is beauty taken into account in the doing of

mathematics. Looking at the lexical fields usedbymathematicians toqual-

ify their aesthetic experience, as reported in (Inglis & Aberdein, 2015) pro-

vides us with a clue: amongst the most used terms are ”ingenious”, ”strik-

ing”, ”inspired”, ”creative”, ”beautiful”, ”profound” and ”elegant”. Some of

these terms have a connection to the epistemic: for instance, something

ingenious enables previously unseen connections between concepts, im-

plying the resourcefulness and the cleverness of the originator of the idea.

The next question is therefore that of the relationship between the aes-

thetic and the epistemic inmathematics; and in how this relation canman-

ifest itself in source code.

4.4.2 Epistemic value of aesthetics

Caroline Jullien offers an alternative to the perception of mathematics as

an autotelic aesthetic object, by retracing thedefinitions of beauty givenby

Aristotle and establishing a cognitive connection through a cross-reading

of the Metaphysics and the Poetics, highlighting that ”the characteristics

of beauty are thus useful properties that yield an optimal perception of the

object they apply to. [...] Men can understandwhat is ordered, measured and

delineated far better than what is chaotic, without clear boundaries, etc.”

(Jullien, 2012). She then develops this point further, building on Poincaré’s

assessment of mathematical entities which fulfill aesthetic requirements

and are, at the same time, an assistance towards understanding the whole

of the mathematical object presented. Aesthetics, then, might not exist

exclusively as intrinsic properties of a mathematical object, but rather as

an epistemic device.

Her argument focuses on consideringmathematics as a language of art

306

in the Goodmanian sense of the term, investigating howmathematical no-

tation relates to Goodman’s criteria of syntactic density, semantic replete-

ness, semantic density, exemplification and multiple references (Jullien,

2012). She shows that, while mathematical notation might not seem to

satisfy all criteria (for instance, syntactic density is only fulfilled if one

takes into account graphical representations), a mathematical reasoning

can present symptoms of the aesthetic, particularly through the ability to

exemplify and refer to abstract entities.

However, to do that, she also includes different representations of

mathematical systems, beyond typographical characters. Taking into ac-

count diagrams and graphs, it becomes easier to see how amore tradition-

ally artistic representation of mathematics is possible. The thickness of a

line, the color-coding or the spatial relationship can all express a particu-

lar class of mathematical objects; for instance, the commutative property

in arithmetic can be represented in geometry through the aesthetic prop-

erty of symmetry. In this work, we focus on the textual representation of

source code, eluding any graph or diagram (such as the one we’ve seen in

architectural descriptions of software systems in Figure 4.1). Nonetheless,

we have argued in section 4.1 that source code qualifies as a language of art:

while the syntactic repleteness does not match that of, say, painting, the

unlimited typographical combinations, paired with the artificial design of

programming languages as working medium enables the kinds of subtle

distinctions necessary for symptoms of the aesthetic to be present.

Following Jullien, if a piece of mathematics is eliciting an aesthetic ex-

perience, or presenting positive aesthetic properties, it might then be a

support for the understanding by the viewer of this very piece of math-

ematics. Such a support is itself manifested in this ability to show a har-

monious correspondence of parts in relation to a whole. A beautiful pre-

sentation is a cognitively encouraging presentation. The subsequent ques-

tion then regards the nature of that understanding: if it does not happen

as an instant stroke of enlightenment, how does it take place as a gradual

307

Figure 4.5: The linked list is an abstract data structure which acts as a fun-

damental conceptual entitiy in computer science. It is here represented as

a graph, and implementations can be seen in Listing 57 and Listing 58.

process of deciphering (Rota, 1997)?

Addressing this question, Carlo Celluci hints at the concept of fitness,

meaning the appropriateness of a symbol in its denotation of a concept,

and the appropriateness of concepts in their demonstration of a theo-

rem. Only through this dual level can fitness enable understanding rather

than explanation (Cellucci, 2015). This gradual conception of understand-

ing fits the context of proofs and demonstration; when confronted with

source code—that is, with the result of a thought process of one or more

programmers—the processual conception of understanding seems to find

its limits.

To illustrate the relation between presentation and understanding of

defined conceptual entities, we can look at how the linked list, a data struc-

ture that is fundamental in computer science, can be represented in an ele-

gant way. The linked list allows for the retrieval and manipulation of con-

nected items, as well as for the re-arrangement of the list itself, and thus

holds within it thoughtful implications in terms of organizing and access-

ing sequential data. To do so, each item on the list contains both its value,

and the address of the next item on the list, except for the last item, which

points to null; a last component, the head points to the current element of

the list. A graphical representation is provided in Figure 4.5.

The linked list implementation shown in Listing 57 establishes a source

code representation of such data structure. This comparison between a

graphical representation and a textual one highlights that the graphical

308

struct list_item {
int value;
struct list_item *next;

};
typedef struct list_item list_item;

struct list {
struct list_item *head;

};
typedef struct list list;

size_t size(list *l);
void insert_before(list *l, list_item *before, list_item *item);

Listing 57: linked_list.h - A textbook example of a fundamental construct

in computer science, the linked list. This header file shows all the parts

which compose the concept. This program text does not do anything by

itself, it only describes a certain data structure in a certain way. (Kirchner,

2022a).

representation is not only artistic in the traditional sense of the term, but

rather that it operates different expressive choices, and calls for attention

on different parts of the same concept (e.g. the head of the list). On the

other side, the textual representation also makes attentional choices, but

to different aspects (here, the structure of the list_item); in this case, it

seems less explanatory than the graphical representation, and limited in

communicating why this is a canonical example of such a computational

entity, or how did one reach this conclusion among other possible enti-

ties. The preference of graphical demosntrations over textual ones might

indeed rely on the fact that our visual perception is the most developed of

our system, and that our reasoning takes place through the manipulation

of visual cues (Wallen, 1990).

Looking at Listing 57, one can view the different relationships between

parts and wholes: the list item composing the list itself, the head pointer

being a specific instance of the next pointer, and the different methods to

access or modify the list itself. Seeing all of these together suggest an un-

309

derstanding of thewhole through the partswhich is nowhere explicitly de-

scribed but everywhere suggested. On the contrary, the diagram provided

in Figure 4.5 provides a much more immediate understanding of how the

linked list is structured. As such, its aesthetic properties (spacing, weight,

color) contribute to highlighting the smae parts as defined in Listing 57.

Rather than in the static description of the structure, we can look at the

operations which can be performed on it in order to suggest implicit qual-

ities of the object at hand. The linked list example (see Listing 57) might be

considered aesthetically pleasing only at a particular level of skill. How-

ever, once we start manipulate the concept, we can grasp its underlying

properties. In Listing 58, we have reproduced two functionswhich perform

the same operation: given a list and an element, they remove the element

from the list.

The distinction is made clear via the function names between a begin-

ner level (remove_cs101, labelled ”CS101” for the course number of introduc-

tion to computer science) and an expert level (remove_elegant). In the first

one, we see twomain statements, while and if. The first statment looks for

the element to be removed by looping over the list. Once it has found it, it

hands it over the next statement, which checks for the particular edge case

where the target elementmight be the first one, which needs to be handled

differently than for all other cases. In this case, the representation of this

operation does not quite reach into the generic.

The second function is more complex, yet more enlightening. In order

to get rid of the particular edge case which does not symbolize the univer-

sality of such a procedure, the author57 makes a heavy use of the pointer

notation, which allows a program to refer to either the content of a vari-

able, or to the address at which the content is stored.

This use of pointers implies a change in the mental model when con-

sidering a linked list. While the first implementation operates on list_item

57The author of this particular elegant re-write is LinusTorvalds, orinal author of the Linux

kernel (Torvalds, 2016).

310

void remove_cs101(list *l, list_item *target)
{

list_item *cur = l->head, *prev = NULL;
while (cur != target)
{

prev = cur;
cur = cur->next;

}
if (prev)

prev->next = cur->next;
else

l->head = cur->next;
}

void remove_elegant(list *l, list_item *target)
{

list_item **p = &l->head;
while (*p != target)

p = &(*p)->next;
*p = target->next;

}

Listing 58: linked_list.c - A comparison of how to remove an element from

a list, with elegance depending on the skill level of the author (Kirchner,

2022b). You are not expected to understand this.

elements, and then individually deals with the sub parts (such as the next

field), the second implementation considers the list mostly as a series of

pointers, thus reducing the conceptual overload, and increasing the func-

tional efficiency at the price of initially more cryptic notation. Indeed, the

indirection taking place through the use of pointers and references can

only be grasped by non-beginners.

Subtle notational changes can therefore flip the representation of a

conceptual entity. Rather than being separated from purpose (in the case

of mathematics, that function being proving a theorem), aesthetics are in-

tegrated into it by facilitating the understanding of the connection be-

tween, and the reasoning for mental or computational operations. For

instance, writing about elegant mathematical proofs, John Barker argues

that aesthetics are involved in implicit understanding:

Grasping a proof, understanding its gist, seeing why it works, is

311

an important further step, and an essential step if one is to be-

come a competent mathematician. However, by simply following

each move in a proof, one has learned everything that is explic-

itly stated in the proof. Therefore, in really understanding a proof,

one must be learning something that is not explicitly stated in it.

(Barker, 2009)

Still, whether an aesthetic judgment relies on perceived qualities, or if

it only relies on the quality of an idea, is still up for debate. For instance,

Starikova that ”[A]lthough visual representations are involved and under-

standing does rely on them, it is clearly non-perceptual beauty that initi-

ates aesthetic judgment” (Starikova, 2018), pointing back to the distinction

above as to whether beauty is perceived as intrinsic to the mathematical

object, or intrinsic to its representation.

Here, we argue that, when it comes to source code, adequate represen-

tation of the idea is necessary in order to elicit an aesthetic experience, fol-

lowing our conception of understanding through an embodied lens. How-

ever, aesthetic judgments also depend on the nature of background knowl-

edge that the reader holds when engaging with a program text. As we saw

in Listing 58, a beginner might appreciate the conceptual beauty of the

linked list, while an expert might appreciate the beautiful representation

of the linked list.

On one side, the lack of pre-existing knowledge involves the decipher-

ing of symbols and thus immediate attention to form. On the other side,

the pre-existence of knowledge allows one to focus on the quality and de-

tails of the presentation, such aswhenmathematicians decide tofindmore

beautiful proofs to an existing theorem. In this case, the knowledge of

the theorem, and how its intellectually-perceived simplicity can be trans-

lated into a sensually-perceived simplicity and an aesthetic judgment on

the form. Here, the aesthetic judgment precedes the intellectual judgment,

all the while not guaranteeing a positive intellectual judgment (e.g. the

312

abstract object, whether program function or mathematical theorem, is

presented in an aestheticlly-pleasingmanner, but remains shallow, boring,

non-sensical or wrong).

We argue here that both intellectual pleasure and aesthetic pleasure

happen in a dialogic fashion, considering the symbols and the meanings

reciprocally, until intellectual and aesthetic judgments have been given.

This is in line with Rota’s critique of the term ”enlightenment” or ”insight”

in his phenomenological account of beauty in mathematics. The process

of discovery and understanding is a much longer one than a simple stroke

of genius experienced by the receiver (Rota, 1997).

An aesthetic experience in mathematics involves uncovering the con-

nections betweenaesthetic and epistemic value being represented through

a mathematical symbol system. However, such a conception seems to

take place as a gradual process of discovery, both from the writer and

from the reader, rather than intrinsic aesthetic value existing in a given

mathematical concept. Seen in the light of skill-based aesthetic judgment,

this chronological unfolding points towards a final aspect of aesthetics

in mathematics specifically, and in the sciences in general: aesthetics as

heuristics for knowledge acquisition.

4.4.3 Aesthetics as heuristics

So far, we had been looking at how aesthetics are evaluated in a finished

state—that is, once the form of the object (whether a proof or a program

text) has stabilized. In doing so, we have left aside a significant aspect of

the matter. Aesthetics in mathematics do not need to be seen exclusively

as an end, but also as a mean, as a part of the cognitive process engaged

to achieve a result. As such, we will see how they also serve as a useful

heuristic, both from a personal and social perspectives. Since the ultimate

purpose of mathematics specifically, and scientific activities in general, is

the establishment of truths, one can only follow that beauty has but a sec-

313

ondary role to play—though that is not to say superfluous.

Complementing the opinions of mathematicians at the turn of the

20th century, Nathalie Sinclair offers a typology of the multiple roles that

beauty plays in mathematics. Beyond the one that we have investigated

in the previous sections, which she calls the evaluative role of beauty, in

determining the epistemic value of a conceptual object, she also proposes

to look at a generative role and at a motivational role (Sinclair, 2011). The

latter helps themathematician direct their attention toworthy problems—

something which is of limited equivalence in source code, since program-

mingmostly derives fromexternal constraints. The former holds a guiding

role during the inquiry itself, once the domain of inquiry has been cho-

sen. It helps in generating new ideas and insights as one works through

a problem. This aesthetic sense can be productive both in its positive

evaluations—implying one might be treading a fruitful path—as well as

negative—hinting that something might not be conceptually well-formed

because it is not formally well-presented58. According to Root-Bernstein,

the informal insights of aesthetic intuition precede formal logic. Only

when we explicitly recognize that the “tools of thinking” and the “tools of

communication” are distinct can we understand the intimate, yet tenuous,

connection between thought and language, imagination and logic (Root-

Bernstein, 2002).

This is echoed in Norbert Wiener’s perception of aesthetics in mathe-

matics as away to structure a knowledge that is still in the process of being

formed, in order to optimize short-term memory as the mental model of

the conceptual object being grasped is still being built59. This description

58”The realization that we recognize problems through our anti-aesthetic response to them

provides an important clue as to how we go about defining the nature of the problem and rec-

ognize its solution. The nature of the disjuncture between our aesthetic expectations and what

we observe or think we know reveals the detailed characteristics of the specific problem that

presents itself.” (Root-Bernstein, 2002)
59”The mathematician’s power to operate with temporary emotional symbols and to orga-

nize out of them a semipermanent, recallable language. If one is not able to do this, one is likely

314

of a sort of landmark item, in the geographical sense, echoes the role of

beacons described by Détienne (Detienne, 2001) and mentioned in subsec-

tion 3.2.3, One can therefore consider an aesthetically pleasing element to

serve as a sort of beacon used by programmers to construct a mental rep-

resentation of the program text they are reading or writing.

A representation does not need to be of an effective proof in order to

be nonetheless considered functional. A sketch of a concept might even

evoke more in certain readers than a fully detailed implementation, offer-

ing a direction into which further fruitful inquiry.

For instance, the listing Listing 59 shows such a sketch, as it repre-

sents the essential components of a regular expression matcher, as fea-

tured in the Beautiful Code edited volume. Regular expressions are a form

of linguistic formal pattern that serve as an input to a regular expression

matcher in order tofindparticular patterns of text in an input string. Given

a input text file, a regular expression matcher could find a pattern such as

”any consecutive list of characters, starting with any number of alphanu-

meric characters, followed by a dot, followed by at least one character and

at most seven characters ”—in essence a rough description of a file name

and extension. Building such a system is not a trivial endeavour.

In this case, the essential components of thematcher are implemented,

in a clear and concise way. It highlights the overall structure (a general

match function, with matchhere and matchstar handling separate cases), the

process of looping over an input string, the fundamentals of handling dif-

ferent patterns, and within those the fundamentals of handling different

characters in relation to the current pattern. Each part is clearly delineated

(and fit for its separate purposes) and contributes to an understanding of

the whole, by limiting itself to displaying its essence.

It must be pointed out here that the regular expression is functional at

its core: in less than 50 lines, it performs the core operations of the system

to find that his ideas evaporate due to the sheer difficulty of preserving them in an as yet unfor-

mulated shape.” quoted by Sinclair in (Sinclair, 2004)

315

/* match: search for regexp anywhere in text */
int match(char *regexp, char *text)
{

if (regexp[0] == '^')
return matchhere(regexp + 1, text);

do
{ /* must look even if string is empty */

if (matchhere(regexp, text))
return 1;

} while (*text++ != '\0');
return 0;

}

/* matchhere: search for regexp at beginning of text */
int matchhere(char *regexp, char *text)
{

if (regexp[0] == '\0')
return 1;

if (regexp[1] == '*')
return matchstar(regexp[0], regexp + 2, text);

if (regexp[0] == '$' && regexp[1] == '\0')
return *text == '\0';

if (*text != '\0' && (regexp[0] == '.' || regexp[0] == *text))
return matchhere(regexp + 1, text + 1);

return 0;
}

/* matchstar: search for c*regexp at beginning of text */
int matchstar(int c, char *regexp, char *text)
{

do
{ /* a * matches zero or more instances */

if (matchhere(regexp, text))
return 1;

} while (*text != '\0' && (*text++ == c || c == '.'));
return 0;

}

Listing 59: regex.c - A regular expression matcher by Rob Pike, praised for

its elegance and conciseness, but not for its practical utility (Oram & Wil-

son, 2007)

316

it represents, while a fully-functional implementation, such as the one in

Python’s re module, is more than 2000 lines (Secret Labs AB, 2001). The

beauty found by Brian Kernighan in this program text is that the core of

the idea is represented elegantly, while leaving avenues for exploration to

the reader60.

Mathematics, like source code, therefore pay close attention to how for-

mal presentation facilitates the cognitive grasping of abstract concepts.

Reducing and organizing literal tokens into conceptually coherent units,

and meaningful relations to other units—for instance, having the code in

Listing 59 reversed, with the match() function at the bottom of the docu-

ment would represent a different level of importance of that entrypoint

function, which would complicate the understanding of how the source

code functions.

One of the virtues of the listing is that it is particularly beneficial to stu-

dents, helping them grasp the important parts without being overloaded

with toomany technical details. Nathalie Sinclair further develops the im-

portance of aesthetically pleasing textual objects representing mathemat-

ical concepts in order to facilitate learning. She positions her argument

as a response to the strict focus of the studies in mathematics on the per-

ceptions and reports of highly successful individuals. If individuals like

Poincaré, Hardy and Dirac can self-report their experiences, she inquiries

into the ability for individuals of a different skill level to experience gen-

erative aesthetic experiences, experiences where the encountering of an

aesthetic symptom generates new directions for ideas. In a subsequent

work, she describes the perception of mathematics students as such:

The aesthetic capacity of the student relates to her sensibility in

combining information and imagination when making purpose-

ful decisions, regarding meaning and pleasure. (Sinclair, 2011)
60Brian Kernighan concludes his analysis of this piece of code as such: ”I don’t know of

another piece of code that does so much in so few lines while providing such a rich source of

insight and further ideas.” (Kernighan, 2007)

317

Figure 4.6: Steps of transformation to approach an epistemic value in find-

ing whether or not the square root of 2 is an rational number.

Emotion and intellect are no longer antitheses, and can be reported by

students as well. From her investigations, then, it seems that the heuristic

value works across skill levels, whether one holds a Fieldsmedal or a high-

school degree. Doing similar work, Seymour Papert aimed at evaluating

the functional role of aesthetics by documenting a group of non-experts

working through a proof that the square root of 2 is an irrational number.

After a series of transformative steps, the subjects of the study manged to

eliminate the square root symbol by elevating the two other variables to

the power of two61, as in Figure 4.6.

Papert conceptualizes such an observation as a phase of play, a phase of

playing which is aesthetic insofar as the person doing mathematics is de-

limitating an area of exploration, qualitatively trying to fit things together,

and seeking patterns that connect or integrate (Papert, 1978), and thus

looking to identify parts which would seem to fit a yet-to-be-determined

whole. This also seems to confirm the perspective that there are some

structures that are meaningul to the mathematician.

An interesting aspect of this conception of aesthetics by both Papert

61Incidentally, this process of elevating to a power to get rid of a square root is the same

heuristic used in the highly-optimized piece of hacker code calculating the inverse square

root of a number, listed in Listing 13 and discussed in subsection 2.1.2

318

and Sinclair is their temporal component. While, for evaluative aesthetics,

one can grasp the formal representation of themathematical object in one

sweep, this generative role hints at a more important need to develop over

time. This opens up a new similarity with source code, by shifting from the

reader to thewriter. Onone side, Sinclair connects this unfolding over time

withDewey’s theory of inquiry andwith Polanyi’s personal knowledge the-

ory, connecting further the psychological perception with the role of aes-

thetics. Both Dewey and Polanyi offer a conception of knowledge creation

which relies particularly on a step-by step development rather than imme-

diate enlightenment (Polanyi & Grene, 1969; Sinclair, 2004); it is precisely

this distinction which Papert addresses with his comparison of aesthetics

as gestalt (evaluative) or sequential (generative).

Taking from Dewey’s proposal of what an aesthetic experience is62, we

can connect it back to a sequential aesthetic perception in Papert’s term,

one of learning and discovery, but also to the practice of writing good

source code.

In programming practice, the process ofworking through the establish-

ment of a valuable epistemic object through the sequential change of rep-

resentations is called refactoring. As described by Martin Fowler, author

of an eponymous book, refactoring consists in improving the textual de-

sign of an existing program text, while retaining an identical function. The

crux of the process lies in applying a series of small syntactical transforma-

tions, each of which help to sharpen the fitness of the parts to which these

transformations are applied. Ultimately, the cumulative effect of each of

these syntactical transformations ends up being significant in terms of

program comprehension, bringing it closer to a sense of elegance (Fowler

et al., 1999)63.
62Dewey presents it as having first and foremost a temporal structure, something that is

dynamic, because it takes a certain time to complete, time to overcome obstacles and accu-

mulate sense perceptions and knowledge, following a certain direction, a teleology hopefully

concluding in a certain sense of pleasure and fulfillment. (Leddy & Puolakka, 2021)
63We have described an instance of this process in section 4.3.2, with a starting point in

319

Finally, extending from this personal and psychological perspective on

the development of epistemic value through the pursuit of aesthetic per-

ceptions, we can note a final dimension to aesthetics inmathematics: a so-

cial component. Shifting our attention away from themodes ofmathemat-

ical inquiry of individual mathematician, Sinclair and Primm have high-

lighted the practices of the community as a whole, including how truths

are named, manipulated and negotiated. (Sinclair, 2011).

This amounts to uncovering the fact that scientific problems are being

decided upon and researched based on particular values and conventions,

conventionswhich then trickle down into the presentationof results, high-

lighting trends and social formations both in terms of content of research

and style of research (Depaz, 2023). The interpretation provided by Pimm

and Sinclair is that aesthetics, through ”good taste” subtly reify a power re-

lationship and exclude practitioners by delimiting what is proper writing

and proper research (Sinclair & Pimm, 2010).

While one could argue for a similar power dynamic when it comes to

programming style, one notable difference we see with programming is

the highly interactive collaborative environment in which the productive

work can be done. Particularly in the case of software engineering, the fact

that a given program text is beingworked onby different individuals of dif-

ferent skill levels and at different moments also suggests a social function

of aesthetics as a means to harmonize social processes. The evaluative

posture of the reader in giving a positive value judgment on a given pro-

gram text or mathematical proof also implies that this positive judgment

was given as a generative role; that is, the aesthetic symptoms are made

visible by a writer in search of elegant function and epistemic communi-

cation, and appreciated by the reader as an indicator of a work well-done

(Tomov, 2016). This implies a certain sense of care that was being given to

the program text, or to the mathematical proof, which in turn suggests a

certain functional quality in the finished object. Beautiful mathematics,

Listing 2, and a conclusion in Listing 3

320

as beautiful code, can therefore be seen as a sign that someone cared for

others to understand it clearly.

Aesthetics are thus closely involved in considering mathematical ob-

jects, in appreciating their symbolic representation, and as a guide towards

a positively-valued representation. Particularly, the dichotomy between

the mathematical entities (theorems) and their representations (proofs)

echoes the distinction we have seen in programming between algorithm

and implementation. While abstract entities do possess specific qualities

that are positively valued, it is their implementation—that is, their textual

manifestation—which tends to be the locus of aesthetic judgment. Aes-

thetics also complement the more common notion of scientific rational

thinking, in which an individual reasons about a problem in a linear, step-

by-step manner. Instead, we have seen that the appearance, and the judg-

ment of such appearance, also acts as a guide towards establishing true

and elegant mathematical statements.

Ultimately, aesthetics in mathematics contribute to representing a

mathematical object, thus enabling access to the conceptual nature and

implications of this object, as well as providing useful heuristics in estab-

lishing a new object. What remains, and what will be taken up in the next

chapter, is to ”reify this meta-logic as a set of rules, axioms, or practices.”

(Root-Bernstein, 2002), by establishingwhichmathematical approaches fit

with source code aesthetics.

In this chapter, we have established a more thorough connection be-

tween aesthetics and cognition. First at the philosophical level, we estab-

lished how source code fits within Nelson Goodman’s conception of what

is a language of art, before complementing this ability for an aesthetic ex-

perience to communicate complex concepts with more contemporary re-

321

search, including contribution from cognitive sciences.

We then moved to more specific domains, examining both how their

aesthetic properties engage with cognition, but also how these might re-

late to those held by source code. Looking at literature, we paid attention

to howmetaphors, embodied cognition and spatial representations are all

devices allowing for the evokation of complex world spaces and cultural

references, facilitating the comprehension of (electronic) poetry and prose.

Turning to architecture, we acknowledged the role of function in the

conception of modernist aesthetics, one which focuses on the plan rather

than on the building, before contrasting this approach with the theories

of Christopher Alexander. His concepts of patterns and habitability have

been widely transposed in programming practice, highlighting a tension

between top-down, abstract design, with bottom-up, hands-on engage-

ment. This notion of directmaterial engagement led us to further examine

how craft folds ties to architecture, and how it facilitates a particular kind

of knowledge production and value judgment.

Finally, turning to mathematics, we distinguished two main ap-

proaches: an evaluative aesthetics, where the representation of a math-

ematical object has an epistemic function, and a generative aesthetics,

which works as a heuristic from a writer’s perspective, and often remains

unseen to the reader, as it is presented in its final form, without the multi-

ple steps of formal transformations that led to the result.

Throughout, we compared how these specific aesthetic approaches re-

lated to source code. Since source code is presented by programmers as ex-

isting along these domains of practice, this has allowed us to further refine

a specific aesthetics of source code. The next chapter brings the concepts

identified in these domains into a dialogue in order to constitute a coher-

ent view. To do so, we will start from source code’s material: programming

languages.

322

Chapter 5

Machine languages

After analyzing the discourses of programmers on beautiful code, after

highlighting the specific cognitive complexities inherent to software and

how they are dealt with, and after having investigated how aesthetics en-

able various forms of understanding in adjacent fields, we now lay out a

framework for the aesthetics of source code.

To do this, this chapter begins with the medium of source code: pro-

gramming languages. Understandingwhat they are and how they are used

will allow us to highlight two important aspects. First, that the tension be-

tween human-meaning and machine-meaning is located in the different

interpretations of the same syntax. Second, it will allow us to highlight

another contextual aspect of source code aesthetics—just like natural lan-

guages, machine languages also act as linguistic communities of practice.

Once we laid this material groundwork, we propose two approaches to

the aesthetic manifestations in program texts. First, we build on a close-

reading approach to suggest a framework composed of various scales. Fo-

cusing on the spatiality of program texts, we will show how programming

languages act as an interface between a program text and a mental model.

A first aesthetic function of source is thus shown to be the enabling (or

denying) of spatial navigation in a program text. We then develop on how

323

syntax and vocabulary make use of metaphors to enable the representa-

tion of positive values such as abstraction, openness and function. Recall-

ing our discussions on elegance, we show how each of these values rely on

the aesthetic function of compression.

We conclude the chapter with a discussion on the relationship between

aesthetics and function. We examine such a relationship through a dual

perspective: a functional source code is required for aesthetic judgment

to take place, and that aesthetic properties experienced as such hold the

function of enabling understanding.

5.1 Linguistic interfaces

Software is an idea ultimately represented in specific hardware config-

urations. The immediate medium of this representation, from the pro-

grammer’s perspective, is the programming language in which the idea

is written down. Programming languages have so far been set aside

when examining which sensual aspects of source code resulted in what

could be deemed a ”beautiful” program text. And yet, the relation-

ship between semantics (deep-structure) and its syntactic representation

(surface-structure) is framed by programming languages, as they define

the legal organization of form.

This section examines the influence of programming languages on the

aesthetic manifestations of source code. To do so, we first go over a broad

description of programming languages, focusing on what makes a pro-

gramming language expressive. Second, we touch upon the problem of

semantics in programming languages, and how they might differ from a

human understanding of semantics. We thenwe assess their fit as an artis-

tic, expressive system by introducing notions to style and idiomaticity in

programming language communities. In so doing, we highlight a couple

of computing-specific concepts that are made accessible by programming

324

languages, discussing how different linguistic interfaces propose different

representations.

5.1.1 Programming languages

We start by recalling the historical and technical developments of pro-

gramming languages, relocating them as an interface between hardware

and software. With a better technical understanding, this will allow us to

pinpoint the overlap and differences between human semantics and ma-

chine semantics.

History and developments

A programming language is a strictly-defined set of syntactic rules and

symbols for describing instructions to be executed by the processor. The

history of programming languages is, in a sense, the history of decou-

pling themeans of creating software fromhardware. The earliest program-

ming languages were embedded in hardware itself, such as piano rolls and

punched cards for Jacquard looms (Sack, 2019). Operating on similar prin-

ciples, the first electric computers—such as the ENIAC, the UNIVAC or the

MUC—still required manual re-wiring in order to implement any change

in the algorithm being computed. This process then gave way to program-

ming through the stack of cards fed into the machine, a more modular

process which nonetheless retained a definite material aspect. It is with

the shift to the stored-program model, at the dawn of the 1950s, that the

programs could be written, stored, recalled and executed in their electro(-

mecha)nical form, essentially freeing the software result from any imme-

diately physical representation.

This tendency to have software gradually separate from hardware saw

a parallel in the development of programming languages themselves. Ulti-

mately, any software instruction needs to execute one of the built-in, hard-

wired instructions of the processor. Also called machine language, these

325

instructions set describe the specific implementation of themost common

operations executed by a computer (e.g. add, move, read, load, etc.), and

are part of the oldest and most direct semantic interface to the hardware.

These operations are ultimately represented as binary numbers to the pro-

cessing unit. To represent these binary combinations, a first layer of a fam-

ily of languages called Assembly, provides a syntax which is loosely based

on English. When read by the CPU, each of these Assembly mnenmon-

ics is converted into binary representation1. Considered today as some of

the most low-level code one can write, Assembly languages are machine-

dependent, featuring a one-to-one translation from English keywords to

the kind of instruction sets known to the processor they are expected to

interface with. As such, a program written for a particular architecture of

a computer (e.g. x86 or ARM) cannot be executed without any modifica-

tions on a another machine.

The first widely acknoweldged high-level language which allowed for a

complete decoupling of hardware and software is FORTRAN2. At this point,

programmers did not need to care about the specifics of the machine that

they were running on anymore, and found more freedom in their explo-

ration of what could be done in writing software, expanding beyond scien-

tific and military applications into the commercial world (see section 2.1).

Moving away fromhand-crafted and platform-specific Assembly code also

implied a certain sense of looseness incompatible with the extension of

its application domain: widening the problem domain demanded tighten-

ing the specification of such languages. As such, FORTRAN3, and the sub-

squent COBOL, Lisp and ALGOL 58 also started being concerned with the

specificdefinitionof their syntax in anon-ambiguousmanner to ensure re-

liability. Using Backus-Naur Form notation, it became possible to formal-

1For an example of Assembly language translated into machine code, see Listing 41 and

Listing 42
2Even thoughprogramming languages suchasPlankalkül, ShortCode andAutocodewere

partial proposals of such decoupling before FORTRAN.
3An acronym for FORmula TRANslation, thus making clear its role as a mediator.

326

ize their syntactic rules in order to prevent any unexpected behaviour and

support rigorous reasoning for the implementation and researchof current

and subsequent languages. With such specifications, and with the decou-

pling from hardware, programming languages became, in a way, context-

free.

The context-free grammatical basis for programming allowed for the

further development of compilers and interpreters, binary programs

which, given a syntactically-valid program text, output theirmachine code

representation. Such amachine-code representation can then be executed

by the processor4. At this point, a defining aspect of programming lan-

guages is their theoretical lack of ambiguity. This need for disambigua-

tion was reflected both in the engineering roots of computation5 and in

their formal mathematic roots notation6, and was thus a requirement of

the further development of functional software engineering.

Nowadays, most programming languages are Turing-complete: that is,

their design allows for the implementation of a Turingmachine and there-

fore for the simulation of any possible aspect of computation. This means

that any programming language that is Turing-complete is functionally

equivalent to any other Turing-complete programming language, creat-

ing essentially a chain of equivalency between all programming languages.

And yet, programming language history is full of rise and fall of languages,

of hypes and dissapointments, of self-claimed beautiful ones and criti-

cized ugly ones, from COBOL to Ada, Delphi and C. This is because, given

such a wide, quasi-universal problem set, the decision space requires cre-

ative constraints: individual programmers resort to different approaches

4The main difference between a compiler and an interpreter is that the compiler parses

thewhole program text as once, resulting in a binary object, while interpreters parse only one

line at a time, which is then immediately executed.
5Punch cards and electrical circuits are ultimately discrete—hole or no hole, voltage or

no voltage.
6For instance, Plankalkül was based on Frege’s Begriffschrift, a lineage we’ve seen in sub-

section 3.1.2

327

ofwriting computational procedures, echoingwhat Gilles Gaston-Granger

undestands as style, as a formal way to approach the production and com-

munication of aesthetic, linguistic and scientificworks (Granger, 1988). We

have already seen one example of such difference in approaching the do-

main of computation: compilation vs. interpretation. While the input

and outputs are the same 7, there are pros and cons8 to each approach,

which in turn allows programmers to bestow value judgments on which

on they consider better than the other. Ultimately all programming lan-

guages need to address these basic components of computation, but they

can do it in the way they want. Such basic components are, according to

Milner (Milner, 1996):

• data: what kinds of basic datatypes are built-in the language, e.g.

signed integers, classes

• primitive operations: how can the programmer directly operate on

data, e.g. boolean logic, assignments, arithmetic operations

• sequence control :how the flow of the program can be manipulated

and constrained, e.g. if, while statements

• data control: how the data can be initialized and assigned, e.g. type-

safe vs. type-unsafe

• storage management: how the programming language handles in-

put/output pipelines

• operating environment: how the program can run, e.g. virtual ma-

chine or not

This decision to change the way of doing something while retaining

the same goal is particularly salient in the emergence of programming
7a program text goes in, and machine code comes out
8For instance, a compiled binary does not need an extra runtime to be executed on a ma-

chine, but cannot be immediately used on a different architecture than the one it was com-

piled for.

328

paradigms. A programming paradigm is an approach to programming

based on a coherent set of principles, sometimes involving mathematical

theory or a specific domain of application. Some of these concepts include

encapsulation and interfaces (in object-oriented programming), pure func-

tion and lacks of side effects (in functional programming), or mathemat-

ical logic (in declarative programming). Each paradigm supports a set of

concepts that makes it the best for a certain kind of problem (Van Roy,

2012), these concepts in turn act as stances which influence how to ap-

proach, represent and prioritize the computational concepts mentioned

above, and as tools to operate on their problem domain.

Along with programming paradigms, programming languages also

present syntactic affordances for engaging with computational concepts.

Nonetheless, this is only one part of the picture: the interpretation of syn-

tax necessarily involves semantics. Machine semantics, as we will see, op-

erate a delicate balance between computational operations and human as-

sumptions.

Machine semantics and human semantics

One of the reasonings behind the formal approach to programming lan-

guages is, according to the designers of ALGOL 58, the dissatisfaction with

the fact that subtle semantic questions remained unanswered due to a lack

of clear description (Sethi, 1996). If the goal of a program text is to produce

a functional and deterministic execution, then programming languages

must be syntactically unambiguous, and the compiler must be given a

framework to interpret this syntax. The very requirement for semantic

representation in program language design is first and foremost due to the

fact that:

The first andmost obvious point is that whenever someonewrites

a program, it is a program about something. (Winograd, 1982)

The issue that he points out in the rest of his work is that humans and

329

computers do not have the same understanding of what a program text is

about. In general, semantics have the properties of aboutness and direct-

edness (they point towards something external to them), and syntax has

the property of (local) consistency and combination (they function as a

mostly closed system). Looking at programing languages as appliedmath-

ematics, in the sense that it is the art and science of constituting complex

systems through the manipulation formal tokens, tokens which in turn

represent elements in the world of some kind, we arrive at the issue of

defining semantics in strictly computer-understandable terms.

In attempting to develop early forms of artificial intelligence in the

1970s, Terry Winograd and Fernando Flores develop a framework for ma-

chine cognition as related to human cognition, through the analysis of

language-basedmeaning-making (Winograd & Flores, 1986). In short, they

consider meaning as created by a process of active reading, in which the

linguistic form enables interpretation, rather than exclusively convey-

ing information. They further state that interpretation happens through

grounding, essentially contextualizing information in order to interpret it

and extract meaning. He identifies three different kinds of grounding: ex-

periential, formal, and social. The experiential grounding, in which verifi-

cation is made by direct observation, relates to the role of the senses in the

constitution of the conceptual structures that enable our understanding

of the world—also known as the material implementation of knowledge.

The formal grounding relies on logical and logical statements to deduce

meaning from previous, given statements that are known, which we can

see at play in mathematical reasoning. Finally, social grounding relies on

a community of individuals sharing similar conceptual structures in order

to qualify for meaning to be confirmed. Of these three groundings, pro-

gramming languages rely on the second.

The reason for the bypassing of experiential and social grounding can

be found in one of the foundations of computer science, aswell as informa-

tion science: Claude Shannon’s mathematical theory of communication.

330

In it, he postulates the separation of meaning from information, making

only the distinction between signal and noise. Only formal manipulation

of signal can then reconstitute meaning9. We think of computers as digi-

tal machines but they can also be seen as only the digital implementation

of the phenomenon of computation. Indeed, according to Brian Cantwell

Smith, computing ismeaningmechanically realized, due to the fact that the

discipline has bothmechanical and non-mechanical lineages(Smith, 2016).

It is therefore through formal logic that one can recreatemeaning through

the exclusive use of the computer.

This machine meaning is also represented through several layers. A

computer is a collection of layers, each defining different levels of ma-

chines, with different semantic capabilities. First, it is a physical machine,

dealing with voltage differences. These voltage differences are then quan-

tized into binary symbols, in order to become manipulable by a logical

machine. From this logical machine is built an abstract machine, which

uses logical grounding in order to execute specific, pre-determined com-

mands. The interpretation ofwhich commands to execute, however, leaves

no room for the kind of semantic room for error that humans exhibit (par-

ticularly in hermeneutics). It is a strictly defined mapping of an input to

an output, whose first manifestation can be found in the symbols table in

Turing’s seminal paper (A. Turing, 1936). The abstract machine, in turn,

allows for high-level machines (or, more precisely, high-level languages

which can implement any other abstractmachine). These languages them-

selves have linguistic constructs which allow the development of repre-

sentational schemes for data (i.e. data structures such as structs, lists,

tuples, objects, etc.). Finally, the last frontier, so to speak, is the problem

domain: the thing(s) that the programmer is talking about and intends to

act upon. Going back down the ladder of abstractions, these entities in

the problem domain are then represented in data structures, manipulated

9An affordance that is shared in distinguishing literature from gibberish, according to

Peter Suber(Suber, 1988)

331

through high-level languages, processed by an abstract machine and exe-

cuted by a logical machine which turns these pre-established commands

into voltage variations.

The problem domain is akin to a semantic domain, a set of related

meaningful entities, operating within a specific context, and which a par-

ticular syntax refers to. Yet, there is only one context which the computer

provides: itself. Within this unique context, semantics still hold a place

in any programming language textbook, and is addressed regularly in pro-

gramming language research. Concretely, semantics in computer program-

ming focuses on how variables and functions should behave in relation to

one another (Sethi, 1996). Given the statement l := j + p, the goal of pro-

gramming language semantics is to deduce what is the correct way to pro-

cess such a statement; there will be different ways to do so depending on

the value and the type of the j and p variables. If they are strings, then the

value of jwill be their concatenation, putting one next to the other. If they

are numbers, it will be their addition, and so on.

This problem of determining which operation should take place given

a particular type of variables requires the reconciliation of the name of en-

tities, tokens in source code, with the entities themselves, composed of a

value and a type. The way this is achieved is actually quite similar to how

syntax is dealt with. The compiler (or interpreter), after lexical analysis,

constructs an abstract syntax tree (AST) representation of the statement,

separating it, in the above case, in the tokens: l, :=, j, + and p. Among these,

:= and + are considered terminal nodes, or leaves, while the other values

still need to be determined. The second pass represents a second abstract

syntax tree through a so-called semantic analysis, which then decorates

the first tree, assigning specific values (attributes) and types to the non-

terminal nodes, given the working environment (e.g. production, develop-

ment, test). This process is called binding, as it associates (binds) the name

of a variable with its value and its type.

Semantics is thus the decoration of parsed ASTs, evaluating attribute—

332

which can be either synthesized or inherited. Since decoration is the addi-

tion of a new layer (a semantic layer) on top of a base layer (a syntactic one),

but of a similar tree form, this leads to the use of what can be described as

ameta-syntax tree.

Regarding when the values are being bound, there are multiple differ-

ent binding times, such as language-design time (when the meaning of +

is defined), compile time, linker time, and program-writing time. It is only

during the last one of these times, that the programmer inserts their own

interpretation of a particular meaning (e.g. j := ”jouer”, meaning one of

the four possible actions to be taken from the start screen of a hypothet-

ical video game). Such a specific meaning is then shadowed by its literal

representation (the five consecutive characters which form the string) and

its pre-defined type (here, it would be the string type, although different

languages have different terms to refer to the same consecutive list of al-

phanumeric characters).

Ultimately, this process shows that the meaning of a formal expres-

sion can, with significant difficulty and clumsiness, nonetheless be ex-

plained; but the conceptual content still eludes the computer, varying from

the mundane (e.g. a simple counter) to the almost-esoteric (e.g. a play-

ful activity). Even the most human-beautiful code cannot force the com-

puter to dealwith newenvironments inwhichmeaning has, imperceptibly,

changed. Indeed,

In programming languages, variables are truly variable, whereas

variables in mathematics are actually constant (Wirth, 2003).

This implies that the content of the variables, when set duringprogram-

writing time, might throw off the whole interpretative process of the com-

puter. In turn, thiswould transforma functional program into a buggy one,

defeating the very purpose of the program. While programming languages

are rigorously specified, they are nonetheless designed in away that leaves

space for the programmer’s expressivity.

333

At this point, the only thing that the computer does know that the pro-

grammer does not is how the code is represented in an AST, and where

in physical memory is located the data required to give meaning to that

tree(Stansifer, 1994). We might hypothesize that beautiful code, from the

computer’s perspective, is code which is tailored to its physical architec-

ture, a feat which might only be realistically available when writing in As-

sembly, with deep knowledge of the hardware architecture being worked

on.

Just like some human concepts that are complicated to make the com-

puter on its own terms, there are also computer concepts that are hard to

grasp for humans. As we’ve seenwith software patterns, what alsomatters

to programming languages is not just their design, but their situated use:

It must be a pleasure and a joy to work with a language, at least

for the orderlymind. The language is theprimary, daily tool. If the

programmer cannot love his tool, he cannot love his work, and he

cannot identify himself with it. (Wirth, 2003)

While there is only one version of how the computer interprets instruc-

tions, it is through programming languages that both form and content,

syntax and semantics are made accessible to the programmer. Within

computation as a whole, a plethora of programming languages exist, de-

signed by humans for humans, differentiating themselves by how the rep-

resentations they afford guide the programmer in reading and writing

source code.

5.1.2 Qualities of programming languages

All programming languages stem from and relate to a single

commonality—Turing-completeness and data processing—, and yet

these linguistic interfaces nonetheless offer many approaches to per-

forming computation, including a diversity and reliability of functional

334

affordances and stylistic phrasing. Since diversity within equivalence

supports qualified preference, we can now examine what makes a pro-

gramming language good—i.e. receive a positive value judgment—before

turning to the question of the extent to which a good programming

language enables the writing of good program texts.

Every programming language of practical use takes a particular ap-

proach to those basic components, sometimes backed by an extended ra-

tionale (e.g. ALGOL 68), or sometimes not (e.g. JavaScript). In the case in

which one is circumscribed to context-free grammars, it would be possible

to optimize a particular language for a quantifiable standard (e.g. compile

time, time use, cycles used). And still, as computers exist to solve prob-

lems beyond their own technical specifications, such problems are diverse

in nature and therefore necessitate different approaches10. These different

approaches to the problemdomain are in turn influenced the development

of different programming languages and paradigms, since a problem do-

main might have different data representations (e.g. objects, text strings,

formal rules, dynamic models, etc.) or data flows (e.g. sequential, parallel,

non-deterministic). For instance, two of the early programming languages,

FORTRANandLisp, addressed twovery different problemdomains: the ac-

counting needs of businesses and the development of formal rules for ar-

tificial intelligence, respectively. Within programming languages, there is

room to distinguish better ones and worse ones, based on particular qual-

ities, and given standards.

What makes a good programming language is a matter which has been

discussed amongst computer scientists, at least since the GOTO statement

has been publicly considered harmful (E. W. Dijkstra, 1968), or that the BA-

SIC language is damaging to one’s cognitive abilities11. Some of these dis-
10Patterns, addressed in subsection 4.3.2 are one way that diverse approaches can be ap-

plied to diverse problems
11”It is practically impossible to teach good programming to students that have had a prior

exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of re-

generation.” (E. W. Dijkstra, 1975)

335

cussions include both subjective arguments over preferred languages, as

well as objective arguments related to performance and ease-of-use (Gan-

non & Horning, 1975). According to Pratt and Zelkowitz:

The difference among programming languages are not quantita-

tive differences in what can be done, by only qualitative differ-

ences in how elegantly, easily and effectively things can be done.

(Pratt & Zelkowitz, 2000)

As a concrete example, one can turn to Brian Kernighan’s discussion

of his preferences between the language PASCAL and C (Kernighan, 1981).

Going through the generic features of a programming languages, he com-

ments on the approaches taken by the programming languages on each

of these. He professes his preference for the C language, based on their

shared inclination for strong typing12, explicit control flow, cosmetic an-

noyances and his dislike for an environment in which ”considerable pains

must be taken to simulate sensible input” (Kernighan, 1981). Nonetheless,he

acknowledges that PASCAL can nonetheless be a toy language suitable for

teaching, thus pointing again the context-dependence of value judgments

in programming.

While this example reveals that individual preferences for program-

ming languages can be based on objective criteria when compared to what

an ideal language should be able to achieve, Turing-completeness offers

an interesting challenge to the Sapir-Whorf hypothesis—if natural lan-

guagesmight only weakly affect the kinds of cognitive structures speakers

of those languages can construct, programming languages are claimed to

do so to large extents. For instance, Alan Perlis’s famous Epigrams on Pro-

grammingmentions that ”A language that doesn’t affect the way you think

about programming, is not worth knowing.” (Perlis, 1982). These differences

in the ways of doing illustrates how different programming languages are

applicable to different domains and different styles of approaching those
12Something that is, according to him, ”telling the truth about data” (Kernighan, 1981).

336

puts ”hello”

Listing 60: hello.rb - A terse example of writing a string to an output in

Ruby.

import java.io.*;

public class Greeting
{
public static void main(String[] args)
{
String greeting = ”hello”;
System.out.println(greeting);

}
}

Listing 61: hello.java - A verbose approach to writing a string to an output

in Java.

domains. They do so through different kinds of notations—different aes-

thetic features—when it comes to realizing the same task.

Of the two programs presented in Listing 60 and in Listing 61, the func-

tion is exactly the same, but the aesthetic differences are obvious.

The code in Listing 60 is written in Ruby, a language designed by Yuki-

hiroMatsumoto, while the code in Listing 61 is written in Java, designed by

James Gosling, both in the mid-1990s. While Ruby is dynamically-typed,

interpreted, Java is a statically-typed and compiled language, and both in-

clude garbage collection and object-orientation. These two snippets are

obviously quite dissimilar at first glance, as the Ruby listing only includes

one reserved keyword13, puts, while the Java listing involves a lot more lex-

ical scaffolding, including class and function declaration.

From a language design perspective, Robert Sebesta suggests three

main features of programming languages in order to be considered good:

abstraction, simplicity and orthogonality (Sebesta, 2018). From the two

13Indeed, Listing 60 is also a valid program in Python and Perl, both scripting languages.

337

snippets, we now explore some of the most important criteria in program-

ming language design, and how they could underpin the writing of good

programs.

Abstraction

Abstraction is the ability of the language to allow for the essential idea of

a statement to be expressed without being encumbered by specifics which

donot relate directly to thematter at hand, or to anymatter at all. Program-

ming languageswhich facilitate abstraction can lead tomore succint code,

and tend tohide complexity (of themachine, andof the language), from the

programmer, allowing her to move between different levels of reasoning.

For instance, the Java snippet in Listing 61 explicitly states the usage of the

System object, in order to access its out attribute, and then call its println()

method. While a lot of code here might seem verbose, or superfluous, it is

in part due to it being based on an object-oriented paradigm. However, out

object itself might seem to go particularly contrary to the requirement of

programming languages to abstract out unnecessary details: println() is a

system call whose purpose is to write something on the screen, and there-

fore already implicitly relates to the output; one shouldn’t have to specify

it explicitly.

In contrast, Ruby entierly abstracts away the system component of the

print call, by taking advantadgeof its status as an interpreted language: the

runtime already provides such standard features of the language. Print-

ing, in Java, does not abstract away the machine, while printing, in Ruby,

hides it in order to focus on the actual appearance of the message. An-

other abstraction is that of the language name itself from the import state-

ments. When we write in Java, we (hopefully) know that we write in Java,

and therefore probably assume that the default imports come from the

Java ecosystem—there shouldn’t be any need to explicitly redeclare it. For

instance, System.out.println() isn’t written java.io.System.out.println().

338

Meanwhile, the Ruby listing makes implicit the necessary declaration of

require ”.../lib/ruby/3.1.0”, allowing the programmer to focus, through

visual clarity, on the real problem at hand, which the logic of the program

being written is supposed to address. In this direction, languages which

provide more abstraction (such as Ruby), or which handle errors in an ab-

stractway (such as Perl) tend to allow for greater readability by focusing on

the most import tokens, rather than aggregating system-related and oper-

ational visual clutter—also called verbosity.

Related to abstraction is the approach to typing, the process of specifiy-

ing the type of a variable or of a return value (such as integer, string, vector,

etc.). A strictly-typed language such as C++ might end up being harder to

read because of its verbosity, while a type-free language might be simpler

to read and write, but might not provide guarantees of reliability when ex-

ecuted. The tradeoff here is again between being explicit and reliable, and

being implicit, subtle, and dangerous (such as JavaScript’s very liberal un-

derstanding of typing). In some instances, typing can usually be inferred

by typographical details: Python’s boolean values are capitalized (True,

False), and the difference difference between string and byte in Go is rep-

resented by the use of double-quotes for the former and single-quotes for

the latter. In the case above, explicitly having tomention that greeting is of

type String is again redundant, since it is already hinted at by the double-

quotes. Ruby does not force programmers to explicitly declare variable

types (they can, if they want to), but in this case they let the computers

do the heavy lifting of specifying something that is already obvious to the

programmer, through a process called dynamic typing.

A particularly note-worthy example of an elegant solution to the trade-

off between guarantee of functionality (safety) and readability can be

found in some programming languages handling of values returned by

functions, such as in the Go listing in Listing 62:

The _ character whichwe see on the first line is the choicemade byGo’s

designers to force the user to both acknowledge and ignore the value that

339

package main

func getNumbers() (int, float64, int) {
return 1, 2.0, 3

}

func main() {
first, _, _ := getNumbers()

}

Listing 62: multiple_returns.go - Go proposes an elegant way of ignoring

certain variables, with the use of the underscore token.

let getNumbers = () => {
return [1, 2.0, 3]

}

numbers = getNumbers()
first = numbers[0]
second = numbers[2]

Listing 63: multiple_returns.js - JavaScript does not have any built-in syntax

to ignore certain variables, resulting in more cumbersome code.

is returned by calling the function getNumber(). This particular character,

acting as an empty line, represents absence, not cluttering the layout of the

source, while reminding subtly of the potential of this particular statement

to go wrong and crash the program. Conversely, the functionally equiva-

lent code written in JavaScript and shown in Listing 63 does not have this

semantic feature (a variable named _ is still a validname), and thus requires

additional steps to reach the same result.

Abstraction in programming languages is therefore a tradeoff between

explicitly highlighting the computer concern (how to operate practically

on some data or statement), and hiding anything but the human concern

(whether or not that operation is of immediate concern to the problem at

hand at all). As such, languages which offer powerful abstractions tend

not to stand in the way of the thinking process of the programmer. This

340

particular example of the way in which Go deals with non-needed values

is a good example of the designer’s explicit stylistic choice.

Orthogonality

Orthogonality is the affordance for a language to offer a small set of simple

syntactics constructs which can be recombined in order to achieve greater

complexity, while remaining independent from each other14. A direct con-

sequence of such a feature is the ease with which the programmer can fa-

miliarize themselves with the number of constructs in the language, and

therefore their ease in using them without resorting to the language’s ref-

erence, or external program texts under the form of packages, libraries,

etc. The orthogonality of a language offers a simple but powerful solution

to the complexity of understanding software. Importantly, an orthogonal

programming languagemustmake sure that there are no unintended side-

effects, such that each program token’s action is independent from each

other. The functionality of a statement thus comes not just from the indi-

vidual keywords, but also from their combination.

For instance, the language Lisp treats both data and functions in a sim-

ilar way, essentially allowing the same construct to be recombined in pow-

erful and elegant ways. To the beginner, however, it might prove confus-

ing to express whole problem domains exclusively with lists. Conversely,

the Ruby languagemakes every data type (themselves abstracted away) an

object, therefore making each building block a slightly different version

of each other, providing less orthogonality. The silver lining from Ruby’s

design choice is that it allows for greater creativity in writing code, since

everything is an object, which elicits a feeling of familiarity. In turn, this

makes the language more habitable, if more uncertain15.

14An analogy of such affordance is that of the building blocks: for instance, the original

LEGO bricks set offers very high orthogonality.
15The infamousmonkey-patching technique of Ruby allows the programmer to evenmod-

ify standard library functions.

341

Orthogonality implies both independence, since all constructs operate

distinctly from each other, while remaining related, and cooperation with

each other, because their functional restrictions requires that be used in

conjunction with one another. This offers a solution to the cognitive bur-

den of programs, in which data can end up being tangled in a non-linear

execution, and become ungraspable. This unreadability is triggered, not

by verbosity, but because of the uncertainty of, and confusion about, the

potential side-effects caused by any statement. Doing one thing, and doing

it well, is a generally-acceptedmeasure of quality in software development

practices.

Such independence in programming constructs also presents a kind of

symmetry—awell-accepted aesthetic feature of any artefact—, in that each

construct is similar, not in their functionality, but in the fact that their self-

contained parts of an orthogonal systems, and therefore share the same

quality. This similarity eases the cognitive friction in writing and reading

code since an orthogonal language allows the programmer to rely on the

fact that everything behaves as stated, without having to keep track of a

collection of quirks and arbitrary decisions16.

Finally, one of the consequences of different amounts of orthogonality

is the shift from computer semantic interpretation to human interpreta-

tion. Non-orthogonality implies that the compiler (as a procedural rep-

resentation of the language) has the final say in what can be expressed,

reifing seemingly arbitrary design choices, and requiring cognitive effort

from the programmer to identify these unwanted interactions, while or-

thogonal languages leave more leeway to the writer in focusing on the in-

teraction of all programming constructs used, rather than on a subset of

those interactions which does not relate to the program’s intent.

16For example, returning an array literal in C is considered illegal syntax, while it is a per-

fectly common feature of more contemporary programming languages. In this case, the lan-

guage exhibits an un-orthogonal property since the two constructs (return and int[]) in-

teract with each other in non-independent ways.

342

Simplicity

Both of these features, abstraction and orthogonality, ultimately relate to

simplicity. As Ryan Stansifer puts it:

Simplicity enters in four guises: uniformity (rules are fewand sim-

ple), generality (a small number of general functions provide as

special cases a host ofmore specialized functions, orthogonality),

familiarity (familiar symbols and usages are adopted whenever

possible), and brevity (economy of expression is sought). (Stan-

sifer, 1994)

The point of a simple programming language is to not stand in the way

of the program being written, or of the problem being addressed. From a

language design perspective, simplicity is achieved by letting the program-

mer do more (or as much) with less, recalling definitions of elegance. This

means that the set of syntactical tokens exposed to the writer and reader

combine in sufficient ways to enable desired expressiveness, and thus re-

lating back to orthogonality17.

Moving away from broad language design, and more specific applica-

tions, the goal of simplicity is also achieved by having accurate conceptual

mappings between computer expression semantics and human semantics

(refer to subsection 3.2.3 for a discussion of mappings). If one is to write a

program related to an interactive fiction in which sentences are being in-

put and output in C, then the apparently simple data structure char of the

language reveals itself to be cumbersone and complexwhen eachword and

the sentence that the programmer wants to deal with must be present not

as sentences nor words, but as series of char18. A simple language does not

17James Rumbaugh describes his conception of simplicity in designing the UML language

as such: ”If you constantly are faced with four or five alternate ways tomodel a straightforward

situation, it isn’t simple” (Biancuzzi & Warden, 2009)
18Hence the origin of the name of the data type string, as a continuous series of char, or

characters stringed together.

343

mean that it is easy 19. By making things simple, but not too simple (Bian-

cuzzi &Warden, 2009), it remains ameans to an end, akin to any other tool

or instrument20.

A proper combination of orthogonality, abstraction and simplicity re-

sults, oncemore, in elegance. Mobilizing the architectural domain, the lan-

guage designer Bruce McLennan further presses the point:

There are other reasons that elegance is relevant to a well-

engineered programming language. The programming language

is something theprofessional programmerwill livewith - even live

in. It should feel comfortable and safe, like a well-designed home

or office; in this way it can contribute to the quality of the activi-

ties that take placewithin it. Would youwork better in an oriental

garden or a sweatshop? (McLennan, 1997)

Programming languages are thus both tools and environments, and

moreover eminently symbolic, manipulating and shaping symbolic mat-

ter. Looking at these languages from a Goodmanian perspective provides

a backdrop to examine their communicative and expressive power. From

the perspective of the computer, programming languages are unambigu-

ous insofar as any expression or statement will ultimately result in an un-

ambiguous execution by the CPU (if any ambiguity remains, the program

does not compile, the ambiguity gets resolved by the compiler, or the pro-

gram crashes during execution). They are also syntactically disjointed (i.e.

clearly distinguishable from one another), but not semantically: two pro-

gramming tokens can have the same effect under different appearances.

The use of formal specifications aims at resolving any possible ambiguity

in the syntax of the language in a very clear fashion, but fashionable equiv-
19Perhaps the simplest language of all being lambda-calculus, is far froman easy construct

to grasp, just like the game of Go of which it is said that it is simple to learning, but difficult

to master
20For a further parallel on musical instruments, see Rich Hickey’s keynote address at

RailsConf 2012 (Confreaks & Hickey, 2012)

344

alence can come back as a desire of the language designer. The semantics

of programming languages, as we will see below, also aim at being some-

what disjointed: a variable cannot be of multiple types at the exact same

time, even though a function might have multiple signatures in some lan-

guages. Finally, programming languages are also differentiated systems

since no symbol can refer to two things at the same time.

The tension arises when it comes to the criteria of unambiguity, from

a human perspective. The most natural-language-like component of pro-

grams, the variable and function names, always have the potential of being

ambiguous21. We consider this ambiguity both a productive opportunity

for creativity, and a hindrance for program reliability. If programming lan-

guages are aesthetic symbol systems, then they can allow for expressive-

ness, first and foremost of computational concepts. It is in the handling

of particularly complex concepts that programming languages also differ-

entiate themselves in value. The differences in programming language de-

sign and us thus amounts to differences in style. In the words of Niklaus

Wirth:

Stylistic arguments may appear to many as irrelevant in a tech-

nical environment, because they seem to be merely a matter of

taste. I oppose this view, and on the contrary claim that stylistic

elements are the most visible parts of a language. They mirror

the mind and spirit of the designer very directly, and they are re-

flected in every program written. (Wirth, 2003)

Idiosyncratic implementations

Software, as an abstract artifact, can be understood at the physical, design

and intentional levels(Moor, 1978). With modern programming languages

21For instance, does int numberOfFlowers refer to the current number of flowers in

memory? To the total number of potential of flowers? To a specific kind of number whose

denomination is that of a flower?

345

#include <stdio.h>

int main()
{

int max_count = 5;
struct int my_list[max_count] = {2046, 2047, 2048, 2049, 2050};

for (int i = 0; i < max_count; i++)
{

printf(”%d”, my_list[i]);
}

}

Listing 64: iterating.c - Iterating in C involves keeping track of an iterating

counter and knowing the maximum value of a list beforehand.

allowing us to safely ignore the hardware level, it is at the interaction of the

design (programming) and intentional (human) level that things get com-

plicated; all programming languages can do the same thing, but they all do

it in a slightly different way22. In order to illustrate the expressivity of pro-

gramming languages, we highlight three programming conceptswhich are

innate to anymodern computing environment, and yet relatively complex

to deal with for humans: iterating, referencing and threading.

The first and the most straightforward example is iteration, or the pro-

cess of counting through the items of a list. Since, ultimately, all program

text is organized as continuours series of binary encodings, going through

such a list in a fundamental operation in programming. Different imple-

mentations of such an operation are shown in Listing 64 for the C language

and in Listing 65.

This comparison shows how a similar function can be performed via

different syntaxes. Particularly, we can see how the Python listing implies

a more human-readable syntax, getting rid of machine-required punctua-

tion, and thus facilitating the pronounciation out loud. In contrast, the C

listing states the parts of the loop in an order that is not intuitive to hu-

22For an exhaustive overview of the way syntax differs and overlaps across programming

languages, see (Rigaux, 2023)

346

my_list = [2046, 2047, 2048, 2049, 2050]

for item in my_list:
print(item)

Listing 65: iterating.py - Iterating in Python is done through a specific syn-

tax which abstracts away the details of the process.

man comprehension. Read out loud, the C listing would be equivalent to

”For an index named i starting at 0, and while i is less than a value named

max_count, increase i by one on each iteration”, which focuses more on the

index management than on the list itself; while the Python listing would

read ”for an item in my list”, much more concise and expressive.

Referencing is a more complex problem than iterating23. It is a surface-

level consequence of the use-mention problem referred to above, the sepa-

ration between a name and its value, with the two being bound together by

the address of the physical location inmemory. As somewhat independent

entities, it is possible to manipulate them separately, with consequences

that are not intuitive to grasp. For instance, when one sees the name of a

variable in aprogram text, is thename referencing the value of the variable,

or the location at which this value is stored? Here, we need a mark which

allows the programmer to tell the difference. Programming language nota-

tion attempts at remediating those issues by offering symbols to represent

these differences, as we can see in Listing 66.

The characters * and & are used to signal that one is dealing with a vari-

able of type pointer, and that one is accessing the pointed location of a

variable, respectively. Line 2 of the snippet above is an expression called

dereferencing, a neologismwhich is perhaps indicative of the lack of exist-

ing words for referring to that concept. In turns, this hints at a lack of con-

23Interestingly, the problemof referencing only appears to be non-straightforward for pro-

grammers who started by writing in higher-level languages. Programming in Assembly, the

concept of reference is more straightforward.

347

int date = 2046; // `date` refers to the literal value of the
number 2046↪→

int *pointer = &date; // `pointer` refers to the address where the
value of `date` is stored, e.g. 0x5621↪→

*pointer = 1996; // this accesses the value located at the
memory address held by `pointer` (0x5621) and sets it to 1996↪→

std::cout << date; // prints the literal value of date, at the
address 0x5621: 1996↪→

Listing 66: references.c - Pointers involve a non-straightforwardway to rea-

son about values.

ventional conceptual structures towhichwe canmap such a phenomenon,

showing some of the limits of metaphorical tools to think through con-

cepts.

Meanwhile, Ruby syntax does not allow the programmer to directlyma-

nipulate pointers, so two variables would actually be referring to the same

data. The design decision here is not to allow the programmer to make

the difference between a reference and an actual value, and instead prefer

that the programmer constructs programs which, on one side, might be

less memory-efficient but are, on the other side, easier to read and write,

since variable manipulation only ever occurs in one single way—through

reference.

Notation does not exclusively operate at the surface level. Some pro-

gramming languages signify, by their use of the above characters, that they

allow for this directmanipulation, through something called pointer arith-

metic24. Indeed, the possibility to add and substract memory locations in-

dependent of the values held in these locations, as well as the ability to

do arithmetic operations between an address and its value isn’t a process

whosemeaning comes froma purely experiential or social perspective, but

rather exists meaningfully for humans only through logical grounding, by

understanding the theoretical architecture of the computer. What also

24For better or worse, C is very liberal with what can be done with pointers. Programmers

sometimes refer to it as ”a shotgun which you are free to shoot yourself in the foot with”.

348

transpires from these operations is another dimension of the non-linearity

of programming languages, demanding complexmentalmodels to be con-

structed and updated to anticipate what the programwill ultimately result

in when executed.

Threading is the ability to do multiple things at the same time, in par-

allel. The concept itself is simple, to the point that we take it for granted in

modern computer applications since the advent of time-sharing systems:

we can have a text editor take input and scan that input for typos at the

same time, as well as scanning for updates in a linked bibliography file.

However, the proper handling of threading when writing and reading soft-

ware is quite a complex task25.

First, every program is executed as a process. Such a process can then

create children subprocesses for which it is responsible. From the hard-

ware standpoint, unpredictability arises from the fact that CPU cores will

run different threads of the same process, and yet, as they are under dif-

ferent loads, some processes will get done faster at times and later at other

times. The task of the programmer involves figuring out how do the chil-

dren process communicate information back to the parent process, howdo

they communicate between each other, and how does the parent process

make sure all the children process have exited before exiting itself.

This involves the ability to demultiply the behaviour of routines (whose

execution is already non-linear) to keep track of what could be going on at

any point in the execution of the program, including use and modifica-

tion of shared resources, the scheduling of thread start and end, as well as

synchronization of race conditions (e.g. if two things happen at the same

time, which one happens first, such that the consistence of the global state

25”Although threads seem to be a small step from sequential computation, in fact, they rep-

resent a huge step. They discard themost essential and appealing properties of sequential com-

putation: understandability, predictability, and determinism. Threads, as a model of computa-

tion, are wildly non-deterministic, and the job of the programmer becomes one of pruning that

nondeterminism.” (Lee, 2006).

349

package main

import (
”fmt”
”math/rand”
”time”

)

func recall(date int) {
random_delay := (rand.Int() % 5) + 1
time.Sleep(time.Second * time.Duration(random_delay))
fmt.Println(date)

}

func main() {
recall(2045)
recall(2046)

fmt.Println(”We're done!”)
}

//-- outputs
// 2045
// 2046
// We're done!

Listing 67: non_thread.go - A sequential execution of a Go program, with

random timeouts. The order of the output is guaranteed, but not its timing.

is preserved?).

For instance, we can look at printing numbers at a random interval. As

seen in the non-threaded example in Listing 67, it is somewhat determin-

istic since we know that 2045 will alway print before 2046. In the threaded

equivalent in Listing 68, such a result is not guaranteed.

Nonetheless, the threading syntax in Listing 68 allows the programmer

to keep their mental modal of a function execution, while the threading

syntax in C, shown in Listing 69, creates a lot more cognitive overhead,

by declaring specific types, calling a specific function with unknown argu-

ments, and then manually closing the thread afterwards.

Threading shows how the complexity of a deep-structure benefits to be

adequately represented in the surface. Once again, aesthetically-satisfying

(simple, concise, expressive) notation can help programmers in under-

350

package main

import (
”fmt”
”math/rand”
”time”

)

func recall(date int) {
random_delay := (rand.Int() % 5) + 1
time.Sleep(time.Second * time.Duration(random_delay))
fmt.Println(date)

}

func main() {
go recall(2045)
go recall(2046)

fmt.Println(”We're done!”)
}

/*
-- possible output #1:
2045
2046
We're done!

-- possible output #2:
2046
2045
We're done!
*/

Listing 68: thread.go - A concurrent execution of a Go program, with ran-

dom timeouts. Neither the order nor the timing of the output is guaran-

teed. The keyword go when calling the functions recall instructs the pro-

gram to run the function in parallel.

351

#include <iostream>
#include <thread>
#include <pthread>
#include <unistd>

void recall(int date)
{

r = (rand() % 5) + 1 sleep(r)
std::cout << date << '\n';

}

int main()
{

pthread_t thread1;
pthread_t thread2;
pthread_create(&thread1, NULL, recall, 2045);
pthread_create(&thread2, NULL, recall, 2046);

pthread_join(thread1, NULL);
pthread_join(thread2, NULL);

cout << ”We're done!”;

return 0;
}

Listing69: thread.c - InC, the syntax towrite thread, and the representation

of the concept, is more verbose, as it forces separate variable declaration,

separate creation and join, and specific positional arguments.

352

standing what is going on in a multi-threaded program, by removing addi-

tional cognitive overload generated by verbosity.

Here, we seehow the abstractionprovidedby some language constructs

inGo result in a simpler andmore expressive program text. In this case, the

non-essential properties of the thread are abstracted away from program-

mer concern. Thedouble-meaning embedded in the gokeyword evenuses a

sensual evokation ofmoving away (from themain thread) in order to stim-

ulate implicit understanding of what is going on. Meanwhile, the version

written in C includes the necessary headers at the top of the file, the ex-

plicit type declaration when starting the thread, the call to pthread_create,

without a clear idea of what the p stands for, as well as the final join()

method call in order to make sure that the parallel thread returns to the

main process, and does not create a memory leak in the program once it

exits. While both behaviours are the same, the syntax of Go allows for a

cleaner and simpler representation.

Programming languages aim at helping programmers solve semantic

issues in the problem domain through elegant syntactical means while

reducing unnecessary interactions with the underlying technical system.

These styles also have a functional component, as we have seen how lan-

guages differ in the ways in which they enable the programmer’s access

to and manipulation of computational actions. Beyond a language de-

signer’s perspective, there also exists a social influence on how a source

code should be written according to its linguistic community.

5.1.3 Styles and idioms in programming

Concrete use of programming languages operate on a different level of

formality: if programming paradigms are top-down strategies specified

by the language designers, they are also complemented by the bottom-

up tactics of softare developers. Such practices crystallize, for instance,

in idiomatic writing. Idiomaticity refers, in traditional linguistics, to the

353

realized way in which a given language is used, in contrast with its pos-

sible, syntactically-correct and semantically-equivalent, alternatives. For

instance, it is idiomatic to say ”The hungry dog” in English, but not ”The

hungered dog” (a correct sentence, whose equivalent is idiomatic in French

and German)26. It therefore refers to the way in which a language is a

social, experiential construct, relying on intersubjective communication

(Voloshinov & Bachtin, 1986). Idiomaticity is therefore not a purely theo-

retical feature, but first and foremost a social one. This social component

in programming languages is therefore related to how one writes a lan-

guage ”properly”. In this sense, programming language communities are

akin to hobbyists clubs, with their names27meetups, mascots, conferences

and inside-jokes. Writing in a particular language can be due to external

requirements, but also to personal preference:

I think a programming language should have a philosophy of

helping our thinking, and so Ruby’s focus is on productivity and

the joy of programming. Other programming languages, for ex-

ample, focus instead on simplicity, performance, or something

like that. Each programming language has a different philoso-

phy and design. If you feel comfortable with Ruby’s philosophy,

that means Ruby is your language. (Matsumoto, 2019)

So an idiom in a programming language depends on the social inter-

pretation of the formal programming paradigms28. Such an interpreta-

tion is alsomanifested in community-created and community-owned doc-

uments.

26In linguistics, we encounter the term ”felicitous” to denote utterances that are both

gramatically correct and socially accepted; an infelicitous utterance is something a fluent

speaker of the language would not say, even if it is grammatically correct.
27Pythonistas for Python, Rubyists for Ruby, Rustaceans for Rust, Gophers for Go, etc.
28This is even more present in contemporary programming languages, since paradigms

in these languages are often blended and no language is purely single-paradigmatic; for in-

stance, Ruby is a declarative language with functional properties (Kidd, 2005)

354

PEP 20, is one of such documents. Informally titled The Zen of Python, it

shows how the philosophy of a programming language relates to the prac-

tice of programming in it29 (Peters, 1999). Without particular explicit direc-

tives, it nonetheless highlights attitudes that one should keep in mind and

exhibit when writing Python code. Such a document sets the mood and

the priorities of the Python community at large (being included in its offi-

cial guidelines in 2004), and highlights a very perspective on the priorities

of theoretical language design. For instance, the first Zen is clearly states

the priorities of idiomatic Python:

Beautiful is better than ugly. (Peters, 2004)

This epigram sets the focus on a specific feature of the code, rather than

on a specific implementation. With such a broad statements, it also con-

tributes to strengthening the community bonds by creating shared values

as folk knowledge. In practice, writing idiomatic code requires not only

the awareness of the community standards around such an idiomaticity,

but also knowledge of the language construct themselves which differ-

entiate it from different programming languages. In the case of PEP20

quoted about, one can even include it inside the program text with import

this, showing the tight coupling between abstract statements and con-

crete code. For instance, in Listing 70, distinct syntactical operators are

semantically equivalent but only the second example is considered id-

iomatic Python, partly because it is specific to Python, and because it is

more performing than the first example, due to the desire of the develop-

ers of Python to encourage idiomaticity; that is, what they consider good

Python to be.

Beautiful code, then seems to be a function of knowledge, not just of

what the intent of the programmer is, but knowledge of the language itself

as a social endeavour. We can see in Listing 71 a more complex example of

29For equivalent guides in other languages see for instance (Spencer, 1994) or (Cheney,

2019)

355

idiomatic
for i in range(5):
print(i)

generic
for i in [0, 1, 2, 3, 4, 5]:

print(i)

Listing 70: range.py - These two range operators are semantically equiva-

lent in Python, but the first is more idiomatic than the second.

@lru_cache(3)
def fib(n):

return n if n < 2 else fib(n - 1) + fib(n - 2)

Listing 71: fibonacci.py - The decorator @lru is the idiotmatic way to calcu-

late the sum of the Fibonacci sequence. (Schmitz, 2015)

beautiful, because idiomatic, Python code.

This function calculates the Fibonacci sequence (a classic exercise in

computer programming), but makes an idiomatic (and clever) use of dec-

orators in Python. The @lru_cache(3) line caches the last 3 results in the

least-recently used order, closely mirroring the fact that the Fibonacci se-

quence only ever needs to compute the terms n, n-1 and n-2, reducing com-

putational complexity, but at the expense of added complexity for non

Pythonistas. Through this, the programmeruses a key, advanced feature of

the language in order to make the final programmore terse, more precise,

andmirroringmore faithfully the problem than other implementations, to

the detriment of a decrease in readability for non-Pythonistas.

Idiomaticity reflects what the social and aesthetic intent of the lan-

guage designers and implementers. Notation matters, and designers want

to encourage good practices through good notations, assuming that pro-

grammers would gravitate towards what is both themost efficient and the

best-looking solution.

356

if Being.alive
puts ”and well”

if Being.alive?
puts ”and well”

Listing 72: alive.rb - Ruby features a lot of syntactic sugar. For instance, one

can add the ? at the end of a method call in order to signify more clearly

the boolean nature of the return value. Other languages tend to disallow

the use of special characters in method names.

And it’s not hard to ”prove” it: If two people write code to solve

the same problem and one makes a terrible spaghetti monster

in COBOL while the other goes for super-elegant and highly ab-

stracted solution inHaskell, does it reallymatter to the computer?

As long as the two are compiled to the same machine code, the

machine does not care. All the clever constructs used, all the el-

egance, they are there only to guide our intuition about the code.

(Sustrik, 2021)

Another way to encourage writing good code is through the addition

of syntactic sugar. Syntactic sugar describes the aesthetic features of the

language who are variants of a similar computational feature, and where

the only difference between them is their appearance—i.e. visual, seman-

tic shortcuts. The looping examples above are good instances of syntactic

sugar, albeit with performance differences. The Ruby language is riddled

with syntactic sugar, and highlights how syntactic sugar can ”sweeten” the

reading process, aiming for more clarity, conciseness, and proximity to

natural languages. In Ruby, to access a boolean value on an attribute of

an object, one would write it as in any other language. The added syntac-

tic sugar in Ruby comes in the form of the question mark in control flow

statements, as shown in Listing 72, or exclamation mark in method calls,

to highlight the destructive nature of the method.

357

In C, syntactic sugar includes my_array[i] to access the ith element of

the array my_array, rather than themore cryptic *(my_array + i). In Python,

opening a file could bewritten as f = open(”notes.md”), but it also proposes

the syntactic sugar of with open(”notes.md”)as f:, which consists in a block

which both opens the file, and implicitly closes it at the end of the block.

There are absolutely no functional differences in the statements above,

and the question mark is just here to make the code seem more natural

and intuitive to humans. Checking for a boolean (or non-nil value) in an

if statement is, in the end, the equivalent of asking a question about that

value. Here, Ruby makes that explicit, therefore making it easier to read

with the most minimal amount of additional visual noise (i.e. one charac-

ter).

We have seen how programming languages can be subjected to aes-

thetic judgment, but those aesthetic criteria are only there to ultimately

support the writing of good (i.e. functional and beautiful) code. Such a

support exists via design choices (abstraction, orthogonality, simplicity),

but also through the practical uses of programming languages, notably

in terms of idiomaticity and of syntactic sugar, allowing some languages

more readability than others. Like all tools, it is their (knowledgeable) use

which matters, rather than their design, and it is the problems that they

are used to deal with, and the way in which they are dealt with which ulti-

mately informswhether or not a program text in that languagewill exhibit

aesthetic features.

This concept of appropriateness also relates to material honesty. As

seen in subsection 4.3.3, the fact that a programmer tends to identify their

practice with craft implies that they work with tools and materials. Pro-

gramming languages being their tools, and computation the material, one

can extend to the concept of material honesty to the source code (Sennett,

2009). In this case, working with, and in respect of, the material and tools

at hand is a display of excellence in the community of practitioners, and

results in anartefactwhich is inharmonyand iswell-adapted to the techni-

358

cal environment which allowed it to be. Source codewritten in accordance

with the principles and the affordances of its programming language is

therefore more prone to receive a positive aesthetic judgment. Further-

more, idiomatic writing is accompanied by a language-independent, but

group-dependent feature: that of programming style.

Fundamentally, the problem of style might be that ”the practical ex-

istence of humanity is absorbed in the struggle between individuality and

generality” (Simmel, 1991). Simmel’s investigation of the topic originally

focuses on the dichotomy between works of fine art and mass-produced

works of applied arts. Indeed, Simmel draws a distinction between the for-

mer, as indiosyncratic objects displaying the subjectivity of its maker, and

the latter, as industrially produced and replicated, in which the copy can-

not be told apart from the original. The work of fine art, according to him,

is a world unto itself, is its own end, symbolizing by its very frame that it

refuses any participation in the movements of a practical life beyond itself,

while the work of applied arts only exists beyond this individuality, first

and foremost as a practical object.

As these two kinds of work exist at the opposite extremes of a single

continuum, we can insert a third approach: that of the crafted object. It ex-

ists in-between, as a repeated display of its maker’s subjectivity, destined

for active use rather than passive contemplation (Sennett, 2009). So while

style can be seen as a general principle which either mixes with, replaces

or displaces individuality, style in programming doesn’t stand neatly at ei-

ther extreme. The work of Gilles-Gaston Granger, and his focus on style

as a structuring practice can help to better apprehend style as a relation-

ship between individual taste and structural organization (Granger, 1988).

Granger posits style in scientific endeavours, which is a component of pro-

gramming practice, as a mode of knowing at the scale of the group. Abid-

ing by a particular style, the writer and reader can implicitly agree on the

fundamental values underpinning a given text, and thus facilitate expec-

tations in further readings of a given program text.

359

Concretely, programming style exist as dynamic documents,with both

social and technical components. On the social side, they are only useful if

inconditionally adoptedbyallmembersworkingonaparticular code-base,

since ”all code in any code-base should look like a single person typed it,

no matter howmany people contributed.” (Waldron, 2020); personal style is

usually frowned upon by software developers as an indicator of individual

preferences over group coordination30.

In the strict sense, guidelines are therefore reference documents which

should provide an answer to the question of what is the preferred way of

writing a particular statement (e.g. var vs. let, or camelCase vs. snake_-

case). Beyond aesthetic preferences aimed at optimizing the clarity of a

given source code, style guides also include a technical component which

aims at reducing programming errors by catching erroneous patterns in a

given codebase (e.g. variable declaration before intialization, loose refer-

ence to the function-calling context).

Programming style also exhibits the particular property that it is not

just enforced by convention, but also by computational procedure: linters

and formatters are particular software whose main function is to formally

rearrange the appearance of lines of code according to some preset rules.

This constitutes an additional socio-technical context which further en-

meshes humanwriting andmachinewriting (Depaz, 2022). Essentially, this

means that source code will be judged not just on how it functions tech-

nically, but also how it exists stylistically—that is, within a social contract

which can be implemented through technical, automated means.

In conclusion, programming languages, as a symbol systems subject to

aesthetic judgment, are an important factor in allowing for aesthetic prop-

30Angus Croll wrote a satirical book,What if HemingwayWrote JavaScript, about personal

style in programming, in which he copies the style of fiction authors into different program-

ming languages (Croll, 2014). This shows that, while personal style and expression is very

much possible in programming languages, it is also somewhat ludicrous

360

erties to emerge during the process of writing program texts. They present

affordances for the abstraction and combination of otherwise-complex

programming concepts, for the development of familiarity through their

idiomatic uses and for ease of readability—to the point that it might be-

come transparent to experienced readers. Yet, one must keep in mind that

there is a difference between considering a programming language good or

beautiful in itself, considering the quality of the programs written related

to the programming language they arewritten in, inmore general aesthetic

features. In the next section, we look at some of those aesthetic features

which can be transposed across languages.

5.2 Cognitive aesthetics in program texts

In this section, we show how the aesthetics of source code can be under-

stood through the dual lenses of spatial navigation and semantic compres-

sion. We start by highlighting how previous scholars have engaged with

the semantic ambiguities that source code presents, including linguistic,

poetic and functional perspectives.

We complement this approach by suggesting that semantic compres-

sion is tied to the spatial navigation of a program text—i.e. its non-linear

active reading patterns. To do so, we will see how we can consider source

code aesthetics along a logic of levels; working from structure across syn-

tax and towards vocabulary, these different levels have different conno-

tation in terms of levels of abstraction. Positively valued aesthetic man-

ifestations at each of these levels facilitate reasoning about more or less

abstract parts31 of the program text. Aesthetic manifestations of source

code provide different levels of granularity when it comes to describing

the what, how and why of a program.

31The most abstract level of a program text is considered to be its data modelling of the

problem domain, while the least abstract is considered to be the hardware operations.

361

Furthermore, we show how this is complemented by semantic com-

pression, understood as the ability to reference concepts from multiple

domains (hardware, software, problem) in order to both minimize the

amount of cognitive effort necessary to grasp all implications denoted by

a given token. As different practices of different programmers might pri-

oritize different aspects to source code aesthetics, we provide an overview

of how values such as abstraction, transparency, openness, function and

emotion are best seen in certain kinds of program texts, but are not exclu-

sive to them.

5.2.1 Between humans andmachines

The ambivalence of source code has also been explored in the literature

throughdifferent names. Aswewill see, all of these argue for the intertwin-

ing of human interpretation and machine execution. This ambivalence is

first taken up by Mateas and Montfort in their study of weird program-

ming languages (Mateas &Montfort, 2005); in it, they highlight an aesthet-

ics of code that goes beyond the mainstream ”literate programming” (see

section 2.3.1). Rather than making clear and elegant, they inquire about

the aesthetic effects of obfuscation in esoteric languages, one which de-

parts from a requirement of source code to be understandable to both hu-

mans and computers, and ultimately argue that esoteric languages do so

by playing withmore traditional understanding of double-coding as ”open

to multiple interpretations”32.

Also focusing on the more fringe and creative uses of code, Camille

Paloque-Bergès presents the related concept of double-meaning in her

work on networked texts and code poetics (Paloque-Bergès, 2009). She de-

32”Obfuscation and weird languages invite us to join programming contexts to the literary

contexts that must obviously be considered when evaluating literary code. They also suggest

that coding can resist clarity andelegance to strive instead for complexity, canmake the familiar

unfamiliar, and can wrestle with the language in which it is written, just as much contemporary

literature does.” (Mateas & Montfort, 2005).

362

fines it as the affordance provided by the English-like syntax of keywords

reserved for programming to act as natural-language signifiers. As we’ve

seen in Black Perl (Listing 22), the Perl functions can indeed be interpreted

as regularwordswhen the source is read as a human text. As she continues

her analysis of codeworks, a body of literature centered around a créole lan-

guage halfway between humanspeak and computerspeak33, it can be ex-

tended into the aesthetically productive overlap of syntactic realms, how-

ever leaving aside any functional or productive aspect of source code.

Such a layered approach echoes the stratas that N. KatherineHayles en-

visionswhen discussing themedium-specificity of electronic hypertexts34.

While the object of her study is the electronic hypertext, meaning a text

written and accessed via a computer but not necessarily exclusively writ-

ten in source code, she scores several points which corroborate our work.

First, these texts operate in three dimensions (and thus navigable), are

hybrids of programming and natural languages, and rely on distributed

cognition for their reading and writing. This ”cyborg reading practice” in-

volves digital apparatuses such as the IDE (see 3.3.2) in order to fully ac-

cess the aforementioned points of spatiality and hybridity. As such, these

cyborg apparatuses act as a (software) interface to what is a (linguistic)

interface—source code.

Previous research by Philippe Bootz has also highlighted the concept of

the double-text in the context of computer poetry, a text which exists both

in its prototypal, virtual, imagined form, under its source manifestation,

and which exists as an executed, instantiated, realized one (Bootz, 2005).

However, he asserts that, in its virtual form, ”a work has no reality”, specif-

ically because it is not realized. Here, we encounter the dependence of the

33See in particular the work of Alan Sondheim and mezangelle
34”It is crucially important, however, to recognize that the computer can simulate so suc-

cessfully only because it differs profoundly from print in its physical properties and dynamic

processes. These differences matter in multiple ways and on many different levels, from the

macroscale to the microscale—and they matter more all the time as writers of electronic litera-

ture and texts become more adept at exploiting the medium’s specificity” (Hayles, 2004)

363

source on its realized output, indeed a defining feature of the generative

aesthetics of computer poetry. A work of code poetry can very much exist

as a prototypal form, with its output providing only additional meaning,

further qualifying the themes laid out in source beforehand. From this

perspective, the output of a code poem would have a drastically dimin-

ished semantic richness if the source is only read, or only executed. For

this double-meaning to take place, we can say that the sitation is inverted:

the output becomes the virtual, imagined text, while the source is the con-

crete instantiation of the poem.

The role of execution is even more embedded in Geoff Cox and Alex

McLean’s take of double-coding (Cox & McLean, 2013). According to them,

double-coding ”exemplifies the material aspects of code both on a func-

tional and an expressive level” (p.9). Cox and McLean’s work, in a thor-

ough exploration of source code as an expressive medium, focus on the

political features of speaking through code, as a subversive praxis. They

work on the broad social implications of written and spoken code, rather

than exclusively on the specific features of what makes source code ex-

pressive in the first place, with a particular attention to the practice of live

coding. Double-coding nonetheless helps us identify the unique structural

features of programming languages which support this expressivity, such

as reserved keywords, data types and control flow. As we show below, no-

tably through the use of data types such as symbols and arrays in source

code poetry, programming languages and their syntax hold within them a

specific kind of semantics which enable, for those who are familiar with

them and understand them, expressive power, once the computer seman-

tics are understood both in their literal sense, and in their metaphorical

sense. The succint and relevant use of these linguistic features can thicken

themeaning of a program text and, in the case of code poetry, bringing into

the realm of the thinkable ways to approach metaphysical topics.

Finally, the tight coupling of the source code and the executed result

brings up Ian Bogost’s concept of procedural rhetoric (Bogost, 2008). Bo-

364

gost presents procedures as a novel means of persuasion, along verbal and

visual rhetorics. Workingwithin the realm of videogames, he outlines that

the design and execution of processes afford particular stances which, in

turn, influence a specific worldview, and therefore argue for the validity of

such worldview. Further work has shown that source code examination

can already represent these procedures, and hence construct a potential

dynamicworld from the source (Brock, 2019; Tirrell, 2012). If procedures are

expressive, if they canmap to particular versions of aworldwhich the play-

er/reader experiences, then it can be said that their textual description can

also already persuasive, and elicit both rational and emotional reactions

due to their depiction of higher-order concepts (e.g. consumption, urban-

ism, identity, morality). As its prototypal version, source code acts as the

pre-requisite for such a rhetoric, and part of its expressive power lies in the

procedures it deploys (whether fromvalue assignment, execution jumps or

from its overall paradigms). Manifested at the surface level through code,

these procedures however run deeper into the conceptual structure of the

program text, and such conceptual structures can nonetheless be echoed

in the lived experiences of the reader.

The ambivalence between human meaning and machine meaning is

thus at the core of source code aesthetics. We develop on this work

in our analysis below by showing some of the configurations of source

code which can elicit a aesthetic experience during reading and writ-

ing. Through the investigation of levels of abstraction, spatial navigation,

metaphorical expression and functional correspondence, we offer con-

crete examples of the different ways semantic layerings can bemanifested

in program texts.

5.2.2 Matters of scale

The discourses of programmers in our corpus do not contain uni-

dimensional criteria, but rather criteria which can be applied at multiple

365

levels of reading. Some tend to relate more to the over-arching design of

the code examined while others focus on the specific formal features ex-

hibited by a a given tokenor successions of tokens in a source code snippet.

To address this variability of focus, we borrow from John Cayley’s distinc-

tion between structures, syntaxes and vocabularies (Cayley, 2012). Cayley’s

framework will allow us to take into account an essential aspect of source

code: that of scales at which aesthetic judgment operates. Beyond liter-

ary studies, this framework is also used by Dijkstra when he introduces

his approach to structured programming, from the high-level of the pro-

gram taken as a whole down to the details of line-by-line syntactic choices

(E. W. Dijkstra, 2007). From the psychological accounts of understand-

ing source code in subsection 3.2.3 to the uses of space in domain-specific

aesthetics in subsection 4.2.3 or subsection 2.3.3, one of the specificities of

source is the multiple dimensions of its deep structure hidden behind the

two-dimensional layout of a text file, and the need for programmers to nav-

igate such space.

Structure is defined by the relative location of a particular statement

within the broader context of the program text, as well as the groupings

of particular statements in relation to each other and in relation to the

other groups of statements within the program-text, whether it is across

the same file, series of files, or a sprawling network of folders and files.

This also includes questions of formatting, indenting and linting as purely

pattern-based formal arrangements, as seen in subsection 3.3.2, since these

affect the whole of the program-text.

Syntax concerns the local arrangement of tokens within a statement

or a block statement, including control flow, iterators statements, func-

tion declarations, etc., which can be referred to as the ”building blocks” of

a program-text. Syntax also includes language-specific choices—idioms—

and generally the type of statements needed to best represent the task re-

quired (e.g. using an array or a struct as a particular data structure for rep-

resenting entities from the problem domain).

366

Finally, the vocabulary refers to the user-defined elements of the source

code, in the form of variable, function, classe and interface names. Source

code vocabulary is constituted of both reserved keywords (which the com-

puter ”understands” by being explicitly mentioned by the language de-

signers) and user-defined keywords, the single words which the writes de-

fines themselves and which are not known to a reader who would already

know the language’s keywords. Unlike the two precedent categories, this

is therefore the only one where the writer can come up with new tokens,

and is the closest to metaphors in traditional literature.

Structure

At the highest-level, the structure of a program-text can be examined at

the surface-level and at the deep-level. The criteria for beauty in surface-

structure is layout, as the spatial organization of statements, through the

use of line breaks and indentations. While serving additional ends towards

understanding, proper layout (whether according to stylistic conventions,

or deliberately positioning themselves against these conventions) seems

to be the first requirement for beautiful code. In terms of aiding under-

standing, blank space creates semantic groupings which enable the reader

to grasp, at a glance, what are the decisive moments (Sennett, 2009) in the

code’s execution, and presented by some as akin to paragraphs in littera-

ture (Matsumoto, 2007). Such groupings also fit Détienne’s identification

of beacons (Detienne, 2001) as visual markers that indicate important ac-

tions in the program text, whether these actions can be described in a sin-

gle line, in a block or, more rarely, in a series of blocks. Any cursory reading

of source code always first and foremost judges layout.

This aid to understanding is further highlighted by a deep-structure cri-

teria of conceptual distancing; statements that have to do with each other

are either located close to each other or, in the case of more complex pro-

gram texts, are separated in coherent units (such as in folders) and con-

367

nected by single syntactic expressions, such as import or use statements.

Such statements establish an intratextual dimension insofar as it acts as

an alias for a larger piece of code, making the most of practices of abstrac-

tion and of non-linear readings. As such, visual appearance at the level

of the file can reflect the conceptual structure of the code. At the level of

the folder(s), that is, at the level of a collection of files located at different

levels of nestedness, one can also highlight stylistic agreement or disagree-

ments. In conventional architectures such as the Model-View-Controller,

or the use of lib, bin or data folders also act as aesthetic makers establish-

ing themental space of the programmer ahead of the reading of the actual

source code35.

Another instance of intratextual interfacing is the limitation of function

arguments, according to which arguments given to a function should be

either few, or grouped under another name. Going back to the structural

criterion above of limiting input/output and keeping groups of statements

conceptually independent, function arguments solve this requirement at

the level of vocabulary, demonstrating in passing the relative porosity of

those categories. Indeed, the naming of variables also reveals the pick of

adequate data-structures, echoing those who claim that the data on which

the code operates can never be ignored, and that beautiful code is code

which takes into account that data and communicates it, and its muta-

tions, in the clearest, most intelligible, possible way. Such an echo relates

to our discussion on the issues of problem-domain modelling, analyzed in

section 3.2.2; ultimately, the structure, syntax and vocabulary of a program

text has a necessary involvement with the problem domain.

Within thefile, structural aesthetic criteria are vague enough to be open

to interpretation by practitioners and is therefore unable to act as a strict

normative criteria, but are nonetheless a solid heuristicof the quality of the

software. For instance, a program text should follow the stepdown rule of

35An extreme example of this can be seen in the structure of Ruby on Rails applications,

famous for its reliance of convention of folder and file naming.

368

function declaration rather than the alphabetical rule when writing in a

languagewhich doesn’t enforce it. As for variable declarations, global vari-

ables should all be declared at the beginning of the highest scope to which

they belong (e.g. at the beginning of the file), rather than at the closest

location of their next use. Program-texts therefore tend to be more aes-

thetically pleasing when semantic groupings are respected by the human

writer (such as global variable declaration) and syntactic groupings are re-

spected by the machine writer (through linting and formatting).

This uncovers the related criteria of local coherence: what is next to

each other should related to each other. Local coherence reveals what

Goodman calls semantic density, in which tokens grouped together obtain

a greater denotative power, while remaining open to further modification

by insertingmodifications within this grouping. Local coherence operates

in balance with the undesirable but unavoidable entanglement of code, as

proponents of local coherence in source code imply that a beautiful piece

of code should not have to rely on input and output (i.e. not be entangled)

and therefore be entirely autotelic. Such an assumption runs contrary to

the reality of software development as a practice, and as an object embed-

ded in the world, and thus not ”usable” by software developers. This bal-

ancing issue can be resolved by writing a source code whose code blocks

are structured in such a way that they are related to, but not dependent on,

each other36.

As we travel down from structure to syntax, we can point to a corre-

late to conceptual distancing in the form of conceptual symmetry, accord-

ing to which that groups of statement which do the same thing should

look the same. It then becomes possible to catch a glimpse of patterns,

in which readers get a grasp of what such pattern does. Conceptual dis-

tancing canbe further improvedby conceptual uniqueness, whichdemands

36This aesthetic standard canbe tracedback towhat is called theUNIXphilosphy: a related

set of tools which only do one thing, do it well, and can be combined into more complex

structures.

369

that all the statements that are grouped together only refer to one single

action: complex enough to be useful, and simple enough to be graspable.

Aesthetically-pleasing code is thus the code that ”does the job” while us-

ing the least amount of different ideas, which implies a linear relationship

between the number of lines of code and the amount of conceptual infor-

mation to be understood37, and a relation to elegance.

Finally, it shouldbenoted that this aesthetic criteria of structure ismost

relevant for a particular class of program texts, texts written by software

engineers. In the case of hackers, poets or scientists38, their program texts

are limited in numbers of lines when compared to code bases of, for in-

stance, large open-source projects. And yet, as we will see below, in their

case, aesthetic code is still code which manages to pack the maximum

number of ideas in aminimal amount of lines of code, both in obfuscation

practices, one-liners, poetic depictions and in demonstrations of algorith-

mic ideas.

Syntax

Syntax, as the mid-level group of criteria, deals most explicitly with two

important components of the implementation: the algorithm and the pro-

gramming language. Beautiful syntax seems to denote a conceptual un-

derstanding of the computational entities and of the tools at hand to solve

a particular problem, and implies an expertise (i.e. both a knowing-what

and a knowing-how).

Here, we consider both algorithms and languages as tools since they

are part of the implementation implementation process: a process which

turns an idea into form and ensures that this form is functional, and can

thus subsequently be examined for aesthetic purposes. While algorithms

37In software engineering, this is referred to as the DRY principle—Do not Repeat Your-

self(Martin, 2008)
38In the case where scientists write toy or educational programs, without relying on soft-

ware engineering practices, as seen in subsection 2.1.3.

370

exist independently from languages, their aesthetic value in the context

of this research cannot be separated from the way they are written, itself

affected by the language they are written in. Indeed, most algorithms are

expressed first as pseudo-code and then implemented in the language that

is most suited to a variety of factors (e.g. speed, familiarity of the author,

suitability of the syntax, nature of the intended audience); this seems to

be a contemporary version of the 1950s, when computer scientists would

devise those algorithms through pencil and paper, and then leave their im-

plementation at the hands of entirely different individuals—women com-

puters (Chun, 2005).

Beautiful syntax in code responds to this limitation. It aims at resolving

the tension between clarity and complexity, with the intent to minimize

the number of lines of code, while maximizing both the conceptual im-

plications and the specific affordances for modification. Since algorithms

must be implemented in a certain context, with a certain language, it is the

task of the writer to best do so with respect to the language that they are

currently working in. In this case, knowledge of the language from both

writers and readers makes idiomatic syntax a beautiful syntax (see sub-

section 5.1.3 above). This involves knowing the possibilities that a given

language offers and, in the spirit of the craftsmanship ethos noted pre-

viously, working with the language rather than against it. These sets of

aesthetic criteria thus become dependent on the syntactical context of the

language, itself dependent on its suitability for the problem at hand, and

can only be established with regards to each languages. Specifically, this

involves knowing which keywords should traditionally not be used, such

as unless in perl, or * in C, knowing when to use decorators in python, or

the spread ... operator in ECMAScript, etc. A common featured shared

by these keywords is their tendency to cause more cognitive friction than

ease of comprehension.

Here, syntax also engages with the ideal of conciseness: a writer can

only be concise if they know how the language enables them to be concise.

371

Knowing the algorithms implemented and the problem domain addressed

also influence the overall experience of the program text, as the goal is

to optimize these three components. The extent to which a syntax is id-

iomatic and the extent to which the problem domain is accurately repre-

sented39, are therefore good indicators of the aesthetic value of a program-

text. Conversely, quality syntax is also syntax which refrains from being

too idiomatic for the purposes at hand, in software engineering; this is

referred to as ”clever code” and is generally frowned upon. In the case

of hacking code or poetry, cognitive friction is, on the opposite, seen as

a positive aesthetic experience. By doing the most with the least, com-

plex hacker code and code poetry enable understandings of polar oppo-

sites: hacker syntax displays insight into the highly technical hardware or

machine-linguistic environment, while poet syntax offers access to broad

human concepts (e.g. of the self, of religion, or history) through a minimal

number of lines of code.

A programmer who finds that she can best communicate her ideas ac-

cording to Java will find Java beautiful. A developer who finds that she

can best communicate her ideas while writing in Go will find Go beautiful,

and so on40. Ultimately, a syntactical criteria which acts as a response to

these discusssions is consistency. While there might be specific, personal,

preferences as to why one would want to be writing code one way or an-

other (e.g. calling functions on objects rather than calling functions from

objects in order to prevent output arguments), this minor increase in aes-

thetic value through subjective satisfaction—through display of individ-

ual skill and personal knowledge—does not compensate for the possible

increase in cognitive noise in a collaborative environment. If those dif-

ferent ways of writing are used alternatively in an arbitrary manner, this
39An accurate representation of the problem domain is a representation which enables a

direct cognitive mapping between machine-syntactic tokens and human mental models of

the entities of the problem domain being processed
40This state of affairs seems to be part of the reason as to why online platforms are full of

endless discussions around the question of which language is better.

372

requires unnecessary mental gymnastics from the reader. In this context,

consistency prevails over efficacy, and confirms at the fact that aesthetics

in source code in this context is a game of tradeoffs. Again, hacker and

poet aesthetics stand at the opposite: the highly localized and personal

function of the program text implies a tolerance for idiosyncracy, since

personal knowledge and preference are part of the aesthetic value of the

program text.

Beyond the state of syntactic consistency and idiomatic writing, an-

other aesthetic criteria is linguistic reference, meaning bringing practices

from one language into another. Being able to implicitly reference another

language in a program-text41, a code-switching of sorts, can both commu-

nicate a deep understanding of not just a language, but an ecosystem of

languages while satisfying the purpose of maintaining clarity, at the ex-

pense of, again, assuming a certain skill level in the reader. This commu-

nicates a feeling of higher-understanding, akin to perceiving all program-

ming languages as ultimately just ”tools for the job” and whose purpose

is always to get a concept across minds as fully and clearly as possible.

However, a misguided intention of switching between two languages, or

a mis-handled implementation can push a program-text further down the

gradient of ugliness. The concept communicated would in such a case be

obscured by the conflicting idioms, reveal of lack of mastery of the unique

aspects of theworking language(s), and therefore fail to fulfill the aesthetic

criterion of being true to ones materal.

Moving down to the level of vocabulary, a final syntactic criterion with

high aesthetic value is the preference of natural language reading flow. For

instance, of the two alternatives in Ruby: if people.include? person vs. if

person.in? people, the second one is to be considered more beautiful than

the first one, since it adapts to the reader’s habit of reading human lan-

41e.g. ”this is howwe do it now that we have C++, but the current code is written in C, so one

can bring in ideas and syntax that are native to C++” or ”since Ruby can qualify as a Lisp-like

language, one can write lambda functions in an otherwise object-oriented language”

373

guages. However, the essential succintness and clarity of source code is not

to be sacrificed for the sake of human-like reading qualities, such as when

writers tend to be overly explicit in their writing. Indeed, a definite criteria

for ugliness in program-text is verbosity, or useless addition of statements

without equivalent addition of functionality or clarity. This is, once again,

an example of source code aesthetics being a balance betweenmachine id-

ioms over human idioms—here, the resolution of this balance is the point

at which machine idioms are presented as human-readable.

Vocabulary

Vocabulary, as the only component in this framework which directly in-

volves words that can be chosen by the writers themselves, is often the

most looked at in the literature regarding beautiful code among software

developers, as it is the closest to human aesthetics, and since their under-

standing does not require existing knowledge of programming, but also

the easiest to assess their functional impact (Oliveira et al., 2022). Aesthet-

ics here exist at the level of the name and affects most directly the reader-

ship of a program text.

Of the twobig problemsof programming, themost frequent one is nam-

ing42. One reason as to why that is might be that naming is an inherently

social activity, because a name is an utterance which only makes sense

when done in the expectation of someone else’s comprehension of that

name (Voloshinov & Bachtin, 1986). This is supported by the fact that the

process of creating a variable or function name on one’s own is oftenmore

time-consuming when done alone, as opposed to discussing it with oth-

ers. Naming, furthermore, aims not just at describing, but at capturing the

essence of an object, or of a concept. This is a process that is already fa-

miliar in literary studies, particularly in the role of poetry in naming the

42The full statement, that : ”There are only two hard things in Computer Science: cache in-

validationandnaming things.” is a piece of folk knowledge generally attributed toPhil Karlton

(Fowler, 2009)

374

elusive. Here, we remember how Vilém Flusser sees poetry as the briging-

forth that which is conceivable but not yet speakable through its essence

in order to make it speakable through prose, using the process of nam-

ing through poetry in order to allow for its use and function in prose (see

subsection 2.3.1 for a mention of Flusser’s conception of prose and poetry).

In this light, good, efficient and beautiful names in code are those who can

communicate the essence of the concept that is being operated upon in the

program text, implying both what they are and how they are used, while

omitting extraneous details.

On a purely sensory level, surface-level aesthetic criteria related to

naming are that of character length and pronounceability. Visually, charac-

ter length can indicate the relative importance of a named concept within

the greater structure of the program-text. Variables with longer names are

variables that aremore important, demandmore cognitive attention, offer

greater intelligibility in comparison with shorter variable names, which

only need to be ”stored in memory” of the reader for a smaller amount of

time. This length also signifies at which level of abstraction is the vari-

able operating: longer names denotemore global variables that denote the

program text’s structure, while shorter variable names indicate that we are

currently working at a lower level of abstraction. Variables and functions

with longer names thus exist in a broader scope than their counterparts

with shorter names, re-introducing a component of scale within our exist-

ing framework of scale.

Pronounceability, meanwhile, takes into account the basic human ac-

tion of ”speaking into one’s head”, as an internal dialogue, and there-

fore participates in the requirement for communicability of source code

amongst human readers. For instance, the difference between mnPtCld and

meanPointCloud both refer to the same entity, and the second provides an

easier cognitive access to it at the very minimal expense of a few charac-

ters.

Equally visual, but aesthetically pleasing for both typographical and

375

cognitive reasons, is the casing of names. Dealing with the constraint that

variable names cannot have whitespace characters as part of them, cas-

ing has resulted into the establishment of conventions which pre-exists

the precise understanding of what a word denotes, by first bringing that

word into a category (all-caps denotes a constant, camelCasing denotes a

multi-word variable and first-capitalized words indicate classes or inter-

faces). By using multiple cues (here, typographical, then semantical), cas-

ing helps with understandability and, in this specific instance, there seems

to be quantitative evidence for CamelCasing to facilitate the scanning of a

program text (Binkley, Davis, Lawrie, &Morrell, 2009). Again, casing, by its

existence first as a convention, implies that it exists within a social com-

munity of writers and readers, and acknowledges the mutual belonging of

both writer and reader to such a community, and turns the program-text

from a readerly text further into a writerly one (Barthes, 1984).

Following these visual, auditory and typographical criteria, an

aesthetically-pleasing vocabulary includes a strict naming of functions as

verbs and variables as nouns. Continuing this correspondence between

machine language and human language, there is here a clear mapping be-

tween syntax and semantics: functions do things and variables are things.

If written the other way around, while this would respect the criteria for

consistency, functions as nouns and variables as verbs hint at what it

is not, are counter-intuitive and ultimately confusing—confusion which

brings ugliness.

The noun given to a variable should be a hint towards the concept ad-

dressed, and ideally address what it is, how it is used, andwhy it is present,

things that cannot be deduced from the environment of the program text43.

Each of these three aims aren not necessarily easily achieved at the same

time, but finding one word which, through multiple means, points to the

same end, is an aesthetic goal of source code writers and another testi-

43For instance, in statically typed languages, one does not include the type of the variable

in its name, since it is enforced by the compiler

376

mony of elegant writing. A beautiful name is a name which differentiates

between value (obvious, decontextualized, and therefore unhelpful) and

intention, informing the reader not just about the current use, but also

about future possible use, in code that iswritten or yet to bewritten. This is

particularly salient in the general distaste of the use of magic numbers, as

are called pure values, which do not have a semantic label applied to them.

We see here a paradox between direct conceptual relationship between a

name and what it denotes, and themultiple meanings that it embodies (its

description, its desired immediate behaviour, and its purpose).

Indeed, in the community of software developers, variable names

should then have a direct mapping with the object or concept they de-

note. This is not the case in other communities, whether those that rely

on obfuscation, in which confusion becomes beautiful, or in poetic code,

in which double-meaning brings an additional, different understanding

whichultimately enriches the complexity of the reading, bymoving it away

from strict functionality.

The contextual nature of source code aesthetics proposes a slightly ad-

jacent standard for source code poetry, in which the layering of meanings

is a positive aesthetic trait in the community of code poets. These am-

bivalent semantics allow writers to offer metaphors, and provide an entry

point to the metaphorical tendencies of source code. This aesthetic crite-

ria of double-meaning comes from poetry in human languages, in which

layered meanings are aesthetically pleasing, because they point to the un-

utterable, and as such, perhaps, the sublime(Aquilina, 2015).

Comments

Beforemoving on to another aspect in which the aesthetics of source code

involved with spatialization of meaning mechanically-realized, we touch

on a specific case of machine languages. Comments in code do not seem

to fall clearly in any of the three categories above. By definition ignored by

377

the compiler or interpreter, comments can be erroneous statements which

will persist in an otherwise functional codebase, and are therefore not en-

tirely trusted by experienced, professional software practitioners. In this

configuration, comments seem to exist as a compensation for a lack of

functional aesthetic exchange.

By functional aesthetic exchange we mean an exchange in which a

skilled writer is able to be understood by a skilled reader with regards to

what is being done and how, only through executable source code. If any

of these conditions fail (the writer isn’t skilled enough and relies on com-

ments to explain what is going on and how it is happening, or the reader

isn’t skilled enough to understand it without comments), then comments

are here to remedy to that failure, and therefore are a symptom of non-

beautiful code, specifically because it relies on extraneous devices, that the

computer does without. Nonetheless, they can act as a locus for social ex-

pression, or human creativity—Listing 73 is an example of such a display

of ingenuity and helpful mental scaffolding for understanding the code.

The situation in which comments seem to be tolerated is when they

provide contextual information, therefore (re-)anchoring the code in a

broaderworld. For instance, this is achieved by offering an indication as to

why a given action is being taken at a particularmoment of the code, called

contractual comments, again pointing at the social existence of source

code. This particular use of comments seems to bypass the aesthetic cri-

teria of source code being self-explanatory. However, it also integrates the

criteria of being writable, a piece of code which, by its appearance, invites

the reader to contribute to it, to modify it. As such, in an educational set-

ting (from a classroom to an open-source project), comments are welcome,

but rarely quoted as criteria for beautiful code in other communities.

In conclusion, we have seen that aesthetic standards for source code

can be laid out along a logic of scale, from a macro-level of structure all

the way to a micro-level of vocabulary, through an appropriate use of syn-

tax. Throughout, the aesthetic principles of consistency, elegance and id-

378

if (style == StyleBorderStyle::Dotted) {
// If only this side is dotted, other side draws the corner.
//
// otherBorderWidth + borderWidth / 2.0
// |<------->|
// | |
// +------+--+--------
// |## ##| *|* ###
// |## ##|**|**#####
// |## ##|**+**##+##
// |## ##|* P *#####
// |## ##| *** ###
// |## ##+-----------
// |## ##| ^
// |## ##| |
// |## ##| first dot is not filled
// |## ##|
//
// radius.width
// |<----------------->|
// | |
// | ___---+-------------
// | __-- #|# ###
// | _- ##|## #####
// | / ##+## ##+##
// | / # P # #####
// | | #|# ###
// | | __--+-------------
// || _- ^
// || / |
// | / first dot is filled
// | |
// | |
// | |
// | |
// | |
// +------+
// |## ##|
// |## ##|
// |## ##|
Float minimum = otherBorderWidth + borderWidth / 2.0f;
if (isHorizontal) {
// ...

} else {
// ...

}
return P;

}

Listing 73: nsCSSRenderingBorders.cpp - An example of useful comments

complementing the source code in Mozilla’s layout engine, literally draw-

ing out the graphical task executed by the code.

379

iomaticity are recurring concepts against which a value judgment can be

given. Such aesthetic manifestations enable the traversal of the program

text, from themicro- to themacro-, fromfile tofile, class to class, or layer to

layer. However, this approach of a linear scale also hints at another dimen-

sion: that of the interface betweenhumanconcepts andmachine concepts,

as source code aesthetics enhance the communication of separate seman-

tic layers.

5.2.3 Semantic layers

The specificity of source code is that it acts as a techno-linguistic interface

between two meaning-makers: the human and the machine. While the

machine has a very precise, operational definition of meaning (see sub-

section 5.1.1 above), programmers tend to mobilise different modalities in

order to make sense of the system they are presented with through this

textual interface (see subsection 3.2.3). Among those modalities are the re-

sort to literary techniques (in the form of metaphors), to architecture (in

the form of pattern-based structural organization), to mathematics (in the

formof symbolic elegance) and craft (in the formofmaterial adequacy and

reliabilty).

As a formalmanifestation involving, in the context of a crafted object, a

producer and a receiver, aesthetics contribute to the establishment ofmen-

tal spaces. In domains such as mathematics or literature, mental spaces

can represent theorems or emotions; within source code, however, they ac-

quire amore functional dimension. As such, they also communicate states

and processes.

Building on our discussion of understanding software in section 3.2, we

now highlight concrete instances of complex computational objects inter-

faced through source code. We take three examples to highlight the mul-

tiple manifestations of semantic layers at play in source code, operating in

different socio-technical contexts, yet all sharing the same properties of

380

using structure, syntax and vocabulary in order to communicate implic-

itly a relatively complex idea. We can consider a semantic layer to be an

abstraction over relatively disorganized data in order to render it relatively

organized, by providing specific reference points which contribute to the

establishment of a mental space, based on the computational space of the

program. In the words of Peter Neumann:

A challenge in computer system design is that the representation

of the functionality at any particular layer of abstraction should

exhibit just those characteristics that are essential at that layer,

without the clutter of notational obfuscation and unnecessary

appearance of underlying complexity. (Neumann, 1990)

First, we look at the astract data type called a semaphore, and how it op-

erates as the interface between the computational reality of concurrency,

and the human associations of traffic, and resorting primarily from the

scientific domain. Second, we turn to a fragment of open-source software

which uses abstraction and configuration in order to signify modification,

in the context of collaborative, read-write texts characteristic of software

development. Finally, we discuss a code poem, as an illustration for the

role of programming languages and creative metaphors to support a dif-

ferent kind of functional communication, in Goodman’s sense of working.

Each of these examples have been chosen to reflect the different practices

of programming, and should thus be considered in a complementaryman-

ner, rather than independently. While each was chosen for how well it il-

lustrates their respective, concept, abstraction, transparency and execu-

tion are all parameters that come into play for each practices of program-

ming,.

Programming can be seen as an act of encryption anddecryption across

layers, in which human meaning is encrypted in machine language for

computational execution, with the possibility for such meaning of being

decrypted later on for study and modification (Ledgard, 2011). We argue

381

that this encryption process involves different aesthetic modalities which

act as a heuristic for writing functionally good code and provide keys for

decrypting the intent and processes represented in source code, moving

across human and machine layers. Each in their own way, these modal-

ities represent different semantic layers which bridge machine-meaning

and human-meaning.

Abstraction andmetaphors

An early and recurring problem in computer science is that of concurrency.

Concurrency, or the overlapping execution of multiple interacting compu-

tational tasks, emerged along with the development of time-sharing and

multi-core hardware. From the 1964 development of MULTICS, a time-

sharing operating system thatmultiple users could use at the same time, to

the popularization ofmulti-processor architecture in the early 1980s, com-

puters moved from executing one task for one user at a time, to multiple

tasks for multiple users. The issue that arises then is that of shared mem-

ory: how can one design a progam in which two parallel operations can

access andmodify a shared resource, while at the same time guaranteeing

the integrity of the data?

While this problem arose from hardware development, whether syn-

chronization is of a universal nature—that is, whether there exists a so-

lution which can be applied to all practical synchronization problems—

has been an ongoing research investigation (Leppäjärvi, 2008). This ten-

sion between hardware innovation and fundamental computing problems

illustrates the multiplicity of layers at play, from matter to ideal, in pro-

gramming practice.

Specifically for concurrency, it turns out to be quite difficult for hu-

man programmer to model the different actions taking place in parallel,

with overlapping consequences on common data. Just like programming

382

languages can nudge their users into safety44, there are technical systems

which canbe designed in order to help humans both think through and im-

plement mechanically this thinking. One such system is Edsger Dijkstra’s

semaphores.

Writing in 1965, Dijkstra describes a data type which prevents such is-

sues of simultaneous access to critical data by two threads of a same pro-

cess. Such data type possesses two behaviours: post and wait. When a

thread is about to access a critical part of data, it calls wait, and when it

is done, it calls post. If another thread also calls wait before accessing the

critical part, wait checks its internal value to see if another thread is cur-

rently processing that data. If it is, then it puts the requesting thread to

sleep, and waits until post is called to wake it up (E. W. Dijkstra, 1965). A

textbook implementation of such data structure is described in Listing 74.

For instance, say two separates users (P and J) want watch an online

video at the same time, and the website wants to keep track of the number

of views. If viewCount is the variable of the number of views, and is equal

to 2046 before the visit. Parallel execution means that, if P and J view the

video at the same time, they might both separately increase the viewCount

from 2046 to 2047, rather than one waiting for the other to complete the

increase, and end up with a viewCount value of 2048. In this case, a con-

struct such as a semaphore would be used by the first user, P, calling wait

on the semaphore which is attached to the database, before updating the

viewCount in the database. When the second user, J, wants to increase the

view count as well, they see that the semaphore is raised, and they cannot

access the database immediately. Once P is donewith the database update,

they call post. At this point, J is allowed to operate on the database, with a

guarantee of data integrity.

Such a piece of code is interesting for its use of multifaceted engage-

ment with metaphors, its existence between abstract and concrete and its

involvement with functional reliability.
44e.g. with types and compile-time checks.

383

int sem_wait(sem_t *s)
{

// decrement the value of semaphore s by one
// wait if value of semaphore s is negative

}

int sem_post(sem_t *s)
{

// increment the value of semaphore s by one
// if there are one or more threads waiting, wake one

}

Listing 74: semaphore.cpp - A textbook semaphore description in pseudo-

code (R. H. Arpaci-Dusseau & Arpaci-Dusseau, 2018)

A lot of different introductory textbooks, fromDijkstra’s original paper

to the Wikipedia article on semaphores, rely on analogies in the problem

domains to describe the problems implied by a concurrent use of shared

resources. Dijkstra refers to problems such as the sleeping barber or the

banker’s algorithm as use-cases that are both unrealistic butmentally gras-

pable (E. W. Dijkstra, 1965), while the Wikipedia entry refers to the dining

philosophers problem (Wikipedia, 2023a)45. In this case, we see a macro-

level aesthetic device in the form of storytelling, which introduces the

reader to the origins and implications of concurrent use in computing sys-

tems.

Then comes the use of the term semaphore itself. In its mechanical

form, a semaphore is a devicewhich signals information to a running train,

such as whether the tracks ahead are blocked or clear, whether the train

should stop or proceed at reduced speed, or if they should exercise cau-

tion. There are multiple properties from this source domain that are ap-

plied to the target domain of programming. First, the property of a con-

tinuously running train, whose alternate state is that of waiting, before

starting again, and whose state change is dependent on the state change

of the semaphore. In the programming context, a thread also assumes a

45A C++ implementation of such a problem can be seen in (R. Arpaci-Dusseau, 2023)

384

linear continuous execution, and can under certain circumstances be put

to sleep, or woken up, by the process. As we get further away from the con-

cept, and closer to the implementation, the aesthetics of the programming

expression switches domains, and becomes more fine-grained.

Ultimately, the micro-specific details of the implementation stop mak-

ing use of metaphors at all and, in doing so, rely on a different kind of rep-

resentation. The two operations, denoted above wait and post, are actually

left to implementation details. InDijkstra’s original paper, such operations

are denoted P and V, and it is still amatter of debatewhat those letters stand

for, due to the author’s use of his native Dutch language (Wikipedia, 2023a).

Since these appear as arbitrarymarks, we argue that their aesthetic proper-

ties in communicating the abstract data type of semaphore changes; they

take on the appearance of a single letter: one which is very concrete to the

machine, and very abstract to the human.

Openness and transparency

This next example, taken from Adafruit’s pi_video_looper, exhibits inter-

esting features in terms of openness and transparency, hinting at the

reader’s implied ability to write.

The program text, published by the Adafruit company, is written in

Python and is the source code for a video application running on the Rasp-

berry Pi hardware platform. Both the company and the hardware platform

it manufactures are strongly rooted in the ethos of open-source, meaning

that it is not just meant to be used, but also to be modified by its users. In

this context, the pi_video_looper project is made available on the GitHub

platform, which facilitates re-use by other users.

The particular section of the program text, whose presentation en-

ables understanding for further modiyfing, concerns two similar func-

tions, _load_player() and _load_file_reader(), in the video_looper.py file,

reproduced in Listing 75. These two functions are member methods if the

385

def _load_player(self):
”””Load the configured video player and return an instance of

it.”””↪→

module = self._config.get('video_looper', 'video_player')
return importlib.import_module('.' + module,

'Adafruit_Video_Looper').create_player(self._config,
screen=self._screen, bgimage=self._bgimage)

↪→

↪→

def _load_file_reader(self):
”””Load the configured file reader and return an instance of

it.”””↪→

module = self._config.get('video_looper', 'file_reader')
return importlib.import_module('.' + module,

'Adafruit_Video_Looper').create_file_reader(self._config,
self._screen)

↪→

↪→

Listing 75: pi_video_looper.py - Abstracting hardware specific resources via

configuration options in an open-source project. Both of these rely on get-

ting a module variable from the configuration file, before loading the file

whose name corresponds to the value of that variable. This architectural

choice enables broad generalization via a simple loading mechanism. (Di-

cola, 2015)

VideoLooper class and return the specific video playback processes (such as

VLC media player or OMXplayer) and file reading drivers (such as a USB

drive or a network filesystem).

To do so, these two methods operate similarly. Based on the cur-

rent configuration of the running software, they load actual files through

Python’s importlibmodule, and calls an expected method to return an in-

stantiated object. Since it engages directly with modules in the form of

files, rather than through pre-registered abstractions, it gives the end user

a glimpse into the workings of the source code as latent scripts of plain

text, rather than interpreted code. This might be considered confusing,

since this is also the only two occurences of such a technique in a file that

is 500 lines long.

And yet, this architectural choice enables the reader to grasp a couple of

fundamental concepts never made explicit otherwise. First, the use of the

386

_ character prefix for bothmethods ensure that these are privatemethods,

and therefore are only directly used in the current class, and not in other,

invisible places in the rest of the program text. Second, in a program text

whose intention is to be user-friendly, given the number of comments and

the culture of the organization from which it stems, an explicit unveiling

of dynamic module loading signifies the potential for other modules to

be loaded, without having to modify the loading function itself. This ex-

presses the feeling of habitability discussed in section 4.3.2, in that readers

are invited, in turn, to write into the text and make it their own—here, to

use a different video playback or file reading system.

Particularly, the source code iswritten in such away that there are hints

at the existing parts of the computational environment (the configuration

file, the method to be called on the module). This presents a structure in

which the writer can insert itself withoutmodifying anything that was not

meant to be modified. With three lines of code, each of these methods

present an elegant interface between the problem domain (e.g. the media

player) and the hardware domain (e.g. omx vs. hello_video); revealing this

loading of files, the program text never states how to add to the source, but

rather shows that adding a new playback engine is as simple as writing the

playback engine in a new file with at least one specificmethod as an entry-

point (e.g. create_player), and changing the configuration file value for the

new filename, without having to touch these functions themselves. Fur-

themore, by acting as this textual location throughwhichmultiple compu-

tational processes interact, this is an example of a beacon, lighting theway

along a non-linear reading process by establishing signposts from which

to proceed.

This abandoning of abstraction at a certain level, in order to revealwhat

should be revealed to a reader-as-potential-writer, builds on a community

ethos of hacking, where the machine’s workings are laid bare in order to

support unexpected changes by unknown individuals. This textual hint

at bothmultiple realities (i.e. how the playback is actually done, inside the

387

VideoLooper abstraction) and particular possibilities (i.e. using, or changing

it), creates a particularly welcoming space for newcomers.

Description and execution

To complement our examples of scientist and software developer code, we

now look at how source code can evoke a certain sense of the aesthetic by

accentuating, rather than reducing, the semantic gap between human and

machine.

The poem presented in Listing 76, written in Ruby by Macario Ortega

in 2011 and titled self_inspect.rb, opens up this additional perspective on

the relationship between aesthetics and expressivity in source code. Im-

mediately, the layout of the poem is reminiscent both of obfuscated works

and of free-verse poetry, such as E.E. Cummings’ and StéphaneMallarmé’s

works46. This particular layout highlights the ultimately arbitrary nature

of whitespace use in source code formatting: self_inspect.rb breaks away

from the implicit rhythm embraced in Black Perl, and links to the topics

of the poem (introspection and unheimlichkeit) by abandoning what are,

ultimately, social conventions, and reorganizing the layout to emphasize

both keyword and topic, exemplified in the end keyword, pushed away at

the end of their line.

From a computer perspective, the program declares a class called Proc

, a generic and essential construct in Ruby, which has a single member

method in_discomfort? returning the value of the symbol me. The core

of the program then takes place in the declaration of the two variables

you_are and you, assigning them a value of a lambda expression. It includes

four statements; the first two, self.inspect and break you, due to their con-

ditions, are never actually executed. The third prints the result of call-

ing in_discomfort?, and the fourth recursively calls the lambda expression

stored in you_are with the argument you. Finally, the whole execution of

46Particularly Un coup de dés jamais n’abolira le hasard.

388

class Proc
def in_discomfort?; :me; end

end
you_are = you =

->(you) do
self.inspect until true
until nil

break you
end

puts you.in_discomfort?
you_are[you]

end

you[
you_are

]

Listing 76: self_inspect.rb - A code poem written in Ruby, exhbiting com-

plex interactions between human reference, machine reference, language

idioms, source code description and runtime execution. (Ortega, 2011)

the program is due to the last call to you with the argument you_are, the

symmetric opposite of the last statement of the lambda expression. Func-

tionally, this program text is then a series of recursive function calls.

When read aloud, the poem includes a first mention of the self, before

reiteratingmentions of you, and inviting tones of uncertainty, through the

mention of inspection and discomfort. It thus evokes intimacy, individ-

uality, feelings of absolute, by referring to terms such as true, end or nil

(meaning nothing), and short, imperative orders such as do or break. As

such, the poem, as read and pronounced by a human, evokes feelings of

identity and introspection, felt as negative forces.

The poem also presents features which operate on another level,

halfwaybetween the surface anddeep structures of theprogram text. First,

the writer makes expressive use of the syntax of Ruby by involving data

types. While Black Perl remained evasive about the computer semantics of

the variables, such semantics take here an integral part. Two data types,

the lambda expression and the symbol are used not just exclusively as syn-

389

tactical necessities (since they don’t immediately fulfill any essential pur-

pose), but rather as (human) semantic ones. The use of :me on line 2 is the

only occurence of the first-person pronoun, standing out in a poem littered

with references to you. Symbols, unlike variable names, stand for variable

or method names. While you refers to a (hypothetically-)defined value, a

symbol refers to a variable name, a variable namewhich is here undefined,

andwould default to a literal me. Such a reference to a first-person pronoun

implies at the same time its ever elusiveness. It is here expressed through

this specific syntactic use of this particular data type, while the second-

person is referred to through regular variable names, possibly closer to an

actual definition. It is a subtlety which does not have an immediate equiv-

alent in natural language, and by relying on the concept of reference, hints

at an essential différance between you and me.

Reinforcing this theme of the elusiveness of the self, the author maca

plays with the ambiguity of the value and type of you and you_are, until

they are revealed to be arrays. Arrays are basic data structures consisting

of sequential values, and representing you as such suggests the concept of

the multiplicity of the self, adding another dimension to the theme of elu-

siveness. The discomfort of the poem’s voice comes from, finally, from this

lack of clear definition of who you is. Using you_are as an index to select an

element of an array, subverts the role suggested by the declarative syntax

of you are. The index, here, doesn’t define anything, and yet always refers

to something, because of the assigment of its value to what the lambda ex-

pression -> returns. This further complicates the poem’s attempt at defin-

ing the self, calling the reverse expression you_are[you]. While such an

expression might have clear, even simple, semantics when read out loud

from a natural language perspective, knowledge of the programing lan-

guage reveals that such a way to assign value contributes significantly to

the poem’s expressive abilities.

A final feature exhibited by the poem is the execution of the procedure.

When running the code, the result is an endless output of print statements

390

...
me
me
me
me
me
me
me
me
me
me
me
me
me
me
me
me
Traceback (most recent call last):

11913: from poem.rb:16:in `<main>'
11912: from poem.rb:13:in `block in <main>'
11911: from poem.rb:13:in `block in <main>'
11910: from poem.rb:13:in `block in <main>'
11909: from poem.rb:13:in `block in <main>'
11908: from poem.rb:13:in `block in <main>'
11907: from poem.rb:13:in `block in <main>'
11906: from poem.rb:13:in `block in <main>'
... 11901 levels...

4: from poem.rb:13:in `block in <main>'
3: from poem.rb:13:in `block in <main>'
2: from poem.rb:12:in `block in <main>'
1: from poem.rb:12:in `puts'

self_inspect.rb:12:in `puts': stack level too deep (SystemStackError)

Listing 77: self_inspect.txt - The executed output from Listing 76

of ”me”, since Ruby interprets an undefined symbol as its literal name, as

seen in Listing 77.

The computer execution of the poem provides an additional layer of

meaning to our human interpretation. Through the assignment of you_are

in an until loop, the result is an endless succession of the literal interpre-

tation of the symbol :me, the actual result of being in discomfort. While we

have seen that a symbol only refers to something else, the concrete out-

put of the poem evokes an insistence of the literal self, exhibiting a differ-

ent tone than a source in which the presence of the pronoun you is clearly

dominant. Such a duality of concepts is thus represented in the duality of

391

a concise source and of an extensive output, and is punctuated by the ul-

timate impossibility of the machine to process the accumulation of these

intertwined references tome and you, resulting in a stack overflow error.

We now understand that the undefined symbol me is to be taken lit-

erally, while the output of the program is the result from the mutual re-

cursive calls of you[you_are] and you_are[you], creating an infinite mantra

(you are you are you are you are you are you, etc.) which is heard first

by the computer, and only viscerally understood through the execution

of the program. Ultimately, an additional theme of the poem can be deci-

phered: through recursion, the entanglement of individuals depending on

each other leads to a semantic and computational overload.

The added depth of meaning from this code poem goes beyond the

syntactic and semantic interplay immediately visible when reading the

source, as the execution provides a result whose meaning depends on the

co-existence of both source and output. Beyond keywords, variable names

and data structures, it is also the procedure itself which gains expres-

sive power: a poem initially about you results in a humanly infinite, but

hardware-bounded, series ofme47.

A final idea here is that the writing of code is an artistic enterprise,

both in its traditional understanding of craft, and its contemporary under-

standing of art. The emphasis on executable code reveals aesthetic pos-

sibilities of source code as a medium, in which form, content and func-

tion are closely aligned. Poems such as self_inspect.rb are fascinating be-

cause they are variably accessible and inaccessible to readers, a function of

their readers’ knowledge of programming languages and facility with po-

etry. They also provide means of expression in multiple ways: the visual

impression of the code on the page, an aural dimension if read aloud, and

the output rendered by the code when compiled. Their possibilities for in-

terpretation, then, are fragmentary, requiring negotiation on these many

47Another productive comparison could be found in Gertrude Stein’s work, Rose is a rose

is a rose..., drawing expressive power from the phenomenon of semantic satiation.

392

fronts to appreciate and understand. (Risam, 2015).

If code poems are not immediately functional in the industrial sense of

the term, they are nonetheless dependent on the functioning of the pro-

gram that they describe for a part of their expressive power. This compu-

tational function is therefore always a part of the meaning of a program

text.

We’ve seen through this section that the expressivity of program texts

rely on several aesthetic mechanisms, connected in a spatial way between

a metaphorical understanding of humans and a functional understanding

of machines. From layout to double-meaning through variables and pro-

cedure names, double-coding and the integration of data types and func-

tional code into a program text and a rhetoric of procedures in their writ-

ten form, all of these activate the connection between programming con-

cepts andhuman concepts to bring the unthinkablewithin the reach of the

thinkable. While these techniques are deployed differently according to

the socio-technical environment in which the program text is being writ-

ten and read, they nonetheless all contribute to faciltating the navigation

of the program text, be it at the same level of abstraction across parts of the

text (such as in Listing 75, where the patterns of writerly text exists across

the codebase), or at different levels of abstraction in the same locations

(such as in Listing 68, where the syntax abstracts away the unnecessary

signifiers of parallel computing).

Ultimately, these aesthetic manifestations of source code in a program

text are all tightly coupled to the execution of that program text. The next

section concludes this research by assessing the relation between such

function(s) of a program text and its aesthetic manifestations.

393

5.3 Functions and aesthetics in source code

Through our comparative study of source code with architecture and

mathematics, we have seen that aesthetics are not unrelated to ideas of

function, or purpose. In the case of architecture, an aesthetic appreciation

of a building canhardly bemade completely independently from the build-

ing’s intended function48 while, in the case of mathematics, aesthetics are

closely associated with an epistemological function. In turn, the aesthet-

ics of source code have been shown to be closely connected to different

kinds of cognitive engagement, from clarity to obfuscation andmetaphor-

ical evokation.

Each program-text that we have examined in this work always implies

a necessity of being functioning in order to be properly judged at an aes-

thetic level, but the diversity of practices we have pointed to also seems

to suggest different conception of functions. In developing the different

ways that the function of a program text can be considered, we argue for a

dual relation ship between function and aesthetics in source code. First,

the function of a program text is integral in the aesthetic judgment of

such text, both because the status of software as crafted object makes its

function the deep structure that is manifested in its surface, and because

the standards by which it is judged depend on socio-technical contexts

in which the program text is meant to be used. Second, the aesthetics of

source code are not autotelic; rather, the function of aesthetics themselves

is to communicate invisible information to the reader and writer.

We first provide an overview of investigations into the relationship be-

48Larry Shiner explains the limitations of a purely formalistic stance when bestowing an

aesthetic judgment on awork of architecture: ”a formalist critic who ignores functions in judg-

ing a work of architectural art will be in danger of misjudging it by treating it solely in terms

of its purely formal aesthetic properties. For example, if a critic were to judge Gehry’s Bilbao

museum from a formalist perspective, for example, the critic might have to fault the more tra-

ditional looking galleries as out of keeping with the sculptural forms of the rest of the museum,

and blame Gehry for failing to unify his design’s sculptural form” (Shiner, 2009).

394

tween function and beauty. This will highlight how function can be under-

stood from theperspective of intention, but also from theperspective of re-

ception. We then examine specifically the different functions that source

code can support, and how they might vary with the context in which the

program texts exist. Beyond the computer as themost direct context defin-

ing whether or not a program text functions, we highlight how epistemic

and social concerns further modulates the technical context in which the

function of a program text is assessed.

Ultimately, we conclude on the extent to which aesthetics can be said

to hold an epistemic function. Starting from the specificities of source

code as a collaborative text with ambivalent semantics, we connect aes-

thetic value to ethical value throught the communicative function, and

thus transpersonal requirement, of program texts.

5.3.1 Functional beauty

Traditionally the main focus of aesthetics tended to be on works of art,

human creations which were understood to be belong to a specific field,

separate from practical concerns. The self-reference of artworks, height-

ened in the modernist stance of decontextualization and of appraisal of

phenomenological form over content, tended to sideline the purpose of

such artworks: whether emotional, social, political or epistemological.

Nonetheless, proponents of a more conjunctive approach, in which func-

tion and beauty are not mutually exclusive, addressing how the function

of an object can be perceived through an aesthetic stance.

In order to assess how function can influence an aesthetic experience,

wemust first identifywhat constitutes the function of an object. As a start-

ing point, one can relate it to the actions that are enabled by its perceptible

properties. Such properties can be designed, and thus actions suggested,

by the creator(s) of the artefact, in which case the a-priori intention de-

fines the function, or they can be defined by the user(s) of the artefact,

395

suggesting a more pragmatic approach. Developing this action-oriented,

rather than ontological, approach to artefacts Houkes and Vermass state

that an artefact function is any role played by an artefact in a use plan that is

justified and communicated to prospective users (Houkes & Vermaas, 2004).

From this, it follows that the use of an artefact can be either the inten-

tion of its creator(s) or the action of its user(s), informed by the typology

fromwhich such artefact depends49, communicated to its users. These two

ways to identify the function of an artifact thus implies that there is some

hierarchy of functions: while it is complicated to point out a single proper

use for an artifact, some of those uses can be consideredmore proper than

others, based on the interplay of social agreement, ontological status of

the artefact, technical properties and individual intention(s).

Given that function is a combination of what is intended by the creator

and the effective use by individuals, and that such function is informed

by the perception of sensory cues, we can say that aesthetic play a role in

understanding what an object does. This perceptual judgment on the use

of an artifact is particularly salient in the identification of such an arti-

fact’s affordances, visual cues helping a user determining which actions

are possible (Norman, 2013). As we have seen the extent to which the aes-

thetic judgments of source code depend on a certain level of knowledge

and skill, we can now investigate the complementary question: to what

extent does the function of an artifact influence our aesthetic judgment of

this artifact.

A first connection between function and appearance is elaborated by

Socrates, and analyzed byParsons andCarlson, as they emphasize the con-

cept of fitness (G. Parsons et al., 2012). Fitness, here, is the degree to which

a collection of features of an artefact minimize the amount of effort or

energy spent in order to achieve the goal of a particular user in a given

context—that is, to fulfill a function. Specifically, Parsons and Carlson

49For instance, the commonly accepted function of a house in architecture, a proof in

mathematics or a story in litterature.

396

build on this approach by arguing that beauty can be understood as look-

ing fit for function, thus reconciling both appearance and purpose. In their

view, aesthetic appreciation can be dependent on the function of an arte-

fact insofar as such fitness can be perceived by the senses. Furthermore,

while knowledge of function might not be a pre-requisite for aesthetic ap-

preciation, we can nonetheless note that knowledge indeed factors in in

aesthetic judgment, by providing a standards against which achievement

can be measured50. This implies that there are functional reasons for the

perceived appearance of a work, especially of these kinds of work which

are expected to primarily perform functions, and then secondarily exhibit

positive aesthetic features.

As we developed in subsection 4.3.1, architecture is an artistic field

where function is of prime importance, a feature which applies to soft-

ware development when considering architecture as a metaphor for writ-

ing (good) code. However, the exact function of buildings is far from being

universally agreed upon for every building: a function might be to pro-

vide cheap, temporary housing or to recreate the feeling of Victorian-era

luxury, or to optimize its space to allow for industrial production to take

place within it, or to present volumes and decoration in such a way that it

elicits religious fervor.

In oneof themost popular takes on function in architecture, Louis Sulli-

van, on his essay on the relationship between form and function, develops

a concept of function which results from the straightforward intention of

the building designers, with respect to the techniques and matierals used.

In his essay, he applies the adjectives sincerity, honesty, and authenticity:

such terms connotate a certain idea of ontological straightforwardness,

rather than adaptation to other factors such as effective use or environ-

mental constraints. In this sense, functionalism poses function as a re-

50The knowledge of an artwork’s function subsequently influences our aesthetic judg-

ment: ”By employing a category in perceiving an artwork, then, we implicitly impose a kind

of structure upon its various perceptual qualities” (G. Parsons et al., 2012)

397

quirement from which aesthetic value follows; an aesthetic judgment has

to take into account the intended use of the building.

And yet, such an approach does not take into account themulti-faceted

functions of a building. Existing at the overlap of multiple intentions and

uses, buildings present a variety of practical functions which in turn influ-

ence the aesthetic judgments that are expressed related to it. An example

of these varying functions and the accompanying aesthetic perceptions:

a library can be judged on how well it conserves the books, on how well it

handles soundpropagation, onhowwell it enables the focus of its dwellers,

onhowwell it represents its cultural symbolism, or on the carbon footprint

of its construction and use. Each of these will be weighted differently ac-

cording to whether one takes the perspective of the architect, the client, of

the reader, of the employee, or of the passer-by.

To this strict functionalism as a school of thought, one can answer that

the goal of architecture is not simply to design buildings, but to create a

conception of living (G. Graham, 2000). The function of a buidling is then

to support other functions, or other behaviours of individuals as they en-

gage with a building. Shiner notes how Robert Stecker offers a useful dis-

tinction of architecture as artform, and architecture as medium (Shiner,

2009), with the first having a function defined by the creator, and the sec-

ond having a function defined by the user. In turn, the aesthetic value of

the built artefact depends on the conception of living that an individual as-

cribes to it, and as it uses it. In the case of architecture, onemight settle the

question of aesthetic value of a building not by stating that it is because is

functional, but rather because it is useful, involving both the situated use

and the situated intent.

Similarly, in the case of literature, the function of a written work is not

just to be decipherable by one other than the other. Starting form an ex-

tended conception of literature (Gefen & Perez, 2019), one can look at arte-

facts such as press releases, novels, poems, and legal codes as fulfilling dif-

398

ferent functions (such as informing, immersing, evoking or specifying51). A

well-functioning novel will be thus be judged on different criteria than a

well-functioning legal code, and so will a piece of investigative journalism,

even though all will share the assumed requirement for the artefact to be

functioningwith respect to its ontological type—here, that it is a system of

linguistic signs decipherable by others. As such, the audience of the work

both establishes the usefulness of such work for them and, in turn, ex-

press an aesthetic judgment depending on how useful the work is to them,

whether it is from an informative, poetic or emotional standpoint.

An object is thus functionally beautiful to the extent that its aesthetic

properties contribute to its overall performance; the functional beauty of

an object enhances its fulfilling its primary function. In the case of a poem,

the primary functionmight be to evoke emotions, or denote concepts that

are seldom explicited in prose; in the case of a novel, it might be to offer a

rich storyworld, an engaging intrigue, or a deep portrait of human nature.

Here, we therefore do not assess function in immediate, physical terms,

where a concrete consequence is needed in order to assess whether a func-

tion has been performed. Carlson and Parsons support this view through

Benedetto Croce’s conception of aesthetics as a linguistic system, in which

he defines beauty in terms of expression, by which he means a particular

mental process which results in a clear, distinct and particular idea (G. Par-

sons et al., 2012). Since communication between individuals can be said to

have succeeded or failed, then aesthetics as a communcative process also

inherit this function of expression. For instance, our discussion of math-

ematics in subsection 4.4.1 has suggested that the aesthetic judgment of

mathematical artefacts, such as proofs, have for functions the facilitating

51Nonetheless, an artefact can functionwell, and thus bewell-judged aesthetically onmul-

tiple functions at the same time. The first sentence of the first paragraph of the first article of

the German Grundgesetz, ”Die Würde des Menschen ist unantastbar.” (Deutsche Bundestag,

2022), translated as ”The dignity of humans is unviolable.”, functions both as a fundamental

ground for jurisdiction, and as a condensed narrative evokation of the history of the country

in the 20th century.

399

the expression of mathematical concepts, or the acting as a heuristic in

order to construct an intellectually satisfying proof.

Both from a philosophical and from a practical standpoint, aesthetic

judgments are therefore not independent from the function of an artefact.

By developing the concept of looking fit for function, we have shown that

aesthetic judgment can be relatively dependent on the function of an arte-

fact. In turn, we have seen that the concept of function itself can be as-

cribed by the intent of the creator, but it can also depend on the socio-

technical context in which the object exsists, and from which one poses

the aesthetic judgment, involving both human stances and techical prop-

erties. An aesthetic judgment of an artifact therefore integrates its per-

ceived function, as well as how well the function is fulfilled.

Since function does not necessitate physical action, we can now look

more specifically at the functions which are ascribed to source code. After

having highlighted the ontological function of source code as embedded in

a computational ontology, we then show the other, pragmatic and paradig-

matic functions of source code, and develop on how the aesthetic value of

program texts are thus related to such functions.

5.3.2 Functions of source code

From a computer science perspective, a function is a program unit which

produces an output for each input. While there might not be some explicit

value given as an output, a function in a computer program is nonethe-

less an action which has the ability to modify some internal state of the

machine—that is, they are effective (Abelson et al., 1979), and they are com-

monly expected to provide a tangible change as a result of their execution.

In order to fulfill this definition of function, a given program text must

be correctlymachine-readable. Thismeans that its syntaxmust be correct,

before the operations described by its semantics can be executed, and then

assessed in the light of its intended result. Rather than looking at function

400

from an ontological perspective, through which all programs that are syn-

tactically correct satisfy the criteria of function in order to support an aes-

thetic judgment, we can highlight three different modes of valid function.

The first concerns its syntactical validity: the syntax expressing what the

program text does is correctly parsed by the computer, and can be quali-

fied as a potential function. The second concerns what the program text

does, through its operational semantics, and will be referred to as its ef-

fective function. Finally, the operation of the program text is compared to

what it is supposed to do, according to the programmer(s) who wrote it;

this assessment refers to the intentional semantics of a program. As such,

a program text can be considered according to at least three different crite-

ria: it is functional because it has a correct syntax, it is functional because

it performs a set of computational operations, or it is functional because it

has been given a particular intent.

Whilewe refer to the function of a programas the correlation of syntac-

tical validity, operational function and intentional function, each of these

subsequent functions cannonetheless be considered as a valid function on

their own. For instance, a syntactically invalid program (perhaps due to it

being written in an older version of a programming language) might still

hold an intentional function (as an educational example). Furthermore,

one can also look at it from a more practical perspective, that of utility. In

this case, the functionality of an artefact is assessed on its use, by situated

beings facing precise problems, rather than on its essence.

Moving away from a discrete understanding of function through

syntax-correctness (does it function effectively or not?), we can thenmove

towards amore continuous appreciation of howwell an artefact functions

(is it useful?). If fitness to function can be a principal criteria for aes-

thetic judgment, the concept function nonetheless remains multifaceted.

Indeed, program texts emerge very quickly form a strictly computational

understanding of function (input-process-output) to suggest other possi-

ble functions based on the social and technical contexts for interpreta-

401

tion. Rather than being mutually exclusive, we show how the social and

the technical influence each other in providing a backdrop for aesthetic

judgment through perceived and intended function.

Programming languages have a syntax and a semantics, but they also

have a pragmatics—a contextualised purpose within which they are de-

ployed. This concrete, contextualised function can be one of correctly

achieving a task, of achieving it within a particular resource constrain, of

demonstrating how a task could be roughly achieved, demonstrating one’s

knowledge of the technical environment in which the task is executed,

demonstrating the expressive limitations of such platform, or even chal-

lenging readers’ assumptions. In all of these cases, function as achieve-

ment of intended effect remains an essential aspect through which the

quality of the program text artifact can be judged.

The first andmore widespread function of a program text in its written

form is to be understood. As an essentially technical artefact achieving a

particular result through its execution, one is not expected to read source

code for entertainment, or out of boredom. Rather, a program text whose

formal arrangment enables the construction of useful mental models en-

abling further programming activity can be said to be fit for its primary

function. Nonetheless, this understanding is not exclusively focused on

changing, or fixing the program text that is being read, but can have other

implications, thus involving different standards for aesthetic judgment.

For instance, achieving a task such as the demonstration of the proper-

ties of a language is not the same thing as using such language in themost

technically-efficient manner; the first function would be a demonstration

of pedagogy, while the second would be a demonstation of skill. As an ex-

ample of pedagogical program text, the listing Listing 78 shows how the

first function declaration is being explicit in its use of conditional state-

ments, and conservative in its use of the function token for function dec-

laration. These particular aesthetic choices represent the function of this

program text: the communication of the basic actions of drawing in, fo-

402

function draw() {
if (mouseIsPressed) {

fill(0);
} else {

fill(255);
}
ellipse(mouseX, mouseY, 80, 80);

}

let draw = () => {
mouseIsPressed ? fill(0) : fill(255)
ellipse(mouseX, mouseY, 80)

}

Listing 78: p5_sketch.js - Different ways to write a JavaScript function in

different functional contexts, with either a focus on pedagogy or skill.

cusing on fill and ellipse as points of interest for the reader. Conversely,

the second function declaration focusesmore on the technical context and

idiomatic knowledge of the reader by using the ternary operator as a con-

ditional statement, and byusing the letdefinition for the function declara-

tion, thus signalling a more technically-oriented function of compressing

this color filling operation, for instance to not draw attention on it within

the context a larger program, as well as to run on the most recent versions

of the ECMAScript standard to which JavaScript conforms.

What is displayed here is therefore judged differently, depending on the

intents of the creator and the expectations of the user. Considering an ed-

ucational function of the program the first function declaration might be

judged as more pleasing than the second, which could be considered too

cryptic for a beginner. While not exclusive, the technical context in which

the program text is written, read and executed—the hardware, program-

ming language and development environment—remains both a determin-

ing context in terms of syntactical and semantic fulfilling of functions, but

also onewhere artistic creativity supports a pluralistic conception of func-

tion.

Particularly, hackers (see the description of the community of practice

403

in subsection 2.1.2) display a practice of writing and reading source code

which plays with the naïve definition of technical function of achieving

in a straightforward manner a standard task. The aesthetic standards of

hacking involve a valuation of materiality and epistemology, demonstrat-

ing understanding through obfuscation. The knowledge of the machine

is implied through this dimension of exclusiveness: being able to do what

others do not know how to do. The function of such hacker code is thus

not to be easily understood, but rather to offer a convoluted and engaging

puzzle as to how the effective function of a program is even possible, given

an obfuscated syntactical function.

Practices of hacking thus tend to deviate from the original, intended

function of a given hardware platform or software system, in order to find

a new function. For instance, in cases of XSS attacks, in which an input

field on a website is exploited not to provide information to the website

system, but rather to penetrate and occupy it. From the website adminis-

trator’s perspective, the function of the website is perverted, and the code

which performs such function might be considered as ugly whereas, from

the hacker’s perspective, the function of the website as a data input is ac-

tually sublimed by circumventing arbitrary protections put in place to pre-

vent certain types of data to be injected.

By switching the paradigms of what an artefact can do, or should do,

hacking takes on an epistemological role, providing new knowledge about

the possibilities of an artefact, and displaying material proof, in the form

of an executed output and a program text. Indeed, hacking relies not on

the proclamation of skill, but on its execution: it is the combination of the

intended action of the writer and the effective operation of the computer

which grants to the function of the artefact a particular quality. This is

purposefully at odds with hacker syntax, which tends to be more obscur-

ing than enlightening. It is this unexpected ability to perform the intended

functionwhile not revealing its function through syntacticalmeanswhich

in turn informs aesthetic judgment. Here, the aesthetic judgment is di-

404

rectly informed by the relation between written syntax and executed ac-

tion, and such an executed action affords intellectual engagement with

understanding how such action is even possible. This epistemological ap-

proach, of understanding how such a hack can be done, thus relies on a

visual component: such component of the hacking aesthetic is the visual

tension, the fact that an objectmight not look the part, but actually is doing

such part is reflected in practices of obfuscation and obscurity. In cases of

obfuscated code, being able to hide visually the purpose of a program text

while conserving its invsible, technical-functional properties52 is thus con-

sidered a virtue, and suggests a positive aesthetic judgment.

Hacking allows us to consider the aesthetics of dysfunction, in which

one canfindpleasure in addressing, and then subverting, the original func-

tion of the artefact. An example of this subversive approach can be seen

in the design and use of esolangs, esoteric programming languages whose

sole purpose is to exist as playfully critical perspectives on the arbitrari-

ness and yet unescapable exhaustivity of computational syntax53. Rather

than being usable in practical situations and thus useful, they rather func-

tion as a commentary on thematerial of source code, displaying the extent

to which something else can be a programming language. For instance,

Daniel Temkin’s Folders language, seen in Figure 5.1, uses directories in or-

der to perform computational operations. While this might not have any

reason for existing in a productive environment, this nonetheless performs

the function of expanding one’s understanding of what is a programming

language, at a more fundamental level than everyday software develop-

ment. There can be effective function separately from utility: here, the

extent to which some programs seem to stray from practical function has

52For instance, in the cases of Perl one-liners or obfuscted C code
53”They were reacting to and building on the aesthetics of commercial coding and the often

unstated values of computer science. These disciplines, which are sometimes at odds with each

other, are both driven by a pragmatism that esolangs actively eschew. In rejecting practical-

ity, esolangs carve out their own aesthetic and make clear the contradictory factors at work in

mainstream code aesthetics.” (Temkin, 2023)

405

Figure 5.1: Implementation of the traditional ”Hello, world!” program in

the Folders programming language. (Temkin, 2015)

itself the epistemological function of enriching our understanding of the

nature of computation.

If hackers subvert our conception of what it means to read, write, exe-

cute and understand source code, so do code poems. They are the com-

plementary opposite of such material investigations, arguing rather for

the human expressiveness of programming languages. Here, the func-

tion is not effective—what actions does programming enable—but useful

as it enables new, personal understandings of concepts rendered through

programming—what thoughts does the program text enable.

The use of programming languages for poetic purposes (such as List-

ing 22 or Listing 76) provides a reconciliation of machine execution with

human interpretation. Here, the technical environment provides a require-

ment of syntactical and operational function, while the social environ-

ment provides a frame of understanding, reliant on the intention of the

writer, of the reader, or of both.

406

Software canhardly be separated fromwhat it does, and yet cases do ex-

ist in order to focus on under-examined aspects of how an artefact is tradi-

tionally thought, subverting a naïve understanding of function. In archi-

tecture, particular structures do escape expected functional assessments

in order to provide new understandings and new possibility, as in the con-

struction of Renaissance follies (displaying symbolic value) or the modern

pavillion (displaying technical prowess). Neither of these constructions

abide by the traditional function of architecture (sustaining and shelter-

ing life) but, precisely, these are exceptions confirming the rule, and these

extreme examples also help to highlight the default, expected standard,

often taken for granted.

We have shown both the variety and necessity of functions in the aes-

thetic judgment of program texts, stem from their nature as technical arte-

facts, but also rely on social environments for a program text’s primary

function to be considered. Furthermore, we have shown that such func-

tion is not just material, in the sense of what technology can help us do,

butmost importantly epistemological, in the sense of what the technology

canhelp us think about, whether a problemdomain, a skill, or a feeling. We

now conclude this chapter by extending from source code aesthetics into

other domains of crafted objects in order to suggest some perspectives on

function and aesthetics and how they relate to ethics.

5.3.3 Aesthetic and ethical value in program texts

The function of aesthetics in source code is thus an epistemological one, in

which particular formal configurations act as a guide towards knowledge

of the program’s contents, either as a a heuristic from the writer’s perspec-

tive, or as a cognitive scaffolding from the reader’s perspective. Further-

more, its existence as a technical object also implies an existence which

can rely both the writer’s intent and the reader’s use. As intermediary ob-

jects, program texts thus possess an ethical dimension, insofar as they

407

need to consider both oneself and the other in the making of decisions

resulting in a positively-valued result.

One of the specificities of program texts is that they are collaborative

and open-ended, particularly in the open-source movement, which tends

to make all program texts writerly texts. Since the audience can become

the creator of modified functional technical systems, expressive devices

also act as communicative devices, and thus take on a relational dimen-

sion. The program text acts as a bridge between the intent of the ideal

version of the software, the reality of executing hardware, and the mental

spaces constructed by readers andwriters. Concluding in the Languages of

Art, Goodman develops on the relationship between art and understand-

ing, as he compares an artistic attitude, involving an aesthetic experience,

with a scientific one:

The difference between art and science is is not that between feel-

ing and fact, intuition and inference, delight and deliberation,

synthesis and analysis, sensation and cerebration, concreteness

and abstraction, passion and action, mediacy and immediacy, or

truth and beauty, but rather a difference in domination of certain

specific characteristics of symbols. (Goodman, 1976).

Asa crafted technical artifact borrowing fromthe characteristics of nat-

ural language symbol system, and executed by themachine, source code as

amedium occupies a hybrid place between art and science. With a geneal-

ogy rooted in hard sciences, and with an ontological nature of function-

ality, it always involves the concept of correctness, a correctness which is

always verified through execution. On the other side, the complexity of the

computational systems being described, and the uniqueness of the syntax

and semantics offered by the medium of source code that is a program-

ming language, require a certain amount of expressiveness found in the

use of metaphors to represent concepts from both the problem domain,

and from computation itself. Stil, this exchange of knowledge takes place

408

most often between two subjectivities: the writer and the reader.

Writing is, in the moment of its doing, a mostly personal act. When

a programmer writes some source code, they do so in a somewhat inti-

matemanner: the only functional judges are onself and themachine, while

the only aesthetic judge is oneself. Criteria for aesthetic judgment, at this

point, include three axes: the accuracy of the action performed once the

program is executed, the ability of the program text to express the con-

cept that is being implemented, and the adequacy of this formal arrange-

ment with the problem at hand—that is, the idiomaticity and elegance of

the program text as a solution. Indeed, functional entities appear graceful

when they are free of features that are extraneous, or irrelevant in rela-

tion to their function. This translation of function into appearance in turn

depends on the complementary position: reading source code.

Once a program text is written—that is, once a computational repre-

sentation of the world has been given textual form—the process of read-

ing introduces new constraints for an aesthetic judgment. Reading a pro-

gram text involves a process of decrypting the realized adequacy between

intent, form and function. This amounts to identifying the semantic af-

fordances, under the form of structure, syntax and vocabulary used by the

writer(s) to communicate the ideal action of the program. We put here a

particular emphasis on the relationality of such expression. The position

of the reader always involves an otherness with respect to the position of

the writer. Providing an aesthetic judgment from a reader’s perspective

thus involves establishing the elegance, fitness, and interest of a certain

piece of source code, in accordancewith thewriter’s judgment; because the

program text is interpreted by a mechanical third-party, the computer, its

value is not exclusively decided by subjective perspectives, and it therefore

gains in objectivity. Bruce McLennan writes about this objective compo-

nent of aesthetics in software engineering, as a way to harmonize the en-

deavours of the different individuals involved in creative work, from prac-

409

tical construction to the devising of new ideas54.

This particular relational stance relates to Gerald Weinberg’s concep-

tion of egoless programming (Weinberg, 1998). Considering the practices

of professional software developers, Weinberg observes that toomuch ego

lead to non-functional software, as one could not benefit from an external

readership in order to weed out mistakes and bugs. One of the ways code

can be found to be of good quality is through the giving up of personal

ownership for a more collective one. This has first an immediate func-

tional effect, by providing additional layers of quality assurance through

the perspectives of everyone which contributes to the program text, di-

rectly, or indirectly. It also has an aesthetic consequence, in the form of

programming style.

As mentioned in subsection 5.1.3, programming style in its individualis-

tic conception is frowned upon, as style should be understood as a collec-

tive agreement ofways of doing things. MarielleMacé, in her study of style

as a form of life, considers that style is a negotiation between personal and

collective ways of being, as an agreement on what matters and on how it

should be done55. As she considers style as away of appearing, a way of do-

ing and away of inhabiting an environment. This last point ties back to the

notion of habitabilitymention in section 4.3.2. Aesthetics in programming,

as a positively valued manifestation at the level of the sense and at the

level of the intellect involves a form of transpersonal activity and ties back

to a moral virtue of providing habitable spaces. An aesthetically pleasing

54”Like cathedrals and scientific theories, large software projects are the result of the efforts

of many people, and aesthetic standards provide criteria by which individual contributions can

be objectively evaluated” (Schummer et al., 2009)
55”Le « comment » comme lieu d’émergence des valeurs, lieu de querelle sur ce qui compte,

lieu d’engagement sur ce qui nous divise et ce qui nous relie. . . C’est la question éthique et

politique qui s’ouvre ici, dans sa force d’appel et son indécision fondamentale, celle d’une vie

qui est toujours à faire, à débattre, et qui se fonde sur nos différends. Car les manières du vivre

n’assument pas un sens ou une valeur a priori ; elles sont le sens et la valeur qu’il y a à faire.”

(Macé, 2016)

410

program text in which one feels at ease to operate, and thus abides by a

collective notion of style.

All source code aesthetics relate to a certain conception of function, in-

volving technical achievement and interpersonal existence. An aesthetic

judgment of a program text is, in this understanding, the judgment of the

perceptible manifestations in source codes allowing for the comprehen-

sion of a technical achievement according to contextual standards. These

manifestations are therefore not just expressive (personal), but primar-

ily communicative (interpersonal), aiming at the transmission of concepts

from one individual through the use of machine syntax through the dual

lens of human-machine semantics. Indeed, code that is neither function-

ing for the machine, nor meaningful for a human holds the least possible

value amongst practitioners.

In the overwhelming majority of cases of program texts, the expecta-

tion is to understand. Writing aesthetically pleasing code is to write code

that engages cognitively its reader, whether explicitly for software devel-

opers, pedagogically for scientists, adversely for hackers and metaphori-

cally for poets. This engagement, in turn, supposes an acknowledgement

from the writer of the reader. The recognition of the existence of the other

as a reader and co-author, implies an acknowledgement as a generalized

other in the sense that anyone can theoretically read and modified code,

but also as a specificied other, in the sense that the other possesses a par-

ticular set of skills, knowledge, habits and practices stemming from the

diversity of programming communities. This stance, between general and

particular, is one that shows the ethical component of an aesthetic prac-

tice: recognizing both the similarity and the difference in the other, and

communicating with a peer through specific symbol systems.

411

Programming languages can thus be considered materially, as the in-

terplay between a text’s physical characteristics and its signifying strate-

gies (Hayles, 2004), which in turn depend on socio-technical dynamics.

As an interface to the computer, programming languages, without overly-

determining the practice of programmers or the content of what is being

programming, programming languages nonetheless influence how it can

be said, through idiosyncracies and stylistic devices. This has established

the idiosyncratic status of source code as a medium, and its existence be-

tween technical and social, expressive and communicative, individual and

collaborative.

We then presented a framework for aesthetics of source code, through

the dual lense of semantic compression and spatial navigation. To do so,

we started from a layer-based approach to the points in which aesthetic

decisions can take place in source code—that is, across structure, syntax

and vocabulary. Broadening this approach, we then showed how these dif-

ferent levels involve an engagement with semantic layers: between the

human reader, the machine reader and the problem domain. The mini-

mizing of syntax while best representing the different concepts involved

at these different layers results in semantic compression. A source code

with aesthetic value is onewhich balances syntactic techniques, structural

organization and metaphorical choices in order to communicate a socio-

technical intent of a functional artefact. In turn, semantic compression

supports the shifts from different scales or perspectives the engaged pro-

grammer needs to operate as she navigates through her non-linear explo-

ration of a program text.

We concluded this study on the relationship between function and the

aesthetic judgment of source code by showing how aesthetic writing in-

volves a certain conception of ethics. Not only is the function of aesthet-

ics in source code is epistemological, in that it enables the acquisition of

knowledge, but program texts also involve a tight intertwining between

writer and reader. What must be communicated then is not just what the

412

program does, but how it does it within a given socio-technical context. As

we reconsidered the status of style in programming as a transpersonal way

of doing, this allowed us to qualify source code aesthetics not as a primar-

ily individual endeavour but moreso as a way of acknowledging the other.

413

Chapter 6

Conclusion

A piece of source code, as the linguistic representation of computational

processes, themselves representations of a problem domain, is an ambigu-

ous object. Such an object exists at the overlap of both human and ma-

chine comprehension, operates through un-intuitive scales of time and

space, and is often hidden away by the executed processes of which it is

the source. And yet, source code practitioners, those who write and read

code, agree on the existence of a certain sense of beauty in program texts.

The research aims of this thesis were to highlight the specific aesthetic

properties exhibited by varieties of source code. How does source code

beauty manifest itself? Under which conditions? And to what end? An-

swering these questions, we showed how other aesthetic fields are used as

metaphors in the aesthetic appreciation of source code and we identified

the role aesthetics play in the existence and purpose of source code—with

a particular focus on its role as a cognitive facilitato, and on its relation-

ship to function. Our methodology started from an empirical approach,

looking at specific instances of source code, and from the analysis of the

discourses surrounding and commenting these instances. From this ini-

tial study, we identified several lexical fields that programmers refer to

when they evoke the aesthetic properties of source code—literature, ar-

414

chitecture, mathematics and craft.

Along with this first research axis, we also noted how the aesthetic

judgement in source code is closely tied to its fuctionality. Indeed, any

aesthetic value is dependent on the correct behaviour of the source code;

ugly code is often related to its apparent bugginess and difficulty in un-

derstanding its function, while beautiful code implies that the actions re-

sulting from the source code are conform to what the programmer had

intended, along with being presented in the best possible way.

Such a definition of a best possible way is dependent on the social, cul-

tural and economic spheres within which the code is produced. These in-

clude the social environment of the programmer(s), the technical environ-

ment inwhich the code is run and built, and the problem it aims at solving.

Similarly, the concept of function within program texts has been shown to

also be multifaceted, includin what the code should do, what it actually

does, and how it does it.

The aesthetic properties of source code are therefore those of a seman-

tic representation of computational space-time, whose purpose is the ef-

fortless communication of the operations of the computer, the intention

of the programmer(s) and the representation of the world. In this sense,

aesthetics perform a cognitive function.

6.1 Findings

The rest of this conclusion will address each of our initial research ques-

tions’ findings, followed by an examination of the limitations and contri-

butions to existing research on source code. Throughout, we will summa-

rize howour comparative approachhighlightedmedium-specific aesthetic

devices whose function is to engage epistemically with their audience.

415

What does source code have to say about itself?

One of the gaps we identified in source code-related literature is that

there was a missing overlap between a broad empirical approach and a ro-

bust conceptual framework, expliciting the nature of source’s code prop-

erties. For instance the works of (M. J. Black, 2002; Cox & McLean, 2013;

Paloque-Bergès, 2009) establish an overview of source code with explicit

aesthetic properties, but rely on a remediating approach to assess source

code as a literary-semantic tool, or as a discursive-political object, respec-

tively, all the while focusing on the subset of so-called creative code. We

intended to complement this initial work by highlighting source-code-

specific aesthetics—that is, formal manifestations with a communicative

purpose, beyond a strictly literary perspective.

Starting from trade literature on the topic, and complementing it by

cases of close-reading program-texts, we have highlighted both structural

and contextual specificities of source code. Building on existing work

across disciplines, such as Martin (see section 2.3.3), Gabriel (see subsec-

tion 4.3.2), Lakoff and Johnson (see subsection 3.3.1) or Détienne (see sub-

section 3.2.3), we have found several properties which seem to be unique to

source code, and supports a conception of source code as a material used

to construct dynamic semantic spaces.

First, conceptual distance is key at a structural level: correlated expres-

sions, statements or variables that affect or depend on the same concept

(e.g. a file operation or a user account), should be located close to one an-

other in the source code. This counterbalances the entropic tendency of

source code to tangle itself, such that the reader has to follow the convo-

lutedmachinepathof execution, rather than thehumanconceptual group-

ing of executable statements.

The conceptual coherence, and thus its ease of understandability, is

also manifested in conceptual atomicity and conceptual symmetry, re-

spectively meaning that a given explicit fragment of source code should

416

only refer to one specific operation, at a given level of abstraction, and

that fragments of source code that do similar things should look similar as

well. Also previously identified as separation of concerns, these two princi-

ples allow for the abstraction of a given syntactic unit by grouping all the

statements into a single action or declaration, thus operating as a bridge

between human understanding and machine understanding.

At the lexical level, source code is multi-dimensional. On the one hand,

it operates on an axis that goes from global to local, whereby global tokens

that are used, and are visible, across the whole application code are very

explicitly named, sometimes in all uppercase, while local tokens, whose

lifetime does not exceed a few lines, tend to be composed of just a few let-

ters. Here, variable length and cap size is closely related to the concept of

scope, yet in a slightly looserway than froma strict programming language

perspective. On the other hand, lexical tokens can belong to three differ-

ent lexical fields. These lexical fields are whether a given token refers to (1)

an individual meaning, (2) a machine meaning, or (3) a domain meaning.

For instance, the names start_time, UTC_UNIX_STRING_NOW and meeting_time

might all refer to the same moment in time, yet from different perspec-

tives. The first naming, as an individualmeaning, is significant in a narrow

context, for a narrow set of individuals at the moment of writing or read-

ing. The second naming is a machine meaning, which refers to how that

moment is perceived by the computer. The third is the domain meaning,

which is how end-users will refer to that particular moment. The use of a

different names to refer to a single entity has also shown that metaphor

theory comes into play.

For some, a piece of source code which can choose a token that will

balance these three meanings in order to convey these three senses of the

value at handwill be considered aesthetically pleasing. For others, writing

tokens at the extreme of either of these three poles can be considered as

a marker of aesthetic success, accompanied by a certain degree of exper-

tise. For instance, code poets would tend to focus on the domain mean-

417

ing, in which tokens are only referring to non-computing terms, and evoke

poetic concepts instead. Conversely, hackers share a standard for brevity

and directness—by making their tokens as short as possible, e.g. reducing

them to bytecode, they strive towards existing as close as possible to the

hardware that the code depends on, and therefore display unsual feats of

performance.

As source code gets closer to the hardware, the representation of its

semantics change. Aesthetics move away from surface and towards depth,

andhuman-readable namesdisappear. So, while syntax such as names and

commentsmight be beacons with an aesthetic potential, positively-valued

structural arrangements subsist in a different form. One form of structure,

such as the files and folders organization of some codebases, create a sense

of familiarity in the situated programmer, as seen in section 4.3.2. How-

ever, we can also note that structure can evoke less-human concepts, and

be considered aesthetic insofar as they present a stimulating mental puz-

zle where the discovery of the program text’s computational function is

the ultimate reward, as discussed in subsection 2.1.2. For instance, the pro-

gram text presented in Listing 79 displays an aesthetic structure, indepen-

dent from syntax. It seems at first very cryptic, but nonetheless exhibits a

certain regularity and symmetry in its layout.

Published in xchg rax, rax, a collection of riddles in the Assembly lan-

guage, this seemingly cryptic example allows us to show that, while no ar-

bitrary names are used, structure nonetheless survives (xorpd, 2014). Bor-

rowing from poetry’s lexicon, we can identify four stanzas, twice of four

lines, and twice of a single line. Syntactically, one can easily spot the re-

peating of a pattern, with amirrored relationship between rcx and rdx, two

of the CPU’smemory registerswhere temporary information is stored. The

first stanza raises a given number to the exponential of itself, bitshifted to

the right (x^(x>>1)). The second increases the original number, the third

stanza repeats the first operatio with the previous number and the last,

concluding line calculates the xor result. The 3-1-3-1 repeating pattern and

418

mov rcx,rax
shr rcx,1
xor rcx,rax

inc rax

mov rdx,rax
shr rdx,1
xor rdx,rax

xor rdx,rcx

Listing 79: 0x31.asm - This Assembly listing represents a pair of numbers as

reflected binary numbers, and then performs a logical xor operation on a

pair of numbers. The structure of the program text itself, through its sym-

metry, hints at the patterns exhibited by such reflected binary encoding

(xorpd, 2014).

the similar registers being used across stanzas makes it such that, at first

glance, its structure evokes the concept of reflection and symmetry.

Semantically, Listing 79 tells another story. The semantics of this pro-

gram text is to compute the exclusive OR of two consecutive reflected bi-

nary codes. The binary reflected code, also called Gray Code, is a way to

represent binary numbers in such a way that incrementing from one num-

ber to another only changes one byte. Following this notation, increment-

ing from 1 to 2 would be written from 001 to 011 rather than from 001 to

0101.

This kind of binary number representation relies on a linear increment

which exhibits further structural properties. For instance, reflected binary

numbers are used in electronic and digital communications, as well as sig-

nal processing, in order to reduce errors in information analysis (since only

one bit changes from one binary number to the next, it becomes easier to

trace through linear changes and catch mistakes). For instance, this par-

1For more details on how this particular program text does its encoding, see (Sanchez,

2016)

419

ticular snippet could be used to detect if there was an error in an encoding

of information by acting as a test control: since it calculates the exclusive

or of two consecutive numbers, there should only ever be a single 1 in the

result, and anymore or less flipped bits would indicate an error in the pro-

cessing.

However, like the aesthetics of mathematics, we here start from this

somewhat simple syntactical representation, followedby a changing of the

scale at which it operates, in order to grasp amore complex, yet highly reg-

ular, structure. In fact, such a structure is used in puzzles like the Towers

of Hanoi, or the Chinese rings puzzle, and is an example of combinatorial

algorithms (D. Knuth, 2011), reconnecting the hacker aesthetic to a certain

kind of playfulness. Through a poetry-like layout and with a mathemati-

cal intent at evoking complex numerical concept, a seemingly simple pro-

gram text allows us, with a subset of source code aesthetics, to grasp a

complex computational structure. Away from names and human idiosyn-

cracies, aesthetics persist2.

The name Assembly, the language in which Listing 79 is written, also

evokes hints of craft, and program texts in Assembly are often referred to

as ”hand-crafted”. As we showed in section 2.3.3, with craft comes com-

munities of practice. Such communities are also an influence on what is

to be considered aesthetically pleasing code. With a strong ethos of craft

running as a thread throughout each of these identified communities (see

chapter 2), well-written code is idiomatic code. This implies that the reader

and the writer both possess some knowledge of the specificities of the lan-

guage or hardware that the code is being written with and executed with.

2A similar experience is told by DougMcEllroy on discovering the structure of FORTRAN

programs, via the struct program: ”Brenda Baker undertook her Fortan-to-Ratfor converter

against the advice of her department head–me. I thought it would likely produce an ad hoc

reordering of the orginal, freed of statement numbers, but otherwise no more readable than a

properly indented Fortran program. Brenda provedmewrong. She discovered that every Fortran

program has a canonically structured form. Programmers preferred the canonicalized form to

what they had originally written.” (McIllroy, 2020)

420

While skilled work is often related to a positive appreciation of the result,

craft also includes a conception of being usable.

This social existence of code and its connection to skilled work also

led us to examine the role of style. Style, in this case, is valued positively

when it represents the acknowledgment of the social existence of code: by

choosing style as a group marker rather than as an individual marker, a

source code is judged positively based on its altruistic ethical nature.

More fundamentally, the aesthetic properties of source code are de-

rived from a conception of code as a semantic material which in terms is

assembled, and apprehended, as a spatial construct, rather than a strictly

literary, mathematical, or architectural material. Code navigation, code

structure or code compression, are terms which all belong to a lexical field

of spatiality, whether visible or not; the aesthetic properties of source code

are tightly related to this apprehension and revealing of conceptual spaces

constructed from machine-readable lexical tokens represeting problem

domains—or, in other words, thought-stuff (Brooks Jr, 1975).

How does source code relate to other aesthetic fields?

Aesthetic properties of source code were deduced from an empirical ap-

proach. We identified thedifferent lexical fields that programmers referred

to as they justified their aesthetic judgments on program texts. Specif-

ically, we have identified how references to other fields of activity were

used as a metaphorical device in order to better qualify source code (e.g.

”source code is like literature…”).

Literature acts as a metaphor for source code through the mapping of

linguistic tokens as the building blocks of both natural language texts and

program texts (see section 4.2), while the architecture metaphor includes

spatiality and habitability, along with an explicit dimension of function

(see section 4.3) and the mathematics metaphor works through a mapping

on abstract conceptual structures and strive for elegance (see section 4.4).

421

We saw that the metaphorical mapping of each of these source domains

ultimately reveal and hide particular aspects and aaffordances of source

code.

Literary aesthetics facilitate the comprehension of the scope of vari-

ables and of the intent of the programmer in relation with the problem

domain. They denote the purpose and intent of specific values, expres-

sions, declarations and statements in a natural language, with a potential

both for poetic evokation, cryptic obfuscation, or plain misinterpretation.

Despite Yukihiro Matsumoto and Donald Knuth’s statements that writ-

ing source code is a literary art (D. E. Knuth, 1984; Matsumoto, 2007), this

turns out to only be partially true: the most literary parts of source code—

comments—are also the parts that are themost decoupled from the actual

source code, and are entirely invisible to the machine.

A strictly literary understanding of source sets aside the particulari-

ties of the reading process of source code and the temporal control of the

writer. A traditional, natural language literary work will assume a linear,

front-to-back readership, while source code is defined by its potential abil-

ity to jump from any part of the text to any other part of the text. Given

this radical difference, references to architectural aesthetics help to estab-

lish structural patterns of familiarity and spatiality. Even though it does

not operate on concrete, ”natural” space, the quality of the disposition and

combination of the application components on the source code page en-

able a better navigation of the source code’s conceptual space. Further-

more the metaphor of code as literature also hides the differences in au-

thorship: literature often assumes a single author, while code is inmajority

written collaboratively, in such an intertwined way that it is complicated

to attribute the origin of program texts to a single person (as in the tracing

of the authorship of Listing 13), a complication which increases with time

and the modification of program texts.

This reduction of a vast conceptual space to natural language represen-

tations, and presented as clear, delimited set of interrelated components

422

reveals the tension in source code between form, function, and the funda-

mental concepts of computation. In this respect, mathematical aesthetics

enable the condensation of knowledge and insight in the least amount of

tokens, minimizing noise, and related to poetic expression. Particularly,

this ability of representing complex ideas into simple terms is a process

of compression shared across poetry, architecture and mathematics, and

resulting in an elegant structure.

The architectural metaphor of source code further confirms this struc-

tural aspect nature of source code. In architecture, a building ultimately

enables flows of people within a static configuration. Similarly, one can

consider source code as the static structurewithinwhich the dynamic pro-

cesses of computation are executed, as illustrated by the term control flow

or leaky abstractions. In a sense, then, source code can be considered as the

blueprint of software, just as a floorplan can be considered the blueprint of

a building—even if such floorplan, in this case, would need to be at the 1:1

scale. Structure for computational processes, then, but also structure for

humans. As discussed in section 4.3.2, the formal arrangement of source

code which enables a programmer to inhabit it, to feel at ease in reading

and modifying such source code is also positively valued. The structural

metaphor of architecture thus works at these two levels.

The maxim form follows function emanates from the field of architec-

ture and therefore allows us to highlight the requirement of function in

the definition of source code aesthetics. software needs to be functional

in order to be aesthetically judged, and aesthetics facilitate the program-

mer’s understanding of what a program text’s function is. This functional

aspect also corresponds to a distinction between the essential and the su-

perfluous or, in architectural terms„ between the decorative and the load-

bearing. In both architecture and programming, there are aguments being

made for the decorative, as a communicative device for a human touch,

while the load-bearing element maps to the elegant engineer, the rather

impersonal constructionwhich cannonetheless do themostwith the least.

423

Finally, thinking of code as architecture allows us to highlight the no-

tion of craft in the appreciation of well-written source code. Software

craftsmanship is both an approach to detail as a particular relationship to

material, tools and knowledge. It is a pendant to an overall architectural

structure in which a bird’s eye view of folder, files, variables and function

declarations can provide a grasp of the overall arrangement and style of

the software described by the program text. At the micro-level, an archi-

tectural approach to source code raises the question of its status as mat-

ter to which one can shape into functional structures. The carefully as-

sembling of a program text, by programmers as craftpersons, ultimately

reveals the materiality of source code as a medium. A crafted program

text takes source code as a material; a cognitive material, but a material

nonetheless, a kind of thought-stuff. The attention to detail, superfluous

for the amateur practitioner, nonetheless communicates a certain kind of

know-how (see subsection 3.1.2) in the places where one can express their

individuality, or focus on a more impersonal and altruistic approach, thus

displying a deep understanding of what they are doing.

This cognitive element is further revealed by the mathematical

metaphor. The most obvious connection is through the common use of

a formal syntax in order to express complex concepts. While initially terse

and foreign, such a language enables a certain kind of play. One can re-

duce an expression, replace its terms, consider problems from a different

angle, at different scales, under different conditions. etc. This play with

symbols reveals a certainmalleability andmodularity of its object, and fur-

ther supports our approach of code as a cognitive material. As shown in

section 2.3.2, aesthetics in source code, as in mathematics, can be seen as

both a by-product and a goal to be reached, implying a certain ideal formal

configuration of symbols for a given problem. Conversely, this relation-

ship with cognition also operates at the earlier stages of writing code: as

a heuristic, a positive aesthetic judgment on a work-in-progress leads the

programmer and the mathematician alike in the right direction of a cor-

424

rectly functioning program text or demonstration.

Most visible in the hacker aesthetic subsection 2.1.2, code as mathe-

matics makes obvious the relationship of aesthetics with intellectual en-

gagement. Whether it is to understand certain subtleties at the algorithm

design level, at the programming language use level, or at the hardware

configuration level, aesthetics have the function of communicating the au-

thor’s knowledge to the reader, either by making the syntactic representa-

tion the simplest possible, while not compromising with the integrity of

the underlying concepts or by making this representation so obfuscated

that these formal arrangements anounce a pleasurable brain-twisting puz-

zle. In any case, the aesthetic experience of code, just like the aesthetic ex-

perience of mathematics is not one which relies on immediate, emotional

reaction. Rather, it demands from the reader a focused attention and cog-

nitive abilities of modelling the space time of a program text; in turn these

two requirements are impacted by formal arrangements, making concepts

harder or easier to grasp.

Aligning with the conceptions of code as literature and code as archi-

tecture is that of elegance. We defined in section 2.2 the notion of elegance,

from poetry to engineering, as the ability to do the most with the least.

Mapping these aesthetic metaphors onto soure code confirmed that a pro-

gram text written in a way that uses the minimum amount of required to-

kens in order to perform the fullest version of its function is one of the

most praised aesthetic abilities. Robust, sparse and straightforward pro-

gram text is considered a beautiful achievement, one in which function,

structure and skill are intertwined toproduce themostwith the least. Here,

this definition of ”the most” is not only one based on quantitative perfor-

mance such as CPU cycles, but also on its easing of the cognitive burden in

understanding and engaging with the technical object that is source code.

However, what the mathematical metaphor does not show is the rela-

tionship between elegance and context. What ”theminimumrequired” and

what ”the fullest version of its function” depend on various factors, from

425

external technical requirements, programming language, number and skill

of collaborators, etc., somethingwhichmathematics, in its presentation as

a lingua unversalis, sets aside.

Overall, then, the overlap of these metaphors have led us to identify

two main aspects: semantic compression and spatial exploration. Seman-

tic compression concerns the ability of a notation to express complex con-

cepts through quantitatively and qualitatively simple combination, while

spatial exploration concerns the ability of source code to be structured in

such a way that is both evocative (the broad shape of things have a relative

connotation to what these things can do) and sustainable (the structuring

of a function ensures that a given action will not have unexpected side-

effects), with the ultimate purpose of facilitating the navigation of pro-

gram texts by the programmer. Furthermore, rather than being opposites

of one another, each reference contributes to the purpose of source code

aesthetics by clarifying the structure of the code at multiple levels and di-

mensions.

Ultimately, all of these elements thus relate to communication and cog-

nition, and to how the (invisible) purpose and intent of the code can be

communicated in (visible) lines of a language straddling the line between

machine and human comprehension. Literature, architecture, mathemat-

ics and engineering all rely on a set vocabulary to enable through under-

standing; their efficiency at doing so can be assessed by the reader’s cor-

rect or erroneous estimationofwhat are the fundamental concepts ofwhat

is being communicated to them. Keywords, tokens and beacons are all

elements which have been found to structure the writing and reading of

source code, allow the programmer to establish a cognitive map of the ab-

stract structure of the program text.

426

Howdo theaesthetics of source code relate to its function?

This final correlation of aesthetics with the communication of intent and

purpose now leads us to address our third research question: the connec-

tions between form and function in source code. We have shown that, in

the case of software engineers, aesthetics can be used to facilitate under-

standing in a functional context, or that, in the case of hackers, aesthetics

can be a display of a deep understanding of the material at hand. As for

scientists and poets, aesthetics perform a role of compression of complex

concepts (be they scientific or poetic) into a concrete form. Aesthetics are

both conditioned to, and signifiers of function.

However, themost crucial aspect of the aesthetics of source code is that

they any positive evaluation is negatively affected if the executed code

does not perform as intended, such as if there is amismatch betweenwhat

theoriginal programmer(s) intended, andhow the actualmachinebehaves.

There is very little guarantee of such a synchronization: the programmer

might say something and the machine do something different, and it is

not clear what or where exactly is that difference. In this case, the pro-

gram text, as the only component of software taken into account by the

computer, is also the only canonical source of investigation into fulfilling

the functional nature of the program.

In this sense, the quality of an aesthetic property (e.g. consistence or co-

herence) can be judged on whether it adequately represents a given con-

cept, behaviour or intent. The unique aspect of this aesthetic judgment

of source code is that there are indeed two judges: the human(s) and the

machine, whereby the possibility for human assessment is dependent on

a presupposed machine assessment. In all the different groups of writers

identified, correctness always conditions pleasantness.

This is verified only to a certain extent for poets, whomdo not require a

program text to be productive in order to be given an aesthetic value. Still,

in the case that the poet does write a syntactically correct text from a ma-

427

chine perspective, and a semantically evocative text from a human person,

the artistic quality of the work created emanates from this technical feat.

Traditionally, the effect is similar: by respecting particular formats (e.g.

the sonnet, the haïku or the alexandrine verse), the poet displays techni-

cal virtue along with emotional sublimation. One understanding of the

poem’s functioning (rather than its producing) is how each chosen words

manage to fulfill the expectation of the technical form and the evocative

content. One might say that a particular choice of word or line ”works” at

a certain location but ”doesn’t work if moved at another part of the poem.

Poems also perform a kind of function that is not as immediately pro-

ductive as a database query. By joining the technical and the emotional,

they perform a more symbolic function about the space of possibilities

and the space of the thinkable given to humans. The poet’s dual display

of skill relates to a conception of art as a connection between the tech-

nological and magical highlighted in subsection section 3.2.1. Displaying

artistic creativity within source code can thus be seen as a way to enchant

the technology of software, by representing it as a technically excellent

crafted object, imbued with poetic expressivity.

This tight coupling of function andappearance, something already very

present in architectural aesthetics (see section section 4.3), also echoes

with Nelson Goodman’s theory of art as composed of a language system

used to express complex ideas (see subsection 4.1.1), and practices of craft

and toolmaking (see section 2.3.3). Source code, while remaining subject

to function, nonetheless allows for a certain versatility in the expression

of the concept (ranging from explicit to implicit); in turn, this expressiv-

ity depends on a given level of skill and practice in the idiosyncracies of

the programming languages used and the programming communities in

which the source code is written (see subsection 5.1.3). The proficiency in

a language involves a ”right way to do things”, resulting in ”things looking

good”, and hints at the fact that there is a certain level of expertise needed

to assess the quality of the aesthetic properties of a program text, and that

428

the novice cannot be expected to provide an informed aesthetic value judg-

ment.

6.2 Contribution

Overall, this thesis has aimed at showing that the specific formal proper-

ties of source code have a functional pupose of enabling epistemic action

based on understanding of a machine language and a problem domain, it-

self conjugated in various contexts.

Source code, as the base of software, belongs first and foremost to the

technological realm, embodying a function and an intent of what should

be achieved. Its aesthetics are thus inscribed within this technological

essence by enabling the communication of the complex ideas which con-

stitute the basis of software (its ideal version, as opposed to its imple-

mented version, and its process of implementation, as opposed to its re-

sult).

While psychological studies and consolidated practical knowledge

have shown that particular kinds of layout and presentation are beneficial

to programunderstanding (see section subsection 3.2.3), this is only one as-

pect of the system of aesthetic properties. Aesthetic values in source code

are also based on the context in which said source code is written or read.

These values, while varying, are nonetheless recurrently depending on a

skilled relation with the program, the machine, and the audience of the

program, as well as the intent of the use.

In order to achieve this epistemic function, and due to software’s am-

biguous nature as an abstract artifact (see section 3.2.1), a variety of aes-

thetic domains are summoned by programmers in order to make sense of

what they describe as occurences of software beauty. Looking specifically

at the overlap of these domains, we have shown that each aim at facilitat-

ing a transitionbetween the surface-level syntax immediately accessible to

429

the reader to the deep-level semantics of the topic at hand. Respectively,

literature aims at evoking themes and narratives (section section 4.2), ar-

chitecture aims at evoking atmospheres and functions (section section 4.3),

while mathematics tries to communicate theorems (section 4.4) and en-

gineering focuses on structural integrity and efficiency (subsection 4.4.3),

with all domains above modulated by an approach to craft as a personal,

hands-on skill.

From the perspective of aesthetic theory, these findings also contribute

to a conception of aesthetics as a communicative endeavour. Specifically,

we have shown that the concept of aesthetics amongst programmers is

not seen exclusively as autotelic, but rather as a possible means to accu-

rately represent something to someone, which falls in line with the works

of Goodman and Parsons and Carlson (Goodman, 1976; G. Parsons et al.,

2012). As such, source code aesthetics acts as an expressive interface be-

tween a concept, a technology and twodistinct individuals. Locatedwithin

the particular techno-social environment of source code, this communica-

tive role is also subject to relatively clear assessments of success or fail-

ure. A successful communication is a communication which is correctly

interpreted, whereby the original ideas transmitted from the writer via the

program text are found in an equivalent representation in the reader, and

enable further effective action. Here, the interpretation is, atminima, what

the program does, and what the program intents to do, things that might

not always be aligned, resulting in the provision of agency in correctly pre-

dicting the implications of the program’s operations and in the ability to

correctly modify the program.

The contributions of this thesis have therefore been in the development

of an aesthetic understanding of source code through an interdisciplinary

analysis of a discourse analysis, drawing across media studies (from lit-

erature to software studies), science and technology studies and aesthetic

philosophy. These discourseswere composed of a corpus of both program-

texts and commentaries and analyses by practitioners of those program

430

texts—analyzing 65 selected source code snippets. In this sense, we have

extended on the contributions of Paloque-Bergès and MacLean and Cox

by applying on their concepts of double-meaning and double-coding and

showing how this co-existence of computer meaning and human mean-

ing extends beyond the more creative writings of source code, and across

communities of source code writers (see subsection 5.2.1).

In doing so, we have also confirmed and extended Piñeiros’ work on

describing code aesthetics as instrumental action, bridging his field of re-

search of software developers with other kinds of source code, and con-

fronting it with specific example. While Piñeiro’s work thoroughly ex-

plores programmers’ perspectives and discourses, it does not extend its

findings to other aesthetic practices mentioned by programmers—by con-

necting it to related field, we inscribe the practice of programming within

a wider field of creative practices.

We proposed a conceptualization of code as semantic matter, from

which executable structures are built. This approach builds on Katherine

Hayles’ distinction between the media properties of print and code—the

former being flat, the latter being deep—and has shown the aesthetic im-

plications of such a distinction. The contribution was to enrich our under-

standing of what code depth is made of, and how surface-level syntactical

tokens enable the creation of deep conceptual structures.

Based on Cayley’s scalar approach, we offered a typology of aesthetic

properties in code, based on the purpose of aesthetics as a communica-

tive endeavour with specific outcomes (see subsection 5.2.2). At the level of

structure, we saw that folder and file structure first provided a macro level

of familiarity with the kind of application being developed, relying on con-

vention and family resemblance, that data modelling offered an expressive

way to communicate the important aspects of the problem domain being

operated on, and that groups of statements resulted both in local coher-

ence of operations and conceptual symmetry as these operations were re-

peated across the program text. At the syntax level, it is the programming

431

language which influences the aesthetic experience of the programmer,

by involving both idiomatic writing and linguistic references, as a way to

demonstrate concise and precise knowledge of ones tool. Finally, the level

of vocabulary enables the most expressiveness for the programmer, with

both typographical parameters such as character length and casing, but

also grammatical parameters, such as naming functions as verbs and vari-

able as nouns, ultimately enabling a practice of double-meaning.

This complements the perspectives provided in Oram and Wilson’s

edited volume (Oram & Wilson, 2007). Instances of beautiful code have

been given a practical framework as a way to idenfity positive aesthetic

properties, beyond their praise by highly-skilled professionals.

Through an empirical take, we have also qualified how Florian Cramer

and his approach to source code as a form of magic relies on very con-

crete technical processes and habits across practices of source code writ-

ing. Building on the work of Alfred Gell describing art as the enchantment

of technology, we have explicited what exactly are the complex technical

hurdles and associated skills required to understand software (section sub-

section 3.2.2). If there ismagic in software, it is alsomanifested through the

artistic appreciation of source code, particularly through hacking (section

subsection 2.1.2) and code poetry (section subsection 2.1.4), and examplified

in works like forkbomb.pl (see listing Listing 80).

In fact, forkbomb.pl is a programwhose function is to replicate itself un-

til the computer on which it run crashes. By subverting the expectation of

what a functional artefact should do, what is allowed, and what is not, this

program text suggests more fundamental questions about what we expect

from automatic productive processes. Nonetheless, it also gains artistic

value from using the aesthetic devices of compression and double mean-

ing, particularly in the use of my $strength variable name.

Finally, this thesis has contributed to a text-based approach to software

aesthetics, as compared to execution-based approaches, in which source

code syntax and semantic tend to be secondary. Within those studies of

432

my $strength = $ARGV[0] + 1;

while(not fork){
exit unless -$strength;
print 0;
twist: while(fork) {

exit unless -$strength;
print 1;

}
}
goto 'twist' if -$strength;

Listing 80: forkbomb.pl - An artwork in the exhibited sense of the term, dis-

playing conciseness and metaphorical expression along with expressive

power through its technical expansion, all the while breaking the expecta-

tion for a program not to overload the hardware on which it runs.

code-dependent aesthetics, such as interface design (P. Fishwick, 2002) or

creative coding (Cox & Soon, 2020), the aim was to provide an account of

what code, considered as thematerial of software, offers in terms of repre-

sentational specificities to enrich and complement those studies. Without

directly contradicting any of the work mentioned in our literature review

(see subsection 1.1.3), our conclusions offer a detailed account of the mate-

rial origins upon which subsequent interpretations of code are based.

6.2.1 Limitations

The first and most obvious of the limitations of this work is that a lot of

source code is not accessible. While originally a freely-circulating com-

modity, the emergence of proprietary software at the dawn of the 1980s

(see subsection 2.1.1) has drastically limited free and open access to source

code. As such, most of the source code written by software engineers in a

commercial context remains confidential. For hackers, due to thenature of

the work as an ad hoc and localized practice, few examples are made pub-

licly available, as they are often enmeshed in more commercial projects,

themselves subject to property restrictions, or in personal, ad hoc projects.

433

Speaking ofwhowrites program texts, we have not engagedwith a kind

ofwriting agentwhich, at the timeofwriting, remains relatively new. Large

LanguageModels (LLMs) have shown a particular propensity tomimic hu-

manwriting by operating a statistical lexical rendering of input text. Since

the input text of these LLMs also includes source code, they are able to

generate source code which achieves various degrees of ready-made func-

tionality. Source code generation by these LLMs open up new questions

which we have not addressed here, notably about natural language con-

versation as an interfacial affordance for source code, stylistic choice as a

probabilistic result or individual choice, and the use and re-use of source

code within non-commercial and commercial contexts, among others.

Another limitation is the expertise level required not just in program-

ming, but in idiomaticity—that is, in knowing how to best phrase an action

in a specific languages, as addressed in subsection subsection 5.1.3—and, to

a lesser extent, in the relevant problem domains. This implication of hav-

ing already a solid grasp on the technical and problem context for an aes-

thetic judgment can have affected the accuracy of the analyses that I have

given in this thesis. Consequently, it is inevitable that other experts pro-

grammers might have different opinions given their personal styles and

backgrounds.

Finally, our focus on the knowledge-component of both aesthetics and

source code has led us to venture into the application of cognitive sciences

tofields such as programming, literature or architecture. Since this is still a

burgeoning endeavour of active research, some of the connections evoked

by the current literature between code and cognition, or beauty and cog-

nition are still bound to evolve.

434

6.3 Opening

Grounded in media studies and aesthetic philosophy, this thesis has

nonetheless aimed at expanding the domain of what is traditionally con-

sidered beautiful, and how it is considered so, by examining the relations

between beauty, function and knowledge in the specificmedium of source

code. Drawing on an interdisciplinary approach, the outcomes of this re-

search thereforehave some impact onboth the arts and sciences in general,

and programming in particular.

Deliberately eschewing notions of the artistic in favor of the beautiful,

the definition work at the beginning of this thesis implicitly hypothesized

that studies of beauty decoupled from art can be rich and fruitful, reveal-

ing aplethora of practices focusingonmaking somethingnice, rather than,

e.g., sublime. This thesis is therefore inscribed in aesthetics of the every-

day, and would suggest ways to apply aesthetic judgments to objects of

study usually excluded from the aesthetic realm. Additionally, we have

shown how such an object—source code—possessmechanics ofmeaning-

making of their own, enabling unique semantic structures.

We also consider implications for programmers and craftspeople. Not

that they need this work to realize that aesthetics and functionality are

deeply intertwined, but rather as an explicit account of the ways in which

this entanglement happens. For programmers, keeping inmind notions of

scale, distance and metaphor within a particular source code would sup-

port better work. For other creators, we hope this would encourage them

to investigate what is it that makes their material unique, and how it re-

lates to other disciplines, and how formal arrangements can be rigorously

thought about, as an effective communication medium.

Ultimately, this work also has ethical implication. Knowledge, by en-

abling one’s agency, supports and encourages good work, as opposed to

meaningless labour. By organizing program texts in such a way that the

next individual can discover and understand underlying concepts trans-

435

mitted through the medium of source code, and then build on and com-

plement this knowledge with their own contribution, one engages in an

ethically altruistic behaviour, as opposed to self-reflexive references.

In closing, we see twomaindirectionswhich can spring form this thesis,

exploring the intricacies of ciomputer-readable knowledge management,

and the worldmaking of code.

The unfolding of digital media in the second half of the twentieth cen-

tury has been seen as an epochal shift, alongwith other technologies of in-

formation reproduction and diffusion. However, computational media is

specific insofar as it can be compressed and presented under various forms

(from electricity to three-dimensional graphical environments and highly-

dimensional vector spaces in recent machine learning approaches). How

does the shape of software impact knowledge management and transmis-

sion, not just for programmers, but for end users as well, starting from

those in the information sciences such as librarians, educators, journal-

ists, researchers, and expanding to anyone engaging in a meaning-making

workwithin a computer environment. While aesthetics can help to signify

complex concepts within source code, do those concepts translate at other

interface levels, or do these subsequent levels hold aesthetics principles of

their own? How can themalleability of code help understanding at various

levels of representation?

In terms of worldview, or how the particular structure of a text has a

particular effect on an audience, the question would be to which extent

does source code structure model and affect the ”real world”3. The execu-

tion of source code engages in a deeply different scale of time and space,

which in turn affects our experience of reality, through abstraction, mod-

ularization and generalization. In terms of modelling, we could ask does
3Throughout this work, we have been referring to the ”real world” as the problem domain.

436

a particular data structure, in how it is written, reveal social, political and

economical agency? To what extent do languages such as Rust, Java or

JavaScript influence the programmer’s perception of the world? What is

the worldview of a compiler? Could that effective impact be observed in

an empiricalmanner? Thismove fromstatic form todynamic actionwould

look at code’s consequences beyond programmers and towards society at

large, all the while remaining grounded in a materialist approach. This re-

lationship between form-giving and meaning-making in digital environ-

ments might start with those who write source code and compose electri-

cal circuits, but ultimately affect all whose lives are tangled with comput-

ers.

437

References

4.4.7, J. F. (2003). Elegant. Retrieved 2023-07-23, from

http://www.catb.org/~esr/jargon/html/E/elegant.html

Abelson, H., Sussman, G. J., & Sussman, J. (1979). Structure and

Interpretation of Computer Programs - 2nd Edition. Justin Kelly.

Akesson, L. (2017). AMind Is Born.

Akten, M. (2016, September). A journey through multiple dimensions and

transformations in SPACE.

Alexander, C. (1979). The Timeless Way of Building. Oxford University

Press.

Alexander, C. (1996). Keynote Speech to the 1996 OOPSLA Convention

[Keynote]. San Jose.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I.,

& Angel, S. (1977). A Pattern Language: Towns, Buildings,

Construction. New York: Oxford University Press.

Allgeier, B. (2021a). Clipboard.js.

Allgeier, B. (2021b). Query.php.

Allgeier, B. (2021c). Route.php.

438

http://www.catb.org/~esr/jargon/html/E/elegant.html

Allgeier, B. (2022). Kirby.

amit. (2012, September). Answer to ”Quicksort: Iterative or Recursive”.

Anthes, G. (2011, June). Beauty and elegance. Communications of the ACM,

54(6), 14–15. doi: 10.1145/1953122.1953131

Aquilina, M. (2015, December). The Computational Sublime in Nick

Montfort’s ‘Round’ and ‘All the Names of God’. CounterText, 1,

348–365. doi: 10.3366/count.2015.0027

Arendt, H. (1998). The human condition (2nd ed. / introduction by

Margaret Canovan. ed.). Chicago: University of Chicago Press.

Aristotle. (2006). Metaphysics. Stilwell, KS : Digireads.com.

Arnaud, N. (1968). Poèmes ALGOL. Temps mélées.

Arns, I. (2005, May). Code as performative speech act. Artnodes, 0(4). doi:

10.7238/a.v0i4.727

Arpaci-Dusseau, R. (2023, May). Ostep-code.

Arpaci-Dusseau, R. H., & Arpaci-Dusseau, A. C. (2018). Operating systems:

Three easy pieces (1.00 ed.). Arpaci-Dusseau Books.

Bakhtin, M. M. M. M. (1981). The dialogic imagination : Four essays. Austin

: University of Texas Press.

Ball, T. (2020, February). Howmuch do we bend to the will of our tools?

Retrieved 2022-09-15, from https://thorstenball.com/blog/2020/02/

04/how-much-do-we-bend-to-the-will-of-our-tools/

Barker, J. (2009). Mathematical beauty. Sztuka I Filozofia (Art and

Philosophy), 35.

439

https://thorstenball.com/blog/2020/02/04/how-much-do-we-bend-to-the-will-of-our-tools/
https://thorstenball.com/blog/2020/02/04/how-much-do-we-bend-to-the-will-of-our-tools/

Barrera, H. O. (2022, October). How the clipboard works. Retrieved

2022-12-09, from https://whynothugo.nl/journal/2022/10/21/

how-the-clipboard-works/

Barthes, R. (1977). S-Z. New York: Hill & Wang.

Barthes, R. (1984). Le bruissement de la langue: essais critiques IV. Paris:

Seuil.

Beardsley, M. C. (1962). The Metaphorical Twist. Philosophy and

Phenomenological Research, 22(3), 293–307. doi: 10.2307/2104415

Beardsley, M. C. (1970). The Aesthetic Point of View. Metaphilosophy, 1(1),

39–58. doi: 10.1111/j.1467-9973.1970.tb00784.x

Beckett, S. (1982). Molloy - Samuel Beckett. Paris: Les Éditions de Minuit.

Berry, D. M. (2011). The Philosophy of Software: Code and Mediation in the

Digital Age. Palgrave-Macmillan.

Berry, K. (2022). TeX-Live.

Bertram, I. (2012). Code {poems}. Barcelona: Impremta Badia.

Biancuzzi, F., & Warden, S. (Eds.). (2009). Masterminds Of Programming.

O’Reilly Media.

Binkley, D., Davis, M., Lawrie, D., & Morrell, C. (2009, May). To camelcase

or under_score. In 2009 IEEE 17th International Conference on

Program Comprehension (pp. 158–167). doi:

10.1109/ICPC.2009.5090039

Black, M. (1955, June). Metaphor. Proceedings of the Aristotelian Society,

55(1), 273–294. doi: 10.1093/aristotelian/55.1.273

Black, M. J. (2002, January). The art of code. Dissertations available from

440

https://whynothugo.nl/journal/2022/10/21/how-the-clipboard-works/
https://whynothugo.nl/journal/2022/10/21/how-the-clipboard-works/

ProQuest, 1–228.

Bogost, I. (2008). The Rhetoric of Video Games. In K. Salen (Ed.), The

Ecology of Games: Connecting Youth, Games and Learning.

Cambridge, MA: The MIT Press.

Bootz, P. (2005). The Problem of Form Transitoire Observable, A Laboratory

For Emergent Programmed Art.

Bouchardon, S. (2014). La valeur heuristique de la littérature numérique.

Editions Hermann.

Bourque, P., & Fairley, R. E. (Eds.). (2014). SWEBOK: Guide to the Software

Engineering Body of Knowledge (Version 3.0 ed.). Los Alamitos, CA:

IEEE Computer Society.

Box, G. E. P. (1976, December). Science and Statistics. Journal of the

American Statistical Association, 71(356), 791–799. doi:

10.1080/01621459.1976.10480949

Bragdon, A., Reiss, S. P., Zeleznik, R., Karumuri, S., Cheung, W., Kaplan, J., …

LaViola, J. J. (2010, May). Code bubbles: Rethinking the user interface

paradigm of integrated development environments. In Proceedings

of the 32nd ACM/IEEE International Conference on Software

Engineering - Volume 1 (pp. 455–464). New York, NY, USA: Association

for Computing Machinery. doi: 10.1145/1806799.1806866

Brand, S. (Ed.). (2019). Code::art::0 (Digital publication ed.). code-art.xyz:

code::art.

Bray, T. (2007). Finding Things. In Beautiful Code. O’Reilly Media.

Brock, K. (2019). Rhetorical Code Studies: Discovering Arguments in and

around Code. Open Research Library. doi: 10.3998/mpub.10019291

441

Brooks, D. (2019, June). Finally, a historical marker that talks about

something important - Granite Geek. Retrieved 2022-06-06, from

https://web.archive.org/web/20190611180750/https://

granitegeek.concordmonitor.com/2019/06/11/

finally-a-historical-marker-that-talks-about-something-important/

Brooks Jr, F. P. (1975). The Mythical Man-month: Essays on Software

Engineering. Addison-Wesley Publishing Company.

Brown, A., & Wilson, G. (2011). Introduction. Retrieved 2023-07-20, from

https://aosabook.org/en/v1/intro1.html

Bryant, G. (2022). Beautiful Software. Retrieved 2023-03-21, from

https://www.buildingbeauty.org/beautiful-software

Bush, D. (2015, January). 15 Ways to Write Beautiful Code - DZone DevOps.

Retrieved 2022-06-03, from

https://dzone.com/articles/15-ways-to-write-beautiful-code

Butler, B. (2012, August). On Programmer Archaeology. Atlanta, GA.

Byrd, W. (2017, May). William Byrd on The Most Beautiful Program Ever

Written.

Campbell-Kelly, M. (2003). From airline reservations to Sonic the Hedgehog

: A history of the software industry. Cambridge, Mass. : MIT Press.

Camus, A. (1972). Noces à Tipasa. In Noces. Paris: Gallimard.

Cañas, J. J., Antolí, A., & Quesada, J. F. (2001). The role of working memory

on measuring mental models of physical systems. Psicologica, 22,

25–42.

Cant, SN., Jeffery, DR., & Henderson-Sellers, B. (1995, January). A

442

https://web.archive.org/web/20190611180750/https://granitegeek.concordmonitor.com/2019/06/11/finally-a-historical-marker-that-talks-about-something-important/
https://web.archive.org/web/20190611180750/https://granitegeek.concordmonitor.com/2019/06/11/finally-a-historical-marker-that-talks-about-something-important/
https://web.archive.org/web/20190611180750/https://granitegeek.concordmonitor.com/2019/06/11/finally-a-historical-marker-that-talks-about-something-important/
https://aosabook.org/en/v1/intro1.html
https://www.buildingbeauty.org/beautiful-software
https://dzone.com/articles/15-ways-to-write-beautiful-code

conceptual model of cognitive complexity of elements of the

programming process. Information and Software Technology, 37(7),

351–362. doi: 10.1016/0950-5849(95)91491-H

Carlson, C. (2010, December). The Mathematica One-Liner

Competition—Wolfram Blog. Retrieved 2023-07-21, from

https://blog.wolfram.com/2010/12/17/

the-mathematica-one-liner-competition/

Carroll, N. (2002, April). Aesthetic Experience Revisited. The British

Journal of Aesthetics, 42(2), 145–168. doi: 10.1093/bjaesthetics/42.2.145

Cayley, J. (2012, January). The Code is not the Text (Unless It Is the Text) ›

electronic book review.

Cellucci, C. (2015). Mathematical Beauty, Understanding, and Discovery.

Foundations of Science, 20(4), 339–355. doi: 10.1007/s10699-014-9378-7

Ceruzzi, P. E. (2003). A History of Modern Computing (2nd ed.). Cambridge,

MA, USA: MIT Press.

Chandra, V. (2014). Geek Sublime: The Beauty of Code, the Code of Beauty.

Graywolf Press.

Chatterjee, A., & Vartanian, O. (2016). Neuroscience of aesthetics. Annals

of the New York Academy of Sciences, 1369(1), 172–194. doi:

10.1111/nyas.13035

Cheney, D. (2019). Practical Go: Real world advice for writing maintainable

Go programs. Retrieved 2023-05-07, from

https://dave.cheney.net/practical-go/presentations/

gophercon-singapore-2019.html#_guiding_principles

Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, M.I.T.

Press.

443

https://blog.wolfram.com/2010/12/17/the-mathematica-one-liner-competition/
https://blog.wolfram.com/2010/12/17/the-mathematica-one-liner-competition/
https://dave.cheney.net/practical-go/presentations/gophercon-singapore-2019.html#_guiding_principles
https://dave.cheney.net/practical-go/presentations/gophercon-singapore-2019.html#_guiding_principles

Chun, W. H. K. (2005, January). On Software, or the Persistence of Visual

Knowledge. Grey Room, 18, 26–51. doi: 10.1162/1526381043320741

Chun, W. H. K. (2008). On ”Sourcery,” or Code as Fetish. Configurations,

16(3), 299–324. doi: 10.1353/con.0.0064

Cities, H. (2022, December). Peter van Hardenberg - Why Can't We

Make Simple Software?

Cohendet, P., Creplet, F., & Dupouët, O. (2001). Organisational innovation,

communities of practice and epistemic communities: The case of

linux. In A. Kirman & J.-B. Zimmermann (Eds.), Economics with

heterogeneous interacting agents (pp. 303–326). Berlin, Heidelberg:

Springer Berlin Heidelberg.

Colburn, T. R. (2000). Philosophy and Computer Science. M.E. Sharpe.

Coleman, E. G. (2012). Coding Freedom: The Ethics and Aesthetics of

Hacking. Princeton: Princeton University Press.

Coleman, R. (2018). Aesthetics Versus Readability of Source Code.

International Journal of Advanced Computer Science and

Applications, 9(9). doi: 10.14569/IJACSA.2018.090902

Collins, H. (2010). Tacit and Explicit Knowledge. University of Chicago

Press.

Committee, G. B. P. H. o. C. S. a. T. (2010). The Disclosure of Climate Data

from the Climatic Research Unit at the University of East Anglia:

Eighth Report of Session 2009-10, Vol. 2: Oral and Written Evidence.

The Stationery Office.

Confreaks, & Hickey, R. (2012, May). Rails Conf 2012 Keynote: Simplicity

Matters by Rich Hickey.

444

Cox, G., & McLean, C. A. (2013). Speaking Code: Coding as Aesthetic and

Political Expression. MIT Press.

Cox, G., & Soon, W. (2020). Aesthetic Programming: A Handbook of

Software Studies. Open Humanities Press.

Cox, G., Ward, A., & McLean, A. (2011). The Aesthetics of Generative Code.

In International Conference on Generative Art.

CPPP Conference. (2022, April). Keynote: On the Aesthetics of Code - Sy

Brand - CPPP 2021.

Cramer, F. (2003). Words Made Flesh. Piet Zwart Institute.

Craver, S. (2015). The Underhanded C Contest » About.

Croll, A. (2014). If Hemingway Wrote JavaScript. No Starch Press.

Davies, S. P. (1993, August). Models and theories of programming strategy.

International Journal of Man-Machine Studies, 39(2), 237–267. doi:

10.1006/imms.1993.1061

de Saint-Exupéry, A. (1972). Terre des Hommes. Gallimard.

de Certeau, M., Giard, L., & Mayol, P. (1990). L’invention du quotidien.

Gallimard.

Defense Technical Information Center. (1970, January). An Empirical Study

of Fortran Programs (Tech. Rep. No. AD0715513). Stanford University.

Depaz, P. (2021). The Craft of Code: Practice and Knowledge in the

Production of Software. Kuckuck, 1.

Depaz, P. (2022, March). Discursive Strategies in Style Guides Negotiation

on GitHub. RESET. Recherches en sciences sociales sur Internet, 11(11).

doi: 10.4000/reset.3425

445

Depaz, P. (2023). Stylistique de la recherche linguistique en IA: De LISP à

GPT-3. In A. Gefen (Ed.), Créativités artificielles – La littérature et l’art

à l’heure de l’intelligence artificielle. Les Presses du Réel.

Detienne, F. (2001). Software Design – Cognitive Aspect. Springer Science &

Business Media.

Deutsche Bundestag. (2022). GG - Grundgesetz für die Bundesrepublik

Deutschland. Retrieved 2023-06-01, from

https://www.gesetze-im-internet.de/gg/BJNR000010949.html

Dexter, S., Dolese, M., Seidel, A., & Kozbelt, A. (2011, January). On the

Embodied Aesthetics of Code. Culture Machine, 12(1).

Dicola, T. (2015). Pi_video_looper/video_looper.py at master ·

adafruit/pi_video_looper · GitHub. Retrieved 2023-05-10, from

https://archive.softwareheritage.org/swh:1:cnt:

cd50aeb12d0f1d0a3476a0667a5840a64269dbb6;origin=https://

github.com/adafruit/pi_video_looper;visit=swh:1:snp:

bbd8d997b75d9def6b12022c6f65df02ccc95b57;anchor=swh:1:rev:

5aad09bb9423915479e941d2b82307d165ce4354;path=/

Adafruit_Video_Looper/video_looper.py;lines=120-128

Dijk, T. A., & Kintsch, W. (1983). Strategies of Discourse Comprehension.

New York, NY: Academic Press Ltd.

Dijkstra, E. (1963). On the design of machine independent programming

languages. Annual Review in Automatic Programming, 3, 27–42. doi:

10.1016/S0066-4138(63)80003-8

Dijkstra, E. W. (1965). Cooperating sequential processes (EWD-123) (Tech.

Rep. No. EWD-123). Eindhoven Technological University.

Dijkstra, E. W. (1968, March). Letters to the editor: Go to statement

446

https://www.gesetze-im-internet.de/gg/BJNR000010949.html
https://archive.softwareheritage.org/swh:1:cnt:cd50aeb12d0f1d0a3476a0667a5840a64269dbb6;origin=https://github.com/adafruit/pi_video_looper;visit=swh:1:snp:bbd8d997b75d9def6b12022c6f65df02ccc95b57;anchor=swh:1:rev:5aad09bb9423915479e941d2b82307d165ce4354;path=/Adafruit_Video_Looper/video_looper.py;lines=120-128
https://archive.softwareheritage.org/swh:1:cnt:cd50aeb12d0f1d0a3476a0667a5840a64269dbb6;origin=https://github.com/adafruit/pi_video_looper;visit=swh:1:snp:bbd8d997b75d9def6b12022c6f65df02ccc95b57;anchor=swh:1:rev:5aad09bb9423915479e941d2b82307d165ce4354;path=/Adafruit_Video_Looper/video_looper.py;lines=120-128
https://archive.softwareheritage.org/swh:1:cnt:cd50aeb12d0f1d0a3476a0667a5840a64269dbb6;origin=https://github.com/adafruit/pi_video_looper;visit=swh:1:snp:bbd8d997b75d9def6b12022c6f65df02ccc95b57;anchor=swh:1:rev:5aad09bb9423915479e941d2b82307d165ce4354;path=/Adafruit_Video_Looper/video_looper.py;lines=120-128
https://archive.softwareheritage.org/swh:1:cnt:cd50aeb12d0f1d0a3476a0667a5840a64269dbb6;origin=https://github.com/adafruit/pi_video_looper;visit=swh:1:snp:bbd8d997b75d9def6b12022c6f65df02ccc95b57;anchor=swh:1:rev:5aad09bb9423915479e941d2b82307d165ce4354;path=/Adafruit_Video_Looper/video_looper.py;lines=120-128
https://archive.softwareheritage.org/swh:1:cnt:cd50aeb12d0f1d0a3476a0667a5840a64269dbb6;origin=https://github.com/adafruit/pi_video_looper;visit=swh:1:snp:bbd8d997b75d9def6b12022c6f65df02ccc95b57;anchor=swh:1:rev:5aad09bb9423915479e941d2b82307d165ce4354;path=/Adafruit_Video_Looper/video_looper.py;lines=120-128
https://archive.softwareheritage.org/swh:1:cnt:cd50aeb12d0f1d0a3476a0667a5840a64269dbb6;origin=https://github.com/adafruit/pi_video_looper;visit=swh:1:snp:bbd8d997b75d9def6b12022c6f65df02ccc95b57;anchor=swh:1:rev:5aad09bb9423915479e941d2b82307d165ce4354;path=/Adafruit_Video_Looper/video_looper.py;lines=120-128

considered harmful. Communications of the ACM, 11(3), 147–148. doi:

10.1145/362929.362947

Dijkstra, E. W. (1972). Chapter I: Notes on structured programming. In

Structured programming (pp. 1–82). Academic Press Ltd.

Dijkstra, E. W. (1975). How do we tell truths that might hurt?

Dijkstra, E. W. (1982). “Craftsman or Scientist?”. In E. W. Dijkstra (Ed.),

Selected Writings on Computing: A personal Perspective (pp. 104–109).

New York, NY: Springer. doi: 10.1007/978-1-4612-5695-3_19

Dijkstra, E. W. (2007, January). The humble programmer. In ACM Turing

award lectures (p. 1972). New York, NY, USA: Association for

Computing Machinery.

DiLascia, P. (2019, October). { End Bracket }: What Makes Good Code Good?

Retrieved 2022-06-02, from

https://docs.microsoft.com/en-us/archive/msdn-magazine/2004/

july/%7b-end-bracket-%7d-what-makes-good-code-good

Dourish, P. (1988). The Original Hacker’s Dictionary.

Downton, P. (1998). On Knowledge In Architecture and Science.

Duff, T. (1983, October). Tom Duff on Duff’s Device. Retrieved 2022-06-01,

from http://www.lysator.liu.se/c/duffs-device.html

du Gay, P., Hall, S., Janes, L., Madsen, A. K., Mackay, H., & Negus, K. (2013).

Doing Cultural Studies: The Story of the Sony Walkman (Second

edition ed.). Los Angeles, CA: SAGE Publications Ltd.

Du Maurier, D. (1938). Rebecca ([Book Club edition] ed.). Garden City, NY:

Doubleday & Company.

447

https://docs.microsoft.com/en-us/archive/msdn-magazine/2004/july/%7b-end-bracket-%7d-what-makes-good-code-good
https://docs.microsoft.com/en-us/archive/msdn-magazine/2004/july/%7b-end-bracket-%7d-what-makes-good-code-good
http://www.lysator.liu.se/c/duffs-device.html

Efatmaneshnik, M., & Ryan, M. J. (2019, September). On the Definitions of

Sufficiency and Elegance in Systems Design. IEEE Systems Journal,

13(3), 2077–2088. doi: 10.1109/JSYST.2018.2875152

Elgin, C. Z. (1993, April). Understanding: Art and science. Synthese, 95(1),

13–28. doi: 10.1007/BF01064665

Elgin, C. Z. (2011). Making Manifest: The Role of Exemplification in the

Sciences and the Arts. Principia: An International Journal of

Epistemology, 15(3), 399–413. doi: 10.5007/1808-1711.2011v15n3p399

Elgin, C. Z. (2017). True Enough. Boston: The MIT Press.

Elgin, C. Z. (2020). Understanding Understanding Art. In V. Granata,

R. Pouivet, & Université de Lorraine (Eds.), Épistémologie de

l’esthétique: perspectives et débats. Rennes: Presses universitaires de

Rennes.

Ensmenger, N. L. (2012). The Computer Boys Take Over: Computers,

Programmers, and the Politics of Technical Expertise. Cambridge,

Mass.: The MIT Press.

Ershov, A. P. (1972, July). Aesthetics and the human factor in programming.

Communications of the ACM, 15(7), 501–505. doi: 10.1145/361454.361458

Fakhoury, S., Roy, D., Hassan, S. A., & Arnaoudova, V. (2019, May).

Improving source code readability: Theory and practice. In

Proceedings of the 27th International Conference on Program

Comprehension (pp. 2–12). Montreal, Quebec, Canada: IEEE Press.

doi: 10.1109/ICPC.2019.00014

Fishwick, P. (2002). Aesthetic Programming: Crafting Personalized

Software. Leonardo, 35(4).

Fishwick, P. A. (Ed.). (2006). Aesthetic Computing. The MIT Press. doi:

448

10.7551/mitpress/1135.001.0001

Flusser, V., & Novaes, R. M. (2014). On Doubt. University of Minnesota

Press.

Foote, B., & Yoder, J. (1997). Big Ball of Mud. Retrieved 2022-06-03, from

http://www.laputan.org/mud/mud.html#BigBallOfMud

Forsythe, K. (1986). Cathedrals in the Mind: The Architecture of Metaphor

in Understanding Learning. In R. Trappl (Ed.), Cybernetics and

Systems ’86: Proceedings of the Eighth European Meeting on

Cybernetics and Systems Research, organized by the Austrian Society

for Cybernetic Studies, held at the University of Vienna, Austria, 1–4

April 1986 (pp. 285–292). Dordrecht: Springer Netherlands. doi:

10.1007/978-94-009-4634-7_37

Fowler, M. (2009). TwoHardThings. Retrieved 2023-05-08, from

https://martinfowler.com/bliki/TwoHardThings.html

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D., & Gamma, E. (1999).

Refactoring: Improving the Design of Existing Code (1st edition ed.).

Reading, MA: Addison-Wesley Professional.

Frasca, G. (2013). Simulation versus Narrative : Introduction to Ludology.

Routledge. doi: 10.4324/9780203700457-11

Fuller, M. (Ed.). (2008). Software Studies: A Lexicon. Cambridge, Mass: The

MIT Press.

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D., Hernán-Losada, I.,

Jackova, J., … Thompson, E. (2007, December). Developing a

computer science-specific learning taxonomy. ACM SIGCSE Bulletin,

39(4), 152–170. doi: 10.1145/1345375.1345438

Gabriel, R. P. (1998). Patterns of Software: Tales from the Software

449

http://www.laputan.org/mud/mud.html#BigBallOfMud
https://martinfowler.com/bliki/TwoHardThings.html

Community. Oxford University Press.

Galloway, A. R. (2006, December). Language Wants To Be Overlooked: On

Software and Ideology. Journal of Visual Culture, 5(3), 315–331. doi:

10.1177/1470412906070519

Galloway, A. R. (2012). The Interface Effect (1st edition ed.). Cambridge, UK

; Malden, MA: Polity.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., & Booch, G. (1994). Design

Patterns: Elements of Reusable Object-Oriented Software (1st edition

ed.). Reading, Mass: Addison-Wesley Professional.

Gannon, J. D., & Horning, J. J. (1975, April). The impact of language design

on the production of reliable software. ACM SIGPLAN Notices, 10(6),

10–22. doi: 10.1145/390016.808420

Garfinkel, S. (2000). Biological Computing. Retrieved 2023-07-27, from

https://www.technologyreview.com/2000/05/01/236304/

biological-computing/

Garland, D. (2000). Software Architecture: A Roadmap. In The Future of

Software Engineering (Anthony Finkelstein (Ed.) ed.). ACM Press.

Garry, C., & Hamilton, M. (1969).

LUNAR_LANDING_GUIDANCE_EQUATIONS.agc. Retrieved

2023-07-22, from https://archive.softwareheritage.org/swh:1:cnt:

b269a39d9d92fa5e443344e03403966daf503eb5;origin=https://

github.com/chrislgarry/Apollo-11;visit=swh:1:snp:

3124c2317c6f820c9f84343a220790c8810f63df;anchor=swh:1:rev:

b56b8c3d03e810a6ceb69e1c0874d4c89d2c32f6;path=/Luminary099/

LUNAR_LANDING_GUIDANCE_EQUATIONS.agc;lines=663-670

Gefen, A., & Perez, C. P. (2019, September). Extension du domaine de la

450

https://www.technologyreview.com/2000/05/01/236304/biological-computing/
https://www.technologyreview.com/2000/05/01/236304/biological-computing/
https://archive.softwareheritage.org/swh:1:cnt:b269a39d9d92fa5e443344e03403966daf503eb5;origin=https://github.com/chrislgarry/Apollo-11;visit=swh:1:snp:3124c2317c6f820c9f84343a220790c8810f63df;anchor=swh:1:rev:b56b8c3d03e810a6ceb69e1c0874d4c89d2c32f6;path=/Luminary099/LUNAR_LANDING_GUIDANCE_EQUATIONS.agc;lines=663-670
https://archive.softwareheritage.org/swh:1:cnt:b269a39d9d92fa5e443344e03403966daf503eb5;origin=https://github.com/chrislgarry/Apollo-11;visit=swh:1:snp:3124c2317c6f820c9f84343a220790c8810f63df;anchor=swh:1:rev:b56b8c3d03e810a6ceb69e1c0874d4c89d2c32f6;path=/Luminary099/LUNAR_LANDING_GUIDANCE_EQUATIONS.agc;lines=663-670
https://archive.softwareheritage.org/swh:1:cnt:b269a39d9d92fa5e443344e03403966daf503eb5;origin=https://github.com/chrislgarry/Apollo-11;visit=swh:1:snp:3124c2317c6f820c9f84343a220790c8810f63df;anchor=swh:1:rev:b56b8c3d03e810a6ceb69e1c0874d4c89d2c32f6;path=/Luminary099/LUNAR_LANDING_GUIDANCE_EQUATIONS.agc;lines=663-670
https://archive.softwareheritage.org/swh:1:cnt:b269a39d9d92fa5e443344e03403966daf503eb5;origin=https://github.com/chrislgarry/Apollo-11;visit=swh:1:snp:3124c2317c6f820c9f84343a220790c8810f63df;anchor=swh:1:rev:b56b8c3d03e810a6ceb69e1c0874d4c89d2c32f6;path=/Luminary099/LUNAR_LANDING_GUIDANCE_EQUATIONS.agc;lines=663-670
https://archive.softwareheritage.org/swh:1:cnt:b269a39d9d92fa5e443344e03403966daf503eb5;origin=https://github.com/chrislgarry/Apollo-11;visit=swh:1:snp:3124c2317c6f820c9f84343a220790c8810f63df;anchor=swh:1:rev:b56b8c3d03e810a6ceb69e1c0874d4c89d2c32f6;path=/Luminary099/LUNAR_LANDING_GUIDANCE_EQUATIONS.agc;lines=663-670
https://archive.softwareheritage.org/swh:1:cnt:b269a39d9d92fa5e443344e03403966daf503eb5;origin=https://github.com/chrislgarry/Apollo-11;visit=swh:1:snp:3124c2317c6f820c9f84343a220790c8810f63df;anchor=swh:1:rev:b56b8c3d03e810a6ceb69e1c0874d4c89d2c32f6;path=/Luminary099/LUNAR_LANDING_GUIDANCE_EQUATIONS.agc;lines=663-670

littérature Extension du domaine de la littérature. Elfe XX-XXI

Études de la littérature française des XXe et XXIe siècles.

Gelernter, D. H. (1998). Machine beauty : Elegance and the heart of

technology. New York : Basic Books.

Genette, G. (1993). Fiction & Diction. Cornell University Press.

Gentner, D., & Nielsen, J. (1996, August). The Anti-Mac interface.

Communications of the ACM, 39(8), 70–82. doi: 10.1145/232014.232032

Gibbons, J. (2012, April). The beauty of simplicity. Communications of the

ACM, 55(4), 6–7. doi: 10.1145/2133806.2133808

Goodliffe, P. (2007). Code Craft: The Practice of Writing Excellent Code. No

Starch Press.

Goodman, N. (1976). Languages of Art (2nd edition ed.). Indianapolis, Ind.:

Hackett Publishing Company, Inc.

Goodman, N. (1978). Ways Of Worldmaking. Indianapolis, IN: Hackett.

Goodman, N., & Others, A. (1972, September). Basic Abilities Required for

Understanding and Creation in the Arts. Final Report (Tech. Rep. No.

ED071 989). Boston, MA: Harvard University.

Goody, J. (1977). The Domestication of the Savage Mind. Cambridge

University Press.

Goody, J. (1986). The Logic of Writing and the Organization of Society.

Cambridge University Press. doi: 10.1017/CBO9780511621598

Goriunova, O., & Shulgin, A. (2005). Read Me: Software Art & Cultures

(2004th edition ed.). Aarhus: Aarhus University Press.

Graham, G. (2000). Architecture as an Art. In Philosophy of the Arts (2nd

451

ed.). Routledge.

Graham, P. (2003, May). Hackers and Painters. Retrieved 2022-06-01, from

http://www.paulgraham.com/hp.html

Granger, G.-G. (1988). Essai d’une philosophie du style. Paris: Odile Jacob /

Seuil.

Green, R. (2006, August). How ToWrite Unmaintainable Code. Retrieved

2022-06-03, from https://archive.ph/Pn5hH

Greenberg, B. S. (1996, August). Multics Emacs

History/Design/Implementation. Retrieved 2022-12-18, from

https://www.multicians.org/mepap.html#secviii

Grudin, J. (2016, December). From Tool to Partner: The Evolution of

Human-Computer Interaction. Synthesis Lectures on

Human-Centered Informatics, 10(1), i–183. doi:

10.2200/S00745ED1V01Y201612HCI035

Guerra, E., & Manns, M. L. (2022). PLoP 2022 - 29th Conference on Pattern

Languages of Programs (online). Retrieved 2023-03-20, from

https://hillside.net/plop/2022/index.php?nav=ploppaperscfp

Guerrouj, L. (2013, May). Normalizing source code vocabulary to support

program comprehension and software quality. In Proceedings of the

2013 International Conference on Software Engineering (pp.

1385–1388). San Francisco, CA, USA: IEEE Press.

Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P., Pfahl, D., & Wilson,

G. (2009, May). How do scientists develop and use scientific

software? In 2009 ICSE Workshop on Software Engineering for

Computational Science and Engineering (pp. 1–8). doi:

10.1109/SECSE.2009.5069155

452

http://www.paulgraham.com/hp.html
https://archive.ph/Pn5hH
https://www.multicians.org/mepap.html#secviii
https://hillside.net/plop/2022/index.php?nav=ploppaperscfp

Hansen, M. B. N. (2006). Bodies in Code: Interfaces with Digital Media.

New York: Routledge. doi: 10.4324/9780203942390

Hardy, G. H. (2012). AMathematician’s Apology. Cambridge: Cambridge

University Press. doi: 10.1017/CBO9781107295599

Harlow, F., & Fromm, J. (1965). Computer Experiments in Fluid Dynamics.

Scientific American, 212(3), 104–110. doi:

10.1038/SCIENTIFICAMERICAN0365-104

Harman, M. (2010, September). Why Source Code Analysis and

Manipulation Will Always be Important. In 2010 10th IEEE Working

Conference on Source Code Analysis and Manipulation (pp. 7–19). doi:

10.1109/SCAM.2010.28

Hatton, L., & Roberts, A. (1994, October). How accurate is scientific

software? IEEE Transactions on Software Engineering, 20(10),

785–797. doi: 10.1109/32.328993

Hayes, B. (2015). Cultures of Code. American Scientist, 103(1).

Hayles, N. K. (2004, March). Print Is Flat, Code Is Deep: The Importance of

Media-Specific Analysis. Poetics Today, 25(1), 67–90. doi:

10.1215/03335372-25-1-67

Hayles, N. K. (2010). MyMother Was a Computer: Digital Subjects and

Literary Texts. University of Chicago Press.

Heidegger, M., & Hofstadter, A. (1975). Building, Dwelling, Thinking. In

Poetry, language, thought (1st Harper Colophone ed ed.). New York:

Harper & Row.

Heinonen, A., Lehtelä, B., Hellas, A., & Fagerholm, F. (2023, July).

Synthesizing research on programmers’ mental models of programs,

tasks and concepts — A systematic literature review. Information

453

and Software Technology, 107300. doi: 10.1016/j.infsof.2023.107300

Henningsen, E., & Larsen, H. (2020, September). The Joys of Wiki Work:

Craftsmanship, Flow and Self-externalization in a Digital

Environment. In R. Audunson, H. Andresen, & C. Fagerlid (Eds.),

Libraries, Archives and Museums as Democratic Spaces in a Digital

Age (pp. 345–362). De Gruyter Saur. doi: 10.1515/9783110636628-017

Hermans, F., Chahchouhi, M., & Al-Ers, H. (2020). The Role of Aesthetics in

Code: A Qualitative Interview Study with Professionals. In PX/20.

Porto, Portugal.

Hill, R. K. (2016, November). What Makes a Program Elegant? Retrieved

2022-06-13, from https://cacm.acm.org/blogs/blog-cacm/

208547-what-makes-a-program-elegant/fulltext

Hoare, C. A. R. (1972, January). Chapter II: Notes on data structuring. In

Structured programming (pp. 83–174). GBR: Academic Press Ltd.

Hoare, C. A. R. (1981). The emperor’s old clothes. Commun. ACM, 24(2),

75–83. doi: 10.1145/358549.358561

Hoare, C. A. R. (1996). How did software get so reliable without proof? In

M.-C. Gaudel & J. Woodcock (Eds.), FME’96: Industrial Benefit and

Advances in Formal Methods (pp. 1–17). Berlin, Heidelberg: Springer.

doi: 10.1007/3-540-60973-3_77

Holden, M. D., & Kerr, M. C. (2016). ./code –poetry (1.0 edition ed.). S.L:

CreateSpace Independent Publishing Platform.

Hopkins, S. (1992). Camels and Needles: Computer Poetry Meets the Perl

Programming Language. Usenix Technical Conference.

Houkes, W., & Vermaas, P. (2004, January). Actions Versus Functions: A

Plea for an Alternative Metaphysics of Artifacts*. The Monist, 87(1),

454

https://cacm.acm.org/blogs/blog-cacm/208547-what-makes-a-program-elegant/fulltext
https://cacm.acm.org/blogs/blog-cacm/208547-what-makes-a-program-elegant/fulltext

52–71. doi: 10.5840/monist20048712

Hunt, A., & Thomas, D. (1999). The Pragmatic Programmer: From

Journeyman to Master (1st edition ed.). Reading, Mass:

Addison-Wesley Professional.

Ifrah, G. (2001). The universal history of computing : From the abacus to the

quantum computer. New York : John Wiley.

Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., & Kay, A. (1997, October).

Back to the future: The story of Squeak, a practical Smalltalk

written in itself. ACM SIGPLAN Notices, 32(10), 318–326. doi:

10.1145/263700.263754

Inglis, M., & Aberdein, A. (2015). Beauty is Not Simplicity: An Analysis of

Mathematicians’ Proof Appraisals. Philosophia Mathematica, 23(1),

87–109. doi: 10.1093/philmat/nku014

interstar. (2017, June). Quality Without A Name (QWAN) examples? [Forum

Post].

Investigator, Q. (2018, April). In Theory There Is No Difference Between

Theory and Practice, While In Practice There Is – Quote Investigator.

Irmak, N. (2012). Software is an Abstract Artifact. Grazer Philosophische

Studien, 86(1), 55–72. doi: 10.1163/9789401209182_005

Ivanova, A. A., Srikant, S., Sueoka, Y., Kean, H. H., Dhamala, R., O’Reilly,

U.-M., … Fedorenko, E. (2020, December). Comprehension of

computer code relies primarily on domain-general executive brain

regions. eLife, 9, e58906. doi: 10.7554/eLife.58906

Jackson, K. (2010). ”Perfection is achieved, not when there is nothing more

to add, but when there i... | Hacker News. Retrieved 2023-07-22, from

https://news.ycombinator.com/item?id=1640594

455

https://news.ycombinator.com/item?id=1640594

Jacques, J. T., & Kristensson, P. O. (2015, October). Understanding the

effects of code presentation. In Proceedings of the 6th Workshop on

Evaluation and Usability of Programming Languages and Tools (pp.

27–30). New York, NY, USA: Association for Computing Machinery.

doi: 10.1145/2846680.2846685

James, G. (1987). The Tao of Programming. InfoBooks.

Jameson, F. (1991). Postmodernism Or, The Cultural Logic Of Late

Capitalism. UK: Verso.

Jeantet, A. (1998). Les objets intermédiaires dans la conception. Éléments

pour une sociologie des processus de conception. Sociologie du

travail, 40(3), 291–316. doi: 10.3406/sotra.1998.1333

Jeiss, J. (2002, March). The Poetry of Programming. Retrieved 2022-06-01,

from https://www.dreamsongs.com/PoetryOfProgramming.html

Jones, M. L. (2016). Reckoning with Matter: Calculating Machines,

Innovation, and Thinking about Thinking from Pascal to Babbage (1st

edition ed.). Chicago ; London: University of Chicago Press.

Jullien, C. (2012, September). From the Languages of Art to Mathematical

Languages, and back again. Enrahonar, Quaderns de Filosofia, 49,

91–105. doi: 10.5565/rev/enrahonar/v49.89

Kagen, M., & Werner, K. J. (2016, October). Code Poetry Slam. Retrieved

2023-07-22, from https://web.archive.org/web/20161024152353/http://

stanford.edu//~mkagen/codepoetryslam/

Kanakarakis, I. (2022, May). The International Obfuscated C Code Contest.

Karvonen, K. (2000, November). The beauty of simplicity. In Proceedings

on the 2000 conference on Universal Usability (pp. 85–90). New York,

NY, USA: Association for Computing Machinery. doi:

456

https://www.dreamsongs.com/PoetryOfProgramming.html
https://web.archive.org/web/20161024152353/http://stanford.edu//~mkagen/codepoetryslam/
https://web.archive.org/web/20161024152353/http://stanford.edu//~mkagen/codepoetryslam/

10.1145/355460.355478

Kay, A. (2004, December). A Conversation with Alan Kay - ACM Queue.

ACMQueue, 2(9).

Kay, A. C. (1993, March). The early history of Smalltalk. ACM SIGPLAN

Notices, 28(3), 69–95. doi: 10.1145/155360.155364

Keith, J. (2016). Resilient Web Design - Chapter 2. Retrieved 2023-03-06,

from https://resilientwebdesign.com/chapter2/

Keller, A. (2021, June). Des textes d’algorithmes concis, quelques exemples

tirés de sūtras d’Āryabhat�a et de son commentaire par Bhāskara.

[Séminaire].

Kelly, D. F. (2007, November). A Software Chasm: Software Engineering

and Scientific Computing. IEEE Software, 24(6), 120–119. doi:

10.1109/MS.2007.155

Kernighan, B. W. (1981, February). Why Pascal is Not My Favorite

Programming Language. Retrieved 2023-04-28, from

https://www.lysator.liu.se/c/bwk-on-pascal.html

Kernighan, B. W. (2007). A Regular Expression Matcher. In Beautiful Code.

O’Reilly Media.

Kernighan, B. W., & Plauger, P. J. (1978). The Elements of Programming

Style, 2nd Edition (2nd edition ed.). New York: McGraw-Hill.

Kidd, E. (2005). Why Ruby is an acceptable LISP (2005) | Random Hacks.

Retrieved 2023-05-07, from http://www.randomhacks.net/2005/12/

03/why-ruby-is-an-acceptable-lisp/

Kintsch, W., & van Dijk, T. A. (1978). Toward a model of text

comprehension and production. Psychological Review, 85(5), 363–394.

457

https://resilientwebdesign.com/chapter2/
https://www.lysator.liu.se/c/bwk-on-pascal.html
http://www.randomhacks.net/2005/12/03/why-ruby-is-an-acceptable-lisp/
http://www.randomhacks.net/2005/12/03/why-ruby-is-an-acceptable-lisp/

doi: 10.1037/0033-295X.85.5.363

Kirchner, M. (2022a). Linked List. Retrieved 2023-03-27, from

https://archive.softwareheritage.org/swh:1:cnt:

78b25703fda5206fd4c9ecb5740dd0093932a654;origin=https://

github.com/mkirchner/linked-list-good-taste;visit=swh:1:snp:

5161a108062afd8d87cb24b4568dc8a1b80ed197;anchor=swh:1:rev:

cbc3fb92257c5444b461637fd08394820129361f;path=/src/

list.h;lines=6-18

Kirchner, M. (2022b). Linked List - Removing. Retrieved 2023-03-28, from

https://archive.softwareheritage.org/swh:1:cnt:

6dd41adbff62aa9cd5a310690d5b3943ae52c1bf;origin=https://

github.com/mkirchner/linked-list-good-taste;visit=swh:1:snp:

5161a108062afd8d87cb24b4568dc8a1b80ed197;anchor=swh:1:rev:

cbc3fb92257c5444b461637fd08394820129361f;path=/src/

list.c;lines=3-42

Kirschenbaum, M. G. (2004). “So the colors cover the wires”: Interface,

aesthetics, and usability. In A companion to digital humanities (pp.

523–542). John Wiley & Sons, Ltd. doi: 10.1002/9780470999875.ch34

Kirsh, D., & Maglio, P. (1994). On Distinguishing Epistemic From

Pragmatic Action. Cognitive Science, 18(4), 513–49. doi:

10.1207/s15516709cog1804_1

Kitchin, R., & Dodge, M. (2011). Code/Space: Software and Everyday Life.

The MIT Press. doi: 10.7551/mitpress/9780262042482.001.0001

Kittler, F. A. (1997). There Is No Software. In Literature, Media, Information

Systems: Essays (John Johnston ed., pp. 147–155). Amsterdam:

Amsterdam Overseas Publishers Association.

Kline, R. B., & Seffah, A. (2005, December). Evaluation of integrated

458

https://archive.softwareheritage.org/swh:1:cnt:78b25703fda5206fd4c9ecb5740dd0093932a654;origin=https://github.com/mkirchner/linked-list-good-taste;visit=swh:1:snp:5161a108062afd8d87cb24b4568dc8a1b80ed197;anchor=swh:1:rev:cbc3fb92257c5444b461637fd08394820129361f;path=/src/list.h;lines=6-18
https://archive.softwareheritage.org/swh:1:cnt:78b25703fda5206fd4c9ecb5740dd0093932a654;origin=https://github.com/mkirchner/linked-list-good-taste;visit=swh:1:snp:5161a108062afd8d87cb24b4568dc8a1b80ed197;anchor=swh:1:rev:cbc3fb92257c5444b461637fd08394820129361f;path=/src/list.h;lines=6-18
https://archive.softwareheritage.org/swh:1:cnt:78b25703fda5206fd4c9ecb5740dd0093932a654;origin=https://github.com/mkirchner/linked-list-good-taste;visit=swh:1:snp:5161a108062afd8d87cb24b4568dc8a1b80ed197;anchor=swh:1:rev:cbc3fb92257c5444b461637fd08394820129361f;path=/src/list.h;lines=6-18
https://archive.softwareheritage.org/swh:1:cnt:78b25703fda5206fd4c9ecb5740dd0093932a654;origin=https://github.com/mkirchner/linked-list-good-taste;visit=swh:1:snp:5161a108062afd8d87cb24b4568dc8a1b80ed197;anchor=swh:1:rev:cbc3fb92257c5444b461637fd08394820129361f;path=/src/list.h;lines=6-18
https://archive.softwareheritage.org/swh:1:cnt:78b25703fda5206fd4c9ecb5740dd0093932a654;origin=https://github.com/mkirchner/linked-list-good-taste;visit=swh:1:snp:5161a108062afd8d87cb24b4568dc8a1b80ed197;anchor=swh:1:rev:cbc3fb92257c5444b461637fd08394820129361f;path=/src/list.h;lines=6-18
https://archive.softwareheritage.org/swh:1:cnt:78b25703fda5206fd4c9ecb5740dd0093932a654;origin=https://github.com/mkirchner/linked-list-good-taste;visit=swh:1:snp:5161a108062afd8d87cb24b4568dc8a1b80ed197;anchor=swh:1:rev:cbc3fb92257c5444b461637fd08394820129361f;path=/src/list.h;lines=6-18
https://archive.softwareheritage.org/swh:1:cnt:6dd41adbff62aa9cd5a310690d5b3943ae52c1bf;origin=https://github.com/mkirchner/linked-list-good-taste;visit=swh:1:snp:5161a108062afd8d87cb24b4568dc8a1b80ed197;anchor=swh:1:rev:cbc3fb92257c5444b461637fd08394820129361f;path=/src/list.c;lines=3-42
https://archive.softwareheritage.org/swh:1:cnt:6dd41adbff62aa9cd5a310690d5b3943ae52c1bf;origin=https://github.com/mkirchner/linked-list-good-taste;visit=swh:1:snp:5161a108062afd8d87cb24b4568dc8a1b80ed197;anchor=swh:1:rev:cbc3fb92257c5444b461637fd08394820129361f;path=/src/list.c;lines=3-42
https://archive.softwareheritage.org/swh:1:cnt:6dd41adbff62aa9cd5a310690d5b3943ae52c1bf;origin=https://github.com/mkirchner/linked-list-good-taste;visit=swh:1:snp:5161a108062afd8d87cb24b4568dc8a1b80ed197;anchor=swh:1:rev:cbc3fb92257c5444b461637fd08394820129361f;path=/src/list.c;lines=3-42
https://archive.softwareheritage.org/swh:1:cnt:6dd41adbff62aa9cd5a310690d5b3943ae52c1bf;origin=https://github.com/mkirchner/linked-list-good-taste;visit=swh:1:snp:5161a108062afd8d87cb24b4568dc8a1b80ed197;anchor=swh:1:rev:cbc3fb92257c5444b461637fd08394820129361f;path=/src/list.c;lines=3-42
https://archive.softwareheritage.org/swh:1:cnt:6dd41adbff62aa9cd5a310690d5b3943ae52c1bf;origin=https://github.com/mkirchner/linked-list-good-taste;visit=swh:1:snp:5161a108062afd8d87cb24b4568dc8a1b80ed197;anchor=swh:1:rev:cbc3fb92257c5444b461637fd08394820129361f;path=/src/list.c;lines=3-42
https://archive.softwareheritage.org/swh:1:cnt:6dd41adbff62aa9cd5a310690d5b3943ae52c1bf;origin=https://github.com/mkirchner/linked-list-good-taste;visit=swh:1:snp:5161a108062afd8d87cb24b4568dc8a1b80ed197;anchor=swh:1:rev:cbc3fb92257c5444b461637fd08394820129361f;path=/src/list.c;lines=3-42

software development environments: Challenges and results from

three empirical studies. International Journal of Human-Computer

Studies, 63(6), 607–627. doi: 10.1016/j.ijhcs.2005.05.002

Knuth, D. (2011). The Art of Computer Programming: Combinatorial

Algorithms, Volume 4A, Part 1 (1st edition ed.). Upper Saddle River, NJ:

Addison-Wesley Professional.

Knuth, D. E. (1974, December). Computer programming as an art.

Communications of the ACM, 17(12), 667–673. doi:

10.1145/361604.361612

Knuth, D. E. (1984, May). Literate programming. The Computer Journal,

27(2), 97–111. doi: 10.1093/comjnl/27.2.97

Knuth, D. E. (1997). The Art of Computer Programming, Volume 1 (3rd Ed.):

Fundamental Algorithms. USA: Addison Wesley Longman

Publishing Co., Inc.

Koenemann, J., & Robertson, S. P. (1991, March). Expert problem solving

strategies for program comprehension. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (pp. 125–130).

New York, NY, USA: Association for Computing Machinery. doi:

10.1145/108844.108863

Korte, T. (2010, May). Frege’s Begriffsschrift as a lingua characteristica.

Synthese, 174(2), 283–294. doi: 10.1007/s11229-008-9422-7

Kozbelt, A., Dexter, S., Dolese, M., & Seidel, A. (2012). The aesthetics of

software code: A quantitative exploration. Psychology of Aesthetics,

Creativity, and the Arts, 6(1), 57–65. doi: 10.1037/a0025426

Kragh, H. (2002, August). Paul Dirac: Seeking beauty. Physics World, 15(8),

27. doi: 10.1088/2058-7058/15/8/32

459

Kristensen, B. B. (1994, October). Complex associations: Abstractions in

object-oriented modeling. ACM SIGPLAN Notices, 29(10), 272–286.

doi: 10.1145/191081.191120

Kulkarni, N., & Varma, V. (2017, March). Supporting comprehension of

unfamiliar programs by modeling cues. Software Quality Journal,

25(1), 307–340. doi: 10.1007/s11219-015-9303-5

Kurp, P. (2008, October). Green computing. Communications of the ACM,

51(10), 11–13. doi: 10.1145/1400181.1400186

Lakoff, G. (1980, August). Conceptual Metaphor in Everyday Language.

The Journal of Philosophy, 77(8).

Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. University of

Chicago Press.

Lammers, S. M. (1986). Programmers at work : Interviews. Redmond, Wash.

: Microsoft Press ; [New York] : Distributed in the U.S. by Harper and

Row.

Landau, R. H., Páez, J., & Bordeianu, C. C. (2011). A Survey of Computational

Physics: Introductory Computational Science. Princeton University

Press. doi: 10.1515/9781400841189

Lando, P., Lapujade, A., Kassel, G., & Fürst, F. (2007, January). Towards a

General Ontology of Computer Programs. In Proceedings of the

Second International Conference on Software and Data Technologie

(pp. 163–170).

Langston, J. (2017). A_mind_is_born.asm. Retrieved 2023-07-21, from

https://archive.softwareheritage.org/browse/content/sha1_git:

4990e2fef33de535851ccc6f6076e1d7ef6c1b29/?origin_url=https://

gist.github.com/jblang/

460

https://archive.softwareheritage.org/browse/content/sha1_git:4990e2fef33de535851ccc6f6076e1d7ef6c1b29/?origin_url=https://gist.github.com/jblang/3eb7844b7a3134be243acaa57ce4dc9a&path=a_mind_is_born.asm
https://archive.softwareheritage.org/browse/content/sha1_git:4990e2fef33de535851ccc6f6076e1d7ef6c1b29/?origin_url=https://gist.github.com/jblang/3eb7844b7a3134be243acaa57ce4dc9a&path=a_mind_is_born.asm
https://archive.softwareheritage.org/browse/content/sha1_git:4990e2fef33de535851ccc6f6076e1d7ef6c1b29/?origin_url=https://gist.github.com/jblang/3eb7844b7a3134be243acaa57ce4dc9a&path=a_mind_is_born.asm
https://archive.softwareheritage.org/browse/content/sha1_git:4990e2fef33de535851ccc6f6076e1d7ef6c1b29/?origin_url=https://gist.github.com/jblang/3eb7844b7a3134be243acaa57ce4dc9a&path=a_mind_is_born.asm

3eb7844b7a3134be243acaa57ce4dc9a&path=a_mind_is_born.asm

Latour, B. (2007). Reassembling the Social: An Introduction to

Actor-Network-Theory. Oxford, New York: Oxford University Press.

Laurel, B. (1993). Computers as Theatre. Addison-Wesley.

Lavocat, F. (Ed.). (2015). Interprétation littéraire et sciences cognitives.

Paris: Hermann.

Le Corbusier, & Saugnier. (1923). Vers une architecture. Paris: G. Crès.

Leddy, T., & Puolakka, K. (2021). Dewey’s Aesthetics. In E. N. Zalta (Ed.),

The Stanford Encyclopedia of Philosophy (Fall 2021 ed.). Metaphysics

Research Lab, Stanford University.

Leder, H., Belke, B., Oeberst, A., & Augustin, D. (2004). A model of aesthetic

appreciation and aesthetic judgments. British Journal of Psychology,

95(4), 489–508. doi: 10.1348/0007126042369811

Ledgard, R. G., Henry. (2011). Coding Guidelines: Finding the Art in the

Science. Retrieved 2023-05-09, from

https://cacm.acm.org/magazines/2011/12/

142527-coding-guidelines-finding-the-art-in-the-science/fulltext

Lee, E. A. (2006, January). The Problem with Threads (Tech. Rep. No.

UCB/EECS-2006-1). EECS Department, University of California,

Berkeley.

Leighton, J. A. (1907). The Objects of Knowledge. The Philosophical

Review, 16(6), 577–587. doi: 10.2307/2177293

Le Lionnais, F. (1971). Great currents of mathematical thought. New York,

Dover Publications.

461

https://archive.softwareheritage.org/browse/content/sha1_git:4990e2fef33de535851ccc6f6076e1d7ef6c1b29/?origin_url=https://gist.github.com/jblang/3eb7844b7a3134be243acaa57ce4dc9a&path=a_mind_is_born.asm
https://cacm.acm.org/magazines/2011/12/142527-coding-guidelines-finding-the-art-in-the-science/fulltext
https://cacm.acm.org/magazines/2011/12/142527-coding-guidelines-finding-the-art-in-the-science/fulltext

Leppäjärvi, J. (2008, May). A pragmatic, historically oriented survey on the

unverisality of synchronization primitives (Tech. Rep.). University of

Oulu.

Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., & Pitts, W. H. (1959,

November). What the Frog’s Eye Tells the Frog’s Brain. Proceedings

of the IRE, 47(11), 1940–1951. doi: 10.1109/JRPROC.1959.287207

Lévy, P. (1992). De la programmation considérée comme un des beaux-arts.

Paris: Éd. la Découverte.

Levy, S. (2010). Hackers: Heroes of the Computer Revolution - 25th

Anniversary Edition. ”O’Reilly Media, Inc.”.

Li, J. (2020, May). Where Did Software Go Wrong? Retrieved 2022-07-13,

from https://blog.jse.li/posts/software/

Licklider, J. C. R. (1960, March). Man-Computer Symbiosis. IRE

Transactions on Human Factors in Electronics, HFE-1(1), 4–11. doi:

10.1109/THFE2.1960.4503259

Light, J. S. (1999). When Computers Were Women. Technology and Culture,

40(3), 455–483. doi: 10.1353/tech.1999.0128

Linsky, B., & Irvine, A. D. (2022). Principia Mathematica. In E. N. Zalta (Ed.),

The Stanford Encyclopedia of Philosophy (Spring 2022 ed.).

Metaphysics Research Lab, Stanford University.

Linux. (2023). Fs/ext4/resize.c.

Linux Information Project. (2006, February). Source code definition by The

Linux Information Project. Retrieved 2023-07-11, from

http://linfo.org/sourcecode.html

Lions, J. (1996). Lions’ Commentary on UNIX 6th Edition with Source Code.

462

https://blog.jse.li/posts/software/
http://linfo.org/sourcecode.html

Peer-to-Peer Communications.

Lynch, K. (1959). The Image Of The City. MIT Press.

Lynn. (2004). Pi - Computing Pi in C. Retrieved 2023-09-15, from

https://crypto.stanford.edu/pbc/notes/pi/code.html

Macé, M. (2016). Styles: Critique de nos formes de vie (NRF Essais ed.).

Gallimard.

Mackenzie, A. (2006). Cutting Code: Software and Sociality. Peter Lang.

Marchand-Zañartu, N., & Lauxerois, J. (2022). 32 grammes de pensée, essai

sur l’imagination graphique. Médiapop Éditions.

Marcus, A., & Baecker, R. (1982, May). On The Graphic Design of Program

Text (Tech. Rep. No. 14810). 1 Cyclotron Road: Lawrence Berkeley

National Laboratory.

Marino, M. C. (2020). Critical Code Studies. Cambridge, MA, USA: MIT

Press.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software

Craftsmanship. Pearson Education.

Mateas, M., & Montfort, N. (2005). A Box, Darkly: Obfuscation, Weird

Languages, and Code Aesthetics. undefined.

Matsumoto, Y. (2007, July). Treating Code as an Essay. In A. Oram &

G. Wilson (Eds.), Beautiful Code: Leading Programmers Explain How

They Think (1st edition ed.). Beijing ; Sebastapol, Calif: O’Reilly

Media.

Matsumoto, Y. (2019). Yukihiro Matsumoto: ”Ruby is designed for humans,

not machines”. Retrieved 2023-05-07, from

463

https://crypto.stanford.edu/pbc/notes/pi/code.html

https://evrone.com/blog/yukihiro-matsumoto-interview

Mazzone, M., & Elgammal, A. (2019, March). Art, Creativity, and the

Potential of Artificial Intelligence. Arts, 8(1), 26. doi:

10.3390/arts8010026

McAllister, J. (2005). Mathematical Beauty and the Evolution of the

Standards of Mathematical Proof. undefined.

McCarthy, J., Levin, M. I., Abrahams, P. W., Center, M. I. o. T. C., & Edwards,

D. J. (1965). LISP 1.5 Programmer’s Manual. MIT Press.

McConnell, S. (2004). Code Complete: A Practical Handbook of Software

Construction, Second Edition (2nd edition ed.). Redmond, Wash:

Microsoft Press.

McCulloch, W. (1953). The Past of a Delusion. Chicago Literary Club.

McCulloch, W. S., & Pitts, W. (1990, January). A logical calculus of the ideas

immanent in nervous activity. Bulletin of Mathematical Biology,

52(1), 99–115. doi: 10.1007/BF02459570

McIllroy, D. (2020, March). [TUHS] The most surprising Unix programs.

Retrieved 2023-09-15, from

https://web.archive.org/web/20200315093052/https://

minnie.tuhs.org/pipermail/tuhs/2020-March/020664.html

McKeithen, K. B., Reitman, J. S., Rueter, H. H., & Hirtle, S. C. (1981, July).

Knowledge organization and skill differences in computer

programmers. Cognitive Psychology, 13(3), 307–325. doi:

10.1016/0010-0285(81)90012-8

McLean, A. (2004, August). Hacking Perl in Nightclubs. Retrieved

2022-08-08, from https://perl.com/pub/2004/08/31/livecode.html/

464

https://evrone.com/blog/yukihiro-matsumoto-interview
https://web.archive.org/web/20200315093052/https://minnie.tuhs.org/pipermail/tuhs/2020-March/020664.html
https://web.archive.org/web/20200315093052/https://minnie.tuhs.org/pipermail/tuhs/2020-March/020664.html
https://perl.com/pub/2004/08/31/livecode.html/

McLennan, B. J. (1997, January). ”Who Care About Elegance?”: The Role of

Aesthetics in Programming Language Design (Technical Report No.

UT-CS-97-344). University of Tennessee.

Mélès, B. (2017, December). Time and activity in Unix. Reseaux, 206(6),

125–153.

Melik, D. (2012). PC demos FAQ.

Mentor+++, T. (1986, January). The Conscience of a Hacker.

Merali, Z. (2010, October). Computational science: ...Error. Nature,

467(7317), 775–777. doi: 10.1038/467775a

Millman, K., & Aivazis, M. (2011, March). Python for Scientists and

Engineers. Computing in Science & Engineering, 13(02), 9–12. doi:

10.1109/MCSE.2011.36

Mills, C. W. (2000). The sociological imagination. Oxford; New York:

Oxford University Press.

Milner, R. (1996). Semantic ideas in computing. In I. Wand & R. Milner

(Eds.), Computing Tomorrow (pp. 246–283). United States: Cambridge

University Press. doi: 10.1017/CBO9780511605611.014

Mindell, D. A. (2011). Digital Apollo: Human and Machine in Spaceflight.

MIT Press.

Mitchell, W. J. W. J. (1987). The art of computer graphics programming : A

structured introduction for architects and designers. New York : Van

Nostrand Reinhold.

Moler, C., & Little, J. (2020, June). A history of MATLAB. Proceedings of the

ACM on Programming Languages, 4(HOPL), 81:1–81:67. doi:

10.1145/3386331

465

Molzberger, P. (1983, December). Aesthetics and programming. In

Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (pp. 247–250). New York, NY, USA: Association for

Computing Machinery. doi: 10.1145/800045.801620

Montfort, N. (2014). #! (shebang). Denver : Counterpath.

Montfort, N., Baudoin, P., Bell, J., Bogost, I., & Douglass, J. (2014). 10 PRINT

CHR$(205.5+RND(1)); : GOTO 10 (Illustrated edition ed.). The MIT

Press.

Moor, J. H. (1978). Three Myths of Computer Science. British Journal for

the Philosophy of Science, 29(3), 213–222. doi: 10.1093/bjps/29.3.213

Moore, R. (2011, July). Junya Ishigami: Architecture of Air; Serpentine

Gallery Pavilion 2011 – review. The Observer.

Moss, R. (2021a). BubbleSort.jl.

Moss, R. (2021b). K_NearestNeighbors.jl.

Moss, R. (2022, April). BeautifulAlgorithms.jl. Retrieved 2022-04-14, from

https://github.com/mossr/BeautifulAlgorithms.jl

Mosteirin, R. J., & Dobson, J. E. (2019). Moonbit. Punctum Books.

Mullet, D. R. (2018, May). A General Critical Discourse Analysis

Framework for Educational Research. Journal of Advanced

Academics, 29(2), 116–142. doi: 10.1177/1932202X18758260

Mumford, L. (1934). Technics And Civilization. US: Harcourt Brace

Jovanovich.

Munroe, R. (2011). Good Code. Retrieved 2023-07-24, from

https://xkcd.com/844/

466

https://github.com/mossr/BeautifulAlgorithms.jl
https://xkcd.com/844/

Muon Ray. (1985). Computer Science Lecture - Hardware, Software and

Heuristics.

Muratori, C. (2014). Semantic Compression. Retrieved 2023-03-21, from

https://caseymuratori.com/blog_0015

Murray, J. H. (1998). Hamlet on the Holodeck: The Future of Narrative in

Cyberspace. Cambridge, MA, USA: MIT Press.

Mustacchi, R. (2019). Mac_sched.c. Retrieved 2023-07-31, from Joyent

Nabokov, V. (1980). Lectures on Literature. Harcourt Brace Jovanovich.

Nather, E. (1983). The Story of Mel. Retrieved 2023-07-24, from

https://users.cs.utah.edu/~elb/folklore/mel.html

Naur, P. (1985, May). Programming as theory building. Microprocessing

and Microprogramming, 15(5), 253–261. doi:

10.1016/0165-6074(85)90032-8

Neumann, P. G. (1985, August). COMPUTER-RELATED INCIDENTS

ILLUSTRATING RISKS TO THE PUBLIC. The RISKS Digest, Volume 1

Issue 01, 1(01).

Neumann, P. G. (1990). Beauty and the Beast of Software Complexity —

Elegance versus Elephants. In W. H. J. Feijen, A. J. M. van Gasteren,

D. Gries, & J. Misra (Eds.), Beauty Is Our Business: A Birthday Salute to

Edsger W. Dijkstra (pp. 346–351). New York, NY: Springer. doi:

10.1007/978-1-4612-4476-9_40

Newell, A., Tonge, F. M., Feigenbaum, E. A., Green Jr., B. F., & Mealy, G. H.

(1964). Information Processing Language-V Manual (The Rand

Corporation ed.). Prentice-Hall.

Nielsen, M. (2012, November). Lisp as the Maxwell’s equations of software

467

https://caseymuratori.com/blog_0015
Joyent
https://users.cs.utah.edu/~elb/folklore/mel.html

\textbar DDI.

Nielsen, M. (2017, September). Working Notes on Chalktalk. Retrieved

2022-10-11, from

https://cognitivemedium.com/interfaces-1/index.html

Nilsson, N. J. (2009a). EARLY EXPLORATIONS: 1950S AND 1960S. In The

Quest for Artificial Intelligence (pp. 47–48). Cambridge: Cambridge

University Press. doi: 10.1017/CBO9780511819346.004

Nilsson, N. J. (2009b). The Quest for Artificial Intelligence. Cambridge:

Cambridge University Press. doi: 10.1017/CBO9780511819346

Nolte, A., Pe-Than, E. P. P., Filippova, A., Bird, C., Scallen, S., & Herbsleb,

J. D. (2018, November). You Hacked and NowWhat? - Exploring

Outcomes of a Corporate Hackathon. Proceedings of the ACM on

Human-Computer Interaction, 2(CSCW), 129:1–129:23. doi:

10.1145/3274398

Norick, B., Krohn, J., Howard, E., Welna, B., & Izurieta, C. (2010, September).

Effects of the number of developers on code quality in open source

software: A case study. In Proceedings of the 2010 ACM-IEEE

International Symposium on Empirical Software Engineering and

Measurement (p. 1). New York, NY, USA: Association for Computing

Machinery. doi: 10.1145/1852786.1852864

Norman, D. (2013). The Design Of Everyday Things (Revised edition ed.).

New York, New York: Basic Books.

Norvig, P. (1998, March). Design Patterns in Dynamic Languages.

Oberkampf, W. L., & Roy, C. J. (2010). Verification and Validation in

Scientific Computing. Cambridge University Press.

Oliveira, D., Bruno, R., Madeiral, F., & Filho, F. C. (2020). Evaluating Code

468

https://cognitivemedium.com/interfaces-1/index.html

Readability and Legibility: An Examination of Human-centric

Studies. undefined. doi: 10.1109/ICSME46990.2020.00041

Oliveira, D., Bruno, R., Madeiral, F., Masuhara, H., & Filho, F. C. (2022). A

Systematic Literature Review on the Impact of Formatting Elements

on Program Understandability. undefined. doi: 10.2139/ssrn.4182156

Oman, P. W., & Cook, C. R. (1990a, January). A taxonomy for programming

style. In Proceedings of the 1990 ACM annual conference on

Cooperation (pp. 244–250). New York, NY, USA: Association for

Computing Machinery. doi: 10.1145/100348.100385

Oman, P. W., & Cook, C. R. (1990b, May). Typographic style is more than

cosmetic. Communications of the ACM, 33(5), 506–520. doi:

10.1145/78607.78611

O’Neil, S. T. (2019). A Primer for Computational Biology. Oregon State

University.

Ong, W. J. (2012). Orality and Literacy: 30th Anniversary Edition (3rd ed.).

London: Routledge. doi: 10.4324/9780203103258

Oram, A., & Wilson, G. (Eds.). (2007). Beautiful Code: Leading Programmers

Explain How They Think (1st edition ed.). Beijing ; Sebastapol, Calif:

O’Reilly Media.

Ortega, M. (2011). Maca/Ruby-code-poem.

Osborne, H. (1977). The Aesthetic Concept of Craftsmanship. British

Journal of Aesthetics, 17(2), 138. doi: 10.1093/bjaesthetics/17.2.138

Ousterhout, J. K. (1998, March). Scripting: Higher-Level Programming for

the 21st Century. Computer, 31(3), 23–30. doi: 10.1109/2.660187

Overflow, S. (2013, June). How can you explain ”beautiful code” to a

469

non-programmer? [Forum Post].

Overflow, S. (2021). Stack Overflow Developer Survey 2021.

Paloque-Bergès, C. (2009). Poétique des codes sur le réseau informatique.

Archives contemporaines.

Papert, S. A. (1978). The Mathematical Unconscious. In J. Wechsler (Ed.),

On aesthetics in science. Cambridge, Mass. : MIT Press.

Parsons, G., Carlson, A., Parsons, G., & Carlson, A. (2012). Functional

Beauty. Oxford, New York: Oxford University Press.

Parsons, J., & Wand, Y. (1997, June). Choosing classes in conceptual

modeling. Communications of the ACM, 40(6), 63–69. doi:

10.1145/255656.255700

Pattis, R. E. (1988). Textbook errors in binary searching. In SIGCSE ’88. doi:

10.1145/52964.53012

Peacocke, A. (2023). Aesthetic Experience. In E. N. Zalta & U. Nodelman

(Eds.), The Stanford Encyclopedia of Philosophy (Spring 2023 ed.).

Metaphysics Research Lab, Stanford University.

Pellet-Mary, A. (2020, May). Co6GC: Program Obfuscation | COSIC.

Penny, S. (2019). Making Sense: Cognition, Computing, Art and

Embodiment. MIT Press.

Perlin, K. (2022, December). Chalktalk. Future Reality Lab. Retrieved

2022-12-18, from NewYorkUniversity

Perlis, A. J. (1982, September). Special Feature: Epigrams on programming.

ACM SIGPLAN Notices, 17(9), 7–13. doi: 10.1145/947955.1083808

Perrin, C. (2006, August). ITLOG Import: Elegance. Retrieved 2022-06-02,

470

NewYorkUniversity

from https://web.archive.org/web/20200730232944/http://

sob.apotheon.org/?p=113

Peters, T. (1999). Code Style. Retrieved 2023-04-21, from

https://docs.python-guide.org/writing/style

Peters, T. (2004, August). PEP 20 – The Zen of Python | peps.python.org.

Retrieved 2023-05-07, from https://peps.python.org/pep-0020/

Petre, M., & Blackwell, A. F. (1997, October). A glimpse of expert

programmers’ mental imagery. In Papers presented at the seventh

workshop on Empirical studies of programmers (pp. 109–123). New

York, NY, USA: Association for Computing Machinery. doi:

10.1145/266399.266409

Pevsner, N. (1942). The Term ’Architect’ in the Middle Ages. Speculum,

17(4), 549–562. doi: 10.2307/2856447

Pineiro, E. (2003). The aesthetics of code : On excellence in instrumental

action (Unpublished doctoral dissertation). KTH, Superseded

Departments, Industrial Economics and Management.

Poibeau, T. (2017). Machine Translation. MIT Press.

Poincaré, H. (1908). Science et méthode. Paris: E. Flammarion.

Polanyi, M., & Grene, M. (1969). Knowing and being; essays. [Chicago]

University of Chicago Press.

Polanyi, M., & Sen, A. (2009). The Tacit Dimension (Revised ed. edition ed.).

Chicago ; London: University of Chicago Press.

Postman, N. (1985). Amusing Ourselves to Death: Public Discourse in the

Age of Show Business (1st edition ed.). New York: Viking Penguin.

471

https://web.archive.org/web/20200730232944/http://sob.apotheon.org/?p=113
https://web.archive.org/web/20200730232944/http://sob.apotheon.org/?p=113
https://docs.python-guide.org/writing/style
https://peps.python.org/pep-0020/

Prabhu, P., Kim, H., Oh, T., Jablin, T. B., Johnson, N. P., Zoufaly, M., … Beard,

S. (2011, November). A survey of the practice of computational

science. In SC ’11: Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis (pp.

1–12). doi: 10.1145/2063348.2063374

Pratt, T. W., & Zelkowitz, M. V. (2000). Programming Languages: Design

and Implementation (4th edition ed.). Upper Saddle River, NJ:

Pearson.

Pressman, R. (2014). Software Engineering: A Practitioner’s Approach.

McGraw-Hill Education.

Programming Wisdom [@codewisdom]. (2021, January). ”A designer knows

[one] has achieved perfection not when there is nothing left to add,

but when there is nothing left to take away.” – Antoine de

Saint-Exupéry [Tweet].

Pye, D. (2008). The Nature and Art of Workmanship (Illustrated edition

ed.). Herbert Press.

Ranciere, J. (2013). Aisthesis: Scenes from the Aesthetic Regime of Art (1st

edition ed.; Z. Paul, Trans.). London ; New York: Verso.

Randell, B. (1996, August). NATO Software Engineering Conference 1968.

Retrieved 2022-08-01, from

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/

Rapaport, W. J. (2005). Philosophy of Computer Science: An Introductory

Course. Teaching Philosophy, 28(4), 319–341. doi: teachphil200528443

Rasool, G., & Arshad, Z. (2015). A review of code smell mining techniques.

Journal of Software: Evolution and Process, 27(11), 867–895. doi:

10.1002/smr.1737

472

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/

Raymond, E. (2003). The Art of UNIX Programming (1st edition ed.).

Boston: Addison-Wesley.

Raymond, E. S. (2001). The Cathedral & the Bazaar: Musings on Linux and

Open Source by an Accidental Revolutionary. ”O’Reilly Media, Inc.”.

Raymond, E. S., & Steele, G. L. (1996). The New Hacker’s Dictionary. MIT

Press.

Reber, R., Schwarz, N., & Winkielman, P. (2004, November). Processing

Fluency and Aesthetic Pleasure: Is Beauty in the Perceiver’s

Processing Experience? Personality and Social Psychology Review,

8(4), 364–382. doi: 10.1207/s15327957pspr0804_3

Reed, D. (2010, May). Sometimes style really does matter. Journal of

Computing Sciences in Colleges, 25(5), 180–187.

Reunanen, M. (2010). Computer Demos - What Makes Them Tick?;

Tietokonedemot - mikä saa ne hyrräämään? (G3 Lisensiaatintyö).

Aalto-yliopisto; Aalto University.

Richards, I. A. (1930). Practical Criticism. Kegan Paul Trench Trubner And

Company Limited.

Ricoeur, P. (2003). The Rule of Metaphor: The Creation of Meaning in

Language. Psychology Press.

Rigaux, P. (2023, September). Syntax across languages. Retrieved

2023-09-16, from

http://rigaux.org/language-study/syntax-across-languages/

Risam, R. (2015). The poetry of executable code | Jacket2. Retrieved

2023-08-03, from

https://jacket2.org/commentary/poetry-executable-code

473

http://rigaux.org/language-study/syntax-across-languages/
https://jacket2.org/commentary/poetry-executable-code

Rokeby, D. (2003). The Computer as a Prosthetic Organ of Philosophy.

Retrieved 2023-07-28, from

http://www.dichtung-digital.de/2003/issue/3/Rokeby.htm

Root-Bernstein, R. S. (2002, March). Aesthetic cognition. International

Studies in the Philosophy of Science, 16(1), 61–77. doi:

10.1080/02698590120118837

Ross, D. (1986, January). A personal view of the personal work station:

Some firsts in the Fifties. In Proceedings of the ACM Conference on

The history of personal workstations (pp. 19–48). New York, NY, USA:

Association for Computing Machinery. doi: 10.1145/12178.12180

Rota, G.-C. (1997). The Phenomenology of Mathematical Beauty. Synthese,

111(2), 171–182.

Rousset, J. (1964). Forme et signification ; essais sur les structures littéraires

de Corneille à Claudel. Paris, J. Corti, 1964.

Rusinkiewicz, S. (1970, January). Smr.c. Retrieved 2023-09-16, from

https://archive.softwareheritage.org/swh:1:cnt:

e69de29bb2d1d6434b8b29ae775ad8c2e48c5391;origin=https://

github.com/c00kiemon5ter/ioccc-obfuscated-c-contest;visit=swh:1:

snp:32132190d9d2d061884e6fc41222a95ecd9a2df4;anchor=swh:1:rev:

04a21846149c768e1d856f947ac2527c00cafd96;path=/1994/smr.c

Russell, B. (1950). Logical positivism. Revue Internationale de Philosophie,

4(11), 3–19.

Ryan, M.-L. (2009, August). Space. In Space (pp. 420–433). De Gruyter. doi:

10.1515/9783110217445.420

Ryan, M.-L. (2021, December). Four Types of Textual Space and their

Manifestations in Digital Narrative. In D. Punday (Ed.), Digital

474

http://www.dichtung-digital.de/2003/issue/3/Rokeby.htm
https://archive.softwareheritage.org/swh:1:cnt:e69de29bb2d1d6434b8b29ae775ad8c2e48c5391;origin=https://github.com/c00kiemon5ter/ioccc-obfuscated-c-contest;visit=swh:1:snp:32132190d9d2d061884e6fc41222a95ecd9a2df4;anchor=swh:1:rev:04a21846149c768e1d856f947ac2527c00cafd96;path=/1994/smr.c
https://archive.softwareheritage.org/swh:1:cnt:e69de29bb2d1d6434b8b29ae775ad8c2e48c5391;origin=https://github.com/c00kiemon5ter/ioccc-obfuscated-c-contest;visit=swh:1:snp:32132190d9d2d061884e6fc41222a95ecd9a2df4;anchor=swh:1:rev:04a21846149c768e1d856f947ac2527c00cafd96;path=/1994/smr.c
https://archive.softwareheritage.org/swh:1:cnt:e69de29bb2d1d6434b8b29ae775ad8c2e48c5391;origin=https://github.com/c00kiemon5ter/ioccc-obfuscated-c-contest;visit=swh:1:snp:32132190d9d2d061884e6fc41222a95ecd9a2df4;anchor=swh:1:rev:04a21846149c768e1d856f947ac2527c00cafd96;path=/1994/smr.c
https://archive.softwareheritage.org/swh:1:cnt:e69de29bb2d1d6434b8b29ae775ad8c2e48c5391;origin=https://github.com/c00kiemon5ter/ioccc-obfuscated-c-contest;visit=swh:1:snp:32132190d9d2d061884e6fc41222a95ecd9a2df4;anchor=swh:1:rev:04a21846149c768e1d856f947ac2527c00cafd96;path=/1994/smr.c
https://archive.softwareheritage.org/swh:1:cnt:e69de29bb2d1d6434b8b29ae775ad8c2e48c5391;origin=https://github.com/c00kiemon5ter/ioccc-obfuscated-c-contest;visit=swh:1:snp:32132190d9d2d061884e6fc41222a95ecd9a2df4;anchor=swh:1:rev:04a21846149c768e1d856f947ac2527c00cafd96;path=/1994/smr.c

Narrative Spaces: An Interdisciplinary Examination. Routledge.

Ryle, G. (1951). The Concept Of Mind. Hutchinsons University Library.

Sack, W. (2019). The Software Arts. The MIT Press. doi:

10.7551/mitpress/9495.001.0001

Saint-Exupery, A. D. (1990). Wind, Sand and Stars (First Thus edition ed.;

L. Galantiere, Trans.). The Folio Society.

Saito, Y. (2012, January). Everyday Aesthetics and Artification.

Contemporary Aesthetics (Journal Archive), 0(4).

Sanchez, A. (2016). Solutions of xchg rax,rax. Retrieved 2023-07-14, from

https://alexaltea.github.io/blog/posts/

2016-10-12-xchg-rax-rax-solutions/

Sanglard, F. (2018). Game Engine Black Book: DOOM. Software Wizards.

Santos, J. A. M., Rocha-Junior, J. B., Prates, L. C. L., do Nascimento, R. S.,

Freitas, M. F., & de Mendonça, M. G. (2018, October). A systematic

review on the code smell effect. Journal of Systems and Software, 144,

450–477. doi: 10.1016/j.jss.2018.07.035

@Scale. (2015, September). Why Google Stores Billions of Lines of Code in a

Single Repository.

Schaeffer, J.-M. (1999). Pourquoi la Fiction? Paris: Éditions du Seuil.

Schiffrin, D. (1994). Approaches to discourse. Oxford, UK ; Cambridge,

Mass., USA : B. Blackwell.

Schmitz, B. (2015). What makes some code ”beautiful”? Retrieved

2023-05-07, from https://qr.ae/pyIE7R

Schummer, J., MacLennan, B., & Taylor, N. (2009, January). Aesthetic

475

https://alexaltea.github.io/blog/posts/2016-10-12-xchg-rax-rax-solutions/
https://alexaltea.github.io/blog/posts/2016-10-12-xchg-rax-rax-solutions/
https://qr.ae/pyIE7R

Values in Technology and Engineering Design. In A. Meijers (Ed.),

Philosophy of Technology and Engineering Sciences (pp. 1031–1068).

Amsterdam: North-Holland. doi: 10.1016/B978-0-444-51667-1.50042-2

Scopatz, A., & Huff, K. D. (2015). Effective Computation in Physics. O’Reilly

Media.

Scruton, R. (2013). The Aesthetics of Architecture. Princeton: Princeton

University Press.

Sebesta, R. W. (2018). Concepts of Programming Languages (12th edition

ed.). NY, NY: Pearson.

Secret Labs AB. (2001). _parser.py. Retrieved from Python

Segal, J. (2005, October). When Software Engineers Met Research

Scientists: A Case Study. Empirical Software Engineering, 10(4),

517–536. doi: 10.1007/s10664-005-3865-y

Seibel, P. (2009). Coders at Work: Reflections on the Craft of Programming.

Apress.

Seibel, P. (2014). Code is not literature. Retrieved 2023-07-31, from

https://gigamonkeys.com/code-reading/

Sennett, R. (2009). The Craftsman. Yale University Press.

Sethi, R. (1996). Programming Languages: Concepts and Constructs.

Reading, Mass: Addison-Wesley.

Shannon, C. E. (2001, January). A mathematical theory of communication.

ACM SIGMOBILE Mobile Computing and Communications Review,

5(1), 3–55. doi: 10.1145/584091.584093

Shaw, M., & Garlan, D. (1996). Software Architecture: Perspectives on an

476

Python
https://gigamonkeys.com/code-reading/

Emerging Discipline. Upper Saddle River, N.J: Pearson.

Sheil, B. A. (1981, March). The Psychological Study of Programming. ACM

Computing Surveys, 13(1), 101–120. doi: 10.1145/356835.356840

Shiner, L. (2009). Functional beauty : The metaphysics of beauty and

specific functions in architecture. Szutka i Filozofia, 35(78-99), 23.

Shneiderman, B. (1977, July). Measuring computer program quality and

comprehension. International Journal of Man-Machine Studies, 9(4),

465–478. doi: 10.1016/S0020-7373(77)80014-X

Simmel, G. (1991, August). The Problem of Style. Theory, Culture & Society,

8(3), 63–71. doi: 10.1177/026327691008003004

Simon, H. (1996). The Sciences of the Artificial. MIT Press.

Simondon, G. (1958). Du mode d’existence des objets techniques

(Unpublished doctoral dissertation). Aubier et Montaigne, Paris.

Sinclair, N. (2004, July). The Roles of the Aesthetic in Mathematical

Inquiry. Mathematical Thinking and Learning, 6(3), 261–284. doi:

10.1207/s15327833mtl0603_1

Sinclair, N. (2011, January). Aesthetic Considerations in Mathematics.

Journal of Humanistic Mathematics, 1(1), 2–32. doi:

10.5642/jhummath.201101.03

Sinclair, N., & Pimm, D. (2010). The Many and the Few: Mathematics,

Democracy and the Aesthetic. Educational Insights, 13(1).

Smith, B. C. (1998). On the Origin of Objects (Reprint edition ed.).

Cambridge, Mass.: A Bradford Book.

Smith, B. C. (2016, August). AoS V1·C0: Introduction. Retrieved 2023-04-28,

477

from https://web.archive.org/web/20160826234606/http://

ageofsignificance.org/aos/en/aos-v1c0.html

Soloway, E., & Ehrlich, K. (1984, September). Empirical Studies of

Programming Knowledge. IEEE Transactions on Software

Engineering, SE-10(5), 595–609. doi: 10.1109/TSE.1984.5010283

Soloway, E., Ehrlich, K., & Bonar, J. (1982). Tapping into tacit programming

knowledge. In Proceedings of the 1982 conference on human factors

in computing systems (pp. 52–57).

Sommerville, I. (2010). Software Engineering (9th edition ed.). Boston:

Pearson.

Sondheim, A. (2001, October). Introduction: Codework. American Book

Review, 22(6).

Spencer, H. (1994). The Ten Commandments for C Programmers

(Annotated Edition). Retrieved 2023-05-07, from

https://www.lysator.liu.se/c/ten-commandments.html

Spinellis, D., & Gousios, G. (2009). Beautiful Architecture: Leading Thinkers

Reveal the Hidden Beauty in Software Design. ”O’Reilly Media, Inc.”.

Spolosky, J. (2003, December). Craftsmanship. Retrieved 2022-07-19, from

https://www.joelonsoftware.com/2003/12/01/craftsmanship-2/

Stallman, R., & Free Software Foundation (Cambridge, M. . (2002). Free

software, free society : Selected essays of Richard M. Stallman.

Boston, MA : Free Software Foundation.

Stansifer, R. (1994). Study of Programming Languages, The (1st edition ed.).

Englewood Cliffs, N.J: Prentice Hall.

Starikova, I. (2018, June). Aesthetic Preferences in Mathematics: A Case

478

https://web.archive.org/web/20160826234606/http://ageofsignificance.org/aos/en/aos-v1c0.html
https://web.archive.org/web/20160826234606/http://ageofsignificance.org/aos/en/aos-v1c0.html
https://www.lysator.liu.se/c/ten-commandments.html
https://www.joelonsoftware.com/2003/12/01/craftsmanship-2/

Study†. Philosophia Mathematica, 26(2), 161–183. doi:

10.1093/philmat/nkx014

Steele, G. L. (1977, August). Macaroni is better than spaghetti. ACM

SIGPLAN Notices, 12(8), 60–66. doi: 10.1145/872734.806933

Stiegler, B. (1998). Technics and Time, 1: The Fault of Epimetheus. Stanford

University Press.

Suber, P. (1988). What is Software? Journal of Speculative Philosophy, 2(2),

89–119.

Sullivan, L. H. (1896). The Tall Office Building Artistically Considered.

Lippincott’s Magazine, 57.

Sustrik, M. (2021). On the Nature of Programming Languages. Retrieved

2021-04-01, from https://250bpm.com/blog:152/index.html

Taylor, P. (2001, January). Patterns as Software Design Canon. ACIS 2001

Proceedings.

Team, O. E. (2021). Low-Code and the Democratization of Programming.

O’Reilly Media.

Tedre, M. (2006, February). The development of computer science: A

sociocultural perspective. In Proceedings of the 6th Baltic Sea

conference on Computing education research: Koli Calling 2006 (pp.

21–24). New York, NY, USA: Association for Computing Machinery.

doi: 10.1145/1315803.1315808

Tedre, M. (2014). The Science of Computing: Shaping a Discipline. CRC

Press.

Temkin, D. (2015). Daniel Temkin | Folders Language. Retrieved 2023-06-02,

from http://danieltemkin.com/Esolangs/Folders/

479

https://250bpm.com/blog:152/index.html
http://danieltemkin.com/Esolangs/Folders/

Temkin, D. (2017, December). Sentences on Code Art. Retrieved 2022-07-13,

from https://esoteric.codes/blog/sentences-on-code-art

Temkin, D. (2023, July). The Less Humble Programmer. Digital Humanities

Quarterly, 017(2).

Thomas, R. (2017, February). Beauty is not all there is to Aesthetics in

Mathematics†. Philosophia Mathematica, 25(1), 116–127. doi:

10.1093/philmat/nkw019

Thompson, D. V. (1934). The Study of Medieval Craftsmanship. Bulletin of

the Fogg Art Museum, 3, 3–8.

Tirrell, J. (2012). Dumb People, Smart Objects: The Sims and The

Distributed Self. In The Philosophy of Computer Games Conference.

Tomov, L. (2016). The Role of Aesthetics in Software Design, Development

and Education: Review and Definitions. Computer Science and

Education in Computer Science, 12(1), 1–16.

Torvalds, L. (2016). Linus Torvalds: The mind behind Linux | TED Talk.

Retrieved 2023-08-02, from

https://www.ted.com/talks/linus_torvalds_the_mind_behind_linux

Treude, C., & Robillard, M. P. (2017, September). Understanding Stack

Overflow Code Fragments. In 2017 IEEE International Conference on

Software Maintenance and Evolution (ICSME) (pp. 509–513). doi:

10.1109/ICSME.2017.24

Tufte, E. R. (2001). The Visual Display of Quantitative Information.

Graphics Press.

Turing, A. (1936). On Computable Numbers, with an Application to the

Entscheidungsproblem. Proceedings of the London Mathematical

Society, 42(1), 230–265. doi: 10.2307/2268810

480

https://esoteric.codes/blog/sentences-on-code-art
https://www.ted.com/talks/linus_torvalds_the_mind_behind_linux

Turing, A. M. (2009). Computing Machinery and Intelligence. In

R. Epstein, G. Roberts, & G. Beber (Eds.), Parsing the Turing Test:

Philosophical and Methodological Issues in the Quest for the

Thinking Computer (pp. 23–65). Dordrecht: Springer Netherlands.

doi: 10.1007/978-1-4020-6710-5_3

Turner, R. (2018). Computational Artifacts. In R. Turner (Ed.),

Computational Artifacts: Towards a Philosophy of Computer Science

(pp. 25–29). Berlin, Heidelberg: Springer. doi:

10.1007/978-3-662-55565-1_3

Unknown. (2017). Source Code Poetry | About. Retrieved 2023-07-22, from

https://www.sourcecodepoetry.com

Van Roy, P. (2012, April). Programming Paradigms for Dummies: What

Every Programmer Should Know (Tech. Rep.). Buffalo State

University.

Vardi, M. Y. (2010, September). Science has only two legs.

Communications of the ACM, 53(9), 5. doi: 10.1145/1810891.1810892

Vicious, K. (2008, October). Beautiful Code Exists, if You KnowWhere to

Look - ACM Queue. Retrieved 2023-03-15, from

https://queue.acm.org/detail.cfm?id=1454458

Victor, B. (2011a, October). Explorable Explanations. Retrieved 2022-12-18,

from http://worrydream.com/ExplorableExplanations/

Victor, B. (2011b, June). Tangle: A JavaScript library for reactive documents.

Victor, B. (2014, October). Humane representation of thought: A trail map

for the 21st century. In Proceedings of the companion publication of

the 2014 ACM SIGPLAN conference on Systems, Programming, and

Applications: Software for Humanity (p. 5). New York, NY, USA:

481

https://www.sourcecodepoetry.com
https://queue.acm.org/detail.cfm?id=1454458
http://worrydream.com/ExplorableExplanations/

Association for Computing Machinery. doi: 10.1145/2660252.2661746

Voloshinov, V. N., & Bachtin, M. M. (1986). Marxism and the Philosophy of

Language. Harvard University Press.

Von Neumann, J. (1947). The Mathematician. In M. J. Adler &

R. B. Heywood (Eds.), The works of the mind. Chicago: University of

Chicago Press.

Waldron, R. (2020). Idiomatic.js/readme.md at master ·

rwaldron/idiomatic.js.

Wallen, L. A. (1990). On Form, Formalism and Equivalence. In

W. H. J. Feijen, A. J. M. van Gasteren, D. Gries, & J. Misra (Eds.), Beauty

Is Our Business: A Birthday Salute to Edsger W. Dijkstra (pp. 417–426).

New York, NY: Springer. doi: 10.1007/978-1-4612-4476-9_51

Warren, T. (2020, September). Windows XP source code leaks online.

Watters, A. (2021). Teaching Machines: The History of Personalized

Learning. MIT Press.

Weaver, W. (1948). Science and Complexity. American Scientist, 36(4),

536–544.

Wegenstein, B. (2010, March). Bodies. In Critical Terms for Media Studies.

University of Chicago Press.

WeidiDeng. (2023, July). Caddyserver/caddy. Retrieved 2023-07-31, from

Caddy

Weinberg, G. M. (1998). The Psychology of Computer Programming. Dorset

House Pub.

Weizenbaum, J. (1976). Computer Power and Human Reason: From

482

Caddy

Judgment to Calculation (1st edition ed.). San Francisco: W H

Freeman & Co.

Wells, D. (1990, June). Are these the most beautiful? The Mathematical

Intelligencer, 12(3), 37–41. doi: 10.1007/BF03024015

West, J. (1987). Macintosh Programmers Workshop. Bantam Books.

Westley, B. (1988). The International Obfuscated C Code Contest | Winners

1988. Retrieved 2023-09-15, from https://web.archive.org/web/

20131022114748/http://www0.us.ioccc.org/1988/westley.c

Wettel, R. (2008). CodeCity. Switzerland.

Wiedenbeck, S. (1991, November). The initial stage of program

comprehension. International Journal of Man-Machine Studies, 35(4),

517–540. doi: 10.1016/S0020-7373(05)80090-2

Wikipedia. (2021, October). Linux kernel.

Wikipedia. (2023a, March). Semaphore (programming). Wikipedia.

Wikipedia. (2023b, March). Unified Modeling Language. Wikipedia.

Wilken, R. (2010, January). The card index as creativity machine. Culture

Machine.

Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., …

Wilson, P. (2014, January). Best Practices for Scientific Computing.

PLOS Biology, 12(1), e1001745. doi: 10.1371/journal.pbio.1001745

Winograd, T. (1982). Language As a Cognitive Process: Syntax. Reading,

Mass: Addison-Wesley.

Winograd, T., & Flores, F. (1986). Understanding Computers and Cognition:

A New Foundation for Design. Intellect Books.

483

https://web.archive.org/web/20131022114748/http://www0.us.ioccc.org/1988/westley.c
https://web.archive.org/web/20131022114748/http://www0.us.ioccc.org/1988/westley.c

Wirth, N. (1976). Algorithms + Data Structures. Prentice-Hall.

Wirth, N. (1990, July). Drawing lines, circles, and ellipses in a raster. In

Beauty is our business: A birthday salute to Edsger W. Dijkstra (pp.

427–434). Berlin, Heidelberg: Springer-Verlag.

Wirth, N. (2003). The Essence of Programming Languages. In

L. Böszörményi & P. Schojer (Eds.),Modular Programming Languages

(pp. 1–11). Berlin, Heidelberg: Springer. doi:

10.1007/978-3-540-45213-3_1

Wirth, N. (2008). A Brief History of Software Engineering. IEEE Annals of

the History of Computing. doi: 10.1109/MAHC.2008.33

Wittgenstein, L. (2004). Recherches philosophiques. Paris: Gallimard.

Wittgenstein, L. (2010). Tractatus Logico-Philosophicus (C. K. C. K. Ogden,

Trans.). Project Gutenberg.

Woolston, C. (2022, May). Why science needs more research software

engineers. Nature. doi: 10.1038/d41586-022-01516-2

Wordpress. (2023, July). WordPress/WordPress. Retrieved 2023-07-21, from

WordPress

Wyatt, S. (2004). Danger! Metaphors at Work in Economics,

Geophysiology, and the Internet. Science, Technology, & Human

Values, 29(2), 242–261.

xorpd. (2014). Xchg rax,rax. CreateSpace Independent Publishing

Platform.

Yuill, S. (2004). Code Art Brutalism: Low-level systems and simple

programs. In Read_me: Software Arts and Culture. Aarhus: Digital

Aesthetics Research Center.

484

WordPress

Zeller, J. (2020, May). Algorithms are like recipes. Retrieved 2022-09-20,

from https://www.goethe.de/en/kul/ges/21877729.html

Zenil, H. (2021, June). Compression is Comprehension, and the

Unreasonable Effectiveness of Digital Computation in the Natural

World (No. arXiv:1904.10258). arXiv. doi: 10.48550/arXiv.1904.10258

485

https://www.goethe.de/en/kul/ges/21877729.html

List of Listings

1 simple.py - Example of the basic elements of a computer pro-

gram, written in Python . 10

2 verbose.c - A very verbose way to left pad a digit with zeroes

in the C language. 22

3 verbose_refactored.c - A very terse way to left pad a digit with

zeroes in the C language. 22

4 ms2000_abridged.c - Unicode string initialization in Mi-

crosoft 2000 operating system, with a first part showing an

explicit repeating pattern, while the second part shows a

more compressed approach. 60

5 buffer.c - Overlapping programming voices can be hinted at

by different comment styles. 62

6 enum.c - This listing shows the explicit traces of multiple au-

thors collaborating on a single file over time. 63

7 query.php - The setting of whether a query should be distinct

includes some verbose details which prove to be helpful in

the long run (Allgeier, 2021b). 65

8 route.php - The inclusion of comments help guide a program-

mer through an open-source project (Allgeier, 2021c). 66

9 clipboard.js - Even in a productive and efficient open-source

project, one can detect traces of ”hacks” (Allgeier, 2021a). . . . 68

486

10 select_lines.c - This program text selects all the lines from an

input file which is longer than 6 characters in the C program-

ming language. See the one-line alternative implementation

in Listing 11. 73

11 select_lines.sh - This program text selects all the lines from

an input file which is longer than 6 characters in the C pro-

gramming language, in just one line of code. See the alterna-

tive implementation in 20 lines of code in Listing 10. 74

12 game_of_life.apl - Conway’s Game of Life implemented in

APL is a remarkable example of conciseness, at the expanse

of readability. 75

13 fast_inverse_sqrt.c - This particular implementation of a

function calculating the inverse square root of a number has

becomeknown inprogramming circles for both its speed and

unscrutability. 77

14 westley.c - Entry to the 1988 IOCCC, it computes an approx-

imation of π by calculating the circumference of a circle

drawn as text. (Westley, 1988) . 78

15 mesh.m - Matlab is a specialized language, focused on scien-

tific and mathematical applications. 85

16 inductive.pl - The Prolog programming language focuses first

and foremost on logic predicates in order to perform compu-

tation, rather than more practical system calls. 91

17 interpreter.scheme - Scheme interpreter written in Scheme,

revealing the power and self-reference of the language. 92

18 bubblesort.jl - Bubble Sort implementation in Julia uses the

language features to use only a single iteration loop. (Moss,

2021a) . 95

19 nearest_neighbor.jl - Nearest neighbor implementation in Ju-

lia (Moss, 2021b). 95

487

20 numero_mysterioso.asm - AGC source code for the Lunar

Landing Guidance Equation, 1969 102

21 japh.pl - Just Another Perl Hacker, part of a typology of pro-

gram texts showing linguistic ingenuity rather than compu-

tational efficiency. 104

22 black_perl.pl - Black Perl is one of the first Perl poems, shared

anonymously online. It makes creative use of Perl’s flexible

and high-level syntax. 105

23 prince.java - #SongsInCode is an example of functional

source code poetry written to represent the tradionally non-

functional domain of pop songs. 108

24 water.c - This poem has a very deliberate layout and syntax,

reminiscing of calligrames (Holden & Kerr, 2016). 109

25 verbose.out - The output of Listing 24 consists in ASCII rep-

resentation of water droplets, bearing a family resemblance

to BASIC one liners, and suggesting a complementary repre-

sentation of water. 110

26 home.js - An excerpt of a JavaScript program text as it is writ-

ten by a human programmer, before minification. 119

27 home_minified.js - The same program as in Listing 26, after

minification. Syntactical density is gained at the expense of

clarity. 120

28 clearer_method.c - Example of clarity differences between

two methods. 122

29 unique.py - A function to check for the uniqueness of array

elements, using a very specific feature of the Python syntax,

and as such an example of clever code. 124

30 smr.c - An emptyprogram textwhichwas awarded the IOCC’s

”World’s smallest self-replicating program” and ”Worst abuse

of rules” (Rusinkiewicz, 1970) . 125

488

31 factorical.c - The use of recursion, rather than iteration, in

the computation of a factorial is particularly praised by pro-

grammers. 128

32 recursive_iteration.cs - The comparison two functions, one

using recursion, the other one using iteration, intends to

show the computational superiority of recursion. (amit, 2012). 129

33 unmaintainable.py - This listing shows variable names that

masquerade as mathematical operators, greatly increasing

reader confusion. 131

34 unmaintainable_2.c - This listing shows code that masquer-

ades as comments, and vice-versa. 131

35 all_the_names_of_god.pl - A perl poem with highly con-

densed syntax (Montfort, 2014) 142

36 all_the_names_of_god.txt - A selected section of the expan-

sive output from 35. 143

37 floyd_warshall.cpp - Implementation of the Floyd-Warshall

algorithm, showing an elegant implementation of a complex

theory. 147

38 pseudocode.txt - Example of pseudo-code attempting to

reverse-engineer a software system, ignoring any of the ac-

tual implementation details, taken from (Nielsen, 2017) 176

39 level.txt - Example of a program text represented in pseudo

code. See Listing 40, Listing 41 and Listing 42 for lower level

representations. 193

40 level.c - Example of a program text represented in a high level

language. See Listing 39 for a higher level representation and

Listing 41 and Listing 42 for lower level representations. 194

41 level.asm - Example of a program text represented in an As-

sembly language. See Listing 39 and Listing 40 for a higher

level representation and Listing 42 for a lower level represen-

tation. 194

489

42 level.byte - Example of a program text represented in byte-

code. See Listing 39, Listing 40 and Listing 41 for higher level

representations. 195

43 formatted.cpp - Example of a program text with syntax high-

lighting and machine-enforced indentation. See Listing 44

for a functional equivalent, unformatted. 224

44 unformatted.cpp - Example of a program text without syn-

taxhighlightingnormachine-enforced indentation. See List-

ing 43 for a functional equivalent, formatted. 225

45 representation.java - An example, written in Java, of how

source code can be both a representation oif an individual,

as well as exemplify encapsulation. 238

46 multiple_references.c - An example from the Linux kernel

showing that the name and the value of a variable might re-

fer to different things. Here, the name of the variables three,

five and seven actually refers to the power at which the value

is considered when scanning the ext4 filesystem. It iterates

through the powers of 3, 5 and 7 and the variables three, five

and seven hold the next power of each to consider for the

sequence. They could all start at the zeroth power (1 in all

cases), but there is no need to consider 1 three times, so it is

enough to let three start at 1 and the others at the 1st power

(5 and 7). (Linux, 2023). 241

47 cynical_american_preamble.py - Cynical American Preamble,

by Michael Carlisle, published in code::art #0 (Brand, 2019) . . 251

48 unhandled_love.java - Unhandled Love, by Daniel Bezera,

published in {code poems} (Bertram, 2012) 257

49 binary.java - Binary search, implemented by Tim Bray in

Beautiful Code highlights variable names (high, low, probe) as

indicators of the spatial component of the function’s perfor-

mance (Bray, 2007). 259

490

50 spatial_extension.py - This bespoke snippet shows how the

spatial extension of the text—its indentation—corresponds

to the structural semantics of the code, in the Python pro-

gramming language. 262

51 mac_sched.c - This listing includes as a comment an execu-

tion flow diagram inside the program text, testifying to the

inherently fragmented and non-linear execution of source

code. (Mustacchi, 2019) . 264

52 nested.html - Nested, by Dan Brown and published in {code

poems} (Bertram, 2012) . 266

53 shutdown.go - This listing represents the various steps taken

in order to shutdown a HTTP server, and shows multiple as-

pects of temporal complexities represented spatially (Weidi-

Deng, 2023) . 267

54 hardware_separation.h - This headerfile defines the structure

of a program, both in its human use, in its interaction with

hardware components, and its decoupling of hardware (men-

tioned in the comments) and software elements (mentioned

in the #define macro and the pmc_mdep struct). Additionally,

the header does not contain any executable code, thus rein-

forcing its role as a plan rather than a full building. 285

55 uncompressed.c - An uncompressed extract of a program text

whose function is to display graphical user interface (GUI) el-

ements. The syntax is very granular and redundant. (Mura-

tori, 2014) . 291

56 compressed.c - A compressed extract of a program textwhose

function is to display graphical user interface (GUI) elements.

The same functionality as in Listing 55 is achieved, but with

fewer lines of code, and amore expressive syntax. (Muratori,

2014) . 292

491

57 linked_list.h - A textbook example of a fundamental con-

struct in computer science, the linked list. This header file

shows all the parts which compose the concept. This pro-

gram text does not do anything by itself, it only describes a

certain data structure in a certain way. (Kirchner, 2022a). . . . 309

58 linked_list.c - A comparison of how to remove an element

from a list, with elegance depending on the skill level of the

author (Kirchner, 2022b). You are not expected to understand

this. 311

59 regex.c - A regular expression matcher by Rob Pike, praised

for its elegance and conciseness, but not for its practical util-

ity (Oram &Wilson, 2007) . 316

60 hello.rb - A terse example of writing a string to an output in

Ruby. 337

61 hello.java - A verbose approach to writing a string to an out-

put in Java. 337

62 multiple_returns.go - Go proposes an elegant way of ignoring

certain variables, with the use of the underscore token. 340

63 multiple_returns.js - JavaScript does not have any built-in

syntax to ignore certain variables, resulting inmore cumber-

some code. 340

64 iterating.c - Iterating in C involves keeping track of an iter-

ating counter and knowing the maximum value of a list be-

forehand. 346

65 iterating.py - Iterating in Python is done through a specific

syntax which abstracts away the details of the process. 347

66 references.c - Pointers involve a non-straightforward way to

reason about values. 348

67 non_thread.go - A sequential execution of aGo program, with

random timeouts. The order of the output is guaranteed, but

not its timing. 350

492

68 thread.go - A concurrent executionof aGoprogram,with ran-

dom timeouts. Neither the order nor the timing of the output

is guaranteed. The keyword go when calling the functions

recall instructs the program to run the function in parallel. . 351

69 thread.c - In C, the syntax to write thread, and the represen-

tation of the concept, is more verbose, as it forces separate

variable declaration, separate creation and join, and specific

positional arguments. 352

70 range.py - These two range operators are semantically equiv-

alent in Python, but the first ismore idiomatic than the second.356

71 fibonacci.py - The decorator @lru is the idiotmatic way to cal-

culate the sum of the Fibonacci sequence. (Schmitz, 2015) . . 356

72 alive.rb - Ruby features a lot of syntactic sugar. For instance,

one can add the ? at the end of a method call in order to

signify more clearly the boolean nature of the return value.

Other languages tend to disallow the use of special charac-

ters in method names. 357

73 nsCSSRenderingBorders.cpp - An example of useful com-

ments complementing the source code in Mozilla’s layout

engine, literally drawing out the graphical task executed by

the code. 379

74 semaphore.cpp - A textbook semaphore description in

pseudo-code (R. H. Arpaci-Dusseau & Arpaci-Dusseau, 2018) . 384

75 pi_video_looper.py - Abstracting hardware specific resources

via configuration options in an open-source project. Both of

these rely on getting a module variable from the configura-

tion file, before loading the file whose name corresponds to

the value of that variable. This architectural choice enables

broad generalization via a simple loading mechanism. (Di-

cola, 2015) . 386

493

76 self_inspect.rb - A code poemwritten in Ruby, exhbiting com-

plex interactions between human reference, machine refer-

ence, language idioms, source code description and runtime

execution. (Ortega, 2011) . 389

77 self_inspect.txt - The executed output from Listing 76 391

78 p5_sketch.js - Different ways to write a JavaScript function in

different functional contexts, with either a focus on peda-

gogy or skill. 403

79 0x31.asm - This Assembly listing represents a pair of numbers

as reflected binary numbers, and then performs a logical xor

operation on a pair of numbers. The structure of the program

text itself, through its symmetry, hints at the patterns exhib-

ited by such reflected binary encoding (xorpd, 2014). 419

80 forkbomb.pl - An artwork in the exhibited sense of the term,

displaying conciseness and metaphorical expression along

with expressive power through its technical expansion, all

thewhile breaking the expectation for a programnot to over-

load the hardware on which it runs. 433

494

List of Figures

2.1 Table comparing the scale of two software development

projects. 59

2.2 The annotated representation of the compiled version of A

Mind Is Born, a demo by Linus Åkesson. The different color

overlays highlight the meaningful regions of the program

(Akesson, 2017). 81

2.3 Visualization of a 3D-mesh in Matlab 86

2.4 Maxwell’s equations form a terse, unified basis for electro-

magnetism, optics and electric circuitry. 92

3.1 Tentative d’organisation visuelle pour le roman La Route des

Flandres, années 1960 - Claude Simon, écrivain 178

3.2 Visualization of the execution of Pac-Man’s source code . . . 198

4.1 Description of a software component and its inner relations

in the Universal Modelling Language, (Wikipedia, 2023b) . . . 275

4.2 Pavillion built by Junya Ishigami + associates, showing a fo-

cus on appearance and structural features, rather than hab-

itability. Picture courtesy of Iwan Baan, 2008. 277

495

4.3 CodeCity is an integrated environment for software analysis,

in which software systems are visualized as interactive, nav-

igable 3D cities. The classes are represented as buildings in

the city, while the packages are depicted as the districts in

which the buildings reside. (Wettel, 2008) 283

4.4 Euler’s identity demonstrates the relation between geometry,

algebra and numerical analysis through a restrained set of

syntactic symbols. 304

4.5 The linked list is an abstract data structure which acts as a

fundamental conceptual entitiy in computer science. It is

here represented as a graph, and implementations can be

seen in Listing 57 and Listing 58. 308

4.6 Steps of transformation to approach an epistemic value in

finding whether or not the square root of 2 is an rational

number. 318

5.1 Implementation of the traditional ”Hello, world!” program

in the Folders programming language. (Temkin, 2015) 406

496

Le rôle de l’esthétique dans la compréhension du code

source

Cette thèse examine comment les propriétés esthétiques du code source

permettent la représentation d’espaces sémantiques programmés, et leur

implication dans la compréhension de la fonction de processus computationels.

Se basant sur un corpus de programmes-textes et des discours les accompagnant,

nous montrons en quoi l’esthétique du code source est contingente d’autres

domaines esthétiques littéraires, architecturaux et mathématiques, tout en

demeurant dépendante du contexte au sein duquel circulent les

programmes-textes, et se transformant à différentes échelles de lecture. En

particulier, nous montrons que les propriétés esthétiques du code source

permettent une certaine expressivité, en vertu de leur appartenance à une

interface linguistique partagée et dynamique permettant de calculer le monde.

Enfin, nous montrons comment une telle interface favorise la compression

sémantique et l’exploration spatiale.

Mots-clés: Esthétique, Code source, Programmation, Cognition, Épistémologie

The role of aesthetics in understanding source code

This thesis investigates how the aesthetic properties of source code enable the

representation of programmed semantic spaces, in relation with the function and

understanding of computer processes. By examining program texts and the

discourses around it, we highlight how source code aesthetics are both dependent

on the context in which they are written, and contingent to other literary,

architectural, and mathematical aesthetics, varying along different scales of

reading. Particularly, we show how the aesthetic properties of source code

manifest expressive power due to their existence as a dynamic, functional, and

shared computational interface to the world, which afford semantic compression

and spatial exploration.

Keywords: Aesthetics, Source Code, Programming, Cognition, Epistemology

497

Université Sorbonne Nouvelle

ED 120 - Littérature française et comparée

ed120@sorbonne-nouvelle.fr

498

	Acknowledgements
	Foreword
	Introduction
	Context
	The research territory: code
	Beautiful code
	Literature review

	Research questions
	Methodology
	Roadmap
	Implications and readership

	Aesthetic ideals in programming practices
	The practices of programmers
	Software developers
	Hackers
	Scientists
	Poets

	Ideals of beauty
	Introduction to the Methodology
	Lexical Field in Programmer Discourse

	Aesthetic domains
	Literary Beauty
	Scientific beauty
	Architectural beauty

	Understanding source code
	Formal and contextual understandings
	Between formal and informal
	Knowing-what and knowing-how

	Understanding computation
	Software ontology
	Software complexity
	The psychology of programming

	Means of understanding
	Metaphors in computation
	Tools as a cognitive extension

	Beauty and understanding
	Aesthetics and cognition
	Source code as a language of art
	Contemporary approaches to art and cognition

	Representing textual worlds in literature
	Literary metaphors
	Literature and cognitive structures
	Words in space

	Function, style and matter in architecture
	Form and Function
	Patterns and structures
	Material knowledge

	Aesthetics and heuristics in mathematics
	Beauty in mathematics
	Epistemic value of aesthetics
	Aesthetics as heuristics

	Machine languages
	Linguistic interfaces
	Programming languages
	Qualities of programming languages
	Styles and idioms in programming

	Cognitive aesthetics in program texts
	Between humans and machines
	Matters of scale
	Semantic layers

	Functions and aesthetics in source code
	Functional beauty
	Functions of source code
	Aesthetic and ethical value in program texts

	Conclusion
	Findings
	Contribution
	Limitations

	Opening
	Bibliography
	Listings
	Figures

