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Title: Optimizations of ITS-G5 network resource management to support C-ITS services 

Abstract  

This thesis unfolds in the dynamic context of Cooperative Intelligent Transport Systems (C-

ITS) and Vehicle-to-Everything (V2X) communications, with a particular focus on the 

integration of emerging technologies such as Artificial Intelligence (AI), Network Slicing, and 

Multi-access Edge Computing (MEC). These revolutionary technologies are reshaping the way 

vehicular networks manage traffic safety and efficiency while presenting unique challenges. 

The first major challenge addressed in this thesis is the degradation of communication 

channel quality in congested V2X networks. This common situation in dense traffic 

environments negatively impacts vehicular communication performance, thus hindering the 

efficiency of C-ITS. The second challenge is to ensure ultra-low end-to-end (E2E) latency in 

these congested networks, particularly for services and user groups requiring high priority. This 

need is especially crucial in scenarios where vehicles, such as emergency services, rely on rapid 

and reliable communication. The third significant issue tackled is service migration in MEC-

enabled vehicular networks, an essential aspect to ensure service continuity in highly mobile 

environments. The mobile nature of vehicular networks, combined with the limited coverage 

of edge servers, poses significant challenges in maintaining QoS and minimizing service 

interruptions. 

To address these challenges, the thesis proposes several innovative solutions. A proactive 

approach for Decentralized Congestion Control (DCC) was developed using Long Short-Term 

Memory (LSTM) recurrent neural networks. This technique aims to optimize channel 

performance by forecasting the Channel Busy Ratio (CBR), thus improving network stability 

and ensuring fair resource allocation. Simulations demonstrated the effectiveness of proactive 

DCC algorithms, showing faster convergence and better resource management. 

Next, we address the innovative aspects of network slicing in ITS-G5 vehicular 

communications. The second contribution proposes an ITS-G5 RAN slicing architecture, 

aiming to create slices with varied priorities for efficient and secure traffic, while ensuring 

isolation and prioritization between slices. This approach aims to maintain performance and 

security for each slice, even in the presence of conflicting services. In the third contribution, we 

develop an end-to-end network slicing architecture, aiming to improve latency for specific user 

groups, particularly in congested areas. Simulations confirmed the effectiveness of these 

architectures in traffic flow management and latency reduction for high-priority services, 

demonstrating the importance of these approaches in advancing intelligent and efficient 

vehicular networks. 
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Finally, to address service migration in MEC vehicular networks, we formulated the problem 

as a Markov Decision Process (MDP) and developed an adaptive migration strategy using Deep 

Reinforcement Learning (DRL), specifically Deep Q Networks (DQN) and Double Deep Q-

network (DDQN) approaches. This strategy aims to balance migration costs and latency. 

Simulation results showed that the DDQN method excels in managing migration costs while 

maintaining optimal QoS, particularly for latency-sensitive services, and offers an optimal 

balance for high-priority services. 

These contributions, combining technological advances and innovative analytical 

approaches, provide robust solutions to current and emerging challenges in cooperative 

intelligent transport systems, paving the way for significant improvements in road safety, traffic 

efficiency, and user experience in the field of smart mobility. 

Keywords: C-ITS, V2X, Artificial Intelligence, Network Slicing, MEC, ITS-G5, DCC, 

Service Migration.  
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Titre : Optimisation de la gestion des ressources des réseaux ITS-G5 pour le support des 

services C-ITS 

Résumé 

Cette thèse s’intéresse à la gestion des ressources dans les Systèmes de Transport Intelligents 

Coopératifs (C-ITS) utilisant les communications V2X (vehicle-to-everything) ou Véhicule-à-

Tout. Nos contributions tirent profit des technologies émergentes telles que l'Intelligence 

Artificielle (IA), le tranchage de réseau (Slicing) et le Multi-access Edge Computing (MEC). 

Ces technologies promettent de révolutionner la manière dont les réseaux véhiculaires gèrent 

la sécurité et l'efficacité du trafic routier et permettent de résoudre certains défis liés à 

l’optimisation des ressources réseaux.  

Le premier défi majeur abordé dans cette thèse concerne la dégradation de la qualité des 

canaux de communication dans les réseaux V2X congestionnés. Cette situation, fréquente dans 

les environnements de trafic dense, affecte négativement les performances des communications 

véhiculaires, entravant ainsi l'efficacité des services C-ITS. Le deuxième défi est de garantir 

une latence ultra-faible de bout-en-bout dans ces réseaux encombrés, en particulier pour des 

services et des groupes d'utilisateurs nécessitant une priorité élevée. Ce besoin est 

particulièrement crucial dans les scénarios où des véhicules, tels que ceux des services 

d'urgence, exigent une communication fiable et à faible latence. La troisième problématique 

traitée est la migration de services dans les réseaux véhiculaires équipés de MEC, un aspect 

essentiel pour assurer la continuité des services dans des environnements à mobilité élevée. La 

nature mobile des réseaux véhiculaires, combinée à une couverture limitée des serveurs Edge, 

pose des défis significatifs en termes de maintien d’un bon niveau de Qualité de Service (QoS) 

et de minimisation des interruptions de service. 

Pour relever ces défis, la thèse propose trois contributions majeures. Premièrement, une 

approche proactive pour le Contrôle de Congestion Décentralisé (DCC) a été développée en 

utilisant des réseaux neuronaux récurrents avec Long Short-Term Memory (LSTM). Cette 

technique vise à optimiser les performances du canal en prévoyant en amont le Taux 

d'Occupation du Canal (CBR) pour améliorer la stabilité du réseau tout en garantissant une 

allocation équitable des ressources. Les simulations ont démontré l'efficacité des algorithmes 

DCC proactifs, montrant une convergence plus rapide et une meilleure gestion de l’allocation 

des ressources.  

Ensuite, nous avons abordé le tranchage de réseau dans les communications véhiculaires 

utilisant la technologies ITS-G5. Pour cela, nous avons proposé une architecture de tranchage 

de la partie RAN ITS-G5 (Radio Access Network), visant à créer des tranches réseaux avec des 
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priorités variées, tout en garantissant l'isolation des performances et le respect de niveau de QoS 

entre les tranches. Cette approche vise à maintenir des niveaux de performances et de sécurité 

adéquats pour chaque tranche, même en présence de services d'exigences de QoS 

contradictoires. Au-delà de la partie RAN, nous avons élaboré une architecture de tranchage de 

réseau de bout-en-bout (RAN et Core Network), visant à garantir des latences faibles pour des 

groupes d'utilisateurs spécifiques, notamment dans les zones encombrées. Les simulations ont 

confirmé l'efficacité de cette architecture dans la gestion du flux de trafic et la réduction de la 

latence pour les services à haute priorité, démontrant l'importance de ces approches dans 

l'avancement des réseaux véhiculaires intelligents et efficaces. 

La dernière contribution aborde la migration de services dans les réseaux véhiculaires 

équipés de MEC. Nous avons formulé ce problème de migration en tant que Processus 

Décisionnel Markovien (MDP) et avons développé une stratégie de migration adaptative en 

utilisant l'apprentissage par renforcement profond (DRL), notamment les approches Deep Q 

Networks (DQN) et Double Deep Q Networks (DDQN). Cette stratégie vise à trouver 

l’équilibre optimal entre la latence et le coût de migration. Les résultats de nos simulations ont 

montré que la méthode DDQN excelle dans la gestion des coûts de migration tout en maintenant 

un niveau de QoS optimal, en particulier pour les services sensibles à la latence, et offre un 

équilibre optimal pour les services à haute priorité. 

Nos contributions fournissent des solutions robustes aux défis actuels et émergents dans les 

systèmes de transport intelligents coopératifs et ouvrent la voie à des améliorations 

significatives en termes de sécurité routière, d'efficacité du trafic et d'expérience utilisateur dans 

le domaine de la mobilité intelligente. 

Mots clés : C-ITS, V2X, Intelligence Artificielle, tranchage de réseau, MEC, ITS-G5, 

DCC, Migration de Services. 
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Résumé étendu en français 

Dans le paysage en évolution rapide des communications véhiculaires, les Systèmes de 

Transport Intelligents Coopératifs (C-ITS) se sont imposés comme une technologie clé pour 

améliorer la sécurité routière et la gestion du trafic. L'intégration des C-ITS dans les réseaux 

véhiculaires marque un pas important vers des systèmes de transport plus intelligents, sûrs et 

efficaces. Au cœur de cette avancée se trouve la communication Véhicule-à-Tout (V2X), une 

technologie fondamentale qui facilite l'échange d'informations entre les véhicules et leur 

environnement, y compris d'autres véhicules, piétons, infrastructures routières et systèmes de 

réseau. 

La communication V2X, standardisée en Europe sous le nom d'ITS-G5, fonctionne sur les 

principes de la norme IEEE 802.11p et est spécifiquement conçue pour les Réseaux Ad hoc 

Véhiculaires (VANET). L'ITS-G5 joue un rôle crucial dans les C-ITS en fournissant le cadre 

pour divers types de stations de Système de Transport Intelligent (ITS) : véhicules, Unités de 

Bord de Route (RSU) et piétons, pour contribuer de manière collaborative à l'efficacité et à la 

sécurité du trafic. Elle permet une gamme de modes de communication, y compris véhicule-à-

infrastructure (V2I), véhicule-à-véhicule (V2V) et véhicule-à-piéton (V2P), assurant une 

couverture et une connectivité complètes. Ce large spectre de modalités de communication est 

essentiel pour transmettre des informations critiques telles que les Messages de Sensibilisation 

Coopérative (CAM) et les Messages de Notification d'Événement Décentralisés (DENM), qui 

sont cruciaux pour la gestion du trafic en temps réel et les scénarios de réponse aux urgences. 

La prolifération des applications V2X entraîne des exigences strictes en termes de Qualité 

de Service (QoS), en particulier en ce qui concerne la latence et la fiabilité. Ces exigences 

deviennent encore plus prononcées dans les zones à forte densité, où les réseaux véhiculaires 

sont souvent confrontés à des défis tels que la congestion de la bande passante et les 

interférences entre les liens sans fil. Pour relever ces défis, des solutions technologiques 

innovantes telles que l'Intelligence Artificielle (IA), le Tranchage de Réseau et le Multi-accès 

Edge Computing (MEC) peuvent être exploitées. 

L'Intelligence Artificielle (IA) devient de plus en plus un pilier dans l'évolution des systèmes 

de communication véhiculaires. L'IA, avec ses vastes capacités, offre des avancées 

significatives dans la gestion et l'optimisation de la dynamique complexe des réseaux 

véhiculaires. Parmi les différentes branches de l'IA, l'Apprentissage par Renforcement Profond 

(DRL) et les réseaux Long Short-Term Memory (LSTM) pourraient être très efficaces dans ce 

domaine. Les réseaux LSTM contribuent de manière significative à l'analyse et à la prévision 

des données séquentielles, un aspect vital dans le contexte des communications véhiculaires où 

les modèles et tendances évoluent dans le temps. Cependant, le DRL est essentiel pour 

améliorer les processus décisionnels, assurant que les réseaux véhiculaires peuvent s'adapter et 
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fonctionner efficacement dans des environnements en rapide évolution. La synergie de ces 

technologies d'IA dans les systèmes C-ITS et V2X conduit à des réseaux véhiculaires plus 

intelligents, plus réactifs et plus efficaces, sous-tendant l'avancement des systèmes de transport 

véhiculaires. 

Le tranchage de réseau, un nouveau paradigme dans le domaine des réseaux, est sur le point 

de révolutionner les réseaux véhiculaires en tant que technologie clé pour la 5G et au-delà. Il 

implique la création de réseaux logiques indépendants de bout-en-bout sur une infrastructure 

partagée, chacun étant conçu pour supporter des services ou applications spécifiques avec des 

Accords de Niveau de Service (SLA) prédéfinis. Le tranchage de réseau facilite la gestion et le 

contrôle des ressources réseau de manière plus efficace, en garantissant que chaque tranche 

réponde à ses exigences spécifiques de QoS. Cette capacité à séparer les ressources réseau pour 

différentes applications et groupes d'utilisateurs est particulièrement bénéfique pour gérer 

divers types de trafic et priorités au sein des réseaux ITS-G5. 

Le Multi-acces Edge Computing (MEC) émerge comme une technologie complémentaire, 

offrant des capacités de calcul robustes à la périphérie du réseau. En déployant des serveurs 

Edge à proximité des utilisateurs des réseaux véhiculaires, le MEC réduit considérablement la 

latence et améliore la puissance de calcul disponible pour les véhicules. Ceci est 

particulièrement crucial pour des applications nécessitant de hautes ressources 

computationnelles, telles que la détection d'objets et l'analyse de flux vidéo, permettant ainsi 

leur exécution efficace au sein du réseau véhiculaire. Le rôle du MEC dans la minimisation de 

la latence des services et le soutien de tâches computationnellement intensives est essentiel pour 

maintenir la performance continue et fiable des réseaux véhiculaires. 

Ensemble, ces technologies - l'IA, le tranchage de réseau et le MEC – (et autres) constituent 

la base des communications modernes C-ITS et V2X. Leur intégration ne se contente pas de 

répondre aux défis actuels des réseaux véhiculaires, mais ouvre également la voie à de futures 

innovations dans les systèmes de transport intelligents. Alors que les réseaux véhiculaires 

continuent d'évoluer et de devenir plus complexes, la synergie de ces technologies avancées 

sera clé pour réaliser le plein potentiel des C-ITS, en améliorant la sécurité routière, l'efficacité 

du trafic et l'expérience utilisateur globale à l'ère de la mobilité intelligente. 

Cette thèse vise à d'atteindre trois objectifs clés : premièrement, améliorer les 

communications V2X grâce à une allocation de ressources optimisée et à une équité accrue ; 

deuxièmement, garantir une QoS de bout-en-bout pour une variété d'applications et de services 

V2X avancés ; et troisièmement, fournir une solution adaptée aux services sensibles à la latence 

dans des environnements hautement mobiles tout en optimisant les coûts. Cette approche 

globale aborde les aspects cruciaux des systèmes de communication véhiculaire, cherchant un 

équilibre entre performance, qualité et rentabilité. Ce qui soulève les contributions suivantes. 
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1. Proactive C-ITS Decentralized Congestion Control Using LSTM 

Dans le domaine des réseaux véhiculaires, notamment dans le cadre de la technologie ITS-

G5 européenne, la gestion de la densité des véhicules et de l'utilisation des canaux présente des 

défis significatifs. Ces réseaux, caractérisés par leurs environnements dynamiques et 

complexes, sont souvent confrontés à des problèmes de congestion des canaux et de dégradation 

de la qualité, principalement en raison du volume élevé de trafic généré par les véhicules, en 

particulier les Messages de Sensibilisation Coopérative (CAM). Pour relever ces défis, des 

techniques de Contrôle de Congestion Décentralisé (DCC) telles que le Contrôle de Taux de 

Transmission réactif (TRC) et l’algorithme Dual α adaptatif ont été proposés.  

Cependant, ces méthodes existantes présentent des limites dans les conditions de réseau 

véhiculaire en rapide évolution. Ce premier travail introduit une nouvelle approche du DCC, en 

utilisant une technique proactive qui utilise un Réseau Neuronal Récurrent (RNN) Long Short-

Term Memory (LSTM). L'objectif principal est d'optimiser les performances du canal en 

prévoyant le Taux d'Occupation du Canal (CBR) à l'aide de valeurs CBR lissées calculées par 

un agent LSTM. Ces prévisions sont ensuite intégrées dans les algorithmes DCC pour permettre 

une convergence plus rapide de la charge du canal, améliorant ainsi la stabilité du réseau, 

limitant la congestion du canal et garantissant une allocation équitable des ressources. 

Ce travail a consisté à réaliser des simulations pour démontrer l'efficacité des algorithmes 

DCC proactifs proposés, en comparaison avec le TRC réactif et le Dual α adaptatif. Les 

principaux paramètres évalués étaient le CBR moyen et la vitesse de convergence du CBR, qui 

sont indicatifs de la stabilité du canal de transmission et du niveau d'équité atteint parmi les 

véhicules. Les simulations ont montré que l'algorithme Dual α proactif basé sur LSTM, en 

particulier, a atteint une meilleure et plus rapide convergence dans des conditions stables par 

rapport à l'algorithme Dual α hérité. De plus, l'utilisation d'algorithmes DCC proactifs n'a pas 

eu d'impact négatif sur la fiabilité ou la qualité de transmission du canal, comme en témoigne 

la légère augmentation du Taux de Livraison de Paquets (PDR) dans tous les environnements 

de simulation.  

L'approche proactive, basée sur les prédictions LSTM, a effectivement réduit l'épuisement 

du canal et accéléré la transition d'états de canal instables à stables, garantissant ainsi une 

convergence plus rapide du canal, une utilisation optimale des ressources et une équité accrue 

tant localement que globalement parmi les véhicules. Ces résultats confirment le potentiel 

d'utilisation d'algorithmes IA avancés pour le DCC, suggérant des orientations futures pour 

remplacer entièrement les mécanismes DCC traditionnels par des solutions basées sur l'IA. 

2. A RAN Slicing Architecture for ITS-G5 C-ITS 

Dans cette deuxième contribution, on aborde les besoins évolutifs des C-ITS face aux 

transformations technologiques dans le marché automobile. L'accent principal est mis sur 
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l'assurance d'une ultra-faible latence et d'une ultra-haute fiabilité dans des conditions de haute 

mobilité et de densité, en utilisant la technologie européenne ITS-G5 pour les services V2X. 

Nous proposons une architecture de tranchage innovante du Réseau d'Accès Radio (RAN) ITS-

G5, intégrant de nouveaux modules dans la pile de protocoles ITS. Cette architecture vise à 

créer plusieurs tranches RAN avec des priorités variées, garantissant un accès sécurisé, une 

limitation et régulation efficaces du trafic, une priorisation du trafic et une isolation entre les 

différentes tranches. L'objectif central est de maintenir la performance et la sécurité pour chaque 

tranche, même en présence de services ayant des exigences de performance conflictuelles, en 

s'assurant que l'amélioration des performances dans une tranche ne se fait pas au détriment 

d'une autre. 

La mise en œuvre et la validation de l'architecture de tranchage RAN ITS-G5 ont impliqué 

diverses simulations et scénarios au sein de l'environnement de simulation Artery. Ces 

simulations ont été conçues pour mettre en évidence les capacités de priorisation du trafic, de 

Qualité de Service (QoS) et d'isolation du réseau. Plus précisément, les simulations se sont 

concentrées sur les performances de deux tranches conçues : une tranche de priorité plus élevée 

(HP) et une tranche de priorité inférieure (LP).  

Les résultats de ces simulations ont confirmé l'efficacité de l'architecture dans la gestion du 

flux de trafic et le maintien d'un taux de messages fixe par station, validant ainsi les mécanismes 

de façonnage et de régulation du trafic. La tranche HP a constamment maintenu des latences 

moyennes inférieures à celles de la tranche LP à travers différentes densités de trafic et 

proportions de trafic HP. Ce résultat souligne la capacité de l'architecture à isoler et prioriser 

efficacement le trafic. De plus, les valeurs de latence médiane et au 95e percentile ont davantage 

démontré la performance supérieure de la tranche HP par rapport à la tranche LP, confirmant 

l'efficacité de l'architecture dans la priorisation du trafic et la différenciation de la QoS dans 

diverses conditions de trafic. 

3. End-to-End Network Slicing for ITS-G5 Vehicular Communications 

L'objectif de ce travail est de faire progresser les C-ITS dans le contexte de ITS-G5. Les 

réseaux C-ITS rencontrent des défis significatifs dans les zones encombrées où la performance 

de la communication diminue considérablement. Ces réseaux nécessitent une performance de 

communication améliorée, en particulier dans des conditions de haute mobilité et densité, pour 

répondre aux exigences strictes de très faible latence et de très haute fiabilité. Cette contribution 

propose une architecture innovante de tranchage de réseau de bout-en-bout pour les 

communications véhiculaires ITS-G5. Cette architecture, en intégrant de nouveaux modules 

dans la pile de protocoles ITS, vise à créer plusieurs tranches de bout-en-bout avec des priorités 

variées pour assurer les exigences de qualité de service (QoS) pour différentes applications. Le 

mécanisme de tranchage se concentre sur la fourniture d'une latence de bout-en-bout améliorée 
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pour des types de trafic et des groupes d'utilisateurs spécifiques, en particulier pour le trafic à 

haute priorité dans les zones encombrées.  

Les scénarios de simulation et les résultats présentés valident l'efficacité de l'architecture de 

tranchage proposée. L'objectif principal de l'approche de tranchage était d'améliorer la latence 

de bout-en-bout pour le trafic à haute priorité, en particulier pour les Messages de 

Sensibilisation Coopérative (CAM) dans les zones à forte densité de véhicules. L'architecture a 

défini deux tranches distinctes pour deux groupes d'utilisateurs : une Tranche à Haute Priorité 

(HPS) pour les CAM à haute priorité et une Tranche à Priorité Ordinaire (OPS) pour les CAM 

à priorité ordinaire. Les scénarios ont été conçus pour assurer la transmission de messages à 

haute priorité avec moins de temps d'attente et plus d'opportunités d'accès au canal de 

transmission.  

Les résultats de ces simulations ont indiqué une amélioration notable de la latence de bout-

en-bout pour la HPS par rapport à la OPS, avec des latences pour la HPS restant stables et 

significativement plus basses que celles de la OPS même dans des scénarios à haute densité. 

Ces résultats soulignent l'efficacité du mécanisme de tranchage pour prioriser le trafic à haute 

priorité et maintenir une latence plus faible, ce qui est particulièrement bénéfique pour des 

applications V2X avancées nécessitant des latences ultra-faibles telles que la conduite 

autonome et le peloton de véhicules. 

4. Dynamic Service Migration Empowered with Deep Q-Learning for C-ITS 

Dans une ère où le Multi-access Edge Computing (MEC) gagne en importance, notamment 

pour des tâches sensibles au temps et computationnellement intensives dans les réseaux 

véhiculaires, cette dernière contribution aborde un défi critique : les interruptions de service et 

la dégradation de la Qualité de Service (QoS) dues à la haute mobilité des véhicules et à la 

couverture limitée des serveurs Edge. Le potentiel du MEC dans les réseaux véhiculaires est 

immense, facilitant des applications avancées telles que la détection d'objets et l'analyse de flux 

vidéo. Cependant, ce potentiel est souvent entravé par la haute mobilité des véhicules, 

entraînant des topologies de communication dynamiques et des liens de communication peu 

fiables.  

Pour relever ces défis, ce travail étudie le problème de la migration de services dans les 

réseaux véhiculaires dotés de MEC. L'objectif est d'optimiser la continuité du service en 

minimisant à la fois la latence du service et les coûts de migration. Ce problème complexe est 

formulé comme un Processus Décisionnel Markovien (MDP). Ensuite, nous proposons une 

stratégie de migration adaptative inédite qui prend en compte des facteurs tels que la mobilité 

des véhicules, la charge du serveur Edge et différents profils de service. Cette stratégie est 

élaborée à l'aide de l'Apprentissage par Renforcement Profond (DRL), spécifiquement les 
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Réseaux Q Profonds (DQN), en se concentrant sur l'algorithme Double Deep Q-Network 

(DDQN) pour atteindre des compromis optimaux entre latence et coûts de migration. 

Cette approche est évaluée en profondeur grâce à des simulations qui modélisent les 

mouvements et communications véhiculaires au sein d'un réseau doté de MEC, fournissant un 

scénario réaliste pour tester l'algorithme DDQN. La performance du DDQN est illustrée par 

l'amélioration des récompenses moyennes par épisode, démontrant l'efficacité d'apprentissage 

et la convergence de l'algorithme autour de 190 épisodes. Cela indique la capacité de l'agent 

MEC à explorer et à s'adapter à de meilleures actions. Une analyse comparative de la méthode 

DDQN proposée par rapport à d'autres approches de migration de service souligne sa 

supériorité. Spécifiquement, la méthode DDQN excelle dans la gestion des coûts de migration, 

en particulier pour les profils de service moins sensibles à la latence (SP1 et SP2), tout en 

maintenant une QoS optimale. Pour les services à haute priorité (SP0), elle surpasse les autres 

méthodes, établissant un équilibre entre la minimisation des coûts de migration et le maintien 

d'une faible latence.  

Ces résultats montrent comment le modèle DDQN s'adapte habilement aux exigences de 

chaque profil de service pour atteindre un équilibre optimal entre les coûts de migration et la 

latence, un facteur essentiel dans les applications V2X avancées où une faible latence est 

cruciale. 
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1. Introduction 

In the current digital era, characterized by rapid economic and technological advancements, 

the need for safer roads and smarter traffic management has become more pressing than ever. 

The relentless pace of urbanization and the exponential growth in vehicle numbers have 

escalated the challenges in traffic management, making road safety a critical concern. This 

situation necessitates a paradigm shift in how traffic systems are managed and controlled. 

Innovative solutions are required not only to address the burgeoning traffic demands but also 

to cater to the evolving expectations of efficiency, safety, and sustainability in urban mobility. 

As the world moves towards a more interconnected and digitalized future, the transportation 

sector stands at the cusp of a significant transformation, driven by technological innovations 

and digital solutions aimed at enhancing road security and optimizing traffic flow. 

Cooperative Intelligent Transport Systems (C-ITS) have emerged as a beacon of innovation 

in the realm of modern transportation, garnering increasing attention worldwide. C-ITS 

represents an intelligent network where crucial components such as vehicles, pedestrians, and 

road infrastructure are interconnected, enabling seamless information exchange. This 

collaborative ecosystem is designed to enhance global road safety and traffic efficiency, 

marking a substantial leap in how vehicular traffic is managed. By harnessing the power of 

connectivity and data exchange, C-ITS helps mitigate traffic congestion, reducing accident 

rates, and improving overall transportation experiences. The integration of these systems into 

the existing transportation infrastructure paves the way for a smarter, safer, and more efficient 

mode of road travel, aligning with the futuristic vision of smart cities and intelligent mobility. 

Vehicle-to-Everything (V2X) communications stand at the forefront of revolutionizing 

vehicular networks, playing an indispensable role in the functionality of C-ITS. As the 

cornerstone of modern vehicular communication, V2X facilitates the exchange of data between 

vehicles and their surrounding environment, including other vehicles, pedestrians, and road 

infrastructure. This real-time communication capability enables a plethora of applications that 

are fundamental to road safety and traffic efficiency. From collision avoidance and traffic flow 

management to dynamic route planning and environmental monitoring, V2X communications 

are instrumental in making transportation systems more intelligent, responsive, and user-

centric. The integration of V2X into the broader landscape of C-ITS not only enhances 

situational awareness among road users but also fosters a collaborative network, where every 

element works in synergy for optimal transportation experience. 

Within the diverse landscape of V2X standards, including cellular LTE-V2X and the cutting-

edge 5G-V2X, ITS-G5 stands out as the foundational technology for V2X communications in 

Vehicular Ad hoc Networks (VANET) in Europe. Developed by the European 

Telecommunication Standard Institute (ETSI), ITS-G5 is built upon the IEEE 802.11p standard, 
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tailored specifically for vehicular communication. This technology epitomizes the European 

approach to V2X, providing a robust framework for a range of communications, including 

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I), among others. ITS-G5 is 

designed to support a wide range of applications, from basic safety messages to more complex 

vehicular communication tasks, ensuring reliability and efficiency in high-speed mobility 

conditions. The adoption and development of ITS-G5 reflect Europe's commitment to 

advancing vehicular communication technologies, positioning it as a key player in shaping the 

future of intelligent transportation systems. 

In high-density vehicular environments, the volume of traffic generated by vehicles, 

especially Cooperative Awareness Messages (CAMs), is immense and serves as the primary 

source of channel congestion. These CAMs, transmitted periodically, are crucial for 

maintaining situational awareness among vehicles but simultaneously pose a significant 

challenge in terms of network congestion. To address this issue, the European 

Telecommunications Standards Institute (ETSI) proposed Decentralized Congestion Control 

(DCC) as a cross-layer mechanism for managing and controlling network congestion in 

VANET. DCC plays a vital role in maintaining the efficiency and reliability of communication 

channels by dynamically adjusting the transmission parameters based on real-time network 

conditions. This approach helps in balancing the network load and mitigating congestion, 

thereby ensuring the continuous and effective exchange of critical safety messages among 

vehicles in dense traffic scenarios. 

Many advanced V2X applications and use cases, such as remote driving and autonomous 

vehicles, have stringent requirements for latency and reliability. These critical applications 

demand not just rapid but also highly reliable communication channels to function effectively. 

In scenarios like remote driving, even a slight delay or a minor lapse in communication can 

have significant implications, underscoring the necessity for ultra-reliable and ultra-low-latency 

communication solutions. Addressing this strict Quality of Service (QoS) requires exploring 

new paths and leveraging advanced technologies. The pursuit of meeting these demanding 

requirements is driving innovation in the field of V2X, leading to the exploration of novel 

approaches and cutting-edge technologies. These advancements are crucial in ensuring that 

V2X systems can support the high levels of performance and reliability essential for the safe 

and efficient operation of advanced vehicular applications. 

The advent of Artificial Intelligence (AI) has marked a transformative era across various 

sectors, offering a multitude of applications and benefits that can significantly enhance diverse 

fields, including V2X networks. AI's ability to process vast amounts of data, learn from 

patterns, and make informed decisions would revolutionize the way V2X networks operate. In 

the context of vehicular communication, AI contributes to improved safety, efficiency, and 

traffic management by enabling smarter decision-making and predictive analytics. This 
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technology is instrumental in analysing real-time traffic data, optimizing routing, and enhancing 

the overall performance of vehicular networks. AI’s integration into V2X systems paves the 

way for advanced features such as autonomous driving, traffic congestion prediction, and 

dynamic network optimization, showcasing its pivotal role in elevating intelligent 

transportation systems to new heights. 

Furthermore, the emergence of 5G technology has unlocked a plethora of new opportunities 

for innovation and enhancement in C-ITS. 5G brings to the table high-speed connectivity, lower 

latency, higher capacity, and improved reliability, all of which are crucial for the effective 

functioning of C-ITS. Key technologies that play a significant role in this advancement include 

Network Slicing and Multi-access Edge Computing (MEC). These technologies collectively 

contribute to the creation of more efficient, scalable, and robust C-ITS. The potential for real-

time data processing, enhanced vehicular communication, and support for a wider range of 

applications become a reality, thereby propelling C-ITS into a new era of technological 

excellence and paving the way for smarter, more connected transportation systems. 

Network slicing stands as a fundamental enabler for 5G networks, offering a novel approach 

to network management and optimization. This technology involves the creation of multiple 

independent logical networks, known as slices, on a shared physical infrastructure. Each slice 

is allocated dedicated resources and tailored virtual network functions to cater to specific users 

or traffic types. Network slicing allows for customized solutions that meet diverse 

requirements, ranging from high bandwidth to low latency, ensuring optimal performance for 

various applications. In the context of C-ITS and V2X communications, network slicing 

provides a flexible and efficient way to handle different traffic scenarios and service demands, 

significantly enhancing the capability of vehicular networks to support a broad spectrum of 

applications with distinct QoS needs. 

The Multi-access Edge Computing (MEC) paradigm, characterized by deploying servers at 

the network's edge, is a significant advancement in vehicular network technology. This strategic 

placement of edge servers near vehicular networks brings powerful computational capabilities 

closer to the point of data generation and consumption. By doing so, MEC significantly reduces 

latency, a crucial factor for applications requiring prompt responses. This efficient deployment 

enables vehicles to access robust computational resources, essential for processing-intensive 

tasks like object detection, video stream analytics, and path navigation. The integration of MEC 

in vehicular networks is a game-changer, especially for advanced applications that demand high 

computational power and low-latency communication. It facilitates the seamless execution of 

complex tasks directly within the vehicular network, enhancing performance, and ensuring a 

more responsive and efficient vehicular environment. 

The integration of advanced technologies such as AI, network slicing, and MEC offers a 

comprehensive solution to a multitude of challenges facing vehicular environments. These 
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technologies collectively address critical aspects such as stringent QoS requirements, security 

concerns, and heavy computational loads. By leveraging the capabilities of these technologies, 

vehicular networks can achieve higher levels of efficiency, reliability, and safety. Together, 

these technologies, along with others, provide a robust framework to overcome the challenges 

of vehicular networks, paving the way for advanced and intelligent transportation systems. 

1.1 Thesis Scope and Problem Statement 

In an era where technological advancements are reshaping the landscape of vehicular 

communications, this thesis explores the intricate interplay of various cutting-edge fields such 

as AI, Network Slicing, MEC within C-ITS, and V2X communications. The integration of these 

technologies in the European standard ITS-G5 for VANETs solves many challenges and brings 

forth a myriad of challenges and opportunities. The scope of this thesis encompasses addressing 

these critical issues, leading to several research questions: 

• How can the challenge of channel congestion in high-density vehicular networks be 

proactively managed? 

Channel congestion, particularly in C-ITS, significantly impedes the efficacy of V2X 

communications, crucial for safety and traffic management. Traditional DCC strategies often 

react to congestion after it occurs, leading to delays and inefficiencies. This thesis investigates 

proactive approaches, integrating AI and advanced algorithms, to predict and manage 

congestion effectively, thereby enhancing network performance and traffic flow. 

• What strategies can be employed to ensure ultra-low latency and high reliability in 

dynamic traffic environments? 

The demand for ultra-low latency and ultra-high reliability in ITS-G5 VANETs, especially 

for critical applications such as autonomous driving, poses a significant challenge. This thesis 

explores innovative solutions, namely network slicing, to create dedicated end-to-end (E2E) 

communication channels that cater to specific user groups and traffic types. These solutions 

aim to maintain the stringent QoS requirements essential in rapidly changing vehicular 

environments. 

• How can MEC be optimized for computationally intensive applications in high-mobility 

vehicular networks to ensure cost efficiency and adherence to strict low-latency requirements? 

With the emergence of MEC, the frequent movement of vehicles leads to changing 

communication topologies and unreliable links. This thesis delves into dynamic and responsive 

strategies within the MEC infrastructure to ensure continuous service and minimal latency 
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while optimizing costs, particularly for applications like video streaming and augmented reality 

that demand high computational power and swift data processing. 

Through addressing these research questions, the thesis aims to contribute significantly to 

the advancement of intelligent and efficient vehicular communication systems, paving the way 

for enhanced road safety, traffic management, and user experiences in the realm of smart 

mobility. 

1.2 Contributions 

This thesis delves into the development of innovative solutions for addressing the complex 

challenges faced by C-ITS and V2X communications, particularly within the framework of the 

European standard ITS-G5 for VANETs. The research is rooted in the application of emerging 

technologies such as Artificial Intelligence, Network Slicing, and Multi-access Edge 

Computing, aiming to enhance the efficiency, reliability, and overall performance of vehicular 

networks. The main contributions of this thesis are summarized as follows: 

1. Proactive C-ITS Decentralized Congestion Control Using LSTM: This contribution 

introduces a proactive approach to DCC in vehicular networks. By integrating AI with the DCC 

Dual α algorithm, the work presents an innovative method to predict and manage channel 

congestion before it becomes problematic. This approach significantly improves the handling 

of data transmission in high-density traffic scenarios, ensuring better resource allocation 

fairness, and enhanced network efficiency. 

2. A RAN Slicing Architecture for ITS-G5: We propose a novel Radio Access Network 

(RAN) slicing architecture specifically tailored for ITS-G5 networks. This architecture 

facilitates the creation of multiple network slices, each with its own set of resources and 

priorities. It effectively addresses the diverse communication needs within the vehicular 

network, ensuring optimized QoS for various traffic types, thereby enhancing the overall 

network performance and reliability. 

3. End-to-End Network Slicing for ITS-G5 Vehicular Communications: Building upon the 

concept of RAN slicing, this contribution extends it to an end-to-end context. We develop an 

E2E network slicing framework for ITS-G5, enabling more efficient management of vehicular 

communication from the source to the destination. This approach allows for tailored service 

provisioning, especially in congested environments, ensuring ultra-low latency and high 

reliability for critical vehicular applications. 

4. Adaptive Deep Reinforcement Learning Approach for Service Migration in MEC-

enabled Vehicular Networks: This last contribution introduces an adaptive service migration 

strategy using Deep Reinforcement Learning (DRL) for MEC-enabled vehicular networks. By 
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employing techniques such as Deep Q Networks (DQN) and Double Deep Q-Networks 

(DDQN), this work presents a solution that dynamically adapts to the high mobility of vehicles 

and the shifting communication topologies. This strategy optimizes service continuity, 

minimizes latency, and reduces migration costs, thereby significantly enhancing the 

performance and reliability of MEC-enabled vehicular networks. 

These contributions collectively address key challenges in C-ITS and V2X communications, 

offering robust and innovative solutions that significantly advance the field of intelligent 

transportation systems. 

1.3 Dissertation Structure 

This introductory chapter sets the stage for the thesis by outlining the context of C-ITS, V2X 

communications, and Network Slicing, among others. It highlights the key challenges within 

this domain and introduces the contributions of the thesis. This chapter serves as a foundational 

overview, introducing the reader to the technological landscape and the pivotal issues addressed 

throughout the thesis. The second chapter provides a comprehensive exploration of the current 

state of the art, encompassing a thorough description of the context and theoretical 

underpinnings related to C-ITS and V2X communications (focusing on ITS-G5), Network 

Slicing, and Multi-access Edge Computing. It delves into existing technologies, methodologies, 

and the evolution of vehicular networks, setting the groundwork for the thesis's contributions. 

Focusing on the first contribution, the third chapter discusses both adaptive and reactive 

DCC methods, leading to the elaboration of the proposed proactive Dual α DCC. It includes an 

in-depth presentation of the methodology, followed by simulations and the analysis of results, 

demonstrating the effectiveness of the proposed solution. Chapter four begins with an overview 

of network slicing literature specific to V2X. It then presents the second contribution, RAN 

Slicing Architecture for ITS-G5, detailing the proposed architecture, simulation setup, and 

results. Subsequently, it introduces the third contribution, End-to-End Network Slicing for ITS-

G5 Vehicular Communications, again outlining the proposed solution, simulation framework, 

and key findings. The fifth chapter encompasses the fourth contribution, focusing on Dynamic 

Service Migration in C-ITS using Deep Q-Learning. This chapter covers the system model, 

problem formulation, detailed simulations, and a thorough evaluation, highlighting the efficacy 

of the proposed methodology in MEC-enabled vehicular networks. 

The last chapter concludes the manuscript by summarizing the context, challenges, and key 

contributions and findings of the thesis. It reflects on the implications of the research and 

outlines potential future works, suggesting directions for further investigation and development 

within the field of intelligent transportation systems. 
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2. Background Knowledge and State of the Art 

2.1 Introduction  

In 1990, foreseeing the potential of Intelligent Transport Systems (ITS), the U.S. Federal 

Communication Commission (FCC) designated a 75 MHz bandwidth within the licensed 5.9 

GHz band (5.885-5.925 GHz) exclusively for ITS applications. This critical decision, offering 

the spectrum freely without reservation requirements, significantly propelled vehicular 

communication technologies forward. 

In recent years, C-ITSs have become increasingly prominent. C-ITS represents a smart 

sophisticated network where connected entities, including vehicles, pedestrians, and road 

infrastructure, collaboratively share data. The primary objectives of C-ITS are to enhance road 

safety, optimize traffic flow, reduce emissions, and improve the overall driving experience. 

V2X communications are crucial in enabling data exchange for diverse applications such as 

cooperative autonomous driving, traffic efficiency, infotainment services, and vehicular 

software updates and diagnostics. The varied nature of these applications demands stringent 

connectivity requirements, including ultralow latency (below 10 ms), ultrahigh reliability 

(nearing 100%), and high data throughput (in the order of Gbps). These requirements become 

increasingly challenging to meet due to the high mobility and density of vehicles. 

5G, the fifth generation of cellular networks, is set to transform various vertical industries 

with its innovative capabilities in communication, automation, sensing, and positioning. This 

technology promises to revolutionize transportation and enhance the quality of life through its 

three primary use case categories: enhanced Mobile Broadband (eMBB) for high-speed data; 

Ultra-Reliable and Low Latency Communications (URLLC) for critical applications requiring 

fast, reliable connectivity; and massive Machine Type Communications (mMTC) for large-

scale IoT deployments. These advancements position 5G as a key driver in the next wave of 

technological evolution.  

Network slicing is an important aspect of 5G networks, as it enables the creation of 

customized and efficient networks for different use cases and services. It also allows for more 

efficient use of network resources and improved network performance. For example, a network 

slice for a self-driving car would have low latency and high reliability to ensure smooth and 

safe operation. Another slice for a virtual reality gaming service would have high bandwidth 

and low jitter to provide a seamless gaming experience. 

Integrating Edge Computing into this framework, where data processing occurs in proximity 

to the data source, significantly reduces latency and improves efficiency. Moreover, Service 
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Migration facilitates dynamic service relocation across network nodes, ensuring continuity and 

optimal performance in mobile environments like vehicular networks. This combination of 

Edge Computing and Service Migration is poised to enhance intelligent transportation systems, 

enabling real-time processing and seamless connectivity essential for applications such as 

autonomous driving and traffic management. 

In this chapter, we begin by introducing C-ITS and the diverse realm of V2X 

communications. We then delve into the IEEE 802.11p standard, exploring its derivative 

technologies and their implications. A focal point of our discussion is the ITS-G5 

communication standard; we will examine its technical specifications and underscore its pivotal 

role in enhancing vehicular communication within the European V2X context. Progressing 

further, we dive into the concept of network slicing, highlighting its importance in developing 

efficient and flexible networks in the 5G era. Concurrently, we investigate the transformative 

role of edge computing, emphasizing its significance in expediting data processing at the edge 

of the network. Following this, we introduce the emerging IEEE 802.11bd standard, 

underscoring its projected enhancements and the potential impact it holds for the future 

landscape of V2X communications. The chapter concludes with a comprehensive comparative 

summary of various V2X communication technologies and their features. 

2.2  C-ITS and V2X Communications 

2.2.1 C-ITS 

Cooperative Intelligent Transport Systems (C-ITS) are a sophisticated blend of technology 

and communication systems, designed to significantly enhance road safety, traffic efficiency, 

and driving convenience. C-ITS networks involve vehicles, roadside infrastructure, and other 

components like pedestrians (Figure 1 [1]), all interconnected to share data and information. 

These systems utilize various communication technologies, encompassing both Wi-Fi-based 

(IEEE 802.11) and cellular-based (C-V2X: 4G and 5G) standards, to enable ad hoc networking 

tailored for road safety and traffic efficiency. 

Key features of C-ITS include the ability to disseminate warnings about road hazards, 

provide real-time information about traffic conditions for speed management, and facilitate 

navigation. These systems depend on always-on connectivity among vehicles and roadside 

infrastructure, necessitating frequent data exchange. Additionally, C-ITS enhances driving 

convenience with internet access and location-based services, such as point-of-interest 

notifications, road access control, and parking management. 
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Figure 1. Cooperative intelligent transport system  

C-ITS also incorporates specific message sets that have become the current standard in this 

field. The evolution of C-ITS in Europe can be traced back to the 1980s, with significant 

milestones like the PROMETHEUS project (1987–1994)[2], which marked the advent of 

cooperative driving research and development in the region. 

2.2.2 ITS Station Reference Architecture 

The ITS station reference architecture explains the functionalities contained in ITS stations. 

It is derived from the OSI model, with an extension to include and support ITS applications. 

Figure 2 presents the reference architecture of an ITS station (ITS-S) [3]. 

 

Figure 2. ETSI ITS-S reference architecture 
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The architecture is stratified into layers and blocks, with each layer representing specific 

functions and communicating through designated interfaces such as IN, MI, and SF, ensuring 

seamless interaction within the system [4]. 

• Access Layer: At the foundational level, the Access layer corresponds to layers 1 and 2 

of the OSI model, specifying different technologies that provide the physical and data link 

connections. This includes not only ITS-G5 and Dedicated Short Range Communication 

(DSRC) for short-range direct communication but also encompasses Wi-Fi and Cellular for 

wider network access. This layer is essential for establishing the initial connection between ITS 

stations and for the dissemination and reception of V2X messages. 

• Networking & Transport Layer: Representing OSI layers 3 and 4, this layer is tasked 

with the efficient routing and transportation of data packets. It incorporates ITS-specific 

transport protocols like the Basic Transport Protocol (BTP), tailored for V2X message 

exchange, and adapts traditional protocols such as TCP/UDP for ITS needs. GeoNetworking is 

another key component, providing geographical addressing and routing suitable for the 

dynamic nature of vehicular networks. An ITS management entity within this layer oversees 

network configuration and operation, distinct from the overarching Management block. 

• Facilities Layer: Correlating with OSI layers 5, 6, and 7, the Facilities layer provides 

high-level data processing and support functionalities crucial for ITS applications. It features 

the Local Dynamic Map (LDM), a dynamic database that maintains real-time information about 

the vehicle's surroundings, including data received from neighbouring vehicles. This layer also 

handles the selection of addressing modes, ensures synchronization with accurate positioning 

and timing sources, and manages application support for user interactions via the Generic 

Human-Machine Interface (HMI). 

• Security Layer: This layer weaves throughout the architecture, offering vital services 

that bolster the security and integrity of V2X communications. It encompasses firewall and 

intrusion detection systems to safeguard the network, along with mechanisms for authentication 

and authorization to verify the identity of devices and control access. It also provides encryption 

and data protection services to maintain the confidentiality and integrity of exchanged 

information. 

• Management Layer: This overarching layer plays a critical role in maintaining the health 

and efficiency of the ITS-S. It interfaces with the Management Information Base (MIB), where 

operational data is stored and managed. The Management block oversees the entire 

communication stack, handling system configuration, monitoring performance, and ensuring 

the compliance of communication protocols. 
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• Applications Layer: At the apex, the Applications layer is where the suite of ITS services 

is implemented. It's split into sub-categories such as Road Safety and Traffic Efficiency, each 

utilizing underlying services to deliver specific functionalities to end-users. This layer is the 

most visible to the users, delivering tangible ITS applications like collision warnings, traffic 

alerts, and route guidance. 

2.2.3 Vehicle-to-Everything Communication V2X 

V2X refers to the communication between vehicles and other entities, called ITS stations 

(ITS-S), such as other vehicles, infrastructure, and devices. In V2X communication, sidelink 

communication is used for direct communication between ITS stations, whereas 

uplink/downlink communication is used for communications between an ITS station and a 

cellular base station [5][6]. Sidelink communication is often used for real-time short-range data 

sharing, such as speed, location, and braking status. Uplink/downlink is used for longer-range 

applications such as internet access, phone calls, or sending data to the cloud. 

Several V2X communications scenarios have been developed and tested, as shown in Figure 

3 [5], including [7]: 

1. Vehicle-to-vehicle (V2V) communication: Vehicles share information such as speed, 

location, and braking status with nearby vehicles. This can improve road safety by allowing 

vehicles to alert each other of potential hazards and coordinate their movements. 

2. Vehicle-to-infrastructure (V2I) communication: Vehicles communicate with traffic 

lights, road signs, Roadside Units (RSU), and other infrastructure to receive real-time 

information about traffic conditions and optimize their routes. 

3. Vehicle-to-pedestrian (V2P) communication: Vehicles communicate with pedestrians 

and other vulnerable road users, such as bicyclists, to improve road safety and provide them 

with relevant information. 

4. Vehicle-to-network (V2N) communication: Vehicles connect to a cellular network to 

access the internet and other services. This can provide drivers and passengers with access to 

navigation, entertainment, and other services. 

5. Vehicle-to-cloud (V2C) communication: Allows vehicles to communicate with cloud-

based services to access real-time data and perform advanced analytics. 
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Figure 3. Illustration of V2X communications  

2.2.4 V2X Standard Messages 

In the context of V2X communications, there are several key message types, each designed 

for specific purposes to enhance road safety, and traffic efficiency, and support various 

vehicular applications. These message types include [8]: 

1. Cooperative Awareness Messages (CAMs): Used to create and maintain situational 

awareness among vehicles and infrastructure. It includes information about the vehicle’s 

presence, position, dynamics, and other attributes, which helps in assessing situations like 

potential collision risks. 

2. Decentralized Environmental Notification Messages (DENMs): These messages alert 

other road users about unexpected events that can affect road safety or traffic conditions. 

Typical contents include information about road hazards, accidents, or abnormal traffic 

conditions. 

3. Collective Perception Message (CPM): Designed to transmit information about locally 

detected objects, such as non-cooperative traffic participants, obstacles, etc. It enhances 

situational awareness by providing standardized representations of these detected objects. 

4. Map Data Extended Message (MAPEM): Provides information about road and 

intersection topologies. This can include special permissions for automated driving in specific 

lanes or designated safe spots for manoeuvres. 

5. Signal Phase and Timing Extended Message (SPATEM): Relays information about the 

state of signalized intersections, including phase and timing details. Useful for managing traffic 

flow and optimizing signal timings for efficient traffic management. 

6. In-Vehicle Information Message (IVIM): Transmits both static and dynamic road sign 

and message sign information, typically found on highways. These messages are crucial for 

providing drivers with timely and relevant traffic and navigation information. 
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2.2.5 Advanced V2X Use Cases and Requirements 

In 3rd Generation Partnership Project 3GPP systems, it is envisioned to support the 

following four generic V2X use cases summarized in Table 1 [7][9]:  

1. Vehicle platooning enables vehicles to form a group traveling together, and all of them 

receive periodic data from the leading vehicle. Main vehicles platooning performance 

requirements include payloads in the ranges of 50-6000 Bytes, end-to-end delays in the ranges 

of 10-500 ms, reliability in the ranges of 90%-99.99%, data rates in the ranges of 50-65 Mbps, 

and a minimum required communication range between 80 and 350 meters. 

2. Advanced driving where each vehicle shares data obtained from its local sensors with 

other nearby vehicles or allows vehicles to share their driving intention and coordinate their 

trajectories or manoeuvres with vehicles in proximity. Main advance driving performance 

requirements include payloads in the ranges of 300-12000 Bytes, end-to-end delays in the 

ranges of 3-100 ms, reliability in the ranges of 90%-99.999%, data rates in the ranges of 10-53 

Mbps, and a minimum required communication range between 360 and 500 meters. 

3. Extended sensors enable the vehicles to exchange raw or processed data gathered 

through their local sensors or live video data among other nearby vehicles, Roadside Units, UEs 

of pedestrians, and even V2X application servers at edge nodes. Main extended sensors 

performance requirements include payloads of 1600 Bytes, end-to-end delays in the ranges of 

3-100 ms, reliability in the ranges of 90-99.999 %, data rates in the ranges of 10-1000 Mbps), 

and a minimum required communication range between 50 and 1000 meters. 

4. Remote driving enables a remote driver or a V2X application to operate a remote 

vehicle. Main remote driving performance requirements include end-to-end delays less than or 

equal to 5 ms, reliability equal to or better than 99.999 %, and data rates around 25 Mbps for 

uplink traffic, and 1 Mbps for downlink traffic. 

As vehicular systems evolve towards higher levels of automation, their service requirements, 

particularly in latency, become more stringent. Advanced driving applications might need 

latencies of around 100 ms for effective information sharing, whereas remote driving 

applications demand significantly lower latencies, often as low as 1 ms. While 3GPP's efforts 

are concentrated on fulfilling these stringent connectivity requirements, these advanced 

applications also necessitate substantial computing resources. This includes the development 

of remote vehicle control systems and the processing of extensive sensor data. In this context, 

the integration of solutions such as edge computing becomes critical, offering the necessary 

computational power closer to the data source, thereby facilitating rapid data processing and 

analysis essential for the efficient operation of these highly automated vehicular technologies. 



 

14 

 

Table 1: Connectivity requirements of V2X applications 

Use Case 
Communication 

Mode 

Payload 

(Bytes) 

Max. Delay 

(ms) 

Datarate 

(Mbps) 

Minimum 

Range (m) 
Reliability 

Advanced 

driving 
V2V, V2I 300-12,000 3-100 10-50 60-500 90-99.999 

Remote 

driving 
V2N -- 5 

UL:25 

DL:1 
-- 99.999 

Vehicle 

platooning 
V2V, V2I 50-6000 10-500 50-65 80-350 90-99.99 

Extended 

sensors 
V2V, V2I, V2P 1600 3-100 10-1000 50-1000 90-99.999 

2.2.6 C-V2X 

To keep pace with the evolving landscape of vehicular communications and the diversifying 

use cases, the 3GPP introduced a V2X standard based on Long-Term Evolution (LTE) 

technology in 2017. This development, part of the Release 14 (Rel-14) specifications, is 

commonly known as "cellular V2X" (C-V2X) or LTE-V2X. This designation serves to 

distinguish it from the earlier 802.11p-based V2X technology, which is Wi-Fi-based. 

Following the initial establishment of the LTE-based V2X standard, 3GPP has continued to 

make significant enhancements to V2X communications. These advancements, incorporated in 

Release 15/16 and subsequent releases, are designed to support advanced scenarios in 

Cooperative, Connected, and Automated Mobility (CCAM). This next phase of V2X 

communication development, utilizing 5G specifications, is referred to as New Radio V2X 

(NR-V2X) [10]. NR-V2X represents a significant leap forward, bringing improved capabilities 

and higher performance to meet the increasingly complex and demanding requirements of 

future vehicular communication systems. 

2.2.6.1 Operation modes for C-V2X 

There are two modes of operation for C-V2X communication, as shown in Figure 4 [3]: 

• V2X communication over PC5 interface (aka Sidelink SL): PC5 interface directly 

connects ITS stations so that over-the-air V2X message from an ITS station is directly received 

by ITS stations around the transmitter. 

• V2X communication over LTE-Uu interface (Uplink/Downlink): The LTE-Uu interface 

connects ITS stations with eNB (E-UTRAN NodeB), which plays the role of a base station in 

the LTE networks. 
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Figure 4. C-V2X operation modes 

2.2.6.2 LTE-V2X communication modes: 

The LTE-V2X PC5 interface includes two modes of communication: mode 3 and mode 4 

[11], as illustrated in Figure 5.  

Mode 3: This mode is also referred to as "base station-scheduled" and "cellular-assisted". In 

this mode, vehicles need to be in the coverage zone of the base station because the radio 

resources of UEs are managed and selected under the eNodeB station via control signalling 

over the Uu interface. Thus, the frequency channel under license by the operator will be used. 

In mode 3, each vehicle reports its location and coordinates to assist the eNB in resource 

scheduling. Mode 3 is only available when vehicles are within network coverage. 3GPP has 

proposed network architecture enhancements to support V2X. Among these enhancements is 

the V2X control function, mainly used to manage radio resources and to provide vehicles with 

the SL V2X configurable parameters.  

Mode 4: This mode is also known as "pure Ad Hoc V2V" and "autonomously scheduled". 

In this mode, vehicles do not need to be in the coverage zone of the base station because vehicles 

implement a mechanism for autonomous radio resource selection based on sensing before 

transmission with Semi-Persistent Scheduling (SPS). This mode will be used for V2V 

communications use cases since communication between vehicles cannot depend on cellular 

coverage. For this purpose, a distributed SPS congestion control mechanism is developed. 

 

Figure 5. LTE-V2X communication mode 3:  In coverage & mode 4: Out of coverage 
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2.2.6.3 5G V2X 

New Radio V2X (NR-V2X) in Release 16 marks a pivotal advancement as the first NR 

sidelink standard, specifically engineered to enhance the reliability, latency, capacity, and 

flexibility of V2X communications. This release is notable for incorporating a range of 

communication methods, including unicast, multicast (groupcast), and broadcast, broadening 

the scope and efficiency of V2X interactions. A key feature of NR-V2X Rel-16 is the 

integration of the Hybrid Automatic Receive reQuest (HARQ) system, which significantly 

improves the reliability of sidelink communications by enabling more robust error correction 

and retransmission strategies. These developments [12] represent a substantial step forward in 

the evolution of V2X technology, paving the way for more advanced and reliable vehicular 

connectivity solutions. 

Rel. 16 specifies two additional modes, modes 1 and 2 [9], for sub-channel selection in NR 

V2X SL communications using the NR V2X PC5 interface. These two modes correspond to 

mode 3 and mode 4 in LTE V2X. NR V2X supports broadcast, group cast, and unicast SL 

communications, but LTE V2X only supports broadcast SL communications. 

• Mode 1: Similar to mode 3 in LTE V2X, the gNB (Next Generation NodeB) or eNB 

assigns and manages the SL radio resources for V2X communications under mode 1 using the 

NR (or LTE) Uu interface. SL radio resources can be allocated from licensed carriers dedicated 

to SL communications or licensed carriers sharing resources between SL and UL 

communications. ITS stations must therefore be in network coverage to operate using mode 1. 

• Mode 2: Like mode 4 in LTE V2X, ITSs can autonomously select their SL resources 

(one or several sub-channels) from a resource pool when using mode 2 in NR V2X. In this case, 

ITS stations can operate without network coverage. The resource pool can be (pre-)configured 

by the gNB or eNB when the ITS is in network coverage. Mode 2 can operate using a dynamic 

or semi-persistent scheduling scheme. 

2.3 Evolution of IEEE 802.11 Related Technologies  

2.3.1 IEEE 802.11p 

IEEE 802.11p is an extension of 802.11a (Wi-Fi) and was standardized by the IEEE in 2009 

[12]. The IEEE 802.11p is based on the Carrier Sense Multiple Access protocol with Collision 

Avoidance (CSMA/CA) which is a statistical protocol for V2V and V2I communications. 

This standard was developed as a vehicular communication standard that provides safety 

applications and better traffic management with a set of requirements as follows [13]: 

- Relative velocities up to 200 km/hr. 
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- Response times of around 100 milliseconds. 

- A communication range of up to 1000 m. 

IEEE 802.11p sets the foundational protocols for both the Physical (PHY) and Medium 

Access Control (MAC) layers in vehicular communications. Building upon the structure 

established by IEEE 802.11p, various supplementary standards have emerged, forming distinct 

frameworks in both the United States and Europe [14]. In the United States, the suite of IEEE 

1609 standards extends the foundational work of 802.11p, focusing on additional protocol 

layers beneath the application layer. These layers are further defined and regulated by the 

Society of Automotive Engineers (SAE). In contrast, Europe has embraced IEEE 802.11p 

through its integration into the ETSI ITS-G5 standard, which, along with a series of 

complementary documents, addresses the comprehensive scope of protocol layers above the 

foundational PHY and MAC layers established by 802.11p. 

At the Physical (PHY) layer, IEEE 802.11p employs Orthogonal Frequency Division 

Multiplexing (OFDM), a method that efficiently manages the spectrum by dividing it into 

multiple subcarriers. This implementation includes 48 usable subcarriers for data transmission, 

along with an additional four subcarriers designated for pilot signals, which assist in 

maintaining the integrity and robustness of the communication. The duration of an OFDM 

symbol is 8 microseconds (µs), and the subcarrier spacing is 156.25 kHz. This arrangement 

results in a total raw bandwidth of 10 MHz, optimized for V2X communication environments. 

In addition to the OFDM configuration, IEEE 802.11p supports a range of eight Modulation 

and Coding Schemes (MCSs). These schemes span from simpler modulations like Binary 

Phase-Shift Keying (BPSK), offering robustness, to more complex forms such as 64 Quadrature 

Amplitude Modulation (64-QAM), which allows for higher data rates. Accompanying these 

modulation techniques is the use of convolutional coding, which may include punctured coding 

to balance data throughput with error correction. These various modulation and coding 

combinations are comprehensively detailed in Table 2 [15].  

Table 2: IEEE 802.11p MCSs and corresponding values 

MCS # 
Modulation 

Coding Rate 

Gross Rate 

(Mb/s) 

Minimum 

SINR [dB] 

Range [m] 

(only PL) 

Duration 

[µs] 

1 BPSK,1/2 3.0 10.0 223 848 

2 BPSK,3/4 4.5 11.0 210 584 

3 QPSK,1/2 6.0 13.0 188 448 

4 QPSK,3/4 9.0 15.0 167 312 

5 16QAM,1/2 12.0 18.0 141 248 

6 16QAM,3/4 18.0 22.0 112 176 

7 64QAM,2/3 24.0 26.0 89 144 

8 64QAM,3/4 27.0 27.0 84 136 
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Since the MAC layer of IEEE 802.11p uses the CSMA/CA as an access method, when a 

node needs to transmit data, it first checks if the medium is idle. If not, a random backoff 

mechanism is employed to reduce the likelihood of collisions. Unique to vehicular 

communications in IEEE 802.11p, acknowledgments for transmissions are typically omitted, 

and as a result, the exponential backoff strategy commonly used for retransmissions in other 

contexts is not applicable. 

2.3.2 IEEE WAVE 

Standardization efforts for the Wireless Access in Vehicular Environments (WAVE) 

architecture began in 2004, culminating in the establishment of specifications for both the 

physical and MAC layers in the IEEE 1609.4 and IEEE 802.11p standards [16]. 

WAVE operates within the dedicated 75 MHz spectrum in the 5.9 GHz band, ranging from 

5850 to 5925 GHz. At the physical layer, WAVE employs Orthogonal Frequency Division 

Multiplexing (OFDM) with 10 MHz channels, differing from the 20 MHz channels used in the 

802.11a standard. The MAC layer utilizes the Enhanced Distributed Channel Access (EDCA) 

protocol, an adaptation designed to cater to the unique requirements of vehicular 

communications [17].  

In the WAVE system, the total allocated spectrum is strategically divided into seven distinct 

channels. These include the Control Channel (CCH), designated solely for safety-related 

communications, and Service Channels (SCH), which are used for both safety and non-safety 

communications. The allocation and distribution of these channels are depicted in Figure 6 [18]:  

 

Figure 6. WAVE spectrum and channel types 

Congestion management within the network is facilitated through an uncoordinated channel 

access strategy based on CSMA/CA. However, this method has demonstrated suboptimal 

performance in high-density scenarios. This is primarily due to the inherent nature of 

CSMA/CA, which relies on nodes independently sensing the channel's availability before 

initiating communication. In high-density scenarios, this method can result in increased 

collisions and subsequent network delays due to the frequent simultaneous attempts to access 

the channel [19].  
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2.4 ETSI ITS-G5 Standard for Direct V2X Communications 

The ETSI ITS-G5 is the European technology used for direct (or sidelink) communications 

in vehicular environments, standardized since 2009, using the 5.9 GHz band. The 

harmonization of the spectrum 5850-5925 GHz, for intelligent transport security applications, 

was the object of the decision 2008/971/CE of the European Commission on August 8th, 2008 

[20].  

ITS-G5’s primary objective is to facilitate the reliable delivery of short-range safety 

information. This technology excels in scenarios demanding low latency, and it is robust 

enough to support both high-density traffic environments and high-velocity vehicular 

movement.  

The frequency allocation for ITS-G5 in Europe is specified into four different bands, as 

shown in Figure 7 [21]: 

- ITS-G5A band: Used for ITS road traffic safety applications.  

- ITS-G5B band: Used for ITS non-safety road traffic applications.  

- ITS-G5D band:  This band is set aside for future ITS applications. 

- ITS-G5C band: Refers to Radio Local Area Network (RLAN). The use of this band is 

not supported when the Management Information Base (MIB) parameter dot11OCBActivated 

is set to True. Therefore, ITS-G5 stations can't communicate Outside the Context of a BSS 

(Basic Service Set) OCB mode (more details are given in [21]). 

 

Figure 7. Channel allocation for the 5GHz range 

Regarding channel types, there are two primary categories: CCH and SCH. The channel 

distribution within the European 5.9GHz spectrum for ITS-G5 services is comprehensively 

outlined in Table 3. 



 

20 

 

For ITS-G5A, B, and D bands, usage is restricted exclusively to ITS-G5-compliant stations. 

It’s important to note that the 5.8GHz band is Europe’s designated frequency for Dedicated 

Short Range Communication (DSRC), used for electronic toll collection (so-called CEN 

DSRC), in line with the EN 300 674 standard [22]. 

Table 3. Channel allocation in Europe 

 Channel type Frequency range (MHz) IEEE Channel number 

ITS-G5A 

G5-CCH 5895 to 5905 180 

G5-SCH2 5885 to 5895 178 

G5-SCH1 5875 to 5885 176 

ITS-G5B 
G5-SCH3 5865 to 5875 174 

G5-SCH4 5855 to 5865 172 

ITS-G5C G5-SCH7 5470 to 5725 94 to 145 

ITS-G5D 
G5-SCH5 5905 to 5915 182 

G5-SCH6 5925 to 5925 184 

2.4.1 Network Architectures for ITS Stations 

The network architecture comprises external and internal networks. External networks 

interconnect ITS stations among each other or connect ITS stations to other network entities. 

The following external networks are identified [23]: 

• ITS Ad Hoc Network: Enables direct communication between ITS stations without 

relying on a fixed infrastructure. 

• Access network: This includes various types of networks such as ITS-specific access 

networks, public access networks, and private access networks. 

• Core network: Typically represents broader networks like the Internet. 

• Internal network: Additionally, an ITS station can have an internal network designed 

to interconnect the various components within the ITS station itself. 

For practical applications, these networks are expected to support a range of use cases 

including road safety, traffic efficiency, infotainment, and business-related applications. 

However, it's important to note that a single network type might not be sufficient to meet the 

demands of all applications and use cases. Therefore, a hybrid approach that combines several 

ITS access and network technologies is often envisaged. Figure 8 [23] represents the highest 

level of abstraction of the ITS network architecture. 
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Figure 8. External networks involved in the ITS architecture and their interconnections 

This layered approach to network architecture in ITS stations is crucial for handling the 

diverse and dynamic nature of vehicular communications. It allows for flexibility in adapting 

to various communication needs and scenarios, from high-speed vehicular communication to 

more static, infrastructure-based interactions. The integration of these diverse networks is key 

to the successful implementation and operation of advanced ITS applications. 

The ITS network architecture encompasses various network elements essential for 

interconnecting ITS stations such as vehicle-based ITS stations (known as On-Board Units or 

OBUs), personal ITS stations, roadside ITS stations (known as Roadside Units or RSUs), and 

central ITS stations. This versatile architecture can adapt to a range of scenarios, tailored to 

meet specific economic considerations and regulatory requirements, and supports the 

progressive deployment of ITS services. 

There are four primary deployment scenarios. The basic deployment scenarios can be 

expanded to provide hybrid deployment scenarios that integrate at least two deployment 

scenarios. These combinations also cover scenarios in which a network is simultaneously 

connected to multiple networks. Figure 9 represents an ad-hoc-centric abstraction of the ITS 

network architecture [23] composed of an ad-hoc network, access network, and core network. 

These networks are operated by a road operator, a telecom operator, or a national authority.  
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Figure 9. High-level ITS network architecture: Ad hoc-centric 

In the context of ITS-G5, the ITS ad-hoc network uses ITS-G5 technology to enable direct 

communications between ITS stations. The ITS access network is a dedicated network that 

collects traffic from different ad hoc networks and provides access to specific ITS services and 

applications. It aims to interconnect RSUs and enable vehicle communications via the roadside 

infrastructure. The core network, characterized by its high-speed routers and switches, is tasked 

with directing and consolidating traffic towards a centralized ITS infrastructure, which houses 

servers for V2X applications. It is also responsible for providing connections to cloud services, 

car manufacturers' Original Equipment Manufacturer (OEM) systems, third-party networks, 

and public domains such as the Internet. This backbone is critical for the broad distribution of 

ITS services and for ensuring seamless integration across different network layers and 

providers. 

2.4.2 ETSI Decentralized Congestion Control (DCC) 

In scenarios with high vehicle density, there is a significant increase in ITS-G5 traffic, 

primarily due to the transmission of Cooperative Awareness Messages (CAMs). These CAMs 

are the principal contributors to channel congestion issues [24].  

In such scenarios, ETSI has implemented the Decentralized Congestion Control (DCC) 

mechanism. DCC adjusts traffic parameters to better manage channel load and improve data 

exchange quality [25]. DCC aims to ensure network stability, channel load limitation, and fair 

resource allocation. Figure 10 illustrates the ITS-G5 protocol stack along with the 

corresponding DCC functionalities [26]. 

Numerous DCC algorithms have been developed, and several are presently standardized 

[27]. The first class of algorithms is reactive DCC algorithms built on state machines. A vehicle 

continuously monitors channel occupancy and makes decisions about transmission parameters 

like message transmission rate (the maximum number of messages that can be transmitted per 

second), transmission power, etc. The second class of algorithms is adaptive algorithms inspired 

by the LIMERIC DCC adaptive algorithm [28]. An adaptive DCC algorithm is based on a set 

of parameters used to determine the optimal generation rate and control channel usage. The 

adaptive Dual α algorithm outperforms reactive approaches and the ETSI adaptive algorithm 

[29]. 
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Figure 10. ITS-G5 protocol stack including DCC functionalities 

In ITS-G5, resource management relies on DCC Profiles (DP), which are sets of 

transmission parameters designed to identify and regulate different traffic streams, like CAMs, 

DENMs, etc. These profiles are fundamental for differentiating traffic at the access, network, 

and transport layers [26]. Therefore, based on the DP assigned to a message and the current 

state of the transmission channel, one or more DCC algorithms can be applied to a traffic stream 

to help alleviate channel congestion. 

DCC profiles in ITS-G5 are aligned with Enhanced Distributed Channel Access (EDCA) 

traffic classes (TCs), which play a crucial role in categorizing and prioritizing data traffic within 

the networking and transport layers. The MAC layer utilizes four distinct queues to prioritize 

this data traffic. Traffic classes with the highest priority are assigned shorter listening periods, 

known as the Arbitration Inter-Frame Space (AIFS), and more favourable Contention Window 

(CW) settings [30], which both allow high-priority access to the channel. Table 4 summarizes 

the default values for AIFS and CW for the different access categories [31]. 

Table 4: Default values for AIFS and CW at the access layer 

AC CWmin CWmax AIFS 

Voice (VO) 3 7 58µ 

Video (VI) 7 15 71µ 

Best effort (BE) 15 1023 110µ 

Background (BK) 15 1023 149µ 
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2.4.3 Transmit Rate Control (TRC) DCC 

In the realm of vehicular networks, effective channel load management is pivotal for 

maintaining efficient communication. A variety of strategies have been developed for this 

purpose, with Transmit Rate Control (TRC) being one of the key techniques. TRC, along with 

other methods like Transmit Data Rate Control (TDC) and Transmit Power Control (TPC), 

plays a crucial role in regulating channel load. In simpler scenarios, a single strategy may 

suffice, but often, a combination of these techniques is employed for optimal results [33]. 

The TRC method, in particular, relies on packet timing thresholds to set the maximum 

message generation rate within a specified period. These thresholds are dependent on factors 

such as the chosen ITS-G5 sub-band in the 5.9 GHz spectrum and the selected transmit queue. 

Figure 11 illustrates a state-based DCC algorithm with multiple states (n>1), showcasing the 

flexibility and adaptability of TRC in different traffic conditions.  

 

Figure 11. Example of state-based DCC algorithm 

Table 5 provides a detailed overview of how the CBR values map to different states in the 

TRC algorithm, along with the corresponding allowed transmission rates. For instance, when 

the CBR is below 30%, the permitted packet transmission rate is 10 Hz (10 messages per 

second). As the CBR increases, indicating higher channel congestion, the TRC algorithm 

proportionally reduces the transmission rate to mitigate congestion. 

Table 5: Packet rate settings for a 3-active states TRC 

State CBR Packet transmission rate 

Relaxed <30% 10 Hz 

Active 1 30% to 39% 5 Hz 

Active 2 40% to 49% 2.5 Hz 

Active 3 50% to 59% 2 Hz 

Restricted >60% 1 Hz 

2.4.4 Dual α DCC  

Adaptive approach mechanisms are linear control systems in which the process variable is 

the transmission rate, and the setpoint is a fraction of the channel capacity. An adaptive 
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congestion control strategy seeks to accomplish three goals: 1) Converging to a pre-set channel 

utilization level; 2) achieving local fairness among immediately surrounding vehicles; and 3) 

attaining global fairness among all vehicles contributing to congestion. The Linear Message 

Rate Integrated Control (LIMERIC) [32] algorithm serves as the foundation for the ETSI 

adaptive approach outlined in [33]. There have been several iterations of the LIMERIC 

algorithm, each using a different combination of parameter values. In this study, we focus on 

the Dual α DCC method, which was first published in [29] as an improvement to the ETSI 

adaptive DCC algorithm. Compared to TRC, the Dual α DCC algorithm achieves a faster 

convergence rate and fairness in transitory scenarios while converging to utilization that is close 

to the CBR target [28]. 

In the ETSI adaptive DCC, the ITS stations (ITS-Ss) calculate δ: the maximum fraction of 

time an ITS-S is permitted to send messages in the channel, which is then used to decide how 

fast the ITS-S should send messages. An ITS-S measures the CBR, which is the fraction of time 

that the transmission channel is occupied, once every 100 milliseconds (i.e., 10 CBR values are 

measured per second). In the following step, the ITS-S calculates the appropriate value of δ 

depending on the difference between the measured CBR and the Target CBR (CBRt). Following 

equation 1, the approach uses a smoothed version of the CBR that is calculated every 200 

milliseconds following the equation 1 [29]: 

𝐶𝐵𝑅𝑠(𝑛) = 0.5 × 𝐶𝐵𝑅𝑠(𝑛 − 1) + 0.5 ×
(𝐶𝐵𝑅𝑚 + 𝐶𝐵𝑅𝑚−𝑝)

2
 (1) 

where CBRs(n) is the smoothed CBR for step n, CBRs (n - 1) is the previous CBRs, and 

CBRm and CBRm_p are the last two measurements of the CBR (i.e., the newest measurements 

after the previous calculation of CBRs). Then, the ITS-S uses equation 2 to calculate δoffset: 

𝛿𝑜𝑓𝑓𝑠𝑒𝑡 = {
min{𝛽 × (𝐶𝐵𝑅𝑡 − 𝐶𝑅𝑅𝑠(𝑛)), 𝐺𝑚𝑎𝑥

+ } 𝑖𝑓 𝐶𝐵𝑅𝑡 > 𝐶𝑅𝑅𝑠(𝑛)

max{𝛽 × (𝐶𝐵𝑅𝑡 − 𝐶𝑅𝑅𝑠(𝑛)), 𝐺𝑚𝑖𝑛
− } 𝑖𝑓 𝐶𝐵𝑅𝑡 ≤ 𝐶𝑅𝑅𝑠(𝑛)

  (2) 

where β, G+
max, and G-

min are parameters of the algorithm. G+
max and G-

min are meant to limit 

the maximum variability of δoffset per step of the algorithm (i.e., to improve stability). δoffset 

represents the needed modification of the δ to keep the CBR at the CBRt value. The ITS station 

calculates the δ at step n, δ(n), every 200ms using equations (3): 

𝛿(𝑛) = (1 − 𝛼) × 𝛿(𝑛 − 1) + 𝛿𝑜𝑓𝑓𝑠𝑒𝑡                   (3) 

And if 𝛿(𝑛) > 𝛿𝑚𝑎𝑥 , 𝛿(𝑛) = 𝛿𝑚𝑎𝑥. 

Else   𝛿(𝑛) < 𝛿𝑚𝑖𝑛 = 𝛿𝑚𝑖𝑛. 

The value used for α in equation (3) at step n is calculated using equation (4): 
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𝛼 = {
𝛼ℎ𝑖𝑔ℎ 𝑖𝑓 (𝛿(𝑛 − 1) − 𝛿𝛼𝑙𝑜𝑤

(𝑛)) > 𝑡ℎ

𝛼𝑙𝑜𝑤 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                        
       (4) 

where th is a threshold with a heuristic value to improve stability, more details are available 

in [29]. Finally, time intervals, called tgo, between successive transmissions are calculated. The 

values of th, αhigh; and αlow are stated in Table 6 [28]. The tgo is limited to a minimum value of 

25ms and a maximum value of 1s, and is defined in equation 5 [28]: 

𝑡𝑔𝑜 =  𝑡𝑝𝑔 + min (max (
𝑡𝑜𝑛𝑝𝑝

𝛿
 , 25𝑚𝑠) , 1𝑠)     (5) 

where tpg  is the time when the last transmission ended, and 𝑡𝑜𝑛𝑝𝑝
 is the value for the transmit 

duration of the last packet. 

Table 6: Parameter values of the Dual α algorithm 

th 0.016 

αhigh 0.1 

αlow 0.0006 

2.5 Network Slicing  

Network slicing is an advanced network architecture concept that facilitates the partitioning 

of a single, physical telecommunications network into several unique and independent virtual 

networks, commonly known as "slices". Each slice is uniquely engineered to deliver specific 

network services and functionalities, catering to a variety of distinct requirements [34]. This 

concept plays a crucial role in the advancement of next-generation wireless networks, especially 

within the realm of 5G architectures. 

In the context of network slicing, there are two primary methodologies: vertical and 

horizontal slicing [35][36]. Vertical network slicing segments a network into various slices, 

with each slice being specifically tailored and optimized for a unique service or application. In 

contrast, horizontal network slicing enables the sharing of resources among nodes and network 

devices. These two approaches are not mutually exclusive and can be employed simultaneously, 

complementing each other effectively. 

The implementation of network slicing, particularly when leveraging a shared infrastructure 

to support a diverse array of smart applications, involves significant complexities due to the 

involvement of numerous stakeholders [37]. These include entities in edge computing, cloud 

computing, telecommunications operations, and IoT networks. The orchestration of network 

slicing necessitates intricate coordination among these various players, posing a notable 
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challenge. Thus, a thorough examination of the network slicing architecture is essential [38]. 

The architecture of network slicing typically encompasses three distinct layers: the Physical 

Network Infrastructure Layer, the Network Slice Instance Layer, and the Service Instance 

Layer. Figure 12 outlines these three layers, and also illustrates a range of smart services 

enabled by network slicing. 

 

Figure 12. An overview of network slicing in enabling smart services 

2.5.1 Key Aspects 

Key principles in the design of network slicing include [39]-[43]: 

• Software-Driven: The creation and management of network slices are driven by 

software controls, which orchestrate and automate the process using advanced algorithms, 

artificial intelligence, and policy-driven frameworks. This is enabled by underlying 

technologies such as Software-Defined Networking (SDN) and Network Functions 

Virtualization (NFV). 

• End-to-End Virtualization: Network slicing capitalizes on end-to-end virtualization, 

meaning that every segment of the network from the device to the core can be virtualized and 

dedicated to a particular slice. 

• Customization and Flexibility: Network slicing allows for the creation of tailored 

network environments to meet specific requirements of different services or applications. It 

offers the flexibility to dynamically adjust network resources and capabilities based on demand. 
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• Resource Optimization: Efficient utilization of physical network resources is a core 

aspect, enabling multiple virtual networks to coexist on the same infrastructure. It optimizes 

network capacity and performance and reduces operational costs. 

• Scalability: Network slices can be scaled up or down according to the needs of the 

application, user, device, or available resources, supporting everything from individual IoT 

devices to city-wide network deployments. 

• Isolation: Slices are logically isolated from one another, even though they run over the 

same physical infrastructure. This isolation is essential for security and performance reasons, 

as it ensures that the operations in one slice do not adversely affect another. In 802.11 

environments, there are some strategies used for resource isolation, such as EDCA (Enhanced 

Distributed Channel Access) control, slice scheduling, and traffic shaping [44]. 

• Security: Each slice has its own distinct security protocols, ensuring enhanced data 

protection and preventing breaches in one slice from affecting others. This approach provides 

robust, customized security for each virtual network segment within a shared infrastructure. 

• End-to-End Management and Orchestration: Covers the entire network, from the core 

to the edge, including RAN (Radio Access Network) and transport segments. Facilitates 

seamless management and orchestration across different network domains. 

2.5.2 Slicing Scope in 5G Networks 

5G network slicing includes slicing the RAN, core network, and even end-user devices [45]. 

2.5.2.1 RAN Slicing  

RAN slicing involves customizing and sharing resources efficiently within the limited 

frequency spectrum. Key requirements include [40]: 

• Efficient Resource Management: Essential for flexible MAC scheduling and meeting 

specific Key Performance Indicators (KPIs) for different types of slices, such as enhanced 

Mobile BroadBand (eMBB) and Ultra Reliable Low Latency Communications (URLLC). 

• Resource Sharing and Isolation: Critical for creating logically isolated networks within 

the RAN, balancing the need for spectrum isolation against the limitations it imposes on 

multiplexing techniques. 

• Functional Requirements: Each slice may require a unique functional split of the 

control/user plane and distinct Virtual Network Function (VNF) placement. 

In the domain of RAN slicing, Software Defined RAN (SD-RAN) brings programmability 

to the forefront, allowing for enhanced control and management of resources. Platforms such 
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as SoftRAN [46] and FlexRAN [47] exemplify this by offering open APIs and a centralized 

control plane, thereby facilitating more efficient and dynamic management of RAN resources. 

Complementing this, the Cloud RAN (C-RAN) concept revolutionizes RAN virtualization by 

enabling the virtualization of RAN functions at cloud infrastructures [40]. This approach offers 

various functional split options, including PHY-layer, MAC-layer, RLC-layer, and PDCP-

layer, which can be selected based on specific network requirements such as latency and data 

rate, further optimizing network performance and flexibility. 

2.5.2.2 Core Network Slicing  

Core network slicing in 5G refers to the strategic division and optimization of the mobile 

core network, transitioning from a full IP core network to a more virtualized and software-

oriented architecture. This evolution is significantly driven by technologies such as SDN and 

NFV, which introduce greater flexibility and elasticity into Evolved Packet Core (EPC) 

networks. The 3GPP has restructured the core network into a modular architecture, dividing 

main EPC elements into granular network functions and enabling the creation of dedicated core 

network instances for diverse services. 

EPC Virtualization and Dedicated Core Networks (DCN) are integral components of this 

slicing strategy. Virtualization allows for the main core network entities, such as Mobility 

Management Entity (MME), Home Subscriber Server (HSS), Packet data network GateWay 

(PGW), Serving GateWay (SGW), and Policy and Charging Rules Function (PCRF), to be 

deployed on virtual platforms, offering more adaptable, elastic service provisioning and quality 

of service assurance. This enables mobile network operators to simultaneously deploy multiple 

EPC instances, tailored to specific user requirements. The DCN concept introduced by 3GPP 

in Release 13 further supports network slicing by allowing eNBs to select appropriate core 

network functions for specific user equipment in both control and user planes. 

The Next Generation 5G Core network, another key aspect of core network slicing, is 

characterized by its enhanced elasticity, flexibility, and scalability. This new architecture 

disaggregates the EPC functions into more detailed network functions, supporting a mix of LTE 

Network Functions (NFs) and new ones such as Access and Mobility Management Function 

(AMF), Session Management Function (SMF), Policy Control Function (PCF), User Plane 

Function (UPF), Unified Data Management (UDM), and NF Repository Function (NRF). It 

involves two primary deployment phases: the initial phase based on point-to-point connections 

and the subsequent phase that adopts a service-oriented architecture. This service-oriented 

approach allows NFs to interact more dynamically, querying an NRF to discover and 

communicate with each other, significantly enhancing the flexibility and scalability of the core 

network and enabling it to be tailored specifically to different network slices. 
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2.5.2.3 User Device Slicing 

User Device (UD) Slicing in 5G networks represents a significant shift from the approach 

taken in 4G networks. In 4G, User Equipment (UEs) such as smartphones, tablets, and laptops 

are not differentiated based on their service demands and functional requirements; the network 

treats all UEs uniformly. However, 5G networks are designed to recognize and handle UEs 

based on their distinct characteristics or usage-class types. This means that instead of 

connecting every UE to a generic, one-size-fits-all network, 5G networks connect UEs to 

customized network slices specifically created for their type. For example, a UE categorized 

under the CriC (critical communications) usage-class type would connect to a CriC-specific 

network slice, while a UE for V2X communications would link to a V2X slice, ensuring a high 

degree of QoS tailored to their needs. 

Furthermore, recent advancements in 5G technology have introduced a novel concept of 

slicing within the UE itself, especially for portable and smart devices. This concept, known as 

UE slicing, envisions treating these devices as platforms with pre-installed middleware, similar 

to a hypervisor in laptops, which can manage and allocate resources across multiple mobile 

operating systems (OS). These OSs operate within logical container partitions set up by the 

middleware, effectively managing resources among them. This setup allows the UE to function 

as a platform where different OSs, each with its unique set of applications and features, run 

concurrently as separate slices. Such an arrangement offers users a broader range of applications 

and greater customization, reflecting the versatility and user-centric focus of 5G network 

technology. 

2.5.3 Network Slice Instance Lifecycle Management 

The 3GPP study document [48] introduces a crucial distinction in the lifecycle management 

of Network Slice Instances (NSIs) by decoupling them from the service instances that utilize 

them. This separation enhances scalability by allowing network slices to be provisioned 

independently of the service instances, promoting efficient sharing across multiple services. To 

manage an NSI effectively, the following management procedures are essential: 

1. Fault Management: This involves identifying, diagnosing, and rectifying faults within 

the NSI to ensure continuous and reliable service. 

2. Performance Management: Monitoring and optimizing the performance of the NSI to 

meet predefined Key Performance Indicators (KPIs) and service level agreements (SLAs). 

3. Configuration Management: Managing the settings and configurations of the NSI to 

adapt to changing network demands and service requirements. 

4. Policy Management: Implementing and overseeing policies that govern the operation 

and utilization of the NSI, ensuring compliance with network standards and business objectives. 
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In this framework, service management is conducted within the service provider’s domain, 

while the management of network slices falls under the purview of the network operator. This 

arrangement necessitates a business-to-business interface, such as an SLA, which outlines the 

terms of the relationship between the service provider and the network operator. Under this 

business relationship, the network operator can offer varying levels of control to the service 

provider. These levels range from basic monitoring to limited control, where the service 

provider can compose slices from a catalogue to extended control, enabling the service provider 

to instantiate its Virtual Network Functions (VNFs) and Management and Network 

Orchestration (MANO) stack. This tiered approach to control and management allows for 

flexibility and customization in the deployment and operation of network services. 

 

Figure 13. Life-cycle management of a network slice instance. 

Network Slice Instance (NSI) lifecycle management in 5G networks involves several distinct 

phases (Figure 13 [48]) each with specific tasks and objectives: 

• Preparation Phase: Before the NSI exists, this phase encompasses the creation and 

verification of network slice templates, onboarding these templates, and preparing the necessary 

network environment. These preparatory actions support the lifecycle of NSIs and any other 

required network preparations. 

• Instantiation, Configuration, and Activation Phase: This phase involves creating and 

configuring all resources (shared or dedicated) for the NSI, bringing it to a state ready for 

operation. Activation includes actions like diverting traffic to the NSI and provisioning 

databases. It may also include the instantiation, configuration, and activation of other shared or 

non-shared network functions. 

• Run-Time Phase: During this phase, the NSI is active and capable of handling traffic to 

support communication services of specific types. It includes supervision/reporting for KPI 

monitoring and tasks related to modification, such as upgrades, reconfiguration, scaling, 

capacity changes, and modifications of the NSI topology, including association and 

disassociation of network functions with the NSI. 

• Decommissioning Phase: This final phase involves deactivating the NSI (taking it out 

of active duty) and reclaiming dedicated resources, such as terminating or reusing network 
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functions, and configuring shared or dependent resources. After decommissioning, the NSI 

ceases to exist. 

Each phase of the NSI lifecycle entails high-level tasks and requires appropriate verification 

of the output of each task within the phase, ensuring that the NSI meets its intended operational 

goals effectively. 

2.5.4 Network Slicing for V2X Applications 

In the realm of V2X, network slicing presents several advantages: 

1. Priority Handling: Network slices can prioritize V2X messages that are critical for 

road safety over less time-sensitive data. 

2. Resource Allocation: Slices can ensure that the necessary bandwidth is available for 

vehicle communications even when the network is under heavy load. 

3. Scalability: As the number of connected vehicles grows, network slices can be 

dynamically adjusted to scale the network resources up or down as needed. 

4. Security and Isolation: Slices dedicated to V2X can be secured with specific protocols 

and isolated from other network traffic to protect sensitive vehicular data. 

Generally, network slicing can be a beneficial technology for V2X applications, since 

vehicular technology involves multiple use cases, traffic types, and communication paths. 

Communication between vehicles in proximity may involve a slice using the New Radio Side-

Links NR-SL (PC5) that can be used for direct V2V, whereas other network slices can offer 

communication services for V2N links through the edge network.  

End-to-end network slicing can enable Public Land Mobile Network (PLMN) operators or 

road operators to provide a differentiated level of V2X services to different classes of vehicular 

applications or driving use cases, through appropriately instantiating network slices per each 

application or use case, as well as isolating their traffic flows, and enabling multi-tenancy. Of 

course, each different slice may be assigned and managed by a specific tenant, or on behalf of 

it, given that a tenant may be a PLMN operator, a service provider, or a third company that may 

desire to rent a slice to offer tailored services to its clients. Consequently, the guidelines stated 

by [35] and [49] for network slicing can be put into the context of V2X types of applications 

and services. 

In 3GPP network slicing, PLMN operators and V2X service operators should be able to:  
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• Support providing connectivity to home and roaming vehicles in the same network slice 

and allow a vehicle to be simultaneously assigned and access services from one or more 

network slices of one operator.  

• The V2X network slice operator should be able to create, modify, and delete a network 

slice; define and update the set of V2X services and capabilities supported in a network slice, 

and configure the information that associates a vehicle to a network slice as well. 

• The V2X network slice operator should be able to assign, move, and terminate a vehicle 

to or from a network slice based on service subscription, the vehicle’s capabilities, access 

technology used by the vehicle, and the operator's policies and services provided by their 

designated network slice.  

• The V2X network slice operator should be able to scale up or down (i.e., vertically or 

horizontally, on virtual and physical networks) their network slices’ capacities; define a priority 

order between different network slices in case multiple network slices compete for resources 

on the same network. 

2.6 Edge Computing 

The advent of advanced vehicular services, such as autonomous driving, real-time traffic 

management, and in-vehicle infotainment systems, has significantly increased the demand for 

processing power and data storage in the context of Vehicle-to-Everything (V2X) 

communications. These services rely heavily on rapid data processing and decision-making 

capabilities to function efficiently. Autonomous driving, in particular, requires the real-time 

analysis of vast amounts of sensor data to make split-second decisions, while traffic 

management systems need to process and interpret large streams of traffic data to optimize flow 

and safety. Similarly, infotainment systems demand substantial storage and processing 

resources to deliver rich multimedia content seamlessly. 

Traditionally, the solution to these demands has been to offload these tasks to the cloud, 

where powerful computing resources handle the processing and storage remotely. This 

approach, while effective in managing the computational load, introduces a significant 

challenge: latency. In V2X applications, where milliseconds can mean the difference between 

safe operation and potential hazards, the latency involved in transmitting data to and from a 

centralized cloud can be a critical bottleneck. 

This challenge is adeptly addressed by Multi-access Edge Computing (MEC), formerly 

referred to as Mobile Edge Computing, which situates computing power and data storage at the 

network's edge, closer to where data is generated and consumed in vehicular environments. 

MEC's proximity significantly reduces latency, enabling autonomous vehicles to process real-
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time data swiftly, allowing traffic management systems to react promptly, and ensuring 

seamless delivery of content by infotainment systems. 

Moreover, a notable benefit of MEC in this context is its energy efficiency. Implementing 

MEC can decrease energy consumption by up to 40% [50], making it a much more sustainable 

option compared to accessing remote network clouds, which can consume up to five times more 

energy [51]. Thus, MEC not only meets the intense processing and storage demands of 

contemporary V2X services and adheres to their strict latency requirements, but also presents 

a more energy-efficient solution, aligning with the growing emphasis on sustainability in 

vehicular technology. 

2.6.1 Introduction to MEC  

Multi-access Edge Computing (MEC) represents a paradigm shift in network architecture, 

where cloud computing capabilities and IT services are embedded within the RAN. This 

innovative concept, endorsed in clause 5.13 of [52], is designed to alleviate the core network 

from the burdens of data processing by redistributing these tasks to the network's edge, closer 

to where the demand originates [53]. Such a configuration promises a host of benefits, 

particularly for V2X applications and third-party services, by situating operational functions 

proximal to vehicles' access points, such as gNBs or RSUs. 

The essence of MEC lies in its ability to minimize latency, a critical requirement for the 

burgeoning suite of V2X applications. With the 5G Core Network's ability to select a User 

Plane Function (UPF) near the vehicle, MEC facilitates traffic steering directly to local data 

networks where V2X application servers reside. This is achieved through the standardized 

3GPP N6 interface, ensuring that data does not traverse unnecessary network hops, thus 

significantly reducing end-to-end latency and lightening the load on the transport network. 

Within the MEC infrastructure, the 'edge' is conceptualized as the logical endpoint of a 

network. This could manifest as a base station, an access point, or a peripheral data centre, each 

serving as a pivotal node for data processing and service delivery. MEC's architecture is lauded 

for its flexibility and modularity, which enables support for an extensive array of services and 

applications. These range from content caching and Internet of Things (IoT) integration to 

location-based services, video analytics, environmental monitoring, and augmented reality 

solutions, among others. 

The deployment of MEC is synergistically coupled with cutting-edge technologies like SDN 

and NFV [54]. These technologies impart the required dynamism and scalability, allowing 

MEC platforms to host a diverse spectrum of applications. This versatility opens the door to 

novel service offerings and monetization avenues for service providers, third parties, and 

network operators. 
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In the landscape of 5G, MEC's role is particularly pronounced in scenarios that demand swift 

data processing and ultra-low latency. V2X communications, smart cities, and industrial IoT 

stand to benefit immensely from MEC's capabilities. By handling vast data volumes at the 

network edge, MEC enables real-time analytics and decision-making processes, essential for 

the autonomous systems that drive these applications. This decentralized approach not only 

enhances the user experience by ensuring prompt service delivery but also contributes to the 

optimization of network resources, heralding a new era of efficient and responsive network 

architectures for the interconnected world of tomorrow. 

2.6.2 MEC for V2X: Architectural Integration and Service Enhancement 

The integration of MEC within V2X communications unlocks a myriad of opportunities, 

enhancing service delivery through distributed computing resources. This synergy becomes 

particularly significant in the architectural framework of vehicular networks, where MEC's 

alignment with the RAN enables a multifaceted service environment. The architecture 

comprises three distinct layers as depicted in Figure 14 [55]: The cloud layer with its centralized 

servers, the MEC layer with nodes such as Roadside Units (RSUs), and the user layer consisting 

of vehicular terminals. Each layer is instrumental in achieving the end-to-end service delivery 

objectives, contributing to a cohesive operational structure.  

 

Figure 14. MEC-enabled vehicular network architecture 

MEC serves as a pivotal force in several V2X application scenarios. For instance, path 

navigation benefits immensely from MEC's ability to process and store data collected from 

vehicles and neighbouring RSUs. This facilitates enhanced navigation accuracy and up-to-date 

route information. Traffic control is another domain where MEC's influence is transformative. 
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RSUs, equipped with MEC capabilities, collect, and analyse data, subsequently aiding in traffic 

management and reducing congestion. The advent of low latency services through MEC is 

particularly advantageous for autonomous driving systems, where the timely execution of tasks 

is paramount for safety and traffic flow efficiency. 

MEC's computational prowess also lends itself to applications requiring intensive 

processing, such as Augmented Reality (AR) and facial recognition technologies. These 

services, traditionally reliant on centralized cloud resources, can now leverage edge computing 

for improved quality of service. Additionally, as vehicular networks evolve, data mining and 

aggregation become crucial in harnessing the wealth of information generated. MEC facilitates 

the deployment of Artificial Intelligence (AI) and Machine Learning (ML) algorithms, which 

can deeply analyse the data to enhance network performance and data efficiency. 

Integrating MEC into V2X communications presents several challenges that are critical to 

address. Resource sharing fairness stands out, requiring a delicate balance to ensure that the 

computational and storage capabilities at the edge are distributed equitably among competing 

services and applications. Alongside this, optimizing edge node placement is a complex task, 

essential for maintaining efficient service delivery in the face of dynamic vehicular traffic 

patterns and fluctuating service demands. 

Moreover, ensuring robust security and privacy for the data processed at the edge is 

paramount, given the sensitivity of vehicular data and the need for stringent adherence to 

diverse regulatory standards. Among these challenges, service migration is particularly 

significant. It involves the seamless transition of services as vehicles move through the network, 

a process that must be handled with minimal latency to uphold the continuous and reliable 

performance of safety-critical V2X applications. Given its complexity and importance, this 

aspect of service migration forms a key focus of one of our contributions. 

2.7 Toward a New Technology for Vehicular Networks: IEEE 

802.11bd 

IEEE 802.11bd, an advanced standard for Vehicular Ad-hoc Networks (VANETs), 

represents a significant upgrade from its predecessor, IEEE 802.11p. Developed under the IEEE 

Task Group since January 2019 [56], 802.11bd aims to enhance the Physical (PHY) and 

Medium Access Control (MAC) layers by incorporating advancements from existing IEEE 

802.11 Wireless Local Area Network (WLAN) standards, such as IEEE 802.11ac and IEEE 

802.11ax. 

One of the primary objectives of IEEE 802.11bd is to provide an ad-hoc vehicular 

environment with substantial improvements in key areas such as throughput, latency, reliability, 
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and communication range [57]. According to its project authorization report, 802.11bd is 

expected to deliver performance that is double that of 802.11p [58], including twice the MAC 

throughput of 802.11p, support for relative velocities up to 500 km/hr, and a communication 

range that is twice as long as that of its predecessor. 

Technically, IEEE 802.11bd diverges from 802.11p by utilizing a 20 MHz bandwidth 

channel for communication instead of the 10 MHz bandwidth used in 802.11p [59]. The 

modulation and coding scheme (MCS) of 802.11bd can reach up to 256-QAM [60], supported 

by multiple-input multiple-output (MIMO) antennas, thereby enabling very high throughput. 

To ensure reliable communication, 802.11bd incorporates the Low-Density Parity-Check 

(LDPC) coding mechanism and Midambles, which are similar to preambles but are used 

between OFDM data symbols to estimate channel variation. These Midambles help in reducing 

interference effects on message integrity. 

Moreover, the MAC layer in IEEE 802.11bd is based on the Enhanced Distributed Channel 

Access (EDCA) method, which is essential for channel access. However, with a 20 MHz 

bandwidth and a 256-QAM MCS, 802.11bd allows for message retransmissions by sending 

each OFDM symbol over two different sub-carriers. This feature, combined with LDPC and 

Midambles, contributes significantly to improved reliability in message delivery compared to 

IEEE 802.11p. 

In summary, IEEE 802.11bd represents a considerable leap forward in the technology 

available for V2X communication. It offers higher performance, better reliability, and an 

extended range [61], which are essential for meeting the increasingly demanding requirements 

of modern vehicular applications. These enhancements, particularly in terms of throughput and 

reliability, make IEEE 802.11bd a pivotal standard in the realm of V2X communications, 

paving the way for more advanced and reliable vehicular communication systems. 
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2.8 Summary of Key Features of IEEE 802.11, LTE-V2X and 5G-

V2X 

In this section, 

Table 7 provides a comparative summary of V2X technologies, highlighting the evolution 

and distinguishing features of IEEE 802.11-based standards and Cellular V2X (C-V2X) 

technologies encompassing both LTE-V2X and 5G V2X. 

Table 7: Summary of V2X communication technologies features 

 

  

Radio Design 802.11p 802.11bd LTE-V2X Rel 14/15 5G NR Rel 16 

Radio bands 5.9 GHz 
5.9 GHz, 

60 GHz [62] 

5.9 GHz                 

(PC5 interface) 

5.9 GHz~52.6 GHz 

including mmWave 

Subcarrier 

spacing 
156.25 KHz 

312.5 KHz,156.25 

KHz,78.15 KHz 
15 KHz 

Sub-6 GHz:15,30,60 

KHz 

mmWave:60, 120 

KHz 

Synchronization Asynchronous Asynchronous Synchronous Synchronous 

Channel size 10/20 MHz 20 MHz 10/20 MHz 

10/20 MHz and 

wideband 

(40/60/80/100 MHz) 

Resource 

multiplexing 
CSMA/CA CSMA/CA TDMA/FDMA TDMA/FDMA 

HARQ 

retransmission 
No No Yes Yes 

Waveform OFDM OFDM SC-FDMA 

SC-FDMA, 

OFDMA + other 

options 

Resource 

selection 

Listen-Before-

Talk 

Listen-Before-Talk 

on the first Channel 

(first 10 MHz) 

SPS + Listen-Before-

Talk 

Many available 

options 

MIMO Not supported 
Up to 8 RX/TX 

antennas 
2 RX/TX antennas 

Up to 8 RX/TX 

antennas 

Modulation Up to 64 QAM Up to 256 QAM Up to 64 QAM Up to 256 QAM 

Data channel 

coding 
BCC LDPC Turbo LDPC 
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3. Proactive C-ITS Decentralized Congestion 

Control Using LSTM 

3.1 Introduction 

The evolution of vehicular networks has been a cornerstone in the advancement of modern 

transportation systems. With the rise of Cooperative Intelligent Transport Systems (C-ITS), the 

integration of communication technologies into vehicular environments has become 

increasingly critical. These systems, which encompass a wide range of applications from traffic 

management to safety measures, rely heavily on the seamless and efficient exchange of 

information.  

As vehicular networks become more complex and heavily trafficked, managing the flow of 

this communication becomes a paramount concern. The challenge is not just in facilitating the 

exchange of data but in doing so in a manner that is both efficient and reliable, even under the 

strain of high vehicle densities and rapidly changing network conditions. The effectiveness of 

these communication systems is vital, not only for the smooth operation of transport networks 

but also for ensuring the safety and well-being of road users. This is where the issue of channel 

congestion in vehicular networks, a critical factor in the performance of C-ITS, comes into play. 

This chapter investigates the use of LSTM neural networks for proactive congestion control 

in C-ITSs. It highlights a shift towards predictive management and allocation of network 

resources for better stability and increased fairness, showcasing the superior performance of 

this method in reducing channel load and enhancing channel convergence in vehicular 

networks. 

3.1.1 Problem Statement  

Channel congestion C-ITS poses a critical challenge. The efficacy of V2X communication 

is primordial in these systems, underpinning safety, and traffic management protocols. The 

European standard ITS-G5, tailored for V2X communications in Ad hoc Vehicular Networks 

(VANETs), adopts DCC strategies to counteract channel congestion. However, the prevailing 

DCC methodologies, such as reactive Transmit Rate Control (TRC) and adaptive Dual α 

algorithms, tend to address congestion post-occurrence. This delay in response adversely affects 

vehicular network performance, leading to inefficiencies in traffic flow and potential safety 

hazards. 

The reactive nature of existing DCC mechanisms is particularly problematic in highly 

dynamic and high-density traffic scenarios, where the increased number of vehicles exacerbates 
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channel load and congestion. The communication channel becomes saturated in such 

environments, leading to data transmission delays and packet losses. This scenario undermines 

the reliability of safety-critical applications of C-ITS, such as collision avoidance systems and 

emergency vehicle notifications. The reliance on legacy DCC techniques also means that the 

network is constantly playing 'catch-up' with the changing traffic conditions, which is far from 

ideal in the fast-paced, dynamic environment of vehicular networks. As a result, there is an 

urgent need to shift from a reactive to a proactive approach in managing channel congestion. 

3.1.2 Research Objectives 

In this research, we introduce proactive DCC algorithm, harnessing the predictive 

capabilities of the Long Short-Term Memory (LSTM) recurrent neural network. This approach 

is designed to forecast the Channel Busy Ratio (CBR) across multiple time steps, thereby 

enhancing the ability of the vehicular network to anticipate and manage congestion. By shifting 

from reactive to proactive management, our algorithm aims to respond more effectively to the 

dynamic conditions of vehicular networks. 

The process involves generating precise forecasts of the CBR, which are further refined 

using the Exponentially Weighted Moving Average (EWMA). This step ensures a smoother 

and more accurate representation of network conditions. These enhanced CBR values are 

crucial for the DCC algorithms, as they are the key parameter in the decision-making process 

regarding the transmission configurations of vehicles. Through this method, we aim to 

significantly enhance the efficiency of vehicular networks. 

The primary goal of our research is to significantly enhance channel load convergence and 

network stability, while simultaneously reducing overall channel load. This advanced approach 

is poised to substantially increase vehicular communication efficiency, optimizing resource 

allocation and mitigating channel exhaustion risks. In doing so, it promises to elevate fairness 

in resource distribution among vehicles. Our focus spans both local and global scales, aiming 

to refine vehicular communication within discrete clusters of vehicles and across the broader 

network. Ultimately, this research contributes meaningfully to C-ITS, striving to establish a 

more responsive, efficient, and equitable vehicular communication landscape. 

3.2 Related Works 

Extensive research has been conducted on ITS-G5 and its associated algorithms, leading to 

significant insights in the field of vehicular networks. The study by Rostami et al. [63] provided 

a thorough simulation-based comparison of the DCC TRC algorithm against LIMERIC, 

demonstrating LIMERIC's enhanced efficiency in managing inter-packet gaps. Another 
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important evaluation in [64] focused on optimizing the DCC TRC reactive algorithm, exploring 

various approaches to refine its operational effectiveness. 

The introduction of the Dual α algorithm, as mentioned before in [29], marked a notable 

advancement in the ETSI DCC adaptive algorithm. Although it didn't surpass the original 

LIMERIC algorithm in overall performance, it showed notable improvements in aspects of 

convergence and fairness, especially under transient conditions. The research in [65] tackled 

the challenge of unfairness in DCC, proposing a new mechanism aimed at achieving a more 

balanced distribution of network resources. 

Comparative studies, such as the work by Bansal et al. [66], have also been instrumental in 

understanding these algorithms' efficacy. This particular study compared LIMERIC with the 

DCC TRC reactive algorithm, finding that LIMERIC generally resulted in lower reception 

intervals and reduced tracking error. Finally, the work in [67] proposed a short-term density 

prediction approach based on an algorithmic scheme to provide more accurate and up-to-date 

information about the network state. As a result, this algorithm improves the adaptation of the 

transmission parameters to achieve better overall network performance. 

The performance comparison between ITS-G5 and LTE-V2X communication technologies 

has also been a focal point of research. In [68], the authors conducted a comprehensive system-

level simulation comparing ITS-G5 and LTE-V2X mode 4. The study focused on the Packet 

Delivery Ratio (PDR) in relation to the Signal to Interference plus Noise Ratio (SINR), where 

LTE-VTX showed superior PDR performance, albeit with ITS-G5 having the advantage of 

lower communication latency. Similarly, the research by Karoui et al. [69] evaluated both ITS-

G5 and LTE-V2X mode 3, comparing their performance in terms of end-to-end delay and radio 

frequency conditions. The results concluded that while ITS-G5 had a shorter E2E delay, it was 

less reliable than LTE-V2X mode 3. Moreover, the study in [70] delved into the performance 

degradation due to the co-channel coexistence of LTE-V2X and ITS-G5, examining various 

mechanisms to alleviate this loss. 

Despite these extensive studies, there remains a significant gap in the application of Artificial 

Intelligence (AI) models for proactive DCC. This unexplored area is where our current research 

is positioned, aiming to harness the power of AI to develop a more effective, proactive approach 

to DCC in vehicular networks. By integrating AI techniques, particularly advanced machine 

learning models, we seek to anticipate and manage network congestion more effectively than 

traditional methods. This approach not only promises to enhance network efficiency but also to 

revolutionize the way vehicular networks adapt to dynamic traffic conditions and evolving 

communication demands. 
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3.3 Proactive DCC Approaches Based on LSTM Recurrent Neural 

Networks 

This section delves into our innovative proactive TRC DCC and proactive Dual α algorithms, 

which integrate the capabilities of Long Short-Term Memory (LSTM) networks. These 

advanced algorithms are evolved from the legacy reactive TRC DCC and adaptive Dual α 

algorithms, respectively. By incorporating LSTM, a sophisticated artificial recurrent neural 

network (RNN), we enhance these algorithms for more effective performance in diverse 

scenarios.  

LSTM is an artificial RNN architecture used in deep learning for a variety of applications, 

including classification, processing, and prediction. An LSTM network is composed of several 

blocks (refer to Figure 15 [71] for visualization). The key components of an LSTM block 

include: 

• Cell state: This component serves as the network's memory, allowing information to 

flow through the LSTM. It updates the new cell state (Ct) based on the previous state (Ct-1), 

ensuring continuity and memory retention over time. 

• Forget gate: Responsible for filtering out unnecessary information, the forget gate 

selectively removes data from the cell state, streamlining the LSTM's processing capabilities. 

• Input gate: This gate plays a crucial role in determining which new information is 

significant enough to be stored in the cell state, enhancing the network's learning accuracy. 

• Output gate: Drawing from the current cell state and the previous hidden state, the output 

gate calculates the next hidden state. This hidden state is crucial for predictions and decision-

making processes in the LSTM network. 

 

Figure 15. LSTM block components 
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Multi-step time series forecasting is the term used to describe a time series forecasting 

problem that requires the prediction of multiple time steps into the future. Specifically, these 

are issues in which the prediction horizon or interval is longer than a single step. When it comes 

to multi-step forecasting, two types of LSTM models can be used: The Vector Output Model 

and the Encoder-Decoder Model. In our case, we use the former, where the LSTM will directly 

output a vector that can be interpreted as a multi-step forecast.  

In the context of our proactive DCC algorithms, we leverage the LSTM network for both the 

training and prediction phases, focusing on the CBR time series. The CBR is a critical 

determinant in controlling the message generation rate across all DCC algorithms. By utilizing 

LSTM's predictive power, we can forecast smoothed CBR values, significantly reducing the 

likelihood of out-of-control scenarios in network traffic. This proactive approach enables the 

algorithms to anticipate and adapt to varying network conditions more effectively, enhancing 

overall communication efficiency.  

The LSTM agent operates by analysing the measured CBR values (CBRm) every second, 

using data from the last N seconds (N×10 values) to predict the future CBR values (CBRp) for 

the upcoming M seconds (M×10 values). In our methodology, only the last set of predicted 

values (the last ten CBR values) from each prediction cycle is used for the subsequent second 

decision-making process. To further refine these predictions, we apply the Exponentially 

Weighted Moving Average (EWMA) formula, calculating the smoothed predicted CBR 

(CBRsp) at each time step t, as defined in equation (6), where t0 marks the start of prediction 

generation and θ is the smoothing factor: 

𝐶𝐵𝑅𝑠𝑝(𝑡) = {
𝐶𝐵𝑅𝑚(𝑡), 𝑖𝑓 𝑡 < 𝑡0 

(1 − 𝜃) × 𝐶𝐵𝑅𝑠𝑝(𝑡 − 1) + 𝜃 × 𝐶𝐵𝑅𝑝(𝑡), 𝑒𝑙𝑠𝑒 
         (6)       

 

Figure 16. ML modelling for proactive DCC algorithms 
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The system architecture consists of the 3 main phases as depicted in Figure 16: 

1) Preparation phase: The foundation of our system begins in this phase, where simulations 

are conducted using the conventional DCC reactive and adaptive algorithms, namely TRC and 

Dual α. The primary objective here is to generate a CBR dataset (step 1), which forms the 

backbone of our LSTM training process. This step involves a meticulous collection of CBR 

values from every ITS station engaged in the simulation, ensuring a robust and diverse dataset 

that reflects a wide range of network conditions. 

2) Offline phase: Transitioning to the offline phase, the focus shifts to transforming the 

accumulated dataset into usable samples. This process, depicted in step 2, involves reshaping 

the data into segments of specified lengths and adapting it for effective LSTM processing. A 

specialized function is utilized to partition the univariate time series into samples with several 

input (N) and output (M) time steps. Following this segmentation, we embark on defining the 

LSTM model's configuration – this includes setting parameters such as the number of layers, 

the number of cells per layer, and the choice of activation function. Once configured, the model 

undergoes thorough training, ending in the saving of the trained LSTM model for deployment 

in the subsequent phase. 

3) Online phase: The culmination of our system's architecture is the online phase. Here, 

the LSTM model, freshly deployed at each ITS station after the offline phase (step 3), springs 

into action. It utilizes the CBR data from the preceding N seconds (N×10 values) to generate 

predictions for the upcoming M seconds (CBRp). In this real-time application, an ITS station 

emits a vector of CBR values every second. This vector then serves as input to the LSTM agent 

(step 4), which is adept at generating accurate CBR predictions for the immediate future. Post 

prediction, the LSTM model undergoes an update process (step 6). The freshly obtained CBR 

predictions are then subjected to a smoothing process to calculate CBRsp. This smoothed data 

is subsequently fed into the DCC algorithms (step 7). It's at this juncture that the DCC 

algorithms, now armed with predictive data, make informed decisions about the rate at which 

new messages should be generated. 

A critical aspect of our approach is the processing time needed by the ITS station to generate 

a sequence of predictions. We propose incorporating predictions on a per-second basis, 

necessitating that the LSTM's prediction duration be less than one second. Achieving this rapid 

prediction rate could be effectively facilitated through the deployment of a dedicated onboard 

processing unit. This unit would be specifically tailored to handle the computational demands 

of the LSTM, ensuring the timely generation of accurate traffic predictions. 

In our first approach, we applied predictive techniques to enhance the TRC mechanism. This 

adaptation aims to accelerate transitions between different channel states, both in increasing 

and decreasing density scenarios. Such quickened state transitions are vital in mitigating 
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channel overloads, an issue that intensifies with increasing vehicle density, and optimizing 

resource utilisation. By utilizing predictions to adjust message generation intervals more 

rapidly, the TRC system is better equipped to handle the growing demands on network capacity. 

The outcome of this integration is a proactive TRC algorithm, thoughtfully designed to include 

three active states, highlighted as follows:  

Our second approach introduces the proactive Dual α algorithm, an iteration of the existing 

adaptive Dual α algorithm. The primary distinction in our proactive version is the application 

of smoothed predicted CBR values (CBRsp) in equation (1), rather than the traditionally 

measured CBR values. This adaptation facilitates swifter transitions to higher tgo values, thereby 

promptly reducing channel congestion. It achieves this by lessening the message generation rate 

per second, thus effectively handling dense traffic conditions. The details of this proactive Dual 

α algorithm are presented in the following: 

Algorithm1: Proactive Transmit Rate Control 

Input: Predicted CBR value (CBRp) 

Output: Toff (Time interval between two consecutive message 

generations) 

1. If (t > t0) CBRsp (t)<= CBRm(t)  

2. Else CBRsp = (1-θ) × CBRsp (t-1) + θ × CBRp(t) 

3. If (CBRsp <0.3) then: Toff <= 100 // Toff in ms 

4. Elseif (CBRsp >0.3 and CBRsp <0.39): Toff <= 200 

5. Elseif (CBRsp >0.4 and CBRsp <0.49): Toff <= 400 

6. Elseif (CBRsp >0.5 and CBRsp <0.59): Toff <= 500 

7. Else: Toff <= 1000; // CBRsp >0.59 

 

Algorithm2: Proactive Dual α Algorithm 

Input: Predicted CBR value (CBRp) 

Output: tgo (Time of wait for the next transmission) 

1. If (t < t0) CBRsp (t)<= CBRm(t)  

2. Else CBRsp(t)= (1-θ) × CBRsp (t-1) + θ × CBRp(t) 

3. CBRs(n)=0.5×CBRs(n-1) + 0.5× (CBRsp (t-1) + CBRsp (t-1) / 2) 

4. If (CBRt > CBRs(n)) : δoffset = min (β× (CBRt – CBRs(n)), G-
max) 

5. Else δoffset = max (β × (CBRt - CBRs(n)), G+
min 

6. If (δ (n-1) - δ low (n)) > th: α(n)= αHigh   

7. Else α(n)= αLow 

8. δ(n) = (1- α) * δ(n-1) + δoffset 

9. If (δ(n) > δmax): δ(n) = δmax 

10. If (δ(n) < δmin): δ(n) = δmin 

11. tgo= tpg+min(max(tonpp /δ  ,25ms),1s) 
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3.4 Simulations and Results 

3.4.1 Simulation Scenario and Configurations 

In this section, we conduct simulations to illustrate the effectiveness of our proposed 

solution for both the DCC reactive TRC and the Dual α algorithms. The focal metrics of this 

study are the average CBR and the CBR convergence speed. A lower average CBR indicates a 

less saturated transmission channel, while the convergence speed reflects how quickly the 

channel stabilizes and the extent of local and global fairness achieved among all vehicles.  

For the reactive DCC algorithm, our approach considers a sophisticated 5-active state-

machine algorithm, which encompasses a total of 7 distinct states. This configuration is 

designed to provide granular control over the communication channel, adapting dynamically to 

varying network conditions. Detailed parameters for each state, along with their respective CBR 

threshold values, are given in Table 8.  

Table 8: Reactive TRC states and corresponding parameters. 

State 
CBR 

interval 
Toff (ms) 

Transmission 

rate (Hz) 

Relaxed CBR<0.19 60 16.7 

Active1 0.19<CBR<0.27 100 10 

Active 2 0.27<CBR<0.35 180 5.6 

Active 3 0.35<CBR<0.43 260 3.8 

Active 4 0.43<CBR<0.51 340 2.9 

Active 5 0.51<CBR<0.59 420 2.4 

Restrictive 0.59<CBR 460 2.2 

In addressing the Dual α algorithm, we have adopted the parameter set originally (detailed 

in [6]). This ensures consistency with established research and allows for a direct comparison 

of our enhancements. The specific values and configurations used in the Dual α algorithm are 

outlined in Table 9. 

Table 9: Parameter value of the Dual α algorithm 

Parameter Value Parameter Value 

αlow 0.016 δmin 0.0006 

αhigh 0.1 δmax 0.03 

β 0.0012 G+
max 0.0005 

th 0.00001 G-
min -0.00025 

CBRt 0.68   



 

47 

 

To comprehensively assess the performance of these algorithms under various conditions, 

we employed a range of traffic densities in our simulations. The chosen testing ground was the 

oval scenario, which comprises a 3.75-kilometer oval-shaped road with four lanes in each 

direction. This particular setup provides an ideal environment for examining the algorithms’ 

behaviour in a controlled yet realistic setting. Our analysis focused on evaluating vehicle 

metrics in both transitory and steady states to gain insights into the algorithms' adaptability and 

performance. By monitoring these metrics before and after the environment reaches its 

maximum density, we can understand how effectively the algorithms respond to escalating 

network demands and maintain stability in high-density scenarios. 

All simulations were conducted using the open-source V2X simulation framework, Artery 

[72]. This framework enables and facilitates the implementation of V2X services adhering to 

ETSI ITS-G5 protocols. Artery integrates with OMNet++ [73], a renowned discrete event 

simulation framework. OMNeT++ provides the capabilities to model and simulate complex 

network scenarios and interactions with high precision. Also, Artery encompasses additional 

frameworks, such as Vanetza [74], which implements the DCC mechanisms and algorithms. 

Within Vanetza, we implemented our proposed solution. Traffic generation and simulation are 

handled by SUMO (Simulation of Urban Mobility) [75]. Table 10 encapsulates the principal 

parameters of the simulation scenario. 

Table 10: Simulation parameters 

Vehicle flow parameters 

Density 

(vehicle/lane/Km) 
Max Speed (m/s) 

Simulation time 

(s) 

50 13.2 350 

Other simulation parameters 

Transmission Channel CCH 

ITS-G5 Service CAM 

Scenario 
8-lane bidirectional oval 

road 

Length 3750m 

Our model was built using Python 3.9 and TensorFlow 2.5 [76]. The creation of the LSTM 

models, as well as running all simulations, were performed on an Ubuntu-based system with an 

Intel i7-9700 processor and 16 GB of memory. 

Initial simulations employed the TRC reactive and Dual α algorithms in their standard forms, 

with the subsequent collection of CBR values from each node in all the simulation 

environments, stored as dataset files.  

The next step is to initiate the offline phase by training and creating our LSTM model (a 

specific LSTM model dedicated to each algorithm). We explored a range of LSTM 
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configurations to determine the most effective ones for our simulation environment. Finally, to 

test these models in a dynamic setting, we equipped each vehicle in our simulation with one of 

these LSTM models. We conducted a series of simulations, altering both the LSTM 

configurations and the vehicle densities, to rigorously test the models under varied conditions. 

The goal was to identify the most efficient LSTM configuration for real-time applications in 

diverse traffic scenarios. We define the number of input and output steps employed by our 

LSTM agent using the n_steps_in and n_steps_out variables, representing our multi-step time-

series forecasting model. The chosen configurations are detailed in Table 11. 

Table 11: LSTM parameter settings 

Parameter Parameter Value 

n_steps_in 20 (N=2) 

n_steps_out 40 (M=4) 

LSTM layers, number of cells 4,[50,50,50,50] 

Activation Function ReLU 

Batch size 16 

Optimizer AdamOptimizer 

Discount factor 0.9 

Hidden layer 64 neurons Hidden layer 64 neurons 

Replay memory D 500 

3.4.2 Simulation Results 

 

Figure 17. Average CBR for both DCC algorithms 

Figure 17 illustrates the average CBR values using both traditional and LSTM-based 

proactive approaches. The TRC reactive DCC algorithm, when enhanced with LSTM 

predictions, shows a reduction in average CBR from over 0.55 to approximately 0.54. Similarly, 

in the Dual α algorithm, the average CBR decreased from 0.57 to 0.56. These reductions signify 

fewer channel congestion peaks, attributable to the proactive adjustment of CAM generation 
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rates based on predicted rather than current CBR values. Consequently, this integration of 

smoothed CBR predictions into both algorithms leads to more efficient resource utilization and 

reduced channel congestion  

Figure 18 and Figure 19 depict the CBR variations for the TRC and Dual α algorithms (both 

legacy and proactive versions). Figure 18 shows that, for the Dual α algorithm, the use of LSTM 

predictions does not significantly alter average CBR values during transitory and steady states. 

However, the proactive Dual α demonstrates better and faster convergence in the steady state 

compared to its adaptive counterpart. 

 

Figure 18. Average CBR variation for 

DCC Dual α 

 

Figure 19. Average CBR variation  for 

DCC TRC 

In the case of the DCC TRC algorithm, the difference becomes clearer, as illustrated in 

Figure 19. In the transitional phase, the proactive algorithm demonstrates a higher average 

Channel Busy Ratio (CBR) compared to its traditional counterpart. This indicates that vehicles 

utilizing LSTM escalate their data transmission rates more rapidly and transmit a greater 

volume of data during periods of low channel congestion. This behaviour is deemed optimal, 

as it suggests that vehicles efficiently maximize network resource utilization without causing 

network overload. This efficiency becomes even more evident during the steady state phase. 

Initially, the proactive approach effectively mitigates the initial surge in average CBR observed 

with traditional methods. Furthermore, vehicles employing LSTM technology achieve a rapid 

convergence to a stable average CBR, which subsequently exhibits minimal fluctuations. These 

observations underscore the superiority of integrating LSTM predictions into both 

methodologies, leading to enhanced network resource management, alongside quicker and 

more reliable network stability. Consequently, our proactive approaches enable faster 

achievement of local fairness among nearby neighbouring vehicles, as well as faster 

achievement of global fairness among all vehicles contributing to congestion. 

Despite the seemingly modest reductions in average CBR values, these improvements carry 

substantial implications for network efficiency and reliability. Specifically, the lower frequency 
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of channel congestion peaks, as indicated by the reduced average CBR, leads to less strain on 

the network. This, in turn, enhances the network's reliability and fosters a more equitable 

distribution of resources among vehicles. By ensuring a smoother flow of communication and 

reducing the likelihood of network saturation, the integration of LSTM-based predictions into 

traffic management algorithms contributes to a more resilient and balanced vehicular network 

environment. 

It is important to emphasize that our approach has no negative impact on the reliability or 

transmission quality of the channel. This is demonstrated by the average Packet Delivery Ratio 

(PDR) values. Indeed, when using proactive DCC algorithms, the average PDR in all simulation 

environments is slightly increased, as seen in the results summarized in Table 12. 

Table 12: Average PDR 

TRC TRC + LSTM Dual α Dual α + LSTM 

80.19635% 80.34709% 77.65844% 77.66450% 

3.5 Conclusion 

In this chapter, we explored the TRC reactive and Dual adaptive algorithms and introduced 

the proactive Decentralized Congestion Control (DCC) algorithms empowered by LSTM 

artificial intelligence. These innovations effectively help to mitigate channel exhaustion, 

smooth congestion peaks, and accelerate channel stability, leading to faster convergence, 

resource optimization, and enhanced fairness among vehicles. Additionally, a slight increase in 

the PDR attests to the system's reliability. The application of LSTM-based predictions 

represents an initial foray into leveraging AI for traffic management. Future research may 

extend to alternative AI algorithms that could further refine these results, promising even 

greater efficiency and reliability in vehicular networks. Also, potentially revolutionizing DCC 

mechanisms in vehicular networks. Our work marks a significant advancement toward efficient 

and equitable vehicular communication. The Proactive DCC algorithms, with LSTM 

predictions, demonstrate the transformative potential of AI-driven solutions in modern 

transportation systems, paving the way for further innovation. 

4. ETSI ITS-G5 Network Slicing 

4.1 Introduction and Problem Statement 

The integration of Network Slicing within ITS-G5 for Vehicular Ad hoc Networks 

(VANETs) marks a significant advancement in the field of C-ITS, particularly in the context of 



 

51 

 

the emerging 5G network architecture. This development is increasingly critical as the digital 

technology and transportation sectors continue to evolve rapidly. Network slicing offers a 

transformative solution to address the complex challenges encountered in C-ITS, especially in 

areas with high-density traffic. This approach involves creating multiple, independent logical 

networks, or "slices", on a single shared physical network infrastructure. It is crucial for meeting 

the diverse and stringent Quality of Service (QoS) requirements that are essential across various 

Vehicle to Everything (V2X) applications and use cases, where latency and reliability are of 

utmost importance. 

One of the central challenges in this domain is the effective management of data 

communication within ITS-G5 VANETs. This includes the handling of CAMs and DENMs, 

among other types of messages, which are vital for real-time information sharing among ITS 

Stations (ITS-S). These messages cover crucial data such as vehicle presence, position, speed, 

and other significant status indicators, along with alerts regarding events like accidents or road 

hazards. In high-density traffic scenarios, the excessive volume of data exchange can lead to 

significant issues with bandwidth and QoS, presenting a major challenge in ensuring the timely 

and efficient delivery of these critical communications. 

The concept of network slicing in ITS-G5 VANETs represents a paradigm shift, introducing 

customizable, scalable, and isolated network environments tailored to specific communication 

needs. This advancement promises to enhance performance and security within each network 

slice. However, it also brings forth the challenge of ensuring that high-priority traffic, such as 

emergency vehicles, is adequately serviced with the necessary urgency and reliability. 

Moreover, as the automotive market undergoes a technological transformation towards more 

advanced C-ITS, there is an increasing demand for ultra-low latency and ultra-high reliability 

under high mobility and density conditions. Achieving these standards in a dynamic and 

constantly evolving traffic environment poses significant challenges. The need for a robust and 

flexible network architecture capable of adapting to varying traffic conditions and priorities is 

paramount. Addressing these challenges is essential for the advancement of C-ITS, contributing 

to the development of transportation systems that are not only smarter and safer but also more 

efficient and responsive to the needs of a modern, connected society. 

4.2 Literature Overview 

The majority of V2X network slicing literature such as [77][78][79], among others, primarily 

focuses on the aspect of resource allocation across the Radio Access Network (RAN), with less 

emphasis on the Core Network (CN) and computation resource allocation, primarily within 

LTE-V2X and 5G (NR-V2X) infrastructures. This field of study encompasses a range of 

approaches, from analytical and simulation-based methods to practical experimental setups. 
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Many of these works are summarized in [37]. [80] introduces a reference model (Figure 20) 

built upon a three-layered structure similar to that in [81]. This model comprises infrastructure, 

service, business, and management and orchestration layers. The architecture highlights the 

instantiation of a slice dedicated to autonomous driving, with an emphasis on using Vehicle-to-

Vehicle (V2V) as the primary Radio Access Technology (RAT) connection mode. This slice 

requires ultra-low latency and highly reliable Vehicle-to-Network (V2N) connectivity for 

effective data exchange. The work in [82] integrates ITS-G5/C-V2X, MEC, 5G, and network 

slicing in a comprehensive reference architecture. 

 

Figure 20. Network slicing architecture and slice instantiation for autonomous driving 

Expanding on the domain of V2X network slicing, a notable contribution is from [43], where 

the authors provide a comprehensive framework for a V2X network slicing model. This model 

aligns with the 3GPP specifications, advocating for a dedicated slice specifically for V2X 

services. The proposed model includes four distinct slices designed to cater to various V2X 

services such as autonomous driving, tele-operated driving, vehicular infotainment, and vehicle 

remote diagnostics and management. 

Further studies like [83] and [84] delve into specific aspects of vehicular networks. [83] 

focuses on cooperative driving under roaming conditions, while [84] develops an architecture 

for traffic differentiation and flow isolation in network slices. This architecture is validated in 

realistic scenarios considering various traffic types and RATs. [85] introduces an end-to-end 

network slicing framework that leverages Software-Defined Networking (SDN), fog, edge, and 

cloud computing technologies, specifically for autonomous driving services. 
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Resource allocation within the RAN segment for enhanced Mobile BroadBand (eMBB) and 

V2X slices is the focus of [86]. The study employs a strategy based on offline Q-learning to 

optimize resource distribution. In a similar vein, [87] tackles the issue of radio resource 

allocation for infotainment and autonomous driving slices. These slices are supported through 

Vehicle-to-Infrastructure (V2I) and V2V links, respectively. Regarding RAN slicing for 

vehicular networks, [42] introduces an architectural framework to support V2X network slices 

using network softwarization technologies like SDN and NFV, and [88] discusses the main 

enablers and challenges of RAN slicing.  

As for Wi-Fi-based slicing research, the work in [89]  presents a novel approach to 

infrastructure sharing and slicing in Wi-Fi Access Points through airtime resource allocation. 

Key to this architecture is a classifier module that discerns various traffic flows, assigning each 

flow to a specific queue. Additionally, the architecture utilizes multiple queues for each user, 

corresponding to the number of slices their traffic is associated with. This setup ensures that a 

Wi-Fi station has individual queues for each slice it services. These queues are managed by a 

Proportional Time Deficit Round Robin mechanism, initially introduced in [90], which 

effectively schedules services across queues to fulfil the QoS requirements of each slice. 

Finally, The work presented in [91] proposed a Virtual Network Slicing Broker (VNSB) that 

creates logical slices using NFV and SDN and Wireless Network Virtualization (WNV) 

technologies to create and maintain slices in the IEEE 802.11ah network. 

However, specific guidelines for ITS-G5 RAN slicing remain underexplored. Also, there is 

a notable gap in the literature regarding end-to-end slicing of the ITS-G5 network. To date, to 

the best of our knowledge, no work has specifically addressed an end-to-end network slicing 

architecture for ITS-G5 that encompasses slicing across ITS-Stations, access networks, core 

networks, and ITS data centres. 

4.3 A RAN Slicing Architecture for ITS-G5 C-ITS 

4.3.1 Research Objectives 

In this research, we aim to develop and detail a novel ITS-G5 RAN slicing architecture 

within the scope of C-ITS as standardized by ETSI. This architecture is designed to integrate 

new modules through the ITS protocol stack, enabling the creation of multiple RAN slices. 

Each slice is characterized by distinct priorities and performance parameters, ensuring optimal 

QoS, efficient traffic prioritization, shaping, and policing. 

A key focus of this work is on the aspect of security, particularly in terms of securing vehicle 

authentication to the respective network slices. This approach is crucial in maintaining the 

integrity and trustworthiness of communication within the C-ITS environment. Additionally, 
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our architecture emphasizes the importance of isolation between network slices. This isolation 

is critical to guarantee both the performance and security of each slice, ensuring that the 

operational dynamics of one slice do not adversely affect the others. 

4.3.2 RAN Slicing Advantages 

RAN slicing plays a significant role in fulfilling the network slicing motivation for user 

QoS and service customization, by providing efficient use of limited frequency spectrum 

resources. RAN slicing aims to contribute to the following [40][41]: 

• Maximized RAN resource utilization: dynamically sharing RAN resources between 

services using schedulers with different key performance indicators (KPIs) and other 

mechanisms to allow optimized bandwidth use in a flexible and programmable manner. We 

extend C-ITS queuing with a Classifier and a Mapper to share RAN resources dynamically. 

• RAN slice-awareness: QoS mechanisms allocate network resources to differentiate 

network traffic with different priorities, but these mechanisms are insufficient to tailor RAN 

resource attribution to slices. Thus, new specific RAN policies should be applied. We extend 

C-ITS with a Meter / Shaper that decides in-profile and out-of-profile traffic.  

• Traffic differentiation mechanisms: calls for deploying traffic prioritization mechanisms 

over the RAN, such as radio schedulers and QoS, etc. This is fully taken into consideration in 

our architecture from the opportunities provided by ITS-G5 DCC and transmission queues.  

• Isolation and protection mechanisms: when self-contained slices share the RAN 

resources, it is essential to use mechanisms that ensure proper isolation where congestion and 

security failure in one slice do not affect the others. Thanks to the introduced mechanisms, we 

provide secure access to a given slice while performing traffic shaping and policing alongside 

traffic prioritization and isolation. 

• Infrastructure management: allowing the efficient creation and modification of 

applications, services, and software resources considering the dictated performance and 

business requirements. We enhance slice management and orchestration (MANO) with 

coordinated network resources and lifecycle management of network slicing including secure 

access to the slice. 

4.3.3 Security and Privacy in C-ITS 

To enhance security and privacy in C-ITS, significant efforts have been made by IEEE and 

ETSI to establish a robust Public Key Infrastructure (PKI) architecture. PKI is an intricate 

system of authorities, policies, and procedures dedicated to the management, creation, 

distribution, utilization, storage, and revocation of digital certificates. It plays a pivotal role in 
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associating public keys with the respective identities of entities, achieved through a meticulous 

process of registration and issuance of certificates, as outlined in [92][93]. The architecture of 

PKI is hierarchical, resembling a tree structure of intercommunicating authorities. In the context 

of this study, our focus is primarily on the lower segment of this hierarchy, as depicted in Figure 

21.  

The Root Certificate Authority (RCA) serves as the uppermost authority in this hierarchy, 

responsible for certifying the identities of entities that issue digital certificates, namely the 

Enrolment Authority (EA) and the Authorization Authority (AA). The distinct roles of these 

two entities are critical in maintaining the vehicle's privacy and anonymity within the C-ITS 

framework. The EA is in charge of managing the vehicle's Enrolment Certificate (EC), which 

is a life-long certificate embedded in the vehicle. In contrast, the AA is tasked with providing 

Pseudonym Certificates (PCs) to the vehicle. These PCs are essentially alternate identities used 

by the vehicle to sign its messages, thereby significantly hindering the ability to track the 

vehicle. This strategic division of responsibilities between the EA and AA is essential for 

ensuring the privacy of vehicles, as the EA is only aware of the vehicle's EC, while the AA 

handles only its PCs [93]. This architecture effectively balances the need for security with the 

imperative of preserving vehicle anonymity and privacy in the C-ITS environment. 

 

Figure 21. Architecture for PKI infrastructure. 

4.3.4 RAN Slicing Architecture 

 The proposed solution introduces a suite of modules designed to enhance the ITS station 

protocol stack, tailored to meet the QoS requirements of different network slices. These 

modules are specifically engineered to classify, mark, shape, and police network traffic, 

facilitating the differentiation and prioritization of slices based on their respective priorities. 

The key components of this solution are:  
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• Waiting queues: Aligned with the access layer's access categories (VO, VI, BE, BK), 

these queues are instrumental in ensuring QoS through traffic prioritization. Traffic in higher 

priority queues is given preferential channel access over lower priority queues. Each queue is 

equipped with its own Meter / Shaper mechanism.  

• Classifier: Stamps the traffic with a DCC Profile value (DP), based on the slice it 

belongs to.  

• Mapper: Effectively aligns stamped packets with their respective traffic class (TC), 

based on the DCC Profile (DP) values assigned to each packet.  

• Meter / Shaper: It is central to the architecture, executing traffic shaping and policing. 

It regulates traffic burstiness by setting limits on the average rate and maximum burst size, as 

detailed in [94]. The Meter / Shaper operates with two parameters: Information Rate (IR) and 

Burst Size (BS). The IR specifies the traffic volume added to the Meter / Shaper per second, 

essentially representing the average message rate. The BS specifies the capacity of the Meter / 

Shaper, i.e., the maximum amount of traffic that the Meter / Shaper can hold, and thus the 

maximum number of packets that can be sent through the network in a very short time interval 

(burst). This module works as a counter incremented with points at a rate (IR) proportional to 

the desired mean message rate. However, the counter value can never exceed more than its 

maximum capacity (BS). When the counter reaches a value equal to or greater than one point, 

be a value “n”, the “n” following packets are labelled as "in-profile" packets, and the counter 

is decremented by “n” points [21]. Packets arriving when the counter has a value of zero, are 

labelled as "out-of-profile" packets. This mechanism aims to limit the packet transmission rate 

of the ITS stations based on the parameters that define their slices' QoS.  

• Enqueuing Element: This component queues the in-profile packets and directs the out-

of-profile packets either to the dropper or the marker, based on a Meter / Shaper that the slice 

manager and orchestrator (MANO) sets. 

• Marker: When a predetermined number X of packets are classified as out-of-profile by 

the Meter / Shaper, this module redirects the X oldest packets at the queue's front to the Dropper. 

It then enqueues the X newest out-of-profile packets, containing newer information, at the tail 

of the queue for priority processing. 

• Dropper: Responsible for discarding out-of-profile packets. 

• Monitor: Records traffic statistics and monitors the state of the channel. 

The RAN slice in our architecture is distinctively defined by its priority, Information Rate 

(IR), Burst Size (BS), and the specific services it supports. The slice manager and orchestrator 

(MANO) dynamically manages these slices, overseeing their lifecycle, resource orchestration, 
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and scaling. MANO's role includes creating RAN slices and configuring their QoS parameters, 

such as slice priority, IR and BS of the Meter / Shaper, and designated service types. MANO 

also sets the criteria for selecting a RAN slice, which can include factors like geographical 

location, mission criticality, authority stations, traffic flow, and station manufacturers. 

Figure 22 illustrates the integration of proposed modules within the ITS-G5 protocol stack. 

The application layer produces various packet types (1), each potentially belonging to different 

RAN slices. The selection of a RAN slice is based on the conditions set by MANO. In the 

facilities layer, packets are assigned a DCC Profile (DP) by the Classifier (2), corresponding to 

their slice. These packets then move through the networking & transport layer to the access 

layer, where the Mapper (3) aligns each packet to a traffic class (TC) based on its DP. This 

mapping directs packets to the appropriate Meter / Shaper of their RAN slice.  

 

Figure 22. Integration of the solution modules through the ITS station protocol stack 

The Meter / Shaper (4) categorizes traffic into in-profile or out-of-profile groups. In-profile 

traffic is queued by the Enqueuing element (5) in waiting queues (6), while out-of-profile traffic 

is directed to the dropper (7) or the marker (8), as per configurations (9) from MANO. The 

monitor (10) records all process statistics, including packet transmission rates, latency, and the 

number of dropped packets, aiding in decision-making. Higher priority slices typically offer 

better transmission rates, lower latency, and fewer packet drops compared to lower priority 

slices. 
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4.3.5 Slice Authentication 

The proposed architecture enhances secure access to specific network slices, employing 

digital signatures for vehicle authentication within their respective slices. A pivotal addition to 

this architecture is the "slice access database" (SA-DB), managed by the MANO. SA-DB 

maintains a record of each vehicle's Enrolment Certificate (EC) and a dynamic list of slice 

identifiers that a station is permitted to access, with updates based on MANO’s settings, 

network performance, and other policies. This integrated approach within the new PKI 

architecture is detailed in Figure 23.  

 

Figure 23. New PKI architecture 

The process begins when an ITS station seeks access to a slice, initiating a request 

accompanied by its EC and digital signature to the Authorization Authority (AA) for a pool of 

Pseudonym Certificates (PC). Upon receiving the request, the AA first verifies the EC's 

validity. If valid, the request is passed to the Enrolment Authority (EA); if not, it is disregarded. 

The EA then authenticates the station's identity by checking its EC and digital signature. 

Following successful verification, the EA consults the SA-DB to confirm whether the requested 

slice is within the station’s authorized slices. If the station is authorized to the slice, the EA 

notifies the AA, which then generates and dispatches a pool of PCs to the station. In the event 

of EC invalidation or if the station lacks authorization for the slice, the request is ignored. Figure 

24 sums up this whole process. 
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Figure 24. The process of PC pool attribution to an ITS-S 

The station uses the PCs from the pool to sign its messages within the demanded slice. When 

the PC pool depletes or reaches a set threshold, the station requests a new pool from the AA, 

repeating the aforementioned process. Each PC, serving as a temporary and unique identity, is 

used only once to enhance the station's privacy and hinder tracking. The pool size and threshold 

are configured through MANO. Furthermore, Roadside Units (RSUs) play a crucial role in this 

framework, acting as intermediaries between the ITS-G5 network and the PKI network. They 

facilitate the transmission of station requests and AA responses, thereby streamlining the 

communication and authorization processes within the network. 

4.3.6 Implementation and Simulation  

In this subsection, we detail the implementation and simulations conducted to validate our 

ITS-G5 RAN slicing architecture. We deployed diverse scenarios, each aimed at demonstrating 

the distinct functionalities of our architecture. The results from these simulations are critically 

analysed to evaluate the performance of our contribution. It's also important to note that all 

DCC algorithms were deactivated in these simulations to ensure a clear assessment of the 

architecture's capabilities.  

4.3.6.1 Implementation of ITS-G5 RAN Slicing 

Our proposed ITS-G5 RAN slicing architecture, and all simulations are implemented and 

run on the Artery simulator. The service used in this simulation is the CAM service for both 

vehicles and RSUs, and the priority of the CAM messages varies according to the slice to which 

the vehicle or the RSU belongs to. The different architectural elements are coded in C++ and 

then added as classes, methods, or segments of codes to the different Artery modules.  
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Regarding slice authentication, this component is implemented in a simplified format for 

the simulations. We assume that vehicles are pre-equipped with a pool of pseudonym 

certificates (PC). RSUs receive and authenticate messages from vehicles requesting access to 

particular slices. The detailed process of how vehicles acquire their PCs, which involves 

interactions with the core network and various authentication servers and databases, is out of 

the scope of this paper. 

4.3.6.2 Data Rate Results 

In this scenario, we demonstrate the traffic shaping and policing capabilities of our 

architecture using a simulated 2 km bidirectional highway with five lanes per direction. Two 

traffic slices with distinct priorities were established: a high-priority (HP) slice for police 

vehicles, permitting up to 5 messages per second, and a lower-priority (LP) slice for cars, 

allowing up to 3 messages per second. The simulation settings are detailed in Table 13.  

Table 13: Data rate simulation parameters. 

Transmission channel CCH 

ITS-G5 service CAM 

Message generation rate 10 Hz 

Simulation time 300 s 

Bidirectional highway length 2 Km 

Slices and traffic proportions 
Police (HP): 20%  

Cars (LP): 80% 

Slices’ parameters 
HP: IR = 5; BS = 10 

LP: IR = 3; BS = 10 

We analysed a subset of stations from both traffic flows, recording the message transmission 

rate. Figure 25 presents the traffic shaping effectiveness, illustrating how the Meter / Shaper 

controls the message rate. An initial burst of 10 messages (reflecting the burst size, BS = 10, 

for both slices) was observed, followed by regulation to the predefined rates: 5 messages per 

second for the HP slice (IR = 5) and 3 messages per second for the LP slice (IR = 3). These 

findings confirm the efficacy of our traffic shaping and policing strategy. 
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Figure 25. Message rate shaping of ITS-Ss belonging to HP and LP slices respectively 

4.3.6.3 Slice Isolation and Traffic Prioritization Results 

In this section, we demonstrate the efficacy of our solution in managing traffic prioritization 

and maintaining isolation performance under varying traffic densities. This involves analysing 

the system's response to different ratios of high-priority (HP) and low-priority (LP) traffic. 

Furthermore, we highlight the latency enhancement achieved for the HP traffic slice compared 

to the LP slice. Table 14 provides a comprehensive summary of the simulation parameters 

utilized in our study.  

The following charts (Figure 26 - Figure 29) show the mean latencies of the HP and LP 

slices, for each density value, while varying the HP traffic proportions (we present charts for 

densities of 20 and 50 vehicles/km/lane, as the results for other densities are remarkably similar 

and do not add significant additional insights). 

Table 14: Traffic prioritization simulation parameters. 

Transmission channel CCH 

ITS-G5 service CAM 

Message generation rate 10 Hz 

Simulation time 300 s 

Bidirectional highway length 2 Km 

Number of lanes/direction 5 lanes/direction 

Slices and traffic proportions 
Police (HP) – {5%, 10%, 15%, 20%} 

Cars (LP) –{95%, 90%, 85%, 80 %} 

Densities (vehicle/km/lane) {20, 30, 40, 50} 
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Figure 26. Average latencies for a density 

of 20 v/km/lane 

 

Figure 27. Average latencies for a density of 

50 v/km/lane 

 

Figure 28. Latency variations for a 

density of 20 v/km/lane 

 

Figure 29. Latency variations for a 

density of 50 v/km/lane

The above bar charts provide a clear visualization of the isolation effectiveness between the 

high-priority (HP) and low-priority (LP) slices in varying traffic density scenarios. These 

figures consistently show that the average latency for the HP slice is lower than that for the LP 

slice. This pattern holds across different HP traffic proportions and for a range of densities, 

from less dense scenarios (20 vehicles/km/lane) to highly congested, ultra-dense scenarios (50 

vehicles/km/lane).  

This observed performance can be explained by the specific mapping of the HP slice's traffic 

to the highest priority DCC profile, DP0, and its transmission through the Voice (VO) access 

category. The VO access category is favoured with shorter waiting times for channel access. In 

contrast, the LP slice's traffic is mapped to the lowest priority DCC profile, DP3, and is 

transmitted through the Background (BK) access category. Consequently, the LP traffic incurs 

longer waiting periods in the queue to access the channel. The determinants of these waiting 

times are the contention window (CW) interval and the Arbitration Inter-Frame Space (AIFS) 

values, as detailed in Table 4.  

The following Table 15 sums up the median and 95th percentile values for the different 

latencies with a percentage of HP traffic equal to 20%, and densities going from 20 v/km/lane 

to 50 v/km/lane. 
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Table 15: Median and 95th percentile values 

Density Slice Median (ms) 95th percentile (ms) 

20 v/Km/lane 
HP 0.4989 0.5496 

LP 0.5226 0.5878 

30 v/Km/lane 
HP 0.5254 0.5975 

LP 0.5705 0.6660 

40 v/Km/lane 
HP 0.5316 0.6102 

LP 0.6098 0.7340 

50 v/Km/lane 
HP 0.5536 0.4800 

LP 0.7767 1.0402 

These results show that traffic of the HP slice has a lower median latency and lower 95th 

percentile latency compared to the LP slice. This proves again the performance of our 

architecture in terms of traffic prioritization and QoS differentiation. 

4.3.7 Conclusion 

This study presents a new ITS-G5 RAN slicing architecture designed for V2X applications, 

with a major contribution being the integration of advanced traffic management strategies. 

These include traffic shaping and policing, as well as prioritization and differentiation, 

implemented through distinct priority slices with secure authentication for network resource 

access. The architecture's effectiveness was validated through simulations demonstrating 

efficient message rate regulation and traffic prioritization by creating slices of different priority 

levels. 

Performance evaluations under various vehicle densities and traffic ratios showed that the 

high-priority (HP) traffic slice consistently achieved lower latency than the low-priority (LP) 

slice, even in congested conditions. These results emphasize the architecture's capability in 

effectively managing and prioritizing V2X communications, indicating its potential suitability 

for dynamic vehicular environments.  
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4.4 End-to-End Network Slicing for ITS-G5 Vehicular 

Communications 

4.4.1 Research Objectives 

The primary objective of this research is to propose and implement a novel end-to-end 

network slicing architecture tailored for ITS-G5 vehicular communications. This architecture 

is designed to orchestrate resources across various segments of ITS infrastructure, including 

radio access, aggregation, core networks, and the ITS data centre. The central focus is on 

enhancing the overall efficiency and QoS within vehicular communication systems by 

optimizing resource allocation. 

A key goal of this study is to develop and validate a slicing approach based on traffic 

discrimination for ITS-G5. The proposed slicing mechanism specifically targets improved end-

to-end (E2E) latency for high-priority traffic and user groups. By doing so, this contribution 

aims to showcase tangible improvements in E2E latency, particularly for the higher-priority 

slices. This aspect is crucial for advanced Vehicle-to-Everything (V2X) applications, such as 

autonomous driving and platooning scenarios, where minimizing latency is imperative for 

safety and efficiency. 

4.4.2 Proposed Architecture Overview 

This section outlines our comprehensive end-to-end slicing architecture for the ITS-G5 

network, detailing both the ITS-G5 slicing system architecture and its management. Building 

upon the network architecture discussed in Section 2.4.1, our design incorporates an 

aggregation network situated between the access and core networks. This network functions as 

a pivotal juncture, collecting traffic from various road infrastructures. Depending on the specific 

requirements of the network, multiple aggregation levels may be integrated, enhancing data 

consolidation from the access networks before transmission to the ITS-G5 core network. 

The ITS data centre is equipped with substantial computing and storage capabilities. It serves 

as the hub for hosting diverse V2X application servers, Public Key Infrastructure (PKI), 

Authentication, Authorization, and Accounting (AAA) servers, among others. This architecture 

ensures that messages transmitted by an ITS station are efficiently routed to and from the remote 

V2X application servers. These servers process the data, playing a crucial role in delivering 

advanced ITS services. To optimize performance, certain service processing tasks are 

strategically executed at specific edge nodes, closer to the data sources. 

Our slicing approach is comprehensive, spanning across the ITS ad hoc networks, access 

and aggregation networks, and the core network, extending all the way to the remote ITS data 

centre, as depicted in Figure 30. This mechanism is highly flexible, allowing the creation of 
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multiple slices to accommodate a range of scenarios and use cases, each with its specific priority 

settings. For example, a slice with higher priority could be configured using ITS-G5 service 

parameters (such as a high-priority DCC profile, optimal generation rate, etc.), coupled with 

dedicated resources (including bandwidth, CPU, storage, and memory). This configuration 

ensures adherence to stringent QoS requirements like latency, throughput, and reliability, while 

also maintaining robust security standards.  

 

Figure 30. ITS-G5 global system architecture overview 

The architecture of the end-to-end slice comprises two main components: (1) radio 

resources, represented as ITS-G5 Physical Network Functions (PNFs) for RAN slicing, and (2) 

resources for access/aggregation and core networks, manifested as end-to-end bandwidth and 

computational power allocations for links connecting roadside ITS-Ss to V2X application 

servers. These links traverse various nodes, such as edge nodes, routers and switches, and data 

centres, where computational resources are allocated for instantiating Virtual Network 

Functions (VNFs). 

Formally, we describe a slice S as a graph 𝔾𝒔(ℕ𝒔, 𝔼𝒔) where ℕ𝒔 is a set of VNFs and PNFs 

composing the slice and 𝔼𝒔 is a set of virtual links connecting these VNFs/PNFs. Besides, each 

VNF instance 𝒗 ∈ ℕ𝒔 of slice S, requires a predefined amount of resources in terms of 

computing, memory, and storage and is denoted by 𝜳𝒗. Similarly, each virtual link (𝒌, 𝒍) ∈  𝔼𝒔 

connecting two VNFs 𝒌, 𝒍 ∈ ℕ𝒔 has a bandwidth requirement 𝜴(𝒌,𝒍). The placement and 

chaining of VNF on the underlying network (substrate network) are out of this paper's scope. 

A survey on this topic can be found in [95]. 

To enhance slice management within the ITS-G5 network, we include in our 

architecture a dedicated slice management and orchestration (MANO) component. This MANO 
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is designed to efficiently handle various critical functions including configuration management, 

optimization of physical resources, and managing the lifecycle of network slices. These 

capabilities are integral to ensuring that each slice or service consistently meets its QoS 

requirements. It includes [42]:  

• Slice Manager: Responsible for slice description through well-defined templates, slice 

instantiation, and lifecycle management. 

• Slicing Orchestrator: Manages the distribution of physical infrastructure resources 

among slices from the same operator and facilitates information exchange with other road 

operators. This is vital for enabling platform sharing on a global scale, which is particularly 

beneficial for V2X services as vehicles navigate through different operators' domains 

(Roaming). 

• SDN Controller: This controller offers a centralized approach to managing network 

resources. Its functions include traffic engineering, network statistics monitoring, and 

controlling nodes via southbound interfaces like OpenFlow. It also steers traffic toward 

appropriate edge nodes and manages functions related to User and Control Plans, including 

resource reconfiguration and handover processes between edge nodes. 

• Infrastructure Manager: Takes charge of the infrastructure orchestration by monitoring 

the storage and processing status of points of presence nodes such as edge nodes and data 

centres. 

A primary goal of the MANO is to also set the optimal resource allocation parameters for 

ITS stations, ensuring the fulfilment of QoS requirements while maintaining slice isolation. 

These parameters, which are disseminated to all ITS-Ss (such as OBUs and RSUs), include 

service priorities (DCC Profile), transmission rates, and powers. The applicability of a specific 

ITS-G5 service configuration may vary, ranging from a single RSU's coverage area to larger 

geographic zones encompassing multiple RSUs. The choice of slicing configuration for each 

area is influenced by factors like environmental context (urban or highway), ITS station density, 

and vehicle types (ordinary or priority vehicles).  

To align with our objectives, we've incorporated an ITS-S Element Management System 

(EMS) in the management layer, as detailed in Figure 31. This EMS is a cornerstone of our 

slicing mechanism, tasked with receiving and implementing slicing configuration parameters. 

It fine-tunes services by adjusting various parameters across different layers: setting priorities 

in the management layer, managing traffic control and shaping in the access layer, and 

configuring parameters for mechanisms like Lucky/Token bucket shaping to achieve specific 

rates. Additionally, it adjusts the message generation rate in the Facilities layer. The slicing 

configuration is dynamic, allowing for real-time adjustments based on transmission channel 
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conditions or updates in QoS parameters. For example, a vehicle could seamlessly transition 

from Slice 1 to Slice 2 as needed. 

 

Figure 31. ITS station protocol stack + EMS 

4.4.3 Simulation Scenario, Parameters, and Results 

This section outlines the simulation scenario utilized to evaluate the slicing approach for 

ITS-G5. Following this, we delve into an analysis of the results obtained, including assessments 

of service slicing and isolation testing outcomes.  

4.4.3.1 Implementation and Parameters of the E2E ITS-G5 Slicing 

Our proposed E2E ITS-G5 slicing architecture and all simulations are implemented and run 

on the Artery simulator. Different vehicle densities (total number of vehicles in the simulation 

environment) are used as well. And depending on the density, the inter-vehicle spacing and 

speed can change. The vehicle flows and mobility is simulated using the traffic simulator 

SUMO. The simulation parameters are summarized in Table 16. 

Table 16: Simulation parameters 

Transmission Channel CCH 

ITS-G5 Service CAM 

Transmission rate 5 Hz 

RSU Inter-location 750m 

Simulation time 200 s 
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Scenario 8-lane bidirectional highway 

Lane width 3.5m 

Length 2000m 

Vehicle number 
Low Density Dense High density 

300 450 600 

Max speed 15m/s 13.3m/s 

Vehicle length 3m 

Min gap 5m 

Flow Type 
Police (HPS) 

Regular vehicles (OPS) 

In our research, we implement a slicing strategy for ITS-G5, focusing on a high-vehicle-

density scenario to demonstrate its effectiveness. The primary goal is to enhance the end-to-end 

latency for CAMs in high-priority vehicles. We establish two slices for different user groups: a 

High Priority Slice (HPS) for High Priority CAMs (HP CAMs) and an Ordinary Priority Slice 

(OPS) for Ordinary Priority CAMs (OP CAMs). Although our model utilizes two slices, it's 

scalable to support additional services and applications. 

The core of this approach lies in prioritizing high-priority messages, ensuring fast 

transmission by reducing waiting times, and enhancing channel access opportunities. For HPS, 

we set the priority to DP0 (the highest), corresponding to the highest priority queue Q0 for 

VoIP) traffic. Conversely, OPS uses the default priority (DP2), associated with queue Q2 for 

the Best effort (BE) traffic class. 

The simulation environment is a 2 km bidirectional highway with eight lanes (four in each 

direction). Police car traffic is mapped to HPS, while regular vehicle traffic is assigned to OPS. 

HPS traffic varies from 5% to 30%, and OPS traffic from 95% to 70% of the total flow. 

To mimic a congested real-world scenario, we introduce two additional services for all 

vehicles: a DENM service with priority DP1 (mapped to Q1) and a Background (BK) service 

with priority DP3 (mapped to Q3), both transmitting at 1Hz. 

Our primary metric of analysis is the end-to-end latency, assuming identical resources for 

access, aggregation, and core networks. This latency, crucially linked to the ITS-G5 ad hoc 

network, is the time elapsed from a vehicle's CAM message transmission at the application 

layer to its reception by the Roadside Unit (RSU). It encompasses both the propagation delay 

over the transmission channel and the queuing delay in the system. 

4.4.3.2 ITS-G5 RAN Simulation Results  

To effectively highlight the contributions of our work, we conducted a simulation scenario 

using the default CAM priorities as a baseline for comparison. Here, the priority for CAM 
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messages is set to the default value DP2. The resulting average latencies from various 

simulations are succinctly summarized in Figure 32 and Figure 33, providing a clear contrast 

between our proposed slicing approach and the standard priority settings. This comparative 

analysis serves to underscore the enhancements in latency achieved through our slicing strategy. 

Figure 32 demonstrates that in a network with 450 vehicles, the latency for CAM is notably 

lower in the high-priority slice (HPS) compared to the ordinary priority slice (OPS). While OPS 

latency varies between 700µs and 1000µs, HPS maintains a more consistent latency, ranging 

from 500µs to 600µs in both 10% and 20% HPS traffic scenarios. This indicates the superior 

performance of HPS in terms of latency stability, particularly in comparison with the baseline 

scenario where OPS latency fluctuates between 600µs and 1000µs. 

 

Figure 32. Average RAN latency (vehicle number: 450) 

 

Figure 33. Average RAN latency (vehicle number: 600) 
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In Figure 33, increasing the vehicle density to 600 highlights the effectiveness of our slicing 

solution. For both 10% and 20% HPS scenarios, latency is consistently maintained between 

600µs and 700µs. In contrast, OPS and baseline scenarios show higher latencies, averaging 

between 1000µs and 1200µs. This improvement in latency is critical for advanced V2X use 

cases like advanced driving, where latency exceeding a few milliseconds, specifically 1 ms for 

autonomous driving, can be detrimental. 

In the following, we assessed the isolation property of our network slicing mechanism by 

overloading the ordinary priority slice (OPS) while monitoring its impact on the high-priority 

slice (HPS). We increased the CAM generation frequency for the OPS flows to 10Hz compared 

to HPS, which is still set to 5Hz. We used a worst-case scenario where the vehicle density is 

set to 600 and OPS flows represent 95% of the total traffic (5% HPS flows). The simulation 

results are presented in Figure 34 in which HPS_O and OPS_O represent the scenario where 

OPS is overloaded. The obtained results show that the average latency after overloading the 

OPS does not impact the performance of the HPS. This result strongly affirms the robust 

isolation capability of our slicing solution, demonstrating its effectiveness in safeguarding HPS 

performance against heavy traffic loads in OPS, a critical feature for ensuring consistent 

network performance under varying traffic conditions. 

 

Figure 34. Average RAN latency (vehicle number: 600, HPS: 5%) 

4.4.3.3 End-to-End Slicing  

The next step of our research is to set up a testbed with two network slices: the High Priority 

Slice (HPS) and the Ordinary Priority Slice (OPS), extending from ITS G5 RAN slicing 

(simulation-part) to the core network (real-world). We utilized Open-Source MANO (OSM) 

release 6, compliant with the ETSI-NFV framework [96], for managing and orchestrating the 

network slices, including lifecycle management and monitoring. Each slice consists of three 

VNFs and a V2X application server, all operational within Docker containers. Figure 35 
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presents an overview of this architecture, showcasing the integration of both simulated and real 

components in the testbed. 

 

Figure 35. Overview of the E2E deployed architecture 

In our experimental setup, we deployed a socket client and server at both endpoints to 

measure the end-to-end performance of network slicing. This socket was specifically utilized 

for transmitting CAMs originating from the ITS-G5 network (simulated component). The 

chosen scenario involved a vehicle number of 600, with the HPS traffic constituting 10% of the 

total traffic. We employed the TC tool (Linux traffic control [97]) for configuring link 

parameters, as detailed in Table 17, to effectively demonstrate the prioritization of slices while 

emulating Wide Area Network (WAN) characteristics. 

Table 17: Link parameters configuration 

Slice 
Maximum link latency 

in the core 
link reliability % of flows per slice 

HPS 50 ms 99% 10% 

OPS 200 ms 95% 90% 

The results of this simulation are illustrated in Figure 36. We observe an average latency of 

40ms for HPS and 160ms for OPS. These findings provide a practical example of how road 

operators can establish different priority levels through two distinct network slices, thereby 

implementing a Service Level Agreement (SLA) for V2X services. While our focus was 

predominantly on latency as the key performance indicator, it's noteworthy that our architecture 

could incorporate other network slice KPIs to meet the QoS requirements for V2X services. 
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Figure 36. Average E2E latency (vehicle number: 600, HPS: 10%) 

4.4.4 Conclusion 

In summary, this chapter introduced an architectural framework designed to facilitate end-

to-end slicing for Vehicle-to-Everything (V2X) applications within the context of ITS-G5 

vehicular communication. The proposed slicing mechanism was developed with the objective 

of enhancing end-to-end (E2E) latency for specific traffic categories and user groups. 

Through our experimentation, we effectively showcased the efficacy of this slicing 

mechanism by employing two distinct slices: the High Priority Slice (HPS) and the Ordinary 

Priority Slice (OPS). The results indicated that HPS consistently achieved lower latency 

compared to OPS. This differentiation in Quality of Service (QoS) based on slice priorities 

holds significant promise, particularly for advanced V2X applications where minimizing 

latency is critical, such as in autonomous driving and platooning scenarios. 

In conclusion, this architectural approach presents a valuable contribution to the field of V2X 

communications, offering a means to tailor QoS to the unique requirements of different traffic 

types and user groups through effective end-to-end slicing.  
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5. Dynamic Service Migration Empowered with 

Deep Q-Learning for C-ITS 

5.1 Introduction and Problem Statement 

The integration of AI and network slicing in C-ITS extends the optimization of resource 

allocation in V2X environments and the support for advanced V2X services. These 

advancements are poised to revolutionize the transportation sector, offering numerous societal 

benefits [98][99].  

Additionally, these advancements facilitate a significant optimization in resource 

management [100], which is essential for ensuring precise control over QoS and Quality of 

Experience (QoE). As a result, ITSs are well-equipped to fulfill the diverse and rigorous 

requirements of various vehicular applications, ranging from critical safety communications to 

bandwidth-intensive entertainment services [101][102]. Altogether, these technologies form a 

robust and comprehensive framework, thoughtfully crafted to enhance the efficiency and 

adaptability of vehicular networks. 

However, realizing the full potential of ITS and these novel services, such as video 

streaming, gaming, and augmented reality experiences, relies heavily upon the ability of 

vehicles to communicate and access services with minimal latency [103]. Addressing this 

requires innovative strategies that are acutely sensitive to the unique challenges of mobility and 

resource constraints within vehicular networks. 

The adoption of the Multi-access Edge Computing (MEC) paradigm, which involves 

deploying servers at the network's edge, has been proposed as a solution to meet these rigorous 

QoS and QoE demands [104][105]. By efficiently positioning edge servers, MEC extends 

robust computational capabilities to vehicles, facilitating the execution of computationally 

demanding applications such as object detection, video stream analytics, and path navigation 

with reduced latency. This approach significantly enhances the performance and responsiveness 

of vehicular networks, enabling them to support the high demands of modern vehicular 

applications. 

Nevertheless, MEC-enabled vehicular networks, while offering numerous advantages, 

confront new challenges in areas such as task offloading and computing, predominantly due to 

the high mobility of vehicles. This mobility leads to a dynamically shifting communication 

topology within vehicular networks, resulting in unreliable communication links and potential 

disruptions [106]. Vehicles frequently moving beyond the coverage area of an edge server 

exacerbate this issue, leading to increased latency and interruptions in service sessions. 
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Furthermore, the constant mobility of vehicles can compromise the effectiveness of static AI-

based resource allocations and network slices, underlining the need for a dynamic and 

responsive approach within the MEC infrastructure. 

In summary, the primary challenge in fully realizing the capabilities of ITS and MEC in the 

context of connected and autonomous vehicles lies in devising and implementing novel, 

mobility-aware strategies. These strategies must effectively address the dynamic nature of 

vehicular networks, ensuring continuous and reliable service delivery, and maintaining optimal 

network and computing resource utilization amidst the inherent high mobility of vehicles. 

5.2 Research Objectives 

Service migration stands as a vital solution to the challenges of high mobility in MEC-

enabled vehicular networks. It entails the real-time relocation of computational resources and 

services from one edge server to another within the MEC framework, closely aligning with the 

movement patterns of vehicles. This dynamic process is crucial for sustaining consistent service 

quality and meeting the strict latency requirements that are essential for advanced vehicular 

applications [107]. Service migration thus enables the MEC framework to offer an 

uninterrupted and continuous experience, ensuring efficient delivery of services and persistent 

connectivity for vehicles, irrespective of their geographic mobility. 

This research is primarily focused on addressing the intricacies of service migration in 

MEC-enabled vehicular networks, with a particular emphasis on balancing QoS and 

minimizing associated migration costs. This balance is especially pertinent given the diversity 

of geographical areas vehicles traverse. The study's objectives are geared toward refining the 

service migration process to achieve seamless service continuity, minimal latency, and cost-

effectiveness in a dynamic vehicular context. The specific goals are outlined as follows: 

• Formulation of the Service Migration Problem as an MDP: The study seeks to 

conceptualize the service migration issue in vehicular networks as a Markov Decision Process 

(MDP). This involves a comprehensive definition of the MDP's states, actions, and reward 

functions, which are pivotal for pinpointing the most opportune moments and locations for 

service migrations. A key aspect of this approach is its consideration of different service 

profiles, which allows for the customization of migration strategies to cater to each service's 

unique requirements. 

• Implementation of Deep Reinforcement Learning (DRL) Solutions: A major objective 

is to leverage DRL methodologies, particularly Deep Q networks (DQN), for an effective 

resolution of the MDP. The proposed solution integrates a deep Q learning (DQL) approach 

with a double Q network and a replay buffer. This DRL-based strategy is intricately designed 
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to balance the trade-off between the costs of migration and latency for various service profiles 

while considering the vehicles' mobility, computational needs, and edge nodes' available 

capacities. 

• Evaluation of the DRL-Based Scheme's Performance: It is important to thoroughly 

evaluate the efficacy of the proposed DRL-centric migration framework. This evaluation will 

compare its performance with other existing service migration approaches, with a focus on its 

capability to maintain optimal latency, minimize migration costs, and ensure uninterrupted 

service despite the challenges of high vehicular mobility. 

Through these objectives, the study endeavours to contribute significantly to the 

optimization of service migration in MEC-enabled vehicular networks, enhancing their 

operational efficiency and responsiveness to the dynamic needs of contemporary transportation 

systems. 

5.3 Related Works 

Various works have studied service migration in MEC as an MDP, such as in 

[108][109][110]. Recent research has delved into various strategies for service migration in 

MEC-enabled vehicular networks, each addressing unique challenges and proposing different 

solutions. In [111], the authors proposed a State-adaptation Reinforcement learning method for 

Service Migration (SRSM) in MEC, where they analyse the different states of edge network 

quantitatively and apply deep Q-learning into migration methods, which can adjust the learning 

rate adaptively to implement rapid convergence in the learning process. In [112], the service 

migration problem was addressed using a reinforcement learning-based model that can take a 

long-term objective into account and implement better service migration and communication 

decisions. 

The study in [113] focuses on seamless service migration for mobile IoT devices within fog 

computing architectures, introducing the Follow Me Fog (FMF) framework. FMF employs a 

pre-migration mechanism based on signal strength monitoring to reduce latency, especially 

during handovers. While it effectively minimizes interruption, this model tends to migrate 

services to the nearest MEC server, overlooking the potential costs associated with such 

migrations. 

In another significant study [114], researchers proposed the Follow-Me Cloud (FMC), 

which facilitates service mobility across federated data centres. This approach formulates 

migration decisions as an MDP, with the distance between the user and the edge server as a key 

factor. The model aims to find a balance between cost and user-perceived quality, but it 
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primarily focuses on the geographical distance for making migration decisions, which might 

not always align with optimal service delivery. 

Peng et al. [115] investigated service migration in vehicular networks, emphasizing the 

balance between QoS and migration costs. They introduced a model that ties QoS and migration 

costs to vehicle velocities, utilizing deep Q-learning for decision-making. However, this 

strategy mainly focuses on binary migration decisions and defaults to migrating to the nearest 

edge server, which may not always be the most efficient choice considering server capacity and 

network congestion. 

Abouaomar et al. [116] explored service migration intending to minimize total service 

latency and migration costs. They formulated this as a multi-agent MDP, solved through deep 

Q learning (DQL). Their model uniquely considers vehicular mobility but does not account for 

the load on edge servers, which can significantly influence migration decisions, especially in 

dynamic vehicular environments. 

In contrast to these studies, our research introduces a novel framework that addresses 

several key aspects previously unexplored. Firstly, we factor in the capacity of each edge server 

as a crucial element in migration strategies, going beyond the conventional focus on latency or 

distance. This approach enables a more balanced distribution of computational resources across 

servers. Secondly, our framework offers personalized migration strategies for each service 

profile, acknowledging the diverse requirements and usage patterns of different services. This 

tailoring of strategies marks a significant departure from the generic approaches seen in earlier 

models. 

Moreover, our work contributes a unique perspective by emphasizing the importance of 

differences in service profiles in migration strategies. While previous research has not 

extensively explored this aspect, our framework acknowledges the diversity in services and 

tailors migration strategies to these specific attributes. By integrating these considerations, our 

model aims to enhance service delivery efficiency and adaptability, marking a substantial 

advancement in the field of service migration in MEC-enabled vehicular networks. 

5.4 System Model 

In this section, we present the system model of the service migration problem. In our study, 

we consider a MEC-enabled vehicular architecture, characterized by a set of Roadside Units 

(RSUs), each linked to an edge server, denoted as n ∈ N:= {1, 2, ..., N}. This network 

configuration is visually represented in Figure 37 [117], providing a clear illustration of the 

system architecture. 
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Figure 37. Illustration of the system architecture  

Central to this architecture are K mobile users, typically vehicles, which are the dynamic 

components of our vehicular network. These users are continuously in motion, accessing a 

variety of services offered by the Edge servers. Each mobile user has unique service needs, 

which are encapsulated in what we refer to as a "service profile". A service profile is a detailed 

descriptor, that captures essential characteristics such as the service's class, required computing 

and memory capacity, and the size of the service image. 

Our system model thus encompasses the interplay among the RSUs with integrated edge 

servers, mobile users with diverse service demands, and distinct service profiles that define 

each service's nature. The objective is to develop optimal service migration strategies that 

consider the vehicles' mobility, the variety of service profiles, and the capacity limitations of 

the edge servers. The goal is to create a system that efficiently balances quality of service and 

migration costs while ensuring uninterrupted service delivery in the dynamic environment of 

vehicular MEC-enabled networks. 

Regarding service classification within our vehicular MEC-enabled architecture, we adopt a 

categorization system based on a comprehensive study [118]. This system classifies services 

into three distinct classes, each with unique attributes and priority levels: 

• Class 0 (Service Profile SP0): This category includes the highest-priority services, 

demanding ultra-low latency due to their critical nature. Services in Class 0 are crucial for 

applications where even minor delays can have severe consequences. 
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• Class 1 (Service Profile SP1): Services in this class hold the second-highest priority. 

They require efficient handling but can tolerate slightly higher latency levels than Class 0. 

These services are common in applications needing timely delivery, albeit with a more flexible 

latency allowance. 

• Class 2 (Service Profile SP2): This category is for lower-priority services with relaxed 

latency requirements. Class 2 services are typically used in applications where immediate 

delivery is not a critical concern. 

This classification, encompassing Service Profiles SP0, SP1, and SP2, offers a structured 

method to manage the varied needs and priorities of services in our network. It enables us to 

tailor service migration strategies, ensuring that each service profile receives the necessary level 

of attention based on its specific requirements and priority. 

For ease of reference and clarity, Table 18 in our documentation succinctly summarizes the 

key notations used in our system model. 

Table 18: System notations 

Parameter Definition 

𝑑𝑡 Distance between the vehicle and the serving edge node. 

𝐻𝑡 Edge server hosting the vehicle’s service at time slot t. 

𝑁𝑡 Prediction of the next EN 

𝐶𝑡[K] 
Available capacity of all network edge nodes (CPU, memory, 

disk) 

𝑆𝑃𝑡 
Service Profile (vehicle’s service class, required capacity by the 

vehicle’s service, service Image Size) 

Rat

st  Reward function 

Dcom Communication delay 

Rv Data rate between v and its serving BS 

λn Size of the offloaded task of vehicle v 

Dback Backhaul delay 

Rb Backhaul bandwidth 

µ,  γ Positive coefficients 

dis(eS, eD) 
Distance between the serving edge servers eS and destination 

server eD 

Dv
mig

 Migration delay 

zv Service total size (VMs, data, …) 

Rqv
 Bandwidth of session q for migration of service of vehicle v 

Dv
comp

 Computation delay 
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uv 
Number of CPU cycles needed for the offloaded task of vehicle 

v 

yv
e Boolean denotes if the service of vehicle v is hosted by EN e 

Ue CPU cycle capacity of EN e 

Cv Monetary delay 

5.4.1 Network Model 

Communication delay: Since wireless communications have a substantial impact on the 

quality of edge-assisted intelligent driving, we examine the communication latency given by: 

𝐷𝑐𝑜𝑚 =
𝜆𝑛

𝑅𝑣
  (1) 

Where 𝜆𝑛 is the size of the offloaded task of vehicle v, and 𝑅𝑣 is the data rate between vehicle 

v and its serving RSU. 

Backhaul Delay: When the vehicle is served by a non-local edge server, transmission, 

propagation, processing, and queuing all contribute to the backhaul latency. The transmission 

delay is represented by the equation: 𝜆𝑛 (t)/Rb, Where 𝜆𝑛 is the size of the service request of 

vehicle v in time slot t, Rb is the bandwidth of the outgoing link of the local edge server e, µ is 

a positive coefficient, and dis(𝑒𝑆, 𝑒𝐷) distance between 𝑒𝑆 (Source/Local server) and  𝑒𝐷 

(Destination/Remote server). The backhaul delay on the edge server is given by: 

𝐷𝑏𝑎𝑐𝑘 =  {
0,                                    𝑖𝑓𝑒𝑆 = 𝑒𝐷
𝜆𝑛

𝑅𝑏
 + 2 µ dis(𝑒𝑆, 𝑒𝐷),         𝑒𝑙𝑠𝑒     

   (2) 

5.4.2 Computational Model 

Multiple services share computing resources at each edge server to assist their serving 

vehicles in performing the requested tasks. Ue represents the computing capacity of the edge 

server e, as measured in CPU cycles per second. 

Computation delay:   Let uv(t) denote the number of CPU cycles required by the offloaded 

task of vehicle v in slot t. The computing delay on the edge server is given by: 

𝐷𝑣
𝑐𝑜𝑚𝑝(𝑡) =  ∑

𝑢𝑣(𝑡)𝑦𝑣
𝑒(𝑡)

𝑈𝑒
∑ 𝑦

𝑣′
𝑒 (𝑡)

𝑣′𝜖𝑉
⁄

𝑒𝜖𝐸   (3) 

Where 𝑦𝑣
𝑒 is a Boolean that denotes if the service of vehicle v is hosted by edge node e. 

5.4.3 Migration Cost Model 

The migration of a service across edge servers incurs added operating expenses. We consider 

that the migration cost depends on the size of each service's image. Let 𝐶𝑣 be the migration cost 

of moving service v from the edge server 𝑒𝑆 and 𝑒𝐷. 
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𝐶𝑣 =  {
0,   𝑖𝑓 𝑒𝑆 = 𝑒𝐷

𝛾  𝑧𝑣        ,  𝑒𝑙𝑠𝑒
 (4) 

Where 𝛾  is a positive coefficient and 𝑧𝑣 is the service total size (VMs, data, …). 

5.5 Problem Formulation 

In this section, we embark on a rigorous formulation of the service migration problem within 

the realm of MEC-enabled vehicular networks, casting it into the well-established framework 

of an MDP. This approach is instrumental in unravelling the sequential decision-making 

complexities under uncertainty, a characteristic intrinsic to dynamic service migration 

scenarios. MDPs are adept at integrating diverse factors like mobility patterns, resource 

availability fluctuations, and varied service profiles, thereby enabling the formulation of a 

nuanced and optimal migration strategy. 

Simultaneously, we introduce the Double Deep Q Network (DDQN) method as a 

sophisticated, advanced solution specifically tailored to address the multifaceted challenges of 

this problem. DDQN, a reinforcement learning technique, excels in approximating optimal 

action-value functions, thus fitting seamlessly into the MDP framework to tackle the intricate 

decision-making process inherent in-service migration. The subsequent sections will delve 

deeper into the mechanics of DDQN, detailing its implementation and how it integrates into 

our comprehensive solution framework. 

5.5.1 The MDP formulation 

In the realm of reinforcement learning, the environment is meticulously formulated as a 

Markov Decision Process (MDP), which is vividly represented as (S, A, P, R, γ).  

State Space (S) and Action Space (A): In our context, the state space, denoted as S, 

encompasses all possible situations or conditions that our system can find itself in. These 

situations (states) encapsulate critical information like the current state of vehicles, the status 

of MEC servers, and various other relevant factors. On the other hand, the action space, 

represented as A, consists of all the feasible actions that our system can take. These actions 

dictate when and where service migrations occur. 

Transition Probability (P): P, symbolizing the transition probability, is the function that 

outlines the likelihood of transitioning from one state to another when a particular action is 

taken. This is mathematically represented as P (s’| s, a): S x A x S → [0,1], where s represents 

the current state, a is the chosen action from A, and s' denotes the next state. It quantifies the 

uncertainty and stochasticity inherent in the system's dynamics. 
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Immediate Reward (R): The immediate reward, denoted as R(s, a, s’): S x A x S → ℝ, 

embodies the feedback gained from transitioning between states due to a specific action. It 

quantifies the immediate benefit or cost associated with the state transition, considering factors 

like migration cost and latency. 

Discount Factor (γ): The discount factor, γ, lies within the range [0, 1]. It plays a pivotal 

role in balancing the importance of immediate rewards against long-term gains. γ determines 

the degree to which future rewards are valued in relation to immediate rewards. A smaller γ 

prioritizes immediate rewards, while a larger one emphasizes long-term cumulative rewards. 

At each time slot, the service provider undertakes the task of collecting relevant states from 

both vehicles and MEC servers. This information is then processed through the DDQN 

algorithm, which, in turn, provides optimal action guidance for service migration decisions. 

The chosen action is executed, leading to the system transitioning to a new state and 

perpetuating the dynamic decision-making process. 

This continuous interaction among the MDP's components: S (State Space), A (Action 

Space), P (Transition Probability), R (Immediate Reward), and γ (Discount Factor) forms the 

backbone of our intelligent service migration strategy, enabling the system to adeptly adjust 

and optimize its actions within a complex and evolving vehicular network environment. 

5.5.1.1 State Space 

We define the state space S = {𝑠𝑡 | t = 1, 2, …, 𝑡𝑀𝑎𝑥} where a state at time slot t: 𝑠𝑡, is a 4-

tuple given by: 

𝑠𝑡 = {𝑑𝑡[K], 𝐻𝑡, 𝐶𝑡[K], S𝑃𝑡} (5) 

Where: 

Distance Vector 𝑑𝑡 [K]: This component signifies the distance between the vehicle and the 

K edge servers at the specific time slot t. Here, K stands for all edge servers available in the 

system. By including this parameter in the state, our model inherently considers the spatial 

relationship between vehicles and edge servers at any given moment. 

Hosting Edge Server 𝐻𝑡: At each time slot t, 𝐻𝑡 designates the Edge server that is hosting 

the vehicle's service. This element captures the dynamic aspect of service hosting and highlights 

the current server responsible for serving the vehicle's needs. 

Server Capacity 𝐶𝑡[K]: Reflecting the available capacity on all the K edge servers 

(comprising CPU, memory, and storage). 𝐶𝑡[K] serves as a critical piece of information. This 

parameter acknowledges the computational and resource capacity status of each edge server at 

the given time slot, reflecting the system's resource utilization. 
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Service Profile 𝑆𝑃𝑡: This multifaceted parameter encompasses various facets of the service 

profile: 

• Service Class: It classifies services into three distinct categories, namely class 0 (SP0), 

class 1 (SP1), or class 2 (SP2). These classifications help differentiate services based on their 

priority and stringent requirements, such as latency. 

• Required Capacity: This parameter characterizes the computing and memory capacity 

demanded by the specific service at that instant. It enables the model to account for the resource 

prerequisites of the service. 

• Service Image Size: The size of the service image, a vital characteristic, is also 

embedded within this parameter. It provides insights into the data volume associated with the 

service. 

By encompassing all these elements within our state space definition, our model is equipped 

to function as a multi-criteria migration strategy. It comprehensively considers factors such as 

vehicle-server distance, vehicle velocity (implicitly through distance changes over time), edge 

server loads, service capacity requirements, and most notably, the service's class. This holistic 

approach allows our model to dynamically adapt its migration strategy, ensuring that service 

migrations are not merely based on a single criteria but are orchestrated to balance a multitude 

of factors, ultimately optimizing the vehicular network's performance. 

5.5.1.2 Action Space 

Our action space represents the set of decisions available to our model, specifically focusing 

on whether to migrate a service to a particular edge server at a given time slot t. Thus, at each 

time slot t, we define an action as: 

    at = {𝐴1, 𝐴2, …, 𝐴𝑛} 

where Ai denotes the action of migrating the service to edge server ei at time slot t. 

Each 𝐴i is binary, i.e. 𝐴i ϵ {0,1} and at every timestamp: ∑𝐴𝑖=1. 

This action space entails: 

Decision to Migrate: Each element 𝐴𝑖 in the action space is a binary decision. It signifies 

whether the service should be migrated to edge server ei at that particular time slot t. A value 

of 1 indicates that migration should occur, while 0 signifies no migration. This binary 

representation offers a clear and actionable choice for the model. 

Mapping to Edge Servers: The set of actions Ai is directly linked to the edge servers in the 

system. Each action Ai corresponds to a specific edge server ei. Therefore, the action space 

encapsulates decisions regarding where the service should be migrated. 
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Migration Timing: The action space's temporal aspect is embedded in the time slot t. It 

ensures that the migration decisions are time-sensitive, considering the evolving dynamics of 

the vehicular network. 

Control Over Migration: By defining the action space in this manner, our model gains 

control over the migration process. It can make informed decisions regarding the optimal edge 

server destination for service migration at each time slot. 

No migration will occur during time slot t if Ht=j is the hosting edge server and Aj=1.  

This action space representation empowers our model to make decisions about both the 

timing and destination of service migrations. It allows for dynamic and context-aware migration 

decisions, ensuring that services are migrated when and where it makes the most sense based 

on the evolving conditions of the vehicular network.  

5.5.1.3 Reward Function 

 In reinforcement learning, the reward function plays a pivotal role as it guides the agent's 

actions. Our goal is to achieve optimal latency for each service profile while minimizing 

migration costs. To achieve this, we define the reward function as a combination of latency and 

migration cost at time slot t, given by:  

𝑅𝑎𝑡

𝑠𝑡 = −((1 − ѡ)𝐷(𝑡) + ѡ𝐶𝑜𝑠𝑡(𝑡))  (6) 

Where D(t) is the sum of communication delay, backhaul delay, and computing delay, i.e., 

D(t) =  𝐷𝑐𝑜𝑚 + 𝐷𝑏𝑎𝑐𝑘 + 𝐷𝑣
𝑐𝑜𝑚𝑝(𝑡). And Cost(t) is the migration cost 𝐶𝑣 of service v at time slot 

t. ѡ is the weight factor, and ѡ 𝜖 [0,1]. 

5.6 Proposed DDQN 

DQN (Deep Q-Network) stands as a robust and efficient algorithm within the realm of Deep 

Reinforcement Learning (DRL). In DQN, the Q-values Q(s, a, 𝜃) for each state-action pair (s, 

a) are approximated using a Deep Neural Network (DNN), with θ denoting the parameters of 

the Q-network. The training methodology for the DNN incorporates the experience replay 

memory mechanism, which involves periodically storing the experiences of the MEC agent in 

a replay buffer. These experiences, encompassing the current state, next state, chosen action, 

and the resulting reward, are pivotal for the learning process. The key advantage of this 

mechanism is its provision of uncorrelated data inputs, effectively reducing undesirable 

temporal correlations. 

The DDQN, an advanced iteration of DQN, enhances the training efficiency and reliability 

by employing dual DNNs, as outlined in [119]. The primary network, known as the main Q-
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network, is responsible for calculating the Q-values. Concurrently, the secondary network, 

termed the target Q-network, generates the target Q-values Q(s, a, 𝜃-). These target values are 

crucial for training the parameters θ of the main Q-network. The specific steps of this training 

process are detailed in Algorithm 1.  

 

Training in each episode spans multiple time slots (or steps). Within this period, every MEC 

agent closely observes the state of its environment at each step and selects an action at from its 

action space. The selection of actions is governed by the ϵ-greedy policy, wherein an action is 

chosen randomly with a probability of ϵ. Following this, the agent receives its reward and 

transitions to the subsequent state. The experiences thus gathered are stored in the replay buffer, 

forming the basis of a training dataset. This dataset then facilitates the training process, which 

aims to minimize the loss function given by: 
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𝐿𝑜𝑠𝑠(𝜃) =  (
1

𝑗
) ∑  [𝑦𝑗 −  𝑄(𝑠𝑗 ,  𝑎𝑗 , 𝜃)]

2
            (7)  

Where 𝑄(𝑠𝑗 ,  𝑎𝑗 , 𝜃) is the Q-value of action  𝑎𝑗 given in the state 𝑠𝑗 which is calculated using 

the main Q-network with parameter 𝜃. And 𝑦𝑗 is the target Q-value which is calculated using 

the target Q-network with parameter 𝜃-.  

To update the parameters θ of the main Q-network, the agent employs a gradient descent step, 

a methodical approach to refine the model’s accuracy. This refinement is crucial for aligning the 

network's predictions with the expected outcomes. Subsequently, the parameters θ- of the target 

Q-network are updated at regular intervals, specifically every K steps, through a process of 

synchronizing them with the parameters θ of the main Q-network. This periodic update ensures 

that the target network gradually adapts to the evolving main network, maintaining a stable 

learning trajectory. 

In the second phase, which is the inference phase of the DQL (Deep Q-Learning), the MEC 

agent utilizes the optimally trained DDQN. Here, the focus shifts from training to application, 

leveraging the trained network's optimal parameters to find the most effective migration strategy. 

During each step of this phase, the MEC agent assesses the current state of its environment and 

selects actions that maximize the Q-value as determined by the trained DDQN. This step is vital 

for efficiently resolving the service migration issue, focusing on pinpointing the best times and 

places for migration to optimally balance latency minimization and cost reduction. 

5.7 Simulation and Evaluation 

5.7.1 Simulation Environment  

In our study, we utilize a simulated environment to evaluate the effectiveness of our 

proposed service migration strategy. This environment is composed of various key components 

and tools designed to facilitate accurate and lifelike simulations. 

Central to our simulation setup is OMNeT++. In conjunction, we utilize the Artery 

framework [71], complemented by SUMO [75], to simulate communications and vehicular 

movements within the vehicular network. The integration of Artery is crucial for accurately 

mirroring the mobility patterns of vehicles and establishing realistic communication links 

between vehicles and Roadside Units (RSUs). This combination significantly contributes to the 

authenticity and precision of our simulations. 

For the implementation of the DDQN agent, we turn to Python and the Keras library. Python 

offers a flexible and versatile environment for developing intelligent agents, while Keras 

simplifies the implementation of deep reinforcement learning algorithms. 
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Within this simulated setup, we create a scenario of a MEC-enabled vehicular network, as 

illustrated in Figure 38. This scenario involves deploying five edge servers along a highway. 

The servers are evenly distributed, ensuring a consistent and equal distance between each. In 

addition, Roadside Units (RSUs) are methodically positioned every 800 meters along the 

highway and are each connected to the nearest edge server, thus facilitating effective 

communication between vehicles and the edge servers. 

 

Figure 38. Simulation scenario 

The highway in the simulation stretches over 30 Km, offering a realistic space for vehicle 

movement and service requests. To closely mirror real-world traffic conditions, the vehicles in 

the simulation travel at random but consistent speeds, chosen from a range between 60 and 110 

Km/h. This speed range is representative of the diverse speeds observed in actual traffic. The 

DDQN and vehicular network parameters are presented in Table 19. 

Table 19: Simulation parameters 

Parameter Value 

Number of edge servers 5 

RSU Transmission power  47,9 mW 

Vehicles transmission power 200 mW 

Access Technology IEEE 802.11p 

Learning rate 5e-4 

Learning rate 0,99 

Replay memory size 1000000 

Mini-batch size 64 

Target update interval 100 

Optimizer Adam 

RNN hidden layers 
Two hidden layers of 256 

neurons each. 

Activation function ReLU 

RSU

30Km

ES ESES ES ES

… … … … …
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5.7.2 Simulation results and analysis 

5.7.2.1 Average Reward Per Episode 

Figure 39 illustrates the average reward per episode obtained in our simulations, a crucial 

metric for assessing the effectiveness of our DDQN algorithm in mastering optimal service 

migration decisions. The figure reveals a pattern of steady enhancement in rewards as the 

number of training episodes increases. This trend is a key indicator of the DDQN algorithm’s 

successful performance. It demonstrates that the MEC agent, under the guidance of the DDQN, 

is effectively learning and adapting to the dynamic conditions of the vehicular network 

environment. With the accumulation of training episodes, the agent's capacity to make well-

informed service migration decisions is notably enhanced. 

An important observation is the point of convergence for the DDQN algorithm, occurring at 

around 190 episodes. This convergence signifies that the MEC agent has effectively learned to 

navigate the decision-making landscape, achieving a state of optimal learning. Such 

convergence reflects the agent’s capability to efficiently explore and exploit the environment, 

thereby enabling it to make increasingly informed and effective service migration decisions. 

 

Figure 39. Average reward of MEC agent 

In summary, the results presented in Figure 39 strongly affirm the competence of our 

proposed DDQN algorithm in training MEC agents for intelligent service migration decision-

making. The convergence observed is indicative of the agent's ability to explore various actions 

and eventually adopt strategies that lead to superior rewards. This implies enhanced service 

efficiency in terms of latency, reduced migration costs, and improved service continuity. 
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5.7.2.2 Comparison with Alternative Migration Strategies 

To conduct a comprehensive evaluation of our proposed service migration strategy, we 

undertook a comparative analysis against a diverse array of alternative approaches. These 

approaches represent a wide range of strategies within the context of service migration in MEC-

enabled vehicular networks. Each strategy provides a distinct approach to service migration, 

offering varied insights and methodologies. The strategies selected for this comparative 

analysis encompass: 

• Random Migration (RM): In this approach, service migration occurs randomly at each 

time slot, devoid of any predefined criteria. 

• Never Migrate (NM): This strategy entails hosting the service on one of the edge 

servers throughout the simulation, with no migration taking place. 

• Always Migration (AM): This schema, proposed in [114], dictates that the service 

should migrate to the nearest edge server. However, we augment this approach by considering 

the load of the edge server. If the nearest server operates at 100% capacity, migration does not 

occur. 

• Peng et al. approach [115]: This approach tackles the complexities of dynamic service 

migration in MEC-enabled vehicular networks through the lens of deep reinforcement learning. 

It is primarily aimed at striking a balance between maintaining a high Quality of Service (QoS) 

and minimizing migration costs amidst the challenges posed by high vehicle mobility. 

Nonetheless, this strategy primarily hinges on binary migration decisions, defaulting to 

automatic migration to the nearest edge server without taking into account specific migration 

destinations. Such an approach, while straightforward, may overlook potential optimizations 

that could be derived from considering additional variables such as server capacity and network 

congestion. This oversight could lead to missed opportunities in further enhancing the 

efficiency of service delivery within the network. 

Our simulations encompassed a range of service profiles, each denoting a class of service, 

specifically SP0, SP1, and SP2. SP0 designates high-priority services with stringent latency 

requirements, while SP1 and SP2 correspond to services with progressively lower sensitivity to 

latency. 

5.7.2.3 Migration Cost Analysis 

Figure 40 presents the outcome of our migration cost analysis for service sized at 5 units, 

excluding the NM method since it incurs no migration cost. 

The data vividly illustrates the efficacy of our Double DDQN method, particularly in 

managing migration costs for various service profiles. In Service Profile 0 (SP0), which is 

characterized by stringent latency requirements, our model initiates frequent service migrations. 

This strategy is designed to position the service optimally in proximity to the vehicle, thereby 

enhancing latency performance. Although Peng et al.'s approach demonstrates marginally lower 
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costs in SP0, it is in Service Profiles 1 and 2 (SP1 and SP2) where our model truly excels. With 

these profiles, characterized by lower latency sensitivity, our model significantly outperforms 

other methods in cost reduction. This is accomplished without any compromise to the QoS, 

showcasing the adaptability and efficiency of our migration strategy. 

Overall, the results highlight the flexibility and robustness of our DDQN-based migration 

strategy. It adeptly balances migration costs with the imperative of maintaining high QoS across 

varied service profiles. This strategy ensures cost-efficiency while catering to the specific needs 

of each service category. In essence, it presents a dynamic and resource-optimized solution that 

maintains high QoS standards while minimizing migration-related expenses. 

 

Figure 40. Migration cost results 

5.7.2.4 Latency analysis 

Figure 41 reveals the latency performance of our model across various service profiles, 

providing insightful data into its operational efficacy. This figure shows an increase in latency 

for Service Profiles 1 and 2 (SP1 and SP2) compared to Service Profile 0 (SP0). This pattern is 

attributed to the differing latency tolerances inherent to each service profile. SP0, which 

demands exceptionally low latency, understandably records the lowest latency figures. 

However, it is crucial to note that achieving this reduced latency comes with higher migration 

costs, as detailed in Figure 40. 
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Figure 41. Latency results 

The versatility of our model is clearly evident in these results. It adeptly adjusts its 

operational approach to align with the unique latency requirements of each service profile. By 

allowing for marginally higher latency in SP1 and SP2, the model successfully curtails 

migration costs. This strategic flexibility underscores the model's capacity to optimally balance 

migration costs against latency demands for each service category. 

Compared to other methods like RM, NM, and Peng et al., our DDQN model demonstrates 

superior performance, especially in handling SP0. The Always Migrate (AM) strategy, while 

achieving the lowest latency due to its constant, proximity-based service migrations, results in 

substantially higher migration costs. This scenario underscores the inherent trade-off between 

latency and migration costs, a critical aspect in making informed service migration decisions in 

MEC-enabled vehicular networks. 

In summary, our approach successfully demonstrates a high degree of effectiveness in 

achieving an adaptive and efficient balance between migration cost and latency in MEC-

enabled vehicular networks. The results distinctly showcase the flexibility of our DDQN-based 

migration strategy, which adeptly meets the varying demands of different service profiles. It 

intelligently modulates its migration decisions to accommodate increased latency in profiles 

with lower latency sensitivity (SP1 and SP2), thereby achieving notable reductions in migration 

costs. 

The adaptability of our approach is a crucial factor in optimizing service migration in 

dynamic vehicular environments. By carefully balancing migration costs with latency, our 

method ensures not only cost-effective service migration but also maintains satisfactory QoS 

levels. It outshines competing strategies by delivering superior latency performance in critical 
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low-latency scenarios (SP0) and concurrently offers significant cost advantages over proximity-

based migration strategies like Always Migrate (AM). 

Ultimately, our approach stands as a valuable tool for MEC-enabled vehicular networks, 

where effective service migration optimization is paramount. Capable of responding to the 

distinct requirements of various service profiles, it offers an efficient, cost-effective solution to 

the complexities of service migration in the ever-evolving landscape of vehicular networks. 

5.8 Conclusion  

In this chapter, we presented a comprehensive solution addressing the complexities of 

vehicular service migration in MEC-enabled networks. Our initial step involved defining this 

multifaceted problem within the framework of a Markov Decision Process (MDP), a 

methodology that allowed us to intricately consider factors such as vehicle mobility, server 

capacity, and service profiles. Integrating service profiles into our model was a pivotal move, 

enabling us to devise migration strategies that are finely attuned to the distinct needs of each 

service. 

Our proposed solution harnessed the power of Deep Reinforcement Learning (DRL), 

utilizing a double Q network alongside a replay buffer to significantly enhance the learning 

process. Through comprehensive simulations, we have rigorously validated the efficiency of 

our DQL-based algorithm. This algorithm has proven its proficiency in navigating the delicate 

balance between latency and migration cost, adeptly adapting to the specific requirements of 

different service profiles. This ability to tailor its approach based on the distinct demands of 

each service profile stands as a testament to the versatility and effectiveness of our proposed 

solution in the dynamic landscape of MEC-enabled vehicular networks. 
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6. General Conclusion 

This thesis has unfolded within the framework of Cooperative Intelligent Transport Systems 

(C-ITS) and Vehicle-to-Everything (V2X) communications, fields that are experiencing rapid 

evolution due to technological advancements. This research addresses key challenges, 

including channel congestion in vehicular networks, the essential requirement for ultra-low 

latency and high reliability in V2X communications, and the integration of ground-breaking 

technologies like AI, MEC, and network slicing. Particularly within the European context, 

where the ITS-G5 standard for Vehicular Ad hoc Networks (VANETs) plays a central role, 

these challenges are significant barriers to the advancement of intelligent transportation 

systems. 

6.1 Summary and Key Contributions 

The first contribution of this thesis addresses the pervasive challenge of channel congestion 

in C-ITS and V2X networks, particularly under the European standard ITS-G5. The objective 

was to shift from traditional reactive and adaptive congestion control methods to a proactive 

stance. This innovation aimed to predict and manage congestion before it could impact network 

performance adversely. The validation of this approach involved extensive simulations in high-

density traffic scenarios, which are typically prone to congestion. These simulations 

demonstrated that the proactive DCC algorithms could effectively anticipate and alleviate 

congestion, leading to smoother traffic flow and enhanced network efficiency. The findings 

revealed a significant improvement in traffic management and safety protocols, establishing the 

proactive DCC method as a viable and effective solution for real-world vehicular networks. 

The thesis' second significant contribution focused on implementing RAN slicing within 

ITS-G5 networks. The main goal was to optimize resource allocation and traffic prioritization 

in highly congested vehicular networks. This was achieved by designing a novel RAN slicing 

architecture that could create multiple network slices, each tailored to specific traffic types and 

priorities. The architecture's effectiveness was validated through rigorous simulations that 

mimicked real-world traffic conditions. These simulations underscored the architecture's 

capability to efficiently manage diverse communication demands, ensuring optimal Quality of 

Service (QoS) across different slices. The results showed marked improvements in network 

performance, particularly in handling high-priority traffic, thereby underscoring the potential 

of RAN slicing in enhancing vehicular communication systems. 

Building on the concept of RAN slicing, the third contribution expanded its application to 

an end-to-end context within ITS-G5 networks. The aim was to develop an E2E network slicing 

framework that could ensure high-quality communication channels for various vehicular 
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services, especially in congested environments. This novel framework was put to the test 

through detailed simulations designed to replicate the complexities of modern vehicular 

networks. The simulation results were pivotal, demonstrating the framework's ability to 

maintain ultra-low latency and high reliability for critical vehicular applications. This was 

particularly evident in scenarios that demanded rapid and dependable communication, 

validating the E2E network slicing framework as an effective solution for the future of vehicular 

networks. 

The fourth and final major contribution of the thesis explored the utilization of Adaptive 

Deep Reinforcement Learning for service migration in MEC-enabled vehicular networks. The 

objective was to develop a strategy that could dynamically adapt to the high mobility of vehicles 

and shifting communication topologies, optimizing service continuity while minimizing latency 

and migration costs. This strategy was thoroughly validated through a series of complex 

simulations that modelled the dynamic nature of vehicular networks. The simulations revealed 

that the DRL approach, particularly the Deep Q Networks (DQN) and Double Deep Q-

Networks (DDQN), was highly effective in managing service migration. The findings showed 

a notable improvement in maintaining service quality and reducing disruptions, even in highly 

mobile environments, establishing this approach as a groundbreaking advancement in MEC-

enabled vehicular network management. 

These contributions, validated through comprehensive simulations and evaluations, 

collectively enhance the safety, efficiency, and reliability of C-ITS and V2X communications, 

addressing critical challenges and setting new benchmarks in the field. 

6.2 Future Directions and Potential Developments 

The thesis has established a foundational framework in C-ITS, highlighting the need for 

innovative network architectures. Future research in the field of Cooperative Intelligent 

Transportation Systems (C-ITS) and V2X communications should focus on developing an 

advanced End-to-End (E2E) slicing architecture that integrates ITS-G5 and C-V2X standards. 

This architecture is expected to enable robust interoperability, adaptability, and functionality, 

particularly in complex traffic scenarios. The aim is to create a network framework that 

efficiently supports the diverse and dynamic nature of modern vehicular communications, 

ensuring seamless and efficient connectivity across various vehicular systems. 

Another promising area of research is the integration of AI and machine learning in network 

management and congestion control within vehicular systems. The adoption of AI-based DCC 

systems, combined with the expansion of Multi-access Edge Computing (MEC) and the 

integration of upcoming 5G/6G technologies, offers a groundbreaking opportunity to enhance 

network performance. This approach is poised to optimize network efficiency and resource 
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allocation, thereby bolstering the reliability and functionality of vehicular networks, especially 

for high-demand applications. 

The extension of ITS architecture to encompass bicycles, scooters, and railways represents 

a significant advancement towards a more inclusive and comprehensive transportation system. 

This extension will necessitate adapting service migration strategies and edge server placements 

to accommodate the unique communication requirements of these varied modes of transport. 

Such an expansion has the potential to revolutionize urban transportation by creating a cohesive 

network that integrates diverse forms of mobility. 

Further, the evolution of current service migration models to more complex real-world 

scenarios is essential. Transitioning to a two-dimensional (2D) scenario and developing a multi-

agent Markov Decision Process (MDP) framework will enhance the scalability and 

applicability of these models. This advancement is expected to lead to more efficient network 

resource management in dynamic vehicular environments through collaborative decision-

making among edge servers. 

Research in the area of NR-V2X is crucial for enhancing road safety. Investigating the 

interoperability of NR-V2X with existing vehicular communication technologies, such as ITS-

G5 and LTE-V2X, and exploring hybrid communication frameworks that combine NR-V2X 

and LTE-V2X technologies, alongside ITS-G5, are vital for a comprehensive analysis and 

improvement of road safety mechanisms. This research direction is expected to leverage the 

advanced capabilities of 5G/6G technologies to enhance road safety significantly. 

Addressing the challenges in hybrid vehicular communication systems is another critical 

area of focus. Developing robust protocols and algorithms for seamless interoperability 

between different communication technologies, and efficient radio resource management in 

scenarios where multiple technologies coexist in the same frequency band, are imperative. Such 

research aims to maximize bandwidth utilization and improve the overall efficiency and 

effectiveness of vehicular communication networks. 

Finally, comprehensive testing of hybrid vehicular communication systems in a variety of 

environmental and traffic conditions is fundamental. Extensive real-world testing, including 

field trials and simulations in urban and rural settings, different weather conditions, and varying 

traffic densities, is essential. The insights from these tests will provide an invaluable 

understanding of the practical advantages and limitations of hybrid communication systems, 

guiding future improvements and implementations in vehicular communication networks. 
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