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Résumé ix

Etude mathématique d’équations
de type Cahn-Hilliard dégénérées

Résumé

Nous étudions des équations de type Cahn-Hilliard, équation qui fut introduite pour décrire la séparation
de phases dans les systèmes multi-composants. Les résultats obtenus dans ce travail ont été motivés par
des applications biologiques, notamment la formation de tissus et la croissance de tumeurs, ainsi que par
des applications physiques, tels que les écoulements de fluides impliquant des phénomènes de tension de
surface.
La première partie de cette thèse est une analyse de la relation entre l’équation de Cahn-Hilliard et les
modèles Hele-Shaw, qui sont fréquemment utilisés pour modéliser l’écoulement des fluides ou l’évolution
de tumeurs cancéreuses dans des espaces confinés. Nous examinons en particulier comment obtenir les
modèles Hele-Shaw dans la limite dite incompressible de l’équation de Cahn-Hilliard. La deuxième partie
de la thèse se concentre sur l’étude de l’équation de Cahn-Hilliard non-locale (et ses variations) et sa
convergence vers l’équation locale. Cette équation, qui peut être dérivée rigoureusement à partir d’un
système de particules en interaction, est obtenue en remplaçant le laplacien, qui est un terme local, par
une approximation non-locale prenant en compte les interactions à longue distance entre les composants.
Nous montrons que la solution de l’équation non-locale converge vers la solution de l’équation locale dans
la limite d’interaction à courte distance. La troisième partie de la thèse se penche sur l’étude des modèles
de fluides plus classiques, tels que les équations d’Euler et de Navier-Stokes, qui intègrent des phénomènes
de tension de surface. Ces modèles sont utilisés pour décrire les écoulements de fluides ou les mouvements
de cellules dans lesquels les forces interfaciales jouent un rôle important. La quatrième partie juxtapose
la théorie cinétique, traditionnellement employée pour la représentation de phénomènes physiques à une
échelle mésoscopique, avec l’équation de Cahn-Hilliard. Notre étude se concentre spécifiquement sur
l’équation de Vlasov-Cahn-Hilliard, qui décrit les processus de transition de phase.

Mots clés : Cahn-Hilliard, limite incompressible, tension de surface, analyse asymptotique, flow gra-
dient

Abstract

We study Cahn-Hilliard type equations, an equation that was introduced to describe phase separation
in multi-component systems. The results obtained in this work have been motivated by biological
applications, such as tissue formation and tumor growth, as well as physical applications, such as fluid
flows involving surface tension phenomena.
The first part of this thesis is an analysis of the relationship between the Cahn-Hilliard equation and
the Hele-Shaw models, which are frequently used to model fluid flow or the evolution of cancerous
tumors in confined spaces. In particular, we examine how to obtain Hele-Shaw models in the so-called
incompressible limit of the Cahn-Hilliard equation. The second part of the thesis focuses on the study of
the non-local Cahn-Hilliard equation (and its variations) and its convergence to the local equation. This
equation, which can be derived rigorously from a system of interacting particles, is obtained by replacing
the Laplacian, which is a local term, by a non-local approximation taking into account the long range
interactions between the components. We show that the solution of the non-local equation converges
to the solution of the local equation in the short range interaction limit. The third part of the thesis
focuses on the study of more classical fluid models, such as the Euler and Navier-Stokes equations, which
incorporate surface tension phenomena. These models are used to describe fluid flows or cell motions in
which interfacial forces play an important role. The fourth part juxtaposes kinetic theory, traditionally
used to represent physical phenomena on a mesoscopic scale, with the Cahn-Hilliard equation. Our study
focuses specifically on the Vlasov-Cahn-Hilliard equation, which describes phase transition processes.

Keywords: Cahn-Hilliard, incompressible limit, surface tension, asymptotic analysis, gradient flows

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France



x Résumé



Remerciements

Ce chapitre est dédié à toutes les personnes qui ont contribué à l’élaboration de ce manuscrit.

Je tiens tout d’abord à exprimer ma profonde gratitude envers mes directeurs de thèse, Benoît
Perthame et Emmanuel Grenier, pour avoir accepté de me guider tout au long de ces trois années.
Leur passion et leur expertise en recherche ont été une source constante d’inspiration pour moi.
Je suis reconnaissant de leurs enseignements, qui m’ont encouragé à aborder les problèmes avec
simplicité, à identifier les méthodes et les idées fondamentales sous-jacentes à tout raisonnement,
sans me perdre dans les détails. Benoît Perthame m’a transmis sa passion pour les mathématiques
appliquées à la biologie et a veillé à me transmettre les qualités essentielles à la recherche. Avec
son aide, j’ai essayé au mieux d’acquérir une certaine rigueur, et avec Emmanuel Grenier, ils
m’ont su m’accorder une certaine autonomie lorsque cela était nécessaire. Emmanuel Grenier
m’a également ouvert les portes d’un monde de mathématiques très appliquées et a illustré
comment celles-ci pouvaient être mises en œuvre dans des contextes concrets. Pour tout ça, je
leur suis infiniment reconnaissant.
Je tiens à exprimer ma gratitude envers Alain Miranville et Harald Garcke, dont les travaux
m’ont guidé tout au long de ma thèse, pour avoir accepté d’évaluer mon manuscrit. Je suis très
honoré que Luis Almeida, Virginie Ehrlacher, Filippo Santambrogio et Nicolas Vauchelet aient
accepté de faire partie de mon jury.
Je souhaite également remercier tous ceux qui ont contribué à l’atmosphère exceptionnelle qui
régnait dans le laboratoire pendant ces trois années de thèse. Corentin, Erika, Malika et Salima,
je vous suis reconnaissant pour votre patience et votre aide précieuse dans les démarches adminis-
tratives et les déplacements. Merci aussi à Khashayar pour son assistance en informatique. Mes
remerciements vont également à Emmanuel Trélat pour sa bienveillance et son soutien en tant
que directeur du laboratoire, ainsi qu’à Luis Almeida pour sa gentillesse et son rire contagieux.
Je tiens également à adresser mes remerciements à tous les doctorants du laboratoire, en par-
ticulier ceux du bureau 15-16-303. Je suis reconnaissant envers Alexandre pour avoir partagé
son espace et sa chaise avec moi. Oui je confirme Alexandre, elle est bien cette chaise. Gior-
gia, merci pour ton aide précieuse lors de mes premiers pas dans le laboratoire. Liu-Di dont la
douceur et la gentillesse sont sans égales. Pierre, tu es toujours là quand on a besoin de toi,
que ce soit pour les tâches administratives, les remplacements de TD ou même pour écrire un
poème sur le thé du laboratoire incluant un rickroll, et pour m’expliquer pour la énième fois
le fonctionnement des probabilités. La rivalité entre EDP et probabilités animait souvent notre
bureau, surtout avec Lucas, et dont les blagues subtiles resteront gravées dans ma mémoire. Oui,
après 352 fois, je ne sais toujours pas pourquoi il n’y a plus de mammouths. Toai, l’expert en
Python et ses célèbres post-it, Laurent, le plus sage du bureau, maître en Latex et toujours prêt
à plaisanter, Victor, qui nous a marqués par sa présence exceptionnelle, et enfin Assane, qui m’a
inspiré par sa bienveillance, son calme et sa spiritualité. J’espère avoir l’occasion de te revoir
un jour, au Burkina Faso. Mes remerciements vont également à tous les autres doctorants du

xi



xii Remerciements

LJLL. Agustin, pour sa douceur, son rire sincère et son thé argentin. Anatole, le magicien du
laboratoire. Antoine, avec qui j’ai partagé des parties d’échecs mémorables. Lucas E, toujours de
bon conseil et source d’inspiraton pour moi. Lucas P, mon compagnon de GTT, dont la bonne
humeur est contagieuse. Fabrice, avec qui j’ai pu discuter de tout, de pédagogie à la spiritualité,
en passant par les nouvelles échiquéennes. Ludovic, pour sa gentillesse et son sérieux, qui a su
admirablement bien prendre en main le GTT, avec l’aide de Zhe. Nicolaï, pour sa joie de vivre
et son expertise en arts martiaux. Robin, compagnon de bar fidèle, avec qui la rivalité (pas du
tout mathématique, bien sûr) n’a jamais cessé. Thomas B, avec qui je crois n’avoir jamais eu
une seule conversation qui ne dérive pas vers un délire complet. Je tiens à remercier tous les
autres doctorants et postdoctorants avec qui j’ai eu des discussions enrichissantes et qui ont
contribué à rendre ces moments exceptionnels. Je remercie donc Alexandre R., Alexiane, Allen,
Chiara, Chourouk, Cristobal, Darryl, David, Edouard, Eleanor, Elena, Emma, Gontran, Gong,
Ioanna-Maria, Jesus, Jules G., Juliette, Kala, Liangying, Marcel, Maria, Matthieu, Mingyue,
Nga, Nicolas T, wNoemi, Pauline, Ramon, Rémi, Rui, Ruikang, Ruiyang, Roxane, Sebastian,
Siguang, Valentin, Willy, Xiangyu, Yipeng, Yvonne, Zhe. Merci pour votre bienveillance et pour
avoir crée à une ambiance chaleureuse dans le laboratoire.

J’ai eu le privilège de mener une thèse avec des collaborateurs exceptionnels. Je tiens à expri-
mer une fois de plus ma gratitude envers Alexandre Poulain pour m’avoir initié à la biologie
sous-jacente à l’équation de Cahn-Hillaird et pour son aide précieuse dans la partie numérique.
J’admire sa passion pour la modélisation et sa profonde compréhension des phénomènes qu’il étu-
die. Mes remerciements vont également à Jakub Skrzeczkowski. Jakub est doté de compétences
mathématiques exceptionnelles et d’une capacité de travail remarquable. Il est devenu un ami sur
lequel je peux toujours compter. Je souhaite également remercier Marco Mason, qui a effectué
son stage avec Benoît Perthame. Marco a une énergie et une motivation impressionnantes et ins-
pirantes. Merci également à Andrea Poiatti. Andrea possède une capacité de calcul remarquable,
et j’admire sa détermination à explorer des idées même lorsque les calculs semblent complexes. Il
est également plein d’idées originales et sa présence est toujours une source de joie. Je souhaite
également exprimer ma gratitude envers José Carrillo. Son intuition et son originalité sont re-
marquables. J’ai été très heureux de pouvoir rendre visite à José à Oxford et de collaborer avec
son équipe, Alejandro, Antonio et Carles. Mes remerciements vont également à Piotr Gwiazda
et Agnieszka Świerczewska-Gwiazda. Leur compassion et leurs conseils m’ont été extrêmement
précieux pendant la thèse.

Une thèse est également le reflet de notre personnalité, influencée par des événements extérieurs,
des moments de joie et de difficultés. Ces moments sont partagés avec nos proches, et je tiens à
les remercier.
À mes parents Frédéric et Patricia et à mon frère David, qui ont toujours été à mes côtés
dans toutes les épreuves, forgé mon caractère et contribué à façonner la personne que je suis
aujourd’hui.
Mohamed Amine, mon frère de cœur. Tu es un modèle pour tous, non seulement par ta détermina-
tion et ta persévérance, mais aussi par ta constance dans le maintien de tes valeurs fondamentales
d’amour et de bienveillance. Ta positivité, ta détermination et ton altruisme profond font de toi
quelqu’un d’exceptionnel. Merci d’avoir su me ramener sur terre lorsque c’était nécessaire, même
si parfois cela a été difficile à accepter, je crois que tu as toujours eu raison.
À Dong, j’ai énormément apprécié nos discussions nocturnes pour essayer de comprendre le
monde. Nos similarités et surtout ta douceur, ta bienveillance, ton calme et ta sensibilité m’ont
profondément marqué. Tu as toujours su trouver les mots justes.
À Guillaume, dès le début de la thèse, j’ai découvert en toi un ami avec qui j’ai pu débattre



Remerciements xiii

de nombreux sujets. Tu m’as fait découvrir ta vision de la vie, une vision libre et passionnée,
tournée vers les autres. Ta capacité à écouter sans juger et à donner sans compter m’ont souvent
inspiré.
À Cyril, tes conseils bienveillants et judicieux ont été d’une grande aide. Ta remarquable intelli-
gence, notamment dans l’analyse et la compréhension des autres, associée à ton altruisme, font
de toi une personne précieuse.
À Sunny, notre amitié vieille d’une dizaine d’années n’a jamais baissé en intensité, et bien au
contraire. Ton excellence en mathématiques au lycée m’a motivé à progresser, et sans cela, je ne
sais pas si je serais là où je suis aujourd’hui, rédigeant cette thèse en mathématiques.
À Charlie, depuis notre rencontre à Rennes, tu m’as toujours prodigué des conseils précieux.
C’est en parti grâce à toi que j’ai trouvé mon chemin, et je t’en suis reconnaissant. Ta présence
et ton soutien ont toujours été constants.
À Ghali, ta force de travail et ton intelligence m’ont longtemps inspiré, aussi bien au lycée que
pendant la prépa. Je retiens ton honnêteté, ta persévérance et ta capacité à passer facilement à
autre chose. Je te remercie pour ton soutien qui n’a jamais baissé en intensité.
À Mehdi, depuis presque 15 ans, tu as toujours été là pour moi, inconditionellement. Je te
remerciais déjà lors de mon stage de license, et je te remercie encore pour tout, après cette
nouvelle étape.
À Agnieszka, dziękuję za to, że zawsze mnie słuchasz i rozumiesz. Dziękuję za wszystkie rady.
Mam nadzieję często wracać do Warszawy.
À Alwenn, Dorian, Dusica, Maxime, Mehdi, Mostafa, Romain, Razvan, Steven, Thomas, merci
pour votre soutien inconditionnel.
Enfin, à Carole, tu m’as montré par ton exemple que la détermination et la force de travail
influencent toujours positivement notre environnement. Tu m’as montré que nous étions les seuls
responsables de notre destin. Ta bienveillance, ton honnêteté et ta joie de vivre m’ont toujours
impressionné, c’est vrai, wallah.



xiv Remerciements



Table des matières

Résumé ix

Remerciements xi

Table des matières xv

List of publications 1

Introduction 3
The Cahn-Hilliard equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Contents of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Part 1: The incompressible limit of the Cahn-Hilliard equation . . . . . . . . . . . . 5
Part 2: Nonlocal to local convergence of the Cahn-Hilliard equation . . . . . . . . . 12
Part 3: Fluid Models with surface tension . . . . . . . . . . . . . . . . . . . . . . . . 18
Part 4: Kinetic theory and the Cahn-Hilliard equation . . . . . . . . . . . . . . . . . 22
Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Nonlocal equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
The Vlasov-Cahn-Hilliard model . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Theoretical and numerical analysis of fluid models for biology . . . . . . . . . . 26

Mathematical tools 29
Spaces of Banach valued functions and classical facts . . . . . . . . . . . . . . . . . . 29
Functional analysis theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Sobolev embeddings and the Gagliardo-Nirenberg inequality . . . . . . . . . . . 31
Convergence theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Compactness toolbox for general PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Velocity averaging lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Young measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Gradient flows and the JKO scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

I The incompressible limit of the Cahn-Hilliard equation 43

1 Degenerate Cahn-Hilliard and incompressible limit of a Keller-Segel model 45
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.2 From the GKS to the DCH system (σ → 0) . . . . . . . . . . . . . . . . . . . . 50

1.2.1 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.2.2 Convergence σ → 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xv



xvi Table des matières

1.3 Incompressible limit γ → +∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.3.1 Uniform a priori estimates in Proposition 1.3.1 . . . . . . . . . . . . . . 56
1.3.2 Convergence γ → +∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.4 Existence of weak solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.4.1 Regularized mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.4.2 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.4.3 Limit ε→ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.5.1 Compactness with the Fréchet-Kolmogorov theorem . . . . . . . . . . . 67
1.5.2 Uniqueness with no source term . . . . . . . . . . . . . . . . . . . . . . . 68

2 Nonlocal Cahn-Hilliard equation with degenerate mobility : Incompressible
limit and convergence to stationary states 71
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.1.1 Mathematical setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.1.2 The main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.1.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.2 Basic a priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.2.1 Control of the mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.2.2 Energy and entropy estimates . . . . . . . . . . . . . . . . . . . . . . . . 77
2.2.3 A control on ∂tu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.3 Incompressible limit : proof of Theorem 2.1.5 . . . . . . . . . . . . . . . . . . . 80
2.3.1 An L∞ bound on uγ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.3.2 Higher-order regularity results, uniformly in γ. . . . . . . . . . . . . . . 84
2.3.3 The limit γ → ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.4 Convergence to equilibria : proof of Theorem 2.1.6 . . . . . . . . . . . . . . . . 93
2.4.1 Case G(p) = pH − p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.4.2 Case G(p) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.4.3 Longtime behavior of the local Cahn-Hilliard equation . . . . . . . . . . 98

2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.5.1 Technical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3 Pressure jump and radial stationary solutions of the degenerate Cahn-Hilliard
equation. 101
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.1.2 Literature review and biological relevancy of the system . . . . . . . . . 104

3.2 Existence, regularity, and long term behavior . . . . . . . . . . . . . . . . . . . 106
3.2.1 Regularized system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.2.2 Proof of Theorem 3.1.1 (existence part) . . . . . . . . . . . . . . . . . . 113
3.2.3 Proof of Theorem 3.1.1 (Long term asymptotics) . . . . . . . . . . . . . 116

3.3 Properties of the stationary states . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.3.1 Proof of Theorem 3.1.2 (A) . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.3.2 Proof of Theorem 3.1.2 (B) . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.3.3 Proof of Theorem 3.1.2 (C) . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.4 Proof of Theorem 3.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.4.1 Preliminary steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.4.2 Proof of Proposition 3.4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.4.3 Proof of Theorem 3.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



Table des matières xvii

3.5 Conclusion and numerical simulations . . . . . . . . . . . . . . . . . . . . . . . 129
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.6.1 Limit profile for general force in dimension 2 . . . . . . . . . . . . . . . . 131

II Nonlocal to local convergence of the Cahn-Hilliard equation 135

4 Degenerate Cahn-Hilliard equation : From nonlocal to local 137
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.1.1 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.1.2 Important components of the proof. . . . . . . . . . . . . . . . . . . . . 140
4.1.3 Literature review and relevancy of the system . . . . . . . . . . . . . . . 141
4.1.4 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.2 Existence of weak solutions to the nonlocal problem . . . . . . . . . . . . . . . 144
4.2.1 Approximating solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.2.2 Proof of Theorem 4.1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.3 Limit ε→ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.3.1 Uniform estimates in ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.3.2 Proof of Theorem 4.1.8 : convergence ε→ 0 . . . . . . . . . . . . . . . . 153

4.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.4.1 Difference quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.4.2 Growth estimates on mollified nonlinearity . . . . . . . . . . . . . . . . . 158
4.4.3 Potentials satisfying Assumption 4.1.1 . . . . . . . . . . . . . . . . . . . 159
4.4.4 Proof of Lemma 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.4.5 Bourgain-Brézis-Mironescu and Ponce compactness result . . . . . . . . 160
4.4.6 Nonlocal Poincaré inequalities . . . . . . . . . . . . . . . . . . . . . . . . 162
4.4.7 Compactness in time/space with the Fréchet-Kolmogorov theorem . . . 163

5 Degenerate Cahn-Hilliard systems : From nonlocal to local 165
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.2 Energy and entropy for the non-local system . . . . . . . . . . . . . . . . . . . 169
5.3 Existence of weak solutions to the nonlocal problem . . . . . . . . . . . . . . . 171

5.3.1 Construction of weak solutions . . . . . . . . . . . . . . . . . . . . . . . 172
5.3.2 H1 estimates for the JKO scheme via flow interchange lemma . . . . . . 174
5.3.3 Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.4 Limit ε→ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.4.1 Uniform estimates in ε and compactness . . . . . . . . . . . . . . . . . . 182
5.4.2 Convergence ε→ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5.5.1 Results on difference quotients . . . . . . . . . . . . . . . . . . . . . . . 184
5.5.2 Compactness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

III Fluid models with surface tension 189



xviii Table des matières

6 From nonlocal Euler-Korteweg to local Cahn-Hilliard via the high-friction
limit 191
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.1.1 Rigorous formulation of the main result . . . . . . . . . . . . . . . . . . 194
6.1.2 Relevancy of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.2 Generalised Young Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.3 Measure-valued solutions to the nonlocal Euler-Korteweg equation . . . . . . . 200

6.3.1 Definition of dissipative measure-valued solutions . . . . . . . . . . . . . 200
6.3.2 The approximating system . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.3.3 Existence of dissipative measure-valued solutions . . . . . . . . . . . . . 205

6.4 Classical solutions to the nonlocal Cahn-Hilliard equation . . . . . . . . . . . . 207
6.5 Convergence of nonlocal Euler-Korteweg to nonlocal Cahn-Hilliard . . . . . . . 210
6.6 Convergence result for the parametrized measure νη,ε and the concentration mea-

sures mη,ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
6.7 Some inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.8 Bound on the relative pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7 Analysis and numerical simulation of a generalized compressible Cahn-Hilliard-
Navier-Stokes model with friction effects 225
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
7.2 General assumptions, notations and functional setting . . . . . . . . . . . . . . 229

7.2.1 Assumptions on functionals . . . . . . . . . . . . . . . . . . . . . . . . . 230
7.3 Existence of weak solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

7.3.1 Energy estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
7.3.2 Existence of weak solutions for fixed εQ . . . . . . . . . . . . . . . . . . 234
7.3.3 Sending εQ → 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

7.4 Numerical scheme for the G-NSCH model . . . . . . . . . . . . . . . . . . . . . 244
7.4.1 One-dimensional scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

7.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.5.1 One dimensional numerical test cases . . . . . . . . . . . . . . . . . . . 249
7.5.2 Two-dimensional numerical test cases . . . . . . . . . . . . . . . . . . . . 253
7.5.3 Convergence tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

7.6 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

7.7.1 Derivation of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.7.2 Mass balance equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.7.3 Balance of linear momentum . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.7.4 Energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
7.7.5 Entropy balance and Clausius-Duhem inequality . . . . . . . . . . . . . 263
7.7.6 Constitutive assumptions and model equations . . . . . . . . . . . . . . 265
7.7.7 Summary of the model’s equations . . . . . . . . . . . . . . . . . . . . . 267
7.7.8 Model reductions, general assumptions and biologically relevant choices of

the model’s functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
7.7.9 Specific choices of functionals and model reductions . . . . . . . . . . . . 267
7.7.10 Biologically consistent choices of functions . . . . . . . . . . . . . . . . . 268
7.7.11 Description of the two-dimensional numerical scheme . . . . . . . . . . . 270

IV Kinetic theory and the Cahn-Hilliard equation 273



Table des matières xix

8 From Vlasov equation to degenerate nonlocal Cahn-Hilliard equation 275
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

8.1.1 The macroscopic limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
8.1.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
8.1.3 Literature review and relevancy of the system . . . . . . . . . . . . . . . 277

8.2 Entropy, energy, and uniform estimates . . . . . . . . . . . . . . . . . . . . . . 279
8.3 The limit ε→ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
8.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
8.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

8.6.1 Useful inequality and lower bound on the energy . . . . . . . . . . . . . 290
8.6.2 Criteria for compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
8.6.3 Uniqueness in L∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
8.6.4 Estimate on Jε log1/2 log1/2 max(Jε, e) . . . . . . . . . . . . . . . . . . . 295

9 On the limit problem arising in the kinetic derivation of the Cahn-Hilliard
equation 299
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
9.2 Examples of kernels satisfying Assumption 9.1.1 . . . . . . . . . . . . . . . . . . 302
9.3 Uniform estimates and compactness . . . . . . . . . . . . . . . . . . . . . . . . 303
9.4 The proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
9.5 Extension to systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
9.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

9.6.1 Proof of the convergence for general kernels and d = 2 . . . . . . . . . . 309

A On the inviscid limit connecting Brinkman’s and Darcy’s models of tissue
growth with nonlinear pressure 313
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
A.2 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
A.3 Strong compactness of the pressure . . . . . . . . . . . . . . . . . . . . . . . . . 318
A.4 Strong convergence of ∇Wσ and conclusion . . . . . . . . . . . . . . . . . . . . 321
A.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

A.5.1 Proof of Theorem A.1.4 (existence result) . . . . . . . . . . . . . . . . . 323

Bibliographie 327



xx Table des matières



List of publications

The following articles have been submitted or published and are included in this thesis.

1. C. Elbar, B. Perthame, J. Skrzeczkowski On the limit problem arising in the kinetic deriva-
tion of the Cahn-Hilliard equation Preprint 2023

2. C. Elbar, J. Skrzeczkowski On the inviscid limit connecting Brinkman’s and Darcy’s models
of tissue growth with nonlinear pressure Preprint 2023

3. C. Elbar, B. Perthame, A. Poiatti, J. Skrzeczkowski Nonlocal Cahn-Hilliard equation with
degenerate mobility: Incompressible limit and convergence to stationary states Archive for
Rational Mechanics and Analysis 2024

4. C. Elbar, A. Poulain Analysis and numerical simulation of a generalized compressible Cahn-
Hilliard-Navier-Stokes model with friction effects Preprint 2023

5. C. Elbar, P. Gwiazda, J. Skrzeczkowski, A. Świerczewska-Gwiazda From nonlocal Euler-
Korteweg to local Cahn-Hilliard via the high-friction limit Preprint 2023

6. José A. Carrillo, C. Elbar, J. Skrzeczkowski Degenerate Cahn-Hilliard systems: From non-
local to local Preprint 2023

7. C. Elbar, J. Skrzeczkowski Degenerate Cahn-Hilliard equation: From nonlocal to local
Journal of Differential Equations 2023

8. C. Elbar, M. Mason, B. Perthame, J. Skrzeczkowski From Vlasov equation to degenerate
nonlocal Cahn-Hilliard equation Communication in Mathematical Physics 2022

9. C. Elbar, B. Perthame, J. Skrzeczkowski Pressure jump and radial stationary solutions of
the degenerate Cahn-Hilliard equation. Comptes rendus mécanique: The scientific legacy
of Roland Glowinsky. 2022

10. C. Elbar, B. Perthame, A. Poulain Degenerate Cahn-Hilliard and incompressible limit of a
Keller-Segel model Communication in Mathematical Sciences 2022

1



2 List of publications



Introduction

The Cahn-Hilliard equation

The Cahn-Hilliard equation,

∂tu− div(m(u)∇µ) = 0, µ = −δ∆u+ F ′(u), δ > 0,

is a fourth-order parabolic equation, generally studied on a bounded domain with Neumann
Boundary conditions. This equation, was originally introduced by J.W. Cahn and J.E. Hilliard in
1958 [70] to explain the evolution of an isotropic system characterized by nonuniform composition
or density, that is a system with a variation in one of these two intensive scalar properties.
To understand the genesis of this equation we have to go back to the phenomenon of interfacial
energy in a system. A simple explanation is given in [134]: Interfacial energy characterizes the
energy required to form an interface with a certain surface area. For instance consider a water
molecule in the middle of others. The molecule is attracted on all sides by the polar nature of
its neighbors. But what happens if we transport this molecule to the air-water interface? Where
it was previously attracted equally in all directions, this is no longer the case. One side of the
molecule is now in contact with air, which, as a gas, has far less attraction for the water molecule
than water itself. Thus, there is a competition between a weak attractive force attempting to
extract it from the liquid, and a strong attractive force seeking to draw it towards the bulk of
water. This unequal attraction pushes the water molecule at the interface to attempt to return
to the liquid. Only by doing substantial work can a water molecule be pulled to the junction
between air and water. Each water molecule forced to the interface creates a small amount of
new interfacial area. If we express the work required to move a molecule to the interface in terms
of the new zone created, we obtain a measure of the interfacial energy of water when in contact
with air.
To determine interfacial energies, some theoretical studies have imposed arbitrary constraints
on the thickness of the interface. For example, Young and Becker assumed that two adjacent
phases are homogeneous up to their shared interface. However, as Cahn and Hilliard pointed
out, such assumptions may not hold in most cases, especially when the system’s temperature and
pressure are specified. In such situations, the interfacial thickness is no longer an independent
variable, making computations of interfacial energy inaccurate. To give a satisfactory theory of
the interfacial energy for a general nonuniform isotropic system, Cahn and Hilliard demonstrated
that the free energy of such a system can be expressed as (at least approximated by a Taylor
expansion):

E = NV

∫
V

F (u) +
δ

2
|∇u|2 dV.

where the nonuniformity is given here by u, the mole fraction of one of the component and NV

3



4 Introduction

is the number of molecules per unit volume. The previous equation can be understood as the
sum of two contributions. One of these contributions represents the free energy that the volume
would possess in a homogeneous solution, while the other is a "gradient energy" depending on
the local composition. Once the free energy is derived, it is possible to compute the interfacial
energy of a flat interface, which is the difference between the actual free energy of the system
and that which it would have if the properties of the phases were continuous throughout the
interface:

σ = NV

∫
V

F (u) +
δ

2
|∇u|2 − uµB − (1− u)µA dV

where µA and µB are the chemical potentials per molecule of the species A and B.
With this expression, they were able to predict that the thickness of the interface is an increasing
function of the temperature θ and becomes infinite at a critical temperature θc. Moreover, they
computed that the interfacial energy behaves as (θ − θc)

3/2, in agreement with experiments.
From the free energy expression, using the mass balance equation

∂u

∂t
+ divj = 0,

and the generalized Fick’s law

j = −m(u)∇δE

δu

we obtain the Cahn-Hilliard equation. The equation, originally introduced in the context of
material science, has since been used to describe the evolution of nonuniform systems in different
fields: biology, image inpainting, fluid mechanics and even to explain the origin of the irregular
structure in Saturn’s rings [320]. In general, it is used as the main tool to incorporate the surface
tension effect in a model.
The results obtained in this work have been motivated by biological applications, such as tissue
formation and tumor growth, as well as physical applications, such as fluid flows involving surface
tension phenomena. The different models presented here, consists in using the Cahn-Hilliard
equation, possibly coupled with other equations depending on the application.

Contents of the thesis

We begin with a reminder of classical mathematical tools. Then, the study is centered around
four distinct parts, each exploring various aspects of mathematical modeling and their connec-
tions to the Cahn-Hilliard equation. The chapters within each part are self-contained and can
be read independently.

Part 1: The incompressible limit of the Cahn-Hilliard equation The first part deals with
the link between the Cahn-Hilliard equation and Hele-Shaw models, commonly used in fluid dy-
namics and the growth of tumors within confined spaces. Specifically, we investigate how to
derive some Hele-Shaw models in the context of the "incompressible" limit of the Cahn-Hilliard
equation.

Part 2: Nonlocal to local convergence of the Cahn-Hilliard Equation Part two cen-
ters on the nonlocal Cahn-Hilliard equation and its variants. This equation replaces the local
Laplacian term with a nonlocal approximation, accounting for long-range interactions between
components. We prove that, as the range of interactions decreases, the solution of the nonlocal



Part 1: The incompressible limit of the Cahn-Hilliard equation 5

equation converges to the one of its local counterpart.

Part 3: Fluid Models with surface sension The third part deals with classical fluid models,
namely the Euler and Navier-Stokes equations, with additional surface tension effects. These
models are used to describe fluid flow and cell motion, where interfacial forces play a crucial role.

Part 4: Kinetic theory and the Cahn-Hilliard Equation Part four juxtaposes kinetic
theory, traditionally applied to describe mesoscopic-scale physical phenomena, with the Cahn-
Hilliard equation. Our focus is on the Vlasov-Cahn-Hilliard equation, a model that characterizes
phase transition processes.

At the end of the introduction, we discuss some current work and perspectives. In the appendix,
we mention a recent work, concerning a porous medium system.

Part 1: The incompressible limit of the Cahn-Hilliard equa-
tion

Consider two plates separated by a very small gap h as in Figure 1. In fact, an infinitesimally
small gap. We assume that the plates are of size L≫ h.

Figure 1 – Hele-Shaw flow

This system is called a Hele-Shaw cell and is often used to reproduce two dimensional fluid
flows with low Reynolds number, generally around obstacles if an obstacle is inserted between
the two plates. The derivation of the Hele-Shaw equations may be found in [8]. We outline
here the fundamental idea behind the derivation. Consider an incompressible fluid with velocity
u = (ux, uy, uz) moving inside the Hele-Shaw cell. The fluid satisfies the Navier-Stokes equation

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+ ν∆u, div u = 0, u(x, y, 0) = u(x, y, h) = 0, (0.0.1)

where ρ is the density of the fluid and ∇p the pressure gradient. From the incompressibility
relation div u = 0 and assuming ux ≈ uy we get the approximation
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ux
L

+
uy
L

+
uz
h

= 0 ⇒ uz ≈
h

L
ux,y ≪ ux,y as h→ 0

where ux,y represents either ux or uy. Therefore we can reglect the z component of the velocity
compared to the component in x and y and write u = (ux, uy, 0). Also, since h is much smaller
than L

∂2ux,y
∂x2

≪ ∂2ux,y
∂z2

.

Assuming that the fluid is of low Reynolds number we can neglect the first two terms of the
Navier-Stokes equation (0.0.1) compared to the viscosity term ν∆u:

ν
∂2ux
∂z2

=
∂p

∂x
, ν

∂2uy
∂z2

=
∂p

∂y
, 0 =

∂p

∂z
.

Therefore the pressure does not depend on z. Assuming that ux(x, y, 0) = ux(x, y, h) = uy(x, y, 0) =
uy(x, y, h) = 0 (Dirichlet conditions) yields

ux = − 1

2ν

∂p

∂x
z(h− z), uy = − 1

2ν

∂p

∂y
z(h− z), uz = 0.

Noting upar = (ux, uy), ppar(x, y) = p(x, y, z) the velocity and the pressure in the parallel plane
(xOy) we obtain

upar = − 1

2ν
∇pparz(h− z).

Using the incompressibility relation one can also get the laplace equation

∆ppar = 0,

supplemented by the no-penetration boundary conditions on the side walls ∇ppar · n⃗ = 0 where
n⃗ is a unit vector perpendicular to the side wall. We note the important fact that the equation of
Hele-Shaw flows is the same to that of the flow of incompressible fluid through a porous medium
with Darcy’s law. These models are referred to as ’free boundary models.’ In this context, there
exists a domain, often denoted as Ω(t), which defines the fluid region with a clear boundary.
This boundary evolves over time according to a pressure law. Introduced to describe fluids,
these models found application in the modeling, analysis and simulation of biological phenomena
such as tumor growth. In the particular case of tumor growth, an additional term has to be taken
into account for the proliferation of cells, resulting in a different formulation of the Hele-Shaw
equation: ∆ppar +G(ppar) = 0, where G is the growth term.

Using Hele-Shaw models to describe tumor growth Initiated by Greenspan [196], general me-
chanical models of tumor growth have been proposed and used internal pressure as the main
effect that drives the movement and proliferation of cells. The prototypical example of a me-
chanical living tissue model is

∂tn = div (n∇p) + nG(p), p = nγ , (0.0.2)

in which p is the pressure and n the cell density. In this kind of model, Darcy’s law of movement is
used to reflect the porous media formed by the extra-cellular matrix and the tendency of cells to
move away from regions of high compression. Recall the sentence the equation of Hele-Shaw flows
is the same to that of the flow of incompressible fluid through a porous medium with Darcy’s law.
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The previous equation models the flow of a fluid through a porous medium type with Darcy’s law.
However the fluid is not incompressible. Interestingly, Perthame et al. [289] have shown that
the incompressible limit can be found sending γ to ∞. In that limit, solutions of Model (0.0.2)
converge to a limit (n∞, p∞) solution of a free boundary limit problem of Hele-Shaw type for
which the normal component of p∞ gives the speed of the free boundary. In the limit, the solution
to Equation (0.0.2) can be divided into two distinct regions: Ω(t) = {x, p∞(t, x) > 0} where the
pressure remains positive (representing the tumor), and the region outside where p∞ = 0. Note
also the important graph equation p∞(n∞−1) = 0 which implies the incompressibility of the fluid.
Indeed, in the zone Ω(t) we immediately get n∞ = 1 which corresponds to an incompressible
tumor. The graph equation can be easily seen from the relation pγnγ = (nγγ)

(γ+1)/γ and sending
gamma to ∞. The free boundary problem has also an additional equation specifying that the
pressure satisfies

−∆p∞ = G(p∞), in Ω(t), or equivalently p∞(∆p∞+G(p∞)) = 0 almost everywhere in Ω.
(0.0.3)

These equations can be seen by taking n∞ = 1 in (0.0.2). When the source term is set as
G(p) = 0, the classical Hele-Shaw system, which was derived earlier, is retrieved. The result
established by Perthame, Quiros, and Vazquez stimulated the exploration of multiple variations
of the general model (0.0.2), introducing different physical effects in mechanical models of tissue
growth. As an example, the inclusion of viscosity effects has been incorporated into the model to
represent cell friction [38, 50] using Stokes’ or Brinkman’s laws. A consistent aspect across these
variations is the presence of a parameter γ within the pressure law, which is sent to infinity to
achieve the incompressible limit of the model.
Surface tension A major assumption that was made in all the previous models in the absence of
surface tension and interfacial energy. Surface tension is a concept associated with the internal
cohesive forces between the molecules of a fluid: hydrogen bonds, van der Waals forces, metallic
bonds, etc. Inside the fluid, molecules are attracted equally in all directions leading to a net
force of zero; however molecules on the surface experience an attractive force that tends to pull
them to the interior of the fluid: this is the origin of the interfacial (or surface) energy. This
energy is equivalent to the work or energy required to remove the surface layer of molecules in
a unit area. The value of the surface tension will vary greatly depending on the nature of the
forces exerted between the atoms or molecules. In the case of solid tumor cells in a tissue, it
reflects the cell-cell adhesion tendency between the cells and depends on the parameter δ and
the geometry of the tumor.
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Figure 2 – Tumor evolving with pressure and surface tension

Figure 2 represents tumor (in white) denoted as Ω(t) infiltrating a healthy tissue (in blue). The
tumor cells are dividing through a proliferation (or source) term denoted as G(p), resulting in
the generation of a pressure gradient. This pressure gradient exerts a force on the surrounding
tumor cells. It’s noteworthy that within the tumor itself, the cohesive forces between the tumor
cells do not matter, as the cells are attracted equally in all directions.
The pressure can be described using the Hele-Shaw equation as −∆p = G(p). At the inter-
face or boundary, the cohesive force is no longer zero. Instead, it gives rise to a force, named
Fadhesion, which tends to draw the boundary cells into the tumor. Then, the boundary be-
comes a competition between growth and pulling, hence creating interfacial energy. One way
to incorporate surface tension in the existing models is by considering the Cahn-Hilliard equation.

The Cahn-Hilliard equation and the Hele-Shaw models. Recall that Cahn and Hilliard have proved
that the free energy of a volume V of an isotropic system of nonuniform composition or density
is given by

E = NV

∫
V

f0(c) +
δ

2
|∇c|2dV,

where NV is the number of molecules per unit volume, ∇c is the composition gradient, and
f0(c) is the free energy per molecule of a homogeneous system. The second component within
the free energy E takes into account the fluctuations in composition or density, which is at the
origin of the surface tension. The equation introduced by Perthame, Quirós, and Vazquez (0.0.2)
corresponds to the situation where f0(c) = nγ+1

γ+1 and δ = 0, meaning there’s no interfacial energy
involved. An inherent question arises: what occurs when δ is not equal to 0? Can we still send
γ to ∞ and find the incompressible limit of the model? The solution to this question remains
open in the general context. Nevertheless, in specific cases it can be done. This is the case in the
nonlocal Cahn-Hilliard equation and also in a ’smoothed’ variant of the Cahn-Hilliard equation
(which can be transformed into a Keller-Segel type equation), such as those discussed in the first
and second chapters of this section. More precisely, in the first chapter we study the system

∂tn− div(n∇µ) = nG(µ),

−σ∆µ+ µ =
(
n− σ

δ
µ
)γ

− δ∆n.
(0.0.4)
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The σ coefficient is typical of the Brinkman’s law for porous medium and introduces viscosity
effects in the equation. It also provides better regularity of the system. When σ → 0, we expect
to recover a solution of the Cahn-Hilliard equation

∂tn− div(n∇µ) = nG(µ),

µ = nγ − δ∆n.
(0.0.5)

This assertion can be proved rigorously:

Result 1 (Convergence of the relaxed system when σ → 0. Cf. Theorem 1.2.1). From the weak
solutions (nσ, µσ) of the system (0.0.4) with parameter σ we can extract a subsequence converging
to (n, µ) weak solution of the system (0.0.5).

We also study the incompressible limit γ → ∞ of the system (0.0.4) with σ > 0 fixed. The case
σ = 0 is open. The major difficulty in the latter case is the lack of any estimates on µ itself.
Indeed, we are not able to control the vacuum zones n = 0 that make the estimates degenerate.
In the case σ > 0 the main idea of the proof is to rewrite the system as a Keller-Segel system.
More precisely, defining

w = n− σ

δ
µ, p = wγ , (0.0.6)

we can rewrite the system as

∂tn− δ

2σ
∆n2 +

δ

σ
div (n∇w) = nG

(
δ

σ
(n− w)

)
(0.0.7)

−σ∆w +
σ

δ
wγ + w = n. (0.0.8)

In this formulation, we observe that µ, the difficult term to control, does not appear anymore and
we need to control mainly w, that satisfies an elliptic equation. Moreover using Alikakos iteration
method we derive an L∞ estimate on n which is crucial to find the incompressible limit of the
system. Also, the solution can be proved to be unique in the case of no source term, controlling
the H−1 between the difference of two solutions. Concerning the incompressible limit, we prove
the following result

Result 2 (Incompressible limit. Cf. Theorem 1.3.5). Let (nσ,γ , µσ,γ) be a weak solution to
the system (0.0.4). Then, when γ → ∞, after extraction of subsequences, (nσ,γ , µσ,γ , wσ,γ) →
(nσ,∞, µσ,∞, wσ,∞). These functions satisfy in the weak sense

∂tnσ,∞ − div(nσ,∞∇µσ,∞) = nσ,∞G(µ∞).

and

µσ,∞ = pσ,∞ − δ∆wσ,∞, −σ∆wσ,∞ +
σ

δ
pσ,∞ + wσ,∞ = nσ,∞, wσ,∞ = nσ,∞ − σ

δ
µσ,∞.

In this ’stiff pressure limit’, the system has three unknowns nσ,∞, wσ,∞ (or µσ,∞) and pσ,∞ and
is completed with a type of incompressibility condition

pσ,∞(wσ,∞ − 1) = 0. (0.0.9)
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The tumor is situated in the zone Ω(t) := {(t, x), p∞(t, x) > 0} and we observe that inside Ω(t),
n∞ = 1, and thus from the evolution equation −∆µ = G(µ), which is a Hele-Shaw relation. The
second chapter is dedicated to the study of the incompressible limit (i.e. γ → ∞) of the nonlocal
Cahn-Hilliard equation, as well as its convergence to stationary states:

∂tu− div(u∇µ) = uG(p),

µ = nγ +Bε(u).

Here, Bε denotes the nonlocal operator defined as

Bε[u](x) =
1

ε2
(u(x)− ωε ∗ u(x)) =

1

ε2

∫
Ω

ωε(y)(u(x)− u(x− y)) dy.

Because of the convolution term, there is no maximum principle and our approach relies on a
new L∞ estimate obtained by De Giorgi iterations. Also, since the diffusion term is given by
nγ +n2, instead of the usual nγ in the work of Perthame, Quiros, Vazquez, it seems not possible
to use the classical Aronson-Benilan estimate, a natural estimate that provides an L1 bound on
the laplacian of the pressure, hence provided compactness of the gradients. For this reason, we
have to rely on an energy trick to achieve strong convergence of the gradients of the pressure.

Result 3 (Incompressible limit. Cf. Theorem 2.1.5). Let uγ be a weak solution to the previous
equation. Then up to a subsequence, uγ → u∞ and pγ = uγγ → p∞ where u∞ and p∞ satisfy in

∂tu∞ − div(u∞∇(p∞ +Bε(u∞))) = u∞G(p∞), (0.0.10)

p∞

(
∆p∞ +

1

2ε2
∆u2∞ − 1

ε2
div(u∞(∇ωε ∗ u∞)) + u∞G(p∞)

)
= 0, (0.0.11)

0 ≤ u∞ ≤ 1, p∞ ≥ 0, p∞(1− u∞) = 0 almost everywhere in Ω× (0,∞), (0.0.12)

We also prove the long-term convergence to a single constant stationary state of any weak solution
using entropy methods, even when a source term is present. Indeed, and despite the source term,
we get a uniform control in time of the energy. Our result implies in particular that the surface
tension in the nonlocal (and even local) Cahn-Hilliard equation will not prevent the tumor from
completely invading the domain.

Result 4 (Long time behaviour. Cf. Theorem 2.1.6). There are two cases:

— for G(p) = pH − p, we have

∥u(t)− p
1
γ

H∥Lq(Ω) → 0 as t→ ∞, ∀q ∈ [1, γ + 1). (0.0.13)

— For G(p) = 0 and γ ≥ 1, we have an exponential decay towards the mean value: there exists
a constant C such that

∥u(t)− u0∥Lq(Ω) ≲ e−Ct, ∀q ∈ [1, γ + 1). (0.0.14)

Although the incompressible limit is attainable, it is not clear what happens exactly at the
boundary ∂Ω(t). Therefore we look for a deeper understanding of the tumor’s boundary in this
limit. To address this, the third chapter of this first part introduces an external confining V
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potential and we place ourselves in the radial setting:

∂(rn)

∂t
− ∂

∂r

(
rn
∂(µ+ V )

∂r

)
= 0,

µ = nγ − δ

r

∂

∂r

(
r
∂n

∂r

)
.

(0.0.15)

The equation is set on the domain (0, T )× (0, Rb) for some Rb > 0. Then, we can compute the
stationary states of the Cahn-Hilliard equation and prove their convergence towards a unique
profile, completely determined, as the incompressible limit is reached. This profile showcases a
pressure jump at the boundary, a hallmark of surface tension. The value of this jump is explicitly
determined based on the applied external potential.

Result 5 (Existence of solutions and long term asymptotic. Cf. Theorem 3.1.1). There exists
a global weak solution of 0.0.15. Moreover, up to a subsequence, {r n(t + k, r)}k converge to a
stationary solution r n∞(r) ≥ 0 where n∞ ∈ C1(IRb

) satisfies m =
∫ Rb

0
r n∞(r) dr and

rn∞
∂(µ∞ + V )

∂r
= 0, µ∞ = nγ∞ − δ

r

∂

∂r

(
r
∂n∞
∂r

)
n′∞(0) = n′∞(Rb) = 0.

Our second result characterizes possible stationary states and shows we can distinguish an interval
where n∞ = 0 and another where µ∞ + V is constant as expected from the first equation. We
consider the confining potential V (r) = r2 for simplicity but the proof may be adapted to any
increasing potential.

Result 6 (Characterization of the stationary states. Cf. Theorem 3.1.2). Let n∞ be a solution
as built in the previous theorem.
(A) Then, n∞ is nonincreasing and it satisfies 0 ≤ n∞(Rb) <

2m
R2

b
.

(B) Assume n∞(Rb) = 0 and let R > 0 be the smallest argument such that n∞(R) = 0 and thus
n∞ > 0 in [0, R). Then, there is λ∞ ∈ (0, R2) such that{

nγ∞ − δ
rn

′
∞ − δn′′∞ = R2 − r2 − λ∞ in (0, R),

n∞(R) = n′∞(R) = 0.
(0.0.16)

and, given R > 0, there is at most one couple (n, λ) solving (0.0.16).
(C) Fix δ ∈ (0, 1). There exists R(m), independent of γ, such that when Rb > R(m), then
n∞(Rb) = 0.

Next, we focus on the incompressible limit of the solutions of (0.0.16), that is when γk → ∞.
We denote by nk the steady state associated with γk and assume that Rb is large enough so that
nk(Rb) = 0.

Result 7 (Incompressible limit of the stationary states. Cf. Theorem 3.1.3). Let {γk}k∈N be
any sequence such that γk → ∞. Let {nk}k∈N be a sequence of stationary states with the same
mass m and with radius Rk, being the smallest argument such that nk(r) = 0.
Then, nk → ninc in C1([0, Rb]) and Rk → R, where ninc and R are uniquely defined and can
be computed explicitly. Moreover, the sequence of pressures {pk := nγkk }k∈N converges weakly to
some pressure pinc such that pinc(ninc − 1) = 0 and pinc has a jump at ∂{ninc = 1}

JpincK ≈ 3
√
6R2/3 δ1/3, as δ → 0.
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x

1

R0 R Rb

pressure pinc
density ninc

Figure 3 – Plot of the limiting profile ninc, as γk → ∞, for the potential V (r) = r2. We can
observe that the pressure has a discontinuity at R0 with (0, R0) = {ninc = 1} = {pinc > 0},
while the density remains C1.

Part 2: Nonlocal to local convergence of the Cahn-Hilliard
equation

The Cahn-Hilliard equation was derived in 1958 by Cahn and Hilliard. In 1997, Giacomin
Lebowitz rigorously derived an equation called the nonlocal Cahn-Hilliard equation. Their
derivation relies on a d-dimensional lattice gas evolving via Kawasaki exchange with respect
to the Gibbs measure for a Hamiltonian which includes both short-range and long-range interac-
tions. The two equations, nonlocal and local have many similarities, analytically and numerically,
and it is often the case that the two may be used in applications, arguing that they are the same
up to a Taylor expansion. Indeed, both of the equations can be written

∂tu− div(m(u)∇µ) = 0,

where µ has to be chosen accordingly

µlocal = −∆u+ F ′(u), µnonlocal =

∫
Jε(x, y)(u(x)− u(y)) dy + F ′(u).

When we write u(y) ≈ u(x) + y · ∇u(x) + y2

2 D
2(u(x)) and assume that the kernel is symmetric,

with only non-zero second moments along the diagonal (yielding the Laplacian instead of the full
Hessian), we observe that µnonlocal serves as an approximation to µlocal. The parameter ε in the
kernel Jε represents the range of the nonlocal interaction. Indeed, the kernel often takes the form
of Jε(|x− y|) and approximates a Dirac function as ε→ 0, containing all the information in the
zone x ≈ y. As ε→ 0, the nonlocal Cahn-Hilliard equation formally converges to the local Cahn-
Hilliard equation. As previously mentioned, these two equations exhibit certain similarities, yet
they also present distinct challenges. For instance, studying the nonlocal Cahn-Hilliard equation
is in general simpler, as the equation is of second order. However the analysis on a bounded
domain can become challenging due to the nonlocal operator, and it is often studied in the
torus, as in the work of Giacomin-Lebowitz. Conversely, the local Cahn-Hilliard equation is
often studied on a bounded domain with Neumann boundary conditions. Moreover, explicitly
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computing the stationary states of the nonlocal Cahn-Hilliard equation proves to be a bit harder.
Assuming ∂tu = 0 and m(u) > 0, we can then derive µ = C. In one dimension, the resulting
equation reduces to a simple second-order ODE for the local equation, and an equation evolving
a convolution for the nonlocal one. The nonlocal Cahn-Hilliard equation offers the advantage of
being easier to derive. We can rely on the work of Giacomin-Lebowitz, but when F ′(u) is linear,
there is a more straightforward derivation, from the particle level, see also [279, 36] for similar
derivation in biological contexts.
Consider a system of N particles in interaction denoted {Xi}i=1,...,N .

−∇W
(Xi−Xj)Xi

Xj

Suppose that these particles follow the law

dXi

dt
=
∑
j ̸=i

−∇W (Xi −Xj). (0.0.17)

Let ρN be the empirical measure

ρN (t) :=
1

N

N∑
i=1

δXi(t),

then we see that the right-hand side of (0.0.17) can be rewritten as −∇W ∗ ρN . As the law
of motion is imposed on the velocity it makes sense to make a connection with the continuity
equation, and one can prove that the empirical measure satisfies (in the measure sense)

∂tρ
N − div(ρN∇W ∗ ρN ) = 0.

Sending N → +∞ and assuming that ρN converges to ρ we obtain

∂tρ− div(ρ∇W ∗ ρ)) = 0. (0.0.18)

To consider volume exclusion effect, for instance the cells have some volume and cannot stand
exactly on the top of each other one has to consider that the kernels are repulsive at the origin
and we rename (up to changing the sign)

W → −W + νδ0 (0.0.19)

where ν is the strenght of the local repulsion. Equation (0.0.18) thus becomes

∂tρ− div(ρ∇(−W ∗ ρ+ νρ)) = 0.

Then, assuming that W is of mass 1 and writing νρ = ρ+ (ν − 1)ρ, we obtain a nonlocal Cahn-
Hilliard equation. Note from (0.0.19) the competition between the long range attraction and
repulsion at the origin. The convergence of the nonlocal to local Cahn-Hilliard equation states
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that if these effects are scaled appropriately, we expect to obtain a fourth-order equation with
surface tension effects.
More generally, consider the equation:

∂tuε = div(uε∇µ), in (0,+∞)× Td,
µ = Bε[uε] + F ′(uε), in (0,+∞)× Td.

(0.0.20)

and its local counterpart:

∂tu = div(u∇µ), in (0,+∞)× Td,
µ = −∆u+ F ′(u), in (0,+∞)× Td.

(0.0.21)

In the first chapter, we prove existence of weak solution and the nonlocal to local limit. More
precisely we have the two following results:

Result 8 (Existence of solutions for the nonlocal equation. Cf. Theorem 4.1.7). There exists a
global weak solution uε of the previous equation.

Result 9 (Convergence of nonlocal to local Cahn-Hilliard equation on the torus. Cf Theo-
rem 4.1.8). Let {uε} be a sequence of solutions of the degenerate nonlocal Cahn-Hilliard equation.
Then, up to a subsequence,

uε → u in L2(0, T ;H1(Td))

where u is a weak solution of the local degenerate Cahn-Hilliard equation.

The proof of nonlocal to local relies on a new compactness argument in the spirit of Aubin-Lions
for nonlocal operators where the compactness in space is achieved with a nonlocal Poincaré
inequality proved by Ponce [294]. A similar result can be found for a system of two populations,
and it has a direct biological application, which is the understanding of the cell-cell adhesion
patterns and the so-called Steinberg differential adhesion hypothesis.

Figure 4 – Ramsey A. Foty, Malcolm S. Steinberg, Differential adhesion in model systems, Wiley
Interdiscip Rev Dev Biol actions.

Consider two populations of cells. Let them evolve, and wait enough time to observe a stationary
state. Then, one can observe 4 kind of different patterns: complete sorting, partial engulment,
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engulment and mixing corresponding to the 4 pictures above. The 4 patterns are a scale that
describe how much the cells interact with each other: that is how the two populations interact
and how individuals from a same population interact. These experiments lead Steinberg to the
formulation of the differential adhesion hypothesis. As an analogy to immiscible fluids such as oil
and water, Steinberg developed a thermodynamic model to explain this behavior by considering
the different strengths of cell-cell adhesion bonds. In this context, when different cell populations
are put together, they self-organize, with the objective of minimizing the overall energy within
the tissue. Motivated by these ideas, Baker, Carrillo and Falco introduced in [165] a new local
continuum model for cell-cell adhesion, aiming to replicate the diverse patterns observed in the
DAH phenomenon. This model is based on a set of Cahn-Hilliard equations. The derivation is
similar to that of the single equation.
Consider a system of N green particles denotes {Xi}i=1,...,N and N red particles denoted
{Yi}i=1,...,N that satisfy

−∇W1,1
(Xi −Xj)

−∇W
1,2(Xi − Yj )

Xi

Xj

Yj

X ′
i = − 1

N

∑
j ̸=i

∇W1,1(Xi −Xj)−
1

N

∑
j ̸=i

∇W1,2(Xi − Yj)

Y ′
i = − 1

N

∑
j ̸=i

∇W2,1(Yi −Xj)−
1

N

∑
j ̸=i

∇W2,2(Yi − Yj).

To consider the repulsive effects at the origin (two cells cannot exactly stand on the top of each
other) we rename the kernels Wi,j → Wi,j + νδ0. Consider the empirical measures ρN (t) =
1
N

∑N
i=1 δXi(t), η

N (t) = 1
N

∑N
i=1 δYi(t) and send N → ∞.

In the limit we obtain

∂ρ

∂t
= ∇ · (ρ∇ (W1,1 ∗ ρ+W1,2 ∗ η + ν(ρ+ η))) ,

∂η

∂t
= ∇ · (η∇ (W2,1 ∗ ρ+W2,2 ∗ η + ν(ρ+ η))) .

Assuming Wi,j = Ki,jωε, W1,2 =W2,1 and doing some rescaling and renaming of parameters we
obtain

∂ρ

∂t
= ∇ · (ρ∇ (κBε[ρ] + αBε[η]− γρ− βη)) ,

∂η

∂t
= ∇ · (η∇ (αBε[ρ] +Bε[η]− βρ− η)) ,

(0.0.22)
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with Bε[u] = u−ωε∗u
ε2 ≈ ∆u.

Then, sending formally ε→ 0 we obtain

∂ρ

∂t
= ∇ · (ρ∇ (−κ∆ρ− α∆η − γρ− βη)) ,

∂η

∂t
= ∇ · (η∇ (−α∆ρ−∆η − βρ− η)) .

(0.0.23)

In their paper, Baker, Carrillo and Falco studied the stationary states of the last system in
dimension 1 and proved that depending of the parameters κ, α, γ, β, we can observe four different
shapes, which correspond to the four cell-cell adhesion hypothesis: complete sorting, partial
engulfment, engulfment, and mixing. Three main questions remain

— Can we prove the existence of solutions to the nonlocal system and what is their regularity?

— Can we make the limit ε→ 0 rigorous?

— Can we prove convergence to stationary states of the local problem?

The first two questions are solved in the second chapter of this part, where as the third one is
still open at the moment. The existence result is based on the JKO scheme:

Result 10 (Existence of weak solutions. Cf. Theorem 5.1.1). When the matrix
[
κ α
α 1

]
is

positive definite, there exists weak solutions of (0.0.22).

And for the convergence ε→ 0, the strategy is similar to the strategy for a single equation.

Result 11 (Convergence nonlocal to local. Cf. Theorem 5.1.2). Let (ρε, ηε) be weak solutions
of (0.0.22). Then when ε→ 0,

ρε → ρ, ηε → η, in L2(0, T ;H1(Td))

where ρ, η are weak solutions of (0.0.23).

Choosing the right equation (nonlocal or local) to model a phenomenon is a natural question
that arises. Since the equations are similar, as demonstrated by the theorem of nonlocal to
local convergence, which one should be used to model a binary fluid, two types of interacting
populations... And the answer is not entirely clear in the literature. Historically, the equation
of local Cahn-Hilliard was derived for binary alloys and is still widely used in various fields such
as tumor growth, image segmentation, and copolymer melts. The nonlocal equation, on the
other hand, arrived later but has the advantage of being derived more simply. Moreover, it
also highlights nonlocal phenomena, which is important in the study of collective movements,
for example. It also allows for a nonlocality parameter epsilon that can be adjusted according
to the application. Numerically, it is observed that the nonlocal equation tends to favor sharp
interfaces, unlike the local equation, which always has a diffuse interface. Additionally, the
regularity of the solutions of the nonlocal equation is also lower, which is easily noticeable in
energy estimates. If we start with a less regular solution, for example, a constant state perturbed
by random data, numerically it is observed that the solutions of the nonlocal equation take more
time to become smooth. To provide a simple example, in the following numerical simulations
we consider a Cahn-Hilliard equation (nonlocal and local) with constant mobility in dimension
1 and 2. The kernel employed in the nonlocal equation is of gaussian type.
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nonlocal vs local t = 1 nonlocal vs local t = 10 nonlocal vs local t = 100

nonlocal t = 10 nonlocal t = 100 nonlocal t = 1000

local t = 10 local t = 100 local t = 100

Figure 6 – Comparision between the nonlocal and local Cahn-Hilliard equation in 1d and 2d
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The pictures correspond to the numerical simulations of

∂tu = ∆µ, µ = F ′(u) +

{
−∆u: local case
u−ωε∗u
ε2 : nonlocal case

where F (u) = u2(1 − u2) is a polynomial approximation of the double well potential and

ωε = 1
εd
ω
(
x
ε

)
with ω(x) = 1

(2π)d/2
e

−|x|2
2 a gaussian kernel. The numerical implementation

was carried out using Python, and numpy.fft, numpy.ifft to efficiently calculate the Fourier and
inverse Fourier transforms. The Fourier transform proves particularly useful for terms like ∆2u
and the convolution ∆(u− ω ∗ u). Then, an implicit Euler scheme is applied to the equation in
Fourier variables.

Part 3: Fluid Models with surface tension

The Cahn-Hilliard equation can be used to model a binary mixture in interaction with a diffuse
interface. More precisely, consider the general Cahn-Hilliard equation

∂tc− div(m(c)∇µ) = 0, µ = F ′(c)− ε∆c.

where c is an order parameter. During the evolution, an interface between the two components
c = 0, c = 1 will form with size

√
ε.

Figure 7 – Typical evolution of the Cahn-Hilliard equation. The interface is in green: c = 0.5.

A small argument in favor of this result is the form of the energy

E[c] =

∫
ε
|∇c|2
2

+ F (c).

As the energy is bounded we expect that |∇c|2 takes at most value like 1
ε , and thus the transition

zone from c = 0 to c = 1 is of size
√
ε. The idea of a diffuse interface model in a binary mixture

is however not completely obvious in we refer to [22] for a review. The study of the interface
between two fluids started with Young, Laplace, and Gauss in the early 1800s who imagined
the interface as an infinitesimally thin surface. The physical quantities such as the density were
assumed to be discontinuous across the interface. Boundary conditions were used to explain
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physical phenomena like capillarity, which is the process where a liquid flows without the help of
any external forces like gravity. For instance, when we impose the condition that the sum of all
forces acting on an infinitesimal curved interface must equal zero, we obtain the Young-Laplace
equation. This equation states that the pressure difference between the two sides of the interface
(assuming each phase is in equilibrium) is equal to the product of the surface tension and the
curvature.
In the middle of the nineteenth century, Poisson, Maxwell, and Gibbs recognized that the interface
actually involved a smooth transition of physical quantities rather than abrupt changes. In
particular, Gibbs introduced the concept of a dividing surface, denoting a surface of discontinuity,
and introduced surface excess quantities to develop the equilibrium thermodynamics of interfaces.
In the end of the nineteenth century, Rayleigh and Van der Waals expanded on these notions,
describing the interface as having a non-zero thickness, or diffuseness, through thermodynamic
gradient theories. In 1901 Korteweg further advanced these ideas by proposing a constitutive
law for the capillary stress tensor based on density and its spatial gradients, and therefore on
density variations. More precisely, he assumed the stress tensor to be of the form

T = TNS +TC ,

TNS = −pI+ 2µD+ λdiv(v)I, TC = (α|∇ρ|2 + β∆ρ)I+ γ(∇ρ⊗∇ρ) + δD2ρ.

Here TNS is the usual stress tensor applied in Navier-Stokes model for compressible fluilds, and
TC is the introduced capillarity stress tensor. In particular, p is the pressure and D is the
rate-of-strain tensor. α, β, γ, δ are functions of the density ρ, representing long-range molecular
effects. In fact, the previous formula of the capillarity stress tensor is mostly used in single
component fluids and the density ρ is the variable that distinguishes the bulk fluids and the
interface: it is an order parameter. For a binary fluid, the stress tensor can be formulated on
another order parameter: the composition c which can be for instance the mass fraction of one
component (Cahn and Hilliard 1958). This methodology was then expanded to simulate the
phase separation of polymer blends and alloys (de Gennes, 1980). Additionally, in the 1970s, the
diffuse interface approach merged with hydrodynamics, giving rise to a collection of conservation
equations. Kawasaki, Siggia, Hohenberg and Halperin among others named this approach "model
H" and it was later called the "diffuse interface method."
It is not completely clear whether or not the initial Korteweg model is consistent with the ba-
sic concepts of continuum thermodynamics. For instance, it was shown by Serrin in [309] that
"Unless certain conditions are satisfied, the only geometric phase boundaries that conform to
Korteweg’s theory are either spherical, cylindrical, or planar. In other words, disregarding the
effect of gravity, the physical situations that can arise in phase transitions governed by Korteweg’s
theory are: spherical liquid bubbles in an ambient atmosphere, spherical vapor bubbles in an am-
bient liquid bath, planar interfaces between the phases, or circular cylindrical interfaces between
the phases, which are likely unstable. This rather surprising conclusion can be understood as a
consequence of the mechanical equations of equilibrium (Cauchy’s equation) having three indepen-
dent components, while the equilibrium of liquid-vapor phase transitions is determined by a single
physical variable, the density." Despite its uncertainty, Korteweg stresses have been succesfull in
describing experiments. In [100], Chen and Meiburg show that Korteweg stresses can account
for discrepancies observed between conventional Stokes flow simulations and experiments. They
present an estimate of the vorticity and stream function fields induced by the Korteweg stresses,
which shows these stresses result in the formation of a vortex ring structure near the tip of the
concentration front. Through this mechanism, the propagation velocity of the concentration
front is reduced, in agreement with the experimental observations.
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If we assume that the Korteweg stresses represent well the interactions at the interface, a logical
approach would be to formulate the corresponding Euler and Navier-Stokes equations. These
equations are commonly referred to as the Euler-Korteweg and Navier-Stokes-Korteweg equations
in the literature. The previous form of the Korteweg capillarity stress tensor is quite general and
considerable simplifications are often made in the literature. For instance, in the first chapter,
we only retain the Laplacian terms and consider

∇ ·TC = ρ∇Bη[ρ]
where Bη is a nonlocal operator of first order approximating the Laplacian when η → 0. Then we
study the approximation of the (local) Cahn-Hilliard equation by the (nonlocal) Euler-Korteweg
equation, particularly when the friction coefficient is large. More precisely, we consider

∂tρ+
1

ε
div(ρu) = 0,

∂t(ρu) +
1

ε
div (ρu ⊗ u) = − 1

ε2
ρu − 1

ε
ρ∇(F ′(ρ) +Bη[ρ]).

(0.0.24)

This equation models the long-time asymptotics of the motion of a compressible fluid with density
ρ, velocity u which is in fact a liquid-vapor mixture. The fluid experiences high friction (due to
the term − 1

ε2 ρu) and additional capillary effects in the transition zone between liquid and vapor
(due to the term − 1

ερ∇(F ′(ρ) +Bη[ρ]).
When ε is very small, the friction is so big, that we mostly observe a phase separation phenomenon
between the liquid and the vapor. When ε, η → 0 in some scaling to be determined, we prove
the convergence of (0.0.24) to the local Cahn-Hilliard equation

∂tρ = div(ρ∇µ),
µ = −∆ρ+ F ′(ρ).

which describes the dynamics of phase separation. The problem of deriving the Cahn-Hilliard
equation from the Euler-Korteweg equation was studied only recently by [249] assuming two
facts which are not guaranteed by the current theory: existence of weak dissipative solution of
the Euler Korteweg equation for general initial data, and existence of classical solutions of the
degenerate Cahn-Hilliard equation. For that reason, we propose to include a nonlocality in the
Korteweg tensor and consider measure valued solutions, which allows to bypass the two previous
assumptions to make the argument rigorous. Therefore, we start by proving the existence of
measure-valued solutions, which are dissipative (this term will be defined in the related chapter),
a tool particular useful to use relative-entropy method arguments.

Result 12 (Existence of measure-valued solutions. Cf. Section 6.3). There exists dissipative
measure-valued solutions of (0.0.24).

Then we prove the following result

Result 13 (From Euler-Korteweg to Cahn-Hilliard. Cf. Theorem 6.1.4). Let ρ0ε,η and u0
η,ε be a

well prepared initial condition. Let (ρη,ε,uη,ε be a dissipative measure-valued solution of (0.0.24)
with initial condition (ρ0ε,η,u0

ε,η). Then, for each sequence ηk → 0, there exists a subsequence
{ηk} (not relabelled) and a sequence {εk} depending on ηk and the final time T such that εk → 0
and ρηk,εk → ρ , where ρ is a weak solution of the local Cahn-Hilliard equation.

In the second chapter, we consider a generalized compressible Navier-Stokes-Cahn-Hilliard system
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(a bit distinct from the Navier-Stokes-Korteweg equation). The tensor considered here is

∇ ·TC = γdiv

(
∇c⊗∇c− 1

2
|∇c|21

)
.

and we study the system

∂ρ

∂t
+ div (ρv) = 0,

∂(ρc)

∂t
+ div (ρcv) = div (b(c)∇µ) + Fc,

ρµ = −γ∆c+ ρ
∂ψ0

∂c
,

∂(ρv)

∂t
+ div (ρv ⊗ v) = −

[
∇p+ γdiv

(
∇c⊗∇c− 1

2
|∇c|21

)]
+ div

(
ν(c)

(
∇v +∇vT

))
− 2

3
∇ (ν(c) (div (v)))− κ(ρ, c)v,

A rigorous derivation of the system is provided in the related article. It models the motion of
a diphasic fluid composed of two immiscible components,i.e. the cells of the two different types,
in a porous matrix and takes into account viscosity effects, surface tension, and friction on the
rigid fibers constituting the medium. ρ is the total density of the mixture (i.e. the sum of the
two partial densities), c is the relative mass fraction of one component (e.g. the cancer cells),
v is the mass averaged total velocity, µ is called the chemical potential, p is the pressure. The
coefficient γ is related to the surface tension and is equal to the square of the width of the
diffuse interface existing between the two populations. The friction coefficient κ(·) is a monotone
increasing function of the density and takes into account the possible difference of friction strength
between the two populations. We use this friction term to model possible adhesive effects on
the extracellular matrix. The coefficient ν(·) represents the viscosity of the mixture and again
possible differences of viscosities could be considered for the two populations. The function ψ0

represents the separation of the two components of the mixture and phenomenologically models
the behavior of cells (i.e. cells tend to form aggregates of the same cell type). The function
Fc(·) accounts for the possible proliferation and death of cells. The non-negative function b(·)
models the mobility of cells and is assumed to be doubly degenerated to, again, correspond to the
behavior of cells. The model aims to be as general as possible to study the possible mechanical
effects playing a role in invasive growth of a tumor.
We focus on the analysis and numerical simulation of the model. Our system is derived rigorously
and satisfies basic mechanics of fluids and the thermodynamics of particles. Under simplifying
assumptions, we prove the existence of global weak solutions. We also propose a structure-
preserving numerical scheme based on the scalar auxiliary variable method to simulate our system
and present some numerical simulations validating the properties of the numerical scheme and
illustrating the solutions of the model.

Result 14 (Derivation, analysis and numerical simulations of the Cahn-Hilliard-Navier-Stokes
model. Cf. Chapter 7). The previous system can be rigorously derived in thermondynamic
and fluid mechanics framework. There exists weak solutions and we can construct a structure
preserving numerical scheme.
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Part 4: Kinetic theory and the Cahn-Hilliard equation

Kinetic theory is a mathematical framework to describe the evolution of a gas or a plasma, and
more generally a system of N identical point particles, where N is assumed to be large. Such a
system considers three types of scales:

— Microscopic scale. The microscopic scale follows a Newtonian mechanical approach, treat-
ing each particle as a point in space. It uses Newton’s laws of motion to determine particle
acceleration, accounting for the interacting forces. Although this description offers remark-
able precision, it becomes impractical for systems gases, where the number of molecules
approaches Avogadro’s number (approximately N ∼ 1023). Moreover, even when dealing
with a small number of particles, such as in the case of the 3-body problem, it can present
significant challenges.

— Macroscopic scale. Imagine a cube positioned in space, small enough compared to the
entire system yet capable of accommodating a large number of particles. Assuming that
the molecules within the cube have reached a local equilibrium, this approach considers
equations governing energy, momentum, and mass within the confined region. It yields
equations of fluid mechanics, including the Euler and Navier-Stokes equations.

— Mesoscopic scale. Serving as a middle ground between the previous approaches, the
mesoscopic scale considers molecular interactions without attributing specific effects to
individual particles. Instead, it focuses on quantifying the number of molecules engaged in
a particular activity, therefore providing a statistical perspective.

Kinetic theory follows this last approach. It represents a statistical point of view, which forgets
about the individual trajectories and describes the distribution of particles in the phase space.
This usually includes space and velocity, i.e. both macroscopic and microscopic variables.

The unknown is therefore the probability measure

f ≡ f(t, x, ξ), t ≥ 0, x ∈ Rd, ξ ∈ Rd,

such that, for every infinitesimal volume dxdξ around the point (x, ξ) in the phase space, the
quantity f(t, x, ξ) dxdξ is the number of particles which have position x and velocity ξ at fixed
time t. For this reason, f is a nonnegative function and integrable in both space and velocity
variables, but it is not directly observable. Nevertheless, at each point of the domain it provides
all measurable macroscopic quantities, which can be expressed in terms of microscopic averages,
for instance:

ρ(t, x) =

∫
Rd

f(t, x, ξ) dξ, (macroscopic density)

u(t, x) =
1

ρ

∫
Rd

ξf(t, x, ξ) dξ, (mean velocity)

T (t, x) =
1

ρ

∫
Rd

|ξ − u(t, x)|2
2

f(t, x, ξ) dξ, (temperature)

We point out that such a statistical description makes sense only with a very large number of
particles.
Applications to phase transitions. (For further details see [284]) Any substance with a fixed chem-
ical composition, such as water can exist in different forms called states. Water can exist as a
gas, a liquid, or a solid (ice). These states differ in many properties, such as heat capacity,
density, and mechanical properties. Generally, a solid or liquid substance can have multiple
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arrangements of atoms, molecules, or particles, each associated with distinct properties of the
substance, forming different phases. Solid water, for instance, has several phases of ice. Through
experiments, phase transitions or changes of state can be observed. For example, a substance
transitions from a liquid to a solid state through solidification, while the application of pressure
can modify molecular arrangements in a crystal, causing a transition from one crystalline phase
to another. Phase transitions have been known for a long time and occur naturally (e.g., conden-
sation of water droplets in clouds) or in our daily lives. They are also used in various systems and
industrial processes. For instance, the evaporation of water in the steam generator of a nuclear
power plant is a physical process that activates turbines in electric generators, and the melting
and solidification of metals are crucial stages in metallurgical operations, among other examples.
It is important to note that a phase transition is induced by external influences that modify an
intensive thermodynamic variable of the system, such as temperature, pressure, magnetic field,
or electric field.
Furthermore, phase transitions are observed to begin on a microscopic scale. For instance, small
liquid droplets with radii smaller than one micron appear in the vapor phase before complete
condensation into a liquid state. This phenomenon is known as nucleation.
The initial exploration of a microscopic approach to understanding phase transitions can be
credited to Johannes Diderik van der Waals (1837-1923). In his doctoral thesis published in
1873, he introduced the "van der Waals equation of state," which is a theoretical model for the
coexistence of liquid and gas phases using microscopic principles. Another approach, less compu-
tationally expensive than treating the fluid as a system of particles governed by mechanical laws,
is the kinetic theory, which uses the mesoscopic scale mentioned above. During the early decades
of the 20th century, the Swedish physicist David Enskog (1884-1947) extended the Boltzmann
equation and, in collaboration with Vlasov, developed a model that addressed the problem of
phase transitions.
Nevertheless, in many instances, these equations provide an abundance of details that may not
always be necessary. This opens up the possibility of constructing simpler kinetic models that
capture the essential features required to describe phase transition phenomena.
This is the idea of Noguchi and Takata, that consider in [317] a kinetic model to capture the
dynamic of phase transition for the Van der Waals fluid. This model reads as follows:

∂tf + ξ · ∇xf + F · ∇ξf = A(ϱ)(ϱM − f), A(ϱ) > 0,

F = F 1 + F 2, F 1,2 = −∇Φ1,2,

Φ1 =

{
ϱ− ωL ⋆ ϱ

or − κ∆ϱ
, Φ2 = −C1 log(1− ϱ) +

ϱ

1− ϱ
− C2ϱ, C1, C2 ∈ R,

The first equation is a Vlasov equation with a BGK term. The force F is the gradient of a
potential Φ and it is divided into two parts: Φ1 is either a nonlocal combination of short-range
repulsion and long-range attraction, or a local laplacian (see Part 2 of this thesis for more details
on nonlocal to local convergences when ωL approximates a dirac). Φ2 is a short-range interaction
potential. The explanation for this precise form of potential can be found in [317], but it follows
by usual laws of thermodynamics and Van der Waals equation of state. The authors state that
full details of intermolecular collision are not taken into account so that the collision term on
the right-hand side plays just a thermal bath role and neither moment nor energy is conserved.
However, despite this approximation, they show that the system exhibits the essential features
of phase transition dynamics, both theoretically and numerically. A simple argument in favor
of this model is that it has a connexion with the Cahn-Hilliard equation, which has been used
intensively to describe the phase transition phenomena. The link with the Cahn-Hilliard equation
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is obtained after introducing the diffusive scaling in time and space,

t→ ε2t, x→ εx,

and sending ε → 0. Here ε is actually a physical parameter called the Knudsen number, which
is the ratio between the mean free path of a particle and a typical length scale of the system.
When ε is sent to 0, the limiting macroscopic density then solves a Cahn-Hilliard equation. Let’s
prove this statement formally. We start from the rescaled Vlasov equation (where we assumed
A(ρ) = 1)

ε2∂tfε + εξ · ∇xfε + εFε · ∇ξfε = ϱεM(ξ)− fε, ϱε =

∫
Rd

fε(t, x, ξ) dξ.

The potential is

Fε = F 1
ε + F 2

ε , F 1,2 = −∇Φ1,2,

Φ1
ε =

{
ϱε − ωL ⋆ ϱε

or −∆ϱε
, Φ2

ε = − log(1− ϱε) +
ϱε

1− ϱε
− ϱε.

Integrating the Vlasov equation with respect to ξ, we obtain the mass conservation equation

∂tϱε + divJε = 0, Jε =

∫
Rd

ξ

ε
fε(t, x, ξ) dξ.

Integrating the Vlasov equation against ξ, we obtain the flux equation

Jε = −ε2∂tJε︸ ︷︷ ︸
→0

−∇.
∫
Rd

ξ ⊗ ξfε dξ︸ ︷︷ ︸
→−∇ϱ

+Fεϱε︸︷︷︸
→Fϱ

.

The second term of the right hand-side converges to −∇ϱ because we can decompose fε =
fε − ρεM(ξ) + ρεM(ξ) and we know by fε → ρM(ξ) with rate ε.
Therefore, in the limit when ε→ 0 we obtain the equation

∂tϱ−∆ρ+ div (ϱF ) = 0, F = −∇(−∆ϱ+Φ2(ϱ)).

Noting that ∆ϱ = div(ϱ∇ log(ϱ)) we obtain the Cahn-Hilliard equation with degenerate mobility

∂tϱ− div(ϱ∇Φ) = 0, Φ = −∆ϱ+ log

(
ϱ

1− ϱ

)
+

ϱ

1− ϱ
− ϱ.

However, this formal approach is quite hard to make rigorous. And one of the main reason is
that the Vlasov equation is not really well understood when the force depends directly on the
macroscopic density ρ and its derivatives: recall that the Vlasov-Poisson system is studied with
Φ = ∆−1ρ and here we would like (retaining only the highest order) Φ = ρ or even better Φ = ∆ρ
so there is a loss of 2 or even 4 derivatives! In fact, the story may not be completely lost in the
case Φ = ρ, as there are some results of the existence of solutions in small time, but this requires
a lot of assumptions on the initial data (Penrose stability criterion for instance), and even worse
this time of existence may depend on our parameter ε that we intend to send to 0. A natural
way to make this approach rigorous is to convolve the force with a smooth kernel and to pass
to the limit. Then, we send the convolution kernels to a Dirac mass. A second problem is the
logarithmic term log(1− ρ) and the term ρ

1−ρ which are singular when ρ is close to 1. Handling
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these terms would require some L∞ bounds on ρ, but for this system it does not seem possible
to obtain such bounds independently of ε. So we simply suppose that these terms are 0, but for
applications, one can simply truncate these terms and add a convolution, the important property
is that they should not grow more than ρ log(ρ).

Following this plan, the next chapter is dedicated to the convergence ε→ 0 with a mollified force
and with an interaction term set to 0 for simplicity.

Result 15 (From Vlasov-Cahn-Hilliard to Cahn-Hilliard. Cf Theorem 8.1.1). The solutions of
the Vlasov-Cahn-Hilliard equation with a mollified force converge to

∂tρ−∆ρ+ div(ρ∇∆(ρ ∗ ωδ ∗ ωδ)) = 0.

Then it remains to send δ → 0, so that ωδ → δ0. This is achieved in the last chapter of this part.

Result 16 (From mollified Cahn-Hilliard to Cahn-Hilliard. Cf Theorem 9.1.2). When δ → 0,
the solutions of the mollified Cahn-Hilliard equation converge to a solution of the Cahn-Hilliard
equation.

A similar result is found in the case of systems. The strategy is based on commutator estimates,
but it turns out that the approach does not work for any type of kernel in any dimension. When
the dimension is strictly greater than two, we introduce a novel condition that discriminates
which kernels one can choose. This condition turns out to be pretty general as it covers for
instance the Gaussian kernel and every compactly supported kernel.

Perspectives

Nonlocal equations

Recently, and in continuation of my work on the non-local to local limit, I got interested in
different topics of nonlocal equations:

1. Extension of results to more general aggregation diffusion systems:

— Examine the applicability of our results of the nonlocal to local limit to more complex
aggregation-diffusion equations and systems such as [92], including considering various
types of interaction kernels. As an example, I am working on nonlocal operators that
could approximate systems ∂tu− div(A∇u) where A is a matrix and preserving some
of its properties.

2. Steady states, their stability, and asymptotic behaviour:

— When considering competing effects, in nonlocal and local equations, the study of the
stationary states becomes nontrivial. Therefore we aim to work on the analysis of
steady states in the case of competing effects for aggregation-diffusion equations and
systems.

— Evaluate the convergence of solutions towards these steady states, including more
general scenarios.

3. Continuation of research projects:

— Explore laws other than the Brinkman law for the porous medium equations.

— Identify general conditions applicable to the convolution kernels mentioned in [153].



26 Introduction

The Vlasov-Cahn-Hilliard model
For the general system

∂tf + ξ · ∇xf + F · ∇ξf = A(ϱ)(ϱM − f), A(ϱ) > 0,

F = F 1 + F 2, F 1,2 = −∇Φ1,2,

Φ1 =

{
ϱ− ωL ⋆ ϱ

or − κ∆ϱ
, Φ2 = −C1 log(1− ϱ) +

ϱ

1− ϱ
− C2ϱ, C1, C2 ∈ R,

there remains a lack of established existence results and numerical simulations in the existing
literature.
In my current work, I have succeeded in proving the existence of solutions for the system for
analytical initial data. However, the question remains open when the initial data is in Sobolev
spaces. It is widely recognized that similar equation, like the Vlasov-Benney equation, tends to
pose challenges in such cases, unless, perhaps, certain criteria, as the Penrose stability criterion
are met.
I am optimistic that the strategies employed to establish short-term existence of solutions in
Sobolev spaces, where the initial condition satisfies a different Penrose criterion as in [208, 160],
could work. Currently, I am actively working in this direction. Furthermore, I aim to propose
numerical simulations of the model to validate its accuracy in describing phase transition pro-
cesses. There are different possibilities for simulation: either use particle methods such as lattice
Boltzmann methods, or hybrid methods as in [247] when the solution is close to an equilibrium.

1. Analysis and numerical simulation of the Vlasov-Cahn-Hilliard model
— Prove existence of the system for initial condition in Sobolev spaces.
— Design a numerical scheme at the kinetic level.

Theoretical and numerical analysis of fluid models for biology
In the work on the Cahn-Hilliard-Navier-Stokes model cited above, we argue that, from the
numerical simulations, our model seems capable to qualitatively represent patterns of invasive
growth of tumors and could show the possible mechanical effects playing a role in the emergence
of heterogeneous structures observed in tumor invasion of healthy tissue.
However, we emphasize that to achieve these latter goals, we have to be able to capture accurately
the possible fine structures emerging during the numerical simulations. Thus, our numerical
scheme will be improved to increase the spatial and temporal orders of accuracy. In a forthcoming
work, we will develop a high-order finite element scheme for the compressible system we proposed
in the present work. This numerical scheme will allow efficient simulations of compressible
diphasic fluids and will be used to simulate relevant test cases with applications in fluid mechanics
such as rising bubbles and Rayleigh-Taylor instabilities.
Objectives of this work:

1. Improve the actual numerical scheme
— Design an efficient discontinuous Galerkin finite element scheme which are well known

to be effective to catch little structures [140].
— Use the scalar auxiliary variable (SAV) method [311] proposed in our previous paper

to preserve energy decay.
— Benchmark the scheme to verify the ability to catch: Rayleigh-Taylor instabilities

(difference of densities between the two fluids), viscous Saffmann-Taylor instabilities
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(differences of viscosities between the two fluids), bubble rising test case (useful for
aerosols). See for instance [170, 217, 303, 230]

2. Other applications of the model
— For instance application to the mathematical representation of tumor-on-chips [332]

that can replicate in a very accurate manner the micro-environment of the tumor.
To implement a discontinuous galerkin method, we intend to use DUNE software [40], the DUNE-
FEM module [129] and the DUNE-FEM-DG module [128].
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Mathematical tools

We present some of the key methods, concepts, and facts that are used in this thesis. This list
is not exhaustive and for the reader familiar with these methodologies, we suggest skipping this
chapter as we do not make any reference to it in other chapters, as they are mostly self-contained.
We start by defining the space of Banach-valued functions and recall some useful inequalities.

Spaces of Banach valued functions and classical facts

We are mostly concerned with evolution equations, meaning that some quantities is evolving
in time at each point of a domain. The usual framework is to view the functions depending
on time and space as function depending on time t with values in the functions of space in x.
More precisely to u : (t, x) → u(t, x) where (t, x) ∈ I × Ω we associate u : t → u(t) where
u(t) : x → u(t, x). Here I is an interval of R and X is a Banach space. Now we provide some
results that can be found in [54, 302, 63, 162].

Definition 0.0.1 (Lebesgue measurability). Let X be a Banach space and I an interval of R.
We say that a function from I in X is Lebesgue measurable if

1. The inverse image under f of all open sets of X is a Borel set of I,

2. We can change f on a subset of zero Lebesgue measure of I, so that f takes its values into
a separable subspace of X.

With this definition we can generalize the concept of Lebesgue spaces to Bochner spaces.

Definition 0.0.2 (Bochner spaces). Let I = (0, T ), the spaces Lp(I;X) with p ≥ 1 of Lebesgue
measurable functions defined on I with values in X such that t → ∥f(t)∥pX is integrable on I is
a Banach space with the norm

∥f∥Lp(I;X) :=

(∫
I

∥f(t)∥pX dt

)1/p

.

They admit the following interpolation property

Proposition 0.0.3. Let I be an interval of R and Ω be a open set of Rd. Suppose f ∈ Lp1(I;Lq1(Ω))∩
Lp2(I;Lq2(Ω)) for some p1, q1, p2, q2 ∈ [1,+∞]. Then f ∈ Lp(I;Lq(Ω)) for all p, q defined as

1

p
=

θ

p1
+

1− θ

p2
,

1

q
=

θ

q1
+

1− θ

q2

for all θ ∈ (0, 1). Moreover

∥f∥Lp(I;Lq(Ω)) ≤ ∥f∥θLp1 (I;Lq1 (Ω))∥f∥1−θLp2 (I;Lq2 (Ω)).

29
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As a corollary we obtain

Proposition 0.0.4. Suppose that a sequence of functions converges strongly in Lp1(I;Lq1(Ω))
and is bounded in Lp2(I;Lq2(Ω)). Then by interpolation we have strong convergence in every
Lp(I;Lq(Ω)) where p, q are defined above.

This corollary is fairly important as often we obtain strong compactness of a sequence in a low
Lebesgue space, for instance L1 with the Frechet-Kolmogorov theorem (see below). Then if we
prove for that the sequence is bounded in some Lp for some p > 1, we can upgrade this strong
convergence to every Lq for q < p.
More generally, for X a Banach space and Y a locally convex space with X ⊂ Y we define the
spaces

W 1,p,q(I;X,Y ) :=

{
u ∈ Lp(I;X);

du

dt
∈ Lq(I;Y )

}
(0.0.25)

where the derivative du
dt has to be understood in the distributional sense i.e.

du

dt
(φ) = −

∫
I

u
dφ

dt
, ∀φ ∈ D(I).

The inclusion du
dt ∈ Lq(I;Y ) means that there exists a function v ∈ Lq(I;Y ) such that

du

dt
(φ) =

∫
I

vφ, ∀φ ∈ D(I).

As we have informations on the derivative in time, we expect some embedding into the space of
continuous functions.

Proposition 0.0.5. Let p, q ≥ 1 and let X ⊂ Y continuously. Then W 1,p,q(I;X,Y ) ⊂ C(I;Y )
continuously.

It allows for instance to makes sense of the initial condition of an evolution problem. More preci-
sely writing u(0) = u0 for a given initial condition has a meaning if we know some informations
on du

dt . In the case X = V and Y = V ′ and H is a pivot Hilbert space (identified with its dual
by the Riesz representation theorem) we can obtain a more precise result :

Proposition 0.0.6. Let V ⊂ H ∼= H ′ ⊂ V ′ and p′ = p
p−1 for some p ≥ 1. then W 1,p,p′(I;V, V ′) ⊂

C(I;H) continuously and the following integration by part formula holds for any u, v ∈W 1,p,p′(I;V, V ′)
and 0 ≤ t1 ≤ t2 ≤ T :

(u(t2), v(t2))H − (u(t1), v(t1))H =

∫ t2

t1

〈
du

dt
, v(t)

〉
V ′×V

+

〈
u(t),

dv

dt

〉
V ′×V

dt.

The previous formula is quite general and one can deduce for instance the classical Lions-Magenes
lemma. An application of this result is the following : suppose we are given a function u solution of
a PDE which is in L2(0, T ;H1(Ω)) such that ∂tu ∈ L2(0, T ;H−1(Ω)). Applying Proposition 0.0.5
only gives that u is C([0, T ];H−1(Ω)) which is a weak continuity. Proposition 0.0.6 shows that
u is in fact in C([0, T ];L2(Ω)) where the continuity is understood for the strong topology of L2.
Also the integration by parts formula holds for instance for u, v = u.

Functional analysis theorems

We start with the classical Sobolev embeddings that allow for the comparison of norms.
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Sobolev embeddings and the Gagliardo-Nirenberg inequality

Let Ω ⊂ Rd be a domain sufficiently smooth (not necessarily bounded). Let k,m ∈ N and
1 ≤ p, q ≤ +∞. Then the following embeddings are continuous :

Wm,p(Ω) ↪→
{
W k,q(Ω) if m− d

p ≥ k − d
q , q ≥ p (unless m− d

p = k, q = ∞),
Ck+µ(Ω) if 0 ≤ µ ≤ m− k − d

p < 1 (unless m− d
p ∈ N).

Moreover, if Ω is bounded the embeddings are compact for strict inequalities i.e. respectively
m − d

p > k − d
q and m − d

p > k + µ. For more details, we refer to [106]. It is also possible to
interpolate these spaces, and we have the following interpolation inequality on the whole space :

Theorem 0.0.7 (Gagliardo-Nirenberg inequality). Let 1 ≤ q ≤ +∞. Let j,m ∈ N such that
j < m. Let 1 ≤ r ≤ +∞, 1 ≤ p < +∞, and θ ∈ [0, 1] such that the relations

1

p
=
j

n
+ θ

(
1

r
− m

n

)
+

1− θ

q
,

j

m
≤ θ ≤ 1

hold. Then,
∥Dju∥Lp(Rn) ≤ C∥Dmu∥θLr(Rn)∥u∥1−θLq(Rn)

for any u ∈ Lq(Rn) such that Dmu ∈ Lr(Rn), with two exceptional cases :
1. If j = 0, q = +∞, and rm < n, then an additional assumption is needed : either u tends

to 0 at infinity, or u ∈ Ls(Rn) for some finite value of s.
2. If r > 1 and m− j − n

r ∈ N, then the additional assumption j
m ≤ θ < 1 is needed.

In the case of bounded domains we have

Theorem 0.0.8 (Gagliardo-Nirenberg on bounded domains). Let Ω ⊂ Rn be a bounded domain
sufficiently smooth. Let 1 ≤ q ≤ ∞. Let j,m ∈ N such that j < m. Let 1 ≤ r ≤ +∞, 1 ≤ p < +∞
be real, and θ ∈ [0, 1] such that the relations

1

p
=
j

n
+ θ

(
1

r
− m

n

)
+

1− θ

q
,

j

m
≤ θ ≤ 1

hold. Then,

∥Dju∥Lp(Ω) ≤ C∥Dmu∥θLr(Ω)∥u∥1−θLq(Ω) + C∥u∥Lσ(Ω),

where u ∈ Lq(Ω) such that Dmu ∈ Lr(Ω) and σ is arbitrary, with one exceptional case :
1. if r > 1 and m−j− n

r is a non-negative integer, then the additional assumption j
m ≤ θ < 1

is needed.

Convergence theorems
We first recall the definition of a uniformly integrable set.
Definition 0.0.9 (Uniform integrability). Let M be a set of functions in L1(Ω;Rd). We say that
M is uniformly integrable if and only if the two following conditions hold :

1. for any η > 0 there exists a measurable set E ⊂ Ω with λ(E) < +∞ such that

sup
u∈M

∫
Ω\E

|u|dx < η;
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2. for any η > 0 there exists δ > 0 such that, for every measurable set E ⊂ Ω with λ(E) < δ,

sup
u∈M

∫
E

|u|dx < η.

Note that the first condition is only important when the domain Ω is unbounded.

Theorem 0.0.10 (Vitali convergence theorem). Let {uk}k∈N ⊂ L1(Ω) be a sequence converging
a.e. to some u. Then the following assertations are equivalent :

1. u ∈ Lp(Ω) and uk → u in Lp(Ω)

2. {|uk|p}k∈N is uniformly integrable.

As a corollary we have the following theorem.

Theorem 0.0.11 (Generalized Lebesgue dominated convergence theorem). Let {uk}k∈N ⊂
L1(Ω) be a sequence converging a.e. to some u. Let {vk}k∈N be a sequence of non-negative Le-
besgue measurable functions defined on Ω. Suppose that :

1. |uk(x)| ≤ |vk(x)| for all k ∈ N and for all a.e. x ∈ Ω.
2. {vk(x)}k∈N converges a.e. and in Lp(Ω) to some v(x).

Then u ∈ Lp(Ω) and uk → u in Lp(Ω).

Compactness toolbox for general PDEs

Compactness refers to the property of a set of functions that ensures that any sequence in the
set contains a convergent subsequence. In general to obtain compactness we need to bound
the sequence of functions in some norms. The easiest compactness result can be obtained by
considering weak topologies :

Theorem 0.0.12 (Banach-Alaoglu-Bourbaki). In a Banach space with a separable predual, any
bounded sequence contains a weakly* convergent subsequence.

For instance, if a sequence of functions is bounded in Lp(Ω), for 1 < p ≤ +∞ we can extract
a subsequence that converges in the weak* topology of Lp(Ω). When p < +∞ the weak* and
weak topology are equivalent. In the case p = 1 the previous theorem cannot be applied. An
easy counter example is the sequence of mollifiers that converge to a dirac. However we can still
find compactness if we see the L1(Ω) functions as a sequence of measures and use Prokhorov’s
theorem. If we know that the functions are just a little bit better than L1(Ω), we can still find
weak compactness in L1(Ω), this is the point of Dunford-Pettis theorem.

Theorem 0.0.13 (Dunford-Pettis). Let M ⊂ L1(Ω) be bounded. Then M is relatively weakly
compact in L1(Ω) if and only if M is uniformly integrable.

For instance, in kinetic equations, if we look at a sequence of functions {uk}, we often obtain
some bounds on {uk log(uk)}. On a bounded domain it is sufficient to apply the previous theorem
and find a weakly convergent subsequence in L1. On the whole space, we need an additional
assumption on the moments, for instance, {|x|uk} is bounded in L1 to prove that the sequence
is uniformly integrable.
In many cases, especially with nonlinear PDEs, weak convergence is not enough and we have
to use strong compactness methods. A characterization for a subset of Lp(Rd) to be (strongly)
compact is provided by the Fréchet-Kolmogorov compactness theorem. Its proof is usually based
on the Arzelà-Ascoli theorem, which answers the same question but in the space of continuous
functions over a compact metric space.
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Theorem 0.0.14 (Arzelà-Ascoli). Let (E, de) be a compact metric space, (F, df ) a complete
metric space and M be a subset of C(E,F ). The following properties are equivalent :

1. M is relatively compact ( i.e. its closure is compact) in (C(E,F ), d∞) with d∞(u, v) :=
supx∈E{df (u(x), v(x))}.

2. M is uniformly equicontinuous, i.e.

∀ε > 0 ∃δ > 0 such that, if de(x1, x2) < δ, then df (u(x1), u(x2)) < ε ∀u ∈M,

and Mx := {u(x), u ∈M} is relatively compact in F for all x ∈ E.

Theorem 0.0.15 (Fréchet–Kolmogorov theorem). Let M be a bounded set in Lp(Ω) with 1 ≤
p < +∞. Then M is relatively compact if and only if the following properties hold :

1. (Equicontinuity)
lim

|h|→0
∥τhu− u∥Lp(Ω) = 0 uniformly in u ∈M,

i.e. for any ε > 0 there exists δ > 0 such that ∥τhu− u∥Lp(Ω) < ε for every u ∈M and for
every h ∈ Ω such that |h| < δ ;

2. (Equitightness) For any ε > 0 there exists a bounded and measurable subset E ⊂ Ω such
that ∥u∥Lp(Ω\E) < ε for every u ∈M .

When Ω is bounded, the equitightness condition is not required. To prove that a sequence satisfies
the condition of the previous theorem, we often need some estimates on the derivatives. For
instance this can be seen from the compact embeddings of the previous subsection. In fact,
this result can be refined : if a nonlocal approximation of the derivatives is bounded, we have
compactness.

Theorem 0.0.16 (Bourgain-Brezis-Mironescu compactness result). Let Ω be a smooth bounded
domain of Rd. Let (ρk) be a smooth sequence of radial mollifiers that are radially non-increasing.
Let {uk} be a sequence of Lp(Ω) functions for 1 ≤ p < +∞ satisfying the uniform estimate∫

Ω×Ω

|uk(x)− uk(y)|p
|x− y|p ρk(|x− y|) dxdy ≤ C0.

Then there exists u ∈ Lp(Ω) and a subsequence of {uk} which converges in Lp(Ω) to u. Moreover
1. If 1 < p < +∞, u ∈W 1,p(Ω) and ∥u∥W 1,p(Ω) ≤ C(p,Ω)C0,

2. If p = 1, u ∈ BV (Ω) and ∥u∥BV (Ω) ≤ C(Ω)C0.

One crucial assumption in the proof of this theorem is that the mollifiers are non-increasing.
This assumption was later removed by Ponce in [294].
This theorem can be seen as a nonlocal version of the Rellich-Konchadrov theorem. As the
Poincaré-Wirtinger inequality is a corollary of Rellich-Konchadrov we can expect a nonlocal
Poincaré-Wirtinger inequality as a corollary of the previous result.

Theorem 0.0.17 (Nonlocal Poincaré-Wirtinger). There exists k0 such that for all u ∈ Lp(Ω)
and all k > k0 ∫

Ω

|u− (u)Ω|p ≤ C(p,Ω)

∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|p ρk(|x− y|) dxdy,

where (u)Ω = 1
|Ω|
∫
Ω
u is the mass of u.
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All the previous compactness methods mentioned above are mostly concerned with functions of
one variable, the ’space variable’. When dealing with functions of space and time, the situation
can become more tricky. Of course if we have for instance ∂tuk ∈ L1(0, T ;L1(Ω)) and ∇uk ∈
L1(0, T ;L1(Ω)) uniformly in k, we can apply the previous theorems to conclude compactness as
here the time and space play the ’same’ role. But in many cases, the PDE is of the form

∂tu = div(A[u]),

where A[u] has at most range in some Lp spaces. Then we see that ∂tu(t) takes values in the
negative sobolev space W−1,p(Ω). In those cases we can use the fundamental result of Aubin-
Lions-Simon :

Theorem 0.0.18 (Aubin-Lions-Simon). Let X0 ⊂ X ⊂ X1 be three Banach spaces. We assume
that the embedding of X0 in X is compact and the embedding of X in X1 is continuous. For
1 ≤ p, q ≤ +∞, we have with the definition 0.0.25 :

1. If p < +∞, W 1,p,q((0, T );X0, X1) is compactly embedded in Lp(0, T ;X),

2. If p = +∞ and if q > 1, W 1,p,q((0, T );X0, X1) is compactly embedded in C([0, T ], X).

This theorem shows that if we have some compactness in space, here represented by the compact
embedding of X0 in X, and if we know that the derivative is in some Lp space in time, we can
deduce compactness. In some situations, it may also happen that we know that a sequence is
compact in space, however not necessarily bounded in a compact space, and we can prove a
similar result that we state here in the case p = 2.

Lemma 0.0.19. Let {φδ}δ be the standard sequence of mollifiers. Suppose that {fε} is a sequence
bounded in L2((0, T )× Td) such that

1. ∂tfε = ∇k(Jε), where ∇k is any linear differential operator of order k ∈ N and {Jε}
uniformly bounded in L1((0, T )× Td),

2. {fε} is compact in space in L2((0, T )× Td), i.e.

lim
δ→0

lim sup
ε→0

∫ T

0

∫
Td

|fε ∗ φδ(t, x)− fε(t, x)|2 dxdt = 0. (0.0.26)

uniformly for all ε.

Then, {fε} is compact in time in L2((0, T )× Td), i.e.

lim
h→0

lim sup
ε→0

∫ T−h

0

∫
Td

|fε(t+ h, x)− fε(t, x)|2 dxdt→ 0 as h→ 0 (0.0.27)

and so, it is compact in L2((0, T )× Td).

As the proof is quite interesting as it can be adapted in many situations, we detail it here. We
recall that

∥∇kφδ∥Lp(Td) ≤
C

δk+d−d/p
,

and for any function g ∈ Lp(Td),

∥g ∗ φδ∥Lp(Td) ≤ ∥φδ∥Lp(Td)∥g∥L1(Td).
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Démonstration. Using the mollifiers with δ = δ(h) depending on h to be specified later in the
way that δ(h) → 0 as h→ 0, we first split∫ T−h

0

∫
Td

|fε(t+ h, x)− fε(t, x)|2 dxdt ≤ 4

∫ T−h

0

∫
Td

|fε(t, x)− fε(t, ·) ∗ φδ(x)|2 dxdt

+ 4

∫ T−h

0

∫
Td

|fε(t+ h, x)− fε(t+ h, ·) ∗ φδ(x)|2 dx dt

+ 4

∫ T−h

0

∫
Td

|fε(t+ h, ·) ∗ φδ(x)− fε(t, ·) ∗ φδ(x)|2 dx dt.

When we apply limit limh→0 lim supε→0, the first and second term vanish due to (0.0.26). It
remains to study the third term which reads∫ T−h

0

∫
Td

|fε(t+ h, ·) ∗ φδ(x)− fε(t, ·) ∗ φδ(x)|2 dx dt =

=

∫ T−h

0

∫
Td

∣∣∣∣∣
∫ t+h

t

∂tfε(s, ·) ∗ φδ(x) ds
∣∣∣∣∣
2

dxdt =

∫ T−h

0

∫
Td

∣∣∣∣∣
∫ t+h

t

J ∗ ∇kφδ(s, x) ds

∣∣∣∣∣
2

dx dt

≤ Ch

∫ T−h

0

∫
Td

∫ t+h

t

∣∣J ∗ ∇kφδ(s, x)
∣∣2 dsdxdt,

where we used Jensen’s inequality. We perform the change of variables s 7→ v = s−t
h , use Fubini’s

theorem, and obtain

h

∫ T−h

0

∫
Td

∫ t+h

t

∣∣J ∗ ∇kφδ(s, x)
∣∣2 dsdxdt = h2

∫ 1

0

∫
Td

∫ T−h

0

∣∣J ∗ ∇kφδ(vh+ t, x)
∣∣2 dt dx dv.

Then we use the change of variables t 7→ τ = v h+ t and obtain

h2
∫ 1

0

∫
Td

∫ T−h

0

∣∣J ∗ ∇kφδ(vh+ t, x)
∣∣2 dtdx dv =

= h2
∫ 1

0

∫
Td

∫ T+h(v−1)

vh

∣∣Ji ∗ ∇kφδ(τ, x)
∣∣2 dτ dxdv ≤ h2

δ2k+d
∥Jε∥2L1

t,x
.

Using the L1((0, T )× Td) bound on {Jε} and choosing δ such that δ2k+d = h we conclude that

lim
h→0

lim sup
ε→0

∫ T−h

0

∫
Td

|fε(t+ h, x)− fε(t, x)|2 dxdt ≤ θ(h).

Combined with the compactness in space (0.0.27) and the Fréchet-Kolmogorov theorem we obtain
the compactness of {fε} in L2((0, T )× Td).

Remark 0.0.20. Compared with the usual version of the Fréchet-Kolmogorov theorem, one would
expect that the condition for compactness in space should read

lim
y→0

lim sup
ε→0

∫ T

0

∫
Td

|fε(t, x+ y)− fε(t, x)|2 dxdt = 0. (0.0.28)

However, by a careful inspection of the proof, (0.0.26) is sufficient and in fact, in the proof one
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deduces (0.0.26) from (0.0.28).

When one deals with the convergence of a product of a sequence ukvk it is sufficient to prove
that one of them converges weakly and the other one converges strongly in the dual space to
prove that (at least in the distributional sense) ukvk → uv. With the ’compensated compactness’
approach in the space time setting is is enough to require that one sequence is compact in time
and the other is compact in space. Therefore, even if both sequence oscillates and do not converge
strongly, as long as they oscillate in a compatible way we can conclude. We formulate this theorem
in the very general setting from [280].

Theorem 0.0.21 (Space-time compensated compactness). Let 1 ≤ q ≤ +∞, 1 ≤ p ≤ d and
α < p′. Suppose that

1. {uk} is uniformly bounded in Lq(0, T ;W 1,p(Ω)),

2. {vk} is uniformly bounded in Lq
′
(0, T ;Lα

′
(Ω)),

3. {∂tvk} is uniformly bounded in M(0, T ;H−m(Ω)) for some m ∈ N,

and that they converge respectively weakly or weakly* to u and v. Then ukvk → uv in the distri-
butional sense.

The following two sections are also compactness arguments. However as they are very specific to
some situations (kinetic equations and measure valued solutions respectively), we separate them
from the rest.

Velocity averaging lemmas

The kinetic equations are generally of the form

∂tf + v · ∇xf = S,

where f = f(t, x, v) is a function describing the probability of finding a particle at a time t,
position x and velocity v. The transport operator being hyperbolic, we do not expect in general
to gain any regularity or compactness for the solutions. However this property can be obtained
for the moments of f , this is the so-called ’avering lemma’. We state it in the L2 framework but
more general cases [194, 286] have been proven.

Theorem 0.0.22 (Averaging Lemma). Let f ∈ L2(Rt × Rdx × Rdv) be a solution of the free
transport above. Then for all compactly supported test functions φ ∈ C∞

0 (Rd),∥∥∥∥∫
Rd

fφ(v) dv

∥∥∥∥
L2(R,H1/2(Rd)))

≤ C
(
∥f∥L2(Rt×Rd

x×Rd
v)

+ ∥S∥L2(Rt×Rd
x×Rd

v)

)
.

As a consequence we obtain compactness in space for the moments, since we are able to have
informations on the ∂1/2x derivative. A version of the velocity averaging lemma that will be used
in this manuscript is the following from [269, Lemma 4.2].

Lemma 0.0.23. Assume that {fε} is bounded in L2(Rt×Rdx×Rdv), {fε0} and {fε1} are bounded
in L1(Rt × Rdx × Rdv). Moreover, suppose that

ε∂tf
ε + v · ∇xf

ε = fε0 +∇v · fε1 .
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Then, for all φ ∈ C∞
0 (Rd),∥∥∥∥∫

Rd

(fε(t, x+ y, v)− fε(t, x, v))φ(v) dv

∥∥∥∥
L1

t,x

→ 0,

when y → 0 uniformly in ε.

Therefore we can obtain compactness in space. It is not possible to obtain compactness in time
here with the velocity averaging lemma as there is an ε factor in front of the time derivative.

Young measures

We’ve seen in the previous sections that we need strong compactness to identify the limit on
nonlinear terms. If uk converges weakly to u and u2k converges weakly it is not true that its weak
limit is u2. A simple example is the sequence sin(kx), where the weak limits of uk and u2k is
respectively 0 and 1/2. However we can still describe the weak limit of u2k in terms of u, this is
one of the purposes of the Young measures. The idea of Young measures is to embed the problem
in a larger space and gain linearity. We write f(uk(y)) = ⟨f, δuk(y)⟩, and if f ∈ C0(Rd), using the
duality (L1(Q;C0(Rd)))∗ = L∞

w (Q;M(Rd)), Banach-Alaoglu theorem and weak-star continuity
of linear operators, we can pass to the limit. The same is true if {f(uk)} is weakly compact in
L1(Q) and {uk} does not grow too fast as the following theorem states :

Theorem 0.0.24 (Fundamental Theorem of Young Measures). Let Q ⊂ Rd be a measurable set
and let uk : Q→ Rd be measurable functions such that

sup
k∈N

∫
Q

f(|uk(y)|) dy < +∞

for some continuous, nondecreasing function f : [0,+∞) → [0,+∞) with limt→+∞ f(t) = +∞.
Then, there exists a subsequence (not relabeled) and a weakly star measurable family of probability
measures ν = {νy}y∈Q with the property that whenever the sequence {ψ(y, uk(y))}k∈N is weakly
compact in L1(Q) for a Carathéodory function (measurable in the first and continuous in the
second argument) ψ : Q× Rd → R, we have

ψ(y, uk(y))⇀

∫
Rn

ψ(y, λ) dνy(λ) in L1(Q).

We say that the sequence {uk}k∈N generates the sequence of Young measures {νy}y∈Q.

Example 0.0.25 ([297]). Consider the oscillating sequence for x ∈ (0, 1)

uk(x) :=

{
1 if kx− ⌊kx⌋ ∈ [0, 1/2),
−1 if kx− ⌊kx⌋ ∈ [1/2, 1).

Then uk ⇀ 1/2 ∗ 1 + 1/2 ∗ (−1) = 0 and the associated family of Young measures is

νx =
1

2
δ1 +

1

2
δ−1.

{νx}x reflects the asymptotic distribution of values in the sequence uk which is in this case -1
and 1 with equal probability 1/2.



38 Mathematical tools

Figure 8 – Plot of u1 and u5.

Note that in the above theorem, we require that the sequence {ψ(y, uk(y))} is weakly compact
in L1(Q). This prevents the concentration effect to appear (think about the family of standard
mollifiers). When we do not have weak compactness, we use the following proposition which
follows from the Banach-Alaoglu theorem. We formulate it with a distinguishment between time
and space variables (that is, Q = (0, T )× Ω, y = (t, x) with t ∈ (0, T ) and x ∈ Ω) as usually in
applications one has better integrability in time which results in better characterization of the
resulting measure. The following proposition is a consequence of the Banach-Alaoglu theorem
and the Radon-Nikodym theorem, see [55].

Proposition 0.0.26. Let f be a continuous function and a sequence {f(t, x, uk(t, x))}k∈N be
bounded in Lp(0, T ;L1(Ω)) with p ≥ 1. Let {νt,x}t,x be the Young measure generated by {uk}k.
Then there exists a measure mf such that (up to a subsequence not relabelled)

f(t, x, uk(t, x))− ⟨νt,x, f⟩ ∗
⇀mf in Lp(0, T ;M(Ω)) if p > 1,

f(t, x, uk(t, x))− ⟨νt,x, f⟩ ∗
⇀mf in M((0, T )× Ω) if p = 1.

Moreover, if p > 1, the measure mf is absolutely continuous with respect to time : for a.e.
t ∈ (0, T ), there exists measure mf (t, ·) such that∫

(0,T )×Ω

ψ(t, x) dmf (t, x) =

∫ T

0

∫
Ω

ψ(t, x)mf (t, dx) dt.

Let us remark that by the fundamental theorem, we have mf = 0 when the sequence {f(uk)}k∈N
is weakly compact in L1((0, T )× Ω). We use the notation :

f = ⟨f(λ), νt,x⟩+mf (0.0.29)

to represent weak limit of f(t, x, uk(t, x)). We also have the following result which allows com-
paring two concentration measures mf1 and mf2 for two different nonlinearities f1, f2. For the
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proof, we refer to [167, Lemma 2.1].

Proposition 0.0.27. Let {νt,x}(t,x)∈(0,T )×Ω be a Young measure generated by a sequence {uk}j∈N.
If two continuous functions f1 : (0, T )×Ω → Rd and f2 : (0, T )×Ω → R+ satisfy |f1(z)| ≤ f2(z)
for every z, and if {f2(uk)} is uniformly bounded in L1((0, T )× Ω), then we have

|mf1(A)| ≤ mf2(A),

for any borel set A ⊂ (0, T )× Ω.

Here, |µ| is the total variation measure defined as |µ|(A) = µ+(A) − µ−(A) where µ+, µ− are
positive and negative parts of µ.

Let us conclude with a few comments about the measure mf which captures concentration
effects. One can describe it more precisely. The first attempts to do so by some generalizations
of the Young measures were initiated by DiPerna and Majda in the case of the incompressible
Euler equations [139]. Then, Alibert and Bouchitté extended the result to a more general class
of nonlinearities in [15]. They proved that there exists a subsequence (not relabeled) as well as
a parametrized probability measure ν ∈ L∞

w (Q;P(Rn)) (which is identical with the "classical"
Young measure), a non-negative measure m ∈ M+(Q), and a parametrized probability measure
ν∞ ∈ L∞

w (Q,m;P(Sn−1)) such that for any Carathéodory function f such that f(x, z)/(1 + |z|)
is bounded and uniformly continuous with respect to z,

f(y, uk(y))
∗
⇀

∫
Rd

f(y, λ)dνy(λ) +

∫
Sn−1

f∞(y, β) dν∞y (β)m(y)

weakly* in the sense of measures. Here,

f∞(y, β) := lim
s→∞

f(y, tβ)

t
.

Their result was also extended to the case when f has different growth with respect to different
variables, see for instance [207].

Example 0.0.28 ([297]). Consider the concentrating sequence at 0 for x ∈ (−1, 1) uk(x) :=
k(1(0,1/k) − 1(−1/k,0)). Then we have

νx = δ0, m(y) = 2δ0, ν∞0 =
1

2
δ1 +

1

2
δ−1.

We get the information that the sequence concentrates around 0 in the direction 1 and -1 with
the same probability.
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Figure 9 – Plot of u1, u5, u10.

Gradient flows and the JKO scheme

Gradient flows : The Cahn-Hilliard equation is a gradient flow. Let’s try to understand this
statement. First of all, a gradient flow system in its more general form can be written as

x′(t) = −∇F (x(t)).

Here x : t → X where X is a linear space and F : X → R. Therefore x evolves in the direction
where F decreases the most. Here F is a functional and we have to specify for which metric we
consider its gradient.

Example 0.0.29. The heat equation
∂tu = ∆u

is a gradient flow for the energy F (u) = 1
2

∫
|∇u|2 for the metric defined by the L2 scalar product.

It is also a gradient flow of the energy F (u) = 1
2

∫
u2 for the metric defined by the H−1 scalar

product.

This setting is actually enough to understand that the Cahn-Hilliard equation

∂tu = ∆µ, µ = −∆u+W ′(u)

is an H−1 gradient flow of the energy functional

F (u) =

∫
1

2
|∇u|2 +W (u). (0.0.30)

More tricky to understand is the Cahn-Hilliard equation with degenerate mobility :

∂tu = div(u∇µ), µ = −∆u+W ′(u). (0.0.31)
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We define the second Wasserstein distance as

W 2
2 (µ, ν) = inf

π∈Π(µ,ν)

∫
Ω×Ω

d(x, y)2 dπ(x, y), µ, ν ∈ P2(Ω),

where P2(Ω) is the space of probability measures with finite second moments, and Π(µ, ν) is the
set of transport plans with first marginale µ and second marginale ν. More precisely

Π(µ, ν) := {π ∈ P(Ω× Ω),

∫ ∫
ψ(x) + ϕ(y) dπ =

∫
ψ dµ+

∫
ϕdν}.

With this definition in mind, it can be justified with optimal transport theory, and more precisely
the Benamou-Brenier theorem below and Otto calculus that we can make sense of the object
∇W2

F and

∇W2
F (u) = −div

(
u∇δF

δu

)
, (0.0.32)

where δF
δu is the gradient of F in the L2 metric.

Theorem 0.0.30 (Benamou-Brenier).

W 2
2 (µ, ν) = inf

{∫ 1

0

∫
|∇ϕs|2 dµs ds, µ0 = µ, µ1 = ν,

dµs
ds

= −div(µs∇ϕs)
}
.

Let us try to understand Equation (0.0.32). The idea of Otto is to use the Benamou-Brenier
theorem to define a metric structure ⟨·, ·⟩u on each tangent space TµP tangent to P(Ω) at µ.
This metric should satisfy (as in the case of the geodesic formula for Riemannian geomtry)

W 2
2 (µ, ν) = inf

{∫ 1

0

∥∥∥∥dµsds
∥∥∥∥2
µs

ds, µ0 = µ, µ1 = ν

}
.

A natural guess is to take for two tangent vectors at µ : dµt1

dt and dµt1

dt the scalar product〈
dµt1
dt

,
dµt2
dt

〉
µ

=

∫
∇ϕ1 · ∇ϕ2 dµ (0.0.33)

where ϕ1 and ϕ2 solve

−div(µ∇ϕi) =
dµti
dt

, i = 1, 2.

Then for a functional F : P(Ω) → R and (µt)t a path we have

d

dt
F(µt) =

〈
∇µt

F,
dµt
dt

〉
µt

.

Using the fact that
d

dt
F(µt) =

〈
δF

δµt
,
dµt
dt

〉
L2

and formula (0.0.33), we deduce formula (0.0.32). Note that the notation ∇W2 in (0.0.32) is
a renaming of ∇µt

to emphasize the metric structure of the Wasserstein distance. This shows
that the Cahn-Hilliard equation with degenerate mobility (0.0.31) is a gradient flow for the
Wasserstein metric of the functional (0.0.30).
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Existence theory for gradient flows : From the theory of gradient flows, we can deduce existence
of solutions to some PDE. For instance in the case of an ODE

x′(t) = −∇F (x(t)),
we can construct a sequence of points

xk+1 = argmin
x

{
F (x) +

|x− xk|2
2τ

}
,

provided we have some assumptions of F like lower semi-continuity. By definition of xk+1 as a
minimum we obtain

∇F (xk+1) +
xk+1 − xk

τ
= 0

which is a discretization of the ODE. We can define a linear interpolation xτ of the sequence xk
and the goal is to send τ → 0. For Wasserstein gradient flows, the idea is similar and the scheme,
first introduced in [234] and called the JKO scheme, becomes

xk+1 = argmin
x

{
F (x) +

W2
2 (x, xk)

2τ

}
.

In the case of a PDE, to send τ → 0 we require compactness in time and space. We recall that
by definition, xk+1 is bounded since it is a minimum and therefore we can expect F (xτ ) ≤ C,
W2

2 (xτ , xs) ≤ C|τ − s|. The first bound usually gives informations on compactness in space
and the second one compactness in time. Of course it may happen that another functional
gives informations on the equation, this is exactly the case of the Cahn-Hilliard equation with
degenerate mobility : it is a gradient flow in the Wasserstein metric of the energy, but it is mainly
the entropy that provides estimates. It is important to note that this information is not lost in
the JKO scheme and one can use the so-called ’flow interchange lemma’ which states that the
dissipation of one functional along the gradient flow of another functional equals the dissipation
of the second functional along the gradient flow of the first one.
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Chapitre 1

Degenerate Cahn-Hilliard and
incompressible limit of a
Keller-Segel model

Abstract

The Keller-Segel model is a well-known system representing chemotaxis in living organisms. We
study the convergence of a generalized nonlinear variant of the Keller-Segel to the degenerate
Cahn-Hilliard system. This analysis is made possible from the observation that the Keller-Segel
system is equivalent to a relaxed version of the Cahn-Hilliard system. Furthermore, this lat-
ter equivalent system has an interesting application in the modelling of living tissues. Indeed,
compressible and incompressible porous medium type equations are widely used to describe the
mechanical properties of living tissues. The relaxed degenerate Cahn-Hilliard system, can be
viewed as a compressible living tissue model for which the movement is driven by Darcy’s law
and takes into account the effects of the viscosity as well as surface tension at the surface of the
tissue. We study the convergence of the Keller-Segel system to the Cahn-Hilliard equation and
some of the analytical properties of the model such as the incompressible limit of our model. Our
analysis relies on a priori estimates, compactness properties, and on the equivalence between the
Keller-Segel system and the relaxed degenerate Cahn-Hilliard system.

1.1 Introduction

When describing living tissue dynamics, the most relevant Hele-Shaw free boundary models come
with a surface tension term, [161, 177]. In the regime of a smooth free boundary, these problems
are well established and obtained as the sharp-interface limits of Cahn-Hilliard equations [17].
However, it is an open question to prove such a derivation in the global regime of weak solutions.
Our goals are to establish the incompressible limit departing from the Relaxed Cahn-Hilliard
system (RCH in short), and to make the link with a specific Generalized Keller-Segel (GKS)

45
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type system, namely

∂tn− δ

2σ
∆n2 +

δ

σ
div (n∇w) = nG

(
δ

σ
(n− w)

)
, in (0,+∞)× Ω, (1.1.1)

−σ∆w +
σ

δ
wγ + w = n, in (0,+∞)× Ω, (1.1.2)

where Ω ⊂ Rd is a smooth open bounded domain. We are going to prove that as σ vanishes, its
limit is the Degenerate Cahn-Hilliard (DCH) model

∂tn− div(n∇µ) = nG(µ), in (0,+∞)× Ω, (1.1.3)
µ = nγ − δ∆n, in (0,+∞)× Ω, (1.1.4)

where µ is formed of a repulsion potential nγ and a surface tension potential −δ∆n (see further
explanations below). In this work, nγ actually stands for max(0, n)γ but since the solutions are
nonnegative, we keep the notation nγ for sake of clarity. The growth (or source) term G(µ) takes
into account death and birth of cells.

It is crucial for the analysis of the convergence of the GKS system to the DCH equation to remark
that the nonlinear system (1.1.1)–(1.1.2) is equivalent to a relaxed version of the Cahn-Hilliard
model (see [287]). Indeed, defining

µ =
δ

σ
(n− w) , w = n− σ

δ
µ, p = wγ , µ = p− δ∆w, (1.1.5)

System (1.1.1)–(1.1.2) can be rewritten in the form

∂tn− div(n∇µ) = nG(µ), in (0,+∞)× Ω, (1.1.6)

−σ∆µ+ µ =
(
n− σ

δ
µ
)γ

− δ∆n, in (0,+∞)× Ω. (1.1.7)

Although they are equivalent, Systems (1.1.1)–(1.1.2) and (1.1.6)–(1.1.7) carry different infor-
mations. For instance, since we consider non-negative densities n ≥ 0, we also have

w ≥ 0, µ ≤ δ

σ
n.

The Keller-Segel formulation of the system also provides higher regularity of the solutions. In
the following, we combine analytical methods better adapted to each of these two equivalent
formulations in order to pass to the incompressible limit γ → ∞ and obtain

∂tnσ,∞ − div(nσ,∞∇µσ,∞) = nσ,∞G(µσ,∞), (1.1.8){
µσ,∞ = pσ,∞ − δ∆wσ,∞,

−σ∆wσ,∞ + σ
δ pσ,∞ + wσ,∞ = nσ,∞, wσ,∞ = nσ,∞ − σ

δ µσ,∞.
(1.1.9)

In this ’stiff pressure limit’, the system (1.1.8)–(1.1.9) has three unknowns nσ,∞, wσ,∞ (or µσ,∞)
and pσ,∞ and is completed with a type of incompressibility condition

pσ,∞(wσ,∞ − 1) = 0. (1.1.10)
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For these systems, we use the zero mass and energy flux boundary conditions

n
∂µ

∂ν
=
∂w

∂ν
= 0 on (0,∞)× ∂Ω, (1.1.11)

where ν is the outward normal vector to the boundary of Ω, and the initial condition

n(0, ·) = n0 ∈ H1(Ω) ∩ L∞(Ω), and 0 ≤ n0 ≤ 1 a.e. (1.1.12)

We also need assumptions on the pressure-dependent proliferation rate of the cells

G ∈ C(R;R), sup
µ∈R

(1 + |µ|)|G(µ)| < +∞. (1.1.13)

For instance we can suppose that there exists µH such that G(µ) = 0 for |µ| > µH . In that case,
the value µH can be viewed as the homeostatic pressure which is the lowest level of pressure that
prevents cell multiplication due to contact-inhibition. For the pressure law exponent, we assume

γ > 1. (1.1.14)

Using assumptions (1.1.13) the total mass of the system is bounded. More precisely, we find a
constant CT such that for all t ∈ (0, T ) and for all σ, γ, it holds for all T > 0

1

|Ω|

∫
Ω

nσ,γ(t, ·) ≤ CT ,
1

|Ω|

∫
Ω

wσ,γ(t, ·) ≤ CT . (1.1.15)

This allows us to use the Poincaré-Wirtinger inequality.
System (1.1.6)–(1.1.7) comes with the energy and entropy respectively defined by

E [n, µ] =
∫
Ω

(n− σ
δ µ)

γ+1

γ + 1
+
δ

2

∣∣∣∇(n− σ

δ
µ
)∣∣∣2 + σ

δ

|µ|2
2
,

Φ[n] =

∫
Ω

n log n.

They formally satisfy, as already used in [287], the relations

d

dt
E [n, µ] = −

∫
Ω

n|∇µ|2 +
∫
Ω

nµG(µ),

d

dt
Φ[n] = −

∫
Ω

δ
∣∣∣∆(n− σ

δ
µ
)∣∣∣2 + σ

δ
|∇µ|2

+ γ
(
n− σ

δ
µ
)γ−1∣∣∣∇(n− σ

δ
µ
)∣∣∣2 + ∫

Ω

nG(µ)(log(n) + 1).

From (1.1.5), they also provide informations on w. The purpose of this work is to establish
estimates which allow us to study the convergence of the nonlinear GKS model to the DCH
model, and to analyze the incompressible limit γ → ∞.

Modelling of living tissues and assumptions Our study lies among other models which
represent biological phenomena that we present here.
System (1.1.6)–(1.1.7) models the movement and proliferation of a population of cells constituting
a biological tissue and driven by the combined effects of the pressure, the surface tension occurring
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at the surface of the tissue, as well as its viscosity. As in the context of the modelling of diphasic
fluid, in System (1.1.6)–(1.1.7), n is the order parameter, i.e. the relative cell density n = n1/(n1+
n2). The unknown µ is a quantity related to the effective pressure and is also used to relax the
fourth order Cahn-Hilliard type equation in a system of two-second order equations. Following the
Cahn-Hilliard terminology or Mechanobiology, we refer to µ indistinctly as the chemical potential
or as the effective pressure. The equation for the effective pressure (i.e. Equation (1.1.7)) contains
the effects of both the pressure, through the term

(
n− σ

δ µ
)γ with γ > 1 that controls the stiffness

of the pressure law, and surface tension by −δ∆n, where
√
δ is the width of the interface in which

partial mixing of the two components n1, n2 occurs. Equation (1.1.7) also contains a diffusive
term −σ∆µ used to relax the Cahn-Hilliard system (1.1.6)–(1.1.7) as in [287]. This relaxation
term can also be interpreted as the effect of viscosity.

Modelling tissue growth and understanding the dynamics of cells have been the center of many
research pieces in the past decade. Initiated by Greenspan [126], general mechanical models of
tumor growth [67, 177, 264] have been proposed and used the internal pressure as the main effect
that drives the movement and proliferation of cells. The prototypical example of a mechanical
living tissue model is

∂tn = div (n∇p) + nG(p), p = Pγ(n) :=
γ

γ − 1
nγ−1, (1.1.16)

in which p is the pressure and n the cell density. In this kind of model, Darcy’s law of movement
is used to reflects the porous media formed by the extra-cellular matrix and the tendency of
cells to move away from regions of high compression. The dependency on the pressure of the
growth function has also been used to model the sensitivity of tissue proliferation to compression.
The behavior and stability of monotone traveling waves has been studied in [114]. Interestingly,
Perthame et al. [289] have shown that in the incompressible limit (i.e. γ → ∞), solutions of
Model (1.1.16) converge to a limit (n∞, p∞) solution of a free boundary limit problem of Hele-
Shaw type for which the speed of the free boundary is given by the normal component of p∞. In
this limit, the solution of Equation (1.1.16) organizes into 2 regions : Ω(t) in which the pressure
is positive (corresponding to the tissue) and outside this zone where p = 0. Furthermore, the
free Boundary problem is supplemented by a complementary equation that indicates that the
pressure satisfies

−∆p∞ = G(p∞), in Ω(t), or similarly p∞(∆p∞ +G(p∞)) = 0 a.e. in Ω. (1.1.17)

However, the crucial role of the cell-cell adhesion at the surface of the tissue is not retrieved at
the limit. Indeed, as pointed by Lowengrub et al. [264], the velocity of the free surface should
depend on its local curvature denoted by κ.

Thus, multiple variants of the general model (1.1.16) have been suggested to consider other
physical effects in mechanical models of tissue growth. The addition of the effect of viscosity
in the model has been made to represent the friction between cells [38, 50] through the use of
Stokes’ or Brinkman’s law (see [18] for a rigorous derivation of Brinkman’s law in inhomogeneous
materials). However, as pointed out by Perthame and Vauchelet [291], Brinkman’s law leads to a
simpler version of the model and, therefore, is a preferential choice for its mathematical analysis.
Adding viscosity through the use of Brinkman’s law leads to the model{

∂tn = div (n∇µ) + nG(p), in (0,+∞)× Ω,

−σ∆µ+ µ = p, in (0,+∞)× Ω.
(1.1.18)
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The incompressible limit of this system also yields the complementary relation (see [291])

p∞(p∞ − µ∞ − σG(p∞)) = 0, a.e. in Ω.

In the incompressible limit, notable changes compared to the system with Darcy’s law are found.
First the previous complementary relation is different compared to Equation (1.1.17), and the
pressure p∞ in the limit is discontinuous, i.e. there is a jump of the pressure located at the
surface of Ω(t). However, the pressure jump is related to the potential µ and not to the local
curvature of the free boundary ∂Ω(t). The authors already indicated that a possible explanation
to this is that the previous model does not include the effect of surface tension. Indeed, classical
solutions for the Hele-Shaw problem with the addition of the effect of surface tension leads to
the free boundary problem (see e.g. [161]){

−∆µ = 0 in Ω \ ∂Ω(t),
µ = σκ on ∂Ω(t).

(1.1.19)

This correct Hele-Shaw limit has been formally obtained as the sharp-interface asymptotic model
of the Cahn-Hilliard equation [17].
Cahn-Hilliard type models are widely used nowadays to represent living tissues and in particular
tumors [328, 176]. Being of fourth-order, the Cahn-Hilliard equation is often rewritten in a system
of two second-order equations, i.e.

∂tn = div (n∇ (ψ′(n)− δ∆n)) →
{
∂tn = div (n∇µ) ,
µ = −δ∆n+ ψ′(n),

(1.1.20)

where n is the concentration of a phase and µ is called the chemical potential in material sciences
but is often used as an effective pressure for living tissues (see [97, 108, 11, 98]). Also, the inter-
action potential ψ(n) contained in this effective pressure term comprises the effects of attraction
and repulsion between cells. The physically relevant form of this potential is a double-well loga-
rithmic potential and is often approximated by a smooth polynomial function. However, recent
studies show that for the modelling of living tissues and for the particular application where only
one of the component of the mixture experiences attractive and repulsive forces, a single-well
logarithmic potential is more relevant [67]. In our particular application, the potential ψ′(n) is
only related to the modelling of pressure and, therefore, the final model includes only repulsive
forces.
We emphasize that multiple variants of the Cahn-Hilliard model have been studied to represent
living tissues and tumors including passive transport by Darcy’s Law [187, 186, 179] and with the
effect of viscosity [144, 145]. The existence of weak solutions for degenerate mobility has been first
studied by Elliott and Garcke in [157]. We also refer to [147] for the existence of weak solutions
for a multicomponent mixture with cross-diffusion effects. The case of a smooth potential and
mobility was treated by Dai and Du in [113]. In the definition of their weak solutions, the authors
did not identify the potential µ except in the zone where the density does not vanishes. Indeed
this difficulty comes from the energy which provides the bound ∥n1/2∇µ∥L2(ΩT ) ≤ C. The term
div(n∇µ) in the weak solutions is then treated as div(n1/2ζ) where ζ is an L2 vector field that
can be identified in the zone n ̸= 0. For our system, we identify the potential µ by considering a
weaker type of solutions.

Contents We present and analyze the convergence of the nonlinear GKS model to the DCH
model (corresponding to the study of the vanishing viscosity limit, i.e. σ → 0). We also study
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rigorously the incompressible limit, i.e. γ → ∞ for this new living tissue model.
Section 1.2 contains the proof that the nonlinear GKS system (1.1.1)–(1.1.2) converges to the
DCH model (1.1.3)–(1.1.4). This analysis is made possible from the fact that the nonlinear GKS
model is equivalent to the RCH model and from the use of standard compactness properties. To
the best of our knowledge, this is the first time that a Keller-Segel system is interpreted as a
Cahn-Hilliard system. The study of the incompressible limit is the purpose of Section 1.3. Since
uniform bounds in γ are required to use standard compactness properties and pass to the limit,
we provide new estimates relying on results obtained for the non-linear GKS model. Section 1.4
contains a proof of the existence of weak solution for the system (1.1.1)–(1.1.2) and can be read
first for the reader’s convenience. The proof follows the lines of the works [157, 287]. Indeed,
using a regularization of the mobility, we apply a Galerkin approximation to show the existence
of weak solutions to the regularized model. The main novelty in the proof of this latter result is
the need of strong convergence for the chemical potential which is required to pass to the limit
for the source term. Then, a priori estimates on the regularized model give us sufficient control
to use standard compactness results and pass to the limit of the regularization, hence obtaining
the existence of weak solutions to the RCH-DKS model. Uniqueness of the weak solution is also
shown in the case where there is no proliferation term.
Therefore, our analysis relies on a combination of results obtained for the Cahn-Hilliard model
as well as the non-linear GKS limit. The addition of the regularization term in the Cahn-Hilliard
model opens a new angle of attack to solve new problems and to find the correct Hele-Shaw limit
for a simple living tissue model.

1.2 From the GKS to the DCH system (σ → 0)

We consider weak solutions of System (1.1.1)–(1.1.2) as built in Section 1.4 and prove that weak
solutions of the DCH equation can be obtained as the limit of the GKS system. In the definition
of the weak solutions, there is not enough regularity on µ to treat the term −div(n∇µ) as∫
n∇µ∇χ where χ is a test function. We need to rely on another integration by parts based on

the definition of µ and Equation (1.2.13).
Weak solutions of the DCH equation (1.1.3)–(1.1.4) satisfy both forms∫ T

0

⟨χ, ∂tn⟩ =
∫
ΩT

[ γ

γ + 1
nγ+1 − δn∆n− δ

|∇n|2
2

]
∆χ+ δ

d∑
i=1

∂in∇n · ∇∂iχ+ nG∞χ, (1.2.1)

∫ T

0

⟨χ, ∂tn⟩ =
∫
ΩT

γ

γ + 1
nγ+1∆χ− δ∆n(∇n · ∇χ+ n∆χ) + nG∞χ, (1.2.2)

for all χ ∈ L∞(0, T,W 2,∞(Ω)) with ∇χ · ν = 0, and∫ T

0

⟨χ, ∂tn⟩ = −
∫
ΩT

n∂tχ−
∫
Ω

χ(t = 0)n0, (1.2.3)

when, additionally, χ ∈ C1([0, T ] × Ω) and χ(T ) = 0. The source term can be identified as
G∞ = G(µ) in dimension d ≤ 4. The weak formulation (1.2.1) comes from Equation (1.2.13).
The forms (1.2.1) and (1.2.2) are equivalent with the formula

1

2
∇(|∇f |2) = div(∇f ⊗∇f)−∆f∇f.
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We have the following convergence theorem.

Theorem 1.2.1 (Convergence of the GKS system to the DCH eq.). Assume (1.1.12)–
(1.1.14). The weak solutions (nσ, µσ) of the RCH-DKS model converge to (n, µ) weak solution
of (1.1.3)–(1.1.4) in the sense defined by (1.2.1)–(1.2.3). They satisfy the regularity estimates
n ∈ L∞(0, T,H1(Ω)) ∩ L2(0, T,H2(Ω)), ∂tn ∈ (L4(0, T,W 1,s(Ω)))′ where s is defined in Propo-
sition 1.2.2, µ ∈ L2(0, T, L

γ+1
γ (Ω)) ∩ L γ+1

γ (0, T, L
d(γ+1)
(d−2)γ (Ω)).

In dimension d ≤ 4, µ belongs to L2(Ω) and for all χ ∈ L∞(0, T,W 2,∞(Ω)) with ∇χ · ν = 0,
Equation (1.2.1) can be written as∫ T

0

⟨χ, ∂tn⟩ =
∫
ΩT

µ(∇n · ∇χ+ n∆χ) + nG(µ)χ. (1.2.4)

with µ = nγ − δ∆n a.e. in Ω.

The rest of this section is devoted to prove this theorem.

1.2.1 A priori estimates
Since the two systems (1.1.1)–(1.1.2) and (1.1.6)–(1.1.7) are equivalent, all estimates proved for
a system apply to the other. Based on the construction in Section 1.4, the energy and entropy
structure of the RCH model provide us with the following bounds. Assuming (1.1.12)–(1.1.14),
there is a constant C independent of γ, σ, such that, for all T ≥ 0,

σ

δ

∫
ΩT

|∇µ|2 ≤ C,
σ

δ

∫
Ω

|µ(t)|2 ≤ C ∀t ∈ (0, T ), (1.2.5)

δ

∫
Ω

∣∣∣∇(n(t)− σ

δ
µ(t)

)∣∣∣2 ≤ C, ∀t ∈ (0, T ), (1.2.6)

δ

∫
ΩT

∣∣∣∆(n− σ

δ
µ
)∣∣∣2 ≤ C, (1.2.7)∫

ΩT

n|∇µ|2 ≤ C, (1.2.8)

γ

∫
ΩT

(
n− σ

δ
µ
)γ−1∣∣∣∇(n− σ

δ
µ
)∣∣∣2 ≤ C, (1.2.9)∫

Ω

(n(t)− σ
δ µ(t))

γ+1

γ + 1
≤ C, ∀t ∈ (0, T ). (1.2.10)

Next, we deduce further a priori estimates which are enough to pass to the limit as σ vanishes.

Proposition 1.2.2 (A priori bounds). Assuming (1.1.12)–(1.1.14), there is a constant C(T )
independent of γ and σ such that the a priori estimates hold

∥n∥L2(0,T,H1(Ω)) ≤ C, ∥∂tn∥(L4(0,T,W 1,s(Ω)))′ ≤ C,

with s = 2 for d = 1, s > 2 for d = 2 and s = 4d
d+2 otherwise. Furthermore, we have

∥w∥L∞(0,T,Lγ+1(Ω)) ≤ C,
1

γ
∥w∥γ+1

Lγ+1(0,T,L
d(γ+1)
d−2 (Ω))

≤ C,
1

γ
∥µ∥

γ+1
γ

L
γ+1
γ (0,T,Lq(Ω))

≤ C,

with q = min(2, d(γ+1)
(d−2)γ ).
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Démonstration. From Inequalities (1.2.5)–(1.2.6), we deduce that ∇n ∈ L2(0, T, L2(Ω)). Thus,
using the Poincaré-Wirtinger inequality, we obtain that n ∈ L2(0, T,H1(Ω)) uniformly in γ, σ.
Next, we recall that in dimension d, H1 ↪→ Lr where r = 2d

d−2 for d > 2, 1 ≤ r < ∞ for d = 2,
and 1 ≤ r ≤ ∞ for d = 1. Thus, n1/2 ∈ L4(0, T, L2r(Ω)). Therefore, for all φ ∈ L4(0, T,W 1,s(Ω)),
we can compute∣∣∣ ∫

Ω

∂tnφ
∣∣∣ = ∣∣∣ ∫

Ω

n1/2n1/2∇µ · ∇φ+

∫
Ω

nG(µ)φ
∣∣∣

≤ ∥n1/2∥L2r(Ω)∥n1/2∇µ∥L2(Ω)∥∇φ∥Ls + C∥n∥Lr(Ω)∥φ∥Ls/2(Ω),

because 2r
r−1 = 4d

d+2 := s for d > 2. For d ≤ 2, we can consider any r > 1. Assumption (1.1.13) is
used to control the source term in L∞. Integrating in time, using the triangle inequality on the
integrals, Inequality (1.2.8) and Hölder’s inequality, we obtain the second estimate,∣∣∣ ∫

ΩT

∂tnφ
∣∣∣ ≤ C∥φ∥L4(0,T,W 1,s(Ω)).

The first Lebesgue estimate for w is just an application of Inequality (1.2.10). For the second
Lebesgue estimate for w we write Inequality (1.2.9) as

4γ

(γ + 1)2

∫
ΩT

|∇w γ+1
2 |2 ≤ C.

With Sobolev’s embedding and the Poincaré-Wirtinger inequality, we obtain

1

γ
∥w γ+1

2 ∥2
L2(0,T,L

2d
d−2 (Ω))

≤ C.

This yields the second estimate. In addition, this estimate allows us to bound wγ uniformly in
L

γ+1
γ (0, T, L

d(γ+1)
(d−2)γ (Ω)). Finally, we recall the last formula for µ in (1.1.5), µ = wγ −∆w. Using

the previous bound on wγ and the bound (1.2.7), we obtain the estimate on µ.
This ends the proof of Proposition 1.2.2.

1.2.2 Convergence σ → 0

To study the limit σ → 0, we write the equivalent RCH and GKS systems as

∂tnσ − div(nσ∇µσ) = nσG(µσ), in (0,+∞)× Ω,

µσ = wγσ − δ∆wσ, wσ = nσ − σ

δ
µσ in (0,+∞)× Ω.

The main difficulty is the convergence of the term nσ∇µσ in the first equation. We know that
nσ → n strongly in L2(ΩT ) thanks to the Lions-Aubin lemma and Proposition 1.2.2. In fact,
the strong convergence is obtained in L<∞(0, T, L2(Ω)) (see below). No useful information can
be obtained on ∇µσ and for this reason, after an integration by parts, it remains to prove the
weak convergence in L>1(0, T, L2(Ω)) of µσ. The estimate on µσ given in Proposition 1.2.2 is not
enough in high dimension (i.e. d > 4) and we need to consider weak solutions given by (1.2.1)-
(1.2.2) in the limit. Strong convergence of µσ is also needed in order to identify the source term.
Finally, with the definition of wσ, notice that Inequalities (1.2.5) show that wσ is a compact
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perturbation of nσ (see Proposition 1.2.4) which has much higher regularity than nσ due to
the entropy/energy structure of our system. Therefore the limit in the terms div(nσ∇µσ) and
nσG(µσ) is treated by writing nσ = wσ + ’compact perturbation’.

Remark 1.2.3. In the following proof and until the end, we consider convolutions which we
integrate on a bounded domain to prove compactness properties. This is just a formal writing
because the functions we consider are only defined on Ω. To make it rigorous, instead of conside-
ring a function f we need to consider fζ where ζ is a truncature function. Then, the compactness
has to be obtained in domains Ωε for every ε small enough where Ωε ⊂ Ω and every points in Ωε
is at distance ε of the boundary of Ω. From now on, we ignore this technical issue in the proof
below.

Proposition 1.2.4. With the assumptions of Theorem 1.2.1 we have ∇wσ,∇nσ → ∇n strongly
in L2(ΩT ) when σ → 0.

Démonstration. Inequalities (1.2.5) show that σµσ, σ∇µσ → 0 in L2(ΩT ). In addition, Proposi-
tion 1.2.2 yields the weak convergence of ∇wσ,∇nσ ⇀ ∇n. It remains to prove strong conver-
gence. We rely on arguments similar to those of Appendix 1.5.1 using the Fréchet-Kolmogorov
theorem.
We know that ∇wσ is bounded uniformly in L∞(0, T, L2(Ω)) ∩ L2(0, T,H1(Ω)) using Inequali-
ties (1.2.6)-(1.2.7) and elliptic regularity. Then, by interpolation we have an Lp(ΩT ) bound for
some p > 2. It remains to prove strong convergence in L1.
We already have compactness in space thanks to the H1 bound. With the notations of Appen-
dix 1.5.1, it only remains to prove compactness in time, that means∫ T−h

0

∫
Ω

|∇wσ(t+h, ·)∗φε(x)−∇wσ(t, ·)∗φε(x)|dxdt ≤ θ(h), θ(h) → 0 when h→ 0, (1.2.11)

uniformly in σ.
From (1.1.5) we can write

∫ T−h

0

∫
Ω

|∇wσ(t+h, ·)∗φε(x)−∇wσ(t, ·)∗φε(x)|dxdt ≤
∫ T−h

0

∫
Ω

|(nσ(t+h, ·)−nσ(t, ·))∗∇φε(x)|dxdt

+ σ

∫ T−h

0

∫
Ω

|(∇µσ(t+ h, ·)−∇µσ(t, ·)) ∗ φε(x)|dxdt.

The term σ∇µσ converges strongly to 0 in L2(ΩT ). This provides equicontinuity of the last term.
The first term is dealt in the same way as in Appendix 1.5.1. This yields the strong convergence
of ∇wσ. Using once again the previous decomposition and σ∇µσ → 0 show that ∇nσ converges
strongly.

Now, we can prove Theorem 1.2.1.

Démonstration. Step 1 : Strong compactness for wσ, nσ,∇wσ,∇nσ. This step is a consequence
of Proposition 1.2.2 and Proposition 1.2.4.
Step 2 : Convergence of n∇µ. Now, most of the convergences come from properties of the weak
limit and the bounds provided at the beginning of this section. For the case of any dimension,
we write nσ∇µσ as

nσ∇µσ = wσ∇µσ +
σ

δ
µσ∇µσ.
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The last term converges strongly to 0 as σ → 0. Indeed, from Inequalities (1.2.5) together with
the Sobolev injection and the Poincaré-Wirtinger inequality, we know that

∥σ1/2µσ∥Lr(ΩT ) ≤ C,

for some r > 2 and C independent of σ. Using also that µ is bounded in L1(ΩT ) and interpolation
we find

∥σ1/2µ∥L2(ΩT ) ≤ Cσ
1−θ
2 , θ =

r

2(r − 1)
< 1. (1.2.12)

With Inequalities (1.2.5)-(1.2.12) we find σµσ∇µσ = (σ1/2µσ)(σ
1/2∇µσ) → 0 strongly. We now

treat the first term on the right hand side. We recall that µσ = wγσ − δ∆wσ and therefore we
write wσ∇µσ as

wσ∇µσ =
γ

γ + 1
∇wγ+1

σ − δ
[
∇(wσ∆wσ) +∇|∇wσ|2

2
−

d∑
i=1

∂i(∂iwσ∇wσ)
]
. (1.2.13)

We recall the strong convergence of wσ and ∇wσ in L2(ΩT ) to n,∇n and we have the weak
convergence of ∆wσ to ∆n thanks to Inequality (1.2.7). Finally we obtain the convergence in the
distributional sense of the bracket in the right hand side. For the first term on the right hand
side, we use Proposition 1.2.2. This provides that wγ+1

σ is bounded uniformly L1(0, T, Lp(Ω)) ∩
L∞(0, T, L1(Ω)) for some p > 1 and therefore by interpolation in some Lq(0, T, Lr(Ω)) for some
1 < q <∞ and r = 1

1−1/q+1/(qp) . Using the strong convergence of wσ and the Lebesgue dominated
convergence theorem allows us to idenfity wγ+1 in the limit. Using integration by parts we obtain
the weak formulations (1.2.1)-(1.2.2).
The regularity of n,∇n,∆n in the limit comes from the uniform bounds on wσ,∇wσ,∆wσ and
the convergence of σµσ to 0.
In dimension d ≤ 4 we have better regularity for µ and we can find another weak formulation.
This is achieved in the following step.
Step 3 : The weak formulation (1.2.4) in dimension d ≤ 4. In the case d ≤ 4 we have

∥µσ∥
L

γ+1
γ (0,T,L2(ΩT ))

≤ C, ∥∇wσ∥L∞(0,T,L2(Ω)) ≤ C,

thanks to Proposition 1.2.2 and Inequality (1.2.6). We write

µσ∇nσ = µσ∇wσ +
σ

δ
µσ∇µσ.

We know from above that the second term of the right hand side strongly converges to 0. For the
first term of the right hand side we know that ∇wσ → ∇n strongly in L2(ΩT ). With the previous
bound on ∇wσ the convergence actually holds in every Lp(0, T, L2(Ω)) for p < ∞. Using the
weak convergence of µσ we find the weak convergence of the product.
The weak convergence of nσµσ is similar. Therefore, with integration by parts of the term
div(nσ∇µσ) against a test function χ we find the result.

Step 4 : Identification of the source term when d ≤ 4. The last difficulty in the proof is to identify
the source term (i.e nG(µ)). Indeed, we do not know that µσ converges a.e. (up to a subsequence).
However, we know that nσ converges a.e to n and G(µσ) is bounded. It remains to prove that
µσ converges a.e. in the zone {n > 0}.
For this reason we search for estimates on nσµσ to prove its convergence almost everywhere.
Then, the convergence of nσµσ and nσ yields the convergence a.e. of µσ in the zone {n > 0}.
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Now, we write nσµσ = wσµσ + σ
δ µ

2
σ and compute

∇(nσµσ) = n1/2σ n1/2σ ∇µσ + µσ∇wσ +
3σ

2δ
∇(µ2

σ).

As previously, the last term is bounded uniformly in L1(ΩT ) (and even converges to 0). The
first term is also bounded in L1(ΩT ) with Proposition 1.2.2 and Inequality (1.2.8). For the
second term we use that µσ is bounded uniformly in L

γ+1
γ (0, T, L

d(γ+1)
(d−2)γ (Ω)). In dimension d ≤ 4,

Inequality (1.2.6) provides a bound on the second term. Therefore we have compactness in space.
The proof of the time compactness uses arguments and lemmas reported in Appendix 1.5.1. Since
∇(wµ) is bounded, it only remains to show∫ T−h

0

∫
Ω

|wσ(t+ h, ·)µσ(t+ h, ·) ∗ φε(x)− wσ(t, ·)µσ(t, ·) ∗ φε(x)|dxdt −→
h→0

0, uniformly in σ,

where the smooth functions φε are defined in the Appendix 1.5.1.
We know using (1.1.5) that

wσµσ = wγ+1
σ − δwσ∆wσ = wγ+1

σ − δ

2
∆w2

σ + δ|∇wσ|2.

Since wσ converges strongly in L2(ΩT ) and is bounded in L∞(0, T, Lγ+1(Ω))∩Lγ+1
(
(0, T ), L

d(γ+1)
d−2 (Ω)

)
thanks to Inequality (1.2.10) and Proposition 1.2.2, we conclude by interpolation the strong
convergence of wσ in Lγ+1(ΩT ). Therefore the first term is equicontinuous by the converse of the
Fréchet-Kolmogorov theorem.
It only remains to estimate∫ T−h

0

∫
Ω

|[wσ(t+ h, ·)∆wσ(t+ h, ·)− wσ(t, ·)∆wσ(t, ·)] ∗ φε(x)|dxdt

≤
∫ T−h

0

∫
Ω

∣∣∣ ∫
Ω

(|∇wσ(t, y)|2 − |∇wσ(t+ h, y)|2)φε(x− y)
∣∣∣dydxdt

+

∫ T−h

0

∫
Ω

∣∣∣ ∫
Ω

(w2
σ(t+ h, y)− w2

σ(t, y))∆φε(x− y)
∣∣∣dydxdt.

With the strong convergence of ∇wσ and w2
σ we find the equicontinuity of the second and third

term in the decomposition. This yields the equicontinuity with respect to time of wµ.
Therefore thanks to the Fréchet-Kolmogorov theorem we have strong convergence in some Lp
and the convergence a.e. up to a subsequence of µ in the zone n > 0. The Lebesgue dominated
convergence theorem then allows us to identify the source term in the definition of the weak
solutions.

1.3 Incompressible limit γ → +∞
We now fix δ, σ > 0 and study the incompressible limit γ → ∞ for the RCH-DKS system. These
two constants are the main link between RCH and DKS models. We recall that in the case δ = 0,
the incompressible limit is given in [291]. In the case σ = 0, the regularity provided by the DCH
model is not sufficient to pass to the limit. From now on, we keep δ, σ > 0 fixed and we may



56 CHAPITRE 1. Degenerate Cahn-Hilliard and incompressible limit of a Keller-Segel model

consider them equal to 1 in some computations. We summarize the main bounds proved in this
section in the following proposition

Proposition 1.3.1. For all T > 0, there exists a constant C(T ) independent of γ such that the
weak solutions built in Section 1.4 satisfy

∥µ∥L2(0,T,H1(Ω)) ≤ C, ∥n∥L2(0,T,H1(Ω)) ≤ C, (1.3.1)
∥n∥L∞(ΩT ) ≤ C, (1.3.2)

∥w∥L∞(0,T,H2(Ω)) ≤ C, ∥wγ∥L∞(ΩT ) ≤ C, ∥∇wγ∥L∞(0,T,L1(Ω)) ≤ C,
∥∆w∥L∞(ΩT ) ≤ C,

(1.3.3)

∥∂tn∥L2(0,T,H−1(Ω)) ≤ C, ∥∂tw∥L2(0,T,H1(Ω)) ≤ C, ∥∂tµ∥L2(0,T,H−1(Ω)) ≤ C,
∥∂twγ∥L2(0,T,H−1(Ω)) ≤ C.

(1.3.4)

The weak solutions in the case of no source term, i.e G = 0, are unique.

1.3.1 Uniform a priori estimates in Proposition 1.3.1
Proof of Proposition 1.3.1. We start with the first two estimates (1.3.1) of Proposition 1.3.1
The first inequality is a consequence of Inequalities (1.2.5). The second inequality has been proven
in the previous section.
L∞ bound for n. We now establish Inequality (1.3.2) under the assumption (1.1.12) on the initial
condition. The proof requires a variant of Gagliardo-Nirenberg inequality, namely there exists
C > 0 such that for every 0 < ε < 1/2 and every v ∈ H1(Ω),

∥v∥2L2(Ω) ≤ ε∥∇v∥2L2(Ω) +
C

εd/2
∥v∥2L1(Ω). (1.3.5)

This inequality is an application of the classical Gagliardo-Nirenberg and Young inequalities. We
refer the reader to [106], Equation (9.3.8).
First, to begin the proof, we wish to stress a few comments. The proof of this proposition relies
on the use of the Alikakos iteration method [16]. We prove it for smooth solutions of the equation
but the method can be applied for weak solutions, since the bounds only depend on the a priori
estimates already found.
We start by choosing σ = δ = 1 to simplify the notation. We notice however that the L∞

bound is not uniform in σ and therefore this result does not apply to Subsection 1.2.2. In fact,
with the same proof, it is possible to show that the L∞ bound varies as 1/σ. We multiply
Equation (1.1.1) by n2

k−1, integrate over the domain, and after integration by parts that uses
the boundary conditions (1.1.11), we obtain

1

2k
d

dt

∫
Ω

n2
k

+ (2k − 1)

∫
Ω

n2
k−1|∇n|2 = (2k − 1)

∫
Ω

n2
k−1∇w · ∇n+

∫
Ω

n2
k

G(µ). (1.3.6)

Then, multiplying Equation (1.1.2) by n2
k

, integrating over Ω, and after integration by parts,
we have from the non-negativity of both n and w (see Proposition 1.4.5)∫

Ω

n2
k−1∇w · ∇n =

1

2k

∫
Ω

−∆wn2
k ≤ 1

2k

∫
Ω

n2
k+1. (1.3.7)

Therefore, rearranging the second term on the left-hand side of Equation (1.3.6), passing it to
the right-hand side, using Inequality (1.3.7), and, finally, using n2

k ≤ n2
k+1 + 1 for the second
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term of the right hand side, we obtain

1

2k
d

dt

∫
Ω

n2
k ≤ −4(2k − 1)

(2k + 1)2

∫
Ω

|∇n 2k+1
2 |2 +

(2k − 1

2k
+ C

)∫
Ω

n2
k+1 + C.

This means exactly that for some C > 0,

d

dt
∥n∥2k

L2k (Ω)
≤ −4(2k − 1)2k

(2k + 1)2
∥∇n 2k+1

2 ∥2L2(Ω) + C2k∥n∥2k+1

L2k+1
+ C2k.

Applying Equation (1.3.5) with v = n
2k+1

2 , we obtain for any ε > 0

d

dt
∥n∥2k

L2k (Ω)
≤
(
C2k − 4(2k − 1)2k

ε(2k + 1)2

)
∥n∥2k+1

L2k+1
+

C

ε(d+2)/2

4(2k − 1)2k

(2k + 1)2
∥n 2k+1

2 ∥2L1(Ω) + C2k.

Choosing ε = C2−k in order to let the first term of the right-hand side to be non-positive, leads
to

d

dt
∥n∥2k

L2k (Ω)
≤ C2(d+2)k/2∥n 2k+1

2 ∥2L1(Ω) + C2k.

Moreover, using Riesz-Thorin interpolation theorem, we have

d

dt
∥n∥2k

L2k (Ω)
≤ C2(d+2)k/2∥n∥2

L2k (Ω)
∥n∥2k−1

L2k−1 (Ω)
+ C2k.

Denoting mk = supt∈(0,T ) ∥n(t)∥L2k (Ω)
and after integrating in time, we obtain

mk ≤
(
C2

(d+2)k
2 m2k−1

k−1 m
2
k + C2k

)1/2k
.

Following [106] (Lemma 9.3.1, p.213) the sequence mk can be dominated by m′
k which satisfies

m′
k = (C2

(d+2)k
2 )1/2

k

m
′1−1/2k

k−1 m
′1/2k−1

k with C large enough and m′
0 ≥ 1.,

i.e,

m′
k = (C2

(d+2)k
2 )

1

2k−2m
′ 2

k−1

2k−2

k−1 .

Letting k → ∞ and by induction we find ∥n∥L∞(ΩT ) = m∞ ≤ m′
∞ ≤ C. We refer to [106] for

the details. This yields the result. This in turn provides also higher regularity for w thanks to
Equation (1.1.2) and one can find estimates (1.3.3).

Proof of (1.3.3). The first estimate is a consequence of Equation (1.1.2) together with elliptic
regularity.

For the second estimate we multiply Equation (1.1.2) by wγ(r−1). After an integration by parts
and using the nonnegativity of n,w we find for every t,

∥wγ(t)∥rLr(Ω) ≤ ∥n(t)w(t)γ(r−1)∥Lr(Ω).

With Hölder inequality, we obtain

∥wγ(t)∥Lr(Ω) ≤ ∥n(t)∥Lr(Ω).
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Letting r → ∞ thanks to Inequality (1.3.2) and taking the supremum in time yields the result.
We refer the reader to Theorem 2.14 in [9] for further details. The third inequality is just the
result of the two previous inequalities as well as Equation (1.1.2). To get the fourth inequality
we differentiate in space Equation (1.1.2) and multiply by sgn(∂xw

γ). Since w is nonnegative,
sgn(∂xw

γ) = sgn(∂xw). Using integration by parts on the first term yields the result. The com-
putations can be made rigorous with the derivative of a convex approximation of the absolute
value.
Remark 1.3.2. With Inequality (1.3.2) and Equation (1.1.2) it is possible to find that w ∈
L2(0, T,H3(Ω)) and therefore wγ ∈ L2(0, T,H1(Ω)) thanks to Equation (1.1.2). However, the
bound is not uniform in γ and we cannot gain compactness.
Remark 1.3.3. When G = 0, Inequalities (1.3.3) provides uniqueness of the weak solutions, see
Appendix 1.5.2.
Time compactness of n. Compactness in time for n follows using once again the Lions-Aubin
lemma with the (L4(0, T,W 1,s(Ω)))′ bound on ∂tn from proposition 1.2.2. One can prove com-
pactness in time for w using the Fréchet-Kolmogorov theorem. However, with the previous regu-
larity results, we can get the better bounds (1.3.4) on the time derivative of n, w, p = wγ and
µ.
Proof of (1.3.4). Since we have found that n ∈ L∞(ΩT ), we have for any test function ϕ ∈
L2(0, T ;H1(Ω)),

|
∫
ΩT

∂tnϕ| ≤ ∥n∥1/2L∞(ΩT )

∫
ΩT

|n1/2∇µ∇ϕ| ≤ C∥∇ϕ∥L2(ΩT ),

where we have used (1.3.2) and (1.2.8). Hence, we have ∂tn ∈ L2(0, T,H−1(Ω)) uniformly. To find
compactness of ∂tµ it is enough to find compactness for ∂tw thanks to Equation (1.1.5). Compu-
ting the time derivative of Equation (1.1.2), multiplying by a test function ϕ ∈ L2(0, T ;H1(Ω)),
using the notation z = ∂tw, and integrating in space and time, we have∫

ΩT

σ∇z · ∇ϕ+
σ

δ
γwγ−1zϕ+ zϕ =

∫
ΩT

∂tnϕ.

Choosing ϕ = z, and from Young’s Inequality, we have∫
ΩT

(
σ − 1

2κ

)
|∇z|2 +

(
σ

δ
γwγ−1 + 1− 1

2κ

)
|z|2 ≤ 2κ∥∂tn∥2L2(0,T ;H−1(Ω)).

Therefore, choosing κ large enough, we obtain that ∂tw ∈ L2(0, T,H1(Ω)). Using Equation (1.1.2)
provides the compactness for ∂twγ . This achieves the proof of (1.3.4) and Proposition 1.3.1.

Finally, one can show that the regularity of the solutions provides continuity with respect to time

Proposition 1.3.4. Assume (1.1.12)–(1.1.13), the functions n, w and wγ belong to C(0, T, Lp(Ω))
for every 1 ≤ p < ∞.

1.3.2 Convergence γ → +∞
With all the ingredients of the previous subsections we find

Theorem 1.3.5 (Incompressible limit). Assume (1.1.12)–(1.1.13) and let (nσ,γ , µσ,γ) be a weak
solution to the RDCH model (1.1.6)–(1.1.7). Then, when γ → ∞, after extraction of subse-
quences, (nσ,γ , µσ,γ , wσ,γ) → (nσ,∞, µσ,∞, wσ,∞) with the regularity nσ,∞ ∈ L2(0, T,H1(Ω)) ∩
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L∞(ΩT ), ∂tnσ,∞ ∈ L2(0, T,H−1(Ω)), wσ,∞ ∈ C(0, T, Lp(Ω)) ∩ L∞(0, T,W 2,p(Ω)) and µσ,∞ ∈
C(0, T, Lp(Ω))∩L2(0, T,H1(Ω)) for every 1 ≤ p <∞. These functions satisfy in the weak sense

∂tnσ,∞ − div(nσ,∞∇µσ,∞) = nσ,∞G(µ∞).

and

µσ,∞ = pσ,∞ − δ∆wσ,∞, −σ∆wσ,∞ +
σ

δ
pσ,∞ + wσ,∞ = nσ,∞, wσ,∞ = nσ,∞ − σ

δ
µσ,∞.

where pσ,∞ is the strong Lp(ΩT )-limit of wγ and belongs to L∞(0, T, L∞(Ω)) ∩ C(0, T, Lp(Ω)).

Démonstration. For the first term on the left hand side, the weak convergence of ∂tnσ,γ given
by (1.3.4) is enough. For the second term of the left hand side, we use (1.3.1)–(1.3.2) to prove
the weak convergence of nσ,γ∇µσ,γ . Then, to identify its limit, we use the strong convergence
of nσ,γ from (1.3.1)-(1.3.4) and the weak convergence of ∇µσ,γ given by (1.3.1). For the term
on the right hand side, we use the strong convergence of nσ,γ and µσ,γ . Finally for the equation
on µσ,γ and wσ,γ weak convergence is enough. To prove strong convergence of pσ,γ = wγσ,γ we
use the bounds on ∂tpσ,γ ,∇pσ,γ from (1.3.3)–(1.3.4). An application of the Fréchet-Kolmogorov
theorem as in Appendix 1.5.1 yields the strong convergence. The continuity with respect to time
follows from the regularity of the solutions.

Moreover, we find two propositions on wσ,∞, the first one provides an L∞-bound on wσ,∞, and
the second one gives some information about the behaviour of the potential in the zones where
wσ,∞ ̸= 1.

Proposition 1.3.6 (L∞-bound for wσ,∞). For the limit solution wσ,∞ defined in Theorem 1.3.5,
we have, with wσ,γ = nσ,γ − σ

δ µσ,γ ,

∥wσ,∞∥L∞(ΩT ) ≤ 1,

Démonstration. In the case σ > 0, this estimate is trivial with the L∞ bound on wγ from
Proposition 1.3.1. However, we also provide a proof that works in the case σ = 0, i.e., when
w0,γ = n0,γ).
We start by using Inequality (1.2.10), we have

∥wσ,γ(t)∥Lγ+1(Ω) ≤ (C(γ + 1))1/(γ+1) ≤ C1/(γ+1).

By interpolation, and with 1
q = θ + 1−θ

γ+1 where q ∈ (1, γ + 1), we have

∥wσ,γ(t)∥Lq(Ω) ≤ ∥wσ,γ(t)∥θL1(Ω)∥wσ,γ(t)∥1−θLγ+1 .

From the Cauchy-Schwarz inequality for the L1 norm and from the previous inequality for the
Lγ+1-norm, we easily find two constants C, C̃ such that

∥wσ,γ(t)∥Lq(Ω) ≤ C̃θC(1−θ)/(γ+1).

Since we know that wγ ⇀ w∞, and by lower semi-continuity of the norm as well as the fact that
θ → 1/q when γ → ∞, we have

∥wσ,∞∥L∞(0,T,Lq(Ω)) ≤ lim inf
γ→∞

∥wσ,γ∥L∞(0,T,Lq(Ω)) ≤ C̃1/q,
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for any q ∈ (1,∞). Therefore, letting q → ∞, we obtain

∥wσ,∞∥L∞(ΩT ) ≤ lim inf
q→∞

∥wσ,∞∥L∞(0,T,Lq)(Ω) ≤ 1.

Compared to previous results on incompressible limits for living tissue models (see e.g. [289]),
we have a slightly different relation linking the pressure and the density. We have the following
proposition.

Proposition 1.3.7 (Relation between p∞ and w∞). The following relation holds for the limits
of pσ,γ = wγσ,γ and wσ,γ ,

pσ,∞(wσ,∞ − 1) = 0, a.e. in ΩT .

Démonstration. The inequality pσ,∞(wσ,∞ − 1) ≤ 0 is found in a straightforward manner using
Proposition 1.3.6, and the fact that wσ,γ ≥ 0 =⇒ wγσ,γ ≥ 0 =⇒ pσ,∞ ≥ 0.
It remains to show that pσ,∞(wσ,∞ − 1) ≥ 0. We borrow the argument of [254]. For ν > 0, there
exists γ0 such that for γ ≥ γ0,

wγ+1
σ,γ ≥ wγσ,γ − ν.

Then, from the convergence of wσ,γ and wγσ,γ we know that wγσ,γwσ,γ converges to pσ,∞wσ,∞.
Passing to the limit we get

pσ,∞wσ,∞ ≥ pσ,∞ − ν,

for every ν > 0. Letting ν → 0 yields the result.

Remark 1.3.8. From this result we find that in the zone w∞ ̸= 1, we get p∞ = 0, and thus
µ∞ = −δ∆w∞ which can be interpreted as a term representing surface tension.

When the relaxation parameter satisfy σ = 0, we expect to have w = n. Therefore, in the zone
Ω+(t) = {x, p∞(t, x) > 0} we obtain that the density stays constant n∞ = 1. With Equa-
tion (1.1.6) this means that formally{

−∆µ = G(µ) in Ω+,

µ = −δ∆n on ∂Ω+.

1.4 Existence of weak solutions

The proof of existence of weak solutions for system (1.1.6)–(1.1.7) follows the standard method
for the DCH (see e.g. [157, 287, 113]). We start by regularizing the model : using a small positive
parameter ε we define a positive approximation of the degenerate mobility b(n) := n. Existence
of a solution to the regularized system is found using standard methods for nonlinear parabolic
equations. Then, we derive a priori estimates on the regularized problem that allow us to pass
to the limit ε→ 0 and, hence, show the existence of weak solution for System (1.1.6)–(1.1.7).
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1.4.1 Regularized mobility

We consider a small parameter 0 < ε < 1 and define the regularized mobility

Bε(n) =


1
ε for n ≥ 1

ε ,
ε for n ≤ ε,
n otherwise.

(1.4.1)

Thereby, we write the regularized analogous of System (1.1.6)–(1.1.7)

∂tnε − div(Bε(nε)∇µε) = nεG(µε), in (0,+∞)× Ω, (1.4.2)

−σ∆µε + µε = (nε −
σ

δ
µε)

γ − δ∆nε, in (0,+∞)× Ω, (1.4.3)

supplemented with the zero-flux boundary conditions

∂wε
∂ν

= nε
∂µε
∂ν

= 0 on (0,∞)× ∂Ω, (1.4.4)

where wε is defined by (1.1.5) and with the initial conditions (1.1.12).

We have the following existence theorem

Theorem 1.4.1 (Weak solutions for the regularized system). There exists a pair of functions
(nε, µε) such that for all T ≥ 0,

nε ∈ L2(0, T,H1(Ω)), ∂tnε ∈ L2(0, T,H−1(Ω)),

µε ∈ L2(0, T,H1(Ω)), ∂tµε ∈ L2(0, T,H−1(Ω)),

wε ∈ L2(0, T,H2(Ω)) ∩ L∞(0, T,H1(Ω)), wγε ∈ L2(0, T, L2(Ω)) ∂twε ∈ L2(0, T,H1(Ω)).

These functions satisfy the regularized Cahn-Hilliard model (1.4.2)–(1.4.4) in the following weak
sense : for all test functions χ ∈ L2(0, T,H1(Ω)), it holds∫ T

0

⟨χ, ∂tnε⟩ = −
∫
ΩT

Bε(nε)∇µε∇χ+

∫
ΩT

nεG(µε)χ, (1.4.5)

σ

∫
ΩT

∇µε∇χ+

∫
ΩT

µεχ = δ

∫
ΩT

∇nε∇χ+

∫
ΩT

(
nε −

σ

δ
µε

)γ
χ, (1.4.6)

−σ∆wε +
σ

δ
wγε + wε = nε a.e., (1.4.7)

µε = wγε − δ∆wε a.e. (1.4.8)

Démonstration. Step 1. Galerkin approximation. We consider {ϕi}i∈N. the eigenfunctions of the
Laplace operator with zero Neumann boundary conditions.

−∆ϕi = λiϕi ∈ Ω with ∇ϕi · ν = 0 on ∂Ω, (1.4.9)

which form an orthogonal basis of both H1(Ω) and L2(Ω) and we normalize them such that
(ϕi, ϕj)L2(Ω) = δij . Furthermore we assume without loss of generality that λ1 = 0.
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We consider the following discrete approximation of System (1.4.2)-(1.4.3)

nN (t, x) =

N∑
i=1

cNi (t)ϕi(x), µN (t, x) =

N∑
i=1

dNi (t)ϕi(x), (1.4.10)∫
Ω

∂tn
Nϕj = −

∫
Ω

Bε(n
N )∇µN∇ϕj +

∫
Ω

nNG(µN )ϕj , for j = 1, ..., N, (1.4.11)∫
Ω

µNϕj = δ

∫
Ω

∇
(
nN − σ

δ
µN
)
∇ϕj +

∫
Ω

(
nN − σ

δ
µN
)γ
ϕj , for j = 1, ..., N, (1.4.12)

nN (0, x) =

N∑
i=1

(n0, ϕi)L2(Ω)ϕi. (1.4.13)

where the coefficients cNj , dNj for j = 1, .., N are determined by

∂tc
N
j = −

∫
Ω

Bε

( N∑
i=1

cNi ϕi

)
∇µN∇ϕj + cNj

∫
Ω

G(µN ), (1.4.14)

dNj (1 + σλj) = δλjc
N
j +

∫
Ω

( N∑
i=1

(cNi − σ

δ
dNi )ϕi

)γ
ϕj , (1.4.15)

cNj (0) = (n0, ϕj)L2(Ω). (1.4.16)

Since the right hand side of Equation (1.4.14) depends continuously on the coefficients cNj ,
standard results on ODE systems gives the existence and uniqueness of a local solution to the
initial value problem (1.4.14)–(1.4.16).

Step 2. Inequalities and convergences. Multiplying Equation (1.4.11) by dj(t) and summing over
j leads to ∫

Ω

∂tn
NµN = −

∫
Ω

Bε(n
N )|∇µN |2 +

∫
Ω

nNG(µN )µN .

Rearranging the left-hand side, we obtain∫
Ω

∂tn
NµN =

∫
Ω

∂t

(
nN − σ

δ
µN
)
µN +

1

2

σ

δ

d

dt

∫
Ω

|µN |2.

Using in Equation (1.4.12), ϕj = d
dt (c

N
j − σ

δ d
N
j )ϕj and summing over j , we have

∫
Ω

∂t

(
nN − σ

δ
µN
)
µN =

δ

2

d

dt

∫
Ω

∣∣∣∇(nN − σ

δ
µN
)∣∣∣2 + d

dt

∫
Ω

(
nN − σ

δ µ
N
)γ+1

γ + 1
.

Altogether, we obtain the discrete energy dissipation

d

dt
E(t) +

∫
Ω

Bε(n
N )|∇µN |2 =

∫
Ω

nNG(µN )µN , (1.4.17)

in which the energy is defined by

E(t) =
δ

2

∫
Ω

∣∣∣∇(nN − σ

δ
µN
)∣∣∣2 + ∫

Ω

(
nN − σ

δ µ
N
)γ+1

γ + 1
+

1

2

σ

δ

∫
Ω

|µN |2.



1.4. Existence of weak solutions 63

Taking j = 1 in (1.4.11) leads to ∂t
∫
Ω
nN =

∫
Ω
ϕ1
∫
Ω
nNG(µN )ϕ1 where ϕ1 is constant, and with

the assumptions on G (see (1.1.13)), together with Gronwall’s inequality we find∣∣∣ ∫
Ω

nN
∣∣∣ ≤ C, (1.4.18)

where C is a positive constant independent of N . Using this inequality in (1.4.17) and the
assumptions on the source term G, we have

d

dt
E(t) +

∫
Ω

Bε(n
N )|∇µN |2 ≤ C. (1.4.19)

Altogether, we find the following inequalities

δ

2

∫
Ω

∣∣∣∇(nN − σ

δ
µN
)∣∣∣2 ≤ C, (1.4.20)

σ

2δ

∫
Ω

|µN |2 ≤ C, (1.4.21)∫
ΩT

Bε(n
N )|∇µN |2 ≤ C, (1.4.22)

∫
Ω

(
nN − σ

δ µ
N
)γ+1

γ + 1
≤ C. (1.4.23)

Using the definition (1.4.1) of Bε(n) and Inequality (1.4.22) we find a control on |∇µN |2. Com-
bined with Inequality (1.4.20), we have∫

ΩT

|∇µN |2 ≤ C,

∫
ΩT

|∇nN |2 ≤ C. (1.4.24)

Using (1.4.18), (1.4.24) and the Poincaré-Wirtinger inequality, we obtain the following conver-
gence as N → +∞

nN ⇀ nε weakly in L2(0, T,H1(Ω)). (1.4.25)

From (1.4.20)-(1.4.21), we find that the coefficients cNj , dNj are bounded and a global solution
to (1.4.14)–(1.4.16) exists. Choosing j = 1 in (1.4.12) gives

∫
Ω

µN =

∫
Ω

(
nN − σ

δ
µN
)γ
,

which is bounded thanks to (1.4.23) and the Hölder inequality. Therefore, combining (1.4.24)
and the Poincaré-Wirtinger inequality, we obtain

µN ⇀ µε weakly in L2(0, T,H1(Ω)). (1.4.26)

Then, denoting by ΠN the projection operator from L2(Ω) to span{ϕ1, ...ϕN}, using Equa-
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tion (1.4.11), we have for every test functions ϕ ∈ L2(0, T,H1(Ω)),∣∣∣ ∫
ΩT

∂tn
Nϕ
∣∣∣ = ∣∣∣ ∫

ΩT

∂tn
NΠNϕ

∣∣∣
=
∣∣∣ ∫

ΩT

Bε(n
N )∇µN∇ΠNϕ+

∫
ΩT

nNG(µN )ΠNϕ
∣∣∣

≤ C
(∫

ΩT

Bε(n
N )|∇µN |2

)1/2(∫
ΩT

|∇ΠNϕ|2
)1/2

+ C
(∫

ΩT

|ΠNϕ|2
)1/2

≤ C∥ϕ∥L2(0,T,H1(Ω)),

where the last inequality is obtain from (1.4.22). Therefore, from the previous result, we can
extract a subsequence such that

∂tn
N ⇀ ∂tnεweakly in L2(0, T,H−1(Ω)). (1.4.27)

Hence, combining the weak convergences (1.4.25) and (1.4.27), and using the Lions-Aubin lemma
we obtain the strong convergence

nN → nε strongly in L2(0, T, L2(Ω)). (1.4.28)

Step 3. Strong compactness for µN . To identify the limit in the source term, we need to find
strong compactness for the potential µN . As we have strong compactness for nN , it is enough to
find strong compactness for wN .

Using the notation wN = nN − σ
δ µ

N , we change Equation (1.4.12) in

σ

∫
Ω

∇wN∇ϕj +
σ

δ

∫
Ω

(wN )γϕj +

∫
Ω

wNϕj =

∫
Ω

nNϕj ,

with wN (t, x) =
∑N
i=1 q

N
i (t)ϕi(x). The coefficients qNj for j = 1, . . . , N are determined by the

equation

(σλj + 1) qNj +
σ

δ

∫
Ω

(
N∑
i=1

qNi (t)ϕi(x)

)γ
ϕj = cNj . (1.4.29)

Thus, denoting z = ∂tw, and computing the time derivative of the previous equation, we obtain

(σλj + 1)
d

dt
qNj +

σ

δ

d

dt

∫
Ω

(
N∑
i=1

qNi (t)ϕi(x)

)γ
ϕj =

d

dt
cNj .

We use the notation ∂twN = zN , Multiplying the previous equation by ϕj(∂twN ), summing over
the j and integrating over the domain lead to

σ

∫
Ω

|∇zN |2 +
∫
Ω

|zN |2 + γ σ

δ

∫
Ω

(wN )γ−1|zN |2 =

∫
Ω

∂tn
NzN .

Integrating the previous equation in time, and from the use of Young’s inequality on the right
hand side, we have∫

ΩT

σ|∇zN |2 + |zN |2 ≤ C∥∂tnN∥2L2(0,T,H−1(Ω)) +
σ

2
∥zN∥2L2(0,T,H1(Ω))
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Then, assuming 1− σ
2 > 0, we find ∥z∥2L2(0,T,H1(Ω)) ≤ C.

This previous result allows us to pass to the limit in the source term using the Lions-Aubin
lemma. We refer to [287] to pass to the limit in other terms of the equation and detail the
differences.
Lastly, it remains to prove the regularity of w, wγ . To do so, we use Equation (1.4.29) and
successively multiply it by −ϕj∆wN , integrate it in space, use integration by parts, and integrate
with respect to time, to arrive to

σ

∫
ΩT

|∆wN |2 +
∫
Ω

|∇wN |2 + σ

δ
γ(wN )γ−1|∇wN |2 = −

∫
ΩT

nN∆wN .

Since nN is bounded L2(0, T,H1(Ω)), we can use Young inequality and elliptic regularity to find
that wN is bounded in L2(0, T,H2(Ω)). Inequality (1.4.20) provides the L∞(0, T,H1(Ω)) bound.
Finally the regularity of (wN )γ comes from Equation (1.1.2).
This concludes the proof.

1.4.2 A priori estimates
To show the existence of weak solutions of the non-regularized model (1.1.6)–(1.1.7), the idea
is to pass to the limit ε → 0 in System (1.4.2)–(1.4.3). A priori estimates derived from the
regularized model help us to find the required compacity and pass to the limit in the model.
The computations of the a priori estimates follow closely the paper [287] where the case of a
single-well potential was considered. The addition of the source term G, which is not present in
[287], induces the need of new computations. The second main difference is that we consider a
potential term wγ in (1.1.7) instead of a smooth and bounded potential as it was done before.
We start by defining the entropy of the system

Φε[n] =

∫
Ω

ϕε(n(x))dx, ϕ′′ε (x) =
1

Bε(n)
, ϕε(0) = ϕ′ε(0) = 0,

and we recall the energy

Eε[n] =
∫
Ω

(n− σ
δ µ)

γ+1

γ + 1
+
δ

2

∣∣∣∇(n− σ

δ
µ
)∣∣∣2 + σ

δ

|µ|2
2
.

In comparison with the previous subsection, when ε→ 0 we loose the uniform L2(ΩT ) bound on
∇µ which was obtained with the regularized mobility. This bound is actually recovered with the
estimates provided by the entropy that could not be used in the Galerkin scheme. Also, when
ε → 0, the time derivative of the density lies in a larger space than L2(0, T,H−1(Ω)), which is
(L4(0, T,W 1,s(Ω)))′ where s > 2. This prevents us from using the previous computations and
we lose the bound on ∂tw and ∂tµ. To recover their strong convergence and thus to identify the
source term, we need to rely on the Fréchet-Kolmogorov theorem. This last difficulty is dealt
with the following proposition

Proposition 1.4.2 (Compactness for wε and µε). The sequences (wε)ε and (µε)ε converge
strongly in L1(ΩT ).

Démonstration. We use the Fréchet-Kolmogorov theorem as in Appendix 1.5.1. Indeed, we have
the compactness in space for w and Equation (1.1.2) provides

−σ∆[w(t+ h)− w(t)] +
σ

δ
[wγ(t+ h)− wγ(t)] + w(t+ h)− w(t) = n(t+ h)− n(t).
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Multiplying formally by sgn(w(t + h) − w(t)) (rigorously by ϕ′(w(t + h) − w(t)) where ϕ is a
convex approximation of the absolute value), integrating in space and using Appendix 1.5.1, we
obtain the compactness for w. Since µ = δ

σ (n− w) we have compactness for µ.

Remark 1.4.3. The strong convergence actually holds in higher Lebesgue spaces since (wε)ε is
bounded uniformly in L2(0, T,H2(Ω)) ∩ L∞(0, T, Lγ+1(Ω)) and (µε)ε in L2(0, T,H1(Ω)).

1.4.3 Limit ε → 0

From the previous estimates on the regularized model, we are now in position to prove the
existence of global weak solutions for System (1.1.6)–(1.1.7).

Theorem 1.4.4 (Existence of weak solutions). Assume an initial condition satisfying (1.1.12).
Then, for σ small enough, there exists a global weak solutions (n, µ) of Equations (1.1.6)-(1.1.7)
such that

n ∈ L2(0, T,H1(Ω)), ∂tn ∈ (L4(0, T,W 1,s(Ω)))′,

µ ∈ L2(0, T,H1(Ω)),

w ∈ L2(0, T,H2(Ω)) ∩ L∞(0, T,H1(Ω)), wγ ∈ L2(0, T, L2(Ω)),

n ≥ 0, w ≥ 0, a.e. in ΩT ,

where s is defined in proposition 1.2.2. Moreover, as ε → 0, the inequalities provided by the
energy and entropy hold true.

Démonstration. The estimates on ∂tn has been proved in Section 2. The proof of this theorem
is a straightforward adaptation of Theorem 5 in [287] using the computation of Section 1.4.2,
therefore, we do not repeat the proof arguments here. The nonnegativities of n and w are a
consequence of Proposition 1.4.5.

The regularity of the solutions is higher than it is expected in Theorem 1.4.4. We refer to
Section 1.3 for the proof of this result.

Proposition 1.4.5 (Nonnegativity of n and w). The solution (n,w) of System (1.1.1)–(1.1.2)
defined by Theorem 1.4.4 is nonnegative, i.e.

n(x, t), w(x, t) ≥ 0, a.e. in Ω.

Démonstration. The proof of the nonnegativity of the density n follows the same argument than
[287] that uses the boundedness of the entropy (uniform in ε). Hence, we do not repeat the proof
here. Now, we recall that the repulsive potential from (1.1.2) is actually defined by assumption
in the introduction as wγ = max(0, wγ). Then, since n ≥ 0, Equation (1.1.2) implies that for
every function η ≥ 0, we have∫

Ω

∇w · ∇η +
∫
Ω

max(0, wγ)η +

∫
Ω

wη ≥ 0,

where we supposed σ = δ = 1 for the sake of clarity. Using the previous inequality, and choosing
η = −w− (where w− represents the negative part of w), we obtain∫

Ω

|∇w−|2 +
∫
Ω

w2
− ≤ 0.
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This achieves the proof of the nonnegativity of w.

Remark 1.4.6. A main difference with [287] is that we can not find an upper bound using an
entropy argument. Indeed, the result in [287] relies on the singularity of the potential at n = 1.
Furthermore, Dai and Du [113] notice that with a smooth potential at n = 1, one cannot prevent
the solution from exceeding this threshold. This is due to the Gibbs-Thomson effect, where the
mean curvature of the interface plays a role in the concentration of the phases.
However, from a different argument relying on the Alikakos iteration method [16], see Inequa-
lity (1.3.2), we are able to show an L∞-bound for System (1.1.1)–(1.1.2) and therefore better
regularity for the functions of our system.

1.5 Appendix

1.5.1 Compactness with the Fréchet-Kolmogorov theorem

We provide another method to prove strong compactness in γ for n only using the fact that n∇µ
and ∇n are integrable. This proposition can be applied to prove compactness in σ and ε with
the parameters defined respectively in Section 2 and 4.

Proposition 1.5.1 (Strong compactness for n). The sequence (nσ,γ)γ is compact in L2(0, T, Lp(Ω))
for 1 ≤ p < 2d/(d− 2) if d > 2 and 1 ≤ p <∞ else.

The proof of this proposition uses a sequence (φδ)δ>0 ∈ Cc(Rd) of standard mollifiers with mass 1
such that

∥∇kφδ∥L1(Ω) ≤
C

δk
,

for any function g ∈ Lp(Ω),

∥g ∗ φδ∥Lp(Ω) ≤ ∥φδ∥L1(Ω)∥g∥Lp(Ω),

and when g ∈W 1,p(Ω) it holds

∥g ∗ φδ − g∥Lp ≤ δ∥∇g∥Lp(Ω).

Proof of proposition 1.5.1. Since ∇n is bounded in L1(ΩT ) we only need to prove the time com-
pactness

lim
|h|→0

∫ T−h

0

∫
Ω

|nσ,γ(t+ h, x)− nσ,γ(t, x)|dxdt = 0 uniformly in γ.

Using the mollifiers with δ depending on h to be specified later on, we first notice that∫ T−h

0

∫
Ω

|n(t+ h, x)− n(t, x)|dxdt ≤
∫ T−h

0

∫
Ω

|n(t, x)− n(t, ·) ∗ φδ(x)|dxdt

+

∫ T−h

0

∫
Ω

|n(t+ h, x)− n(t+ h, ·) ∗ φδ(x)|dxdt

+

∫ T−h

0

∫
Ω

|n(t+ h, ·) ∗ φδ(x)− n(t, ·) ∗ φδ(x)|dxdt.
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For the first and second term, the computations are the same, hence, we only present it for the
first term. Using the properties of the mollifiers, we have∫ T−h

0

∫
Ω

|n(t, x)− n(t, ·) ∗ φδ(x)|dxdt ≤ δ

∫ T

0

∥∇n(t)∥L1(Ω)dt ≤ Cδ.

To control ∥∇n∥L1(Ω) we used the Cauchy-Schwarz inequality and Proposition 1.2.2. The third
term can be written as∫ T−h

0

∫
Ω

|n(t+ h, ·) ∗ φδ(x)− n(t, ·) ∗ φδ(x)|dxdt =
∫ T−h

0

∫
Ω

∣∣∣ ∫ t+h

t

∂sn(s, x) ∗ φδ(x)ds
∣∣∣dxdt.

And using Equation (1.1.6) yields∫ T−h

0

∫
Ω

∣∣∣ ∫ t+h

t

∂sn(s, ·) ∗ φδ(x)ds
∣∣∣dxdt

=

∫ T−h

0

∫
Ω

∣∣∣ ∫ t+h

t

[div(n∇µ) + nG(µ)](s, ·) ∗ φδ(x)ds
∣∣∣dxdt

≤
∫ T−h

0

∫
Ω

∣∣∣ ∫ t+h

t

d∑
i=1

n∂xi
µ(s, ·) ∗ ∂xi

φδ(x)ds
∣∣∣dxdt

+

∫ T−h

0

∫
Ω

∣∣∣ ∫ t+h

t

nG(µ)(s, ·) ∗ φδ(x)ds
∣∣∣dxdt.

The first term is bounded by∫ T−h

0

∫
Ω

∣∣∣ ∫ t+h

t

d∑
i=1

n∂xi
µ(s, ·) ∗ ∂xi

φδ(x)ds
∣∣∣dxdt ≤ C

∫ T−h

0

∫ t+h

t

∥n∇µ(s)∥L1(Ω)∥∇φδ∥L1(Ω).

Writing n∇µ = n1/2n1/2∇µ, using the Cauchy-Schwarz inequality, Inequality (1.2.8), the first
term is bounded by Ch/δ.
The second term is bounded by Ch using assumptions on G. Choosing δ = h1/2 gives compactness
in L1(ΩT ).
Finally using Proposition 1.2.2 and interpolation, we get the result.

1.5.2 Uniqueness with no source term

We consider Equations (1.1.1)-(1.1.2) with G = 0. Therefore we have conservation of the mass.
To simplify the notations we suppose σ = δ = 1. We retain the regularity of the solutions from
Section 1.3. Writing n = n2 − n1 and w = w2 − w1 the difference of two solutions we consider
φ(t) such that

−∆φ(t) = n in Ω,

∇φ(t) · ν = 0 on ∂Ω.
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Multiplying Equation (1.1.1) by φ, integrating in space and using integrations by parts we obtain

1

2

d

dt

∫
|∇ϕ|2 −

∫
(n22 − n21)∆φ−

∫
n∇w2 · ∇φ−

∫
n1∇w · ∇φ = 0.

We denote by I1, I2, I3 the last three terms. Using the definition of φ, we have

I1 = −
∫
(n22 − n21)∆φ =

∫
(n22 − n21)(n2 − n1),

which is nonnegative since x 7→ x2 is increasing for x ≥ 0. Now, we treat I2. Using integration
by parts and n = −∆φ one can show that

I2 = −
∑
i,j

∫
∂iφ∂ijw2∂jφ−

∑
i,j

∫
∂iφ∂jw2∂ijφ

= J1 + J2.

Using integrations by parts on the second term we find

J2 =
∑
i,j

∫
∂j

|∂iφ|2
2

∂jw2 +
∑
i,j

∫
|∂iφ|2∂jjw2

=
1

2

∫
|∇φ|2∆w2.

We finally obtain

I2 ≤ C

∫
|D2w2||∇φ|2.

From Inequality (1.3.3) together with the Calderón–Zygmund lemma and using ∇φ ∈ L∞ we
find

I2 ≤ Cp
(∫

|∇φ|2p/(p−1)
)(p−1)/p

≤ Cp∥∇φ∥2/pL∞

(∫
|∇φ|2

)(p−1)/p

,

for every 1 ≤ p < ∞. For I3 we recall that n1 is bounded in L∞. Using the Cauchy-Schwarz
inequality we only need to show that ∥∇w∥L2 ≤ C∥∇φ∥L2 .

Equation (1.1.2) for the difference of the two solutions can be written as

−∆w + wγ2 − wγ1 + w = −∆φ.

Now, we multiply by w, use integration by parts and the fact that x 7→ xγ is increasing for x ≥ 0
to get ∫

|∇w|2 + w2 ≤
∫

|∇φ · ∇w|.

Applying Young’s inequality yields the result. Therefore

I3 ≤ C∥∇φ∥2L2 .
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Combining the previous results we obtain

d

dt
η(t) ≤ Cpmax(η(t)1−1/p, η(t)),

for every 1 ≤ p <∞ where η(t) =
∫
|∇φ(t)|2.

Following [48, 41], for t < 1/C, the solution is bounded by

η(t) ≤ (Ct)p.

For t < 1/(2C) we then find
η(t) ≤ 2−p.

Letting p → ∞ we find uniqueness on [0, 1
2C ) and this procedure can be iterated on the whole

interval of existence.



Chapitre 2

Nonlocal Cahn-Hilliard equation
with degenerate mobility :
Incompressible limit and
convergence to stationary states

Abstract
The link between compressible models of tissue growth and the Hele-Shaw free boundary problem
of fluid mechanics has recently attracted a lot of attention. In most of these models, only repulsive
forces and advection terms are taken into account. In order to take into account long range
interactions, we include a surface tension effect by adding a nonlocal term which leads to the
degenerate nonlocal Cahn-Hilliard equation, and study the incompressible limit of the system.
The degeneracy and the source term are the main difficulties. Our approach relies on a new L∞

estimate obtained by De Giorgi iterations and on a uniform control of the energy despite the
source term. We also prove the long-term convergence to a single constant stationary state of
any weak solution using entropy methods, even when a source term is present. Our result shows
that the surface tension in the nonlocal (and even local) Cahn-Hilliard equation will not prevent
the tumor from completely invading the domain.

2.1 Introduction

Nonlocal parabolic equations are commonly used to describe living tissues because cells expe-
rience two types of forces : repulsive and attractive. The repulsion arises at high volume fraction
because, locally, cells occupy a non-vanishing volume, while cell adhesion and chemotaxis create
attraction at long range, i.e., low densities. These effects, as well as surface tension effects, can
be considered by using the Cahn-Hilliard equation (see, e.g., [277] for a review on these mo-
dels). Our work is dedicated to the analysis of the nonlocal Cahn-Hilliard equation for long
range interactions with a repulsive potential. More precisely we are interested in two results :
the incompressible limit connecting mechanistic and free boundary descriptions of the tissue and
the long-time asymptotics of equations. Concerning the first result, the main difficulty is that
we lose any maximum principle and we have to rely on different arguments to obtain the same
results concerning the incompressible limit. Concerning the convergence to the stationary state,

71
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we prove that it converges to a nonnegative constant which shows that the surface tension effect
(modeled by the Cahn-Hilliard equation) is not strong enough to prevent the tumor from inva-
ding the entire domain.

2.1.1 Mathematical setting

Our settings is as follows : we let Ω be the d = 1, 2, 3 dimensional flat torus in Rd, which is
particularly useful when treating nonlocal terms and we consider the equation

∂tu− div(u∇µ) = uG(p) in Ω× (0, T ),

µ = p+Bε(u) in Ω× (0, T ),
(2.1.1)

with the initial condition u(0) = u0 ≥ 0 in Ω and u(x, t) ≥ 0 represents the cell density. Here,
Bε denotes the nonlocal operator defined as

Bε[u](x) =
1

ε2
(u(x)− ωε ∗ u(x)) =

1

ε2

∫
Ω

ωε(y)(u(x)− u(x− y)) dy (2.1.2)

for fixed ε small enough (in order to be able to use [155, Lemma C.1] and Lemma 2.5.3) and ωε
is a usual mollification kernel ωε(x) = 1

εd
ω(xε ) with ω compactly supported in the unit ball of

Rd satisfying ∫
Rd

ω(y) dy = 1, ω(·) is radial. (2.1.3)

The pressure and source term are defined, for u ≥ 0, as

p = uγ , γ ≥ 1, G(p) = pH − p, (2.1.4)

with pH > 0 a constant called the homeostatic pressure, which is the threshold where cells begin
to die, assuming that pressure produces an inhibitory effect on cell proliferation.

We comment the different terms appearing in the equation. First, u is the density of tumor cells
and can be thought of as being between 0 and 1. However, this fact is not easy to prove since
the maximum principle does not hold here. Using a De Giorgi iteration technique, we can prove
however that the bound holds with a small perturbation terms which vanishes as γ → ∞ (see
Lemma 2.3.1). From the Cahn-Hilliard terminology, we refer to µ as the chemical potential, which
is composed by two terms : one is the pressure p = uγ and the other is Bε, the approximation
of the Laplace operator, which takes into account surface tension effects, see for instance [155].
Concerning the initial condition, we distinguish two sets of assumptions.

Assumption 2.1.1 (Initial condition). We assume :

(A) 0 ≤ u0 ≤ p
1
γ

H for almost any x ∈ Ω.

Note that the same assumption has already been considered, e.g., in [116] and that it implies
u0 ∈ Lq(Ω), for any q ≥ 1, since Ω is of finite Lebesgue measure. For the single Section 2.3, we
need additionally :

Assumption 2.1.2 (Additional assumption for Section 2.3). We assume :
(B) There is γ0 > 0 and C = C(γ0) > 0 such that ∥∆(u1+γ0 )∥L1(Ω)+∥∇u0∥L2(Ω)+∥∆u0∥L1(Ω) ≤
C, ∀γ ≥ γ0.
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System (2.1.1) is associated with the energy E and entropy Φ, respectively defined by

E(u) := 1

4ε2

∫
Ω

∫
Ω

ωε(y)|u(x)− u(x− y)|2 dy dx+

∫
Ω

uγ+1

γ + 1
dx ≥ 0, (2.1.5)

Φ(u) :=

∫
Ω

 u

p
1
γ

H

log

 u

p
1
γ

H

− u

p
1
γ

H

+ 1

dx ≥ 0. (2.1.6)

They formally satisfy the identities

d

dt
E(u) +

∫
Ω

u|∇µ|2 =

∫
Ω

uµG(p), (2.1.7)

d

dt
Φ(u) +

1

2ε2p
1
γ

H

∫
Ω

∫
Ω

ωε(y)|∇u(x)−∇u(x− y)|2 dxdy

+
1

p
1
γ

H

∫
Ω

4γ

(γ + 1)2

∣∣∣∇|u| γ+1
2

∣∣∣2 dx− 1

p
1
γ

H

∫
Ω

u log

 u

p
1
γ

H

G(p) dx = 0. (2.1.8)

Moreover they provide us with direct a priori estimates, provided we can control the integral
related to the source term in (2.1.7), which may change sign. Here, we assume that we have
existence of solutions with regularity typical of the Cahn-Hilliard equation. We do not include
the proof, since most of the a priori estimates are derived in Section 2.2. For a rigorous proof of
existence by means of an approximating scheme, we refer for instance to [155].

Lemma 2.1.3. Let u0 satisfy assumption (2.1.1). Then, for any T > 0, there exist constants
C0(T, E(u0),Φ(u0), ε) and C1(T, E(u0),Φ(u0), ε, γ) and a global weak solution u such that,

u ≥ 0 a.e. in Ω× (0,∞), (2.1.9)

u ∈ C([0,∞); (W 1,r(Ω))′) ∩ Cweak([0,∞);Lγ+1(Ω)), r =
(γ + 1)(2γ + 1)

γ2
, (2.1.10)

u(t) :=
1

|Ω|

∫
Ω

u(x, t) dx ≤ p
1
γ

H ∀t ≥ 0, (2.1.11)

∥u∥L2(0,T ;H1(Ω)) +
1

γ + 1
∥u∥γ+1

L∞(0,T ;Lγ+1(Ω)) + ∥u∥L2γ+1(Ω×(0,T )) ≤ C0, (2.1.12)

∥∂tu∥L2(0,T ;(W 1,r(Ω))′) + ∥∂tu∥Lq′ (0,T ;(W 1,q(Ω))′) ≤ C1, (2.1.13)

where 1
q +

1
q′ = 1, q = 2(2γ+1)

γ . Moreover, for any v ∈W 1,r(Ω), u satisfies

⟨∂tu, v⟩(W 1,r(Ω))′,W 1,r(Ω)) +

∫
Ω

u∇p · ∇v dx+
1

ε2

∫
Ω

u∇u · ∇v dx− 1

ε2

∫
Ω

u(∇ωε ∗ u) · ∇v dx

=

∫
Ω

uG(p)v dx, for almost every t > 0, (2.1.14)

with u(0) = u0 almost everywhere in Ω. Here ⟨·, ·⟩(W 1,r(Ω))′,W 1,r(Ω) denotes the duality product
between (W 1,r(Ω))′ and W 1,r(Ω).

Remark 2.1.4. The first continuity result follows from the bounds on ∂tu in (2.1.13). Moreover,
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being u ∈ L∞(0, T ;Lγ+1(Ω)), we also deduce that u ∈ Cweak([0, T ];L
γ+1(Ω)), see [54, Lemma

II.5.9]. This clearly also implies that u =
∫
Ω
u dx

|Ω| ∈ C([0, T ]).

2.1.2 The main results

Our first result establishes the incompressible limit γ → ∞ of the system (2.1.1) which links
two descriptions of the tumor growth : mechanistic and free-boundary. The main mathematical
novelty here is the nonlocality which makes it difficult to establish the uniform L∞ bound on uγ .
To overcome this problem, we apply the De Giorgi iterations, see Lemma 2.3.1, in the spirit of
[182, 293].

Theorem 2.1.5 (Incompressible limit). Let uγ be a weak solution to (2.1.1) as defined in
Lemma 2.1.3 and initial datum satisfying Assumptions 2.1.1-2.1.2. Then, as γ → ∞, we have
for all T > 0, up to a (not relabeled) subsequence

uγ
∗
⇀ u∞ in L∞(Ω× (0,∞)),

uγ → u∞ in Lq(Ω× (0, T )) ∀q ∈ [2,+∞),

uγ ⇀ u∞ in L2(0, T ;H1(Ω)),

∂tuγ ⇀ ∂tu∞ in L2(0, T ; (H1(Ω))′),

pγ ⇀ p∞ in L2(0, T ;H1(Ω)),

pγ → p∞ in Lr(Ω× (0, T )), ∀r ∈ [2, 3),

where u∞ and p∞ satisfy in D′(Ω× [0,∞))

∂tu∞ − div(u∞∇(p∞ +Bε(u∞))) = u∞G(p∞), (2.1.15)

p∞

(
∆p∞ +

1

2ε2
∆u2∞ − 1

ε2
div(u∞(∇ωε ∗ u∞)) + u∞G(p∞)

)
= 0, (2.1.16)

0 ≤ u∞ ≤ 1, p∞ ≥ 0, p∞(1− u∞) = 0 almost everywhere in Ω× (0,∞), (2.1.17)

with u∞(0) = u0. Furthermore it holds ⟨∂tu∞, p∞⟩(H1(Ω))′,H1(Ω)) = 0 for almost any t ∈ (0,∞).

This theorem entails that in the limit γ → ∞ we can consider the measurable set Ω(t) := {x ∈
Ω : p∞(t) > 0}, where u∞ = 1 by the graph relation (2.1.17) so that it can be interpreted as
the ‘tumor zone’. Note that it must hold

−∆p∞ − 1

2ε2
∆u2∞ = − 1

ε2
div(u∞(∇ωε ∗ u∞)) + u∞G(p∞) in Int(Ω(t))

which yields a Hele-Shaw type equation.

Our second result is concerned with the convergence to stationary states. We distinguish two
cases : when G(p) = pH − p and when G(p) = 0. The main novelty lies in the first case which is
not conservative and its proof requires a careful analysis of the entropy. We prove that as t→ ∞,
the solution converges to the constant p

1
γ

H > 0, which shows that the surface tension is not strong
enough to prevent the tumor from invading the entire domain. We have the

Theorem 2.1.6 (Long time behaviour). Let u be a solution to (2.1.1) with fixed γ ≥ 1 in the
sense of Lemma 2.1.3 and initial datum satisfying Assumption 2.1.1 Then, if u0 ̸≡ 0, there are
two cases :



2.1. Introduction 75

— for G(p) = pH − p, we have

∥u(t)− p
1
γ

H∥Lq(Ω) → 0 as t→ ∞, ∀q ∈ [1, γ + 1). (2.1.18)

— For G(p) = 0 and γ ≥ 1, we have an exponential decay towards the mean value : there
exists a constant C = C(Ω, γ, q,Φ(u0), u0) such that

∥u(t)− u0∥Lq(Ω) ≲ e−Ct, ∀q ∈ [1, γ + 1). (2.1.19)

There are two possibilities to prevent steady states to be constant. The first one is to consider
different potentials than just repulsive ones like uγ . The second possibility is to include an
external force, which can be taken into account either by a generic force that acts directly on
the cells like it was done in [154]. One can also include the effects of nutriments and impose that
the tumor cells die in the regions where there are no nutriments.

Remark 2.1.7. In the case of nonzero source term G, Theorem 2.1.6 implies that the constant
solution u ≡ 0 is unstable, whereas p

1
γ

H is the only asymptotically stable equilibrium and any weak
solution u (in the sense of Lemma 2.1.3) departing from any nonzero initial datum converges to

p
1
γ

H .

2.1.3 Literature review
Incompressible limit for tumor model. The incompressible limit connects two models of
tumor growth : the mechanistic one proposed in [289] and the free-boundary one analysed in
[275]. Since [289], many substantial contributions were made, allowing nutrients [119], advection
effects [120, 239, 237], additional structuring variable [116], congesting flows [211], concerning
two species [127, 206] or including additional surface tension via Cahn-Hilliard equation [151,
154].

One of the major difficulties for establishing the incompressible limit is proving strong compact-
ness of the gradient of the pressure. The main tool is the celebrated Aronson-Benilan estimate
[28, 112]. The estimate has been recently readressed in [49] but the generalization available there
are not applicable for the pressure p = uγ + 1

ε2u as in our case cf. [49, Theorem 4.1]. Another
direct technique was developed in [260] which is based on deducing strong convergence from a
sort of energy equality. This is the strategy we follow in our proof.

Nonlocal Cahn-Hilliard equation. The nonlocal Cahn-Hilliard is an approximation of the
Cahn-Hilliard equation proposed to model dynamics of phase separation [70]. While originally
introduced in the context of material science, it is currently widely applied also in biology [265,
12, 287]. The nonlocal equation was obtained for the first time by Giacomin and Lebowitz as
the limit of interacting particle systems [190, 189]. Their work can be considered as the first
derivation of the Cahn-Hilliard equation up to a delicate passage to the limit from the nonlocal
equation to the local one. The latter problem was in fact addressed only recently, first for the
case of the constant mobility [123, 121, 273, 122] and finally for the case of degenerate mobility
[155, 81]. Another derivation as a hydrodynamic limit of the Vlasov-type equation was proposed
recently in [150], following the work of Takata and Noguchi [317].

Entropy dissipation methods and asymptotic analysis. For establishing convergence to
stationary states we use methods based on the entropy dissipation. In the simplest scenario, it
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can be applied to the PDEs equipped with the entropy Φ which decreases with some dissipation
DΦ(t) ≥ 0 :

∂tΦ(t) +DΦ(t) ≤ 0.

Then, one tries to prove that the dissipation is bounded from below by the entropy |Φ(t)|α ≤
DΦ(t) so that Φ(t) → 0 with an explicit convergence rate (exponential if α = 1 and polynomial
if α > 1). Finally, by virtue of Csiszár-Kullback inequality, one deduces convergence in L1. The
last step requires conservation of mass which is not available if G(p) ̸= 0 in (2.1.1).

The approach presented above was successfully applied to study classical problems, including
heat equation, porous media equation, fast diffusion equation or p-Laplace equation (see [78]
and references therein). In particular, we refer to Section 2.4.2 where we present the method
in detail for the Cahn-Hilliard equation without the source term. Finally, we point out that
the entropy dissipation method is also applied to several problems of current interest, incluing
Landau equation [74], reaction-cross-diffusion systems [115] and reaction-diffusion systems with
nonlinear diffusion [172]. Another method to obtain convergence to equilibrium, applied in the
context of the Cahn-Hilliard equation, is via the Łojasiewicz-Simon inequality [105, 7].

2.2 Basic a priori estimates

The energy/entropy structure usually provides a priori estimates on the solutions. However, in
the case of a source term which may change sign, we first need to prove that we can control their
dissipation. Before tackling the problem of energy/entropy we first show a basic estimate which
ensures the control of the mass of the system, uniformly in time. This estimate is useful to obtain
a first L∞

t L
1
x bound on the solution. Our proof of these estimates is somehow formal but can be

carried out rigorously with an approximation scheme as, e.g., in [155]. These estimates are also
fundamental to prove the existence Lemma 2.1.3.

2.2.1 Control of the mass

We recall that the total mass of the system is defined in (2.1.11) and we prove the corresponding
bound.

Proposition 2.2.1 (Mass control). For all t ≥ 0 we have u(t) ≤ p
1
γ

H .

Démonstration. Integrating equation (2.1.1), we obtain

d

dt
u =

1

|Ω|

∫
Ω

(u pH − uγ+1) dx. (2.2.1)

By the Hölder inequality, ∫
Ω

udx ≤
(∫

Ω

uγ+1 dx

) 1
γ+1

|Ω| γ
γ+1

we deduce

d

dt
u ≤ pH

|Ω|

∫
Ω

udx−
(∫

Ω

udx

)γ+1
1

|Ω|γ+1
= pHu− u1+γ ,

so that, with the Assumption 2.1.1 on the initial condition, we can conclude (2.1.11).
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2.2.2 Energy and entropy estimates

We recall that the energy, the entropy as well as their dissipation have been defined in (2.1.5)–
(2.1.8). We prove that, for a fixed time horizon T , we have the following inequalities.

Proposition 2.2.2 (Control of the energy and entropy dissipation). The inequalities hold

sup
t≥0

Φ(u(t)) +
1

2ε2p
1
γ

H

∫ ∞

0

∫
Ω

∫
Ω

ωε(y)|∇u(x)−∇u(x− y)|2 dxdy dt

+
1

p
1
γ

H

4γ

(γ + 1)2

∫ ∞

0

∫
Ω

∣∣∣∇|u| γ+1
2

∣∣∣2 dx dt+ ∫ ∞

0

∫
Ω

u log

 u

p
1
γ

H

 (p− pH) dxdt ≤ Φ(u0),

(2.2.2)

d

dt
E(u) + 1

2ε2

∫
Ω

ωε(y)(u(x)− u(x− y))(uγ+1(x)− uγ+1(x− y)) dx+

∫
Ω

u|∇µ|2 dx

+
1

2

∫
Ω

u2γ+1 dx ≤ C(E(u) + 1),

(2.2.3)

and thus there exists C(E(u0), T, ε) > 0 such that

sup
t∈[0,T ]

E(u(t)) + 1

2

∫ T

0

∫
Ω

u2γ+1 dxdt ≤ C(E(u0), T, ε).

Remark 2.2.3. The above estimate in the energy E depends exponentially on the final time T .
We improve this result to a global one in Proposition 2.2.5.

Démonstration. Control of the entropy. Note that Φ(u) ≥ 0 by the inequality x log
(
x
y

)
−x+y ≥

(
√
x−√

y)2 for x ≥ 0 and y > 0 (x = u

p
1
γ
H

, y = 1 here). Then we have

−
∫
Ω

u log

 u

p
1
γ

H

G(p) dx = −
∫
Ω

u log

 u

p
1
γ

H

 (pH − p) dx ≥ 0,

since u ≥ 0 and x 7→ log x is increasing for x ≥ 0. Therefore, all the terms in the dissipation
of entropy in (2.1.8) are nonnegative so that we can integrate in time and obtain (2.2.2), which
clearly implies the control of the entropy independently of T .

Energy control. Turning to the energy E , departing from (2.1.7), we observe that∫
Ω

uG(p)µdx =

∫
Ω

u(pH − p)p dx+

∫
Ω

uBε(u)(pH − p) dx.

The first term can be written as∫
Ω

u(pH − p)p dx = −
∫
Ω

up2 dx+

∫
Ω

upHp dx

≤ −
∫
Ω

up2 dx+
1

2

∫
Ω

up2 dx+
1

2
p2H

∫
Ω

udx ≤ −1

2

∫
Ω

up2 dx+ C,
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where we used the mass control (2.1.11). For the second term we have, by symmetry of ω,∫
Ω

uBε(u)(pH − p) dx =
pH
2ε2

∫
Ω

∫
Ω

ωε(y)|u(x)− u(x− y)|2 dx dy

− 1

2ε2

∫
Ω

∫
Ω

ωε(y)(u(x)− u(x− y))(uγ+1(x)− uγ+1(x− y)) dxdy.

All together, these inequalities give immediately (2.2.3) and by the Gronwall lemma the energy
control.

Remark 2.2.4. In the limit γ → ∞ it holds that u∞ ≤ 1. This follows from the bound obtained
with the energy in Proposition 2.2.2 since

∥u∞∥L∞ = lim
γ→∞

∥u∞∥Lγ and ∥u∥Lγ+1 ≤ C
1

γ+1 (γ + 1)
1

γ+1 → 1

because of the weak convergence of uγ . We refer for instance to [151, 322]. However in the next
section we obtain a better control on u by the De Giorgi iteration method.

Now, we improve the local in time estimate on E to a global one. Since Proposition 2.2.2 gives
the uniform control Φ(u(t)) ≤ Φ(u0) for any t ≥ 0, our aim is to control in a uniform way the
energy E as well.

Proposition 2.2.5 (Uniform in time estimates for the energy). There exists a constant inde-
pendent of time and γ such that

E(t) ≤ C, ∀t ≥ 0. (2.2.4)

Démonstration. We estimate separately the two terms defining the energy in (2.1.5).

Firstly, from the entropy estimate (2.2.2), we immediately infer that, for a constant C > 0
independent of time and for any sufficiently small ε,∫ t+1

t

1

4ε2

∫
Ω

∫
Ω

ωε(y)|u(x)− u(x− y)|2 dxdy ds ≤ C(Ω)

∫ t+1

t

∥u∥2H1(Ω) ds

≤ C

∫ t+1

t

1

4ε2

∫
Ω

∫
Ω

ωε(y)|∇u(x)−∇u(x− y)|2 dx dy ds+ C

∫ t+1

t

∥u∥2L1(Ω) ds (2.2.5)

≤ C + Cp
2
γ

H , ∀t ≥ 0.

where the second inequality follows from Equations (2.5.4) and (2.1.11).

Secondly, we control the remaining part of the energy E , the one related to 1
γ+1

∫
Ω
uγ+1 dx. To

this aim, we integrate Equation (2.2.1) in time over [t, t+ 1] and get

u(t+ 1)− u(t) =
1

|Ω|

∫ t+1

t

∫
Ω

(upH − uγ+1) dxds,

so that, rearranging the terms, we control the second term of the energy as

1

|Ω|

∫ t+1

t

∫
Ω

uγ+1 dxds ≤ 1

|Ω|

∫ t+1

t

∫
Ω

upH dxds+ u(t) = (pH + 1)

∫ t+1

t

u(s) ds ≤ C
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because u(·) ≤ p
1
γ

H for any t ≥ 0 thanks to (2.1.11). This, together with (2.2.5), implies that∫ t+1

t

E(s) ds ≤ C, (2.2.6)

with C > 0 independent of t ≥ 0 and γ.

We now conclude the energy estimate. By Proposition 2.2.2, we have

d

dt
E(u) ≤ C(E(u) + 1).

Using the Gronwall lemma, we obtain for all t ≥ 0 and all 0 ≤ s ≤ 1,

E(u(t+ 1)) ≤ C E(u(t+ s)) + C.

Integrating in s and using the bound (2.2.6), we conclude the proof of Proposition 2.2.5.

2.2.3 A control on ∂tu

Here we prove the estimate on time derivative, which appears also in Lemma 2.1.3 and is used
in the proof of Theorem 2.1.6.

Proposition 2.2.6. There exists C = C(γ, T ) > 0 such that the bounds hold

∥∂tu∥Lq′ (0,T ;(W 1,q(Ω))′) ≤ C, q =
2(2γ + 1)

γ
,

1

q
+

1

q′
= 1, (2.2.7)

∥∂tu∥L2(0,T ;(W 1,r(Ω))′) ≤ C, r =
(γ + 1)(2γ + 1)

γ2
. (2.2.8)

Démonstration. For γ ≥ 1 fixed, any T > 0, any φ ∈ Lq(0, T ;W 1,q(Ω)), we have∣∣∣ ∫ T

0

⟨∂tu, φ⟩(W 1,q(Ω))′,W 1,q(Ω)) dt
∣∣∣

≤
∣∣∣∣∣
∫ T

0

∫
Ω

γuγ∇u · ∇φdx dt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

1

ε2

∫
Ω

u∇u · ∇φdxdt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

1

ε2

∫
Ω

u(∇ωε ∗ u) · ∇φdxdt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

∫
Ω

u(pH − uγ)φdxdt

∣∣∣∣∣
≤ γ

1
2 ∥u∥

γ+1
2(2γ+1)

L2γ+1(Ω×(0,T ))∥γ
1
2u

γ−1
2 ∇u∥L2(Ω×(0,T ))∥∇φ∥Lq(Ω×(0,T ))

+ C(ε)∥u∥L2γ+1(Ω×(0,T ))∥∇u∥L2(Ω×(0,T ))∥∇φ∥
L

2(2γ+1)
2γ−1 (Ω×(0,T ))

+ C(ε)∥u∥L2(Ω×(0,T ))∥∇ωε ∗ u∥L∞(Ω×(0,T ))∥∇φ∥L2(Ω×(0,T ))

+ C∥u∥L2γ+1(Ω×(0,T ))∥pH − uγ∥L2(Ω×(0,T ))∥φ∥
L

2(2γ+1)
2γ−1 (Ω×(0,T ))

≤ C(ε, T, γ)∥φ∥Lq(0,T ;W 1,q(Ω)).
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More precisely, to estimate the first and second terms, we used the Hölder inequality with expo-

nents 2(2γ+1)
γ+1 , 2, q and 2γ + 1, 2 and 2(2γ+1)

2γ−1 , respectively. Then, ∥u∥
γ+1

2(2γ+1)

L2γ+1(Ω×(0,T )) is bounded

due to (2.2.3), ∥γ 1
2u

γ−1
2 ∇u∥L2(Ω×(0,T )) is estimated by (2.2.2) while the bound on ∇u follows

from (2.2.2) and nonlocal Poincaré inequality (2.5.4). The fourth term is bounded in the same
spirit. Concerning the third one, we simply estimate

∥∇ωε ∗ u∥L∞(Ω×(0,T )) ≤ ∥∇ωε∥L∞(Ω)∥u∥L∞(0,T ;L1(Ω)) ≤ C(ε)

and use the estimate on the total mass (2.1.11). The final conclusion follows from the inequalities
q > 2 and q ≥ 2(2γ+1)

2γ−1 for any γ ≥ 1.

Concerning (2.2.8), let φ ∈ L2(0, T ;W 1,r(Ω)), with r = (γ+1)(2γ+1)
γ2 . Then,∣∣∣∣∣

∫ T

0

⟨∂tu, φ⟩(W 1,r(Ω))′,W 1,r(Ω)) dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫ T

0

∫
Ω

u∇µ · ∇φdxdt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

∫
Ω

u(pH − uγ)φdx dt

∣∣∣∣∣
≤ ∥u 1

2 ∥L∞(0,T ;L2(γ+1))∥u
1
2∇µ∥L2(Ω×(0,T ))∥∇φ∥

L2(0,T ;L
2(γ+1)

γ (Ω))

+ pH∥u∥L∞(0,T ;Lγ+1(Ω))∥φ∥
L1(0,T ;L

γ+1
γ (Ω))

+ ∥u∥L∞(0,T ;Lγ+1(Ω))∥u∥L2γ+1(Ω×(0,T ))∥φ∥
L

2γ+1
2γ (0,T ;Lr(Ω))

≤ C∥φ∥L2(0,T ;W 1,r(Ω)),

exploiting Proposition 2.2.2, recalling that r ≥ 2(γ+1)
γ > γ+1

γ and 2γ+1
2γ ≤ 2. This concludes the

proof.

2.3 Incompressible limit : proof of Theorem 2.1.5

We see the incompressible limit of (2.1.1) as the limit γ → ∞ and the resulting problem turns
out to be a free boundary problem of Hele-Shaw type. Concerning the techniques adopted here,
we first show that, for any fixed T > 0, uγ is bounded in L∞(Ω × (0, T )) by a quantity which
converges to 1 as γ → ∞ (see (2.3.1)). Due to the presence of the convolution term, which makes
the equation nonlocal, we cannot apply any classical maximum principle, so that we need to re-
sort to De Giorgi’s iterations, exploiting the fact that the equation is a second order differential
equation.

With uniform estimates in L∞ at hand, we may apply standard energy estimates to gain sufficient
regularity on the pressure pγ , which we bounded in L3(Ω× (0, T ))∩L2(0, T ;H1(Ω)) uniformly in
γ. Then, one can obtain uniform controls in L∞(0, T ;L1(Ω)) for ∂tuγ and in L1(Ω× (0, T )) for
∂tpγ , so as to deduce the strong convergence of uγ and pγ in L2(Ω× (0, T )) to some u∞ and p∞.
With the help of these bounds, we are able to pass to the limit as γ → ∞ in Equation (2.1.1)
and obtain Equations (2.1.15) and (2.1.17) for the limit concentration u∞.
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In order to obtain more information on u∞, p∞, like complementarity conditions (2.1.16), we
need a stronger convergence for ∇pγ . The standard technique uses some control on ∆p thanks to
the Aronson-Bénilan inequality (see, e.g., [120]) which do not apply here due to the higher-order
term. In particular, the (formal) CH equation can be written as

∂tuγ −
γ

γ + 1
∆uγ+1

γ − 1

2ε2
∆u2γ +

1

ε2
div(uγ(∇ωε ∗ u)γ) = uγG(pγ),

and the extra term ∆u2γ , independent of γ, appearing, and this prevents us from obtaining the
Aronson-Bénilan inequality. Taking inspiration from [116, 260], in the second part of the present
section, we instead show the strong L2(Ω× (0, T )) convergence of

∇
(

γ

γ + 1
uγ+1
γ +

1

2ε2
u2γ

)
,

which is shown to be enough to guarantee the validity of the condition (2.1.16).

2.3.1 An L∞ bound on uγ

Lemma 2.3.1. Assume 0 ≤ u0 ≤ p
1
γ

H . For any T > 0 there exists γ(T, ε) > 2, explicitly computed
as a function of T , such that

0 ≤ uγ ≤ p
1
γ

H +
2
3
√
γ
, a.e. on Ω× (0, T ), ∀γ ≥ γ(T, ε). (2.3.1)

Remark 2.3.2. Notice that the bound (2.3.1) is useless to control the pressure, since
(
p

1
γ

H + 2
3
√
γ

)γ
→

+∞ as γ → +∞.

Démonstration. To simplify notations, we set ξ := 1
3
√
γ . The iterative scheme is as follows. Let

us consider the sequence

kn = p
1
γ

H + 2ξ − ξ

2n
, n ≥ 0,

and note that p
1
γ

H + ξ ≤ kn < p
1
γ

H + 2ξ. Now we define the sequences

An(t) := {x ∈ Ω : uγ ≥ kn}, yn :=

∫ T

0

∫
An(s)

dx ds.

By testing the equation against un,γ := (uγ − kn)
+, we immediately infer that

1

2

d

dt
∥(uγ − kn)

+∥2L2(Ω)+

∫
Ω

γuγγ |∇(uγ − kn)
+|2 dx+

∫
Ω

uγ∇Bε(uγ) · ∇(uγ − kn)
+ dx

=

∫
Ω

uγG(pγ)(uγ − kn)
+ dx.

By the definition of Bε, we get∫
Ω

uγ∇Bε(uγ) · ∇(uγ − kn)
+ dx =

1

ε2

∫
Ω

uγ |∇un,γ |2 dx− 1

ε2

∫
Ω

uγ(∇ωε ∗ uγ) · ∇un,γ dx.
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The first term is nonnegative. For the second we use that γ > 2, ∥uγ∥L∞(0,∞;L1(Ω)) ≤ p
1
γ

H |Ω|
thanks to (2.1.11) as well as uγ ≥ kn ≥ p

1/γ
H + ξ on An to obtain

1

ε2

∫
Ω

uγ(∇ωε ∗ uγ) · ∇un,γ dx ≤ 1

ε4
1

2γ

∫
An

u2−γγ |∇ωε ∗ uγ |2 dx+
γ

2

∫
Ω

uγγ |∇un,γ |2 dx

≤ 1

ε4
1

2γ

(
p

1
γ

H + ξ

)γ−2 ∥∇ωε ∗ uγ∥2L∞(Ω)

∫
An

dx+
γ

2

∫
Ω

uγγ |∇un,γ |2 dx

≤ 1

ε4
1

2γ

(
p

1
γ

H + ξ

)γ−2 ∥∇ωε∥2L∞(Ω)∥uγ∥2L1(Ω)

∫
An

dx+
γ

2

∫
Ω

uγγ |∇un,γ |2 dx

≤ C1

γ

(
p

1
γ

H + ξ

)γ−2

∫
An

dx+
γ

2

∫
Ω

uγγ |∇un,γ |2 dx,

where C1 > 0 is a constant that depends on ε but not on T and γ. Moreover, since on An we
have uγ ≥ p

1
γ

H and thus pγ ≥ pH , we immediately infer that∫
Ω

uγG(pγ)(uγ − kn)
+ dx ≤ 0.

We can then sum up the results above to obtain

1

2

d

dt
∥(uγ − kn)

+∥2L2(Ω) +
γ

2

∫
Ω

uγγ |∇(uγ − kn)
+|2 dx ≤ C1

γ

(
p

1
γ

H + ξ

)γ−2

∫
An

dx,

which also implies, since on An(t) we have uγγ ≥
(
p

1
γ

H + ξ

)γ
,

1

2

d

dt
∥(uγ − kn)

+∥2L2(Ω) +

γ

(
p

1
γ

H + ξ

)γ
2

∫
Ω

|∇(uγ − kn)
+|2 dx ≤ C1

γ

(
p

1
γ

H + ξ

)γ−2

∫
An

dx.

It is now clear that,

sup
t∈[0,T ]

∥un,γ(t)∥2L2(Ω) ≤
2C1

γ

(
p

1
γ

H + ξ

)γ−2 yn =: Zn, (2.3.2)

γ

(
p

1
γ

H + ξ

)γ ∫ T

0

∫
Ω

|∇(uγ − kn)
+(s)|2 dx ds ≤ Zn. (2.3.3)

where we used, by the assumptions on the initial conditions, ∥un,γ(0)∥L2(Ω) = 0. Now for any t
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and for almost any x ∈ An+1(t), we get

un,γ(x, t) = uγ(x, t)−
[
p

1
γ

H + 2ξ − ξ

2n+1

]
︸ ︷︷ ︸

un+1,γ(x,t)≥0

+ξ

[
1

2n
− 1

2n+1

]
≥ ξ

2n+1
.

Then we have∫ T

0

∫
Ω

|un,γ |3 dxds ≥
∫ T

0

∫
An+1(s)

|un,γ |3 dx ds ≥
(

ξ

2n+1

)3 ∫ T

0

∫
An+1(s)

dxds =

(
ξ

2n+1

)3

yn+1.

Then we have (
ξ

2n+1

)3

yn+1 ≤
(∫ T

0

∫
Ω

|un,γ |
10
3 dxds

) 9
10
(∫ T

0

∫
An(s)

dxds

) 1
10

. (2.3.4)

For the sake of clarity we now present the argument in the case d = 3, but it can be easily
adapted to any dimension d ≥ 1. We recall that by a variant of the three-dimensional Sobolev-
Gagliardo-Nirenberg inequality (see, e.g.,[63, Ch.9]) we get

∥v − v∥
L

10
3 (Ω)

≤ CG ∥v∥
2
5

L2(Ω)∥∇v∥
3
5

L2(Ω) ∀v ∈ H1(Ω),

with CG > 0 depending only on Ω. Therefore,∫ T

0

∫
Ω

|un,γ |
10
3 dxds ≤ 2

7
3

∫ T

0

∫
Ω

|un,γ − un,γ |
10
3 dx ds+ 2

7
3

∫ T

0

∫
Ω

|un,γ |
10
3 dxds

≤ CG2
7
3

∫ T

0

∥∇un,γ∥2L2(Ω)∥un,γ∥
4
3

L2(Ω) ds+
2

7
3

|Ω| 73

∫ T

0

∥un,γ∥
10
3

L1(Ω)

≤ CG2
7
3

∫ T

0

∥∇un,γ∥2L2(Ω)∥un,γ∥
4
3

L2(Ω) ds+
2

7
3

|Ω| 23

∫ T

0

∥un,γ∥
10
3

L2(Ω),

so that by (2.3.2) and (2.3.3) we immediately infer∫ T

0

∫
Ω

|un,γ |
10
3 dx ds

≤ CG

γ

(
p

1
γ

H + ξ

)γ sup
t∈[0,T ]

∥un,γ(t)∥
4
3

L2(Ω)2
7
3 γ

(
p

1
γ

H + ξ

)γ ∫ T

0

∥∇un,γ(s)∥2L2(Ω) ds

+ sup
t∈[0,T ]

∥un,γ(t)∥
10
3

L2(Ω)

T2
7
3

|Ω| 23

≤ 2
7
3CG

γ

(
p

1
γ

H + ξ

)γ Z 5
3
n +

T2
7
3

|Ω| 23
Z

5
3
n ≤ T2

10
3

|Ω| 23
Z

5
3
n ≤ C2T

γ
5
3

(
p

1
γ

H + ξ

) 5
3γ−

10
3

y
5
3
n ,
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with C2 = C2(ε) > 0. Note that we have assumed γ sufficiently large, say γ ≥ γ0(T ) > 2 so that

γ

(
p

1
γ

H + ξ

)γ
≥ CG|Ω|

2
3

T
. (2.3.5)

Coming back to (2.3.4), we get(
ξ

2n+1

)3

yn+1 ≤ C
9
10
2 T

9
10

γ
3
2

(
p

1
γ

H + ξ

) 3
2γ−3

y
8
5
n ,

i.e., recalling the definition of ξ,

yn+1 ≤ 23n+3C
9
10
2 T

9
10

γ
1
2

(
p

1
γ

H + ξ

) 3
2γ−3

y
8
5
n .

Due to Lemma 2.5.1 with b = 23 > 1, C =
23C

9
10
2 T

9
10

γ
1
2

(
p

1
γ
H+ξ

) 3
2
γ−3

> 0, ϵ = 3
5 , we get that yn → 0 if

y0 ≤ C− 5
3 b−

25
9 ⇐⇒ y0 ≤ 2−

25
3

γ
5
6

(
p

1
γ

H + ξ

) 5
2γ−5

25C
3
2
2 T

3
2

(2.3.6)

As we have y0 ≤ T |Ω|, it is enough to ask for γ sufficiently large, say γ ≥ γ1(T, ε) ≥ γ0(T ) such
that

T
5
2 |Ω| ≤ 2−

25
3

γ
5
6

(
p

1
γ

H + ξ

) 5
2γ−5

25C
3
2
2

,

i.e.,

y0 ≤ T |Ω| ≤ 2−
25
3

γ
5
6

(
p

1
γ

H + ξ

) 5
2γ−5

25C
3
2
2 T

3
2

.

This way yn → 0 as long as γ(T, ε) ≥ γ1(T, ε) and any γ ≥ γ(T, ε).

2.3.2 Higher-order regularity results, uniformly in γ.
Lemma 2.3.3. For any T > 0 there exists C = C(T, ε) > 0 such that

∥pγ∥L2(0,T ;H1(Ω)) + ∥pγ∥L3(Ω×(0,T )) ≤ C, ∀γ > 1, (2.3.7)
∥∂tuγ∥L2(0,T ;(H1(Ω))′) ≤ C, ∀γ ≥ γ(T, ε) (see (2.3.1)), (2.3.8)
∥∂tuγ∥L∞(0,T ;L1(Ω)) + ∥∂tpγ∥L1(Ω)×(0,T ) ≤ C, ∀γ ≥ 1. (2.3.9)

Démonstration. The arguments of the proof are often written formally for simplicity, but can be
easily made rigorous in a suitable approximating scheme. Note that from Proposition 2.2.2 we
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are able to deduce that

pγ = uγγ ∈ L2+ 1
γ (Ω× (0, T )) ↪→ L2(Ω× (0, T )) (2.3.10)

uniformly in γ. Thus, to prove the H1 bound in (2.3.7), we only need to find an estimate for the
gradient of pγ . Let us consider

∫
Ω
uγγ dx and compute its time derivative : from (2.1.1) we infer

d

dt

∫
Ω

uγγ dx =

∫
Ω

γuγ−1
γ ∂tuγ dx

= −γ
∫
Ω

uγ∇(uγ−1)∇(uγγ) dx− γ

∫
Ω

uγ∇(uγ−1
γ ) · ∇Bε(uγ) dx+ γ

∫
Ω

uγ(pH − pγ)u
γ−1
γ dx

= −γ2(γ − 1)

∫
Ω

u2γ−2
γ |∇uγ |2 dx− γ

∫
Ω

uγ∇(uγ−1
γ ) · ∇Bε(uγ) dx+ γ

∫
Ω

uγ(pH − pγ)u
γ−1
γ dx

= −(γ − 1)

∫
Ω

∣∣∇(uγγ)
∣∣2 dx− γ(γ − 1)

∫
Ω

uγ−1
γ ∇uγ · ∇Bε(uγ) dx+ γ

∫
Ω

uγ(pH − pγ)u
γ−1
γ dx.

(2.3.11)

Due to (2.1.2), we have

γ(γ − 1)

∫
Ω

uγ−1
γ ∇uγ · ∇Bε(uγ) dx

=
1

ε2
γ(γ − 1)

∫
Ω

uγ−1
γ |∇uγ |2 −

1

ε2
γ(γ − 1)

∫
Ω

uγ−1
γ ∇uγ · ∇(ωε ∗ uγ) dx

By the Young inequality, recalling that ∥uγ∥L∞(0,T ;L2(Ω)) ≤ C (due to the uniform bound on the
energy and the non-local Poincaré inequality (2.5.3), see Lemma 2.1.3), we get

1

ε2
γ(γ − 1)

∫
Ω

uγ−1
γ ∇uγ · ∇(ω ∗ uγ) dx

≤ γ2(γ − 1)

2

∫
Ω

u2γ−2
γ |∇uγ |2 dx+

1

ε4
γ − 1

2

∫
Ω

|∇ωε ∗ uγ |2 dx

≤ γ2(γ − 1)

2

∫
Ω

u2γ−2
γ |∇uγ |2 dx+

1

ε4
γ − 1

2
∥∇ωε∥2L1(Ω)∥uγ∥2L2(Ω)

≤ (γ − 1)

2

∫
Ω

|∇(uγγ)|2 dx+
C(T, ε)(γ − 1)

2
.

The last term in (2.3.11) can be controlled by∫
Ω

uγ(pH − pγ)γu
γ−1
γ dx ≤

∫
Ω

(pH − pγ)γu
γ
γ dx ≤

∫
pγ≤pH

(pH − pγ)γu
γ
γ dx ≤ γ|Ω|p2H .

Therefore, from (2.3.11) we get

1

γ − 1

d

dt

∫
Ω

uγγ dx+
1

2

∫
Ω

∣∣∇(uγγ)
∣∣2 dx ≤ C

2
+ C

γ

γ − 1
≤ C(T, ε), (2.3.12)

showing that ∇uγ ∈ L2(Ω×(0, T )) uniformly in γ so that uγγ is bounded uniformly in L2(0, T ;H1(Ω)).
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We now need a similar estimate to show the L3 bound in (2.3.7). We have

1

2γ

d

dt

∫
Ω

u2γγ dx =

∫
Ω

u2γ−1
γ ∂tuγ dx

= −
∫
Ω

uγ∇(u2γ−1
γ )∇(uγγ) dx−

∫
Ω

uγ∇(u2γ−1
γ ) · ∇Bε(uγ) dx+

∫
Ω

uγ(pH − p)u2γ−1
γ dx

= −γ(2γ − 1)

∫
Ω

u3γ−2
γ |∇uγ |2 dx− 1

ε2
(2γ − 1)

∫
Ω

u2γ−1
γ |∇uγ |2 dx

+
1

ε2
(2γ − 1)

∫
Ω

u2γ−1
γ ∇uγ · (∇ωε ∗ uγ) dx+

∫
Ω

(pH − pγ)u
2γ
γ dx. (2.3.13)

Notice now that, by Young’s inequality for convolutions and after integration by parts,

1

ε2
(2γ − 1)

∫
Ω

u2γ−1
γ ∇uγ · (∇ωε ∗ uγ) dx

=
1

ε2
2γ − 1

2γ

∫
Ω

∇u2γγ · (∇ωε ∗ uγ) dx =
1

ε2
1− 2γ

2γ

∫
Ω

(∆ωε ∗ uγ)u2γγ dx

≤ 1

ε2
2γ − 1

2γ
∥∆ωε∥L∞(Ω)∥uγ∥L1(Ω)

∫
Ω

p2γ dx ≤ C(ε)
2γ − 1

2γ

∫
Ω

p2γ dx.

We thus get, integrating (2.3.13) over (0, T ) and using the L2 bound on pγ in (2.3.10),

1

2γ

∫
Ω

p2γ(T ) dx+ γ(2γ − 1)

∫ T

0

∫
Ω

u3γ−2
γ |∇uγ |2 dxds+

2γ − 1

ε2

∫ T

0

∫
Ω

u2γ−1
γ |∇uγ |2 dxds

+

∫ T

0

∫
Ω

p3γγ dxds ≤ C(T, ε)

(
2γ − 1

2γ
+ 1

)
≤ C(T, ε),

where we used that 2γ−1
2γ → 1 as γ → ∞. From this we deduce the uniform L3 estimate in (2.3.7).

To prove (2.3.8), we compute for any φ ∈ L2(0, T ;H1(Ω)) and γ ≥ γ, with γ(T ) as in (2.3.1)∣∣∣∣∣
∫ T

0

⟨∂tuγ , φ⟩dt
∣∣∣∣∣ ≤

∣∣∣∣∣
∫ T

0

∫
Ω

uγ∇pγ · ∇φdx dt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

1

ε2

∫
Ω

uγ∇uγ · ∇φdxdt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

1

ε2

∫
Ω

uγ(∇ωε ∗ uγ) · ∇φdx dt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

∫
Ω

uγ(pH − uγγ)φdxdt

∣∣∣∣∣ .
Note that by Young’s inequality for convolutions we get

∥∇ωε ∗ uγ∥2L2(Ω×(0,T )) ≤
∫ T

0

∥∇ωε ∗ uγ∥2L∞(Ω)|Ω|dt ≤ |Ω|∥∇ωε∥2L∞(Ω)

∫ T

0

∥uγ∥2L1(Ω) dt

≤ |Ω|∥∇ωε∥2L∞(Ω)

∫ T

0

(∫
Ω

p
1
γ

H dx

)2

dt ≤ |Ω|3∥∇ωε∥2L∞(Ω)p
2
γ

HT ≤ C(ε, T ),
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by (2.1.11). Therefore, by Lemma 2.1.3, (2.3.1) and (2.3.7)∣∣∣∣∣
∫ T

0

⟨∂tuγ , φ⟩dt
∣∣∣∣∣ ≤∥uγ∥L∞(Ω×(0,T ))∥∇pγ∥L2(0,T ;L2(Ω))∥∇φ∥L2(0,T ;L2(Ω))

+ C(ε)∥uγ∥L∞(Ω×(0,T ))∥∇uγ∥L2(Ω×(0,T ))∥∇φ∥L2(Ω×(0,T ))

+ C(ε)∥uγ∥L∞(Ω×(0,T ))∥(∇ωε ∗ u)γ∥L2(Ω×(0,T ))∥∇φ∥L2(Ω×(0,T ))

+ C∥uγ∥L∞(Ω×(0,T ))∥pH − uγγ∥L2(Ω×(0,T ))∥φ∥L2(Ω×(0,T ))

≤C(ε, T )∥φ∥L2(0,T ;H1(Ω)),

Therefore, for any γ ≥ γ, we infer that ∥∂tuγ∥L2(0,T ;(H1(Ω)′) ≤ C(T ), thus showing (2.3.8).

It remains to prove (2.3.9). First note that, clearly, ∂tuγ and ∂tpγ share the same sign since
uγ ≥ 0 almost everywhere in Ω× (0, T ). Then we differentiate in time (2.1.1) and get

∂ttuγ −
γ

γ + 1
∆∂t(u

γ+1
γ )− 1

2ε2
∆∂t(u

2
γ) +

1

ε2
div(∂tuγ(∇ωε ∗ uγ)) +

1

ε2
div(uγ(∇ωε ∗ ∂tuγ))

= ∂tuγ(pH − pγ)− uγ∂tpγ .

We test it against sign(∂tuγ) and use Kato’s inequality to obtain

∂t|∂tuγ | ≤
γ

γ + 1
∆(|∂t(uγ+1

γ )|) + 1

2ε2
∆(|∂t(u2γ)|) +

1

ε2
div(|∂tuγ |(−∇ωε ∗ uγ))

− 1

ε2
div(uγ(∇ωε ∗ ∂tuγ)) sign(∂tuγ) + |∂tuγ |pH − pγ |∂tuγ | − uγ |∂tpγ |.

Now we rearrange the terms and integrate in space, deducing

d

dt

∫
Ω

|∂tuγ |dx+

∫
Ω

uγ |∂tpγ |dx+

∫
Ω

pγ |∂tuγ |dx

≤ − 1

ε2

∫
Ω

div(uγ(∇ωε ∗ ∂tuγ)) sign(∂tuγ) dx+ pH

∫
Ω

|∂tuγ |dx.

Then we have, by Young’s inequality for convolutions,

− 1

ε2

∫
Ω

div(uγ(∇ωε ∗ ∂tuγ)) sign(∂tuγ) dx

= − 1

ε2

∫
Ω

∇uγ · (∇ωε ∗ ∂tuγ) sign(∂tuγ) dx− 1

ε2

∫
Ω

uγ(∆ωε ∗ ∂tuγ) sign(∂tuγ) dx

≤ 1

ε2
∥∇uγ∥L1(Ω)∥∇ωε ∗ ∂tuγ∥L∞(Ω) +

1

ε2
∥uγ∥L1(Ω)∥∆ωε ∗ ∂tuγ∥L∞(Ω)

≤ C(ε)(1 + ∥∇uγ∥L1(Ω))

∫
Ω

|∂tuγ |dx,

since
∥∇ωε ∗ ∂tuγ∥L∞(Ω) ≤ ∥∇ωε∥L∞(Ω)

∫
Ω

|∂tuγ |dx ≤ C(ε)

∫
Ω

|∂tuγ |dx,
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and the same for ∥∆ωε ∗ ∂tuγ∥L∞(Ω). Therefore we end up with

d

dt

∫
Ω

|∂tuγ |dx+

∫
Ω

uγ |∂tpγ |dx+

∫
Ω

pγ |∂tuγ |dx ≤ C(ε)(1 + ∥∇uγ∥L1(Ω))

∫
Ω

|∂tuγ |dx.
(2.3.14)

To apply the Gronwall inequality, we need to estimate ∥∂tuγ(0)∥L1(Ω). From (2.1.1) we have

∥∂tuγ(0)∥L1(Ω) ≤C(ε)
( γ

γ + 1
∥∆(uγ+1

0 )∥L1(Ω) + ∥∆(u20)∥L1(Ω)+

+ ∥div(u0(∇ωε ∗ u0))∥L1(Ω) + ∥u0(pH − p0)∥L1(Ω)

)
.

Due to Assumption 2.1.2, the first term is bounded. Concerning next terms, we have by Assump-
tion 2.1.1 and 2.1.2

∥∆(u20)∥L1(Ω) ≤ 2∥∇u0∥2L2(Ω) + 2∥u0∆u0∥L1(Ω) ≤ 2∥∇u0∥2L2(Ω) + 2p
1
γ

H∥∆u0∥L1(Ω) ≤ C,

∥div(u0(∇ωε ∗ u0))∥L1(Ω) ≤ ∥∇u0 · (∇ωε ∗ u0)∥L1(Ω) + ∥u0(∆ωε ∗ u0)∥L1(Ω)

≤ ∥∇u0∥L1(Ω)∥∇ωε∥L∞(Ω)∥u0∥L1(Ω) + p
1
γ

H |Ω|∥∆ωε∥L∞(Ω)∥u0∥L1(Ω) ≤ C(ε).

It follows that ∥∂tuγ(0)∥L1(Ω) ≤ C(ε). Since uγ ∈ L2(0;T ;H1(Ω)) uniformly in γ (Lemma 2.1.3),
we may apply the Gronwall Lemma in (2.3.14) and obtain

∥∂tuγ∥L∞(0,T ;L1(Ω)) + ∥uγ∂tpγ∥L1(0,T ;L1(Ω)) ≤ C(T, ε), (2.3.15)

with C = C(T, ε) > 0 independent of γ. To conclude the argument we notice that∫
Ω

|∂tpγ |dx ≤
∫
uγ≤ 1

2

|∂tpγ |dx+ 2

∫
uγ>

1
2

uγ |∂tpγ |dx ≤ γ

2γ−1

∫
Ω

|∂tuγ |dx+ 2

∫
Ω

uγ |∂tpγ |dx,

so that, being γ
2γ−1 ≤ 1 for any γ ≥ 1, from (2.3.15) we deduce the second estimate in (2.3.9)

and conclude the proof of Lemma 2.3.3.

2.3.3 The limit γ → ∞
We complete the convergence as γ → ∞ distinguishing two steps.

Step 1. Consequences of Lemmas 2.1.3, 2.3.1 and 2.3.3. Exploiting those lemmas, we
can obtain the following convergences, up to subsequences, which are deduced by standard com-
pactness arguments : for any T > 0, as γ → ∞,

uγ → u∞ almost everywhere in Ω× (0, T ), (2.3.16)

uγ
∗
⇀ u∞ in L∞(Ω× (0, T )), (2.3.17)

uγ → u∞ in Lp(Ω× (0, T )) ∀p ∈ [1,+∞), (2.3.18)

uγ ⇀ u∞ in L2(0, T ;H1(Ω)), (2.3.19)

∂tuγ ⇀ ∂tu∞ in L2(0, T ; (H1(Ω))′), (2.3.20)

pγ ⇀ p∞ in L2(0, T ;H1(Ω)), L3((0, T )× Ω). (2.3.21)
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Moreover, by the Aubin-Lions-Simon Lemma,

pγ → p∞ in L2(0, T ;L2(Ω)), (2.3.22)

which, thanks to (2.3.7) can be improved by interpolation, to

pγ → p∞ in Lq(0, T ;Lq(Ω)), ∀q ∈ [2, 3). (2.3.23)

In order to obtain the complementarity condition, we study the function vγ := uγ+1
γ = uγpγ .

First we have

∥vγ∥L2(Ω×(0,T )) ≤ ∥uγ∥L∞(Ω×(0,T ))∥pγ∥L2(Ω×(0,T )) ≤ C(T, ε),

and

∥∇vγ∥L2(Ω×(0,T )) =
γ + 1

γ
∥uγ∇pγ∥L2(Ω×(0,T )) ≤

γ + 1

γ
∥uγ∥L∞(Ω×(0,T ))∥∇pγ∥L2(Ω×(0,T )) ≤ C(T, ε),

since γ+1
γ → 1 as γ → ∞. Therefore, up to subsequences, we have

vγ = uγpγ ⇀ v∞ in L2(0, T ;H1(Ω)),

for some v∞ ∈ L2(0, T ;H1(Ω)). To identify v∞, we observe that

∥uγpγ − u∞p∞∥L2(Ω×(0,T )) ≤ ∥uγ(pγ − p∞)∥L2(Ω×(0,T )) + ∥p∞(uγ − u∞)∥L2(Ω×(0,T ))

≤ ∥uγ∥L∞(Ω×(0,T ))∥pγ − p∞∥L2(Ω×(0,T )) + ∥uγ − u∞∥L6(Ω×(0,T ))∥p∞∥L3(Ω×(0,T )) → 0

as γ → ∞, thanks to the above results, in particular (2.3.1), (2.3.7), (2.3.18) and (2.3.22). From
this we clearly identify v∞ = u∞p∞ and obtain

vγ = uγpγ ⇀ v∞ = u∞p∞ in L2(0, T ;H1(Ω)). (2.3.24)

vγ → p∞u∞ in L2(Ω× (0, T )). (2.3.25)

We are now able to pass to the limit in γ to obtain (2.1.15) and

p∞(1− u∞) = 0, 0 ≤ u∞ ≤ 1, p∞ ≥ 0. (2.3.26)

Indeed, we can argue as in [254] to see that, for any ϵ > 0 there exists γ0 = γ0(ϵ) such that for
any y ≥ 0 and γ ≥ γ0

yγ+1 ≥ yγ − ϵ.

Applying this to y = uγ , since we have that, up to subsequences, uγ = pγ → p∞ and vγ =
uγ+1
γ → p∞u∞ almost everywhere in Ω× (0, T ), we can pass to the limit and obtain,

u∞p∞ ≥ p∞ − ϵ, ∀ϵ. > 0,

which implies that p∞u∞ ≥ p∞. Since by (2.3.1) and (2.3.16) we get 0 ≤ u∞ ≤ 1 almost
everywhere in Ω × (0, T ), we get p∞ ≥ p∞u∞ ≥ p∞, i.e., (2.3.26), since it holds for any T > 0.
In order to pass to Step 2, we introduce the quantities

ṽγ :=
γ

γ + 1
vγ +

1

2ε2
u2γ , ṽ∞ = v∞ +

1

2ε2
u2∞, (2.3.27)
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and study ∇ṽγ which is essential to obtain the complementarity condition (2.1.16).

Step 2. Strong convergence of ∇ṽγ.

Lemma 2.3.4. Let ṽγ , ṽ∞ be as in (2.3.27). Then, for any T > 0,

ṽγ → ṽ∞ in L2(0, T ;H1(Ω)) as γ → ∞.

Démonstration. Using (2.3.18) and (2.3.25) we obtain ṽγ → ṽ∞ in L2(Ω×(0, T )) so it is sufficient
to prove ∇ṽγ → ∇ṽ∞ in L2(Ω × (0, T )). Of course, by (2.3.16)-(2.3.21) and (2.3.24), we have
weak convergence

∇ṽγ ⇀ ∇ṽ∞ in L2(0, T ;L2(Ω)), γ → ∞. (2.3.28)

Let us first observe that (2.1.1) can be rewritten highlighting the presence of ṽγ :

∂tuγ −∆ṽγ = uγG(pγ)−
1

ε2
div(uγ(∇ωε ∗ uγ)). (2.3.29)

We multiply (2.3.29) by ṽγ − ṽ∞ and integrate over ΩT := Ω× (0, T ). Since∫
Ω

∂tuγvγ dx =
1

γ + 2

d

dt

∫
Ω

uγ+2
γ dx.

we obtain

γ

(γ + 2)(γ + 1)

∫
Ω

uγ+2
γ (T ) dx+

∫
ΩT

∇ṽγ · ∇(ṽγ − ṽ∞) dxds

=
γ

(γ + 2)(γ + 1)

∫
Ω

uγ+2
γ (0) dx− 1

2ε2

∫
ΩT

∂tuγ(u
2
γ − u2∞) dx dt+

∫
ΩT

uγG(pγ)(ṽγ − ṽ∞) dx dt

+
1

ε2

∫
ΩT

uγ(∇ωε ∗ uγ) · ∇(ṽγ − ṽ∞) dxdt+

∫ T

0

⟨∂tuγ , v∞⟩dt. (2.3.30)

The plan is to estimate lim supγ→∞
∫
ΩT

|∇ṽγ −∇ṽ∞|2 dx dt from (2.3.30). First, we rewrite the
term 1

2ε2

∫
ΩT

∂tuγ(u
2
γ − u2∞) dxdt. We have

1

2ε2

∫
Ω

∂tuγ(u
2
γ − u2∞) dx =

1

2ε2
⟨∂tuγ − ∂tu∞, u

2
γ − u2∞⟩+ 1

2ε2
⟨∂tu∞, u2γ − u2∞⟩

=
1

4ε2
d

dt

∫
Ω

(uγ − u∞)2(uγ + u∞) dx− 1

4ε2
⟨∂t(uγ + u∞), (uγ − u∞)2⟩+ 1

2ε2
⟨∂tu∞, u2γ − u2∞⟩

=
1

4ε2
d

dt

∫
Ω

(uγ − u∞)2(uγ + u∞) dx− 1

12ε2
d

dt

∫
Ω

(uγ − u∞)3 dx− 1

2ε2
⟨∂tu∞, (uγ − u∞)2⟩

+
1

2ε2
⟨∂tu∞, u2γ − u2∞⟩,
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so that, integrating over [0, T ] and recalling that u∞(0) ≡ uγ(0) ≡ u0, we get

− 1

2ε2

∫
ΩT

∂tuγ(u
2
γ − u2∞) dx dt = − 1

4ε2

∫
Ω

(uγ(T )− u∞(T ))2(uγ(T ) + u∞(T )) dx

+
1

12ε2

∫
Ω

(uγ(T )− u∞(T ))3 dx+
1

2ε2

∫ T

0

⟨∂tu∞, (uγ − u∞)2⟩dt− 1

2ε2

∫ T

0

⟨∂tu∞, u2γ − u2∞⟩dt.
(2.3.31)

Note that

1

4ε2

∫
Ω

(uγ(T )− u∞(T ))2(uγ(T ) + u∞(T )) dx− 1

12ε2

∫
Ω

(uγ(T )− u∞(T ))3 dx

=
1

4ε2

∫
Ω

(uγ(T )− u∞(T ))2
(
uγ(T ) + u∞(T )− 1

3
uγ(T ) +

1

3
u∞(T )

)
dx ≥ 0.

(2.3.32)

Therefore, taking into account (2.3.31), (2.3.32) and uγ ≥ 0 we obtain from (2.3.30)∫
ΩT

∇ṽγ ·∇(ṽ − ṽ∞) dxds ≤ γ

(γ + 2)(γ + 1)

∫
Ω

uγ+2
γ (0) dx+

1

2ε2

∫ T

0

⟨∂tu∞, (uγ − u∞)2⟩dt

−
∫ T

0

⟨∂tu∞,
1

2ε2
u2γ −

1

2ε2
u2∞⟩dt+

∫
ΩT

uγG(pγ)(ṽγ − ṽ∞) dx dt

+
1

ε2

∫
ΩT

uγ(∇ωε ∗ uγ) · ∇(ṽγ − ṽ∞) dxdt+

∫ T

0

⟨∂tuγ , v∞⟩dt. (2.3.33)

Observe that∫
ΩT

∇ṽγ · ∇(ṽγ − ṽ∞) dxds =

∫
ΩT

|∇(ṽγ − ṽ∞)|2 dx ds+
∫
ΩT

∇ṽ∞ · ∇(ṽγ − ṽ∞) dxds,

but by the weak convergence in (2.3.28) we have∫
ΩT

∇ṽ∞ · ∇(ṽγ − ṽ∞) dx ds→ 0,

since ∇ṽ∞ ∈ L2(0, T ;L2(Ω)). Thus we deduce that

lim sup
γ→∞

∫
ΩT

|∇(ṽγ − ṽ∞)|2 dx ds = lim sup
γ→∞

∫
ΩT

∇ṽγ · ∇(ṽγ − ṽ∞) dx ds.

Then, recalling also that ∂tuγ ⇀ ∂tu∞ in L2(0, T ; (H1(Ω))′) and that v∞ ∈ L2(0, T ;H1(Ω)), we
deduce from (2.3.33)

lim sup
γ→∞

∫
ΩT

|∇(ṽγ − ṽ∞)|2 dxds ≤ lim sup
γ→∞

(
γ

(γ + 2)(γ + 1)

∫
Ω

uγ+2
γ (0) dx

+
1

2ε2

∫ T

0

⟨∂tu∞, (uγ − u∞)2⟩dt − 1

2ε2

∫ T

0

⟨∂tu∞, u2γ − u2∞⟩dt+
∫
ΩT

uγG(pγ)(ṽγ − ṽ∞) dxdt

+
1

ε2

∫
ΩT

uγ∇ωε ∗ uγ · ∇(ṽγ − ṽ∞) dx dt

)
+

∫ T

0

⟨∂tu∞, v∞⟩dt. (2.3.34)
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The plan is to prove that all the terms on the (RHS) of (2.3.34) converge to 0. First, we have

that 0 ≤ uγ(0) = u0 ≤ p
1
γ

H for any γ > 0 by assumption, so that in the end we deduce uγ+1
γ (0) ≤

p
γ+2
γ

H ≤ C and thus, as γ → ∞,

γ

(γ + 2)(γ + 1)

∫
Ω

uγ+2
γ (0) dx→ 0.

Then, using (2.3.18) and the fact that ∂tu∞ ∈ L2(0, T ; (H1(Ω))′), we immediately deduce

1

2ε2

∫ T

0

⟨∂tu∞, (uγ − u∞)2⟩dt− 1

2ε2

∫ T

0

⟨∂tu∞, u2γ − u2∞⟩dt→ 0 as γ → ∞.

Concerning the term
∫
ΩT

uγG(pγ)(ṽγ − ṽ∞) dx dt, we simply use the fact that {uγ} is bounded
in L∞(Ω× (0, T )) (cf. (2.3.1)), {G(pγ)} is bounded in L2(Ω× (0, T )) (cf. (2.3.7)) and ṽγ → ṽ∞
strongly in L2(Ω × (0, T )). Similarly,

∫
ΩT

uγ∇ωε ∗ uγ · ∇(ṽγ − ṽ∞) dxdt → 0 because of weak
convergence (2.3.28) and strong convergence uγ∇ωε ∗uγ → u∞∇ωε ∗u∞ in L2(Ω×(0, T )) (which
follows by (2.3.18) and simple properties of convolutions).

We are left with the analysis of the last term, i.e.,
∫ T
0
⟨∂tu∞, v∞⟩dt. Our aim is to show that this

term vanishes, exploiting Theorem 2.5.2. We introduce the following indicator function on R :

IS(s) :=

{
0 if s ≤ 1,

+∞ if s > 1,
(2.3.35)

and define S = (−∞, 1], which is a closed, convex and nonempty set, so that IS : R → (−∞,+∞]
is proper, convex and lower semicontinuous (see, e.g., [283, Appendix 1]) and it holds

∂IS(x) = {y ∈ R : y · (x− s) ≥ 0, ∀s ≤ 1}.

We see that we have

— u∞ ∈ L2(0, T ;H1(Ω)) and ∂tu∞ ∈ L2(0, T ; (H1(Ω))′) ;
— for almost any (x, t) ∈ ΩT ,

v∞(x, t) ∈ ∂IS(u∞(x, t)),

by (2.3.26) and being v∞ = p∞. Indeed,

v∞(x, t)(u∞(x, t)− s) ≥ 0, ∀s ≤ 1,

since, when u∞(x, t) = 1, being v∞(x, t) ≥ 0, the inequality is always verified for any s ≤ 1,
whereas, when u∞(x, t) < 1, it holds v∞(x, t) = 0 and thus the inequality is verified for
any s ≤ 1 as well.

— v∞ ∈ L2(0, T ;H1(Ω)).

Therefore, all the assumptions are verified and we can apply Theorem 2.5.2 with h = IS , f = u∞,
g = v∞, to infer, after an integration over [0, T ],

0 =

∫
Ω

IS(u∞(x, T )) dx−
∫
Ω

IS(u∞(x, 0)) dx =

∫ T

0

⟨∂tu∞, v∞⟩dt, (2.3.36)

by the definition of IS . Indeed, it holds
∫
Ω
IS(u∞(x, ·)) dx ≡ 0 on [0, T ] for any T > 0. To see
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this, first notice that, being u∞ ≤ 1 almost everywhere in Ω× [0,∞), we deduce that, for almost
any t ∈ [0,∞),

u∞(x, t) ≤ 1 for almost any x ∈ Ω.

Therefore,
∫
Ω
IS(u∞(x, ·)) dx = 0, for almost any t ∈ [0, T ] and for any T > 0. Recall now

by Theorem 2.5.2 that
∫
Ω
IS(u∞(x, ·)) dx ∈ AC([0, T ]) for any T > 0, which ensures that∫

Ω
IS(u∞(x, t)) dx ≡ 0 for any t ∈ [0, T ] and for any T > 0.

Having studied all the terms in the right-hand side of (2.3.34), in the end we conclude that

lim sup
γ→∞

∫
ΩT

|∇(ṽγ − ṽ∞)|2 dxds ≤ 0,

implying that

lim
γ→∞

∫
ΩT

|∇(ṽγ − ṽ∞)|2 dxds = 0.

Step 3. The complementarity condition. Now that we have all the necessary convergences,
let us consider the following equation in distributional sense (this equation comes from multi-
plying (2.1.1) by vγ = uγ+1

γ ) :

1

γ + 2
∂tu

γ+2
γ − vγ∆ṽγ +

1

ε2
vγdiv(uγ(∇ωε ∗ uγ)) = uγG(pγ)vγ .

Thanks to the results of Step 2. and Lemma 2.3.4, we can then pass the limit as γ → ∞ and
obtain the complementarity condition :

v∞(∆ṽ∞ − 1

ε2
div(u∞(∇ω ∗ u∞)) + u∞G(p∞)) = 0 in D′(Ω× (0, T )), (2.3.37)

for any T > 0, so that in the end, recalling v∞ = p∞ and ṽ∞ = p∞ + 1
2ε2u

2
∞,

p∞(∆p∞ +
1

2ε2
∆u2∞ − 1

ε2
div(u∞(∇ωε ∗ u∞)) + u∞G(p∞)) = 0 in D′(Ω× (0,∞)), (2.3.38)

which is the complementarity condition (2.1.16). In conclusion, since v∞ = p∞, we can repeat
the argument leading to (2.3.36), to infer that, for any t ∈ [0,∞),∫ t

0

⟨∂tu∞, p∞⟩ds = 0, ⟨∂tu∞(t), p∞(t)⟩ = 0,

thus concluding the proof of Theorem 2.1.5.

2.4 Convergence to equilibria : proof of Theorem 2.1.6

Here, we prove Theorem 2.1.6. Numerical simulations illustrating the result in dimension 1 with
a source term are depicted in Figure 2.1.
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2.4.1 Case G(p) = pH − p

Proof of Theorem 2.1.6. We now divide the proof of Theorem 2.1.6 in different steps.

Step 1 : characterization of possible limits. We fix the initial datum u0 ̸= 0 as in the
statement of Theorem 2.1.6. We show the following key result :

Lemma 2.4.1. From any divergent sequence {tn}n ⊂ R+ we can extract a subsequence (not
relabeled) such that, as n → ∞, un(t) := u(t + tn) converges to the same limit u∗ strongly in
Lpt,x for all 1 ≤ p < 2γ + 1. Moreover, either u∗ ≡ 0 and Φ(u(t)) → |Ω| as t → ∞, otherwise
u∗ ≡ p

1/γ
H and Φ(u(t)) → 0 as t→ ∞.

We fix T > 0, we also consider n large enough such that tn > T . Observe that un solves the
problem {

∂tun − div(un∇µn) = unG(pn) in Ω× (−T, T ),
µn = pn +Bε(un), pn = uγn.

(2.4.1)

By Propositions 2.2.2 and 2.2.5, we have the following uniform-in-n bounds :

E(un(t)) ≤ C ∀t ∈ [−T, T ], (2.4.2)
Φ(un(t)) ≤ Φ(u0) ∀t ∈ (−T, T ), Φ(un(t)) non-increasing. (2.4.3)

From this and Propositions 2.2.2 and 2.2.6, we deduce the following uniform bounds, for any
T > 0,

∥un∥L∞(−T,T ;Lγ+1(Ω)) + ∥un∥L2(−T,T ;H1(Ω)) + ∥un∥L2γ+1(Ω×(−T,T ))

+ ∥∂tun∥Lq′ (−T,T ;(W 1,q(Ω))′) + ∥∂tun∥L2(−T,T ;(W 1,r(Ω))′) + ∥∇u
γ+1
2

n ∥L2(−T,T ;L2(Ω)) ≤ C(T ),

(2.4.4)

with q and r as in Proposition 2.2.6 which implies, by standard arguments, the following conver-
gences (up to subsequences) as n→ ∞ to the same function u∗ ≥ 0

un ⇀ u∗ in L2(−T, T ;H1(Ω)) and L2γ+1(Ω× (−T, T ))
∂tun ⇀ ∂tu∗ in Lq

′
(−T, T ; (W 1,q(Ω))′) and in L2(−T, T ; (W 1,r(Ω))′),

un → u∗ in Lp(Ω× (0, T )), p ∈ [1, 2γ + 1), and almost everywhere,

∇u
γ+1
2

n ⇀ ∇u
γ+1
2

∗ in L2(Ω× (0, T )).

We want to characterize u∗. Notice that from (2.2.2), we have for all T > 0,∫ T

−T

∫
Ω

∫
Ω

ωε(y)|∇un(x)−∇un(x− y)|2 dx dy ds

=

∫ tn+T

tn−T

∫
Ω

∫
Ω

ωε(y)|∇u(x)−∇u(x− y)|2 dxdy ds→ 0 as n→ ∞

by integrability on (0,∞). By weak-lower semicontinuity, in the limit∫ T

−T

∫
Ω

∫
Ω

ωε(y)|∇u∗(x)−∇u∗(x− y)|2 dx dy ds = 0
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so that u∗(t) is constant in space for a.e. t ∈ [0, T ]. In fact, u∗(t) is constant in space for all
t ∈ [0, T ] because u∗ ∈ Cweak([−T, T ];Lγ+1(Ω)) (see Remark 2.1.4) so that for all φ ∈ C∞

c (Ω),
the function t 7→

∫
Ω
u∗(t, x) divφ(x) dx is continuous. Similarly, from (2.2.2) and the Fatou

lemma,

u∗ log

 u∗

p
1
γ

H

 (uγ∗ − pH) = 0, for a.e. t ∈ (−T, T ),

so that either u∗(t) = 0 or u∗(t) = p
1
γ

H . Since u∗ ∈ Cweak([−T, T ];Lγ+1(Ω)), the average
u∗(·) ∈ C([0, T ]) so that u∗ ≡ u∗ can attain only one of the values for all times.

Because Φ(u(t)) is non-increasing in time, it has a limit as t → ∞, say Φ∗. Then clearly

Φ∗ = limn→∞ Φ(u(t+tn)) = Φ(u∗), and thus either Φ∗ = Φ(0) = |Ω| if u∗ = 0 or Φ∗ = Φ(p
1
γ

H) = 0

if u∗ = p
1
γ

H . Clearly this also implies that, given another sequence of times {tm}m, we can repeat
the same argument and extract a (non relabeled) subsequence {u(tm)}m converging to the same
constant u∗. This concludes the proof of Lemma 2.4.1.

Step 2. Stability of the equilibria. We complete Lemma 2.4.1 with the following

Lemma 2.4.2. Under notation of Lemma 2.4.1, if u∗ ≡ 0 then u0 = 0 almost everywhere in Ω.

Démonstration. Since Φ(u(t)) is nonincreasing in time and, by Lemma 2.4.1, Φ(u(t)) → |Ω|, we
obtain

|Ω| = lim
t→∞

Φ(u(t)) ≤ Φ(u0) ≤ |Ω|.

Thus we infer Φ(u0) = |Ω|. Being the entropy function g : x 7→ x

p
1
γ
H

log

(
x

p
1
γ
H

)
− x

p
1
γ
H

+1 decreasing

for x ∈ [0, p
1
γ

H), and since u0 ≤ p
1
γ

H , it follows that u0 = 0 almost everywhere in Ω.

Step 3. Existence of the Lq(Ω)-limit as t→ ∞.

Lemma 2.4.3. Assume that u0 ̸≡ 0. Then it holds

lim
t→∞

u(t) = p
1
γ

H in Lq(Ω) ∀q ∈ [1, γ + 1).

Démonstration. First note that, the pointwise values u(t) as an Lγ+1(Ω)-function makes sense
thanks to the weak continuity obtained in Lemma 2.1.3. Now, we consider the decomposition
of Φ :

Φ(u) =
1

p
1
γ

H

∫
Ω

u log
(u
u

)
dx+

∫
Ω

u log

 u

p
1
γ

H

 dx+

∫
Ω

(p
1
γ

H − u) dx

 (2.4.5)

and we study the limits of terms appearing in (2.4.5). Since u0 ̸≡ 0, from Lemma 2.4.1 we obtain
limt→∞ Φ(u(t)) = Φ(p

1/γ
H ) = 0.

By Proposition 2.2.1, for any sequence {tn}n there exists a (nonrelabeled) subsequence such that,
for some κ,

u(tn) → κ ∈ [0, p
1
γ

H ]. (2.4.6)



96 CHAPITRE 2. NLCH equation : incompressible limit and convergence to stationary states

We prove that κ = p
1
γ

H . Indeed, the function g : x 7→ x

p
1
γ
H

log

(
x

p
1
γ
H

)
− x

p
1
γ
H

+ 1 is convex and

continuous. As Φ(u(t)) =
∫
Ω
g(u(t)) dx, by Jensen’s inequality we get

0 ≤ g(u(t)) ≤ 1

|Ω|Φ(u(t)) → 0 as t→ ∞

so that g(κ) = 0 and the claim follows. It follows that u(t) → p
1
γ

H as t→ ∞.

Hence, passing to the limit in (2.4.5)∫
Ω

u(t) log

(
u(t)

u(t)

)
dx→ 0 when k → ∞. (2.4.7)

From Lemma 2.5.4 and (2.4.7), together with the fact that u(t) → p
1
γ

H as n→ ∞, we then deduce

∥u(t)− p
1/γ
H ∥L1(Ω) → 0 when k → ∞.

Furthermore, by the bound in L∞
t L

γ+1
x given by the control of the energy E in Proposition 2.2.2,

we can deduce the convergence (2.1.18) by interpolation. The proof of Theorem 2.1.6 in the case
of a nonzero source term G is thus concluded.

2.4.2 Case G(p) = 0

When there is no source term, the solution converges to the mean value. The argument is a simple
consequence of the logarithmic Sobolev inequality and the Csiszár–Kullback–Pinsker inequality.
We refer to [276] for other systems where it is applied. We consider the relative entropy between
the solution u and a stationary state u∗, defined as

Φ(u|u∗) =
∫
Ω

(
u log

(
u

u∗

)
− u+ u∗

)
dx.

In our case u∗ = u0 a.e. in Ω. Notice that, by the conservation of mass, we have

Φ(u|u) =
∫
Ω

u log
(u
u

)
dx.

Since u(·) ≡ u0, we see that Φ(u|u) satisfies the identity (or at least the inequality for weak
solutions) : for almost any t ≥ 0,

dΦ(u|u)
dt

+
1

2ε2

∫
Ω

∫
Ω

ωε(y)|∇u(x)−∇u(x− y)|2 dxdy +
∫
Ω

4γ

(γ + 1)2

∣∣∣∇|u| γ+1
2

∣∣∣2 dx = 0.

The generalized logarithmic Sobolev inequality [276, Section 3.1] provides us the exponential
decay of the relative entropy. Indeed we have

Lemma 2.4.4. For any m ≥ (d− 2)+/d, there exists C(Ω,m) such that∫
Ω

|∇(u
m
2 )|2 dx ≥ C(Ω,m)um−1

∫
Ω

u log
(u
u

)
dx.
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(a) Initial condition (b) Evolution at t = 0.03

(c) Evolution at t = 0.14 (d) Evolution at t = 0.25

Figure 2.1 – We provide here 1D numerical simulations illustrating this theoretical result. We
assume γ = 10 and pH = 0.7. We thus have p1/γH ≈ 0, 96. The initial condition is taken as a
double gaussian as in Figure (a).

In our case m = γ+1 and u ≡ u0 is bounded from below by a positive constant since we consider
an initial condition u0 ̸≡ 0. Therefore, by the Gronwall Lemma we conclude that the entropy Φ
experiences an exponential decay as t→ ∞ :

dΦ(u|u)
dt

+ C(Ω, γ)uγ0Φ(u|u) ≤ 0

Therefore, we have, for some C = C(Ω, γ,Φ(u0), u0),

Φ(u|u) ≤ Ce−Ct, ∀t ≥ 0.

To prove that this implies the exponential decay of the solution we use the Csiszár–Kullback–Pinsker
inequality of Lemma 2.5.4 : there exists C(Ω) such that

Φ(u|u) ≥ C(Ω)∥u− u0∥2L1(Ω).
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The exponential decay in L1(Ω) of u towards u0 then easily follows. By the L∞(0, T ;Lγ+1(Ω))
bound given by the control of the energy E (which is the same as in the case with a source term
G given in Proposition 2.2.2), we can in conclusion deduce the exponential convergence (2.1.19)
by interpolation. This ends the proof of Theorem 2.1.6.

2.4.3 Longtime behavior of the local Cahn-Hilliard equation

The nonlocal Cahn-Hilliard equation can be also seen as an approximation of the local Cahn-
Hilliard equation : 

∂tu− div(u∇µ) = uG(p) in Ω× (0, T ),

µ = p−∆u, p = uγ ,

u(0) = u0 in Ω.

(2.4.8)

This follows, at least formally, with a Taylor expansion, using the symmetry of the kernel ωε in
the operator Bε of (2.1.1), and for a rigorous proof we refer, e.g., to [155]. Therefore, one may
wonder whether the previous results obtained for the nonlocal Cahn-Hilliard equation also hold
for the local one. It turns out that for the convergence to the stationary states, the result is the
same. Indeed, one mainly uses arguments based on the entropy, so that the nonlocal term does
not play a role : concerning the entropy Φ, we can consider again (2.1.6) and formally get for
(2.4.8)

d

dt
Φ(u) +

1

p
1
γ

H

∫
Ω

|∆u|2 dx+
1

p
1
γ

H

∫
Ω

4γ

(γ + 1)2

∣∣∣∇|u| γ+1
2

∣∣∣2 dx−
∫
Ω

u log

 u

p
1
γ

H

G(p) dx = 0,

(2.4.9)

which is very similar to the result in Proposition 2.2.2. Concerning the energy, we set

El(u) :=
1

2

∫
Ω

|∇u|2 dx+

∫
Ω

u1+γ

1 + γ
dx

and thus

d

dt
El(u) +

∫
Ω

u|∇µ|2 dx =

∫
Ω

uG(p)µdx.

Now we observe that, integrating by parts,∫
Ω

uG(p)µdx =

∫
Ω

u(pH − p)p dx−
∫
Ω

u(pH − p)∆udx

=

∫
Ω

u(pH − p)p dx+

∫
Ω

|∇u|2(pH − p) dx−
∫
Ω

u∇p · ∇udx

=

∫
Ω

u(pH − p)p dx+

∫
Ω

|∇u|2(pH − p) dx− γ

∫
Ω

p|∇u|2 dx.

Moreover, notice that, since the relation (2.1.11) still holds with the same proof,

pH

∫
Ω

updx ≤ 1

2

∫
Ω

up2 dx+
p2H
2

∫
Ω

udx ≤ 1

2

∫
Ω

up2 dx+ C.
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Then we can rewrite the energy inequality as

d

dt
El(u) +

∫
Ω

u|∇µ|2 dx+
1

2

∫
Ω

p2udx+

∫
Ω

|∇u|2p dx+ γ

∫
Ω

p|∇u|2 dx

≤
∫
Ω

|∇u|2 dx+ C ≤ C(El(u) + 1),

which is again very similar to the one obtained in Proposition 2.2.2 for the nonlocal case. The-
refore, with these estimates we can basically perform again all the arguments of Section 2.4 and
obtain again the same result as in Theorem 2.1.6. Note that in the local case, differently from the
nonlocal one, we can also repeat the same arguments in the case of a smooth bounded domain
Ω ⊂ Rd with homogeneous Neumann boundary conditions u∇µ · n = 0 and ∇u · n = 0 on
∂Ω× (0,∞), where n is the outward unit normal.

Remark 2.4.5. The incompressible limit, γ → ∞, is very different and remains an open question
in the local Cahn-Hilliard case. Indeed, obtaining an equation for the pressure p from which
to deduce a uniform-in-γ L2(0, T ;H1(Ω))-control on p seems still out of reach. Therefore no
analogous of Theorem 2.1.5 can be stated in this local case.

2.5 Appendix

2.5.1 Technical tools
Several tools have been used to carry out some proofs. First, we present a lemma about geometric
convergence of numerical sequences, whose proof can be easily obtained by induction (see, e.g.,
[246, Ch.2, Lemma 5.6] ) :

Lemma 2.5.1. Let {yn}n∈N∪{0} ⊂ R+ satisfy the recursive inequality

yn+1 ≤ Cbny1+ϵn , ∀n ≥ 0, and y0 ≤ θ := C− 1
ϵ b−

1
ϵ2 , (2.5.1)

for some C > 0, b > 1 and ϵ > 0. Then, yn → 0 for n→ ∞ with geometric rate

yn ≤ θb−
n
ϵ , ∀n ≥ 0. (2.5.2)

Next, we state a theorem concerning the absolute continuity of some integrals of convex functions
in R, whose proof can be found, e.g. in [209, p.101] :

Theorem 2.5.2. Let T > 0 and let h : R → R be a convex and lower semicontinuous function.
Assume that

— f ∈ L2(0, T ;H1(Ω)) and ∂tf ∈ L2(0, T ; (H1(Ω))′),
— g(x, t) ∈ ∂h(x, t) for almost every (x, t) ∈ Ω× (0, T ),
— g ∈ L2(0, T ;H1(Ω)).

Then, the function t 7→
∫
Ω
h(f(x, t)) is absolutely continuous on [0, T ] and,

d

dt

∫
Ω

h(f) dx = ⟨∂tf, g⟩ for almost any t ∈ (0, T ).

We then propose a control on the H1(Ω)-norm related to the use of ωε.
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Lemma 2.5.3. There exists ε0 > 0 and a constant C such that for ε ∈ (0, ε0) and all f ∈ L2(Ω)
we have

∥f − f∥2L2(Ω) ≤
C

2ε2

∫
Ω

∫
Ω

ωε(y)|f(x)− f(x− y)|2 dx dy, (2.5.3)

where f is the average of f over Ω. Similarly, for all α, there exists ε0(α) > 0 and constant C(α)
such that for all ε ∈ (0, ε0) and all f ∈ H1(Ω) we have

∥f∥2H1(Ω) ≤
α

2ε2

∫
Ω

∫
Ω

ωε(y)|∇f(x)−∇f(x− y)|2 dxdy + C(α)∥f∥2L1(Ω). (2.5.4)

Démonstration. The proof is identical to the one in [155, Lemma C.3] by substituting the norm
∥ · ∥L2(Td) with the norm ∥ · ∥L1(Td). Indeed, with the notation of the proof of that Lemma, also
n∥gn∥L1(Td) < 1 implies that the limit function g = 0, exactly as in the case L2(Td).

In conclusion, we recall the Csiszár–Kullback–Pinsker inequality (see, e.g., [52]), which is essential
to study the asymptotic behavior of weak solutions

Lemma 2.5.4. For any non-negative u ∈ L1(Ω)

4|Ω|u
∫
Ω

u log
(u
u

)
dx ≥ ∥u− u∥2L1(Ω).



Chapitre 3

Pressure jump and radial stationary
solutions of the degenerate
Cahn-Hilliard equation.

Abstract

The Cahn-Hilliard equation with degenerate mobility is used in several areas including the mo-
deling of living tissues. We are interested in quantifying the pressure jump at the interface in
the case of incompressible flows. To do so, we include an external force and consider stationary
radial solutions. This allows us to compute the pressure jump in the small dispersion regime. We
also characterize compactly supported stationary solutions in the incompressible case, prove the
incompressible limit and prove convergence of the parabolic problems to stationary states.

3.1 Introduction

The degenerate Cahn-Hillard equation is now commonly used in tumor growth modeling and
takes into account surface tensions at the interface between different types of cells, leading to a
jump of pressure. In order to compute this jump, we propose to set the problem in a spherically
symmetric domain with a boundary determined by the radius Rb, and to include an external
force. Therefore we consider, in two dimensions for simplicity, the equation

∂(rn)

∂t
− ∂

∂r

(
rn
∂(µ+ V )

∂r

)
= 0, in (0,+∞)× IRb

, (3.1.1)

µ = nγ − δ

r

∂

∂r

(
r
∂n

∂r

)
, in (0,+∞)× IRb

, (3.1.2)

where IRb
= (0, Rb) is the line segment of length Rb. Equations (3.1.1)–(3.1.2) are equipped with

Neumann boundary conditions

∂n

∂r

∣∣∣
r=0

=
∂n

∂r

∣∣∣
r=Rb

= n
∂(µ+ V )

∂r

∣∣∣
r=0

= n
∂(µ+ V )

∂r

∣∣∣
r=Rb

= 0, (3.1.3)
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and with an initial condition satisfying

n0 ∈ H1(IRb
), n0 ≥ 0. (3.1.4)

We only consider nonnegative solutions and thus the term nγ is well defined and the (normalized
by a factor π

2 ) total mass is

m :=

∫ Rb

0

r n0(r) dr =

∫ Rb

0

r n(t, r) dr. (3.1.5)

Finally, the confining potential V (r) is of class C1.

3.1.1 Main results

Our first result concerns the existence of solutions of (3.1.1)-(3.1.2), their regularity, and asymp-
totic behaviour.

Theorem 3.1.1 (Existence of solutions and long term asymptotic). There exists a global weak
solution of (3.1.1)-(3.1.4) in the sense of Definition 3.2.1 and it satisfies estimates as in Re-
mark 3.2.2. Moreover, up to a subsequence, {r n(t + k, r)}k converges locally in time uniformly
in space to a stationary solution r n∞(r) ≥ 0 where n∞ ∈ C1(IRb

) satisfies m =
∫ Rb

0
r n∞(r) dr

and

rn∞
∂(µ∞ + V )

∂r
= 0, µ∞ = nγ∞ − δ

r

∂

∂r

(
r
∂n∞
∂r

)
n′∞(0) = n′∞(Rb) = 0. (3.1.6)

Our second result characterizes possible stationary states and shows we can distinguish an interval
where n∞ = 0 and another where µ∞+V is constant as expected from the first equation in (3.1.6).
From now on, we consider the confining potential V (r) = r2 for simplicity. The proof may be
adapted to any increasing potential.

Theorem 3.1.2 (Characterization of the stationary states). Let n∞ ∈ C1([0, Rb]), n∞ ≥ 0, be
a solution of (3.1.6) as built in Theorem 3.1.6.
(A) Then, n∞ is nonincreasing and it satisfies 0 ≤ n∞(Rb) <

2m
R2

b
.

(B) Assume n∞(Rb) = 0 and let R > 0 be the smallest argument such that n∞(R) = 0 and thus
n∞ > 0 in [0, R). Then, there is λ∞ ∈ (0, R2) such that{

nγ∞ − δ
rn

′
∞ − δn′′∞ = R2 − r2 − λ∞ in (0, R),

n∞(R) = n′∞(R) = 0.
(3.1.7)

and, given R > 0, there is at most one couple (n, λ) solving (3.1.7).
(C) Fix δ ∈ (0, 1). There exists R(m), independent of γ, such that when Rb > R(m), then
n∞(Rb) = 0.

Next, we focus on the incompressible limit of the solutions of (3.1.7), that is when γk → ∞. We
denote by nk the steady state associated with γk and assume that Rb is large enough so that
nk(Rb) = 0.

Theorem 3.1.3 (Incompressible limit of the stationary states). Let {γk}k∈N be any sequence
such that γk → ∞. Let {nk}k∈N be a sequence of stationary states with the same mass m and
with radius Rk, being the smallest argument such that nk(r) = 0.



3.1. Introduction 103

x

1

R0 R Rb

pressure pinc
density ninc

Figure 3.1 – Plot of the limiting profile ninc, as γk → ∞, for the potential V (r) = r2. We can
observe that the pressure has a discontinuity at R0 with (0, R0) = {ninc = 1} = {pinc > 0},
while the density remains C1.

Then, nk → ninc in C1([0, Rb]) and Rk → R, where ninc and R are uniquely defined in Pro-
position 3.4.1. Moreover, the sequence of pressures {pk := nγkk }k∈N converges weakly to some
pressure pinc such that pinc(ninc − 1) = 0 and pinc has a jump at ∂{ninc = 1}

JpincK ≈ 3
√
6R2/3 δ1/3, as δ → 0.

The profile ninc obtained for the incompressible limit of stationary states is depicted in Figure 3.1.
The density is equal to 1 on a certain interval (0, R0) where the pressure is positive. Then, the
pressure vanishes and the density decreases to 0 on a small interval (R0, R). At the boundary
point R0 the pressure undergoes a jump, which depends on the surface tension coefficient δ and
on the shape of the confinement potential V . More precisely, for a general potential V (r), this
jump is determined by

JpincK ≈
3
√
12

2
δ1/3 (V ′(R))2/3 as δ → 0, (3.1.8)

where R is the smallest value where n(R) = 0 and we have the estimate R2 − R2
0 ≈ 2 3√12δ1/3R

3
√
V ′(R)

.

We point out that the limiting profile (including parameters R0 and R) is uniquely determined
in terms of mass m, δ and V cf. Proposition 3.4.1.

In the above statements, the main novelty concerns the incompressible limit γ → ∞ for the
stationary states. A previous work in this direction [151] made use of viscosity relaxation, which
provided additional estimates implying compactness. In our case, assuming the radial symmetry
of the problem, we are able to characterize the incompressible limit of the sequence of compactly
supported stationary solutions. While our setting is restrictive, it allows performing many com-
putations explicitly. In particular, we find how the pressure jump depends on V and δ, cf. (3.1.8).

Open question. We prove that the stationary states are compactly supported or at least zero
on the boundary if the domain is large enough. It is logical to ask whether the solutions of the
parabolic equation are compactly supported for a large domain and a strong confining potential.
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This question is still open. However, a work in this direction [99] has proved that in dimension
1, one could expect the solutions of the Cahn-Hilliard equation without confining potential to
propagate with finite speed. By adding this potential, we can expect to have a better result, and
compactly supported solutions, with time-independent support.

Contents. The above theorems are proved in the following sections. Section 3.2, is devoted
to prove Theorem 3.1.1. In Section 3.3 we prove Theorem 3.1.2 and in Section 3.4 we give the
proof of our main new result, namely Theorem 3.1.3. Numerical simulations of the model with a
source term and no confining potential are presented in Section 3.5. The appendix contains the
computation of the pressure jump for a general confining potential.

Notations. For a function n(x, t) we associate a function in radial coordinates that is still
denoted by n(r, t). For 1 ≤ p, s ≤ +∞ or s = −1 and Ω a domain, Lp(Ω), Hs(Ω) denote the
usual Lebesgue and Sobolev spaces. When s = −1,H−1(Ω) is the topological dual ofH1

0 (Ω). Here
Hs(Ω) = W s,2(Ω) in the usual notation. We also consider the Bochner spaces Lp(0, T ;Hs(Ω))
associated with the norm

∥f∥Lp(0,T ;Hs(Ω)) =

(∫ T

0

∥f∥pHs(Ω)

)1/p

.

The partial derivative with respect to the radial variable is written as ∂ru(r) = ∂u
∂r (r) = u′(r).

Finally, C denotes a generic constant which appears in inequalities and whose value can change
from one line to another. This constant can depend on various parameters unless specified other-
wise.

3.1.2 Literature review and biological relevancy of the system

Tissue growth models and Hele-Shaw limits. Development of tissue growth models is
presently a major line of research in mathematical biology. Nowadays, number of models are
available [67, 177, 264] with the common feature that they use the tissue internal pressure as the
main driver of both the cell movement and proliferation. The simplest example of a mechanical
model of living tissue is the compressible equation

∂tn = div (n∇p) + nG(p), p = Pγ(n) := nγ , (3.1.9)

in which p(t, x) = P (n(t, x)), with P a law of state, is the pressure and n the density of cell
number. Here, the cell velocity is given via Darcy’s law which captures the effect of cells moving
away from regions of high compression. Dependence on growth function pressure has also been
used to model the sensitivity of tissue proliferation to compression (contact inhibition, [68]).
An important problem is to understand the so-called incompressible limit (i.e. γ → ∞) of this
model. Perthame et al. [289] have shown that in this limit, solutions of (3.1.9) converge to a
limit solution (n∞, p∞) of a Hele-Shaw-type free boundary limit problem for which the speed of
the free boundary is given by the normal component of ∇p∞, see also other approaches in [238,
261]. In this limit, the solution of (3.1.9) is organized into 2 regions : Ω(t) in which the pressure
is positive (corresponding to the tissue) and outside of this zone where p = 0. Furthermore, the
free boundary problem is supplemented by a complementary equation that indicates that the
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pressure satisfies

−∆p∞ = G(p∞), in Ω(t), or similarly p∞(∆p∞ +G(p∞)) = 0 a.e. in Ω. (3.1.10)

In this model, the pressure stays continuous in space, with jumps in time, and is equal to 0 at the
interface. This is because only repulsive forces were taken into account. Hence, the crucial role of
the cell-cell adhesion and thus the pressure jump at the surface of the tissue is not retrieved at
the limit. Additionally, as pointed out by Lowengrub et al. [264], the velocity of the free surface
should depend on its geometry and more precisely on the local curvature denoted by κ.
This motivated considering variants of the general model (3.1.9), where other physical effects of
mechanical models of tissue growth are introduced. One of them is the addition of the effect of
viscosity in the model, which has been made to represent the friction between cells [38, 50] through
the use of Stokes’ or Brinkman’s law. Moreover, as pointed out by Perthame and Vauchelet [291],
Brinkman’s law leads to a simpler version of the model and, therefore, is a preferential choice
for its mathematical analysis. Adding viscosity through the use of Brinkman’s law leads to the
model {

∂tn = div (n∇µ) + nG(p), in (0,+∞)× Ω,

−σ∆µ+ µ = p, in (0,+∞)× Ω.
(3.1.11)

The incompressible limit of this system also yields the complementary relation (see [291])

p∞(p∞ − µ∞ − σG(p∞)) = 0, a.e. in Ω.

In the incompressible limit, notable changes compared to the system with Darcy’s law are found.
First, the previous complementary relation is different compared to Equation (3.1.10), and the
pressure p∞ in the limit is discontinuous, i.e. there is a jump of the pressure located at the surface
of Ω(t). However, the pressure jump is related to the potential µ and not to the local curvature
of the free boundary ∂Ω(t). The authors already indicated that a possible explanation for this is
that the previous model does not include the effect of surface tension.

Surface tension and pressure jump. Surface tension is a concept associated with the in-
ternal cohesive forces between the molecules of a fluid : hydrogen bonds, van der Waals forces,
metallic bonds, etc. Inside the fluid, molecules are attracted equally in all directions leading to
a net force of zero ; however molecules on the surface experience an attractive force that tends
to pull them to the interior of the fluid : this is the origin of the surface energy. This energy is
equivalent to the work or energy required to remove the surface layer of molecules in a unit area.
The value of the surface tension will vary greatly depending on the nature of the forces exerted
between the atoms or molecules. In the case of solid tumor cells in a tissue, it reflects the cell-cell
adhesion tendency between the cells and depends on the parameter δ and the geometry of the
tumor.
In the previous definition, the surface tension is associated with a single body that has an
interface with the vacuum. When one considers two bodies, the surface energy of each body is
modified by the presence of the other and we speak of interfacial tension. The latter depends on
the surface tension of each of the two compounds, as well as the interaction energy between the
two compounds. In the system considered above, it is then possible to imagine that the vacuum
in which the tumor grows is in fact another body that has an internal pressure of the form V (r)
which increases with respect to r so that the tumor is stopped at some point and we can consider
the stationary states.
For such a tumor to be in equilibrium, it is necessary that the interior is overpressured relative to
the exterior by an amount. This amount is called the pressure jump and is computed explicitly
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in our case.
Surface tension effects can be introduced in the Hele-Shaw model as follows (see e.g. [161]){

−∆µ = 0 in Ω \ ∂Ω(t),
µ = σκ on ∂Ω(t).

(3.1.12)

where σ is a positive constant, called a surface tension and κ is a mean curvature of ∂Ω(t). This
correct Hele-Shaw limit has been formally obtained as the sharp-interface asymptotic model
of the Cahn-Hilliard equation [17] ; see also [101] for a convergence result in a weak varifold
formulation. This suggests that the Cahn-Hillard equation is an appropriate model to capture
surface tension effects.

The Cahn Hilliard equation. Cahn-Hillard type models for tissue growth have been develo-
ped based on the theory of mixtures in mechanics, see [176, 97, 307] and the references therein.
Nowadays, they are widely used, in particular for tumor growth, and analysed, [187, 11, 186, 179,
144, 145, 287]. Originally introduced in the context of materials sciences [70], they are currently
applied in numerous fields, including complex fluids, polymer science, and mathematical biology.
For the overview of mathematical theory, we refer to [277].
Usually, in mechanical models, the Cahn-Hillard equation takes the form

∂tφ = div
(
b(φ)∇ (ψ′(φ)− δ∆φ)

)
⇐⇒

{
∂tφ = div (b(φ)∇µ) ,
µ = −δ∆φ+ ψ′(φ),

(3.1.13)

where φ represents the relative density of cells φ = n1/(n1 + n2), b is the mobility, ψ is the
potential while µ is the quantity of chemical potential, which is a quantity related to the ef-
fective pressure. From the point of view of mathematical biology, the most relevant case is
b(φ) = φ(1− φ), which is referred to as degenerate mobility.

In our context, (3.1.1) models the motion of a population of cells constituting a biological tissue in
the form of a continuity equation. It takes into account pressure, the surface tension occurring at
the surface of the tissue and its viscosity. More precisely, the equation for µ (i.e. equation (3.1.2))
includes the effects of both the pressure, through the term nγ with γ > 1 that controls the stiffness
of the pressure law, and surface tension by −δ∆n, where

√
δ is the width of the interface in which

partial mixing of the two components n1, n2 occurs.
A similar Cahn-Hilliard problem, without radial symmetry assumption, has previously been
considered in [151], but including a relaxation (viscosity) term and a proliferation source term
in place of the confinement potential. In the incompressible limit, the authors obtain a jump in
pressure at the interface at all times for the relaxed system. The aim here is to justify a rigorous
limit without viscosity relaxation and mostly to compute the pressure jump by analyzing the
stationary states of a system with confining potential.

3.2 Existence, regularity, and long term behavior

The existence of weak solutions for the Cahn-Hilliard equation with degenerate mobility usually
follows the method from [157]. The idea is to apply a Galerkin scheme with a non-degenerate
regularized mobility, i.e. , calling b(n) the mobility, then one considers an approximation bε(n) ≥
ε. Then, using standard compactness methods one can prove the existence of weak solutions for
the initial system. However, the uniqueness of the weak solutions is still an open question.
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In the case of a radially symmetric solution, the resulting system has only one dimension in space,
and it is possible to apply a fixed point theorem, see [331], to obtain better regularity results.
Since the solutions have radial symmetry, the equation is singular at r = 0. Therefore, the first
step is to consider the system with r + ε instead of r and a regularized mobility. The existence
of solutions for a similar regularized system has been achieved in [331] based on a result of [330]
and we do not repeat the arguments here. Then, we can pass to the limit ε → 0. Finally, the
nonnegativity of the limiting solution is achieved with the bounds provided by the entropy.
We finally point out that since we are also interested in the convergence to the stationary states,
one needs to carefully verify that the bounds do not depend on time.

Definition 3.2.1 (Weak solutions). We say that n(t, r) is a global weak solution of the equa-
tion (3.1.1)-(3.1.2) provided that

— n is nonnegative,

— rn is continuous in [0,∞)×IRb
,
√
r n ∈ L∞((0,∞)×IRb

) and r ∂tn ∈ L2((0,∞);H−1(IRb
)),

—
√
rn∂rµ ∈ L2((0,∞)× IRb

\ {rn = 0}) and µ is defined in (3.1.2),

— for every test function φ ∈ L2((0,∞);H1(IRb
)) ∩ C1

c ([0,∞)× IRb
)∫ T

0

r⟨∂tn, φ⟩H−1,H1 dt+

∫ T

0

∫ Rb

0

1rn>0 r n ∂r(µ+ V )∂rφdr dt = 0,

and ∫ T

0

r⟨∂tn, φ⟩H−1,H1 dt = −
∫ T

0

∫ Rb

0

rn∂tφdr dt−
∫ Rb

0

φ(0, r)n0(r) dr,

— n′(t, Rb) = 0 for a.e. t ∈ (0, T ).

Remark 3.2.2 (Energy, entropy properties of weak solutions). In fact, we construct solutions
satisfying additionally mass, energy, and entropy relations as follows : for a.e. τ ∈ [0, T ]∫ Rb

0

r n(τ, r) dr =

∫ Rb

0

r n0(r) dr, (3.2.1)

E [n(τ, ·)] +
∫ τ

0

∫ Rb

0

1rn>0 rn |∂r(µ+ V )|2 dr dt ≤ E [n0], (3.2.2)

Φ[n(τ, ·)] +
∫ τ

0

∫ Rb

0

(
γrnγ−1|∂rn|2 + δr|∂rrn|2 + δ

|∂rn|2
r

+ r ∂rn∂rV

)
dr dt ≤ Φ[n0], (3.2.3)

where energy and entropy are defined as follows :

E [n] =
∫ Rb

0

r

(
nγ+1

γ + 1
+
δ

2
|∂rn|2 + nV

)
dr, Φ[n] =

∫ Rb

0

r ϕ(n) dr,

and ϕ(n) = n (log(n) − 1) + 1. Equations (3.2.1)–(3.2.3) provide the basic a priori estimates.
Moreover, we construct Hölder continuous solutions ; there is a constant C, such that for all
r, r1, r2 ∈ [0, Rb], t, t1, t2 ∈ [0,∞)

|r1 n(t, r1)− r2 n(t, r2)| ≤ C|r1 − r2|1/2, (3.2.4)

|r (n(t2, r)− n(t1, r))| ≤ C|t2 − t1|1/8. (3.2.5)
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3.2.1 Regularized system
We consider the existence of a regularized system, which reads :

∂t(r + ε)nε − ∂r ((r + ε)Bε(nε) ∂r(µε + V )) = 0, in (0,+∞)× IRb
, (3.2.6)

µε = nγε −
δ

r + ε
∂r ((r + ε)∂rnε) , in (0,+∞)× IRb

, (3.2.7)

where

Bε(n) =

{
ε for n ≤ ε,
n otherwise.

(3.2.8)

We impose Neumann boundary conditions

∂nε
∂r

∣∣∣
r=0

=
∂nε
∂r

∣∣∣
r=Rb

= Bε(nε)
∂(µε + V )

∂r

∣∣∣
r=0

= Bε(nε)
∂(µε + V )

∂r

∣∣∣
r=Rb

= 0. (3.2.9)

We admit the following theorem of existence, for a result for a similar system we refer to [331],

Theorem 3.2.3. For ε > 0 and T > 0, Problem (3.2.6)-(3.2.7) with boundary conditions (3.2.9)
and smooth initial condition admits a unique strong solution nε.

Remark 3.2.4. Note that the assumption on the initial condition is stronger than the one asked
in (3.1.4). This means that for the regularized system we need to consider a smooth approximation
of the initial condition, for instance n0ε = n0 ∗ωε with ω a smooth kernel that we send to a dirac
mass when ε→ 0.

Next, we prove some conservation properties for the system (3.2.6)–(3.2.7), see for instance [151,
287].

Lemma 3.2.5 (Conservation of mass, energy and entropy). We define ϕε such that ϕ′′ε (n) =
1

Bε(n)
and ϕε(1) = ϕ′ε(1) = 0, and

Eε[n] :=
∫ Rb

0

(r + ε)

(
nγ+1

γ + 1
+
δ

2
|∂rn|2 + nV

)
dr,

Φε[n] :=

∫ Rb

0

(r + ε)ϕε(n) dr.

Then, we have
d

dt

∫ Rb

0

(r + ε)nε(t, r) dr = 0, (3.2.10)

d

dt
Eε[nε] +

∫ Rb

0

(r + ε)Bε(nε) |∂r(µε + V )|2 dr = 0, (3.2.11)

d

dt
Φε[nε]+

∫ Rb

0

(
γ(r + ε)nγ−1

ε |∂rnε|2 + δ(r + ε)|∂rrnε|2 + δ
|∂rnε|2
r + ε

+ (r + ε) ∂rnε ∂rV

)
dr = 0.

(3.2.12)

Remark 3.2.6. The function ϕε is given by an explicit formula

ϕε(x) =

{
x (log(ε)− 1) + 1 + x2/(2ε)− ε/2 for x ≤ ε

x (log(x)− 1) + 1 for ε < x.
(3.2.13)
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With ε < 1, it enjoys three properties :

1. ϕε(x) → ϕ(x) := x (log(x)− 1) + 1 for x ≥ 0 as ε→ 0,

2. ϕε(x) ≥ 0 for all x ∈ R,

3. ϕ′ε(x) ≤ 0 for x ≤ ε,

4. ϕε(x) ≤ ϕ(x) + 1− ε/2 for x ≥ 0.

The first one is trivial. To see the second one, we observe that the function x 7→ x(log(x)−1)+1
is nonnegative, which implies ϕε(x) ≥ 0 for x ≥ ε. Then, for x ≤ ε we discover

ϕ′ε(x) = log(ε)− 1 +
x

ε
≤ 0. (3.2.14)

As ϕε(ε) ≥ 0, this implies ϕε(x) ≥ 0 for all x ∈ R. Then, (3.2.14) also implies the third property
while the forth follows by estimating ϕε(x) ≤ ϕε(0) for x ≤ ε.

Proof of Lemma 3.2.5. Mass conservation (3.2.10) follows from integrating (3.2.6) in space and
using the boundary conditions (3.2.9).

To see (3.2.11), we multiply (3.2.6) by µε + V , integrate in space and use boundary conditions
to obtain : ∫ Rb

0

(r + ε) ∂tnε(µε + V ) dr +

∫ Rb

0

(r + ε)Bε(nε) |∂r(µε + V )|2 dr = 0.

Using (3.2.7) and integrating by parts, we obtain∫ Rb

0

(r + ε) ∂tnε(µε + V ) dr =
d

dt
Eε[nε],

which concludes the proof of (3.2.11).

To see (3.2.12), we multiply (3.2.6) by ϕ′ε(nε) and integrate in space to obtain

d

dt
Φε[nε] +

∫ Rb

0

(r + ε)n′ε(r) ∂r(µε + V ) dr = 0.

In view of (3.2.12), it is sufficient to prove∫ Rb

0

(r + ε)n′ε(r) ∂rµε dr = γ

∫ Rb

0

(r + ε) |n′ε(r)|2 nγ−1
ε dr + δ

∫ Rb

0

|n′ε|2
r + ε

+ (r + ε)|n′′ε |2 dr.

We have∫ Rb

0

(r+ε)n′ε(r) ∂rµε dr = γ

∫ Rb

0

(r+ε) |n′ε(r)|2 nγ−1
ε dr−δ

∫ Rb

0

(r+ε)n′ε(r)∂r

(
1

r + ε
∂r((r + ε)∂rnε)

)
dr.
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In the second part, we can integrate by parts (using Neumann’s boundary conditions)

−
∫ Rb

0

(r + ε)n′ε(r)∂r

(
1

r + ε
∂r((r + ε)∂rnε)

)
dr

=

∫ Rb

0

n′ε(r)
1

r + ε
∂r((r + ε)∂rnε) dr +

∫ Rb

0

(r + ε)n′′ε (r)
1

r + ε
∂r((r + ε)∂rnε) dr

=

∫ Rb

0

|n′ε|2
r + ε

+ (r + ε)|n′′ε |2 dr + 2

∫ Rb

0

n′ε(r)n
′′
ε (r) dr.

The last term vanishes thanks to boundary conditions :

2

∫ Rb

0

n′ε(r)n
′′
ε (r) dr =

∫ Rb

0

∂r|n′ε(r)|2 dr = 0

and this concludes the proof.

From Lemma 3.2.5, we may deduce uniform bounds (in ε) for the solutions nε as follows

Proposition 3.2.7. Let T > 0. The following sequences are uniformly bounded with respect to
ε > 0 :

(A1) {√r + ε ∂rnε} in L∞((0,∞);L2(IRb
)),

(A2) {√r + ε nε} in L∞((0,∞)× IRb
),

(A3) {
√
(r + ε)Bε(nε) ∂r(µε + V )} in L2((0,∞)× IRb

),

(A4) {√r + ε ∂rrnε} and
{
∂rnε√
r+ε

}
in L2((0, T )× IRb

),

(A5) {Φε(nε)} in L∞(0, T ),

(A6) {(r + ε) ∂tnε} in L2((0,∞);H−1(IRb
)),

where the estimates (A1)–(A3) and (A6) depend only on the initial energy E(n0). Moreover,
there is a constant C, independent of ε, such that for all r, r1, r2 ∈ [0, Rb], t, t1, t2 ∈ [0,∞)

|(r1 + ε)nε(r1, t)− (r2 + ε)nε(r2, t)| ≤ C|r1 − r2|1/2, (3.2.15)

|(r + ε)(nε(t2, r)− nε(t1, r))| ≤ C|t2 − t1|1/8. (3.2.16)

In fact, the constant C depends only on initial energy E(n0).

Proof of Proposition 3.2.7. We divide the reasoning into a few steps.

Step 1 : Estimates (A1)–(A2). First, from (3.2.11) we deduce (A1). For estimate (A2) we adapt
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the method from [331]. For any ρ ∈ (0, Rb),

R2
b + 2εRb

2
nε(t, ρ)−

∫ Rb

0

(z + ε)nε(t, z) dz =

∫ Rb

0

(z + ε) [n(t, ρ)− n(t, z)] dz

=

∫ Rb

0

∫ ρ

z

(z + ε) ∂rnε(t, r) dr dz

=

∫ ρ

0

∫ ρ

z

(z + ε) ∂rnε(t, r) dr dz +

∫ Rb

ρ

∫ ρ

z

(z + ε) ∂rnε(t, r) dr dz

=

∫ ρ

0

∫ r

0

(z + ε) ∂rnε(t, r) dz dr +

∫ Rb

ρ

∫ Rb

r

(z + ε) ∂rnε(t, r) dz dr

=

∫ ρ

0

(
r2

2
+ ε r

)
∂rnε(t, r) dr +

∫ Rb

ρ

[
1

2
(R2

b − r2) + ε(Rb − r)

]
∂rnε(t, r) dr

≤ Rb

∫ ρ

0

(r + ε)|∂rnε(t, r)|dr + 2R2
b

∫ Rb

ρ

|∂rnε(r, t)|dr.

Multiplying the previous inequality by 2(ρ+ ε)1/2 yields∣∣∣∣∣(R2
b + 2εRb)(ρ+ ε)1/2nε(t, ρ)− 2(ρ+ ε)1/2

∫ Rb

0

(z + ε)nε(t, z) dz

∣∣∣∣∣ ≤
≤ 2(ρ+ ε)1/2Rb

∫ ρ

0

(r + ε)|∂rnε(t, r)|dr + 4R2
b

∫ Rb

ρ

(r + ε)1/2|∂rnε(t, r)|dr

≤ C(Rb)

(∫ Rb

0

(r + ε) |∂rnε(t, r)|2 dr
)1/2

.

Thanks to the conservation of mass (3.2.10), we obtain (A2).

Step 2 : Estimates (A3)–(A5). The bound (A3) follows from the conservation of energy (3.2.11).
To see (A4) and (A5), we want to use the conservation of entropy (3.2.12), but this has to be
done carefully, as the term (r + ε) ∂rnε ∂rV can be negative. Therefore, we fix T > 0, consider
ϕε as in Remark 3.2.6 and integrate (3.2.12) on (0, T ) to deduce

Φε(nε(T, ·))+δ
∫ T

0

∫ Rb

0

(r+ε)|∂rrnε|2+
|∂rnε|2
r + ε

dr dt ≤ Φε(n0)+

∫ T

0

∫ Rb

0

(r+ε) ∂rnε ∂rV dr dt.

The last term can be easily bounded (using estimates (A1)-(A2)) by a constant depending on T .
The conclusion follows from Φε(nε(T, ·)) ≥ 0 and Φε(n0) can be bounded in terms of Φ(n0), cf.
(4) in Remark 3.2.6.

Step 3 : Estimate (A6). Let χ ∈ L2(0, T ;H1(IRb
)). We multiply (3.2.6) by χ and integrate with

respect to r between 0 and Rb. Using an integration by parts and Neumann boundary conditions,
we obtain
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∫ ∞

0

∫ Rb

0

(r + ε)∂tnεχdr dt = −
∫ ∞

0

∫ Rb

0

(r + ε)Bε(nε)∂r(µε + V )∂rχdr dt

= −
∫ ∞

0

∫ Rb

0

√
(r + ε)Bε(nε)

√
(r + ε)Bε(nε) ∂r(µε + V ) ∂rχdr dt

≤ ∥
√

(r + ε)Bε(nε)∥∞ ∥
√

(r + ε)Bε(nε) ∂r(µε + V )∥2 ∥∂rχ∥2.

where the norms are taken over (0,∞)× IRb
. The conclusion follows.

Step 4 : Hölder estimate in space (3.2.15). By differentiation

(r2 + ε)n(t, r2)− (r1 + ε)n(t, r1) =

∫ r2

r1

(r + ε) ∂rn(t, r) dr +

∫ r2

r1

n(t, r) dr.

For the first term, we have∫ r2

r1

(r + ε) ∂rnε(t, r) dr ≤
(∫ r2

r1

(r + ε) dr

)1/2

∥
√
r + ε ∂rnε(t, ·)∥2 ≤ C |r1 − r2|1/2

due to (A1). For the second term, we compute, using (A2),∫ r2

r1

nε(t, r) dr =

∫ r2

r1

nε(t, r)

√
r + ε√
r + ε

dr ≤ ∥
√
r + ε nε∥∞

∫ r2

r1

1√
r + ε

dr ≤

≤ C |√r2 + ε−√
r1 + ε| ≤ C |r1 − r2|1/2.

Step 5 : Hölder estimate in time (3.2.16). The idea is to deduce the regularity in time from
the regularity in space. We extend the function r 7→ nε r for r < 0 with a constant to preserve
continuity. We consider ην to be a usual one-dimensional mollifier in the spatial variable r where
ν will be chosen later in terms of |t2 − t1|. Mollifying (3.2.6) with ην and integrating in time
(from t1 to t2) we obtain

((r+ε)nε)∗ην(t2, r)−((r+ε)nε)∗ην(t1, r) =
∫ t2

t1

∂rην ∗((r + ε)Bε(nε) ∂r(µε + V )) dt. (3.2.17)

First, we estimate (RHS). We notice that Young’s convolutional inequality and Hölder’s inequa-
lity are implying for fixed t ∈ [t1, t2]

∥∂rην ∗ ((r + ε)Bε(nε) ∂r(µε + V )) ∥∞ ≤
≤ ∥∂rην∥2 ∥

√
(r + ε)Bε(nε)∥∞ ∥

√
(r + ε)Bε(nε) ∂r(µε + V )∥2.

By the definition of a mollifier,

∥∂rην∥2 =
1

ν2

∣∣∣∣∫
R
(η′)2

( r
ν

)
dr

∣∣∣∣1/2 ≤ C

ν3/2
.
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Therefore, applying (A2), (A3) and Hölder’s inequality in time, we deduce∫ t2

t1

∥∂rην ∗ ((r + ε)Bε(nε) ∂r(µε + V )) ∥∞ dt ≤ C
|t2 − t1|1/2

ν3/2
. (3.2.18)

To conclude the proof, we need to estimate (3.2.17) using (3.2.15) from Step 4, we get

|((r + ε)nε) ∗ ην(t1, r)−((r + ε)nε)(t1, r)| ≤

≤
∫
R
|(r + y + ε)nε(t1, r + y)− (r + ε)nε(t1, r)|ην(y) dy

≤ C

∫
R
|y|1/2 ην(y) dy ≤ C ν1/2,

(3.2.19)

where we used that on the support of ην we have |y| ≤ ν. Exactly the same estimate holds if we
replace t1 with t2. Combining (3.2.17), (3.2.18) and (3.2.19) we obtain

|(r + ε)nε(t2, r)− (r + ε)nε(t1, r)| ≤ C
|t2 − t1|1/2

ν3/2
+ C ν1/2.

We choose ν = |t2 − t1|1/4 and this concludes the proof.

Remark 3.2.8. In the above proof, Step 1 shows more generally that when n(t, r) : [0,∞) ×
[0, Rb] → R satisfies

∫ Rb

0
r n(t, r) dr = m and

√
r ∂rn ∈ L∞(0, T ;L2(0, Rb)) then∣∣√r n(t, r)∣∣ ≤ C

(
Rb,m, ∥

√
r ∂rn∥L∞(0,T ;L2(0,Rb))

)
.

3.2.2 Proof of Theorem 3.1.1 (existence part)
We are concerned with the first part of Theorem 3.1.1 i.e. the convergence ε→ 0 of the approxi-
mation scheme.

Proof of Theorem 3.1.1 (existence). The proof is divided into several steps.

Step 1 : Compactness. By the estimates in Proposition 3.2.7, the Banach-Alaoglu and Arzela-
Ascoli theorems, we can extract a subsequence such that, for some ξ ∈ L2((0, T )× IRb

),
(C1) (r + ε)nε → r n uniformly in C([0, T ]× IRb

),
(C2) (r + ε) ∂tnε ⇀ r ∂tn in L2(0, T ;H−1(IRb

)),
(C3)

√
(r + ε)Bε(nε)∂r(µε + V )⇀ ξ in L2((0, T )× IRb

),

(C4)
√
r + ε ∂rrnε ⇀

√
r ∂rrn and ∂rnε√

r+ε
⇀ ∂rn√

r
in L2((0, T )× IRb

).

Step 2 : Nonnegativity of n. The plan is to obtain a contradiction with the uniform estimate of
the entropy. For α > 0, we define the sets

Vα,ε = {(t, r) ∈ (0, T )× IRb
: nε(t, r) ≤ −α, r ≥ α},

Vα,0 = {(t, r) ∈ (0, T )× IRb
: n(t, r) ≤ −α, r ≥ α}.

By Remark 3.2.6 (nonnegativity of ϕε) and (A5) in Lemma 3.2.7 there is a constant such that∫
Vα,ε

(r + ε)ϕε(nε) dr dt ≤
∫
(0,T )×IRb

(r + ε)ϕε(nε) dr dt ≤ C(T ).
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For nε ≤ −α, we have 0 ≤ ϕε(−α) ≤ ϕε(nε) ((3) in Remark 3.2.6) so that

(
−α(log(ε)− 1) + 1 + α2/(2ε)− ε/2

) ∫
Vα,ε

(r + ε) dr dt ≤ C(T ).

Sending ε→ 0 and using uniform convergence of nε → n for r ≥ α > 0 we discover that∫
Vα,0

r dr dt = lim
ε→0

∫
Vα,ε

(r + ε) dr dt = 0

using, from measure theory, that on a measure space (X,µ) if fn, f : X → R and fn → f in
L1(X,µ) then for α ∈ R we have

∫
fn<α

dµ→
∫
f<α

dµ as n→ ∞. This means that Vα,0 is a null
set for each α > 0, concluding the proof.

Step 3 : Identification of the limit (r + ε)Bε(nε)∂r(µε + V ). The last difficulty is to pass to the
limit in

∫ T
0

∫ Rb

0
(r + ε)Bε(nε)∂r(µε + V )∂rφdr dt. Indeed, since the mobility is degenerate it is

not clear that we can identify the derivative of the potential ∂rµ in the limit. However, due to
the uniform convergence of (r + ε)nε and the nonnegativity of n we can conclude. By (C3) and
the uniform convergence of

√
(r + ε)Bε(nε), we have

(r + ε)Bε(nε)∂r(µε + V )⇀
√
r n ξ =

{√
r n ξ when rn > 0

0 when rn = 0
in L2((0, T )× IRb

). (3.2.20)

We first claim that
ξ(t, r) =

√
rn ∂r(µ+ V ) when rn > 0. (3.2.21)

We introduce the family of open sets

{(t, r) : r n(t, r) > 0} = ∪ν>0Pν , Pν = {(t, r) : rn(r, t) > ν, r > ν},

so that it is sufficient to identify the limit ξ in Pν for fixed ν > 0.

Because of the uniform convergence we know that for every ε < ε(ν) for ε(ν) small enough,

(r + ε)Bε(nε(r, t)) ≥
ν

2
, (r, t) ∈ Pν .

Therefore, the estimate (A3) implies

∥∂r(µε + V )∥L2(Pν) ≤
C

ν1/2
.

As ∂rV is uniformly bounded, we deduce that

∥∂rµε∥L2(Pν) ≤
C

ν1/2
.

By definition of µε

∂rµε = γnγ−1
ε ∂rnε − δ∂r

(
1

r + ε
∂r((r + ε)∂rnε)

)
.

For the first term of (RHS), we use the strong convergence (C1) that yields a uniform convergence
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of nε in the zone {(r, t) : r > ν}. Then, because Pν ⊂ {(r, t) : r > ν} we obtain

γnγ−1
ε → γnγ−1 uniformly in L∞(Pν).

Combined with the weak convergence provided by estimate (A1) in Pν we obtain that up to a
subsequence,

γnγ−1
ε ∂rnε ⇀ γnγ−1∂rn weakly in L2(Pν).

Then we combine the L2(Pν) bound on γnγ−1
ε ∂rnε with the L2(Pν) estimate of ∂rµε. We obtain

an L2(Pν) bound on the second term on the right-hand side. Together with estimates (A1)-(A2)-
(A3)-(A4) we obtain the weak convergence up to a subsequence

∂r

(
1

r + ε
∂r((r + ε)∂rnε)

)
⇀ ∂r

(
1

r
∂r(r∂rn)

)
weakly in L2(Pν).

Finally, we obtain

∂rµε ⇀ ∂rµ = γnγ−1∂rn− δ∂r

(
1

r
∂r(r∂rn)

)
weakly in L2(Pν). (3.2.22)

Using uniform convergence, we conclude the proof of (3.2.21). Finally, (3.2.20) and (3.2.21)
implies ∫ T

0

∫ Rb

0

(r + ε)Bε(nε)∂r(µε + V )∂rφdr dt→
∫
rn>0

rn∂r(µ+ V )∂rφdr dt.

Step 4 : existence of a weak solution. Steps 1-3 show that n satisfies the condition of Definition
3.2.1.

Step 5 : Properties (3.2.1)–(3.2.5) from Remark 3.2.2. First, properties (3.2.1), (3.2.4) and (3.2.5)
follow from uniform convergence (C1) and estimates (3.2.15)-(3.2.16) for r nε. To see (3.2.2), we
notice that weak lower semicontinuity of L2 norm implies

E [n(τ, ·)] +
∫ τ

0

∫ Rb

0

|ξ(t, r)|2 dr dt ≤ E [n0].

By (3.2.21), the integral on the (LHS) can be estimated from below by

E [n(τ, ·)] +
∫ τ

0

∫ Rb

0

1rn>0 rn |∂r(µ+ V )|2 dr dt ≤ E [n0].

To see (3.2.3), it is sufficient to prove

Φ(n(t, ·)) ≤ lim inf
ε→0

Φε(nε(t, ·)).

Let δ > 0. By nonnegativity of ϕε we estimate

lim inf
ε→0

Φε(nε(t, ·)) ≥ lim inf
ε→0

∫
r≥δ

ϕε(nε)(r + ε) dr =

∫
r≥δ

ϕ(n) r dr,

because on the set {r ≥ δ}, we have uniform convergence nε → n. As ϕ(n) ≥ 0, we can send
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δ → 0 by monotone convergence and conclude the proof.

Step 6 : Neumann boundary condition n′(t, Rb) = 0. First, if φ, ϕ ∈ C1[a, b] ∩H2(a, b) we have
(via approximation)∫ b

a

φ′(r)ϕ′(r) + φ′′(r)ϕ(r) dr = φ′(b)ϕ(b)− φ′(a)ϕ(a). (3.2.23)

Let ϕ be a smooth function with ϕ(R0) = 0 and ϕ(Rb) = 1 for some R0 ∈ (0, Rb). We know from
estimates (C1)-(C4) that n ∈ L2(0, T ;H2(R0, Rb)). Let t be such that r 7→ n(t, r) ∈ H2(R0, Rb).
Applying (3.2.23) with φ(r) = nε(t, r), we deduce, thanks to the Neumann boundary condition
n′ε(t, Rb) = 0, that ∫ Rb

R0

n′ε(t, r)ϕ
′(r) + n′′ε (t, r)ϕ(r) dr = 0.

Multiplying by a smooth test function η(t), we have∫ T

0

∫ Rb

R0

η(t) (n′ε(t, r)ϕ
′(r) + n′′ε (t, r)ϕ(r)) dr dt = 0.

Passing to the weak limit ε→ 0 and using that η is arbitrary we conclude∫ Rb

R0

n′(t, r)ϕ′(r) + n′′(t, r)ϕ(r) dr = 0, for a.e. t > 0.

As n(t, ·) ∈ H2(R0, Rb), we can apply (3.2.23) again and deduce∫ Rb

R0

n′(t, r)ϕ′(r) + n′′(t, r)ϕ(r) dr = n′(t, Rb),

which finally proves n′(t, Rb) = 0.

3.2.3 Proof of Theorem 3.1.1 (Long term asymptotics)

With global solutions at hand, we can study the long term behaviour. For that purpose, we fix
k, T , k ≥ T and define nk(t, x) = n(t + k, x), µk(t, x) = µ(t + k, x). Consider the solution n in
the interval (−T + k, T + k), it satisfies∫ T+k

−T+k

r⟨∂tn, φ⟩H−1,H1 dt+

∫ T+k

−T+k

∫ Rb

0

1rn>0 r n ∂r(µ+ V )∂rφdr dt = 0,

and a change of variables yields∫ T

−T
r⟨∂tnk, φ⟩H−1,H1 dt+

∫ T

−T

∫ Rb

0

1rnk>0 r nk ∂r(µk + V )∂rφdr dt = 0. (3.2.24)

We also recall the Neumann boundary condition n′k(t, Rb) = 0 and the conservation of mass∫ Rb

0
rnk dr =

∫ Rb

0
rn0 dr. We want to pass to the limit k → ∞ in this equation and prove the

Proposition 3.2.9. Let (n, µ) be a weak solution of (3.1.1)-(3.1.2). Then, we can extract a
subsequence, still denoted by the index k, of (nk, µk) such that

√
rnk → √

rn∞ strongly in



3.2. Existence, regularity, and long term behavior 117

L∞((−T, T )×IRb
) and

√
rnk∂r(µk+V )⇀

√
rn∂r(µ∞+V ) weakly in L2((−T, T )×IRb

\{rn = 0}).
We have n∞ ∈ C1(R×BRb

) and the relations

rn∞∂r(µ∞ + V ) = 0, µ∞ = nγ∞ − δ

r
∂r(r∂rn∞), (3.2.25)

with the Neumann boundary conditions

∂n∞
∂r

∣∣∣
r=0

=
∂n∞
∂r

∣∣∣
r=Rb

= 0.

The mass
∫ Rb

0
rn∞(t) dr is constant and equal to the initial mass

∫ Rb

0
rn0 dr.

This proposition implies the assertions of Theorem 3.1.1.

Démonstration. Step 1 : Bounds coming from the energy. We claim that the following uniform
estimates (with respect to k) are true :

(B1) {√r ∂rnk} in L∞((−T, T );L2(IRb
)),

(B2) {√r nk} in L∞((−T, T )× IRb
),

(B3) {r ∂tnk} in L2((−T, T );H−1(IRb
)),

(B4) |r2nk(t2, r2)− r1nk(t1, r1)| ≤ C(|t2 − t1|1/8 + |r2 − r1|1/2),
(B5) Lk(T ) :=

∫ T
−T
∫ Rb

0
1rnk>0 rnk|∂r(µk + V )|2 −−−−−→

k→+∞
0.

The energy decay estimate (3.2.2) and assumption E [n0] <∞ imply that E [nk(t)] remains boun-
ded with respect to k for all k > T . Therefore, (B1) follows directly from (3.2.2) and then (B2)
follows from Remark 3.2.8. As r nk(t, r) is obtained as the pointwise limit of (r + ε)nε(t+ k, r),
estimates (B3) and (B4) follow directly from passing to the limit ε→ 0 in (A6) and from (3.2.15)–
(3.2.16) in Proposition 3.2.7. Finally, to see (B5), we note that∫ ∞

0

∫ Rb

0

1rn>0 rn|∂r(µ+ V )|2 dr dt ≤ E(n0),

so by change of variables we obtain

Lk(T ) ≤
∫ ∞

k−T

∫ Rb

0

1rn>0 rn|∂r(µ+ V )|2 dr dt −−−−−→
k→+∞

0.

Step 2 : Bounds coming from the entropy. We prove now uniform estimates

(C1) {√r ∂rrnk} in L2((−T, T );L2(IRb
)),

(C2) {∂rnk√
r
} in L2((−T, T );L2(IRb

)).

To this end, we integrate the entropy relation (3.2.3) between k − T and k + T and perform a
change of variables to obtain∫ T

−T

∫ Rb

0

(
γrnγ−1

k |∂rnk|2 + δr|∂rrnk|2 + δ
|∂rnk|2
r

)
dr dt ≤

≤ Φ[nk(−T, ·)]− Φ[nk(T, ·)] +
∫ T

−T

∫ Rb

0

r ∂rnk ∂rV dr dt.
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We need to bound the right-hand side. Concerning the entropy term, we recall the inequality
log n ≤ n− 1 valid for n > 0 so that, by bound (B2),

Φ(nk(T, ·)) =
∫ Rb

0

r(nk(T, r)(log nk(T, r)− 1) + 1) dr ≤

≤
∫ Rb

0

r ((nk(T, r))
2 + nk(T, r)) dr ≤ C ∥√r nk∥∞ ≤ C.

The same estimate is satisfied by Φ(nk(T )). Concerning
∫ T
−T
∫ Rb

0
r ∂rnk ∂rV dr dt, we estimate it

using (B1) and uniform bound on ∂rV . Therefore,

∫ T

−T

∫ Rb

0

(
γrnγ−1

k |∂rnk|2 + δr|∂rrnk|2 + δ
|∂rnk|2
r

)
dr dt ≤ C(T, E(n0)).

Step 3 : Convergence in equation (3.2.24). Reasoning as in the proof of Theorem 3.1.1 we obtain
in the limit k → ∞∫ T

−T
r⟨∂tn∞, φ⟩H−1,H1 dt+

∫ T

−T

∫ Rb

0

1rn∞>0 r n∞ ∂r(µ∞ + V )∂rφdr dt = 0.

We can show even better, namely that ∂tn∞ = 0. Indeed, from the Cauchy-Schwarz inequality
we obtain that for every test function χ compactly supported in (−T, T )× (0, Rb),∣∣∣∣∣

∫ T

−T

∫ Rb

0

r∂tnkχ

∣∣∣∣∣ =
∣∣∣∣∣
∫ T

−T

∫ Rb

0

1rnk>0 rnk∂r(µk + V )∂rχ

∣∣∣∣∣
≤ C(T,Rb)∥∂rχ∥L∞

∫ T

−T

∫ Rb

0

1rnk>0 rnk|∂r(µk + V )|2 −−−−→
k→∞

0.

where we used (B2) and (B5). This means that in the limit, n∞ does not depend on the time
variable t. Then, in the limit, we obtain that, for every test function χ,

∫ T

−T

∫ Rb

0

1rn∞>0 rn∞∂r(µ∞ + V )∂rχ = 0.

Step 4 : n′∞ is uniformly continuous and n∞ satisfies Neumann boundary condition n′∞(0) = 0.
We recall that n∞ does not depend on time. Moreover, the estimate (C1) implies that n′∞
is continuous on (0, Rb]. Furthermore, from the estimates (C1)-(C2), we obtain the absolute
continuity in space of the derivative of n∞. Indeed, for every r1, r2 ∈ (0, Rb) we obtain

(∂rn∞(r2))
2 − (∂rn∞(r1))

2 = 2

∫ r2

r1

∂rn∞(r) ∂rrn∞(r) dr

= 2

∫ r2

r1

∂rn∞(r)√
r

√
r ∂rrn∞(r) dr

≤ 2
(∫ r2

r1

|∂rn∞(r)|2
r

dr
)1/2(∫ r2

r1

r|∂rrn∞(r)|2 dr
)1/2

.

From this, we deduce that ∂rn∞ is bounded so that by the Sobolev embedding, n∞ is continuous
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and
n∞(r2)− n∞(r1) =

∫ r2

r1

∂rn∞(r) dr.

Next, we discover that (0, Rb] ∋ r 7→ (∂rn∞(r))2 is uniformly continuous, so that by Lemma
3.2.10 below, n′∞(r) is uniformly continuous on (0, Rb]. Therefore, there is the unique extension
of r 7→ n′∞(r) to [0, Rb] which is uniformly continuous. Furthermore, in view of∫ Rb

0

|∂rn∞|2
r

dr ≤ C,

this extension has to be obtained by setting n′∞(0) = 0.

It remains to prove that n∞ is differentiable (in the classical sense) at r = 0 and n′∞(0) = 0. To
this end, we write∣∣∣∣n∞(r)− n∞(0)

r

∣∣∣∣ ≤ 1

r

∫ r

0

|∂rn∞(u)|du ≤ sup
u∈(0,r]

|∂rn∞(u)| → 0

as r → 0 by uniform continuity which, again, implies that n′∞(0) exists and n′∞(0) = 0.

Step 5 : Neumann boundary condition n′∞(Rb) = 0. The proof is similar to Step 6 in Section 3.2.2.
For a fixed k ∈ N, there is a set of times Nk ⊂ (0, T ) of full measure such that, when t ∈ Nk,
we have n′k(t, Rb) = 0 and nk(t, ·) ∈ H2(R0, Rb). Let N = ∩k∈NNk, which is again the set of full
measure. For t ∈ N and ϕ as in Step 6 in Section 3.2.2, we have∫ Rb

R0

n′k(t, r)ϕ
′(r) + n′′k(t, r)ϕ(r) dr = 0.

We multiply by a smooth test function η(t) and pass to the weak limit k → ∞ to deduce∫ T

0

η(t) dt

∫ Rb

R0

(n′∞(r)ϕ′(r) + n′′∞(r)ϕ(r)) dr = 0.

As n∞ ∈ H2(R0, Rb) we deduce n′∞(Rb) = 0.

Lemma 3.2.10. Let f : (a, b) → R be a continuous function such that f2 is uniformly conti-
nuous. Then |f | and f are also uniformly continuous.

Démonstration. First, we observe that |f | is uniformly continuous as a composition of a 1
2 -Hölder

continuous function and a uniformly continuous one. Therefore,

∀ε > 0 ∃δ > 0 ∀x, y ∈ (a, b) |x− y| ≤ δ =⇒ ||f(x)| − |f(y)|| ≤ ε. (3.2.26)

Fix ε > 0 and choose δ > 0 such that (3.2.26) holds with ε/2. Let x, y ∈ (a, b) be such that
|x− y| ≤ δ. If f(x), f(y) have the same sign we are done. Otherwise, by continuity, there exists
z between x and y such that f(z) = 0. As |x − z|, |y − z| ≤ δ, we can apply (3.2.26) again to
deduce

|f(x)− f(y)| ≤ |f(x)− f(z)|+ |f(z)− f(y)| ≤ ε/2 + ε/2 = ε.
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3.3 Properties of the stationary states

The stationary solution built previously has compact support for Rb large enough. This is the
main content of Theorem 3.1.2 which we prove here. We still use, to simplify notations, the
potential V (r) = r2. We postpone to Appendix 3.6.1 the case of a more general potential V (r).

3.3.1 Proof of Theorem 3.1.2 (A)

We recall that, from Theorem 3.1.6, n∞ ≥ 0 is C1, n′∞(Rb) = 0, n′∞(0) = 0.

Proof of Theorem 3.1.2 (A). To prove that n∞ is non-increasing, the main idea is to show that
it cannot have a local maximum except at the point r = 0.
To do so, by contradiction, we assume there is local maximum at R2 ∈ (0, Rb]. This implies that
n′∞(R2) = 0, n′′∞(R2) ≤ 0. Also by C1 regularity, in a neighborhood of R2 the equation hold

nγ∞(r)− δ

r
n′∞(r)− δn′′∞(r) = C − r2,

for some constant C. This equation implies that the local maximum is strict.
Also, still by C1 regularity, in this neighborhood of R2 there is a point 0 < R1 < R2 such that
0 < n∞(R1) < n∞(R2) and n′∞(R1) > 0. Evaluating the equation at the points R1 and R2, and
eliminating the constant C, we obtain

δn′′∞(R1) = R2
1 −R2

2 + nγ∞(R1)− nγ∞(R2)−
δ

R1
n′∞(R1) + δn′′∞(R2) < 0.

Therefore n∞ is strictly concave at R1. Consequently, R1 can be continued to smaller values,
n∞(R1) staying concave increasing (and thus n′∞ larger and larger as R1 decreases) until either
R1 = 0 or n∞(R1) = 0. In both cases we get a contradiction with the condition n′∞(R1) = 0
which holds at 0 and at values where n∞(R1) = 0.
Consequently, the only possible local maximum is at 0 and n∞ is non-increasing.

The upper bound on n∞(Rb) is just to say that n∞(r) ≥ n∞(Rb) on the full interval.

3.3.2 Proof of Theorem 3.1.2 (B)
We now consider a stationary state such that n∞(Rb) = 0. Theorem 3.1.2 (A) asserts that there
is R ∈ [0, Rb] such that n∞(r) = 0 on [R,Rb] and n∞ is positive on [0, R). Hence, on [0, R], the
relation (3.2.25) shows that there exists a constant, that we write R2 − λ, such that n∞ solvesn

γ(r)− δ
rn

′(r)− δn′′(r) = R2 − r2 − λ, 0 ≤ r ≤ R,

n(R) = 0.
(3.3.1)

Because it is C1, the stationary solution also satisfies n′∞(R) = 0 (and this is also true for R = Rb
as stated in Theorem 3.1.1. We prove that there exists only one value λ such that the solution
of Equation (3.3.1) also satisfies the condition n′(R) = 0.

Firstly, we exclude some values of λ. Here, we use the notation nγ for max(0, n)γ .

Lemma 3.3.1. Being given λ ∈ R, let n be the solution of Equation (3.3.1) Then, we have
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— when λ ≥ R2, n(r) ≤ 0 ∀r ∈ [0, R] and n′(R) > 0,

— when λ ≤ 0, n(r) ≥ 0 ∀r ∈ [0, R] and n′(R) < 0.

Démonstration. For λ ≥ R2, n ≤ 0 is a consequence of the maximum principle and it follows
immediately that n′(R) ≥ 0. If we had n′(R) = 0, the equation gives n′′(R) = λ

δ > 0 which is in
contradiction with the fact that n is nonpositive in a small left neighborhood of R.

For λ ≤ 0, n ≥ 0 is a consequence of the maximum principle and it follows that n′(R) ≤ 0. To
exclude the possibility that n′(R) = 0, we suppose by contradiction that n′(R) = 0. Since we
also have n(R) = 0, we find that n′′(R) = λ

δ . As before, for λ < 0, we find contradiction. For
λ = 0, we have n′′(R) = 0. Differentiating the equation, we find

γ nγ−1(r)n′(r)− δn(3)(r)− δ
n′′(r)

r
+ δ

n′(r)

r2
= −2r,

and thus n(3)(R) = 2R/δ > 0. As n(R) = n′(R) = n′′(R) = 0, it follows that in a small
neighbourhood of R, n has to be negative raising a contradiction. The lemma is proved.

Secondly, from Lemma 3.3.1, we may conclude that there is at least one value λ ∈ (0, R2) such
that the Neumann condition is satisfied. This value is unique

Lemma 3.3.2. There exists only one λ ∈ (0, R2) such that the solution of (3.3.1) satisfies
n′(R) = 0.

Démonstration. Suppose there are two solutions n1, n2 of (3.3.1) with 0 < λ1 < λ2 < R2

such that ni(R) = n′i(R) = 0 for i = 1, 2. From (3.3.1), we find n′′i (R) = λi

δ . Therefore 0 <
n′′1(R) < n′′2(R) and we conclude by a Taylor expansion that n′2 is smaller than n′1 in a small left
neighborhood of R which contradicts that n decreases with λ. This proves Lemma 3.3.2.

Proof of Theorem 3.1.2 (B). Clearly, n∞ is a solution to the problem (3.3.1) with some λ. By
Lemma 3.3.1, we know that λ ∈ (0, R2) and then Lemma 3.3.2 yields the unique value of λ.

For the second assertion, if there are two solutions (n1, λ1), (n2, λ2) of (3.1.7), Lemma 3.3.2
applies and we obtain that λ1 = λ2. The conclusion follows from uniqueness of solutions of the
elliptic PDE (3.3.1).

3.3.3 Proof of Theorem 3.1.2 (C)

Consider a solution n∞ of (3.1.6) with a := n∞(Rb) > 0. From Theorem 3.1.2 (A), we know
that n∞ is C1 and n′∞ ≤ 0 so that n∞ > 0. Therefore, from the equation for n∞, rn∞(r) is C2,
and (3.1.6) boils down to

nγ∞ − δ
rn

′ − δn′′ = R2
b − r2 − λ in (0, Rb),

n∞(Rb) = a > 0, n′(Rb) = 0,

m =
∫ Rb

0
r n∞(r) dr,

(3.3.2)

where λ is some constant. Our goal is to prove that if Rb is sufficiently large with respect to m,
there is no such solution of (3.3.2). Therefore we now assume that Rb > 2.
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A useful formula in the sequel is, because of radial symmetry and after integration between 0
and r, ∫ r

0

r̄ nγ∞(r̄) dr̄ − δr∂rn∞ = (Rb
2 − λ)

r2

2
− r4

4
. (3.3.3)

Another useful general observation is that we may assume

n∞(Rb)
γ ≤ Rb

2.

Otherwise, by Theorem 3.1.2 (A), we have m ≥ Rb
2+2/γ

2 which proves the result.

Firstly, we provide lower and upper bounds on admissible values of the constant λ

−Rb2 ≤ −n∞(Rb)
γ ≤ λ ≤ Rb

2

2
. (3.3.4)

The first inequality is the above restriction on n∞(Rb)
γ . The second inequality is valid because

n′′∞(Rb) ≥ 0 since n∞ is decreasing and n′∞(Rb) = 0. The third inequality is just (3.3.3) at r = Rb.

Secondly, we provide a control of n∞(0). To do so, using (3.3.3), ∂rn∞ ≤ 0 and the above upper
bound on λ, we estimate |∂rn∞| from above as

δ|∂rn∞| ≤ Rb
2r.

This gives

n∞(r) ≥ n∞(0)− Rb
2

2δ
r2

and, with α > 0 such that α2 = δ
2Rb

2 ≤ 1,

m ≥
∫ αRb

0

rn∞(r) dr ≥ α2Rb
2

2

(
n∞(0)− Rb

2

2δ

α2Rb
2

2

)
=
α2Rb

2

2

(
n∞(0)− Rb

2

8

)
.

As a conclusion of this step, we may assume

n∞(0) ≤ Rb
2

4
,

otherwise m ≥ α2Rb
2

2
Rb

2

8 = δRb
2

32 and the result is proved again.

Thirdly, we prove that with this control from above of n∞(0), the derivative |∂rn∞| is large, thus
again there is a control on the mass since n∞ is decreasing. To do so, we use again (3.3.3) and
the third inequality in (3.3.4). This gives

δr|∂rn∞| ≥ −n∞(0)γ
r2

2
+
Rb

2

2

r2

2
− r4

4
≥ r2

2

(
−Rb

2

4
+
Rb

2

2
− r2

2

)
=
r2

4

(
Rb

2

2
− r2

)
where we have used the smallness assumption on n∞(0) and γ ≥ 1. On the range r ∈ (0, Rb

2 ), we
control

δ|∂rn∞| ≥ r

4

Rb
2

4
, thus n∞(r) ≥ Rb

2

32δ

(
Rb

2

4
− r2

)
,
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and thus

m ≥ Rb
2

32δ

∫ Rb/2

0

(
Rb

2

4
− r2

)
dr ≥ Rb

5

4 · 128 δ .

Again we have the desired control and Theorem 3.1.2 (C) is proved.

3.4 Proof of Theorem 3.1.3

To study the incompressible limit of stationary states of the Cahn-Hilliard equation, the difficulty
comes from the singularity of the pressure.However it is possible to fully characterize them, and
calculate the pressure jump at the tumor boundary. We begin with establishing the existence
and uniqueness for the solution ninc of the limiting equation. Then, we show that all limits of
nk’s are determined by this profile ninc.

3.4.1 Preliminary steps
If a sequence γk → ∞ of stationary states nk converges to ninc and the sequence of pressures
pk = nγkk converges to pinc. Then we expect that pinc(ninc − 1) = 0. Therefore, there should
be a ’tumor zone’ where ninc = 1 and the pressure vanishes outside. This leads us to study the
following problem in the zone (R0, R) where pinc = 0 :

− δ
ru

′
c − δu′′c = R2 − r2 − λc in (R0, R),

uc(R) = u′c(R) = 0, uc(R0) = 1, u′c(R0) = 0,∫ R
0
rninc(r) dr = m,

(3.4.1)

where ninc is the extension of uc by 1 on [0, R0].

In a later subsection, we prove the convergence of the stationary states nk to this limiting profile.

Notice that System (3.4.1) has three free parameters (R, R0, λc) and three constraints (2 ad-
ditional boundary conditions and mass m). The following proposition gives the existence of a
solution.

Proposition 3.4.1 (Unique limiting profile). Let m > 72 δ1/2. There exist uniquely determined
R > 0, λc ∈ (0, R2) and R0 ∈ (0, R) such that Equation (3.4.1) has a solution. Furthermore,

R0 =
√
R2 − 2λc and λc ≈ 3

√
6R2/3 δ1/3 for small δ > 0. (3.4.2)

We postpone the proof of this proposition to the next subsection. Its proof uses an explicit
solution obtained by the following problem. Find a couple (λu, u) such that{

− δ
ru

′ − δu′′ = R2 − r2 − λu in (0, R)

u(R) = u′(R) = 0.
(3.4.3)

Proposition 3.4.2 (Lower bound profile). Let λu ∈ [0, R2], then the solution u of (3.4.3)
satisfies
(A) the explicit formula for u

u(r) =
R2

4δ
(R2 − 2λu) ln

( r
R

)
+

(r2 −R2)2

16 δ
+
R2 − 2λu

8δ
(R2 − r2),
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u′(r) =
(R2 − r2)(R2 − r2 − 2λu)

4δ r
,

(B) the function u(r) is decreasing and positive for r such that 0 < R2 − r2 < 2λu,

(C) for a solution n∞ of (3.1.7) as in Theorem 3.1.2, if λ∞ ≥ λu then n∞(r) ≥ u(r) for
r ∈ (0, R].

Proof of Proposition 3.4.2. To prove (A), we first compute u′(r) and u′′(r) :

u′(r) =
R2

4δ
(R2 − 2λu)

1

r
+

(r2 −R2) r

4δ
− R2 − 2λu

4δ
r =

(R2 − r2)(R2 − r2 − 2λu)

4δ r
,

u′′(r) =
−4r(R2 − r2) + 4λur

4δ r
− (R2 − r2)(R2 − r2 − 2λu)

4δ r2
= −1

δ
(R2 − r2 − λu)−

u′(r)

r
.

Therefore, we obtain the desired equation (3.4.3).

The statement (B) is an immediate consequence of the formula for u′(r).

Finally, we prove (C). We introduce h(r) = n∞(r) − u(r) and we have to prove that h(r) ≥ 0.
From the equations we get

nγ − δ

r
h′ − δh′′ = λu − λ in (0, R].

So, thanks to our assumptions and letting g′(r) = rh′(r), we have

h′′(r) +
h′(r)

r
≥ 0, g′′(r) ≥ 0.

Integrating this from r to R and using the boundary conditions, we obtain

g′(r) ≤ 0 =⇒ r h′(r) ≤ 0 =⇒ h′(r) ≤ 0.

Integrating this once again and using boundary conditions, we discover h(r) ≥ 0 as desired.

3.4.2 Proof of Proposition 3.4.1.

The explicit solution built in Proposition 3.4.2 allows us to characterize the parameters λc and
R0. Indeed, we are looking for λc and R0 such that

u′c(R0) =
(R2 −R2

0)(R
2 −R2

0 − 2λc)

4δ r
= 0, (3.4.4)

uc(R0) =
R2

4δ
(R2 − 2λc) ln

(
R0

R

)
+

(R2
0 −R2)2

16 δ
+
R2 − 2λc

8δ
(R2 −R2

0) = 1. (3.4.5)

Lemma 3.4.3 (Solving for R0 and λc). Let R > 0. Then (3.4.4)-(3.4.5) has a unique solution
if and only if 16δ < R4. Moreover, the solution is given by

R0 =
√
R2 − 2λc, λc =

R2xc
2

, (3.4.6)
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where xc ∈ (0, 1) is the unique solution of

(1− xc) ln (1− xc) +
1

2
x2c + (1− xc)xc =

8δ

R4
. (3.4.7)

Démonstration. We split the reasoning into several steps.

Step 1 : Equation for R0. Because R0 = R cannot fit (3.4.5), from (3.4.4) we immediately deduce
the formmula for R0 in (3.4.6).
Step 2 : Equation for λc. We plug the formula for R0 into (3.4.5) to deduce

R2

4δ
(R2 − 2λc) ln

(√
R2 − 2λc
R

)
+

4λ2c
16 δ

+
R2 − 2λc

8δ
2λc = 1.

Using properties of logarithm and simple algebra, we have

R2

8δ
(R2 − 2λc) ln

(
1− 2λc

R2

)
+
λ2c
4 δ

+
R2 − 2λc

4δ
λc = 1.

Introducing the auxiliary variable xc = 2λc

R2 and after multiplication by 8δ
R4 , this equation is

equivalent to Equation (3.4.7).
Step 3 : Existence and uniqueness of xc and λc. We prove that if 16 δ < R4, equation (3.4.7) has
a unique solution. To this end, we define

f(x) := (1− x) ln (1− x)− 1

2
x2 + x, f(0) = 0, f(1) =

1

2
. (3.4.8)

Then, we compute

f ′(x) = − ln(1− x)− x, f ′′(x) =
1

1− x
− 1. (3.4.9)

Since f ′(0) = 0 and f ′′(x) > 0 for x ∈ (0, 1), it follows that f ′(x) > 0 so that f(x) is increasing.
It follows that f is one-to-one from (0, 1) into (0, 12 ). Therefore, when 16δ < R4, there exists a
unique xc ∈ (0, 1) such that f(xc) = 8δ

R4 .

Lemma 3.4.4 (Estimates for xc). Let xc be a solution to (3.4.7) and 16 δ < R4. Then, we have

xc ≈ 2
3
√
6 δ1/3R−4/3, λc ≈ 3

√
6 δ1/3R2/3 ( as δ → 0). (3.4.10)

More precisely, we have
xc ≤ 2

3
√
6 δ1/3R−4/3. (3.4.11)

Moreover, if 64 8 δ < R4, we have

xc ≥ 2
3
√
5 δ1/3R−4/3. (3.4.12)

Démonstration. For δ small, Equation (3.4.7) shows that xc is small. More precisely, using (3.4.8),
(3.4.9), we obtain f(0) = f ′(0) = f ′′(0) = 0 and f (3)(0) = 1 since f (3)(x) = 1

(1−x)2 . Hence, by

the Taylor expansion, for small x, f(x) ≈ x3

6 . Plugging this approximation into (3.4.7), we obtain
Estimate (3.4.10).
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Next, we observe that

f (k)(x) =
(k − 2)!

(1− x)k−1
, f (k)(0) = (k − 2)!.

In particular, the Taylor expansion around x = 0 gives

f(x) =
∑
k≥3

(k − 2)!

k!
xk =

∑
k≥3

1

k (k − 1)
xk.

Therefore, f(x) is controlled by

x3

6
≤ f(x) ≤ x3

6

∑
k≥0

xk =
x3

6 (1− x)
. (3.4.13)

The control (3.4.11) follows from the lower bound.

Finally, using this, we can find δ such that 2 3
√
6 δ1/3R−4/3 ≤ 1

6 , namely 648δ ≤ R4. Then, we
have xc ≤ 1

6 so that 1− xc ≥ 5
6 and then the estimate (3.4.13) gives us

8δ

R4
= f(xc) ≤

x3c
6(1− xc)

≤ x3c
5

so that
8δ

R4
≤ x3c

5
⇐⇒ 40δ

R4
≤ x3c ⇐⇒ 2

3
√
5 δ1/3R−4/3 ≤ xc.

Lemma 3.4.5. Let uc and ninc be a as in Equation (3.4.1), then the total mass of ninc satisfies

M(ninc) :=

∫ R

0

r ninc(r) dr =
R6 x3c(R)

96 δ
.

Moreover, the map R 7→ R6 x3
c(R)

96 δ is increasing if R4x3c(R) > 32 δ.

Démonstration. Because ninc is a C1 function, integrating by parts, we find

M(ninc) =

∫ R

0

r ninc(r) dr = −1

2

∫ R

0

r2n′inc(r) dr = −1

2

∫ R

R0

r2u′c(r) dr.

Inserting the formula for u′c(r) stated in Proposition 3.4.2, we deduce that

M(ninc) = − 1

8δ

∫ R

R0

r (R2 − r2)(R2 − r2 − 2λc) dr.

With the notations λc := R2xc/2 and R0 = R
√
1− xc, we obtain

M(ninc) = − 1

8δ

∫ R

R
√
1−xc

r (R2 − r2)(R2 − r2 −R2xc) dr.
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We change variables τ = R2 − r2 to get the desired formula

M(ninc) = − 1

16δ

∫ R2xc

0

τ(τ −R2xc) dτ =
R6x3c
96 δ

.

For the second assertion, it is sufficient to prove that the map R 7→ R6x3c(R) is strictly increasing.
Note that xc(R) is given implicitly via equation (3.4.7). Differentiating it with respect to R, we
discover that

dxc
dR

(xc + log(1− xc)) =
32 δ

R5
=⇒ dxc

dR
=

32 δ

R5 (xc + log(1− xc))
.

Then, we study the derivative of R6 x3c(R),

d(R6x3c(R))

dR
= 6R5x3c + 3R6x2c

dxc
dR

= 6R5x3c +
96 δ Rx2c

(xc + log(1− xc))
.

Using a simple Taylor estimate, we have 1
x+log(1−x) ≥ −2

x2 and we conclude that R6x3c(R) is
increasing since

d(R6x3c(R))

dR
≥ 6R5x3c − 192 δ R = 6R (R4x3c − 32δ).

Proof of Proposition 3.4.1. First, we notice that if (R0, R, λ) satisfy conditions of the Proposi-
tion 3.4.1, then R0, λc are given by (3.4.6) (Lemma 3.4.3) and R6x3

c

96δ = m (Lemma 3.4.5). Then,
by the control 62 2 δ1/2 ≤ m as well as an upper bound on xc, cf. (3.4.11), we deduce

62 2 δ1/2 ≤ m =
R6 x3c
96 δ

≤ R2

2
=⇒ 6442δ ≤ R4.

This means that we can apply the lower bound (3.4.12) to deduce

R4x3c ≥ 40 δ1/3.

It follows that the necessary condition for existence of (R0, R, λ) is 6442δ ≤ R4 which implies
R4x3c ≥ 40 δ1/3. Therefore, by Lemma 3.4.5, the map R 7→ R6x3c(R) is invertible and we can find
uniquely determined R such that

m =
R6x3c(R)

96δ
.

With such a value R (because 16 δ < R4), we can find unique R0 and λc solving (3.4.4)-(3.4.5)
so that the formula for the mass is satisfied and the conclusion follows.

3.4.3 Proof of Theorem 3.1.3

The solutions of Theorem 3.1.2 satisfy, with λk ∈ (0, R2), Rk > 0,{
nγkk − δn′′k − δ

rn
′
k = R2

k − r2 − λk in (0, Rk), nk = 0 in (Rk, Rb),

nk(Rk) = n′k(Rk) = 0, n′k(0) = 0.
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Thanks to the maximum principle, the sequence {nγkk }k is bounded in L∞(IRb
). Moreover, mul-

tiplying this equation by n′′k and integrating by parts, we obtain∫ Rk

0

(
δ(n′′k)

2 + γnγk−1
k (n′k)

2 + δ
(n′k)

2

2r2

)
dr =

∫ Rk

0

n′′k (R
2
k − r2 − λk) dr.

Since 0 ≤ Rk, λk ≤ Rb, the right-hand side is bounded by δ
2

∫ Rk

0
(n′′k)

2 +C(δ,Rb). Thus, {n′′k}k is
uniformly bounded in L2(0, Rb). Therefore, up to a subsequence, as k → ∞

nγkk ⇀ pinc ≥ 0 weakly∗ in L∞(IRb
), nk → ninc ≤ 1 in C1(IRb

).

We also have the algebraic relation pinc(ninc − 1) = 0. The inequality pinc(ninc − 1) ≤ 0 is
straightforward using pinc ≥ 0 and ninc ≤ 1. It remains to show that pinc(ninc − 1) ≥ 0. For
ν > 0, there exists γ0 such that for γk ≥ γ0

nγk+1
k ≥ nγkk − ν

because the function x 7→ xγ(x−1) is nonpositive on [0, 1] and attains its minimum −
(

γ
γ+1

)γ
1

γ+1 →
0 as γ → ∞. Then, from the strong convergence of nk and the weak convergence of nγkk we know
that nγkk nk converges weakly to pinc ninc. Passing to the limit, we obtain

pinc ninc ≥ pinc − ν,

for every ν > 0. Letting ν → 0 yields the result.

Since {λk}k and {Rk}k are also bounded subsequences, we can extract converging subsequences
to λ and R respectively. Thanks to the C1 convergence we know that n satisfies the boundary
condition ninc(R) = n′inc(R) = 0 and ninc is radially decreasing as the uniform limit of radially
decreasing functions. Finally, we can pass to the limit in the equation of mass conservation and
obtain

∫ R
0
rninc dr = m. To sum up, in the limit we obtain a C1, nonincreasing function ninc

satisfying 
pinc − δ

rn
′
inc − δn′′inc = R2 − r2 − λ in (0, R),

ninc(R) = n′inc(R) = n′inc(0) = 0,∫ R
0
r ninc(r) dr = m,

pinc(ninc − 1) = 0.

The limiting ODE is satisfied on (0, R) because the ODE for nk is satisfied on (0, inf l≥k Rk). Pas-
sing to the limit, we obtain the ODE on (0, limk→∞ inf l≥k Rk) = (0, R) because R = limk→∞Rk.

We claim that ninc reaches the value 1. By contradiction, if ninc < 1 on [0, R], then pinc = 0 so
that ninc is a C1 solution to the following ODE on [0, R] :

−δ
r
n′inc − δn′′inc = R2 − r2 − λ, ninc(R) = n′inc(R) = n′inc(0) = 0.

By Proposition 3.4.2 (A) such a solution does not exist.

By monotonicity and the fact that ninc reaches value 1 we deduce that there are two zones. In the
zone {pinc > 0} we have ninc = 1, and thus pinc = R2 − r2 −λ. Then, when ninc < 1 (ninc is de-
creasing), let us say at r = R0 we have p = 0. The pressure jump is equal to JpincK = R2−R2

0−λ.
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Finally, the convergence of the whole sequence follows from uniqueness of the limiting profile as
stated in Proposition 3.4.1.

3.5 Conclusion and numerical simulations

Motivated by the pressure jump imposed in free boundary problems of tissue growth, [177, 289,
238, 261], we included surface tension in such compressible models. We established that radially
symmetric stationary solutions of the Cahn-Hilliard system with a confining potential V (r) exist
and are decreasing. In the incompressible limit, they present a jump of pressure at the boundary
of the saturation set {n = 1}. We computed explicitly this pressure jump which is proportional
to δ1/3V ′(R)2/3. There is a vacuum zone {n = 0} that induces a degeneracy which is the main
difficulty when establishing the a priori estimates.

It is an open question to prove a similar result, for a propagating wave, when the system is driven
by a source term rather than a confining potential, as in [151] for instance. However, we provide
numerical simulations in radial coordinates. More precisely, we focus on the system

∂(rn)

∂t
− ∂

∂r

(
rn
∂µ

∂r

)
= nG(p), in (0,+∞)× IRb

,

µ = p− δ

r

∂

∂r

(
r
∂n

∂r

)
, p = nγ .

(3.5.1)

When γ → ∞, we expect to find the incompressible limit

{
− ∂
∂r

(
r ∂p∂r

)
= G(p), p(n− 1) = 0, in {n = 1},

JpK = −δJ 1
r
∂
∂r

(
r ∂n∂r

)
K on ∂{n = 1}.

These equations are obtained formally after setting n = 1 in (3.5.1) and using the relation
p(n − 1) = 0. The main open question is to link the value of the pressure jump to the other
parameters of the model, i.e. the source term G, the parameter δ and boundary’s curvature. In
radial settings the curvature is 1

R(t) where R(t) is the radius of the tumor. We present below
some numerical simulations for the evolution of the density and the pressure of the tumor. If
the pressure jump seems to be decreasing as the tumor grows, it is not numerically clear how to
determine the pressure jump.
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(a) Initial condition (b) Evolution at t = 0.31

(c) Evolution at t = 1.14 (d) Evolution at t = 2.11

Numerical settings. For the source term, we take G(p) = 10(1−p). We use an explicit scheme,
with time step dt = 1e−7, final time t = 2.11 and the interval is IRb

= [0, 10] with 300 points.
The initial condition is a truncated arctangent. To remove the degeneracy r = 0 in the numerical
scheme, we consider r + ε instead of r for some small ε > 0.

The pressure p reaches the value 1, as the density, because we choose the homeostatic pressure
ph = 1 in the source term G(p) = 10(ph − p). The homeostatic pressure is interpreted as the
lowest level of pressure that prevents cell multiplication due to contact-inhibition.
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3.6 Appendix

3.6.1 Limit profile for general force in dimension 2

We generalize the pressure jump formula obtained when V (r) = r2 and, for a general strictly
increasing force V , we establish that

λ ≈
3
√
12

2
δ1/3 (V ′(R))2/3. (3.6.1)

Hence, we consider the solution in (0, R) of

δn′′(r) + δ
n′(r)

r
== V (R)− V (r)− λ, n′(R) = n(R) = 0. (3.6.2)

Step 1 : An expression of the solution. The solution is given by{
n(r) = R2

2δ (V (R)− λ) log
(
r
R

)
+ R2−r2

4δ (V (R)− λ) + 1
δ

∫ R
r

H(z)
z dz,

H(z) :=
∫ R
z
uV (u) du.

(3.6.3)

Indeed, we immediately verify that n(R) = 0. Moreover, we have

n′(r) =
R2

2δ
(V (R)− λ)

1

r
− r

2δ
(V (R)− λ)− H(r)

δ r
. (3.6.4)

As H(R) = 0, we have n′(R) = 0. Finally, we compute n′′ using (3.6.4)

n′′(r) = −R
2

2δ
(V (R)− λ)

1

r2
− 1

2δ
(V (R)− λ) +

1

δ
V (r) +

H(r)

δ r2
. (3.6.5)

Therefore, combining (3.6.4) and (3.6.5), we obtain (3.6.2).

Step 2 : Limit profile. We are looking for the solution n of (3.6.2) such that n(R0) = 1, n′(R0) = 0
for some R0 < R and some λ, i.e. we have two parameters R0 and λ to be found.

The condition n′(R0) = 0 is immediately obtained from (3.6.4). It is given by

(R2 −R2
0) (V (R)− λ)− 2H(R0) = 0. (3.6.6)

For the condition n(R0) = 1, from (3.6.3) we obtain

R2

2δ
(V (R)− λ) log

(
R0

R

)
+
R2 −R2

0

4δ
(V (R)− λ) +

1

δ

∫ R

R0

H(z)

z
dz = 1.

Then, we use (3.6.6) to remove the term (V (R)− λ), and multiply by 2δ to get an equation for
R0

R2 H(R0)

R2 −R2
0

log

(
R2

0

R2

)
+H(R0) + 2

∫ R

R0

H(z)

z
dz = 2δ.
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We introduce the variable τ :=
R2−R2

0

R2 so that the equation reads

H(
√
1− τR)

(
log(1− τ)

τ
+ 1

)
+ 2

∫ R

√
1−τR

H(z)

z
dz = 2δ, τ :=

R2 −R2
0

R2
. (3.6.7)

Step 3 : Existence and uniqueness of τ and R0. We define the function

F(τ) := H(
√
1− τR)

(
log(1− τ)

τ
+ 1

)
+ 2

∫ R

√
1−τR

H(z)

z
dz.

As H(R) = 0 and log(1−τ)
τ is bounded near τ = 0, we have F(τ) = 0. Now, we want to compute

F ′(τ). First,

d

dτ
H(

√
1− τR) =

√
1− τRV (

√
1− τR)

R

2
√
1− τ

=
R2 V (

√
1− τR)

2
, (3.6.8)

d

dτ

(
2

∫ R

√
1−τR

H(z)

z
dz

)
= 2

(
−H(

√
1− τR)√
1− τR

)
R

2
√
1− τ

=
H(

√
1− τR)

1− τ
,

d

dτ

(
log(1− τ)

τ
+ 1

)
=

1

τ (τ − 1)
− log(1− τ)

τ2
.

Therefore, by the product rule, we find

F ′(τ) =

=
R2 V (

√
1− τR)

2

(
log(1− τ)

τ
+ 1

)
+H(

√
1− τR)

(
1

1− τ
+

1

τ (τ − 1)
− log(1− τ)

τ2

)
=

1

τ

(
log(1− τ)

τ
+ 1

)(
R2 τ V (

√
1− τR)

2
−H(

√
1− τR)

)
(3.6.9)

Since log(1−τ)
τ + 1 < 0 for τ ∈ (0, 1), to prove F ′(τ) > 0, it is sufficient that for τ ∈ (0, 1)

R2 τ V (
√
1− τR)

2
−H(

√
1− τR) < 0. (3.6.10)

This function vanishes in τ = 0. Moreover, its derivative with respect to τ is equal to

R2 V (
√
1− τR)

2
+
R2 τ V ′(

√
1− τR)

2

−R
2
√
1− τ

− R2 V (
√
1− τR)

2
= −R

3τV ′(
√
1− τR)

4
√
1− τ

(3.6.11)
where we used (3.6.8). As V ′ > 0, we conclude (3.6.10) which implies F ′(τ) > 0. Hence, in some
neighborhood of 0 we can find exactly one τ that solves the equation. Moreover, it is unique as
F is strictly increasing. Then the uniqueness of R0 and λ follows.

Step 4 : Taylor expansion of τ . As F is strictly increasing, we expect the solution τ to be small
(if δ is small). This justifies to use Taylor expansion around τ = 0. We already know that
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F(0) = F ′(0) = 0. Now, we claim F ′′(0) = 0. Indeed,

d

dτ

(
log(1− τ)

τ2
+

1

τ

)
= −2 log(1− τ)

τ3
+

τ − 2

(1− τ) τ2
= −2 log(1− τ)(1− τ) + (2− τ) τ

(1− τ) τ3

so that using (3.6.9) and (3.6.11) we compute

F ′′(τ) =− 1

τ

(
log(1− τ)

τ
+ 1

)
R3τV ′(

√
1− τR)

4
√
1− τ

− 2 log(1− τ)(1− τ) + (2− τ) τ

(1− τ) τ3

(
R2 τ V (

√
1− τR)

2
−H(

√
1− τR)

) (3.6.12)

Since 2 log(1− τ)(1− τ) + (2− τ) τ ≈ τ3 for small τ , the expressions above are bounded in the
neighborhood of 0. Evaluating them at τ = 0, we obtain F ′′(0) = 0.

Now, we claim that F (3)(0) ̸= 0. To see this, we write expression (3.6.12) in the form

F ′′(τ) = A(τ)B(τ) + C(τ)D(τ)

so that
F (3)(τ) = A′(τ)B(τ) +A(τ)B′(τ) + C ′(τ)D(τ) + C(τ)D′(τ).

We study the four terms above separately.

— A′(τ)B(τ)|τ=0 = 0. Indeed, A′(τ) = −C(τ) and the latter is bounded in the neighbourhood
of 0 (see Taylor’s expansion above). Moreover, B(0) = 0.

— C(τ)D′(τ)|τ=0 = 0. Indeed, C(τ) is bounded around τ = 0, while D′(0) = B(0) = 0.

— C ′(τ)D(τ)|τ=0 = 0. In fact, D(0) = 0, so it is sufficient to prove that C ′(τ) is bounded
near τ = 0. We have

C ′(τ) =
τ (2τ2 − 9τ + 6) + 6 log(1− τ)(1− τ)2

τ4 (1− τ2)
.

Using expansion log(1− τ) ≈ −τ − 1
2τ

2 − 1
3τ

3 we have around τ = 0 :

τ (2τ2−9τ + 6) + 6 log(1− τ)(1− τ)2 ≈
≈ 2τ3 − 9τ2 + 6τ − (6τ + 3τ2 + 2τ3)(1 + τ2 − 2τ)

= 2τ3 − 9τ2 + 6τ − 6τ − 3τ2 − 2τ3 − 6τ3 − 3τ4 − 2τ5 + 12τ2 + 6τ3 + 4τ4)

= τ4 − 2τ5.

— A(τ)B′(τ)|τ=0 = R3V ′(R)
8 . Indeed, A(0) = 1

2 . Moreover, we have

B′(τ) =
R3 V ′(

√
1− τR)

4
√
1− τ

+
R3τV ′′(

√
1− τR)

4
√
1− τ

(−R)
2
√
1− τ

+
R3τV ′′(

√
1− τR)

8(1− τ)3/2

which implies B′(0) = R3V ′(R)
8 .
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Therefore, equation (3.6.7) can be approximated with

1

6

R3V ′(R)

8
τ3 = 2δ ⇐⇒ τ3 =

96 δ

R3V ′(R)
⇐⇒ τ =

2 3
√
12 δ1/3

R 3
√
V ′(R)

.

Step R : Taylor expansion for λ. Small value of τ means that R0 is close to R. Therefore, we
expand in Taylor series equation (3.6.6) around R0 = R. Writing

G(R0) := (R2 −R2
0) (V (R)− λ)− 2H(R0) = 0,

we have
G′(R0) = −2R0(V (R)− λ) + 2R0 V (R0) = 2R0 (V (R0)− V (R) + λ),

G′′(R0) = 2 (V (R0)− V (R) + λ) + 2R0 V
′(R0).

It follows that G(R) = 0, G′(R) = 2R0λ and G′′(R) = 2λ + 2RV ′(R). Therefore, (3.6.6) can be
approximated with

2R0λ(R0 −R) +
1

2
(2λ+ 2RV ′(R))(R0 −R)2 = 0,

which can be rewritten as
λ =

R (R−R0)V
′(R)

R0 +R
.

Using τ =
R2−R2

0

R2 we have R−R0 = τR2

R+R0
so that

λ =
R3 τ V ′(R)

(R0 +R)2
≈ Rτ V ′(R)

4
=

3
√
12

2
δ1/3 (V ′(R))2/3.

Notice that when V (r) = r2, we have V ′(R) = 2R. Therefore, λ ≈ 3
√
6 δ1/3R2/3 as in (3.4.2).
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Chapitre 4

Degenerate Cahn-Hilliard equation :
From nonlocal to local

Abstract
There has been recently an important interest in deriving rigorously the Cahn-Hilliard equation
from the nonlocal equation, also called aggregation equation. So far, only non-degenerate mobi-
lities were treated. Since we are motivated by models for the biomechanics of living tissues, it is
useful to include degenerate motilities. In this framework, we present a new method to show the
convergence of the nonlocal to the local degenerate Cahn-Hilliard equation. The method includes
the use of nonlocal Poincaré and compactness inequalities.

4.1 Introduction

Several recent papers [273, 121, 123, 122] have addressed the problem of deriving rigorously the
Cahn-Hilliard equation from the nonlocal equation, also called aggregation equation [85]. In these
works, only the case of non-degenerate mobilities is treated, which avoids the delicate question
of defining the limit of low-order products that one encounters for nonlocal degenerate mobility
that we present now. The degenerate model is written

∂tu = div(u∇µ), in (0,+∞)× Td,
µ = B[u] + F ′(u), in (0,+∞)× Td,

equipped with an initial datum u0 ≥ 0. Here, Td is the d-dimensional flat torus, B is the nonlocal
operator B = Bε defined with

Bε[u](x) =
1

ε2
(u(x)− ωε ∗ u(x)) =

1

ε2

∫
Td

ωε(y)(u(x)− u(x− y)) dy (4.1.1)

for ε small enough and ωε is the usual radial mollification kernel ωε(x) = 1
εd
ω(xε ) with ω com-

pactly supported in the unit ball of Rd satisfying∫
Rd

ω(y) dy = 1,

∫
Rd

y ω(y) dy = 0,

∫
Rd

yiyjω dy = δi,j
2D

d
, (4.1.2)
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for some constant D > 0. Our target is to prove that as ε→ 0, the constructed solutions of

∂tu = div(u∇µ), in (0,+∞)× Td, (4.1.3)

µ = Bε[u] + F ′(u), in (0,+∞)× Td, (4.1.4)

tend to the weak solution of the degenerate Cahn-Hilliard equation

∂tu = div(u∇µ), in (0,+∞)× Td, (4.1.5)

µ = −D∆u+ F ′(u), in (0,+∞)× Td. (4.1.6)

The product u∇µ in the limiting system is not a priori well defined since we cannot control
third-order derivatives. Passing to the limit is thus the challenge we overcome here.
Our motivation for this work is fourfold.

— Firstly, the interest for the nonlocal Cahn-Hilliard equation is an old problem that can
be traced back to Giacomin and Lebowitz [189, 190]. These seminal works establish the
derivation of the degenerate nonlocal Cahn-Hilliard equation departing from stochastic
systems of particles. However, they left open the question of deriving the local degenerate
Cahn-Hilliard equation from the nonlocal one. This is the challenge we overcome here.

— Secondly, a revival of interest for this problem appeared in the last years with several
papers [273, 121, 123, 122] deriving the local from the nonlocal Cahn-Hilliard equation in
the non-degenerate case.

— Third, the nonlocal Cahn-Hilliard equation can be seen as a porous medium equation with
a smooth advection term that is well understood, conversely to the local degenerate Cahn-
Hilliard equation.

— Finally, the nonlocal Cahn-Hilliard equation (4.1.3)–(4.1.4) is in fact an aggregation-diffusion
equation with a nonlocal term corresponding to the aggregation effect [85]. Thus, in this
paper, we show that if the nonlocal effect is appropriately scaled, one approaches Cahn-
Hilliard equation. This limit was formally stated for instance in [132, 45, 165] and our work
provides a rigorous mathematical argument for this approximation.

4.1.1 Main result
We make the following assumptions on the potential F .
Assumption 4.1.1 (potential F ). For the interaction potential we assume that there exists k ≥ 2
and a decomposition F = F1 + F2 such that
(A) F1, F2 are of class C2,
(B) F1 = 0 or F1 is a convex function which has k-growth in the sense that for some nonnegative

constants C1, ..., C8 we have

C1|u|k − C2 ≤ F1(u) ≤ C3|u|k + C4.

C5|u|(k−2) − C6 ≤ F ′′
1 (u) ≤ C7|u|(k−2) + C8,

(C) F2 has bounded second derivative i.e. ∥F ′′
2 ∥∞ <∞ and F2(u) ≥ −C9−C10 u

2 where C10 is
sufficiently small : more precisely 4C10 < Cp with Cp being the constant in Lemma 4.4.6.

Example 4.1.2. The following potentials satisfy Assumption 4.1.1.
(1) power-type potential F (u) = |u|γ , γ > 2 used in the context of tumour growth models [289,

120, 151, 125],
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(2) double-well potential F (u) = u2 (u− 1)2 which is an approximation of logarithmic double-
well potential often used in Cahn-Hilliard equation, see [277, Chapter 1],

(3) any F ∈ C2 such that for some interval I ⊂ R we have F ′′(u) > a > 0 for u ∈ R \ I and

C |u|k − C ≤ F (u) ≤ C |u|k + C for all u ∈ R \ I,
C |u|k−2 − C ≤ F ′′(u) ≤ C |u|k−2 + C for all u ∈ R \ I,

see Lemma 4.4.3 for details.
Note that (3) is a more general version of (2).

Notation 4.1.3 (exponents s and k). In what follows we write

k =

{
2 if F1 = 0,

k if F1 ̸= 0.

We also define s = 2k
k−1 and s′ its conjugate exponent.

Now, we define weak solutions of the nonlocal and local degenerate Cahn-Hilliard equation.
Definition 4.1.4. We say that uε is a weak solution of (4.1.3)-(4.1.4) if

uε ∈ L∞(0, T ;Lk(Td)), ∂tuε ∈ L2(0, T ;W−1,s′(Td))

∇uε ∈ L2((0, T )× Td),
√
F ′′
1 (uε)∇uε ∈ L2((0, T )× Td),

u(0, x) = u0(x) a.e. in Td and for all φ ∈ L2(0, T ;W 1,∞(Td))∫ T

0

⟨∂tuε, φ⟩(W−1,s′ (Td),W 1,s(Td)) = −
∫ T

0

∫
Td

uε∇Bε[uε] · ∇φ−
∫ T

0

∫
Td

uεF
′′(uε)∇uε · ∇φ.

(4.1.7)
Definition 4.1.5. We say that u is a weak solution of (4.1.5)-(4.1.6) if

u ∈ L∞(0, T ;Lk(Td)) ∩ L2(0, T ;H2(Td)) ∩ L∞(0, T ;H1(Td)), ∂tu ∈ L2(0, T ;W−1,s′(Td)),√
F ′′
1 (u)∇u ∈ L2((0, T )× Td),

u(0, x) = u0(x) a.e. in Td and if for all φ ∈ L2(0, T ;W 2,∞(Td)) we have

∫ T

0

⟨∂tu, φ⟩(W−1,s′ (Td),W 1,s(Td)) = −D
∫ T

0

∫
Td

∆u∇u · ∇φ−D

∫ T

0

∫
Td

u∆u∆φ

−
∫ T

0

∫
Td

uF ′′(u)∇u · ∇φ.

Remark 4.1.6 (initial condition). In Definitions 4.1.4 and 4.1.5 we can evaluate pointwise value
u(0, x) because by [302, Lemma 7.1], we know that u ∈ C(0, T ;W−1,s′(Td)).
With these assumptions we can construct solutions to (4.1.3)-(4.1.4).

Theorem 4.1.7 (Existence of solutions for the nonlocal system). Let ε0 be given by

ε0 := min

(
εA0 , ε

B
0 ,

1√
2 ∥F ′′

2 ∥∞

)
(4.1.8)
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where εA0 and εB0 are given in Lemma 4.4.6 and 4.4.8 respectively. Let ε < ε0. Let u0 ≥ 0 be
an initial datum with finite energy and entropy Eε(u0),Φ(u0) < ∞ defined in (4.1.9)-(4.1.10).
There exists a global weak solution uε of (4.1.3)-(4.1.4) in the sense defined by Definition 4.1.4.
It satisfies the dissipation of energy and entropy (4.1.11)-(4.1.12) with u = uε, µ = µε. Moreover,
uε ≥ 0.

Our main result reads as follows.

Theorem 4.1.8 (Convergence of nonlocal to local Cahn-Hilliard equation on the torus). Let
u0 ≥ 0 be an initial datum with finite energy and entropy E(u0),Φ(u0) <∞ defined in (4.1.13)
and (4.1.10). Let {uε} be a sequence of solutions of the degenerate nonlocal Cahn-Hilliard equa-
tion (4.1.3)-(4.1.4) from Theorem 4.1.7. Then, up to a subsequence,

uε → u in L2(0, T ;H1(Td))

where u is a weak solution of the degenerate Cahn-Hilliard equation (4.1.5)-(4.1.6) as in Defini-
tion 4.1.5.

Remark 4.1.9. Note that by Lemma 4.4.7 condition E(u0) <∞ implies that Eε(u0) <∞.

4.1.2 Important components of the proof.

There are three main ingredients of the proof.

— Compactness for the system 4.1.3–4.1.4 is obtained from the energy Eε and entropy Φ

Eε[u] :=

∫
Td

F (u) dx+
1

4ε2

∫
Td

∫
Td

ωε(y)|u(x)− u(x− y)|2 dxdy, (4.1.9)

Φ[u] :=

∫
Td

u(log(u)− 1) + 1 dx (4.1.10)

Their dissipation is formally controlled by the identities

Eε[u](t) +

∫ t

0

∫
Td

u |∇µε|2 ≤ Eε[u
0], (4.1.11)

Φ[u](t) +
1

2ε2

∫ t

0

∫
Td

∫
Td

ωε(y) |∇u(x)−∇u(x− y)|2 +
∫
Td

F ′′(u)|∇u|2 ≤ Φ[u0]. (4.1.12)

According to the result of Bourgain-Brézis-Mironescu [53] which was improved later by
Ponce [294], uniform bounds from (4.1.11), (4.1.12) together with Lions-Aubin lemma,
yields strong convergence of {uε} and {∇uε} to u,∇u in L2((0, T )× Td). We note that in
the limit ε→ 0, the energy Eε[uε] satisfy (see [53, Theorem 4] and [294, Theorem 1.2])

E[u] =

∫
Td

F (u) dx+
C(d)

2

∫
Td

|∇u(x)|2 dx ≤ lim inf
ε→0

Eε[uε] (4.1.13)

for some constant C(d) depending only on the dimension d. Similarly, for the nonlocal term
in the dissipation of the entropy we have

C(d)

d∑
i,j=1

∫ t

0

∫
Td

|∂xi∂xju|2 ≤ lim inf
ε→0

1

2ε2

∫ t

0

∫
Td

∫
Td

ωε(y) |∇uε(x)−∇uε(x− y)|2
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so in the limit ε → 0 we gain one more derivative. We also point out that one can prove
rigorously that (4.1.5)–(4.1.6) is a gradient flow of (4.1.13) [71, 270].

— In passing to the limit, we exploit the appropriate definition of weak solutions to (4.1.5)–
(4.1.6). Indeed, first we prove convergence to the formulation∫ T

0

⟨∂tu, φ⟩(W−1,s′ (Td),W 1,s(Td)) = D

∫ T

0

∫
Td

(∇u⊗∇u) : D2φ+

+
D

2

∫ T

0

∫
Td

|∇u|2∆φ+D

∫ T

0

∫
Td

u∇u · ∇∆φ−
∫ T

0

∫
Td

uF ′′(u)∇u · ∇φ.

Formally, it is obtained by integrating by parts twice using the formula

∇u∆u = div(∇u⊗∇u)− 1

2
∇|∇u|2. (4.1.14)

Its main advantage is that it exploits at most first-order derivatives so that we do not need
any estimates on the second-order derivatives. This is important as they are not available
for nonlocal degenerate Cahn-Hilliard. More precisely, the main difficulty is non-degeneracy
of (4.1.3)–(4.1.4), that is we loose estimates on ∇µε whenever uε is approaching the zone
{uε = 0}. For the non-degenerate equation studied in [273, 121, 123, 122],

∂tuε = div∇µε, in (0,+∞)× Td, (4.1.15)

µε = Bε[uε] + F ′(uε), in (0,+∞)× Td, (4.1.16)

one obtains immediately an estimate on ∇µε (by multiplying by µε) and then one can
identify its limit. Nevertheless, we point out that in [273, 121, 123, 122] the difficulty is
rather the regularity of the potential and the kernel which we do not address in our work,
assuming that F and ω are sufficiently smooth.

— For the nonlocal Laplacian operator given by Bε defined in (4.1.1), we find an operator
Sε given in (4.3.4) which resembles gradient operator. It satisfies the integration by parts
formula (S3) in Lemma 4.3.4 as well as the product rule (S2) in Lemma 4.3.4 with an error
that vanishes when ε → 0. This is necessary to perform usual calculus operations before
sending ε→ 0, that is when we do not have Laplace operator in the equation.

4.1.3 Literature review and relevancy of the system

The Cahn Hilliard equation The equation represents a mathematical model which is widely
used to describe phase transitions in fluids and living tissues. In biology, the equation can model
the morphological evolution of a growing solid tumor. There are many factors that come into
play when approaching a tumor growth model, e.g. cell-cell and cell-matrix adhesion, as well as
cell motility and mechanical stress. Nevertheless, the mathematical study and implementation
of a model may provide very interesting information on tumor progression. Let us consider a
bounded, open tissue domain, in which a tumor is evolving. One possible approach is to describe
the tumoral and healthy tissues with volume fractions. By remarking that internal adhesive
forces tend to bind the tumor cells together, we should take into account that phase separation
may occur between healthy and tumoral tissue domains. As a result a boundary layer of finite
thickness

√
D, where D is defined below, may form between them.

Being of fourth-order, the (local) Cahn-Hilliard equation is often rewritten in a system of two
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second-order equations, i.e.

∂tu = div (m(u)∇ (F ′(u)−D∆u)) →
{
∂tu = div (m(u)∇µ) ,
µ = −D∆u+ F ′(u),

(4.1.17)

where u is the concentration of a phase and µ is called the chemical potential in material sciences
but is often used as an effective pressure for living tissues [130, 151]. Also, the interaction poten-
tial F (u) contained in this effective pressure term comprises the effects of attraction and repulsion
between cells. The physically relevant form of this potential is a double-well logarithmic poten-
tial and is often approximated by a smooth polynomial function. However, recent studies show
that for the modeling of living tissues and for the particular application where only one of the
components of the mixture experiences attractive and repulsive forces, a single-well logarithmic
potential is more relevant [67].
The existence and uniqueness of solutions for the Cahn-Hilliard system (4.1.17) strictly depends
on the properties of the mobility term m(u) and the potential F (u), as well as the conditions
assigned on the boundary. More specifically, the presence of degeneration on the mobility, i.e.
the possibility for it to vanish, can turn the analysis of solutions into a rather complex problem.

From nonlocal to local Cahn-Hilliard The nonlocal Cahn-Hilliard equation was first ob-
tained by Giacomin and Lebowitz [189, 190] by starting from a microscopic description. The
model is a d-dimensional lattice gas evolving via Kawasaki exchange dynamics, which is a Pois-
son nearest neighbor exchange process. In the hydrodynamic limit, they find that the empirical
average of the occupation numbers over a small macroscopic volume element tends to a solu-
tion of a nonlocal Cahn-Hilliard equation. This latter equation is an approximation of the local
Cahn-Hilliard equation, as shown in Theorem 4.1.8. Let us also remark that there are possibly
different variants of non-local Cahn-Hilliard equation, see for instance [150] where a version of
nonlocal Cahn-Hilliard equation is derived starting from a kinetic description inspired by [317].
The literature concerning the nonlocal Cahn-Hilliard equation is quite well developed and we
refer for instance to [181, 183, 14, 241, 298, 103] and [178] for the cases of non-degenerate and
degenerate mobilities respectively. On the other hand, for the passage to the limit of the nonlocal
Cahn-Hilliard equation to the local Cahn-Hilliard equation, the existing results [273, 121, 123,
122, 274] cover only the case of constant mobility. In [273] the authors prove the convergence on
the torus. In [121] a wide class of potentials is considered and the study is made on the torus.
In [123] the convergence is obtained in the case of a bounded domain with Neumann boundary
conditions and a viscosity term. Finally, in [122], the limit is achieved with a W 1,1 kernel and a
wide class of singular potentials, with Neumann boundary conditions.

4.1.4 Open problems

We discuss below two problems which we leave open.

Open problem concerning bounded domains. One can ask if the same results hold when Td is
replaced with some general bounded domain Ω. More precisely, we focus on the system

∂tuε = div(uε∇µε), in (0,+∞)× Ω, (4.1.18)
µε = Bε[uε] + F ′(uε), in (0,+∞)× Ω. (4.1.19)
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Defining n⃗ the outward normal vector to ∂Ω we impose the Neumann boundary condition

uε
∂µε
∂n⃗

= 0 on ∂Ω. (4.1.20)

The operator Bε satisfies

Bε[uε](x) =
1

ε2

(∫
Ω

ωε(x− y) dy uε(x)− ωε ∗ uε(x)
)

=
1

ε2

∫
Ω

ωε(x− y)(uε(x)− uε(y)) dy.

(4.1.21)
Notice that in the case Ω = Td, this definition is the same than (4.1.1) up to a change of variable
in the integral. However, since uε is not a priori defined outside Ω we need to put the argument
(x− y) on ωε.

In the limit, we expect to obtain solutions to

∂tu = div(u∇µ), in (0,+∞)× Ω, (4.1.22)
µ = −D∆u+ F ′(u), in (0,+∞)× Ω (4.1.23)

∂u

∂n⃗
= u

∂µ

∂n⃗
= 0, on ∂Ω. (4.1.24)

However, there are two difficult problems related to the equation posed on a bounded domain.

— Lack of the entropy estimate. In the case of bounded domain, we cannot use entropy
estimate as in (4.1.12). This is because the nonlocal operator is defined as (4.1.21) rather
than (4.1.1). As a consequence, we cannot symmetrize the expression with gradients and
obtain the term 1

2ε2

∫ t
0

∫
Td

∫
Td ωε(y) |∇u(x)−∇u(x− y)|2 in the dissipation of the entropy.

— Recovery of the Neumann boundary conditions. The question is whether we can
prove that in the limit ∂u

∂n⃗ = 0 on ∂Ω. This is possible for the equation with constant
mobility. More precisely, in [122], Authors were discussing the problem of nonlocal to local
convergence for the Cahn-Hilliard equation with constant mobility. The constant mobility
allows to obtain uniform bound on ∥Bε(uε)∥2 which allows to conclude that ∂u

∂n⃗ = 0 on ∂Ω.
This is an extremely interesting phenomenon as this new boundary condition appears only
in the limit. In our case, the estimate ∥Bε(uε)∥2 seems unavailable.

A possible approach to overcome this problem is to apply Serfaty-Sandier approach on the
convergence of gradient flows [304, 308].

Open problem concerning irregular potentials and general mobilities. One could also wonder about
the case of more irregular potentials like a logarithmic potential F (u) = (1 − u) log(1 − u) +
u log(u) − θ

2 (u − 1
2 )

2 + k. Our assumptions on F do not cover this case. The problem is open
already at the level of existence of weak solutions as the degenerate mobility u cannot compen-
sate the blow-up of F ′′(u) at u = 1, as it was for instance used in [157]. Also, we cannot use
the same reasoning as in [121] because it is heavily based on the fact that the considered mo-
bility is constant which allows to obtain estimates on the chemical potential µ. Nevertheless, it
seems that one could prove the same results for the logarithmic potential as above by considering
the mobility m(u) = u(1 − u) which allows to compensate the blow-up of F ′′ at u = 1. Such
generalizations will be the topic of future works.
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4.2 Existence of weak solutions to the nonlocal problem

The existence of weak solutions for the local Cahn-Hilliard equation with degenerate mobility
usually follows the method from [157]. The idea is to apply a Galerkin scheme with a non-
degenerate regularized mobility, i.e. , calling m(n) the mobility, then one considers an approxi-
mation mε(n) ≥ ε. Finally, using standard compactness methods one can prove the existence
of weak solutions for the initial system. The uniqueness of the weak solutions is still an open
question.

In the case of the nonlocal Cahn-Hilliard equation, we have to rely on a fixed point method. We
first consider a nondegenerate mobility, and the fixed point argument is put on the nonlocality.
Then, we pass to the limit to obtain the nonlocal Cahn-Hilliard equation with degenerate mobility.

For clarity, we recall the definition of Hölder spaces which come naturally when trying to prove
existence of parabolic equations.

Notation 4.2.1. We write Ck+α,k
′+β(ΩT ) for the space of k (resp. k′) times continuously dif-

ferentiable functions in time (resp. in space) with partial derivative of order k (resp. k′) which
is Hölder continuous with exponent α (resp. β).

4.2.1 Approximating solutions

Following the scheme above, we first consider a nondegenerate mobility and prove the existence
of solutions to the following system

∂tuδ = div(Tδ(uδ)∇µδ) (0,+∞)× Td, (4.2.1)

µδ = Bε[uδ] + F ′(uδ) (0,+∞)× Td, (4.2.2)

equipped with smooth initial condition u0δ(x) = u0 ∗ ωδ(x) which is a smooth approximation of
u0 as δ → 0. Here, δ > 0 is a small parameter such that 2δ < 1

δ − 1, δ < 1
4 and

Tδ(u) =



δ for u ≤ δ,
smooth monotone interpolation for u ∈ [δ, 2δ],
u for u ∈ [2δ, 1δ − 1],
smooth monotone interpolation for u ∈ [ 1δ − 1, 1δ ],
1
δ for u ≥ 1

δ .

(4.2.3)

The estimates for the sequence {uδ} will be obtained from the dissipation of energy and entropy.
The definition of energy Eε remains the same as in (4.1.11). However, the definition of entropy
has to be adapted to take into account the fact that we don’t know if the solution remains
nonnegative. To this end, we define a function ϕδ by an explicit formula

ϕδ(x) =

∫ x

1

∫ y

1

1

Tδ(z)
dz dy. (4.2.4)

Lemma 4.2.2. Let ϕδ be defined with (4.2.4) and ϕ(x) = x(log(x)− 1) + 1. Then,

(P1) ϕ′′δ (x) =
1

Tδ(x)
and ϕδ(1) = ϕ′δ(1) = 0,

(P2) ϕδ(x) → ϕ(x) for x ≥ 0 as δ → 0,
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(P3) ϕδ(x) ≥ 0 for all x ∈ R,
(P4) ϕδ(x) ≤ ϕ(x) + δ

2(1−δ)x
2 + 3 for x ≥ 0,

(P5) ϕδ(x) → ∞ when δ → 0 for all x < 0.

The proof is presented in Appendix 4.4.4.

Theorem 4.2.3. Let δ > 0, ε0 be as in (4.1.8) and F ∈ C4. For ε < ε0 there exists classical
solution (4.2.1)–(4.2.2). Moreover, they satisfy the mass, energy, and entropy conservation : for
all t > 0∫

Td

uδ(t, ·) dx =

∫
Td

u0δ dx, (4.2.5)

Eε[uδ](t) +

∫ t

0

∫
Td

Tδ(uδ) |∇µδ|2 = Eε[u
0
δ ], (4.2.6)

Φδ[uδ](t) +
1

2ε2

∫ t

0

∫
Td

∫
Td

ωε(y) |∇uδ(x)−∇uδ(x− y)|2 +
∫ t

0

∫
Td

F ′′(uδ)|∇uδ|2 = Φδ[u
0
δ ].

(4.2.7)

Theorem 4.2.4. Let ε0 be as in (4.1.8). Let F satisfy Assumption 4.1.1 with an additional
constraint 2C10 < Cp. Then, the following sequences are bounded uniformly in δ ∈ (0, 12 ) and
ε ∈ (0, ε0)

(A1) {uδ}δ in L∞(0, T ;Lk(Td)),

(A2) {uδ}δ in Lk(0, T ;Lk
d

d−2 (Td)),
(A3) {

√
Tδ(u)∇µδ}δ in L2((0, T )× Td),

(A4) {∇uδ}δ in L2((0, T )× Td),
(A5) {∂tuδ}δ in L2(0, T ;W−1,s′(Td)),
(A6) {∂t∇uδ}δ in L2(0, T ;W−2,s′(Td)),
(A7) {

√
F ′′
1 (uδ)∇uδ}δ in L2((0, T )× Td),

(A8) Φδ[uδ] in L∞(0, T ),

where k and s have been defined in Notation 4.1.3.

To prove Theorem 4.2.3, we need to assume that F ∈ C4 which allows us to use known results
about classical solutions to uniformly parabolic equations.

Proof of Theorem 4.2.3. As δ > 0 is fixed in this result, we write u instead of uδ. Given w we
consider an auxiliary equation

∂tu = div

(
Tδ(u)∇u

(
1

ε2
+ F ′′(u)

))
− div

(
Tδ(u)

w ∗ ∇ωε
ε2

)
. (4.2.8)

Let α, σ,M, κ be parameters to be specified later. We want to apply Schauder fixed point theorem
to the map

P : X → X
P : w 7→ u solution of (4.2.8),

where X is defined as the set

X = {w ∈ Cα/2,α([0, T ]× Td), ∥w∥∞,σ ≤M}
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with the norm
∥w∥X := ∥w∥∞,σ + κ∥w∥α/2,α

and the norm ∥·∥α/2,α is the usual Hölder seminorm of functions being Hölder continuous with
exponent α/2 with respect to time and α with respect to space . We also define

∥w∥∞,σ := sup
[0,T ]×Td

|u(t, x)|e−σt. (4.2.9)

Note that the new norm is equivalent to the usual supremum norm so all topological properties
do not change. We need to prove that P is continuous, P maps in fact X to X, and that P (X)
is relatively compact in X. First, we prove that P (w) = u is the unique classical solution of
equation (4.2.8) so that P is well defined and find Hölder estimates which will be useful to prove
the continuity of the operator as well as its relative compactness.
Step 1 : P is well defined and Hölder estimates. Equation (4.2.8) is equivalent to saying that u
solves parabolic equation

∂tu = divA(t, x, u,∇u) +B(t, x, u,∇u), (u)Td = (u0δ)Td

with

A(t, x, z, p) = Tδ(z) p

(
1

ε2
+ F ′′(z)

)
, B(t, x, z, p) = −T ′

δ(z) p ·
w ∗ ∇ωε

ε2
− Tδ(z)

w ∗∆ωε
ε2

,

and we recall that w ∈ X is Hölder continuous. The function A satisfies the strong parabolicity
condition for sufficiently small ε > 0, i.e.

A(t, x, z, p) · p ≥ δ p2
1

2 ε20

for all ε < ε0 (this uses Assumptions (B), (C) and (4.1.8)). Since the derivatives Ap, Az, At,
Ax and function B are Hölder continuous as functions of (t, x, z, p), [253, Theorems 12.10, 12.14]
asserts that there exists a unique classical solution to (4.2.8). Moreover, this solution satisfies
the estimate

∥u∥C1+α/2,1+α ≤ C(δ, ε0, ∥w∥Cα/2,α).

With this estimate, (4.2.8) can be considered as a linear equation so that the linear theory for
parabolic equations [253, Theorem 5.14] implies

∥u∥C1+α/2,2+α ≤ C(δ, ε0, ∥w∥Cα/2,α). (4.2.10)

Therefore u is a classical solution of (4.2.8) and it admits the Hölder bound (4.2.10).
Step 2 : The operator P is continuous.. We consider a sequence {wn}n in X such that ∥wn −
w∥X → 0. Then un = P (wn) is compact in C1,2 from estimate (4.2.10) and Arzelà-Ascoli’s
Theorem. We choose subsequence such that unk

→ u in C1,2. These functions satisfy

∂tunk
= div

(
Tδ(unk

)∇unk

(
1

ε2
+ F ′′(unk

)

))
− div

(
Tδ(unk

)
wnk

∗ ∇ωε
ε2

)
. (4.2.11)

Passing to the limit in (4.2.11) and using uniqueness of solutions to (4.2.8) from [253], we obtain
that for every subsequence of {un}n we can extract a subsequence which converges to a unique
limit u = P (w). By a standard subsequence argument, this means that the whole sequence {un}n
converges to u = P (w). Therefore P is continuous.
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Step 3 : P maps X to X. We write the equation (4.2.8) in the form

∂tu = T ′
δ(u)|∇u|2

(
1

ε2
+ F ′′(u)

)
+ Tδ(u)∆u

(
1

ε2
+ F ′′(u)

)
+ Tδ(u)|∇u|2F (3)(u)

− T ′
δ(u)∇u · w ∗ ∇ωε

ε2
− Tδ(u)

w ∗∆ωε
ε2

.

We substitute u = v eσt and we compute PDE satisfied by v :

∂tv e
σt + v σ eσt = T ′

δ(u)|∇v|2
(

1

ε2
+ F ′′(u)

)
e2σt + Tδ(u)∆v

(
1

ε2
+ F ′′(u)

)
eσt

+ Tδ(u)|∇v|2F (3)(u)e2σt − T ′
δ(u)∇v ·

w ∗ ∇ωε
ε2

eσt − Tδ(u)
w ∗∆ωε

ε2
.

(4.2.12)

Now, we multiply by v and we consider the function v2. Let (t∗, x∗) ∈ [0, T ] × Td be the point
where v2 attains its maximum. First, we consider the case t∗ > 0. Obviously, ∇v2(t∗, x∗) = 0
(note that Td does not have a boundary). In particular, |∇v(t∗, x∗)| = 0 as |∇v|2v = ∇v · ∇v2/2
and we can assume that v(t∗, x∗) ̸= 0 (otherwise v is constantly 0). Equation (4.2.12) evaluated
at (t∗, x∗) reads

1

2
∂tv

2eσt∗ + v2σeσt∗ = Tδ(u) v∆v

(
1

ε2
+ F ′′(u)

)
eσt∗ − v Tδ(u)

w ∗∆ωε
ε2

. (4.2.13)

Moreover, as v2 attains its maximum in (t∗, x∗) and t∗ > 0, ∂tv2(t∗, x∗) ≥ 0 and ∆v2(t∗, x∗) ≤ 0.
In particular, at (t∗, x∗) we have v∆v = −|∇v|2 + 1

2∆v
2 ≤ 0 so that from (4.2.13) we obtain

v2 σ eσt∗ ≤ −v Tδ(u)
w ∗∆ωε

ε2
,

so that
v2(t∗, x∗)σ e

σt∗ ≤ |v(t∗, x∗)|
∥∆ωε∥1∥w(t∗, ·)∥∞

δε2
.

where we used the definition of Tδ. As v2 attains maximum at (t∗, x∗), |v(t∗, x∗)| also attains
maximum at (t∗, x∗). Therefore, taking into account the possibilty that t∗ = 0

∥v∥∞ ≤ max

(∥∆ωε∥1∥w(t∗, ·)∥∞
δε2σ

e−σt∗ , ∥u0δ∥∞
)

≤ max

(∥∆ωε∥1∥we−σt∥∞
δε2σ

, ∥u0δ∥∞
)
.

Choosing σ = 2∥∆ωε∥1/(δε2), we obtain estimate

∥v∥∞ ≤ max

(
1

2
∥we−σt∥∞, ∥u0δ∥∞

)
.

By definition of the norm

∥Pw∥∞,σ ≤ max

(
1

2
∥w∥∞,σ, ∥u0δ∥∞

)
. (4.2.14)

Moreover, the parabolic version of de Giorgi-Nash-Moser theory, see [246, Chap. V, Theorem
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1.1], implies that there exists α = α(∥w∥∞,σ) such that the solution of (4.2.8) satisfy

∥u∥Cα/2,α ≤ f(∥w∥∞,σ),

where f(∥w∥∞,σ) is a constant which depends on ∥w∥∞,σ. Without loss of generality we may as-
sume that f(∥w∥∞,σ) does not decrease and α(∥w∥∞,σ) does not increase when ∥w∥∞,σ increases.

We proceed to choosing values of parameters M , α, κ and concluding the proof. We choose

M = 3∥u0δ∥L∞ , α = α(M), κ =
∥u0δ∥L∞

2f(M)
.

Since w is in X and f is nondecreasing we obtain

∥Pw∥X ≤ 1

2
∥w∥∞,σ + ∥u0δ∥∞ + κf(∥w∥∞,σ) ≤

M

2
+ ∥u0δ∥∞ + κf(M) ≤ 3∥u0δ∥L∞ =M.

This means that P maps X to X.
Step 4 : P (X) is relatively compact in X. The relative compactness of P (X) follows from (4.2.10).
The proof is concluded.

Proof of Theorem 4.2.4. First, we prove that Eε[u0δ ] and Φδ[u
0
δ ] are uniformly bounded (with

respect to δ) in terms of Eε[u0] and Φ[u0]. Recall that u0δ = u0 ∗ ωδ. Concerning the energy, this
is the consequence of the convexity and the uniform bound on F2. Indeed, we have

∫
Td

∫
Td

ωε(y)|u0δ(x)−u0δ(x−y)|2 dxdy =

∫
Td

∫
Td

ωε(y)

∣∣∣∣∫
Td

(u0(x− z)− u0(x− y − z)ωδ(z) dz

∣∣∣∣2 dxdy
≤
∫
(Td)3

ωε(y)
∣∣(u0(x− z)− u0(x− y − z)

∣∣2 ωδ(z) dz dx dy =

∫
Td

∫
Td

ωε(y)|u0(x)−u0(x−y)|2 dxdy

and similarly for the potential terms∫
Td

F1(u
0 ∗ ωδ) dx ≤

∫
Td

F1(u
0) ∗ ωδ dx =

∫
Td

F1(u
0) dx,

∫
Td

|F2(u
0)|dx ≤ ∥F2∥∞ |Td|.

Concerning the entropy, as ϕδ is convex, we have for the term Φδ[u
0
δ ] :

Φδ[u
0
δ ] =

∫
Td

ϕδ(u
0 ∗ ωδ) dx ≤

∫
Td

ϕδ(u
0) ∗ ωδ dx =

∫
Td

ϕδ(u
0) dx ≤

≤
∫
Td

(ϕ(u0) +
δ

2(1− δ)
|u0|2 + 3) dx ≤ Φ[u0] +

1

2
∥u0∥22 + 3|Td|,

where we used (P4) in Lemma 4.2.2. The norm ∥u0∥22 can be controlled by the nonlocal term
appearing in Eε[u

0] due to Lemma 4.4.6 (note that u0 belongs at least to L2(Td) as F1(u
0) is

integrable thanks to Eε[u0] <∞).

Now, we proceed to the main part of the proof. To prove (A1) and (A3) we want to apply (4.2.6)
and Assumption 4.1.1 on the potential. The energy identity reads :∫

Td

F (uδ) dx+
1

4ε2

∫
Td

∫
Td

ωε(y)|uδ(x)− uδ(x− y)|2 dxdy +
∫ t

0

∫
Td

Tδ(uδ) |∇µδ|2 = Eε[u
0
δ ],
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Applying Lemma 4.4.6, we deduce∫
Td

F (uδ) dx+ Cp

∫
Td

|u− (u)Td |2 +
∫ t

0

∫
Td

Tδ(uδ) |∇µδ|2 ≤ Eε[u
0
δ ]

Splitting F = F1 + F2 and applying Assumption 4.1.1 we obtain∫
Td

F1(uδ) dx+ Cp

∫
Td

|uδ − (uδ)Td |2 +
∫ t

0

∫
Td

Tδ(uδ) |∇µδ|2 ≤ Eε[u
0
δ ] + C9 + C10

∫
Td

|uδ|2

Note that by conservation of mass, (uδ)Td = (u0)Td . Therefore, applying the simple inequality
|a + b|2 ≤ 2|a|2 + 2|b|2 and Cp > 2C10, we obtain an L∞(0, T ;L2(Td)) estimate on {uδ} which
can be improved to L∞(0, T ;Lk(Td)) if F1 ̸= 0 cf. (B) in Assumption 4.1.1. Then, (A1) and so,
(A3) is easily implied by the energy as all possibly negative terms are bounded.

Now, to prove (A4) we want to use the entropy equality (4.2.7) :

Φδ[uδ](t) +
1

2ε2

∫ t

0

∫
Td

∫
Td

ωε(y) |∇uδ(x)−∇uδ(x− y)|2 +
∫ t

0

∫
Td

F ′′(uδ)|∇uδ|2 = Φδ[u
0
δ ].

To exploit it, for γ to be chosen later, ε ∈ (0, ε̃0(γ)) we have by Lemma 4.4.8

Φδ[uδ](t) +
1

γ

∫ t

0

∫
Td

|∇uδ|2 +
∫ t

0

∫
Td

F ′′
1 (uδ)|∇uδ|2 ≤

≤ Φδ[u
0
δ ] + C(γ)

∫ t

0

∫
Td

∥uδ∥2L2(Td) + ∥F ′′
2 ∥∞

∫ t

0

∫
Td

|∇uδ|2.

We choose γ = 1
1+∥F ′′

2 ∥∞
which yields estimates (A4), (A7) and (A8). Now, to see (A5) we take

a smooth test function φ and write thanks to the Hölder inequality∣∣∣∣∣
∫ T

0

∫
Td

∂tuδ φdx dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ T

0

∫
Td

Tδ(uδ)
1/2Tδ(uδ)

1/2∇µδ · ∇φdx dt

∣∣∣∣∣
≤ ∥Tδ(uδ)1/2∥L∞(0,T ;L2k(Td))∥Tδ(uδ)1/2∇µδ∥L2((0,T )×Td)∥∇φ∥L2(0,T ;Ls(Td))

≤ C∥∇φ∥L2(0,T ;Ls(Td)).

In the last line we used estimates (A1), (A3) and the definition of Tδ. This concludes the proof
for estimates (A5) and then (A6) easily follows.

Finally, we prove (A2). We note from (A7) that {∇uk/2δ } is bounded in L2(0, T ;L2(Td)) and from
(A1) that {uk/2δ } is bounded in L∞(0, T ;L2(Td)). Therefore, by Sobolev embedding, we obtain
that {uk/2δ } is bounded in L2(0, T ;L

2d
d−2 (Td)) so that {uδ} is bounded in Lk(0, T ;Lk

d
d−2 (Td)).

4.2.2 Proof of Theorem 4.1.7

Proof of Theorem 4.1.7. Step 1 : Approximation of the potential.
For F as in Assumption 4.1.1, we consider its mollification Fδ = F ∗ ηδ where {ηδ} is the
usual mollifier. We note that Fδ is C4 and that F , Fδ satisfy Assumption 4.1.1 with comparable
constants C1, ..., C10, see Lemma 4.4.2. The most important is constant C10 because there is a
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constraint on it in terms of Cp. More precisely, F satisfies Assumption 4.1.1 with C10 < Cp/4
so that from Lemma 4.4.2 we have that Fδ satisfies it with 2C10 < Cp/2. This allows to apply
Theorem 4.2.4 to otain uniform estimates. Moreover Fδ = Fδ,1+Fδ,2 with F (p)

δ,(1,2)

pointwise−−−−−−→
δ→0

F
(p)
(1,2)

where p = 0, 1, 2 is the order of derivative.
Step 2 : Compactness. Using Theorem 4.2.3, we can obtain uδ such that for all φ ∈ L∞(0, T ;W 1,∞(Td))∫ T

0

⟨∂tuδ, φ⟩(W 1,s(Td))′,W 1,s(Td))+

+

∫ T

0

∫
Td

Tδ(uδ)∇Bε[uδ] · ∇φ+

∫ T

0

∫
Td

uδF
′′
δ (uδ)∇uδ · ∇φ = 0.

(4.2.15)

The plan is to send δ → 0 in (4.2.15). By Theorem 4.2.4 and standard compactness results we
can extract a subsequence (not relabelled) such that

(B1) uδ → u a.e. and in L2((0, T )× Td) ∩ Lk((0, T )× Td),
(B2) ∇uδ ⇀ ∇u in L2((0, T )× Td),
(B3) ∂tuδ ⇀ ∂tu in L2(0, T ;W−1,s′(Td)),

(B4)
√
F ′′
1,δ(uδ)∇uδ ⇀ ξ in L2((0, T )× Td) for some ξ ∈ L2((0, T )× Td).

Only (B1) needs some justification. From (A1), (A4), (A5) and Aubin-Lions lemma, we obtain
the strong convergence uδ → u a.e. and in L2((0, T ) × Td). To see the second strong conver-
gence, we interpolate between L∞(0, T ;Lk(Td)) and Lk(0, T ;Lk

d
d−2 (Td)) to prove that {uδ} is

bounded in Lk+κ(0, T ;Lk+κ(Td)) for some κ > 0 because k d
d−2 > k. Now, interpolating between

Lk+κ(0, T ;Lk+κ(Td)) and L2((0, T )× Td) we obtain strong convergence in Lk((0, T )× Td).
Step 3 : Nonnegativity of u. The plan is to obtain a contradiction with the uniform estimate of
the entropy. For α > 0, we define the sets

Vα,δ = {(t, x) ∈ (0, T )× Td : uδ(t, x) ≤ −α},

Vα,0 = {(t, x) ∈ (0, T )× Td : u(t, x) ≤ −α}.
By nonnegativity of ϕδ (see (4.2.4) as well as the properties below) and (A8) in Theorem 4.2.4,
there is a constant C(T ) such that∫

Vα,δ

ϕδ(uδ) dxdt ≤
∫
(0,T )×Td

ϕδ(uδ) dxdt ≤ C(T ).

For uδ ≤ −α, we have 0 ≤ ϕδ(−α) ≤ ϕδ(uδ) because ϕ′δ(x) ≤ 0 for x ≤ 0, see (4.2.4). Therefore,

0 ≤ ϕδ(−α)
∫
Vα,δ

1 dxdt =

∫
Vα,δ

ϕδ(x) dx dt ≤ C(T ).

Sending δ → 0, exploiting (P5) in Lemma 4.2.2 and using the strong convergence of uδ → u we
discover ∫

Vα,0

1 dxdt = lim
δ→0

∫
Vα,δ

1 dxdt = 0

(we use here the fact from measure theory asserting that on the measure space (X,µ) if fn, f :
X → R and fn → f in L1(X,µ) then for α ∈ R we have

∫
fn<α

dµ →
∫
f<α

dµ as n → ∞). This
means that Vα,0 is a null set for each α > 0, concluding the proof of the nonnegativity.
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Step 4 : Identification ξ =
√
F ′′
1 (u)∇u. We want to use (B4) so we have to identify ξ. For that

purpose, we use the convergence a.e. of uδ in (B1) and the pointwise convergence F ′′
δ,1 → F ′′

1 to
deduce that Fδ,1(uδ) → F1(u) a.e. Next, using Assumption (B) for Fδ,1 and estimate (A1)∣∣∣√F ′′

δ,1(uδ)
∣∣∣2 ≤ C3|uδ|k−2 + C4.

As (RHS) is uniformly integrable by strong convergence (B1), we deduce that
∣∣∣√F ′′

δ,1(uδ)
∣∣∣2 is

uniformly integrable so that the Vitali convergence theorem implies√
F ′′
δ,1(uδ) →

√
F ′′
1 (u) in L2((0, T )× Td)

Using weak convergence of gradient (B2), we finally obtain ξ =
√
F ′′
1 (u)∇u.

Step 5 : Passing to the limit in the first two terms of (4.2.15). Using (B3) it is easy to pass to
the limit in the first term of (4.2.15). Now we focus on the second term. Note that

∇Bε[uδ](x) =
1

ε2
(∇uδ − ωε ∗ ∇uδ).

The two terms of ∇Bε are treated in the same way. We focus only on the harder term ∇uδ
which does not have regularizing properties of the convolution. For this term it is sufficient to
prove that Tδ(uδ)∇uδ ⇀ u∇u weakly in L1(0, T ;L1(Td)) because ∇φ ∈ L∞((0, T ) × Td). We
first note that by definition of Tδ, the strong convergence (B1) and the nonnegativity of u, we
obtain Tδ(uδ) → u strongly in L2((0, T )× Td). Hence, the result follows from weak convergence
of the gradient (B2).
Step 6 : Passing to the limit in the third term of (4.2.15). For the third term we write F ′′

δ =

F ′′
δ,1 + F ′′

δ,2 as discussed in Step 1. Then we decompose∫ T

0

∫
Td

Tδ(uδ)F
′′
δ (uδ)∇uδ · ∇φ =

∫ T

0

∫
Td

Tδ(uδ)F
′′
δ,1(uδ)∇uδ · ∇φ+

∫ T

0

∫
Td

Tδ(uδ)F
′′
δ,2(uδ)∇uδ · ∇φ

= I1 + I2.

For I1 we write

I1 =

∫ T

0

∫
Td

Tδ(uδ)
√
F ′′
δ,1(uδ)

√
F ′′
δ,1(uδ)∇uδ · ∇φ.

It remains to prove that Tδ(uδ)
√
F ′′
δ,1(uδ) converges strongly in L2((0, T ) × Td) because ∇φ ∈

L∞((0, T ) × Td). Note that since uδ → u ≥ 0 we have Tδ(uδ)
√
F ′′
δ,1(uδ) → u

√
F ′′
1 (u) a.e.

Moreover, (
Tδ(uδ)

√
F ′′
δ,1(uδ)

)2
≤ C3 |uδ|k + C4

As the (RHS) is uniformly integrable by strong convergence, we deduce that (LHS) is uniformly
integrable. Hence, the Vitali convergence theorem implies Assumption (B) and Estimate (A1)
show that

Tδ(uδ)
√
F ′′
δ,1(uδ) → u

√
F ′′
1 (u) in L2((0, T )× Td)

so that I1 →
∫ T
0

∫
Td uF

′′
1 (u)∇u · ∇φ. For I2, as ∇uδ ⇀ ∇u weakly in L2((0, T ) × Td), it is

sufficient to prove the strong convergence of Tδ(uδ)F ′′
δ,2(uδ) in L2((0, T ) × Td) because ∇φ ∈
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L∞((0, T ) × Td). Thanks to Assumption (C) on F ′′
δ,2, this term is uniformly bounded so that

trivially |Tδ(uδ)F ′′
δ,2(uδ)| ≤ ∥F ′′

2 ∥∞|Tδ(uδ)|. Therefore, Vitali convergence theorem implies that
Tδ(uδ)F

′′
δ,2(uδ) is convergent in L2((0, T )× Td) and so

I2 →
∫ T

0

∫
Td

uF ′′
2 (u)∇u · ∇φ.

Step 7 : Energy and entropy estimates. We pass to the limit δ → 0 in (4.2.6)-(4.2.7). With the
above convergences and properties of the weak limit, we obtain the result. This ends the proof
of Theorem 4.1.7.

Step 8 : Weak formulation for φ ∈ L2(0, T ;W 1,∞(Td)). We know that the weak formulation∫ T

0

⟨∂tu, φ⟩(W−1,s′ (Td),W 1,s(Td)) = −
∫ T

0

∫
Td

u∇Bε[u] · ∇φ−
∫ T

0

∫
Td

uF ′′(u)∇u · ∇φ (4.2.16)

is satisfied for all φ ∈ L∞(0, T ;W 1,∞(Td)). By a usual density argument we can extend it to a
bigger class φ ∈ L2(0, T ;W 1,∞(Td)). Indeed, for the term ⟨∂tu, φ⟩(W−1,s′ (Td),W 1,s(Td)) it is clear
as ∂tu is a functional on L2(0, T ;W 1,s(Td)). For the terms on the (RHS) of (4.2.16) it is sufficient
to prove that :

— u∇Bε[u] ∈ L2(0, T ;L1(Td)) which follows from the fact that u ∈ L∞(0, T ;L2(Td)) and
∇u ∈ L2((0, T )× Td),

— uF ′′(u)∇u ∈ L2(0, T ;L1(Td)). Here, we split F = F1 + F2. For the term uF ′′
2 (u)∇u

we use that F ′′
2 is bounded and u∇u ∈ L2(0, T ;L1(Td)). For the term uF ′′

1 (u)∇u we
write it as u

√
F ′′
1 (u)

√
F ′′
1 (u)∇u. By the growth of F ′′

1 (u) (cf. (B) in Assumption 4.1.1)
and u ∈ L∞(0, T ;Lk(Td)), we see that u

√
F ′′
1 (u) ∈ L∞(0, T ;L2(Td)). As

√
F ′′
1 (u)∇u ∈

L2((0, T )× Td), the conclusion follows.

Now that weak solutions of the nonlocal Cahn-Hilliard equation have been constructed for a
given initial datum, it remains to prove the convergence of the nonlocal system to the local one.
This is the purpose of the next section.

4.3 Limit ε → 0

Weak solutions of the local Cahn-Hilliard equation are understood in the sense of Definition 4.1.5.
In order to prove the convergence of the nonlocal system to these solutions, we first collect the
necessary estimates uniform in ε. Then we pass to the limit ε → 0 to conclude the proof of
Theorem 4.1.8.

4.3.1 Uniform estimates in ε

We recall that in the previous section we had obtained the energy and entropy inequalities as
well as estimates uniform in ε.
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Lemma 4.3.1 (Mass, energy, entropy). The following identities hold true∫
Td

uε(t, ·) dx =

∫
Td

u0 dx, (4.3.1)

d

dt
E[uε] +

∫
Td

uε |∇µε|2 ≤ 0, (4.3.2)

d

dt
Φ[uε] +

1

2ε2

∫
Td

∫
Td

ωε(y) |∇uε(x)−∇uε(x− y)|2 dxdy +
∫
Td

F ′′(uε)|∇uε|2 dx ≤ 0. (4.3.3)

Lemma 4.3.2 (Uniform estimates). The following sequences are bounded :

(A) {uε}ε in L∞(0, T ;Lk(Td)),

(B) {uε}ε in Lk(0, T ;Lk
d

d−2 (Td)),
(C) {∇uε}ε in L2((0, T )× Td),
(D) {√uε∇µε}ε in L2((0, T )× Td),

(E) {∂tuε}ε in L2(0, T ;W−1,s′(Td)),
(F) {∂t∇uε}ε in L2(0, T ;W−2,s′(Td)),
(G) {

√
F ′′
1 (uε)∇uε}ε in L2((0, T )× Td).

Our last ingredient for the proof of Theorem 4.1.8 is about the compactness of uε and its gradient.

Lemma 4.3.3 (Compactness). Sequences {uε}ε and {∇uε}ε are strongly compact in L2((0, T )×
Td).

Démonstration. The compactness of {uε} follows from the Lions-Aubin lemma applied to es-
timates (A),(C) and (E). Then, for the compactness of {∇uε}, the detailed proof is presented
in Appendix 4.4.7. Roughly speaking, from (F) we know that the sequence is compact in time.
Compactness in space follows from Theorem 4.4.4 together with the estimate provided by the
entropy on the quantity :

1

4ε2

∫ T

0

∫
Td

∫
Td

ωε(y) |∇uε(x)−∇uε(x− y)|2 dxdy dt ≤ C.

An application of the Fréchet-Kolmogorov theorem yields the result.

Now we are ready to prove our main theorem.

4.3.2 Proof of Theorem 4.1.8 : convergence ε → 0

We want to pass to the limit ε → 0 in Equations (4.1.5)-(4.1.6) and obtain weak solutions of
the local Cahn-Hilliard equation. We have at most bounds on the gradient of uε and the limit
equation has four derivatives. That means we need to mimic at the epsilon level integration by
parts for nonlocal operators. For that purpose, we define the operator

Sε[φ](x, y) :=

√
ωε(y)√
2ε

(φ(x− y)− φ(x)) (4.3.4)

which has the following properties :

Lemma 4.3.4. The operator Sε satisfies :
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(S1) Sε is a linear operator that commutes with derivatives with respect to x,

(S2) for all functions f, g : Td → R we have

Sε[fg](x, y)− Sε[f ](x, y)g(x)− Sε[g](x, y)f(x) =

=

√
ωε(y)√
2ε

[(f(x− y)− f(x))(g(x− y)− g(x))].

(S3) for all u, φ ∈ L2(Td)

⟨Bε[u](·), φ(·)⟩L2(Td) = ⟨Sε[u](·, ·), Sε[φ](·, ·)⟩L2(Td×Td).

(S4) if {uε} is strongly compact in L2(0, T ;H1(Td)) and φ ∈ L∞((0, T )× Td) we have∫ T

0

∫
Td

∫
Td

(Sε[uε])
2 φ(t, x) → D

∫ T

0

∫
Td

|∇u(t, x)|2 φ(t, x)

where D = 1
2

∫
B1
ω(y)|y|2 dy.

Démonstration. The first one is trivial. For the second one, we just observe

(f(x− y)− f(x))(g(x− y)− g(x)) =

= −(f(x− y)− f(x)) g(x)− g(x− y) f(x) + f(x− y) g(x− y) =

= −(f(x− y)− f(x)) g(x)− (g(x− y)− g(x)) f(x) + (f(x− y) g(x− y)− f(x)g(x)).

For the third one, we compute

⟨Bε[u](·), φ(·)⟩L2(Td) =

∫
Td

∫
Td

ωε(y)

ε2
(u(x)− u(x− y))φ(x) dy dx.

Changing variables x′ = x− y, y′ = −y and using symmetry of the kernel

⟨Bε[u](·), φ(·)⟩L2(Td) =

∫
Td

∫
Td

ωε(y)

ε2
(u(x′ − y′)− u(x′))φ(x′ − y′) dy′ dx′.

Therefore,

2 ⟨Bε[u](·), φ(·)⟩L2(Td) =

∫
Td

∫
Td

ωε(y)

ε2
(u(x)− u(x− y)) (φ(x)− φ(x− y)) dy dx

=

∫
Td

∫
Td

√
ωε(y)

ε
(u(x)− u(x− y))

√
ωε(y)

ε
(φ(x)− φ(x− y)) dy dx.

Finally, to prove (S4) we use the definition of ωε and change variables with respect to y :∫ T

0

∫
Td

∫
Td

(Sε[uε])
2 φ(t, x) =

∫
B1

ω(y)

∫ T

0

∫
Td

φ(t, x)
|uε(t, x)− uε(t, x− εy)|2

2ε2
dxdtdy

For fixed y,∫ T

0

∫
Td

φ(t, x)
|uε(t, x)− uε(t, x− εy)|2

ε2
dx dt→

∫ T

0

∫
Td

φ(t, x)|∇u(x)|2|y|2 dxdt,



4.3. Limit ε→ 0 155∣∣∣∣∣
∫ T

0

∫
Td

φ(t, x)
|uε(t, x)− uε(t, x− εy)|2

ε2
dxdt

∣∣∣∣∣ ≤ ∥φ∥∞ sup
ε

∥Duε∥22 |y|2

due to Lemma 4.4.1. As the majorant is integrable, the dominated convergence theorem concludes
the proof.

Since Bε has a similar behavior as the Laplace operator, one can expect that Sε acts like a
gradient (in L2(Td)). Nevertheless, note that Sε[φ](x, y) is a scalar. From now on, we write ∇Sε
for the gradient of Sε with respect to the variable x i.e.

∇Sε[φ](x, y) :=
√
ωε(y)√
2ε

(∇φ(x− y)−∇φ(x)).

Proof of Theorem 4.1.8. We only have to pass to the limit in the term
∫ T
0

∫
Td div(uε∇µε)φdx dt

where φ ∈ C3([0, T ]× Td). Integrating by parts, we obtain∫ T

0

∫
Td

div(uε∇µε)φdxdt = −
∫ T

0

∫
Td

uε∇µε · ∇φdx dt =

∫ T

0

∫
Td

Bε[uε]∇uε · ∇φdx dt

+

∫ T

0

∫
Td

Bε[uε]uε∆φdxdt−
∫ T

0

∫
Td

uεF
′′(uε)∇uε · ∇φdx dt

=: I1 + I2 + I3.

(4.3.5)

Step 1 : Compactness. Using Lemma 4.3.2 and Lemma 4.3.3 we can choose a subsequence of
{uε}ε such that

(D1) ∂tuε ⇀ ∂tu weakly in L2(0, T ;W−1,s′(Td)),
(D2) uε → u strongly in L2((0, T )× Td),
(D3) ∇uε → ∇u strongly in L2((0, T )× Td),
(D4)

√
F ′′
1 (uε)∇uε ⇀ ξ weakly in L2((0, T )× Td).

Step 1 : Convergence of I1. Using (S3) in Lemma 4.3.4 we write

I1 =

∫ T

0

∫
Td

∫
Td

Sε[uε]Sε(∇uε · ∇φ) dxdy dt

=

∫ T

0

∫
Td

∫
Td

Sε[uε]Sε(∇uε) · ∇φdxdy dt+

∫ T

0

∫
Td

∫
Td

Sε[uε]∇uε · Sε[∇φ] dxdy dt+Rε

= J
(1)
1 + J

(1)
2 +R(1)

ε ,

where R(1)
ε is defined as

R(1)
ε =

∫ T

0

∫
Td

∫
Td

Sε[uε] (Sε(∇uε · ∇φ)− Sε(∇uε) · ∇φ−∇uε · Sε[∇φ]) dxdy dt.

For J (1)
1 we use identity

Sε[uε]Sε(∇uε) = Sε[uε]∇Sε(uε) =
1

2
∇ |Sε[uε]|2
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so after integration by parts we obtain

J
(1)
1 = −1

2

∫ T

0

∫
Td

∫
Td

(Sε[uε])
2∆φdxdy dt→ −D

2

∫ T

0

∫
Td

|∇u|2∆φdxdt (4.3.6)

due to (S4) in Lemma 4.3.4. For J (1)
2 we change variables to have

J
(1)
2 =

1

2

∫ T

0

∫
Td

∫
Td

ωε(y)
uε(x− y)− uε(x)

ε
∇uε(x) ·

∇φ(x− y)−∇φ(x)
ε

dx dy dt =

=
1

2

∫
Td

ω(y)

∫ T

0

∫
Td

uε(x− εy)− uε(x)

ε
∇uε(x) ·

∇φ(x− εy)−∇φ(x)
ε

dxdtdy.

We are first concerned with the inner integral. With Lemma 4.4.1 we have that for fixed y ∈ Td

uε(x− εy)− uε(x)

ε
→ −∇u(x) · y in L2((0, T )× Td).

Moreover, a Taylor expansion implies that

∇φ(x− εy)−∇φ(x)
ε

→ −D2φ(x)y in L∞((0, T )× Td;Rd).

Combining this with a strong convergence ∇uε → ∇u in L2((0, T )× Td), we deduce

∫ T

0

∫
Td

uε(x− εy)− uε(x)

ε
∇uε(x) ·

∇φ(x− εy)−∇φ(x)
ε

dx dt→

→
∫ T

0

∫
Td

∇u(x) · y∇u(x) · (D2φ(x)y) dxdt.

Finally, we apply the dominated convergence theorem to the integral with respect to y with the
dominating function ∥D2φ∥∞ supε∥∇uε∥22|y|2. We obtain

J
(1)
2 → 1

2

∫
Td

ω(y)|y|2 dy
∫ T

0

∫
Td

∇u(x) ·D2φ(x)∇u(x) dxdt =

= D

∫ T

0

∫
Td

(∇u(x)⊗∇u(x)) : D2φ(x) dxdt,

(4.3.7)

where we also used the symmetry of D2φ and properties of ω defined in (4.1.2). It remains to
deal with the error term. Using (S2) in Lemma 4.3.4 we can write

R(1)
ε =

∫ T

0

∫
Td

∫
Td

Sε[uε]

√
ωε(y)√
2ε

[(∇uε(x− y)−∇uε(x)) · (∇φ(x− y)−∇φ(x))] dxdy dt.

We want to prove that R(1)
ε converges to 0. By Cauchy-Schwarz inequality (in time and space)

as well as bounds on Sε[uε] it remains to prove that∫ T

0

∫
Td

∫
Td

ωε(y)

ε2
|∇uε(x− y)−∇uε(x)|2|∇φ(x− y)−∇φ(x)|2 dy dxdt→ 0. (4.3.8)
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Using Taylor’s expansion we can estimate this integral with

ε∥D2φ∥2L∞

(∫ T

0

∫
Td

∫
Td

ωε(y)

ε2
|∇uε(x− y)−∇uε(x)|2 dy dxdt

)

which converges to zero by the bound from the entropy (4.3.3) so that (4.3.8) follows. We conclude
that

I1 → −D
2

∫ T

0

∫
Td

|∇u|2∆φdx dt+D

∫ T

0

∫
Td

(∇u⊗∇u) : D2φdxdt.

Step 2 : Convergence of I2. We observe that the only differences between I1 and I2 are uε and
∆φ in place of ∇uε and ∇φ respectively. As we have the same (in fact, better) estimates for
these quantities, the proof is the same and we conclude

I2 → D

∫ T

0

∫
Td

|∇u|2∆φdx dt+D

∫ T

0

∫
Td

u∇u · ∇∆φ.

Step 3 : Convergence of I3. For I3 the proof is similar to the reasoning in Steps 1, 3 and 6
of the proof of Theorem 4.1.7because we have to use the same estimates. Roughly speaking,
one proves that uε → u strongly in Lk((0, T ) × Td) by interpolation so that one can identify
ξ =

√
F ′′
1 (u)∇u. Next, convergence in Lk((0, T ) × Td) allows also to prove strong convergence

uε
√
F ′′
1 (uε) → u

√
F ′′
1 (u) in L2((0, T )×Td) thanks to growth condition (B) while the convergence

uε
√
F ′′
2 (uε) → u

√
F ′′
2 (u) in L2((0, T )× Td) is trivial because F ′′

2 ∈ L∞. This shows that

I3 → −
∫ T

0

∫
Td

uF ′′(u)∇u · ∇φdx dt.

Conclusion of Steps 1-3. In the limit ε→ 0 we obtain

∫ T

0

⟨∂tu, φ⟩(W−1,s′ (Td),W 1,s(Td)) = D

∫ T

0

∫
Td

(∇u⊗∇u) : D2φ+

+
D

2

∫ T

0

∫
Td

|∇u|2∆φ+D

∫ T

0

∫
Td

u∇u · ∇∆φ−
∫ T

0

∫
Td

uF ′′(u)∇u · ∇φ.

Step 4 : Regularity of u and better weak formulation Now we prove the regularity of the limit
function u. This allows us to perform integration by parts on the different terms using the
formula (4.1.14) and recover the Definition 4.1.5. In fact, in the limit ε → 0, from the entropy
we obtain (see [53, Theorem 4] and [294, Theorem 1.2])

d∑
i,j=1

∫ t

0

∫
Td

|∂xi∂xju|2 ≤ lim inf
ε→0

1

4ε2

∫ t

0

∫
Td

∫
Td

ωε(y) |∇uε(x)−∇uε(x− y)|2

so in the limit ε→ 0 we gain one more derivative. A similar reasoning can be performed on the
energy to see that in the limit u ∈ L∞(0, T ;H1(Td)). Then, since

D

∫ T

0

∫
Td

u∇u · ∇∆φ = −D
∫ T

0

∫
Td

∆φ |∇u|2 −D

∫ T

0

∫
Td

u∆u∆φ
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and using formula (4.1.14), we compute

I1 + I2 = D

∫ T

0

∫
Td

(∇u⊗∇u) : D2φ − D

2

∫ T

0

∫
Td

|∇u|2∆φ−D

∫ T

0

∫
Td

u∆u∆φ

= −D
∫ T

0

∫
Td

∆u∇u · ∇φ−D

∫ T

0

∫
Td

u∆u∆φ.

This ends the proof of Theorem 4.1.8.

4.4 Appendix

4.4.1 Difference quotients

Lemma 4.4.1. Let {uε} be a sequence strongly compact in L2(0, T ;H1(Td)). Then, for fixed
y ∈ Td,

uε(t, x− εy)− uε(t, x)

ε
→ −∇u(t, x) · y strongly in L2((0, T )× Td).

Démonstration. We write

uε(t, x− εy)− uε(t, x)

ε
= −y ·

∫ 1

0

∇uε(t, x− εθy) dθ

= −y ·
∫ 1

0

(∇uε(t, x− εθy)−∇uε(t, x)) dθ − y · ∇uε(t, x).

By assumption y · ∇uε → y · ∇u strongly in L2((0, T ) × Td) so we only have to prove that the
first term on the (RHS) converges to 0. By Fubini’s theorem and Cauchy-Schwarz inequality∫ T

0

∫
Td

∣∣∣ ∫ 1

0

(∇uε(t, x− εθy)−∇uε(t, x)) dθ
∣∣∣2 dxdt

≤ C

∫ 1

0

∫ T

0

∫
Td

|∇uε(t, x− εθy)−∇uε(t, x)|2 dxdtdθ = C

∫ 1

0

∥τεθy∇uε −∇uε∥2L2((0,T )×Td) dθ,

where τ is the translation operator. The last term converges to 0 when ε → 0 by the Fréchet
Kolmogorov theorem.

4.4.2 Growth estimates on mollified nonlinearity

Lemma 4.4.2. Let F satisfies Assumption 4.1.1 with constants C1, ..., C10. Then, Fδ = F ∗ ηδ
with 0 ≤ δ ≤ 1 satisfies Assumption 4.1.1 with constants

C̃1 = 21−kC1, C̃2 = C1 + C2, C̃3 = 2k−1 C3, C̃4 = C̃3 + C4,

C̃5 = min(23−k, 1)C5, C̃6 = C5 + C6, C̃7 = max(2k−3, 1)C7, C̃8 = C̃7 + C8.

C̃9 = C9 + 2C10, C̃10 = 2C10.
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Démonstration. We decompose Fδ,1 = F1 ∗ηδ and Fδ,2 = F2 ∗ηδ. Suppose that F1(u) ≤ C3|u|k+
C4. Then,

Fδ,1(u) =

∫
R
F1(u− s) ηδ(s) ds ≤ C3

∫
R
|u− s|kηδ(s) ds+ C4 ≤ 2k−1C3|u|k + 2k−1C3 + C4

where we used inequality valid for p ≥ 0

|u− s|p ≤ max(1, 2p−1) (|u|p + |s|p). (4.4.1)

It follows that C̃3 = 2k−1C3 and C̃4 = 2k−1C3 +C4. In a similar way, we compute constants C̃7,
C̃8. For C̃1, C̃2, C̃5, C̃6 the reasoning is the same but we have to use a lower bound of the form

|u− s|p ≥ min(1, 21−p) |u|p − |s|p.

so that, for example, if F1 ≥ C1|u|k − C2 we have

Fδ,1(u) =

∫
R
F1(u− s) ηδ(s) ds ≥ C1

∫
R
|u− s|kηδ(s) ds− C2 ≥ 21−k C1 |u|p − C1 − C2.

For the constants C̃9, C̃10 we argue using (4.4.1) once again

Fδ,2(u) ≥ −C9 − C10

∫
R
|u− s|2ηδ(s) ds ≥ −C9 − 2C10 − 2C10 |u|2.

4.4.3 Potentials satisfying Assumption 4.1.1
Lemma 4.4.3. Let F be as in (3) in Example 4.1.2. Then, F satisfies Assumption 4.1.1.

Démonstration. On R \ I we define F1(u) = F (u). By [329, Theorem 3.2], there exists a C2

extension of F1 to R denoted by F1 which preserves convexity, i.e. F ′′
1 (u) > b > 0 for some b > 0.

Moreover, F1 has k-growth on R (in fact, by continuity, the behaviour of F1 on I can be included
in constants C2, C4, C6, C8 in Assumption 4.1.1). We finally define

F2 =

{
F (u)− F1(u) on I,
0 on R \ I.

Function F2 is C2 because at the endpoints of interval I we have F ′′ = F ′′
1 as F1 is C2 extension

of F . Finally, F2 satisfies condition (C) in Assumption 4.1.1 with F2(u) ≥ −∥F2∥∞.

4.4.4 Proof of Lemma 4.2.2
Démonstration. First, we note the formula which will be useful

ϕ(x) =

∫ x

1

∫ y

1

1

z
dz dy.

Now, we proceed to the proof. First, (1) follows from the definition. Next, (2) follows from writing

ϕδ(x) =

∫
R

∫
R

1

Tδ(z)
sgn(y − 1) sgn(x− 1)1y∈[1,x] 1z∈[1,y] dz dy, (4.4.2)
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and dominated convergence (for fixed x > 0). Then, (3) follows from Tδ ≥ 0 and the observation
that x ≥ 1, x < 1 implies y ≥ 1, y < 1 respectively.

To see (4), we distinguish three cases.

— When x ≥ 1
δ − 1, we split the integrals and use the estimate Tδ(x) ≥ 1

δ − 1 so that

ϕδ(x) ≤
∫ 1

δ−1

1

∫ y

1

1

z
dz dy +

∫ x

1
δ−1

∫ y

1

1
1
δ − 1

dz dy ≤

≤ ϕ

(
1

δ
− 1

)
+

δ

2(1− δ)
x2 ≤ ϕ(x) +

δ

1− δ
(x− 1)2,

because ϕ(x) is non-decreasing for x ≥ 1.

— When, x ∈
(
2δ, 1δ − 1

)
we have ϕδ = ϕ because on this set Tδ(z) = z.

— When x ∈ [0, 2δ] we have a lower bound Tδ(x) ≥ δ so that

ϕδ(x) ≤
∫ 2δ

x

∫ 1

y

1

δ
+

∫ 1

2δ

∫ 1

y

1

z
dz ≤ 2 + ϕ(2δ) ≤ 3

as ϕ(2δ) ≤ ϕ(0) = 1 because ϕ(x) is decreasing for x ∈ (0, 1).

Finally, to see (5), let x < 0. Then,

ϕδ(x) ≥
∫ 0

x

∫ 0

y

1

δ
dz dy =

1

δ

∫ 0

x

−y dy =
x2

2δ
.

4.4.5 Bourgain-Brézis-Mironescu and Ponce compactness result

We upgrade here the result of [294, Proposition 4.2] and [53, Theorem 4] to the time-space
setting. We consider sequence of radial functions {ρε} such that ρε ≥ 0,

∫
Rd ρε = 1 and

lim
ε→0

∫
|x|>δ

ρε(x) dx = 0 for all δ > 0.

For the formulation of the compactness result, we use another sequence {φδ}δ∈(0,1) ⊂ C∞
c (Rd)

of standard mollifiers with mass 1 such that φδ(x) = 1
δd
φ(xδ ) with φ of mass 1 and compactly

supported.

Theorem 4.4.4. Let d ≥ 2. Let {fε} be a sequence bounded in Lp((0, T ) × Td). Suppose that
there exists a sequence {ρε} as above such that∫ T

0

∫
Td

∫
Td

|fε(t, x)− fε(t, y)|p
|x− y|p ρε(|x− y|) dxdy dt ≤ C (4.4.3)

for some constant C. Then, {fε} is compact in space in Lp((0, T )× Td), i.e.

lim
δ→0

lim sup
ε→0

∫ T

0

∫
Td

|fε ∗ φδ(t, x)− fε(t, x)|p dxdt = 0. (4.4.4)
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Remark 4.4.5. Let ω : Rd → R be a smooth function, supported in the unit ball such that∫
Rd ω(x) dx = 1. Consider ωε = 1

εd
ω
(
x
ε

)
. Suppose that∫ T

0

∫
Td

∫
Td

|fε(x)− fε(y)|p
εp

ωε(|x− y|) dxdy dt ≤ C̃.

Then, (4.4.3) is satisfied. Indeed, we consider

ρε(x) =
ωε(|x|) |x|p

εp
∫
Rd ω(y)|y|p dy

(4.4.5)

so that (4.4.3) holds true with C̃∫
Rd ω(y)|y|p dy

.

Proof of Theorem 4.4.4. The result for sequences that do not depend on time has been obtained
in [53, 294]. To demonstrate that it is sufficient to integrate in time the reasoning mentioned
above, we make an additional assumption that for every ε, ρε is a nonincreasing function as in
in [53, Theorem 4]. For the general case, one has to proceed as in [294, Theorem 1.2].

We define

Fε(s) :=

∫ T

0

∫
|y|=1

∫
Td

|fε(t, x+ sy)− fε(t, x)|p dxdy dt

=
1

sd−1

∫ T

0

∫
|y|=s

∫
Td

|fε(t, x+ y)− fε(t, x)|p dxdy dt.

By virtue of the computation above, we can express the assumption 4.4.3 using function Fε as
follows ∫ δ

0

sd−1Fε(s) ρε(s)

sp
ds ≤ C. (4.4.6)

Using the triangle inequality

|fε(t, x+ 2sy)− fε(t, x)| ≤ |fε(t, x+ 2sy)− fε(t, x+ sy)|+ |fε(t, x+ sy)− fε(t, x)|

and change of variables we obtain

Fε(2s) ≤ 2pFε(s),
Fε(2s)

(2s)p
≤ Fε(s)

sp
. (4.4.7)

We estimate by Jensen’s inequality∫ T

0

∫
Td

|fε ∗ φδ − fε|p dxdt ≤
C

δd

∫ T

0

∫
Td

∫
|x−y|≤δ

|fε(x)− fε(y)|p dy dxdt

=
C

δd

∫ T

0

∫
Td

∫
|h|≤δ

|fε(x+ h)− fε(x)|p dhdxdt

=
C

δd

∫ T

0

∫
Td

∫ δ

0

sd−1

∫
|h|=s

|fε(x+ h)− fε(x)|p dhdsdxdt =
C

δd

∫ δ

0

sd−1Fε(s) ds.

(4.4.8)
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Now, we use functional inequality (which requires doubling condition (4.4.7), cf. [53, Eq. (24)])

δ−d
∫ δ

0

sd−1Fε(s)

sp
ds ≤ C(d)

∫ δ
0
sd−1 Fε(s) ρε(s)

sp ds∫
|x|<δ ρε(x) dx

(4.4.9)

For each δ > 0, there exists ε(δ) such that for all ε < ε(δ) we have
∫
|x|<δ ρε(x) dx = 1. In

particular, for ε < ε(δ) we have by (4.4.9) and (4.4.6)

δ−d
∫ δ

0

sd−1Fε(s)

sp
ds ≤ C(d) δp.

In view of (4.4.8), the proof is concluded.

4.4.6 Nonlocal Poincaré inequalities

Let ω : Rd → R be a smooth function, supported in the unit ball such that
∫
Rd ω(x) dx = 1.

Consider ωε = 1
εd
ω
(
x
ε

)
.

Lemma 4.4.6. There exists Cp and εA0 such that∫
Td

|f − (f)Td |2 ≤ 1

4Cp

∫
Td

∫
Td

|f(t, x)− f(t, y)|2
ε2

ωε(|x− y|) dxdy

for every f ∈ L2(Td) and ε ≤ εA0 .

For the proof, we refer to Ponce [294, Theorem 1.1] with kernel given by (4.4.5). We also have
an opposite inequality from [53, Theorem 1] :

Lemma 4.4.7. For all f ∈ H1(Td)∫
Td

∫
Td

|f(x)− f(y)|2
ε2

ωε(x− y) dx dy ≤ C(Td) ∥f∥2H1(Td).

Finally, we formulate a variant of Lemma 4.4.6 which does not require an average on the left-hand
side.

Lemma 4.4.8. For each γ ∈ (0, 1) there exists εB0 and constant C(γ) such that for all ε ∈ (0, εB0 )
and all f ∈ H1(Td) we have

∥f∥2H1(Td) ≤ γ

∫
Td

∫
Td

|∇f(x)−∇f(y)|2
ε2

ωε(|x− y|) dx dy + C(γ)∥f∥2L2(Td).

Démonstration. Aiming at a contradiction, suppose that there exists γ with the following pro-
perty : there exists sequence {εn} with 0 < εn <

1
n and sequence {fn} such that

∥fn∥2H1(Td) > γ

∫
Td

∫
Td

|∇fn(x)−∇fn(y)|2
ε2n

ωεn(|x− y|) dx dy + n ∥fn∥2L2(Td).

As ∥fn∥H1(Td) > 0, we may define gn := fn
∥fn∥H1(Td)

. Note that ∥gn∥H1(Td) = 1 and

1 > γ

∫
Td

∫
Td

|∇gn(x)−∇gn(y)|2
ε2n

ωεn(|x− y|) dxdy + n ∥gn∥2L2(Td).



4.4. Appendix 163

The first term gives compactness of the gradients (because {gn} is bounded in H1(Td) so that,
together with Rellich-Kondrachov, there exists function g such that gn → g in H1(Td) (after
passing to a subsequence). But then g = 0 because n ∥gn∥L2(Td) < 1. This is however contradiction
with ∥g∥H1(Td) = limn→∞ ∥gn∥H1(Td) = 1.

4.4.7 Compactness in time/space with the Fréchet-Kolmogorov theo-
rem

Lemma 4.4.9. Suppose that {fε} is a sequence bounded in L2((0, T )× Td) such that

— ∂tfε = ∇k(Jε), where ∇k is any linear differential operator of order k ∈ N and {Jε}
uniformly bounded in L1((0, T )× Td),

— {fε} is compact in space in L2((0, T )× Td), i.e.

lim
δ→0

lim sup
ε→0

∫ T

0

∫
Td

|fε ∗ φδ(t, x)− fε(t, x)|2 dxdt = 0. (4.4.10)

uniformly for all ε.

Then, {fε} is compact in time in L2((0, T )× Td), i.e.

lim
h→0

lim sup
ε→0

∫ T−h

0

∫
Td

|fε(t+ h, x)− fε(t, x)|2 dxdt→ 0 as h→ 0 (4.4.11)

and so, it is compact in L2((0, T )× Td).

We recall that
∥∇kφδ∥Lp(Td) ≤

C

δk+d−d/p
,

and for any function g ∈ Lp(Td),

∥g ∗ φδ∥Lp(Td) ≤ ∥φδ∥Lp(Td)∥g∥L1(Td).

Démonstration. Using the mollifiers with δ = δ(h) depending on h to be specified later in the
way that δ(h) → 0 as h→ 0, we first split∫ T−h

0

∫
Td

|fε(t+ h, x)− fε(t, x)|2 dx dt ≤ 4

∫ T−h

0

∫
Td

|fε(t, x)− fε(t, ·) ∗ φδ(x)|2 dxdt

+ 4

∫ T−h

0

∫
Td

|fε(t+ h, x)− fε(t+ h, ·) ∗ φδ(x)|2 dx dt

+ 4

∫ T−h

0

∫
Td

|fε(t+ h, ·) ∗ φδ(x)− fε(t, ·) ∗ φδ(x)|2 dx dt.

When we apply limit limh→0 lim supε→0, the first and second term vanish due to (4.4.10). It
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remains to study the third term which reads∫ T−h

0

∫
Td

|fε(t+ h, ·) ∗ φδ(x)− fε(t, ·) ∗ φδ(x)|2 dx dt =

=

∫ T−h

0

∫
Td

∣∣∣∣∣
∫ t+h

t

∂tfε(s, ·) ∗ φδ(x) ds
∣∣∣∣∣
2

dx dt =

∫ T−h

0

∫
Td

∣∣∣∣∣
∫ t+h

t

J ∗ ∇kφδ(s, x) ds

∣∣∣∣∣
2

dx dt

≤ Ch

∫ T−h

0

∫
Td

∫ t+h

t

∣∣J ∗ ∇kφδ(s, x)
∣∣2 dsdxdt,

where we used Jensen’s inequality. We perform the change of variables s 7→ v = s−t
h , use Fubini’s

theorem, and obtain

h

∫ T−h

0

∫
Td

∫ t+h

t

∣∣J ∗ ∇kφδ(s, x)
∣∣2 dsdxdt = h2

∫ 1

0

∫
Td

∫ T−h

0

∣∣J ∗ ∇kφδ(vh+ t, x)
∣∣2 dtdx dv.

Then we use the change of variables t 7→ τ = v h+ t and obtain

h2
∫ 1

0

∫
Td

∫ T−h

0

∣∣J ∗ ∇kφδ(vh+ t, x)
∣∣2 dtdx dv =

= h2
∫ 1

0

∫
Td

∫ T+h(v−1)

vh

∣∣Ji ∗ ∇kφδ(τ, x)
∣∣2 dτ dxdv ≤ h2

δ2k+d
∥Jε∥2L1

t,x
.

Using the L1((0, T )× Td) bound on {Jε} and choosing δ such that δ2k+d = h we conclude that

lim
h→0

lim sup
ε→0

∫ T−h

0

∫
Td

|fε(t+ h, x)− fε(t, x)|2 dxdt ≤ θ(h).

Combined with the compactness in space (4.4.11) and the Fréchet-Kolmogorov theorem we obtain
the compactness of {fε} in L2((0, T )× Td).

Remark 4.4.10. Compared with the usual version of the Fréchet-Kolmogorov theorem, one would
expect that the condition for compactness in space should read

lim
y→0

lim sup
ε→0

∫ T

0

∫
Td

|fε(t, x+ y)− fε(t, x)|2 dxdt = 0. (4.4.12)

However, by a careful inspection of the proof, (4.4.10) is sufficient and in fact, in the proof one
deduces (4.4.10) from (4.4.12).



Chapitre 5

Degenerate Cahn-Hilliard systems :
From nonlocal to local

Abstract

We provide a rigorous mathematical framework to establish the limit of a nonlocal model of
cell-cell adhesion system to a local model. When the parameter of the nonlocality goes to 0, the
system tends to a Cahn-Hilliard system with degenerate mobility and cross interaction forces.
Our analysis relies on a priori estimates and compactness properties.

5.1 Introduction

We consider the nonlocal system of Cahn-Hilliard equation with degenerate mobility derived
in [165]

∂ρ

∂t
= ∇ · (ρ∇ (κB[ρ] + αB[η]− γρ− βη)) , in (0,+∞)× Td, (5.1.1)

∂η

∂t
= ∇ · (η∇ (αB[ρ] +B[η]− βρ− η)) , in (0,+∞)× Td. (5.1.2)

equipped with an initial datum (ρ0, η0) ∈ P(Td)2 where P(Td) is the space of probability
measures on the flat torus of dimension d. Here κ, α, γ > 0, β ∈ R while B is the nonlocal
operator B = Bε defined with

Bε[uε](x) =
1

ε2
(uε(x)− ωε ∗ uε(x)) =

1

ε2

∫
Td

ωε(y)(uε(x)− uε(x− y)) dy (5.1.3)

for ε small enough and ωε is the usual radial mollification kernel ωε(x) = 1
εd
ω(xε ) with ω com-

pactly supported in the unit ball satisfying∫
Rd

ω(y) dy = 1,

∫
Rd

y ω(y) dy = 0,

∫
Rd

yiyjω dy = δi,j
2

d
. (5.1.4)

165
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Our target is to prove that as ε→ 0, the constructed solutions of

∂ρ

∂t
= ∇ · (ρ∇ (κBε[ρ] + αBε[η]− γρ− βη)) , in (0,+∞)× Td, (5.1.5)

∂η

∂t
= ∇ · (η∇ (αBε[ρ] +Bε[η]− βρ− η)) , in (0,+∞)× Td (5.1.6)

tend to the weak solution of the local system of degenerate Cahn-Hilliard equations

∂ρ

∂t
= ∇ · (ρ∇ (−κ∆ρ− α∆η − γρ− βη)) , (5.1.7)

∂η

∂t
= ∇ · (η∇ (−α∆ρ−∆η − βρ− η)) . (5.1.8)

Here, κ > 0 and γ > 0 represent the relative self-adhesion strength of ρ with respect to η ; while
α > 0 and β ∈ R give the relative strength of the cross-attraction forces. We also denote by

µρ,ε = κBε[ρ] + αBε[η]− γρ− βη ,

µη,ε = αBε[ρ] +Bε[η]− βρ− η ,

the chemical potentials (from the Cahn-Hilliard terminology) related to the nonlocal system. The
nonlocal system is associated with the following formal energy/entropy structure

Eε[ρ, η] :=
1

4

∫
Td

∫
Td

ωε(y)

ε2
(κ|ρ(x)− ρ(x− y)|2 + |η(x)− η(x− y)|2) dxdy

+
α

2

∫
Td

∫
Td

ωε(y)

ε2
(ρ(x)− ρ(x− y))(η(x)− η(x− y)) dxdy −

∫
Td

γ

2
ρ2 +

1

2
η2 + βρη dx,

(5.1.9)

Φ[ρ, η] :=

∫
Td

ρ(log(ρ)− 1) + η(log(η)− 1) dx. (5.1.10)

Their dissipation is formally controlled by the identities

Eε[ρ, η](t) +

∫ t

0

∫
Td

ρ |∇µρ,ε|2 +
∫ t

0

∫
Td

η |∇µη,ε|2 ≤ Eε[ρ0, η0], (5.1.11)

Φ[ρ, η](t) +DΦ[ρ, η](t) ≤ Φ[ρ0, η0]. (5.1.12)

where DΦ[ρ, η](t) is the dissipation of the entropy defined as

DΦ[ρ, η](t) =
1

2

∫ t

0

∫
Td

∫
Td

ωε(y)

ε2
(κ|∇ρ(x)−∇ρ(x− y)|2 + |∇η(x)−∇η(x− y)|2) dxdy ds

+ α

∫ t

0

∫
Td

∫
Td

ωε(y)

ε2
(∇ρ(x)−∇ρ(x− y)) · (∇η(x)−∇η(x− y)) dxdy ds

−
∫ t

0

∫
Td

γ|∇ρ|2 + |∇η|2 + 2β∇ρ · ∇η dxds .

It turns out (see Proposition 5.2.1) that for κ > α2, κ > 0 they provide strong compactness in
space of ρε, ηε, ∇ρε, ∇ηε.
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Our first result states that we can construct solutions to (5.1.5)-(5.1.6) satisfying additional
uniform estimates which will be relevant in the sequel.

Theorem 5.1.1 (Existence of solutions for the nonlocal system). Suppose that κ > 0, κ > α2.
Let ε0 = min(εA0 , ε

B
0 ) be given by Proposition 5.2.1 and Lemma 5.3.2. Let u0 = (ρ0, η0) ∈ P(Td)2

be an initial datum with finite energy and entropy Eε(u0),Φ(u0) ≤ C defined in (5.1.9)-(5.1.10)
where C is independent of ε. Let ε ≤ ε0. Then, there exists a global weak solution uε ∈ P(Td)2
of (5.1.5)-(5.1.6) as defined in Definition 5.3.1. Moreover, it satisfies∫

Td

∫
Td

ωε(y)

ε2
(|ρε(x)− ρε(x− y)|2 + |ηε(x)− ηε(x− y)|2) dxdy ≤ C, (5.1.13)

∫ T

0

∫
Td

∫
Td

ωε(y)

ε2
(|∇ρε(x)−∇ρε(x− y)|2 + |∇ηε(x)−∇ηε(x− y)|2) dx dy dt ≤ C, (5.1.14)

for a constant C that depends on parameters and the initial condition u0 but not on ε.

The proof of this result follows the argument of [135]. We decided to include the proof to de-
monstrate estimates (5.1.13)–(5.1.14) which are essential for our main result which reads as
follows.

Theorem 5.1.2 (Convergence of nonlocal to local Cahn-Hilliard equation on the torus). Suppose
that κ > 0, κ > α2. Let u0 ≥ 0 be an initial datum with finite energy and entropy Eε(u0),Φ(u0) ≤
C defined in (5.1.9) and (5.1.10) where C is independent of ε. Let {uε} be a sequence of solutions
of the degenerate nonlocal Cahn-Hilliard equation (5.1.5)-(5.1.6) as defined in Definition 5.3.1.
Then, up to a subsequence (not relabelled),

uε → u in L2(0, T ;H1(Td)) ,

where u is a weak solution of the degenerate Cahn-Hilliard system (5.1.7)-(5.1.8) as in Defini-
tion 5.4.1.

We conclude with a short discussion of applied techniques and considered problems.
Existence of weak solutions. The strategy to prove the existence of weak solutions is based on
the gradient flow structure of the equation in the Wasserstein space. We use the JKO scheme
first introduced in [234] by Jordan, Kinderlehrer and Otto in the context of the Fokker-Planck
equation. The main idea is to use an implicit time discretization of the associated variational
problems. The sequence created minimizes movements. When the time step goes to 0, the se-
quence converges to the associated gradient flow. This strategy has been used for instance in [258,
244, 271] in the context of Cahn-Hilliard equation and in [135] in the context of cross-diffusion
systems with nonlocal interaction. The proof of Theorem 5.1.1 is in fact closely related to the one
in [135] and we follow to some extent their proof. The difference is the control of the positiveness
of the energy and the transport of uniform bounds independently of ε needed in the last section.
Also, our settings are periodic in space. The proof uses two main components :

— The "gradient flow" structure of the scheme which provides classical discrete energy esti-
mates and Hölder continuity in time and allow narrow convergences of the scheme.

— The weak convergences being not enough, we use the flow interchange lemma [270, 258].
The idea is that we usually obtain better estimates with the entropy in the Cahn-Hilliard
equation. This entropy generates a heat-flow. Then the flow interchange lemma allows to
exchange the dissipation of one functional along the gradient flow of another one and thus
improve the regularity of the scheme.



168 CHAPITRE 5. Degenerate Cahn-Hilliard systems : From nonlocal to local

Nevertheless, since we assume that κ > α2 and κ > 0, the system is strongly parabolic with
respect to (ρ, η). Therefore, to prove existence, one could approximate (5.1.5)–(5.1.6) by

∂ρ

∂t
= ∇ · (Tδ(ρ)∇ (κBε[ρ] + αBε[η]− γρ− βη)) , in (0,+∞)× Td, (5.1.15)

∂η

∂t
= ∇ · (Tδ(η)∇ (αBε[ρ] +Bε[η]− βρ− η)) , in (0,+∞)× Td, (5.1.16)

where Tδ is a function such that δ ≤ Tδ ≤ 1
δ and Tδ(ϱ) → ϱ as δ → 0. Then, one sends δ → 0

and obtains solutions to (5.1.5)–(5.1.6). This method is a standard way of proving existence
of solutions to Cahn-Hilliard equation with degenerate mobility [113, 157, 151, 287, 156]. Of
course, one has to prove estistence to (5.1.15)–(5.1.16) by virtue of fixed point method and
Schauder’s estimates for parabolic equations which is very technical. Therefore, we preferred to
apply gradient flow techniques which are natural for our problem.
Passage to the limit ε→ 0 and nonlocal compactness results. We use the strategy developed by
the second and third author in [155] for the single Cahn-Hilliard equation. The main tool is
the compactness result due to Bourgain-Brezis-Mironescu [53] and Ponce [294] which reads as
follows :

Proposition 5.1.3. Let {fε} be a sequence bounded in L2(Td). Suppose that∫
Td

∫
Td

|fε(x)− fε(y)|2
|x− y|2 ωε(|x− y|) dx dy ≤ C (5.1.17)

for some constant C. Then, {fε} is strongly compact in L2(Td) and the limit f ∈W 1,2(Td).

Proposition 5.1.3 is crucial because the difference quotient appearing in (5.1.17) can be controlled
by the energy and the dissipation of the entropy of Cahn-Hilliard equation which yields com-
pactness. The novelty comes from the treating of cross-interactions terms. It turns out that we
can control possibly negative terms appearing in the energy and the dissipation of entropy by a
simple interpolation inequality, see Lemma 5.2.2 and Proposition 5.2.1.
Aggregation-diffusion systems. System (5.1.5)-(5.1.6) is an example of aggregation-diffusion sys-
tem [85] which are attracting a lot of mathematical attention nowadays [313, 86, 33, 77, 164]. To
motivate, let us first start with an aggregation equation

∂ρ

∂t
+∇ · (ρu) = 0, u = −∇W ∗ ρ, (5.1.18)

whereW : Td → R is a symmetric interaction potential. Over the last years, equation (5.1.18) was
applied in the context of biological aggregation [51, 319, 278], materials science [216], granular
media [88, 43] and it attracted also a lot of mathematical interest, particularly for non-smooth
potentials. We only refer to [47] for the Lp theory, to [76] for the theory in spaces of measures
and to [46] for blow-up conditions. Equation (5.1.18) can be derived from the particle system via
mean-field limit [225, 224] : one considers N particles having positions {Xi}i=1,...,N satisfying
system of ODEs :

X ′
i = − 1

N

∑
j ̸=i

∇W (Xi −Xj);

then, under appropriate assumptions on W , empirical measure ρN (t) = 1
N

∑N
i=1 δXi(t) converges

(in the weak∗ topology of measures) to a solution of (5.1.18), see [91, Theorem 3.1] for the proof
and [84] for some extensions.
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To obtain the aggregation-diffusion equation from (5.1.18), one can consider interaction potentials
of the formWν =W+2νδ0 modeling two effects : repulsion of strength ν and non-local attraction.
Informally, we obtain

∂ρ

∂t
= ν∆ρ2 +∇ · (ρ∇W ∗ ρ), (5.1.19)

but this can be made rigorous by approximating the Dirac mass with a sequence of mollifiers,
see [92, 65] with m = 2. Of course, (5.1.19) can be extended to include more general diffusion
term ∆ρm instead of ∆ρ2 as well as an advection term, see [93].

One can also consider system of particles {Xi}i=1,...,N , {Yi}i=1,...,N representing two popula-
tions. Then, repeating the derivation explained above, one arrives at a system of equations of
the form (5.1.1)–(5.1.2) which can be used to model cell-cell adhesion [26, 87, 82] to reproduce
the Steinberg cell-sorting phenomena. Structure preserving numerical schemes have been deri-
ved for equations and systems of aggregation-diffusion type [83, 31, 30] as well as Cahn-Hilliard
equations and systems [32, 165] recovering the cell sorting mechanism.

Gradient flows in the periodic setting. Due to the presence of a non-local operator Bε in (5.1.5)–
(5.1.6), we develop our theory on the d-dimensional torus Td which makes non-local terms easy
to be defined. As already explained, solutions to (5.1.5)–(5.1.6) will be constructed via JKO
scheme. In what follows, we briefly review the theory of optimal transport on Td comparing to
the usual case of Rd or bounded domain Ω ⊂ Rd. We refer the Reader to [305, Section 1.3.2].

First, we need to define a metric and the natural choice is

d(x, y) = inf
k∈Zd

|x− y + k|, x, y ∈ Td,

where | · | is the Euclidean distance. Then, the Wasserstein distance W2 is defined as

W 2
2 (µ, ν) = inf

π∈Π(µ,ν)

∫
Td×Td

d(x, y)2 dπ(x, y), µ, ν ∈ P(Td),

where Π(µ, ν) is the set of couplings between µ and ν. This already implies that, say in dimension
d = 1, the optimal transport maps are not necessarily monotone on the torus. Nevertheless, the
optimal map always exists if at least one of the measures is absolutely continuous with respect
to the Lebegue measure. Moreover, the optimal map is given by the gradient of some function
which is differentiable a.e. We refer to [111] for the first proof of this fact and to [305, Theorem
1.25] for a modern presentation. We also refer to the general result of McCann [272] who proved
existence of the optimal map on the general manifold, including the case of torus.

To conclude, let us mention that optimal transport was used to study several PDEs on the torus
via JKO scheme, in particular fractional porous medium equation [173], continuity equation
with nonlocal velocity in 1D [174], systems of continuity equations with nonlinear diffusion and
nonlocal drifts [73] and certain fourth-order equation in one dimension [89].

5.2 Energy and entropy for the non-local system

As already mentioned, system (5.1.5)–(5.1.6) has the energy/entropy structure which can be
used to obtain compactness estimates. In order to do so, one has to assure nonnegativity of the
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quantities of interest. In our case, we focus on the energy Eε and the dissipation of entropy DΦ.

Proposition 5.2.1. Suppose that κ > 0, κ > α2. Then, there exists εA0 > 0 depending on κ,
α, β, γ with the following property : for all ε ∈ (0, εA0 ) and ρ, η ∈ P(Td), up to a constant, the
energy defined by (5.1.9) and the dissipation of the entropy defined in (5.1.12) are nonnegative
and provide the estimates on the quantities∫

Td

∫
Td

ωε(y)

ε2
(|ρ(x)− ρ(x− y)|2 + |η(x)− η(x− y)|2) dx dy ≤ C + Eε[ρ, η],∫ t

0

∫
Td

∫
Td

ωε(y)

ε2
(|∇ρ(x)−∇ρ(x− y)|2 + |∇η(x)−∇η(x− y)|2) dxdy ds ≤ C +DΦ[ρ, η](t),

where C depends on κ, α, β and γ.

The main tool to establish nonnegativity (up to a constant) is the following non-local Poincare
inequality with parameter which allows to handle negative terms.

Lemma 5.2.2 (Poincare inequality with a parameter). For all δ > 0 there exists C(δ) and
ε0 = ε0(δ) such that for all ε < ε0 and all f ∈ H1(Td) we have

∥f∥22 ≤ δ

∫
Td×Td

ωε(y)
|f(x)− f(x− y)|2

ε2
dx dy + C(δ)∥f∥21, (5.2.1)

∥∇f∥22 ≤ δ

∫
Td×Td

ωε(y)
|∇f(x)−∇f(x− y)|2

ε2
dxdy + C(δ)∥f∥21. (5.2.2)

Démonstration. We prove (5.2.2) as (5.2.1) is in fact easier. Aiming at a contradiction, suppose
that there exists δ > 0 with the following property : there exists sequence {εn} with 0 < εn <

1
n

and sequence {fn} such that

∥∇fn∥2L2(Td) > δ

∫
Td

∫
Td

|∇fn(x)−∇fn(y)|2
ε2n

ωεn(|x− y|) dxdy + n ∥fn∥2L1(Td).

As ∥∇fn∥L2(Td) > 0, we may define gn := fn
∥∇fn∥L2(Td)

. Note that ∥∇gn∥L2(Td) = 1 and

1 > γ

∫
Td

∫
Td

|∇gn(x)−∇gn(y)|2
ε2n

ωεn(|x− y|) dxdy + n ∥gn∥2L1(Td).

By Poincare inequality with average, {gn} is bounded in L2(Td) and so in H1(Td). Moreover, the
first term gives compactness of the gradients (because {gn} is bounded inH1(Td) so that, together
with Rellich-Kondrachov, there exists function g such that gn → g in H1(Td) (after passing to
a subsequence). But then g = 0 because n ∥gn∥L1(Td) < 1. This is however contradiction with
∥∇g∥L2(Td) = limn→∞ ∥∇gn∥L2(Td) = 1.

Proof of Proposition 5.2.1. We first focus on the energy. We can estimate

−
∫
Td

γ

2
ρ2 +

1

2
η2 + βρ η ≥ −γ + |β|

2

∫
Td

ρ2 − 1 + |β|
2

∫
Td

η2.

Then, we use (5.2.1) in Lemma 5.2.2 with δ := δ/max
(
γ+|β|

2 , 1+|β|
2

)
and δ > 0 to be chosen
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later (this also determines εA0 = εA0 (δ)) so that we obtain for ε ∈ (0, εA0 )

−
∫
Td

γ

2
ρ2 +

1

2
η2 + βρ η ≥

≥ −δ
4

∫
Td×Td

ωε(y)
|ρ(x)− ρ(x− y)|2

ε2
dxdy− δ

4

∫
Td×Td

ωε(y)
|η(x)− η(x− y)|2

ε2
dxdy−C(δ).

Therefore, using (5.1.9), we can bound energy as follows

Eε[ρ, η] ≥
1

4ε2

∫
Td

∫
Td

ωε(y)((κ− δ) |ρ(x)− ρ(x− y)|2 + (1− δ) |η(x)− η(x− y)|2) dx dy

+
α

2ε2

∫
Td

∫
Td

ωε(y)(ρ(x)− ρ(x− y))(η(x)− η(x− y)) dxdy − C(δ).

Now, by continuity, we choose δ so small so that κ − δ > 0 and (κ − δ)(1 − δ) − α2 > 0, i.e. so

that the matrix
(
κ− δ α
α 1− δ

)
is positively defined. It follows that the assosciated quadratic

form is bounded from below, that is there exists constant C (in fact, this constant is the smallest
eigenvalue of the matrix) such that

Eε[ρ, η] ≥
C

ε2

∫
Td

∫
Td

ωε(y)(|ρ(x)− ρ(x− y)|2 + |η(x)− η(x− y)|2) dxdy − C(δ).

The proof for the entropy is the same : this time we use (5.2.2) in place of (5.2.1).

5.3 Existence of weak solutions to the nonlocal problem

To prove the existence of weak solutions for our system, we want to apply the JKO scheme,
see [234]. As ε is fixed in this Section, we write (ρ, η) for the solution, instead of (ρε, ηε).

Definition 5.3.1 (Weak solutions). We say that u = (ρ(·), η(·)) : [0,+∞) → P(Td)2 is a weak so-
lution of (5.1.5)-(5.1.6) with initial condition (ρ0, η0) satisfying (5.3.4) if ρ, η ∈ C([0, T ];P(Td)),
ρ, η ∈ L2(0, T ;H1(Td)) ∩ L∞(0, T ;L2(Td)) for all T > 0, and if for all φ, ϕ ∈ C∞

c ([0,+∞)× Td)
we have

−
∫ ∞

0

∫
Td

ρ∂tφdxdt−
∫
Td

ρ0φ(0) dx = −κ
∫ ∞

0

∫
Td

ρ∇Bε[ρ] · ∇φdx dt

− α

∫ ∞

0

∫
Td

ρ∇Bε[η] · ∇φdx dt−
∫ ∞

0

∫
Td

ρ(γ∇ρ− β∇η) · ∇φdx dt,

−
∫ ∞

0

∫
Td

η∂tϕdxdt−
∫
Td

η0ϕ(0) dx = −
∫ ∞

0

∫
Td

η∇Bε[η] · ∇ϕdxdt

− α

∫ ∞

0

∫
Td

η∇Bε[ρ] · ∇ϕdxdt−
∫ ∞

0

∫
Td

η(∇η − β∇ρ) · ∇ϕ dxdt.
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We first rewrite system of equations (5.1.5)-(5.1.6) in the following form

∂ρ

∂t
= ∇ · (ρ∇ (κ̃ρ− (κ̃+ γ)ωε ∗ ρ+ α̃η − (α̃+ β)ωε ∗ η)) , in (0,+∞)× Td, (5.3.1)

∂η

∂t
= ∇ · (η∇ (α̃ρ− (α̃+ β)ωε ∗ ρ+ c̃η − (c̃+ 1)ωε ∗ η)) , in (0,+∞)× Td. (5.3.2)

where κ̃ = κ
ε2 − γ, α̃ = α

ε2 − β, c̃ = 1
ε2 − 1. Using this notation, the energy can be written as

Eε[ρ, η] =

∫
Td

κ̃

2
ρ2+

c̃

2
η2+ α̃ρη dx− κ̃+ γ

2

∫
Td

ωε ∗ρdρ−
c̃+ 1

2

∫
Td

ωε ∗η dη−(α̃+β)

∫
Td

ωε ∗η dρ
(5.3.3)

for ρ, η ∈ P(Td). We note that when we use ρ and η in expressions of the form ρ2, η2, ρη, we
mean in fact their Radon-Nikodym derivatives with respect to the Lebesgue measures. If they
exist and belong to L2(Td), the energy above makes sense. Otherwise, we consider that these
quantities are +∞.
We denote the Wasserstein distance for vectors u = (u1, u2) and v = (v1, v2) as

W2
2 (u, v) =W 2

2 (u1, v1) +W 2
2 (u2, v2),

for all u, v ∈ P(Td) × P(Td) and where W2 is the usual Wasserstein distance of order 2. For
the initial condition, we assume that (ρ0, η0) ∈ P(Td)2 are absolutely continuous with respect
to the Lebesgue measure and satisfy

Eε[ρ0, η0] ≤ C, Φ[ρ0, η0] ≤ C, (5.3.4)

where C is independent of ε.
In what follows it will be necessary to know when the function (ρ, η) 7→ κ̃

2ρ
2 + c̃

2η
2 + α̃ρη.

Fortunately, when κ > 0, κ > α2, this is always the case for sufficiently small ε.

Lemma 5.3.2. Suppose that κ > 0, κ > α2. Then, there exists εB0 > 0 depending on κ, α, γ, β
such that for all ε ∈ (0, εB0 ) the function (ρ, η) 7→ κ̃

2ρ
2 + c̃

2η
2 + α̃ρη is convex.

Démonstration. We note that the Hessian matrix reads
(
κ̃ α̃
α̃ c̃

)
so by the Sylvester’s criterion,

the desired convexity is equivalent with κ̃ > 0, κ̃ c̃ − α̃2 > 0. Concerning the first condition, as
κ > 0 and κ̃ = κ

ε2 − γ, we can easily find ε such that κ̃ > 0. Concerning the second condition, we
observe that the term standing next to the highest order term 1

ε4 equals κ−α2 and it is positive
by assumption. Therefore, the conclusion follows.

5.3.1 Construction of weak solutions

Let T ∈ (0,∞) be a final time of existence and consider the following scheme : given a time
step size τ > 0 and an initial condition u0 = (ρ0, η0) ∈ P(Td)2 with E[u0] < +∞ we define by
induction

u0τ := u0, un+1
τ := argmin

u∈P(Td)2

{
1

2τ
W2

2 (u
n
τ , u) + Eε[u]

}
, (5.3.5)

and we set Eε[u] = +∞ if u /∈ L2(Td)2.
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Lemma 5.3.3 (Existence of minimizers). Let τ > 0 and u0 = (ρ0, η0) ∈ P2(Td)2 with Eε[u0] <
+∞. Then the scheme defined by (5.3.5) is well-defined. Moreover, we have the following energy
estimate

Eε[u
N
τ ] +

1

2τ

N∑
n=1

W2
2 (u

n
τ , u

n−1
τ ) ≤ Eε[u0]. (5.3.6)

Démonstration. Step 1 : The infimum is bounded. Provided unτ is defined, we notice that unτ ∈
P(Td)2 satisfy 1

2τW2
2 (u

n
τ , u

n
τ )+Eε[u

n
τ ] = Eε[u

n
τ ] < +∞. Therefore the infimum is bounded from

above. Since Eε[u] is bounded from below by Proposition 5.2.1 and W 2
2 (u

n
τ , u) is nonnegative for

all u we also know that the infimum is bounded from below.
Step 2 : Candidate for a minimizer. We suppose that unτ is defined and we want to define un+1

τ .
Let {uk}k be a minimizing sequence in P(Td)2 for the problem (5.3.5). Without loss of generality,
we can assume that for k large enough we have

1

2τ
W2

2 (u
n
τ , u

k) + Eε[u
k] ≤ 2Eε[u

n
τ ], (5.3.7)

since the infimum is bounded by Eε[unτ ]. In particular

Eε[u
k] ≤ C(unτ )

with a constant C independent of k. By definition of the energy in (5.3.3), this proves that
we can extract from (uk)k a subsequence (still denoted by k) which converges weakly to some
u in L2(Td)2. Now we consider the function f(ρ, η) = κ̃

2ρ
2 + c̃

2η
2 + α̃ρη which is convex by

Lemma 5.3.2. It follows by Tonelli theorem that the functional defined by the first integral
of (5.3.3) is lower semi-continuous with respect to the L2 weak convergence. Since the other
terms of (5.3.3) are defined with convolutions, these terms are continuous with respect to the L2

weak convergence. In the end, u minimizes (5.3.5). Finally, u ∈ P(Td)2 as a direct consequence
of the weak convergence.
Step 3 : The energy estimate (5.3.6). Estimate (5.3.6) is a consequence of an induction of the
inequality

Eε[u
n+1
τ ] +

1

2τ
W2

2 (u
n+1
τ , unτ ) ≤ Eε[u

n
τ ],

by definition of unτ .

We have constructed a discrete in time sequence. We want to prove that a time-interpolation
of this sequence converges to a solution of (5.3.1)-(5.3.2). Let T > 0 be fixed and n =

[
T
τ

]
. We

define the interpolation uτ (t) = (ρτ (t), ητ (t)) by

ρτ (t) = ρnτ , ητ (t) = ηnτ , t ∈ ((n− 1)τ, nτ ],

where (ρnτ , η
n
τ ) = unτ defined in (5.3.5). We prove that this sequence is compact in the following

lemma :

Lemma 5.3.4 (Compactness of the time interpolation sequence). The sequence of curves {uτ}τ
is uniformly bounded in L∞(0, T ;L2(Td)). Moreover, for all T > 0, there exists an absolutely
continuous curve u : [0, T ] → P(Td)2 such that up to a subsequence, uτ (t, ·) converges to u(t, ·)
weakly in L2(Td) as τ → 0 for all t ∈ [0, T ] and uτ converges to u in C([0, T ],P(Td)2) as τ → 0
for all T > 0. The curve u is globally 1/2-Hölder continuous in time

W2(ut, us) ≤
√
2Eε[u0]

√
|s− t|, (5.3.8)
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and we have the estimate
∥u∥L∞(0,T ;L2(Td)) ≤ C (1 + Eε[u0]).

Démonstration. From (5.3.6) and by definition of uτ which takes discrete values in time we have
that

Eε[uτ (t)] +
1

2

∫ t−τ

0

(W2(uτ (s+ τ), uτ (s))

τ

)2

ds ≤ Eε[u0]. (5.3.9)

With Proposition 5.2.1, we obtain∫
Td

∫
Td

ωε(y)

ε2
|uτ (x)− uτ (x− y)|2 dx dy ≤ C(1 + Eε[u0]) (5.3.10)

so that by Lemma 5.2.1 we deduce uniform estimate in L∞(0, T ;L2(Ω)). To prove weak compact-
ness for all times t ∈ [0, T ] and Hölder continuity in time for the limiting curve, it is sufficient to
prove

lim sup
τ→0

W2(uτ (s), uτ (t)) ≤ C
√
|t− s|

for some constant C and apply [21, Proposition 3.3.1] (with d being W2 distance, σ being weak
topology on L2(Ω), K being the ball in L2(Td) such that uτ (s) ∈ K for all s ∈ [0, T ], C = ∅
and ω(t, s) =

√
t− s). To this end, we write for 0 ≤ s < t such that s ∈ ((m − 1)τ,mτ ] and

t ∈ ((n− 1)τ, nτ ]

W2(uτ (s), uτ (t)) ≤
n−1∑
i=m

W2(u
i
τ , u

i+1
τ ) ≤

(
n−1∑
i=m

W2
2 (u

i
τ , u

i+1
τ )

)1/2

|n−m|1/2

≤
√
2Eε[u0]

√
|t− s|+ τ ,

where in the last line we used (5.3.6) and |n−m| < |t−s|
τ + 1. This concludes the proof.

5.3.2 H1 estimates for the JKO scheme via flow interchange lemma

The weak convergence of the JKO scheme is not enough to pass to the limit in the definition
of weak solutions. We need to obtain better estimates on the solutions. In the Cahn-Hilliard
equation, better estimates are derived from considering the functional U [ρ, η] =

∫
ρ log ρ+η log η.

This functional generates the heat flow with respect to the Wasserstein distance W2. To improve
the regularity we, therefore, use the flow interchange lemma which states that the dissipation of
one functional along the gradient flow of another functional equals the dissipation of the second
functional along the gradient flow of the first one.
The main result of this section reads :

Proposition 5.3.5. Each solution of the JKO scheme (5.3.5) satisfies

unτ ∈ H1(Td) for all n ∈ N, τ > 0

and the time-interpolation uτ = (ρτ , ητ ) satisfies∫ T

0

∫
Td

∫
Td

ωε(y)

ε2
(|∇ρτ (t, x)−∇ρτ (t, x− y)|2 + |∇ητ (t, x)−∇ητ (t, x− y)|2) dxdy dt ≤ CT,
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for all T > 0. Moreover, for every sequence τk ↓ 0, we can extract a subsequence (still denoted
by τk) such that for all T > 0,

uτk → u strongly in L2((0, T )× Td)
uτk ⇀ u weakly in L2(0, T ;H1(Td)).

The main tool to prove Proposition 5.3.5 will be the following lemma.

Lemma 5.3.6. Let v0 = (ρ0, η0) ∈ L2(Td)2 with Eε[v0] < +∞. Let v = (ρ, η) : [0,+∞) →
L2(Td)2 be a solution of the heat flow{

∂tρt = ∆ρt, ∂tηt = ∆ηt, in (0,+∞)× Td

(ρ(0), η(0)) = (ρ0, η0).
(5.3.11)

Suppose that

lim inf
s↓0

1

s
(Eε[vs]− Eε[v0]) > −∞. (5.3.12)

Then, v0 ∈ H1(Td) and for some constant C depending only on the parameters κ, α, γ, β we
have∫

Td

∫
Td

ωε(y)

ε2
(|∇ρ0(x)−∇ρ0(x− y)|2 + |∇η0(x)−∇η0(x− y)|2) dxdy ≤

≤ −C lim inf
s↓0

1

s
(Eε[vs]− Eε[v0]).

(5.3.13)

The plan is to initiate the heat flow at the solutions to JKO scheme. If (5.3.12) is verified, then
(5.3.13) will provide the desired H1 estimate by Lemma 5.2.2. The crucial information here is
that dissipation of Cahn-Hilliard energy along heat flow is related to the dissipation of Cahn-
Hilliard entropy. The technical assumption (5.3.12) will be verified with the flow interchange
lemma which requires a definition of a λ-flow in P(Td)2.
Definition 5.3.7. Let F : P(Td)2 → (−∞,+∞] be a proper lower semi-continuous functional
and λ ∈ R. A continuous semigroup St : Dom(F ) → Dom(F ), t ≥ 0 is a λ-flow for F if it
satisfies the Evolution Variational Inequality (EVI)

1

2
lim sup
h↓0

[W2
2 (S

hu, v)−W2
2 (u, v)

h

]
+
λ

2
W2

2 (u, v) + F (u) ≤ F (v), (5.3.14)

for all measures u, v ∈ Dom(F ) with W2(u, v) < +∞.

Lemma 5.3.8 (Flow interchange Lemma [270, 258]). Assume that SF is a λ-flow for the pro-
per, lower semi-continuous functional F in P(Td)2 and let unτ be a n-th step approximation
constructed by the minimizing movement scheme (5.3.5). If unτ ∈ Dom(F ) then

F [unτ ]− F [un−1
τ ] ≤ τ lim inf

h↓0

(
Eε[S

h
F (unτ )]− Eε[u

n
τ ]

h

)
− λ

2
W2

2

(
unτ , u

n−1
τ

)
. (5.3.15)

Remark 5.3.9. In [270, Lemma 3.2] Lemma 5.3.8 was formulated for the case of a bounded
domain. However, it also works in the case of torus as it is just a combination of scheme (5.3.5)
and the definition of λ-flow (5.3.14).
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We are concerned with the functional

U [ρ, η] =
∫
Td

ρ(x) log ρ(x) + η(x) log η(x) dx,

which generates a gradient flow in the product space (P(Td)2,W2) defined by (5.3.11). We admit
the fairly classical result that the entropy U possesses a 0-flow given by the heat semigroup.

Proof of Lemma 5.3.6. We recall that Eε can be written as in (5.1.9)

Eε[ρ, η] =
1

4ε2

∫
Td

∫
Td

ωε(y)(κ|ρ(x)− ρ(x− y)|2 + |η(x)− η(x− y)|2) dxdy

+
α

2ε2

∫
Td

∫
Td

ωε(y)(ρ(x)− ρ(x− y))(η(x)− η(x− y)) dx dy

−
∫
Td

γ

2
ρ2 +

1

2
η2 + βρη dx.

From parabolic theory, we know that the solution of (5.3.11) is smooth for t > 0 and thus we
have after integration by parts

d

dt
Eε[ρ(t, ·), v(t, ·)] =− 1

2ε2

∫
Td

∫
Td

ωε(y)(κ|∇ρ(x)−∇ρ(x− y)|2 + |∇η(x)−∇η(x− y)|2) dx dy

− α

ε2

∫
Td

∫
Td

ωε(y)(∇ρ(x)−∇ρ(x− y)) · (∇η(x)−∇η(x− y)) dxdy

+

∫
Td

γ|∇ρ|2 + |∇η|2 + 2β∇ρ · ∇η dx.

Note that we recognize the dissipation of the entropy (5.1.10). Since the map t → v(t, ·) is
continuous in L2(Td)2, we get that the map t→ Eε[v(t, ·)] is continous at t = 0. By (5.3.12) and
Proposition 5.2.1 there exists C such that for all t ≤ t0 for t0 sufficiently small,

− C ≤ Eε[v(t, ·)]− Eε[v0]

t
=

1

t

∫ 1

0

d

ds
Eε[v(s t, ·)] ds ≤

≤ − C

2ε2

∫ 1

0

∫
Td

∫
Td

ωε(y)(|∇ρ(st, x)−∇ρ(st, x− y)|2 + |∇η(st, x)−∇η(st, x− y)|2) dxdy ds.
(5.3.16)

Therefore, using Lemma 5.2.2, the family {∇v(t·, ·)}t≤t0 is bounded in L2((0, 1)× Td). Now, as
v0 ∈ L2(Td) and v is the solution of heat equation with initial condition v0, v ∈ C([0, T ];L2(Td)).
Therefore, there exists a bounded modulus of continuity π : [0, T ] → R+ such that limt→0 π(t) = 0
and

∥v(t, ·)− v0∥L2(Td) ≤ π(t).

In particular,
∥v(st, ·)− v0∥L2(Td) ≤ π(st)

so that dominated convergence theorem implies that v(t·, ·) → v0 in L2((0, 1)×Td) when t→ 0.
Finally, choosing a subsequence such that ∇v(t·, ·)⇀ ξ in L2((0, 1)× Td), using indentity∫ 1

0

∫
Td

v(ts, x)divφ(s, x) dsdx = −
∫ 1

0

∫
Td

∇v(ts, x)φ(s, x) dsdx
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for a smooth test function φ and passing to the limit t → 0, we obtain that ∇v0 = ξ and so,
v0 ∈ H1(Td).

To obtain uniform estimate on v0 in H1(Td) we want to pass to the limit t→ 0 in (5.3.16). For
this, we observe that∫ 1

0

∫
Td

∫
Td

ωε(y)|∇ρ(st, x)−∇ρ(st, x− y)|2 dxdy ds =

= 2

∫ 1

0

∫
Td

|∇ρ(st, x)|2 dxds− 2

∫ 1

0

∫
Td

∇ρ(st, x) · ∇(ωε ∗ ρ(st, x)) dxds.

The first term is lower semi-continuous with respect to the L2 weak topology while the second
converges to∫ 1

0

∫
Td

∇ρ(st, x) · ∇(ωε ∗ ρ(st, x)) dx ds→
∫
Td

∇ρ0(x) · ∇(ωε ∗ ρ0(x)) dx

as a product of a weakly and strongly convergent sequences.

With this lemma, we are finally able to prove

Proof of Proposition 5.3.5. First, we want to apply the flow interchange lemma to the functional
U . This is possible since U is bounded from below on P(Td). Applying Lemma 5.3.8 with F = U
and Lemma 5.3.6 with v0 = unτ

Cτ

∫
Td

∫
Td

ωε(y)

ε2
(|∇ρnτ (x)−∇ρnτ (x− y)|2 + |∇ηnτ (x)−∇ηnτ (x− y)|2) dxdy ≤ U [un−1

τ ]− U [unτ ].

Summing from n = 1 to n = N we obtain∫ T

0

∫
Td

∫
Td

ωε(y)

ε2
(|∇ρτ (t, x)−∇ρτ (t, x− y)|2 + |∇ητ (t, x)−∇ητ (t, x− y)|2) dxdy dt ≤ CT.

From Lemma 5.2.2 we obtain uniform estimate in L2(0, T ;H1(Td)) and so, weak compactness in
this space.

It remains to prove the strong compactness in L2(0, T ;L2(Td)). First, we want to apply Theorem
5.5.3 with Banach space X = L2(Td) × L2(Td), set U = {uτ}τ>0, pseudometric g(u1, u2) =
W2

2 (u1, u2) (extended to +∞ in case u1 or u2 are not probability measures) and functional F
defined as

F(u) =

{
∥u∥2H1(Td) if u ∈ H1(Td)×H1(Td) ∩ P(Td)× P(Td),
+∞ if u /∈ H1(Td)×H1(Td) ∩ P(Td)× P(Td).

We can do this as F is lower semicontinuous and its level sets are compact in L2(Td) by Reillich-
Kondrachov theorem. Furthermore, g is lower semicontinuous [325, Chapter 6]. Finally, (5.5.1)
follows from uniform estimates in L2(0, T ;H1(Td)) and estimate (5.3.9).

Therefore, Theorem 5.5.1 gives us a subsequence (not relabelled) such that

∥un(t, ·)− u(t, ·)∥2L2(Td) → 0 for a.e. t ∈ [0, T ].
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As sequence {un} is bounded in L∞(0, T ;L2(Td)), the conclusion follows by dominated conver-
gence theorem.

5.3.3 Weak formulation

To derive the weak formulation, we follow [326, Section 8.4.2]. Since (5.3.5) was derived from the
Lagrangian point of view, the idea is to investigate its first variation and prove that it is a time-
discrete scheme of (5.3.1). For this, we introduce a suitable perturbation of un+1

τ = (ρn+1
τ , ηn+1

τ )
as follows : let ξ be a smooth periodic vector field and Tδ = 1+ δξ. It is classical to prove that
for δ small enough, Tδ is a C1 diffeomorphism and det(∇Tδ) > 0. Then, we define

ũδ = (Tδ#ρ
n+1
τ , ηn+1

τ ).

Note carefully that only the first component was perturbed. This will result in the first equation
in Definition 5.3.1. To obtain the second one, it is sufficient to introduce a similar perturbation
on the second component of un+1

τ . This results in analogous computations as outlined below and
we do not repeat them.

Using standard properties of push-forward measure we obtain from (5.3.3)

Eε[ũδ] =

∫
Td

κ̃

2

(ρn+1
τ (x))2

det(1+ δ∇ξ) +
c̃

2
(ηn+1
τ (x))2 + α̃ρn+1

τ (x) η(x+ δξ) dx

− κ̃+ γ

2

∫
Td

∫
Td

ωε(x− y + δ(ξ(x)− ξ(y)))ρn+1
τ (y)ρn+1

τ (x) dy dx

− (α̃+ β)

∫
Td

∫
Td

ωε(x+ δξ(x)− y)ηn+1
τ (y)ρn+1

τ (x) dy dx

− c̃+ 1

2

∫
Td

ωε ∗ ηn+1
τ (x)ηn+1

τ (x) dx.

(5.3.17)

Using the minimizing property of un+1
τ in (5.3.5) gives

0 ≤ 1

2τ
[W2

2 (u
n
τ , ũδ)−W2

2 (u
n
τ , u

n+1
τ )] + Eε[ũδ]− Eε[u

n+1
τ ]. (5.3.18)

The plan is to expand this inequality in terms of δ, send δ → 0 and then τ → 0 which will
provide the weak formulation in Definition 5.3.1. We consider three types of terms separately.
Step 1 : the nonlocal terms in Eε[ũδ]− Eε[u

n+1
τ ]. When taking the difference Eε[ũδ]−Eε[u

n+1
τ ],

there are two types of nonlocal terms. The first one reads

− κ̃+ γ

2

∫
Td

∫
Td

[ωε(x− y + δ(ξ(x)− ξ(y)))− ωε(x− y)]ρn+1
τ (y)ρn+1

τ (x) dy dx.

Similarly to [135, Proof of Theorem 3.3] we perform Taylor’s expansion and using uniform L2

estimates we obtain that this term is equal to

−δ κ̃+ γ

2

∫
Td

∫
Td

∇ωε(x− y) · (ξ(x)− ξ(y))ρn+1
τ (y)ρn+1

τ (x) dy dx+ o(δ).
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The second term comes from the cross-interaction potentials and we obtain similarly

−δ(α̃+ β)

∫
Td

∫
Td

∇ωε(x− y) · ξ(x)ηn+1
τ (y)ρn+1

τ (x) dy dx+ o(δ).

Step 2 : the local terms. As in Step 1, there are only two differences. The first one reads

κ̃

2

∫
Td

(ρn+1
τ )2

det(1+ δ∇ξ) − (ρn+1
τ )2 dx.

Using det(1+ δ∇ξ) = 1 + δ div ξ(x) + o(δ), we obtain that this term is equal to

−δ κ̃
2

∫
Td

(ρn+1
τ )2 div ξ(x) dx+ o(δ).

The second term reads ∫
Td

α̃ρn+1
τ (x)(ηn+1

τ (x+ δξ)− ηn+1
τ (x)) dx.

As ∇ηn+1
τ ∈ L2(Td), the second term is equal to

δα̃

∫
Td

ρn+1
τ (x)∇ηn+1

τ (x) · ξ dx+ o(δ).

Step 3 : The Wasserstein terms. Since ρnτ and ρn+1
τ are absolutely continuous measures, we know

that there exists an optimal map ∇φ such that ∇φ#ρnτ = ρn+1
τ [305, Theorem 1.25] and

W2
2 (ρ

n
τ , ρ

n+1
τ ) =

∫
Td

ρnτ (x)|x−∇φ(x) + k(x)|2 dx. (5.3.19)

where k(x) ∈ Zd. Moreover, we have Tδ#ρn+1
τ = [(1+ δξ) ◦ ∇φ]#ρnτ . Therefore by definition of

the Wasserstein distance, and for δ small enough we have

W2
2 (ρ

n
τ , Tδ#ρ

n+1
τ ) ≤

∫
Td

ρnτ (x) |x−∇φ(x)− δξ ◦ ∇φ(x) + k(x)|2 dx. (5.3.20)

Using (5.3.19)–(5.3.20) and performing Taylor’s expansion we obtain

1

2τ
[W2

2 (u
n
τ , ũδ)−W2

2 (u
n
τ , u

n+1
τ )] ≤ δ

τ

∫
Td

ρnτ (x)(∇φ(x)− x+ k(x)) · (ξ ◦ ∇φ(x)) dx+ o(δ).

Weak formulation. We plug inequalities from Steps 1-3 to (5.3.18). As ξ can be replaced with −ξ
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we obtain equality

1

τ

∫
Td

ρnτ (x)(∇φ(x)− x+ k(x)) · (ξ ◦ ∇φ(x)) dx =

=
κ̃

2

∫
Td

(ρn+1
τ (x))2 div ξ(x) dx− α̃

∫
Td

ρn+1
τ (x)∇ηn+1

τ (x) · ξ dx

+ (α̃+ β)

∫
Td

∫
Td

∇ωε(x− y) · ξ(x)ηn+1
τ (y)ρn+1

τ (x) dy dx

+
κ̃+ γ

2

∫
Td

∫
Td

∇ωε(x− y) · (ξ(x)− ξ(y))ρn+1
τ (y)ρn+1

τ (x) dy dx.

(5.3.21)

Now we consider test function ξ = ∇ζ for some ζ ∈ C∞(Td). By periodicity we have ζ(∇φ(x))−
ζ(x) = ζ(∇φ(x))− ζ(x− k(x)). Therefore, we have

ζ(∇φ(x))− ζ(x) = (∇φ(x)− x+ k(x)) · (∇ζ ◦ ∇φ(x)) +O(|x− k(x)−∇φ(x)|2)

and ρn+1
τ = ∇φ#ρnτ , we obtain that the (LHS) of (5.3.21) is equal to

1

τ

(∫
Td

ρn+1
τ ζ −

∫
Td

ρnτ ζ

)
+O

(W2
2 (ρ

n
τ , ρ

n+1
τ )

τ

)
.

Now, let t1, t2 be arbitrary. As the curve ρτ is piecewisely constant, we can sum up from n =
n1 = [t1/τ ] to n2 = [t2/τ ] + 1 and obtain∫
Td

ρτ (t2)ζ dx−
∫
Td

ρτ (t1)ζ dx+O

(
n2∑

n=n1

W2
2 (ρ

n
τ , ρ

n+1
τ )

)
=

=
κ̃

2

∫ t2

t1

∫
Td

ρτ (t)
2∆ζ(x) dxdt− α̃

∫ t2

t1

∫
Td

ρτ (t, x)∇ητ (t, x) · ∇ζ dxdt

+ (α̃+ β)

∫ t2

t1

∫
Td

∫
Td

∇ωε(x− y) · ∇ζ(x)ητ (t, y)ρτ (t, x) dy dxdt

+
κ̃+ γ

2

∫ t2

t1

∫
Td

∫
Td

∇ωε(x− y) · (∇ζ(x)−∇ζ(y))ρτ (t, y)ρτ (t, x) dy dx dt+O(τ),

where the term O(τ) appears because each term has at least one term (ρτ or ητ ) which is bounded
in L∞(0, T ;L2(Td)). Using the energy estimate (5.3.6) on the Wasserstein distance, we can
incorporate the term O

(∑n2

n=n1
W2

2 (ρ
n
τ , ρ

n+1
τ )

)
into O(τ). Sending τ → 0, using Proposition 5.3.5

and pointwise (in time) weak convergence (in space) from Lemma 5.3.4 yields∫
Td

ρ(t2, x)ζ(x) dx−
∫
Td

ρ(t1, x)ζ(x) dx =

=
κ̃

2

∫ t2

t1

∫
Td

ρ(t, x)2∆ζ(x) dxdt− α̃

∫ t2

t1

∫
Td

ρ(t, x)∇η(t, x) · ∇ζ dx dt

+ (α̃+ β)

∫ t2

t1

∫
Td

∫
Td

∇ωε(x− y) · ∇ζ(x)η(t, y)ρ(t, x) dy dxdt

+
κ̃+ γ

2

∫ t2

t1

∫
Td

∫
Td

∇ωε(x− y) · (∇ζ(x)−∇ζ(y))ρ(t, y)ρ(t, x) dy dx dt.

(5.3.22)
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Performing integration by parts we obtain

κ̃

2

∫ t2

t1

∫
Td

ρ(t, x)2∆ζ(x) dx dt = κ̃

∫ t2

t1

∫
Td

ρ(t, x)∇ρ(t, x) · ∇ζ(x) dx dt,

while changing variables we obtain

κ̃+ γ

2

∫ t2

t1

∫
Td

∫
Td

∇ωε(x− y) · (∇ζ(x)−∇ζ(y))ρ(t, y)ρ(t, x) dy dxdt =

= −(κ̃+ γ)

∫ t2

t1

∫
Td

ωε ∗ ρ(t, x) · ∇ζ(x) dxdt.

Having these two observations in mind, we obtain the weak formulation with test function ζ(x)
depending only on x. The general weak formulation with test functions depending on t and x
as in Definition 5.3.1 follows from multiplying with ∂tψ(t), integrating in time and using the
classical density of functions of the form ψ(t) ζ(x) over the set of test functions φ(t, x) (see [142,
Theorem D.5]).
Regularity estimates (5.1.13)–(5.1.14). Clearly, it is sufficient to prove these estimates for the first
component of u = (ρ, η). For (5.1.13) we note that from Lemma 5.3.4 we have that uτ (t, ·) ⇀
u(t, ·) for all fixed t ∈ [0, T ]. Moreover, we can write the quantity of interest as∫

Td

∫
Td

ωε(y)|ρτ (t, x)− ρτ (t, x− y)|2 dxdy = 2

∫
Td

|ρτ (t, x)|2 dx− 2

∫
Td

ρτ (t, x)ωε ∗ ρτ (t, x) dx

so that the first term is weakly lower semicontinuous while the second is the product of weakly and
strongly converging sequences. Applying lim infε→0 to (5.3.10) we deduce (5.1.13). Concerning
(5.1.14), the proof is carried out in the similar way : this time we use strong compactness of
ρτ and weak compactness of ∇ρτ in L2((0, T ) × Td) from Lemma 5.3.5 which allow to handle
integral with respect to time.

5.4 Limit ε → 0

We want to send ε→ 0 and obtain convergence of weak solutions of the nonlocal Cahn-Hilliard
system (5.1.5)-(5.1.6) to weak solutions of the local version of the Cahn-Hilliard system. We
define weak solutions of the latter.

Definition 5.4.1. We say that u = (ρ(·), η(·)) : [0,∞) → P(Td)2 is a weak solution of (5.1.7)-
(5.1.8) with initial condition (ρ0, η0) if ρ, η ∈ L2(0, T ;H2(Td)) for all T > 0, and if for all
φ, ϕ ∈ C∞

c ([0,+∞)× Td) we have

−
∫ ∞

0

∫
Td

ρ∂tφdxdt−
∫
Td

ρ0φ(0, x) dx = −κ
∫ ∞

0

∫
Td

∆ρ∇ρ · ∇φdxdt

− κ

∫ ∞

0

∫
Td

ρ∆ρ∆φdx dt− α

∫ ∞

0

∫
Td

D2η : (∇ρ⊗∇φ+ ρD2φ) dx dt−
∫ ∞

0

∫
Td

ρ(γ∇ρ− β∇η) · ∇φdx dt,

−
∫ ∞

0

∫
Td

η∂tϕ dxdt−
∫
Td

η0ϕ(0, x) dx = −
∫ ∞

0

∫
Td

∆η∇η · ∇ϕ dxdt

−
∫ ∞

0

∫
Td

η∆η∆ϕ dx dt− α

∫ ∞

0

∫
Td

D2ρ : (∇η ⊗∇ϕ+ ηD2ϕ) dxdt−
∫ ∞

0

∫
Td

η(∇η − β∇ρ) · ∇ϕ dx dt.
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As we will see (Lemma 5.4.3), we have bounds at most on the gradient of ∇ρε,∇ηε, and the
limit equation has four derivatives. That means we need to mimic at the epsilon level integration
by parts for nonlocal operators. For that purpose, we define the operator

Sε[φ](x, y) :=

√
ωε(y)√
2ε

(φ(x− y)− φ(x)) (5.4.1)

which has the following properties, see [155, Lemma 3.4] :

Lemma 5.4.2. The operator Sε satisfies :

(S1) Sε is a linear operator that commutes with derivatives with respect to x,

(S2) for all functions f, g : Td → R we have

Sε[fg](x, y)− Sε[f ](x, y)g(x)− Sε[g](x, y)f(x) =

=

√
ωε(y)√
2ε

[(f(x− y)− f(x))(g(x− y)− g(x))].

(S3) for all u, φ ∈ L2(Td)

⟨Bε[u](·), φ(·)⟩L2(Td) = ⟨Sε[u](·, ·), Sε[φ](·, ·)⟩L2(Td×Td).

(S4) if {uε} is strongly compact in L2(0, T ;H1(Td)) and φ ∈ L∞((0, T )× Td) we have∫ T

0

∫
Td

∫
Td

(Sε[uε])
2 φ(t, x) →

∫ T

0

∫
Td

|∇u(t, x)|2 φ(t, x).

5.4.1 Uniform estimates in ε and compactness

We collect here estimates for the solutions of (5.1.5)–(5.1.6) which are uniform in ε > 0.

Lemma 5.4.3. Let (ρε, ηε) be the solution of (5.1.5)–(5.1.6) constructed in Theorem 5.1.1. Then,
the following sequences are bounded :

1. {ρε}, {ηε} in L∞(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)),

2. {∂tρε}, {∂tηε} in L2(0, T ;H−2− d
2 (Ω)).

Moreover, the sequences {ρε}, {ηε} are strongly compact in L2(0, T ;H1(Ω)) and the limits belong
to L2(0, T ;H2(Ω)).

Remark 5.4.4. We note that we cannot use estimates coming from dissipation of the energy
(5.1.11) which can provide better estimates on time derivatives because this information is lost
in the JKO scheme. We proceed with a different approach.

Proof of Lemma 5.4.3. The first estimate follows from (5.1.13)–(5.1.14) and Lemma 5.2.2. To
see the second, we consider equation for ρε and test it with a smooth and compactly supported
function φ(t, x). We need to control the following terms∫ T

0

∫
Td

ρε∇Bε[ρε]·∇φdxdt,

∫ T

0

∫
Td

ρε∇Bε[ηε]·∇φdx dt,

∫ T

0

∫
Td

ρε(γ∇ρε−β∇ηε)·∇φdxdt.
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The first two terms are controlled in the same way so that we focus on the second. Using (S3)
in Lemma 5.4.2 and ∇Bε[ηε] = Bε[∇ηε] we have∫ T

0

∫
Td

ρε∇Bε[ηε] · ∇φdxdt =

∫ T

0

∫
Td

∫
Td

Sε[∇ηε] · Sε[ρε∇φ] dy dxdt

which is bounded if φ ∈ L2(0, T ;H2(Td)). Concerning the third term, it is controlled when
∇φ ∈ L2(0, T ;L∞(Td)) which is implied by φ ∈ L2(0, T ;H2+ d

2 (Td)) by Sobolev embedding. The
conclusion follows.

The strong compactness follows from Lemma 5.5.5 and estimates (5.1.13)–(5.1.14).

5.4.2 Convergence ε → 0

Proof of Theorem 5.1.2. As Equations (5.1.5) and (5.1.6) have a similar structure, we focus only
on Equation (5.1.5). More precisely, we pass to the limit in the term

∫∞
0

∫
Td div(ρε∇µρ,ε)φdxdt

where φ ∈ C3([0,∞)× Td). Integrating by parts, we obtain∫ ∞

0

∫
Td

div(ρε∇µρ,ε)φdx dt = −
∫ ∞

0

∫
Td

ρε∇µρ,ε · ∇φdxdt

= κ

∫ ∞

0

∫
Td

Bε[ρε]∇ρε · ∇φdxdt+ κ

∫ ∞

0

∫
Td

Bε[ρε]ρε∆φdxdt

− α

∫ ∞

0

∫
Td

ρεBε[∇ηε] · ∇φdxdt−
∫ ∞

0

∫
Td

ρε(γ∇ρε − β∇ηε) · ∇φdxdt

=: I1 + I2 + I3 + I4.

(5.4.2)

Concerning the term I4, its convergence is straightforward because all the sequences {ρε}, {ηε},
{∇ρε} are compact in L2((0, T ) × Td). For the passage to the limit in I1, I2 we refer to [155,
Steps 1, 2 ; Proof of Theorem 1.8] (these are exactly the terms that appear for analysis of a single
equation). We now prove the convergence of the term I3. Due to Lemma 5.4.2 (S2), we have
(omitting the constant α)

−I3 =

∫ ∞

0

∫
Td

Sε[ρε]Sε[∇ηε] · ∇φdxdt+

∫ ∞

0

∫
Td

ρεSε[∇ηε] · Sε[∇φ] dxdt+Rε =: J1 + J2 +Rε,

where Rε is defined as

Rε =

∫ ∞

0

∫
Td

∫
Td

Sε[∇ηε] ·
√
wε(y)√
2ε

[(∇φ(x− y)−∇φ(x)) · (ρε(x− y)− ρε(x))] dxdy dt.

After a change of variables y → y
ε and using the definition of ωε we obtain

J1 =
1

2

∫ ∞

0

∫
Td

∫
Td

ω(y)
ρε(x)− ρε(x− εy)

ε

∇ηε(x)−∇ηε(x− εy)

ε
· ∇φ(x) dxdy dt. (5.4.3)

From Lemma 5.5.1 and 5.5.2 we obtain strong convergence of ρε(x)−ρε(x−εy)
ε → ∇ρ(x) · y and
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weak convergence of
√
ω(y) ∇ηε(x)−∇ηε(x−εy)

ε ⇀
√
ω(y)D2η(x) ·y (both in L2((0, T )×Td×Td))

so that we easily conclude

J1 → 1

2

∫
Td

ω(y)

∫ ∞

0

∫
Td

(∇ρ(x) · y) (D2η(x)y) · ∇φ(x) dy dxdt.

where D2η denotes the Hessian matrix (∂ijη)i,j .
For J2 we similarly write

J2 =
1

2

∫ ∞

0

∫
Td

∫
Td

ω(y) ρε(x)
∇ηε(x)−∇ηε(x− εy)

ε
· ∇φ(x)−∇φ(x− εy)

ε
dxdy dt. (5.4.4)

and the same argument as for J1 shows that

J2 → 1

2

∫
Td

ω(y)

∫ ∞

0

∫
Td

ρ(x) (D2η(x)y) · (D2φ(x)y) dy dx dt.

By properties of ω, we obtain

J1 + J2 =

∫ ∞

0

∫
Td

D2η : (∇ρ⊗∇φ+ ρD2φ) dxdt.

It remains to show Rε → 0. By Cauchy-Schwarz inequality (in time and space) as well as bounds
on Sε[∇ηε] from the entropy it remains to prove that∫ ∞

0

∫
Td

∫
Td

ωε(y)

ε2
|ρε(x− y)− ρε(x)|2|∇φ(x− y)−∇φ(x)|2 dy dxdt→ 0.

Using Taylor’s expansion we can estimate this integral with

ε∥D2φ∥L∞

∫ ∞

0

∫
Td

∫
Td

ωε(y)

ε2
|ρε(x− y)− ρε(x)|2 dy dxdt

which converges to zero by the bound from the entropy so that Rε → 0.

5.5 Appendix

5.5.1 Results on difference quotients

Lemma 5.5.1. Let {uε} be a sequence strongly compact in L2(0, T ;H1(Td)). Then, for fixed
y ∈ Td,

uε(t, x− εy)− uε(t, x)

ε
→ −∇u(t, x) · y strongly in L2((0, T )× Td × Td).

Démonstration. Clearly, the sequence converges in L2((0, T )× Td), that is∫ T

0

∫
Td

∣∣∣∣uε(t, x− εy)− uε(t, x)

ε
−∇u(t, x) · y

∣∣∣∣2 dxdt→ 0.

To see the convergence in L2((0, T ) × Td × Td), it is sufficient to apply dominated convergence
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theorem as we have the estimate∫ T

0

∫
Td

∣∣∣∣uε(t, x− εy)− uε(t, x)

ε

∣∣∣∣2 ≤
∫ T

0

∫
Td

|∇uε · y|2 dxdt ≤ |y| sup
ε

∥∇uε∥2L2
t,x
.

Lemma 5.5.2. Let φ ∈ L∞(Td) and {ηε} be a sequence such that

— φ(y) ∇ηε(x)−∇ηε(x−εy)
ε is bounded in L2((0, T )× Td × Td),

— ηε(t, x)⇀ η(t, x) in L2(0, T ;H1(Td)) and η ∈ L2(0, T ;H2(Td)).

Then,

φ(y)
∇ηε(x)−∇ηε(x− εy)

ε
⇀ φ(y)D2η(t, x) · y weakly in L2((0, T )× Td × Td).

Démonstration. Clearly, after passing to a subsequence, the limit exists and we only need to
identify it. For this, we consider a smooth and compactly supported test function ψ(t, x, y) and
compute∫ T

0

∫
Td

∫
Td

φ(y)
∇ηε(t, x)−∇ηε(t, x− εy)

ε
ψ(t, x, y) dy dx dt =

=

∫ T

0

∫
Td

∫
Td

φ(y)
ψ(t, x, y)− ψ(t, x+ εy, y)

ε
∇ηε(t, x) dy dx dt

which converges to

−
∫ T

0

∫
Td

∫
Td

φ(y)∇ψ(t, x, y)·y∇η(t, x) dy dx dt =
∫ T

0

∫
Td

∫
Td

φ(y)ψ(t, x, y)D2η(t, x)·y dy dxdt

because η ∈ L2(0, T ;H2(Td)).

5.5.2 Compactness results

A version of Lions-Aubin for JKO scheme. We recall here from [135, Theorem 2.1] a
version of Lions-Aubin lemma useful for establishing compactness of a sequence of solutions to
JKO scheme. For the proof we refer to [301, Theorem 2].

Theorem 5.5.3. Let (X, ∥ · ∥X) be a Banach space. We consider

— a lower semi-continuous functional F : X → [0,+∞] with relatively compact sublevels in
X,

— a pseudo-distance g : X ×X → [0,+∞], that is g is lower semicontinuous and g(ρ, η) = 0
for some ρ, η ∈ X such that F(ρ),F(η) <∞ implies ρ = η.

Let U be a set of measurable functions u : (0, T )×X with T > 0 fixed. Assume further that

sup
u∈U

∫ T

0

F(u(t)) dt <∞, lim
h→0

sup
u∈U

g(u(t+ h), u(t)) dt = 0. (5.5.1)



186 CHAPITRE 5. Degenerate Cahn-Hilliard systems : From nonlocal to local

Then, U contains a sequence {un} converging in measure to some u ∈ X, i.e.

∀ε>0 |{t ∈ [0, T ] : ∥un − u∥X > ε}| → 0 as n→ ∞.

In particular, there exists a subsequence (not relabelled) such that

un(t) → u(t) in X for a.e. t ∈ [0, T ].

Nonlocal version of Lions-Aubin lemma
The following result was proved in [155, Theorem B.1] based on [53] and [294]. In fact, the proof
of Theorem 5.5.4 is the proof of Proposition 5.1.3 integrated in time.

Theorem 5.5.4. Let d ≥ 2. Let {fε} be a sequence bounded in Lp((0, T ) × Td). Suppose that
there exists a sequence {ρε} as above such that∫ T

0

∫
Td

∫
Td

|fε(t, x)− fε(t, y)|p
εp

ωε(|x− y|) dxdy dt ≤ C (5.5.2)

for some constant C. Then, {fε} is compact in space in Lp((0, T )× Td), i.e.

lim
δ→0

lim sup
ε→0

∫ T

0

∫
Td

|fε ∗ φδ(t, x)− fε(t, x)|p dx dt = 0 (5.5.3)

for all families of mollifiers {φδ}0<δ<1.

We prove here :

Lemma 5.5.5. Suppose that {fε} is a sequence bounded in L2((0, T )× Td) such that
— {∂tfε} is uniformly bounded in L2(0, T ;H−k(Td)) for some k ∈ N,
— {fε} is compact in space in L2((0, T )× Td), i.e.

lim
δ→0

lim sup
ε→0

∫ T

0

∫
Td

|fε ∗ φδ(t, x)− fε(t, x)|2 dxdt = 0 (5.5.4)

for some family of mollifiers {φδ}0<δ<1.
Then, {fε} is compact in time in L2((0, T )× Td), i.e.

lim
h→0

lim sup
ε→0

∫ T−h

0

∫
Td

|fε(t+ h, x)− fε(t, x)|2 dxdt→ 0 as h→ 0 (5.5.5)

and so, it is compact in L2((0, T )× Td).

Démonstration. Using the mollifiers with δ = δ(h) depending on h to be specified later in the
way that δ(h) → 0 as h→ 0, we first split∫ T−h

0

∫
Td

|fε(t+ h, x)− fε(t, x)|2 dxdt ≤ 4

∫ T−h

0

∫
Td

|fε(t, x)− fε(t, ·) ∗ φδ(x)|2 dxdt

+ 4

∫ T−h

0

∫
Td

|fε(t+ h, x)− fε(t+ h, ·) ∗ φδ(x)|2 dx dt

+ 4

∫ T−h

0

∫
Td

|fε(t+ h, ·) ∗ φδ(x)− fε(t, ·) ∗ φδ(x)|2 dx dt.
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When we apply limit limh→0 lim supε→0, the first and second term vanish due to (5.5.4). It
remains to study the third term. For this, suppose first that fε(t, ·) is smooth in the time variable.
Then,

∫ T−h

0

∫
Td

|fε(t+ h, ·) ∗ φδ(x)− fε(t, ·) ∗ φδ(x)|2 dxdt =
∫ T−h

0

∫
Td

∣∣∣∣∣
∫ t+h

t

∂tfε(s, ·) ∗ φδ(x) ds
∣∣∣∣∣
2

dx dt.

Now, we can estimate the convolution as follows

∂tfε(s, ·) ∗ φδ(x) =
∫
Td

∂tfε(s, y)φδ(x− y) dy ≤ ∥∂tfε(s, ·)∥H−k(Td) ∥φδ(x− ·)∥Hk(Td).

Using this and applying invariance in space of the Hk(Td) norm we obtain

∫ T−h

0

∫
Td

∣∣∣∣∣
∫ t+h

t

∂tfε(s, ·) ∗ φδ(x) ds
∣∣∣∣∣
2

dx dt = h2 ∥φδ∥Hk(Td)

∫ T−h

0

∣∣∣∣∣ 1h
∫ t+h

t

∥∂tfε(s, ·)∥H−k(Td) ds

∣∣∣∣∣
2

dt.

Applying Jensen’s inequality we obtain

h2 ∥φδ∥Hk(Td)

∫ T−h

0

∣∣∣∣∣ 1h
∫ t+h

t

∥∂tfε(s, ·)∥H−k(Td) ds

∣∣∣∣∣
2

dt ≤ Th ∥φδ∥Hk(Td)∥∂tfε(s, ·)∥2L2(0,T ;H−k(Td)).

Using that ∥φδ∥Hk(Td) ≤ C
δk+d/2 we finally obtain∫ T−h

0

∫
Td

|fε(t+ h, ·) ∗ φδ(x)− fε(t, ·) ∗ φδ(x)|2 dxdt ≤ CT
h

δk+d/2
∥∂tfε(s, ·)∥2L2(0,T ;H−k(Td)).

Now, if fε(t, x) is not smooth in time, we extend it with fε(0, x) for t < 0, fε(T, x) for t > T
and apply usual regularization to obtain the same estimate. Hence, if we choose h(δ) = δ2k+d we
conclude

lim
h→0

lim sup
ε→0

∫ T−h

0

∫
Td

|fε(t+ h, x)− fε(t, x)|2 dxdt ≤ θ(h).

Combined with the compactness in space (5.5.5) and the Fréchet-Kolmogorov theorem we obtain
the compactness of {fε} in L2((0, T )× Td).
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Chapitre 6

From nonlocal Euler-Korteweg to
local Cahn-Hilliard via the
high-friction limit

Abstract
Several recent papers considered the high-friction limit for systems arising in fluid mechanics.
Following this approach, we rigorously derive the nonlocal Cahn-Hilliard equation as a limit of
the nonlocal Euler-Korteweg equation using the relative entropy method. Applying the recent
result by the first and third author, we also derive rigorously the local degenerate Cahn-Hilliard
equation. The proof is formulated for dissipative measure-valued solutions of the nonlocal Euler-
Korteweg equation which are known to exist on arbitrary intervals of time. Our work provides a
new method to derive equations not enjoying classical solutions via relative entropy method by
introducing the nonlocal effect in the fluid equation.

2010 Mathematics Subject Classification. 35Q35, 76D45, 35B25, 35K55, 35Q31
Keywords and phrases. Cahn–Hilliard equation, Euler-Korteweg equation, nonlocal equation,
high-friction limit, relative entropy

6.1 Introduction

We consider the nonlocal Euler-Korteweg system re-scaled in time i.e. t → t
ε and with high

friction coefficient 1
ε

∂tρ+
1

ε
div(ρu) = 0, in (0,+∞)× Td, (6.1.1)

∂t(ρu) +
1

ε
div (ρu ⊗ u) = − 1

ε2
ρu − 1

ε
ρ∇(F ′(ρ) +Bη[ρ]), in (0,+∞)× Td. (6.1.2)

This equation models the long-time asymptotics of the motion of a compressible fluid with den-
sity ρ, velocity u which is in fact a liquid-vapor mixture. The fluid experiences high friction (due
to the term − 1

ε2 ρu) and additional capillary effects in the transition zone between liquid and

191
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vapor (due to the term − 1
ερ∇(F ′(ρ) +Bη[ρ]) as proposed by Korteweg [243]).

Concerning the notation, Td is the d-dimensional flat torus, ε > 0, Bη is the nonlocal operator
approximating −∆ operator, defined by

Bη[ρ](x) =
1

η2
(ρ(x)− ωη ∗ ρ(x)) =

1

η2

∫
Td

ωη(y)(ρ(x)− ρ(x− y)) dy (6.1.3)

for η > 0 small enough and ωη is the usual radial mollification kernel ωη(x) = 1
ηd
ω(xη ) with ω

compactly supported in the unit ball of Rd satisfying∫
Rd

ω(y) dy = 1,

∫
Rd

y ω(y) dy = 0,

∫
Rd

yiyjω dy = δi,j
2D

d
<∞. (6.1.4)

When ε is very small, the friction is so big, that we mostly observe a phase separation phenomenon
between the liquid and the vapor. More rigorously, when ε → 0, we prove that the constructed
solution of (6.1.1)-(6.1.2) converge to solutions of the nonlocal Cahn-Hilliard

∂tρ = div(ρ∇µ), in (0,+∞)× Td, (6.1.5)

µ = Bη[ρ] + F ′(ρ), in (0,+∞)× Td, (6.1.6)

see Theorem 6.1.5. Furthermore, when ε, η → 0 in some scaling to be determined, we prove the
convergence of (6.1.1)-(6.1.2) to the local Cahn-Hilliard equation

∂tρ = div(ρ∇µ), in (0,+∞)× Td, (6.1.7)

µ = −D∆ρ+ F ′(ρ), in (0,+∞)× Td, (6.1.8)

which describes the dynamics of phase separation, see Theorem 6.1.4.

Our proof relies on the relative entropy method, which is for instance often used in the context
of weak-strong uniqueness. It relies on certain regularity of solutions of the limit system, which
is not available in the case of the local Cahn-Hilliard equation. Therefore, we introduce an
intermediate step, which is interesting by itself, and consider the nonlocal Cahn-Hilliard equation
by introducing the parameter η. Since we know from [155] that the solutions to the nonlocal
Cahn-Hilliard equation converge to the weak solutions of the local Cahn-Hilliard equation (see
Definition 6.1.3) when η → 0, it remains to prove that the nonlocal Euler-Korteweg system
tends to the nonlocal Cahn-Hilliard equation when ε → 0. Then, sending ε and η to 0 with the
appropriate scaling, we prove the result.

Nonlocal Euler-Korteweg
(6.1.1)-(6.1.2)

Non-local degenerate
Cahn-Hilliard
(6.1.5)-(6.1.6)

Local degenerate
Cahn-Hilliard
(6.1.7)-(6.1.8)Theorem 6.1.5

ε→ 0

Proved in [155]

η → 0

Theorem 6.1.4

ε→ 0, η → 0 together

Figure 6.1 – Relation between the three equations considered in this article.

The main motivation for our work is the paper of Lattanzio and Tzavaras [249], who prove the
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convergence of the local Euler Korteweg system to the local Cahn-Hilliard equation. They assume
the existence of admissible weak solutions of the first system and classical solutions of the second
one. The first assumption is a drawback as dissipative (that is, satisfying energy inequality) weak
solutions existing on arbitrary intervals of time are not known to exist for most models in fluids
dynamics. One can try to construct the solutions via the convex integration method but these
solutions will have a jump in the energy at the initial time so they will not be dissipative. The
second assumption of [249] is also difficult to be satisfied as so far, there is no theory of classical
solutions to the local Cahn-Hilliard equation with degenerate mobility on arbitrary intervals of
time. Similarly, there is no maximum principle that is necessary in [249] to deduce that the
classical solution is strictly positive using positivity of the initial condition.

We propose to overcome the first problem by the concept of dissipative measure-valued solutions,
introduced by DiPerna [138] in the context of hyperbolic conservation laws in one dimension and
by DiPerna and Majda [139] for the incompressible Euler equations. Roughly speaking, they
are defined as the weak limit of classical solutions of appropriate approximating problems. As
weak compactness is not sufficient to pass to the limit in nonlinear terms, the definition of the
measure-valued solution includes the Young measure νt,x and the concentration measure m to
represent weak limits as in (6.2.1).

While measure-valued solutions are weaker than the usual weak solutions, they are dissipative
and they are known to exist. Moreover, their importance comes from the fact that they enjoy
the property called weak-strong uniqueness : they coincide with the strong solution whenever
the latter exists. The dissipativity is important both for the weak-strong uniqueness and appli-
cation of the relative entropy method : the weak-strong uniqueness does not hold for weak or
measure-valued solutions without any condition on energy as demonstrated by solutions arising
by the convex integration method [315, 124].

Since the weak-strong uniqueness property was observed by Brenier, De Lellis and Székelyhidi
in [55], measure-valued solutions were studied for several systems including compressible fluid
models [207], isentropic Euler system [185], polyconvex elastodynamics [133], Euler-Poisson sys-
tem [79], general hyperbolic conservation laws [204]. Moreover, for many equations describing
compressible fluids, the measure-valued formulation has been significantly simplified [168, 39, 1] :
it boils down to the usual distributional identity modulo the so-called Reynolds stress tensor.

Concerning the problem of the existence of classical solutions, we propose to introduce nonloca-
lity in the equation and introduce an intermediate step in the convergence analysis as outlined
in Figure 6.1. The advantage is that the nonlocal Cahn-Hilliard equation is in fact a porous
medium equation. In particular, it satisfies the maximum principle and so, if the initial condi-
tion is positive, the solution remains positive and one can prove the existence and uniqueness
of a classical solution, see Section 6.4. Furthermore, it is known that the nonlocal Cahn-Hilliard
equation converges to the local one [155] so that at the end, the nonlocality can be removed.

To prove the convergence, we use the relative entropy method. The method is based on intro-
ducing a functional called relative entropy (or energy), which measures the dissipation between
two solutions of the system. Essentially, the same method is used to prove the aforementioned
weak-strong uniqueness when the relative entropy measures the distance between weak (measure-
valued) and strong solutions. This strategy has been applied for several singular limits [107, 90,
19, 94, 223, 249, 250] and we also refer to the excellent review on weak-strong uniqueness [327].



194 CHAPITRE 6. From NLEK to LCH via the high-friction limit

Our proof via the relative entropy method is based on an important assumption that the initial
datum is well-prepared. In our case, this means that the initial velocity u0 vanishes as the
parameter ε→ 0 cf. (6.1.9) and (6.1.10) so that the initial kinetic energy is very small. Such an
assumption is necessary to guarantee that the relative entropy Θ(0) at time t = 0 converges to 0
as ε→ 0 so that Θ(t) → 0, cf. (6.5.5), which implies the main result. Let us however remark that
one can also study similar problems via compactness methods and this approach is also effective
for ill-prepared initial data. Nevertheless, its applicability is restricted to some special cases like
one spatial dimension (which allows to use the div-curl lemma in the time-space setting) [268]
or the presence of viscosity terms yielding compactness [169].

6.1.1 Rigorous formulation of the main result
We make the following assumptions on the potential F .
Assumption 6.1.1 (potential F ). For the interaction potential we assume that there exists k ≥ 2
and constant C such that F can be written as F = F1 + F2 where

1. F1 ∈ C4(R) is a convex, nonnegative function having k-growth

1

C
|u|k − C ≤ F1(u) ≤ C|u|k + C,

1

C
|u|(k−2) − C ≤ F ′′

1 (u) ≤ C|u|(k−2) + C

and satisfying |uF ′
1(u)| ≤ C(F1(u) + 1), |uF (3)

1 (u)| ≤ C(F ′′
1 (u) + 1),

2. F2 ∈ C4(R) is such that F2, F
′
2, F

′′
2 , sF

(3)
2 (s) ∈ L∞(R) are bounded on the whole line.

Moreover, ∥F ′′
2 ∥∞ < 1

CP
where CP is a constant in Lemma 6.7.2.

We also define s := 2k
k−1 and s′ its conjugate exponent.

Example 6.1.2. The following potentials satisfy Assumption 6.1.1.
(1) power-type potential F (u) = |u|γ , γ > 2 used in the context of tumor growth models [289,

120, 151, 125],
(2) double-well potential F (u) = u2 (u− 1)2 which is an approximation of logarithmic double-

well potential often used in Cahn-Hilliard equation, see [277, Chapter 1].

Before stating the main result, we define solutions of the local degenerate Cahn-Hilliard equation.
Definition 6.1.3. We say that ρ is a weak solution of (6.1.7)-(6.1.8) if

ρ ∈ L∞(0, T ;Lk(Td)) ∩ L2(0, T ;H2(Td)), ∂tρ ∈ L2(0, T ;W−1,s′(Td)),√
F ′′
1 (ρ)∇ρ ∈ L2((0, T )× Td),

ρ(0, x) = ρ0(x) a.e. in Td and if for all φ ∈ L2(0, T ;W 2,∞(Td)) we have

∫ T

0

⟨∂tρ, φ⟩(W−1,s′ (Td),W 1,s(Td)) = −D
∫ T

0

∫
Td

∆ρ∇ρ · ∇φ−D

∫ T

0

∫
Td

ρ∆ρ∆φ

−
∫ T

0

∫
Td

ρF ′′(ρ)∇ρ · ∇φ.

The definition of dissipative measure-valued solutions to (6.1.1)–(6.1.2) is quite technical and
will be presented in Definitions 6.3.1 and 6.3.4. The main theorem reads as follows.
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Theorem 6.1.4. Let ρ0 be an initial density satisfying

ρ0 ≥ σ > 0, ρ0 ∈ C3(Td)

for some σ > 0. Let u0,ε be an initial velocity satisfying

∥u0,ε∥L2(Td) → 0 as ε→ 0. (6.1.9)

Let (ρη,ε,
√
ρη,εuη,ε, νη,ε,mη,ε) be a dissipative measure-valued solution of (6.1.1)–(6.1.2) with

the initial condition (ρ0,u0,ε) and parameters ε, η satisfying Poincaré inequality (6.3.23). Then,
for each sequence ηk → 0, there exists a subsequence {ηk} (not relabelled) and a sequence {εk}
depending on ηk and the final time T such that εk → 0 and ρηk,εk → ρ in L2(0, T ;L2(Td)), where
ρ is a weak solution of (6.1.7)–(6.1.8) with initial condition ρ0 as defined in Definition 6.1.3.

Let us briefly comment that the measure-valued solution has in fact four components. While the
first component ρη,ε is the most important since it converges to the Cahn-Hilliard equation, we
can also characterize what happens with the other ones, see Theorem 6.6.2. Roughly speaking,
the second one converges to 0 in L∞(0, T ;L2(Td)) which represents that in the high-friction
limit, the kinetic energy converges to 0. The parametrized measure νη,ε converges in the second
Wasserstein metric W2 to the Dirac mass δρ(t,x) ⊗ δ0 :∫ T

0

∫
Td

[
W2(ν

ηk,εk , δρ(t,x) ⊗ δ0)
]2

dx dt→ 0 as εk, ηk → 0

while the concentration measure mηk,εk converges to 0 in the total variation norm. The estimate
in the Wasserstein metric is in the spirit of [175].

Theorem 6.1.4 is valid only for a subsequence as the convergence from non-local Cahn-Hilliard
to the local one is based on the compactness arguments (and there is no uniqueness for the limit
equation). On the other hand, the passage from the nonlocal Euler-Korteweg equation to the
nonlocal Cahn-Hilliard equation is based on the relative entropy method and so the convergence
is satisfied for any sequence. We state this result below.

Theorem 6.1.5. Let η ∈ (0, η0) where η0 is defined in Lemma 6.7.2. Let ρ0 be an initial density
satisfying

ρ0 ≥ σ > 0, ρ0 ∈ C3(Td)

for some σ > 0. Let u0,ε be an initial velocity satisfying

∥u0,ε∥L2(Td) → 0 as ε→ 0. (6.1.10)

Let (ρη,ε,
√
ρη,εuη,ε, νη,ε,mη,ε) be a dissipative measure-valued solution of (6.1.1)–(6.1.2) with

initial condition (ρ0,u0,ε) and parameters ε, η satisfying Poincaré inequality (6.3.23). Let ρη be
the solution of non-local Cahn-Hilliard (6.1.5)-(6.1.6) with the same initial condition ρ0. Then,
ρη,ε → ρη in L∞(0, T ;L2(Td)) as ε→ 0.

Similarly as for Theorem 6.1.4, we can prove convergence of the other components of the measure-
valued solution √

ρη,εuη,ε, νη,ε, mη,ε, see Theorem 6.6.1.

6.1.2 Relevancy of the system
The Euler–Korteweg equation The compressible Euler–Korteweg equation models the mo-
tion of liquid-vapor mixtures with possible phase transitions. It combines the classical Euler
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equation with Korteweg tensor introduced in [243]. The equation reads

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) +∇(p(ρ)) = −ζρu + ρ∇(K(ρ)∆ρ+
1

2
K ′(ρ)|∇ρ|2).

(6.1.11)

Here, ρ is the density of the fluid, u is its velocity, K(ρ) corresponds to the capillary coefficient,
ζ is the friction coefficient and p is the pressure function. In a liquid-vapor system, the tensor
K takes into account that the liquid and vapour are separated by a thin layer of finite thickness
and describes the capillary effects in this transition zone. There are numerous mathematical re-
sults concerning well-(and ill-)posedness of solutions to (6.1.11), see [141, 29, 59, 24, 44, 58]. For
instance, for some particular choice of K(ρ), an approach to prove existence of global solutions is
to relate the Euler-Korteweg and the Schrödinger equation through the Madelung transform [72,
24]. For more general cases, only local existence [44] and global existence for small irrotational
data [29] is known. For the physical background of (6.1.11) (in particular, the form of the Kor-
teweg tensor) we refer to [143, 229, 214] but it is a fairly complicated matter.

The viscous version of (6.1.11), that is the Navier-Stokes-Korteweg system, was also studied in
the mathematical literature [25, 188]. In particular, several papers are concerned with the case
of the nonlocal equation, where −∆ρ is approximated by the nonlocal operator Bη. In [300], the
author proves the short-time well-posedness while in [96], the global well-posedness as well as
the convergence of the nonlocal Navier-Stokes-Korteweg to the local one is established. We also
refer to [95] for a variant of this system.

The high-friction limit The high-friction limit (also referred to in the literature as the re-
laxation limit) is a part of a long research program of establishing a connection between nonlinear
hyperbolic systems and degenerate diffusion equations. One of the first results in this direction
[268] states that the solutions to the compressible Euler equations in one dimension

∂tρ+ ∂x(ρ u) = 0,

ε2∂t(ρ u) + ∂x(ε
2 ρ u2 + p(ρ)) = −u

(6.1.12)

converge, as ε→ 0, to the porous media equation

∂tρ = ∂x (ρ ∂xp(ρ))

where p(ρ) is the pressure function of the form p(ρ) = ργ . To connect (6.1.12) with our system
(6.1.1)–(6.1.2), it is sufficient to rescale ũ = ε u so that we have

∂tρ+
1

ε
∂x(ρ ũ) = 0,

∂t(ρ ũ) +
1

ε
∂x( ρ ũ

2 + p(ρ)) = − ũ

ε2
.

(6.1.13)

Intuitively, it is easy to understand from (6.1.13) that the flow of the fluid with big damping or
friction (caused by the term − ũ

ε2 ) and very small kinetic energy (caused by the initial condition)
resembles a flow through a porous media. Several other limit passages have been studied between
porous medium equation and hyperbolic equations [323, 267, 27]. The revival of interest in this
type of problem appeared recently with an observation that one can study these problems by the
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relative entropy method [250, 191, 107, 249, 184].

In our case, we consider (6.1.11) with K(ρ) = 1, large friction coefficient ζ = 1
ε , we approximate

the Laplace operator −∆ by the nonlocal operator Bη with η small enough, and we perform a
rescaling in time t→ t

ε . Then, we let both ε, η → 0, and in the limit, we obtain the Cahn-Hilliard
equation. Again, it is intuitive that due to the very large damping and small kinetic energy, we
observe mostly a phase separation process. The latter is described by the Cahn-Hilliard equation
so it is not surprising that it is the limiting PDE.

The Cahn-Hilliard equation In their publications [69] and [70] J.W. Cahn and J. E. Hil-
liard proposed the equation in 1958. It represents now a commonly used mathematical model for
describing phase changes in fluids, although the equation was primarily developed in material
sciences to explore phase separation processes under isotropy and constant temperature circum-
stances.

Being of fourth-order, the (local) Cahn-Hilliard equation is often rewritten in a system of two
second-order equations, i.e.

∂tρ = div (m(ρ)∇ (F ′(ρ)−D∆ρ)) →
{
∂tρ = div (m(ρ)∇µ) ,
µ = −D∆ρ+ F ′(ρ),

(6.1.14)

where ρ is the concentration of a phase and µ is called the chemical potential in material sciences
but is often used as an effective pressure. The interaction potential F (ρ) contained in this effec-
tive pressure term comprises the effects of attraction and repulsion between particles. Finally,
the Laplace operator takes into account surface tension effects.

The existence and uniqueness of solutions for the Cahn-Hilliard system (6.1.14) strictly depends
on the properties of the mobility term m(ρ) and the potential F (ρ), as well as the conditions
assigned on the boundary. More specifically, the presence of degeneration on the mobility, i.e.
the possibility for it to vanish, can turn the analysis of solutions into a rather complex problem.
We refer to [157] for the first existence result of weak solutions in the case of degenerate mobility
and to [113] for some improvements. The uniqueness and the existence of classical solutions are
open questions for this type of mobility. Since we use a relative entropy argument between the
Euler-Korteweg equation and the Cahn-Hilliard equation, the existence of a classical solution of
the latter is a crucial point. In fact, we need an L∞ bound on the second derivative of ρ, and
that the solution remains positive for all times in a finite time interval. Since the Cahn-Hilliard
equation does not satisfy the maximum principle, it is impossible to get these estimates. For that
purpose, we introduce the nonlocal Cahn-Hilliard equation, which is a second-order equation with
a nonlocal smooth advection term. With classical arguments, we are able to prove that the latter
admits a unique positive classical solution. Let us finally remark that the nonlocal Cahn-Hilliard
equation is nowadays a topic of intense research activity, see for instance [293, 123, 178, 181, 81].

Mobilities This work focuses on the mobility case where m(ρ) = ρ, which is a result of deriving
the Cahn-Hilliard equation from fluid models. This mobility is also obtained from Vlasov equation
via hydrodynamic limit [150] and is also observed in the nonlocal Cahn-Hilliard equation, which
can be derived from systems of interacting particles as an aggregation-diffusion equation (see [92,
65, 93]). Furthermore, it would be of interest to investigate whether this work can be extended
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to the mobility case of m(ρ) = ρ (1− ρ), as studied in the original works of Giacomin-Lebowitz
[189, 190]. They developed a model based on a d-dimensional lattice gas that evolves through
Kawasaki exchange dynamics, which is a Poisson process that exchanges nearest neighbors. In the
hydrodynamic limit, they observed that the average occupation numbers over a small macroscopic
volume element tends towards a solution of a non-local Cahn-Hilliard equation with mobility
m(ρ) = ρ(1− ρ).

6.2 Generalised Young Measures

We introduce the framework of Young measures to define the solutions of the nonlocal Euler-
Korteweg equation. This framework is necessary since in the usual approximation schemes we
cannot pass to the limit in the terms term of type f(zj) where f is nonlinear and {zj} is only
a weakly star convergent sequence. The idea of Young measures is to embed the problem in a
larger space and gain linearity. We write f(zj(y)) = ⟨f, δzj(y)⟩, and if f ∈ C0(Rn), using the
duality (L1(Q;C0(Rn)))∗ = L∞

w (Q;M(Rn)), Banach-Alaoglu theorem and weak-star continuity
of linear operators, we can pass to the limit. The same is true if {f(zj)} is weakly compact in
L1(Q) and {zj} does not grow too fast as the following theorem states :

Theorem 6.2.1 (Fundamental Theorem of Young Measures). Let Q ⊂ Rd be a measurable set
and let zj : Q→ Rn be measurable functions such that

sup
j∈N

∫
Q

g(|zj(y)|) dy < +∞

for some continuous, nondecreasing function g : [0,+∞) → [0,+∞) with limt→+∞ g(t) = +∞.
Then, there exists a subsequence (not relabeled) and a weakly star measurable family of probability
measures ν = {νy}y∈Q with the property that whenever the sequence {ψ(y, zj(y))}j∈N is weakly
compact in L1(Q) for a Carathéodory function (measurable in the first and continuous in the
second argument) ψ : Q× Rn → R, we have

ψ(y, zj(y))⇀

∫
Rn

ψ(y, λ) dνy(λ) in L1(Q).

We say that the sequence {zj}j∈N generates the sequence of Young measures {νy}y∈Q.

Note that in the above theorem, we require that the sequence {ψ(y, zj(y))} is weakly compact
in L1(Q). This prevents the concentration effect to appear (think about the family of standard
mollifiers). When we do not have weak compactness, we use the following proposition which
follows from the Banach-Alaoglu theorem. We formulate it with a distinguishment between time
and space variables (that is, Q = (0, T )× Ω, y = (t, x) with t ∈ (0, T ) and x ∈ Ω) as usually in
applications one has better integrability in time which results in better characterization of the
resulting measure. The following proposition is a consequence of the Banach-Alaoglu theorem
and the Radon-Nikodym theorem, see [55].

Proposition 6.2.2. Let f be a continuous function and a sequence {f(t, x, zj(t, x))}j∈N be boun-
ded in Lp(0, T ;L1(Ω)) with p ≥ 1. Let {νt,x}t,x be the Young measure generated by {zj}j. Then
there exists a measure mf such that (up to a subsequence not relabelled)

f(t, x, zj(t, x))− ⟨νt,x, f⟩ ∗
⇀mf in Lp(0, T ;M(Ω)) if p > 1,

f(t, x, zj(t, x))− ⟨νt,x, f⟩ ∗
⇀mf in M((0, T )× Ω) if p = 1.
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Moreover, if p > 1, the measure mf is absolutely continuous with respect to time : for a.e.
t ∈ (0, T ), there exists measure mf (t, ·) such that∫

(0,T )×Ω

ψ(t, x) dmf (t, x) =

∫ T

0

∫
Ω

ψ(t, x)mf (t, dx) dt.

Let us remark that by the fundamental theorem, we have mf = 0 when the sequence {f(zj)}j∈N
is weakly compact in L1((0, T )× Ω). We use the notation :

f = ⟨f(λ), νt,x⟩+mf (6.2.1)

to represent weak limit of f(t, x, zj(t, x)). We also need the following result which allows com-
paring two concentration measures mf1 and mf2 for two different nonlinearities f1, f2. For the
proof, we refer to [167, Lemma 2.1].

Proposition 6.2.3. Let {νt,x}(t,x)∈(0,T )×Ω be a Young measure generated by a sequence {zj}j∈N.
If two continuous functions f1 : (0, T )×Ω → Rd and f2 : (0, T )×Ω → R+ satisfy |f1(z)| ≤ f2(z)
for every z, and if {f2(zj)} is uniformly bounded in L1((0, T )× Ω), then we have

|mf1(A)| ≤ mf2(A),

for any borel set A ⊂ (0, T )× Ω.

Here, |µ| is the total variation measure defined as |µ|(A) = µ+(A) − µ−(A) where µ+, µ− are
positive and negative parts of µ.

Let us conclude with a few comments about the measure mf which captures concentration
effects. One can describe it more precisely. The first attempts to do so by some generalizations
of the Young measures were initiated by DiPerna and Majda in the case of the incompressible
Euler equations [139]. Then, Alibert and Bouchitté extended the result to a more general class
of nonlinearities in [15]. They proved that there exists a subsequence (not relabeled) as well as
a parametrized probability measure ν ∈ L∞

w (Q;P(Rn)) (which is identical with the "classical"
Young measure), a non-negative measure m ∈ M+(Q), and a parametrized probability measure
ν∞ ∈ L∞

w (Q,m;P(Sn−1)) such that for any Carathéodory function f such that f(x, z)/(1 + |z|)
is bounded and uniformly continuous with respect to z,

f(y, zj(y))
∗
⇀

∫
Rd

f(y, λ)dνy(λ) +

∫
Sn−1

f∞(y, β) dν∞y (β)m(y)

weakly* in the sense of measures. Here,

f∞(y, β) := lim
s→∞

f(y, tβ)

t
.

Their result was also extended to the case when f has different growth with respect to different
variables, see for instance [207].
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6.3 Measure-valued solutions to the nonlocal Euler-Korteweg
equation

6.3.1 Definition of dissipative measure-valued solutions

Let us motivate the definition of a measure-valued solution by their construction. We will consi-
der a sequence of approximating solutions {(ρδ,uδ)}, see Section 6.3.2, satisfying the estimates
(uniform in δ)

{ρδ} in L∞(0, T ;L2(Td)), {F (ρδ)} in L∞(0, T ;L1(Td)), {√ρδuδ} in L∞(0, T ;L2(Td)),

which will be a consequence of energy inequality (6.3.36). As we do not have estimates on {uδ}
itself, we will consider in fact the sequence {(ρδ,√ρδ uδ)}. Up to a subsequence, we have as δ → 0

ρδ
∗
⇀ ρ in L∞(0, T ;L2(Td))

√
ρδuδ

∗
⇀

√
ρu in L∞(0, T ;L2(Td)), (6.3.1)

where √
ρu is a definition of a weak limit of √ρδuδ. Let {νt,x} be the Young measure generated

by this sequence as in Theorem 6.2.1. We will use dummy variables (λ1, λ
′) ∈ R+ × Rd when

integrating with respect to νt,x :

⟨F (λ1, λ′), νt,x⟩ :=
∫
R+×Rd

F (λ1, λ
′) dνx,t(λ1, λ

′), (6.3.2)

with λ1 representing ρ variable and λ′ as representing √
ρu variable. In terms of Young measures

we write weak convergence (6.3.1) as

ρ = ⟨λ1, ν⟩,
√
ρu = ⟨λ′, ν⟩, (6.3.3)

as there is no concentration measure because of integrability in L2((0, T ) × Td). Using nota-
tion (6.2.1) we represent weak limits (as δ → 0) of all the terms that should appear in the weak
formulation and the energy

ρ2 = ⟨λ21, ν⟩+mρ2 , (6.3.4)

ρu = ⟨
√
λ1λ

′, ν⟩, (6.3.5)

ρu ⊗ u = ⟨λ′ ⊗ λ′, ν⟩+mρu⊗u, (6.3.6)

ρ|u|2 = ⟨|λ′|2, ν⟩+mρ|u|2 , (6.3.7)

F (ρ) = ⟨F (λ1), ν⟩+mF (ρ) (6.3.8)

ρF ′(ρ) = ⟨λ1F ′(λ1), ν⟩+mρF ′(ρ), (6.3.9)

p(ρ) = ρF ′(ρ)− F (ρ) +
1

2η2
ρ2, (6.3.10)

where p(ρ) := ρF ′(ρ)− F (ρ) + ρ2

2η2 .

Moreover, we will identify weak limits of several nonlinearities which will be used in this work.
By linearity of weak limits, we have the following identities :∫

Td

ωη(y)|ρ(x)− ρ(x− y)|2 dy = ρ2 + ρ2 ∗ ωη − 2 ρωη ∗ ρ (6.3.11)
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Similarly, for all bounded P : (0, T )× [0,+∞) → R+ and U : (0, T )× Td → Rd we have

|ρ− P|2 = ρ2 + P2 − 2ρP (6.3.12)

ρ|u − U|2 = ρ |u|2 + ρ |U|2 − 2 ρu · U, (6.3.13)

ρ(u − U)⊗ (u − U) = ⟨(λ′ −
√
λ1U)⊗ (λ′ −

√
λ1U), νt,x⟩+mρu⊗u, (6.3.14)∫

Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy =

∫
Td

ωη(y)|ρ(x)− ρ(x− y)|2 dy+

+

∫
Td

ωη(y)|P (x)− P (x− y)|2 dy − 2

∫
Td

ωη(y)(P (x)− P (x− y))(ρ(x)− ρ(x− y) dy,

(6.3.15)

F (ρ|P) := F (ρ)− F (P)− F ′(P)(ρ− P), p(ρ|P) := p(ρ)− p(P)− p′(P)(ρ− P) (6.3.16)

where nonlinearities are defined as

F (ρ|P) = F (ρ)− F (P)− F ′(P)(ρ− P), p(ρ|P) = p(ρ)− p(P)− p′(P)(ρ− P). (6.3.17)

Now, we define measure-valued solutions by inverting this discussion.

Definition 6.3.1 (Measure-valued solution). We say that (ρ,
√
ρu, ν,m) where

ν = {νt,x} ∈ L∞
weak((0, T )× Td;P([0,+∞)× Rd))

ρ = ⟨λ1, ν⟩ =
∫
R+×Rd

λ1 dνx,t(λ1, λ
′) ∈ L∞(0, T ;L2(Td)),

√
ρu = ⟨λ′, ν⟩ =

∫
R+×Rd

λ′ dνx,t(λ1, λ
′) ∈ L∞(0, T ;L2(Td)),

m =
(
mρ2 ,mρu⊗u,mρ|u|2 ,mF (ρ),mρF ′(ρ)

)
with

mρ2 ,mρ|u|2 ,mF (ρ) ∈ L∞((0, T );M+(Td)), mρF ′(ρ) ∈ L∞((0, T );M(Td)),
mρu⊗u ∈ L∞((0, T );M(Td)d×d)

and
|mϱu⊗u| ≤ mϱ|u|2 (6.3.18)

|mρF ′(ρ)| ≤ CF m
F (ρ) + CF m

ρ2 , CF defined in (6.8.2) (6.3.19)

is a measure-valued solution of (6.1.1)-(6.1.2) with initial data (ρ0,u0) if for every ψ ∈ C1
c ([0, T )×

Td;R), ϕ ∈ C1
c ([0, T )× Td;Rd) it holds that∫ T

0

∫
Td

∂tψ ρ+
1

ε
∇ψ · ρu dxdt+

∫
Td

ψ(x, 0)ρ0 dx = 0, (6.3.20)
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0

∫
Td

∂tϕ · ρu +
1

ε
∇ϕ : ρu ⊗ u − 1

ε2
ϕ · ρu +

1

ε
div ϕ p(ρ) +

1

εη2
ϕ · ρ∇ωη ∗ ρdxdt

+

∫
Td

ϕ(x, 0) · ρ0u0 dx = 0,

(6.3.21)

where p(ρ) = ρF ′(ρ)− F (ρ) + ρ2

2η2 and all the terms are defined in (6.3.3)–(6.3.10).

Definition 6.3.2 (nonlinear functions). Given a measure-valued solution (ρ,
√
ρu, ν,m) and boun-

ded P : (0, T )× [0,+∞) → R+, U : (0, T )× Td → Rd, we define nonlinear quantities∫
Td

ωη(y)|ρ(x)− ρ(x− y)|2 dy, |ρ− P|2, ρ|u − U|2, F (ρ|P), p(ρ|P),

ρ(u − U)⊗ (u − U),

∫
Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy

by formulas (6.3.11)–(6.3.16).

Definition 6.3.3 (energy). Given a measure-valued solution (ρ,
√
ρu, ν,m) for a.e. t ∈ (0, T ) we

define the energy as

Emvs(t) :=

∫
Td

1

2
ρ|u|2 + F (ρ) dx+

1

4η2

∫
Td

∫
Td

ωη(y)|ρ(x)− ρ(x− y)|2 dy dx,

where the nonlocal term is defined by (6.3.11). We also define

E0 :=

∫
Td

1

2
ρ0|u0|2(x) + F (ρ0) dx+

1

4η2

∫
Td

∫
Td

ωη(y)|ρ0(x)− ρ0(x− y)|2 dxdy.

This energy is well-defined because, by Proposition 6.2.2, a concentration measurem ∈ L∞(0, T ;M(Td))
admits disintegration dm(t, x) = m(t,dx) dt where m(t, ·) is a well-defined measure on Td for
a.e. t ∈ (0, T ).

We now introduce two properties which allows to select the right measure-valued solutions.

Definition 6.3.4 (Dissipativite measure-valued solution). We say that a measure-valued solution
(ρ,

√
ρu, ν,m) is dissipative if

Emvs(t) +
1

ε2

∫ t

0

∫
Td

ρ|u|2 dxdt ≤ E0 (6.3.22)

for almost every t ∈ (0, T ).

Definition 6.3.5 (Poincaré inequality). A measure-valued solution (ρ,
√
ρu, ν,m) with initial

condition ρ0 satisfies the nonlocal Poincaré inequality if for a.e. t ∈ (0, T ) and all bounded
P : ΩT → [0,+∞) such that (P)Td = (ρ0)Td we have∫

Td

|ρ− P |2 dx ≤ CP
4η2

∫
Td

∫
Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy dx. (6.3.23)

where the constant CP is given by Lemma 6.7.2.
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Let us remark that in Lemma 6.5.2, we will prove that any measure-valued solution satisfies∫
Td

|ρ− P |2 dx ≤ CP
4η2

∫
Td

∫
Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy dx.

which is a weaker version of (6.3.23). Nevertheless, (6.3.23) will be necessary to estimate several
terms appearing in the application of the relative entropy method in Section 6.5. Let us also point
out that similar Poincaré-type inequalities are usually assumed for measure-valued solutions to
several different PDEs, see for instance [167, eq. (2.23)].

We conclude with a simple observation concerning the energy.

Lemma 6.3.6. The energy Emvs defined by (6.3.22) is nonnegative.

Démonstration. The lemma seems to be trivial from the point of view of our discussion about
weak limits at the beginning of this section. However, the measure-valued solution is defined by
Definition 6.3.1 so that we can argue only using Definitions 6.3.1 and 6.3.2. Clearly, 1

2ρ|u|2 and
F (ρ) are nonnegative so that we only have to study the nonlocal term. By (6.3.11),∫

Td

∫
Td

ωη(y)|ρ(x)− ρ(x− y)|2 dy = 2

∫
Td

ρ2 − 2

∫
Td

ρωη ∗ ρ.

By Cauchy-Schwarz and Young convolution inequalities :

2

∫
Td

ρωη ∗ ρdx ≤ 2

∫
Td

ρ2 dx.

Using Jensen’s inequality (measure νt,x is the probability measure with respect to both coordi-
nates) ∫

Td

ρ2 dx =

∫
Td

⟨λ1, νt,x⟩2 dx ≤
∫
Td

⟨λ21, νt,x⟩dx ≤
∫
Td

ρ2 dx (6.3.24)

so that the nonlocal term is nonnegative.

6.3.2 The approximating system

To construct a measure-valued solution we use a method as outlined in [266, Section 5.5], see
also [79, 203]. This is a fairly standard procedure based on regularizing density by a positive
parameter

ρ0,δ = ρ0 + δ, ρ0 ∈ C1(Td), ρ0 > 0, u0,δ(x) = u0(x) ∈W 3,2(Td)d, (6.3.25)

which makes the density ρδ globally bounded from below. We will only discuss the main steps
and for the full presentation, we refer to [266, Section 5.5].

We work in W 3,2(Td)d (but for dimensions d higher than 3, we need to work even in W 1+d,2(Td))
because of the embedding W 3,2(Td) ⊂ C1(Td) which will be important for certain estimates. We
use notation ((·, ·)) for the standard scalar product in W 3,2(Td)d. By [266, Appendix, Theo-
rem 4.11], we take {ωi} to be an orthonormal basis of W 3,2(Td)d which are C∞(Td)d func-
tions. Finally, we define ΠN to be the projection operator into span{ω1, ...,ωN} which satisfies
∥ΠNu∥W 3,2 ≤ ∥u∥W 3,2 and ∥ΠNu∥L2 ≤ ∥u∥L2 .
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We will find solution (ρδ,uδ) such that

ρδ ∈ L∞((0, T )× Td) ∩ L2(0, T ;W 1,2(Td)),
∂ρδ
∂t

∈ L2((0, T )× Td)

uδ ∈ L∞(0, T ;W 3,2(Td)),
∂uδ
∂t

∈ L2((0, T )× Td),
(6.3.26)

to the following problem : for all ψ ∈ C1
c ([0, T )× Td;R), ϕ ∈ C1

c ([0, T )× Td;Rd) it holds that∫ T

0

∫
Td

∂tψρδ +
1

ε
∇ψ · ρδuδ dxdt+

∫
Td

ψ(x, 0)ρ0,δ dx = 0, (6.3.27)

∫ T

0

∫
Td

∂tϕ · ρδuδ +
1

ε
∇ϕ : ρδuδ ⊗ uδ −

1

ε2
ϕ · ρδuδ +

1

ε
div ϕ p(ρδ) dxdt

+

∫ T

0

∫
Td

1

εη2
ϕ · ρδ∇ωη ∗ ρδ dxdt+

∫
Td

ϕ(x, 0) · ρ0,δu0,δ dx = δ

∫ T

0

((uδ, ϕ)) dt.
(6.3.28)

To find the solution to (6.3.27)–(6.3.28), we use the method of Galerkin approximations. We look
for uN of the form

uN =

N∑
j=1

cNj (t)ωj

solving
∂ρN

∂t
+

1

ε
div(ρNuN ) = 0, (6.3.29)∫

Td

(
ρN∂tuN +

1

ε
ρNuN∇uN +

1

ε2
ρNuN +

1

ε
∇p(ρN )− 1

εη2
ρN∇ωη ∗ ρN

)
· ωi dx+

+ δ((uN ,ωi)) = 0,

(6.3.30)

for i = 1, ..., N with initial conditions ρN (0) = ρ0,δ, uN (0) = ΠNu0,δ.

The proof of existence to (6.3.29)–(6.3.30) follows 3 steps : using a fixed point argument to
prove the existence on a small interval, deriving a priori estimates on this interval, extending the
procedure on the whole interval. The crucial point is the lower bound on ρN in terms of δ. This
is obtained by the method of characteristics. Indeed,

ρN (t, x) ≥ ess inf
x∈Td

ρ0,δ exp

(
−1

ε

∫ T

0

∥divuN∥∞ dt

)
≥ δ exp

(
−1

ε

∫ T

0

∥uN∥W 3,2 dt

)
(6.3.31)

by the well-known formula for the continuity equation. On the other hand, thanks to the regula-
rizing term, ∥uN∥L2(0,T ;W 3,2(Td)) ≤ C

δ . This gives uniform lower (and also upper) bound on ρN

and allows us to look at (6.3.30) as a system of ODEs. We refer to [266, Section 5.5] and omit
the details. We obtain the following lemma :

Lemma 6.3.7. For fixed N , there exists a solution to (6.3.29)–(6.3.30) such that ρN ∈ C1([0, T ]×
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Td), uN ∈ C1([0, T ];W 3,2(Td)d). Moreover, we have the energy estimate : for all times τ ∈ [0, T ]∫
Td

1

2
ρN |uN |2 + F (ρN ) dx+

1

4η2

∫
Td

∫
Td

ωη(y)|ρN (x)− ρN (x− y)|2 dxdy

+ δ

∫ τ

0

∥uN∥2W 3,2 dt+
1

ε2

∫ τ

0

∫
Td

ρN |uN |2 dx ≤

≤
∫
Td

1

2
ρ0,δ|u0|2 + F (ρ0,δ) dx+

1

4η2

∫
Td

∫
Td

ωη(y)|ρ0,δ(x)− ρ0,δ(x− y)|2 dxdy,

(6.3.32)

as well as the following estimates

ρN (t, x) ≥ C

(
1

δ

)
(6.3.33)

∥ρN∥L∞((0,T )×Ω) +

∫ τ

0

∥∂tρN∥2L2(Td) +

∫ τ

0

∥∇ρN∥2L2(Td) ≤ C

(
1

δ

)
, (6.3.34)∫ T

0

∥∂tuN∥2L2(Td) + δ∥uN∥L∞((0,T );W 3,2(Td)d) ≤ C

(
1

δ

)
, (6.3.35)

where C
(
1
δ

)
is a constant depending on 1

δ and other fixed parameters (like ε).

Démonstration. The energy estimate follows by testing (6.3.30) by uN (in the Galerkin sense :
we multiply (6.3.30) by cNi and sum for i = 1, ..., N). Estimate (6.3.33) follows from the charac-
teristics as explained in (6.3.31). Similarly, we obtain the upper bound. Concerning the estimates
on derivatives of ρN , they follow by differentiating the formula from the method of characteris-
tics and using the bound ∥uN∥L2(0,T ;W 3,2(Td)) ≤ C

δ . Finally, (6.3.35) is a consequence of testing
(6.3.30) by ∂tuN .

Using the estimates in Lemma 6.3.7, up to a subsequence, we can pass to the limit N → ∞

ρN → ρδ strongly in L2((0, T )× Td),
uN → uδ strongly in L2((0, T )× Td)d

(the convergence holds even in better spaces). We also have an energy inequality :∫
Td

1

2
ρδ|uδ|2 + F (ρδ) dx+

1

4η2

∫
Td

∫
Td

ωη(y)|ρδ(x)− ρδ(x− y)|2 dx dy

+ δ

∫ τ

0

∥uδ∥2W 3,2 dt+
1

ε2

∫ τ

0

∫
Td

ρδ|uδ|2 dx ≤

≤
∫
Td

1

2
ρ0,δ|u0|2 + F (ρ0,δ) dx+

1

4η2

∫
Td

∫
Td

ωη(y)|ρ0,δ(x)− ρ0,δ(x− y)|2 dxdy,

(6.3.36)

This concludes the proof of existence of (ρδ,uδ) satisfying (6.3.27)–(6.3.28).

6.3.3 Existence of dissipative measure-valued solutions

It remains to pass to the limit δ → 0 in (6.3.27)–(6.3.28). First we gather some uniform bounds
in δ, being a simple consequence of (6.3.33) and (6.3.36), in the following lemma :
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Lemma 6.3.8. Let (ρδ,uδ) be weak solutions of (6.3.27)–(6.3.28) as constructed above. Then,
there exists a constant C > 0 independent of δ such that

ρδ ≥ 0 a.e. in (0, T )× Td,
∥√ρδuδ∥L∞(0,T ;L2(Td)) ≤ C, ∥F (ρδ)∥L∞(0,T ;L1(Td)) ≤ C, ∥ρδ∥L∞(0,T ;L2(Td)) ≤ C,

δ∥uδ∥2L2(0,T ;W 3,2(Td)) ≤ C,

∥∂tρδ∥L2(0,T ;(W 1,4(Td))′) ≤ C.

In fact, the proof of the existence of dissipative measure-valued solution follows now the me-
thod described at the beginning of Section 6.3.1. By Lemma 6.3.8, we have sufficient estimates
to have convergence (6.3.1) which allows us to define the Young measure {νt,x} as in (6.3.2)–
(6.3.3). Then, the representations formulas for weak limits of nonlinearities (6.3.4)–(6.3.7) are a
consequence of Lemma 6.2.2 and the estimate on ∥√ρδuδ∥L∞(0,T ;L2(Td)) which guarantees that
all of the considered quantities are at least in L∞(0, T ;L1(Td)). Note that mρu = 0 because
we have a uniform bound ∥ρδuδ∥

L∞(0,T ;L
4
3 (Td))

≤ C. Next, (6.3.8) follows from the estimate

on ∥F (ρδ)∥L∞(0,T ;L1(Td)). Here, the measure mF (ρ) is nonnegative because F = F1 + F2 where
F1 ≥ 0 while F2 is bounded so that the only concentration effect can arise from F1. Similarly,
by Assumption 6.1.1, ∥ρδ F ′(ρδ)∥L∞(0,T ;L1(Td)) ≤ C so that (6.3.9) follows. Finally, (6.3.10) is a
consequence of the linearity and uniqueness of weak limits. This allows to pass to the limit δ → 0
in almost all of the terms in formulation (6.3.27)–(6.3.28).

Concerning the regularizing term on the (RHS) of (6.3.28), we observe that∣∣∣∣∣δ
∫ T

0

((uδ, ϕ)) dt

∣∣∣∣∣ ≤ δ ∥uδ∥L2((0,T );W 3,2(Td)) ∥ϕ∥L2((0,T );W 3,2(Td)) ≤ C
√
δ ∥ϕ∥L2((0,T );W 3,2(Td)) → 0.

When it comes to the nonlocal terms, we observe that we can identify their weak limits because
the convolution upgrades a weak convergence to the strong one. More precisely, if ρδ

∗
⇀ ρ in

L∞(0, T );L2(Td)), then ρδ ∗ωη → ρ∗ωη in Lp(0, T ;Lp(Td)) strongly, for all 1 ≤ p <∞. This fol-
lows by the Lions-Aubin lemma and a standard subsequence argument as the sequence {ρδ ∗ωη}δ
has uniformly bounded derivatives in the spatial derivatives while its time derivative is bounded
in some negative Sobolev space by Lemma 6.3.8.

Concerning (6.3.18), we notice that it is a consequence of the inequality

|λ′ ⊗ λ′| =

 d∑
i,j=1

(
λ′iλ

′
j

)21/2

=

d∑
i=1

|λ′i|2 = |λ′|2

and Lemma 6.2.3. Similarly, (6.3.19) follows from by virtue of Proposition 6.2.3 and inequality
(6.8.2).

Next, the constructed measure-valued solution is dissipative in the sense of Definition 6.3.4 be-
cause we can pass to the limit in (6.3.36) using identified weak limits (rigorously, one multiplies
(6.3.36) with a nonnegative test function of time, passes to the limit and then performs a stan-
dard localization argument).

Finally, the constructed solution satisfies Poincaré inequality as in Definition 6.3.5. Indeed, by
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Lemma 6.7.2 we have for all bounded and nonnegative φ : [0, T ] → [0,∞)∫ T

0

∫
Td

φ(t)|(ρδ − P)− δ|2 ≤ CP
4η2

∫ T

0

∫
Td

∫
Td

φ(t)|(ρδ − P)(x)− (ρδ − P)(x− y)|2ωη(y) dxdy dt

because (ρδ − P)Td = δ. The (LHS) can be written as∫ T

0

∫
Td

φ(t)|(ρδ − P)− δ|2 =

∫ T

0

∫
Td

φ(t)
(
(ρδ − P)2 + δ2 − 2 δ (ρδ − P)

)
.

As ρδ −P is bounded in L∞(0, T ;L2(Td)), the last two terms vanish in the limit δ → 0. Finally,
the term (ρδ−P)2 has weak limit ρ2+P2−2P ρ which is exactly (ρ− P)2, cf. (6.3.12). Similarly,
we consider the term on the (RHS) so that we obtain∫ T

0

∫
Td

φ(t)|ρ− P|2 ≤ CP
4η2

∫ T

0

φ(t)

∫
Td

∫
Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy dx dt.

As this inequality holds for all φ, we conclude the proof.

6.4 Classical solutions to the nonlocal Cahn-Hilliard equa-
tion

To prove the convergence of the measure-valued solution of the nonlocal Euler-Korteweg to a
solution of the Cahn-Hilliard equation, we use arguments similar to weak-strong uniqueness.
Therefore, we study below the classical solutions of the nonlocal Cahn-Hilliard equation. More
precisely, we consider the equation (6.1.5)–(6.1.6). The initial condition is a smooth positive
function, more precisely we consider for some α, σ > 0

ρ(0, x) = ρ0(x), ρ0 ∈ C2+α(Td), ρ0(x) ≥ σ ∀x ∈ Td. (6.4.1)

We also suppose that F ∈ C4 which is required by the parabolic regularity theory exploited in
Lemma 6.4.2. Equations (6.1.5)-(6.1.6) can be rewritten as

∂tρ−∆(ϕ(ρ)) + div(ρ b(ρ)) = 0, ϕ(ρ) =
ρ2

2η2
+

∫ ρ

0

sF ′′(s) ds, b(ρ) =
∇ωη ∗ ρ
η2

. (6.4.2)

Theorem 6.4.1. Equation (6.4.2) with initial condition u0 satisfying (6.4.1) admits a classical
unique solution.

To prove this theorem we first consider an approximate problem and we define Tδ a smooth
function such that

Tδ(0) =
δ

2
, Tδ(ρ) = ρ if u ≥ δ, Tδ is increasing.

The plan is to approximate (6.1.5) with

∂tρ = div(Tδ(ρ)∇µ). (6.4.3)



208 CHAPITRE 6. From NLEK to LCH via the high-friction limit

We also define

ϕδ(ρ) :=

∫ ρ

0

Tδ(s)

η2
ds+

∫ ρ

0

Tδ(s)F
′′(s) ds =

∫ ρ

0

Tδ(s)

(
1

η2
+ F ′′(s)

)
ds (6.4.4)

so that equation (6.4.3) can be rewritten as a porous media equation

∂tρ−∆(ϕδ(ρ)) + div(ρ b(ρ)) = 0 ρ(0, x) = ρ0(x). (6.4.5)

From the properties of F we note that ϕδ ≥ 0 and ϕ′δ ≥ 0.

Lemma 6.4.2 (existence). There exists a classical solution to (6.4.5). Moreover, the solution
obeys the maximum principle

ρ(t) := σ exp

(
−
∫ t

0

∥div b(ρ)∥L∞(s) ds

)
≤ ρ(t, x) ≤ σ exp

(∫ t

0

∥div b(ρ)∥L∞(s) ds

)
.

Démonstration. The existence follows from [155]. To prove the maximum principle, we denote
w = ρ− ρ so that

∂tw −∆(ϕδ(ρ)) + div(w b(ρ)) + ρ(div(b(ρ))− ∥div(b(ρ))∥L∞) = 0, w(0, x) = ρ0(x)− ρ ≥ 0.

We multiply this equation by sgn−(w) :=

{
−1 if w < 0

0 if w ≥ 0.
. We obtain, with w− = min{w, 0},

|w−| = −min{w, 0}.

∂t|w−|+∆(ϕδ(ρ))sgn
−(w) + div(|w−| b(ρ)) ≤ 0.

Therefore integrating in space and using the inequality∫
Td

∆ϕδ(ρ)sgn
−(w) ≥ 0,

we obtain
∂t

∫
Td

|w−| ≤ 0.

Using the initial condition we conclude |w−| = 0.

Since the solutions to (6.4.3) satisfy uniform lower bound, we obtain Tδ(ρ) = ρ for sufficiently
small δ and thus classical solutions of Theorem 6.4.1.

Lemma 6.4.3 (uniqueness). Classical nonnegative solutions to (6.4.2) are unique.

Démonstration. We want to adapt usual L1 contraction principle [324, Proposition 3.5] to the
case with additional continuity equation term. Let ρ1, ρ2 be solutions to (6.4.5) and let w =
ρ1 − ρ2. Equation for w reads

∂tw −∆(ϕ(ρ1)− ϕ(ρ2)) + div(ρ1 b(ρ1)− ρ2 b(ρ2)) = 0.

We multiply this equation by pε(ϕ(ρ1)− ϕ(ρ2)) where pε approximates p(u) = 1u>0 and p′ε ≥ 0.
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Then, ∫
Td

∆(ϕ(ρ1)− ϕ(ρ2)) pε(ϕ(ρ1)− ϕ(ρ2)) dx = −
∫
Td

p′ε |∇(ϕ(ρ1)− ϕ(ρ2))|2 dx ≤ 0.

Concerning the other terms we notice that after sending ε → 0 we obtain p(ϕ(ρ1) − ϕ(ρ2)) =
p(ρ1 − ρ2) by monotonicity of ϕ. Therefore,∫

Td

∂tw p(ρ1 − ρ2) dx = ∂t

∫
Td

|w|+ dx.

Now, we split the divergence term into two parts :

div(ρ1 b(ρ1)− ρ2 b(ρ2)) = [ρ1 divb(ρ1)− ρ2 divb(ρ2)] + [∇ρ1 b(ρ1)−∇ρ2 b(ρ2)] = A+B.

The term A can be estimated in L1(Td) with

∥A∥1 ≤ ∥ρ1 divb(ρ1)− ρ2 divb(ρ1)∥1 + ∥ρ2 divb(ρ1)− ρ2 divb(ρ2)∥1
≤ ∥ρ1 − ρ2∥1 ∥divb(ρ1)∥∞ +

1

η2
∥ρ2∥1 ∥D2ωη∥∞∥ρ1 − ρ2∥1

≤ ∥D2ωη∥∞
η2

(∥ρ1∥1 + ∥ρ2∥1) ∥ρ1 − ρ2∥1

where we used Young’s convolutional inequality. Therefore,∫
Td

pAdx ≤ ∥pA∥1 ≤ ∥D2ωη∥∞
η2

(∥ρ1∥1 + ∥ρ2∥1) ∥ρ1 − ρ2∥1.

where we denoted for simplicity p = p(ρ1 − ρ2). Concerning term B we write similarly

B = (∇ρ1 b(ρ1)−∇ρ2 b(ρ1)) + (∇ρ2 b(ρ1)−∇ρ2 b(ρ2)) =: B1 +B2.

As above, we easily obtain

∥B2∥1 ≤ ∥∇ωη∥∞
η2

∥∇ρ2∥1 ∥ρ1 − ρ2∥1,
∫
Td

pB2 dx ≤ ∥∇ωη∥∞
η2

∥∇ρ2∥1 ∥ρ1 − ρ2∥1.

The term B1 is more tricky. Keeping in mind that everything is multiplied by p(ρ1−ρ2) we have∫
Td

(∇ρ1 −∇ρ2) p(ρ1 − ρ2) b(ρ1) dx =

∫
Td

∇|ρ1 − ρ2|+ b(ρ1) dx =

= −
∫
Td

|ρ1 − ρ2|+divb(ρ1) dx ≤ ∥ρ1 − ρ2∥1 ∥ρ1∥1
∥D2ωη∥∞

η2
.

We conclude that for some constant C depending on L1 norms of ρ1, ρ2 and ∇ρ2 we have

∂t

∫
Td

|ρ1 − ρ2|+ dx ≤
∫
Td

|ρ1 − ρ2|dx.
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Replacing ρ1 and ρ2 we obtain

∂t

∫
Td

|ρ1 − ρ2|dx ≤
∫
Td

|ρ1 − ρ2|dx.

so that we conclude ρ1 = ρ2.

6.5 Convergence of nonlocal Euler-Korteweg to nonlocal Cahn-
Hilliard

To prove convergence of nonlocal Euler-Korteweg equation to the nonlocal Cahn-Hilliard equa-
tion, we first rewrite the latter as a nonlocal Euler-Korteweg equation with an error term :

∂tP +
1

ε
div(PU) = 0, (6.5.1)

∂t(PU) +
1

ε
div (PU ⊗ U) = − 1

ε2
PU − 1

ε
P∇(F ′(P) +Bη[P]) + e(P,U). (6.5.2)

Here, velocity U is given by
U = −ε∇(F ′(P)−Bη(P)) (6.5.3)

and the error term is given by

e(P,U) = ∂t(PU) +
1

ε
div (PU ⊗ U)

= εdiv(P∇(F ′(P) +Bη[P]))⊗∇(F ′(P) +Bη[P])))− ε∂t(P∇(F ′(P) +Bη[P]))).

Finally, given strong solution (P,U) and measure-valued solution represented by (ρ,
√
ρu, ν,m)

we define the relative entropy as

Θ(t) =

∫
Td

1

2
ρ|u − U|2 + F (ρ|P) dx+

1

4η2

∫
Td

∫
Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy dx.
(6.5.4)

where nonlinearity F (ρ|P) is defined in (6.3.17) and measure-valued terms are defined by (6.3.13),
(6.3.15) and (6.3.16). The main result reads :

Theorem 6.5.1. Let (ρ,
√
ρu, ν,m) be a dissipative measure valued solution of (6.1.1)–(6.1.2)

satisfying Poincaré inequality (6.3.23) and let (P,U) be classical solutions of (6.5.1)–(6.5.2).
Then, for a constant independent of ε and η we have

Θ(t) ≤
(
Θ(0) + ε4C(∥P∥C2,1)

∥∥∥∥ 1P
∥∥∥∥2
∞

)
eTC(∥P∥C2,1 )/η

d+3

. (6.5.5)

Lemma 6.5.2. Let η ∈ (0, η0). Then, the relative entropy defined by (6.5.4) is nonnegative :
there exists a κ ∈ (0, 1) such that∫

Td

ρ|u−U|2 dx+
κ

4η2

∫
Td

∫
Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy dx ≤ Θ(t) (6.5.6)

where both terms on the (LHS) are nonnegative. Moreover, for the constant CP (defined in
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Lemma 6.7.2) we have an estimate

∥ρ− P∥2L2(Td) ≤
CP
4η2

∫
Td

∫
Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy dx. (6.5.7)

Proof of Lemma 6.5.2. We study the three terms appearing in (6.5.4) separately. First, for
(6.3.13) we write by Fubini theorem

ρ|u − U|2 =
〈
|λ′|2 + λ1 |U|2 − 2

√
λ1 λ

′U, νt,x
〉
+mρ|u|2 =

〈
|λ′ −

√
λ1U|2, νt,x

〉
+mρ|u|2 ,

so that, after integration in space, it is positive (for a.e. t ∈ (0, T )). Now, we study the nonlocal
term. We claim that (after integration)∫

Td

∫
Td

ωη(y)|ρ(x)− ρ(x− y)|2 dy dx ≥
∫
Td

∫
Td

ωη(y)|ρ(x)− ρ(x− y)|2 dy dx. (6.5.8)

Indeed, by definition (6.3.11), the (LHS) equals 2
∫
Td ρ2 −

∫
Td 2 ρωη ∗ ρ. By (6.3.24), we know

that
∫
Td ρ2 ≥

∫
Td ρ

2. To conclude the proof of (6.5.8), it is sufficient to observe

2

∫
Td

ρ2 −
∫
Td

2 ρωη ∗ ρ =

∫
Td

∫
Td

ωη|ρ(x)− ρ(x− y)|2 dy dx.

Now, combining (6.3.15) and (6.5.8), we obtain∫
Td

∫
Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy dx ≥

≥
∫
Td

∫
Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy dx.

Using Lemma 6.7.2, we conclude the proof of (6.5.7) and nonnegativity of the nonlocal term.

It remains to study the term F (ρ|P). The concentration measure mF (ρ) is nonnegative and
will be neglected in the estimate below. We split F = F1 + F2 (where F1, F2 are defined in
Assumption 6.1.1) in (6.3.16) so that from (6.3.8) and (6.3.16)

F (ρ|P) = ⟨F1(λ1)− F1(P)− F ′
1(P)(λ1 − P), νt,x⟩

+ ⟨F2(λ1)− F2(P)− F ′
2(P)(λ1 − P), νt,x⟩+mF (ρ)

(6.5.9)

The first term is nonnegative by convexity of F1. The second can be estimated from below
(by Taylor’s expansion) with −∥F ′′

2 ∥∞
〈
(λ1 − P)2, νt,x

〉
. Now, recall that ∥F ′′

2 ∥∞ < 1
CP

(cf. As-
sumption 6.1.1). In particular, there exists κ ∈ (0, 1) such that ∥F ′′

2 ∥∞ < 1−κ
CP

. Using Poincaré
inequality (6.3.23) and the fact that the concentration measure mρ2 is nonnegative we have

−∥F ′′
2 ∥∞

∫
Td

〈
(λ1 − P)2, νt,x

〉
dx ≥ −∥F ′′

2 ∥∞
∫
Td

(ρ− P)2 dx ≥ − (1− κ)

CP

∫
Td

(ρ− P)2 dx

≥ −1− κ

4η2

∫
Td

∫
Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy dx.
(6.5.10)
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Therefore, we can compensate a possibly negative term with the positive nonlocal term appearing
in (6.5.4).

Proof of Theorem 6.5.1. We split the reasoning into several steps.
Step 1 : Energy identities. First, we recall that the dissipative measure valued solutions satisfy∫

Td

1

2
ρ|u|2 + F (ρ) dx+

1

4η2

∫
Td

∫
Td

ωη(y)|ρ(x)− ρ(x− y)|2 dy dx+
1

ε2

∫ t

0

∫
Td

ρ|u|2 dxdt

≤
∫
Td

1

2
ρ0|u0|2(x) + F (ρ0) dx+

1

4η2

∫
Td

∫
Td

ωη(y)|ρ0(x)− ρ0(x− y)|2 dy dx.
(6.5.11)

where the quantities on the (LHS) of (6.5.11) are evaluated at time t. Similarly, the classical
solutions (P,U) satisfy∫

Td

1

2
P|U|2 + F (P) dx+

1

4η2

∫
Td

∫
Td

ωη(y)|P(x)− P(x− y)|2 dx dy =

=

∫
Td

1

2
P0|u0|2(x) + F (P0) dx+

1

4η2

∫
Td

∫
Td

ωη(y)|P0(x)− P0(x− y)|2 dxdy

− 1

ε2

∫ t

0

∫
Td

P|U|2 dxdt+
∫ t

0

∫
Td

U · e(P,U) dtdx.

(6.5.12)

Identity (6.5.12) can be obtained from testing (6.5.1)–(6.5.2) by U and performing several inte-
gration by parts.

Step 2 : Estimate for the mixed terms F ′(P)(ρ− P), Bη[P] and ρ |U|2. We consider weak solu-
tions of the mass equation satisfied by the differences between the measure valued solutions and
classical solutions :∫ T

0

∫
Td

∂tψ(ρ− P) +
1

ε
∇ψ · (ρu − PU) dxdt+

∫
Td

ψ(x, 0)(ρ0 − P0) dx = 0. (6.5.13)

We set

θδ(t) :=


1 for 0 ≤ τ < t,
t−τ
δ + 1 for t ≤ τ < t+ δ,

0 for τ ≥ t+ δ.

Note that θ′(t) is an approximation of the dirac mass −δt. We consider test function in (6.5.13)
defined as ψ = θδ(t)

(
F ′(P) +Bη[P]− 1

2 |U|2
)

so that after letting δ → 0 we obtain∫
Td

(
F ′(P) +Bη[P]−

1

2
|U|2

)
(ρ− P)

∣∣∣t
τ=0

dx =

= +

∫ t

0

∫
Td

∂τ

(
F ′(P) +Bη[P]−

1

2
|U|2

)
(ρ− P) dxdτ

+
1

ε

∫ t

0

∫
Td

∇
(
F ′(P) +Bη[P]−

1

2
|U|2

)
· (ρu − PU) dxdτ.

(6.5.14)

Step 3 : Estimate for the mixed term ρuU. We consider weak solutions of the momentum equa-
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tion satisfied by the differences between the measure valued solutions and classical solutions :∫ ∞

0

∫
Td

∂tϕ · (ρu−PU)+
1

ε
∇ϕ : (ρu ⊗ u−PU⊗U)− 1

ε2
ϕ · (ρu−PU)+

1

ε
div ϕ(p(ρ)− p(P))

+
1

εη2
ϕ · (ρ∇ωη ∗ ρ− P · ∇ωη ∗ P) +

∫
Td

ϕ(x, 0) · (ρ0u0 − P0U0) dx−
∫ ∞

0

∫
Td

ϕ · e(P,U) = 0.

We consider test function ϕ = θδ(t)U so that after letting δ → 0 we obtain∫
Td

U · (ρu − PU)
∣∣∣t
τ=0

dx =

∫ t

0

∫
Td

∂τU · (ρu − PU) dxdτ

+

∫ t

0

∫
Td

1

ε
∇U : (ρu ⊗ u − PU ⊗ U) +

1

ε
div(U)(p(ρ)− p(P)) dx dτ

− 1

ε2

∫ t

0

∫
Td

U · (ρu − PU) dxdτ +
1

εη2

∫ t

0

∫
Td

U · (ρ∇ωη ∗ ρ− P · ∇ωη ∗ P) dx dτ

−
∫ t

0

∫
Td

U · e(P,U) dx dτ.

(6.5.15)

Step 4 : First estimate on the relative entropy. Let us observe that when we subtract (6.5.12),
(6.5.14) and (6.5.15) from (6.5.11) we obtain an estimate for Θ(t)−Θ(0). To see this, let us write
explicitly the (LHS) after the subtraction (we omit integral with respect to x for simplicity and
we consider only terms at time τ = t ; of course, for τ = 0, they will be analogous) :

1

2
ρ|u|2 + F (ρ) +

1

4η2

∫
Td

ωη(y)|ρ(x)− ρ(x− y)|2 dy − 1

2
P|U|2 − F (P)

− 1

4η2

∫
Td

ωη(y)|P(x)− P(x− y)|2 dy −
(
F ′(P) +Bη[P]−

1

2
|U|2

)
(ρ− P)− U · (ρu − PU) .

We claim that this expression equals Θ(t). Indeed, the terms containing both density and ve-
locity sum up to the term ρ|u − U|2 as in (6.3.13). Similarly, terms with the potential F and
its derivative F ′ can be combined to (6.3.16). Finally, for the nonlocal term, the claim is the
consequence of two identities :

Bη[P] ρ =
1

2η2

∫
Td

ωη(y)(P(x)− P(x− y)) (ρ(x)− ρ(x− y)) dy

and the similar one for Bη[P] P we can easily see that this expression equals Θ(t). Subtracting
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all the terms on the (RHS) of (6.5.12), (6.5.14),(6.5.15) from (RHS) of (6.5.11) we obtain

Θ(t)−Θ(0) ≤ − 1

ε2

∫ t

0

∫
Td

ρ|u|2 − P|U|2 − U · (ρu − PU) dxdτ

−
∫ t

0

∫
Td

∂τ

(
F ′(P) +Bη[P]−

1

2
|U|2

)
(ρ− P) + ∂τU · (ρu − PU) dxdτ

− 1

ε

∫ t

0

∫
Td

∇
(
F ′(P) +Bη[P]−

1

2
|U|2

)
· (ρu − PU) dxdτ

− 1

ε

∫ t

0

∫
Td

∇U : (ρu ⊗ u − PU ⊗ U) + div(U)(p(ρ)− p(P)) dx dτ

− 1

ε

1

η2

∫ t

0

∫
Td

U · (ρ∇ωη ∗ ρ− P · ∇ωη ∗ P) dxdτ.

(6.5.16)

Step 5 : Terms with ∂τU in (6.5.16). To estimate the right-hand side of (6.5.16) we first try to
eliminate time derivative from (6.5.16). To this end, we compute ∂tU from the equations (6.5.1)-
(6.5.2) to obtain that U satisfies

∂tU +
1

ε
(U · ∇)U = − 1

ε2
U − 1

ε
∇(F ′(P) +Bη[P]) +

e(P,U)

P
. (6.5.17)

We take the scalar product of this equation with ρu − ρU which yields

∂tU · (ρu − PU) +
1

2
∂t|U|2(P− ρ) +

1

ε
∇U : (ρu ⊗ U − ρU ⊗ U)

=
1

ε2
(ρ|U|2 − U · ρu)− 1

ε
∇(F ′(P) +Bη[P]) · (ρu − ρU) +

e(P,U)

P
· (ρu − ρU),

where we used identities

1

ε
(U · ∇)U · (ρu − ρU) =

1

ε
∇U : (ρu ⊗ U − ρU ⊗ U),

∂tU · (ρu − ρU) = ∂tU · (ρu − PU) +
1

2
∂t|U|2(P− ρ).

Finally, using matrix identity xAy = A : x⊗ y where x, y ∈ Rd and A ∈ Rd×d we easily deduce
the formula

∇U : (ρu ⊗ U − ρU ⊗ U) = ∇U : (ρu ⊗ u − PU ⊗ U)

−∇U : ρ(u − U)⊗ (u − U)−∇
(
1

2
|U|2

)
(ρu − PU),

where
ρ(u − U)⊗ (u − U) := ρu ⊗ u − ρu ⊗ U − U ⊗ ρu + ρU ⊗ U.
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We obtain

1

2
∂t|U|2 (P− ρ) + ∂t(U) · (ρu − PU)− 1

ε
∇
(
1

2
|U|2

)
· (ρu − PU)+

+
1

ε
∇U : (ρu ⊗ u − PU ⊗ U) =

1

ε
∇U : ρ(u − U)⊗ (u − U)+

=
1

ε2
(ρ|U|2 − U · ρu)− 1

ε
∇(F ′(P) +Bη[P]) · (ρu − ρU) +

e(P,U)

P
· (ρu − ρU).

(6.5.18)

Note that this gives us an estimate on four terms appearing on the (RHS) of (6.5.16).

Step 6 : Terms with F ′ and Bη in (6.5.16). We now consider the expression

−
∫ t

0

∫
Td

∂τ (F
′(P) +Bη[P]) (ρ− P) +

1

ε
∇ (F ′(P) +Bη[P]) · (ρu − PU) dxdτ

+

∫ t

0

∫
Td

1

ε
∇(F ′(P) +Bη[P]) · (ρu − ρU) dx dτ.

The first integral comes from (6.5.16) while the second from (6.5.18) plugged into (6.5.16). We
can simplify this to get

−
∫ t

0

∫
Td

∂τ (F
′(P) +Bη[P]) (ρ− P) +

1

ε
∇ (F ′(P) +Bη[P]) · U(ρ− P) dxdτ. (6.5.19)

We split the term with Bη[P] =
P
η2 − P∗ωη

η2 for the local and non-local parts. Now, concerning
the terms with potential F , we use (6.5.1) to deduce

∂tF
′(P) = F ′′(P) ∂tP = −1

ε
F ′′(P)∇P ·U− 1

ε
F ′′(P)PdivU = −1

ε
∇F ′(P) ·U− 1

ε
F ′′(P)PdivU.

Similarly,
1

η2
∂tP = − 1

ε η2
∇P · U − 1

ε η2
PdivU.

Therefore, the local parts of (6.5.19) sum up to

−1

ε

(
F ′′(P)P +

1

η2
P

)
divU (ρ− P) = −1

ε
p′(P)divU (ρ− P)

which together with − 1
ε div(U)(p(ρ)− p(P)) divU from (6.5.16) gives p(ρ|P) divU, where

p(ρ|P) := p(ρ)− p(P)− p′(P) (ρ− P).

Now, we consider the nonlocal parts in (6.5.19) and the last nonlocal term coming from (6.5.16).
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which equals

1

η2

∫ t

0

∫
Td

∂τ (P ∗ ωη) (ρ− P) +
1

ε η2
∇ (P ∗ ωη) · U(ρ− P) dx dτ

− 1

ε

1

η2

∫ t

0

∫
Td

U · (ρ∇ωη ∗ ρ− P · ∇ωη ∗ P) dxdτ.
(6.5.20)

Using (6.5.1) and properties of the convolution we can rewrite the first term in (6.5.20) :

1

η2

∫ t

0

∫
Td

∂τ (P ∗ ωη) (ρ− P) dx dτ = −1

ε

1

η2

∫ t

0

∫
Td

div(PU) (ωη ∗ (ρ− P)) dx dτ

=
1

ε

1

η2

∫ t

0

∫
Td

PU · (∇ωη ∗ (ρ− P)) dx dτ.

so that (6.5.20) boils down to

−1

ε

1

η2

∫ t

0

∫
Td

(ρ− P)U · ∇ωη ∗ (ρ− P) dx dτ.

Step 7 : Final estimate on the relative entropy. Using the steps above and (6.5.16) we obtain

Θ(t)−Θ(0) ≤ − 1

ε2

∫ t

0

∫
Td

ρ|u − U|2 dxdτ −
∫ t

0

∫
Td

e(P,U)

P
(ρu − ρU) dx dτ

− 1

ε

∫ t

0

∫
Td

∇U : ρ(u − U)⊗ (u − U) dx dτ − 1

ε

∫ t

0

∫
Td

div(U) p(ρ|P) dx dτ

− 1

ε

1

η2

∫ t

0

∫
Td

(ρ− P)U · ∇ωη ∗ (ρ− P) dxdτ =: A+B + C +D + E.

(6.5.21)
By definition of U we notice that

∥U∥∞, ∥∇U∥∞, |e(P,U)| ≤ εC(∥P∥C2,1),

where C(∥P∥C2,1) is a numerical constant which depends on ∥P∥C2,1 and blows up when η → 0
since we do not have estimates in C2 of the solutions of the local Cahn-Hilliard equation. Now,
we estimate the terms appearing on the (RHS) of (6.5.21).

Term E. For the nonlocal term E we use boundedness of U to have∣∣∣∣1ε 1

η2

∫ t

0

∫
Td

(ρ− P)U · ∇ωη ∗ (ρ− P) dx dτ

∣∣∣∣ ≤ C ∥U∥∞
η2

∥ρ−P∥2 ∥∇ωη∗(ρ− P) ∥2 ≤ C∥U∥∞
ηd+3

∥ρ−P∥22.

Using (6.5.7) for η ∈ (0, η0) we obtain

E ≤ C(∥P∥C2,1)

4ηd+3

∫ t

0

Θ(τ) dτ.
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Term B. Using (6.3.3) and (6.3.5) we can write

B = −
∫ t

0

∫
Td

〈
e(P,U)

P

√
λ1(λ

′ −
√
λ1U), νt,x

〉
dxdτ

Using Cauchy-Schwartz with a parameter

B ≤
∫ t

0

∫
Td

〈
ε2

2

∣∣∣∣e(P,U)

P

∣∣∣∣2 λ1 + 1

2ε2
|λ′ −

√
λ1U|2, νt,x

〉
dxdτ

Now,
∣∣∣ e(P,U)

P

∣∣∣ ≤ εC(∥P∥C2,1)
∥∥ 1
P

∥∥
∞. Moreover, expanding the square in |λ′−

√
λ1U|2 and using

(6.3.5), (6.3.7) we recognize that∫ t

0

∫
Td

〈
|λ′ −

√
λ1U|2, νt,x

〉
≤
∫ t

0

∫
Td

ρ|u − U|2.

Therefore, we have the estimate

B ≤ ε4 C(∥P∥C2,1)

∥∥∥∥ 1P
∥∥∥∥2
∞

+
1

2ε2

∫ t

0

∫
Td

ρ|u − U|2.

Term C. We have∣∣∣∣1ε
∫ t

0

∫
Td

∇U : ρ(u − U)⊗ (u − U) dxdτ

∣∣∣∣ ≤ C ∥∇U∥∞
ε

∫ t

0

∫
Td

∣∣∣ρ(u − U)⊗ (u − U)
∣∣∣dxdτ

Estimating directly under the integral in (6.3.14)∣∣∣⟨(λ′ −√λ1U)⊗ (λ′ −
√
λ1U), νt,x⟩

∣∣∣ ≤ ⟨|λ′ −
√
λ1U|2, νt,x⟩

and using (6.3.18) we arrive at

C ≤ C(∥P∥C2,1)

∫ t

0

∫
Td

ρ|u − U|2 dx dτ

Term D. Using (6.3.16) and (6.3.10), we can write

|p(ρ|P)| ≤ ⟨p(λ1)− p(P)− p′(P)(λ1 − P), νt,x⟩+ |mρF ′(ρ)|+mF (ρ) +
1

η2
mρ2 .

The first part can be estimated using (6.8.1) :

⟨p(λ1|P), νt,x⟩ ≤ CF,R⟨F (λ1|P), νt,x⟩+
(
CF,R +

1

η2

)
⟨(λ1 − P )2, νt,x⟩ (6.5.22)

The concentration measures part can be estimated using (6.3.19) :

|mρF ′(ρ)|+mF (ρ) +
1

η2
mρ2 ≤ (CF + 1)mF (ρ) +

(
CF +

1

η2

)
mρ2 . (6.5.23)
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Summing up (6.5.22) and (6.5.23) we obtain

|p(ρ|P)| ≤ C F (ρ|P) + C

(
1 +

1

η2

)
|ρ− P|2.

The last term can be estimated by the nonlocal term appearing in the definition of Θ due to the
Poincaré inequality (6.3.23). As F (ρ|P) also appears in the definition of Θ we obtain

D ≤
∣∣∣∣1ε
∫ t

0

∫
Td

div(U)p(ρ|P) dxdτ
∣∣∣∣ ≤ C(∥P∥C2,1)

(
1 +

1

η2

)∫ t

0

Θ(τ) dτ.

We conclude that for η < 1 :

Θ(t) ≤ Θ(0) +
C(∥P∥C2,1)

4ηd+3

∫ t

0

Θ(τ) dτ + ε4 C(∥P∥C2,1)

∥∥∥∥ 1P
∥∥∥∥2
∞

Using Gronwall’s lemma, we obtain (6.5.5).

Proof of Theorem 6.1.5. The proof is a direct consequence of (6.5.5). Indeed, we consider the
relative entropy Θ as in (6.5.4) with ρ = ρη,ε, u = uη,ε, P = ρη and U = −ε∇(F ′(ρη)−Bη(ρη)).
As η ∈ (0, η0) is fixed, ρη (which depends on η !) is a C2,1 function bounded away from 0 (Theorem
6.4.1, Lemma 6.4.2). Furthermore,

Θ(0) ≤ C (ε2 + ∥u0,ε∥2L2(Td)) → 0 (6.5.24)

(here, we use that the initial density ρ0 belongs to C3 so that ∥U(0, x)∥L∞(Td) ≤ C ε, cf. (6.5.3)).
Therefore, we get that Θ(t) → 0 as ε → 0. By (6.5.6) and (6.5.7), we obtain convergence in
L2(Td), even uniformly in time.

Proof of Theorem 6.1.4. We write ρη (note that it does not depend on ε, cf. (6.5.1) and (6.5.3))
for solutions to (6.5.1)–(6.5.2) and we note that they depend on η. From [155] we know that
there exists a subsequence ηk → 0 such that

∥ρηk − ρ∥L2((0,T )×Td) → 0,

where ρ is a weak solution to the local Cahn-Hilliard equation. Now, let ρηk,εk be a measure-
valued solution of non-local Euler-Korteweg equation. Using (6.5.24), (6.5.6) and (6.5.7), we
have

∥ρηk − ρηk,εk∥L2((0,T )×Td) ≤ C

(
ε2k + ∥u0,εk∥2L2(Td) + ε4k ∥ρηk∥2C2,1

∥∥∥∥ 1

ρηk

∥∥∥∥2
∞

)
eCT∥ρηk∥C2,1/η

d+3

.

Of course, the quantity ∥ρηk∥2C2,1

∥∥∥ 1
ρηk

∥∥∥2
∞
eCT∥ρηk∥C2,1/η

d+3
k is blowing up as ηk → 0 (because

we lose parabolicity), nevertheless we can choose εk so small to obtain convergence to 0. The
conclusion follows by triangle inequality.
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6.6 Convergence result for the parametrized measure νη,ε

and the concentration measures mη,ε

Theorems 6.1.4 and 6.1.5 answer the question of what happens with the function ρη,ε when
η, ε→ 0. However, the measure-valued solution (ρη,ε,

√
ρη,εuη,ε, νη,ε,mη,ε) is in fact a collection

of four components. Below, we address the question of convergence of the other components :√
ρη,εuη,ε, νη,ε, mη,ε. We provide a detailed proof only for the situation in Theorem 6.1.5. Adap-

tation to the case analyzed in Theorem 6.1.4 is straightforward.

We first recall some basic notions from measure theory. We consider the set R+ × Rd and we
write (λ1, λ

′) for a given element of this set where λ1 ∈ R+ and λ′ ∈ Rd as in Section 6.3.1. For
two probability measures µ, ν on R+ × Rd with a finite second moment, that is,∫

R+×Rd

(
|λ1|2 + |λ′|2

)
dµ(λ1, λ

′) <∞,

∫
R+×Rd

(
|λ1|2 + |λ′|2

)
dν(λ1, λ

′) <∞,

the Wasserstein distance W2(µ, ν) is defined as

W2(µ, ν)
2 = inf

π∈Π(µ,ν)

∫
(R+×Rd)2

[∣∣∣λ1 − λ̃1

∣∣∣2 + ∣∣∣λ′ − λ̃′
∣∣∣2] dπ (λ1, λ′, λ̃1, λ̃′) , (6.6.1)

where the set Π(µ, ν) is the set of couplings between µ, ν ; that is, the set of measures π on the
product (R+ × Rd)2 such that

π(A× (R+ × Rd)) = µ(A), π((R+ × Rd)×B) = ν(B).

Furthermore, for a measure µ on some space X, the total variation of µ is defined as

∥µ∥TV = |µ|(X),

where |µ|(A) = µ+(A) − µ−(A) and µ+, µ− are positive and negative parts of µ, respectively.
Note that if µ is a nonnegative measure, ∥µ∥TV = µ(X). For more on spaces of measures and
related norms, we refer to [142, Chapter 1].

Theorem 6.6.1. Under the notation of Theorem 6.1.5, the function √
ρη,εuη,ε converges to 0

in L∞(0, T ;L2(Td)) :

esssup
t∈(0,T )

∫
Td

|√ρη,εuη,ε|2 dx→ 0 as ε→ 0. (6.6.2)

Moreover, the parametrized measure νη,ε ∈ L∞
weak((0, T ) × Td;P([0,+∞) × Rd)) converges to

δρη(t,x) ⊗ δ0 in the following sense

esssup
t∈(0,T )

∫
Td

[
W2(ν

η,ε, δρη(t,x) ⊗ δ0)
]2

dx→ 0 as ε→ 0. (6.6.3)

Furthermore, the concentration measures vector mη,ε converges to 0 in the total variation norm,
uniformly in time :

esssup
t∈(0,T )

∥mη,ε(t, ·)∥TV → 0 as ε→ 0. (6.6.4)

Démonstration. From the proof of Theorem 6.1.5, we know that supt∈(0,T ) Θ(t) → 0 where Θ(t)
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is defined as in (6.5.4) with ρ := ρη,ε, P := ρη, u := uη,ε and

U := −ε∇(F ′(ρη)−Bη(ρη)). (6.6.5)

Due to Lemma 6.5.2 this yields

sup
t∈(0,T )

∫
Td

1

2
ρη,ε|uη,ε − U|2 dx+ κ

4η2

∫
Td

∫
Td

ωη(y)|(ρη,ε − ρη)(x)− (ρη,ε − ρη)(x− y)|2 dy dx→ 0

(6.6.6)
and these two quantities are nonnegative. First, by Poincaré inequality (6.3.23) and (6.3.12), we
have

esssup
t∈(0,T )

∫
Td

∫
R+×Rd

|λ1 − ρη(t, x)|2 dνη,εt,x (λ1, λ′) dx+mρ2

η,ε(t,Td) → 0. (6.6.7)

In particular,

esssup
t∈(0,T )

∫
Td

∫
R+

∫
R+×Rd

|λ1 − λ̃1(t, x)|2 dνη,εt,x (λ1, λ′) dδρη(t,x)(λ̃1) dx→ 0. (6.6.8)

Second, due to (6.3.13), we can expand the term
∫
Td

1
2ρη,ε|uη,ε − U|2 into three integrals :

1

2

∫
Td

ρη,ε |uη,ε|2 dx−
∫
Td

ρη,ε uη,ε · U dx+
1

2

∫
Td

ρη,ε |U|2 dx. (6.6.9)

We claim that the second and third term converge to 0. For the third term, this follows easily from
(6.6.5), nonnegativity of ρη,ε and the conservation of mass

∫
Td ρη,ε dx =

∫
Td ρ0 dx. Concerning

the second term, by the dissipativity (Definition 6.3.4) and nonnegativity of the energy (Lemma
6.3.6), we have the uniform estimate∣∣∣∣∫

Td

ρη,ε uη,ε dx
∣∣∣∣ = ∣∣∣∣∫

Td

〈√
λ1 λ

′, νη,ε
〉
dx

∣∣∣∣ ≤ 1

2

∫
Td

⟨λ1, νη,ε⟩dx+
1

2

∫
Td

⟨|λ′|2, νη,ε⟩dx ≤

≤ 1

2

∫
Td

ρη,ε dx+
1

2

∫
Td

|√ρη,εuη,ε|2 dx =
1

2

∫
Td

ρ0 dx+
1

2

∫
Td

|√ρη,εuη,ε|2 dx ≤ C

As |U| ≤ Cε, we conclude that esssupt∈(0,T )

∣∣∫
Td ρη,ε uη,ε · U dx

∣∣ → 0 as ε → 0 so that (6.6.9)
implies

esssup
t∈(0,T )

1

2

∫
Td

ρη,ε |uη,ε|2 dx→ 0.

Again, we can write it as

esssup
t∈(0,T )

∫
Td

∫
R+×Rd

|λ′|2 dνη,εt,x (λ1, λ′) dx+mρ |u|2
η,ε (t,Td) → 0 (6.6.10)

which implies

esssup
t∈(0,T )

∫
Td

∫
Rd

∫
R+×Rd

|λ′ − λ̃′|2 dνη,εt,x (λ1, λ′) dδ0(λ̃′) dx→ 0. (6.6.11)

Now, as the product measure νη,εt,x (λ1, λ′) ⊗ δρη (λ̃1) ⊗ δ0(λ̃′) is an admissible coupling between
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νη,εt,x and δρη ⊗ δ0 we can estimate the infimum in (6.6.1) by

[
W2

(
νη,εt,x , δρη ⊗ δ0

)]2 ≤
∫
R+

∫
R+×Rd

|λ1 − λ̃1(t, x)|2 dνη,εt,x (λ1, λ′) dδρη(t,x)(λ̃1)+

+

∫
Rd

∫
R+×Rd

|λ′ − λ̃′|2 dνη,εt,x (λ1, λ′) dδ0(λ̃′)

so that integrating over Td and taking esssupt∈(0,T ) we conclude the proof of (6.6.3) due to
(6.6.8) and (6.6.11). Furthermore, by Jensen’s inequality∫

Td

|√ρη,εuη,ε|2 =

∫
Td

|⟨λ′, νη,ε⟩|2 dx ≤
∫
Td

⟨|λ′|2, νη,ε⟩.

Taking esssupt∈(0,T ) and using (6.6.10), we arrive at (6.6.2).

Finally, we study the concentration measures. From (6.6.7) and (6.6.10) we know that

esssup
t∈(0,T )

mρ2

η,ε(t,Td), esssup
t∈(0,T )

mρ |u|2
η,ε (t,Td) → 0 as ε→ 0.

Using (6.3.18) we obtain the same for |mρu⊗u
η,ε |. It remains to study mF (ρ)

η,ε and mρF ′(ρ)
η,ε . In fact,

if we prove that esssupt∈(0,T )m
F (ρ)
η,ε (t,Td) converges to 0 as ε → 0, the same will be true for∣∣∣mρF ′(ρ)

η,ε

∣∣∣ due to (6.3.19).

By supt∈(0,T ) Θ(t) → 0 and (6.6.6), we have that

sup
t∈(0,T )

∫
Td

F (ρη,ε|ρη) → 0 as ε→ 0.

We can write F (ρη,ε|ρη) as (cf. (6.5.9))

F (ρη,ε|ρη) = ⟨F1(λ1)− F1(ρη)− F ′
1(ρη)(λ1 − ρη), ν

η,ε⟩+
+ ⟨F2(λ1)− F2(ρη)− F ′

2(ρη)(λ1 − ρη), ν
η,ε⟩+mF (ρ)

η,ε .
(6.6.12)

The first term is nonnegative while the second converges to 0. Indeed, it can be bounded by
∥F ′′

2 ∥∞
〈
(λ1 − ρη)

2, νt,x
〉

which can be estimated due to inequality (cf. (6.5.10)) :

∥F ′′
2 ∥∞

∫
Td

〈
(λ1 − ρη)

2, νt,x
〉
dx ≤ 1− κ

4η2

∫
Td

∫
Td

ωη(y)|(ρ− ρη)(x)− (ρ− ρη)(x− y)|2 dy dx

for some κ ∈ (0, 1). Thanks to (6.6.6),

esssup
t∈(0,T )

∫
Td

|⟨F2(λ1)− F2(ρη)− F ′
2(ρη)(λ1 − ρη), ν

η,ε⟩|dx→ 0 as ε→ 0.

Due to (6.6.12), the proof of (6.6.4) is concluded.

We can also formulate a similar result to Theorem 6.6.1 in the context of Theorem 6.1.4. The
proof is the same as the one of Theorem 6.6.1.
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Theorem 6.6.2. Under the notation of Theorem 6.1.4, the function √
ρηk,εkuηk,εk converges to

0 in L∞(0, T ;L2(Td)) :

esssup
t∈(0,T )

∫
Td

|√ρηk,εkuηk,εk |2 dx→ 0 as εk, ηk → 0.

Moreover, the parametrized measure νηk,εk ∈ L∞
weak((0, T ) × Td;P([0,+∞) × Rd)) converges to

δρ(t,x) ⊗ δ0 in the following sense :∫ T

0

∫
Td

[
W2(ν

ηk,εk , δρ(t,x) ⊗ δ0)
]2

dxdt→ 0 as εk, ηk → 0.

Furthermore, the concentration measures vector mηk,εk converges to 0 in the total variation norm,
uniformly in time :

esssup
t∈(0,T )

∥mηk,εk(t, ·)∥TV → 0 as εk, ηk → 0.

6.7 Some inequalities

Lemma 6.7.1. Let σ > 0 and a final time T > 0. Let u be defined by u(t) = σ exp
(
−
∫ t
0
∥div b∥L∞(s) ds

)
and ϕδ defined in (6.4.4). Then ∫

Td

∆ϕδ(u)sgn
−(u− u) ≥ 0.

Démonstration. We note fτ a concave approximation as τ → 0 of the function f : x 7→ min{x, 0}.
Then f ′τ approximates f ′ : x 7→ sgn−(x). We have∫

Td

∆ϕδ(u)f
′
τ (u− u) = −

∫
Td

ϕ′δ(u)f
′′
τ (u− u)|∇u|2.

Since ϕ′δ ≥ 0, f ′′τ ≤ 0 by concavity and we conclude by sending τ → 0.

Lemma 6.7.2. There exists η0 > 0 and constant CP such that for all η ∈ (0, η0) and all
f ∈ L2(Td) we have

∥f − (f)Td∥2L2(Td) ≤ CP

∫
Td

∫
Td

|f(x)− f(y)|2
4η2

ωη(|x− y|) dxdy.

6.8 Bound on the relative pressure

Lemma 6.8.1. Let F satisfy Assumption (6.1.1), p(ρ) = ρF ′(ρ)−F (ρ)+ ρ2

2η2 and F (ρ|P), p(ρ|P)
be defined by (6.3.17). Then there exists a constant CF,R such that p(ρ|P) is bounded in terms of
F (ρ|P) and |ρ− P|2 i.e.

p(ρ|P) ≤ CF,R F (ρ|P) +
(
CF,R +

1

η2

)
|ρ− P|2. (6.8.1)



6.8. Bound on the relative pressure 223

Similarly, there exists constant CF such that

|ρF ′(ρ)| ≤ CF F (ρ) + CF ρ
2 + CF . (6.8.2)

Démonstration. We write

p(ρ|P) = (ρ− P)2
∫ 1

0

∫ τ

0

p′′(sρ+ (1− s)P) dsdτ,

F (ρ|P) = (ρ− P)2
∫ 1

0

∫ τ

0

F ′′(sρ+ (1− s)P) dsdτ.

We note h(s) = sρ + (1 − s)P to simplify the notations. By definition p′(ρ) = ρ (F ′′(ρ) + 1
η2 ).

Therefore we obtain

p(ρ|P) = (ρ− P)2
∫ 1

0

∫ τ

0

F ′′
1 (h(s)) + F ′′

2 (h(s)) + h(s)F
(3)
1 (h(s)) + h(s)F

(3)
2 (h(s)) dsdτ +

1

η2
|ρ− P|2

= F (ρ|P) + (ρ− P)2
∫ 1

0

∫ τ

0

h(s)F
(3)
1 (h(s)) + h(s)F

(3)
2 (h(s)) dsdτ +

1

η2
|ρ− P|2.

We note I1 =
∫ 1

0

∫ τ
0
h(s)F

(3)
1 (h(s)) dsdτ and I2 =

∫ 1

0

∫ τ
0
h(s)F

(3)
2 (h(s)) dsdτ . By assumptions

on |uF (3)
1 | we obtain

I1 ≤ C + C

∫ 1

0

∫ τ

0

F ′′
1 (h(s)) dsdτ ≤ C + C

∫ 1

0

∫ τ

0

F ′′
1 (h(s)) + F ′′

2 (h(s)) dsdτ,

where the value of C changed in the last inequality, using the boundedness assumption on F ′′
2 .

For I2 we simply use boundedness of |uF 3
2 (u)| so that

I2 ≤ C.

This concludes the proof of (6.8.1). Concerning (6.8.2), we have

ρF ′(ρ) = ρF ′
1(ρ) + ρF ′

2(ρ) ≤ C(1 + F1(ρ)) + C ρ ≤ C (1 + F (ρ)) + C

(
1

2
+
ρ2

2

)
+ C,

where we used estimate on ρF ′
1(ρ), boundedness of F ′

2, F2 and inequality 2ρ ≤ 1+ ρ2. The proof
is concluded.
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Chapitre 7

Analysis and numerical simulation
of a generalized compressible
Cahn-Hilliard-Navier-Stokes model
with friction effects

Abstract

Motivated by the mathematical modeling of tumor invasion in healthy tissues, we propose a
generalized compressible diphasic Navier-Stokes Cahn-Hilliard model that we name G-NSCH.
We assume that the two phases of the fluid represent two different populations of cells : cancer
cells and healthy tissue. We include in our model possible friction and proliferation effects. The
model aims to be as general as possible to study the possible mechanical effects playing a role
in invasive growth of a tumor. In the present work, we focus on the analysis and numerical
simulation of the G-NSCH model. Our G-NSCH system is derived rigorously and satisfies basic
mechanics of fluids and thermodynamics of particles. Under simplifying assumptions, we prove
the existence of global weak solutions. We also propose a structure preserving numerical scheme
based on the scalar auxiliary variable method to simulate our system and present some numerical
simulations validating the properties of the numerical scheme and illustrating the solutions of
the G-NSCH model.
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7.1 Introduction

We derive, analyze and simulate numerically the generalized compressible Navier-Stokes-Cahn-
Hilliard variant (G-NSCH in short)

∂ρ

∂t
+ div (ρv) = 0, (7.1.1)

∂(ρc)

∂t
+ div (ρcv) = div (b(c)∇µ) + Fc, (7.1.2)

ρµ = −γ∆c+ ρ
∂ψ0

∂c
, (7.1.3)

∂(ρv)

∂t
+ div (ρv ⊗ v) = −

[
∇p+ γdiv

(
∇c⊗∇c− 1

2
|∇c|21

)]
+ div

(
ν(c)

(
∇v +∇vT

))
− 2

3
div (ν(c)div (v)1) + div (η(c)div (v)1)− κ(ρ, c)v,

(7.1.4)

stated in (0, T ) × Ω, where T > 0 is finite time horizon, and Ω ⊂ Rd (d = 1, 2, 3) is an open
bounded domain with a smooth boundary ∂Ω.
Interested by the modeling of invasive growth of tumors in healthy tissues, we motivate the
different terms of the model with this biological application in mind. However, we emphasize
that the model is a general compressible diphasic fluid model that could be used for other
applications.
System (7.1.1)–(7.1.4) models the motion of a diphasic fluid composed of two immiscible compo-
nents, i.e. two different cell types (e.g. tumor and healthy cells), and comprises viscosity effects,
surface tension, and friction on rigid fibers representing the extracellular matrix (ECM in short).
In System (7.1.1)–(7.1.4), ρ is the total density of the mixture (i.e. the sum of the two partial
densities), c is the relative mass fraction of one component (e.g. the cancer cells), v is the mass
averaged total velocity, µ is called the chemical potential, p is the pressure. The coefficient γ is
related to the surface tension and is equal to the square of the width of the diffuse interface exis-
ting between the two populations. The friction coefficient κ(ρ, c) is a non-negative function of the
density and the mass fraction, and takes into account the possible difference of friction strength
between the two populations. We use this friction term to model possible adhesive effects of the
cells on the ECM. The coefficients ν(c) and η(c) represents the viscosity coefficients (shear and
dilatational, respectively) of the mixture. Possible differences in viscosities could be considered
for the two populations. The function ψ0 represents the separation of the two components of the
mixture and phenomenologically models the behavior of cells (i.e. cells tend to form aggregates
of the same cell type). The function Fc(·) accounts for the possible proliferation and death of
cells and these two effects are assumed to be modelled as an exchange of mass between the
populations. The non-negative function b(·) models the mobility of cells. This function models
the probability for a cell of any of the two populations to find an available neighboring spot to
which it can move. More details about the general assumptions and precise forms of the different
functions will be given in the next sections.
The motivation of our model stands from the modeling of tumor progression and invasion in
healthy tissues. Indeed, as explained in Appendix 7.7.8, under suitable choices of functionals,
our model can be viewed as a representation of a proliferating population of cells, i.e. the tumor
cells, in a domain filled with a non-proliferating population, i.e. the healthy cells and the rest
of tissue (ECM, extracellular fluid, etc.). The proliferation of cells happens by consuming mass
from the other phase (we are not injecting mass in the system). Both cell populations move in an
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ECM constituted of rigid fibers on which they can adhere. As we only focus on the mechanical
effects generated by the properties of the cells that could play a role during invasion, we do
not consider in the model other effects that are known to be important in tumor progression :
e.g. angiogenesis, digestion of the ECM by proteolic enzymes, role of helping cells located in the
stroma.
We emphasize that this article only concerns the analysis and the numerical simulation of the
G-NSCH model (7.1.1)–(7.1.4). This latter comprises effects that are negligible in biological
situations, e.g. inertia effects. We propose here an analysis of the model and a structure preserving
numerical scheme for the G-NSCH model.

Literature review The motion of a binary mixture of two immiscible and compressible fluids
can be described by the Navier-Stokes equation coupled to the Cahn-Hilliard model : the Navier-
Stokes-Cahn-Hilliard model (NSCH model in short). The well-known incompressible variant of
the compressible NSCH model has been denominated model H (see e.g. [215, 202]). Model H has
been proposed to represent viscous fluid flow in an incompressible binary mixture undergoing
phase separation. This model assumes matching densities, i.e. ρ1 = ρ2 and, hence, constant total
density ρ. To consider non-matching densities, Lowengrub and Truskinovsky [263] proposed the
compressible NSCH model. Expanding the divergence term in the mass balance equation, the
authors found a relation denoting the quasi-compressible nature of the fluid. Concomitantly,
Anderson, FcFadden, and Wheeler [22] proposed a similar system. In the present work, we use
a similar system. We also remark that a very recent work [148] proposed a unified framework
for the incompressible NSCH system and shows that the different NSCH models found in the
literature only differ from their general modelling framework by specific constitutive hypotheses.
Under some simplifying assumptions compared to the system proposed in [263] but being closer
to the system in [22], the analysis of the compressible NSCH model with no-flux boundary
conditions has been realized by Abels and Feireisl [5]. Their analysis requires to simplify the
model proposed in [263] to avoid zones with zero density which would make this analysis a lot
more difficult since the control from certain estimates would be lost. In another article, for the
same system, Abels proved the existence of strong solutions for short times [3]. Considering
the same assumptions and dynamic boundary conditions, Cherfils et al. [104] proved the well-
posedness of the compressible NSCH model with these special boundary conditions. These latter
allow to model the interaction of the fluid components and the walls of the domain.
Results on the analysis of the incompressible variant of the NSCH model, i.e. the model H, are
numerous and we here mention only a few of them since a complete review would be out of the
scope of the present article. With a non-degenerate mobility coefficient and a physically relevant
choice of potential, the well-posedness and regularity analysis of model H has been performed
by Abels [2] using tools both from the analysis of Navier-Stokes model and the Cahn-Hilliard
model. It is worth mentioning that the non-degeneracy of the mobility coefficient leads to non-
physical effects, i.e. Ostwald ripening effects (see [6]). For this reason, Abels, Depner and Garcke
studied model H with a degenerate mobility [4]. Their analysis relies on a regularization of the
mobility and singular potential into, respectively, a non-degenerate and non-singular potential.
Then, suitable a-priori estimates uniform in the regularization parameter allow to pass to the
limit in the regularization and show the existence of weak solutions to the degenerate model H.
We now review partially the extensive literature about the Cahn-Hilliard equation and its use
for the modelling of tumors. The Cahn-Hilliard equation has been initially used to represent
the phase separation in binary mixtures and has been applied to the spinodal decomposition
of binary alloys under a sudden cooling [70, 69]. The model represents the two phases of the
fluids as continua separated by a diffuse interface. This equation has been used later in many
different applications and we do not intend here to give an overview of all these. However,
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we refer the reader interested in the topic to the presentation of the Cahn-Hilliard equation
and its applications to the review book [277]. We are interested here in the application of the
Cahn-Hilliard framework to tumor modelling (see e.g. [265]). Latter, different variants of the
Cahn-Hilliard model appeared : e.g. (without giving a complete overview) its coupling to Darcy’s
law [187], Brinkman’s law [145], chemotaxis [299]. Recently, a variant of the CH equation has
been used to better represent the growth and organization of tumors. The main change is the use
of a single-well logarithmic degenerate potential instead of a double-well potential [97, 11, 287].
This type of potential has been proposed in [20] to represent the action of the cells depending
only on the local density, i.e. attraction at low cell density and repulsion for large cell density
representing the tendency of cells to avoid overcrowding. The Cahn-Hilliard framework has also
been utilized in systems representing invasive growth of tumors. The interested reader can find
a lot of information about phase-field type systems modelling tumor growth and invasion in the
very recent survey paper [180] and references therein.
We now review some of the literature about the numerical simulation of NSCH models. The
numerical simulation of Model H for binary fluids with non-matching densities has been the
subject of numerous works (see e.g. [219] and references therein). However, in part due to its
complexity, the numerical simulation of the compressible NSCH system has been less explored. A
C0 finite element numerical scheme for a variant of the quasi-compressible NSCH model proposed
in [263] has been proposed in [199]. Around the same time, Giesselmann and Pryer [13, 192]
designed a discontinuous Galerkin finite element scheme to simulate the quasi-incompressible
NSCH system which preserves the total mass and the dissipation of energy. A numerical method
has also been proposed in [210] in the case of constant mobility b(c) and smooth polynomial
potential ψ(c). However, the system simulated in [210] is a simplification of the compressible
NSCH system since the pressure does not appear in the definition of the chemical potential µ in
their system.
The previous works we presented for the simulation of the compressible or quasi-compressible
NSCH systems deal with constant mobility combined with a smooth polynomial potential. We
aim to simulate the compressible NSCH model with choices of mobility and potential relevant
for biology (but also relevant for material sciences and fluid mechanics), i.e. degenerate mobi-
lity combined with a logarithmic potential. We now review briefly some relevant discretization
methods for the Cahn-Hilliard equation with degenerate mobility and singular potentials. Consi-
dering a degenerate mobility and a double-well logarithmic potential, we mention the work of
Barrett, Blowey and Garcke [37]. In this article the authors proposed a finite element scheme
with a variational inequality to preserve the bounds of the solution. Based on these ideas, Agosti
et al. [11] proposed a similar finite element scheme for the single-well logarithmic potential case.
The difficulty in this latter case lies in the fact that the degeneracy and the singularity sets do not
coincide and, considering an order parameter that must remain within the bounds [0, 1), negative
solutions can appear if a standard discretization method is used. The numerical scheme propo-
sed in [11] solves this issue but does not preserve the mass. In a more recent work, Agosti [10]
proposed a discontinuous Galerkin finite element scheme that preserves the bounds [0, 1) and
preserves the exact mass. However, the main drawback of the previously mentioned methods is
that they are computationally expensive : they solve a strongly coupled nonlinear system and
resort to the use of iterative algorithms.
Since the Cahn-Hilliard equation is a gradient flow (see e.g. [258]), a structure-preserving linear
scheme can be constructed using the Scalar Auxiliary Variable (SAV in short) method [311]. The
SAV method is a very powerful tool to design unconditionally energy-stable numerical schemes
for models possessing a gradient-flow (see e.g. [312, 333] and references therein) or Hamiltonian
structure (see e.g. [23, 295] and references therein). The SAV method has evolved during the
past 6 years starting from the original SAV method [311, 310] to improved variants such as the
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generalized version GSAV (see e.g. [333, 220]) and the relaxed RSAV method [231]. In our work,
we use the GSAV method that has been already used in [222] for the Cahn-Hilliard equation.
In this latter work, the scheme is structure-preserving from the use of a scalar variable that
represents the discrete energy, and an additional equation is solved to ensure dissipation at the
discrete level. The bounds of the order parameter are ensured using a transformation that maps R
to the physical relevant interval ((0, 1) in the case of a double-well potential). Hence, compared to
other techniques, the SAV method has the advantage to allow for the design of a linear, efficient,
structure-preserving scheme and can easily be used for our G-NSCH system. We also emphasize
that the SAV method has been used for the simulation of the incompressible NSCH model
with positive mobility and polynomial potential in [252]. In the present work, we use the GSAV
method to design a numerical scheme for the G-NSCH model. Our numerical scheme allows to
use degenerate mobility and singular potential functionals which is more physically relevant. To
the best of our knowledge, our G-NSCH model is new because it comprises the friction force term
and the exchange between the two phases of the fluid. Moreover, the use of the GSAV method
for a compressible NSCH system is new, especially with our choice of functionals (i.e. degenerate
mobility and singular potential).

Objectives of our work The first objective of our work is to study the well-posedness of the G-
NSCH model under some simplifying assumptions (i.e. smooth potential and positive mobility).
The second objective is the design of an efficient and structure-preserving numerical scheme for
the G-NSCH model with singular double-well potential and degenerate mobility. The third focus
of the present work concerns the rigorous derivation of the G-NSCH model that is presented in
the Appendix.

Outline of the paper Section 7.2 presents the notations, functional spaces and assump-
tions we use in our work for the analytical part but also for the numerical part. Section 7.3
concerns the proof of the existence of weak solutions for the G-NSCH system (7.1.1)–(7.1.4)
under simplifying assumptions. A structure preserving numerical scheme based on the GSAV
method is then proposed in Section 7.4 and some numerical results are presented in Section 7.5.
Our model’s equations come from a thermodynamically consistent derivation of the compressible
Navier-Stokes-Cahn-Hilliard model including friction effects and source terms. The derivation is
described in Appendix 7.7.1. From the general model, we propose in Appendix 7.7.8 two reduc-
tions : The G-NSCH studied and simulated in the present work and one biologically relevant
reduction that will be the focus of a forthcoming work.

7.2 General assumptions, notations and functional setting

The equations are set in a domain ΩT = Ω × (0, T ) with Ω an open and bounded subset of Rd
(d = 1, 2, 3). We assume that the boundary ∂Ω is sufficiently smooth. We indicate the usual
Lebesgue and Sobolev spaces by respectively Lp(Ω), Wm,p(Ω) with Hm(Ω) :=Wm,2(Ω), where
1 ≤ p ≤ +∞ and m ∈ N. For q ∈ [1,+∞], we indicate the Bochner spaces by Lq(0, T ;X)
(where X is a Banach space). Finally, C denotes a generic constant that appears in inequalities
and whose value can change from one line to another. This constant can depend on various
parameters unless specified otherwise.
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7.2.1 Assumptions on functionals

We divide the assumptions on the different terms appearing in system (7.1.1)–(7.1.4) into two
parts : analytical and numerical assumptions. Indeed we are not able to prove the existence
of weak solutions in the general setting used for the numerical simulations. For instance, the
case of the usual logarithmic double-well potential in the Cahn-Hilliard equation is not treated
but can be implemented in our numerical scheme. However, we can analyze our system with
a polynomial approximation of the double well. We also consider non-degenerate mobilities to
obtain estimates on the chemical potential µ directly. The case of degenerate mobility, see for
instance [158], seems unavailable as we do not have anymore the classical “entropy” estimates of
the Cahn-Hilliard equation that provide bound on second-order derivatives of the mass fraction
c.
Framework for numerical simulations We assume that the viscosity ν(c), η(c) and permeabi-
lity κ(ρ, c) coefficients are smooth non-negative functions. The mobility is a non-negative function
of the order parameter (mass fraction) c. Hence, we assume that

b ∈ C1([0, 1];R+), and b(c) ≥ 0 for 0 ≤ c ≤ 1. (7.2.1)

In agreement with the literature (see e.g [104]), the homogeneous free energy ψ0(ρ, c) is assumed
to be of the form

ψ0(ρ, c) = ψe(ρ) + ψmix(ρ, c), (7.2.2)

with ψmix(ρ, c) = H(c) log ρ + Q(c) and Q(c) is a double-well (or single-well) potential. Then,
using the constitutive relation for the pressure, we have

p(ρ, c) = ρ2
∂ψ0

∂ρ
= pe(ρ) + ρH(c), (7.2.3)

where pe = ρ2ψ′
e(ρ) and is assumed to satisfy

p1ρ
a−1 − p2 ≤ p′e(ρ) ≤ p3(1 + ρa−1), for a > 3/2, p1, p2, p3 > 0. (7.2.4)

We assume that the exchange term Fc (that can depend on the mass fraction and the density)
is bounded,

|Fc(ρ, c)|+
∣∣∣∣Fc(ρ, c)ρ

∣∣∣∣ ≤ C, ∀(ρ, c) ∈ R2. (7.2.5)

Remark 7.2.1 (Double-well logarithmic potential). In the present work, we aim to use a double-
well logarithmic potential in the definition of the mixing potential. A relevant example of potential
is

ψmix =
1

2
(α1(1− c) log(ρ(1− c)) + α2c log(ρc))−

θ

2
(c− 1

2
)2. (7.2.6)

This potential gives

H(c) =
1

2
(α1(1− c) + α2c) , Q(c) =

1

2
(α1(1− c) log(1− c) + α2c log(c))−

θ

2
(c− 1

2
)2,

where θ > 1.

Additional assumptions for the existence of weak solutions and analysis of the nu-
merical scheme. Concerning the existence of weak solutions and analysis of the numerical
scheme, we need to strengthen our assumptions. The viscosity coefficients ν(c), η(c) are assumed
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to be bounded from below by a positive constant and the friction coefficient κ(ρ, c) is assumed to
be nonnegative. Moreover, ν(c), η(c) and κ(ρ, c) are functions bounded in L2(0, T ;L2(Ω)) whene-
ver c is bounded in L∞(0, T ;H1(Ω)) and ρ is smooth (for instance C(0, T ;C2(Ω)). We consider
a > 2 the exponent of the pressure law. In the numerical simulations, we take degenerate mobili-
ties of the form b(c) = c(1− c)α. However, in the analysis, we consider a non-degenerate mobility
by truncating the previous mobility. For instance, using a small parameter 0 < εb << 1, we
approximate the mobility b(·) by

bεb(c) =


b(1− εb), if c ≥ 1− εb,

b(εb), if c ≤ εb,

b(c), otherwise,

and consider the case of a fixed εb. Dropping the εb subscript, we obtain that

b ∈ C1(R;R+), and b(c) ≥ C > 0 ∀c ∈ R. (7.2.7)

Concerning the functionals appearing in the definition of the free energy ψ0 we assume that H
and H ′ are bounded and that Q is a polynomial approximation of the double well potential.
More precisely we take

H1 ≤ H ′(c), H(c) ≤ H2, c ∈ R, H1, H2 > 0,

Q(c) =
1

4
c2(1− c)2.

(7.2.8)

The case of the double-well logarithmic potential has not been tackled yet even though this is
the main motivation for the decomposition of ψmix as in the works [5] and [104].
Also, to make the computations simpler, we assume that

— a > 6 where a is the pressure exponent,

— ψe(ρ) =
ρa−1

a−1 and therefore pe(ρ) = ρa.

These two assumptions are not necessary and could be removed but simplify the analysis. We
refer for instance to [5, 166] for the more general setting. For instance, the condition a > 6 is
used to not introduce another parameter in the approximating scheme which would make the
article longer. Note that the assumptions on ψ0 imply in particular the following lemma which
is essential to obtain estimates on the energy dissipation :

Lemma 7.2.2. There exists a constant C such that∣∣∣∣ρ∂ψ0

∂c

∣∣∣∣ ≤ Cρψ0 + C.

Its proof uses the assumption on H and the fact that for c large, Q′(c) ≈ c3 ≤ c4 +1 ≈ Q(c)+ 1.

7.3 Existence of weak solutions

We now turn to the proof of the existence of weak solutions for the G-NSCH model (7.1.1)–(7.1.4)
subjected to boundary conditions

v = 0,
∂c

∂n
= b(c)

∂µ

∂n
= 0, on ∂Ω, (7.3.1)
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and initial conditions

ρ(0, x) = ρ0 ≥ 0 ∈ La(Ω), c(0, x) = c0 ∈ H1(Ω) ρ0v(0, x) = m0, with
|m0|2
ρ0

∈ L1(Ω).

(7.3.2)
Also, we suppose ρ0 ̸= 0. In this section we take d = 3. The proof of the result is quite long
and technical. Therefore, when possible and for the sake of clarity, we omit some proofs and give
instead appropriate references.

Outline of the analysis For readability reasons, we here present the outline of the analysis of
the G-NSCH model. We first start with the analysis of a "truncated" version of G-NSCH model
in the sense that the double-well is truncated for large values of c with a parameter εQ. Then,
for this fixed truncation, we prove the existence of weak solutions using the ideas of [256, 166,
5, 104]. Then, we pass to the limit εQ → 0. Namely, recalling that Q(c) = 1

4c
2(1 − c)2 we first

consider QεQ(c) a smooth truncated approximation of Q that satisfies

|QεQ |, |Q′
εQ |, |Q′′

εQ | ≤ C

(
1

εQ

)
. (7.3.3)

In the first subsections, we drop the εQ notation and work with the regularized problem. We will
use the εQ notation when we pass to the limit. For the moment, we benefit from the properties
of the regularization.

7.3.1 Energy estimates
The G-NSCH system comes with an energy structure which is useful to obtain first a priori
estimates.

Proposition 7.3.1. Smooth solutions of the system (7.1.1)–(7.1.4) satisfy the following energy
relation

d

dt
E +D =

∫
Ω

µFc dx, (7.3.4)

where E is the energy, and D is the dissipation defined as

E =

∫
Ω

ρ
|v|2
2

+ ρψ0 +
γ

2
|∇c|2 dx, (7.3.5)

D =

∫
Ω

ν(c)

2

∣∣∣∣∇v +∇vT − 2

3
div(v)I

∣∣∣∣2 + η(c)|div (v)1|2 + b(c)|∇µ|2 + κ(ρ, c)|v|2 dx. (7.3.6)

This yields a priori estimates on the solution i.e. there exists a positive constant C such that

E(t) +

∫ t

0

D(s) ds ≤ C + CE(0).

Note that the energy is bounded from below since ρ log ρH(c) is bounded from below with (7.2.8).
Also, the purpose of the assumptions ν(c), η(c) and b(c) bounded from below by a positive
constant becomes clear, they are crucial to obtain estimates on the H1(Ω) norm of µ and v.

Démonstration. We recall the formula

∇c∆c = div(∇c⊗∇c)− 1

2
∇|∇c|2. (7.3.7)
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We denote by T the tensor

T = ν(c)(∇v +∇vT − 2

3
div(v)I) + η(c)div (v)1. (7.3.8)

Then we multiply Equation (7.1.1) by |v|2
2 and sum it with the scalar product of Equation (7.1.4)

with v. We obtain

∂

∂t

(
ρ
|v|2
2

)
+ div

(
1

2
ρ|v|2v + p(ρ, c)v − T · v

)
+ T : ∇v + κ(ρ, c)v2 = p(ρ, c)div(v)

+ γdiv(
1

2
|∇c|2I− (∇c⊗∇c)) · v,

which is equivalent to

∂

∂t

(
ρ
|v|2
2

)
+ div

(
1

2
ρ|v|2v + p(ρ, c)v − T · v

)
+ T : ∇v+ κ(ρ, c)v2 = p(ρ, c)divv− γ∆c∇c · v.

(7.3.9)
Then, we multiply Equation (7.1.2) by µ and obtain using also (7.1.1)

ρµ(∂tc+ v · ∇c) = div(b(c)∇µ)µ+ µFc.

And, using (7.1.3) we obtain

ρ
∂ψ0

∂c
(∂tc+ v · ∇c) = div(b(c)∇µ)µ+ γ∆c(∂tc+ v · ∇c) + µFc.

The previous equation can be rewritten using the chain rule as

∂t(ρψ0) + div(ρψ0v)− ψ0(∂tρ+ div(ρv))− ρ
∂ψ0

∂ρ
(∂tρ+ v · ∇ρ)

= div(b(c)∇µ)µ+ γ∆c(∂tc+ v · ∇c) + µFc.

We have ρ∂ψ0

∂ρ (∂tρ+v·∇ρ) = ρ∂ψ0

∂ρ (−ρdiv(v)) = −pdiv(v) (see Equation (7.2.3) for the definition

of the pressure). Moreover, we know that ∆c∂tc = div(∂tc∇c)− ∂t

(
|∇c|2

2

)
and, hence,

∂t(ρψ0) + div(ρψ0v) + pdiv(v) = div(b(c)∇µ)µ+ γ

[
div(∂tc∇c)− ∂t

( |∇c|2
2

)
+∆cv · ∇c

]
+ µFc. (7.3.10)

Summing (7.3.9) and (7.3.10) we obtain

∂

∂t

(
ρ
|v|2
2

+ ρψ0 +
γ

2
|∇c|2

)
+div

(
ρψ0v +

1

2
ρ|v|2v + p(ρ, c)v − T : v − γ∂tc∇c

)
−div(b(c)∇µ)µ

+ T : ∇v + κ(ρ, c)|v|2 = µFc.

Now we use the fact that

T : ∇v =
ν(c)

2

∣∣∣∣∇v +∇vT − 2

3
div(v)I

∣∣∣∣2 + η(c) |div (v)1|2 . (7.3.11)
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Integrating in space and using the boundary conditions (7.3.1) ends the proof of the first part
of the proposition. To prove the second part, we integrate the equation in time and control the
right-hand side. Indeed, due to the assumption on the source term (7.2.5), we have∣∣∣∣∫ t

0

∫
Ω

µFc dx dt

∣∣∣∣ ≤ C

∫ t

0

∫
Ω

|µ|.

We want to use Lemma 7.3.7 to control the L1 norm of µ. Integrating the equations on ρ to
obtain

∫
Ω
ρdx =

∫
Ω
ρ0 dx > M0 we satisfy the first assumption of the lemma. For the second, we

notice that we can consider a variant of this lemma such that instead of asking ρ to be in L6/5

we have the inequality ∥∥∥∥u− 1

|Ω|

∫
Ω

ρu

∥∥∥∥
L2

≤ C∥∇u∥L2 + ∥ρ∥L6/5 .

Using Young’s inequality, the fact that in the energy ρψ0 contains a term of the form ρa+1 we
obtain for C̃ small enough∫ t

0

∫
Ω

|µ|dx ≤ C + C̃

∫ t

0

∫
Ω

|µ|2 dx ≤ C + CE(t) +
infc b(c)

2

∫
Ω

|∇µ|2 dx+ C

∣∣∣∣∫
Ω

ρµdx

∣∣∣∣ .
Since the energy dissipation controls the third term of the right-hand side, it remains to control
the last term of the right-hand side. We recall that ρµ = ρ∂ψ0

∂c − γ∆c. Using the Neumann

boundary conditions on c, it remains to control
∣∣∣∫Ω ρ∂ψ0

∂c

∣∣∣. Using Lemma 7.2.2, we obtain∣∣∣∣∫
Ω

ρ
∂ψ0

∂c
dx

∣∣∣∣ ≤ C + CE(t).

We conclude using Gronwall’s lemma.

7.3.2 Existence of weak solutions for fixed εQ

The weak solutions of system (7.1.1)–(7.1.4) are defined as follows

Definition 7.3.2. We say that (ρ,v, c, µ) is a weak of system (7.1.1)–(7.1.4) provided :

— ρ ≥ 0 and we have the regularity

ρ ∈ L∞(0, T ;La(Ω)),

v ∈ L2(0, T ;H1
0 (R3)),

√
ρv ∈ L∞(0, T ;L2(Ω;R3)), T : ∇v ∈ L1(0, T ;L1(Ω)),

c ∈ L∞(0, T ;H1(Ω)),

µ ∈ L2(0, T ;H1(Ω)).

— Equations (7.1.1)–(7.1.4) are satisfied in the distributional sense.

— The initial conditions (7.3.2) are satisfied a.e. in Ω.

— The boundary conditions (7.3.1) are satisfied.

We state our main theorem about the existence of weak solutions

Theorem 7.3.3 (Existence of weak solutions). There exist (ρ,v, c, µ) weak solutions of (7.1.1)–
(7.1.4) in the sense of Definition 7.3.2.



7.3. Existence of weak solutions 235

In order to prove the existence of weak solutions, we use an approximating scheme with a small
parameter ε > 0 borrowing the idea from [256, 166]. More precisely, let Xn = span{ηi}i=1,...,n

be the set of the first n vectors of a basis of H1
0 (Ω;R3) such that Xn ⊂ C2(Ω;R3). We consider

the following problem for (ρ,vn, c) with vn ∈ Xn (with coordinates depending on time) :

∂tρ+ div(ρvn) = ε∆ρ, (7.3.12)

and for every η ∈ Xn,∫
Ω

ρvn(t) · η dx−
∫
Ω

m0 · η dx−
∫ t

0

∫
Ω

ρvn ⊗ vn : ∇η dxds−
∫ t

0

∫
Ω

p(ρ, c)div(η) dxds

+ ε

∫ t

0

∫
Ω

(∇vn∇ρ) · η dx ds+
∫ t

0

∫
Ω

T : ∇η dxds+ γ

∫ t

0

∫
Ω

(
1

2
|∇c|2I− (∇c⊗∇c)) : ∇η dxds

+

∫
Ω

∫ t

0

κ(ρ, c)vn · η dx ds = 0. (7.3.13)

And for the equation on the mass fraction

∂tc+ vn · ∇c = 1

ρ
div(b(c)∇µ) + Fc

ρ
, µ =

∂ψ0

∂c
− γ

∆c

ρ
. (7.3.14)

We consider Neumann boundary conditions

∇ρ · n = b(c)∇µ · n = ∇c · n = 0 on ∂Ω, (7.3.15)

and the Dirichlet boundary condition for vn is included in the definition of Xn. Finally, we
consider the initial conditions

ρ(0, ·) = ρ0,ε > 0, c(0, ·) = c0,ε, ρvn(0, ·) = m0, (7.3.16)

where ρ0,ε, c0,ε satisfy the Neumann boundary conditions and they are smooth approximations
of ρ0, c0 (when ε→ 0).
We now comment on the scheme used above and detail the strategy of the proof. We add the
artificial diffusion in (7.3.12) with the parameter ε > 0. Here, vn is fixed and we can conclude
the global in time existence of classical solutions to (7.3.12) which are positive since the initial
condition is positive (and using maximum principle). Using this positivity, we conclude the
existence of a strong solution to Equation (7.3.14) which is in fact a fourth-order parabolic
equation. Having obtained c, we focus on Equation (7.3.13) and we prove existence for a small
time with Schauder’s fixed point theorem. Note the presence of the additional term ε

∫
(∇vn∇ρ)·η

which is useful to cancel energy terms introduced by ε∆ρ in (7.3.12). Having obtained existence
on a short time interval we compute the energy of the system and obtain global existence.
Then, we pass to the limit n → ∞. It remains to send ε and εQ to 0 and obtain solutions of
system (7.1.1)–(7.1.4).
We first turn our attention to Equation (7.3.12). From [166], we obtain the following proposition,
and lemma

Proposition 7.3.4. Let Ω ⊂ R3 be a bounded domain of class C2+β for some β > 0. For
a fixed vn ∈ Xn, there exists a unique solution to Equation (7.3.12) with Neumann boundary
conditions (7.3.15) and initial data conditions (7.3.16). Furthermore, the mapping vn 7→ ρ[vn],
that assigns to any vn ∈ Xn the unique solution of (7.3.12), takes bounded sets in the space



236 CHAPITRE 7. Analysis and numerical simulation of a CHNS model with friction effects

C(0, T ;C2
0 (Ω,R3)) into bounded sets in the space

V := {∂tρ ∈ C(0, T ;Cβ(Ω)), ρ ∈ C(0, T ;C2+β(Ω))}.

Lemma 7.3.5. The solutions of (7.3.12) satisfy

( inf
x∈Ω

ρ(0, x)) exp

(
−
∫ t

0

∥divvn(s)∥L∞(Ω) ds

)
≤ ρ(t, x)

≤ (sup
x∈Ω

ρ(0, x)) exp

(∫ t

0

∥divvn(s)∥L∞(Ω) ds

)
,

for all t ∈ [0, T ] and x ∈ Ω.

Using the latter lemma, if the velocity field is in W 1,∞, the density is bounded from below by a
positive constant (provided the initial condition is positive). We now focus on Equation (7.3.14).

Proposition 7.3.6. Let ρ be given such that ρ ∈ C(0, T ;C2(Ω)) and ρ ≥ ρ > 0. Then Equa-
tion (7.3.14) with Neumann boundary conditions (7.3.15) admits a strong solution. Moreover,
the mapping vn 7→ c[vn] takes bounded sets in the space C(0, T ;C2

0 (Ω,R3)) into bounded sets in
the space

W := {c ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H3(Ω))}. (7.3.17)

The existence of a strong solution is based on the remark that the highest order term of this
equation is −γ b(c)ρ ∆2c. Using b(c), ρ ≥ C > 0 we obtain a fourth-order parabolic equation with
smooth coefficients and with zero Neumann boundary conditions. Therefore, we can admit the
global in time strong solution than can be achieved through a Galerkin scheme and we focus on
the estimates (7.3.17). In the proof, we need the following two lemmas

Lemma 7.3.7 (Lemma 3.1 in [169]). Let Ω ∈ R3 be a bounded Lipschitz domain and let M0 > 0,
K > 0. Assume that ρ is a nonnegative function such that

0 < M0 ≤
∫
Ω

ρdx,

∫
Ω

ρa dx ≤ K, with a >
6

5
.

Then, there exists a positive constant C = C(M0,K, a) such that the inequality∥∥∥∥u− 1

|Ω|

∫
Ω

ρu

∥∥∥∥
L2(Ω;R3)

≤ C∥∇u∥L2(Ω;R3×3),

holds for any u ∈W 1,2(Ω;R3).

Lemma 7.3.8 (Theorem 10.17 in [171]). Let Ω ⊂ R3 be a bounded Lipschitz domain, and let
1 < p < +∞, M0 > 0, K > 0, a > 1. Then there exists a postive constant C = C(p,M0,K, a)
such that the inequality

∥u∥W 1,p(Ω;R3) ≤ C

(
∥∇u+∇Tu− 2

3
divuI∥Lp(Ω;R3×3) +

∫
Ω

ρ|u|dx
)
,

holds for any u ∈W 1,p(Ω;R3) and any non-negative function ρ such that

0 < M0 ≤
∫
Ω

ρdx,

∫
Ω

ρa dx ≤ K.
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Proof of Proposition 7.3.6. We admit the existence of solutions and focus on a priori estimates.
We multiply Equation (7.3.14) by −∆c. Using the boundary conditions and integrating in space
yields

∂t

∫
Ω

|∇c|2
2

dx+ γ

∫
Ω

b(c)

∣∣∣∣∇(∆c

ρ

)∣∣∣∣2 dx
=

∫
Ω

1

2
div(vn)|∇c|2 −∇vn : ∇c⊗∇cdx+

∫
Ω

b(c)∇
(
∂ψ0

∂c

)
· ∇
(
∆c

ρ

)
dx−

∫
Ω

Fc
ρ
∆c.

Here, we have also used the formula (7.3.7). We use the L∞ bounds on vn, div(vn), b(c), ρ the
fact that Fc

ρ is also bounded in L∞, properties on ∂cψ0 (7.3.3), and obtain

∂t

∫
Ω

|∇c|2
2

dx+ γ

∫
Ω

b(c)

∣∣∣∣∇(∆c

ρ

)∣∣∣∣2 dx ≤ C

∫
Ω

|∇c|2 dx+ C

∫
Ω

∣∣∣∣∇∆c

ρ

∣∣∣∣dx+ C

∫
Ω

|∆c|.

We want to control the last term on the right-hand side. We use Lemma 7.3.7 with u =
∆c
ρ (1, 0, 0)T and obtain, together with Neumann boundary conditions on c,∥∥∥∥∆cρ

∥∥∥∥
L2(Ω)

≤ C

∥∥∥∥∇(∆c

ρ

)∥∥∥∥
L2(Ω;R3)

. (7.3.18)

Then, writing ∆c = ρ∆c
ρ and using the L∞ bound on ρ,∫

Ω

|∆c| ≤ C

∥∥∥∥∇(∆c

ρ

)∥∥∥∥
L2(Ω;R3)

.

Finally, using Young’s inequality and Gronwall’s lemma, we obtain

sup
t∈(0,T )

∫
Ω

|∇c|2 dx+ γ

∫ T

0

∫
Ω

b(c)

∣∣∣∣∇(∆c

ρ

)∣∣∣∣2 dx ≤ C. (7.3.19)

With Lemma 7.3.7 (and integrating the equation on ρc using also the boundary conditions) we
obtain the bound

c ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H3(Ω)). (7.3.20)

Having defined ρ and c, we now solve Equation (7.3.13) with a fixed point argument. We define
the operator

M[ρ] : Xn → X∗
n, ⟨M[ρ]v,w⟩ :=

∫
Ω

ρv ·wdx, v,w ∈ Xn.

This operator ( [166]) M[ρ] is invertible, and

∥M−1[ρ]∥L(X∗
n;Xn) ≤

1

infΩ ρ
, ∥M−1[ρ1]−M−1[ρ2]∥L(X∗

n;Xn) ≤ C(n, ρ)∥ρ1 − ρ2∥L1(Ω),

(7.3.21)
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for any ρ1, ρ2 ≥ ρ. Finally, Equation (7.3.13) can be reformulated as

vn(t) = M−1[ρ(t)]

(
m∗

0 +

∫ t

0

N [vn(s), ρ(s), c(s)] ds

)
, (7.3.22)

with
⟨m∗

0, η⟩ =
∫
Ω

m0 · η dx,

and

⟨N [vn, ρ, c], η⟩ =
∫
Ω

(
ρvn ⊗ vn − T− γ

2
|∇c|2I+ γ∇c⊗∇c

)
: ∇η + p(ρ, c)div(η)

− (ε∇vn∇ρ+ κ(ρ, c)vn) · η dx.

To prove that Equation (7.3.22) has a solution, we apply Schauder’s fixed-point theorem in a
short time interval [0, T (n)]. Then, we need uniform estimates to iterate the procedure.

Lemma 7.3.9 (Schauder Fixed Point Theorem). Let X be a Hausdorff topological vector space
and S be a closed, bounded, convex, and non-empty subset of X. Then, any compact operator
A : S → S has at least one fixed point.

With notation of the lemma 7.3.9, we call A the operator from Equation (7.3.22) and S = B(u0,n)
the unit ball with center u0,n in C([0, T ];Xn), u0,n is defined by∫

Ω

ρ0u0,n · η dx =

∫
Ω

m0 · η dx, ∀η ∈ Xn.

More precisely, we consider

A :S → C([0, T ];Xn),

u 7→ M−1[ρ(t)]

(
m∗

0 +

∫ t

0

N [u(s), ρ(s), c(s)] ds

)
.

Lemma 7.3.10. There exists a time T = T (n) small enough such that the operator A maps S
into itself. Moreover, the mapping is continuous.

Démonstration. By definition ofA and m∗
0, we need to prove that ∥M−1[ρ(t)]

∫ t
0
N (s)ds∥C(0,T ;Xn) ≤

1. With properties (7.3.21), it is sufficient to prove that there exists a final time T small enough
such that ∥∥∥∥∫ t

0

N(s) ds

∥∥∥∥
C(0,T ;X∗

n)

≤ inf
ΩT

ρ.

Note that the infimum of ρ needs to be taken over the set ΩT = (0, T )×Ω as ρ depends on time.
But, since we only consider small times, using Lemma 7.3.5 we see that this infimum is bounded
by below. More precisely, for every T0, there exists C(T0) > 0 such that for every T ≤ T0,
infΩT

ρ ≥ C(T0). We recall that Xn ⊂ C2(Ω;R3) is finite-dimensional. With the definition of the
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tensor T and the pressure p(ρ, c) given by (7.3.11)-(7.2.3) we estimate by Hölder’s inequality :∫ t

0

∫
Ω

(ρu⊗ u− T− γ

2
|∇c|2I+ γ∇c⊗∇c) : ∇η + p(ρ, c)div(η)− (ε∇u∇ρ+ κ(ρ, c)u) · η dxds

≤ C(
√
T + T )(∥η∥Xn + ∥∇η∥Xn)(∥ρ∥L∞∥u∥2L∞ + C∥ν(c)∥L2∥∇u∥L∞ + C∥∇c∥2L4 + ∥ρ∥aL∞

+ ∥ρ∥L∞∥H(c)∥L∞ + ε∥u∥Xn∥∇ρ∥L∞ + ∥u∥L∞∥κ(ρ, c)∥L2).

Using assumptions of the subsection 7.2.1 and Propositions 7.3.4-7.3.6, we prove that all the quan-
tities on the right-hand side are bounded, with a bound that may depend on n, except ∥∇c∥L4

which needs an argument. Note that from (7.3.17), we deduce ∇c is bounded in L2(0, T ;H2(Ω))∩
L∞(0, T ;L2(Ω)) (by a constant which depends on ρ, and also on ∥u∥L∞ , ∥∇u∥L∞). By Sobolev
embedding with d = 3, ∇c is bounded in L2(0, T ;L∞(Ω)) ∩L∞(0, T ;L2(Ω)). By Hölder inequa-
lity (or interpolation), we obtain an L4(0, T ;L4(Ω)) bound : ∥∇c∥4L4L4 ≤ ∥∇c∥2L∞L2∥∇c∥2L2L∞ .
With the previous estimates, and for T small enough, we obtain the result.

Lemma 7.3.11. The image of S under A is in fact a compact subset of S. Therefore, A admits
a fixed point.

Démonstration. We want to apply the Arzelà-Ascoli theorem to deduce the relative compactness
of A(S). From the previous computation, and using the fact that Xn is finite-dimensional, we
can prove that A(S) is pointwise relatively compact. It remains to prove its equicontinuity.
We want to estimate for t′ ≤ t the Xn norm of M−1[ρ(t)]

(
m∗

0 +
∫ t
0
N [u(s), ρ(s), c(s)] ds

)
−

M−1[ρ(t′)]
(
m∗

0 +
∫ t′
0
N [u(s), ρ(s), c(s)] ds

)
. For simplicity, we write N (s) := N [u(s), ρ(s), c(s)],

and rewrite the previous difference as

M−1[ρ(t)− ρ(t′)]

(
m∗

0 +

∫ t

0

N (s) ds

)
+M−1[ρ(t′)]

(
m∗

0 +

∫ t

t′
N (s) ds

)
.

For the first term, we use (7.3.21) and the Hölder continuity of ρ given by Proposition 7.3.4.
For the second term, we repeat the computations in the proof of Lemma 7.3.10. This ends the
result.

We have the existence of a small interval [0, T (n)]. To iterate the procedure in order to prove
that T (n) = T , it remains to find a bound on vn independent of T (n).

Lemma 7.3.12. vn is bounded in Xn independently of T (n).

Démonstration. Note that we do not ask for a bound independent of n but only of T (n) since
we use in the proof the fact that Xn is finite-dimensional. The proof uses the energy structure
of the equation. We differentiate Equation (7.3.13) in time and take η = vn as a test function.
This yields

d

dt

∫
Ω

ρ
|vn|2
2

dx+
1

2

∫
Ω

(∂tρ+ div(ρvn)) |vn|2 dx−
∫
Ω

p(ρ, c)div(vn) dx− ε

2

∫
Ω

∆ρ|vn|2 dx

+

∫
Ω

T : ∇vn dx+ γ

∫
Ω

(
1

2
|∇c|2I− (∇c⊗∇c)) : ∇vn dx+

∫
Ω

κ(ρ, c)|vn|2 dx = 0. (7.3.23)
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Here we used ∫
Ω

∂t(ρvn) · vn =
1

2

d

dt

∫
Ω

ρ|vn|2 dx+
1

2

∫
Ω

∂tρ|vn|2 dx,∫
Ω

div(ρvn ⊗ vn) · vn dx =
1

2

∫
Ω

div(ρvn)|vn|2 dx,

ε

∫
Ω

(∇vn∇ρ) · vn dx = −ε
2

∫
Ω

∆ρ|vn|2 dx.

With (7.3.12), we see that (7.3.23) reads

d

dt

∫
Ω

ρ
|vn|2
2

dx−
∫
Ω

p(ρ, c)div(vn) dx+

∫
Ω

T : ∇vn dx

+ γ

∫
Ω

(
1

2
|∇c|2I− (∇c⊗∇c)) : ∇vn dx+

∫
Ω

κ(ρ, c)|vn|2 dx = 0. (7.3.24)

Now as in (7.3.10), we obtain with the artificial viscosity

∂t(ρψ0) + div(ρψ0vn) + pdiv(vn)− ψ0ε∆ρ− ερ
∂ψ0

∂ρ
∆ρ = div(b(c)∇µ)µ

+ div(∂tc∇c)− ∂t

( |∇c|2
2

)
+ γ∆cvn · ∇c+ µFc.

Integrating this equation in space, and summing with (7.3.24), we obtain

d

dt

∫
Ω

ρ

( |vn|2
2

+ ψ0

)
+ γ

|∇c|2
2

dx+ ε

∫
Ω

∇
(
ψ0 + ρ

∂ψ0

∂ρ

)
· ∇ρdx

+

∫
Ω

T : ∇vn dx+

∫
Ω

b(c)|∇µ|2 dx+

∫
Ω

κ(ρ, c)|vn|2 dx =

∫
Ω

µFc dx. (7.3.25)

By definition of ψ0, we obtain

ε

∫
Ω

∇
(
ψ0 + ρ

∂ψ0

∂ρ

)
· ∇ρdx = ε

∫
Ω

(
((a− 1) + (a− 1)2)ρa−2 +

H(c)

ρ

)
|∇ρ|2 dx

+ ε

∫
Ω

(H ′(c)(log(ρ) + 1) +Q′(c))∇c · ∇ρdx.

Therefore, the energy reads

d

dt

∫
Ω

ρ

( |vn|2
2

+ ψ0

)
+ γ

|∇c|2
2

dx+ ε

∫
Ω

(
((a− 1) + (a− 1)2)ρa−2 +

H(c)

ρ

)
|∇ρ|2 dx

+

∫
Ω

T : ∇vn dx+

∫
Ω

b(c)|∇µ|2 dx+

∫
Ω

κ(ρ, c)|vn|2 dx =

∫
Ω

µFc dx

− ε

∫
Ω

(H ′(c)(log(ρ) + 1) +Q′(c))∇c · ∇ρdx. (7.3.26)

We need to prove that the right-hand side can be controlled in term of the left-hand side to obtain
estimates. For the first term on the right-hand side, we treat it as in the proof of Proposition 7.3.1.
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For the second term, we know by assumption on H and Q, and the fact that (log(ρ) + 1)2 is
bounded by a constant times 1

ρ + (a − 1)ρa−2 that it can be bounded in terms of the left-
hand side. Note that we used the hypothesis |Q′(c)| ≤ C. This is based on the fact that Q
is in fact QεQ so that we have |Q′(c)| ≤ C( 1

εQ
) with a constant that blows up when εQ is

sent to 0. As we intend to send εQ → 0 in the next step, it is important to notice that we
can still manage to have this energy inequality since in fact the term ε

∫
Ω
Q′(c)∇c · ∇ρ dx can

be estimated by ε
4

∫
Ω

(
((a− 1) + (a− 1)2)ρa−2 + H(c)

ρ

)
|∇ρ|2 dx and

∫
Ω
εC( 1

εQ
)|∇c|2 dx. Since ε

will be sent to 0 before εQ, the energy inequality will still hold independently of εQ in the limit
ε → 0. With Gronwall’s lemma, and properties of the tensor T, we deduce that vn is bounded
in L2(0, T (n);H1(Ω;R3)) independently of T (n). Also, the previous bounds do not depend on
n. Since all the norms are equivalent, it is also bounded in L1(0, T (n);W 1,∞(Ω,R3)). Therefore,
we can apply the maximum principle stated in Lemma 7.3.5, and obtain that the density ρ is
bounded from below by a constant independent of T (n). Then, using once again the energy
inequality, we obtain that vn is bounded uniformly in time in L2(Ω;R3). This procedure can be
repeated for every final time T .

Finally, we are left with the following proposition

Proposition 7.3.13. For any fixed n and T , there exists a solution (ρ, c,vn) defined on (0, T )
(with appropriate regularity) to (7.3.12)-(7.3.14)-(7.3.13) subject to boundary conditions (7.3.15)
and initial conditions (7.3.12). Moreover, this solution satisfies the energy dissipation inequality

E(t) + ε

∫
Ωt

(
(a+ a2)ρa−1 +

H(c)

ρ

)
|∇ρ|2 dxdt

+

∫
Ωt

T : ∇vn dxdt+

∫
Ωt

b(c)|∇µ|2 dxdt+
∫
Ωt

κ(ρ, c)|vn|2 dx dt ≤ C + CE(0), (7.3.27)

where

E(t) =

∫
Ω

ρ

( |vn|2
2

+ ψ0

)
+ γ

|∇c|2
2

dx,

and with a constant C = C
(
1, ε

εQ

)
that does not depend on n.

Now, we need to find estimates, independent of n, to pass to the limit n → ∞. Since ρ and c
depend on n, we write ρn and cn from now on.

Proposition 7.3.14. We have the following estimates uniformly in n and ε :
(A1) {ρnψ0} in L∞(0, T ;L1(Ω)),
(A2) {ρn} in L∞(0, T ;La(Ω)),
(A3) {T : ∇vn} in L1(0, T ;L1(Ω)),
(A4) {√ρnvn} in L∞(0, T ;L2(Ω;R3)),

(A5) {
√
b(cn)∇µn} in L2(0, T ;L2(Ω;R3)),

(A6) {vn} in L2(0, T ;H1
0 (Ω;R3)),

(A7) {√ε∇ρn} in L2(0, T ;L2(Ω)),
(A8) {cn} in L∞(0, T ;H1(Ω)),
(A9) {ρn∂cψ0} in L∞(0, T ;Lr(Ω)) for r < 6a

6+a ,

(A10) {µn} in L2(0, T ;H1(Ω)),
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(A11) {ρnµn} in L2(0, T ;L6a/(6+a)),

(A12) {cn} in L2(0, T ;W 2,r(Ω)) ∩ L2+ν(0, T ;W 1,2+ν) for some ν > 0,

(A13) {ρncn} in L∞(0, T ;L
6a

6+a (Ω)),

(A14) {ρncnvn} in L2(0, T ;L
6a

3+4a (Ω)),

(A15) {p(ρn, cn)} in L1+ν̃((0, T )× Ω)) for some ν̃ > 0.

Démonstration. Estimates (A1)-(A2)-(A3)-(A4)-(A5) follow immediately from the energy equa-
lity (7.3.27). Estimate (A6) is the result of Lemma 7.3.8 and estimates (A2)-(A3)-(A4). To obtain
estimate (A7), we multiply Equation (7.3.12) by ρn, and using integration by parts, we obtain

2ε

∫ T

0

∫
Ω

|∇ρn|2 dxdt ≤ ∥ρ0∥2L2(Ω) + ∥ρn∥2L∞(0,T ;L2(Ω)) + ∥ρn∥2L2(0,T ;L4(Ω))∥∇vn∥L2(0,T ;L2(Ω)d).

Using (A2) and (A6), we deduce (A7). To prove Estimate (A8), we first notice that equa-
lity (7.3.27) provides the uniform bound on {∇cn} in L2(0, T ;L2(Ω)). To conclude with Lemma 7.3.7,
we need to bound

∫
Ω
ρncn. Combining Equations (7.3.12)-(7.3.14), we obtain

∂t(ρncn) + div(ρncnvn) = −εc∆ρ+ div(b(c)∇µ) + Fc.

Integrating in space, using the boundary conditions, and Estimate (A7), the L2 bound on {∇cn},
assumption 7.2.5 yields {

∫
Ω
ρncn} is in L∞(0, T ). We deduce Estimate (A8). Estimate (A9)

follows from the definition of ψ0 and Estimate (A1). Estimate (A10) follows from Estimates (A5)-
(A9) and Lemma 7.3.7. Estimate (A11) follows from Estimates (A2)-(A10). Estimate (A12) is a
consequence of Equation (7.1.3), the previous estimates and interpolation. The two next estimates
are a consequence of the other estimates and Sobolev embeddings. Finally, the last estimate on
the pressure can be adapted from [104, Subsection 2.5]. This estimate is useful when we obtain
the convergence a.e. of ρn and cn so we can obtain strong convergence of p(ρn, cn) in L1 by
Vitali’s convergence theorem.

From [166], we also obtain the following Proposition

Proposition 7.3.15. There exists r > 1 and p > 2 such that

∂tρn,∆ρn are bounded in Lr((0, T )× Ω),

∇ρn is bounded in Lp(0, T ;L2(Ω,R3)),

independently of n (but not independently of ε).

With all the previous bound, we can pass to the limit when n → ∞ and obtain the different
equation and energy estimates in a weak formulation. Since the passage to the limit n → ∞ is
simpler than the next passage ε→ 0, we only detail the latter. Indeed, as n→ ∞ we can obtain
easily strong convergence of ρ which helps a lot in the different limits. So we assume that we can
pass to the limit and that the bounds obtained in Proposition 7.3.14 still hold independently of
ε. It remains now to send ε to 0.
We recall the equations that we want to pass to the limit into :

∂tρε + div(ρεvε) = ε∆ρε, (7.3.28)
∂t(ρεcε) + div(ρεcεvε) = −εcε∆ρε + div(b(cε)∇µε) + Fcε , (7.3.29)
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and for every η (sufficiently regular)∫
Ω

ρεvε(t) · η dx−
∫
Ω

m0 · η dx−
∫ t

0

∫
Ω

ρεvε ⊗ vε : ∇xη dx ds−
∫ t

0

∫
Ω

p(ρε, cε)div(η) dxds

+ε

∫ t

0

∫
Ω

(∇vε∇ρε) ·η dxds+
∫ t

0

∫
Ω

Tε : ∇η dxds+γ
∫ t

0

∫
Ω

(
1

2
|∇cε|2I−(∇cε⊗∇cε)) : ∇η dxds

+

∫
Ω

∫ t

0

κ(cε)vε · η dx ds = 0. (7.3.30)

Using Proposition 7.3.14, which yields uniform estimates in ε, we pass to the limit in the previous
equations. The difficult terms are the one involving nonlinear combinations. Indeed, it is not clear
that we can obtain strong convergence of ρε as we have no estimates on higher order derivatives.
We use the following lemma, see [256].

Lemma 7.3.16. Let gn, hn converge weakly to g, h respectively in Lp1(0, T ;Lp2(Ω)), Lq1(0, T ;Lq2(Ω))
where 1 ≤ p1, p2 ≤ +∞ and

1

p1
+

1

q1
=

1

p2
+

1

q2
= 1.

We assume in addition that

∂gn
∂t

is bounded in L1(0, T ;W−m,1(Ω)) for some m ≥ 0 independent of n, (7.3.31)

and
∥hn − hn(t, ·+ ξ)∥Lq1 (0,T ;Lq2 (Ω)) → 0 as |ξ| → 0, uniformly in n. (7.3.32)

Then, gnhn converges to gh in the sense of distributions.

Remark 7.3.17. This lemma admits many variants, and it is possible to identify the weak limit
of the products with lower regularity, we refer for instance to [280].

We want to apply the previous lemma to the terms ρεvε, ρεcε, ρεµε, ρεc2ε, ρεvε, ρεvε ⊗ vε,
ρεvεcε. We admit that ∂ρε

∂t , ∂ρεvε

∂t and ∂ρεcε
∂t satisfy (7.3.31) by using Proposition 7.3.14 and

Equations (7.3.28)-(7.3.29)-(7.3.30). The compactness in space required in (7.3.32) also uses
Proposition 7.3.14. We refer also to [104, Subsection 3.1] for similar results. The terms εcε∆ρε
and ε

∫ t
0

∫
Ω
(∇vε∇ρ) · η dxds converge to 0 (the first one in the distributional sense) thanks to

estimates (A7)-(A8).

It remains to pass to the limit in (i.e identifying the weak limits)

p(ρε, cε),
1

2
|∇cε|2, ∇cε ⊗∇cε,

b(cε)∇µε, Fcε(ρε, cε), ρε∂cψ0.

The convergence of the last term is used to identify ρµ. To prove the previous convergences,
we need to prove strong compactness in L2 of cε,∇cε and convergence a.e. of ρε to use Vitali’s
convergence theorem. But they follow from the arguments in [5] and [104, Section 3.3 and 3.4].We
obtain
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Lemma 7.3.18. Up to a subsequence (not relabeled),

ρε → ρ a.e. (7.3.33)

cε → c a.e. and strongly in L2(0, T ;L2(Ω)) (7.3.34)

∇cε → ∇c a.e. and strongly in L2(0, T ;L2(Ω)) (7.3.35)

Altogether, we can pass to the limit in every term of the equations :
— p(ρε, cε) : we use (7.3.33), (7.3.34) and (A15)
— 1

2 |∇cε|2 and ∇cε ⊗∇cε : (7.3.35)
— b(cε)∇µε : (7.3.34) and (A10)
— Fcε(ρε, cε) : (7.3.33), (7.3.34) and (7.2.5)
— ρε∂cψ0 : (7.3.33), (7.3.34) and (A9).

This concludes the argument.

7.3.3 Sending εQ → 0

The last step in our proof is to let εQ vanishes and recover the existence of weak solutions for the
double well potential Q(c) = 1

4c
2(1 − c)2. Since we have the energy estimates from before, that

still hold by properties of the weak convergence, the work is essentially the same but we have to
be careful about two points. The first one is to indeed have an energy estimate independent of εQ.
We discussed this point after Equation (7.3.26) and, hence, we do not repeat it here. The second
point are the estimates obtained in Proposition 7.3.14. However, the estimates are essentially the
same, except for estimate (A9) (that is the only one containing Q) which becomes

{ρ∂cψ0} in L∞(0, T ;L
2a

a+2 (Ω)). (7.3.36)

This can be proved knowing that, when εQ ≈ 0, we have that for c large ρQ′
εQ(c) ≈ ρc3, and

we use estimates (A2)-(A8). Altogether, the reasoning to pass to the limit is the same and we
conclude.

7.4 Numerical scheme for the G-NSCH model

We propose a numerical scheme for the G-NSCH model (7.1.1)–(7.1.4) subjected to periodic
boundary conditions.
We combine ideas from the numerical scheme for the variant of the compressible NSCH sys-
tem in [210] and fast structure-preserving scheme for degenerate parabolic equations [221, 222].
Namely, we adapt the relaxation [232] of the Navier-stokes part as used in [210]. The part of
the scheme for the Cahn-Hilliard part of the system is designed using the GSAV method. More
precisely, a variant used for degenerate parabolic models that preserves the physical bounds of
the solution [221, 222].
Indeed, we expect that the volume fraction c remains within the physically (or biologically)
relevant bounds c ∈ (0, 1). Thus, following [221, 222], we construct the invertible mapping T :
R → (0, 1), with c = T (v), transforming Equations (7.1.2)–(7.1.3) into

ρ (∂tv + (v · ∇)v) =
1

T ′(v)
(div(b(c)∇µ) + Fc) ,

ρµ = −γT ′(v)∆v − γT ′′(v)|∇v|2 + ρ
∂ψ0

∂c
.

(7.4.1)
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Following [221] and [222], we can choose

T (v) =
1

2
tanh(v) +

1

2
, or T (v) =

1

1 + exp(−v) ,

thus, preserving the bounds c ∈ (0, 1).
The SAV method allows to solve efficiently (and also linearly) the nonlinear Cahn-Hilliard part
while preserving the dissipation of a modified energy. In the following, we assume that it exists
a positive constant C such that the energy associated with the Cahn-Hilliard part, i.e.

E[t](ρ, c) =

∫
Ω

γ

2
|∇c|2 + ρψ0(ρ, c) = E0[t] + E1[t],

with E1 the nonlinear part of the energy, and E0 the linear part, is bounded from below, i.e. E1+
C ≥ 1

We define
r(t) = E(t) + C0, with C0 = 2C + ∥E(ρ0, c0)∥L∞(Ω),

and apply the SAV method. System (7.4.1) becomes

ρ (∂tv + (v · ∇)v) =
1

T ′(v)
(div(b(c)∇µ) + Fc) ,

ρµ = −γT ′(v)∆v − γT ′′(v)|∇v|2 + ρ
∂ψ0

∂c
,

dr

dt
= − r(t)

E[t] + C0

∫
Ω

b(c)|∇µ|2 − µFc dx,

(7.4.2)

One can easily see that the previous modifications do not change our system at the continuous
level.

7.4.1 One-dimensional scheme

We consider our problem in a one-dimensional domain Ω = (0, L). Even though v is now a scalar,
we still denote it in bold font to not make the confusion with v from the transformation c = T (v).
As mentioned previously, we relax the Navier-Stokes part of our system. Namely, we introduce
a relaxation parameter ι ≥ 0 and write U = (ρ, ρv). We rewrite Equation (7.1.4) as{

∂tU + ∂xV = G(U),

∂tV +A∂xU = − 1
ι (V − F (U)),

(7.4.3)

in whichG(U) = (0,−κv),F (U) = (ρv, ρv2+p−
(
4
3ν(c) + η(c)

)
∂xv+

γ
2 |∂xc|2) andA = diag(a1, a2)

satisfying Liu’s subcharacteristic condition

A ≥ F ′(U), ∀U.

In what follows, and following [210], we use

a1 = a2 = max

{
sup

(
v +

√
∂ρp
)2
, sup

(
v −

√
∂ρp
)2}

.

We discretize the domain using a set of Nx nodes located at the center of control volumes of size
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∆x such that Ω =
⋃
j=0,...,Nx−1[xj− 1

2
, xj+ 1

2
].

Our scheme follows the discrete set of equations

U∗
j = Unj , (7.4.4)

V ∗
j = V nj − ∆t

ι

(
V ∗
j − F (U∗

j )
)
, (7.4.5)

Un+1
j = U∗

j − ∆t

∆x

(
V ∗
j+ 1

2
− V ∗

j− 1
2

)
+∆tG(Un+1

j ), (7.4.6)

V n+1
j = V ∗

j − ∆t

∆x
A
(
U∗
j+ 1

2
− U∗

j− 1
2

)
, (7.4.7)

ρn+1
j T ′(vnj )

(vn+1
j − vnj

∆t
+ vn+1

j · (∇vn+1)j
)
= g(cn, µn+1, ρn+1)j , (7.4.8)

g(cn, µn+1, ρn+1)j =

(
1

∆x

(
(b(cn)∇µn+1)j+ 1

2
− (b(cn)∇µn+1)j− 1

2

))
+ Fc(ρ

n
j , c

n
j ), (7.4.9)

ρn+1
j µn+1

j =
(
−γT ′(vnj )(∆v

n+1)j − γT ′′(vnj )(∇vn)j · (∇vn+1)j
)
+ ρn+1

j

(
∂ψ0

∂c

)n
j

,

(7.4.10)∑
j

∆xT (λvn+1
j ) =

∑
j

∆xc0 +

n∑
r=1

∆t
∑
j

∆xFc(ρ
r
j , c

r
j), (7.4.11)

cn+1 = T (λvn+1), (7.4.12)

1

∆t

(
rn+1 − rn

)
= − rn+1

E(cn+1) + C0
∆x
∑
j

b(cn+1
j )|(∇µn+1)j |2

+
rn+1

E(cn+1) + C0
∆x
∑
j

µn+1
j Fc(ρ

n+1
j , cn+1

j ), (7.4.13)

ξn+1 =
rn+1

E(cn+1) + C0
, (7.4.14)

cn+1
j = νn+1cn+1

j , with νn+1 = 1− (1− ξn+1)2, (7.4.15)

vn+1
j = λνn+1vn+1

j . (7.4.16)

Remark 7.4.1 (Computation of interface values). To obtain the interface values U∗
j+ 1

2

, U∗
j− 1

2

and V ∗
j+ 1

2

, V ∗
j− 1

2

, we use the upwind method, i.e.

Uj+ 1
2
=

1

2
(Uj + Uj+1)−

√
a1
2

(Vj+1 − Vj) , Vj+ 1
2
=

1

2
(Vj + Vj+1)−

1

2
√
a2

(Uj+1 − Uj) .

We also mention that similarly to [210], one can implement a MUSCL scheme (see e.g. [251]) to
obtain a higher order reconstruction. The upwind method permits to rewrite Equations (7.4.6)–
(7.4.7) as

Un+1
j = U∗

j − ∆t

2∆x
(V ∗
j+1 − V ∗

j−1) +
∆t

2∆x

√
a(δ2xU

∗
j ) + ∆tG(Un+1

j ), (7.4.17)

V n+1
j = V ∗

j − a∆t

2∆x
(U∗

j+1 − U∗
j−1) +

∆t

2∆x

√
a(δ2xV

∗
j ), (7.4.18)
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where we used the notation δ2xU = Uj+1 − 2Uj + Uj−1. In Equations (7.4.17)–(7.4.18), we em-
phasize that U∗ = Un and V ∗ = V n − ∆t

ι (V ∗ − F (Un)).

Remark 7.4.2 (Algorithm to compute the solution of the discrete equations’ system). Equa-
tions (7.4.4) to (7.4.7) are solved from Equations (7.4.17)–(7.4.18), hence, a solution (Un+1, V n+1)
is computed just from vector computations. The coupling between Equation (7.4.8) and Equa-
tion (7.4.10) is also linear (nonlinear terms are taken at the previous time step to linearize the
equations). We solve this coupled system using the GMRES algorithm but we emphasize that
other iterative solver could work as long as they allow the matrix of the linear system to be non-
symmetric. The coefficient λ is computed using an iterative method. Then, the discrete solution
(vn+1, µn+1), together with the coefficient λ, is used in Equation (7.4.13) to find rn+1 and, in
Equation (7.4.14), ξn+1. At this point, we solve Equation (7.4.15) and(7.4.16) from the previous
steps.

In the following, we use the notations,

⟨U, V ⟩ = ∆x
∑
j

UjVj , and ∥U∥2 = ⟨U,U⟩.

We also use ∆0,xU := 1
2 (Uj+1 − Uj−1).

Our numerical scheme possesses the following important properties :

Proposition 7.4.3 (Energy stability, bounds and mass preserving). Assuming the CFL-like
condition ∆t

∆x

√
a1 ≤ 1 and the condition

∆t ≤ C
C0

E[cn]
, (7.4.19)

our numerical scheme satisfies the energy dissipation-like inequality

∥√aUn+1∥2 + ∥V n+1∥2 + rn+1 ≤ ∥√aUn∥2 + ∥V ⋆∥2 + Cn+1rn, (7.4.20)

where rn+1 ≥ 0 and

Cn+1 =
1

1 + ∆t
E(cn+1)+C0

∑Nx

j=1 b(c
n+1
j )|∇µn+1

j |2 − µn+1
j Fc(ρ

n+1
j , cn+1

j )
.

The previous constant can be estimated only in terms of E[cn] and therefore do not depend on
the step n + 1. Furthermore, the numerical scheme preserves the physically relevant bounds of
the mass fraction, i.e.

0 < cn+1 < 1.

Remark 7.4.4. Note that the constant Cn+1 is smaller than 1 whenever the nonnegative part
of the dissipation of the energy is greater than the increase of energy induced by the source term
Fc. This of course satisfied when we have Fc = 0 for instance.

Démonstration. We start with Equation (7.4.17), and using the definition of the functionG(Un+1
j )

as well as assuming κ(c) ≥ 0 (for c ∈ R), after taking the square on both sides, multiplying by
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∆x and summing over the nodes j = 0, ..., Nx, we have

∥Un+1∥2 ≤ ∥Un∥2 +
(

∆t

2∆x

)2

∥∆0,xV
⋆∥2 +

(
∆t

√
a

2∆x

)2

∥δ2xUn∥2 −
∆t

∆x
⟨∆0,xV

∗, Un⟩

+
∆t

√
a

∆x
⟨Un, δ2xUn⟩ −

√
a∆t2

2∆x2
⟨∆0,xV

⋆, δ2xU
n⟩.

Repeating the same computations for Equation (7.4.18), we have

∥V n+1∥2 ≤ ∥V n∥2 +
(
a∆t

2∆x

)2

∥∆0,xU
n∥2 +

(
∆t

√
a

2∆x

)2

∥δ2xV ⋆∥2 −
a∆t

∆x
⟨∆0,xU

n, V ⋆⟩

+
∆t

√
a

∆x
⟨U⋆, δ2xV ⋆⟩ −

a
3
2∆t2

2∆x2
⟨∆0,xU

n, δ2xV
⋆⟩.

At this point, the proof is similar to the proof of [210, Theorem 4.1] (these steps use the periodic
boundary conditions and the summation by parts formula to cancel some terms when summing
both of the previous equations together), to obtain for a constant C > 0,

∥√aUn+1∥2 + ∥V n+1∥2 ≤ C
(
∥√aUn∥2 + ∥V ∗∥2

)
.

Then, for the Cahn-Hilliard part, we easily obtain from Equation (7.4.13)

rn+1

(
1 + ∆t

∆x
∑
j b(c

n+1
j )|(∇µn+1)j |2 − µn+1

j Fc(ρ
n+1
j , cn+1

j )

E[cn+1] + C0

)
= rn.

Therefore, as long as

E(cn+1) + C0 +∆t

∆x
∑
j

b(cj
n+1)|(∇µn+1)j |2 − µn+1

j Fc(ρ
n+1
j , cn+1

j )

 ≥ 0,

so does rn+1. Assuming ∥Fc∥L∞ < C, it remains to control the discrete L1 norm of µn+1.
Performing the same computations as in the proof of Proposition 7.3.1 in continuous case, it
follows that∣∣∣∣∣∣∆x

∑
j

µn+1
j Fc(ρ

n+1
j , cn+1

j )

∣∣∣∣∣∣ ≤ C + CE[cn] +
1

2
∆x
∑
j

b(cn+1
j )|(∇µn+1)j |2.

Of course, one first needs to prove that a discrete version of Lemma 7.3.7 holds. At the continuous
level, this theorem is proved by contradiction using Rellich’s theorem. Hence, a similar proof can
be obtained at the discrete level, in the spirit of the Poincaré-Wirtinger inequality, see [163,
Lemma 3.8, Remark 3.16]. Based on these evidences we use a discrete version of Lemma 7.3.7 to
conclude conclude that there exists C a universal constant such that provided rn ≥ 0 and

∆t ≤ C
C0

E[cn]
,

so does rn+1 ≥ 0, and (7.4.20) follows.
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Finally, from the definition of ξn+1 and C0, we have

0 < ξn+1 <
r0

E(cn+1) + C0
≤ 2.

The bounds for the mass fraction c are ensured by the transformation T (v). This finishes the
proof.

Remark 7.4.5. We observe during numerical simulations that the condition (7.4.19) is obtained
for reasonably small ∆t. We also note that if we do not consider any source term, i.e. Fc = 0,
the scheme satisfies the dissipation relation

∥√aUn+1∥2 + ∥V n+1∥2 + rn+1 ≤ C
(
∥√aUn∥2 + ∥V ⋆∥2

)
+ rn,

with the stability condition
∆t

∆x

√
a1 ≤ 1.

7.5 Numerical experiments

In this section, we use the assumptions on the functionals stated in the "Framework for numeri-
cal simulations" paragraph in subsection 7.2.1. Throughout this section we use the double-well
logarithmic potential

ψmix =
1

2
(α1(1− c) log(ρ(1− c)) + α2c log(ρc))−

θ

2
(c− 1

2
)2 + k,

with k = 100, and θ = 4 (α1 and α2 are specified later). We also use a degenerate mobility, i.e.

b(c) = c(1− c).

We start by using the one-dimensional scheme (7.4.4)–(7.4.16) with no exchange term and fric-
tion, i.e. κ(ρ, c) = 0 and Fc(ρ, c) = 0, and we verify that the scheme preserves all the properties
stated in Proposition 7.4.3. We then use a non-zero exchange term and we compare the solution
with same friction forces for the two phases or contrast of friction forces. Then, we perform
two-dimensional simulations with friction forces contrast.
Finally, we verify the spatial and temporal convergence orders of the scheme.

Remark 7.5.1 (Implementation details). All numerical schemes are implemented using Python
3 and the Numpy and Scipy modules. The linear system for the Cahn-Hilliard part of the model
is solved using the Generalized Minimal RESidual iteration (GMRES) iterative solver (function
available in the scipy.sparse.linalg module). The tolerance on the convergence of the residual
is indicated in each of the following subsections. To find the λ that allows to compute the correct
mass, we use the function fsolve of the scipy.optimize module which uses a modification of the
Powell’s conjugate direction method.

7.5.1 One dimensional numerical test cases

Comparison between matching and non-matching densities. We start with a one-
dimensional test cases to show the spatiotemporal evolution of the density, mass fraction, and
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velocity. We also verify numerically the properties stated in Proposition 7.4.3. We compare nu-
merical results for matching and non-matching densities for the phases of the fluid. For this
comparison, we set κ(ρ, c) = 0 and Fc(ρ, c) = 0.
We use the computational domain Ω = (0, 1) discretized in Nx = 128 cells. We take T = 0.5
(this has been chosen because the system reaches a meta-stable state by that time) and use the
initial time step ∆t = 1×10−5 (this time step size is adapted from the CFL-like condition stated
in Proposition 7.4.3.
We choose the width of the diffuse interface to be γ = 1/600, the viscosity to be constant
ν(c) = 1 × 10−2, and η = 2 × 10−2 , the relaxation parameter to be ι = 1 × 10−5, and the
exponent for the barotropic pressure equals to a = 3.
To model matching densities for the two phases of the fluid, we choose α1 = α2 = 1. To represent
non-matching densities for the two phases, we can choose α1 ̸= α2. This allows us to model a
fluid for which the phase denoted by the index 1 is denser compared to the phase indicated by
the index 2. Indeed, this can been seen on the effect of the values α1 and α2 on the potential.
Taking α1 < α2 shifts the well corresponding to phase 1 very close to 0 compared to the other
phase. This models the fact that the fluid 1 is in fact more compressible and thus aggregates of
pure phase 1 appear denser.
We choose constant initial conditions for the density and the pressure, i.e.

ρ0j = 0.8, v0
j = 0.5, j = 0, . . . , Nx − 1.

The initial mass fraction is assumed to be a constant with a small random noise, i.e.

c0j = c+ 0.05rj , j = 0, . . . , Nx − 1,

with c = 0.5 and r is a vector of random values between 0 and 1 given by the uniform distribution.
We choose a tolerance for the convergence of the residual for the GMRES algorithm of rtol =
10−10.
Figure 7.1 compares the results obtained for matching and non-matching densities for the two
phases of the fluid. For the two cases, we report the evolution of the density ρ, the mass fraction
c, the velocity v and the pressure p at different times. We observe that, for both cases, after an
initial regularization of the initial condition, the separation of the two phases of the fluid occurs
and small aggregates appear (see first and second columns of Figure 7.1). Then, the coarsening
of the small aggregates into larger ones occurs. We arrive at the end of the simulation to the
solution depicted in the two figures on the last column of Figure 7.1. Hence, we can conclude
that our numerical scheme catches well the spinodal decomposition of the binary fluid while it
is transported to the right (since the velocity v is positive during these simulations).
A difference between the two simulations is observed on the densities and pressures. Indeed, for
matching densities, we observe that ρ organizes such that it is equal in aggregates of each phases
and drops at the interfaces between the aggregates. We also observe a drop of pressure p at the
interface, probably explained by capillary effects. For non-matching densities, as expected, there
is a density difference between aggregates of phase 1 and 2. Indeed, selecting α1 < α2 makes the
aggregates of phase 1 denser compared to aggregates of phase 2. Our explanation is that, due
to the fact that attractive effects are stronger in phase 1, more mass is allowed to move inside
aggregates of phase 1. However, as the pressure function accounts for the difference α1 ̸= α2,
the pressure equilibrates to a field similar to the matching density case (i.e. p varies from an
equilibrium value and depicts a drop at the interface between the aggregates of the different
phases).
Figure 7.2 shows that, for both cases (i.e. matching and non-matching densities), our nume-
rical scheme preserved the properties presented in Proposition 7.4.3. We defined the discrete
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Figure 7.1 – Simulation of compressible Navier-Stokes-Cahn-Hilliard model (with κ = Fc = 0).
Matching densities (Top row) and non-matching densities (bottom row) for the two phases of
the fluid.

dissipation of energy

dE

dt
= ∥√aUn+1∥2 + ∥V n+1∥2 + rn+1 −

[
∥√aUn∥2 + ∥V ∗∥2 + Cn+1rn

]
. (7.5.1)

We emphasize that as no exchange term was present in the previous simulation Cn+1 is bounded
from above by 1, hence we used Cn+1 = 1 for the simulations in this paragraph. Figure 7.2
presents the temporal evolution of the dissipation dE

dt , the mass
∫
Ω
ρcdx, the minimum and

maximum values of c, and the value of ξ. We observe for both cases that the dissipation (7.5.1) is
strictly negative, as expected by proposition 7.4.3. The mass of fluid 1 is preserved up to a small
numerical error (we emphasize that the error on the initial mass at the end of the simulation is
less than 10−9 for both simulations). This latter result is expected as we set Fc(ρ, c) = 0 for these
simulations. We observe that the physical bounds of the mass fraction are ensured, i.e. maximum
and minimum values for c lie the interval (0, 1). The scalar variable is very close to 1 (up to an
error of order 10−5) as observed in Figure 7.2c. This verifies that the modified energy rn+1 and
the real energy of the Cahn-Hilliard part of the model

En+1 = ∆x
∑
j

γ

2
|(∇c)j |2 + ρn+1

(
∂ψ0

∂cn+1

)
j

,

are close.
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Figure 7.2 – Temporal evolution of the dissipation of the energy dE
dt , mass of the fluid 1 given

by
∫
Ω
ρc dx, scalar variable ξ, and of the minimum and maximal values of the mass fraction c

for matching densities (solid lines) and non-matching densities (dash-dotted lines).
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Mass exchange and contrast of friction forces. In this test case, we consider mass ex-
change between the two phases and friction effects. We choose

Fc(ρ, c) = rtransρc(1− c/cmax), κ(ρ, c) = ρcκ1 + ρ(1− c)κ2,

where 0 < cmax < 1 denotes the mass fraction at which we have an equilibrium for exchange of
mass and rtrans is the rate of mass exchange. In this test case, we use cmax = 0.9, and rtrans = 1.
We compare the solution obtained with no contrast of friction effect, i.e. κ1 = κ2 = 10, and
the solution obtained with κ1 = 0, κ2 = 10. To study the long time behavior of the numerical
simulations, we set T = 5. The rest of the parameters and the initial conditions are chosen as for
the previous non-matching densities test case.
Figure 7.3 compares the solutions for the two cases. In both cases, we observe that the separation
of the two phases occurs and that the velocity decreases in time due to friction effects. Further-
more, as time passes, phase 1 of the fluid increases due to the exchange term Fc(ρ, c) ̸= 0 and,
hence, zones of mass fraction close to the value 1 enlarge. At the end of both simulations, there is
one large aggregate of fluid 1. The difference between the two simulations appears clearly at time
t = 0.1. When the friction forces are stronger in phase two compared to phase 1, i.e. κ2 > κ1,
zones of larger density appear destabilized, i.e. the shape of the aggregates is not symmetric
(compare the solution for Figure 7.3b and Figure 7.3f). For each aggregate of fluid 1, the den-
sity at the right of the aggregate is larger compared to the left. We conclude that the contrast
in friction forces is captured well by the model as simulations depict a contrast of velocity for
the two phases of the fluid and leading to less regular parterns for the densities. Furthermore,
we emphasize that even with non-zero mass exchange and friction forces, the numerical scheme
ensures the properties stated in Proposition 7.4.3 as observed in Figure 7.4. We emphasize that
compared to the simulation without source in which ξ seems to converge to a constant value,
the variable ξ increases slightly with time (compare Figures 7.2c and 7.4c). A possible remedy
to this issue is discussed in the conclusion of this article.

7.5.2 Two-dimensional numerical test cases

We now simulate the G-NSCH system (7.1.1)–(7.1.4) in two dimensions. Details about the two-
dimensional numerical scheme can be found in the Appendix.

Phase separation with non-matching densities and contrast of friction strengths.
We use Nx = Ny = 64 cells in each direction. We fix the final time at T = 1. We set up two
simulations, both with no exchange terms Fc(ρ, c) = 0. For the first, we consider no contrast of
friction effects, i.e. κ1 = κ2 = 10, ν1 = ν2 = 0.01, and η1 = η2 = 0.02. For the second simulation,
we take κ1 = 0, κ2 = 10, ν1 = ν2 = 0.01, and η1 = η2 = 0.02. Hence, fluid 2 has stronger friction
effects.
The other parameters are γ = 1

800 , θ = 4, α1 = 0.8, α2 = 1.2, ι = 10−4, C0 = 100, a = 1.5. The
tolerance of GMRES solver is set to tol = 10−10.
The initial velocities in both directions are constants in space v0

x = 0.5 and v0
y = 0.5. The initial

density is also constant in space ρ0 = 0.8. The initial mass fraction is set to a perturbed constant
c0 = 0.3− 0.05r, with r a random uniform number for each cell center.
Figure 7.5 compares the temporal evolution of the density of fluid 1 given by ρc for both cases.
We observe that both solutions depict phase separation and progressive coarsening of small
aggregates into larger ones. This phenomenon occurs as the fluid is transported to the top right
corner (we recall that we implemented periodic boundary conditions). Careful inspection of the
relative density ρc distribution inside each aggregates reveals the effect of the contrast of friction
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Figure 7.3 – Simulation of compressible Navier-Stokes-Cahn-Hilliard model nonmatching den-
sities, exchange term (Fc(ρ, c) ̸= 0), same friction effects for both fluids (top row) and contrast
of friction forces (bottom row).
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Figure 7.4 – Temporal evolution of the dissipation of the energy dE
dt , mass of the fluid 1 given

by
∫
Ω
ρc dx, scalar variable ξ, and of the minimum and maximal values of the mass fraction c

for matching densities (solid lines) and non-matching densities (dash-dotted lines).

between the two solutions. Indeed, as the fluid 1 encounters a resistance when transported by
the flow (because it pushes a fluid that experiences more friction), the mass of fluid 1 seems to
concentrate in the top right corner of each aggregate. This can be observed inspecting the level
lines depicted on Figure 7.6. Indeed on this figure, we see that the top of each aggregate is not
localized in the center of the aggregates but is shifted to the top-right. This indicates that the
2D scheme captures correctly the effect seen with the 1D numerical scheme when contrast of
friction between the two phases is considered.
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Figure 7.5 – Two dimensional simulations of compressible Navier-Stokes-Cahn-Hilliard model
with nonmatching densities, same friction effects for both fluids (top row) and contrast of friction
(bottom row).
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(a) No contrast of friction strengths.
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(b) Contrast of friction strengths.

Figure 7.6 – Relative density of fluid 1 at time t = 0.25 considering a contrast of friction
strengths between the two fluids. The black circles represent the level ρc = max(ρc)− 0.03. This
corresponds to the tops of each aggregate.
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7.5.3 Convergence tests

We study the numerical convergence of the one dimensional scheme (7.4.4)–(7.4.16) with κ(ρ, c) =
0 and Fc(ρ, c) = 0. The computational domain is Ω = (0, 1). The final time is T = 0.05. The other
parameters γ, β, η, ν, a, α1, α2 are chosen as for the previous 1D test case with non-matching
densities (see Subsection 7.5.1). The initial condition for the mass fraction is given by

c0 = 0.4 + 0.01 cos(6πx).

The initial conditions for the velocity and the total density are chosen as in the previous 1D test
cases.

We set the tolerance rtol of the GMRES algorithm to rtol = 10−6 for the spatial convergence
test and rtol = 10−10 for the temporal convergence test.

Convergence in space

We fix the time step to ∆t = 1×10−5 and we vary the grid size. We choose an increasing number
of cells Nx = {64, 128, 256, 512, 1024, 2048}. For each quantity c,v, ρ, we compute the discrete
errors

error(ρ∆x, ρ∆x/2) = ∥ρ∆x − ρ∆x/2∥L∞(0,T ;La(Ω)),

error(c∆x, c∆x/2) = ∥c∆x − c∆x/2∥L2(0,T ;L2(Ω)),

error(v∆x,v∆x/2) = ∥v∆x − v∆x/2∥L2(0,T ;L2(Ω)),

(7.5.2)

where (ρ∆x/2, c∆x/2,v∆x/2) denotes the solution computed using twice the number of cells of the
simulation that computes the solution (ρ∆x, c∆x,v∆x).

To compute the discrete norms, we save the solution every ∆tsave = 0.001. The norms in (7.5.2)
are computed following

∥ρ∆x − ρ∆x/2∥L∞(0,T ;La(Ω)) = max
tsave

∆x

2

Nx∑
j=1

(
ρ∆x(xj)− ρ∆x/2(xj)

)a1/a

,

∥c∆x − c∆x/2∥L2(0,T ;L2(Ω)) =

∑
tsave

∆tsave


∆x

2

Nx∑
j=1

(
c∆x(xj)− c∆x/2(xj)

)21/2


2
1/2

,

∥v∆x − v∆x/2∥L2(0,T ;L2(Ω)) =

∑
tsave

∆tsave


∆x

2

Nx∑
j=1

(
v∆x(xj)− v∆x/2(xj)

)21/2


2
1/2

,

with Nx the number of points on the ∆x/2 grid, and tsave the array of times at which snapshots
of the solutions have been taken. Hence, the solution on the coarse grid ∆x is extended on the
fine grid ∆x/2 using the nearest solution from the coarse grid.

We arrive at the results given in Figure 7.7. As expected by the upwind scheme, the spatial order
of convergence is a little less than 1 for the total density ρ (see Figure 7.7a) and the velocity v
(see Figure 7.7c). We recover first order for the mass fraction.
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Figure 7.7 – Convergence in space for the total density ρ, the mass fraction c and the velocity
v. The orange dashed line represents the slope 1.

Convergence in time

We here fix the grid size and select Nx = 128 points. We choose ∆t = 1 × 10−4, and decrease
the time steps according to ∆tarray = {∆t, ∆t2 , ∆t4 , ∆t8 , ∆t16 ,

∆t
32 ,

∆t
64 }. We deactivate the time step

adaptive strategy from the CFL condition. The other parameters and initial conditions are chosen
as in the spatial convergence test (see Subsection 7.5.3). To check the convergence in time of
our scheme, we compute the errors between two solutions computed with two time steps ∆t
that differ only from a factor 1

2 . We denote these two different solutions by (ρ∆t, c∆t,v∆t) and
(ρ∆t/2, c∆t/2,v∆t/2). We use the same method as for the spatial convergence computations, we
save the solutions every ∆tsave = 0.001. We compute the norms

error(ρ∆t, ρ∆t/2) = ∥ρ∆t − ρ∆t/2∥L∞(0,T ;La(Ω)),

error(c∆t, c∆t/2) = ∥c∆t − c∆t/2∥L2(0,T ;L2(Ω)),

error(v∆t,v∆t/2) = ∥v∆t − v∆t/2∥L2(0,T ;L2(Ω)).

(7.5.3)

with

∥ρ∆t − ρ∆t/2∥L∞(0,T ;La(Ω)) = max
tsave

∆x

Nx∑
j=1

(
ρ∆t(xj)− ρ∆t/2(xj)

)a1/a

,

∥c∆t − c∆t/2∥L2(0,T ;L2(Ω)) =

∑
tsave

∆tsave


∆x

Nx∑
j=1

(
c∆t(xj)− c∆t/2(xj)

)21/2


2
1/2

,

∥v∆t − v∆t/2∥L2(0,T ;L2(Ω)) =

∑
tsave

∆tsave


∆x

Nx∑
j=1

(
v∆t(xj)− v∆t/2(xj)

)21/2


2
1/2

,

We obtain the results depicted in Figure 7.8 We observe that the order of convergence in time
for our scheme is exactly 1 for the three quantities.
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Figure 7.8 – Convergence in time for the total density ρ, the mass fraction c and the velocity
v. The orange dashed line represents the slope 1.

7.6 Conclusion and perspectives

We presented a generalized model of diphasic compressible fluid termed G-NSCH, that comprises
possible mass transfer between the two phases and friction effects. Under simplifying assumptions,
summarized in Section 7.2.1, we proved the existence of weak solutions of the G-NSCH system.
We also proposed a numerical scheme and prove, under the same simplifying assumptions, that
it is stable and structure preserving (i.e. it ensures the physically relevant bounds for the mass
fraction c, and it satisfies an energy dissipation inequality). For the numerical simulations, we
chose relevant functionals, thus, relaxing the simplifying assumptions that were necessary for the
analysis. We presented numerical simulations showing that our numerical scheme possesses the
robustness found analytically. The numerical simulations allowed us to show the ability of our
model to represent diphasic fluids with matching or non-matching densities for the two phases.
Furthermore, we computed numerically the spatial and temporal convergences our numerical
scheme.
Our model and numerical scheme allow to use physically relevant choice of functional and to
consider contrast of properties between the two phases of the fluid. Our aim is to perform
efficient simulation of general compressible diphasic fluids while being able to capture instabilities
that could emerge considering contrasts of properties such as Saffman-Taylor or Rayleigh-Taylor
instabilities. However, we emphasize that to achieve this latter goal, we have to be able to capture
accurately the possible fine structures appearing during the numerical simulations. We plan to
improve our numerical scheme in several ways. First, we plan to adapt the Relaxed version of the
Generalized SAV method. Indeed, we observed during our numerical simulation that the variable
ξ is between 10−5 and 10−3. However, with the transfer term Fc(ρ, c) ̸= 0, as the simulation
progresses, the gap between r and the real energy increases, i.e. ξ becomes larger. As shown
in [333], this problem is solved with the relaxed G-SAV method and the use of this method is one
of our further developments. In the same work [333], it is mentioned that this relaxed method
works well even when an external force is comprised in the model. In our case, this external force
will take the form of a mass transfer or mass source term. The second improvement concerns
the accuracy of our scheme. As shown in our work, the temporal and spatial orders of our
scheme do not exceed 1. Thus, we will aim to design a high-order finite element scheme for the
generalized compressible NSCH system that will remain structure preserving taking advantage of
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the flexibility of the relaxed GSAV method. On another aspect, we plan to use the reduced version
of the G-NSCH model presented in the Appendix 7.7.8 to represent tumor growth while removing
non-necessary effects such as inertia. Our goal is to present a model and numerical simulations
capturing Saffman-Taylor-like instabilities depicted by the protrusions of the tumor in the healthy
tissue and commonly observed in the context of, e.g. , skin cancer [97]. Furthermore, analytical
aspects of this work can also be improved. This direction is challenging because as pointed out
in the present work, necessary tools to perform the solutions’ existence proof do not work with
physically or biologically relevant potentials or mobility functions. In fact, singular potentials,
degenerate mobilities and degenerate viscosity functions are not allowed. One possible solution is
to derive a Bresch-Desjardins entropy estimate [56, 57] for the compressible NSCH as it has been
done recently by Vasseur and Yu [321], and Bresch, Vasseur and Yu [62], for the compressible
Navier-Stokes model with degenerate viscosities.
To conclude, we emphasize that the G-NSCH model is the basis of a reduced system that takes
into account only biologically relevant physical effects that play a role in tumor evolution (pre-
sented in the present article in Appendix 7.7.8 as Problem 2 ). Therefore, this work has to be
seen as the first part. In a subsequent work, relying heavily on the present one, we will focus on
numerical simulations, and sensitivity analysis of the reduced model.

7.7 Appendix

7.7.1 Derivation of the model

In this Appendix, we present the rigourous derivation of our G-NSCH model.
We formulate our problem in Eulerian coordinates and in a smooth bounded domain Ω ⊂ Rd
(where d = {1, 2, 3} is the dimension). The balance laws derived in the following sections are in
local form.
We have two fluids in the model where ρ1, ρ2 are the relative densities of respectively fluid 1 and
2. Thus, ρi represents the mass Mi of the fluid per volume occupied by the i-th phase Vi, i.e.

ρi =
Mi

Vi
.

Then, we define the volume fractions φ1, φ2 which are defined by the volume occupied by the
i-th phase over the total volume of the mixture

φi =
Vi
V
.

Therefore, the mass density of population i which is the mass of population i in volume V is
given by

ϕi = ρiφi.

We further assume that the fluid is saturated, i.e.

φ1 + φ2 = 1.

The total density of the mixture is then given by

ρ = ϕ1 + ϕ2.
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We also introduce the mass fractions ci =Mi/M and we have the relations

ρci = ϕi, and c1 = (1− c2). (7.7.1)

We denote by p the pressure inside the mixture and v1,v2 are the velocities of the different
phases. We use a mass-average mixture velocity

v =
1

ρ
(ϕ1v1 + ϕ2v2) . (7.7.2)

We define the material derivative for a generic function g (scalar or vector-valued) by

Dg

Dt
=
∂g

∂t
+ v · ∇g, (7.7.3)

and indicate the definition of the differential operator

v · ∇g =

d∑
j=1

vj
∂g

∂xj
.

In the following, we denote vectors by bold roman letters and we use bold Greek letters to denote
second-order tensors.

7.7.2 Mass balance equations

We have the mass balance equations{
∂ϕ1

∂t + div (ϕ1v1) = F1(ρ, c1, c2),
∂ϕ2

∂t + div (ϕ2v2) = F2(ρ, c1, c2).
(7.7.4)

The functions Fi(ρ, c1, c2) (i = 1, 2) act as source or exchange terms of mass.

Summing the two equations, we obtain the continuity equation for the total density of the
mixture, using c = c1, and the relations (7.7.1), we obtain the balance equation for the total
density of the mixture

∂ρ

∂t
+ div (ρv) = F1 + F2 =: Fρ. (7.7.5)

To obtain a system analogous to (7.7.4), we rewrite the first equation of (7.7.4) using the definition
of the mass fraction (7.7.1) to obtain

∂ρc

∂t
+ div (ρcv1) = F1(ρ, c, 1− c) =: Fc. (7.7.6)

The mass of the component 1 is transported by the average velocity v and the remaining diffusive
flux J1 = ρc (v − v1). Therefore, we can replace the previous equation by

∂ρc

∂t
+ div (ρcv) = div (J1) + Fc.

Then, using the definition of the material derivative (7.7.3) and the mass balance equation for
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the total mixture (7.7.5), the left-hand side of the previous equation reads

∂ρc

∂t
+ div (ρcv) = ρ

Dc

Dt
+ c

[
∂ρ

∂t
+ div (ρv)

]
= ρ

Dc

Dt
+ cFρ.

Altogether, we obtain the balance equation for the mass fraction of the component 1

ρ
Dc

Dt
= div (J1) + Fc − cFρ. (7.7.7)

Since c2 = 1 − c, solving the equations (7.7.5) and (7.7.7) is equivalent to solving the system
(7.7.4). In the following, we refer to c as the order parameter (terminology often used in the
framework of the Cahn-Hilliard model [70, 69]).

7.7.3 Balance of linear momentum

We write the balance of linear momentum [146], which describes the evolution of the velocity v
due to internal stresses and external forces. Following continuum mechanics, the Cauchy stress
tensor gives the stresses acting inside the mixture due to viscous and non-viscous effects. An
additional stress must be taken into account to represent the effect of concentration gradients
[159]. Altogether, we assume that the stress tensor is a function of the total density ρ, the order
parameter c (i.e. the mass fraction of fluid 1), its gradient ∇c, and the total velocity of the
mixture v, i.e.

σσσ = σσσ(ρ, c,∇c,v).
The friction around the pores of the medium is modeled by a drag term in the balance equation
[282] with a permeability coefficient κ(ρ, c) = κ1(ρ, c) + κ2(ρ, c) (the sum of the two friction
coefficients for each component of the mixture). The permeability coefficient relates the properties
of the fluid and the porous medium.

For each dimension (for example if d = 3, then j = {x, y, z}), the balance of linear momentum
reads [146]

∂ρvj
∂t

+ div (ρvjv) = div (σσσ)j − κ(ρ, c)vj + Fvj ,

where Fvj
(vj , ρ) represents the gain or loss of velocity in the j-th direction from different effects

such as external forces. Then, using the continuity equation (7.7.5), we can rearrange the left-
hand side to obtain

∂ρvj
∂t

+ div (ρvjv) = ρ
Dvj
Dt

+ vj

[
∂ρ

∂t
+ div (ρv)

]
= ρ

Dvj
Dt

+ vjFρ + Fvj .

Therefore, we have

ρ
Dvj
Dt

= div(σσσ)j − (κ(ρ, c) + Fρ)vj + Fvj
.

We can rewrite the balance of linear momentum in a more compact form

ρ
Dv

Dt
= div(σσσ)− (κ(ρ, c) + Fρ)v + Fv, (7.7.8)

where Fv(v, ρ) is the vector of coordinates Fvj
.
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7.7.4 Energy balance

The total energy of the mixture is the sum of the kinetic energy ρ 1
2 |v|2 and of the internal energy

ρu, where u = u(ρ, c,∇c) is a specific internal energy. Compared to the classical conservation
law for the total energy, we have an additional energy flux τττ Dc

Dt . Indeed, due to the interface
region, surface effects must be taken into account. Following this direction, Gurtin [200] proposed
to include in the second law of thermodynamics, the effect of an additional force called the
microscopic-stress which is related to forces acting at the microscopic scale. We denote this
supplementary stress by τττ .

Since we assume that the system is maintained in an isothermal state, the balance equation for
the energy is given by [146]

∂

∂t

(
ρ
1

2
|v|2 + ρu

)
+ div

(
ρ

(
1

2
|v|2 + u

)
v

)
= div

(
σσσTv

)
+ div

(
τττ
Dc

Dt

)
− div (q) + ρg + cρFρ + ccFc + cvFv,

(7.7.9)

where q is the heat flux and ρg is the density of heat sources to maintain the temperature
constant. The last three terms in Equation (7.7.9) account for the energy supply coming from
the mass and velocity sources (see e.g. [201, 248]). The prefactors cρ, cc, cv will be determined
later to satisfy the free energy imbalance. Then, repeating the same calculations on the left-hand
side to use the balance of mass (7.7.5), we have

∂

∂t

(
ρ
1

2
|v|2 + ρu

)
+ div

(
ρ

(
1

2
|v|2 + u

)
v

)
= ρ

[
D

Dt

(
1

2
|v|2 + u

)]
+

(
1

2
|v|2 + u

)
Fρ.

Applying the chain rule to the kinetic part, we obtain

ρ
D

Dt

(
1

2
|v|2

)
= ρv · Dv

Dt
,

and using the balance of linear momentum (7.7.8), we arrive to

ρv · Dv

Dt
= v · div(σσσ)− (κ(ρ, c) + Fρ) |v|2 + Fv · v.

Using these previous equations inside (7.7.9), we obtain the balance equation for the internal
energy

ρ
Du

Dt
= div

(
σσσTv

)
− v · div (σσσ) + div

(
τττ
Dc

Dt

)
+ (κ(ρ, c) + Fρ) |v|2 − Fvv

− div (q) + ρg −
(
1

2
|v|2 + u

)
Fρ + cρFρ + ccFc + cvFv.

However, since
v · (div (σσσ))− div

(
σσσTv

)
= −σσσ ..∇v,

where ∇v =
(
∂xj

vi
)
i,j=1,...,d

is the Jacobi matrix and, we have A .. B =
∑
i,j AijBij , for two
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matrices A,B. Altogether, we have the balance equation for the internal energy

ρ
Du

Dt
= σσσ ..∇v + div

(
τττ
Dc

Dt

)
+ (κ(ρ, c) + Fρ) |v|2 − Fvv

− div (q) + ρg −
(
1

2
|v|2 + u

)
Fρ + cρFρ + ccFc + cvFv.

(7.7.10)

7.7.5 Entropy balance and Clausius-Duhem inequality

We aim to apply the second law of thermodynamics. To do so, we define the entropy s = s(ρ, c,∇c)
and the Helmholtz free energy F = F(ρ, c,∇c), both related through the equation

F = u− Ts, (7.7.11)

where T denotes the temperature.

From the mass balance equation (7.7.5), we have the entropy balance equation

∂ρs

∂t
+ div(sρv) = ρ

Ds

Dt
+ s

[
∂ρ

∂t
+ div (ρv)

]
= ρ

Ds

Dt
+ sFρ. (7.7.12)

Then, using the definition of the Helmholtz free energy (7.7.11) and the balance of energy (7.7.10),
we obtain

ρ
Ds

Dt
= − ρ

T

DF
Dt

+
ρ

T

Du

Dt

= − ρ

T

DF
Dt

+
1

T

[
σσσ ..∇v + div

(
τττ
Dc

Dt

)
+ (κ(ρ, c) + Fρ) |v|2 − Fvv

− div (q) + ρg −
(
1

2
|v|2 + u

)
Fρ + cρFρ + ccFc + cvFv

]
,

(7.7.13)

where we have replaced the material derivative of the internal energy using its balance equation
(7.7.10).

The constitutive relations for the functions constituting the Navier-Stokes-Cahn-Hilliard model
are often derived to satisfy the Clausius-Duhem inequality (Coleman-Noll Procedure) [146]. In-
deed, this inequality provides a set of restrictions for the dissipative mechanisms occurring in the
system. However, in our case, due to the presence of source terms, we can not ensure that this
inequality holds without some assumptions on the proliferation and friction of the fluid around
the pores. Therefore, we use here a different method : the Lagrange multipliers method. Indeed,
the Liu [259] and Müller [281] method is based on using Lagrange multipliers to derive a set of
restrictions on the constitutive relations that can be applied even in the presence of source terms.

Following classical Thermodynamics [281], we state the second law as an entropy inequality, i.e. ,
the Clausius-Duhem inequality in the local form [146]

ρ
Ds

Dt
≥ −div

(q
T

)
+
ρg

T
+ div (J ) , (7.7.14)

where J is the entropy flux. The inequality (7.7.14) results from the fact that the entropy of the
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mixture can only increase. Using the equation (7.7.13), we obtain

ρ

T

DF
Dt

− 1

T

[
σσσ ..∇v + div

(
τττ
Dc

Dt

)
+ (κ(ρ, c) + Fρ) |v|2

− Fvv −
(
1

2
|v|2 + u

)
Fρ + cρFρ + ccFc + cvFv

]
+ div (J ) ≤ 0.

(7.7.15)

Then, using the chain rule

DF
Dt

=
Dρ

Dt

∂F
∂ρ

+
Dc

Dt

∂F
∂c

+
D∇c
Dt

· ∂F
∂∇c ,

and
D∇c
Dt

= ∇
[
Dc

Dt

]
− (∇v)

T ∇c, Dρ

Dt
= −ρdiv(v) + Fρ,

in the entropy inequality (7.7.15), we obtain

ρ

[
(−ρdiv(v) + Fρ)

∂F
∂ρ

+
Dc

Dt

∂F
∂c

+

(
∇
[
Dc

Dt

]
− (∇v)

T ∇c
)
· ∂F
∂∇c

]
− div

(
τττ
Dc

Dt

)
− σσσ : ∇v

−
[
(κ(ρ, c) + Fρ) |v|2 − Fvv −

(
1

2
|v|2 + u

)
Fρ + cρFρ + ccFc + cvFv

]
+ Tdiv (J ) ≤ 0.

(7.7.16)
By the chain rule, we have

div

(
τττ
Dc

Dt

)
= τττ∇

[
Dc

Dt

]
+

Dc

Dt
div (τττ) .

Furthermore, we know that

−ρ2div (v) ∂F
∂ρ

= −ρ2 ∂F
∂ρ

1 ..∇v,

and
−ρ
(
(∇v)

T ∇c
)
· ∂F
∂∇c = −ρ

(
∇c⊗ ∂F

∂∇c

)
..∇v.

Gathering the previous three relations and reorganizing the terms of (7.7.16), we obtain(
−ρ2 ∂F

∂ρ
1− ρ∇c⊗ ∂F

∂∇c − σσσ

)
.
.∇v +

(
ρ
∂F
∂c

− div(τττ)

)
Dc

Dt

+

(
ρ
∂F
∂∇c − τττ

)
∇
[
Dc

Dt

]
+ Tdiv (J )

−
[
(κ(ρ, c) + Fρ) |v|2 − Fvv −

(
1

2
|v|2 + u− ρ

∂F
∂ρ

)
Fρ + cρFρ + ccFc + cvFv

]
≤ 0.

(7.7.17)

Then, we use Liu’s Lagrange multipliers method [259]. We denote by Lc the Lagrange multi-
plier associated with the mass fraction equation (7.7.7). The method of Lagrange multipliers
consists in setting the following local dissipation inequality that has to hold for arbitrary values
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of (ρ, c,∇ρ,∇c,v, p)

−Diss :=

(
−ρ2 ∂F

∂ρ
1− ρ∇c⊗ ∂F

∂∇c − σσσ

)
.
.∇v

+

(
ρ
∂F
∂c

− div(τττ)

)
Dc

Dt
+

(
ρ
∂F
∂∇c − τττ

)
∇
[
Dc

Dt

]
+ Tdiv (J )

−
[
(κ(ρ, c) + Fρ) |v|2 − Fvv −

(
1

2
|v|2 + u− ρ

∂F
∂ρ

)
Fρ + cρFρ + ccFc + cvFv

]
− Lc

(
ρ
Dc

Dt
− div (J1)− Fc − cFρ

)
≤ 0.

(7.7.18)
Since,

div (LcJ1) = Lcdiv (J1) +∇Lc · J1,

we reorganize the terms of (7.7.18) to obtain

−Diss :=

(
−ρ2 ∂F

∂ρ
1− ρ∇c⊗ ∂F

∂∇c − σσσ

)
.
.∇v

+

(
ρ
∂F
∂c

− div(τττ)− ρLc

)
Dc

Dt
+

(
ρ
∂F
∂∇c − τττ

)
∇
[
Dc

Dt

]
+ div (TJ + LcJ1)

−∇Lc · J1

−
[
(κ(ρ, c) + Fρ) |v|2 − Fvv −

(
1

2
|v|2 + u− ρ

∂F
∂ρ

)
Fρ

+ cρFρ + ccFc + cvFv − Lc(Fc + cFρ)
]
≤ 0.

(7.7.19)

7.7.6 Constitutive assumptions and model equations

First of all, we assume that the free energy density F is of Ginzburg-Landau type and has the
following form [70, 69]

F(ρ, c,∇c) := ψ0(ρ, c) +
γ

2
|∇c|2, (7.7.20)

where ψ0 is the homogeneous free energy accounting for the processes of phase separation and
the gradient term γ

2 |∇c|2 represents the surface tension between the two phases. This free energy
is the basis of the Cahn-Hilliard model which describes the phase separation occurring in binary
mixtures. Furthermore, as obtained in Wise et al. [176], the adhesion energy between different
cell species is indeed well represented by such a choice of the free energy functional.
To satisfy the inequality (7.7.19), we first choose

τττ := ρ
∂F
∂∇c = γρ∇c.

Then, we define the chemical potential µ(ρ, c,∇c) by

µ :=
∂F
∂c

− 1

ρ
div(τττ) =

∂F
∂c

− 1

ρ
div(ρ

∂F
∂∇c ) =

∂ψ0

∂c
− γ

ρ
div (ρ∇c) ,

which in turn gives a condition for the Lagrange multiplier

Lc = µ. (7.7.21)
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Using these previous constitutive relations, we have already canceled some terms in the entropy
inequality, i.e. (

ρ
∂F
∂c

− div(τττ)− ρLc

)
Dc

Dt
+

(
ρ
∂F
∂∇c − τττ

)
∇
[
Dc

Dt

]
= 0.

Then, using classical results on isothermal diffusion [263, 146], we have

J := −µJ1

T
, (7.7.22)

and, using a generalized Fick’s law, we have

J1 := b(c)∇µ, (7.7.23)

where b(c) is a nonnegative mobility function that we will specify in the following. The two
constitutive relations for the diffusive fluxes (7.7.22) and (7.7.23) together with (7.7.21), we
obtain

div (TJ + LcJ1)−∇Lc · J1 = −b(c)|∇µ|2 ≤ 0.

Following [263, 5], we define the pressure inside the mixture

p := ρ2
∂ψ0

∂ρ
. (7.7.24)

From standard rheology, we assume that the fluid satisfies Newton’s rheological laws. The stress
tensor is composed of two parts for the viscous P̃ and non-viscous P contributions of stress

σσσ := P+ P̃, (7.7.25)

and we have by standard continuum mechanics (see e.g. [22, 146, 5]){
P = −

(
p− γ

2 |∇c|2
)
1− γρ∇c⊗∇c,

P̃ = ν(c)
(
∇v +∇vT

)
+ λ(c)div (v)1.

(7.7.26)

In (7.7.26), ν(c) denotes the shear viscosity and λ(c) = η(c)− 2
3ν(c) where η(c) is the dilatational

viscosity that encodes the response of the fluid to volume changes. The second term in the non-
viscous part of the stress (namely −γ (ρ∇c⊗∇c)) represents capillary stresses that act at the
interface of the two populations.

Using (7.7.26), we can cancel terms in (7.7.19)(
−ρ2 ∂F

∂ρ
1− ρ∇c⊗ ∂F

∂∇c − σσσ

)
..∇v = 0.

The remaining terms of the entropy inequality are the ones associated with proliferation and
friction. The last step to satisfy the entropy inequality is to choose arbitrarily a value for cρ, such
that

−
[
(κ(ρ, c) + Fρ) |v|2 − Fvv −

(
1

2
|v|2 + u− ρ

∂F
∂ρ

)
Fρ

+ cρFρ + ccFc + cvFv − Lc(Fc + cFρ)
]
≤ 0.
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Reorganizing the terms we have

−κ(ρ, c)|v|2 − Fρ

[
cρ + |v|2 −

(
1

2
|v|2 + u− ρ

∂F
∂ρ

)
− µc

]
− Fv [cv − v]− Fc [cc − µ] ≤ 0.

The obvious choices are 
cρ = −|v|2 +

(
1
2 |v|2 + u− ρ∂F∂ρ

)
+ µc,

cv = v,

cc = µ.

From the previous constitutive relations, we satisfy the dissipation inequality (7.7.19).

7.7.7 Summary of the model’s equations

Using the previous constitutive relations our general model is the following compressible Navier-
Stokes-Cahn-Hilliard system

∂ρ

∂t
= −div (ρv) + Fρ,

ρ
Dc

Dt
= div (b(c)∇µ) + Fc − cFρ,

ρµ = −γdiv (ρ∇c) + ρ
∂ψ0

∂c
,

ρ
Dv

Dt
= − [∇p+ γdiv (ρ∇c⊗∇c)] + div

(
ν(c)

(
∇v +∇vT

))
− 2

3
div (ν(c)div (v)1) + div (η(c)div (v)1)− (κ(ρ, c) + Fρ)v + Fv,

(7.7.27)

with p defined in (7.7.24).

7.7.8 Model reductions, general assumptions and biologically relevant
choices of the model’s functions

7.7.9 Specific choices of functionals and model reductions

Problem 1 : General compressible NSCH with friction term and mass transfer.
Assuming no creation of mass nor transfer of mass from the exterior of the system we have

Fc = −F1−c, (7.7.28)

leading to mass conservation
Fρ = 0. (7.7.29)

Furthermore, we assume no external source of velocity and energy, leading to

Fv = 0, and Fu = 0. (7.7.30)

Furthermore, using the same simplifying assumption as in Abels and Feireisl [5] to avoid vacuum
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zones, our final reduced system of equations is

∂ρ

∂t
+ div (ρv) = 0, (7.7.31)

∂ρc

∂t
+ div (ρcv) = div (b(c)∇µ) + Fc, (7.7.32)

ρµ = −γ∆c+ ρ
∂ψ0

∂c
, (7.7.33)

∂ρv

∂t
+ div (ρv ⊗ v) = −

[
∇p+ γdiv

(
∇c⊗∇c− 1

2
|∇c|21

)]
+ div

(
ν(c)

(
∇v +∇vT

))
− 2

3
div (ν(c)div (v)1) + div (η(c)div (v)1)− κ(ρ, c)v,

(7.7.34)

Problem 2 : Biologically relevant variant of the system. We here refer to the two phases
of the mixture as cell populations and not fluids. For this variant of the system, we assume the
production of mass and neglect certain effects. Namely, we neglect inertia effects, and the viscosity
of the fluid, and assume no external source of velocity. This leads to the momentum equation

∇p+ κ(ρ, c)v = −γdiv
(
∇c⊗∇c− 1

2
|∇c|21

)
− Fρv.

Assuming that one cell population proliferates while the other does not leads to

Fc = Fρ = ρcPc(p), and F1−c = 0,

with a pressure-dependent proliferation rate Pc(p) ≥ 0. The growth function Pc(p) is used to
represent the capacity of cells to divide accordingly to the pressure exerted on them. It is well
known that cells are able to divide as long as the pressure is not too large. Once a certain pressure
pmax is reached cells enter a quiescent state. Therefore, we assume that

P ′
c(p) ≤ 0, and Pc(p) = 0 for p > pmax. (7.7.35)

Combining these changes, the model becomes
∂ρ
∂t + div (ρv) = ρcPc(p),
∂ρc
∂t + div (ρcv) = div (b(c)∇µ) + ρcPc(p),

ρµ = −γ∆c+ ρ∂ψ0

∂c ,

∇p+ κ(ρ, c)v = −γdiv
(
∇c⊗∇c− 1

2 |∇c|21
)
− ρcPc(p)v.

(7.7.36)

7.7.10 Biologically consistent choices of functions

As said in the derivation of the model, the free energy density F is the sum of two terms : γ2 |∇c|2
taking into account the surface tension effects existing between the phases of the mixture and
the potential ψ0(ρ, c) representing the cell-cell interactions and pressure. Thus, we choose

ψ0(ρ, c) = ψe(ρ) + ψmix(ρ, c), (7.7.37)
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with ψmix(ρ, c) = H(c) log ρ + Q(c). Then, using the constitutive relation for the pressure we
have

p(ρ, c) = ρ2
∂ψ0

∂ρ
= pe(ρ) + ρH(c). (7.7.38)

The function b(c) is the active mobility of the cells.
Let us explain how the choices of functions for the free energy density and mobility are motivated
by biological observations.
To satisfy the conditions (7.2.7), we propose to choose

b(c) = Cbc(1− c)α, α ≥ 1, (7.7.39)

where Cb is a positive constant.
We use for the pressure a power law such that

pe(ρ) =
1

a− 1
ρa−1. (7.7.40)

For H(c) and G(c), two choices can be considered depending on the behavior of the cells we want
to represent. If the two cell populations exert attractive forces when they recognize cells of the
same type and repulsion with the other type, the potential has to take a form of a double-well
for which the two stable phases are located at the bottom of the two wells (see e.g. Figure 7.9a).
This is a situation close to the phase separation in binary fluids. Thermodynamically consistent
potentials are of Ginzburg-Landau type with the presence of logarithmic terms. An example of
double-well potential is given by

ψmix =
1

2
(α1(1− c) log(ρ(1− c)) + α2c log(ρc))−

θ

2
(c− 1

2
)2 + k, (7.7.41)

thus giving

H(c) =
1

2
(α1(1− c) + α2c) , Q(c) =

1

2
(α1(1− c) log(1− c) + α2c log(c))−

θ

2
(c− 1

2
)2 + k,

where θ > 1, and k, α1, α2 > 0 are an arbitrary constants.
To meet the phenomenological observations of the interaction between cells when the mixture is
composed of only one cell population, a single-well potential seems more appropriate [67, 98].
Indeed, when the distance between cells falls below a certain value (i.e. if the cell density is large
enough), cells are attracted to each other. Then, it exists a threshold value called the mechanical
equilibrium for which ∂cψ0 = 0 i.e. there is an equilibrium between attractive and repulsive forces.
For larger cell densities, cells are packed too close to each other, they thus experience a repulsive
force. When cells are so packed that they fill the whole control volume, then the repulsive force
becomes infinite due to the pressure. The representation of such functional is depicted in Figure
7.9b. A typical example of single-well potential which has been used for the modeling of living
tissue and cancer [98, 11] is

ψmix(ρ, c) = −(1− ce) log(ρ(1− c))− c3

3
− (1− ce)

c2

2
− (1− ce)c+ k, (7.7.42)

thus giving

H(c) = −(1− ce), Q(c) = −(1− ce) log(1− c)− c3

3
− (1− ce)

c2

2
− (1− ce)c+ k, (7.7.43)
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c

(c
)

(a) Double-well potential

c

(c
)

(b) Single-well potential

Figure 7.9 – For both figures ρ = 1. Double-well logarithmic potential (left) with α1 = 1.2 and
α2 = 0.8 and single-well logarithmic potential (right)

where k is an arbitrary constant.

7.7.11 Description of the two-dimensional numerical scheme
We describe the two-dimensional scheme. This scheme possesses the same properties as the one-
dimensional scheme.
We write the velocity field v = (ux, uy). System (7.1.1)–(7.1.4) with the transformation proposed
at the beginning of this section, reads

∂tρ+ ∂x(ρux) + ∂y(ρuy) = 0, (7.7.44)

∂t

(
ρ

[
ux
uy

])
+

[
∂x(ρu

2
x + p)

∂y(ρu
2
y + p)

]
+

[
∂y(ρuxuy)
∂x(ρuxuy)

]
= 2

[
∂x (ν(c)∂xux)
∂y (ν(c)∂yuy)

]
+

[
∂y (ν(c)(∂yux + ∂xuy))
∂x (ν(c)(∂yux + ∂xuy))

]
+

[
∂x
((
η(c)− 2

3ν(c)
)
(∂xux + ∂yuy)

)
∂y
((
η(c)− 2

3ν(c)
)
(∂xux + ∂yuy)

)]− γ

2

[
∂x((∂xc)

2 − (∂yc)
2)

∂y((∂yc)
2 − (∂xc)

2)

]
− γ

[
∂y(∂xc∂yc)
∂x(∂xc∂yc)

]
− κ(ρ, c)

[
ux
uy

]
,

(7.7.45)

ρ (∂tv + ux∂xv + uy∂yv) =
1

T ′(v)
(∂x(b(c)∂xµ) + ∂y(b(c)∂yµ)) +

1

T ′(v)
Fc, (7.7.46)

ρµ = −γT ′(v)(∂xxc+ ∂yyc)− γT ′′(v)
(
(∂xv)

2 + (∂yv)
2
)
+ ρ

∂ψ0

∂c
, (7.7.47)

dr

dt
= − r(t)

E[t] + C0

∫
Ω

b(c)|∇µ|2 − µFc dx. (7.7.48)

We introduce the notations U = (ρ, ρux, ρuy), G(U) = (0,−κux,−κuy) and

F (U) = (ρux, ρu
2
x + p− 2ν(c)∂xux +

(
2

3
ν(c)− η(c)

)
(∂xux + ∂yuy) +

1

2
γ
(
(∂xc)

2 − (∂yc)
2
)
,

ρuxuy − ν(c) (∂yux + ∂xuy) + γ∂xc∂yc),
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K(U) = (ρuy, ρuxuy − ν(c) (∂yux + ∂xuy) + γ∂xc∂yc,

ρu2y + p− 2ν(c)∂yuy +

(
2

3
ν(c)− η(c)

)
(∂xux + ∂yuy) +

1

2
γ
(
(∂yc)

2 − (∂xc)
2
)
).

The stabilization (see [233, 210]) of the Navier-Stokes part of our system reads, with ι > 0 the
relaxation parameter, 

∂tU + ∂xV + ∂yW = G(U),

∂tV +A∂xU = − 1
ι (V − F (U)),

∂tW +B∂yU = − 1
ι (W −K(U)),

(7.7.49)

in which A = diag(a1, a2, a3) and B = diag(b1, b2, b3). In the following, we choose

a1 = a2 = a3 = max{sup
(
ux +

√
∂ρp
)2
, supu2x, sup

(
ux −

√
∂ρp
)2

},

b1 = b2 = b3 = max{sup
(
uy +

√
∂ρp
)2
, supu2y, sup

(
uy −

√
∂ρp
)2

}.

We assume that our two-dimensional domain is a square [0, L]× [0, L]. We discretize the domain
using square control volumes of size ∆x×∆y. The cell centers are located at positions (xj , yj),
and we approximate the value of a variable at the cell center by its mean, e.g.

ρj,i =
1

∆x∆y

∫ x
j+1

2

x
j− 1

2

∫ y
j+1

2

y
j− 1

2

ρ(x, t) dx.
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Simply employing a first-order time discretization, the numerical scheme becomes

U∗
j,i = Unj,i, (7.7.50)

V ∗
j,i = V nj,i −

∆t

η

(
V ∗
j,i − F (U∗

j,i)
)
, (7.7.51)

W ∗
j,i =Wn

j,i −
∆t

η

(
W ∗
j,i −K(U∗

j,i)
)
, (7.7.52)

Un+1
j,i = U∗

j,i −
∆t

∆x

(
V ∗
j+ 1

2 ,i
− V ∗

j− 1
2 ,i

)
− ∆t

∆y

(
W ∗
j,i+ 1

2
−W ∗

j,i− 1
2

)
+∆tG(Un+1

i,j ),

(7.7.53)

V n+1
j,i = V ∗

j,i −
∆t

∆x
A
(
U∗
j+ 1

2 ,i
− U∗

j− 1
2 ,i

)
, (7.7.54)

Wn+1
j,i =W ∗

j,i −
∆t

∆y
B
(
U∗
j,i+ 1

2
− U∗

j,i− 1
2

)
, (7.7.55)

vn+1
j,i − vnj,i

∆t
+ vn+1

j,i · (∇vn+1)j,i = g(cn, µn+1, ρn+1)j,i, (7.7.56)

g(cn, µn+1, ρn+1)j,i =
1

T ′(vnj,i)ρ
n+1
j,i ∆x

(
(b(cn)∇µn+1)j+ 1

2 ,i
− (b(cn)∇µn+1)j− 1

2 ,i

)
+

1

T ′(vnj,i)ρ
n+1
j,i ∆y

(
(b(cn)∇µn+1)j,i+ 1

2
− (b(cn)∇µn+1)j,i− 1

2

)
+
Fc(ρ

n
j,i, c

n
j,i)

T ′(vnj,i)ρ
n+1
j,i

,

(7.7.57)

µn+1
j,i =

1

ρnj,i

(
−γT ′(vnj,i)(∆v̄

n+1)j,i − γT ′′(vnj,i)|(∇vn)j,i|2
)
+

(
∂ψ0

∂c

)n
j,i

, (7.7.58)∫
Ω

T (λvn+1) dx =

∫
Ω

cn +∆tFc dx, (7.7.59)

cn+1
j,i = T (λjv

n+1
j,i ), (7.7.60)

1

∆t

(
rn+1 − rn

)
= − rn+1

E(cn+1) + C0

∫
Ω

b(cn+1)|∇µn+1|2 dx+

+
rn+1

E(cn+1) + C0

∫
Ω

µn+1Fc(ρ
n+1, cn+1) dx, (7.7.61)

ξn+1 =
rn+1

E(cn+1) + C0
, (7.7.62)

cn+1
j,i = νn+1cn+1

j,i , with νn+1 = 1− (1− ξn+1)2, (7.7.63)

vn+1
j,i = νn+1vn+1

j,i . (7.7.64)
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Chapitre 8

From Vlasov equation to degenerate
nonlocal Cahn-Hilliard equation

Abstract

We provide a rigorous mathematical framework to establish the hydrodynamic limit of the Vlasov
model introduced in [317] by Noguchi and Takata in order to describe phase transition of fluids
by kinetic equations. We prove that, when the scale parameter tends to 0, this model converges
to a nonlocal Cahn-Hilliard equation with degenerate mobility. For our analysis, we introduce
apropriate forms of the short and long range potentials which allow us to derive Helmhotlz free
energy estimates. Several compactness properties follow from the energy, the energy dissipation
and kinetic averaging lemmas. In particular we prove a new weak compactness bound on the
flux.

8.1 Introduction

We consider the following Vlasov-Cahn-Hilliard equation (VCH in short){
ε2∂tfε + εξ.∇xfε + εFε.∇ξfε = ϱε(t, x)M(ξ)− fε, t ≥ 0, x ∈ Rd, ξ ∈ Rd,

ϱε(t, x) =
∫
Rd fε(t, x, ξ) dξ,

(8.1.1)

with an initial data fε(0, x, ξ) = f0(x, ξ) ≥ 0. The unknown is the function

fε ≡ fε(t, x, ξ), t ∈ (0, T ), x ∈ Rd, ξ ∈ Rd,

such that, for every infinitesimal volume dx dξ around the point (x, ξ) in the phase space, the
quantity fε(t, x, ξ) dx dξ is the number of particles which have position x and velocity ξ at fixed
time t. The small parameter ε > 0 arises from physical dimensions of the system and we are
interested in the limit when it tends to 0. Following [317], the force field Fε(t, x) is decomposed
as long-range attractive and short-range repulsive

Fε = FLε + FSε , FL,Sε (t, x) = −∇ΦL,Sε (t, x). (8.1.2)

275



276 CHAPITRE 8. From Vlasov equation to degenerate nonlocal Cahn-Hilliard equation

We define the convolution in the space variable as f ⋆ g =
∫
Rd f(y)g(x− y) dy and set

ΦSα,ε(t, x) =
1

α2
ωS ⋆ ωS ⋆ ϱε,

where ωS ≥ 0 is a function that may be thought of as a centered Gaussian. We use a double
convolution in order to enforce positivity of the corresponding operator as it appears in energy
considerations. We assume that ωS satisfies∫

Rd

ωS(y) dy = 1,

∫
Rd

yωS(y) dy = 0,

∫
Rd

|y|2ωS(y) dy <∞. (8.1.3)

The long-range potential is of the form

ΦLα,ε(t, x) = − 1

α2
ωLα ⋆ ω

S ⋆ ωS ⋆ ϱε, (8.1.4)

where ωLα(x) =
1
αd ω

L
(
x
α

)
may be thought of as a high temperature Gaussian and ωL is a smooth,

nonnegative, symmetric, compactly supported function such that, for some δ > 0,∫
Rd

ωL(y) dy = 1,

∫
Rd

yωL(y) dy = 0,

∫
Rd

yiyjω
L dy = δi,j δ,

∫
Rd

ωL(y)|y|3 dy <∞.

(8.1.5)
The equilibrium distribution M(ξ) ≥ 0 is a Maxwellian that we normalize as

M(ξ) :=

(
1

2πD

)d/2
exp

(
−|ξ|2
2D

)
, (8.1.6)

and we have, for i = 1, . . . , d,∫
Rd

M(ξ) dξ = 1,

∫
Rd

ξiM(ξ) dξ = 0,

∫
Rd

ξ2iM(ξ) dξ = D <∞, (8.1.7)

so that D can be interpreted as the diffusion coefficient.

8.1.1 The macroscopic limit

The right-hand side of Equation (8.1.1) is a relaxation term that conserves mass but neither
momentum nor energy since we aim at using a diffusive scaling. Formally one can guess that

fε(t, x, ξ) → ϱ(t, x)M(ξ), as ε→ 0. (8.1.8)

The mass conservation equation on ϱε is obtained by integrating Equation (8.1.1) with respect
to ξ against 1,

∂tϱε(t, x) + divJε(t, x) = 0, Jε(t, x) =

∫
Rd

ξ

ε
fε(t, x, ξ) dξ. (8.1.9)

Then, integrating against ξ, we obtain the flux equation

ε2∂tJε(t, x) +∇x ·
∫
Rd

ξ ⊗ ξfε(t, x, ξ) dξ − Fεϱε = −Jε(t, x). (8.1.10)
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Combined with (8.1.8), this flux equation allows us to identify the limit of Jε and to prove that
as ε, α→ 0, the macroscopic densities tend to a solution of a degenerate nonlocal Cahn-Hilliard
equation type. More precisely, we have the

Theorem 8.1.1 (Limit ε→ 0). With the assumptions and notations (8.1.2)–(8.1.6), let α = ε.
Let f0 be a non-negative distribution that satisfies (8.2.1)-(8.2.2) and let fε be a solution of (8.1.1)
with initial condition f0. Then, we can extract a subsequence (not relabelled) such that ϱε → ϱ
in LptL

1
x strongly for 1 ≤ p <∞ where ϱ solves in the distributional sense the equation

∂tϱ−D∆ϱ− div(ϱ∇Φ) = 0, Φ = −δ∆[ωS ⋆ ωS ⋆ ϱ], (8.1.11)

with initial data ϱ0 =
∫
Rd f

0(x, ξ) dξ.

In fact, [317] obtains formally a more complete description which we cannot prove at the moment
(see Section 8.4).

Remark 8.1.2. • Writing formally ∆ϱ = div(ϱ∇ log(ϱ)), this term can be added to the potential
so as to obtain a kind of Cahn-Hilliard equation.
• Different scaling between α and ε can be considered, α constant is also possible
• Uniqueness can be proved in the class of uniformly bounded densities, see Appendix 8.6.3.
• The proof of this result uses compactness arguments, therefore we do not have any explicit
control on the error between the limit solution and the system in terms of ε.

8.1.2 Contents

In Section 8.2, we collect various uniform estimates ε. Section 8.3 is devoted to passing to the
limit ε → 0. Some open problems are drawn in Section 8.4. The Appendix contains different
mathematical tools and lemmas used throughout the proofs.

8.1.3 Literature review and relevancy of the system

Phase transitions in fluids In [317], Noguchi and Takata consider a kinetic model to capture
the dynamics of phase transition for the Van der Waals fluid. The model reads as follows

∂tf + ξ · ∇xf + F · ∇ξf = A(ϱ)(ϱM − f), A(ϱ) > 0,

F = F 1 + F 2, F 1,2 = −∇Φ1,2,

Φ1 =

{
ϱ− ωL ⋆ ϱ

or − κ∆ϱ
, Φ2 = −C1 log(1− ϱ) +

ϱ

1− ϱ
− C2ϱ, C1, C2 ∈ R,

for some kernel ωL and κ > 0. Φ1 is a combination of short range repulsion and long range
attraction. Φ2 is a short range interaction potential.
The authors state that full details of intermolecular collisions are not considered and that the
collision term on the right-hand side plays just a thermal bath role which is less desirable for a
physical/mechanical justification of the system. This problem has been adressed formally in [193,
316]. From the mathematical point of view, it raises new and interesting different difficulties and
it can be definitely seen as a next step in our work. Nevertheless, the authors show that with this
thermal bath term, the system exhibits the essential features of phase transition dynamics, both
theoretically and numerically. By placing themselves in the framework of the strong interaction,
they find a rescaling of the first equation of the system and obtain Equation (8.1.1) of VCH.
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Then, setting A ≡ 1 and letting ε→ 0 they obtain formally that in the limit (that we refer to as
the hydrodynamic limit), the macroscopic density ϱ satisfy

∂tϱ−∆ϱ− div(ϱ∇(Φ1 +Φ2)) = 0.

Noting that ∆ϱ = div(ϱ∇ log(ϱ)) they obtain the Cahn-Hilliard equation with degenerate mobi-
lity

∂tϱ− div(ϱ∇(Φ1 + Φ̃2)) = 0, Φ̃2 = Φ2 + log(ϱ).

This model presents several mathematical difficulties. First of all, we are not aware of any exis-
tence result concerning the Vlasov equation when the potential Φ is a function of the density
ϱ. In the Vlasov-Poisson system, one has Φ = ∆−1ϱ and there is a gain of two derivatives. For
the existence of classical solutions for Vlasov-Poisson we refer to [255, 292, 306, 218]. A second
difficulty comes from the rigorous passage to the limit. Indeed, the bound provided by the energy
do not provide enough compactness. For instance, one cannot apply the averaging lemma 8.3.4
on this system because the functions are not bounded in L1 uniformly in ε. For these reasons,
we add the convolutions ωS in (8.1.1)–(8.1.4) and provide a rigorous mathematical framework
to establish the hydrodynamic limit of this model when Φ2 = 0. It would be possible to prove a
similar result when Φ2 = ωS ⋆ f ′(ϱ) where |f(ϱ)| ≤ C|ϱ log ϱ| for C small enough.
Our work also provides a generic model to obtain different nonlocal and degenerate equations
of Cahn-Hilliard/thin-film type as the hydrodynamic limit of kinetic models. For other kinetic
models modeling phase transitions, we refer to [193, 197, 242].

Kinetic theory The main purpose of kinetic theory is to provide a description of the evo-
lution of a gas or plasma, and more generally a many-particle system made up of N similar
individual elements, in the limit when N tends to infinity which corresponds to the so-called
thermodynamical limit.

In the kinetic theory, the density of particles is described with the probability measure

f ≡ f(t, x, ξ), t ≥ 0, x ∈ Rd, ξ ∈ Rd,

such that, for every infinitesimal volume dxdξ around the point (x, ξ) in the phase space, the
quantity f(t, x, ξ) dx dξ is the number of particles which have position x and velocity ξ at fixed
time t. For this reason, f is a nonnegative function and integrable in both space and velocity
variables, but it is not directly observable. Nevertheless, at each point of the domain it provides
all measurable macroscopic quantities which can be expressed in terms of microscopic averages :

ϱ(t, x) =

∫
Rd

f(t, x, ξ) dξ (macroscopic density),

J(t, x) =

∫
Rd

ξf(t, x, ξ) dξ (flux).

It is clear that such a statistical description makes sense only with a very large number of par-
ticles, and as a consequence, all kinetic equations are expected to approximate the true dynamics
of gases just in the thermodynamical limit. Rescaling the time and space with a parameter ε,
i.e. t → ε2t, x → εx and sending ε → 0 is called the hydrodynamic limit. It allows us to find a
rigorous derivation of macroscopic models from a microscopic description of matter. For hydro-
dynamics on the Vlasov-Poisson-Fokker-Planck system, we refer to [149, 195].
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Our aim is to obtain an equation on the macroscopic density and to relate it to a known model
that has applications in fluid dynamics or biology, i.e. the Cahn-Hilliard equation.

The Cahn-Hilliard equation Equation (8.1.11) is an example of a Cahn-Hilliard type equa-
tion that is widely used nowadays to represent phase transitions in fluids and living tissues [328,
176, 187, 186, 179, 144, 145, 287, 151, 264, 154]. Originally introduced in the context of materials
sciences [70, 69], it is currently applied in numerous fields, including complex fluids, polymer
science, and mathematical biology. For the overview of mathematical theory, we refer to [277].

Cahn-Hilliard equation takes the form of

∂tϱ = div (b(ϱ)∇ (Φ(ϱ)− δ∆ϱ)) →
{
∂tϱ = div (b(ϱ)∇µ) ,
Φ = −δ∆ϱ+ΦI(ϱ),

(8.1.12)

where ϱ represents the relative density of one component ϱ = ϱ1/(ϱ1 + ϱ2), b(ϱ) is the mobility,
ΦI is the interaction potential while Φ is the quantity of chemical potential.

We obtain a nonlocal version of the Cahn-Hilliard equation. The nonlocality comes from the
convolution of the Laplace operator with a smooth kernel ωS concentrated around the origin.
There is a different possibility to approximate this operator nonlocally, we refer for instance
to [123, 273], where the authors prove the convergence of a nonlocal Cahn-Hilliard equation
with constant mobility to a local Cahn-Hilliard equation and to [155] for a similar result with
degenerate mobility. In our case, because of the degenerate mobility, it is not clear that we can
pass from the nonlocal Equation (8.1.11) to a local one by sending ωS to a Dirac mass.

8.2 Entropy, energy, and uniform estimates

The analysis relies on various uniform bounds in ε which use an initial data that satisfies∫
R2d

(1 + |x|+ |ξ|2 + | log f0|)f0(x, ξ) dxdξ < +∞, (8.2.1)

sup
α≤1

1

α2

∫
R2d

ωLα(y)[ϱ
0 ⋆ ωS(x)− ϱ0 ⋆ ωS(x− y)]2 dxdy < +∞. (8.2.2)

Then, we begin with proving the bounds

Theorem 8.2.1 (Uniform estimates). With the assumptions (8.2.1) and (8.2.2), the following
uniform estimates hold for ε ∈ (0, 1) :

(A) {fε} in L∞
t L

1
x,ξ and {ϱε} in L∞

t L
1
x,

(B) {fε| log(fε)|} and {fε |ξ|2} in L∞
t L

1
x,ξ,

(C) {ϱε| log(ϱε)|} in L∞
t L

1
x,

(D)
{

(ϱεM−fε) (log(ϱεM)−log(fε))
ε2

}
in L1

t,x,ξ,

(E)
{
ϱεM−fε

ε

}
in L1

t,x,ξ,

(F) {Jε} and {Jε log1/2 log1/2 max(Jε, e)} in L1
t,x,
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(G) {fε|x|}, {ϱε |x|} in L∞
t L

1
x,ξ and L∞

t L
1
x respectively.

Moreover, {ϱε} and {Jε} are weakly compact in L1
t,x.

The proof of these estimates uses a fundamental property of energy dissipation. To show that,
we define the energy (kinetic+potential) and the Helmholtz free energy respectively as

E(t) :=
∫
R2d

|ξ|2fε dxdξ +
1

2α2

∫
R2d

ωLα(y)[ϱε ⋆ ω
S(t, x)− ϱε ⋆ ω

S(t, x− y)]2 dx dy, (8.2.3)

F(t) :=

∫
R2d

[2D log(fε) + |ξ|2]fε dxdξ +
1

2α2

∫
R2d

ωLα(y)[ϱε ⋆ ω
S(t, x)− ϱε ⋆ ω

S(t, x− y)]2 dx dy.

(8.2.4)

The Helmholtz free energy satisfies the

Theorem 8.2.2 (Free energy dissipation). The free energy F(t) is dissipated as

d

dt
F(t) = −2D

ε2

∫
R2d

[fε − ϱεM(ξ)] [log fε − log (ϱεM(ξ))] dxdξ = −2D

∫
R2d

Dε dxdξ, (8.2.5)

where the dissipation term is defined as

Dε(t, x, ξ) :=
1

ε2
[fε − ϱεM(ξ)] [log fε − log (ϱεM(ξ))] ≥ 0. (8.2.6)

This theorem can be seen as a combination of relations for both the total energy and the entropy
of the system.

Proposition 8.2.3 (Total energy dissipation). The total energy E(t) is dissipated as

d

dt
E(t) = 1

ε2

∫
R2d

|ξ|2 [ϱεM(ξ)− fε] dxdξ. (8.2.7)

Démonstration. By multiplying (8.1.1) by |ξ|2 and taking the integrals with respect to x and ξ
we obtain

ε2
∫
R2d

|ξ|2∂tfε dxdξ + ε

∫
R2d

|ξ|2ξ · ∇xfε dxdξ + ε

∫
R2d

|ξ|2Fε∇ξfε dxdξ

=

∫
R2d

|ξ|2[ϱεM(ξ)− fε] dxdξ.

(8.2.8)

For integrable solutions, the second term on the left-hand side vanishes. Furthermore, with
integration by parts, the above equation reduces to

ε2
d

dt

∫
R2d

|ξ|2fε dxdξ − 2ε

∫
R2d

ξFεfε dx dξ =

∫
R2d

|ξ|2[ϱεM(ξ)− fε] dx dξ. (8.2.9)

By recalling (8.1.9), the second term can be rewritten as

−2ε

∫
R2d

ξFεfε dxdξ = −2ε2
∫
Rd

Φα,ε divJε dx = 2ε2
∫
Rd

Φα,ε ∂tϱε dx. (8.2.10)
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We now want to prove that

2

∫
Rd

Φα,ε∂tϱε dx =
1

2α2

d

dt

∫
R2d

ωLα(y)[ϱε ⋆ ω
S(t, x)− ϱε ⋆ ω

S(t, x− y)]2 dx dy. (8.2.11)

First, by recalling (8.1.2),

2

∫
Rd

Φα,ε(t, x)∂tϱε(t, x) dx = 2

∫
Rd

ΦLα,ε(t, x)∂tϱε(t, x) dx+ 2

∫
Rd

ΦSα,ε(t, x)∂tϱε(t, x) dx.

(8.2.12)
As regards the first term on the right-hand side

2

∫
Rd

ΦLα,ε(t, x)∂tϱε(t, x) dx = − 2

α2

∫
Rd

[ωLα ⋆ ω
S ⋆ ωS ⋆ ϱε](t, x)∂tϱε(t, x) dx

= − 2

α2

∫
Rd

[ωLα ⋆ ϱε ⋆ ω
S ](t, x)∂t[ϱε ⋆ ω

S ](t, x) dx

= − 1

α2

∫
R2d

ωLα(y)[ϱε ⋆ ω
S ](t, x− y)∂t[ϱε ⋆ ω

S ](t, x) dx dy

− 1

α2

∫
R2d

ωLα(y)[ϱε ⋆ ω
S ](t, x)∂t[ϱε ⋆ ω

S ](t, x− y) dxdy

= − 1

α2

d

dt

∫
R2d

ωLα(y)[[ϱε ⋆ ω
S ](t, x) · [ϱε ⋆ ωS ](t, x− y)] dxdy

The second term on the right-hand side can be handled similarly and gives

2

∫
Rd

ΦSα,ε(t, x)∂tϱε(t, x) dx =
2

α2

∫
Rd

[ωS ⋆ ϱε](t, x)∂t[ϱε ⋆ ω
S ](t, x) dx

=
1

α2

d

dt

∫
Rd

[ϱε ⋆ ω
S ]2(t, x) dx

=
1

2α2

d

dt

∫
R2d

ωLα(y)
[
[ϱε ⋆ ω

S ]2(t, x) + [ϱε ⋆ ω
S ]2(t, x− y)

]
dxdy.

By summing up the two previous identities we get (8.2.11), which, inserted in (8.2.9), concludes
that

ε2
d

dt

∫
R2d

|ξ|2fε dxdξ +
ε2

2α2

d

dt

∫
R2d

ωLα(y)[ϱε ⋆ ω
S(t, x)− ϱε ⋆ ω

S(t, x− y)]2 dxdy

=

∫
R2d

|ξ|2[ϱεM(ξ)− fε] dxdξ.

Proposition 8.2.4 (Entropy relation). The following estimate holds :

d

dt

∫
R2d

fε log fε dx dξ =
1

ε2

∫
R2d

[ϱεM(ξ)− fε] log fε dxdξ. (8.2.13)

Démonstration. By multiplying (8.1.1) by (1 + log fε) we obtain

ε2
d

dt
(fε log fε) + εξ · ∇xfε(1 + log fε) + εFε∇ξfε(1 + log fε) = [ϱεM(ξ)− fε](1 + log fε)



282 CHAPITRE 8. From Vlasov equation to degenerate nonlocal Cahn-Hilliard equation

By taking the integrals with respect to x and ξ, the second and third terms in the above equation
vanish and we obtain

ε2
d

dt

∫
R2d

fε log fε dxdξ =

∫
R2d

[ϱεM(ξ)− fε] log fε dxdξ

as announced.

With these two estimates, we can finally prove Theorem 8.2.2.

Proof of Theorem 8.2.2. From Propositions 8.2.3 and 8.2.4, we get the following result :

d

dt
F(t) =

1

ε2

[∫
R2d

|ξ|2[ϱεM(ξ)− fε] dxdξ + 2D

∫
R2d

[ϱεM(ξ)− fε] log fε dxdξ

]
=

1

ε2

[∫
R2d

ϱεM(ξ)|ξ|2 dxdξ −
∫
R2d

|ξ|2fε dx dξ + 2D

∫
R2d

[ϱεM(ξ)− fε] log fε dxdξ

]
.

(8.2.14)

Using (8.1.6), we know that log(ϱεM(ξ)) = log ϱε +C − |ξ|2
2D for some constant C. Inserting this

expression of |ξ|2 in the first two terms on the righthand side of (8.2.14), we obtain

2D

ε2

∫
R2d

[ϱεM(ξ)− fε] [log ϱε + C − log(ϱεM(ξ))] dxdξ

=
2D

ε2

∫
R2d

[ϱεM(ξ)− fε] [− log(ϱεM(ξ))] dx dξ.

Added to the third term on the righthand side of (8.2.14), we obtain the announced result.

In order to prove Theorem 8.2.1, a major difficulty is to estimate the flux Jε defined by (8.1.9).
We start by establishing a useful inequality, recalling the notation (8.2.6).

Lemma 8.2.5 (Pointwise estimates on Jε). For every 0 < r ≤ 1 and (s, x) ∈ (0, T ) × Rd, we
have

|Jε(s, x)| ≤ rε∥Dε(s, x, ·)∥L1
ξ
+ C

1

rd
exp

(
2CM
r2

)
ϱε(s, x)

1/2∥Dε(s, x, ·)∥1/2L1
ξ
.

Démonstration. For r > 0, we decompose Jε(s, x) = J
(1)
ε (s, x) + J

(2)
ε (s, x), with

J (1)
ε =

1

ε

∫
{|log( fε

ϱεM )|≥ |ξ|
r }

ξ(fε − ϱεM(ξ)) dξ, J (2)
ε =

1

ε

∫
{|log( fε

ϱεM )|≤ |ξ|
r }

ξ(fε − ϱεM(ξ)) dξ.

For J (1)
ε , we write

|J (1)
ε (s, x)| ≤ r

ε

∫
{|log( fε

ϱεM )|≥ |ξ|
r }

∣∣∣∣log( fε
ϱεM

)∣∣∣∣ ϱεM ∣∣∣∣ fεϱεM
− 1

∣∣∣∣dξ ≤ rε∥Dε(s, x, ·)∥L1
ξ
.

For J (2)
ε , we use the Cauchy-Schwarz inequality and, with B(ξ) := |ξ|

r(exp(
|ξ|
r )−1)

,

|J (2)
ε (s, x)| ≤

(∫
Rd

|ξ|2 ϱεM
B(ξ)

dξ

)1/2
(

1

ε2

∫
{| log( fε

ϱεM )|≤ |ξ|
r }

ϱεM

∣∣∣∣ fεϱεM
− 1

∣∣∣∣2B(ξ) dξ

)1/2

.
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Because M(ξ) is a Gaussian and ϱε depends only on (t, x), we obtain

|J (2)
ε (s, x)| ≤ ϱε(s, x)

1/2

(∫
Rd

|ξ|2M(ξ)

B(ξ)
dξ

)1/2

(I1 + I2)
1/2.

Here we have split the second integral according to the sign of log( fε
ϱεM

). When it is negative, we
may write, since B(ξ) ≤ 1,

I1 :=
1

ε2

∫
{ fε

ϱεM ≤1}
ϱεM

∣∣∣∣ fεϱεM
− 1

∣∣∣∣2B(ξ) dξ ≤ 1

ε2

∫
Rd

ϱεM

∣∣∣∣ fεϱεM
− 1

∣∣∣∣ ∣∣∣∣log fε
ϱεM

∣∣∣∣dξ = ∥Dε(s, x, ·)∥L1
ξ
.

The second term is defined as

I2 :=
1

ε2

∫
{0≤log( fε

ϱεM )≤ |ξ|
r }

ϱεM

∣∣∣∣ fεϱεM
− 1

∣∣∣∣2B(ξ) dξ.

Since log is a concave function, for A > 1 and y ∈ [1, A], we have y−1 ≤ log(y) A−1
log(A) . We choose

A = A(ξ) := exp( |ξ|r ) and y = fε
ϱεM

so that y ∈ [1, A] means exactly 0 ≤ log( fε
ϱεM

) ≤ |ξ|
r . Then,

I2 can be estimated as follows

I2 ≤ 1

ε2

∫
Rd

ϱεM

∣∣∣∣ fεϱεM
− 1

∣∣∣∣ log( fε
ϱεM

)
r(exp( |ξ|r )− 1)

|ξ| B(ξ) dξ = ∥Dε(s, x, ·)∥L1
ξ
.

Therefore, for some constant CM , defined through M(ξ), we have

|J (2)
ε (s, x)| ≤ Cϱε(s, x)

1/2∥Dε(s, x, ·)∥1/2L1
ξ

(∫
Rd

r|ξ| exp
(−|ξ|2
CM

)(
exp

( |ξ|
r

)
− 1

)
dξ

)1/2

.

It remains to treat the integral factor that we denote by I3 and for r smaller than 1,

I3 =

∫
Rd

r|ξ| exp
(−|ξ|2
CM

)(
exp

( |ξ|
r

)
− 1

)
dξ ≤ C

rd
exp

(
2CM
r2

)
where C does not depend on r. This can be seen by splitting the integral in the zones {|ξ| ≤ 2CM

r }
and {|ξ| ≥ 2CM

r }. Finally, we obtain

|Jε| ≤ rε∥Dε(s, x, ·)∥L1
ξ
+ C

1

rd
exp

(
2CM
r2

)
ϱε(s, x)

1/2∥Dε(s, x, ·)∥1/2L1
ξ
.

From this lemma, we deduce the following L1 bounds on Jε

Proposition 8.2.6 (Estimate on Jε in L1
x). With the decomposition of Lemma 8.2.5, Jε(s, x) =

J
(1)
ε (s, x) + J

(2)
ε (s, x), we have

— |J (1)
ε (s, x)| ≤ ε∥Dε(s, x, ·)∥L1

ξ
,

— |J (2)
ε (s, x)| ≤ Cϱε(s, x)

1/2∥Dε(s, x, ·)∥1/2L1
ξ
,

— ∥J (2)
ε (s, ·) log1/2+ |J (2)

ε (s, ·)|∥L1
x
≤ C

[
∥ϱε(s, ·) log+ ϱε(s, ·)∥L1

x
+ ∥Dε(s, ·, ·)∥L1

x,ξ

]
,
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— ∥Jε log1/2 log1/2 max(Jε, e)∥L1
t,x

≤ C(∥Dε(s, ·, ·)∥L1
x,ξ
, ∥ϱε(s, ·) log+ ϱε(s, ·)∥L1

t,x
) .

The first two estimates are similar to [149, Proposition 7.1] for the Vlasov-Poisson-Fokker-Planck
system. Here, we have additionally included the last two controls and we give a different proof.

Démonstration. The first two estimates are a direct consequence of Lemma 8.2.5. The third
estimate follows from the inequality, for u ≥ 1, v ≥ 0 and uv ≥ 1,

(uv)1/2 log1/2(uv) ≤ u log u+
√
2v.

The last result is given for the sake of completeness and its technical proof is postponed to
Appendix 8.6.4. This concludes the proof of Proposition 8.2.6.

With these estimates, we can now prove the main result of this section.

Proof of Theorem 8.2.1. Estimate (A) follows by mass conservation. The next bounds are dedu-
ced from the energy equality (8.2.4)-(8.2.5) which we write as∫

R2d

[
2D log(fε(t)) + |ξ|2

]
fε(t) dx dξ + 2D

∫ t

0

∥Dε(s, ·, ·)∥L1
x,ξ

ds ≤ F(0), (8.2.15)

where we ignore the nonnegative interaction term as it does not help in this computation. It is
standard, see Appendix 8.6.1, to conclude from this inequality that∫

R2d

[
2D| log(fε(t))|+

1

2
|ξ|2
]
fε(t) dx dξ +D ∥Dε∥L1

t,x,ξ
≤ F(0) + C

(
∥ϱε∥L∞

t L1
x
, ∥xf0∥L1

x,ξ

)
.

(8.2.16)
The estimates (B) and (D) follow immediately. Then, estimate (E) follows from estimate (D)
and the Csiszár-Kullback Inequality, see Lemma 8.6.1.

Estimate (C) is also very standard and we reproduce the proof from [195, Lemma 2.1]. We
consider the convex function ψ(ϱ) = ϱ log(ϱ) and apply the Jensen inequality. We obtain

ϱε log(ϱε) = ψ(ϱε) = ψ

(∫
Rd

fε
M

M dξ

)
≤
∫
Rd

ψ

(
fε
M

)
M dξ =

=

∫
Rd

fε
M

[
log fε − logM(ξ)

]
M dξ =

∫
Rd

fε

[
log fε +

|ξ|2
2D

]
dξ + C

∫
Rd

fε dξ.

The conclusion follows by taking the absolute values of both sides and integrating with respect
to x.

Finally, estimate (F) is a direct consequence of Proposition 8.2.6, whereas (G) follows from (8.6.3).
Concerning the weak compactness of {ϱε}, it follows from estimates (C) and (G). Then, the weak
local compactness of {Jε} is a direct consequence of Proposition 8.2.6 and the Dunford-Pettis
theorem. Indeed, with the notations of Lemma 8.2.5, J1

ε converges strongly to 0 in L1
t,x. For J2

ε

we first have the weak local compactness in L1
t,x thanks to the third estimate of Proposition 8.2.6,

bound (C) and the Dunford Pettis theorem. To prove the global weak compactness we only need
to prove it for J (2)

ε . We recall that, from Lemma 8.2.5, we have

|J (2)
ε (s, x)| ≤ Cϱε(s, x)

1/2∥Dε(s, x, ·)∥1/2L1
ξ
.
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Therefore we can estimate with the Cauchy-Schwarz inequality

∥J (2)
ε |x|1/2∥L1

t,x
≤ C ∥ϱε |x|∥1/2L1

t,x
∥Dε∥1/2L1

t,x,ξ

which yields global weak compactness in L1
t,x with the Dunford-Pettis theorem. This ends the

proof.

8.3 The limit ε → 0

We now perform the analysis allowing us to prove Theorem 8.1.1. We take α = ε where the pa-
rameter α defines the long range potential (8.1.4). Note, however, that different scaling between
α and ε could possibly be considered.

Recalling the mass balance equation (8.1.9) and the ξ-moment equation (8.1.10), our aim is to
take the limit ε→ 0 in these equations, and establish the relations

∂tϱ(t, x) + div J(t, x) = 0, (8.3.1)

J(t, x) = −D∇ϱ(t, x)− ϱ∇Φ(t, x), Φ = −δ∆[ωS ⋆ ωS ⋆ ϱ], (8.3.2)

which are equivalent to (8.1.11).

A significant contribution comes from Theorem 8.2.1. The entropy bound for ϱε, see (C), and
the L1 bound on Jε, see Proposition 8.2.6, we immediately conclude that
• after extractions, ϱε and Jε(t, x) admit weak limits in L1

t,x, ϱ and J , see also Theorem 8.2.1,
• the equation (8.3.1) holds in the distributional sense.

The latter estimate on Jε also tells us that ε2∂tJε(t, x) converges to 0 in the distributional sense.
Therefore, establishing the equation (8.3.2) from equation (8.1.10), is reduced to proving the two
local weak limits in L1

t,x∫
Rd

ξ ⊗ ξ fε(t, x, ξ) dξ → Dϱ(t, x) I, ϱε∇Φε → ϱ∇Φ(t, x).

These follow directly from the following three lemmas

Lemma 8.3.1. We have∫
(0,T )×Rd

∣∣∣∣∫
Rd

ξ ⊗ ξ(fε − ϱεM) dξ

∣∣∣∣dxdt −−−→ε→0
0.

Lemma 8.3.2. The sequence {ϱε} is precompact in LptL
1
x for every 1 ≤ p <∞.

Lemma 8.3.3. The potential Φε(t, x) satisfies, uniformly in ε ∈ (0, 1),

∥Φε∥∞ ≤ C, ∥∇Φε∥∞ ≤ C. (8.3.3)

Moreover, we have for every 1 ≤ p <∞ the strong convergence in LptL
∞
x ,

Φε(t, x) −→ Φ(t, x), ∇Φε(t, x) −→ ∇Φ(t, x), Φ(t, x) := −δ∆[ωS ⋆ ωS ⋆ ϱ(t, x)]. (8.3.4)

The end of the proof of Theorem 8.1.1 is thus to establish these results.
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Proof of Lemma 8.3.3. Recalling the expressions of both long-range and short-range potentials
and that α = ε, we see that

Φε(t, x) = − 1

ε2

∫
Rd

ωLε (z)
[
ωS ⋆ ωS ⋆ ϱε(t, x− z)− ωS ⋆ ωS ⋆ ϱε(t, x)

]
dz.

Let now set y = z
ε , so that from (8.1.5) we deduce that

Φε(t, x) = − 1

ε2

∫
Rd

ωL(y)
[
ωS ⋆ ωS ⋆ ϱε(t, x− εy)− ωS ⋆ ωS ⋆ ϱε(t, x)

]
dy.

Because the convolution terms are smooth (say W 3,∞), we may use the Taylor expansion and
obtain

Φε(t, x) =
1

ε

∫
Rd

∇x[ω
S ⋆ ωS ⋆ ϱε(t, x)] · y ωL(y) dy −

∫
Rd

D2
x[ω

S ⋆ ωS ⋆ ϱε(t, x)]y · y ωL(y) dy +O(ε)

where the term O(ε) converges to 0 in L∞ since it is controlled by

Cε

∫
Rd

|y|3ωL(y)∥D3
x ω

S ⋆ ωS ⋆ ϱε(t, ·)∥∞ dy,

and we recall the uniform bound (A). Moreover, recalling (8.1.5), we see that the first term in
the right-hand side vanishes and the Hessian matrix reduces to the Laplacian, so that

Φε(t, x) = −δ∆x

[
ωS ⋆ ωS ⋆ ϱε(t, x)

]
+O(ε) (8.3.5)

from which we directly conclude from (A)

||Φε||∞ ≤ C uniformly in ε ∈ (0, 1).

As far as ∇Φε is concerned, the properties of convolution with respect to derivatives gives

∇Φε(t, x) = − 1

ε2

∫
Rd

ωLε (z)
[
∇ωS ⋆ ωS ⋆ ϱε(t, x− z)−∇ωS ⋆ ωS ⋆ ϱε(t, x)

]
dz,

so that the L∞
t,x bounded on ∇Φε follows from the previous argument assuming now that

ωS ∈W 4,∞.

It remains to show that Φε → Φ strongly in LptL
∞
x , the convergence of ∇Φε uses the same

arguments. The convergence follows from (8.3.5) since we have

Φε(t, x)− Φ(t, x) = −δ
[
∆ωS ⋆ ωS ⋆ (ϱε − ϱ)(t, x)

]
+O(ε),

so that, thanks to the above control of the term O(ε) and properties of the convolution,

∥Φε − Φ∥Lp
tL

∞
x

≤ C ∥ϱε − ϱ∥Lp
tL

1
x
+ Cε. (8.3.6)

Using Lemma 8.3.2, we obtain the result.

Proof of Lemma 8.3.2. This result is a consequence of the compactness averaging lemma in ki-
netic theory [194, 286]. Here, we use the following variant from [269, Lemma 4.2].
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Lemma 8.3.4. Assume that {hε} is bounded in L2
t,x,ξ, {hε0} and {hε1} are bounded in L1

t,x,ξ.
Moreover, suppose that

ε∂th
ε + ξ · ∇xh

ε = hε0 +∇ξ · hε1.
Then, for all ψ ∈ C∞

0 (Rd),∥∥∥∥∫
Rd

(hε(t, x+ y, ξ)− hε(t, x, ξ))ψ(ξ) dξ

∥∥∥∥
L1

t,x

→ 0,

when y → 0 uniformly in ε.

To prove Lemma 8.3.2, we cannot apply this averaging lemma directly on {fε} because {fε} is
not bounded in L2

t,x,ξ and we follow the argument in [149] which follows idea of renormalized
solutions [136]. We fix ν > 0 and we consider the functions βν(f) = f

1+νf with derivative
β′
ν(f) =

1
(1+νf)2 . Now we multiply (8.1.1) by β′

ν(f) and obtain

ε∂tβν(fε) + ξ · ∇xβν(fε) =
(ϱεM − f)β′

ν(f)

ε
−∇ξ · (Fεβν(fε)).

We verify assumptions of Lemma 8.3.4. From (A) we see that hε = βν(fε) is bounded in
L1
t,x,ξ ∩ L∞

t,x,ξ and hence in L2
t,x,ξ by interpolation. The L1

t,x,ξ bound on hε0 =
(ϱεM−f)β′

ν(fε)
ε

is deduced from (E) and the L∞
t,x,ξ bound on β′

ν(fε). Finally, since Fε is bounded in L∞
t,x and

βν(fε) is bounded in L1
t,x,ξ we see that hε1 = −Fεβν(fε) is bounded in L1

t,x,ξ.

The assumptions of Lemma 8.3.4 are satisfied and we obtain∥∥∥∥∫
Rd

(βν(fε)(t, x+ y, ξ)− βν(fε)(t, x, ξ))ψ(ξ) dξ

∥∥∥∥
L1

t,x

→ 0,

when y → 0, uniformly in ε. As this is true for all ν > 0, Lemma 8.6.3 implies∥∥∥∥∫
Rd

(fε(t, x+ y, ξ)− fε(t, x, ξ))ψ(ξ) dξ

∥∥∥∥
L1

t,x

→ 0, (8.3.7)

when y → 0, uniformly in ε.

The final step is to remove the weight ψ in the convergence (8.3.7) using uniform bound on
{fε |ξ|2}. To this end, consider a sequence of functions {ψn(ξ)}n in D(Rd) such that ψn(ξ) = 1
for |ξ| ≤ n and ψn(ξ) = 0 for |ξ| ≥ n+ 1. Then,∥∥∥∥∫

Rd

(fε(t, x, ξ)(1− ψn(ξ)) dξ

∥∥∥∥
L1

t,x

≤
∥∥∥∥∥
∫
|ξ|≥n

fε(t, x, ξ)
|ξ|2
n2

dξ

∥∥∥∥∥
L1

t,x

≤
∥fε|ξ|2∥L1

t,x,ξ

n2

and similarly for the term with fε(t, x + y, ξ). Hence, we may choose first n large enough and
then for such n apply (8.3.7) to deduce

∥ϱε(x+ y)− ϱε(x)∥L1
t,x

=

∥∥∥∥∫
Rd

(fε(t, x+ y, ξ)− fε(t, x, ξ)) dξ

∥∥∥∥
L1

t,x

→ 0, (8.3.8)

when |y| → 0, uniformly in ε > 0. This yields compactness in space.
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From Lemma 8.6.4 we know that {ϱε} is also compact in time, and as a result∫ T−h

0

∫
Rd

|ϱε(t+ h, x+ k)− ϱε(t, x)|dxdt

≤
∫ T−h

0

∫
Rd

|ϱε(t+ h, x+ k)− ϱε(t+ h, x)|dtdx+

∫ T−h

0

∫
Rd

|ϱε(t+ h, x)− ϱε(t, x)|dtdx ≤ θ(h, k),

where θ(h, k) → 0 whenever |h|, |k| → 0 uniformly in ε. This provides the equicontinuity of {ϱε}
in L1

t,x which provides us with local compactness in x.
From (G) in Theorem 8.2.1 we know that

sup
0<ε<1

∫
(0,T )×Rd

|xϱε(t, x)|dtdx <∞,

and we obtain the strong convergence of the density in L1
t,x by Fréchet-Kolmogorov theorem,

see also [314]. Using Estimate (A) we obtain by interpolation and [314, Theorem 1] the strong
convergence in LptL1

x for every 1 ≤ p <∞ and this concludes the proof of Lemma 8.3.2.

Proof of Lemma 8.3.1. We adapt the proof of Lemma 8.2.5. We write

Rε :=

∣∣∣∣∫
Rd

ξ ⊗ ξ(fε − ϱεM) dξ

∣∣∣∣ ≤ ∫
Rd

|ξ|2|fε − ϱεM |dξ

≤
∫
{
|log( fε

ϱεM )|≥ |ξ|2
r

} |ξ|2ϱεM
∣∣∣∣ fεϱεM

− 1

∣∣∣∣dξ + ∫{|log( fε
ϱεM )|≤ |ξ|2

r

} |ξ|2ϱεM
∣∣∣∣ fεϱεM

− 1

∣∣∣∣dξ = I1 + I2,

where r is chosen later. For the first term, we just write

I1 ≤ r

∫
Rd

log

(
fε
ϱεM

)
ϱεM

∣∣∣∣ fεϱεM
− 1

∣∣∣∣dξ ≤ rε2 ∥Dε∥L1
ξ
.

The term I2 is decomposed in two parts : where fε ≥ ϱεM and fε < ϱεM . The resulting integrals
are called IA2 and IB2 . We only discuss IA2 as IB2 can be treated similarly as it was discussed in
Lemma 8.2.5. We use the Cauchy-Schwarz inequality to obtain

IA2 ≤
(∫

{
0≤log( fε

ϱεM )≤ |ξ|2
r

} |ξ|4 ϱεM
B(ξ)

dξ

)1/2

·

·
(∫

{
0≤log( fε

ϱεM )≤ |ξ|2
r

} ϱεM
∣∣∣∣ fεϱεM

− 1

∣∣∣∣2B(ξ) dξ

)1/2

=: IA,12 · IA,22 ,

where, as before, B(ξ) = log(A)
A−1 = |ξ|2

r(exp(
|ξ|2
r )−1)

, with A = A(ξ) := exp( |ξ|
2

r ). As in the proof of

Lemma 8.2.5, we have the inequality log(y) ≥ (y − 1) log(A)
A−1 which yields with y = fε

ϱεM

IA,22 ≤
(∫

{
0≤log( fε

ϱεM )≤ |ξ|2
r

} ϱεM
∣∣∣∣ fεϱεM

− 1

∣∣∣∣ log( fε
ϱεM

)
dξ

)1/2

≤ ε ∥Dε∥1/2L1
ξ
.
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Now we choose r such that M(ξ) exp( |ξ|
2

r ) = C exp(−a|ξ|2) for some a > 0. Then, we have∫
Rd

|ξ|4M(ξ)

B(ξ)
dξ ≤ r

∫
Rd

|ξ|2M(ξ) exp

( |ξ|2
r

)
dξ ≤ Cr

∫
Rd

|ξ|2 exp(−a|ξ|2) dξ =: C2.

It follows that IA,12 ≤ Cϱ
1/2
ε .

Finally we get
Rε ≤ rε2 ∥Dε∥L1

ξ
+ Cεϱ1/2ε ∥Dε∥1/2L1

ξ

and, using the Cauchy-Schwarz inequality, the proof of Lemma 8.3.1 is concluded.

This also concludes the proof of Theorem 8.1.1.

8.4 Conclusion

We proved that macroscopic densities {ϱε} formed from solutions of the Vlasov-Cahn-Hilliard
equation (8.1.1) converge to the solutions of non-local degenerate Cahn-Hilliard (8.1.11). It is
an open question whether one can obtain a local version of this equation by sending short-
range interaction kernel ωS to the Dirac mass δ0. One expects in the limit the local degenerate
Cahn-Hilliard equation :

∂tϱ−D∆ϱ− div(ϱ∇Φ) = 0 (8.4.1)

where Φ = −δ∆ϱ. One can try to perform this limit either on equation (8.1.11) or directly on
(8.1.1), by sending ωLα

∗
⇀ δ0, ωS

∗
⇀ δ0 together, see Figure 8.1. Passing from (8.1.1) to (8.4.1),

the main difficulty is the lack of entropy which gives integrability of second-order derivatives in
the nondegenerate Cahn-Hilliard. On the other hand, when one tries to pass to the limit from
(8.1.11) to (8.4.1), the entropy is available but it yields estimates only on

∆(ϱ ⋆ ωS) in L2
tL

2
x, ∇√

ϱ in L2
tL

2
x.

The minimal required information allowing to pass to the limit seems to be strong compactness
of {∇ϱ} in L2

tL
2
x.

Vlasov-Cahn-Hilliard
equation (8.1.1)

Non-local degenerate
Cahn-Hilliard (8.1.11)

Local degenerate
Cahn-Hilliard (8.4.1)Theorem 8.1.1

ε→ 0 ; ωLα
∗
⇀ δ0

open problem
ωS

∗
⇀ δ0

open problem, formally obtained in [317]

ε→ 0 ; ωS , ωLα
∗
⇀ δ0 together

Figure 8.1 – Relation between three types of the degenerate Cahn-Hilliard equations.

Moreover, it is also open to prove whether we can add the "usual" double-well Cahn-Hilliard
interaction potential in the system. In fact, as far as this modification is concerned, it is not even
clear if there exists a solution to the Vlasov-Cahn-Hilliard equation when the potential Φ is a
function of the density ϱ.
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8.6 Appendix

8.6.1 Useful inequality and lower bound on the energy
We recall two lemmas which have been used in the proof of Theorem 8.2.1. The first one is a
variant of the Csiszar-Kullback inequality.

Lemma 8.6.1. Let f, g ≥ 0 with ∥f∥1 = ∥g∥1. Then,

∥f − g∥21 ≤ ∥f∥1
∫
Rd

(f − g) (log f − log g)

The second lemma is used to control f log−(f) from f log f , which immediately establishes the
Inequality (8.6.1).

Lemma 8.6.2. Let log−(f) := max{− log(f), 0}. Then∫
R2d

2D log−(fε(t))fε(t) dxdξ ≤ C
(
∥ϱε∥L1

t,x
, ∥xf0∥L1

x,ξ

)
+

∫
R2d

|ξ|2
4
fε(t) dξ dx+D

∫ t

0

||Dε(s, ·, ·)||L1
x,ξ

ds.

(8.6.1)

Proof of Lemma 8.6.1. Let ∥f∥1 = ∥g∥1 = 1. Usual the Csiszar-Kullback inequality gives us

∥f − g∥21 ≤ 2

∫
Rd

f log

(
f

g

)
.

By symmetry of the (LHS) we have

2∥f − g∥21 ≤ 2

∫
Rd

f log

(
f

g

)
+ 2

∫
Rd

g log

(
g

f

)
= 2

∫
Rd

(f − g)(log f − log(g)).

The general case follows by rescaling.

Proof of Lemma 8.6.2. We proceed as in [149, Proposition 5.1].
We divide the domain in two parts :

Ω1 :=

{
fε > exp

(
−|x|

4
− |ξ|2

8D

)}
, Ω2 :=

{
fε ≤ exp

(
−|x|

4
− |ξ|2

8D

)}
,

On Ω1, log−(fε) is bounded so that we have

fε log−(fε) ≤
( |x|

4
+

|ξ|2
8D

)
fε,
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while on Ω2, fε ≤ 1 so that
√
fε log−(fε) is bounded by some constant C. Hence,

fε log−(fε) ≤ C
√
fε ≤ C exp

(
−|x|

8
− |ξ|2

16D

)
.

It follows that∫
R2d

log−(fε(t))fε(t) dx dξ ≤
∫
R2d

C exp

(
−|x|

8
− |ξ|2

16D

)
+

( |x|
4

+
|ξ|2
8D

)
fε(t) dξ dx. (8.6.2)

Now, we only need to bound the term
∫
R2d

|x|
4 fε(t) dξ dx. For this, we first observe that

d

dt

∫
Rd

|x|fε(t) dξ =
1

ε

∫
Rd

fε(t)
x

|x|ξ dξ =
x

|x|Jε ≤ 2∥Dε(s, ·, ·)∥L1
ξ
+ Cϱε,

where we have used Proposition 8.2.6 and Young’s inequality (with ε ≤ 1). Therefore, for all
t ≥ 0 ∫

R2d

|x|fε(t) dξ dx ≤
∫
R2d

|x|f0 dξ dx+ C∥ϱε∥L1
t,x

+ 2

∫ t

0

∥Dε(s, ·, ·)∥L1
x,ξ

ds. (8.6.3)

Finally, equation (8.6.2) simplifies to give the desired result (8.6.1).

8.6.2 Criteria for compactness

Lemma 8.6.3 (Compactness of βν(fn) implies compactness of fn). Let {fn(t, x, ξ)} be a sequence
such that {fn} and {fn log fn} are bounded in L1

t,x,ξ. Let ψ(ξ) ∈ C∞
c (Rd). Suppose that for all

ν > 0 and all ε > 0, there exists δ(ν, ε) such that,whenever |y| ≤ δ(ν, ε),∥∥∥∥∫
Rd

(βν(fn(t, x+ y, ξ))− βν(fn(t, x, ξ)))ψ(ξ) dξ

∥∥∥∥
L1

t,x

≤ ε.

Then, for all ε > 0 there exists δ(ε) > 0 such that∥∥∥∥∫
Rd

(fn(t, x+ y, ξ)− fn(t, x, ξ))ψ(ξ) dξ

∥∥∥∥
L1

t,x

≤ ε.

Démonstration. First, we observe that

|βν(s)− s| ≤
∣∣∣∣ s

1 + s ν
− s

∣∣∣∣ = νs2

1 + ν s
≤ min(ν s2, s).
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Therefore, for M and ν to be chosen later∥∥∥∥∫
Rd

(fn(t, x+ y, ξ)− βν(fn(t, x+ y, ξ)))ψ(ξ) dξ

∥∥∥∥
L1

t,x

≤

≤ ∥ψ∥∞ ν

∫
fn(t,x+y,ξ)≤M

f2n(t, x+ y, ξ) dξ dxdt+ ∥ψ∥∞
∫
fn(t,x+y,ξ)≥M

fn(t, x+ y, ξ) dξ dx dt

≤ ∥ψ∥∞ ν M ∥fn∥1 + ∥ψ∥∞
∥fn log fn∥1

logM
.

Similarly,∥∥∥∥∫
Rd

(fn(t, x, ξ)− βν(fn(t, x, ξ)))ψ(ξ) dξ

∥∥∥∥
L1

t,x

≤ ∥ψ∥∞ ν M ∥fn∥1 + ∥ψ∥∞
∥fn log fn∥1

logM
.

Let ε > 0. First, we choose ν and M such that

∥ψ∥∞ ν M ∥fn∥1 + ∥ψ∥∞
∥fn log fn∥1

logM
≤ ε

3
.

Then, we take δ(ν, ε/3) such that∥∥∥∥∫
Rd

(βν(fn(t, x+ y, ξ))− βν(fn(t, x, ξ)))ψ(ξ) dξ

∥∥∥∥
L1

t,x

≤ ε/3

when |y| ≤ δ(ν, ε/3). The conclusion follows by the triangle inequality.

Lemma 8.6.4. The sequence {ϱε} from Lemma 8.3.2 is compact in time, i.e.

lim
|h|→0

∫ T−h

0

∫
Rd

|ϱε(t+ h, x)− ϱε(t, x)|dxdt = 0 uniformly in ε.

The proof of this lemma uses a sequence (φδ)δ>0 ∈ C∞
c (Rd) of standard mollifiers with mass 1

such that φδ(x) = 1
δd
φ(xδ ) with φ of mass 1 and compactly supported. Moreover

∥∇kφδ∥L1(Rd) ≤
C

δk
,

and for any function g ∈ Lp(Rd),

∥g ⋆ φδ∥Lp(Rd) ≤ ∥φδ∥L1(Rd)∥g∥Lp(Rd).

Démonstration. We know that
∂tϱε +∇ · Jε = 0

where Jε is bounded uniformly in L1
t,x, see Proposition 8.2.6.
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Using the mollifiers with δ depending on h to be specified later on, we first notice that∫ T−h

0

∫
Rd

|ϱε(t+ h, x)− ϱε(t, x)|dxdt ≤
∫ T−h

0

∫
Rd

|ϱε(t, x)− ϱε(t, ·) ⋆ φδ(x)|dx dt

+

∫ T−h

0

∫
Rd

|ϱε(t+ h, x)− ϱε(t+ h, ·) ⋆ φδ(x)|dx dt

+

∫ T−h

0

∫
Rd

|ϱε(t+ h, ·) ⋆ φδ(x)− ϱε(t, ·) ⋆ φδ(x)|dx dt.

For the first and second terms, the computations are the same, hence, we only present it for the
first term. Using the properties of the mollifiers and the compactness of ϱε in space, we want to
prove that ∫ T−h

0

∫
Rd

|ϱε(t, x)− ϱε(t, ·) ⋆ φδ(x)|dxdt ≤ θ(δ).

where θ(δ) → 0 when δ → 0 uniformly in ε. We write∫ T−h

0

∫
Rd

|ϱε(t, x)−ϱε(t, ·)⋆φδ(x)|dxdt =
∫ T−h

0

∫
Rd

∣∣∣∣∫
Rd

φ(y)(ϱε(t, x)− ϱε(t, x− δy)) dy

∣∣∣∣dxdt.
Then we use Fubini’s theorem and the fact that φ is compactly supported in some compact set
K we obtain∫ T−h

0

∫
Rd

∣∣∣∣∫
Rd

φ(y)(ϱε(t, x)− ϱε(t, x− δy)) dy

∣∣∣∣dxdt ≤ ∫
K

∥τδyϱε − ϱε∥L1((0,T )×Rd) dy.

where τx is the translation operator in x variable. Now we use the compactness in space obtained
in (8.3.8), so that∫

K

∥τδyϱε − ϱε∥L1((0,T )×Rd) dy ≤ |K| sup
y∈K

∥τδyϱε − ϱε∥L1((0,T )×Rd) ≤ θ(δ).

Therefore the first and the second term are bounded by θ(δ) where θ(δ) → 0 when δ → 0
uniformly in ε. It remains to study the third term. The third term reads∫ T−h

0

∫
Rd

|ϱε(t+ h, ·) ⋆ φδ(x)− ϱε(t, ·) ⋆ φδ(x)|dxdt =
∫ T−h

0

∫
Rd

∣∣∣∣∣
∫ t+h

t

∂tϱε(s, ·) ⋆ φδ(x)ds
∣∣∣∣∣ dx dt

=

∫ T−h

0

∫
Rd

∣∣∣∣∣−
d∑
i=1

∫ t+h

t

Ji ⋆ ∂iφδ(s, x)ds

∣∣∣∣∣dxdt ≤
d∑
i=1

∫ T−h

0

∫
Rd

∫ t+h

t

|Ji ⋆ ∂iφδ(s, x)| dsdxdt,

where we used Jε = (Ji)i=1,...,d. We perform the change of variables v = s−t
h , use Fubini’s

theorem and obtain

∫ T−h

0

∫
Rd

∫ t+h

t

|Ji ⋆ ∂iφδ(s, x)| dsdxdt = h

∫ 1

0

∫
Rd

∫ T−h

0

|Ji ⋆ ∂iφδ(vh+ t, x)|dtdxdv.
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Then we use the change of variables τ = vh+ t and obtain

h

∫ 1

0

∫
Rd

∫ T−h

0

|Ji ⋆ ∂iφδ(vh+ t, x)|dtdx dv = h

∫ 1

0

∫
Rd

∫ T+h(v−1)

vh

|Ji ⋆ ∂iφδ(τ, x)| dτ dxdv ≤ h

δ
∥Jε∥L1

t,x
.

Using the L1
t,x bound on Jε and taking δ = h1/2 we conclude.

8.6.3 Uniqueness in L∞

Let d ≥ 3. We are interested in the uniqueness of these solutions in the class of functions such
that

ϱ ∈ L∞
t,x ∩ L∞

t L
1
x ∩ Cwt L1

x (8.6.4)

where Cwt L1
x denotes the space of weakly continuous in time functions with values in L1

x . In this
class, the definition of distributional solutions of Theorem 8.1.1 can be formulated as follows :
for every test function φ ∈ C∞

c ([0, T )× Rd) we have, with

−
∫
Rd

ϱ0φ(0, x) dx−
∫ T

0

∫
Rd

ϱ∂tφdx dt = D

∫ T

0

∫
Rd

ϱ∆φdx dt−
∫ T

0

∫
Rd

ϱ∇Φ(ϱ) · ∇φdxdt,

where Φ(ϱ) = −δ∆(ωS ⋆ ωS ⋆ ϱ) and ϱ ∈ L∞
t L

1
x.

By interpolation ϱ belongs to every Lpt,x, 1 ≤ p ≤ ∞ and so is ∇Φ(ρ). Therefore this formulation
implies

∫ T

0

⟨∂tϱ, φ⟩ = D

∫ T

0

∫
Rd

ϱ∆φdxdt−
∫ T

0

∫
Rd

ϱ∇Φ(ϱ) · ∇φdx dt, (8.6.5)

for every φ ∈ L1
tW

1,1
x ∩ L1

t Ḣ
2
x where ⟨·, ·⟩ denotes the dual pairing between Ḣ−2 and Ḣ2.

Let ϱ1, ϱ2 be two solutions as above with same initial data which satisfy ϱ1, ϱ2 ∈ L∞
t,x. The goal

is to prove that ϱ1 = ϱ2. We substract Equation (8.6.5) for ϱ2 and ϱ1. Writing ϱ = ϱ2 − ϱ1, we
obtain∫ T

0

⟨∂tϱ, φ⟩ = D

∫ T

0

∫
Rd

ϱ∆φdx dt−
∫ T

0

∫
Rd

ϱ∇Φ(ϱ2) · ∇φdx dtdt−
∫ T

0

∫
Rd

ϱ1∇Φ(ϱ) · ∇φdx dt.

(8.6.6)

We want to test (8.6.6) with φ(t) = −N ∗ϱ where N is the Newtonian potential so that −∆φ = ϱ.
This is an admissible test function. Indeed, ∂xi,xj

φ ∈ L∞
t L

2
x by the Calderon-Zygmund theory

cf. [102, Theorem 3.5, Chapter 3]. Moreover, as ∇N ∈ L
d

d−1 ,∞ (i.e. weak Lp spaces) we can use
Young’s convolutional inequality to deduce

∥∇φ∥L∞
t L2

x
≤ C∥∇N∥

L
d

d−1
,∞∥ϱ∥

L∞
t L

2d
d+2
x

.

Finally, φ ∈ L∞
t,x cf. [34, Lemma 1]. Therefore, testing (8.6.6) with φ we obtain

1

2

∫
Rd

|∇φ(T )|2 dx+D

∫ T

0

∫
Rd

ϱ2 = −
∫ T

0

∫
Rd

ϱ∇Φ(ϱ2) · ∇φ−
∫ T

0

∫
Rd

ϱ1∇Φ(ϱ) · ∇φ.
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We denote by I1 and I2 the two terms of the right-hand side. Using −∆φ = ϱ and the formula
∆φ∇φ = ∇ · (∇φ⊗∇φ)− 1

2∇|∇φ|2 we obtain

I1 =

∫ T

0

∫
Rd

∆φ∇φ · ∇Φ(ϱ2) ≤ C

∫ T

0

∫
Rd

|D2Φ(ϱ2)||∇φ|2 ≤ C

∫ T

0

∫
Rd

|∇φ|2.

as |D2Φ(ϱ2)| can be bounded as in Lemma 8.3.3 only in terms of ∥ϱ2∥L∞
t,x

. For I2 we recall that
ϱ1 is bounded in L∞

t,x. Using the Cauchy-Schwarz inequality it remains to see that ∥∇Φ(ϱ)∥L2 ≤
C∥∇φ∥L2 which can be achieved by definition of Φ(ϱ) and φ and the fact that convolutions
commute with derivatives. Therefore

I2 ≤ C∥∇φ∥2L2
t,x
.

Combining the previous results we obtain

∥∇φ(T, ·)∥2L2 ≤ C

∫ T

0

∥∇φ∥2L2 ,

so that ∥∇φ∥2L2 = 0 and the proof is concluded.

8.6.4 Estimate on Jε log
1/2 log1/2max(Jε, e)

From Lemma 8.2.5 we recall that for 0 < r ≤ 1

|Jε(s, x)| ≤ rε∥Dε(s, x, ·)∥L1
ξ
+ C

1

rd
exp

(
2CM
r2

)
ϱε(s, x)

1/2∥Dε(s, x, ·)∥1/2L1
ξ
.

We can make further simplifications : applying a simple rescaling of r, ignoring ε, estimating
1
rd

≤ exp( 1
rd
) and changing r = 1

α we can assume

|Jε(s, x)| ≤
C

α
∥Dε(s, x, ·)∥L1

ξ
+ C exp

(
α2
)
ϱε(s, x)

1/2∥Dε(s, x, ·)∥1/2L1
ξ
. (8.6.7)

To choose the best α in the inequality above, we let u = ϱε, v = ∥Dε(s, x, ·)∥L1
ξ

so that we can
estimate

|Jε(s, x)| ≤ C v min
1<α<∞

[
1

α
+ exp

(
α2
)√u

v

]
. (8.6.8)

Lemma 8.6.5. Let v ≥ e, u ≥ 0, v > e2 u. The minimum in (8.6.8) is attained for α > 1 which
is the unique solution of

2α3 exp(α2) =

√
v

u
.

For such α > 1 we have

v

[
1

α
+ exp

(
α2
)√u

v

]
= v

[
1

α
+

1

2α3

]
≤ 2v

α
.

Then,

2v

α
≤


2
√
2 v

log
1/2
+ log

1/2
+ v

if v ≥ u log
1/2
+ v,

2u log
1/2
+ v if v < u log

1/2
+ v.

(8.6.9)
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Démonstration. The first statement is a consequence of simple calculus and we only have to
prove that the minimum is attained for α > 1. This follows from√

v

u
= 2α3 exp(α2) ≤ exp(2α2) =⇒ 1

2
log
( v
u

)
≤ α2. (8.6.10)

As v > e2 u, we deduce α > 1.

We proceed to the estimates on v
2α . Suppose that v ≥ u log

1/2
+ v. Then, we have

log v ≥ log u+ log log
1/2
+ v =⇒ log

1/2
+

( v
u

)
≥ log

1/2
+ log

1/2
+ v

(we use here v
u > e2 and v > e to write log+ instead of log). In view of (8.6.10), this gives lower

bound on α which implies
2v

α
≤ 2

√
2v

log
1/2
+ log

1/2
+ v

.

We are left with the case v < u log
1/2
+ v. In this case we estimate directly using α > 1 :

2v

α
≤ 2v ≤ 2u log

1/2
+ v.

We proceed to estimating Jε log1/2 log1/2 max(Jε, e) in L1
t,x. Let us observe that we can always

restrict the set of integration to the points (t, x) where ∥Dε∥L1
ξ

is arbitrarily large. Indeed, given
M ≥ e, we estimate∫ T

0

∫
Rd

Jε log
1/2 log1/2 max(Jε, e) ≤

≤
∫ T

0

∫
Rd

Jε log
1/2 log1/2 max(Jε, e)1Jε≤M +

∫ T

0

∫
Rd

Jε log
1/2 log1/2 max(Jε, e)1∥Dε∥L1

ξ
≤e2ϱε

+

∫ T

0

∫
Rd

Jε log
1/2 log1/2 max(Jε, e)1∥Dε∥L1

ξ
>e2ϱε 1Jε>M .

The first integral is bounded by ∥Jε∥L1
t,x

log1/2 log1/2M . For the second integral, we note that
(8.6.7) implies that Jε ≤ C ϱε so this integral is finite because we can use Young’s inequality and
log x ≤ x to get

ϱε log
1/2 log1/2 max(ϱε, e) ≤ ϱε +

1

2
ϱε logmax(ϱε, e).

In the third integral, by estimate (8.6.7) with α = 2, we have ∥Dε∥L1
ξ
≥ M

C for some constant
C. It follows that ∥Dε∥L1

ξ
can be assumed to be arbitrarily large by taking sufficiently large M .

This allows us to apply Lemma 8.6.5.

Splitting the domain of integration for two subsets as in Lemma 8.6.5, it is sufficient to prove
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that the following functions

P 1
ε :=

∥Dε∥L1
ξ

log
1/2
+ log

1/2
+ ∥Dε∥L1

ξ

log
1/2
+ log

1/2
+

 ∥Dε∥L1
ξ

log
1/2
+ log

1/2
+ ∥Dε∥L1

ξ

 ,

P 2
ε := ϱε log

1/2
+ ∥Dε∥L1

ξ
log

1/2
+ log

1/2
+

(
ϱε log

1/2
+ ∥Dε∥L1

ξ

)
.

are bounded in L1
t,x (here, we use that log

1/2
+ log

1/2
+ v = log1/2 log1/2 max(v, e)).

For P 1
ε (this is the limiting case !), we restrict to the values of ∥Dε∥L1

ξ
so large that log1/2+ log

1/2
+ ∥Dε∥L1

ξ
>

1. Then,

log
1/2
+ log

1/2
+

 ∥Dε∥L1
ξ

log
1/2
+ log

1/2
+ ∥Dε∥L1

ξ

 ≤ log
1/2
+ log

1/2
+

(
∥Dε∥L1

ξ

)
so that P 1

ε ≤ ∥Dε∥L1
ξ
.

For P 2
ε , we apply log x ≤ x,

√
x+ y ≤ √

x+
√
y and 2x y ≤ x2 + y2 to get

P 2
ε ≤ ϱε log

1/2
+ ∥Dε∥L1

ξ
log

1/2
+

(
ϱε log

1/2
+ ∥Dε∥L1

ξ

)
≤

≤ ϱε log
1/2
+ ∥Dε∥L1

ξ
log

1/2
+ ϱε + ϱε log

1/2
+ ∥Dε∥L1

ξ
log

1/2
+ log

1/2
+ ∥Dε∥L1

ξ

≤ ϱε log+ ϱε + ϱε log+ ∥Dε∥L1
ξ
+ ϱε log+ ∥Dε∥L1

ξ

so it is sufficient to prove that ϱε log+ ∥Dε∥L1
ξ

is bounded in L1
t,x. This follows from Fenchel-

Young’s inequality
ϱε log+ ∥Dε∥L1

ξ
≤ ϱε log ϱε + ϱε + ∥Dε∥L1

ξ
.
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Chapitre 9

On the limit problem arising in the
kinetic derivation of the
Cahn-Hilliard equation

Abstract

The non-local degenerate Cahn-Hilliard equation is derived from the Vlasov equation with long
range attraction. We study the local limit as the delocalization parameter converges to 0. The
difficulty arises from the degeneracy which requires compactness estimates, but all necessary a
priori estimates can be obtained only on the nonlocal quantities yielding almost no information
on the limiting solution itself. We introduce a novel condition on the nonlocal kernel which allows
us to exploit the available nonlocal a priori estimates. The condition, satisfied by most of the
kernels appearing in the applications, can be of independent interest. Our approach is flexible
and systems can be treated as well.

9.1 Introduction

We consider the nonlocal PDE

∂tρε −∆ρε + div(ρε∇∆(ρε ∗ ωε ∗ ωε)) = 0 (9.1.1)

arising in the kinetic derivation of the degenerate Cahn-Hilliard equation via hydrodynamic
limit as in our recent paper [150] which makes the formal approach of Takata and Noguchi
[317] fully rigorous. Furthermore, PDEs of the form (9.1.1) appear in the numerical analysis of
the particle method as explained below. Concerning the notation, ε > 0 is a small parameter,
ρε : Rd × [0, T ] → [0,∞) is the solution while

ωε(x) =
1

εd
ω
(x
ε

)
is a usual mollification kernel (one can think of ω being smooth, nonnegative and compactly sup-
ported function but more general assumption will be presented below). The remaining question

299
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is whether one can consider the limit ε→ 0 in (9.1.1) and arrive at

∂tρ−∆ρ+ div(ρ∇∆ρ) = 0. (9.1.2)

A natural strategy for such problems are so-called commutator estimates, originally studied in
the context of renormalized solutions to transport equation [137] and conservation of energy for
weak solutions of Euler equation [110] or more general hyperbolic systems [205, 35]. The commu-
tator estimates control the error resulting from the fact that the mollification operator does not
commute with nonlinear functions. In our case, they cannot be applied directly, as we do not have
sufficient estimates on {ρε}. Indeed, both energy and entropy identities for (9.1.1) yield estimates
on non-local quantities ρε ∗ ωε, ∇ρε ∗ ωε and ∆ρε ∗ ωε (see Section 9.3). In particular, we do not
even know that {ρε} is uniformly bounded in L2

loc((0, T )× Rd) (except in dimension d = 2). In
Appendix 9.6.1 we show that for a fairly arbitrary kernel (up to some weak growth assumptions
at infinity), the direct commutator estimates work in dimension d = 2. The same is true if one
knows a priori that {ρε} is uniformly integrable in L2((0, T )× Rd) (or even L2

loc((0, T )× Rd) if
ω is compactly supported).

Being not satisfied as we cannot cover the physical dimension d = 3, our approach is to look
for an appropriate assumption on ω so that we can exploit more the aforementioned nonlocal
quantities. We were inspired by the recent work on Landau equation [80, 75] where the authors
consider the kernel ω(x) = e−(1+|x|2)1/2 which satisfies the crucial estimate

|∇ω(x)| ≤ C ω(x). (9.1.3)

Such inequalities allow to transform difficult-to-estimate terms by better understood ones, for
instance ε ρε ∗ |∇ωε| can be estimated pointwisely by ρε ∗ ωε due to nonnegativity of ρε and ωε.
Nevertheless, (9.1.3) is fairly restrictive - for instance, it excludes compactly supported kernels.
In our setting, the following assumption turns out to be successful :

Assumption 9.1.1. We assume that ω : Rd → [0,∞) is a smooth function such that
∫
Rd ω(x) dx =

1 and ω(x) = ω(−x). Moreover, there exists an integrable kernel f : Rd → [0,∞) such that for
all x ∈ Rd

(|x|+ |x|2) |∇ω(x)| ≤ C ω ∗ f(x). (9.1.4)

Furthermore, we assume that ω has sufficient decay at +∞ :

lim
R→∞

sup
|x|=R

|x|d ω(x) = 0. (9.1.5)

This covers the case of Gaussian ω(x) = 1
(2π)d/2

e−|x|2/2 and any nonnegative, compactly suppor-
ted kernel by choosing f = ω, see Lemmas 9.2.1 and 9.2.2. Moreover, we can cover the kernel
ω(x) = e−(1+|x|2)1/2 by choosing f more carefully, see Lemma 9.2.3.

For the initial condition we suppose that ρ(t = 0) = ρ0 where ρ0 satisfies

ρ0 ≥ 0, ρ0 ∈ L1(Rd) ∩H1(Rd), ρ0| log ρ0| ∈ L1(Rd), |x|2ρ0 ∈ L1(Rd). (9.1.6)

Our main result reads :

Theorem 9.1.2. Let {ρε}ε be a sequence of solutions to (9.1.1) with initial condition ρ0 sa-
tisfying (9.1.6). Then, up to a subsequence not relabeled, ρε → ρ in Lp(0, T ;L1(Rd)) for all
p ∈ [1,∞) where ρ is a weak solution of the degenerate Cahn-Hilliard equation (9.1.2).
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Our methods are quite flexible and they allow to study the same question for systems of the type

∂tρ
i
ε −∆ρiε − div

ρiε∇∆

N∑
j=1

Ki,j
ε ∗ ρjε

 = 0, i = 1, ..., N, (9.1.7)

under some additional structural assumptions. This is discussed in Section 9.5 (see Theorem 9.5.1).

To conclude the introduction, let us mention that similar problems have been studied in the
literature for the porous media equation. Up to our knowledgle, the first result of this type was
obtained by Lions and Mas-Gallic [257] for the PDE

∂tρε = div(ρε∇ρε ∗ ωε ∗ ωε)

Then, the cases of cross-diffusion systems and general nonlinear diffusion equations has been
considered in [93] and [65, 212], respectively. These problems are motivated by the numerical
algorithms called particle methods. More precisely, consider N particles moving according to the
system of ODEs

X ′
i(t) = − 1

N

∑
j ̸=i

∇W (Xi(t)−Xj(t)).

Then, the empirical measure µN (t) = 1
N

∑N
i=1 δXi(t) solves in the sense of distributions

∂tµ
N − div(µN ∇µN ∗W ) = 0

so in the limit N → ∞
∂tµ− div(µ∇µ ∗W ) = 0.

If W ∗
⇀ δ0, we recover the porous media equation. For numerical experiments based on this

method we refer to [257].

Let us also comment that (9.1.1) could be called the nonlocal Cahn-Hilliard equation but it
should not be confused with the nonlocal effect in the following PDE

∂tρε = div
(
ρε∇(Bε[ρε] + F ′(ρε))

)
, (9.1.8)

where F is the potential and Bε[u] is a nonlocal operator approximating −∆u, i.e.

Bε[u](x) =
1

ε2
(u(x)− ωε ∗ u(x)) =

1

ε2

∫
Td

ωε(y)(u(x)− u(x− y)) dy.

The equation was obtained by Giacomin and Lebowitz [189] as a derivation of the degenerate
Cahn-Hilliard equation

∂tρ = div
(
ρ∇(−∆ρ+ F ′(ρ))

)
, (9.1.9)

proposed in [70] to model the dynamics of phase separation in binary mixtures. The question
of passing to the limit from (9.1.8) to (9.1.9) was addressed only recently in [155] for a single
equation and in [81] for a system. This problem is fairly different from (9.1.1) as energy and
entropy yields strong compactness of {ρε} and {∇ρε} rather than their mollifications {ρε ∗ ωε}
and {∇ρε ∗ ωε} as in the case of (9.1.1). We also remark that the same problem was studied in
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the context of the nondegenerate Cahn-Hilliard equation [273, 121, 123, 122]

∂tρε = div∇µε, µε = Bε[ρε] + F ′(ρε).

Here, one obtains immediately an estimate on {∇µε} (by multiplying by µε) which greatly sim-
plifies identification of the limits. Nevertheless, we point out that in [273, 121, 123, 122] the
difficulty is rather the low regularity of the potential and the kernel.

The structure is as follows. In Section 9.2 we show that Assumption 9.1.1 is satisfied by a wide
class of kernels. In Section 9.3 we gather the a priori estimates necessary for the proof of the
main result, Theorem 9.1.2, which is proved in Section 9.4. In the last Section 9.5, we show
how the result can be extended to systems. Finally, Appendix 9.6.1 is dedicated to the proof of
Theorem 9.1.2 in dimension 2 for a broader class of kernels.

9.2 Examples of kernels satisfying Assumption 9.1.1

Three particular classes of kernels are usually found in the literature and we show they satisfy
Assumption 9.1.1. In fact, in all of those examples, we only need to verify condition (9.1.4).

Lemma 9.2.1. Let ω : Rd → [0,∞) be a smooth function such that
∫
Rd ω(x) dx = 1. Suppose that

ω is supported on the unit ball {x ∈ Rd : |x| ≤ 1} and ω > 0 on the interior {x ∈ Rd : |x| < 1}.
Then, ω satisfies (9.1.4) with f = ω.

Démonstration. To prove (9.1.4), we only need to consider |x| ≤ 1. By smoothness and compact
support of ω, there exists a constant such that (|x|+|x|2) |∇ω(x)| ≤ C and it remains to prove that
inf |x|≤1 ω ∗ω(x) > 0. For any |x| ≤ 1, we see from the formula ω ∗ω(x) =

∫
|y|≤1

ω(x− y)ω(y) dy

that ω∗ω(x) > 0. As any continuous function attains its infimum on a compact set, the conclusion
follows.

Lemma 9.2.2. Let ω(x) = 1
(2π)d/2

e−|x|2/2. Then, ω satisfies (9.1.4) with f = ω.

Démonstration. For Gaussians, we know that

ω ∗ ω(x) = 1

(2π)d
e−|x|2/4

∫
Rd

e
−
∣∣∣ x√

2
−
√
2y
∣∣∣2/2

dy =
1

(2π)d/2
e−|x|2/4.

Therefore, since the function (|x|2 + |x|3) e−|x|2/4 is globally bounded, we find

(|x|+ |x|2) |∇ω(x)| ≤ C (|x|2 + |x|3) e−|x|2/2 ≤ C e−|x|2/4 = C ω ∗ ω(x).

Lemma 9.2.3. Let ω(x) = e−(1+|x|2)1/2 . Then, ω satisfies (9.1.4) with f(x) = e−(1+|x|2/3)1/2 .

Démonstration. We need to estimate the convolution ω∗f from below so we need to estimate the
expression

√
1 + |x− y|2+

√
1 + |y|2/3 from above. Using

√
x+

√
y ≤

√
2(x+ y) and

√
x+ y ≤
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√
x+

√
y, we have

√
1 + |x− y|2 +

√
1 + |y|2/3 ≤

√
2

√
2 + |x|2 − 2x · y + 4

3
|y|2

≤
√
2

√√√√1 + |x|2
4

+

∣∣∣∣∣
√
3

2
x− 2√

3
y

∣∣∣∣∣
2

+
7

4

≤
√
2

2

√
1 + |x|2 +

√
2

√√√√∣∣∣∣∣
√
3

2
x− 2√

3
y

∣∣∣∣∣
2

+
7

4
.

Note that the integral
∫
Rd e

−
√
2

√∣∣∣√3
2 x− 2√

3
y
∣∣∣2+ 7

4 dy is a constant independent of x (by a change
of variables). Therefore,

e−
√

2
2

√
1+|x|2 ≤ C ω ∗ f(x).

We conclude by observing that the function (|x|+ |x|2) e−
(
1−

√
2

2

)√
1+|x|2 is globally bounded

(|x|+ |x|2) |∇ω(x)| ≤ C (|x|+ |x|2) e−
√

1+|x|2 =

= C (|x|+ |x|2) e−
(
1−

√
2

2

)√
1+|x|2

e−
√

2
2

√
1+|x|2 ≤ C e−

√
2

2

√
1+|x|2 ≤ C ω ∗ f(x).

9.3 Uniform estimates and compactness

The first immediate estimate is the conservation of mass. Integrating the equation in space we
obtain an L∞(0, T ;L1(Rd)) control on the solution. Moreover, the nonlocal equation (9.1.1)
comes with an energy/entropy structure. Defining

Eε[ρ] =

∫
Rd

|∇ρ ∗ ωε|2
2

dx, Φ[ρ] =

∫
Rd

ρ log(ρ) dx, (9.3.1)

we obtain the dissipation equalities :

dEε[ρ]

dt
+

∫
Rd

|∆ρ ∗ ωε|2 dx+

∫
Ω

ρ |∇∆ρ ∗ ωε ∗ ωε|2 dx = 0, (9.3.2)

dΦ[ρ]

dt
+

∫
Rd

|∇ρ|2
ρ

dx+

∫
Rd

|∆ρ ∗ ωε|2 dx = 0. (9.3.3)

Of course one has to be careful with the entropy equality, as ρ log(ρ) can be negative when ρ is
small and one needs to show that its negative part is integrable.

Proposition 9.3.1. Suppose the initial condition ρ0 satisfies (9.1.6). Then, there exists a unique
nonnegative weak solution to (9.1.1) satisfying the following bounds, uniformly with respect to ε :
(A) {ρε}ε ∈ L∞(0, T ;L1(Rd) ∩ L logL(Rd)),
(B) {∂tρε}ε ∈ L2(0, T ;H−k(Rd)) for some k,
(C) {√ρε∇∆ρε ∗ ωε ∗ ωε}ε ∈ L2((0, T )× Rd),
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(D) {ρε ∗ ωε}ε ∈ L∞(0, T ;H1(Rd)) ∩ L2(0, T ;H2(Rd)),
(E) {|x|2ρε}ε ∈ L∞(0, T ;L1(Rd)),
(F) {∇√

ρε}ε ∈ L2(0, T ;L2(Rd)),
(G) {∇ρε}ε ∈ L2(0, T ;L1(Rd)).

Moreover, we can extract a subsequence such that

ρε → ρ strongly in Lp(0, T ;L1(Rd)), p <∞, (9.3.4)

ρε ∗ ωε ⇀ ρ weakly in L∞(0, T ;H1(Rd)) ∩ L2(0, T ;H2(Rd)), (9.3.5)

ρε ∗ ωε → ρ a.e. and strongly in L2(0, T ;H1
loc(Rd)). (9.3.6)

Proof of Proposition 9.3.1. The existence and uniqueness of solutions is a classical matter as
(9.1.1) is an advection-diffusion equation with smooth advection (as ωε is smooth).
The L1 bound in (A) is a consequence of mass conservation. (C) follows directly from (9.3.2).
Estimate (B) is a consequence of (A), (C), Equation (9.1.1) and splitting

ρε∇∆ρε ∗ ωε ∗ ωε =
√
ρε

√
ρε∇∆ρε ∗ ωε ∗ ωε.

To prove (D), we first deduce from (9.3.2) bounds on ∇ρε∗ωε and ∆ρε∗ωε. Then, the L∞(0, T ;L2(Rd))
bound on {ρε ∗ ωε}ε follows from bounds on {ρε ∗ ωε}ε in L∞(0, T ;L1(Rd)), {∇ρε ∗ ωε}ε in
L∞(0, T ;L2(Rd)) and from the Gagliardo-Nirenberg inequality). The estimate in L2(0, T ;H2(Rd))
is a consequence of the second-order regularizing property of the operator ∆ on the whole space.

To see (E), we multiply Equation (9.1.1) by |x|2 and obtain after integration by parts

d

dt

∫
Rd

|x|2ρε dx = 2

∫
Rd

ρε dx+ 2

∫
Rd

√
ρε x · √ρε∇∆ρε ∗ ωε ∗ ωε dx.

Using (A), (C), the Cauchy-Schwarz inequality and the Gronwall lemma, we obtain (E).

It remains to prove the second part of estimate (A) namely the L log(L) bound on ρε. A small
difficulty is that the negative part of ρε log(ρε) might not be integrable on the whole space. Ne-
vertheless, as in [212], one can prove that ρε| log ρε|− is uniformly bounded in L∞(0, T ;L1(Rd))
by splitting Rd for {x : |ρε| ≤ e−|x|2}, {x : |ρε| > e−|x|2} and applying tail estimate (E). Hence,
we can use (9.3.3) and deduce Estimate (F). Estimate (G) follows from (A) and (F) by writing
∇ρε = ∇ρε√

ρε

√
ρε.

The convergences (9.3.4)–(9.3.6) are a consequence of the Lions-Aubin lemma and the Banach-
Alaoglu theorem where convergence (9.3.4) has been upgraded from a local to a global one by
the tail estimate (E).

9.4 The proof of the main result

We only need to study the term
∫ T
0

∫
Rd ∇φρε∇∆(ρε ∗ ωε ∗ ωε) dx dt, for test functions φ ∈

C∞
c ([0, T ]× Rd). Using the properties of the mollifiers∫ T

0

∫
Rd

∇φρε∇∆(ρε ∗ ωε ∗ ωε) dx dt = −
∫ T

0

∫
Rd

(∇φρε) ∗ ∇ωε∆(ρε ∗ ωε) dxdt.
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Thanks to the weak convergence (9.3.6), we only need to prove the following strong convergence
result

(∇φρε) ∗ ∇ωε → ∇φ · ∇ρ+∆φρ = div(∇φρ) strongly in L2((0, T )× Rd). (9.4.1)

We write ∇φ(y) = ∇φ(y)−∇φ(x) +∇φ(x) which results in two terms :

(∇φρε) ∗ ∇ωε(x) =
∫
Rd

∇φ(y) ρε(y) · ∇ωε(x− y) dy = ∇φ(x) · ∇ρε ∗ ωε+

+

∫
Rd

(∇φ(y)−∇φ(x))ρε(y) · ∇ωε(x− y) dy =: I + J.

According to (9.3.6), the term I converges strongly in L2((0, T )×Rd) (note that φ is compactly
supported). The rest of the proof is devoted to the analysis of the term J .

By Taylor’s expansion

∇φ(y)−∇φ(x) = D2φ(x) (y − x) +R(x, y)

where the term R satisfies |R| ≤ C |y − x|2. We split J = J1 + J2, where

J1 =

∫
Rd

D2φ(x) (y − x)ρε(y)∇ωε(x− y) dy, J2 =

∫
Rd

R(x, y) ρε(y)∇ωε(x− y) dy.

Term J1. We prove that limε→0 J1 = ∆φρ in L2((0, T ) × Rd). Since φ is compactly supported,
it is sufficient to prove that∫

Rd

ρε(y)(xi − yi)∂jωε(x− y) dy → −ρ(x) δi,j in L2
loc((0, T )× Rd). (9.4.2)

Assertion (9.4.2) will be obtained by proving convergence in L1((0, T )×Rd) and uniform boun-
dedness in Lp((0, T ) × Rd) for some p > 2. Concerning the convergence in L1((0, T ) × Rd), we
first change variables∫

Rd

ρε(y)(xi − yi)∂jωε(x− y) dy =

∫
Rd

ρε(x− εz)zi ∂jω(z) dz

We can estimate in L1((0, T )× Rd) the difference

∫ T

0

∫
Rd

∣∣∣∣∫
Rd

(ρε(x− εz)− ρε(x)) zi ∂jω(z) dz

∣∣∣∣dxdt ≤
≤
∫ T

0

∫
Rd

∫
Rd

∫ 1

0

ε|∇ρε(x− εsz)| |z|2 |∇ω(z)|dsdz dxdt ≤ ε∥∇ρε∥L1
t,x

∥|z|2∇ω∥L1
x
,

where integrability of |z|2∇ω(z) is a consequence of assumption (9.1.4) :∫
Rd

|z|2 |∇ω(z)|dz ≤ C

∫
Rd

ω ∗ f(z) dz = C ∥ω∥L1 ∥f∥L1 ≤ C.



306 CHAPITRE 9. On the limit problem arising in the kinetic derivation of the CH equation

Therefore, it is sufficient to study the term ρε(x)
∫
Rd zi∂jω(z) dz which equals −ρε(x) because∫

Rd

zi∂jω(z) dz = −δi,j
∫
Rd

ω(z) dz = −δi,j ,

where the boundary term vanishes thanks to (9.1.5). The conclusion follows because ρε is stron-
gly convergent in L1((0, T )× Rd), cf. (9.3.4).

Concerning the uniform boundedness in Lp((0, T ) × Rd) with p > 2, by nonnegativity of ρε,
definition of ωε(x) = 1

εd
ω
(
x
ε

)
and assumption (9.1.4),∣∣∣∣∫

Rd

ρε(y)(xi − yi)∂jωε(x− y) dy

∣∣∣∣ = ∣∣∣∣∫
Rd

ρε(y)
(xi − yi)

εd+1
∂jω

(
x− y

ε

)
dy

∣∣∣∣ ≤
≤ C

∫
Rd

ρε(y)
1

εd
ω ∗ f

(
x− y

ε

)
dy.

(9.4.3)

A change of variables shows that

1

εd
ω ∗ f

(
x− y

ε

)
=

1

εd

∫
Rd

ω(z) f

(
x− y

ε
− z

)
dz =

=
1

ε2d

∫
Rd

ω
(z
ε

)
f

(
x− y − z

ε

)
dz = ωε ∗ fε(x− y),

(9.4.4)

where fε(x) := 1
εd
f
(
x
ε

)
. Due to (9.4.3),∣∣∣∣∫
Rd

ρε(y)(xi − yi)∂jωε(x− y) dy

∣∣∣∣ ≤ C ρε ∗ ωε ∗ fε(x).

Note that by the Gagliardo-Nirenberg inequality and uniform bound in L∞(0, T ;H1(Rd)), {ρε ∗
ωε}ε is bounded in L∞(0, T ;L

2 d
d−2 (Rd)) where 2 d

d−2 > 2. The same is true for {ρε ∗ ωε ∗ fε}ε by
the Young convolutional inequality. The conclusion follows.

Term J2. We prove that limε→0 J2 = 0. By |R| ≤ C |y − x|2, it is sufficient to prove∫
Rd

ρε(y) |x− y|2 |∇ωε(x− y)|dy → 0 in L2((0, T )× Rd).

Again, we want to use assumption (9.1.4). By definition of ωε :

∫
Rd

ρε(y) |x− y|2 |∇ωε(x− y)|dy = ε

∫
Rd

ρε(y)
1

εd

∣∣∣∣x− y

ε

∣∣∣∣2 ∣∣∣∣∇ω(x− y

ε

)∣∣∣∣dy ≤

≤ ε

∫
Rd

ρε(y)
1

εd
ω ∗ f

(
x− y

ε

)
= ε ρε ∗ ωε ∗ fε(x),

where in the last line we applied (9.4.4). By the Young convolutional inequality, ρε ∗ ωε ∗ fε on
the (RHS) is bounded in L2((0, T )× Rd) so the conclusion follows.
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9.5 Extension to systems

Motivated by [212], we consider the system of N equations

∂tρ
i
ε −∆ρiε + div

ρiε∇∆

N∑
j=1

Ki,j
ε ∗ ρjε

 = 0, (9.5.1)

where 1 ≤ i ≤ N and the kernels Ki,j
ε are of the form

Ki,j
ε =

N∑
k=1

αi,k αj,k ωiε ∗ ωjε,

where the ωi are kernels satisfying Assumption 9.1.1. The coefficients {αi,k} form a matrix A
and we assume it is invertible. Under these assumptions, for any set of functions η1, ..., ηN :

N∑
i,j=1

∫
Rd

ηiKi,j
ε ∗ ηj =

∫
Rd

N∑
k=1

(
N∑
i=1

αi,k ηi ∗ ωiε

)2

so that

C̃ ∥A−1∥2
∫
Rd

N∑
i=1

(
ηi ∗ ωiε

)2 ≥
N∑

i,j=1

∫
Rd

ηiKi,j
ε ∗ ηj ≥ C ∥A−1∥2

∫
Rd

N∑
i=1

(
ηi ∗ ωiε

)2
. (9.5.2)

Theorem 9.5.1. Let {ρiε}ε be a sequence of solutions to (9.5.1) with initial condition ρ0,i

satisfying (9.1.6). Then, for i = 1, ..., N , and for a subsequence not relabeled, ρiε → ρi in
Lp(0, T ;L1(Rd)) for all p ∈ [1,∞) where ρi is a weak solution of

∂tρ
i −∆ρi + div

ρi∇∆

N∑
j=1

Ki,j ρj

 = 0, Ki,j =

N∑
k=1

αi,k αj,k.

We first extend the uniform bounds in Proposition 9.3.1 to the case of system (9.5.1).

Proposition 9.5.2. Suppose that for all i = 1, ..., N , the initial conditions ρ0,i satisfy (9.1.6).
Then, the nonnegative solution to (9.5.1) satisfies the following bounds, uniformly with respect
to ε :

(A) {ρiε}ε ∈ L∞(0, T ;L1(Rd) ∩ L logL(Rd)),

(B) {∂tρiε}ε ∈ L2(0, T ;H−k(Rd)) for some k,

(C) {
√
ρiε∇∆

∑N
j=1K

i,j
ε ∗ ρjε}ε ∈ L2((0, T )× Rd),

(D) {ρiε ∗ ωiε}ε ∈ L∞(0, T ;H1(Rd)) ∩ L2(0, T ;H2(Rd)),

(E) {|x|2ρiε}ε ∈ L∞(0, T ;L1(Rd)),

(F) {∇
√
ρiε}ε ∈ L2(0, T ;L2(Rd)),

(G) {∇ρiε}ε ∈ L2(0, T ;L1(Rd)),
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Moreover, we can extract a subsequence such that for all i = 1, ..., N

ρiε → ρi strongly in Lp(0, T ;L1(Rd)), p <∞ (9.5.3)

ρiε ∗ ωiε ⇀ ρi weakly in L∞(0, T ;H1(Rd)) ∩ L2(0, T ;H2(Rd)), (9.5.4)

ρiε ∗ ωiε → ρi a.e. and strongly in L2(0, T ;H1
loc(Rd)). (9.5.5)

Démonstration. The proof is almost the same as the proof of Proposition 9.3.1. The only difficulty
is to obtain the energy and entropy identities corresponding to (9.3.2) and (9.3.3), respectively.

Concerning the energy, we multiply (9.5.1) with ∆
∑N
j=1K

i,j ∗ ρjε, integrating in space and
summing up for i = 1, ..., N yields

C ∥A−1∥2
2

N∑
i=1

∫
Rd

|∇ρiε ∗ ωiε(t, x)|2 dx+ C ∥A−1∥2
N∑
i=1

∫ t

0

∫
Rd

|∆ρiε ∗ ωi|2 dxds+

+

N∑
i=1

∫ t

0

∫
Rd

ρiε

∣∣∣∣∣∣∇∆

N∑
j=1

Ki,j
ε ∗ ρjε

∣∣∣∣∣∣
2

dxds ≤ C̃ ∥A∥2
2

N∑
i=1

∫
Rd

|∇ρi,0|2 dx.

This identity implies (C) and (D). Estimate (B) follows from the PDE (9.5.1) and (C). Thanks
to (C), we also deduce (E).

Concerning the entropy, we multiply (9.5.1) with log ρiε, integrate in space and sum up to obtain

N∑
i=1

∂t

∫
Rd

ρiε (log ρ
i
ε − 1) dx+

N∑
i=1

∫
Rd

|∇ρiε|2
ρiε

dx+

N∑
i,j=1

∫
Rd

Ki,j ∗∆ρjε∆ρiε dx = 0.

Applying (9.5.2) with ηi = ∆ρiε, we deduce

N∑
i=1

∂t

∫
Rd

ρiε (log ρ
i
ε − 1) dx+

N∑
i=1

∫
Rd

|∇ρiε|2
ρiε

dx+ C ∥A−1∥
N∑
i=1

∫
Rd

|∆ρiε ∗ ωiε|2 dx ≤ 0.

As in the proof of Proposition 9.3.1, one may check that ρiε | log ρiε|− is uniformly bounded in
L∞(0, T ;L1(Rd)) which implies (A), (F) and (G). The convergences (9.5.3)–(9.5.5) easily follow
from the estimates.

Proof of Theorem 9.5.1. By linearity, we only need to explain how to pass to the limit in the
term ∫ T

0

∫
Rd

∇φρiε∇∆(ρjε ∗ ωjε ∗ ωiε) dx dt = −
∫ T

0

∫
Rd

(∇φρiε) ∗ ∇ωiε∆(ρjε ∗ ωjε) dxdt.

However, in the proof of Theorem 9.1.2, we proved that

(∇φρiε) ∗ ∇ωiε → ∇φ · ∇ρi +∆φρi strongly in L2((0, T )× Rd),

see (9.4.1). Thanks to the weak convergence ∆(ρjε ∗ ωjε) ⇀ ∆ρjε in (9.5.5), we conclude the
proof.
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9.6 Appendix

9.6.1 Proof of the convergence for general kernels and d = 2

In dimension d = 2 another proof of the main result uses weaker assumptions, namely

d = 2, y ω(y) ∈ L1(Rd), y∇ω(y) ∈ L2(Rd).

As in the main proof, we only need to study term
∫ T
0

∫
Rd ∇φρε∇∆(ρε ∗ ωε ∗ ωε) dxdt, where

φ ∈ C∞
c ([0, T ]× Rd). Integrating by parts∫ T

0

∫
Rd

∇φρε∇∆(ρε ∗ ωε ∗ ωε) dxdt = −
∫ T

0

∫
Rd

div(∇φρε) ∗ ωε∆(ρε ∗ ωε) dxdt

According to the a priori estimate (D), we need to prove that div(∇φρε) ∗ωε converges strongly
in L2((0, T )× Rd). We introduce the truncation operator

TM (ρ) =

{
ρ if ρ ≤M,

M if ρ > M,

so that splitting ρε = ρε − TM (ρε) + TM (ρε) we have

div(∇φρε) ∗ ωε = div(∇φTM (ρε)) ∗ ωε + div(∇φ(ρε − TM (ρε))) ∗ ωε
= (∆φTM (ρε)) ∗ ωε + (∇φ · ∇ρε1ρε≤M ) ∗ ωε + (∇φ(ρε − TM (ρε))) ∗ ∇ωε
=: I1 + I2 + I3.

The parameter M will be chosen later in terms of ε so that M → ∞ as ε→ 0. Term I1. We write

I1(t, x) =

∫
Rd

(∆φ(x− y)−∆φ(x))TM (ρε)(x− y)ωε(y) dy +∆φ(TM (ρε)) ∗ ωε

= IA1 + IB1 .

As |∆φ(x− y)−∆φ(x)| ≤ C |y|, we can estimate

∥IA1 ∥L2
t,x

≤
√
M ∥√ρε∥L2

t,x
∥|y|ωε(y)∥L1 ≤ ε

√
M ∥√ρε∥L2

t,x
∥|y|ω(y)∥L1

so that ∥IA1 ∥L2
t,x

≤ C ε
√
M . Furthermore, note that the term IB1 is compact in L2((0, T )× Rd)

whenever M → ∞, ε→ 0. To see this, first note that it is sufficient to establish local compactness
as φ is compactly supported. The latter can be proved by the Vitali theorem : we have convergence
in measure (even in L1

loc((0, T ) × Rd)) of TM (ρε) ∗ ωε and uniform integrability thanks to the
pointwise estimate

0 ≤ TM (ρε) ∗ ωε ≤ ρε ∗ ωε
since ρε ∗ ωε is compact in L2

loc((0, T )× Rd). We conclude that

IB1 → ∆φρ in L2((0, T )× Rd) when ε→ 0,M → ∞. (9.6.1)
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Term I2. We have

I2(t, x) =

∫
Rd

(∇φ(x− y)−∇φ(x))∇ρε(x− y)1ρε(x−y)≤M ωε(y) dy

+∇φ · (∇ρε1ρε≤M ) ∗ ωε =: IA2 + IB2 .

As (∇φ(x− y)−∇φ(x)) ≤ C |y| and |∇ρε(x− y)|1ρε(x−y)≤M ≤
√
M |∇ρε(x−y)|√

ρε(x−y)
, we can estimate

the term IA2 as follows

∥IA2 ∥L2
t,x

≤
√
M

∥∥∥∥∇ρε√
ρε

∥∥∥∥
L2

t,x

∥|y|ωε(y)∥L1 ≤ ε
√
M

∥∥∥∥∇ρε√
ρε

∥∥∥∥
L2

t,x

∥|y|ω(y)∥L1

so that |IA2 | ≤ C ε
√
M according to estimate (F).

Term I3. We write

I3(t, x) =

∫
Rd

(∇φ(x− y)−∇φ(x)) (ρε(x− y)− TM (ρε(x− y)))∇ωε(y) dy

+∇φ (ρε − TM (ρε)) ∗ ∇ωε = IA3 + IB3 .

We observe that |∇φ(x − y) − ∇φ(x)| ≤ C |y| and |ρε − TM (ρε)| ≤ 2 ρε 1ρε≥M so the term IA3
can be estimated as

∥IA3 ∥L2
t,x

≤ C ∥(ρε1ρε≥M ) ∗ (|y||∇ωε(y)|)∥L2
t,x
.

By the Gagliardo-Nirenberg-Sobolev inequality, we get that {ρε} is uniformly bounded in L2((0, T )×
Rd). Therefore,

∥IA3 ∥L2
t,x

≤ C ∥ρε1ρε≥M∥L2
tL

1
x
∥|y|∇ωε(y))∥L2 ≤ C ∥ρε∥L2

t,x
∥1ρε≥M∥L∞

t L2
x
∥|y|∇ωε(y))∥L2 .

It remains to estimate ∥1ρε≥M∥L∞
t L2

x
and ∥|y|∇ωε(y))∥L2 . We have

∥1ρε≥M∥L∞
t L2

x
≤ sup
t∈(0,T )

(∫
Rd

ρε log ρε
M log(M)

dx

)1/2

≤ C

M1/2 log1/2M
,

∥|y|∇ωε(y))∥2L2 ≤
∫
Rd

1

ε2d+2
|y|2

∣∣∣∇ω (y
ε

)∣∣∣2 dy =
1

εd

∫
Rd

|y|2 |∇ω (y)|2 dy ≤ C

ε2
,

since d = 2 and using mass conservation (A). We conclude that

∥IA3 ∥L2
t,x

≤ C

εM1/2 log1/2M
.

The conclusion. Note that the terms IB2 and IB3 combine to

IB2 + IB3 = ∇φ∇(ρε ∗ ωε)

which is compact in L2((0, T )× Rd) and converges to ∇φ∇ρ. Therefore,

div(∇φρε) ∗ ωε = ∆φ(TM (ρε)) ∗ ωε +∇φ∇(ρε ∗ ωε) +R, (9.6.2)
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where the first two terms are compact in L2((0, T )× Rd) (see also (9.6.1)) while

∥R∥L2
t,x

≤ C ε
√
M +

C

ε
√
M log1/2(M)

.

The conclusion follows by choosing M such that ε2M log1/2M = 1.

Remark 9.6.1. In arbitrary dimension d, if we knew that {ρε}ε is uniformly integrable in L2((0, T )×
Rd), i.e.

lim
ε→0

∥ρε1ρε> 1
ε
∥L2

t,x
= 0, (9.6.3)

we could conclude in an easier way. Indeed, assuming that y∇ω(y) ∈ L1(Rd), one can estimate

∥IA3 ∥L2
t,x

≤ ∥ψρε1ρε≥M∥L2
t,x

∥|y|∇ωε(y)∥L1 ≤ C ∥ψρε1ρε≥M∥L2
t,x
.

Choosing M = 1
ε , we conclude. The condition (9.6.3) can be relaxed to be satisfied locally when

ω is compactly supported. We stress that we do not have any a priori estimate implying (9.6.3).
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Annexe A

On the inviscid limit connecting
Brinkman’s and Darcy’s models of
tissue growth with nonlinear
pressure

Abstract
Several recent papers have addressed modelling of the tissue growth by the multi-phase models
where the velocity is related to the pressure by one of the physical laws (Stoke’s, Brinkman’s
or Darcy’s). While each of these models has been extensively studied, not so much is known
about the connection between them. In the recent paper (arXiv :2303.10620), assuming the
linear form of the pressure, the Authors connected two multi-phase models by an inviscid limit :
the viscoelastic one (of Brinkman’s type) and the inviscid one (of Darcy’s type). Here, we prove
that the same is true for a nonlinear, power-law pressure. The new ingredient is that we use
relation between the pressure p and the Brinkman potential W to deduce compactness in space
of p from the compactness in space of W .

2010 Mathematics Subject Classification. 35K45, 35K65, 35J60, 35Q92, 92C10.
Keywords and phrases. tissue growth, nonlocal equation, inviscid limit, nonlocal-to-local limit,
Brinkman’s law, Darcy’s law.

A.1 Introduction

Last years brought deep understanding of mechanical models of tissue growth. These models are
based on the continuity equation for the density ρ

∂tρ+ div(ρv) = 0,

where the velocity v is linked to the pressure p which is assumed to be a power-law function
of density ρ i.e. p(ρ) = ργ for some γ ≥ 1. The most widely studied one, Darcy’s law, asserts
that the velocity v = −∇p. Such approach has been thoroughly studied [118, 289, 288, 198,

313
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227], also in the context of two populations [64, 206, 235, 260, 262, 296], presence of a nutrient
[290, 119], more general Patlak-Keller-Segel equation [211] or additional advection effects [120,
237]. Another approach is the Brinkman’s law [126, 125, 291, 318, 238]. Here, velocity equals
v = −∇W where W solves an elliptic equation

−σ∆W +W = p,

for some small σ > 0. In this approach, the velocity enjoys higher regularity due to elliptic regu-
larity theory. Last but not least, one can consider the Stoke’s law where the velocity is given by
the corresponding Navier-Stokes(-Korteweg) equation [322, 254, 245] or with additional surface-
tension effects [154, 130, 151, 152] by including Cahn-Hilliard-type terms.

Most of the studies discussed above have been carried out to in the context of so-called incompres-
sible limit. This procedure links mechanistic models and free-boundary problems extensively used
in the context of tumor growth [66]. Mathematically, the limit corresponds to sending γ → ∞
in the pressure relation p(ρ) = ργ . In the limit, ρ ≤ 1 and the zone Ωt := {x : ρ(t, x) = 1} is
interpreted as a tumor resulting in the free boundary problem which has been extensively stu-
died, see for instance [228, 240, 275, 236]. In this context, it is worth mentioning another form of
the pressure p(ρ) = ε ρ

1−ρ which enforces the density to stay below 1 so it is useful for modeling
populations with congestion constraints, see [213, 131, 60, 61, 285]. For such pressure laws, one
can also study incompressible limit by sending ε→ 0.

In the present work, we are interested in linking the two populations model of Brinkman’s type
with the one of Darcy’s type. Hence, we consider the system of PDEs posed on [0, T ]× Rd

∂tuσ − div(uσ∇Wσ) = uσ F (pσ), ∂tvσ − div(vσ∇Wσ) = vσ G(pσ), (A.1.1)

where uσ, vσ are densities of two populations of interest, p = (uσ + vσ)
γ is the pressure, γ > 1

and Wσ is the solution of the elliptic equation

−σ∆Wσ +Wσ = pσ (A.1.2)

corresponding to the so-called Brinkman’s law. Our target is to rigorously justify the limit σ → 0
where we expect the Darcy’s law W = p = (u+ v)γ and the densities u, v satisfy

∂tu− div(u∇p) = uF (p), ∂tv − div(v∇p) = v G(p). (A.1.3)

In [117], the case of γ = 1 was established. Here, we study the nonlinear case γ > 1. As discussed
above, from the point of view of free boundary models, large γ is more physically relevant and
this motivates our studies.

We first list the assumptions which are standard in the theory of (A.1.1).
Assumption A.1.1. We assume that :
(A) The nonlinearities F , G belong to C1(R) and they are strictly decreasing : F ′, G′ ≤ −α < 0

for some α > 0. Moreover, there exists pH > 0 (the so-called homeostatic pressure) such
that F (pH) = G(pH) = 0.

(B) The initial condition (u0, v0) is nonnegative and satisfies the following : the upper bound
(u0 + v0)γ ≤ pH , the mass bound

∫
Rd(u

0 + v0) dx ≤ C and the tail estimate
∫
Rd(u

0 +
v0)|x|2 dx ≤ C.

The weak solutions to the systems (A.1.1)-(A.1.2) and (A.1.3) are defined as follows :
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Definition A.1.2 (Weak solutions to the Brinkman system). We say that (uσ, vσ) is a weak
solution of (A.1.1)-(A.1.2) with initial condition (u0, v0) if uσ, vσ ∈ L∞(0, T ;L1(Rd) ∩ L∞(Rd))
and for all φ ∈ C∞

c ([0, T )× Rd) and ϕ ∈ C∞
c ([0, T )× Rd) :

∫ T

0

∫
Rd

uσ ∂tφdxdt+

∫
Rd

φ(0, x)u0(x) dx =

=

∫ T

0

∫
Rd

uσ∇Wσ · ∇φdxdt−
∫ T

0

∫
Rd

uσF (pσ)φdxdt,

∫ T

0

∫
Rd

vσ ∂tϕ dx dt+

∫
Rd

ϕ(0, x)v0(x) dx =

=

∫ T

0

∫
Rd

vσ∇Wσ · ∇ϕdxdt−
∫ T

0

∫
Rd

vσG(pσ)ϕdxdt,

with pσ = (uσ + vσ)
γ and −∆Wσ +Wσ = pσ a.e. in (0, T )× Rd.

We note that the terms uσ∇Wσ, vσ∇Wσ make sense. Indeed, one can write Wσ = Kσ ∗pσ where
Kσ is a fundamental solution of −σ∆Kσ +Kσ = δ0. It is well-known (see, for instance, [291, eq.
(2.6)]) that Kσ ≥ 0,

∫
Rd Kσ dx = 1 and ∇Kσ ∈ L1(Rd) where the last estimate blows up when

σ → 0. Therefore, for σ fixed, ∇Wσ ∈ L∞(0, T ;Lq(Rd)) for all q ∈ [1,∞].
Definition A.1.3 (Weak solutions to the Darcy system). We say that (u, v) is a weak solution
of (A.1.3) with initial condition (u0, v0) and p = (u+ v)γ if u, v ∈ L∞(0, T ;L1(Rd) ∩ L∞(Rd)),
∇p ∈ L2((0, T )× Rd) and for all φ ∈ C∞

c ([0, T )× Rd) and ϕ ∈ C∞
c ([0, T )× Rd) :

∫ T

0

∫
Rd

u ∂tφdxdt+

∫
Rd

φ(0, x)u0(x) dx =

=

∫ T

0

∫
Rd

u∇p · ∇φdxdt−
∫ T

0

∫
Rd

uF (p)φdxdt,

∫ T

0

∫
Rd

v ∂tϕdxdt+

∫
Rd

ϕ(0, x)v0(x) dx =

=

∫ T

0

∫
Rd

v∇p · ∇ϕ dxdt−
∫ T

0

∫
Rd

vG(p)ϕdxdt.

The existence of weak solutions to the Brinkman system is given by the following result.

Theorem A.1.4. Under Assumption A.1.1, there exists a weak solution (uσ, vσ) to the sys-
tem (A.1.1)-(A.1.2) in the sense of Definition A.1.2. Moreover, the solution is uniformly bounded

0 ≤ (uσ + vσ)
γ ≤ pH . (A.1.4)

The existence result is fairly standard and it is based on suitable regularizations. Nevertheless,
it contains few interesting technical difficulties, therefore we present the proof in the Appendix
A.5.1. Let us point that the uniform bound (A.1.4) is the direct consequence of the maximum
principle in [318, Lemma 2.1].

Our main result is the rigorous justification the limit σ → 0.



316 ANNEXE A. Inviscid limit : from Brinkman to Darcy with nonlinear pressure

Theorem A.1.5 (Brinkman to Darcy). Let (uσ, vσ) be a weak solution of system (A.1.1)-(A.1.2)
as in Theorem A.1.4. Then, as σ → 0, we can extract a subsequence (not relabeled) such that

uσ → u weakly* in L∞((0, T )× Rd) and weakly in Lq((0, T )× Rd) for 1 ≤ q <∞,

vσ → v weakly* in L∞((0, T )× Rd) and weakly in Lq((0, T )× Rd) for 1 ≤ q <∞,

pσ → p strongly in Lq((0, T )× Rd) for all 1 ≤ q < +∞,

Wσ → p strongly in L2(0, T ;H1(Rd)) ∩ Lq((0, T )× Rd) for all 1 < q < +∞,

with p = (u+ v)γ . Moreover (u, v) is a weak solution of (A.1.3) as in Definition A.1.3.

Let us briefly outline the strategy. The main difficulty is to pass to the limit in the terms uσ∇Wσ

and vσ∇Wσ. It seems that there is no hope for the strong compactness of uσ and vσ because
this requires at least uniform bounds on {D2Wσ} (cf. [42]) which does not seem to be available
(see (A.2.2) for the energy identity). Therefore, we plan to prove strong compactness of {∇Wσ}
in L2((0, T )× Rd) by proving weak compactness and convergences of norms :

∇Wσ ⇀ ∇p in L2((0, T )× Rd), lim
σ→0

∥∇Wσ∥2L2((0,T )×Rd) = ∥∇p∥2L2((0,T )×Rd),

which was recently applied in several problems of similar nature [226, 116, 260, 296]. This can be
achieved if one proves strong compactness of {pσ}. Indeed, weak compactness of {∇Wσ} is then
a consequence of the energy estimate (A.2.2) and the elliptic equation (A.1.2). The convergence
of norms follows from the energy : we compare energy (A.2.2) for σ → 0 with the energy for

∂t(u+ v)− div((u+ v)∇p) = uF (p) + v G(p),

which can be written because {pσ} is strongly compact.

It remains to explain how we obtain strong compactness of the pressures {pσ}. From a priori
estimates (Proposition A.2.1) we know that {pσ} is compact in time while {Wσ} is compact
in space. Moreover, the term σ∆Wσ converges strongly to 0. Therefore, we can use the elliptic
equation (A.1.2) to translate information about compactness of {Wσ} into compactness of {pσ}.
Details are given in Lemma A.3.2 and Lemma A.3.4.

We also remark that our method covers the linear case γ = 1 studied in [117]. The only difference
is that the energy identity used to obtain all the estimates and deduce strong compactness of
{∇Wσ} is deduced by multiplying equation for the sum uσ + vσ with log(uσ + vσ). Some care
is necessary as this function may not be admissible in the vacuum where uσ + vσ = 0 and the
details are discussed in [117].

Finally, let us remark that the problem of passing to the limit from (A.1.1) to (A.1.3) can be seen
in a much broader context of passing to the limit from the nonlocal equation to the local one.
More precisely, (A.1.2) can be written as Wσ = Kσ ∗ pσ where Kσ is a kernel approaching Dirac
mass δ0 so that W = p in the limit σ → 0. Such problems are intesively studied for several PDEs,
including porous media equation [93, 65, 257, 212], Cahn-Hilliard equation (both nondegenerate
[123, 121] and degenerate [155, 81]) and hyperbolic conservation laws [109].

A.2 A priori estimates

Here, we prove the following :
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Proposition A.2.1. Let σ > 0. Let (uσ, vσ) be a weak solution of (A.1.1)–(A.1.2). Then, the
following sequences are uniformly bounded with respect to σ ∈ (0, 1) :

(A) {pσ} and {Wσ} in L∞(0, T ;L1(Rd) ∩ L∞(Rd)),

(B) {∇Wσ} in L2((0, T )× Rd),

(C) {√σ∆Wσ} in L2((0, T )× Rd) ,

(D) {∂tpσ} in L1(0, T ;H−s
loc (Rd)), for s large enough,

(E) {pσ |x|2} in L∞(0, T ;L1(Rd)),

Démonstration. First, the L∞ estimate for pσ is a direct consequence of (A.1.4) and the same is
true for Wσ = Kσ ∗pσ because

∫
Rd Kσ dx = 1. The estimates (A), (B) and (C) are a consequence

of energy considerations. The equation for the sum uσ + vσ reads :

∂t(uσ + vσ)− div((uσ + vσ)∇Wσ) = uσ F (pσ) + vσ G(pσ). (A.2.1)

We multiply with γ (uσ + vσ)
γ−1 and integrate in space so that

∂t

∫
Rd

pσ dx+ γ (γ − 1)

∫
Rd

(uσ + vσ)
γ−1 ∇(uσ + vσ) · ∇Wσ dx =

= γ

∫
Rd

(uσ F (pσ) + vσ G(pσ))(uσ + vσ)
γ−1 dx,

which, with (A.1.2), can be rewritten as

∂t

∫
Rd

pσ dx+ (γ − 1)

∫
Rd

|∇Wσ|2 + σ|∆Wσ|2 dx

= γ

∫
Rd

(uσ F (pσ) + vσ G(pσ))(uσ + vσ)
γ−1 dx ≤ C

∫
Rd

pσ dx,

(A.2.2)

because pσ is uniformly bounded and F , G are continuous. Finally, we have ∥Wσ∥L1(Rd) =
∥Kσ ∗ pσ∥L1(Rd) = ∥pσ∥L1(Rd) which concludes the proof of (A), (B) and (C).
Next, we establish the bound (D) on ∂tpσ. We first write the equation on p which can be obtained
after multiplying (A.2.1) by γ(uσ + vσ)

γ−1 :

∂tpσ = ∇pσ∇Wσ + γ pσ∆Wσ + γ (uσF (pσ) + vσG(pσ)) (uσ + vσ)
γ−1.

First note that the last term on the right-hand side is bounded in L∞((0, T )×Rd) by assumptions
on F and G. In order to obtain a bound on ∂tpσ in a negative Sobolev spaces, we see that, up
to integration by parts, it remains to study the term pσ∆Wσ. Let φ be a smooth, compactly
supported test function. Then, by definition of Wσ∫

Rd

pσ∆Wσφdx = −σ
∫
Rd

|∆Wσ|2φdx−
∫
Rd

|∇Wσ|2φdx−
∫
Rd

Wσ∇Wσ · ∇φdx.

The proof of (D) is concluded using (A), (B) and (C). Now, we prove (E). Since pσ is bounded in
L∞ we only need to prove that uσ and vσ have uniformly bounded second moments. We compute
it for uσ and the proof is similar for vσ

∂t

∫
Rd

|x|2uσ dx+ 2

∫
Rd

uσ∇Wσ · xdx =

∫
Rd

|x|2uσF (pσ) dx.
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Integrating in time, using Cauchy-Schwartz inequality, estimate (B), assumptions on F and
Gronwall’s inequality, we obtain the result.

A.3 Strong compactness of the pressure

Proposition A.3.1. There exist functions u, v and p such that p = (u+ v)γ a.e. and such that
up to a subsequence (not relabelled) for all 1 ≤ q <∞ :

uσ → u weakly* in L∞((0, T )× Rd) and weakly in Lq((0, T )× Rd), (A.3.1)

vσ → v weakly* in L∞((0, T )× Rd) and weakly in Lq((0, T )× Rd), (A.3.2)

σ∆Wσ → 0 strongly in L2((0, T )× Rd), (A.3.3)

pσ → p strongly in Lq((0, T )× Rd), (A.3.4)

Wσ → p weakly in L2(0, T ;H1(Rd)), strongly in Lq((0, T )× Rd) for q > 1, (A.3.5)

uσ + vσ → u+ v strongly in Lq((0, T )× Rd), (A.3.6)

(uσ + vσ)(T ) → (u+ v)(T ) weakly in Lγ(Rd). (A.3.7)

The crucial step in the proof of Proposition A.3.1 is the strong compactness of the pressure pσ
which will be achieved by the following lemma which in the spirit is a version of Lions-Aubin-
Simon’s argument [314].

Lemma A.3.2. Suppose that for each compact set K ⊂ Rd

lim
y→0

∫ T

0

∫
K

|pσ(t, x+ y)− pσ(t, x)|dx dt = 0 uniformly in σ ∈ (0, 1). (A.3.8)

Moreover, assume that {∂tpσ} is bounded in L1(0, T ;H−s
loc (Rd)) for some s > 0 and {pσ |x|2} is

uniformly bounded in L1((0, T )×Rd). Then, the sequence {pσ} is strongly compact in L1((0, T )×
Rd).

Remark A.3.3. Several variants of this result are possible. For instance, one can have more general
assumption on the time derivative or one can also formulate it in for the space Lp((0, T ) × Rd)
space with p > 1. Another trivial generalization is that the tail estimate could be replaced with
more general tightness assumption.

Proof of Lemma A.3.2. In view of the Riesz-Kolmogorov-Frechet theorem, to establish local com-
pactness it is sufficient to prove

lim
h→0

∫ T−h

0

∫
K

|pσ(t+ h, x)− pσ(t, x)|dxdt = 0 uniformly in σ ∈ (0, 1)

for each compact set K ⊂ Rd. Using a family of smooth, compactly supported mollifiers {φδ}
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with δ depending on h, we have∫ T−h

0

∫
K

|pσ(t+ h, x)− pσ(t, x)|dxdt ≤

≤
∫ T−h

0

∫
K

|pσ(t+ h, x)− pσ(t+ h, x) ∗ φδ|dx dt

+

∫ T−h

0

∫
K

|pσ(t, x)− pσ(t, x) ∗ φδ|dxdt

+

∫ T−h

0

∫
K

|pσ ∗ φδ(t+ h, x)− pσ ∗ φδ(t, x)|dxdt.

The first two terms converge to 0 when δ → 0, independently of h, as a consequence of (A.3.8).
Hence, we only need to study the third term. We write

pσ ∗ φδ(t+ h, x)− pσ ∗ φδ(t, x) = h

∫ 1

0

∂tpσ ∗ φδ(t+ s h, x) ds.

Therefore, the term of interest can be estimated by

C h

∫ T−h

0

∫
K

∣∣∣∣∫ 1

0

∂tpσ ∗ φδ(t+ s h, x) ds

∣∣∣∣dxdt ≤
≤ C h

∫ 1

0

∫ T−h

0

∫
K

|∂tpσ ∗ φδ(t+ s h, x)|dx dtds ≤ C h∥∂tpσ ∗ φδ∥L1((0,T )×K),

where we applied Fubini’s theorem. It remains to estimate the convolution. We have

∂tpσ ∗ φδ(t, x) =
∫
Rd

∂tpσ(t, y)φδ(x− y) dy ≤ ∥∂tpσ(t, ·)∥H−s
loc

∥φδ∥Hs ,

Applying the L1((0, T )×K) norm we obtain

∥∂tpσ ∗ φδ∥L1((0,T )×K) ≤ |K| ∥∂tpσ∥L1
tH

−s
loc,x

∥φδ∥Hs ≤ C(K)

δs+d/2
.

Choosing h = δ1+s+d/2 we obtain compactness of {pσ} on (0, T )×K for each compact set K.

To obtain global compactness, we perform a usual argument which uses the decay estimate. Let
Bn be the sequence of balls B(0, n). By the diagonal method, we construct a subsequence such
that pσ → p in L1((0, T )×Bn) for each n ∈ N. Then,

∥pσ − p∥L1((0,T )×Rd) ≤ ∥pσ − p∥L1((0,T )×Bn) + ∥pσ − p∥L1((0,T )×(Rd\Bn))

≤ ∥pσ − p∥L1((0,T )×Bn) +
C

n2
,

where C = supσ∈(0,1) ∥pσ |x|2∥L1((0,T )×Rd) and we used, that by Fatou lemma,

∥p|x|2∥L1((0,T )×Rd) ≤ lim inf
σ→0

∥pσ |x|2∥L1((0,T )×Rd).

Hence, lim supσ→0 ∥pσ − p∥L1((0,T )×Rd) ≤ C
n2 for all n which concludes the proof.
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By interpolation, we deduce :

Lemma A.3.4. The sequence of pressures {pσ} is strongly compact in Lq((0, T ) × Rd) for all
1 ≤ q < +∞.

It turns out that the sequence of pressures {pσ} satisfies (A.3.8).

Proof of (A.3.8). We recall the definition of the Brinkman law

pσ = −σ∆Wσ +Wσ.

First note that −σ∆Wσ converges strongly to 0 in L2((0, T ) × Rd) as a consequence of (C). In
particular it is compact and by the converse of the Riesz-Kolmogorov-Frechet theorem we deduce

lim
y→0

∫ T

0

∫
K

|σ∆Wσ(t, x+ y)− σ∆Wσ(t, x)|dxdt = 0 uniformly in σ ∈ (0, 1).

To conclude the proof of (A.3.8) in remains to prove that

lim
y→0

∫ T

0

∫
K

|Wσ(t, x+ y)−Wσ(t, x)|dxdt = 0 uniformly in σ ∈ (0, 1).

This is a simple consequence of the formula

Wσ(t, x+ y)−Wσ(t, x) =

∫ 1

0

∇Wσ(t, x+ sy) · y ds

and the uniform bound (B) (note that we work on the compact set K so that L2(K) embeds
into L1(K)).

Proof of Proposition A.3.1. Convergences (A.3.1), (A.3.2), (A.3.3) follow from Proposition A.2.1
and nonnegativity of uσ, vσ. The strong convergence of the pressure (A.3.4) is a consequence
of Lemma A.3.4. Combining this convergence and (A.3.3) we deduce the strong convergence in
L2 of Wσ and then in every Lq (except q = 1,∞) by interpolation using (A). Using also the
estimate (B), we deduce the weak convergence of ∇Wσ and conclude the proof of (A.3.5). The
convergence (A.3.6) is a consequence of (A.3.4) : indeed we can extract a subsequence of pres-
sures that converge a.e. so that uσ + vσ converges a.e. Due to the uniform L∞ bound (A) and
tail estimate (E), Vitali convergence theorem implies (A.3.6).

Finally, we prove (A.3.7). We adapt the argument from [54, Lemma II.5.9]. First, we prove that
(uσ+vσ)(T ) makes sense as an element of Lγ(Rd). Let ηδ = 1

δ1[−δ,0] and fδ(t, x) = (uσ+vσ)∗ηδ
where the convolution is a convolution in time. As uσ+vσ ∈ L∞(0, T ;Lγ(Rd)), ∥fδ(T, ·)∥Lγ(Rd) ≤
C independently of δ > 0. Hence, up to a subsequence, fδ(T ) ⇀ f in Lγ(Rd) and it remains to
prove f = (uσ + vσ)(T ). Let ψ ∈ C∞

c (Rd). Since∫
Rd

fδ(T, x)ψ(x) dx =

[∫
Rd

(uσ + vσ)(·, x)ψ(x) dx
]
∗ ηδ(T ) (A.3.9)

and the function t 7→
∫
Rd(uσ + vσ)ψ(x) dx is continuous (it can be easily seen that the se-

quence {∂t(uσ + vσ)} is uniformly bounded in L2(0, T ;H−1
loc (Rd)) and such regularity implies

also continuity in C(0, T ;H−1
loc (Rd)), see [302, Lemma 7.1]), the (RHS) of (A.3.9) converges to
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∫
Rd(uσ(T ) + vσ(T ))ψ(x) dx so that f = (uσ + vσ)(T ) a.e. on Rd. Exactly the same argument

shows that (u + v)(T ) makes sense because, thanks to convergences (A.3.1), (A.3.2), (A.3.5),
(A.3.6), we can pass to the limit σ → 0 and deduce the same weak formulation∫ T

0

∫
Rd

(u+ v)∂tφdx dt+

∫
Rd

(u0 + v0)φ(0) dx−
∫ T

0

∫
Rd

(u+ v)∇p · ∇φdx dt =

=

∫ T

0

∫
Rd

uF (p) dx dt+

∫ T

0

∫
Rd

v G(p) dxdt,

(A.3.10)

which implies continuity of t 7→
∫
Rd(u+ v)ψ(x) dx.

The argument above shows that the sequence {(uσ + vσ)(T )} is bounded in Lγ(Rd) so it has
a subsequence converging to some s ∈ Lγ(Rd) when σ → 0. We claim that s = (u + v)(T ). To
this end, we consider the weak formulation from Definition A.1.2 with test function of the form
ψ(x) ηδ(t) where ηδ = 1 on [0, T − 2δ], ηδ = 0 on [T − δ, T ] and it is linear interpolation on
[T − 2δ, T − δ] (such function is admissible by density as it has Sobolev derivative). By weak
continuity, as δ → 0,∫ T

0

∫
Rd

(uσ + vσ)(t, x)ψ(x)∂tηδ(t) dx dt =
1

δ

∫ T−δ

T−2δ

∫
Rd

(uσ + vσ)(t, x)ψ(x) dxdt

δ→0−−−→
∫
Rd

(uσ + vσ)(T, x)ψ(x) dx
σ→0−−−→

∫
Rd

s(x)ψ(x) dx.

We can apply the same limiting procedure δ → 0 in the weak formulation (A.3.10). By comparing
the results, we deduce that s = (u+ v)(T ) a.e. on Rd and this concludes the proof.

A.4 Strong convergence of ∇Wσ and conclusion

Proof of Theorem A.1.5. Due to the weak convergence of uσ and vσ, cf. (A.3.1)–(A.3.2), to pass
to the limit in (A.1.1), it is sufficient to prove strong convergence of ∇Wσ. As ∇Wσ ⇀ ∇p, it is
sufficient to prove convergence of L2 norms, i.e.

∥∇Wσ∥2L2((0,T )×Rd) → ∥∇p∥2L2((0,T )×Rd).

By the properties of the weak convergence

∥∇p∥2L2((0,T )×Rd) ≤ lim inf
σ→0

∥∇Wσ∥2L2((0,T )×Rd) . (A.4.1)

so we only need to estimate lim supσ→0. The idea is to pass to the limit in Equation (A.2.1).
First, due to the strong compactness of u + v and p in Proposition A.3.1, we can pass to the
limit in Equation (A.2.1) and obtain (in the weak sense)

∂t(u+ v)− div((u+ v)∇p) = uF (p) + v G(p). (A.4.2)

We can test this equation with γ(u+ v)γ−1 (see Remark A.4.1 below for the precise argument)



322 ANNEXE A. Inviscid limit : from Brinkman to Darcy with nonlinear pressure

and we obtain after integrating in time∫
Rd

p(T, x) dx+ (γ − 1)

∫ T

0

∫
Rd

|∇p|2 dxdt =

=

∫
Rd

p0(x) dx+ γ

∫ T

0

∫
Rd

(uF (p) + v G(p))(u+ v)γ−1 dxdt.

(A.4.3)

Note that (A.3.7) implies ∫
Rd

p(T, x) dx ≤ lim inf
σ→0

∫
Rd

pσ(T, x) dx (A.4.4)

by the weak lower semicontinuity of the norm. Integrating (A.2.2) in time from [0, T ] and applying
lim supσ→0 we see that

(γ − 1) lim sup
σ→0

∫ T

0

∫
Rd

|∇Wσ|2 dxdt ≤
∫
Rd

p0(x) dx+

+ γ

∫ T

0

∫
Rd

(uF (p) + v G(p))(u+ v)γ−1 dx dt− lim inf
σ→0

∫
Rd

pσ(T, x) dx.

(A.4.5)

Combining (A.4.3), (A.4.4) and (A.4.5) we see that

lim sup
σ→0

∥∇Wσ∥2L2((0,T )×Rd) ≤ ∥∇p∥2L2((0,T )×Rd) . (A.4.6)

which together with (A.4.1) concludes the proof.

Remark A.4.1. To make integration by parts rigorous, we test equation with

γ(u+ v)γ−1 ψR(x)

where ψR is a smooth function such that ψR(x) = 1 for |x| ≤ R, ψR(x) = 0 for |x| ≥ R + 1 and
|ψ′
R| ≤ 1. Then, the integration by parts is justified and we obtain

(γ − 1)

∫ T

0

∫
Rd

|∇p|2 ψR(x) dx dt+ γ

∫ T

0

∫
R≤|x|≤R+1

p∇pψ′ dxdt.

The first term converges to (γ − 1)
∫
Rd |∇p|2 ψR(x) dx by the dominated convergence theorem.

For the second term, we note that p∇p ∈ L1((0, T )× Rd) (in fact, we have even better) so this
term converges to 0 again by the dominated convergence theorem.

Remark A.4.2. Similarly, to make testing (A.4.2) with γ (u+v)γ−1 rigorous, one mollifies (A.4.2)
both in time and space with ηδ(t)ψε(x). Then, one tests (A.4.2) with γ ((u + v) ∗ ηδ ∗ ψε)γ−1

so that the usual chain rule in Sobolev spaces can be applied resulting in the term of the form∫
Rd((u+ v) ∗ ηδ ∗ψε)γ(T, x) dx. Then, one sends δ → 0 using weak continuity of the sum (u+ v)

as in the proof of Proposition A.3.1 and then ε→ 0 using the properties of the mollifiers.
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A.5 Appendix

A.5.1 Proof of Theorem A.1.4 (existence result)

Here, we prove existence of solutions to the system (A.1.1) by introducing an artificial diffusion.
We also recall the uniform (in terms of γ and σ) L∞ bounds from [318].

We rewrite (A.1.1) as follows

∂tu−∇u · ∇W − 1

σ
u (W − p) = uF (p), ∂tv −∇v · ∇W − 1

σ
v (W − p) = v G(p),

where we skipped the lower index σ as σ is fixed. It is useful to write W = Kσ ∗ p where Kσ

is a fundamental solution −σ∆Kσ + Kσ = δ0 and p = (u + v)γ . We regularize the problem
in three ways. First, we introduce diffusion. Second, we mollify Kσ with a usual mollifier ωδ
(i.e. ωδ(x) = 1

δd
ω(x/δ) where ω is smooth, supported in the unit ball and of mass 1). Third,

we truncate all nonlinearities by the truncation operator Q(p) = p1p≤2pH + 2 pH 1p>2pH . The
resulting system reads

∂tu− ε∆u−∇u · ∇Wδ =
1

σ
u (Wδ −Q(p)) + uF (Q(p)),

∂tv − ε∆v −∇v · ∇Wδ =
1

σ
v (Wδ −Q(p)) + v G(Q(p)),

Wδ = Kσ ∗ ωδ ∗Q(p),

(A.5.1)

where p = (u + v)γ . By properties of convolutions, ∇Wδ = Kσ ∗ ∇ωδ ∗ Q(p) so that (A.5.1)
can be considered as a semilinear parabolic system with Lipschitz nonlinearities which are well-
understood [246, 253]. Hence, it has a nonnegative solution (u, v).

Now, following [318, Lemma 2.1], we claim that p ≤ pH . To this end, we sum up equations for
u, v and multiply by γ (u+ v)γ−1 to obtain

∂tp− ε γ∆(u+ v) (u+ v)γ−1 −∇p · ∇Wδ =

=
γ

σ
p (Wδ −Q(p)) + γ (u+ v)γ−1 (uF (Q(p)) + v G(Q(p))).

(A.5.2)

Since at t = 0, p ≤ pH , if the estimate is not satisfied, by continuity there is time t > 0 where
p(t, ·) reaches its maximum with value in (pH , 2 pH). Let x∗ be a point where this happens. At
this point, ∇p = 0, ∆(u + v) ≤ 0 (because the function u + v = p1/γ reaches its maximum).
Furthermore, the source term is strictly negative due to (A) in Assumption A.1.1. Finally, we
note that by Young’s convolutional inequality

Wδ(t, x
∗)− p(t, x∗) ≤ ∥p(t, ·)∥∞ ∥Kσ∥1 ∥ωδ∥1 − ∥p(t, ·)∥∞ = 0

so that the term Wδ − p at x∗ is nonpositive. We conclude that

∂tp(t, x
∗) < 0

so that p cannot become greater than pH . We conclude that Q(p) = p in (A.5.1).

Now, we send δ → 0. We write uδ and vδ for solutions to (A.5.1), pδ = (uδ+vδ)
γ for the pressure
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andWδ = Kσ∗ωδ∗pδ. First, thanks to the presence of diffusion and ∇Kσ ∈ L1(Rd), the sequences
{uδ} and {vδ} are locally compact in Lq((0, T )×Rd) for all q <∞ by usual Lions-Aubin lemma
and interpolation in Lebesgue spaces. As a consequence, it is easy to pass to the limit in the
source terms. The nontrivial part is to pass to the limit in the advection term. To identify the
limit we write ∫ T

0

∫
Rd

∇uδ · ∇Wδ φ = −
∫ T

0

∫
Rd

uδ∆Wδ φ+ uδ∇Wδ · ∇φ.

Hence, it is sufficient to prove that ∆Wδ and ∇Wδ converge at least weakly to the appropriate li-
mits. However, these sequences are bounded in L∞((0, T )×Rd) because ∆Wδ =

1
σ (pδ−pδ∗Kσ)∗ωδ

and ∇Wδ = ∇Kσ ∗ pδ ∗ωδ. Therefore, up to a subsequence, they have weak∗ limits which equals
∆W and ∇W with W = Kσ ∗ p due to the strong compactness of uδ and vδ.

In the limit δ → 0, we obtain the system

∂tu− ε∆u− div(u∇W ) = uF (p), ∂tv − ε∆v − div(v∇W ) = v G(p), (A.5.3)

where W = Kσ ∗p and it remains to remove the diffusion, i.e. send ε→ 0. Again, we write uε and
vε for solutions to (A.5.3), pε = (uε + vε)

γ for the pressure and Wε = Kσ ∗ pε. Clearly, uε
∗
⇀ u

and vε
∗
⇀ v in L∞((0, T ) × Rd). Moreover, standard computations show that {∂tuε}, {∂tvε}

are uniformly bounded in L2(0, T ;H−1(Rd)). We prove that both sequences {uε} and {vε} are
strongly compact in space so that by Lemma A.3.2, we deduce strong compactness. The same
will follow for the pressure pε so that ∇Wε = ∇Kσ ∗ pε converges in L1((0, T )×Rd) to ∇Kσ ∗ p
and so, by interpolation, in Lq((0, T )×Rd) for all q ∈ [1, 2). This is sufficient to pass to the limit
in (A.5.3).

The proof of compactness in space follows the method of Jabin and Belgacem [42] (the only
difference is that we deal with an additional source term). Let us recall that [42] deals with
compactness for the conservative equations

∂tuε − ε∆uε − div(uε aε) = 0,

where aε is the vector field satisfying the following :
1. supε∈(0,1) ∥div aε∥L∞((0,T )×Rd) <∞,
2. supε∈(0,1) ∥aε∥L∞(0,T ;W 1,p(Rd)) <∞ for some p > 1,
3. div aε = dε + rε where dε is compact in space while rε is such that |rε(x) − rε(y)| ≤
C |uε(x)− uε(y)|.

In our case, aε = ∇Wε satisfies (1) and (2). Indeed, div∇Wε = ∆Wε = 1
σ (pε −Kσ ∗ pε) is

uniformly bounded. Furthemore, it is easy to see, for instance from (A.5.2), that {pε} is uni-
formly bounded in L∞(0, T ;L1(Rd)) so that it is bounded in L∞(0, T ;L2(Rd)). Hence, {∆Wε} is
bounded in L∞(0, T ;L2(Rd)) which easily implies that {Wε} is bounded in L∞(0, T ;W 2,2(Rd))
so that (2) holds true with p = 2.

Concerning (3), it is satisfied in a weaker sense. We have dε =Wε (it is compact in space by the
estimate on {∇Wε}) and rε = pε which satisfies (by the uniform boundedness of {uε} and {vε})

|rε(t, x)− rε(t, y)| ≤ C |uε(t, x)− uε(t, y)|+ C |vε(t, x)− vε(t, y)|, (A.5.4)

so that the estimate depends on both species. Below, we briefly explain a simple modification of
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argument in [42] to cover the case of (A.5.4) as well as how to include the source terms.

The compactness in [42] is established by analysis of the quantity

Quε
(t) =

∫
Rd

∫
Rd

Kh(x− y)|uε(t, x)− uε(t, y)|dxdy,

where Kh is a smooth, nonnegative kernel, supported in the ball B2(0) such that Kh(x) =
1

(|x|2+h2)d/2
on B1(0). Similarly, we define Qvε(t). It can be proved, cf. [42, Lemma 3.1], that the

sequence {uε} is locally compact in space in L1((0, T )× Rd) if

lim
h→0

lim sup
ε→0

1

| log h|

∫ T

0

Quε
(t) dt = 0. (A.5.5)

Then, one computes d
dtQuε

using the PDE on uε. Applying [42, proof of Theorem 1.2] with new
assumption (A.5.4) and additional source term we deduce

Quε(t) ≤Quε(0) + C

∫ t

0

(Quε(s) +Qvε(s)) ds+ C
ε

h2

+

∫ t

0

∫
Rd

∫
Rd

Kh(x− y)|dε(t, x)− dε(t, y)|dx dy ds

+

∫ t

0

∫
Rd

∫
Rd

Kh(x− y)|uε(x)F (pε(x))− uε(y)F (pε(y))|dxdy ds.

(A.5.6)

The last integral can be bounded by C
∫ t
0
(Quε(s) +Qvε(s)) ds. Now, to deduce compactness,

we write the same expression as (A.5.6) for Qvε(t) and we sum up to deduce

Quε
(t) +Qvε(t) ≤Quε

(0) +Qvε(0) + C

∫ t

0

(Quε
(s) +Qvε(s)) ds+ C

ε

h2

+

∫ t

0

∫
Rd

∫
Rd

Kh(x− y)|dε(t, x)− dε(t, y)|dx dy ds.

Now, it is easy to see that since {∇dε} is uniformly bounded in L1((0, T )×Rd), the last term is
bounded by a constant. Hence, Gronwall’s inequality and (A.5.5) imply compactness in space of
{uε} and {vε}.
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Etude mathématique d’équations
de type Cahn-Hilliard dégénérées

Résumé

Nous étudions des équations de type Cahn-Hilliard, équation qui fut introduite pour décrire la séparation
de phases dans les systèmes multi-composants. Les résultats obtenus dans ce travail ont été motivés par
des applications biologiques, notamment la formation de tissus et la croissance de tumeurs, ainsi que par
des applications physiques, tels que les écoulements de fluides impliquant des phénomènes de tension de
surface.
La première partie de cette thèse est une analyse de la relation entre l’équation de Cahn-Hilliard et les
modèles Hele-Shaw, qui sont fréquemment utilisés pour modéliser l’écoulement des fluides ou l’évolution
de tumeurs cancéreuses dans des espaces confinés. Nous examinons en particulier comment obtenir les
modèles Hele-Shaw dans la limite dite incompressible de l’équation de Cahn-Hilliard. La deuxième partie
de la thèse se concentre sur l’étude de l’équation de Cahn-Hilliard non-locale (et ses variations) et sa
convergence vers l’équation locale. Cette équation, qui peut être dérivée rigoureusement à partir d’un
système de particules en interaction, est obtenue en remplaçant le laplacien, qui est un terme local, par
une approximation non-locale prenant en compte les interactions à longue distance entre les composants.
Nous montrons que la solution de l’équation non-locale converge vers la solution de l’équation locale dans
la limite d’interaction à courte distance. La troisième partie de la thèse se penche sur l’étude des modèles
de fluides plus classiques, tels que les équations d’Euler et de Navier-Stokes, qui intègrent des phénomènes
de tension de surface. Ces modèles sont utilisés pour décrire les écoulements de fluides ou les mouvements
de cellules dans lesquels les forces interfaciales jouent un rôle important. La quatrième partie juxtapose
la théorie cinétique, traditionnellement employée pour la représentation de phénomènes physiques à une
échelle mésoscopique, avec l’équation de Cahn-Hilliard. Notre étude se concentre spécifiquement sur
l’équation de Vlasov-Cahn-Hilliard, qui décrit les processus de transition de phase.

Mots clés : Cahn-Hilliard, limite incompressible, tension de surface, analyse asymptotique, flow gra-
dient

Abstract

We study Cahn-Hilliard type equations, an equation that was introduced to describe phase separation
in multi-component systems. The results obtained in this work have been motivated by biological
applications, such as tissue formation and tumor growth, as well as physical applications, such as fluid
flows involving surface tension phenomena.
The first part of this thesis is an analysis of the relationship between the Cahn-Hilliard equation and
the Hele-Shaw models, which are frequently used to model fluid flow or the evolution of cancerous
tumors in confined spaces. In particular, we examine how to obtain Hele-Shaw models in the so-called
incompressible limit of the Cahn-Hilliard equation. The second part of the thesis focuses on the study of
the non-local Cahn-Hilliard equation (and its variations) and its convergence to the local equation. This
equation, which can be derived rigorously from a system of interacting particles, is obtained by replacing
the Laplacian, which is a local term, by a non-local approximation taking into account the long range
interactions between the components. We show that the solution of the non-local equation converges
to the solution of the local equation in the short range interaction limit. The third part of the thesis
focuses on the study of more classical fluid models, such as the Euler and Navier-Stokes equations, which
incorporate surface tension phenomena. These models are used to describe fluid flows or cell motions in
which interfacial forces play an important role. The fourth part juxtaposes kinetic theory, traditionally
used to represent physical phenomena on a mesoscopic scale, with the Cahn-Hilliard equation. Our study
focuses specifically on the Vlasov-Cahn-Hilliard equation, which describes phase transition processes.

Keywords: Cahn-Hilliard, incompressible limit, surface tension, asymptotic analysis, gradient flows

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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