
HAL Id: tel-04590477
https://theses.hal.science/tel-04590477

Submitted on 28 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable GNN Solutions for CFD Simulations
Matthieu Nastorg

To cite this version:
Matthieu Nastorg. Scalable GNN Solutions for CFD Simulations. Artificial Intelligence [cs.AI]. Uni-
versité Paris-Saclay, 2024. English. �NNT : 2024UPASG020�. �tel-04590477�

https://theses.hal.science/tel-04590477
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

02
4UP

ASG
02
0

Scalable GNN Solutions for CFDSimulations
Solutions GNN évolutives pour les simulations CFD

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580, Sciences et Technologiesde l’Information et de la Communication (STIC)Spécialité de doctorat: Informatique MathématiqueGraduate School : Informatique et sciences du numérique.Référent : Faculté des sciences d’Orsay
Thèse préparée dans l’unité de recherche Laboratoire interdisciplinaire des sciences
du numérique (Université Paris-Saclay, CNRS), sous la direction deMarc SCHOENAUER,directeur de recherche, le co-encadrement deMichele-Alessandro BUCCI, ingénieur derecherche, et Guillaume CHARPIAT, chargé de recherche

Thèse soutenue à Paris-Saclay, le 15 Avril 2024, par

Matthieu NASTORG

Composition du jury
Membres du jury avec voix délibérative
Alexandre ALLAUZEN PrésidentProfesseur, EPSCI et Université Paris-Dauphine PSL
Victorita DOLEAN Rapporteure & ExaminatriceProfesseure, Université technologique d’Eindhoven
Elie HACHEM Rapporteur & ExaminateurProfesseur, Mines Paris PSL
Patrick GALLINARI ExaminateurProfesseur, Sorbonne Université, Paris
Augustin PARRET-FRÉAUD ExaminateurIngénieur de recherche HPC, Safran

Titre: Solutions GNN évolutives pour les simulations CFD
Mots clés: Graph Neural Networks, CFD, Equation de Poisson, Décomposition de Domaine
Résumé: La Dynamique des FluidesNumérique (CFD) joue un rôle essentiel dans laprédiction de divers phénomènes physiques,tels que le climat, l’aérodynamique ou la cir-culation sanguine. Au coeur de la CFD se trou-vent les équations deNavier-Stokes régissant lemouvement des fluides. Cependant, résoudreces équations à grande échelle reste fastidieux,en particulier lorsqu’il s’agit des équations deNavier-Stokes incompressibles, qui nécessi-tent la résolution intensive d’un problème dePoisson de Pression, garantissant la contrainted’incompressibilité. De nos jours, les méth-odes d’apprentissage profond ont ouvert denouvelles perspectives pour améliorer les sim-ulations numériques. Parmi ces approches, lesGraph Neural Networks (GNNs), conçus pourtraiter des données de type graphe tels que lesmaillages, se sont révélés prometteurs. Cettethèse vise à explorer l’utilisation desGNNspour

améliorer la résolution du problème de Pois-son de Pression. Une contribution clé impliquel’introduction d’une nouvelle architecture GNNqui respecte intrinsèquement les conditionsaux limites tout en exploitant la théorie descouches implicites pour ajuster automatique-ment le nombre de couches GNN nécessaires àla convergence : ce nouveau modèle présentedes capacités de généralisation améliorées,gérant efficacement des problèmes de Poissonde différentes tailles et formes. Néanmoins,ses limitations actuelles le restreignent auxproblèmes à petite échelle, insuffisants pourles applications industrielles qui nécessitentsouvent plusieurs milliers de noeuds. Pourmettre à l’échelle ces modèles, cette thèse ex-plore la combinaison des GNNs avec les méth-odes de Décomposition de Domaines, tirantparti des calculs en parallèle sur GPU pour pro-duire des solutions d’ingénierie plus efficaces.

Title: Scalable GNN Solutions for CFD Simulations
Keywords: Graph Neural Networks, CFD, Poisson Equation, Domain Decomposition
Abstract: Computational Fluid Dynamics (CFD)plays an essential role in predicting variousphysical phenomena, such as climate, aerody-namics, or blood flow. At the core of CFD lie theNavier-Stokes equations governing the motionof fluids. However, solving these equations atscale remains daunting, especially when deal-ing with Incompressible Navier-Stokes equa-tions. Indeed, thewell-known splitting schemesrequire the costly resolution of a Pressure Pois-son problem that guarantees the incompress-ibility constraint. Nowadays, Deep Learningmethods have opened newperspectives for en-hancing numerical simulations. Among existingapproaches, Graph Neural Networks (GNNs),designed to handle graph data like meshes,have proven to be promising. This thesis is ded-icated to exploring the use of GNNs to enhance

the resolution of the Pressure Poisson prob-lem. One significant contribution involves in-troducing a novel physics-informedGNN-basedmodel that inherently respects boundary con-ditions while leveraging the Implicit Layer the-ory to automatically adjust the number of GNNlayers required for convergence. This resultsin a model with enhanced generalization ca-pabilities, effectively handling Poisson prob-lems of various sizes and shapes. Neverthe-less, its current limitations restrict it to small-scale problems, insufficient for industrial appli-cations that often require thousands of nodes.To scale up thesemodels, this thesis further ex-plores combining GNNs with Domain Decom-position methods, taking advantage of batchparallel computing on GPU to producemore ef-ficient engineering solutions.

Synthèse

L’étude de la mécanique des fluides joue un rôle essentiel dans de nombreuses applications, allant
de l’étude de la respiration et de la circulation sanguine à la conception de technologies de pointe
telles que les pompes, les turbines, l’aviation, et même les voitures de Formule 1. Au cœur de cette
discipline se trouvent les équations de Navier-Stokes, qui régissent lemouvement des fluides. Cepen-
dant, la résolution analytique de ces équations est encore méconnue, et des outils numériques ont
été développés pour en approximer les solutions, conduisant à l’émergence de la Dynamique des
Fluides Numérique (CFD, en anglais). Une grande précision dans les résultats de la CFD est souvent
obtenue en discrétisant le domaine de calcul en un maillage avec des milliers, voire des millions de
nœuds, ce qui aboutit à un système d’équations d’au moins la taille du maillage à résoudre. Par
conséquent, aborder de tels problèmes à grande échelle reste un défi complexe, limité par le coût
computationnel de la résolution des plus petites échelles spatio-temporelles. Cela est particulière-
ment vrai lorsqu’il s’agit des équations de Navier-Stokes incompressibles. En effet, afin de résoudre
ces équations, les méthodes de choix sont les méthodes de “splitting” qui nécessitent la résolution
coûteuse d’un problème de Poisson pour calculer le champ de pression garantissant la contrainte
d’incompressibilité. Malgré les progrès importants réalisés dans la communauté du calcul haute per-
formance (HPC, en anglais), la solution du problème de Poisson reste la principale contrainte dans
l’accélération des simulations numériques de la CFD.
De nos jours, les méthodes basées sur les données, en particulier celles basées sur les réseaux neu-
ronaux profonds, redéfinissent le domaine des simulations numériques. Les réseaux neuronaux
peuvent fournir des prédictions plus rapides, réduisant ainsi les temps de travail nécessaires en in-
génierie et en science. Les premières tentatives d’utilisation de réseaux neuronaux profonds pour
résoudre des équations aux dérivées partielles, telles que les équations de Poisson, ont interprété
les données de simulation comme des images et ont capitalisé sur les remarquables avancées dans
les réseaux neuronaux convolutionnels (CNN, en anglais). Malgré des résultats remarquables, ces
modèles sont limités aux données structurées, semblables à des images, limitant leur capacité à
manipuler les données non structurées rencontrées dans les simulations numériques telles que les
maillages. Pour remédier à ces lacunes, des études récentes ont montré les capacités des réseaux
neuronaux graphiques (GNN, en anglais) à apprendre à partir de données non structurées. Cepen-
dant, ces modèles sont fréquemment entraînés de manière supervisée, nécessitant des solutions de
référence computationnellement coûteuses. Par conséquent, cesmodèles rencontrent des difficultés
de généralisation, également soulignées par le manque de considération explicite des conditions aux
limites, un sujet crucial concernant les applications physiques. De plus, l’absence de garanties con-
cernant la fiabilité et la convergence des méthodes d’apprentissage profond a empêché leur mise en
œuvre généralisée aux premiers stades de la conception et de la production de nouvelles solutions
d’ingénierie.
Cette thèse vise à explorer les approches GNN pour résoudre l’équation de Poisson de pression. Une
contribution significative de cette recherche concerne le développement d’un modèle novateur basé
sur les GNN qui résout de manière itérative un large éventail de problèmes de Poisson avec des
conditions aux limites mixtes, ce qui est en accord avec les scénarios de la CFD. Le modèle proposé
exploite la théorie des couches implicites pour ajuster dynamiquement le nombre de couches GNN
nécessaires à la convergence, lui permettant de manipuler des maillages de tailles et de formes vari-
ables. Le modèle est entraîné à l’aide d’une fonction de perte "orientée-physique", et le processus

2

d’entraînement est stable par conception. De plus, son architecture originale prend explicitement
en compte les conditions aux limites et peut s’adapter à toute solution initialement fournie. Néan-
moins, ces modèles sont encore limités aux problèmes avec un petit nombre de nœuds, et les mettre
à l’échelle pour desmaillages plus grands, comme ceux rencontrés dans les applications industrielles,
nécessite des efforts supplémentaires. À cette fin, une autre contribution de cette thèse concerne la
combinaison des modèles GNN avec les méthodes de Schwarz couramment rencontrées en décom-
position de domaine. En utilisant cette approche, il est possible de tirer parti du calcul parallèle par
“batch” sur GPU pour produire des solutions d’ingénierie plus efficaces.

3

Extended abstract

The study of fluid mechanics plays an essential role in many applications, ranging from studying
breathing and blood flow to the design of cutting-edge technologies such as pumps, turbines, avi-
ation, and even Formula 1 cars. At the core of this discipline lie the Navier-Stokes equations, which
govern the motion of fluids. However, the analytical resolution of these equations remains elusive,
and numerical tools have been developed to approximate their solutions, leading to the emergence
of Computational Fluid Dynamics (CFD). High precision in CFD results is often achieved by discretizing
the computational domain into ameshwith thousands or evenmillions of nodes, resulting in a system
of equations of at least the size of the mesh to solve. Consequently, tackling such problems at scale
remains daunting, limited by the computational cost of resolving the smallest spatio-temporal scales.
This is particularly true when dealing with incompressible Navier-Stokes equations. The well-known
splitting method, indeed, requires the costly solution of a Poisson problem to compute the pressure
field that guarantees the incompressibility constraint. Despite the important progress made in the
High-Performance Computing (HPC) community, the solution of the Poisson problem remains the
major bottleneck in the speedup of CFD numerical simulations.
Nowadays, data-driven methods, especially those based on deep neural networks, are reshaping the
realm of numerical simulations. Neural networks can provide faster predictions, reducing turnaround
time forworkflows in engineering and science. Initial attempts to use deepneural networks for solving
partial differential equations, such as Poisson equations, involved treating simulation data as images
and capitalizing on the remarkable advancements in Convolutional Neural Networks (CNNs). Despite
noteworthy results, these models are restricted to structured, image-like data, limiting their ability to
handle the unstructured data encountered in numerical simulations like meshes. To address these
shortcomings, recent studies have shown the abilities of GraphNeural Networks (GNNs) to learn from
unstructured data. However, these models are frequently trained in a supervised manner, requiring
computationally expensive ground-truth solutions. Consequently, they struggle with generalization,
also emphasized by the lack of explicit consideration of boundary conditions, a crucial topic regarding
physical applications. Besides, the absence of guarantees regarding the reliability and convergence
of deep learning methods has prevented their widespread implementation in the early stages of de-
signing and producing new engineering solutions.
This thesis aims to explore GNN approaches for solving the Pressure Poisson equation. One signif-
icant contribution of this research involves the development of a novel GNN-based model that iter-
atively solves a wide range of Poisson problems with mixed boundary conditions, aligning with CFD
scenarios. The proposed model leverages the Implicit Layer theory to dynamically adjust the number
of GNN layers required for convergence, enabling it to handle meshes of variable sizes and shapes.
The model is trained using a “physics-informed” loss, and the training process is stable by design.
Furthermore, its original architecture explicitly takes into account the boundary conditions and can
adapt to any initially provided solution. Nevertheless, these models are still limited to problems with
a small number of nodes, and scaling them up to larger meshes, as encountered in industrial applica-
tions, requires additional effort. To that end, another contribution of this thesis concerns combining
GNN models with Schwarz methods commonly encountered in the field of Domain Decomposition.
Using this approach allows taking advantage of batch parallel computing on GPUs to produce more
efficient engineering solutions.

4

Thesis framework

This thesis is a collaboration between the two French laboratories IFPEN1 and INRIA2, in the framework
of the ML4CFD (Machine Learning for CFD) project, funded by the DATAIA3 institute.
IFPEN is a multi-disciplinary French research institute dedicated to new energy and environmental
technologies. The simulation of complex fluid flow is an important research area that enables sev-
eral applied research projects, from designing electric engine cooling systems and efficient wind pro-
pellers to optimizing exchange chemical reactors’ performance.
The INRIA Saclay TAU team (TAckling the Underspecified) is well known for its Machine Learning and
Artificial Intelligence activities. Oneof its central topics is the application ofMachine Learningmethods
to scientific computing problems.
There is a long-term ongoing collaboration between the TAU team and IFPEN. Recently, the two lab-
oratories have decided to focus on a joint effort in the domain of Machine Learning applied to scien-
tific computing. A collaborative project has been created between the teams to enhance the perfor-
mance of CFD simulations using machine learning. This thesis belongs to the "Artificial Intelligence
and Learning" scientific priority of the DATAIA institute and deals with the challenge of integrating a
priori scientific knowledge of physical models in the learning process.
Within IFPEN, this thesis is in line with the scientific policy of the research direction “Digital Sciences
and Technologies”. The targeted applications are the design of chemical reactors and the develop-
ment of cooling systems for electric motors. Furthermore, it is part of the Data Science research axis
of the scientific direction, which aims to optimize the processing of massive data flows from experi-
mentation or simulation. In particular, this work contributes to a specific challenge entitled “Artificial
Intelligence for Digital Simulation,” which aims to develop methodologies and learning algorithms to
improve existing digital simulation codes. This thesis is proposed within the “Transverse Fundamen-
tal Research” program of the scientific direction. It aims to strengthen IFPEN’s scientific and technical
mastery in the fields of high-performance computing and thus efficiently serve all of IFPEN’s areas of
activity, calling for simulation and computing.

1Institut français du pétrole et des énergies nouvelles : https://www.ifpenergiesnouvelles.fr/2Institut national de recherche en sciences et technologies du numérique : https://www.inria.fr/fr3https://www.dataia.eu/

5

https://www.ifpenergiesnouvelles.fr/
https://www.inria.fr/fr
https://www.dataia.eu/

Acknowledgements

To everyone who has accompanied and supported me throughout my Ph.D. journey,
To my supervisor Marc Schoenauer: I am grateful for your trust and for granting me the opportunity
to pursue my thesis. Your unwavering availability, whether for scientific or administrative matters,
has been essential.
To my numerous co-supervisors: Thank you, Michele-Alessandro Bucci, for your patience while guid-
ing me throughout this journey. Your wealth of ideas and unwavering availability to address my nu-
merous questions have been invaluable. Thibault Faney and Jean-Marc Gratien, I express my grati-
tude for your expert insights and feedback, which have played a crucial role in shaping my research,
from academic to industrial applications. And to Guillaume Charpiat, I am deeply thankful for your
participation in mentoring me onmy PhD journey. Your expertise and our endless discussions on the
theoretical aspects (but not only!) of my work have been immensely beneficial.
To my reviewers and examinators: Thank you, Victorita Dolean, Elie Hachem, Alexandre Allauzen,
Patrick Gallinari, and Augustin Parret-Fréaud, for dedicating your time to reviewmy work thoroughly.
Your constructive feedback has been essential in enhancing the quality of my research.
To my colleagues and peers: Emmanuel and Lucas, thank you for the scientific discussions that have
greatly enriched my journey, for the memorable conversations over drinks, and for our shared ad-
ventures during conference trips. I also thank Thibault, Manon, Rémy, Michele, Adrien, Stéphane,
Cyriaque, and all my colleagues and peers from the TAU team and IFPEN. It has been a pleasure
sharing knowledge and expertise with each of you, undoubtedly contributing to improving my work.
Special mention goes to my former internship supervisor, Angelo Iollo, who allowed me to discover
the research world and motivated me to pursue a PhD.
To my dear friends. The ones from Brive, who have been with me since childhood. The ones from La
Rochelle University, withwhommy research interest first started. The ones fromBordeauxUniversity,
where the idea for this PhD took root. Thank you for bringing me joy in both the good and more
difficult times of this journey. I would like to extend a special mention to Alice. Thank you for being so
supportive and caring, for our countless and entertaining discussions, and for our trips abroad that
provided much-needed rest. Now, it’s my turn to offer support, and I wish you all the best as you
enter the final phase of your PhD journey.
À ma famille : Un grand merci à ceux qui m’ont accompagné tout au long de cette aventure. Mention
spéciale à ma Maman pour ses encouragements permanents, mais surtout pour m’avoir soutenu (et
supporté) pendant que je me creusais les méninges sur mes problèmes de recherche ... et ce n’est
pas fini ! Une pensée particulière pour Thé et Papijap, qui, j’en suis sûr, ont veillé sur moi depuis
là-haut.

6

Contents

Motivations & Outline 9

I Background and State-of-the-art 12

1 Introduction to Computational Fluid Dynamics 13
1.1 Governing equations in fluid mechanics . 15
1.2 Numerical strategies for incompressible flow . 21
1.3 The Finite Element method . 26
1.4 Synthetical test cases . 31
1.5 Conclusion . 35

2 Introduction to Deep Learning 38
2.1 Artificial Neural Networks . 39
2.2 Training a Deep Learning model . 41
2.3 Convolutional Neural Networks . 46
2.4 Graph Neural Networks . 49

3 Machine Learning for Physics Simulations 60
3.1 CNNs for physics simulations . 60
3.2 GNNs for physics simulations . 61
3.3 The Physics-Informed approach (PINN) . 62
3.4 Deep Statistical Solvers . 64
3.5 Thesis contributions . 65

II Graph Neural Network Solvers for Poisson-like problems 67

4 General framework 68
4.1 Problem statement . 68
4.2 Statistical problem . 70
4.3 Dataset description . 73

5 Deep Statistical Solvers 76
5.1 Introduction . 76
5.2 Methodology . 77
5.3 Experiments & Results . 81
5.4 Limitations . 83

7

6 DS-GPS : A Recurrent GNN Solver 86
6.1 Introduction . 86
6.2 Methodology . 88
6.3 Experiments & Results . 94
6.4 Conclusion and Limitations . 102

7 Ψ-GNN : An Implicit GNN Solver 103
7.1 Introduction . 104
7.2 Methodology . 107
7.3 Theoretical properties . 113
7.4 Experiments & Results . 118
7.5 Discussion and Conclusions . 129

III Hybrid Solvers 130

8 Introduction to Schwarz methods 139
8.1 Overview of Schwarz methods . 139
8.2 Discrete formulations . 142
8.3 Schwarz methods as iterative solvers . 146
8.4 Schwarz methods as preconditioners . 147
8.5 Two-level methods . 151

9 Hybrid Solvers for Large-Scale Problem Solving 154
9.1 Introduction . 154
9.2 Machine Learning and Domain Decomposition . 155
9.3 Ψ-GNN-Jacobi-Schwarz iterative method . 158
9.4 GNN-based Schwarz Preconditioner . 165
9.5 Conclusion & Discussions . 181

Conclusion 183

8

Motivations & Outline

The study of fluid mechanics, whether in motion or at rest, holds central impor-
tance in numerous applications, ranging from studying breathing and blood flow
to the design of cutting-edge technologies such as pumps, turbines, aviation, and
even Formula 1 cars. At the core of this discipline lies the Navier-Stokes equations,
which govern the behaviour of fluids. However, the analytical resolution of these
equations remains elusive, and numerical tools have been developed to approxi-
mate their solutions, leading to the emergence of Computational Fluid Dynamics
(CFD). In the context of a CFD project, three steps are usually required to solve the
problem: i) a pre-processing step in which the domain of interest is discretized into
an unstructuredmesh, ii) a resolution step where the continuous equations are dis-
cretized using numerical methods, and the induced system of equations is solved,
and iii) a post-processing step that aims to analyze and visualize the results for
decision-making. In the industrial context, achieving high accuracy in CFD results
is mandatory, often achieved by considering a discretization of the computational
domain into ameshwith thousands, or evenmillions of nodes, resulting in a system
of equations of size at least the size of themesh to solve. Consequently, solving such
problems often comes at the expense of significant time and energy consumption.
Some fluids can be considered incompressible, as e.g., liquids. For such incom-
pressible fluids, simpler versions of theNavier-Stokes equations can bederived: this
thesis is dedicated to the numerical resolution of the incompressible Navier-Stokes
equations. The numerical approximation of these equations is not straightforward
and a popular approach is the special numerical strategy called splitting schemes.
Splitting schemes aim to divide the resolution of the incompressible Navier-Stokes
equations into three simpler steps. Notably, the second step involves solving a Pois-
son problem for pressure, responsible for ensuring the incompressibility constraint.
This step is knownas the PoissonPressure Correction step and is themost computa-
tionally expensive task in the resolution of the incompressible Navier-Stokes equa-
tions. Despite the important progress made in the High-Performance Computing
(HPC) domain, solving the Poisson Pressure problem remains the major bottleneck
in the speedup of CFD numerical simulations. Therefore, this manuscript places
particular focus on enhancing the resolution of the Poisson Pressure problem.
Nowadays, data-driven methods, especially those based on deep neural networks,
are causing a profound transformation in the field of numerical simulations. Neural
networks can provide faster predictions, reducing turnaround time for workflows
in engineering and science. However, the lack of guarantees regarding the relia-
bility and convergence of deep learning methods has prevented their widespread

9

implementation in the early stages of designing and producing new engineering
solutions. For this reason, recent studies propose to leverage the high flexibility of
neural networks to alleviate computationally demanding operations in CFD simula-
tions without necessarily replacing them. The first attempts to apply deep neural
networks to solve partial differential equations (PDEs), such as Poisson equations,
involved treating simulation data as images and capitalizing on the remarkable ad-
vancements in Convolutional Neural Networks (CNNs). Despite achieving notewor-
thy results, these models are restricted to structured, image-like data, limiting their
ability to handle the unstructured data typically encountered in numerical simu-
lations that involve meshes. To address these shortcomings, recent studies have
shown the abilities of Graph Neural Networks (GNNs) to learn from unstructured
data and provide accurate solutions to PDEs. However, these models are often
trained in a supervised manner, requiring a large amount of computationally ex-
pensive ground-truth solutions. Consequently, these models lack generalization
capabilities, also emphasized by the lack of explicit consideration of boundary con-
ditions, a crucial topic regarding physical applications. Moreover, these models do
not provide any guarantees regarding their convergence, which prevents their ap-
plication to industrial contexts.
This thesis aims to explore Graph Neural Network (GNN) approaches for solving
the Pressure Poisson equation. A significant contribution of this research involves
the development of a novel GNN-based model that enhances the generalization
capabilities of state-of-the-art methods. The proposed GNN model is trained in a
“physics-informed” manner, directly minimizing the residual of the discretized Pois-
son problem, with the aim of learning the underlying physics of the problem. Ad-
ditionally, the proposed model adopts a node-oriented architecture that explicitly
considers boundary conditions and leverages the theory of Implicit Layer to dynam-
ically adjust the number of GNN layers required for convergence, enabling it to han-
dle geometries of variable sizes and shapes. However, such models are still limited
to problems with a small number of nodes, and scaling them up to larger geome-
tries, as encountered in industrial applications, requires additional effort. To that
end, we propose building hybrid methods by combining these GNN-based mod-
els within Domain Decomposition frameworks. Such approaches imply several use
cases, among which is the use of such hybrid methods as preconditioners to en-
hance the convergence of well-established Krylov methods.
This manuscript is divided into three parts, as follows.
In Part I, we provide the necessary background and introduce the current state-
of-the-art relevant to our work. Chapter 1 provides an introduction to Computa-
tional Fluid Dynamics, covering topics such as the derivation of the incompressible
Navier-Stokes equations and the use of numerical strategies like splitting schemes
to approximate them. It also discusses fundamental aspects of the Finite Element

10

method and includes illustrations of well-known synthetic CFD test cases. Chapter
2 introduces Deep Learning methods, beginning with core concepts such as Artifi-
cial Neural Networks and Convolutional Neural Networks. It then focuses on Graph
Neural Networks, which serve as the central Deep Learning architecture used in this
thesis. We conclude this first part with Chapter 3, where we bridge the gap between
the first two chapters by exploring groundbreaking state-of-the-art Deep Learning
methods applied to solving Computational Fluid Dynamics problems, and highlight-
ing how this thesis contributes to the field. In the light of this quick survey, having
set the scene, we are able to describe our contributions in Section 3.5.
In Part II, we present the core GNN-based models developed in this work. Follow-
ing a specific framework detailed in Chapter 4, we further introduce three differ-
ent GNN models. Chapter 5 provides a brief overview of the state-of-the-art Deep
Statistical Solvers (DSS) approach, which serves as the foundation for many of our
contributions. In a nutshell, DSS is a GNN-based solver that iteratively addresses
Poisson problems using a fixed number of GNN layers to propagate information.
However, this architecture has limitations in terms of generalization, particularly
regarding problems of varying sizes and explicit consideration of boundary condi-
tions. Chapter 6 presents DS-GPS, our first contribution, designed to enhance DSS.
It introduces a recurrent architecture that significantly reduces the size of themodel
while enabling variable (thoughmanually specified) numbers of GNN layers for con-
vergence. However, this model still relies on manual setup for training, limiting
its generalization potential across different mesh sizes. To address this limitation,
Chapter 7 introduces ourmain contribution: theΨ-GNNmodel. Ψ-GNN is a physics-
informed GNN-based model designed to solve a wide range of Poisson problems
with mixed boundary conditions. Leveraging Implicit Layer theory, it automatically
and dynamically adjusts the number of GNN layers required for convergence, en-
abling generalization across meshes of various sizes while ensuring convergence.
Moreover, themodel inherently respects boundary conditions, enhancing its gener-
alization capabilities. However, such models remain limited to small-size problems,
which hinders their use for industrial applications.
In Part III, we address the challenge of scaling up GNN models to handle prob-
lems with a very large number of nodes. Our approach leverages well-established
Schwarz methods from the field of Domain Decomposition, whose background in-
formation is provided in Chapter 8. The ultimate goal, as described in the concluding
Chapter 9, is to combine the use of GNN models described in Part II with Schwarz
methods. This innovative approach harnesses batch parallel computing on GPUs in
Deep Learning to enhance the resolution of the local sub-problems, extending the
applicability of GNN models to geometries with significantly more nodes.
The manuscript ends with some conclusions, sketching some possible research di-
rections opened by this work.

11

Part I

Background and State-of-the-art

12

1 - Introduction to Computational Fluid Dynamics

Sommaire
1.1 Governing equations in fluid mechanics 15

1.1.1 The continuity equation 17

1.1.2 The momentum equation 17

1.1.3 The energy equation 19

1.1.4 Frame of the thesis 19

1.2 Numerical strategies for incompressible flow . . . 21

1.2.1 Natural approach . 21

1.2.2 Splitting scheme strategies 22

1.2.3 The Incremental Pressure Correction Scheme (IPCS) 24

1.3 The Finite Element method 26

1.4 Synthetical test cases 31

1.4.1 Channel flow . 32

1.4.2 Flow around a cylinder 33

1.5 Conclusion . 35

Computational fluid dynamics (CFD) is a branch of fluid mechanics that employs
computer-based numerical analysis to simulate, analyze, and solve fluid flow prob-
lems.
Throughout history, researchers have been fascinated by phenomena related to
fluid flow. However, conducting accurate predictions through experimental studies
has always been a time-consuming and expensive task. Consequently, scientists
and engineers have sought to integrate mathematical models, numerical methods,
and advancements in computer architecture to achieve faster results while main-
taining high accuracy.
The roots of CFD can be traced back to 1917 when Lewis Fry Richardson (1881-1953)
appliedmodernmathematical techniques to weather forecasting, performingman-
ual calculations. However, the true development of CFD started in the 1940s with
the introduction of the first computers. Notably, the earliest numerical solution for

13

flow over a cylinder was carried out in 1933 by Thom in England (Thom, 1933), fol-
lowed twenty years later by Kawaguti in Japan, who employed a mechanical desk
calculator (Kawaguti, 1953b).
Since the 1960s, numerous numerical methods have been developed and continue
to bewidely utilizedwithin the CFD community. A significantmilestonewas reached
in 1980 with the publication of “Numerical Heat Transfer and Fluid Flow” by Suhas
V. Patankar (Patankar, 1980), which is regarded as one of the most influential books
on CFD to date.
In the early 1980s, the adoption of commercial CFD software gained attraction among
major companies worldwide. One of the primary challenges posed by the industrial
sector was the reduction of computational costs and time. To that end, computers
became more powerful, offering enhanced execution speeds and storage capac-
ities. These advancements in computer architecture, coupled with studies in the
field of High-Performance Computing (HPC), have significantly improved the com-
putational cost of numerical simulations. More recently, contemporary research
in Deep Learning, which harnesses GPU parallel computations, has showcased the
tremendous potential for further augmenting simulation speed. However, these
models do not currently provide the same level of reliability as traditional solvers,
a topic discussed in more detail in Chapter 3.
The applications of CFDare extensive. Whether it involves designing a Formula 1 car,
studying the blood flow in arteries, or analyzing wind propagation on awind turbine
blade, CFD has become a crucial step in industrial processes, and a common tool in
engineering for studying fluid mechanics.
Regarded as a multidisciplinary field, CFD integrates rigorous mathematical con-
cepts, fluid mechanics knowledge, and computer science techniques. The physi-
cal properties of fluid motion are described by mathematical equations, typically
expressed as partial differential equations known as the Navier-Stokes equations.
However, as these non-linear equations do not have a general analytical solution,
the use of computer science techniques to obtain approximate solutions is usually
used. The general procedure for solving a CFD problem is illustrated in Figure 1.1
and can be outlined as follows:

1. Pre-processing: Creation of the geometry, generation of the mesh, configu-
ration of fluid properties, and boundary conditions.

2. Solver: Discretization of the governing equations in fluid mechanics using
any numerical methods (Finite Element (FEM), Finite Volume (FVM), Finite Dif-
ference (FDM)) and resolution of the induced system.

3. Post-processing: Analysis of the results, plot of the quantities of interest,
decision making, shape optimization ...

14

Figure 1.1: Illustration of a general CFD pipeline, divided into three components: Pre-processing,
Solver, and Post-processing. The Pre-processing step involves creating the geometry, generating
the mesh, and providing initial configurations. In the Solver section, an appropriate mathemat-
ical model is chosen and discretized using numerical methods, leading to a system of equations
to be solved. The Post-processing step involves analyzing the results and making decisions based
on the tackled problem. Note that this process can be repeated multiple times, notably in an
optimization process, for instance.

In the following, Section 1.1 presents an introduction to the governing equations in
fluid mechanics, establishing a fundamental framework for this thesis. Section 1.2
explores numerical strategies used to discretize the Navier-Stokes equations. In
Section 1.3, a concise overview of the Finite Element method is provided. Finally,
Section 1.4 applies the theoretical concepts to practical use by examining the nu-
merical resolution of classical CFD problems.

1.1 . Governing equations in fluid mechanics

Fluid dynamics is a scientific field that aims to provide an accurate description of
the movement of fluid particles in a flow by setting relationships between the vari-
ous forces involved. Over several decades of research, mathematicians and physi-
cists have developed local partial differential equations known as the Navier-Stokes
equations, which connect velocity, pressure, and forces (such as volumetric and sur-
face forces).
In this Chapter, we adopt the convention that any variablewritten in bold represents

15

a vector. For instance, u = (u, v, w) represents the flow velocity vector field, and u
is its first component in the (x, y, z) reference frame in 3D.
To start with, we introduce essential definitions, properties, and classifications of
fluids. Here are the key points:
Flow velocity (u): A vector field that represents the velocity of the fluid in a flow.
It is described by its components (u, v, w), which depend on the position (x, y, z) in
3D space and time t. The unit of velocity in the SI system ismeters per second (m/s).
Pressure (p): The normal force exerted by a fluid per unit area. In the SI system,
pressure is measured in newtons per square meter (N/m2).
Density (ρ): The amount of matter contained in a unit volume of a substance. In
the SI system, density is expressed in kilograms per cubic meter (kg/m3).
Temperature (T): A measure of the hotness or coldness of a system. In thermody-
namics, it represents the internal energy of a system. Temperature is measured in
Kelvin (K) in the SI system using the absolute temperature scale.
Viscosity (µ or ν): A measure of the resistance of a fluid to a change in shape or
movement of neighbouring portions relative to one another. It quantifies the inter-
nal friction between adjacent layers of the fluid in relative motion. Viscosity can be
measured in two ways. The dynamic viscosity (µ) is determined by measuring the
resistance of the fluid to flow under an applied external force, and it is expressed
in kilograms per meter per second (kg/(m.s)). The kinematic viscosity (ν) is obtained
by measuring the flow resistance of the fluid under the influence of gravity, and it is
expressed in square meters per second (m2/s). The relationship between dynamic
and kinematic viscosities is given by ν = µ

ρ .
Compressibility: A measure of the change in volume of a fluid in response to a
pressure change. An incompressible flow occurs when the density remains nearly
constant throughout the flow. If the density variation during a flow exceeds 5%,
it is considered compressible. Compressible fluids require additional equations to
account for density changes.
Laminar vs Turbulent flow: In a laminar flow, fluid particles follow smooth paths
in layers, withminimal mixing between adjacent layers. Turbulent flow, on the other
hand, is characterized by chaotic changes in pressure and flow velocity. Transitional
flow occurs when the flow alternates between laminar and turbulent states. The
dimensionless Reynolds number is a critical parameter that determines whether a
flow is laminar or turbulent.
Steady and Unsteady flow: A steady flow is one in which conditions such as ve-
locity and pressure may vary from point to point but remain constant over time. In
contrast, an unsteady flow occurs when the conditions at a given point change with

16

time.
By leveraging these fundamental concepts, we can delve into the Navier-Stokes
equations and explore the dynamics of fluid motion more comprehensively. The
governing equations in fluid mechanics are built by respecting the conservation
laws of physics, which are:

1. Conservation of the mass of the fluid.
2. Newton’s second law.
3. First law of thermodynamics.

To mathematically derive these equations, we consider an arbitrary closed control
volume V , fixed in space and time. The boundary of V is described by the surface
S and its normal unit vector n, pointing towards the outside of V .

1.1.1 . The continuity equation

The principle ofmass conservation asserts that the change in the rate ofmasswithin
the control volume is equal to the mass flow traversing the surface S:

d
dt

∫
V
ρdV = −

∫
S
ρu · ndS (1.1)

By applying Gauss’ divergence theorem to the right part of (1.1) we get:
∫
V

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0 (1.2)

Since (1.2) is valid for any control volume V , we must have:
∂ρ

∂t
+∇ · (ρu) = 0 (1.3)

If the fluid is incompressible, the density ρ is constant through time, i.e. ∂ρ
∂t

= 0, and
we obtain the incompressibility condition for the flow field:

∇ · u = 0 (1.4)
1.1.2 . The momentum equation

Newton’s second law asserts that the rate of change of momentum equals the net
force F , which is the sum of all forces applied to the fluid. The momentum dp of a

17

small volume of fluid dV is given by dp = ρudV. By taking into consideration that
momentum can be transported in and out of the boundary S of the control volume
V , we have the following equation:

∂

∂t

∫
V
ρudV+

∫
S
ρ (n · u)udS = F (1.5)

The net force can be expressed as:

F =

∫
V
(∇ · σ + ρf)dV (1.6)

where f is the body force (gravity for instance) and σ is the stress tensor.
Combining (1.5) and (1.6), usingGauss’s divergence theoremand the same argument
that the volume V is arbitrary, lead to:

∂

∂t
(ρu) +∇ · (ρuu) = ∇ · σ + ρf (1.7)

By differentiating the left side of (1.7) using chain rules and conservation mass, we
obtain:

∂

∂t
(ρu) +∇ · (ρuu) = u

∂ρ

∂t
+ ρ

∂u

∂t
+ u∇ · (ρu) + ρ (u · ∇)u (1.8)

= ρ
∂u

∂t
+ ρ (u · ∇)u (1.9)

Hence we end up with the following:

ρ
∂u

∂t
+ ρu · ∇u = ∇ · σ + ρf (1.10)

For Newtonian fluids, the stress tensor can be expressed as:
{
σ = −pI + τ
τ = λ (∇ · u) I + 2µϵ(u)

where τ is the Cauchy stress tensor, ϵ(u) = 1

2

(
∇u+∇uT

) the strain-rate tensor, p
the pressure, µ the dynamic viscosity and λ the second coefficient of viscosity.
We can reformulate (1.10) as follows:

18

ρ
∂u

∂t
+ ρu · ∇u = ρf −∇p+ µ∇2u+ (λ+ µ)∇ (∇ · u)

+ (∇ · u)∇λ+ 2ϵ(u) · ∇µ
(1.11)

In the case of an incompressible fluid, (1.11) reduces to:
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∆u+ f (1.12)

where ν is the kinematic viscosity.
1.1.3 . The energy equation

The equation governing the conservation of energy is derived from the first law of
thermodynamics. It asserts that the rate of change of energy is equivalent to the
net rate at which heat is added to the system plus the net rate of work done on the
system. Mathematically, this can be expressed as:

∂

∂t

∫
V
ρEdV+

∫
S
ρE(n · u)dS = −

∫
S
n · qdS+

∫
S
n · (σ · u)dS (1.13)

with q the heat flux, E the total specific energy defined asE = e+
1

2
u2−f ·u, where e

is the specific internal energy, 1
2
u2 the specific kinetic energy and−f ·u the specific

potential energy.
By usingGauss’s divergence theorem, and sinceV is arbitrary, we get the expression
of the energy equation:

∂

∂t
(ρE) +∇ · (ρEu) = −∇ · q +∇ · (σ · u) (1.14)

Note that there are other forms of Equation (1.14) in non-conservative variables,
including forms that involve the temperature T as a variable.

1.1.4 . Frame of the thesis

In this thesis, our focus will be solely on the case of isothermal incompressible flows
with constant density ρ and viscosity µ. As a result, the energy equation becomes
irrelevant, and the flow is completely governed by equations (1.4) and (1.12). Besides,
we also restrict ourselves to two-dimensional flows, with the understanding that the
following can be readily extended to three-dimensional flows.

19

To summarize, in this context, our objective is to determine the velocity u(x, t) and
pressure p(x, t)within a domainΩ ⊂ R2, solution of the systemof partial differential
equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∆u+ f

∇ · u = 0
(1.15)

where ν =
µ

ρ
is the kinematic viscosity.

In order to be consistent, a system like (1.15) needs to be equipped with proper
boundary conditions. In the context of the incompressible Navier-Stokes equations,
it is common to require that the velocity satisfies particular conditions on the bound-
ary of the domain Ω, denoted as ∂Ω. Here are the most common ones:

1. Slip: u · n = 0

2. No-slip: u = g

3. Stress free: σ · n = 0

4. Do-nothing: n · ∇u− pn = 0

Slip boundary conditions indicate that the fluid flow runs parallel to the boundary.
No-slip boundary conditions, on the other hand, require the velocity u to match
a specific function g on the boundary (if g = 0, the fluid is considered to be at
rest). Stress-free and do-nothing boundary conditions are commonly applied to
the sections of the boundary where the flow exits the domain (outflow). Stress-
free boundary conditions simulate free flow into a large reservoir, while do-nothing
boundary conditions are utilized to truncate elongated channel-like domains.
Additionally, due to the presence of the time derivative in the velocity equation, it is
necessary to provide an initial condition of the form u(·, t0) = u0.
One of the most important challenges of CFD concerns the understanding of tur-
bulence. The basic measure of the tendency of a fluid to produce turbulence is the
dimensionless Reynolds number:

Re =
UL

ν
(1.16)

where U is the characteristic velocity, L a representative length scale of the compu-
tational domain and ν the kinematic viscosity.

20

A high Reynolds number indicates turbulent flow, while a low Reynolds number cor-
responds to a steady-state laminar flow. The critical Reynolds number is a specific
value that delineates transitions between different flow regimes (laminar, transi-
tional, turbulent), which can vary depending on the type of flow and geometry. For
example, when examining fluid flow in a pipe, a laminar regime may be observed
for Reynolds numbers up to Re = 2300, a transitional regime from Re = 2300 to
Re = 4000, and a turbulent regime for Reynolds numbers greater than 4000.
In this thesis, our focus will be limited to laminar regimes, implying low Reynolds
numbers.
For theoretical needs, one can findmore information about fluid dynamics in Batch-
elor (2000). For a more applied perspective, a practical approach is presented in Tu
et al. (2007).

1.2 . Numerical strategies for incompressible flow

This section focuses on numerical strategies for solving the incompressible Navier-
Stokes equations, as described by the system (1.15). In the first part, we demon-
strate that utilizing a natural discretization approach often gives rise to significant
numerical challenges, such as saddle-point problems. To overcome these difficul-
ties, various methods have been developed, employing different strategies such as
stabilization techniques, penalty methods, or operator splitting schemes, as explained
in Langtangen et al. (2002). Among thesemethods, splitting schemes have emerged
as the most widely employed approach in practice, forming the central focus of this
Chapter.

1.2.1 . Natural approach

A straightforward approach for solving (1.15) is to apply an explicit forward Euler
scheme to the momentum equation:

un+1 − un

δt
+ (un · ∇)un = −1

ρ
∇pn + ν∆un + fn (1.17)

Here, δt represents the time step, and n denotes the time level. Using numerical
methods to discretize the space operators (e.g., Finite Element, Finite Volume, etc),
obtaining the solution un+1 is straightforward. However, un+1 often fails to satisfy
the divergence-free condition (i.e., the incompressibility equation ∇ · un+1 ̸= 0).
Additionally, there is no explicit computation of pn+1.
To overcome these drawbacks, one can introduce more implicitness in the velocity
term, and explore a semi-implicit approach based on a backward Euler scheme,
which uses a previous velocity in the convective term as a linearization technique:

21

un+1 − un

δt
+ (un · ∇)un+1 = −1

ρ
∇pn+1 + ν∆un+1 + fn+1

∇ · un+1 = 0
(1.18)

which can be rewritten:
 (1 + δt(un · ∇) + δtν∆)un+1 +

δ

ρ
∇pn+1 = un + δtfn+1

∇ · un+1 = 0
(1.19)

Again, using any spatial numerical method, the problem amounts to solving the
following linear system:

[
N Q
QT 0

] [
u
p

]
=

[
f
0

]
(1.20)

where u contains all spatial degrees of freedom of the vector velocity field and p

is the vector of pressure degrees of freedom which, for first-order methods, corre-
sponds to values at the grid points.
Systems like (1.20) are referred to as saddle-point problems and can become singular
under certain circumstances. In fact, special spatial discretization or stabilization
techniques may be necessary to ensure the invertibility of such systems. Accord-
ing to Langtangen et al. (2002), constructing preconditioners for these saddle-point
problems can be highly challenging, making it impractical to directly employ stan-
dard iterative solvers. For further insights into the resolution of saddle-point linear
systems, we refer the reader to block-preconditioners methods (Silvester and Wa-
then, 1994; Golub and Wathen, 1998).
Consequently, much of the research on approximating the solution of the incom-
pressible Navier-Stokes equations (1.15) has sought to avoid solving systems like
(1.20). Among many different approaches, splitting methods have become the most
widely used in practice and are introduced in the following section.

1.2.2 . Splitting scheme strategies

In the literature, one can find various variants of operator splitting schemes, mainly
depending on the initially chosen strategy (explicit, implicit, linearization of the non-
convective term, etc.). However, all versions follow the same general steps. In order
to provide an accessible introduction and a comprehensive understanding of its
architecture, we first derive its simplest form using explicit schemes.
The overall idea is to decompose system (1.15) into a series of familiar and simpler
equations. The evolution of the velocity u is primarily computed through two steps.

22

First, we advance the momentum equation by neglecting the pressure term p, re-
sulting in a tentative velocity u⋆. Subsequently, the tentative velocity u⋆ is corrected
through projection onto the divergence-free field, which necessitates solving a Pois-
son equation for the pressure.
The first step is to apply a forward Euler scheme to the momentum equation:

un+1 = un − δt

[
(un · ∇)un − 1

ρ
∇pn +∆un + fn

]
(1.21)

As mentioned in Section 1.2.1, un+1 does not verify the divergence-free condition
and does not explicitly compute pn+1. To address these issues, we consider un+1 as
a “tentative” velocity, denoted u⋆ and try to compute a correction, denoted ũ such
that un+1 = u⋆ + ũ.
Here is the equation for u⋆:

u⋆ = un − δt

[
(un · ∇)un − 1

ρ
∇pn +∆un + fn

]
(1.22)

and the one for un+1 with the pressure evaluated at time n+ 1:

un+1 = un − δt

[
(un · ∇)un − 1

ρ
∇pn+1 +∆un + fn

]
(1.23)

Subtracting (1.22) and 1.23 yields to:

ũ = −δt
ρ
∇(pn+1 − pn) (1.24)

That is:

un+1 = u⋆ − δt

ρ
∇(pn+1 − pn) (1.25)

Yet, un+1 still has to fulfil the incompressibility constraint:

∇ · un+1 = ∇ · u⋆ − δt

ρ
∇ · ∇(pn+1 − pn) (1.26)

By denoting Φ = (pn+1 − pn) we obtain the so-called Poisson pressure equation:

∆Φ =
ρ

δt
∇ · u⋆ (1.27)

23

Solving (1.27) yields the updated pressure and velocity terms:

pn+1 = pn +Φ (1.28)
un+1 = u⋆ − δt

ρ
∇Φ (1.29)

A key question arises regarding the appropriate boundary conditions to apply to the
Poisson pressure problem (1.27). While there may be several approaches to derive
these conditions, thematter is still the subject of theoretical debates. A comprehen-
sive discussion on this topic can be found in Langtangen et al. (2002) andGresho and
Sani (1998). In any case, in order to obtain practical boundary conditions, one must
first consider those imposed on the original incompressible Navier-Stokes problem
(1.15).
In cases where problem (1.15) already possesses prescribed pressure boundary con-
ditions, deriving corresponding conditions for the Poisson pressure problem (1.27)
is straightforward (e.g., if Dirichlet boundary conditions are applied to the pres-
sure variable, then Φ must satisfy homogeneous conditions). However, in most
instances, the system (1.15) imposes boundary conditions on the velocity. In such
scenarios, there are two approaches to obtain the boundary conditions for prob-
lem (1.27). The first approach involves directly computing ∂p

∂n by multiplying the mo-
mentum equation by the unit vector at the boundary. The second approach entails
considering equation (1.25) on its boundary. If u satisfies Dirichlet boundary condi-
tions (i.e., no-slip boundary conditions), the following holds:

∇Φ =
δt

ρ
(un+1 − un) = 0 on ∂Ω (1.30)

which results in homogeneous Neumann boundary conditions for Φ. Although more
complicatedproblemswould lead tomoredifficult derivations of the pressure bound-
ary conditions, examples used in this thesis will be restricted to the ones introduced
above.
One of the oldest splitting schemes is probably the one developed by Chorin in
Chorin (1967). However, in the following Section 1.2.3, we introduce the Incremental
Pressure Correction Scheme (IPCS) (Selim et al., 2012), an improvement of Chorin’s
splitting scheme, as well as its variational formulation in sight of practical applica-
tions in Section 1.4.

1.2.3 . The Incremental Pressure Correction Scheme (IPCS)

The IPCS scheme uses the formulation of system (1.15), involving the strain tensor:

24

 ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ(u, p) + f

∇ · u = 0
(1.34)

where σ(u, p) = 2µϵ(u)− pI and ϵ(u) = 1

2

(
∇u+∇uT

).
First, a tentative velocity u⋆ is computed from the momentum equation using a
midpoint finite difference scheme in time:

un+ 1
2 =

un + un+1

2
(1.35)

but using pressure pn from the previous time step. Then, the nonlinear convective
term is linearized using the previous known velocity un to obtain:

ρ
u⋆ − un

δt
+ ρ(un · ∇)un = ∇ · σ(un+ 1

2 , pn) + fn (1.36)
To discretize the spacial operators, we use the Finite Element Method (see Section
1.3 formore details). The first step consists of deriving the variational formulation of
the equation. This is achieved by applying the Galerkin method with the following
notations:
Algorithm 1 Incremental Pressure Correction Scheme (IPCS)

1. Compute tentative velocity u⋆, with correct boundary conditions:
⟨ ρ
δt
(u⋆ − un), v⟩+ ⟨ρ(un · ∇)un, v⟩+ ⟨σ(un+ 1

2 , pn), ϵ(v)⟩

+ ⟨pnn⟩∂Ω − ⟨µ∇un+ 1
2 · n, v⟩∂Ω = ⟨fn, v⟩

(1.31)

2. Solve Poisson Pressure equation with correct boundary conditions:
⟨∇pn+1,∇q⟩ = ⟨∇pn,∇q⟩ − 1

δt
⟨∇ · u⋆, q⟩ (1.32)

3. Update velocity un+1:
⟨un+1, v⟩ = ⟨u⋆, v⟩ − δt⟨∇(pn+1 − pn), v⟩ (1.33)

25

⟨u, u′⟩ =
∫
Ω
uu′ dx, ⟨u, u′⟩∂Ω =

∫
∂Ω
uu′ ds

In this context, let’s define v and q as test functions, respectively linked to the velocity
u and the pressure p. The variational formulation of equation (1.36) then reads as:

⟨ ρ
δt
(u⋆ − un), v⟩+ ⟨ρ(un · ∇)un, v⟩+ ⟨∇ · σ(un+ 1

2 , pn), v⟩ = ⟨fn, v⟩ (1.37)
Besides, it can be shown (Langtangen and Logg, 2017), that the integration by part
of ⟨∇σ, v⟩ yields to:

⟨−∇σ, v⟩ = ⟨σ, ϵ(v)⟩ − ⟨σ · n⟩∂Ω (1.38)
where σ · n is called the boundary traction.
If the problem is solved using stress-free boundary conditions, one can take σ · n =

0. However, in the following, we will rather use do-nothing boundary conditions.
Hence, the remaining boundary term is pn− µ∇u · n.
The second and third steps are derived following the same schemes as in Sec-
tion 1.2.2, which corresponds to equations (1.27) and (1.29). We apply the Galerkin
method to find their variational formulations. Finally, the entire procedure is sum-
marized in Algorithm 1.

1.3 . The Finite Element method

The previous section introduced the splitting schemes, which are commonly used
to approximate solutions to the incompressible Navier-Stokes equations. These
schemes aim to break down the system (1.15) into a series of three equations that
are easier to solve. However, in order to obtain an approximate solution, it is still
necessary to discretize the space operators. Multiple numerical methods are avail-
able for this task, with themost straightforward being the Finite Differencemethod,
which operates on regular grids known as cartesian grids. But the Finite Element
and Finite Volume methods are more popular, as they can handle unstructured
grids.
This section provides an introduction to the fundamental concepts of the Finite El-
ement Method, and explains how to construct a discrete system from the original
Partial Differential Equation (PDE). Given that the main focus of this thesis is to de-
velop aMachine Learningmethod that enhances the resolution of the Poisson Pres-
sure equation (refer to Section 1.4), the Finite Element Method will be explained in
the context of solving a two-dimensional Poisson problem with mixed boundary

26

conditions (i.e. Dirichlet boundary conditions on one part of the domain and homo-
geneous Neumann conditions on another part).
Therefore, we consider solving the following 2D boundary-value problem:

−∆u = f ∈ Ω

u = g ∈ ∂ΩD
∂u
∂n = 0 ∈ ∂ΩN

(1.39)

where u = u(x, y) is the unknown function, f = f(x, y) is the force function and
g = g(x, y) is the Dirichlet boundary function defined on the 2d domain Ω with
boundary ∂Ω = ΩD ∪ ΩN . Besides, n denotes the outward normal vector on ∂Ω
and∆ is the Laplace operator defined as:

∆u =
∂2u

∂2x
+
∂2u

∂2y

The Finite Element method generally involves the following steps:
1. Conversion of the PDE into a variational (weak) formulation.
2. Discretizaton of the domain Ω into amesh Ωh.
3. Choice of basis functions.
4. Formulation of the discretized system.
5. Solution of the system.

The variational form of the PDE is obtained bymultiplying the PDE by a test function
v and integrating it over the domain Ω. The solution function u is referred to as the
trial function. This yields the following equation:

−
∫
Ω
(∆u) v dx =

∫
Ω
fv dx (1.40)

where dx is the differential element for integration over the domain Ω.
A key principle in deriving the variational form is tominimize the order of the deriva-
tives through integration by parts. By applying Green’s formula, the left-hand side
of (1.40) can be transformed as follows:

−
∫
Ω
(∆u) v dx =

∫
Ω
∇u · ∇v dx−

∫
∂Ω

∂u

∂n
v ds (1.41)

27

where ds is the differential element for integration over the boundary ∂Ω.
Both the test and trial functions belong to specific function spaces denoted as V
for the test function space and V̂ for the trial function space. They are defined as
follows:

V = {v ∈ H1(Ω) | u = g on ∂ΩD}

V̂ = {v ∈ H1(Ω) | v = 0 on ∂ΩD}

Here, H1(Ω) represents the mathematical Sobolev space containing functions v
such that v2 and |v|2 have finite integrals over Ω. The solution to the underlying
PDE must lie in a function space where the derivatives are also continuous, but the
Sobolev space allows functions with discontinuous derivatives. This weaker conti-
nuity, resulting from the integration by parts, offers practical convenience in con-
structing finite element function spaces. Specifically, it enables the use of piecewise
polynomial function spaces, which are constructed by joining polynomial functions
on simple domains like triangles.
Besides, it can be noticed from (1.41) that:

∫
∂Ω

∂u

∂n
v ds =

∫
∂ΩD

∂u

∂n
v ds+

∫
∂ΩN

∂u

∂n
v ds = 0 (1.42)

This is due to the test function v ∈ V̂ having compact support on ∂ΩD and the
homogeneous Neumann boundary conditions. Therefore, we obtain the following
variational problem, whose existence and unicity are stated from the Lax-Milgram
theorem (Langtangen and Mardal, 2019):

Find u ∈ V such that:∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx ∀v ∈ V̂ (1.43)

The variational formulation (1.43) represents a continuous problem that defines the
solution u in an infinite-dimensional space V . To find an approximate solution, the
finite element method employs the Galerkin method, which replaces the infinite-
dimensional function spaces with discrete (finite) spaces.
In this thesis, we consider discretisations (i.e., subdivisions) of the domainΩ into an
unstructured triangular mesh Ωh. We denote asN the number of nodes in Ωh. Theapproximation space Vh is then constructed by using piecewise polynomial func-
tions on each triangleK of Ωh. The parameter h represents the maximal size of the
elementsK in Ωh, defined as:

28

h = max
K∈Ωh

diam(K) (1.44)
We consider here Lagrange P1 finite elements, although other types would also be
suitable for this task. These P1 finite elements correspond to a first-order discreti-
sation scheme (thus, the number of degrees of freedom matches the number of
nodes N in Ωh). These elements belong to the space of globally continuous func-
tions that are affine functions on each triangleK in Ωh.
Let us introduce the finite space Vh ⊂ V̂ as follows:

Vh = {v ∈ C0(Ω), v|K ∈ P1, ∀K ∈ ΩH and v|∂Ω = 0}

where P1 is the space of affine functions.
Let (ϕi)(1≤i≤N) be a set of basis function for Vh. Taking into account the Dirichlet
boundary conditions, an approximation uh of the solution u can be written as:

uh = G+

N∑
i=1

uiϕi

where G is the discretization of the boundary function g on the N degrees of free-
dom. Notably, u = g if ϕ = 0 on the boundary of Ω, which is the case if ϕ is a basis
for Vh.
The discrete variational problem can then be formulated as follows:

Find uh ∈ Vh such that:∫
Ω
∇uh · ∇vh dx =

∫
Ω
fhvh dx ∀vh ∈ Vh (1.45)

In practice, the discretized system of equations to be solved is derived from (1.45)
without considering, at first, the boundary conditions. Once the system is formed,
the Dirichlet boundary conditions are then enforced manually, yielding an equiva-
lent problem. To achieve this, let Ṽh be defined such that:

Ṽh = {v ∈ C0(Ω), v|K ∈ P1, ∀K ∈ ΩH}

A decomposition of uh on all N degrees of freedom is:

29

uh =
N∑
i=1

uiϕi

where (ϕi)(1≤i≤N) are now basis functions of Ṽh.
Using this approach and the discrete variational formulation (1.45), it is thenpossible
to derive the following system of equations:

∫
Ω

 N∑
j=1

uj∇ϕj

 · ∇ϕi dx =

∫
Ω
fiϕi dx ∀ 1 ≤ i ≤ N (1.46)

N∑
j=1

uj

∫
Ω
∇ϕj · ∇ϕi dx =

∫
Ω
fiϕi dx ∀ 1 ≤ i ≤ N (1.47)

Introducing the stiffnessmatrix:

A = (aij)(1≤i,j≤N) with aij =

∫
Ω
∇ϕj · ∇ϕi dx

and considering the solution vector U = (ui)(1≤i≤N) and the right-hand side vector

B = (bi)(1≤i≤N) with bi =

∫
Ω
fiϕi dx

then problem (1.47) corresponds to a linear system to solve of the form:

AU = B (1.48)
As previously stated, this method of discretization does not enforce boundary con-
ditions. In the context of homogeneous Neumann boundary conditions, there is
no need for particular adjustments, as these conditions naturally arise through the
construction of the variational formulation (1.43). However, Dirichlet boundary con-
ditions are not handled automatically. To enforce them, the linear system (1.48) is
modified manually: for the indices corresponding to Dirichlet boundary conditions,
the corresponding row of matrix A is set to 0, and a 1 is placed on the diagonal.
Additionally, the value in vector B at the corresponding index is changed to match
the discrete value of g.
In most FEM softwares,A andB are first computed on a reference element cell and
then assembled to form the global system to solve. Besides, the Lagrange basis
functions ϕi are constructed having the property:

30

(a) Mesh (b) Stiffness matrix (c) Solution

Figure 1.2: Resolution of a Poisson problem with mixed boundary conditions on a square geom-
etry with f = 10 and g = 0 using the FEM. 1.2a is the discretization of the square domain into a
mesh with 1439 nodes. Dirichlet boundary conditions (red nodes) are applied to the left and right
parts of the boundary, while Neumann boundary conditions (yellow nodes) are set at the top and
bottom parts. 1.2b represents the sparsity of the stiffness matrix for this particular problem and
1.2c depicts the solution after solving the induced linear system.

ϕi(xj) = δi,j with δi,j =

{
1 if i = j
0 otherwise

Hence, the stiffness matrix A is a sparse matrix. When h tends to 0, then the accu-
racy of the approximation gets better and better, and the matrix A is very sparse.
Figure 1.2 illustrates the resolution of a Poisson problem with mixed boundary con-
ditions on a square geometry using the Finite Element method. Numerically, these
results are obtained using the Python Finite Element library FEniCS (Langtangen and
Logg, 2017).

1.4 . Synthetical test cases

This section aims to apply and demonstrate the theory developed in previous sec-
tions. To accomplish this, we present two well-known CFD benchmarks: the “Chan-
nel flow” and the “Flow around a cylinder” benchmarks.
For both benchmarks, we solve the Incompressible Navier-Stokes equations (1.15)
using the Incremental Pressure Correction Scheme (IPCS), as detailed in Section
1.2. To achieve this, we discretize the variational formulations involved in the IPCS
scheme (1) using the Finite Element Method and implement them numerically with
the Finite Element Python library Fenics (Langtangen and Logg, 2017).
To handle such problems, additional mathematical details must be provided. For-
mally, let (uh, ph) ∈ Vh × Qh be the approximations of the velocity and pressure
functions u and p, respectively. Here, Vh and Qh represent inf-sup stable combi-
nations of Finite Element spaces, which are the preferred methods for addressing
saddle point problems involving velocity-pressure coupling. In particular, we choose
to work with the Taylor-Hood element, a combination of P2 and P1 Finite Elements

31

(a) Mesh (b) Pressure at T = 10 (c) Velocity at T = 10

(d) Evolution of the velocity L2 error across iterations.

Figure 1.3: Resolution of a Channel flow problem. The mesh is displayed in 1.3a, the pressure
profile at the final time T = 10 in 1.3b, and the magnitude of the velocity field at time T = 10 in
1.3c. Figure 1.3d, at the bottom, depicts the evolution of the L2 error of the velocity between the
approximate and exact solutions across iterations.

(Taylor and Hood, 1973). This choice results in a second-order scheme for velocity
and a first-order scheme for pressure.

1.4.1 . Channel flow

The Channel flow problem, also known as Poiseuille flow, involves studying the be-
haviour of a fluid between two “infinite” plates.
The domain of interest is a square, denoted as Ω = [0, L]× [0, h], with flow entering
on the left side and exiting on the right side. This domain, Ω, is discretized into an
unstructured triangularmesh,Ωh, consisting of 3013 vertices, as illustrated in Figure1.3a. In this example, both the fluid density, ρ, and viscosity, µ, are set to 1, and no
external forces are considered, i.e., f = 0. The boundary conditions at the inflow
and outflow are Dirichlet boundary conditions assigned to the pressure, p, such that
p(0, y) = P0 at the inflow and p(L, y) = PL at the outflow. On the upper and lower
walls, no-slip boundary conditions are applied to the velocity function, u, meaning
that u|walls = (0, 0).
With this configuration, the problem converges to a steady flow, for which analytical
solutions for both velocity and pressure are known (refer to Langtangen and Logg
(2017)) and defined as follows:

32

uex(x, y) = umax

(
4y

h
− 4y2

h

)
with umax = −8h2

8µ
(PL − P0)

pex(x, y) = P0 +
PL − P0

L
x

(1.49)

In this example, we consider Ω to be a unit square (i.e., L = h = 1), and we choose
P0 = 8 and PL = 0. This defines the pressure drop and should result in a unit
maximum velocity at the inlet and outlet and a parabolic velocity profile without
any further specifications. The Reynolds number of this simulation, computed using
(1.16), is then equal to 1. We run the simulation for 1000 iterations with a time step
of δt = 0.01, resulting in a total physical time of T = 10.
Figure 1.3 illustrates the results of our simulation. Figure 1.3a represents the uni-
form triangular meshΩh. Figures 1.3b and 1.3c show, respectively, the pressure andvelocity profiles at the end of the 1000 iterations. Finally, Figure 1.3d displays the L2
error between the approximated velocity uh and the analytical solution uex acrossthe iterations, showcasing the efficiency of the IPCS scheme and validating its im-
plementation.

1.4.2 . Flow around a cylinder

The secondbenchmark presents amore challenging yet classical problem frequently
explored in fluid mechanics: the study of unsteady, incompressible flow over a
cylinder placed within a channel at a right angle to the incoming fluid. This prob-
lem holds significant practical importance, as it mirrors scenarios found in offshore
structures, bridge piers, single silos, and, to some extent, cooling towers, where
cylindrical structures encounter fluid flow.
An essential phenomenon in this context is vortex shedding, which occurs over a
broad range of Reynolds numbers. The frequency of vortex shedding and the anal-
ysis of vortex-induced vibrations play crucial roles in the design of such structures.
According to Schäfer et al. (1996) and Kawaguti (1953a), at very low Reynolds num-
bers (Re < 5), no flow separation occurs, and fluid particles from upstream di-
vide into two groups that flow symmetrically around the upper and lower parts of
the cylinder, reaching the back of the cylinder without separation. As the Reynolds
number increases, the twin vortices extend, leading to harmonic oscillations in the
wake region, represented as a fixed pair of symmetric vortices for 5 < Re < 50. For
Reynolds values ranging from 50up to 200, vortexes begin to shed alternatively from
the upper and lower parts of the cylinder, forming the well-known “Karman-Vortex
Street”. At even higher values, turbulence occurs.
In this test case, let Ω be defined as a rectangular domain of size [0, L]× [0, h], with
dimensions L = 2.2 and h = 0.41, with the flow entering from the left side and

33

Figure 1.4: Mesh of the “flow around a cylinder” problem. The mesh is refined near the cylinder
to enhance the accuracy of the method. The flow enters at the left (Inflow) and exits at the right
(Outflow). Specific boundary conditions are prescribed on the top and bottom walls.

exiting from the right side. A cylindrical obstacle is positioned at coordinates c =

(0.2, 0.2) with a diameter D = 0.1. The domain Ω is then discretised using GMSH
(Geuzaine and Remacle, 2009) into an unstructured triangularmeshΩh. To enhancethe accuracy of the prediction, the size of the mesh is refined near the cylinder.
Figure 1.4 illustrates the created mesh.
The fluid density is set to ρ = 1, and no external forces are considered (i.e. f =

0). No-slip boundary conditions are applied on both the upper and lower walls,
denoted as ∂ΩW , as well as on the surface of the cylinder, denoted as ∂ΩC , ensuringthat u|∂ΩW∪∂ΩC

= (0, 0). At the inflow boundary ∂ΩI , we prescribe a parabolic
inflow profile such that:

u(0, y) =

(
4umax(h− y)

h2
, 0

)
(1.50)

At the outflow boundary ∂ΩO, we enforce homogeneous Dirichlet boundary condi-
tions for the pressure, satisfying p|∂ΩO

= (0, 0). To achieve varying Reynolds num-
bers, we set the dynamic viscosity µ as follows, ensuring that for all Reynolds num-
bers Re , the relationship holds:

µ =
umean × L× ρ

Re (1.51)
where umean = 1, and L = 0.1 serves as the characteristic length.
In the following, we consider three different experiments corresponding to three
different Reynolds numbers, which are 1, 40, and 100, respectively. The simulations
are run with a time step of δ = 0.0005 for 6000 iterations, resulting in a total physical
time of T = 3.
Figure 1.5 illustrates the pressure profile for the different Reynolds numbers at the
final time T = 3. More importantly, Figure 1.6 displays the corresponding stream-
lines of the velocitymagnitude for the different Reynolds numbers. With a Reynolds

34

number of 1, as illustrated in Figure 1.6a, there are no vortices, and the flow is lam-
inar, dividing into two symmetric streams when passing around the cylinder. At
Reynolds number 40, Figure 1.6b shows the appearance of symmetric vortices, while
at Reynolds number 100, vortices shed alternately from the upper and lower parts
of the cylinder, as demonstrated in Figure 1.6c. These results are in line with those
observed in practice.

1.5 . Conclusion

This Chapter provided an overview of Computational Fluid Dynamics (CFD) funda-
mentals, with a specific focus on solving the incompressible Navier-Stokes equa-
tions, described by the system (1.15). However, traditional numerical approaches
to solving these equations often encounter instability issues. To address this chal-
lenge, Section 1.2 introduced a numerical strategy known as splitting schemes. This
approach aims to split the resolution of the system (1.15) into a series of subprob-
lems that are easier to solve, which are then discretized using the Finite Element
method (FEM). Section 1.3 presented an introduction to FEM and its application in
solving a Poisson problem with mixed boundary conditions. It is worth noting that
solving the Poisson Pressure equation, as emphasized in Section 1.4, constitutes
the most computationally intensive subproblem within the context of the splitting
schemes. This result is illustrated in Figure 2.13 of Wang (2015), which investigates
the cost of each step of a splitting scheme in relation to the number of CPU pro-
cesses used. Given the dimension of the problem, iterative procedures are typi-
cally employed to solve this step, avoiding the storage of the Laplacian operator.
In practice, engineers often employ efficient libraries like PETSc (Balay et al., 2019)
to tackle this problem. These libraries leverage algebraic multigrid or highly par-
allelized domain decomposition methods (or a combination of both) as detailed in
Saad (2003). Despite these advancements, the current algorithms for solving the
Poisson Pressure equation remain computationally intensive. This limitation re-
stricts the exploration of a wide range of design parameters in engineering applica-
tions and prevents practitioners from fully leveraging simulation capabilities. With
the emergence of Machine Learning techniques, there is an opportunity to explore
models that exploit the powerful parallelization capabilities of GPU computations,
contrasting traditional methods that rely solely on CPU computations. These new
models could either replace or, more importantly, complement traditional meth-
ods, thereby enhancing their performance. The latter forms the main focus of the
work presented in this thesis.

35

(a) Pressure at T = 3 with a Reynolds of 1.

(b) Pressure at T = 3 with a Reynolds of 40.

(c) Pressure at T = 3 with a Reynolds of 100.

Figure 1.5: Pressure profile at the final time T = 3 with respect to different Reynolds number 1,
40 and 100.

36

(a) Streamlines of the velocity magnitude at T = 3 with a Reynolds of 1.

(b) Streamlines of the velocity magnitude at T = 3 with a Reynolds of 40.

(c) Streamlines of the velocity magnitude at T = 3 with a Reynolds of 100.

Figure 1.6: Streamlines of the velocity magnitude for different Reynolds numbers. The three
figures represent a zoom-in on the area close to the cylinder, illustrating the different vortex
behaviours.

37

2 - Introduction to Deep Learning

Sommaire
2.1 Artificial Neural Networks 39

2.2 Training a Deep Learning model 41

2.3 Convolutional Neural Networks 46

2.4 Graph Neural Networks 49

2.4.1 Elements of graph theory 50

2.4.2 Properties of a GNN operator 51

2.4.3 The Message-Passing process 52

2.4.4 Information propagation 56

2.4.5 Machine Learning on graphs in practice 58

To address the challenges identified in previous Chapter 1, which related to the need
for obtaining precise and fast results from numerical simulations, one approach in-
volves the use of Scientific Machine Learning (SciML), an emerging field that com-
bines classical scientific computing with recentMachine Learning techniques (Baker
et al., 2019). SciML leverages state-of-the-art data science methods to enhance the
efficiency of numerical modelling of physical and artificial systems, enabling tasks
such as extensive scientific data analysis and intelligent automation for complex
systems. This application of Machine Learning offers several (non-exhaustive) mo-
tivations:
Enhanced accuracy:Machine Learning can significantly improve accuracy by learn-
ing patterns from large-scale simulations. This is particularly true in scenarios such
as turbulence simulations, for instance (Fukami et al., 2019).
Modeling complexity: Machine learning provides a powerful tool for modelling
complex phenomena where capturing the underlying physics analytically is difficult
(Recknagel, 2001).
Handling complex data: Machine learning techniques excel at handling complex
data. For example, they can analyze medical images to detect and diagnose dis-
eases (Erickson et al., 2017). In another context, they make it easier to process large
astronomical datasets, allowing for more efficient and accurate identification and
classification of celestial objects (Burke et al., 2019; Farrens et al., 2022).

38

Computational speed-up: By constructingMachine Learning-based surrogatemod-
els, it is possible to approximate computationally expensive simulations (Kochkov
et al., 2021; Wiewel et al., 2019). This acceleration of computations significantly en-
hances efficiency, enables faster exploration of physical phenomena, and opens the
door to their optimization and control.
Bridging theory and experiment: Machine learning facilitates the integration of
theoretical models and experimental data, leading to improved predictions and a
deeper understanding of physical systems (Um et al., 2020).
A key research direction of this thesis concerns Machine Learning-enhanced mod-
elling and simulation, which has seen several significant developments in recent
times (refer to Chapter 3).
The present chapter aims to provide a comprehensive introduction to Deep Learn-
ing methods, starting from the basics of Artificial Neural Networks (ANNs) and pro-
gressing to the construction of GraphNeural Networks (GNNs). Section 2.1 will cover
the foundational architectures of ANNs, while Section 2.2 will explore the essential
training algorithm known as backpropagation. In Section 2.3, an overview of Convo-
lutional Neural Networks (CNNs) will be presented, as they serve as the basis for the
architecture of interest in this thesis: Graph Neural Networks, discussed in more
detail in Section 2.4. While CNNs are highly effective for learning from cartesian
(regular) data, such as images, GNNs extend the concept of convolution to handle
unstructured data, which is well-suited for numerical simulations conducted on un-
structured meshes. This chapter serves as a comprehensive guide to Deep Learn-
ing, and the subsequent Chapter 3 will present an overview of state-of-the-art of
what is now called Scientific Machine Learning, i.e., Deep Learning models applied
to physics simulations. In case of additional information, Goodfellowet al. (2016) and
Géron (2022) provide both theoretical and practical approaches to Machine Learn-
ing methods.

2.1 . Artificial Neural Networks

The first and simplest Artificial Neural Network (ANN) component is the Artificial
Neuron. It is a computational unit implementing a function fw of the d-dimensional
input x ∈ Rd, defined by its weight vector w ∈ Rd, its bias b ∈ R and activation
function φ. The output variable y ∈ R is then defined as:

y = fw(x) = φ
(
wTx+ b

) (2.1)
Several activation functions can be considered. The most popular ones are the Sig-
moid, the Hyperbolic Tangent (tanh) and the Rectified Linear Unit (ReLU). Refer to
Dubey et al. (2022) for a comprehensive survey on activation functions used in Deep

39

Figure 2.1: Illustration of the architecture of an Artificial Neuron. Each element x1, x2 and x3 is
multiplied by the corresponding weights w1, w2 and w3, respectively. The results are aggregated
together with the bias term b and then passed through the activation function φ to produce the
output y. The weights w1, w2 and w3, and the bias b are the quantities being learned during the
training.

Learning. Figure 2.1 displays a graphical representation of an Artificial Neuron1,
showcasing the process of computing an output y from a 3D input x.
In such context, an Artificial Neural Network is a set of neurons in which the outputs
of some neurons are connected to the inputs of others, thus forming a directed
graph, also called the architecture of the network. Some neurons receive external
inputs (the input of the network) and the outputs of some other neurons are con-
sidered as the outputs of the network. When there is no loop in the graph of the net-
work, the network is called feedforward: when the values of the external inputs are
given, the activations and the outputs or all neurons can be computed in sequence,
until reaching the outputs of the network. When there are loops in the graph, the
network is called recurrent and can be used to model time series or other transient
phenomena. In this thesis, only feed-forward networks will be considered (and the
word “feedforward” will be omitted).
The simplest (and historically the oldest) network architecture is that of the mul-
tilayer perceptron (MLP): the neurons are organized in layers, and the output of a
neuron in layer n are only connected to the inputs of neurons of layer n+1. When all
the neurons in a layer are connected to all neurons in the previous layer, this layer
is called fully connected. The neurons of the first layer receive as inputs the inputs
of the network, and the outputs of the last layer are the outputs of the network.
The output vector y ∈ Rd1 of one fully connected layer is expressed as :

y = fW (x) = φ
(
W Tx+ b

) (2.2)
1For the sake of simplicity, “neuron” will in this work stand for “artificial neuron”.

40

Figure 2.2: Illustration of an MLP with a 3D input x (yellow circles), three hidden layers of dimen-
sion 8, 12 and 8 (blue circles) and a 1D output y (red circle). The output y is computed following
Equation (2.3).

where x ∈ Rd0 is the vector of input of the layer (i.e., the output of the previous
layer), W ∈ Rd0×d1 is the weight matrix to go from the input dimension d0 to the
output dimension d1, b ∈ Rd1 is the bias vector and φ the activation function com-
mon to all neurons of the layer. Figure 2.2 illustrates anMLP with a 3D input x, three
hidden layers of dimension 8, 12 and 8, and a 1D output variable y. Each neuron in
the hidden layers (blue circles) represents one neuron, as shown in Figure 2.1, i.e., in-
cluding the weights, the bias and the activation function. Denoting the bias vectors
b1, b2, b3 and b4 related to each weight matrixW1,W2,W3 andW4, and a unique
activation function φ, the output y is computed as follows:

y = φ (W4φ (W3φ (W2φ (W1x+ b1) + b2) + b3) + b4) (2.3)
When an MLP contains a deep stack of hidden layers, it is called a Deep Neural Net-
work (DNN). The field of Deep Learning studies DNNs and, more generally, models
containing deep stacks of computations. The following section aims to describe
how the DNN is trained, i.e. how the weights are optimised to construct a model
that best fits the data.

2.2 . Training a Deep Learning model

Deep learning models have gained tremendous popularity thanks to their ability to
learn from data. The key objective when training a DNN is to optimize its weights
in such a way that it best fits the available data. Training can be categorized into

41

two types: supervised and unsupervised2, with the possibility of leveraging semi-
supervised techniques that combine elements from both.
In supervised learning, the model has access to input data as well as their corre-
sponding outputs, i.e. labels, which represent the desired solutions for a given task.
For instance, when classifying pictures of dogs and cats, images of dogs can be la-
belled with the word “dog”, or value 1, and images of cats can be labelled with the
word “cat”, or value 0. On the other hand, unsupervised learning does not have
access to labelled data, or only a small fraction of the data may be labelled in the
case of semi-supervised learning. In such scenarios, alternative learning techniques
need to be used (Van Engelen and Hoos, 2020).
In supervised learning, once a large amount of labelled data is collected and avail-
able, one needs to define a loss function that quantifies the proximity of predictions
of the network (i.e., outputs of the network) to the true labels. Training a Deep
Learning model aims to minimise the loss function by modifying the weights of the
DNN. Numerous loss functions are commonly used. For regression tasks, examples
include theMean Square Error (MSE) andMean Absolute Error (MAE), while for clas-
sification tasks, the Binary Cross-Entropy and Categorical Cross-Entropy losses are
commonly used. Besides, a wide range of customized loss functions exists, some
of which are discussed in detail in the survey by Wang et al. (2020).
For many years, scientists struggled to find a way to train DNNs, and it was only
in 1985 that David Rumelhard, Geoffrey Hinton and Ronald Williams published a
groundbreaking paper entitled Learning Internal Representations by Error Propa-
gations (Rumelhart et al., 1985) that introduced the well-known backpropagation
algorithm. In a nutshell, backpropagation is an efficient algorithm that computes
the gradient of the error of the network (i.e. the loss function) with respect to all the
weights of the model. Once all the gradients are computed, it uses some variant of
a classical Gradient Descent step to update the weights.
Gradient Descent (GD) is an iterative optimization algorithm, used to find a local
optima of a differentiable function. The main idea behind GD is to take repeated
steps in the opposite direction of the gradient of the function at the current point
because this is the direction of the steepest descent. When the gradient is zero, the
minimum has been found, and the algorithm stops. Formally, let wk ∈ Rn be the
vector of weights at iteration k of the Gradient Descent algorithm, and let f be the
loss function, then the weights at iteration k + 1 are computed as follows:

wk+1 = wk − η∇f
(
wk

) (2.4)
2we will not mention here Reinforcement Learning, when training takes place in a dy-namic context.

42

(a) Large learning rate (b) Low learning rate

Figure 2.3: Effect of both a large and low learning rate in the Gradient Descent algorithm.

where η denotes the learning rate, a use-defined scalar parameter, which deter-
mines the speed at which the algorithm converges towards the optimal weights.
The learning rate is a critical parameter in the optimization process and must be
appropriately chosen: it should neither be too small nor too large. Figure 2.3 illus-
trates the effects of both a large and a small learning rate, assuming a convex loss
function. When the learning rate is too large, the algorithmmay oscillate around the
optimum and fail to converge, as demonstrated in Figure 2.3a. Conversely, if the
learning rate is too small, the algorithm might eventually reach a local minimum,
but it will do so very slowly, as depicted in Figure 2.3b.
The learning rate is part of the hyperparameters of a Machine Learning training al-
gorithm. Hyperparameters are parameters whose values control the learning pro-
cess. They are used to improve the learning of the model, and their values have to
be set by the user before starting the learning process. Hyperparameters include
the choice of the optimization algorithm (Equation 2.4 is one among many possible
variants, see below), the learning rate, the choice of activation function, the choice
of loss function, the design of the architecture (e.g., number of neurons and layers
in an MLP), and more. A poor combination of hyperparameters can hinder the ef-
ficiency of the learning phase. Therefore, the search for an optimal combination of
hyperparameters is often a crucial step in the process of training a Machine Learn-
ing model. Today, many tools are available, including the straightforward and well-
known Grid Search algorithm, which explores the space of hyperparameters and
selects themodel resulting in the best performance. However, for complexmodels,
the number of hyperparameters can become very large, and some more advanced
optimization frameworks for fine-tuning hyperparameters can be useful, such as
Optuna (Akiba et al., 2019).
At this point, it is worth mentioning that the whole available dataset is usually split
into three subsets: the training set (≃ 80%), the validation set (≃ 20%) and the test
set (≃ 20%). The training set is used to train the model, the validation set to eval-
uate it while performing hyperparameters tuning, and the test set to evaluate the

43

final model. This splitting is intended to prevent the designer of the model from
“cheating” by using the same examples for training, hyperparameter tuning, and
testing. In particular, the test set should exclusively be used to evaluate the per-
formance of the produced model, without being touched ever before during the
learning process.
As already mentioned, there are different variants of Gradient Descent algorithms
that mainly differ in the amount of data they use. The Vanilla Gradient Descent
(VGD) calculates the error for each example within the training dataset but updates
the weights only after evaluating all training examples, using equation 2.4. This
method has the advantage of producing a stable gradient and achieving stable con-
vergence (although not necessarily the optimal convergence speed), but it requires
the entire dataset to be in memory, which is often not possible. Figure 2.4a shows
the evolution of the weights using the VGD in the context of a simple 1D linear re-
gression problem. To alleviate this issue, one could choose to select a random in-
stance from the training set at each iteration and compute the gradient based on
that single instance, a process we will refer to as One-Sample Gradient Descent
(OSGD). Working with only one instance at a time involves very little data manip-
ulation, allowing the training of very large datasets. However, due to its stochastic
nature, this algorithm is less stable than Vanilla Gradient Descent, as depicted in Fig-
ure 2.4b. Instead of smoothly decreasing toward the minimum, the algorithm fluc-
tuates, decreasing only on average. The common choice today for a good trade-off
is to usemini-batches. At each step, instead of computing the gradient based on the
entire training set (as in VGD) or on a single random instance (as in OSGD), it com-
putes the gradient on small random sets of instances called mini-batches or simply
“batches”. This approach, referred to as Stochastic Gradient Descent (SGD), com-
bines the advantages of both previous methods, as shown in Figure 2.4c, providing
a better memory/stability compromise as well as a performance boost, especially
when leveraging hardware optimizations for matrix operations, such as GPUs.
Training a very large DNN can be a slow process, and a significant speed boost can
be achieved by using faster optimizers than standard Stochastic Gradient Descent.
Nowadays, optimizers such as AdaGrad (Duchi et al., 2011), RMSProp (Tieleman et al.,
2012), or Adam (Kingma and Ba, 2014) are among the most commonly used (Géron,
2022). These optimizers are based on the concept of momentum optimization. In
brief, momentum optimization leverages information from previous gradients to
update the weights. In other words, the gradient is used for acceleration, not just
speed. This allows the Gradient Descent process to converge more rapidly with
adaptive convergence speed. Among the various optimizers, Adam (Kingma and
Ba, 2014), which combines the benefits of both AdaGrad and RMSProp, is the most
widely used today. Formally, Adam updates the vector of weightswk as follows:

44

(a) Vanilla GD (b) One-Sample GD (c) Stochastic GD

Figure 2.4: Resolution of a 1D linear regression problem of the form y = w0 + w1x (i.e., with
two weights to optimize). Evolution of the solution (w0, w1) until the optimal solution is achieved
using various Gradient Descent algorithms: Vanilla Gradient Descent (2.4a), One-Sample Gradient
Descent (2.4b), and Stochastic Gradient Descent (2.4c). The coloured background of each Figure
represents the value of the loss function, with blue indicating the lowest values and red indicating
the highest.

mk+1 = β1m
k + (1− β1)∇f

(
wk

) (2.5)
vk+1 = β2v

k + (1− β2)
[
∇f

(
wk

)]2 (2.6)
m̂k+1 =

mk+1

1− βk+1
1

, v̂k+1 =
vk+1

1− βk+1
2

(2.7)
wk+1 = wk − η

m̂k+1

√
v̂k+1 + ϵ

(2.8)

where β1 and β2 are scalar hyperparameters, η is the learning rate, and ϵ is a very
small scalar. Under the hood, Adam keeps track of both an exponentially decaying
average of past gradients and an exponentially decaying average of past squared
gradients (i.e., Eq. (2.5) to (2.7)). Adam is an adaptive learning rate optimizer, thus
requiring less manual tuning of the learning rate hyperparameter. In addition to
the optimizer, it is possible to leverage a learning rate scheduler, whose purpose is
tomodify the value of the learning rate during training. If tuned correctly, a learning
rate scheduler can significantly improve training.
At first, computing the gradients of such neural networks may seem challenging.
However, the explicit form of Equation (2.3) makes it possible to apply the chain
rule from the output layer back to each layer in turn. By repeatedly applying the
chain rule to these operations, the gradients can be computed easily.
As of today, all Deep Learning libraries, such as Pytorch3 or TensorFlow4 for in-

3https://pytorch.org/4https://www.tensorflow.org/?hl=fr

45

https://pytorch.org/
https://www.tensorflow.org/?hl=fr

stance, provide tools for automatic differentiation (Paszke et al., 2017; Baydin et al.,
2018) that take care of that.
To summarize, a general training procedure involves handling one mini-batch at a
time and going through the whole training set multiple times. Each pass is called
an epoch. Each mini-batch is fed to the network, and the output of the last layer is
computed: it is the forward pass. Intermediate results are saved during this pro-
cess as they are needed for the backward pass. The backward pass leverages the
automatic differentiation framework to efficiently calculate the gradient of the er-
ror across all connection weights in the network by propagating it backwards until
reaching the first layer. Finally, it performs a Gradient Descent step thanks to an
efficient optimizer to update all the weights of the model.
Training a Deep Learning model can be challenging due to inherent issues that
may arise. Fortunately, there are methods available to improve the training pro-
cess. One common issue encountered in the training of Machine Learning models
is known as overfitting. Overfitting is a concept in data science that occurs when a
statistical model fits too closely to its training data. When this happens, the algo-
rithmwill struggle to generalize well to unseen data, defeating its intended purpose.
To address overfitting, one effective approach is to train with more data (possibly
using data augmentation techniques). If increasing the dataset size is not possible,
alternative solutions include using early stopping techniques, applying regulariza-
tion methods, or adding dropout layers (Srivastava et al., 2014).
Another well-known issue is the problem of “exploding gradients”, which consists of
a significant increase in the norm of gradients during backpropagation. A solution
to address this problem is the use of Gradient Clipping (Zhang et al., 2019), which
involves setting a threshold and then clipping the norm of the gradients to ensure it
does not exceed this threshold. Another technique is L2Regularization (Cortes et al.,
2012), which incorporates a weight decay term into the loss function of the network
to encourage smaller weight values, preventing the gradients from becoming too
large.

2.3 . Convolutional Neural Networks

When using basic MLP architectures for image data, one straightforward approach
would be to flatten images into vectors, as inputs to MLPs are 1D vectors. However,
this incurs the loss ofmost spatial and structural information. Introduced in 1990 by
LeCun (Cun et al., 1990) and inspired by the study of the virtual cortex of the brain,
Convolutional Neural Networks (CNNs) have revolutionized image processing. Un-
like MLPs, CNNs effectively leverage the spatial structure of the input data and have
a more appropriate architecture.
In a CNN, the layers are arranged in three dimensions: width, height, and depth.

46

(a) (b)

Figure 2.5: Illustration of two convolutional operations. In both figures, the input image (set
of white squares at the bottom) is surrounded by pixels set to zero values (grey squares). This
technique, known as zero padding, is employed to overcome boundary issues. In both scenarios,
a 3 × 3 convolutional filter (fh and fw dimensions) is used. The output image corresponds to
the set of white squares at the top of each figure. In 2.5a, the filter slides across the image with
a stride of 1, yielding an output image of identical dimensions. Conversely, in 2.5b, the filter is
applied with a stride of 2 in both horizontal and vertical directions (sh and sw variables), leading
to a reduced output image size.

The typical structure of a CNN includes three main types of layers: convolutional
layers, pooling layers, and fully connected layers. These layers work together to
extract features and capture the hierarchical representations present in the input
data.
The convolutional layer is the core building block of the CNN. It performs a dot prod-
uct between two matrices, where one is the set of learnable parameters (weights),
known as a kernel or filter, and the other is a restricted portion of the image (a por-
tion of the image where the kernel is applied). The kernel is spatially smaller than
an image but is more in-depth. This means that if the image is composed of three
channels (e.g. coloured images with RGB channels), the kernel height and width will
be spatially small, but the depth extends up to all three channels. During the for-
ward pass, the kernel slides across the height andwidth of the image, producing the
image representation of each restricted portion. This produces a two-dimensional
representation of the image known as a feature map which gives the response of
the kernel at each spatial position of the image. The sliding size of the kernel is
called its stride.
Figure 2.5 displays the application of a convolutional filter with a single feature map
to an input image. In 2.5a, the input image undergoes convolution using a 3 × 3

kernel and a stride of 1, resulting in an output image of identical dimensions. In
contrast, in 2.5b, the same convolutional filter is used, but with a stride of 2 both ver-
tically and horizontally, yielding a reduced output image size. To address boundary

47

Figure 2.6: Illustration of a standard CNN workflow. A given input image undergoes a series
of Convolution and Pooling operations until its dimensions are significantly reduced, enabling its
transformation into a flattened vector. This vector is then used as input for a fully connectedMLP.
The result from this MLP is used to evaluate the loss function, chosen according to the tackled
problem.

concerns, pixels with zero values are added around the input image. This technique
is referred to as zero padding.
The pooling layer replaces the output of the network at certain locations by deriving
a summary statistic of the nearby outputs. This helps in reducing the spatial size
of the representation, which decreases the required amount of computation and
weights. The pooling operation is processed on every slice of the representation
individually.
The combination of convolutional layers and pooling layers reduces the images into
a form which is easier to process without losing features which are critical for get-
ting good predictions. Hence after performing several layers of such combinations,
the original volumic size of the image is so diminished that it can easily be flattened
without any loss of information and inputted in a fully connected MLP in order to
perform the objective task. Figure 2.6 gives an illustration of a standard CNN work-
flow.
The success of CNNs lies in their ability to extract multi-scale spatial features from
images. Going deeper into the understanding of CNNs, we realize that their effec-
tiveness is attributed to key properties such as local connections, weight sharing,
and the use of multiple layers. These properties enable CNN architectures to fit im-
age datasets more effectively by reducing the number of parameters involved and
allowing for the reuse of weights. The convolution layer within CNNs aims to extract
high-level features from input images. As we stack multiple layers, it can be noticed
that the initial layers focus on capturing low-level features like edges, colours, and
gradient orientations. With additional layers, the architecture gains an understand-
ing of high-level features as well, by assembling features extracted at the previous
level.
CNNs have demonstrated remarkable results, offering state-of-the-art methods for

48

tasks like image segmentation (Krizhevsky et al., 2012), image recognition (Simonyan
and Zisserman, 2014), and serving as a core building block for Generative Adversarial
Networks (GANs) (Goodfellow et al., 2020). Despite these breakthroughs, the use of
CNNs is restricted to regular Euclidean data. However, various data types, including
graphs, are characterized by non-Euclidean (unstructured) data. Nowadays, there
is an increasing demand for applications involving data that originate from non-
Euclidean domains, such as graphs. As a result, there is a need to extend the capa-
bilities of CNNs to handle graph-structured data, which led to the construction of
Graph Neural Networks (GNNs), explained in more detail in the following section.

2.4 . Graph Neural Networks

Graphs are ubiquitous in various domains such as social networks, underground
networks, molecules, computer networks, and, notably for this work, meshes for
numerical simulations.
Graph Neural Networks (GNNs) were specifically designed to extend the concept
of convolution to graphs. In the literature, there exists a vast variety of formula-
tions that define GNN operators (i.e. convolution operators on graphs), which can
be divided into two categories: spectral-based GNNs and spatial-based GNNs (Wu
et al., 2020; Hamilton, 2020). Spectral-based GNNs, originally proposed by (Bruna
et al., 2013), are based on graph signal processing and define the convolution op-
erator in the spectral domain of the graph. Once the graph signal is transformed
to the spectral domain using the Fourier transform, the convolution is performed
through element-wise multiplication, and the resulting signal is transformed back
using the inverse Fourier transform. Spatial-based GNNs, on the other hand, apply
the convolution operation directly to the graph by aggregating information from
each neighbour of a node along with information on their connectivity (definitions
are further provided in Section 2.4.1). These techniques have given rise tomanyGNN
operators such as Graph Attention Network (GAT) (Veličković et al., 2017a), MoNet
(Monti et al., 2017), or GraphSAGE (Hamilton et al., 2017), for instance. In an effort to
summarize all these formulations, scientists have introduced the Message-Passing
process, which encompasses (almost) all Graph Neural Network formulations.
In the following, Section 2.4.1 introduces fundamental knowledge of graph theory,
while Section 2.4.2 presents the properties that must be followed to define a GNN
operator. Section 2.4.3 presents the Message-Passing process, from which we de-
fine the Message Passing Neural Network (MPNN) formulation. Recognized as the
most versatile and expressive form of GNNs, MPNN is the preferred method in this
work. Additionally, this section provides examples of two other famous GNNs, il-
lustrating that both can be defined following this idea of Message-Passing. Section
2.4.4 further explains how to use Message-Passing in the design of a GNN model
to propagate information throughout a graph, and Section 2.4.5 concludes by pre-

49

(a) (b)

Figure 2.7: 2.7a displays a directed and weighted graph with 6 nodes labelled from A to F .
2.7b represents the corresponding adjacency matrix. Due to the directionality of the edges, the
adjacency matrix is asymmetric. For instance, considering the connection between nodes A and
C , the matrix entry at row A, column C , is 0.4 (indicating a connection with weight 0.4), distinct
from the 0 entry at row C , column A (indicating no connection).

senting several common Machine Learning tasks on graphs.
2.4.1 . Elements of graph theory

A graph is a mathematical structure that represents a set of objects, denoted as
nodes, which are connected by relationships, called edges. Formally, a graph G is
defined as a pair G = (V, E) where V denotes the set of N nodes and E is the set
of M edges (a set of paired nodes). An edge eij = (vi, vj) ∈ E has two endpoints
which represent the source node vi pointing towards the target node vj . An edge issaid to be directed if the relationship between the source and target nodes exists
in only one direction. On the contrary, if both eij and eji exist, the edge is said to beundirected. Overall, a graph is directed if all its edges are directed, and undirected
if all its edges are undirected. The neighbourhood of a node vi is defined as the setof nodes that have an edge common with vi, i.e.:

N (vi) = {vj ∈ V, (vi, vj) ∈ E or (vj , vi) ∈ E}

The degree d(vi) of a node vi is the number of neighbours of vi and the k-hop neigh-bourhood of a node vi is the set of nodes at a distance (node-wise) less than or equalto k from vi (the neighbourhood is the 1-hop neighbourhood).
Numerically, the edges between nodes within a graph can be represented by an
adjacency matrix. For a graph G = (V, E) with N nodes, the adjacency matrix is
represented by a squared matrix A ∈ RN×N such that :

Aij =

{
1 if (vi, vj) ∈ E
0 otherwise

50

Obviously, A is symmetrical if the graph is undirected. If the graph is weighted (i.e.
the edge connecting two nodes vi and vj is weighted by some value aij), the adja-cency matrix can include the weights, and be expressed as:

Aij =

{
aij if (vi, vj) ∈ E
0 otherwise

To further illustrate this, Figure 2.7 displays a directed and weighted graph, along
with its corresponding adjacency matrix.
Apart from the directed/undirected property, graphsmay have node attributes, rep-
resented as a node feature matrixX = (x1, . . . ,xN)T ∈ RN×d with xi ∈ Rd the fea-
ture vector of a node vi. In practice, node features characterise intrinsic information
about individual nodes, which can vary depending on the context. For example, in
physics simulations, node featuresmay represent the velocity or pressure of a point
in space (Pfaff et al., 2020), while in protein interaction graphs, they could indicate
immunological signatures (Hamilton et al., 2017).
A graph may also have edge attributes, represented as an edge feature matrix E ∈
RM×c with ei,j ∈ Rc representing the feature vector of an edge (vi, vj). When edges
have features, they provide an indication of the strength of the connection between
two nodes, likemeasuring the intensity of a friendship in a social network (Fan et al.,
2019), for instance.

2.4.2 . Properties of a GNN operator

Unlike standard neural networks designed for vector data, or CNNs designed for
grid-like data, GNNswere developed to handle the irregular structure of graph data.
The main objective of a Graph Neural Network model is to learn and leverage the
complex relationships betweennodes and edgeswithin a graph, enabling themodel
to make predictions or classifications based on local connectivity patterns. How-
ever, due to the increased difficulty of unstructured data compared to structured
data, defining aGNNoperator requires additional care and should adhere to certain
properties.
For instance, a first idea for defining aDeepNeural Network on graphsmight involve
using the adjacency matrix as input to a DNN by flattening it and feeding the result
to an MLP. Nevertheless, this method raises several issues: i) it is not suitable for
graphs of varying sizes. When designing an architecture for graphs, the GNNmodel
should handle varying input sizes, ii) it no longer considers the local structure of the
graph as well as relationships between nodes, represented by edges that denote
interactions between two nodes, iii) it depends on the ordering of nodes in the ad-
jacencymatrix. Yet, a crucial structural characteristic of graphs is the independence
of their properties with respect to the order of their nodes, which implies that the

51

GNN model needs to be equivariant to any permutation of the node features of
the graph: if the node features of a graph are permuted, the output of the model
should be permuted accordingly. Formally, for any function f : RN×d → RN×d, that
takes as input node features matrixX , permutation equivariance should verify:

f(PX) = Pf(X) (2.9)
where P is a permutation matrix (a square binary matrix that has exactly one entry
of 1 in each row and each column and 0 elsewhere, see Hamilton (2020)).
These three considerations must be respected in the design of a GNN operator.
Next, we introduce theMessage-Passing process, which gives rise to GNNoperators
respectful of these properties.

2.4.3 . The Message-Passing process

Training a CNN model starts with learning the weights of a fixed-size operator (i.e.
a filter or kernel), which slides across the image data to perform convolution (see
Section 2.3). Learning such an operator is possible only because the input data
of a CNN are structured, ensuring that each component has a constant and fixed
number of neighbours. In unstructured data types, such as graphs, the number
of neighbours can vary from node to node, making the use of CNN-like operators
non-viable.
Despite this difference, the fundamental idea behind convolution remains valid,
whether using CNNs or GNNs. In CNNs, the features of one pixel in an image are
updated by gathering information from its direct neighbouring pixels, as shown in
Figure 2.5. Since a pixel in an image has a fixed number of neighbours, the filter is
a fixed-size square filter that can be slid across the image to update the features of
each node.
The concept of gathering information from neighbouring pixels in CNNs forms the
fundamental idea of the Message-Passing process. In GNNs, this process operates
in a similar yet more flexible fashion: it transfers information along edges from one
node to its neighbours. A node feature xi is then mapped onto a new node feature,
often referred to as a latent representation denoted byhi ∈ Rd̃. Note that d̃may dif-
fer from d. This latent representation is computed by aggregating features from the
neighbours of xi, taking into account edge features if necessary. The aggregation
of neighbouring features uses permutation-invariant functions such as sum, aver-
age, or max, ensuring that the final model is permutation equivariant. As a result,
each latent representation of the latent feature matrix H = (h1, . . . ,hN)T ∈ RN×d̃

incorporates information from each node feature xi and its direct neighbours, as
depicted in Figure 2.8.

52

Figure 2.8: Process of updating node features within a graph. The new latent representation
h1 associated with a node feature x1 is computed by the application of a GNN operator. The
GNN operator follows the idea of Message-Passing and computes the latent representation by
considering the features of both x1 itself and its immediate neighbours x0, x2, x5, x4 along with
their relationships (red arrows).

Almost all recently developed GNNs adhere to the idea of Message-Passing. Next,
we introduce three GNN operators: the Message Passing Neural Networks (MPNN)
(Gilmer et al., 2020), the preferred operator in this work due to its high flexibility, as
well as the Graph Convolutional Network (Kipf and Welling, 2016a) and the Graph
Attention Network (Veličković et al., 2017a). All three of these can be viewed as in-
stances of Message-Passing GNNs.
Message Passing Neural Network

Message PassingNeural Network (MPNN) represents themost versatile and expres-
sive form of GNNs. Its formulation introduces the crucial notion of messages, tak-
ing into account explicit information exchanged between nodes. These messages
consider both the node features and the edge features, effectively spreading in-
formation between nodes along the edges to update their latent representations.
Mathematically, computing the latent representation of a node i using MPNN can
be broken down into two steps:

1. Compute messages between node i and node j:
mij = ψ(xi,xj , eij)

2. Aggregate the information using a permutation-invariant function:
hi = ϕ

xi,
⊕

j∈N (i)

mij

where ϕ and ψ are trainable functions (e.g., MLPs) and⊕ is a permutation-invariant
aggregator (e.g., sum, average, or max).

53

Using MPNNs adhere to the previously mentioned properties. The MPNN operator
is applied independently and simultaneously to each node in the graph, and thus
applies to graphs of different sizes. It extracts the local structure of the graph by
gathering information from neighbouring nodes and edge relationships. Finally,
using MPNNs ensures that the GNN model is permutation-equivariant, which is
achieved by applying a permutation-invariant function to aggregate information for
every node in the graph.
In this thesis, MPNNs are the operators of choice for designing the upcoming GNN
models, further introduced in Part II. They represent the most expressive form of
GNNs, enabling explicit consideration of edge information when computing mes-
sages between two nodes. For instance, in the development of a GNN model ap-
plied to amesh for predicting solutions to Partial Differential Equations (PDEs), edge
information can be crucial, representing information such as the distance between
two nodes or their relative positions (refer to Section 4.1).
Spectral-based GNNs: GCN example

Spectral-based GNNs were first proposed in Bruna et al. (2013). It uses graph sig-
nal processing and defines the convolution operator in the spectral domain. The
fundamental concept is to directly apply a convolution filter to the eigenvalues of
the Laplacian matrix. The Laplacian matrix is an improved version of the adjacency
matrixA, expressed asL = D−A, whereD is the degreematrix (i.e. a diagonal ma-
trix with the degrees of each node on the diagonal). Spectral networks reduce the
convolution filter to a diagonal matrix, whose coefficients are the learnable param-
eters of the network. However, this approach faces significant drawbacks. Firstly,
the filter is applied to the entire graph, implying that there is no notion of locality.
Additionally, it is computationally inefficient, as computing the eigenvalues of the
Laplacian matrix requires computing the Singular Value Decomposition (SVD) of L,
something far too expensive for large graphs. Lastly, all considered graphs must be
of the same size. A major improvement which enhances the efficiency of spectral
methods is to approximate the SVD using Chebyshev expansion. Consequently, the
operator is constructed by acting directly on the powers of the Laplacian matrix, re-
sulting in a lower computational complexity. Furthermore, this approach addresses
the problem of locality by considering that the features representation should be
influenced only by itsK-hop neighbourhood: using Chebyshev expansion of order
K allows the definition of a K-localized convolution. Famous convolutional opera-
tors are GCN (Kipf andWelling, 2016a), ChebNets (Defferrard et al., 2016), or SGC (Wu
et al., 2019). In particular, GCN is a special case of ChebNets, where the order K of
Chebyshev extension is equal to 1. Even though these methods are spectral-based,
they still can be written node-wise in a Message-Passing formulation:

54

hi = ϕ

xi,
⊕

j∈N (i)

ci,jψ(xj)

 (2.10)

where ϕ and ψ are trainable functions (e.g., MLPs) and⊕ is a permutation-invariant
aggregator (e.g., sum, average, or max). The ci,j coefficients are fixed and directly
depend on the adjacency matrix. For instance, in GCN (Kipf and Welling, 2016a),
ci,j =

1√
didj

, where di is the degree of a node i.
These methods are computationally efficient but do not directly support edge fea-
tures and omit the notion of messages along graph edges, which reduces the ex-
pressivity of the network.
Graph Attention Networks

Graph Attention Networks (GAT) present a slightly more intricate approach. When
the edges of a graph encode similarities betweennodes, spectral-basedGNNsmight
be amethod of choice. However, if the edges represent more complicated relation-
ships, GATs may be a suitable solution. In GATs, neighbouring node features are
aggregated using implicit weights via attention mechanisms. This process allows
the model to learn the strength of a relationship between two nodes, enhancing
the expressivity of the network. Among the most renowned contributions in this
domain are GAT (Veličković et al., 2017a) and GaAN (Zhang et al., 2018a). The Graph
Attention operator can be mathematically described as follows:

hi = ϕ

xi,
⊕

j∈N (i)

α(xi,xj)ψ(xj)

 (2.11)

where ϕ and ψ are trainable functions (e.g., MLPs) and⊕ is a permutation-invariant
aggregator (e.g., sum, average, or max). Here α(xi,xj) represents a learnable at-tention mechanism. For instance, in the context of GAT (Veličković et al., 2017a),
the authors proposed computing the coefficients based on node features, which
are then passed into a trainable attention network. Then, the softmax function is
applied to the attention weights to build a probability distribution.
Figure 2.9a illustrates the computation process of the attention coefficient. More-
over, significant improvements were observed when enhancing the attention pro-
cess with multi-head attention (i.e. considering an aggregation of multiple atten-
tion coefficients computed for the same link) as depicted in 2.9b. This process has
the double benefit of enhancing the expressivity of the network (by improving the
capacity of the model to understand the strength of a connection) while simultane-
ously providing regularization.

55

(a) (b)

Figure 2.9: 2.9a illustrates the computation of the attention coefficient in GAT. Both node features
xi andxj aremultiplied by a trainablematrixW , followed by an activation functionφ (LeakyReLU
in the original paper). The result is then passed in a softmax function to produceαij . 2.9b displays
the multi-head attention process used in GAT. Different replicas of the same attention coefficient
but with different weights are computed (blue, red and green arrows) and then averaged to obtain
the updated latent representation.

These methods prove highly effective when dealing with graphs that do not encode
node similarities and are reasonably sized. However, it is crucial to note that this
operation requires computing scalar values for each edge of the graphwhich can be
computationally intensive for large graphs. Besides, Attentional operators do not
depend on the graph structure but only on the node representations, which can
also be a bottleneck when considering passing messages along edges.

2.4.4 . Information propagation

In previous section, we introduced three GNN operators, all of which follow the idea
of Message-Passing. As mentioned earlier, the application of Message-Passing up-
dates the features of a node toward a latent representation by aggregating informa-
tion from its neighbours, along with their relationships (i.e., edge information): this
new latent representation captures both feature-based and structural information
of the node and its direct neighbours.
The architecture of a GNN model is often composed of several steps of Message-
Passing, i.e., several GNN layers. This type of architecture is motivated by a more
general concept referred to as information propagation, driven by the following
idea: at each layer, every node aggregates information from its local neighbour-
hood. As these layers progress, each latent representation contains more informa-
tion from further reaches of the graph. To be precise: after the first layer (k = 1),
every node representation contains information from its 1-hop neighborhood, i.e.,
every node representation includes information about the features of its immedi-

56

Figure 2.10: Visualization of information propagation in the context of a GNN model with 3
MPNN layers applied to a graph with 9 nodes. The figure illustrates the information received by
the node h0 (red node) as the number of GNN layers increases. In the final layer, h0 encodes
feature-based and structural information received from all nodes in the graph.

57

Figure 2.11: Illustration of three standardMachine Learning tasks that can be executed on graphs.
Initially, an input graph is transformed into its latent representation using GNN layers. In the
context of classification tasks, a classifier loss function f is used. Node classification involves the
application of f to each latent representation hi. Graph classification involves applying f to an
aggregation of all latent representations. Link classification entails applying f to two represen-
tations hi and hj , along with their connection eij . It is important to note that the classifier f can
be substituted with any other loss function depending on the nature of the problem (e.g., MSE for
prediction tasks).

ate graph neighbors. And after k iterations, every node representation contains
information about its k-hop neighbourhood.
This process is illustrated in Figure 2.10, which demonstrates the propagation of
information in a GNN model with 3 MPNN layers. In this figure, the graph at the
top represents the input graph. Then, three MPNNs are applied iteratively. At the
first layer, h0 receives information from its direct neighbours h1, h2, and h3, alongwith edge information. In the second layer, the information received by h0 alsoincludes the features of h5, h4, and h7 and relationships. After three layers, h0 hasincorporated feature-based and structural information from all nodes in the graph.
Therefore, the number of GNN layers (i.e. the number of Message-Passing steps) is
an important hyperparameter of a GNN model that needs effective tuning. In fact,
it is one of the main aspects developed in this thesis, regarding the development of
GNNmodels applied to the resolution of PDEs on meshes (see Section 3.5, or more
generally Part II).

2.4.5 . Machine Learning on graphs in practice

A variety of Machine Learning tasks can be performed on graphs, which can be
classified into three categories:

• Node-level tasks: This class of tasks requires node-level representations.
The objectivemay involve node classification or node regression tasks. For ex-

58

ample, in numerical simulations, predicting node representations in a mesh
enables forecasting the physical solution of a Partial Differential Equation
(Pfaff et al., 2020; Alet et al., 2019).

• Edge-level tasks: This class of tasks requires edge-level representations. Sim-
ilar to node-level tasks, one can find tasks such as edge classification or pre-
dictions. Edge-level representation tasks are particularly useful in recommen-
dation systems where the objective is link prediction (i.e., predicting the exis-
tence of an edge between pairs of nodes) (Fan et al., 2019; Zhang and Chen,
2018). The majority of works that have been successful in the task of link pre-
diction are based on Graph Auto-Encoders (GAE) (Kipf and Welling, 2016c).

• Graph-level tasks: This class of tasks requires a single representation for
the entire graph. Tasks such as graph classification or graph regression fall
into this category. Real-world use cases of graph classification and regression
often arise from bioinformatics datasets, where, given a graph structure of a
molecule or protein, the prediction of a chemical or molecular property is
needed (Gilmer et al., 2017; Zhang et al., 2018b).

Figure 2.11 provides a visual representation of these different tasks.
From a practical standpoint, there exist several libraries available for performing
Machine Learning on graphs. For instance, in this manuscript, we used Pytorch
Geometric5. Alternately, TensorFlow provides Spektral6, while Deep Graph Library
(DGL7) can be used on both PyTorch and TensorFlow. Additionally, Jax users can
use Jraph8 for similar purposes.

5https://pytorch-geometric.readthedocs.io/en/latest/6https://graphneural.network/7https://www.dgl.ai/8https://github.com/deepmind/jraph

59

https://pytorch-geometric.readthedocs.io/en/latest/
https://graphneural.network/
https://www.dgl.ai/
https://github.com/deepmind/jraph

3 - Machine Learning for Physics Simulations

Sommaire
3.1 CNNs for physics simulations 60

3.2 GNNs for physics simulations 61

3.3 The Physics-Informed approach (PINN) 62

3.4 Deep Statistical Solvers 64

3.5 Thesis contributions 65

Chapter 1 introduced Computational Fluid Dynamics (CFD), which involves predict-
ing the motion of a fluid by numerically approximating solutions to Partial Differen-
tial Equations (PDEs) like the Incompressible Navier-Stokes equations (1.15). Chap-
ter 2 provided an overview of Deep Learning (DL) architectures and their practical
applications, from using input vectors in Multilayer Perceptrons (MLPs) to handling
structured image-like datawith Convolutional Neural Networks (CNNs) and unstruc-
tured graph-like data with Graph Neural Networks (GNNs). This Chapter serves as a
bridge between these two domains, aiming to provide a comprehensive overview of
the latest Deep Learning approaches for predicting solutions to PDEs. Additionally,
it clarifies the position of this thesis in relation to the current state-of-the-art. Never-
theless, the field of Machine Learning applied to Physics and Numerical Simulations
is rapidly evolving and highly dynamic, making it likely that this state-of-the-art is al-
ready outdated.
In the past few years, the use of Machine Learning models to predict solutions
of PDEs has very rapidly gained significant interest in the community, beginning
in the 90s with some pioneering works of Lee and Kang (1990); Dissanayake and
Phan-Thien (1994) and Lagaris et al. (1998). Since then, much research has focused
on building more complex neural network architectures with a larger number of
parameters, taking advantage of the increasing computational power as demon-
strated in Smaoui and Al-Enezi (2004); Baymani et al. (2010) or Kumar and Yadav
(2011).

3.1 . CNNs for physics simulations

Despite these convincing advances that harnessedMultilayer Perceptrons (see Sec-
tion 2.1), these methods were quickly overtaken by the tremendous progress made

60

in the field of Computer Vision and the rise of Convolutional Neural Networks (see
Section 2.3), thanks to the pioneering work of LeCun et al. (1995). For additional
global information on advances in the field of CNNs, Gu et al. (2018) provides a com-
prehensive overview. In the realm of fluid mechanics, such networks have been
used to solve the Navier-Stokes equations by considering solutions on rectangular
grids and treating them as images (Guo et al., 2016; Yilmaz and German, 2017; Illar-
ramendi et al., 2021). A significant amount of research has focused on using CNNs to
solve the Poisson equation due to its significant engineering interest, as exemplified
in Section 1.2. In Tang et al. (2017), a straightforward CNN architecture predicts the
potential electric distribution in a square domain by approximating the solution of
2D and 3D Poisson problems. In Hsieh et al. (2019), a Machine Learning solver with
a U-Net architecture (Ronneberger et al., 2015; Brunet et al., 2019) is designed to
mimic multigrid methods (Briggs et al., 2000) and provides theoretical convergence
guarantees when applied to the resolution of a 2D Poisson equation. In Özbay et al.
(2021), a convolutional neural network is trained to solve the inverse Poisson prob-
lem through supervised learning. Cheng et al. (2021) use a physics-based loss func-
tion with a deep convolutional network to solve the Poisson equation in the context
of plasma flows. These different approaches have shown promising results, pro-
viding rather accurate approximate solutions that are also computed faster than
traditional solvers. However, CNNs can only be used with image-like data: either
structured grids with uniform discretization, or projecting solutions on such a grid
(Liu et al., 2021), thus adding projection error that degrade the accuracy of the in-
ferred solutions: thismakes themunsuitable to handle numericalmethods that rely
on unstructured meshes (see Chapter 1).

3.2 . GNNs for physics simulations

To address these shortcomings, recent studies have focused on Graph Neural Net-
works (see Section 2.4), a class of neural networks that can learn from unstructured
data. Introduced in Battaglia et al. (2016), GNNs have experienced significant growth
and seen a variety of applications thanks to the development of new techniques
such as graph convolution (Kipf and Welling, 2016b), edge convolution (Hamilton
et al., 2017), graph attention networks (Veličković et al., 2017b), or graph pooling (Lee
et al., 2019) to name a few. An exhaustive survey on existing GNN architectures can
be found in Wu et al. (2020). Regarding physical applications, several recent works
have shown the ability of GNNs to learn dynamical systems accurately. For exam-
ple, in Chang et al. (2016) and Sanchez-Gonzalez et al. (2018), GNNs are used to learn
the motion of discrete systems of solid particles. Sanchez-Gonzalez et al. (2020) ex-
tend this approach to learn complex physics, including fluid simulation and solid
deformation, considering graph nodes as particles. In Pfaff et al. (2020), the authors
simulate the time dynamics of complex systems based on unstructured data. Li
et al. (2020d) and Lino et al. (2021b) propose using a multi-level architecture to solve

61

PDEs on graphs with a larger number of nodes. In Horie and Mitsume (2022), a
GNN model is trained through supervised learning to approximate the solution of
the incompressible Navier-Stokes equation while preserving the boundary condi-
tions. Similar to CNN-oriented research, some studies have focused on using GNNs
to solve the Poisson equation, starting with the work of Alet et al. (2019). Li et al.
(2020c) introduce a graph kernel network to approximate PDEs with a specific focus
on the resolution of a 2D Poisson problem, and in Chen et al. (2022), a multi-level
GNN architecture is trained through supervised learning to solve the Poisson Pres-
sure equation in the context of fluid simulations. These approaches outperform
the CNN-based model as they better generalize to meshes with different shapes
and sizes, given that the mesh is an inherent part of the input to the model. Never-
theless, these methods still rely solely on supervised learning, requiring computa-
tionally expensive ground truth solutions and resulting in a sharp decrease in per-
formances when applied to out-of-distribution examples. Additionally, the explicit
consideration of boundary conditions remains elusive, presenting a significant chal-
lenge for practical use in industrial processes.

3.3 . The Physics-Informed approach (PINN)

In parallel to these architectural advancements, another research direction focuses
on a new class of Deep Learning methods called “Physics-Informed Neural Net-
works” (PINNs). Introduced in Raissi et al. (2019a) and Raissi and Karniadakis (2018)
for resolving knownphysicalmodels, PINNs offer an innovative approach by directly
integrating the PDE residual into the training loss. To achieve this, PINNs use a deep
network to compute the PDE solution and leverage Automatic Differentiation to cal-
culate partial derivatives and construct the residual equation. PINN training follows
an unsupervised strategy and can be trained with a relatively small amount of data
compared to supervised methods. Related approaches also rely on the PDE’s weak
formulation, i.e., applying a deep network to solve the PDE in variational form. This
is the case of the Deep Ritz method (Yu et al., 2018), which formulates the PDE as
an equivalent minimization problem, subsequently discretizing and solving it using
a deep network combined with a numerical integration method. PINNs are mesh-
free methods since they are trained on a carefully selected set of points within the
domain known as collocation points. Once trained and provided with an input point
within the domain, they yield an approximate solution at that point of the PDE. In Li
et al. (2021), the authors investigated various approaches to loss functions, including
data-driven, PDE-based (PINNs-like), and energy-based (DeepRitz-like) losses. They
noted that the PDE-based loss function hasmore hyperparameters compared to the
energy-based alternative. Additionally, they observed that while the energy-based
strategy is more sensitive to the size and resolution of training samples compared
to the PDE-based approach, it offers greater computational efficiency. PINNs have
gained significant attention in the scientific community, particularly in fluidmechan-

62

ics, where their flexibility in solving a wide range of forward and inverse problems
hasmotivated numerous studies (Raissi et al., 2019b, 2020; Sun et al., 2020; Cai et al.,
2021). This field includes applications for compressible flows (Mao et al., 2020), lam-
inar flows (Rao et al., 2020), turbulent flows (Wu et al., 2018; Yang et al., 2019; Lucor
et al., 2021), biomedical flows (Yin et al., 2021; Kissas et al., 2020), and others, as de-
tailed in Cai et al. (2022); Cuomo et al. (2022).
Despite their success, PINNs face significant challenges that hinder their effective
deployment in industrial contexts. One major limitation lies in the spectral bias in-
herent in neural networks. Studies have shown that conventional fully connected
architectures, such as those typically used in PINNs, are unable to properly learn
functions with high frequencies (Bruna et al., 2013; Cao et al., 2019). Consequently,
PINNs often struggle to achieve stable training and accurate predictions, particu-
larly when dealing with PDE solutions that contain high frequencies or multi-scale
features (Wang et al., 2022b). Furthermore, Mishra and Molinaro (2023) investigate
whether PINNs converge to the correct solution by obtaining error estimates (under
mild hypotheses) and identifying possible mechanisms by which PINNs can approx-
imate PDEs. Among these hypotheses is the number of collocation points, which
should be sufficiently large, which can be an issue when applied to larger problems.
As the domain size increases, so does the complexity of the problem, necessitating
larger networks to accurately capture all features. The time and storage require-
ments for computing partial derivatives through automatic differentiation also in-
crease, which can quickly become overwhelming. Moreover, since the PINN loss
function can be highly non-convex, higher problem complexity could lead to chal-
lenging optimization problems, resulting in reduced accuracy or no convergence at
all (Krishnapriyan et al., 2021). We refer the reader to Section 9.2 for potential solu-
tions to the large-scale issue. Additionally, PINNs are often evaluated on small-scale
and simple 2D domains, which are far from industrial requirements. The sampling
of collocation points is often problem-dependent, typically requiring prior knowl-
edge of the domain (Nabian et al., 2021), and the distribution of residual points is a
crucial parameter in PINNs, as it can dramatically alter the design of the loss func-
tion (Mao et al., 2020). Consequently, PINNs may face challenges in generalizing to
new scenarios due to significant changes that can occur in the solution to a PDE
when considering different domain shapes or boundary conditions, often necessi-
tating retraining to provide satisfactory results. PINNs may also fail to approximate
a solution not due to the lack of expressivity in the neural network architecture but
due to soft PDE constraint optimization problems, whichmake the loss function very
challenging to optimize (Cuomo et al., 2022). As suggested in (Krishnapriyan et al.,
2021), one proposed solution is to use adaptive regularization in the loss function.
Finally, boundary conditions constraints can be regarded as penalty terms. Many
existing PINN frameworks use a soft approach to constrain the boundary condi-
tions by creating extra loss components defined on the collocation points of bound-
aries. However, this technique has twofold disadvantages: accurately satisfying the

63

boundary conditions is not guaranteed, and the assigned weight of the boundary
condition loss might affect learning efficiency. Zhu et al. (2021) proposes the Dirich-
let boundary conditions in a hard approach by using a specific component of the
neural network to purely meet the Dirichlet boundary conditions.

3.4 . Deep Statistical Solvers

The primary contributions of this thesis are closely related to the Deep Statistical
Solvers (DSS) method (Donon et al., 2020). DSS was originally designed in the con-
text of Power Grid simulations to better handle changes in the topology of the grid
compared to supervised learning approaches. This is achieved by using a physics-
informed approach, directly minimizing the residual of Kirchhoff’s law in the loss
function. Another case study in Donon et al. (2020) focuses on solving Poisson prob-
lems with Dirichlet boundary conditions. In this case, the physics-informed loss is
the residual of the discretized Poisson problem. This approach differs significantly
from most previous GNN-based methods, which are based on supervised learn-
ing and attempt to minimize the distance between the output of the model and a
“ground-truth” solution. As a result, models like DSS can be trained without a large
set of training sample solutions, which are often expensive to compute.
The DSS model is trained on a mesh-based architecture and benefits from the cho-
sen discretization scheme, i.e., the Finite Element method, setting it apart from the
PINN approach (a mesh-free method). In PINNs, each weight of the neural network
influences the solution at all points, which makes the method inconsistent with the
locality of the original differential problem. This is in contrast to the DSS method,
which aims to learn the discretized operator. DSS uses an iterative architecture,
propagating information through a manually set number of Message Passing Neu-
ral Network (MPNN) layers (see Section 2.4). Notably, each MPNN layer varies at
each iteration. Interestingly, Donon et al. (2020) demonstrates, undermild hypothe-
ses, the consistency and convergence of the approach, but it depends on the num-
ber of MPNN layers, which should be directly proportional to the diameter1 of the
meshes at hand.
DSS yields efficient results but has some limitations. It is constrained to geometries
of similar sizes (diameters) since it is designed with a fixed number of iterations. To
tackle geometries with a larger number of nodes, the number of iterations must be
increased accordingly, leading to a significant increase in the size of the model. Ad-
ditionally, when it comes to solving the Poisson equation, DSS is restricted to Dirich-
let boundary conditions and does not explicitly address these boundary conditions.
These limitations, among others presented in Chapter 5, hinder the generalization
capabilities of the Deep Statistical Solvers model.

1the shortest path (node-wise) between the two farthest nodes in a mesh.

64

3.5 . Thesis contributions

In this manuscript, we build on recent advancements in state-of-the-art models to
explore the development of Deep Learning algorithms for solving a wide range of
Poisson problems with precision and efficiency. Our specific focus is on enhancing
the Deep Statistical Solvers framework by introducing a novel GNN-based physics-
orientedmodel. Thismodel is designed to address the challenges posed by unstruc-
tured meshes of varying sizes and shapes while explicitly incorporating boundary
conditions.
Two major contributions of this work are presented in Part II. The first contribu-
tion, discussed in Chapter 6 and referred to as DS-GPS, focuses on solving Pois-
son problems with mixed boundary conditions, thereby extending its application
to CFD cases. Compared to the original DSS, DS-GPS features a recurrent archi-
tecture, resulting in a significantly reduced model size, and incorporates various
enhancements. Notably, it follows a node-oriented architecture, allowing for the
explicit treatment of boundary conditions by design, and includes an additional au-
toencoding structure that enhances its flexibility with respect to the initial solution.
However, despite the recurrent architecture, where weights are shared between
different iterations, the model must still be trained with a fixed number of recur-
rent iterations (extending the number of iterations is only possible when inferring a
solution but still has to be manually set by the user). This limitation results in poor
generalization capabilities with meshes of sizes significantly different than the ones
used during training. An important observation about this approach is that, under
a specific configuration, if the model is trained with a sufficient number of MPNN
iterations, it tends to converge toward an equilibrium point. This observation moti-
vated the second contribution of this manuscript.
Chapter 7 introduces our second andmain contribution: theΨ-GNNmodel. Ψ-GNN
is designed to retain the strengths of DS-GPS while achieving better generalization
across mesh sizes. It is an Implicit Graph Neural Networkmodel specifically tailored
for solving Poisson problems on unstructured meshes with mixed boundary con-
ditions. Leveraging the Implicit Layer theory (Bai et al., 2019), Ψ-GNN automatically
determines the required number of Message Passing layers, ensuring robust gen-
eralization across various mesh sizes and shapes. Similar to DS-GPS, Ψ-GNN effec-
tively handles boundary conditions through a node-oriented approach and dynam-
ically adapts to initial solutions via an autoencoding process. The model is trained
end-to-end, minimizing the residual of the discretized Poisson problem, attempting
to learn the underlying physics represented by the discretized Laplace operator. To
maintain stability, a regularization cost function constrains the spectral radius of
the Machine Learning solver, ensuring reliable convergence. Theoretical analysis
confirms thatΨ-GNN exhibits a universal approximation property, underscoring its
consistency and effectiveness. However, it is important to note that while Ψ-GNN

65

significantly enhances generalization, it remains best suited for small-sized prob-
lems. This limitation hinders its applicability to industrial processes, which often
involve thousands of nodes.
To address this latter limitation and scale these models to larger geometries, we
explore, in Part III, the integration of the previously mentioned models with Do-
main Decomposition methods. The concept is to leverage batch parallel comput-
ing on GPU to improve the resolution of subproblems within the context of well-
established Schwarz methods. This is still ongoing work, and only the preliminary
(but promising) results are presented in this dissertation.
The decision to use GNNs instead of mesh-free PINNmethods is driven by practical
considerations. The objective is to enhance the resolution of the Poisson Pressure
problem within a step of a splitting scheme method, leveraging an existing mesh
and computed quantities from previous steps. Therefore, the use of GNNs and
their ability to learn from unstructured data was a natural choice. Moreover, we
aimed for a model that can be flexible to domains with different shapes and sizes,
an option potentially offered by GNNs compared to PINNs. However, the theoret-
ical exploration of GNN models to address spectral bias was beyond the scope of
this work. It is worth noting that our intention was never to entirely replace the
Poisson Pressure problem with GNN models. Asking a Machine Learning model to
provide convergence guarantees and sufficient accuracy to ensure the consistency
of a splitting scheme is ambitious. Instead, we aimed to use Machine Learning so-
lutions as complementary tools to existing linear solvers, such as employing them
as good initializers or preconditioners.
A potential research direction could involve leveraging the spectral bias instead of
attempting tomitigate it. Spectral bias indicates that the network solution struggles
to learn high-frequency errors. Interestingly, this property complements classical
relaxation methods such as Jacobi or Gauss-Seidel, which excel at quickly damping
low-frequency errors but struggle with high-frequency ones (Saad, 2003). Hence,
it may be possible to combine the strengths of both approaches to achieve an im-
proved relaxation scheme. For instance, this would involve not only using aMachine
Learning solution as an initializer but also incorporating Machine Learning as a cor-
rection term in a relaxation scheme to reduce both high and low frequencies of the
solution simultaneously. Regarding multi-scale problems, although this aspect has
not been investigated in this work, there are no major downsides in the proposed
method that indicate significant failures when considering multi-scale problems.
However, training might be more challenging. Nevertheless, I am confident that
leveraging a hierarchical GNN architecture could potentially address this issue (Gao
and Ji, 2019a; Liu et al., 2021).

66

Part II

Graph Neural Network Solvers
for Poisson-like problems

The second Part of this thesis introduces Graph Neural Network (GNN)-basedmod-
els for solving Poisson problems. The work developed in this study is inspired by
and closely related to Deep Statistical Solvers (DSS) (Donon et al., 2020), a new class
of trainable solvers for optimization problems on graphs. As detailed in the previ-
ous Chapter 3, a noteworthy aspect of the DSS research concerns its ability to solve
linear systems arising from discretized partial differential equations. This yields ef-
ficient results but also reveals several limitations. The aim of this second Part is
to enhance the generalization capabilities of the DSS approach. It is divided into
four chapters as follows: Chapter 4 lays the foundation for all the subsequent ap-
proaches. Chapter 5 provides a detailed introduction to the original DSS approach
(Donon et al., 2020), describing its architecture, evaluating its performance, and
discussing its limitations. To address these limitations, two contributions are pre-
sented in the subsequent chapters. The first contribution involves using a Recurrent
GNN architecture to enhance the capabilities of DSS and is described in Chapter 6.
Chapter 7 studies the second contribution, exploring an implicit GNN architecture
designed to overcome the drawbacks identified in the previous chapter.

67

4 - General framework

Sommaire
4.1 Problem statement 68

4.2 Statistical problem 70

4.3 Dataset description 73

The present Chapter aims to establish the foundation for all the subsequent meth-
ods, particularly by introducing the dataset based on synthetic data. One research
direction involves extending the original DSS approach, which primarily focuses on
solving Poisson problems with Dirichlet boundary conditions, to handle Poisson
problems with mixed boundary conditions, aligning with CFD frameworks (as dis-
cussed in Chapter 1). These problem variations are detailed in Section 4.1. The Chap-
ter then introduces the statistical problem common to all subsequent approaches
in Section 4.2. Finally, Section 4.3 provides a detailed description of the dataset used
in all the experiments.

4.1 . Problem statement

This Section aims to introduce and define the problems addressed in the following
of this manuscript. We are interested in solving two different Poisson problems:
Poisson problems with Dirichlet boundary conditions, as was done in the original
Deep Statistical Solvers study (Donon et al., 2020), and Poisson problemswithmixed
boundary conditions, aligning with CFD frameworks.
LetΩ ⊂ R2 be a bounded open domainwith smooth boundary ∂Ω = ∂ΩD∪∂ΩN . Toensure the existence and uniqueness of the solution, special constraints (referred
to as boundary conditions) must be specified on the boundary ∂Ω of Ω (Langtangen
and Mardal, 2019): Dirichlet conditions assign a known value for the solution u on
∂ΩD, and homogeneous Neumann boundary conditions impose that no part of the
solution u is leaving the domain through ∂ΩN (see Chapter 1 for additional details).
More formally, let f be a continuous function defined onΩ, g a continuous function
defined on ∂ΩD and n the outward normal vector defined on ∂Ω.

68

Poisson problem with Dirichlet boundary conditions

The Poisson problem with Dirichlet boundary conditions consists of finding a real-
valued function u, defined on Ω, that satisfies:

{
−∆u = f ∈ Ω

u = g ∈ ∂Ω
(4.1)

Poisson problem with Mixed boundary conditions

The Poisson problem with mixed boundary conditions (i.e. Dirichlet and homoge-
neous Neumann boundary conditions) consists of finding a real-valued function u,
defined on Ω, that satisfies:

−∆u = f ∈ Ω

u = g ∈ ∂ΩD
∂u
∂n = 0 ∈ ∂ΩN

(4.2)

For both problems (4.1) and (4.2), except in very specific instances, no analytical solu-
tion can be derived, and its solutionmust be numerically approximated: the domain
Ω is first discretized into an unstructured mesh, denoted Ωh. The problem is then
spatially discretized using the Finite Element Method (FEM) (Reddy, 2019), also de-
scribed in Section 1.3. The approximate solution uh is sought as a vector of valuesdefined on all N degrees of freedom of Ωh. Besides, N depends on the type of el-
ements chosen (i.e., the precision order of the approximation). In this thesis, we
restrict ourselves to first-order Lagrange elements, hence N matches the number
of nodes in Ωh. The discretization of the variational formulation using Galerkin’s
method yields the resolution of the linear system:

AU = B (4.3)
where A ∈ RN×N is sparse and represents the discretization of the continuous
Laplace operator, the vector B ∈ RN comes from the discretization of the forcing
term f and of the mixed boundary conditions, and U ∈ RN is the solution vector to
be sought. Details regarding the derivation of the linear system (4.3) can be found
in Section 1.3.
Let F be a set of continuous functions on Ω and G a set of continuous functions on
∂ΩD. We denote as P a set of Poisson problems, such that any element Ep ∈ P is
described as a triplet:

Ep = (Ωp, fp, gp)

69

where fp ∈ F and gp ∈ G. For all Ep ∈ P , let Eh,p ∈ Ph denote its discretization,such that:

Eh,p = (Ωh,p, Ap, Bp)

where Ap and Bp are defined similar to (4.3).
The fundamental concept, common to all models introduced in the subsequent
chapters, is, considering a continuous Poisson problem Ep ∈ P , to build a Machine
Learning solver, parametrized by a vector θ, which outputs an approximate solution
Up of its respective discretized form Eh,p ∈ Ph:

Up = Solverθ (Eh,p) = Solverθ (Ωh,p, Ap, Bp) (4.4)

4.2 . Statistical problem

In (4.3), it should be noted that the structure of matrix A encodes the geometry of
its corresponding mesh (i.e. A can be viewed as the adjacency matrix of its cor-
responding mesh). Indeed, for each node, using first-order finite elements leads
to the creation of local stencils, which represent local connections between mesh
nodes. The Machine Learning solvers introduced in the following chapters are built
using Graph Neural Networks (GNNs), which can handle graph data effectively (see
Section 2.4). When using higher-order finite elements, building a graph from the
stiffness matrix A is still possible, but its relationship to the mesh becomes more
intricate and requires extra care. To simplify the process and align with the original
DSS study, this work solely focuses on the use of first-order finite elements.
A crucial upside of using GNNs in physics simulations is related to the right treat-
ment of boundary conditions. In the linear system (4.3), implementing Dirichlet
boundary conditions involves modifying the sparse matrix A by setting the off-
diagonal elements of the rows corresponding to Dirichlet nodes to 0 and the di-
agonal element to 1. Similarly, the corresponding index in vector B is set to the
discrete value of g. As a result, when solving (4.3), Dirichlet conditions are enforced,
ensuring that u = g (refer to Section 1.3). Figure 4.1a displays the sparsity pattern
of matrix A for a problem with 17 nodes before applying Dirichlet boundary condi-
tions. In contrast, Figure 4.1b illustrates the sparsity pattern ofmatrixA for the same
problem after applying Dirichlet boundary conditions. This comparison reveals that
such modifications break the symmetry of the matrix A. As a consequence, some
Interior connections (blue squares in Figure 4.1b) andNeumann connections (yellow
squares in Figure 4.1b), linked to Dirichlet nodes no longer have symmetrical coun-
terparts. As a result of this specific construction, the induced graph is directed at
those Dirichlet boundary nodes, sending information only to its neighbours without

70

(a) (b)

(c) (d)

Figure 4.1: Figure 4.1a illustrates the sparsity pattern in matrix A, obtained by discretizing the
Laplace operator in (4.2) using FEM for a problem with 17 nodes before applying Dirichlet bound-
ary conditions. Using this matrix as an adjacency matrix, the induced graph is shown in 4.1c,
resulting in a fully undirected graph. Figure 4.1b displays the sparsity pattern of the same matrix
A after applying Dirichlet boundary conditions. The related graph is shown in 4.1d, resulting in
an undirected graph for Interior and Neumann nodes (blue and yellow nodes) and a directed
graph for Dirichlet nodes (red nodes). For both 4.1a and 4.1b, Interior, Neumann and Dirichlet
connections correspond to the blue, yellow and red squares, respectively.

receiving any. Conversely, Interior and Neumann nodes induce an undirected graph
with bi-directional edges, thus exchanging information with each other. To further
illustrate this, Figure 4.1c displays the graph obtained using the adjacency matrix
depicted in 4.1a (i.e. before applying Dirichlet boundary conditions). Since 4.1a is
symmetrical, all edges are bi-directional. On the contrary, Figure 4.1d illustrates the
graph obtained by considering the adjacencymatrix 4.1b (i.e. after applying Dirichlet
boundary conditions), showcasing the specific directionality of the edges based on
the node types.
A discretized Poisson problem Eh = (Ωh, A, B) with N degrees of freedom can
then be interpreted as a graph problem G = (N, A, B), where N is the number
of nodes in the graph, A = (aij)(i,j)∈[N]2 , is the weighted adjacency matrix that rep-

71

resents the interactions between the nodes and B = (bi)i∈[N] denotes some local
external inputs applied to each node i in the graph. Vector U = (ui)i∈[N] representsthe state of the graph, ui being the state of the node i.
Additionally, let S be the set of all such graphs G, U the set of all states U , and
Lres the real-valued function which computes the mean squared error (MSE) of the
discretized residual equation such that:

Lres(U, G) = MSE (AU −B) (4.5)
=

1

N

∑
i∈[N]

(
− bi +

∑
j∈[N]

ai,juj

)2 (4.6)

The objective is, given a graph G in S , to find an optimal state in U that minimizes
(4.6). Therefore, we define a Machine Learning solver, parameterized by θ, that
predicts from G a solution U in order to solve the following statistical problem:

Given a distribution D on space S and a loss function Lres, solve:

θ⋆ = argmin
θ

E
G∼D

[Lres (Solverθ (G) , G)] (4.7)

In practice, the expectation (4.7) is empirically computed using a finite (and suffi-
ciently large) number of graphs sampled from D. The result of this empirical min-
imization is a parameter θ̂. The Machine Learning solver can then be used at in-
ference to compute, for any G ∈ supp(D), an approximate solution Û of U⋆ such
that:

Û = Solver
θ̂
(G) (4.8)

This approach differs from most previous Machine Learning methods, which solve
a supervised learning problem, training the model by minimizing the distance with
a “ground-truth” solution. Although these supervised learning approaches have
shown promising results (see e.g., Chapter 3), they require a large dataset contain-
ing such ground-truth solutions, which can be particularly expensive to obtain in the
context of physics simulations. In contrast, the proposed DSS-based approach does
not require such solutions as it directly minimizes the discretized objective function
of the problem. Figure 4.2 illustrates the difference between the supervised (i.e.
using a ground-truth solution) and the considered unsupervised approach.
All the work presented in the following adheres to this framework, and try to solved
the statistical problem described above. The focus now lies on the architectural
specificities of the considered GNN solvers. For each model, various experiments

72

(a) (b)

Figure 4.2: Figure 4.2a illustrates the supervised approach. In this configuration, the GNNmodel
is trained by minimizing the difference between the model output Û and a ground-truth solution
U⋆. In contrast, Figure 4.2b displays the unsupervised approach used in this thesis. In this con-
figuration, the GNN model is trained by directly minimizing the discretized residual equation.

will showcase its strengths and limitations, encouraging continuous improvement.
To provide a fair comparison between each method, these experiments require a
common dataset to be trained and tested on, which is the topic of next Section 4.3.

4.3 . Dataset description

This section aims to explain the generative process used to construct the datasets
for training and testing the subsequent models. Multiple datasets will be consid-
ered, but each one will consist of various numbers of training, validation, and test
samples of discretized Poisson problems derived from (4.1) or (4.2). The specific
number of samples for each experiment will be provided where appropriate.
Each sample is generated as follows: Random 2D domains Ω are generated using
10 points, randomly sampled in the unit sphere. These points are then connected
using Bezier curves to form the boundary of domain Ω. The “MeshAdapt" mesher
from GMSH1 (Geuzaine and Remacle, 2009) is used to discretize Ω into an unstruc-
tured triangular mesh Ωh. Figure 4.3 illustrates a random 2d domain Ω and its cor-
responding mesh Ωh.
The upcoming analysis will involve multiple datasets to evaluate the performance
of various models, considering variations in the number of nodes and the type
of boundary conditions. For each experiment, a specific range for the number of
nodes will be specified. To achieve different node counts, two configurations will be
considered: the first involves densifying geometries by adjusting their mesh sizes,

1https://gmsh.info/

73

https://gmsh.info/

(a) Continous domain (b) Mesh

Figure 4.3: 4.3a displays a random 2d domain Ω and 4.3b its associated mesh Ωh.

(a) (b)

Figure 4.4: Random meshes generated to build the various datasets. 4.4a: geometry used for
solving Poisson problems with Dirichlet boundary conditions. 4.4b: geometry used for solving
Poisson problems with mixed boundary conditions. Blue, red and yellow nodes correspond to
Interior, Dirichlet and Neumann nodes, respectively. The arrows in 4.4b depict the outward nor-
mal vectors.

and the second involves preserving the mesh size fixed while increasing the radius
of each geometry. These configurations will be detailed for each experiment, where
appropriate.
When considering Poisson problemswithDirichlet boundary conditions (4.1), Dirich-
let boundary nodes are applied to the entire boundary of the mesh. An example of
this configuration is given in Figure 4.4a. When considering Poisson problems with
mixed boundary conditions (4.2), the boundary is randomly divided into four sec-
tions and Dirichlet boundary conditions are applied on two opposite sections, while
Neumann boundary conditions are imposed on the remaining opposite sections.
This configuration is illustrated in Figure 4.4b.

74

(a) Forcing function (b) Boundary function

Figure 4.5: Figures 4.5a and 4.5b display the discrete values of a forcing term f and a boundary
function g, on a mesh sampled from the test set. The coefficients of f and g, uniformly sampled
in [−10, 10], are r1 = 3.2, r2 = −7.5, r3 = 1.1, r4 = 5.7, r5 = −9.5, r6 = 0.47, r7 = −8.8,
r8 = 9.11, and r9 = 3.5. The considered mesh is shown as a grey shadow in the plot.

Forcing functions f and boundary functions g from (4.1) or (4.2) are defined as ran-
dom quadratic polynomials with coefficients sampled from uniform distributions
and are given by:

f(x, y) = r1(x− 1)2 + r2y
2 + r3 (x, y) ∈ Ω (4.9)

g(x, y) = r4x
2 + r5y

2 + r6xy + r7x+ r8y + r9 (x, y) ∈ ∂Ω (4.10)
where (ri)i∈[1,··· ,9] are uniformlysampled in [−10, 10]. Figure 4.5 illustrates examples
of such f and g functions on a sampled mesh.

75

5 - Deep Statistical Solvers

Sommaire
5.1 Introduction . 76

5.2 Methodology . 77

5.2.1 Architecture . 77

5.2.2 Training materials 79

5.3 Experiments & Results 81

5.3.1 Experimental setup 81

5.3.2 Results . 82

5.4 Limitations . 83

This chapter introduces the Deep Statistical Solvers (DSS) model. To start with, Sec-
tion 5.1 gives a brief reminder of the essential aspects developed in previous Chap-
ter 4. Next, Section 5.2 presents the methodology concerning the development of
the DSS model, including its architecture, in 5.2.1, and training materials, in 5.2.2.
Section 5.3 investigates the performance of DSS, and Section 5.4 highlights its limi-
tations.

5.1 . Introduction

The original Deep Statistical Solvers study (Donon et al., 2020) focuses on solving
Poisson problems with Dirichlet boundary conditions, described in (4.1). The DSS
approach aligns with the previously mentioned statistical problem, which was de-
veloped in Section 4.2.
To summarize and using the same notations, the idea is to define a Graph Neural
Network (GNN)-based model, parametrized by a vector θ, that predicts from a dis-
cretized Poisson problem defined as a graphG = (N,A,B) a solution U in order to
solve the following statistical problem:
Given a distribution D on space S and a loss function Lres, solve:

θ⋆ = argmin
θ

E
G∼D

[Lres (DSSθ (G) , G)]
= argmin

θ
E

G∼D
[Lres (DSSθ (N,A,B) , G)]

76

Figure 5.1: Visualization of the original DSS architecture (Donon et al., 2020): The model is ini-
tialized with a null latent state H0. An iterative process then propagates the information for k̄
iterations usingM k̄

θ distinct blocks of MPNNs. During each iteration k, a Decoder Dk
θ translates

the latent state Hk into a physical state Ûk, upon which an intermediate loss is computed. The
green squares correspond to trainable functions, and their weights are learned during training.
The final state Û k̄, shown in red in the figure, represents the output of the model.

Now, the focus lies on exploring the architecture of the DSS model.

5.2 . Methodology

This section gives the methodology used in Deep Statistical Solvers. Section 5.2.1
introduces the architecture of DSS, and Section 5.2.2 provides some specifics on
the training procedure.

5.2.1 . Architecture

In Chapter 2, Section 2.4 introduced Graph Neural Networks (GNNs) as a specific
Machine Learning architecture capable of handling graph data efficiently. In the
Deep Statistical Solversmodel, the authors decided to leverage theMessage Passing
Neural Network (MPNN) framework. Among the various GNN operators, MPNNs
are considered one of the most versatile and particularly well-suited structures for
physics applications.
The overall architecture of DSS is displayed in Figure 5.1. It consists of an iterative
process that acts on a latent state H = (Hi)i∈[N] ∈ H with Hi ∈ Rd, d ≥ 1 for k̄
iterations. The entire architecture can be divided into three steps: an Initialization
step, a Message Passing step and a Decoding step, described as follows.

77

Initialization

To start with, all latent states inH0 are initialized to a null vector. The latent stateH
can be interpreted as an embedding of the physical state U into a space of a larger
dimension. This architectural choice is motivated by the need to provide enough
space for information propagation throughout the whole network.
Message Passing

TheMessage Passing step, responsible for the flow of information within the graph,
performs k̄ updates on the latent state variableH using k̄ updating blocks of neural
networks (Mk

θ

)
1≤k≤k̄.

To achieve this, at each iteration k, two different messages ϕk→ and ϕk← are first
computed using multi-layer perceptrons (MLPs) Φk+1

→,θ and Φk+1
←,θ . These messages

correspond to outgoing and ingoing links and are defined, node-wise, as follows:

ϕk+1
→,i =

∑
j∈N (i)

Φk+1
→,θ(H

k
i , H

k
j , aij) (5.1)

ϕk+1
←,i =

∑
j∈N (i)

Φk+1
←,θ(H

k
i , H

k
j , aji) (5.2)

where aij and aji corresponds to the coefficients of A. The updated latent state
Hk+1 is then computed using an MLP Ψk+1

θ in a ResNet-like (He et al., 2015) fashion
such that, node-wise:

Hk+1
i = Hk

i + α Ψk+1
θ (Hk

i , bi, ϕ
k+1
→,i , ϕ

k+1
←,i) (5.3)

For purpose of clarity, operations (5.1), (5.2) and (5.3) can be grouped into a single
updating blockMk+1

θ such that the next latent stateHk+1 is computed as follows:

Hk+1 =Mk+1
θ (Hk, G) (5.4)

Decoder

A Decoding step is applied after each iteration to convert the latent stateHk+1 into
a meaningful actual state Ûk+1 by using an MLPDk+1

θ such that :

Ûk+1 = Dk+1
θ (Hk+1) (5.5)

78

5.2.2 . Training materials

This section aims to provide training materials, describing the loss used to train the
model and detailing additional data pre-processing.
Training loss

The final state Û k̄ represents the actual output of the algorithm, which corresponds
to the approximate solution Û from equation (4.8). At first, the authors proposed
constructing the training loss by only considering the final state. However, it turned
out to be much more stable when all intermediate states were involved. Therefore,
the training loss is computed as a discounted sum of all intermediate losses, as
follows:

Training Loss =

k̄∑
k=1

γk̄−kLres(Ûk, G) (5.6)

where γ ∈ (0, 1) is a decay factor so that the last partial solutions have more weight
than the early ones.
All the trainable functionsΦk

→,θ,Φk
←,θ,Ψk

θ , andDθ, have distinct weights. They are alltrained simultaneously, with the gradient of the training loss (5.6) backpropagated
through themodel. Additionally, themodel has several hyperparameters, including
the latent state dimension d, the number of iterations k̄, the update coefficient α in
(5.3), and the discounted coefficient γ from (5.6), which need to be tuned for optimal
behaviour of the training process.
One key question concerns choosing an appropriate value for k̄. The authors of
DSS suggest that the nature of information exchange may vary between the begin-
ning and end of the process. This intuition motivated the construction of a model
where the trainable blocks differ at each iteration. However, this choice comes at
the expense of a fixed amount of propagation step k̄. While k̄ could be treated
as a regular hyperparameter to tune, another approach was considered. Indeed,
one Message Passing step in the network enables a local propagation of informa-
tion, where a node exchanges information with its immediate neighbours. When
performing k̄ MPNNs in DSS, we then propagate the information from one node
to other nodes located k̄ connections away. To ensure that the information has
propagated between all nodes in the graph, the number of iterations k̄ is fixed to
the average diameter1 of the considered meshes in the dataset. This intuition is
actually theoretically demonstrated by the authors of DSS.

1The shortest path (node-wise) between the two farthest nodes in a mesh.

79

Change of variables

To ensure optimal performance of a Machine Learning model, it is crucial to prop-
erly normalize the input data. Failing to do so, particularly when the data have vary-
ing ranges of values, can often lead to training issues such as exploding gradients
or challenges in finding global/local minima. In DSS, the authors propose a change
of variable to allow for better normalization as well as lighter storage.
To start with, the elements of B defined in the linear system (4.3) constitute a mul-
timodal distribution. Indeed, coefficients bi that correspond to Dirichlet boundary
nodes have different ranges than the ones representing Interior nodes. To tackle
this issue, the following change of variable is considered by transforming B into a
vector B′ = (b′i)i∈[N] such that:

b′i =

[
bi 0 0

] if Interior[
0 1 bi

] if Dirichlet (5.7)

As mentioned in Section 4.2, the application of Dirichlet boundary conditions alters
the shape of matrix A. For a row i of A corresponding to Dirichlet nodes, the coef-
ficients are of the form aii = 1 and aij = 0 for i ̸= j. Moreover, for Interior nodes,
the corresponding coefficients follow the subsequent redundant formula:

aii = −
∑

j∈[N]\{i}
aij

As a result, for Interior nodes, the diagonal information can always be retrieved
from theoff-diagonal components. To allow for lighter storage, the following change
of variables is considered by transforming thematrixA into amatrixA′ = (a′ij) suchthat :

a′ij =

{
aij if i ̸= j

0 otherwise (5.8)

The changes of variables (5.8) and (5.7) necessitate modifying the loss function (4.6)
to a new equivalent loss, denoted as L′res, which is defined as follows:

L′res(U, G) =
∑
i∈[N]

(1− b′2i)(−b′1i) + b′2i (ui − b′3i) +
∑
j∈[N]

a′ij(uj − ui)

2

(5.9)

80

where bpi denotes the p-th component of the vector b′i. In essence, this change of
variables allows for more effective normalization by independently normalizing the
bi coefficients depending on their type (Interior or Dirichlet nodes) and for lighter
storage of matrix A.
Data normalization

Considering these changes in variables, all the input data can now be normalized
independently. To achieve this, we calculate µA′ and σA′ , which are the mean and
standard deviation of A′, computed on the entire training dataset. Similarly, we
calculate µB′ and σB′ , which are the mean and standard deviation of B′, computed
on the entire training dataset. We then introduce the matrix Ã′ = (ã′ij)i,j∈[N] and
the vector B̃′ = (̃b′i)i∈[N] as the normalized counterparts of A′ and B′, defined as
follows:

ã′ij =
a′ij − µA′

σA′
b̃′i =

b′i − µB′

σB′

To summarize, during inference, themodel requires normalized inputs (i.e. in equa-
tions (5.1), (5.2) and (5.3)), which are Ã′ and B̃′. Meanwhile, during training, the loss
function used is L′res. It is important to note that when evaluating the loss function,
the non-normalized data A′ and B′ are used.

5.3 . Experiments & Results

This section aims to present the results of the Deep Statistical Solvers model in its
original configuration. Section 5.3.1 describes the experimental setup, while Section
5.3.2 describes the results.

5.3.1 . Experimental setup

This section introduces the experimental setup, presenting the dataset, themetrics,
and the hyperparameters employed.
Synthetic dataset

Thedataset used in this experiment consists of 6000/2000/2000 training/validation/test
samples of Poisson problems with Dirichlet boundary conditions, generated fol-
lowing the process described in Section 4.3, and more precisely in Figure 4.4a. All
meshes in this dataset have approximately 500 nodes, with the number of nodes
ranging precisely from 427 for the geometry with the fewest nodes to 556 for the
geometry with the most nodes. This represents an average diameter of 30.

81

Metrics

In this context, we consider the solution of the discretized Poisson problem, given by
the classical LU decomposition method, as the ’ground truth.’ The reported metrics
include the Residual Loss (Equation 4.6) and theMean Squared Error (MSE) between
the output of the model and the ’ground-truth’ LU solution.
Model setup

The original Deep Statistical Solvers model is implemented using TensorFlow. Here,
the results are obtained after reproducing the model in PyTorch using the Graph
Neural Network library PyTorch Geometric. The model is trained using the original
hyperparameters: the number of iterations k̄ is set to the average diameter of the
meshes in the dataset, which is 30, and the dimension d of the latent space H is
set to 10. Each neural network in Equations (5.2), (5.1), (5.3), and (5.5) has one hid-
den layer of dimension 10 with a ReLU activation function. All model parameters
are initialized using Xavier initialization (Glorot and Bengio, 2010). In Equation (5.3),
coefficient α is 10−3, and in the training loss, the discount factor γ is 0.9. Training
is performed for 400 epochs on 2 P100 GPU using the Adam optimizer with a learn-
ing rate of 10−2 and a batch size of 50. Gradient clipping is employed to prevent
exploding gradient issues and is set to 10−2.

5.3.2 . Results

Table 5.1 presents the results of DSS averaged across the entire test set, highlight-
ing various metrics. These results validate the effectiveness of the DSS approach in
accurately solving Poisson problems with Dirichlet boundary conditions. Further-
more, they align closely with the ones found in the original Deep Statistical Solvers
study, validating our implementation.

Metrics Residuals (10−4) MSE w/LU Nb of weights
DSS 2.25 ± 2 0.03 ± 0.02 36930

Table 5.1: Results of DSS averaged over the whole test set.

Additionally, Figure 5.2 provides a visual representation of the results obtained for a
single sample from the test set with 465 nodes. At the final iteration, the computed
metrics are as follows: a Residual error of 1.9 × 10−4 and an MSE w/LU of 3.7 ×
10−2. Of particular interest, Figure 5.2c illustrates the map of the L2 error between
the data-driven solution and the LU solution. These results reveal that the highest
errors are concentrated in the central region of the geometry.
To explain this phenomenon, Figure 5.3 illustrates the evolution of the L2 error map
throughout the 30 iterations of the DSSmodel. This result suggests that information

82

(a) Data-driven solution (b) Node types (c) Error map

Figure 5.2: Illustration of the resolution of a Poisson problem with 465 nodes, extracted from the
test set. Figure 5.2a displays the data-driven solution, while Figure 5.2c shows the map of error
between the LU solution and the data-driven solution. Figure 5.2b displays the different types of
nodes, blue for Interior nodes and red for Dirichlet nodes.

effectively propagates from the boundary nodes toward the centre of the domain,
resulting in the highest error values being situated farthest from the boundary. This
behaviour can be attributed to the structure of the graphs generated for such prob-
lems, as detailed in Section 4.2. Indeed, Figure 4.1d from Section 4.2 illustrates that
these graphs are directed at the Dirichlet boundary nodes, driving the flow of infor-
mation from these nodes toward the centre of the mesh.

5.4 . Limitations

Previous section 5.3 has demonstrated the effectiveness of theDeep Statistical Solvers
method in solving Poisson problems with Dirichlet boundary conditions. However,
the DSS approach also encounters several limitations.
Dependancy to the numerical method

To predict the solution of a Poisson problem, the DSS model requires as inputs the
graph structure as well as coefficients frommatrixA and vectorB arising from (4.3).
While these coefficients are necessary for training themodel due to the structure of
the loss function (4.6), one research direction involves exploring methods to avoid
using them during inference: once themodel is trained, it becomes possible to infer
a solution based only on the original data problem and graph structure, eliminating
the need to derive the linear system (4.3). This approach should be beneficial for
tackling larger problems: avoiding the computation of the linear system can signif-
icantly reduce the computational cost and make the method independent of the

83

Figure 5.3: Considering the resolution of the same problem as in Figure 5.2, illustration of the
propagation of the error across the 30 iterations of the DSS model. The two curves represent
the evolution of the Residual (in red) and the MSE (in blue) across these iterations, achieving a
precision of 1.9e−4 for the Residual error and 3.7e−2 for the MSE.

numerical method.
Fixed size meshes

The architecture of DSS is designed with a fixed number of iterations correspond-
ing to a fixed number ofmessages propagated through the network, as discussed in
Section 5.2.1. This constraint limits themeshes in the dataset to have approximately
the same size in terms of the number of nodes. As a result, the generalization capa-
bilities of the model are limited, as illustrated in Figure 5 of Donon et al. (2020). Fur-
thermore, in order to consider meshes with a larger number of nodes, the number
of iterations must be increased accordingly, resulting in a larger Machine Learning
model. Our objective in the following is to develop a GNN-based architecture that
can adjust its iteration count depending on the size of the considered mesh. How-
ever, in order to achieve such flexibility, we will rather consider using a Recurrent
architecture (investigated in Chapter 6), iterating over the same updating block, or
an Implicit approach (presented in Chapter 7).
Model initialization

Another characteristic of the Deep Statistical Solvers architecture is that it propa-
gates information through a latent state variable. This latent state variable has a
higher dimension than the node state variable (i.e., d ≥ 1). While this approach is

84

reasonable, asMessage Passing requires sufficient space to propagate information,
all latent states are initialized to null vectors. One potential research direction is to
focus on building an encoder that can map the physical space to the latent space,
enabling appropriate initialization of any provided initial solution. Moreover, con-
sidering a highly flexible model, it becomes possible to adjust the iteration counts
based on the proximity of the initial solution to the final solution.
Boundary conditions

When dealing with Machine Learning applied to physics simulations, properly han-
dling boundary conditions is crucial. In the Deep Statistical Solvers approach, there
is no explicit treatment of boundary conditions, as illustrated in Figure 5.4.

Figure 5.4: Evolution of the MSE w/LU at Dirichlet
nodes across the different iterations of an inference.

This figure displays the MSE w/LU
forDirichlet boundary nodes across
the inference iterations. It reveals
that the Dirichlet boundary con-
ditions, which are inherently im-
posed on the original problem, are
“learned” during inference. While
the final error remains low, provid-
ing guarantees about the correct
treatment of boundary conditions
remains challenging. Additionally,
in order to be able to cope with
CFD applications, it is essential to
extend this model to handle Pois-
son problems with Neuman and mixed boundary conditions, i.e., designed to solve
problems like (4.2).

85

6 - DS-GPS : A Recurrent GNN Solver

Sommaire
6.1 Introduction . 86

6.2 Methodology . 88

6.2.1 Recurrent Neural Network architecture 88

6.2.2 Architecture . 89

6.2.3 Training materials 92

6.3 Experiments & Results 94

6.3.1 Poisson problems with Dirichlet boundary conditions 94

6.3.2 Poisson problems with mixed boundary conditions . 98

6.4 Conclusion and Limitations 102

This chapter introduces DS-GPS, a Recurrent Graph Neural Network model to solve
Poisson-like problems. DS-GPS is specifically designed to enhance the generaliza-
tion capabilities of the previously described Deep Statistical Solvers method (Chap-
ter 5). To start with, Section 6.1 gives an introduction of DS-GPS, explaining the di-
verse strategies used to address the limitations of DSS. Next, Section 6.2 presents
the methodology used to construct and train DS-GPS, including its architecture in
6.2.2 and training materials in 6.2.3. Section 6.3 investigates the performance of the
proposed model, and Section 6.4 highlights its limitations.

6.1 . Introduction

The Deep Statistical Solvers model encounters several limitations, which are high-
lighted in Section 5.4. This introductory section explains the key ideas used in the
DS-GPS model to address these shortcomings.
One of the first downsides of DSS involves using as inputs coefficients from the
linear system (4.3) to infer a solution. While these coefficients are necessary to train
the model due to the specific loss function (4.6) used, a solution involves replacing
themwith some data derived from the original problem. Notably, the edge features
(initially, the coefficients from A) are replaced by the distance between the nodes.
Moreover, the external node features (initially, the coefficients fromB) are replaced
by the discretized values of the forcing function f and boundary function g from

86

(4.1). As a result, once the model is trained, inference only requires information
about the mesh and the original problem, eliminating the need for the expensive
computation of the elements in the linear system (4.3).
Secondly, the architecture of DSS follows an iterative process that incorporates a
fixed number of Message Passing Neural Network (MPNN) layers to achieve conver-
gence. In each layer, these MPNNs have different weights. Moreover, the authors
of DSS prove that the number of layers should be proportional to the diameter of
themeshes included in the dataset. As a result, the DSSmodel can only successfully
handle meshes with roughly the same number of nodes. Furthermore, the larger
the meshes, the greater the number of MPNN layers, resulting in an increasingly
larger model. To address this limitation, DS-GPS suggests combining Graph Neural
Networks with a Recurrent architecture, enabling the iteration over the same block
of MPNNs, thus drastically decreasing the number of weights to be learned.
The architecture of DS-GPS incorporates additional features to improve the general-
ization capabilities of the DSS model. Notably, it includes an auto-encoding process
to bridge the gap between the physical space and the latent space where GNN lay-
ers are applied. Notably, the encoder enables the accurate mapping of the original
Dirichlet boundary conditions, leading to a node-oriented architecture that intrinsi-
cally respects the Dirichlet boundary conditions. Indeed, Dirichlet boundary nodes,
whose proper encoding is crucial for propagating information in the latent space,
can be preserved throughout the whole process when they are appropriately en-
coded and decoded. Leveraging a node-oriented architecture also enables extend-
ing the model to handle Poisson problems with mixed boundary conditions (4.2),
where separate MPNNs can be used to treat the homogeneous Neumann bound-
ary conditions.
DS-GPS aligns with the statistical problem discussed in Section 4.2. By using the
same notations and considering a discretized Poisson problem represented as a
graph G = (N, A, B), it becomes feasible to construct a structurally equivalent
graph Ḡ = (Ā, fh, gh). Here, Ā represents the adjacency matrix computed from
the mesh Ωh, taking into account the specific directionality of the edges (similar to
the process described in Figures 4.1b and 4.1d). The terms fh and gh denote the
discretized values of the forcing function f and boundary function g from (4.1), eval-
uated at each node of the graph. To summarize, the idea is now to define a Graph
Neural Network (GNN)-basedmodel, parametrized by a vector θ, that predicts from
a discretized Poisson problem a solution U in order to solve the following statistical
problem:

87

Given a distribution D on space S and a loss function Lres, solve:

θ⋆ = argmin
θ

E
G∼D

[
Lres

(DS-GPSθ(Ḡ), G)]
= argmin

θ
E

G∼D

[
Lres

(DS-GPSθ(Ā, fh, gh), G)]

6.2 . Methodology

This section presents the methodology used in DS-GPS. The first Section 6.2.1 pro-
vides a brief introduction to Recurrent Neural Networks, and Section 6.2.2 develops
the architecture of DS-GPS. Finally, Section 6.2.3 delves into the specifics of the train-
ing procedure.

6.2.1 . Recurrent Neural Network architecture

Recurrent Neural Networks (RNNs) belong to a class of neural networks designed to
handle time series data. At each time step t, an RNN takes as inputs a state variable
xt and a latent state ht, and outputs the next latent state ht+1. RNNs are particularlyuseful for compressing the history of the network into a latent state. However, such
implicitmemory suffers froman exponential decay andnumerical challenging prob-
lems arise, such as unstable (exploding or vanishing) gradients. To address these
issues, researchers have developed specialized neural network cell structures that
can effectively retain past information in the long term. The most commonly used
cells are Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Unit (GRU) (Cho et al., 2014). Notably, GRU cells offer a simplified
version of LSTMs, with fewer weights. GRU cells can be described as follows:

Figure 6.1: Illustration of a GRUMod cell. The cell takes as inputs the current latent state ht and
some input state xt and performs several operations to produce an update latent state ht+1.

88

At iteration t, a GRU cell updates the latent state ht using the series of operations:
zt = σ (Wzxt + Uzht + bz) (6.1)
rt = σ (Wrxt + Urht + br) (6.2)
gt = tanh (Wgxt + Ug (rt ⊗ ht) + bg) (6.3)

ht+1 = zt ⊗ ht + (1− zt)⊗ gt (6.4)
where Wz , Uz , Wr, Ur, Wg and Ug are learnable neural networks (usually MLPs)
and bz , br and bg are the corresponding bias vectors. rt is called a reset gate and
decides howmuch of the past information to forget in gt. zt is called an update gateand determines how much of past information is to be passed to the next step.
Empirically, both LSTM and GRU seem to perform equivalently, as demonstrated in
Chung et al. (2014).
In DS-GPS, an adapted version of the GRU cell is introduced. The final operation of
the GRU cell (6.4) updates the next latent state ht+1 using a barycenter-like calcu-lation between the previous latent state ht and an update gt, based on a learned
coefficient zt. Building upon the approach proposed in DSS, we aim to update the
latent state in a ResNet-style, which involves replacing the last update with a resid-
ual operation. This novel RNN cell, referred to as GRUMod, is illustrated in Figure
6.1 and is mathematically updated as follows.
At iteration t, a GRUMod cell updates the latent state ht by:

zt = σ (Wzxt + Uzht + bz) (6.5)
rt = σ (Wrxt + Urht + br) (6.6)
gt = tanh (Wgxt + Ug (rt ⊗ ht) + bg) (6.7)

ht+1 = ht + zt ⊗ gt (6.8)
Additionally, Hajiramezanali et al. (2019) and Ruiz et al. (2020) provide further infor-
mation regarding the combination of GraphNeural Networkswith Recurrent Neural
Network architectures.

6.2.2 . Architecture

Figure 6.2 illustrates a global view of DS-GPS architecture. Similar to the DSS ap-
proach, the training of the DS-GPS model uses an iterative process to update a la-
tent stateH = (Hi)i∈[N] ∈ H withHi ∈ Rd, d ≥ 1 for k̄ iterations. It is designed with
three core components: an Encoder, a Message Passing block, and a Decoder. The
“Encoder-Decoder” process facilitates the connection between the physical space,
where the solution lives, and the latent space, on which GNN layers are applied.
The Message Passing block is responsible for propagating the information within
the network by updating the latent state at each iteration through a recurrent pro-
cess while properly taking into account the boundary conditions by design.

89

Figure 6.2: Visualization of the DS-GPS architecture: an initial solutionU0, depicted in blue in the
figure, is fed into an Encoder (purple box) to give an initial latent stateH0. An iterative process is
then used to propagate the information for k̄ iterations using the sameMessage Passing blockMθ

(green boxes). At each iteration k, the same Decoder Dθ (grey boxes) translates the latent state
Hk into the physical state Ûk, upon which an intermediate loss is computed. The coloured boxes
correspond to trainable functions, and their weights are learned during end-to-end training. The
final state Û k̄, shown in red in the figure, represents the output of the model.

In contrast to theDSS approach, theDS-GPS architecture first introduces an Encoder
block to initialize the model. Additionally, DS-GPS is a recurrent model, meaning
that it uses the same Message Passing block and Decoder at each iteration. Con-
sequently, the DS-GPS model is significantly lighter than the DSS model and offers
the flexibility tomanually adjust the number of iterations for inferring a solution. Fi-
nally, the Message Passing block follows a node-oriented architecture, i.e. a specific
architecture can be designed for each node type, allowing for proper treatment of
the boundary conditions.
Encoder

The Encoder Eθ (purple box in Figure 6.2) maps an initial solution U0 ∈ U to a
d−dimensional latent state H0 ∈ H, d > 1. The provided initial U0 solution must
fulfil the Dirichlet boundary conditions. This trainable function, designed as amulti-
layer perceptron (MLP), projects the physical space U to a higher dimensional latent
spaceH on which the GNN layers will be applied.
Message Passing block

The Message Passing block Mθ (green boxes in Figure 6.2) is responsible for the
flow of information within the network by updating, at each iteration k, the cur-
rent latent stateHk toHk+1. Notably, it uses a specialized approach for each node
type, ensuring compatibility with the boundary conditions. To achieve this, Inte-
rior and Neumann nodes are updated through combinations of trainable functions,

90

effectively capturing the stencils of the discretized Laplace operator. For Dirichlet
boundary nodes, the corresponding latent variable remains constant, equal to the
imposed value.
Interior nodes messages At each iteration k, two separate messages are com-
puted for each node i, corresponding to the outgoing and incoming links, using
MLPs ΦI

→,θ and ΦI
←,θ:

ϕI,k→,i =
∑

j∈N (i)

ΦI
→,θ

(
Hk

i , H
k
j , dij , ∥dij∥

) (6.9)
ϕI,k←,i =

∑
j∈N (i)

ΦI
←,θ

(
Hk

i , H
k
j , dji, ∥dji∥

) (6.10)

where j ∈ N (i) stands for all the nodes j in the one-hop neighbourhood of i, and
dij and ∥dij∥ represent the relative position vector and the Euclidean distance. Mes-
sages (6.10) and (6.9) are then combined with problem-specific data bi (further de-scribed in Section 6.2.3) and passed through a GRUMod cell to compute the Interior
latent variable zI,k = (zI,ki)i∈[N]:

zI,ki = GRUMod(Hk
i , bi, ϕ

I,k
→,i, ϕ

I,k
←,i

) (6.11)
Neumann nodes messages At each iteration k, one message from an incoming
link ensures homogeneous Neumann boundary conditions. It is constructed in a
similar manner to (6.10), using the MLP ΦN

←,θ:

ϕN,k←,i =
∑

j∈N (i)

ΦN
←,θ

(
Hk

i , H
k
j , dji, ∥dji∥

) (6.12)

The Neumann latent variable zN,k = (zN,ki)i∈[N] is computed by combining message
ϕN,k←,i from Eq. (6.12) above with problem-related data bi and the information on the
normal vector ni, and passing the result through an MLP Ψθ as follows:

zN,ki = Ψθ

(
Hk

i , bi, ni, ϕ
N,k
←,i

) (6.13)
Updated latent state All previous computations from (6.9) to (6.13) canbe grouped
into a single Message Passing blockMθ. The updated latent state Hk+1, designed
to preserve Dirichlet boundary values while separating Interior and Neumannmes-
sages, is obtained as follows:

91

Figure 6.3: Zoom in on the Message Passing blockMθ , responsible for updating the latent state
Hk to Hk+1, where specific treatments are applied to each node type. For Dirichlet nodes (in
red), their values are preserved throughout the iterations. For Interior nodes (in blue), MPNNs
are computed in both directions and then fed into a GRUMod cell to produce the Interior latent
variable zI,k. Finally, for Neumann nodes (in yellow), an MPNN is computed and then fed into an
MLPΨθ , the output of which is the Neumann latent variable zN,k. All three variables are combined
to generate the updated latent stateHk+1.

Hk+1 =Mθ(H
k, Ḡ) =

Hk if Dirichlet
zI,k if Interior
zN,k if Neumann (6.14)

Figure 6.3 provides a detailed view of the Message Passing block Mθ, highlightingspecific computations for each node type: a blue section for Interior nodes, a red
section for Dirichlet nodes, and a yellow section for Neumann nodes.
Decoder

At each iteration k, theDecoderDθ (grey boxes in Figure 6.2)maps the current latent
state Hk ∈ H into a meaningful physical solution Uk ∈ U , upon which the residual
loss is computed. The Decoder is designed as an MLP, and additional losses in the
training process ensure that the Decoder performs the inverse operation of the
Encoder.

6.2.3 . Training materials

This section aims to provide additional training materials, describing the training
loss used, explaining the vector format considered in Section 6.2.2 and the data
normalization process.
Training loss

The entire DS-GPS model is trained by minimizing the following cost function:

92

Training Loss = k̄∑
k=1

L(Ûk, Hk, Ḡ) (6.15)

where L(Ûk, Hk, Ḡ) is defined such that:

L(Ûk, Hk, Ḡ) = γk̄−k × Lres(Ûk, Ḡ) (6.16)
+ λ×MSE(Ûk − Uex) (6.17)
+MSE(Dθ

(
Eθ

(
Ûk

))
− Ûk

) (6.18)
Equation (6.16) represents the residual loss, as described in (4.6), which is weighted
by a discount factor γ. When considering the incorporation of Neumann boundary
conditions, achieving satisfactory results with the residual loss alone becomesmore
challenging due to increased problem conditioning. To overcome this issue, we in-
troduce a slightly weighted additional supervised loss, as defined in Equation (6.17).
In this loss, Uex represents the LU ground truth, and λ serves as a small weight-
ing factor (see 6.3.2 for more information). Finally, Equation (6.18) is designed to
facilitate the learning of the autoencoding mechanism.
Data information

The architecture of the model described in 6.2.2 relies on several inputs whose for-
mat needs to be detailed. Equations (6.11) and (6.13) require as input some problem-
related data, encoded into a vector bi such that:

bi =

[
fi 0 0

] if i is Interior[
0 gi 0

] if i is Dirichlet[
0 0 fi

] if i is Neumann (6.19)

where fi and gi are the discretized values of the force function f and the Dirichletboundary function g from the Poisson problem (4.2).
Data normalization

When designing aMachine Learningmodel, normalizing the input features is essen-
tial to enhance the performance of the model during the training phase. To achieve
this, the distances dij in equations (6.10), (6.9), (6.12), the problem-related vector biin equations (6.11) and (6.13), as well as the normal vector ni in equation (6.13), are
all normalized. This normalization is performed by subtracting the mean and di-
viding by the standard deviation, which are computed based on the entire training

93

dataset. When dealing with problem-related data, the normalization is conducted
column-wise, taking into account the statistics of the entire training dataset.

6.3 . Experiments & Results

The results are presented in the next two sections. The first Section 6.3.1 provides
results for solving Poisson problems with Dirichlet boundary conditions only, al-
lowing for a fair comparison with the Deep Statistical Solvers approach. The second
Section 6.3.2 showcases the efficiency of themodel when extended to solve Poisson
problems with mixed boundary conditions. Both sections also analyze the effects
of some hyperparameters regarding the training of themodel, revealing interesting
insights.
Throughout these experiments, we consider the solution of the discretized Poisson
problem given by the classical LU decomposition method as the “ground truth".
The reported metrics are the Residual Loss (4.6) and the Mean Squared Error (MSE)
between the output of the model and the “ground-truth” LU solution.

6.3.1 . Poisson problems with Dirichlet boundary conditions

In this first section, we analyze the efficiency of DS-GPS in solving Poisson problems
with Dirichlet boundary conditions, enabling a direct comparisonwith the Deep Sta-
tistical Solvers (DSS) approach. Additionally, we provide further analysis of the capa-
bilities of the model, revealing interesting properties when a proper configuration
is selected.
Experimental setup

The dataset used in this experiment is the same as the one used for training the
Deep Statistical Solvers model (see Section 4.3): it consists of 6000/2000/2000 train-
ing/validation/test samples of PoissonproblemswithDirichlet boundary conditions.
All meshes have approximately 500 nodes, corresponding to ameanmesh diameter
of 30. Provided results regarding the DSSmodel are those presented in the previous
Chapter 5.
DS-GPS is implemented in PyTorch using the PyTorch Geometric library (Fey and
Lenssen, 2019). The DS-GPS model used for this experiment follows the architec-
tural specifications outlined in Section 6.2.2, without of course the functionalities
related to Neumann nodes. The dimension d of the latent spaceH is set to 10. Each
neural network block in the architecture has one hidden layer of dimension 10 with
a ReLU activation function, except for those involved in the GRUMod cell, whose ac-
tivation functions are predetermined by definition. All model weights are initialized
using Xavier initialization (Glorot and Bengio, 2010). For training, the initial solution
U0 is set to 0 everywhere, except at the Dirichlet boundary nodes, which are as-

94

Figure 6.4: Evolution of the Training (blue) and Residual (red) losses during the 400 epochs.

signed their exact discrete values. During training, the model is optimized using
the loss function (6.15) with λ = 0 (no supervised loss) and γ = 0.9. The number
of iterations is set to the average diameter of the meshes, which is k̄ = 30. Train-
ing is conducted for 400 epochs using P100 GPUs and the Adam optimizer with its
default PyTorch hyperparameters, except for the initial learning rate, which is set
to 0.01. Finally, gradient clipping is used to prevent exploding gradient issues, with
a threshold set to 0.01. Figure 6.4 displays the evolution of the training and resid-
ual losses during the 400 epochs, showcasing that the training has been effective.
Most of the hyperparameters of DS-GPS have been selected identically to the DSS
approach (latent space size, γ). The remaining hyperparameters were chosen after
numerous trials and have proven to be robust. For optimal performance, it is pos-
sible to fine-tune these parameters using tools such as Optuna (Akiba et al., 2019),
for example.
Results

Figure 6.5 displays the resolution of a Poisson problem with 463 nodes, extracted
from the test set, using DS-GPS. This figure validates the effectiveness of this new
approach, as it successfully solves the problem with accuracy, achieving a Resid-
ual loss of 1.1e−3 and an MSE w/LU of 1.5e−2 at the last iteration. Furthermore, it
highlights how DS-GPS propagates information through the graph by iterating on
the same neural network block. This is depicted by the red and blue curves, repre-
senting the evolution of the Residual and MSE w/LU across the 30 iterations.
Comparison with DSS

Table 6.1 presents the Residual and MSE w/LU averaged over the entire test set for
DS-GPS and DSS. These results demonstrate that the DSS approach still outper-
forms DS-GPS but at the cost of a significantly larger model. Specifically, DSS has

95

(a) Data-driven solution (b) Node types (c) Error map

(d) Residual (red) and MSE w/LU (blue) losses

Figure 6.5: Illustration of the resolution of a Poisson problem extracted from the test set using
DS-GPS. Figure 6.5a shows the data-driven solution obtained at the last iteration, while Figure
6.5c displays the map of squared errors between the data-driven solution and the LU solution.
Figure 6.5b illustrates the different types of nodes. At the bottom, Figure 6.5d depicts the evolution
of the Residual (in red) and MSE w/LU (in blue) across the 30 iterations of the model.

36930 weights, while DS-GPS only has 1961 parameters. These results were to be
expected, but they illustrate the possibility of building a lighter model that does not
degrade the performance of a state-of-the-artmodel. Besides, the DSSmodel is lim-

Metrics Residuals (10−3) MSE w/LU Nb of weights
DSS 0.225 ± 0.2 0.03 ± 0.02 36930

DS-GPS 1.3 ± 0.1 0.063 ± 0.02 1961

Table 6.1: DS-GPS and DSS results averaged over the whole test set.

96

ited to a fixed number of 30 iterations for both training and inference. To address
larger meshes would necessitate the addition of extra layers, leading to an increas-
ing size of the model. On the other hand, DS-GPS is a recurrent model, demonstrat-
ing that information propagation in this context can be achieved through iterative
processing within the same layer of Message Passing Neural Networks. Besides,
even though DS-GPS is trained with a predefined number of iterations, its recur-
rent nature allows for the possibility of manually extending the iteration count, a
characteristic explored in the subsequent paragraph.
Convergence towards an equilibrium point

In this experiment, we analyze the convergence of the model when training it with
a larger number of iterations. In particular, Figure 6.6 illustrates the convergence of
the Residual loss during the 400 epochs for different configurations of the DS-GPS
model. What we are investigating here is the sensitivity of the model to the hyper-
parameter γ, which plays a role in the cost function (6.15). This hyperparameter
is a weight factor which decays exponentially with k̄ − k, where k represents the
current iteration. As the total number of iterations k̄ increases, the influence of the
early iterations becomes negligible. Consequently, themodel no longer propagates
the early iterations, making it unable to converge towards the solution of the prob-
lem, as evidenced by the green curve, which illustrates the training convergence of
a model for γ = 0.9 and k̄ = 70 iterations. One idea to address this issue would
be to make γ closer to 1, but the problem persists with an increase in iterations.
Another possible configuration would be to set γ to 1. In this context, all iterations
in the cost function (6.15) would have an equivalent weight. This leads to a slight
degradation in the convergence of the model, as shown by the blue curve trained
for 30 iterations with γ = 0.9, which exhibits slightly better convergence than the
orange curve trained for 30 iterations with γ = 1. However, when training for 70

Figure 6.6: Evolution of the residual loss during training for different configurations of DS-GPS:
30 iterations, γ = 0.9; 30 iterations, γ = 1; 70 iterations, γ = 0.9; 70 iterations, γ = 1.

97

Figure 6.7: Resolution of a Poisson problem extracted from the test set using DS-GPS trained with
γ = 1 and k̄ = 70 iterations. The solution is inferred by leveraging the recurrent nature of the
model and during 200 iterations. The figure illustrates the evolution of the Normalized Residual
(in red) and Relative Error w/LU (in blue) across the 200 iterations.

iterations with γ = 1, we observe that the model converges very well, matching the
original convergence, as shown by the red curve.
Figure 6.7 illustrates the resolution of a Poisson problem from the test set using the
DS-GPS model, which was trained for 70 iterations with γ = 1 (i.e., the red curve in
Figure 6.6). In this example, the Poisson problem is inferred with a total of k̄ = 200

iterations, even though it was trained with only 70 iterations. We can observe that
under this configuration, the solution converges toward an equilibrium point. This
convergence is indicated by the red and blue curves, representing the evolution
of the normalized residual ||AÛk−B||

||B|| and the relative error ||Ûk−Uex||
||Uex|| , respectively,

during the 200 iterations. They converge to a normalized residual of 1.28e-2 and
a relative error of 2.0e-2 at the last iteration. Furthermore, we can note a signifi-
cant difference in the relative error for small variations in the normalized residual
(between iterations 1 and 45), aligning with well-established theoretical results re-
garding error and residual analysis (refer to Chapter 1 in (Saad, 2003)). However,
it is important to note that convergence is not guaranteed by the method. Indeed,
when evaluating the model using 200 iterations instead of the 70 corresponding to
its initial training configuration, we can observe a degradation in the results. This is
illustrated in Table 6.2, which presents the Residual and MSE w/LU results averaged
over the entire test set, using both the initial configuration with 70 iterations and
the one with 200 iterations. Nevertheless, this behaviour of convergence toward a
fixed point motivated the model presented in the following chapter.

6.3.2 . Poisson problems with mixed boundary conditions

This section aims to assess the performance of DS-GPS when extended to handle
Poisson problems with mixed boundary conditions. Note that comparison with the

98

k̄ Residuals (10−3) MSE w/LU
70 1.62 ± 0.1 0.035 ± 0.01

200 3.3 ± 0.4 0.25 ± 0.02

Table 6.2: Results of DS-GPS trained with γ = 1 and 70 iterations averaged over the whole test
set. The table compares the results between the original configuration with 70 iterations and
an alternative configuration that infers solutions using 200 iterations by leveraging the recurrent
nature of the model.

original DSS is not possible any more.
Experimental setup

In this experiment, the dataset consists of 6000 training samples, 2000 validation
samples, and 2000 test samples of Poisson problems with mixed boundary condi-
tions. These problems were generated following the process described in Section
4.3, specifically detailed in Figure 4.4b. Eachmesh in this dataset has approximately
500 nodes, with the node count ranging from a minimum of 407 to a maximum of
542. This range corresponds to an average diameter of approximately 30, similar to
previous configurations.
The DS-GPS model used in this experiment adheres to the architectural specifica-
tions described in Section 6.2.2. The dimension d of the latent space H is set to 10.
In the model architecture, each neural network block has a single hidden layer of
dimension 10 followed by a ReLU activation function, except for those involved in
the GRUMod cell, whose activation functions are predefined by design. All model
parameters are initialized using Xavier initialization (Glorot and Bengio, 2010). For
the training process, the initial solution U0 is set to 0 everywhere, except at the
Dirichlet boundary nodes, where their values are assigned based on the exact dis-
crete values. During training, the optimization is done using the loss function (6.15)
with γ = 1, in line with the results of the previous section. Several configurations
are tested, especially regarding the setup of the λ coefficient within the training
loss (6.15). This coefficient determines the extent of supervised learning integrated
into the model. The total number of iterations k̄ for training will also vary, and the
specific values will be provided when appropriate. Training is done for a total of
400 epochs, using P100 GPUs and the Adam optimizer with its default PyTorch hy-
perparameters. The initial learning rate is set to 0.001, and gradient clipping with a
threshold of 0.01 is employed to avoid exploding gradients.

99

k̄ λ Residuals (10−3) MSE w/LU
30 0 2.63 ± 0.3 1.66 ± 0.4

30 0.001 2.91 ± 0.2 0.63 ± 0.2

50 0 1.91 ± 0.1 0.65 ± 0.1

50 0.001 2.2 ± 0.1 0.37 ± 0.1

Table 6.3: Results averages over the whole test set for different training runs of DS-GPS with
various configurations. The tests involve variations of the total number of iterations k̄ and the
amount of supervised learning in the loss function, quantified by the parameter λ.

Results

Table 6.3 presents the results of Residual and MSE w/LU averaged over the entire
test set for four training runs of DS-GPS with various configurations. Our focus here
is the sensitivity with respect to the total training iterations k̄, considering either 30
or 50 iterations, and the amount of supervised learning, quantified by the coefficient
λ, considering either λ = 0 or λ = 0.001. We observe that in terms of Residual,
the model consistently and effectively converges regardless of the configuration.

Figure 6.8: Condition number of the stiffness matrix A
with respect to the number of nodes in a mesh for Poisson
problems with Dirichlet (blue) and Mixed (red) boundary
conditions.

However, a slight improvement
is noticeable when extending
the number of iterations from
30 (previously considered the
default value due to the aver-
age diameter of the meshes) to
50. The most significant differ-
ences are observed when ex-
amining the MSE w/LU. For the
model with k̄ = 30 and λ = 0

(i.e., the first row in the table),
the MSE error is high, equal to
1.66. This can be improved by
increasing the λ parameter, as
shown in the second row of the
table, which presents an MSE
w/LU of 6.3 × 10−1. Similar re-
sults can be observed by increasing the number of iterations from 30 to 50, this
time without supervised learning, as shown in the third row of the table. Finally, the
best results are observed in the last row when the number of iterations is 50, and
λ = 0.001. We can propose two possible explanations here. The first explanation, of
a geometric nature, concerns the structure of the graph. With Neumann boundary
conditions, the induced graphs are directed only in certain parts of the boundary,

100

(a) Data-driven solution (b) Node types (c) Error map

(d) Residual (red) and MSE w/LU (blue) losses

Figure 6.9: Illustration of the resolution of a Poisson problem extracted from the test set using
DS-GPS. Figure 6.9a shows the data-driven solution obtained at the last iteration, while Figure
6.9c displays the map of squared errors between the data-driven solution and the LU solution.
Figure 6.9b illustrates the different types of nodes. At the bottom, Figure 6.9d depicts the evolution
of the Residual (in red) and MSE w/LU (in blue) across the 50 iterations of the model.

specifically at the Dirichlet nodes. The Neumann nodes increase the difficulty of
information propagation since the edges are bidirectional at the Neumann nodes.
In this regard, a model trained with more iterations will be better at propagating
information and achieving better results. The second, possible explanation is more
theoretical, involving the relationship between the exact error (quantified by MSE
w/LU) and the Residual. Indeed, the exact error is bounded by the Residual multi-
plied by the condition number of the stiffness matrix A (i.e., the ratio between the
largest and smallest eigenvalues of A - refer to Chapter 1 of Saad (2003) for addi-
tional detail). In the context of solving Poisson problems, the addition of homoge-
neous Neumann boundary conditions increases the conditioning of thematrix. This

101

result is illustrated in Figure 6.8, where Poisson problems with Dirichlet and Mixed
boundary conditions are solved on a squaremesh with a growing number of nodes,
ranging from 513 to 16978. The figure demonstrates two points: i) it confirms that
adding homogeneous Neumann boundary conditions increases the conditioning,
and ii) the conditioning of the problemgrowswith the number of nodes in themesh.
Hence there is no guarantee here that our model, primarily trained by minimizing
the Residual, will result in a small MSE w/LU. One way to improve these results is
to introduce slight supervised learning in the cost function, as demonstrated by the
results of Table 6.3.
Figure 6.9 displays the resolution of a Poisson problem with 517 nodes extracted
from the test set, using DS-GPS trained with k̄ = 50 iterations and λ = 0.001.
This figure validates the effectiveness of DS-GPS for solving Poisson problems with
mixed boundary conditions, as it accurately solves the problem, achieving a Resid-
ual loss of 1.03× 10−3 and an MSE w/LU of 7.6× 10−2 at the last iteration. The red
and blue curves represent the evolution of the Residual and MSE w/LU across the
50 iterations, showing how DS-GPS effectively propagates information through the
graph. The highest errors are primarily located at the Neumann nodes, as depicted
in Figure 6.9c, confirming the increased difficulty of the problem when Neumann
boundary conditions are considered. This increased difficulty is alleviated when in-
troducing slight supervised learning through λ and additional iterations.

6.4 . Conclusion and Limitations

This chapter introduces DS-GPS, a GNN-based model which iteratively solves Pois-
son problems with Dirichlet and mixed boundary conditions. DS-GPS is a recurrent
model, successfully propagating information through the graph by iterating over
the same neural block. This is in contrast to the DSS approach, which uses a fixed
number of iterations with different blocks at each iteration. As a result, DS-GPS is a
much lighter model, and the number of iterations can be extended without modify-
ing the architecture due to its recurrent nature. However, this number of iterations
remains fixed by the user, preventing the model from adapting to and accommo-
datingmeshes of varying sizes. Themodel alsomanages to solve Poisson problems
withmixed boundary conditions, although the increased complexity of the problem
requires the addition of supervised learning in the cost function. Future work could
also consider using software to tune DS-GPS hyperparameters to achieve the best
possible results. Subsequently, our goal is to make the model capable of dynam-
ically adapting to different mesh sizes, i.e., automatically adjusting the number of
GNN layers required for convergence. This is presented in the following chapter,
which builds upon a property introduced in the analysis of DS-GPS: with a suffi-
ciently large number of training iterations, the model tends to converge to a fixed
point.

102

7 - Ψ-GNN : An Implicit GNN Solver

Sommaire
7.1 Introduction . 104

7.2 Methodology . 107

7.2.1 Architecture . 107

7.2.2 Stabilization . 110

7.2.3 Training materials 111

7.3 Theoretical properties 113

7.4 Experiments & Results 118

7.4.1 Poisson problems with Dirichlet boundary conditions 118

7.4.2 Poisson problems with mixed boundary conditions . 120

7.4.3 Sensitivity analyzes 123

7.4.4 Inference complexity 128

7.5 Discussion and Conclusions 129

This chapter introducesΨ-GNN, an original Graph Neural Network-based approach
to solving Poisson problems such as (4.1) or (4.2). The Ψ-GNN method is built by
drawing inspiration from the results achieved with the DS-GPS model presented in
previous Chapter 6. The primary objective of this new approach is to enhance the
generalization abilities of DS-GPS by constructing a model capable of dynamically
adjusting the number of Message-Passing iterations to reach a solution.
To begin, Section 7.1 explains the motivations behind this novel approach by dis-
cussing the limitations and strengths of DS-GPS and subsequently presenting the
core concept ofΨ-GNN. Then, Section 7.2 details themethodology used to construct
and train Ψ-GNN: Its architecture in Section 7.2.1; How to achieve model stability in
Section 7.2.2; And the training materials needed, in Section 7.2.3. Furthermore, Sec-
tion 7.3 provides a theoretical analysis, proving that there exists a parametrization
of Ψ-GNN that yields an optimal solution for the considered task, which showcases
its consistency. Finally, Section 7.4 investigates the performance of Ψ-GNN, and
Section 7.5 concludes this chapter while opening up prospects for future improve-
ments.

103

7.1 . Introduction

In previous Chapter 6, we introduced DS-GPS, a new GNN-based model designed
to enhance the generalization capabilities of the state-of-the-art Deep Statistical
Solvers approach, presented in Chapter 5. DS-GPS incorporates several new con-
cepts into its architecture, which can be summarized as follows:

1. Use of data from the original Poisson problem (4.2) instead of data from the
discretized equation. This approach avoids the computationally costly con-
struction of the linear system (4.3), the “assembly” step of the FEMmethod to
infer a solution.

2. Development of a Recurrent architecture. The same Message-Passing block
and Decoder are used at each iteration, resulting in a significantly lighter
model compared to the DSS approach.

3. Modification of the Message-Passing block into a node-oriented approach,
inherently respecting the boundary conditions.

4. Introduction of an Encoder to properlymap theDirichlet boundary conditions
into the latent space. Once theDirichlet values are correctlymapped, they can
both be preserved and decoded with accuracy until the last iteration, as well
as be used consistently to propagate messages within the network.

Results presented in Section 6.3 have demonstrated that these new concepts in-
deed enhance somegeneralization capabilities of the original Deep Statistical Solvers
approach. For instance, DS-GPS can handle boundary conditions more accurately
and is a lightermodel that can infer solutions without explicitly computing the linear
system from the FEM. However, DS-GPS still faces a significant limitation. As proved
in the original DSS paper Donon et al. (2020), the number of Message-Passing steps
required to achieve convergence must increase proportionally to the diameter of
the considered meshes. Consequently, both DSS and DS-GPS models are trained
with a fixed number of iterations k̄, set to the average diameter of themeshes in the
dataset. Although DS-GPS is of recurrent type, this property can only be leveraged
for inferring a solution. During training, the number of iterations must be manually
fixed. Nevertheless, an interesting observation arises from the DS-GPS model and
the results depicted in Figure 6.7. In this figure, DS-GPS is trained with a weighted
factor set to one (i.e. the state obtained at each iteration has the same weight in the
final training loss), and the fixed number of iterations for training is larger than the
minimum required. In this context, one can notice that the solution tends towards
an equilibrium point. More importantly, when the number of iterations increases,
the solution remains stable around this equilibrium point.
Building upon these experimental results, we propose to enhance the DS-GPS ar-
chitecture by incorporating a black-box root-finding solver to directly find the equi-

104

(a) The DSS approach: Hk+1 = Mk+1
θ (Hk, G)

(b) The DS-GPS approach: Hk+1 = Mθ(H
k, G)

(c) TheΨ-GNN approach: Ĥ = RootFind(Mθ(H,G)−H)

Figure 7.1: Comparison of the three considered architectures regarding message propagation.
Figure 7.1a illustrates the Deep Statistical Solvers approach, characterized by stacking a fixed
number of different GNN blocks. Figure 7.1b depicts the DS-GPS approach, in which the same
GNN block is iteratively applied for a fixed number of iterations. Figure 7.1c displays the Ψ-GNN
approach, where the final latent state is computed by solving the fixed point of a GNN function.
In this approach, iterations occur implicitly within the RootFind solver, and the iteration count is
solely determined by the precision set for the solver.

librium point of themodel. To implement this, we leverage the Implicit Layer theory
(Bai et al., 2019) to model an "infinitely" deep network, thereby eliminating the need
for empirical tuning of the number of Message-Passing steps required to achieve
convergence. In this approach, the iterations (i.e. the flow of information) are per-
formed implicitly until convergence within the root-finding solver. This method
eliminates the need for a fixed number of iterations, as the required number of
Message-Passing steps is now solely determined by the precision imposed on the
solver, resulting in a more adaptable and flexible approach. To illustrate this fur-
ther, Figure 7.1 provides a summary of the different approaches: Figure 7.1a depicts
the Deep Statistical Solvers method, which employs a fixed number of different
Message-Passing steps; Figure 7.1b illustrates the DS-GPS approach, which iterates
in a recurrent manner on the same Message-Passing step for a fixed number of it-
erations; and Figure 7.1c showcases the Ψ-GNN approach, which uses a black-box

105

MPNN
propagation

Physics-
informed

Various
shapes

Various
sizes

Boundary
conditions

Initial
solutions

Convergence
guarantees

DSS Fixed ✓ ✓ ✗ ✗ ✗ ✗

DS-GPS Recurrent ✓ ✓ ✗ ✓ ✗ ✗

Ψ-GNN Implicit ✓ ✓ ✓ ✓ ✓ ✓

Table 7.1: Comparison between DSS, DS-GPS andΨ-GNN regarding several features. See text for
details.

root-finding solver to automatically (implicitly) determine the number of Message-
Passing steps required for convergence.
Table 7.1 presents an operational comparison among the three proposed meth-
ods: DSS, DS-GPS, and Ψ-GNN. The comparison highlights several essential fea-
tures. In the table,MPNN propagation denotes how the models propagate informa-
tion throughout the graphs, while Physics-informed indicates whether the models
are trained by minimizing the discretized residual equation or not. Various shapes
refers to the ability of the models to handle meshes of varying shapes, and Various
sizes indicates whether the architecture of the models can adjust their number of
Message-Passing steps, thereby extending their capacities to meshes with varying
numbers of nodes. Boundary conditions specifies whether the architecture explic-
itly considers boundary conditions, and Initial solutions refers to the capability of
the models to adjust their number of steps to achieve convergence with respect to
any provided initial solution. Finally, Convergence guarantees indicates whether the
models provide assurance of convergence toward the solution or not.
In addition to its ability to automatically adjust its number ofMessage-Passing steps,
Ψ-GNN has several new features, such as the capability to adapt to any initially pro-
vided solutions. This capability is made possible through an enhanced training pro-
cess of the autoencoding mechanism, which is further described in Section 7.2.3.
Additionally, Ψ-GNN introduces convergence guarantees by incorporating an addi-
tional loss term aimed at enforcing the contractive nature of the GNN functionMθ,a feature detailed in Section 7.2.2. Finally, Ψ-GNN aligns with the statistical prob-
lem discussed in Section 4.2. Following the same notations as described in the last
paragraph of Section 6.1, the statistical problem reads as:
Given a distribution D on space S and a loss function Lres, solve:

θ⋆ = argmin
θ

E
G∼D

[
Lres

(
Ψ-GNNθ(Ḡ), G

)]
= argmin

θ
E

G∼D

[
Lres

(
Ψ-GNNθ(Ā, fh, gh), G

)]

106

Figure 7.2: Diagram of Ψ-GNN: The model uses an Encode-Process-Decode architecture. The
Encoder (purple box) maps an initial solution U0 (in blue) to some latent representationH0. The
processor outputs a final latent state Ĥ by considering a different treatment for each node type.
Dirichlet nodes are preserved during the process, and specific MPNN (red arrows) for Interior and
Neumann nodes are computed to build a GNN function Mθ. A black-box “root-finding" solver
automatically propagates the information through the graph by finding the fixed point Ĥ ofMθ ,
starting from the initial guessH0. The Decoder (grey box) maps Ĥ back to the physical space to
get the final solution Û (in red).

7.2 . Methodology

7.2.1 . Architecture

Figure 7.2 gives a global view of Ψ-GNN, a Graph Neural Network model with three
main components: an Encoder, a Processor, and a Decoder. The “Encoder-Decoder"
mechanism facilitates the connection between the physical space, where the solu-
tion lives, and the latent space, where the GNN layers are applied. It is the same
as for DS-GPS (see Figure 6.2). The Processor is the core component of the model,
responsible for propagating the information in the graph. It is specifically designed
with two key features: i) it automatically controls the number of Message-Passing
steps required for convergence, and ii) it properly takes into account the boundary
conditions by design.
Encoder & Decoder

The Encoder Eθ (purple box in Figure 7.2) and the Decoder Dθ (grey box in Figure
7.2) are defined in the exact same way as in the DS-GPS model (refer to Section
6.2.2). Both are designed as multilayer perceptrons (MLPs) and aim to bridge the
gap between the physical space U and a higher-dimensional latent space H upon
which the GNN layers will be applied.

107

Processor

The Processor uses a specialized approach for each node type to ensure consis-
tency with the boundary conditions. To propagate the information, the processor
constructs a GNN-based functionMθ that updates both the Interior and Neumann
nodes, effectively capturing the distinct stencils of the discretized Laplace operator.
For Dirichlet boundary nodes, the corresponding latent variable is kept constant,
equal to the imposed value.
Interior nodes messages Two separate messages are computed for each node,
corresponding to the outgoing and incoming links, using MLPs ΦI

→,θ and ΦI
←,θ suchthat:

ϕI→,i =
∑

j∈N (i)

ΦI
→,θ (Hi, Hj , dij , ∥dij∥) (7.1)

ϕI←,i =
∑

j∈N (i)

ΦI
←,θ (Hi, Hj , dji, ∥dji∥) (7.2)

where j ∈ N (i) stands for all the nodes j in the one-hop neighbourhood of i, and
dij and ∥dij∥ represent the relative position vector and the Euclidean distance. Theupdated Interior latent variable zI := (zIi)i∈[N] is computed in a Res-Net fashion of
the form:

zIi = Hi + Λi,θ

(
Hi, bi, ϕ

I
→,i, ϕ

I
←,i

) (7.3)
To compute Λi,θ, two MLPs are used, Ψ1

θ and Ψ2
θ , which both take the same inputs.

These inputs include the current latent state Hi, computed MPNNs (7.2) and (7.1),
and problem-specific data bi. The MLPs compute αi and ζi, respectively. The final
Λi,θ is obtained by multiplying αi and ζi as follows:

αi,θ = Ψ1
θ(Hi, bi, ϕ

I
→,i, ϕ

I
←,i) (7.4)

ζi,θ = Ψ2
θ(Hi, bi, ϕ

I
→,i, ϕ

I
←,i) (7.5)

Λi,θ = αi,θ × ζi,θ (7.6)
Although Ψ1

θ and Ψ2
θ share the same architecture with respect to the number of

layers and neurons,Ψ1
θ uses a Sigmoid activation function, whereasΨ2

θ uses a ReLUactivation function. As a result, αi is restricted to (0, 1), and can be interpreted as
an attention layer, prioritizing the most crucial steps to enhance the performance
of our model.

108

Figure 7.3: Process of updating the Interior latent variable zIi : Firstly, two MPNNs, ΦI
→,θ (in red)

and ΦI
←,θ (in green), are computed to account for the bi-directionality of the edges. These com-

puted messages are then concatenated with problem-specific data bi and the actual latent state
Hi and passed through two trainable functions αi,θ and ζi,θ. These two functions are multiplied
together to form Λi,θ , which is finally used to calculate zIi in a Res-Net fashion.

Figure 7.3 displays the process of updating the Interior node variable.
Neumann nodes messages One message from an incoming link is designed to
enforce the homogeneous Neumann boundary conditions. It is constructed in a
similar manner to (7.2), using the MLP ΦN

←,θ such that:

ϕN←,i =
∑

j∈N (i)

ΦN
←,θ (Hi, Hj , dji, ∥dji∥) (7.7)

The updated Neumann latent variable zN := (zNi)i∈[N] is computed by combining
message (7.7) with problem-related data bi and the information on the normal vec-
tor ni, and passing the result through an MLP Ψθ as follows:

zNi = Ψθ

(
Hi, bi, ni, ϕ

N
←,i

) (7.8)
GNN-based function The GNN-based functionMθ, designed to preserve Dirichletboundary values and separate Interior and Neumann messages, is given by:

Mθ(H, G) =

H0 if DirichletLN (
zI
) if InteriorLN (

zN
) if Neumann (7.9)

where LN stands for the Layer Normalization operation (Ba et al., 2016), which con-
sists of normalizing each sample in theminibatch such that the features in the sam-

109

ple have zero mean and unit variance. This operation plays a crucial role in stabi-
lizingMθ by constraining its output, resulting in more efficient computation of the
subsequent fixed point problem.
Note that it is possible to stack several layers as above for constructing the GNN-
based functionMθ, at the cost of an increased number of parameters of the model.
However, in practice, only one layer is sufficient in our experiments.
Fixed-point problem One step of Message-Passing only propagates information
from one node to its immediate neighbours, as presented in Section 2.4. In order to
propagate information throughout the graph, the DS-GPS approach introduced ear-
lier (Chapter 6) performed the Message-Passing step repeatedly, i.e., looped over
the functionMθ for a fixed number of iterations until the problem converges. The
results presented in 6.3 showed that iterating until convergence amounts to solving
a fixed-point problem:

Ĥ =Mθ

(
Ĥ, G

) (7.10)

Hence, the idea is now to use a black-box root-finding procedure to directly solve
the fixed-point problem:

Ĥ = RootFind (Mθ (H, G)−H) (7.11)
This approach eliminates the need for a predefined number of iterations ofMθ andonly requires a threshold precision of the root-finding solver, resulting in a more
adaptable and flexible approach.
To solve Equation (7.11), Newton’s method is the method of choice, thanks to its
quadratic convergence guarantee. However, to avoid the costly computation of the
inverse Jacobian at each Newton iteration, the quasi-Newton Broyden algorithm
(Broyden, 1965) is used, which employs low-rank updates to maintain an approxi-
mation of the Jacobian. It is important to note that, regardless of the chosen root-
finding solver, the algorithm starts with the initial guessH0.

7.2.2 . Stabilization

In Section 7.2.1, wemodelled a GNN-based network with an “infinite" depth by using
a black-box solver to find the fixed point of the functionMθ, enabling unrestrictedinformation flow throughout the entire graph. However, such implicit models suf-
fer from two significant downsides: they tend to be unstable during the training
phase and are very sensitive to architectural choices: small changes toMθ can lead

110

to large numerical instabilities. The stability of the model around the fixed point Ĥ
is determined by the spectral radius ρ of the Jacobian JMθ

(Ĥ). Following Bai et al.
(2021), who add a constraint on ρ, we add a penalization term in the loss function
described in 7.2.3. However, since computing the spectral radius is far too compu-
tationally costly, and because the Frobenius normof the Jacobian is an upper bound
for its spectral radius, we adopt the method outlined in Bai et al. (2021), which esti-
mates this Frobenius norm using the Hutchinson estimator (Hutchinson, 1990) such
that:

||JMθ
||2F = Eϵ∈N (0,Id)

[
||ϵTJMθ

||22
] (7.12)

where JMθ
∈ Rd×d. The expectation (7.12) can be estimated using a Monte-Carlo

method for which a single sample suffices to work well Bai et al. (2021).
Using this approach, the model satisfies, post-training, ρ < 1: the functionMθ be-comes contractive, thus ensuring the stability of the fixed point. As a result, during
inference, one can simply iterate on the Processor until convergence (i.e. loop over
theMθ function). This method aligns closely with the DS-GPS approach, using the
configuration for which we observed its convergence towards an equilibrium point.
More importantly, the model could work with any kind of root-finding solver. This
approach offers strong convergence guarantees and addresses the stability issues
commonly encountered in implicit models.

7.2.3 . Training materials

This section aims to provide additional training materials. It covers an explanation
of the training loss, instructions on training an implicit model, a description of the
vector format discussed in Section 7.2.1, and the procedure for data normalization.
Training loss

The entire Ψ-GNN model is trained by minimizing the following cost function:

L = Lres(Û , G) (7.13)
+ λ×MSE

(
Û − Uex) (7.14)

+ β × ||Jhθ
(Ĥ)||2F (7.15)

+MSE(Eθ(Û)− Ĥ
) (7.16)

+MSE(Dθ(E(Û))− Û
) (7.17)

Line (7.13) represents the residual loss described in (4.6), and line (7.14) is an addi-
111

tional supervised loss (Uex being the LU ground truth and λ a small weight (as dis-
cussed in Section 6.3.2). Line (7.15) is the regularizing term defined in Section 7.2.2.
Lines (7.16) and (7.17) are designed to learn the autoencoding mechanism together:
Line (7.16) aims to properly encode a solution while Line (7.17) steers the decoder to
be the inverse of the encoder. To handle theminimization of the overall structure, a
single optimizer is used with two different learning rates, one for the autoencoding
process and one for theMessage-Passing process. This process allows themodel to
learn the representation of Dirichlet boundary conditions in the latent space faster
than the main process, and ensures that the autoencoding process is solely used
for the purpose of bridging the physical and latent spaces, with no direct impact on
the accuracy of the computed solution. A similar technique has been used in Otto
and Rowley (2019).
Training an implicit model

The training of the proposedmodel has been found to be computationally intensive
or even infeasible when backpropagating through all the operations of the fixed-
point solver. However, using the approach outlined in Theorem 1 in Bai et al. (2019)
significantly enhances the training process by differentiating directly at the fixed
point, thanks to the implicit function theorem. This methodology requires the res-
olution of two fixed-point problems, one during the forward phase and the other
during the backpropagation phase.
Forward pass The resolution of a fixed point for the forward pass is clear and rep-
resents the core of our approach. A root-finding solver (i.e. a quasi-Newtonmethod
to avoid computing the inverse Jacobian of a Newtonmethod at each iteration step)
is used to determine the fixed point Ĥ of the functionMθ (7.9) such that:

Ĥ = RootFind (Mθ(H,G)−H) (7.18)
Backward pass However, using a black-box solver forbids the use of explicit back-
propagation through the exact operations performed in the forward pass. Thank-
fully, Bai et al. (2019) proposes a simpler alternative procedure that requires no
knowledge of the black-box solver by directly computing the gradient at the fixed
point. The gradient of the loss L with respect to the weights θ is then given by:

∂L
∂θ

= − ∂L
∂Ĥ

(
J−1Mθ

|
Ĥ

) ∂Mθ(Ĥ,G)

∂θ
. (7.19)

where J−1Mθ
|
Ĥ
is the inverse Jacobian of Mθ evaluated at Ĥ . To avoid computing

the expensive− ∂L
∂Ĥ

(
J−1Mθ

|
Ĥ

) term in (7.19), one can alternatively solve the following
112

root finding problem using Broyden’s method (or any other root-finding solver) and
the autograd packages from Pytorch:

(
JT
Mθ

|
Ĥ

)
xT +

(
∂L
∂Ĥ

)T

= 0 (7.20)
Consequently, the model is trained using a RootFind solver to compute the linear
system (7.20) and directly backpropagate through the equilibrium using (7.19). In
contrast to traditional methods, this approach removes the need to open the black-
box, and only requires constant memory.
Data information and normalization

The structure of the bi vector used in equations (7.4), (7.5), and (7.8), as well as thenormalizing process of the data, is analogous to that of the previous chapter (see
Section 6.2.3).

7.3 . Theoretical properties

This section investigates several theoretical properties of the proposed approach.
Specifically, we demonstrate that Ψ-GNN satisfies a property of universal approxi-
mation, i.e. themodel is able to approximate the optimal solution to the considered
statistical problem (4.7) up to any arbitrary precision, provided the network is large
enough.
Following the approach and notations outlined in Section 4.2, a discretized Poisson
problem Eh = (Ωh, A,B) can be seen as a graph problem G = (N,A,B), where A
and B are respectively the interaction and individual terms on the N nodes of the
graph G. The original problem at hand searches for an optimal solution U⋆

G ∈ RN

as follows:

U⋆
G = argmin

U∈RN

Lres (U, G) (7.21)

However, instead of searching directly forU⋆
G, we seek for a function h⋆G : RN → RN

whose fixed point is U⋆
G:

h⋆G = argmin
h: RN→ RN

Lres (FixedPoint(h), G) (7.22)
The first step in proving the consistency of the approach is to determine whether
problems (7.21) and (7.22) are equivalent, i.e., if solving (7.22) yields the solution to
the original problem (7.21).

113

Proposition 1 (Equivalence of direct and fixed-point formulations)
Problems (7.21) and (7.22) are equivalent, i.e., for any problem G, any solution U⋆

G of
(7.21) can be turned into a solution h⋆G of (7.22) and vice versa.
Proof. If h⋆G is a solution to the problem (7.22), then its fixed point is a candidate
solution to the problem (7.21) and we have:

Lres(FixedPoint(h⋆G), G) ⩾ Lres(U⋆
G, G)

Reciprocally, for a fixedG, if U⋆
G is a solution to the problem (7.21), then the function

hG(H) = U⋆
G which always outputs the same value has a unique fixed point, namely

U⋆
G. Considering this function as a candidate to the problem (7.22), we have:

Lres(U⋆
G, G) = Lres(FixedPoint (hG) , G) ⩾ Lres(FixedPoint(h⋆G), G)

Consequently,

Lres(U⋆
G, G) = Lres(FixedPoint(h⋆G), G)

and the problems are equivalent.
The next step investigateswhether theΨ-GNNarchitecture is able to find an approx-
imation of h⋆G. To address this, we begin by proving that the problem (7.21) satisfies
the hypotheses of Corollary 1 of Deep Statistical Solvers (DSS) (Donon et al., 2020).
Proposition 2 (Satisfying the hypotheses of Corollary 1 in DSS)
Problem (7.21), which can be rewritten as searching for the function:

φ :
S → RN

G = (N,A,B) 7→ U⋆(G) := argmin
U

Lres(U, G)

satisfies the hypothesis of Corollary 1 in Donon et al. (2020).

Proof. Corollary 1 in Donon et al. (2020) assumes that four hypotheses must be sat-
isfied:

1. The loss function Lres is continuous and permutation-invariant.
2. The solution U⋆

G is unique.

114

3. The problem distribution G satisfies permutation-invariance, compactness,
connectivity (each graph having a single connected component), and separa-
bility of external outputs (ensuring node identifiability).

4. The solution is continuous with respect to G.
The first hypothesis is immediately fulfilled by the specific loss function, which is
suitable for problems involving GNNs and similar to the one described in Donon
et al. (2020). Additionally, the existence and uniqueness of the solution are guar-
anteed thanks to a FEM analysis of problems (4.1) or (4.2) which includes at least
one Dirichlet boundary condition. This analysis, based on the Lax-Milgram theorem
(Larson and Bengzon, 2013), validates the second hypothesis. Regarding the proper-
ties of the problem distribution, our dataset generator (see Section 4.3) generates
graphs with smooth boundaries within a bounded domain, following a rotation-
equivariant law and ensuring that its inside has only one connected component.
Node identifiability within a graph is achieved through the use of edge features rep-
resenting distances to the closest neighbours, which are never equal, thereby vali-
dating the third hypothesis. If full identifiability is desired (not just almost surely), an
additional descriptor can be added to each node. Experiments have actually been
run in that setting, with no observable difference in performance, thereby validating
the third hypothesis. The continuity of the solution U⋆

G with respect to G depends
on the specific choice of the loss function Lres. For Poisson-like problems, similar
to those considered in this thesis (4.2), continuity can be established based on the
following Lemma 1, and this will conclude the proof.
Lemma 1 (Continuity of φ)
The mapping

φ :
S → RN

G = (N,A,B) 7→ U⋆(G) := argmin
U

∥AU −B∥2

is continuous w.r.t. A and B.

Proof. Linear systems such as (4.3), which result from the FEMdiscretization of Pois-
son problems (4.1) or (4.2), have a unique solution given by U⋆(G) = A−1B. This so-
lution is linear in B and thus continuous with respect to B. The question at hand is
whether the mapping from A to its inverse A−1 is also continuous. We can express
A−1 as

A−1 =
adj(A)
det(A)

where adj(A) denotes the adjoint of A and det(A) represents the determinant of
A. Both the adjoint operation and the determinant are continuous operations. The

115

remaining aspect to consider is whether the determinant ofA can be zero or not. In
the specific settings whereA arises from the discretization of (4.1) or (4.2), including
boundary conditions, the determinant of A is always non-negative. This completes
the proof.
Let H be the space of functions that can be realized by GNN neural networks, as
defined in Donon et al. (2020). The previously mentioned Corollary 1 in Donon et al.
(2020) establishes the existence of a network with a GNN-based architecture, de-
noted as φ̂ ∈ H, that can approximate φ : G 7→ U⋆

G with arbitrary precision for any
given graph G from the considered problem distribution. We have the following
corollary:
Corollary 1 (Existence of a GNN model approximating φ)
For any ε > 0, there exists a GNN-based model φ̂ ∈ H such that for any problemG from
our problem distribution D:

∥φ̂(G)− φ(G)∥ ⩽ ε

Based on Proposition 1 and its proof, this result can be extended to approximate
the solution of (7.22), yielding the following universal approximation property for
our Ψ-GNN method:
Theorem 1 (Universal Approximation Property)
For any precision ε > 0, there exists a parameterization θε of aΨ-GNN architecture with
sufficiently large layers, namely, a functionΨ-GNNθε : S → RN , which, for any problem
G (i.e., for any mesh, boundary conditions and force terms), approximates the optimal
solution of problem (7.21) with precision less than ε:

∀ G, ∥Ψ-GNNθε(G)− φ(G)∥ ⩽ ϵ

Proof. The architecture of φ̂ obtained by Corollary 1 can be decomposed into two
blocks: a φ̂GNN which consists of GNN layers that are applied to a hidden state H ,
and a φ̂Dec block that represents the decoder (see Section 5.2.1). Here, we attempt
to build a function whose fixed point w.r.t. H approximates the output of the φ̂GNNblock. To do this, we consider the function

hθε :
RN×d × S → RN×d

(H, G) 7→ φ̂GNN(G)
where d is the dimension of the hidden space. For any fixed G, this function hθεis constant w.r.t. H , and, consequently has a unique fixed point w.r.t. H , which is
φ̂GNN(G). As Ψ-GNN encompasses the φ̂ architecture, we can indeed represent ex-
actly hθε using the Ψ-GNN Processor defined in Section 7.2.1. The complete archi-
tecture of Ψ-GNN can be written as follows:

Û = Dec (FixedPoint(hθε (Enc (U) , G))

116

where the decoder Dec is φ̂Dec. The encoder Enc, which is an additional feature ofΨ-GNN architecture, can be chosen arbitrarily since, in this proof, hθε always outputsthe same value, regardless ofH . This completes the proof.
Lastly, the set of functions h that admit a unique fixed point close to φ̂GNN(G) canbe big (although all these solutions lead approximately to the same fixed point). It
is possible to select an optimal solution within this space that is also contractive.
This can be achieved in a Lagrangian spirit instead of a supplementary constraint
by introducing a penalty term to the loss function, as shown in equation (7.15). How-
ever, it is important to note that the resulting function can only be assumed to be
predominantly contractive with respect toH :
Proposition 3 (Contractivity of hθε)
For any precision ε > 0, the function hθε(H,G) in the Processor of the Ψ-GNN architec-
ture obtained by Theorem 1 can be assumed to be contractive with respect toH for any
pair of points farther than

√
ε.

Proof. The trainable function hθε(H,G) from Theorem 1 can be assumed to be an
approximation of a contractive function f (e.g., as built in the proof). For the sake
of simplicity, we omit the Decoder here. Thus, there exists λ < 1 such that, for any
problem G and any latent valuesH ,H ′:

d(f(H), f(H ′)) ⩽ λ d(H,H ′)

where d denotes the Euclidean distance. Note that λ ∈ [0, 1[can even be 0, e.g. for
f(H) = U⋆

G. Consequently, we have :

d(h(H), h(H ′)) ⩽ d(f(H), f(H ′)) + 2ε ⩽ λ d(H,H ′) + 2ε

given that ∥h(H)− f(H)∥ ⩽ ε and ∥h(H ′)− f(H ′)∥ ⩽ ε.
Suppose ε is small enough such that µ = λ + 2

√
ε < 1. Then, for H , H ′ satisfying

d(H,H ′) >
√
ε, we have:

d(h(H), h(H ′)) ⩽ µd(H,H ′)

since λ d(H,H ′) + 2ε < µd(H,H ′) is equivalent to d(H,H ′) > 2ε
µ−λ =

√
ε.

Thus h is contractive for all pairs of points farther than √
ε from each other. In

particular, if d(H,h⋆G) > √
ε, then d(h(H), h(h⋆G)) ⩽ µd(H,h⋆G), which implies the

exponential convergence of an iterative power method from any initializationH to
117

the ball of radius√ε around the fixed point h⋆G, which is itself at distance at most ε
from the true optimal solutionU⋆

G. Thus the function h is predominantly contractive
in that sense. Using ε′ = ε+

√
ε then gets rid of square roots.

7.4 . Experiments & Results

This section presents an in-depth evaluation of Ψ-GNN based on experiments on
synthetic data. The first Section 7.4.1 assesses the performance of Ψ-GNN for solv-
ing Poisson Poisson problems with Dirichlet boundary conditions, while Section
7.4.2 is focused on Poisson problems with mixed boundary conditions. Further-
more, Section 7.4.3 proposes various generalization tests to conduct a thorough
assessment ofΨ-GNN performance, showcasing its originality. Finally, Section 7.4.4
investigates the inference complexity of the proposed model.
Throughout these experiments, we consider the solution of the discretized Poisson
problem given by the classical LU decomposition method as the “ground truth".
The reported metrics are the Residual Loss (4.6) and the Mean Squared Error (MSE)
between the output of the model and the “ground-truth” LU solution.

7.4.1 . Poisson problems with Dirichlet boundary conditions

This section aims to assess the performance ofΨ-GNN for solving Poisson problems
with Dirichlet boundary conditions, allowing for direct comparison with the Deep
Statistical Solvers (DSS) and DS-GPS.
Experimental setup

The dataset used in this experiment is the same as the one used for training the
Deep Statistical Solvers and DS-GPS models. As a reminder, it consists of 6000
training, 2000 validation, and 2000 test samples of Poisson problems with Dirichlet
boundary conditions generated following the process described in Section 4.3. All
meshes have approximately 500 nodes. Provided results regarding the DSS model
are those presented in Chapter 5. The DS-GPS model used is the one from Chapter
6, trained with 30 iterations and γ = 1.
Ψ-GNN is implemented in Pytorch using the Pytorch-Geometric library (Fey and
Lenssen, 2019) to handle graph data. The dimension d of the latent space H is set
to 10. Each neural network block in the architecture has one hidden layer of dimen-
sion 10with a ReLU activation function. All model weights are initialized using Xavier
initialization (Glorot and Bengio, 2010). For the training, the provided initial solution
is set to zero everywhere except at the Dirichlet nodes, which are assigned to their
corresponding exact value. The model requires, at each iteration, the solution of
two fixed point problems, one for the forward pass and one for the backward pass,
as outlined in Section 7.2.3. These problems are solved using Broyden’s method

118

(Broyden, 1965) with a relative error as the stopping criteria. The latter is set to 10−5

with a maximum of 500 iterations for the forward pass and to 10−8 with a maxi-
mum of 500 iterations for the backward pass. The error on the backward pass is
intentionally made smaller than that of the forward pass because it ensures better
stability during backpropagation, while the forward pass does not need to be as pre-
cise. However, the smaller the error, the greater the number of iterations required
to find the fixed point, and consequently, the more costly the training becomes.
These hyperparameters were chosen after numerous trials, but a possible direction
for further exploration would be to determine the limits of these hyperparameters
that ensure a better trade-off between precision and training time. The proposed
Ψ-GNN model follows the architectural specifications outlined in Section 7.2.1, with
the exception of the part related to Neumann nodes. During training, the model is
optimized using the loss function (7.13), with λ = 0 (no additional minimization of
the MSE w.r.t. the “ground-truth”) and β = 1. Training is done using Nvidia P100
GPUs and the Adam optimizer with its default Pytorch hyperparameters, except for
the initial learning rate, which is set to 0.05 for the autoencoding process and 0.01

for the main process, as discussed in Section 7.2.3. The ReduceLROnPlateau sched-
uler from Pytorch is used to progressively reduce the learning rate from a factor
of 0.5 during the process. Some experiments not shown here have demonstrated
that this enhanced the training. Gradient clipping is employed to prevent explod-
ing gradient issues and set to 10−2. Figure 7.4 displays the evolution of the training
and residual losses during the 700 epochs, showcasing that the training has been
effective.
Results

Figure 7.5 illustrates the resolution with Ψ-GNN of a test instance, a Poisson prob-
lemwith 527 nodes. The figure presents the evolution of the Residual (the loss func-
tion) and the MSE w/LU (though it was not used during training) along the 68 iter-

Figure 7.4: Evolution of the Training (blue) and Residual (red) losses during the 700 epochs.

119

ations of the Broyden algorithm. At convergence, the Residual reaches a value of
3.36e-3 and anMSE w/LU of 1.03e-2. Similar results on all test examples validate the
Ψ-GNN approach, showcasing its ability to solve Poisson problems with Dirichlet
boundary conditions.
Table 7.2 presents the Residual and MSE w/LU averaged over the entire test set for
the three methods Ψ-GNN, DSS, and DS-GPS. From this table, it is possible to ob-
serve that both DSS and DS-GPS provide slightly better results thanΨ-GNN in terms
of Residual. This may be due to the fact that the training loss no longer minimizes
the Residual only but also incorporates several other components within the train-
ing procedure, such as the stabilization process, which adds additional constraints
to theweights of themodel. However, the results take a different flavourwhen look-
ing at theMSEw/LU. There, we can see thatΨ-GNNoutperforms both othermodels,
without the addition of any supervised loss during training! This can be explained
by the ability of the model to automatically adjust its number of Message-Passing
steps, as well as the autoencoding mechanism that better encodes and decodes
Dirichlet boundary conditions up to a precision of order 10−6. This enhanced fea-
ture allows for better information flow since the initial latent state is properly initial-
ized, and results in a better MSE w/LU. Additionally, Ψ-GNN is able to outperform
these models with only 1444 parameters, in contrast to the DSS model, which re-
quires 36930 iterations (performing only 30 iterations!). Finally,Ψ-GNN is trained on
the same dataset as DSS and DS-GPS, which contains meshes of approximately 500
nodes. However, Ψ-GNN, even though it is trained on fixed-size meshes, has the
remarkable capability of adjusting its iteration count by itself to handle meshes of
varying sizes, a feature analyzed in detail in Section 7.4.3.

7.4.2 . Poisson problems with mixed boundary conditions

This section aims to assess the performance of Ψ-GNN when extended to solve
Poisson problems with mixed boundary conditions.
Experimental setup

The dataset used in this experiment is the same as in Section 6.3.2. For this ex-
periment, theΨ-GNNmodel follows the architectural specifications outlined in Sec-

Residual (10−3) MSE w/LU (10−2) Nb of weights
Ψ-GNN 2.69 ± 0.4 0.85 ± 2 1444

DSS 0.23 ± 0.2 3.0 ± 2 36930

DS-GPS 1.30 ± 0.1 6.37 ± 2 1961

Table 7.2: Results of Ψ-GNN, DSS and DS-GPS averaged over the whole test set

120

(a) Data-driven solution (b) Node types (c) Error map

(d) Residual (red) and MSE w/LU (blue) losses

Figure 7.5: Illustration of the resolution of a Poisson problem extracted from the test set using
Ψ-GNN. Figure 7.5a shows the data-driven solution obtained at the last iteration, while Figure 7.5c
displays the map of squared errors between the data-driven solution and the LU solution. Figure
7.5b illustrates the different types of nodes. At the bottom, Figure 7.5d depicts the evolution of
the Residual (in red) and MSE w/LU (in blue) across the 68 iterations of the model.

tion 7.2.1. The hyperparameters used are similar to those employed in the Dirich-
let boundary condition section (previous Section 7.4.1), except for the λ parameter,
which is set to 0.001. This parameter introduces a small additional supervised loss
to enhance the training, as discussed in Section 6.3.2.
Results

Figure 7.6 displays the solution to a specific problemwith 470 nodes extracted from
the test set. At convergence, the model reaches a Residual of 1.9e-3 and an MSE
w/LU of 5.8e-2, showcasing the effectiveness of the method on this test sample.

121

(a) Data-driven solution (b) Node types (c) Error map

(d) Residual (red) and MSE w/LU (blue) losses

Figure 7.6: Illustration of the resolution of a Poisson problem extracted from the test set using
Ψ-GNN. Figure 7.6a shows the data-driven solution obtained at the last iteration, while Figure
7.6c displays the map of squared errors between the data-driven solution and the LU solution.
Figure 7.6b illustrates the different types of nodes. At the bottom, Figure 7.6d depicts the evolution
of the Residual (in red) and MSE w/LU (in blue) across the 50 iterations of the model.

The autoencoding process ensures accurate encoding and decoding of the Dirich-
let boundary conditions, thereby preserving them throughout the iterations with an
error of magnitude 10−6. The error map reveals that the highest errors are primar-

Metrics Residuals (10−3) MSE w/LU Nb of weights
Ψ-GNN 3.16 ± 0.2 0.14 ± 0.04 2175

DS-GPS 2.2 ± 0.1 0.37 ± 0.1 2711

Table 7.3: Results of Ψ-GNN and DS-GPS averaged over the whole test set.

122

ily concentrated near the Neumann boundary nodes, aligned with expectations. As
discussed in Section 4.2, the graphs considered in this study are directed from the
Dirichlet boundary nodes toward the interior of the graph. Consequently, the flow
of information is propagated from these nodes towards the inner region of the do-
main. However, in the case of Neumann nodes, which involve bidirectional edges,
the task of propagating information across the entire graph becomes more chal-
lenging compared to the fully Dirichlet problem. This is because, in the full Dirichlet
problem, information can flow from the entire boundary of the domain. However,
in the presence ofNeumannnodes, the bidirectional edges complicate the propaga-
tion of information throughout the graph, and the Neumann values must be gradu-
ally approached. This is in contrast to Dirichlet values, which are considered “exact”.
As a result, the model requires more iterations to attain the solution. Additionally,
Table 7.3 presents the averaged Residual and MSE w/LU errors obtained byΨ-GNN
and DS-GPS on the entire test set. Results show that Ψ-GNN outperforms DS-GPS
in terms of MSE w/LU. This is attributed to the capability of Ψ-GNN to better adapt
its number of Message-Passing steps required for solving such problems. Addition-
ally, these results are comparable in terms of Residual and slightly higher in terms
ofMSEw/LU compared to those obtained in Section 7.4.1. This increase is attributed
to the higher conditioning of the problem. However, these results demonstrate the
accuracy of Ψ-GNN in solving Poisson problems with mixed boundary conditions.
Notably, the model has 2175 parameters, which is slightly more than the one devel-
oped in Section 7.4.1, due to the additional networks required to take into account
the Neumann boundary conditions.

7.4.3 . Sensitivity analyzes

This section delves into several generalizations aspects ofΨ-GNN. First, we demon-
strate that Ψ-GNN remains consistent even with an increasing number of nodes in
the graph. Then, we demonstrate the flexibility of Ψ-GNN through its insensitivity
with respect to its initialization. Moreover, we provide evidence of the contractive
nature of the constructed GNN function Mθ, as discussed in Section 7.2.2. Lastly,
we address the out-of-distribution generalization issue, effectively highlighting the
better generalization capabilities of Ψ-GNN compared to DS-GPS and DSS.
Size of the mesh

This paragraph explores the performance and generalization capabilities ofΨ-GNN
in solving Poisson problems with Dirichlet boundary conditions on meshes with a
growing number of nodes, even though it was initially trained on meshes with ap-
proximately 500 nodes. To conduct this experiment, we address the resolution of
multiple Poisson problems onmeshes with varying numbers of nodes. To maintain
consistency in the distribution of inputs, we keep the same element sizes, similar
to those used to generate the dataset, while varying the number of nodes by in-

123

(a) (b)

Figure 7.7: Figure 7.7a illustrates the averaged MSE w/LU for different mesh sizes for the three
models: DSS, DS-GPS and Ψ-GNN. Figure 7.7b displays the averaged number of iterations per-
formed by the Broyden solver in Ψ-GNN to reach its target threshold with respect to the number
of nodes per mesh.

creasing themesh radius. The force and boundary functions are randomly sampled
following Section 4.3 but rescaled according to the selected radius. We consider six
different setups corresponding to meshes with approximately 200, 500, 2000, 7000,
and 11000 nodes per mesh. For each setup, we solve 200 Poisson problems using
DSS, DS-GPS, andΨ-GNN. To handle largermesh sizes, the DS-GPSmodel is allowed
up to 500 iterations for solution inference. The Broydenmethod used in theΨ-GNN
model is configured with a stopping criterion of 10−5 and a maximum of 1000 itera-
tions. Notably, regardless of the mesh size, the DS-GPS model performs exactly 500
iterations, while the Ψ-GNN model adjusts its iteration count thanks to the root-
finding procedure. The DSS model, as used in Chapter 5, infers solutions using only
30 iterations. Figure 7.7a displays the MSE w/LU evolution (averaged over the 200

problems) for each setup and each of the three models. The figure clearly shows
that the DSS model diverges for larger meshes. While the DS-GPS model initially
achieves better results, it eventually diverges due to inconsistencies in the conver-
gence of the method. In contrast, the Ψ-GNN model remains consistent when ap-
plied to larger meshes. Furthermore, Figure 7.7b displays the averaged iteration
counts of the Broyden solver in the Ψ-GNN model with respect to the number of
nodes per mesh. This figure clearly demonstrates that Ψ-GNN can adapt its num-
ber of Message-Passing layers to attain a solution.
Initialization

This paragraph aims to demonstrate the flexibility of Ψ-GNN and its insensitivity
w.r.t. its initialization. By “flexible”, we mean that Ψ-GNN can dynamically adapt

124

Original Random Initializer Forward Iteration
Residual (10−3) 3.16 ± 0.2 3.18 ± 0.3 3.14 ± 0.3

MSE w/LU 0.15 ± 0.04 0.16 ± 0.09 0.16 ± 0.04

Table 7.4: Results averaged over the whole test set for different experiments. First column: orig-
inal results of Section 7.4.2; Second columns: random initial solution; Third column: replacing
Boyden with forward iterations.

its number of iterations based on the distance from the initial solution to the final
solution. And by “insensitive”, we refer to the property that, regardless of the initial
solution, the model consistently converges to the same fixed point, representing
the desired solution. These advantageous characteristics are enabled by the auto-
encoding process thatmaps the initial physical state to the latent space, where GNN
layers are applied, and back. Flexibility is demonstrated thanks to Figure 7.8, which
displays the evolution of the Residual error across the iterations of the Broyden al-
gorithm for the same Poisson problem considering three different initial conditions:
the "Original" initial condition (black curve) is the one used during training, where
the initial state is initialized to 0. The "Far" initial condition (blue curve) involves ap-
plying a large random noise (uniform noise in the range [−1000, 1000]) to the solu-
tion obtained from the LU “ground-truth"method. The "Close" condition (red curve)
incorporates a small perturbation (uniform noise in the range [0, 1]) to the target
“ground-truth" solution. For all these initial conditions, the true value of Dirichlet
boundary conditions is preserved. This experiment showcases that the number of
iterations required for convergence varies depending on the proximity of the initial
solution to the final solution. This adaptive behaviour enables the model to ad-
just its iteration count effectively, optimizing convergence efficiency. Insensitivity
to initial solutions is demonstrated in the second column of Table 7.4, which eval-
uates the performance of Ψ-GNN using various initial solutions. This experiment
demonstrates that Ψ-GNN is robust to the choice of initial solution: regardless of
the initial solution provided, the algorithm consistently converges to the desired so-
lution. Specifically, the "Random Initialization" entry in Table 7.4 reports themetrics
averaged over the entire test set, using an initial solution randomly generated by
perturbing the ground-truth solution with uniformly random values ranging from
−1000 to 1000. Remarkably, the results obtained with random initialization are al-
most identical to those obtained with the “Original setup” (first column of 7.4 iden-
tical to the results from Section 7.4.2) indicating that our model is insensitive to the
specific choice of the initial solution. In particular, this is a significant improvement
compared to the DSS approach, which lacks this capability since it does not have
any encoding process.

125

Figure 7.8: Evolution of the Residual error across iteration ofΨ-GNN for the same Poisson prob-
lem but considering three different initial solutions, demonstrating the adaptability of Ψ-GNN
with respect to various initial solutions.

Contractivity

The regularization term (7.15) serves the purpose of constraining the spectral radius
of the Jacobian JMθ

(Ĥ) in order to ensure the stability of themodel around the fixed
point Ĥ , as discussed in Section 7.2.2. Figure 7.9 depicts the evolution of the spectral
radius during the training phase, evaluated for each mini-batch at every validation
step. The figure illustrates that the regularization term indeed forces the spectral
radius of the Jacobian to converge toward a value close to 1. The results obtained

Figure 7.9: Evolution of the spectral radius.

on the test set indicate the ef-
fectiveness of this regulariza-
tion, with an average spectral
radius of 0.993 ± 4e-4 < 1. This
value is estimated a posteri-
ori using the Power Iteration
method (Golub and Van der
Vorst, 2000). Furthermore, we
demonstrate this generaliza-
tion results in the third column
of Table 7.4. In this experi-
ment, we evaluate Ψ-GNN on
the entire test set, but instead
of using the root-finding Broy-
den algorithm employed dur-
ing training, we simply iterate on the Processor described in the architecture in Sec-
tion 7.2.1. Once again, the obtained results are almost identical to those obtained in

126

Figure 7.10: Generalization on the “out-of-distribution” F1 shape, 1219 nodes. Central plot: Resid-
ual and MSE during the 253 iterations of the Processor (i.e., without using RootFind), demon-
strating the contractivity ofMθ. Left: The boundary conditions. Top: the visual evolution of the
squared error, displaying the flow of information from Dirichlet nodes inward.

the original setup. This demonstrates the contractive nature of the GNN-function
Mθ and highlights the robustness and flexibility of Ψ-GNN in its ability to adapt to
different solvers.
Out-of-distribution generalization

We conduct an experiment on a mesh representing a caricatural Formula 1 with
1219 nodes. This mesh includes “holes” (such as a cockpit and front and rear wing
stripes) and is larger (1219 nodes) than those seen in the training dataset, provid-
ing a challenging test of the model’s ability to generalize to out-of-distribution (with
respect to the geometry of the domain, as well as the mesh size) examples. We
impose Dirichlet boundary conditions on all exterior nodes (pink nodes in the ver-
tical plot at the left of Figure 7.10) and Neumann conditions on the nodes within
the “holes" (yellow nodes). Functions f and g of (4.2) are randomly sampled from
the same distribution as for the training set (Section 4.3). The equilibrium of the
model is found by simply iterating on the Processor instead of relying on Broyden’s
algorithm (see above Section). The stopping criteria is the relative error set to 10−4.
The results Figure 7.10 again shows the contracting nature of the learned function,
that converges to the fixed point when iterated. Furthermore, it also gives an exam-
ple of the generalization capacity of the learned model to some out-of-distribution
examples. Additionally, the figure also illustrates how the information propagates
through the graph, starting from the Dirichlet nodes to gradually filling the whole
domain.

7.4.4 . Inference complexity

127

To determine the expected performance of Ψ-GNN as the number of nodes N in
a graph varies, it is essential to analyze its complexity. In Ψ-GNN, all neural net-
works have a single hidden layer of dimension d, so the complexity of applying a
neural network to one node is O (

d3
). Let us assume that m is the average num-

ber of neighbours for each node in the graph. The complexity of computing the
output of a GNN layer relative to one node in a mesh is then ofO (

md3
). Consider-

ing all N nodes in the graph and iterating for K updates, the complexity becomes
O
(
KNmd3

). This represents the theoretical complexity of Ψ-GNN when the Pro-
cessor is iterated upon forK iterations.
When using Ψ-GNN with Broyden’s algorithm, the complexity is found to be of a
higher order. Broyden’s method is a quasi-Newton method that computes the next
iterateHk+1 as follows:

Hk+1 = Hk + J−1|Mθ
(Hk)Mθ(H

k) (7.23)
In Equation (7.23), we already know the complexity ofMθ(H

k), which is computed
in a similar manner as previously explained and has a complexity of O (

Nmd3
). In

his paper (Broyden, 1965), Broyden suggests using the Sherman-Morrison formula
(Sherman and Morrison, 1950) to update the inverse of the Jacobian matrix directly,
as follows:

Bk
|Mθ

= Bk−1
|Mθ

+
∆Hk −Bk−1

|Mθ
∆Mk

θ

(∆Hk)TBk−1
|Mθ

∆Mk
θ

(∆Hk)TBk−1
|Mθ

(7.24)

Here, Bk
|Mθ

= J−1|Mθ
(Hk),∆Hk = Hk −Hk−1, and∆Mk

θ =Mθ(H
k)−Mθ(H

k−1).
In Equation (7.24), all operations are matrix-vector products of size N , so the com-
plexity of updating the Jacobian matrix is O (

N2
). Back to equation (7.23), the total

complexity to compute the next iterate is then of O (
N2

)
+ O

(
Nmd3

), which cor-
responds to the cost of updating the Jacobian matrix and the cost of evaluating the
GNNmodel. This is applied forM iterations of the Broyden algorithm, resulting in a
global complexity ofO (

MN2
), since the quadratic complexity dominates the linear

one.
Experimentally however, at the current stage of our work, whatever the approach
(iterations of the Processor, or Broyden iterations), themodel does not showany im-
provement in computational speed compared to traditional solvers, primarily due
to the small sizes of the meshes and the complexity of the Broyden algorithm. Nev-
ertheless, a promising future research direction involves consideringmultiple layers
within the function Mθ. In essence, the idea would be to explore a trade-off be-
tween stacking GNN layers, which have a linear complexity, within theMθ function

128

to reduce the number of iterations of the root-finding solver, which has a quadratic
complexity. This trade-off could eventually enhance computational efficiency and
is worth exploring further.

7.5 . Discussion and Conclusions

In this chapter, we have introduced Ψ-GNN, a novel Machine Learning-based ap-
proach that combines Graph Neural Networks and Implicit Layer Theory to effec-
tively solve a wide range of Poisson problems. The model, trained in a “physics-
informed” manner, is found to be robust, stable, and adaptable to varying mesh
sizes, domain shapes, boundary conditions, and initialization. To the best of our
knowledge, this approach is distinct from any previous Machine Learning-based
methods for Poisson resolution, andoutperforms state-of-the-artmodels, both quan-
titatively and qualitatively. Furthermore, Ψ-GNN can be extended to other steady-
state partial differential equations, and its application to 3-dimensional domains is
straightforward.
Despite its generalization capabilities, Ψ-GNN is still limited to handling small-size
meshes (with less than 1000 nodes). Indeed, since the main optimization process
is driven by minimizing the discretized residual equation, the performance of the
model when comparing it with ground-truth solutions is constrained by the con-
ditioning of the considered problem. This conditioning increases with both the
number of nodes and the difficulty of the problem, such as adding homogeneous
Neumann boundary conditions. Nevertheless, although it is trained on fixed-size
meshes,Ψ-GNN has been found to be robust when applied to meshes with a larger
number of nodes. However, this result comes at the expense of an increasing num-
ber of iterations of the root-finding method, which significantly increases the com-
putational time for inferring a solution. The question now is how to efficiently scale
these GNNmodels to solve large-scale problems, and there are potentially promis-
ing directions. One approach is to use these models as a solver for domain de-
composition algorithms, leveraging the batch parallel framework of Machine Learn-
ing models to solve multiple subproblems simultaneously. In that context, one
could combine the strengths of well-established numerical methods and the effi-
cient computational power of Machine Learning models. More importantly, this
would allow the model to produce solutions within its range of nodes by decom-
posing the full domain into subdomains of reasonable sizes for the ML-based ap-
proach. This analysis is explored in Part III of this manuscript. Another potential
direction for future research, which has not been explored in this thesis, is the de-
velopment of a fully hierarchical architecture, similar to the work done in Liu et al.
(2021) or Lino et al. (2021a).

129

Part III

Hybrid Solvers

130

In the field of Computational Fluid Dynamics (CFD), the objective is to forecast the
behaviour of a fluid within a domain subjected to physical constraints. As explained
in Chapter 1, the initial step involves deriving the Partial Differential Equations (PDEs)
that describe themotion of fluids, referred to as theNavier-Stokes equations. These
equations are often solved using splitting schemes, which necessitate the inten-
sive resolution of a Poisson Pressure problem, as described in Section 1.2 and high-
lighted in Figure 2.10 of Wang (2015). The Poisson Pressure PDE is then discretized
on a mesh using numerical tools like the Finite Element Method (see Section 1.3),
which yields the resolution of a linear system of the form

Au = b

whose size equals the number of degrees of freedom, denoted asN . In this system,
A ∈ RN×N denotes the stiffness matrix, b ∈ RN represents the right-hand side
vector, and u ∈ RN is the solution vector to be sought.
For complex industrial problems, accurate predictions are mandatory, which im-
plies an increased number of degrees of freedom and, thus, a very large system to
solve. For example, it is often not surprising that the system to solve has a num-
ber of degrees of freedom of the order of the million. To solve such systems, there
exist different kinds of methods that can be divided into two categories: direct and
iterative methods.
Direct methods

Direct methods aim to find the exact solution in a finite number of steps, and the
algorithm has to complete all the steps to obtain a solution. A simple way would
be to invert the matrix A and multiply the result with the right-hand side b. How-
ever, for large systems, an inverse is never computed explicitly. Instead, more com-
mon approaches to directly compute the solution include Gaussian elimination, LU,
Cholesky, or QR decompositions (Davis, 2006). Direct methods are robust and, in
the absence of rounding errors, would provide an exact solution to the system.
However, the challenge with direct methods is that of scaling: they are rarely used
in practice for dense matrices when the system of equations is larger than ≃ 1000.
The main reason concerns the complexity of these algorithms. For instance, Gaus-
sian elimination has a complexity of order O(N3), which means that the algorithm
will perform on the order of 1015 floating point operations to obtain the solution of
a problem with 100, 000 degrees of freedom, a process that can be extremely time-
consuming. Specific variants of these algorithms were developed to handle sparse
systems of equations with a complexity of O(Nα), where 1 ≤ α ≤ 2 (Rose and
Tarjan, 1978). These methods can still be used to solve 2D and even 3D problems
with thousands of unknowns but are still scarcely used in practice for very large sys-
tems. Another reason, for dense matrices, is that for large problems, it is unlikely
that the entirematrix can be stored inmemory or even assembled in the FEM. Refer

131

to Davis (2006) or the survey by Davis et al. (2016) for an exhaustive presentation of
these methods.
Iterative methods

Iterative methods, on the other hand, gradually improve an approximation of the
solution that will (hopefully) converge to the true solution. In contrast to the direct
method, where all the steps of the algorithm must be completed to obtain a solu-
tion, iterative methods let the user decide how much work (how many iterations)
she wants to invest, depending on how accurate the current approximation is to the
true solution. Moreover, these methods are matrix-free methods because they do
not necessarily require the explicit form of the matrix A. Instead, they access the
matrix by evaluatingmatrix-vector products. Suchmethods can be preferable when
the matrix is so big that storing andmanipulating it would cost a lot of memory and
computing time, even with the use of methods for sparse matrices.
Before introducing common iterative methods used for solving large systems, it is
essential to define key concepts. In the following discussion, the term “robustness”
refers to the guarantees provided by an iterative method for converging to the so-
lution. Next, “efficiency” relates to speed (the number of iterations) of convergence
to reach a given precision, and is directly linked to the convergence rate of the it-
erative method: a higher convergence rate implies fewer iterations needed to find
the solution. Furthermore, the notion of “scalability” can be split into two concepts:
strong and weak scalability. Strong scalability quantifies how the convergence rate
changes with respect to the quantity of resources (computational resources, e.g.,
the number of CPU cores) for a given problem size. Ideally, for a fixed problem size,
if computational resources double, the solution time should be twice as fast. On the
other hand, weak scalability concerns how the solution time varies with the number
of resources as the problem size increases. Ideally, the solution time should remain
constant for a fixed ratio between the problem size and the number of resources.
In the following, the term scalability will only refer to the concept of weak scalability.

The most basic iterative methods are the so-called stationary methods, in which all
iterations use the same formula. Examples of iterative methods are Jacobi, Gauss-
Seidel, or SOR (Greenbaum, 1997). These methods are computationally well-suited
for solving large systems of equations since they have a complexity of O(N) for
sparse systems1.
However, lack of robustness and efficiency are widely recognized weaknesses of
iterative methods compared to direct methods. For instance, when the spectral ra-
dius2 of the iteration matrix (i.e., the matrix that updates a current approximate
solution to the next) is greater than 1, the method diverges. And in general, there is

1O(N2) if the matrix is dense, still better than direct methods2the largest eigenvalue (in absolute value)
132

no guarantee regarding the spectral radius. Besides, even if convergent, the algo-
rithm may converge very slowly before reaching a sufficiently accurate solution. A
spectral analysis of the convergence of the error reveals that these iterative meth-
ods can rapidly solve the high frequencies but have very slow convergence for the
lowest frequencies, which hampers their practical use in industrial contexts.
However, several other iterative methods were developed to tackle these issues.
Among these, the most famous ones are the Krylov methods. The fundamental
concept behind Krylov methods is to seek the solution within a Krylov subspace.
Essentially, stationary methods compute an approximate solution within the same
Krylov subspace but with "frozen" coefficients. In contrast, Krylov methods aim to
determine the optimal coefficients that lead to a much more optimal solution com-
pared to stationary methods, as well as faster convergence. For this reason, the it-
erativemethods of choice for solving large linear systems primarily consist of Krylov
methods, the most renowned of which include Conjugate Gradient (CG) for positive
definiteAmatrices, or Bi-ConjugateGradient Stabilized (BiCGStab), andGeneralized
Minimal Residual (GMRES) otherwise.
Under certain specific assumptions, these algorithms are robust, implying that they
always converge toward the solution of the system. For example, Conjugate Gra-
dient is guaranteed to converge if A is symmetric and positive definite. However,
despite their enhanced robustness, these methods might still suffer from slow con-
vergence. In fact, the rate of convergence of Krylov methods depends on the con-
dition number (or conditioning)3 of A, and as the size of the problem increases, so
does the conditioning of A (see Figure 6.8). In conclusion, while Krylov methods
provide low complexity (e.g. O(N) for CG) and robustness, they still face efficiency
and scalability challenges.
Preconditioning

The efficiency of Krylov methods can be significantly enhanced through the use of
preconditioning. Preconditioning is simply a way of transforming the original linear
system into one that has the same solution but is easier to solve with an iterative
method. Generally, the reliability of iterative methods depends much more on the
choice and quality of the preconditioner than on the specific Krylov method used.
In practice, we aim to find a preconditioning matrix M ∈ RN×N , which has the
same size as A, and to use a Krylov method to solve the following preconditioned
problem:

M−1Au =M−1b (7.25)
3the ratio between the largest and lowest eigenvalue of A

133

The system defined in Equation (7.25) has the same solution as the original system.
The rationale is to chooseM such that this preconditioned system is considerably
more efficient to solve using Krylov methods than the original one. The precondi-
tioned matrixM can be defined in various ways, but it must meet certain minimal
requirements. In practice, the main requirement for M is that it is inexpensive to
invert, as a preconditioned Krylov method would necessitate computing the solu-
tion of a linear systemwith thematrixM at each iteration. The second requirement
is that M should be close to A in some sense and should be nonsingular. In fact,
it is advised to chooseM such that the spectral radius ofM−1A is close to 1, and
is smaller than the spectral radius of A. This ensures that the conditioning of the
preconditioned system is lower than that of the original system, leading to a faster
rate of convergence as well as an enhanced robustness of the Krylov method.
There is no miracle recipe for finding a good preconditioner. For instance, let us
define the following fixed-point algorithm:

un+1 = un +M−1 (b−Aun)

=
(
I −M−1A

)
un +M−1b

(7.26)

where I ∈ RN×N is the identity matrix. The stationary algorithm 7.26, when con-
vergent, will converge to the solution of the preconditioned system 7.25. The sta-
tionary methods which are based on a splitting of A (like Jacobi or Gauss-Seidel
methods mentioned earlier), are, in fact, equivalent to a stationary method on a
preconditioned system. As a result, simple preconditioners can be derived from
well-established stationary iterativemethods. For instance, from the Jacobimethod,
it is possible to derive a preconditionerM = D where D is the diagonal of A, and,
for Gauss-Seidel, the induced preconditioner is the lower triangular part ofA. These
preconditioners are, however, not much used in practice, but another very success-
ful technique consists, for instance, of choosing as a preconditioner an incomplete
LU factorization of A. Besides, in Equation (7.26), (I −M−1A

) is referred to as the
iterationmatrix. Asmentioned earlier, its spectral radiusmust be lower than 1 to en-
sure convergence and be as small as possible to provide a fast rate of convergence.
This motivates the choice of a preconditioner M such that the spectral radius of
M−1A is as close to 1 as possible.
In the latter example,M can be defined explicitly, but it is unlikely that, in practice,
M and M−1A can be computed explicitly. Instead, the iterative process, i.e. the
Krylov method, can be written such that they operate with A and M−1 indepen-
dently, whenever needed. This is one of the reasons why computing the inverse
of M should be inexpensive. There is a difference to make between the rate of
convergence (i.e. the number of iterations required to achieve convergence) and
the computational time of one iteration of a Krylov method. Using a preconditioner

134

should enhance the convergence rate of the matrix (because the preconditioned
problem has lower conditioning) but be sufficiently fast to apply to avoid increasing
toomuch the resolution time of one step of the Krylov method too. Krylov methods
used with a good preconditioner alleviate the issue of robustness and efficiency of
iterative methods.
But a last challenge remains to be tackled, which concerns their scalability. Indeed,
even though (well-chosen) preconditioners drastically reduce the conditioning of
the problem and help the Krylovmethods converge faster, the number of iterations
required to solve a problem still increases with the size of the problem.
Another crucial point involves the evolution of computer architecture. In the past,
improving the performance of numerical methods was only a matter of time, wait-
ing for the next generation of processors. But since 2005, the clock speed of proces-
sors stagnated at 2−3GHz, and the increase in performance was entirely due to the
increase in the number of cores per processor4: all machines became parallel ma-
chines. Enhancing the resolution of large systems no longer relied upon the better
performance of the machines but on the development of new parallel algorithms
instead.
Scalability and Parallel methods

Nowadays, there exist several parallel iterative frameworks available for solving
large systems of equations, as discussed in Wang (2015). In practice, the most com-
mon and used method is known as the Multigrid method (Briggs et al., 2000). In
brief, the Multigrid method solves large linear systems arising from the discretiza-
tion of PDEs by using a hierarchy of discretizations, i.e., a hierarchy of the same
mesh at different resolutions, ranging from the finest to the coarsest mesh. It
achieves the solution through two complementary processes: smoothing and coarse
grid correction. Smoothing involves applying a “smoother”, which typically consists
of a few iterations of a cost-effective method such as Jacobi or Gauss-Seidel (Saad,
2003). On the other hand, coarse grid correction involves transferring the informa-
tion to a coarser level through restriction, solving a problem on the coarse grid, and
then transferring the solution back to the fine grid through interpolation. Smooth-
ing helps reduce high-frequency errors, while coarse grid correction is responsible
for eliminating low-frequency errors. Doing so alleviates the issue of slow conver-
gence in stationary iterativemethodsmentioned earlier. Themost renownedMulti-
grid algorithm is the Algebraic Multigrid Method (AMG) (Ruge and Stüben, 1987). In
contrast to classical Multigrid algorithms, which construct the coarse grids based
on the problem geometry, AMG relies exclusively on the matrix entries of the lin-
ear system. Multigrid methods have optimal complexity, optimal memory require-
ment, and good scalability. While multigrid methods are not intrinsically parallel,

4number of computational resources.

135

they can be effectively combined with other techniques, such as Domain Decompo-
sition Methods (further introduced), to achieve good parallel efficiency. Although
they can be used as iterative solvers, Multigrid methods are primarily employed as
preconditioners for Krylov methods, which makes the whole method extensible. In
fact, Krylov methods with an AMG preconditioner are today the most widely used
iterative framework for solving large systems of equations.
Another well-known fully parallel framework for solving large linear systems is re-
ferred to as Domain Decomposition Methods (DDM). The general concept behind
DDMs leverages the principle of “divide and conquer”: the global problem is par-
titioned into sub-problems of reasonable size whose resolution can be treated in
parallel on multiple processor cores. Similar to multigrid algorithms, many variants
of DDM algorithms exist. Still, they can be divided into two classes, depending on
whether they require an overlapping decomposition of the domain or not. For in-
stance, the earliestmethods, referred to as Schwarzmethods, leverage overlapping,
whereas more advanced algorithms such as FETI or Neumann-Neumann don’t. We
refer the reader to Dolean et al. (2015) for an extensive description of these algo-
rithms. These methods can be used as iterative solvers, but similar to multigrid
methods, they are mostly used as preconditioners for Krylov methods. Original Do-
main Decomposition methods are not extensible as the required number of itera-
tions to converge rises with the number of subdomains. This problem is solved in
their two-level variant by introducing a coarse space correction. As a result, Krylov
methods can be extensible if used with a two-level Domain Decomposition algo-
rithm as a preconditioner.
Contributions

With the rise of Machine Learning, another class of methods has emerged, which
can be referred to as statistical methods. These Machine Learning methods typi-
cally act as “black-box” approaches, learning to solve physical problems originating
from a training distribution of instances. The field of Machine Learning for solving
physical problems is a rapidly advancing domain. A state-of-the-art review5 of ex-
isting methods applied to the resolution of fluid dynamics problems is provided in
Chapter 3.
The primary advantage of these statistical methods lies in the speed with which
they produce approximate solutions. As mentioned earlier, these methods often
operate as “black-box” approaches, taking the domain structure and some addi-
tional data as inputs and producing an approximation of the solution, without going
through the costly computations of creating and solving the system of equations.
Machine Learning methods are also particularly fast because they are extremely
well-suited for harnessing parallel computations on GPUs. This is in contrast to the

5maybe already outdated

136

traditional methods (i.e. the iterative methods), which use computations on CPUs,
whose parallelization on multiple CPU cores can be quickly limited. However, Ma-
chine Learning methods can suffer from several issues, such as:
Generalization: Machine Learning models can provide approximate solutions to
problems within a specific distribution on which they have been trained, but out-of-
distribution samples are often poorly solved.
Level of Accuracy: The precision of the solution of a Machine Learning model is
constrained by the accuracy of the trained model: the approximate solution will be
as precise as the capabilities of the trained model permit, and it often deteriorates
further when handling out-of-distribution samples. The level of accuracy proposed
by a Machine Learning model may be sufficient in cases where only a rough idea of
the solution is needed. However, when considering the resolution of the Pressure
Poisson equation in a CFD problem (see Chapter 1), it becomes imperative that the
precision of the induced Pressure Poisson problem is significantly better to ensure
the consistency of the other steps and the convergence of the simulation.
In Part II, we introduced three Graph Neural Network-based models designed to
address Poisson problems. The initial model, Deep Statistical Solvers (DSS) (Donon
et al., 2020), played a foundational role in the development of this thesis. It was stud-
ied for its consistency (theoretical properties), enhanced training process (minimiza-
tion of the discretized residual equation), and the high accuracy of the produced
results (see Section 5.3). However, DSS faces challenges in terms of generalization,
particularly when dealing with problems involving meshes with a larger number of
nodes (refer to Figure 7.7a). Hence, Part II of this work focused on addressing the
generalization issue for this specific type of Machine Learning model.
To that end, Chapter 6 and, more importantly, Chapter 7 introduced two contribu-
tions to this thesis: the DS-GPS and Ψ-GNN models, respectively. These models
were specifically designed as a more robust Machine Learning solution for solving
Poisson problems. While DS-GPS is a recurrent architecture, Ψ-GNN leverages the
Implicit Layer Theory to automatically determine the number of Message-Passing
steps required to achieve convergence. Additionally, significant effort has been put
into the development of thesemodels to construct architectures that are less “black-
box” and more respectful of physical constraints, such as explicitly treating bound-
ary conditions. Furthermore, the analogy between traditional iterativemethods and
theGNNmodels developed in Part II is direct: all three of thesemethods can be seen
as stationary iterative methods, with theMθ function (see Figure 7.1) being the iter-ation matrix. The convergence guarantees of Ψ-GNN, obtained by constraining the
spectral radius ofMθ through minimization of its Frobenius norm (recall that post-
training, the spectral radius equals approximately 0.98 - refer to Section 9.3.3), are
actually analogous to the theoretical properties that an iteration matrix must fulfill
in a stationary method (i.e., spectral radius less than 1). As a result, these contribu-

137

tions allow for great generalization, enabling the accurate resolution of problems
involving up to ten thousand nodes. However, their scalability becomes a challenge
when addressing problems on very large meshes (100, 000 nodes or more). Addi-
tionally, these models display an MSE with an exact solution of no higher than 10−2,
a precision that may not ensure the convergence of a splittingmethod, for instance.
The final part of this thesis is dedicated to addressing the second issue, which in-
volves the level of accuracy of the solutions of Machine Learning models. Addition-
ally, we seek to scale up the capabilities of these models for solving Poisson prob-
lems on meshes with a very large number of nodes. To achieve this, we propose
to construct a hybrid solver, which combines GNN models with Schwarz methods
arising from the field of Domain Decomposition (DDM). We explore the application
of this hybrid solver in two frameworks: as a stationary iterative method, and as
a preconditioner for a Krylov method. The objective is to leverage GNN models
to solve the multiple sub-problems in the context of a Schwarz method, with three
goals: i) enhancing the capabilities of GNNmodels to handle largemeshes becomes
feasible, as it allows the selection of a sub-problem size aligned with the best ca-
pabilities of the GNN models; ii) using a two-level variant of a Schwarz method ad-
dresses the scalability issue of GNNmodels, where the number of Message-Passing
required for convergence grows as the size of the problem increases; iii) harnessing
the “per-batch” structure of GNNmodels to solve multiple sub-problems in parallel
on GPUs, with the hope to speed up the process. In our best-proposed framework,
this hybrid method is used as a preconditioner for Krylov methods. As a result, the
proposed approach converges to the solution with any desired precision, thanks
to the Krylov method. The robustness and efficiency of the Krylov method are sig-
nificantly enhanced by using a fully GNN-based preconditioner. This GNN-based
preconditioner, whose architecture leverages a two-level DDM approach, is capa-
ble of handling meshes at a very large scale and making the Krylov method extensi-
ble. Moreover, its parallel execution on GPUs ensures its fast application within the
Krylov method.
In the following, Chapter 8 provides an introduction to Schwarzmethods, and Chap-
ter 9 presents the proposed hybrid methods, which uses knowledge from both the
GNN models in Part II and Schwarz methods in Chapter 8.

138

8 - Introduction to Schwarz methods

Sommaire
8.1 Overview of Schwarz methods 139

8.1.1 Original Schwarz method 139

8.1.2 Jacobi-Schwarz method 141

8.1.3 Restricted Additive & Additive Schwarz methods . . 142

8.2 Discrete formulations 142

8.3 Schwarz methods as iterative solvers 146

8.4 Schwarz methods as preconditioners 147

8.5 Two-level methods 151

This chapter aims to provide background information on Domain Decomposition
Methods. While numerous techniques have been developed to enhance suchmeth-
ods, this thesis specifically relies on one of the earliest variants: Schwarz methods.
The first section, Section 8.1, introduces three continuous formulations of Schwarz
methods.
Subsequently, in Section 8.2, detailed insights into the computational aspects asso-
ciatedwith thesemethods are provided. The following two sections address the use
of Schwarz methods: as iterative solvers in Section 8.3 and as preconditioners for
Krylov methods in Section 8.4. In Section 8.5, the two-level methods are introduced
to achieve scalability with respect to the number of subdomains. All presented re-
sults are generated using our self-developed Python code. In the context of this
introduction, all methods are presented to tackle Poisson problems with Dirichlet
boundary conditions, similar to (4.1).

8.1 . Overview of Schwarz methods

8.1.1 . Original Schwarz method

The original Schwarz algorithmwas first proposed by a German analyst named Her-
mann Schwarz in the 19th century. At that time, solutions to Poisson problems were
only possible for very simple geometries through the use of the Fourier transform,
since numericalmethodswere not yet available. To further complicate the problem,

139

Figure 8.1: Illustration of the geometry used by H.Schwarz when introducing his Alternating
Method. The full domain Ω with boundary ∂Ω is composed of two simple shapes: a disk Ω1

and a rectangle Ω2 with interfaces Γ1 = ∂Ω1 ∩ Ω2 in green, and Γ2 = ∂Ω2 ∩ Ω1 in red.

H. Schwarz extended his considerations to encompass more complicated geome-
tries, such as compositions of multiple simple shapes (e.g. a union of a circle and a
rectangle, as depicted in Figure 8.1). To address this challenge, H. Schwarz proposed
an iterative algorithm that consists of solving a Poisson equation for each simple
geometry in every iteration and subsequently transferring information across the
interfaces between these domains (Schwarz, 1870).
Formally, let Ω be the union of a disk Ω1 and a rectangle Ω2, with interfaces Γ1 =

∂Ω1∩Ω2 andΓ2 = ∂Ω2∩Ω1, as illustrated in Figure 8.1. Let us consider the resolutionof a Poisson problem with Dirichlet boundary conditions, which consists in finding
a real-valued function u, defined on Ω, that satisfies:

{
−∆u = f ∈ Ω

u = g ∈ ∂Ω
(8.1)

To solve Equation (8.1), H. Schwarz invented the Alternating Schwarz Method, an iter-
ativemethod that uses solutions on both the disk, denoted as u1, and the rectangle,denoted as u2. The method starts with an initial guess u02 along Γ1 and iteratively
computes the solutions un+1

1 and un+1
2 according to the following algorithm:

−∆(un+1

1) = f in Ω1

un+1
1 = g on ∂Ω1 ∩ ∂Ω
un+1
1 = un2 on Γ1

−∆(un+1

2) = f in Ω2

un+1
2 = g on ∂Ω2 ∩ ∂Ω
un+1
2 = un+1

1 on Γ2 (8.2)
The particularity of this algorithm lies in the exchange of information along the in-
terfaces Γ1 and Γ2 at each iteration, highlighted in green and red in (8.2), respec-

140

tively. Additionally, H. Schwarz demonstrated the convergence of this approach,
establishing the well-posedness of the Poisson problem in complex geometries.
With the advancements in computing technology, these methods have gathered
practical interest both as iterative solvers (refer to Section 8.3) and as precondi-
tioners for Krylov solvers (refer to Section 8.4). Besides, with the rise of parallel
computing, a slight modification of the original algorithm (8.2) has made it compat-
ible with modern parallel architectures. In the following sections, three continuous
Schwarz methods will be briefly surveyed: the Jacobi-Schwarz method (JSM), the Re-
stricted Additive Schwarz (RAS) method, and the Additive Schwarz method (ASM).
These methods represent extensions of the original Alternating Schwarz method
and are introduced here to address problems with multiple subdomains. While
JSM and RASmethods are theoretically equivalent (ASM being a variant of RAS), they
differ in their local problem-solving approaches, making them applicable in various
contexts (refer to the subsequent Chapter 9).

8.1.2 . Jacobi-Schwarz method

Let Ω be an open and bounded domain and let us consider an overlapping decom-
position of Ω intoK open subdomains (Ωi)1≤i≤K such that:

Ω =

K⋃
i=1

Ωi

The alternating Schwarz algorithm defined in Equation (8.2) operates on local func-
tions defined within each subdomain Ωi. However, when formulating algorithms
that work with global functions (i.e. functions defined across the entire domain Ω),
one needs to define operators able to bridge the gap between the subdomains and
the global domain. This role is fulfilled by Extension operators and Partition of Unity
functions, which are defined as follows:
Definition 8.1.1 (Extension Operators & Partition of Unity functions)
Let (Ωi), i ∈ [1,K] be an overlapping partition of some domaine Ω.The Extension oper-
ator Ei maps functions defined on Ωi to their extension on Ω that takes value 0 outside
Ωi. Let us also define Partition of Unity functions χi : Ωi → R, χi ≥ 0 and χi(x) = 0 for
x ∈ ∂Ωi and such that, for any function w : Ω → R:

w =
K∑
i=1

Ei(χiw|Ωi
)

Ei being the Extension Operator for partition (Ωi).

Consider the resolution of the Poisson problem (8.1) withinΩ. The Jacobi-Schwarz
method, described in Algorithm 2, is an extension of the original Schwarz method

141

Algorithm 2 Jacobi-Schwarz Method (JSM)
Let un be an approximate solution to the Poisson problem (8.1). The updated ap-proximate solution un+1 is computed as follows:

1. Solve for all subproblems i = 1, . . . ,K:
−∆(wi)

n+1 = f in Ωi

wn+1
i = g on ∂Ωi ∩ ∂Ω

wn+1
i = un on ∂Ωi\∂Ω

(8.3)

2. Glue them together:

un+1 =
K∑
i=0

Ei(χiw
n+1
i)

(8.2). This approach, which operates on the global function instead of local ones,
offers the advantage of complete parallelizability.

8.1.3 . Restricted Additive & Additive Schwarz methods

Algorithm 3 introduces the Restricted Additive Schwarz (RAS) and Additive Schwarz
(ASM) methods, two alternative formulations of the JSM Algorithm. These new for-
mulations are defined in terms of the continuous residual r = f +∆u. All three al-
gorithms are fundamentally parallel. Furthermore, JSM and RAS have been proven
to be equivalent, as demonstrated in Dolean et al. (2015). Note that the only differ-
ence between the RAS and ASM methods is that ASM does not rely on Partition of
Unity functions.
While the Jacobi-Schwarz method is scarcely implemented due to the duplication of
unknowns it involves, the RAS algorithm (Cai and Sarkis, 1999) is the default parallel
solver in the well-known C++ PETSC package1, and the ASM offers a plethora of the-
oretical results, as discussed in Toselli and Widlund (2004). For further information,
an in-depth history of Schwarz methods can be found in Gander et al. (2008).

8.2 . Discrete formulations

Previous Section 8.1 presented the continuous formulation of three Domain De-
composition Methods: the Jacobi-Schwarz method (JSM), the Restricted Additive
Schwarzmethod (RAS), and the Additive Schwarzmethod (ASM). However, to imple-
ment these algorithms and compute approximate solutions, discrete counterparts

1https://petsc.org/release/

142

https://petsc.org/release/

Algorithm 3 Restricted Additive (RAS) & Additive Schwarz Method (ASM)
Let un be an approximate solution to the Poisson problem (8.1). The updated ap-proximate solution un+1 is computed as follows:

1. Compute the residual at iteration n:
rn = f +∆un (8.4)

2. For i = 1, . . . ,K , solve for local corrections:{
−∆(vi)

n = rn in Ωi

vni = 0 on ∂Ωi
(8.5)

3. Compute an average of the local corrections and update un:
• Restricted Additive Schwarz (RAS):

un+1 = un +
K∑
i=1

Ei(χiv
n
i) (8.6)

• Additive Schwarz Method (ASM):
un+1 = un +

K∑
i=1

Ei(v
n
i) (8.7)

for these methods must be defined.
The key elements introduced at the continuous level are as follows:

• An open and bounded domain Ω.
• A decomposition of Ω into K overlapping open subdomains (Ωi)1≤i≤K such
that:

Ω =
K⋃
i=1

Ωi

• A solution function u : Ω → R.
• Extension operators (Ei)1≤i≤K , which extend a function defined on a local
subdomain to the global domain by zero, as defined in Definition 8.1.1.

• Partition of Unity functions (χi)1≤i≤K defined in Definition 8.1.1, which satisfy,

143

for all global functions u : Ω → R:
u =

K∑
i=1

Ei(χiu|Ωi
)

At the discrete level, it is possible to provide similar definitions:
• A mesh Ωh which defines a set of degrees of freedom N .
• An overlapping decomposition intoK subsets (Ni)1≤i≤K such that:

N =
K⋃
i=1

Ni

The total number of degrees of freedomofN is referred to asN and, for each
subset 1 ≤ i ≤ K , we denote as ki the number of degrees of freedom of the
subsetNi. Note that the subset of indicesNi also defines a sub-mesh Ωh,i ofthe mesh Ωh.

• A solution vector u ∈ RN .
• The restriction of a vector u ∈ RN to a subset Ni can be expressed as Riuwhere Ri is a rectangular boolean matrix of size ki ×N . The extension oper-
ator is defined as the transpose matrix RT

i .
• At the discrete level, Partition of Unity functions correspond to diagonal ma-
trices (Di)1≤i≤K of size ki × ki, with non-negative entries such that, for all
vector u ∈ RN , the following holds:

u =

K∑
i=1

RT
i DiRiu (8.8)

or in other words:

Id =
K∑
i=1

RT
i DiRi (8.9)

where Id ∈ RN×N is the identity matrix.
In this thesis, the set of indices N is partitioned using METIS (Karypis and Kumar,
1997), an automatic graph partitioner. In this algorithm, the distribution of indices
ensures that the number of elements assigned to each partition is approximately
equal while also minimizing the number of adjacent elements assigned to different
partitions. The goal of the first condition is to balance the computations among

144

(a) (b)

Figure 8.2: 8.2a: continuous square domain divided into 4 overlapping subdomains. 8.2b; its
discretization into an unstructured triangular mesh with 2314 nodes. The mesh is decomposed
into 4 subdomains with an overlap of 2 using METIS partitioner. The overlap is depicted for the
blue subdomain.

the partitions. The goal of the second condition is to minimize the communication
resulting from the placement of adjacent elements to different partitions.
An important theoretical property states that Schwarz methods require an over-
lapping decomposition to guarantee convergence (Toselli and Widlund, 2004). In
this context, careful design of the Partition of Unity matrices Di is essential. Forinstance, when no overlapping is considered, andRi represents the restriction ma-
trix from the setN to a subsetNi, choosingDi as the identity matrix of size ki × kisatisfies relation (8.9). Given the necessity of an overlapping decomposition, let us
now examine the scenario where each subset Ni is expanded to enclose its direct
neighbours, resulting inN δ=1

i . In this case, letRi denote the restrictionmatrix from
the set N to the subset N δ=1

i . To maintain relation (8.9), Di must be appropriately
configured. One potential approach is to introduce, for all j ∈ N , the set of subsets
that contain j as an element:

Mj = {i ∈ [1,K] such that j ∈ N δ=1
i }

and then defineDi as:

(Di)jj =
1

Card(Mj)
∀j ∈ N δ=1

i

Figure 8.2 illustrates a mesh of a square domain and its decomposition into 4 sub-
meshes with an overlap of 2.

8.3 . Schwarz methods as iterative solvers

145

To solve Poisson problems like (8.1), Schwarz methods can be used in several ways.
The most straightforward approach involves using them as iterative solvers. Build-
ing upon the notations introduced in previous Section 8.2, the continuous domain
Ω is discretized into an unstructured mesh Ωh with N nodes, following the process
depicted in Figure 4.3. The Poisson PDE (8.1) is then discretized using the Finite Ele-
ment Method with first-order finite elements2 (as discussed in Section 1.3), yielding
a linear system of the form Au = b. With these foundations, it is possible to define
the following iterative Schwarz methods:
Definition 8.3.1 (Restricted Additive Schwarz (RAS) algorithm)
The iterative RAS algorithm is the preconditioned fixed point iteration defined by:

un+1 = un +M−1RAS r
n with rn := b−Aun (8.10)

whereM−1RAS is called the RAS preconditioner and is defined by :

M−1RAS =
K∑
i=1

RT
i Di(RiAR

T
i)
−1Ri (8.11)

Definition 8.3.2 (Additive Schwarz Method (ASM) algorithm)
The iterative ASM algorithm is the preconditioned fixed point iteration defined by:

un+1 = un +M−1ASM rn with rn := b−Aun (8.12)
whereM−1ASM is called the ASM preconditioner and is defined by :

M−1ASM =
K∑
i=1

RT
i (RiAR

T
i)
−1Ri (8.13)

Numerous theoretical properties have been proved from the convergence analysis
of these methods, as discussed in Gander et al. (2008). Among these properties,
one stands out as particularly crucial: the size of the overlap between subdomains.
Using Fourier analysis, it is possible to show that the high-frequency components of
the error are damped very fast due to the presence of overlap. However, address-
ing the low-frequency components requires specialized treatment, such as consid-
ering a coarse grid correction (as explored in Section 8.5). For the Schwarz methods
presented here, i.e., considering an overlapping decomposition and interface com-
munication with Dirichlet conditions, zero overlap prevents these methods from
converging, and convergence accelerates with an increasing ratio of overlap size to

2can also work with higher-order finite elements.
146

Figure 8.3: Resolution of the same Poisson problem in a square domain divided into 4 subdo-
mains using RAS algorithm. The Figure displays the iteration count to achieve convergence to
10−7 residual with respect to different sizes of overlap.

subdomain size. However, this assumption is not always true formore advanced al-
gorithms3 such as the Optimized Schwarz methods, which leverage Robin interface
conditions (Lions, 1990) for instance.
Schwarz methods are not frequently used as iterative solvers because their con-
vergence to a sufficiently accurate solution is very slow, although it improves when
the overlap is larger. Besides, it is obvious that the ASMmethod does not converge
when used as an iterative solver due to the absence of Partition of Unity functions.
Interestingly, this absence causes the ASM operator to be symmetric, in contrast to
the RAS operator. While this property might seem like a limitation, it turns out to
be advantageous when ASM is used as a preconditioner for Krylov methods, a topic
explored in the subsequent Section 8.4.
To further illustrate this, consider the following experiment: the samePoisson prob-
lem is solved in a square domain divided into 4 subdomains, similar to Figure 8.2b.
For each experiment, the size of overlap is 1, 2, 4, and 8. The RAS algorithm is used
as an iterative solver and is considered converged when the norm of the residual
reaches an order of 10−7. Figure 8.3, which illustrates the number of iterations re-
quired to achieve convergence considering the different sizes of overlap, clearly
shows that the larger the overlap, the faster the convergence.

8.4 . Schwarz methods as preconditioners

As mentioned in the introductory section of this part, the lack of robustness and
efficiency are widely recognized weaknesses of stationary iterative methods, such
as those defined in Equations (8.10), or (8.12). Fortunately, other iterative methods
have been developed to enhance efficiency and accelerate the convergence of these

3outside the scope of this work.
147

Algorithm 4 Preconditioned Conjugate Gradient
Compute r0 = b− Au0, z0 = M−1r0, p0 = z0

for i = 0, 1, . . . do
ρi = ⟨ri, zi⟩
qi = Api, αi =

ρi
⟨pi,qi⟩

ui+1 = ui + αipi

ri+1 = ri − αiqi

if ∥ri+1∥ < tol thenBreak;
end if
zi+1 =M−1ri+1, ρi+1 = ⟨ri+1, zi+1⟩, βi+1 =

ρi+1

ρi
pi+1 = zi+1 + βi+1pi

end for

stationarymethods. Among thesemethods, themost famous ones are called Krylov
methods, which have given rise to renowned algorithms such as ConjugateGradient
(CG) or Bi-Conjugate Gradient Stabilized (BiCGStab). However, despite providing
enhanced robustness and efficiency compared to stationary iterativemethods, they
still face challenges as the size of the problem grows, limiting their practical use in
an industrial context. To improve their performance, extended Krylovmethodswith
preconditioning have been developed, resulting in even more efficient algorithms,
that do not require the explicit matrix form of the operatorsA or the preconditioner
M . Instead, they access the matrix by evaluating matrix-vector products, similar to
the stationary method. In this context, the RAS and ASM preconditioners (i.e.,M−1RASandM−1ASM) emerge as solid candidates.
Within the scope of this thesis, two preconditioned Krylov methods have been con-
sidered. The first, known as Preconditioned Conjugate Gradient (PCG), is detailed
in Algorithm (4). PCG proves to be highly effective, delivering rapid convergence
and straightforward implementation. However, it is exclusively applicable when the
problem is symmetric (A must be symmetric and positive-definite). Therefore, the
ASM preconditioner becomes essential due to its symmetric nature, which is in con-
trast to the RAS algorithm. Although ASM cannot serve as an independent iterative
solver, it works remarkably well as a preconditioner, especially suited for symmetric
algorithms like PCG. The second algorithm extends PCG to handle non-symmetric
problems and is referred to as the Preconditioned Bi-Conjugate Gradient Stabilized
method (PBiCGStab), outlined in Algorithm5. This algorithm can effectively use both
ASM and RAS preconditioners.
To further illustrate this, consider the resolution of a Poisson problem on a mesh
representing a square domain. The mesh is divided into 4 subdomains with an

148

Algorithm 5 Preconditioned Bi-Conjugate Gradient Stabilized
Compute r0 = b− Au0, z0 = M−1r0, p0 = z0, r̃ = r0

for i = 1, 2, . . . do
ρi−1 = ⟨r̃, ri⟩
if ρi−1 = 0 thenMethod fails
end if
if i = 1 then

pi = r0
else

βi−1 =
ρi−1
ρi−2

αi−1
ωi−1

pi = ri−1 + βi−1(pi−1 − ωi−1vi−1)
end if
p̂ =M−1pi, vi = Ap̂, αi =

ρi−1
⟨r̃,vi⟩

s = ri−1 − αivi

if ∥s∥ < tol then
ui = ui−1 + αip̂Break;

end if

ŝ =M−1s, t = Aŝ, ωi =
⟨t, s⟩
t, t

ui = ui−1 + αip̂+ ωiŝ
ri = s− ωit
if ∥ri∥ < tol thenBreak;
end if

end for

overlap of 2, similar to Figure 8.2b. Three methods are used to solve this prob-
lem: the iterative RAS algorithm, the Conjugate Gradient method, and the ASM-
Preconditioned Conjugate Gradientmethod. All threemethods are considered con-
vergent when the norm of the residual reaches an order of magnitude of 10−7. Fig-
ure 8.4 displays the iteration count required to achieve convergence for the three
methods. Not surprisingly, the Conjugate Gradient method outperforms the RAS it-
erative solver with 117 iterations instead of 303. More importantly, it is worth noting
that the ASMpreconditioner significantly enhances the ConjugateGradientmethod,
requiring only 25 iterations to achieve convergence.
Furthermore, consider another experiment designed to assess the performance of
Krylovmethods preconditioned with Schwarzmethod, regarding the resolution of a
Poisson problem on a square mesh using the Conjugate Gradient method precon-

149

Figure 8.4: Resolution of a Poisson problem in a square mesh divided into 4 subdomains with an
overlap of 2 using three methods: the RAS algorithm as an iterative solver, the original Conjugate
Gradient method (CG) and the ASM-Preconditioned Conjugate Gradient (ASM-PCG). The Figure
displays the iteration count to achieve convergence with respect to the different methods.

ditioned with ASM. This time, the mesh is partitioned into an increasing number of
submeshes: 4, 16, 36, and 64. Whatever the configuration, the size of the overlap is
set to 2. The number of points within each submesh remains constant across all ex-
periments, resulting in a progressively larger square (additional details are available
in Section 8.5). Themethod is considered convergent when the normof the residual
reaches an order of magnitude of 10−7. Figure 8.5 displays the iteration count re-
quired to achieve convergence relative to the number of subdomains in the mesh.
It demonstrates that while the method is effective, it necessitates a greater number
of iterations as the number of subdomains increases, which highlights that Krylov
methods, preconditioned with Schwarz methods, do not scale well with respect to
the number of subdomains.

Figure 8.5: Resolution of a Poisson problem in a square mesh using the ASM-Preconditioned
Conjugate Gradient (ASM-PCG). The mesh is divided into a growing number of submeshes: 4, 16,
36 and 64. The Figure displays the iteration count to achieve convergence with respect to the
growing number of subdomains.

150

8.5 . Two-level methods

Results obtained in previous sections indicate that the performances of Krylovmeth-
ods preconditioned with Schwarz methods decrease strongly when the number of
subdomains increases (i.e. they are not scalable in the weak sense). This challenge
can be effectively addressed through the use of a two-level method. In this ap-
proach, Schwarz methods as defined in (8.3.1), and (8.3.2) are augmented by solving
a coarse problem, whose size is of the order of magnitude of the number of subdo-
mains.
When dealing with a large number of subdomains, a convergence plateau is clearly
visible in the performance of Schwarz methods (Figure 8.5). The primary issue with
the one-level method arises from the absence of a global exchange of information
since it propagates only among directly neighbouring subdomains. The length of
this plateau is thus directly linked to the number of subdomains in a single direction
until the information spans the entire domain.
In this thesis, the focus will be on addressing the scalability property of these meth-
ods through the introduction of a coarse space method. One mechanism to en-
hance scalability involves implementing a two-level preconditioner with a coarse
space correction. In two-level methods, the smaller (first level) problem connects
all subdomains during each iteration, facilitating the exchange of information.
From a theoretical perspective, the plateau observed in one-level methods corre-
sponds to a few low eigenvalues within the spectrum of the preconditioned prob-
lem. While Schwarz preconditioners remove the impact of very large eigenvalues
associated with high-frequency modes, the presence of small eigenvalues hinders
convergence. These small eigenvalues are linked to low-frequency modes that re-
late to specific global information. This global information can be efficiently handled
using a coarse space correction. In the case of a Poisson problem, these slowmodes
correspond to constant functions in the kernel of the Laplace operator (Dolean et al.,
2015).
Define Z ∈ RN×K as a rectangular matrix whose columns correspond to these
slow modes. Here,N represents the number of nodes in the mesh, andK denotes
the total number of submeshes. In scenarii where A is semi-positive definite, the
foundation for developing a coarse space correction (as outlined in Mandel* and
Sousedík (2010)) involves finding the optimal correction to an approximate solution
u using a vector Zβ within the vector space spanned by the columns of Z. This
minimization problem can be defined as follows:

min
β

∥A (u+ Zβ)− b∥ (8.14)

151

and whose solution is:

Zβ = (ZTAZ)−1ZT (b−Au) = (ZTAZ)−1ZT r (8.15)
Whendealingwith Poissonproblems, the creation ofmatrixZ canbe achievedusing
Nicolaides coarse space, as outlined in (Nicolaides, 1987). In this approach, Z is
defined by vectors that have local support in the subdomains and such that the
constant function 1 belongs to the vector space spanned by the columns of Z. In
line with the notations introduced in Section 8.2, the Nicolaides coarse spacematrix
Z is defined in the following manner:

Z =

D1R11 0 · · · 0

0 D2R21 · · · 0... 0
0 0 · · · DKRK1

 (8.16)

By reformulating as R0 = ZT , the two-level RAS and ASM preconditioners are:
Definition 8.5.1 (Two-level RAS)
The two-level Restricted Additive Schwarz preconditioner is defined as:

M−1RAS,2 = RT
0 (R0AR

T
0)
−1R0 +

K∑
k=1

RT
i Di(RiAR

T
i)
−1Ri (8.17)

Definition 8.5.2 (Two-level ASM)
The two-level Additive Schwarz preconditioner is defined as:

M−1ASM,2 = RT
0 (R0AR

T
0)
−1R0 +

K∑
k=1

RT
i (RiAR

T
i)
−1Ri (8.18)

Several observations can bemade. The first relates to the structure of the precondi-
tioner, which remains consistent with the one-levelmethod. However, in contrast to
the one-level approach where only local subproblems need to be solved in parallel,
the two-level method introduces the resolution of a global linear system, denoted
as R0AR

T
0 , referred to as the coarse problem. This coarse problem effectively cou-

ples all subproblems during each iteration. Despite its global nature, thematrix size
of this coarse problem is small (i.e.,K×K), rendering the additional computational
cost negligible when compared to the resulting benefits. This holds true provided
that the number of subdomains does not grow excessively large.
To provide further illustration, let us revisit the results obtained in the previous ex-
ample, where we used the one-level ASM method as a preconditioner. Let us use

152

Figure 8.6: Resolution of a Poisson problem in a square mesh using the one and two-level ASM
methods as preconditioners for the Conjugate Gradient method. Two configurations are consid-
ered: dividing the mesh into 36 and 64 submeshes. The Figure displays the iteration count to
achieve convergence with respect to the different mesh configurations and methods used.

the two-level method to compare the results for the configurations involving mesh
subdivisions into 36 and 64 submeshes. Figure 8.6 illustrates the iteration counts
required to achieve convergence. Both the one- and two-level ASM preconditioners
for the Conjugate Gradientmethod are used, considering both the 36 and 64 subdo-
main configurations. This experimentation highlights the efficiency of the two-level
approach, displaying faster convergence compared to the one-level method. No-
tably, the two-level approach effectively overcomes the observed plateau.
In this Chapter, we have set up the scene for Schwarz methods, which belong to
the field of Domain Decomposition methods and are used to solve linear systems
such as 4.3. We introduced three formulations of Schwarz methods: the Jacobi-
Schwarz (JS), the Restricted Additive (RAS), and the Additive Schwarz (ASM)methods.
We demonstrated that all three methods can be used as iterative solvers. How-
ever, when used in this manner, these methods are observed to converge slowly.
Nonetheless, RAS and ASM, thanks to their algebraic form, can serve as good pre-
conditioners for Krylov methods, significantly enhancing convergence. It is worth
noting that the Krylov method, even preconditioned with Schwarz methods, scales
poorlywith the number of subdomains. To address this issue, Schwarzmethods can
be enhanced with a two-level method, making the entire framework extensible. In
the next chapter, we present our contributions, which involve the development of
hybrid methods, by combining the GNNmodels developed in II with Schwarz meth-
ods.

153

9 - Hybrid Solvers for Large-Scale Problem Solving

Sommaire
9.1 Introduction . 154

9.2 Machine Learning and Domain Decomposition . . 155

9.3 Ψ-GNN-Jacobi-Schwarz iterative method 158

9.3.1 Methodology . 158
9.3.2 Dataset description and Ψ-GNN training 159
9.3.3 Results . 162
9.3.4 Discussions & Limitations 164

9.4 GNN-based Schwarz Preconditioner 165

9.4.1 Methodology . 166
9.4.2 Dataset description 170
9.4.3 Model configuration and training 171
9.4.4 Results . 172

9.5 Conclusion & Discussions 181

9.1 . Introduction

This chapter explores the construction of hybrid models by combining GNN-based
models presented in Part II with Schwarz methods described in previous Chapter
8. The main objective in developing such hybrid approaches is to leverage GNN
models to solve multiple Poisson sub-problems within the context of a Domain De-
composition method. As highlighted in the introductory section of this part, these
hybrid methods aim to address the challenges that emerge when using GNN-based
models to solve large-scale Poisson problems, i.e. those involving meshes with a
significantly large number of nodes. These challenges are reminded as follows:

1. In large-scale scenarios, GNN-based models may encounter challenges such
as a loss of accuracy andmemory issues. With this hybrid approach, themod-
els are no longer used to solve the entire problem; instead, they are used for
resolving sub-problems within a Domain Decomposition framework. This en-
ables the selection of a sub-problem size aligned with the optimal capabilities
of the GNN-based models.

154

2. The GNN models require an increasing number of Message-Passing steps as
the number of nodes in a mesh increases (see Figure 7.7b). This limitation
can be addressed by combining them with a two-level variant of the Schwarz
method.

3. The accuracy of the solutions obtained by the GNN models is limited by the
capabilities of the trained model. This precision is usually sufficient if only a
rough solution is required but can be inadequate to ensure the convergence
of other steps in a splitting scheme method, for instance. In the last section
of this chapter, we propose using this hybrid method as a preconditioner for
a Krylovmethod, thereby enabling the convergence of the whole algorithm to
any desired precision, whatever the precision of the solutions derived from
the GNN.

4. Using the GNNmodels as solvers for multiple subdomains allows harnessing
the “per-batch” structure inherent in Machine Learning models. This enables
the parallel resolution of multiple sub-problems on GPUs, with the hope of
accelerating the process.

In the following, Section 9.3 explores an initial approach that combines the Ψ-GNN
model presented in Chapter 7 with the Jacobi-Schwarz iterative solver. While this
approach is shown to be convergent, it presents challenges due to the high number
of iterations required by the Jacobi-Schwarz method for convergence. Additionally,
the method can only converge up to a precision directly linked to the accuracy of
the trained Ψ-GNN. To address these challenges, Section 9.4 proposes coupling a
GNN-based model with a two-level Additive Schwarz method (ASM) and using this
hybrid approach as a preconditioner for a Conjugate Gradient method.

9.2 . Machine Learning and Domain Decomposition

Merging Domain Decomposition and Machine Learning is a recent and promising
field of research. In Heinlein et al. (2021a) andmore recently in Klawonn et al. (2023),
the authors provide an extensive overview and classification of the different meth-
ods developed in this topic. This section aims to summarize some of the various
existing algorithms, present their strengths and limitations, and explain the posi-
tion of our method with respect to this literature.
A vast part of the literature involves combining Domain Decomposition with PINNs
(Raissi et al., 2019a) (see also Chapter 3). PINNsmay face challenges when applied to
larger problems. As the domain size grows, so does the complexity of the problem,
necessitating larger networks to accurately capture all features. Consequently, the
time and storage requirements for computing the partial derivatives through au-
tomatic differentiation also increase, which can become overwhelming. Moreover,

155

since the PINN loss function can be highly non-convex, higher problem complex-
ity could lead to a challenging optimization problem, resulting in reduced accuracy
or no convergence at all (Krishnapriyan et al., 2021). By breaking down the global
optimization problem into many smaller local sub-problems, Domain Decomposi-
tion offers a potential solution to scale up PINN networks. This approach helps
parallelize the training process and potentially reduces the complexity of the global
optimization problem, while also potentially mitigating the spectral bias of neural
networks (Wang et al., 2022a).
A subset of these methods incorporates Machine Learning models that use a Do-
main Decomposition architecture with non-overlapping subdomains. Essentially,
these methods train distinct PINN networks on each subdomain and ensure local
communication between subdomains by enforcing continuity across subdomain in-
terfaces as additional loss terms in the loss function. This is the case in cPINNs
(Jagtap et al., 2020), which are applied to systems of conservation laws and further
expanded to handle generic PDEs in arbitrary space-time domains in XPINNs (Karni-
adakis, 2020). Hu et al. (2022) conducted a comparison between PINNs and XPINNs,
demonstrating that the use of Domain Decomposition indeed reduces the complex-
ity of the problem and can enhance generalization. However, each sub-problem is
trained with a smaller amount of data, which tends to cause the local models to
overfit. Related approaches include DPINN (Dwivedi et al., 2021), which introduced
a new interface loss inspired by the flux conditions of the finite volumemethod, and
hp-VPINN (Kharazmi et al., 2021). In contrast to previous methods, hp-VPINN lever-
ages the variational formulation of the PDE residuals, with piecewise polynomial
test functions that induce, by definition, an implicit decomposition of the domain.
As a result, the authors in (Kharazmi et al., 2021) use a single deep network to ap-
proximate the solution over the whole domain despite implicitly decomposing it.
However, it is more difficult to parallelize such amethod. All of these methods have
demonstrated satisfactory results for training PINNs at a larger scale. However, one
of their key drawbacks is related to the use of non-overlapping subdivision of the
domain. Since the interface conditions, which ensure the continuity of the solution
across subdomains, are only weakly constrained in the loss function, they can lead
to artificial discontinuities at the subdomain interfaces. Additionally, the inclusion
of extra interface terms not only introduces additional hyperparameters that need
to be tuned to train the bestmodel but alsomay competewith the PDE losses (Wang
et al., 2022a).
Another subset of thesemethods combinesMachine Learningwith DomainDecom-
position on overlapping subdomains. In D3M (Li et al., 2020a) andDeepDDM (Li et al.,
2020b), the subdomain solvers in a parallel iterative Schwarz method are replaced
by the Deep Ritz method (Yu et al., 2018) and PINNs, respectively. Note that the
Deep Ritz method is closely related to PINNs in the sense that it uses dense neural
networks to solve the PDE in its variational form. In both cases, the exchange of

156

information is enforced via additional boundary conditions, which change in each
iteration until the convergence of the method. An extension of D3M is proposed in
(Li et al., 2023) to reduce the spectral bias observed with the local PINN sub-solvers
by introducing new multi-Fourier feature networks in each local subdomain. Pre-
vious methods trained PINNs locally, i.e., considering a local loss function in each
subdomain, which may appear counterproductive. Instead, the training can be ap-
proached globally. For instance, in Moseley et al. (2023), the authors draw inspira-
tion from the finite element method, where the solution of a PDE is expressed as a
sum of a finite set of basis functions with compact support. Themethod, referred to
as Finite Basis Physics-Informed Neural Network (FBPINN), uses local window func-
tions to form a global function, i.e., the global solution on the entire domain. The
global function is expressed as a sum of the local window functions that are learned
by local PINNs. In particular, the local windows (hence basis functions) are defined
over small, overlapping subdomains such that, in FBPINNs, no additional interface
condition is necessary. FBPINNs are further extended in Dolean et al. (2024), in
which additive, multiplicative, and hybrid iterationmethods based on a Schwarz-like
domain decomposition method for the training of FBPINNs are introduced. Dolean
et al. (2024) also provides a preliminary implementation of a coarse space correc-
tion to FBPINNs to enhance scalability regarding the number of subdomains. In
Dolean et al. (2023), these ideas are extended even further by adding multiple lev-
els of domain decompositions, similar to classical multilevel Schwarz methods. This
results in improved convergence properties and increased accuracies in the consid-
ered PDE solutions and, at the same time, mitigates convergence problems related
to the spectral bias of neural networks.
The previously described methods can be viewed from two perspectives: either as
using a Domain Decomposition strategy to parallelize and accelerate the training
of PINNs, or to use PINNs (and its variant) as subdomain solvers within Domain
Decomposition algorithms. Regardless, another class of methods involves lever-
aging Machine Learning to enhance the convergence properties or computational
efficiency of Domain Decomposition methods. Typically, this is achieved by learn-
ing or approximating optimal interface conditions or other crucial parameters. For
instance, Chung et al. (2021), Heinlein et al. (2021b), Heinlein et al. (2019), and Kla-
wonn et al. (2024) all concentrate on leveraging Machine Learning models to learn
and refine the construction of adaptive coarse spaces. Other research focuses on
learning optimal interface conditions, such as in Knoke et al. (2023), where the au-
thors approximate the interface operator in an optimized Schwarz method applied
to the resolution of time-harmonic Maxwell’s equations. Finally, both the work in
Taghibakhshi et al. and Taghibakhshi et al. (2023) emphasize the use of GNNs to
learn subdomain interfaces in one or two-level optimized Schwarzmethods, respec-
tively.
The thesis work presented in this chapter falls under the category of harnessing

157

Machine Learning models to replace subdomain solvers in an overlapping Schwarz
method. From a practical standpoint, we build upon the groundwork developed in
Part II and explore the application of GNN models within a Domain Decomposition
framework. Unlike the methods discussed earlier, which rely on training separate
networks for individual subdomains, we propose using a single GNN model. Once
trained, this GNNmodel can infer solutions across various numbers of subdomains
without necessitating retraining. Furthermore, the resulting model can adapt to
global problem sizes of varying shapes, as it is mesh-based and partitioning can
be accomplished using a well-known partitioner, such as METIS (Karypis and Ku-
mar, 1997). Moreover, the aforementioned methods are typically assessed on 1D
problems, and when extended to 2D, the problem geometries are simpler (usually
squared shapes) with fixed partitioning, and their size still remains far frommeeting
industrial requirements. Given the critical nature of accurately sampling collocation
points in PINNs, these methods would encounter challenges in generalizing across
problemswith diverse sizes and shapes, without requiring retraining or prior knowl-
edge of the domain shape. In Section 9.3, we present an initial attempt, explor-
ing the use of Ψ-GNN as a subdomain solver within a parallel overlapping Schwarz
method. While this approach demonstrates convergence and yields satisfactory
results, its generalization remains challenging due to the substantial number of re-
quired training samples and discontinuities at interfaces, which decrease precision
with a larger number of subdomains. Nevertheless, all these methods represent
complete Machine Learning solutions, where despite achieving satisfactory preci-
sion, their accuracy relies solely on the capabilities of the trained model, without
potential for post-training improvements. To address this, in Section 9.4, we pro-
pose constructing a GNN-based model leveraging an Additive Schwarz structure.
This GNN model, adaptable to any shape and size due to its Domain Decomposi-
tion structure, is then used as a preconditioner for a Krylov method. The resulting
solution achieves the desired accuracy, thanks to the Krylov method, whose con-
vergence is boosted by a GNN-based preconditioner leveraging batch parallel com-
putations on GPUs to solve multiple sub-problems simultaneously.

9.3 . Ψ-GNN-Jacobi-Schwarz iterative method

Section 9.3.1 introduces the methodology, and Section 9.3.2 discusses the dataset
and the configuration of the Ψ-GNN model. Section 9.3.3 presents the results, and
Section 9.3.4 highlights the limitations of this approach.

9.3.1 . Methodology

We consider the resolution of Poisson problemswith Dirichlet boundary conditions,
as defined in Equation (4.1). Using the same configuration as the one introduced in
Section 4.1, Poisson problems are discretized using the Finite Element Method with
first-order finite elements, resulting in linear systems to solve in the formofAu = b,

158

with A ∈ RN×N , b ∈ RN , u ∈ RN is the solution vector to be sought, and N is the
number of degrees of freedom.
In this Section, the main idea is to replace the resolution of local Poisson problems
(i.e., Poisson problems restricted to sub-meshes) with an inference of a Machine
Learning model. At each iteration of the Jacobi-Schwarz method and for each sub-
mesh, a Poisson problem with Dirichlet boundary conditions has to be solved, as
described in Equation 8.3. This aligns with the framework defined in Section 4.1,
and the use of the GNN-based models developed in Part II to solve these local Pois-
son problems is possible. Given that the Dirichlet boundary conditions vary at each
iteration, whether the nodes are at the boundary of the global mesh or at the inter-
face between sub-meshes, the use of the Ψ-GNN model developed in Chapter 7 is
pertinent since it offers enhanced generalization capabilities for handling boundary
conditions.
Formally and following the notations introduced in Section 8.2, we use Ψ-GNN as a
GNN-based solver that, given a discretized Poisson problem with respect to a sub-
mesh Ωh,i at iteration n of the Jacobi-Schwarz method described in Algorithm 2,
outputs an approximate solution ũn

i such that:

ũn
i = Ψ-GNN (

Ωh,i, RiAR
T
i , Rib

n
) (9.1)

It is worth noting that the interface values in bn are updated at each iteration using
the solution computed at iteration n. The next iterate un+1 is then computed by
assembling all sub-solutions together using partition of unity as follows:

un+1 =
K∑
i=1

RT
i Diũ

n
i (9.2)

In the field of Machine Learning, data is typically fed to the model in a batch struc-
ture rather than one by one (refer to Chapter 2). The current work aims to harness
this “per-batch” structure to enhance the resolution of local Poisson problems by us-
ing GPUparallelization to simultaneously infermultiple solutions. Furthermore, this
hybrid approach enables the selection of a sub-mesh size aligned with the optimal
capabilities of the GNN models. The iterative Ψ-GNN-Jacobi-Schwarz (Ψ-GNN-JSM)
algorithm is detailed in Algorithm 6.

9.3.2 . Dataset description and Ψ-GNN training

In the following, we propose to address the resolution of Poisson problems with
Dirichlet boundary conditions, in the same configuration as the one described in
Section 4.3. A first idea would be to directly apply the Ψ-GNN model trained in
Chapter 7 to solve the sub-problems from the Jacobi-Schwarz method. However,

159

Algorithm 6 Ψ-GNN-Jacobi-Schwarz Method (Ψ-GNN-JSM)
Let un be an approximate solution to the Poisson problem (4.1) at iteration n. Theupdated approximate solution un+1 is computed as follows:

1. Update bn at the interfaces between subdomains using un.
2. Solve allK sub-problems using Ψ-GNN :

[ũn
1 , . . . , ũ

n
K] = Ψ-GNN ([Eh,1, . . . , Eh,K]) (9.3)

whereEh,i =
(
Ωh,i, RiAR

T
i , Rib

n
) represents a discretized Poisson problemon a sub-mesh i. Note that in this formulation, the resolution of (9.3) impliesthat all subdomains are solved simultaneously in one inference. However, ifthe number of sub-problems becomes too large, [Eh,1, . . . , Eh,K] can be parti-tioned intoNb batches, allowing all problems to be solved usingNb inferencesof Ψ-GNN.

3. Assembling everything together using partition of unity :

un+1 =
K∑
i=1

RT
i Diũ

n
i

adopting this approach would result in a suboptimal solution, as the distribution of
the sub-problems differs significantly from that of the global problem. This distinc-
tion is particularly true at the interfaces between subdomains, where values vary
at each iteration and differ from the distribution of the boundary conditions in the
global problem (see Equation (8.3)). Here, we suggest training the Ψ-GNN directly
on sub-problems sampled from the original Jacobi-Schwarz method, which poses a
challenging task.
In Part II, all GNN-based models are trained using 10, 000 samples, aiming to cover
the largest distribution possible while reducing the computational time for training
(already 48h to trainΨ-GNN in that setting). However, when it comes to constructing
a dataset for training Ψ-GNN within the context of the Ψ-GNN-JSM method, some
additional complexities emerge.
For the Ψ-GNN-JSM algorithm to function effectively, the Ψ-GNN model must be
trained on a sufficient number of sub-problems sampled from the original Jacobi-
Schwarz method. This means that at each iteration of the Jacobi-Schwarz method
for a given global Poisson problem, all local Poisson problems must be retained for
building the dataset. This process leads to a rapid growth in the size of the dataset
when considering a sufficient amount of global problems. Thus, achieving adequate

160

Figure 9.1: Illustration of the samples included in the dataset for training the Ψ-GNN model.
These samples correspond to discretized Poisson problems, each restricted to a subdomain de-
rived from the original global problem. They are extracted at each iteration n of the Jacobi-
Schwarz method until the required precision is achieved.

coverage of the distribution becomes exceedingly challenging.
To illustrate this, let us imagine building a dataset with only 100 Poisson problems.
For each of these problems, let us suppose that the mesh is further subdivided into
4 sub-meshes with an overlap of 2. Under that configuration, the solver typically un-
dergoes around 300 iterations to attain a residual norm precision of approximately
10−7, as illustrated by the green curve in Figure 8.3 of Chapter 8. As a result, the
dataset now includes approximately 120, 000 samples (300× 100× 4).
To facilitate training and provide a “proof-of-concept” for the convergence of the
method, we construct a simplified dataset: 100 Poisson problems with Dirichlet
boundary conditions are generated following the process described in Section 4.3.
For each of these Poisson problems, the mesh contains around 800 to 1000 nodes.
We also use constant force and boundary functions: f(x, y) = α0 within Ω and
g(x, y) = α1 along ∂Ω, where α0 and α1 are drawn from a uniform distribution
within the range of [1, 10]. For each Poisson problem, the mesh is subdivided into
2 sub-meshes with an overlap of 2 using the partitioner Metis (Karypis and Kumar,
1997). This results in sample sub-meshes of approximately 500nodes. For each Pois-
son problem, all sub-problem data are saved in the dataset at each iteration until
the JSM method reaches a residual error of 10−7. In that configuration, the JSM re-
quires around 40 iterations to converge. By the end of the generation process, the
dataset contains 200 different sub-meshes (100meshes split into 2 sub-meshes) and
a total of 7858 samples. Figure 9.1 illustrates the samples included in the dataset,
extracted from the Jacobi-Schwarz method and the subdivision of a global Poisson
problem.
Regarding the Ψ-GNN model, it is trained on the dataset described above, using
the hyperparameters presented in the result Section 7.4.1. The model is trained
using two P100 Nvidia GPUs for 400 epochs during approximately 30h. Table 9.1

161

shows the results obtained after training when averaged over the whole test set.
The obtained results are better than those obtained in Chapter 7, which is expected
since the distribution of problems is easier to tackle.
Metrics Residuals (10−4) MSE w/LU (10−5) Nb of weights
Ψ-GNN 3.1 ± 0.4 7.6 ± 2 1455

Table 9.1: Results of Ψ-GNN averaged over the whole test set.

9.3.3 . Results

This section presents several results to assess the performance of thismethodwhile
demonstrating its clear limitations.
First, Figure 9.2 illustrates the resolution of a Poisson problemwith 881 nodes using
the Ψ-GNN-JSM method. In this example, the considered Poisson problem is de-
rived from the distribution of global Poisson problems used to construct the dataset
in Section 9.3.2: the mesh is partitioned into 2 subdomains, as illustrated in Figure
9.2a, the force function is f = 2, and the Dirichlet boundary function is g = 6. The
method is run for 100 iterations. Figure 9.2c depicts the evolution of the Residual
and MSE w/LU (i.e., MSE between the global solution obtained using Ψ-GNN-JSM
and a global “ground-truth” solution computed by LU decomposition). At the last
iteration, the Residual reaches a value of 2.2× 10−5 and an MSE w/LU of 1.4× 10−3,
highlighting the capability of the proposed approach for solving this Poisson prob-
lem. It is worth noting that the method stagnates at some point: the predicted sub-
problems become very similar (small oscillations in Figure 9.2c), and the model no
longer improves. In addition, Figure 9.2d depicts the MSE w/LU for each subdomain
during the 100 iterations. This figuremeasures how each subdomain is solved using
Ψ-GNN with respect to a “ground-truth” subdomain solution. In this example, it is
evident that subdomain 0 (blue curve) is solved more accurately than subdomain
1 (red curve), and the global solution converges to a precision no greater than that
achieved in the least accurate subdomain. As a result, it is not surprising to observe
that the highest errors in the squared error map, shown in Figure 9.2b, are located
at the bottom part of the mesh, corresponding to subdomain 1 (red subdomain in
Figure 9.2a).
Table 9.2 reports the performance of Ψ-GNN-JSM in solving multiple Poisson prob-
lems, considering different configurations involving a variation in the number of
nodes and subdomains. Force and boundary functions are sampled similarly to
Section 9.3.2. For each configuration, we solve 100 global Poisson problems using
Ψ-GNN-JSM with 100 iterations. The method is, however, stopped if the MSE be-
tween two iterates becomes lower than 10−5, indicating some stagnation. Regard-
less of the size of the Poisson problem, the mesh is partitioned into sub-meshes

162

(a) Mesh Partitioning (b) Squared Error Map

(c) Residual and MSE w/LU (d) Subdomain MSE w/LU

Figure 9.2: Resolution of a global Poisson problem using the Ψ-GNN-JSM method. At the top,
Figure 9.2a illustrates the mesh partitioning, and Figure 9.2b represents the squared error map
between the Ψ-GNN-JSM solution and a “ground-truth” LU solution. At the bottom, Figure 9.2c
depicts the evolution of the Residual and MSE w/LU during the 100 iterations, and Figure 9.2d
shows the evolution of the MSE w/LU for each subdomain across the 100 iterations.

Nb nodes Nb subdomains MSE w/LU
838 (±44) 2 (±0) 0.027 (±0.04)
3234 (±177) 7 (±1) 1.23 (±2)
7119 (±382) 15 (±1) 16.9 (±21)

Table 9.2: Averaged results (± standard deviation) of Ψ-GNN-JSM for solving Poisson problems
in different configurations.

163

with 500 nodes. The first line corresponds to 100 Poisson problems with an aver-
age of 838 nodes, which is the configuration used for constructing the dataset (see
Section 9.3.2). The results show an average MSE w/LU of 0.027, demonstrating that
the proposed approach can consistently solve these types of Poisson problemswith
good accuracy.
The second line represents 100 Poisson problems with around 3234 nodes and 7

subdomains, solved using Ψ-GNN-JSM with an average MSE w/LU of 1.23. The third
line corresponds to 100 Poisson problems with around 7119 nodes and 14 subdo-
mains, solved using Ψ-GNN-JSM with an average MSE w/LU of 16.9. These results
reveal that the proposed method encounters challenges in generalizing to meshes
with an increasing number of nodes and subdomains. This difficulty arises from two
main issues: Firstly, the sub-problems are approximately solved with Ψ-GNN, and
the approximation error is propagated through the mesh at each iteration, causing
the sub-problems to slowly deviate from those learned by the GNN model. Sec-
ondly, interior subdomains (those not in contact with the global boundary of the
domain) are poorly solved, as they do not belong to the distribution of trained in-
stances, and this error is then propagated to other subdomains. This challenge is
illustrated in Figure 9.3, which depicts the resolution of a Poisson problem on a
mesh with 4386 nodes split into 9 sub-meshes with f = 4 and g = 4. Figure 9.3c
shows the MSE w/LU for each subdomain, highlighting that the interior subdomain
(the red subdomain in Figure 9.3a, corresponding to the red curve in 9.3a), is solved
with the highest error at the first iteration.

9.3.4 . Discussions & Limitations

This section explored combining the Ψ-GNN model from Chapter 7 with the itera-
tive Jacobi-Schwarzmethod described in Chapter 8. The presented results showed a
“proof-of-concept” of the potential of this approach but highlighted numerous limi-
tations. While themethod indeed converges to a solution, it stagnates to a precision
that corresponds, at best, to the precision of the trainedmodel: this method cannot
provide more accurate predictions.
Moreover, it is difficult to construct a dataset that allows generalization to more
complex problems due to the high number of iterations required for the Jacobi-
Schwarz method to converge. As a result, considering problems with a larger num-
ber of nodes, and hence a larger number of subdomains yields worse results be-
cause many sub-problems do not belong to the original trained distribution. These
out-of-distribution sub-problems are solved with some large error, and this error is
propagated to all other subdomains subsequently. To alleviate the issue of dataset
construction, some research directions could consider increasing the size of the
overlap to reduce the number of iterations, which would, however, increase the
size of the sub-meshes. Another idea would be to not consider all sub-problems
at each iteration, since, at some point, the sub-problems to solve are close to each

164

(a) Mesh Partitioning (b) Squared Error Map

(c) Subdomain MSE

Figure 9.3: Resolution of a Poisson problem on a mesh with 4386 nodes using the Ψ-GNN-JSM
method. At the top, Figure 9.3a illustrates the mesh partitioning, and Figure 9.3b represents the
squared error map between the Ψ-GNN-JSM solution and a “ground-truth” LU solution. At the
bottom, Figure 9.3c shows the evolution of the MSE w/LU for each subdomain across the 100
iterations.

other. However, this method did not really show any improvement in the experi-
mental tests compared to the presented method. As a result, it is then essential to
explore another approach.

9.4 . GNN-based Schwarz Preconditioner

In previous Section 9.3, we discussed the development of a hybrid iterative solver by
combining theΨ-GNNmodel with the Jacobi-Schwarzmethod. Given the limitations
observed in this approach, this Section explores a different hybrid approach.
Wepropose constructing another hybrid solver, still combining theGNN-basedmod-

165

els presented in Part II with Schwarz methods introduced in Chapter 8. However,
this section explores the application of this hybrid solver as a preconditioner for a
Krylov method. Similar to the previous section, the objective is to leverage the GNN
models to solve the multiple sub-problems in the context of a Schwarz precondi-
tioner.
Using such an approach offers several benefits. Thanks to the Krylov method, the
proposed approach converges to the solution of the problemwith any desired preci-
sion. The robustness and efficiency of the Krylovmethod are significantly enhanced
by using a fully GNN-based preconditioner. This GNN-based preconditioner, whose
architecture leverages a two-level DDM approach, is capable of handling meshes
of any size and making the Krylov method scalable with respect to the number of
subdomains. Moreover, its parallel execution on GPUs ensures its fast application
within the Krylov method.
In the following, Section 9.4.1 presents the methodology, Section 9.4.2 covers the
generation process of the dataset, and Section 9.4.3 presents the configuration of
the considered GNN-based model. Finally, Section 9.4.4 discusses the results ob-
tained.

9.4.1 . Methodology

Similar to the previous section, let us consider the resolution of Poisson problems
with Dirichlet boundary conditions, as defined in the system (4.1). Using the same
configuration as the one introduced in Section 4.1, the Poisson problems are dis-
cretized using the Finite Element Method with first-order finite elements, resulting
in linear systems to solve in the form Au = b.
To address such problems, we suggest using a well-known Krylov solver: the Con-
jugate Gradient (CG). The performance of CG can be significantly improved through
preconditioning, as detailed in Section 8.4, and illustrated in Figure 8.4. In the fol-
lowing, the proposed hybridmethodwill be formulated by drawing inspiration from
the Additive Schwarz method (ASM) described in Algorithm 3, given its efficacy as a
preconditioner for CG (refer to Chapter 8).
ASM belongs to the family of Schwarz methods introduced in the previous Chapter
8. It is a variant of the Restricted Additive Schwarz method (RAS) that does not rely
on Partition of Unity functions (see Algorithm 3). In contrast to the Jacobi-Schwarz
method (JSM) introduced in the previous section, ASM presents the problem in a
different formulation: ASM uses an algebraic formulation, directly addressing the
discretized residual equation r = b − Au. As a result, the local Poisson problems
(i.e., the Poisson problems to be solved in each subdomain) differ from those in
the Jacobi-Schwarz method. In ASM, the local Poisson problems incorporate r as a
source term and impose zero Dirichlet boundary conditions on all their boundaries,
whether at the global domain boundary or subdomain interfaces. This configura-

166

tion significantly simplifies the distribution of sub-problems at the interfaces com-
pared to the Jacobi-Schwarz method, where boundary conditions are non-zero and
vary at each iteration.
Furthermore, source terms of local Poisson have increasingly small norms as the
Conjugate Gradient algorithm aims tominimize the residual. This poses a challenge
to ourmethodology. When the residual normbecomes very small, implying that the
source term norm tends toward zero, the Machine Learning model may struggle to
generalize properly, often resulting in a trivial solution, i.e., a solution equal to zero
everywhere. This can lead the Conjugate Gradient algorithm to stagnate at a certain
precision threshold since the GNN-based preconditioner would, at a certain point,
always provide a null correction to update the solution. To address this issue, we
propose to normalize the source term of the local Poisson problems.
The performance of the ASMpreconditioner can also be improved by using a coarse
space correction, as detailed in Section 8.5. In its discrete formulation, the two-level
ASM preconditioner applied to a residual vector r ∈ RN can be written as follows:

M−1ASM,2r = RT
0 (R0AR

T
0)
−1R0︸ ︷︷ ︸coarse problem

r+
K∑
k=1

RT
i (RiAR

T
i)
−1Ri︸ ︷︷ ︸local problems

r (9.4)

whereK is the number of sub-meshes, (Ri)1≤i≤K are restricted operators from the
global mesh to local sub-meshes, andR0 is the restriction operator from the global
mesh to the coarse mesh.
In this context, we propose using the Deep Statistical Solvers (DSS) model intro-
duced in Chapter 5 with someminor modifications, which will be detailed further in
Section 9.4.2. There are several reasons for this choice. Firstly, since the boundary
conditions of the local Poisson problems are always zero, there is no need for an en-
hancedmodel at these particular points. Additionally, DSS can be trainedwithmore
samples faster and provides quicker solutions thanΨ-GNN, which requires the use
of the Broyden solver (see Section 7.4.4). The last point is a practical consideration.
At the time of writing this thesis, we are currently investigating the performance of
such a hybrid method within an industrial solver written in C++. The architecture
of DSS is, in fact, much easier to script from Pytorch to C++ compared to Ψ-GNN,
where we would also need to develop the Broyden solver. Note that it is still pos-
sible to use Ψ-GNN, which, on the other hand, could provide better sub-problem
solutions as the number of nodes for a sub-mesh grows.
Formally, we use DSS as a GNN-based solver that, given a discretized Poisson prob-
lem with respect to a sub-mesh i, 1 ≤ i ≤ K , outputs an approximate residual
solution r̃i as follows:

167

(a) (b)

Figure 9.4: Illustration of the resolution of local Poisson sub-problems [P1, . . .] in (9.4a): the
classic approach where they are solved in parallel on CPU cores, and (9.4b): the hybrid approach
where they are solved in parallel on a GPU using GNN-based models.

r̃i = DSS
(
Ωh,i, RiAR

T
i ,

Rir

∥Rir∥

)
(9.5)

The application of the two-level hybrid preconditioner to a residual vector r is then
computed as follows:

M−1hybrid,2r = RT
0 (R0AR

T
0)
−1R0r+

K∑
k=1

RT
i ∥Rir∥ r̃i (9.6)

The proposed hybrid preconditioner, denoted ASM-GNN, is described in Algorithm
7 and the updated Conjugate Gradient preconditioned with the ASM-GNNmethod,
denoted as CG-ASM-GNN, is detailed in Algorithm 8. Similar to the previous Section,
we hope to capitalize on the “per-batch” structure to accelerate the resolution of
local Poisson problems. This approach harnesses GPU parallelization to infer mul-
tiple solutions simultaneously (see Figure 9.4b). This is in contrast with traditional
approaches that solve the local Poisson problems using parallel computations on
CPUs (see Figure 9.4a). It is well-known that GPUs havemore parallel computational
power than CPUs. However, legacy codes often struggle to leverage GPU compu-
tations. The proposed hybrid method can act as a black-box approach that can be
easily integrated into such frameworks to leverage GPU computations.
When used with a one-level method (i.e., without the coarse space correction), the
ASM-GNN preconditioner can be considered as a full Machine Learning-based pre-

168

Algorithm 7 ASM-GNN Preconditioner
Input: r, Output: z

1. Solve the coarse space problem :
rc = RT

0 (R0AR
T
0)
−1R0r

2. Solve allK sub-problems using DSS:
[r̃1, . . . , r̃K] = DSS ([Eh,1, . . . , Eh,K]) (9.7)

where Eh,i =
(
Ωh,i, RiAR

T
i ,

Rir
n

∥Rirn∥

) represents a discretized Poisson prob-
lem on a sub-mesh i. Note that in this formulation, the resolution of (9.7) sug-gests that all subdomains are solved simultaneously in one inference. How-ever, if the number of sub-problems becomes too large, [Eh,1, . . . , Eh,K] canbe partitioned into Nb batches, allowing all problems to be solved using Nbinferences of DSS.

3. Glue everything:
z = rc +

K∑
i=1

RT
i ∥Rir∥ r̃i

Algorithm 8 CG-ASM-GNN
Compute r0 = b− Au0, z0 = ASM-GNN (r0), p0 = z0

for i = 0, 1, . . . do
ρi = ⟨ri, zi⟩
qi = Api, αi =

ρi
⟨pi,qi⟩

ui+1 = ui + αipi

ri+1 = ri − αiqi

if ∥ri+1∥ < tol thenBreak;
end if
zi+1 = ASM-GNN (ri+1), ρi+1 = ⟨ri+1, zi+1⟩, βi+1 =

ρi+1

ρi
pi+1 = zi+1 + βi+1pi

end for

conditioner. The introduction of a coarse correction tends to make the precondi-
tioner “hybrid”, as the coarse problem is solved using a direct solver. Nevertheless,
there is also the possibility of exploring the training of another model to address

169

the resolution of the coarse space problem.
9.4.2 . Dataset description

In Chapter 5, we trained the DSSmodel to solve global Poisson problems generated
following the process described in Section 4.3. In this chapter, our goal is to tackle
the same global Poisson problems on a larger scale, leveraging the DSS model to
address the local Poisson problems, as mentioned earlier. The partitioning of the
mesh can be done such that the local Poisson problems share the same structural
characteristics (e.g. in terms of the number of nodes) as the samples in the dis-
tribution of the original DSS model. However, the distribution of the local Poisson
problems, with respect to the source term and boundary conditions, logically dif-
fers from the global problem. Consequently, similar to the Ψ-GNN-JSM approach,
the DSS model should be trained on a new set of samples arising from a correct
distribution of instances.
In this context, generating a consistent dataset is, in fact, much easier compared
to the previous section where we used the Jacobi-Schwarz iterative solver. Similar
to the previously described process, we are interested in extracting and storing all
sub-problems involved in the ASMpreconditioner at each iteration of the Conjugate
Gradient method. Unlike the previous section, Conjugate Gradient, when applied
using a classic two-level ASM preconditioner (where all sub-problems are solved us-
ing a direct solver), requires far fewer iterations to achieve high precision compared
to the iterative Jacobi-Schwarz method, as illustrated in Figure 8.4. This enables us
to consider a more extensive set of global problems, with force and boundary func-
tions similar to those detailed in Section 4.3.
Considering the same example as in the previous section1, the number of iterations
required to achieve a precision of 10−7 using CG preconditionedwith ASM (CG-ASM)
is, on average, 25, instead of the 300 iterations needed for the Jacobi-Schwarz iter-
ative solver. As a result, in this configuration, the number of samples generated
would be 10, 000 (100× 4× 25) with CG-ASM, as opposed to 120, 000 in the previous
section.
The dataset used for training DSS is generated as follows. We focus on solving Pois-
son problems with Dirichlet boundary conditions, following the process detailed in
Section 4.3. The generated meshes have between 6000 and 8000 nodes. Each mesh
is divided into sub-meshes of around 1000 nodes with an overlap of 2, resulting in
7 or 8 partitions per mesh. We use the Conjugate Gradient method preconditioned
with a classic two-level ASMmethod2 to solve global problems up to a residual norm
precision of 10−12. The dataset comprises discretized Poisson sub-problems from
the two-level ASM preconditioner, extracted at each iteration of the CG algorithm.

1100 global Poisson problems, divided into 4 subdomains.2sub-problems are solved using LU decomposition.

170

On average, the Conjugate Gradient method requires 30 iterations to converge in
that configuration. We aim to solve 700 Poisson problems. On average, the gener-
ated dataset should consist of 700×30×7 = 147, 000 different problems. The exact
number of generated samples is 164, 012.

9.4.3 . Model configuration and training

Asmentioned earlier, theGNNmodel used in this study is theDeep Statistical Solvers
(DSS) model (Donon et al., 2020), described in Chapter 5. However, we propose
some slight modifications to its architecture and training. Firstly, the edge features
betweennodes, originally defined inDSS as the coefficients of the stiffnessmatrixA,
are replacedby structural information of themesh. As a result, theMessage-Passing
functions defined in Equations (5.2) and (5.1) are now formulated as follows:

ϕk+1
→,i =

∑
j∈N (i)

Φk+1
→,θ(H

k
i , H

k
j , dij , ∥dij∥) (9.8)

ϕk+1
←,i =

∑
j∈N (i)

Φk+1
←,θ(H

k
i , H

k
j , dji, ∥dji∥) (9.9)

where dij represents the relative position vector and ∥dij∥ its Euclidean distance.
Besides, we also modify the structure of the matrix b′i defined in Equation (5.7). Thismatrix originally allowed for distinguishing the values of the right-hand side of the
linear system for Interior and Dirichlet nodes, representing a multimodal distribu-
tion. In our case, as the boundary conditions remain the same and equal to 0 in this
context, there is no need to make this distinction, and b′i is now solely defined as
the normalized residual vector r

∥r∥
. The cost function used for training the model

is directly the residual of the discretized Poisson problem, similar to what has been
considered so far, but without the change of variable described in Equation (5.6).
The model is trained using the same hyperparameters as those employed in Sec-
tion 5.2.2, with a few exceptions. The number of iterations k̄ is set to 50 due to
the increased size of the sample meshes (now 1000 nodes). In the training loss,
the discount factor is increased to γ = 0.95 because of the higher number of it-
erations. Training is conducted on 2 P100 GPUs using the Adam optimizer with a
learning rate of 10−2 and a batch size of 500. Additionally, the ReduceLrOnPlateau
scheduler from PyTorch is applied, reducing the learning rate by a factor of 0.1 dur-
ing training. These hyperparameters were selected after several experiments and
have yielded satisfactory results, but fine-tuning them could be beneficial for fur-
ther performance improvement.
Table 9.3 shows the averaged results on the entire test dataset, demonstrating that
DSS has efficiently learned to solve the sub-problems. This is particularly due to the

171

distribution considered here, which is much more limited than the one used in the
models in Part II.
Metrics Residuals (10−7) MSE w/LU (10−5) Nb of weights
DSS 2.046 ± 0.1 3.501 ± 0.2 37530

Table 9.3: Results of DSS averaged over the whole test set.

9.4.4 . Results

This section aims to present several results to assess the performance of the pro-
posed approach.
Single test sample

To begin, Figure 9.5c illustrates the resolution of a Poisson problem with Dirich-
let boundary conditions using the CG-ASM-GNN method. The considered Poisson
problem belongs to the distribution of global Poisson problems used for generat-
ing the dataset in Section 9.4.2. The Poisson problem is solved on a mesh with
7310 nodes, split into 8 sub-meshes with approximately 1000 nodes per sub-mesh,
as shown in Figure 9.5a. The results obtained with CG-ASM-GNN are compared
with those obtained using Conjugate Gradient preconditioned with a classic3 ASM
method (CG-ASM-LU) and a Conjugate Gradient method without preconditioning
(CG). All methods are run until the residual norm reaches an error of 10−12. Fig-
ure 9.5c shows the evolution of the Residual error for the three configurations. A
first observation is to notice that our hybrid method indeed converges to the de-
sired precision, which is, for the first time, in contrast to all other Machine Learning
methods studied so far in previous Section 9.3 or in Part II, that stagnate at a certain
precision threshold. Besides, Figure 9.5b displays the map of squared error with
a “ground-truth” solution4. This map shows squared errors of magnitude 10−10,
which could be even lower if necessary. Moreover, the method is able to solve this
problem in significantly fewer iterations than a Conjugate Gradient method with-
out preconditioning. When compared to the classic CG-ASM-LU method (in fact,
the method used to generate the dataset samples), we observe that our method
needs a little bit more iterations. This is not surprising since the Conjugate Gradient
method receives, with our hybrid preconditioner, approximate solutions, whereas
the classic ASM preconditioner provides “exact” solutions. This gap is, however, not
substantial here since it only consists of 9 additional iterations for our proposed
hybrid solver. As a result, we have illustrated that the proposed model can indeed
efficiently solve this Poisson problem and converges almost as well as the classic

3where all sub-problems are solved using LU decomposition.4computed with LU decomposition.

172

(a) Mesh Partitioning (b) Squared Error Map

(c) Residual error

Figure 9.5: Resolution of a global Poisson problem on a mesh with 7310 nodes using CG-ASM-
GNN, CG-ASM-LU and CG methods. At the top, Figure 9.5a illustrates the mesh partitioning, and
Figure 9.5b represents the squared error map between the CG-ASM-GNN solution and a “ground-
truth” LU solution. At the bottom, Figure 9.5c depicts the evolution of the Residual error for the
three methods.

CG-ASM-LUmethod. The difference lies in the fact that CG-ASM-GNN leverages GPU
parallelization to apply the preconditioner, whereas the classic CG-ASM-LUmethod
uses computations on CPUs.
Multiple tests in various configurations

We further investigate the generalization performance of CG-ASM-GNN by consid-
ering the resolution of multiple Poisson problems in various configurations. For
each setup, we solve 100 global Poisson problems with Dirichlet boundary condi-
tions, generated following the process described in 9.4.2. The first configuration
involves meshes with approximately 2500 nodes, the second configuration with ap-
proximately 7000 nodes, and the third configuration with 34000 nodes. Regardless

173

Configuration Nb Iterations
Nodes Subdomains CG-ASM-GNN CG-ASM-LU CG

2593 (±144) 3 (±0) 26 (±1) 21 (±1) 126 (±4)

7094 (±385) 8 (±1) 40 (±2) 32 (±2) 203 (±7)

34057 (±1924) 34 (±2) 82 (±4) 63 (±3) 427 (±13)

Table 9.4: Average (± standard deviation) number of iterations required to converge for CG-
ASM-GNN, CG-ASM-LU, and CG when applied to solve multiple Poisson problems on meshes with
varying numbers of nodes and subdomains.

of the number of nodes per mesh, eachmesh is divided into sub-meshes of around
1000 nodes, resulting in varying numbers of subdomains for each configuration.
Table 9.4 compares, for each of these configurations, the average number of iter-
ations required by CG-ASM-GNN, CG-ASM-LU, and CG algorithms to converge to a
residual norm of 10−12. The first observation is that, regardless of the number of
nodes and subdomains, the proposed hybrid CG-ASM-GNN indeed converges to
the required precision for multiple Poisson problems, validating the consistency of
our approach. Secondly, CG-ASM-GNN requires significantly fewer iterations than
the CG method. As the number of iterations increases, the required iterations for
CG-ASM-GNN also increase but far less than for the CGmethod. This is attributed to
CG-ASM-GNN being built following a two-level ASM method (see Section 8.5). Com-
paring our hybrid method with CG-ASM-LU reveals that our method converges in
slightly more iterations. As the number of subdomains grows, the difference be-
tween the number of iterations of CG-ASM-GNN and CG-ASM-LU also grows. This
gap could be reducedwith a higher stopping criterion but would continue to expand
if aiming for a lower stopping criterion. However, this difference is not substantial
(requiring 5 and 8more iterations for 3 and 8 subdomains, respectively, and a gap of
19 iterations for 34 subdomains). As a result, the CG-ASM-GNNmethod provides an
efficient alternative to CG-ASM-LU, with the distinction that CG-ASM-GNN leverages
computations on GPUs to apply the hybrid preconditioner, whereas CG-ASM-LU re-
lies on computations on CPUs.
Normalization of the Residual vector

In this section, we motivate the crucial feature of normalizing the residual term in
Equation (9.5), which is used as input to the GNN-based model. In the initial tests
conducted during the development of this method, we trained a DSS model in the
same configuration as described in Section 9.4.3, but we used samples that are

174

(a)

(b) (c)

Figure 9.6: Illustration of the results obtained for solving a Poisson problem considering two
configurations: one with non-normalized (red curves) and the other with normalized (blue curves)
residual vectors as input to the ASM-GNN preconditioner. For both configurations, Figure 9.6a
displays the evolution of the global residual error. Figure 9.6b shows the evolution of the relative
error between z vectors computed with ASM-GNN and the “exact” ASM, and Figure 9.6c shows the
relative error between two consecutive z vectors computed with the ASM-GNN preconditioner.

not normalized5. In this section, we use this early model to solve a Poisson prob-
lem similar to the one described in Figure 9.5, considering two configurations: one
with non-normalized and the other with normalized residual vectors as input to the
model. For both configurations, the resolution of this Poisson problem is stopped
at 100 iterations, regardless of the achieved accuracy.
Figure 9.6 presents several results to compare these two approaches. In each fig-
ure, the red curve corresponds to the non-normalized configuration, while the blue

5the input to the model is r and not r
∥r∥

175

curve represents the normalized one. At the top, Figure 9.6a illustrates the evolu-
tion of the global Residual error in both configurations during the 100 iterations. The
non-normalized setup converges and stagnates at a precision threshold of 10−7,
showing no further improvement with increasing iterations. Conversely, the nor-
malized setup converges to a value of magnitude 10−24, which could further im-
provewith additional iterations. In Figure 9.6b, we present the relative error, at each
iteration, between the z vector6 from Algorithm 8 computed with the hybrid ASM-
GNN preconditioner and the “exact” ASM preconditioner. The figure demonstrates
that this error increases as the number of iterations grows for the non-normalized
configuration, whereas it remains quite stable for the normalized one. This implies
that the GNN-based model produces progressively worse results as iterations in-
crease. This phenomenon can be attributed to the decreasing norm of the residual
vector, which tends to 0 as the number of iterations grows (while the residual vector
is rescaled to have a unit norm if normalized). The consequence is that the GNN-
based model can no longer differentiate very small residual vectors and ends up
outputting, at a certain threshold of the residual, the same results. As a result, the
Krylovmethod receives the same information at each iteration and stops improving,
leading to the plateau observed in Figure 9.6a. This is further illustrated in Figure
9.6c, which shows the relative error between two consecutive iterations of z. While
the normalized setup produces z vectors that differ from each other at each itera-
tion, this is not the case for the non-normalized one, as the observed relative error
tends to 0.
These results motivated the decision to use normalized residual vectors as input
for the GNN-based model and, specifically, to train the DSS model with normalized
vectors as described in Section 9.4.3. This choice is crucial for developing a hybrid
preconditioner that enables the Krylov method to converge to any desired preci-
sion.
Large-Scale Poisson Problem

Here, we further investigate the resolution of a Poisson problem at a very large
scale. Figure 9.7 illustrates the solution of a Poisson problem with Dirichlet bound-
ary conditions on a mesh representing a caricatural Formula 1 with 233, 259 nodes.
Force andDirichlet boundary functions are sampled following theprocess described
in 4.3. The mesh is divided into sub-meshes of approximately 1000 nodes, resulting
in a total of 234 sub-meshes, as shown in Figure 9.7a. Similar to previous results, we
solve this Poisson problem using the CG-GNN-ASM, CG-ASM-LU, and CG methods
until the Residual error reaches a magnitude of 10−12.
Figure 9.7c displays the evolution of the residual error for the three methods, and
Figure 9.7b depicts the squared error map between the CG-ASM-GNN solution and

6the output of the preconditioner when applied to a residual vector.

176

(a) Mesh Partitioning

(b) Squared Error Map

(c) Residual Error

Figure 9.7: Resolution of a Poisson problem on a mesh with 233, 259 nodes using CG-ASM-GNN,
CG-ASM-LU and CG methods. Figure 9.7a illustrates the mesh partitioning, and Figure 9.7b repre-
sents the squared errormap between the CG-ASM-GNN solution and a “ground-truth” LU solution.
Figure 9.7c depicts the evolution of the Residual error for the three methods.

177

a ’ground-truth’ solution computed with LU decomposition. Both figures highlight
that the proposed CG-ASM-GNN method can efficiently solve this problem in 117

iterations up to the desired precision. Compared to the other methods, it requires
significantly fewer iterations than the CGmethods (631 iterations) and only a slightly,
though not substantially, higher number of iterations than the CG-ASM-LU method
(93 iterations). This is considering that all subdomains in the CG-ASM-GNN frame-
work are solved in parallel on GPUs in 1 inference on the DSS model (i.e., all 234
sub-problems construct one batch).
Chasing the limits

The hybrid CG-ASM-GNN method can generalize to Poisson problems with various
configurations, some of which may be more challenging than those previously an-
alyzed. By “generalize”, we mean that the Conjugate Gradient method, precondi-
tioned with ASM-GNN, will converge to the solution with the desired precision. In
fact, the output of ASM-GNN does not need to be optimal (i.e., obtained from a
direct solver), and approximate solutions can significantly help the Conjugate Gra-
dient method converge faster than its original variant (i.e., CG without precondi-
tioner). However, the number of iterations required for the CG-ASM-GNN method
to converge greatly depends on the accuracy of the approximate local solutions: the
more precise the resolution of the local Poisson problem, the closer the CG-ASM-
GNN method will be to the optimal CG-ASM-LU method.
In this section, we address the resolution of two Poisson problems, both on a square
mesh with 6707 nodes. The first, referred to as “Dirichlet”, is a Poisson problem
with Dirichlet boundary conditions applied to its entire boundary, as illustrated in
Figure 9.8a. The force and boundary functions are generated following the process
described in Section 4.3. The second, referred to as “Neumann”, is the same Pois-
son problem but with homogeneous Neumann boundary conditions on the upper
and bottom parts of the domain, as depicted in Figure 9.8b. For both problems,
the mesh is partitioned into 7 sub-meshes, each with approximately 1000 nodes,
as shown in Figure 9.8c. We compare the results obtained with the CG-ASM-GNN
method with the CG-ASM-LU method. Both algorithms run until the Residual error
reaches a magnitude of 10−12.
Figure 9.8d shows the evolution of the residual error for the Dirichlet (blue curves)
and Neumann (red curves) problems using CG-ASM-GNN (solid lines) and CG-ASM-
LU (dashed lines). Since the Neumann problem is more complex, it converges in
more iterations, with 30 iterations for CG-ASM-LU on Dirichlet and 34 iterations
for CG-ASM-LU on Neumann. Notably, CG-ASM-GNN achieves convergence up to
the desired precision on the Neumann problem, even though some of the sub-
problems are not part of the training distribution. However, the difference in itera-
tions between CG-ASM-GNN and CG-ASM-LU for the Neumann problem is greater

178

(a) Dirichlet problem (b) Neumann problem (c) Mesh Partitioning

(d) Residual Error

(e) z Relative Error (f) Averaged Local Relative Error

Figure 9.8: Comparison between the resolution of a Poisson problem with Dirichlet boundary
conditions and a Poisson problem with mixed boundary conditions using CG-ASM-GNN and CG-
ASM-LU.

than for the Dirichlet problem (13 versus 7), indicating that CG-GNN-ASM facesmore
difficulty in converging on the Neumann problem than in the Dirichlet case. This re-
sult is confirmed after testing the resolution of 100multiple Poisson problems in the
same configuration but with varying force and boundary functions. In this test, the

179

(a) Node types

(b) Mesh Partitioning

(c) Residual Error

Figure 9.9: Resolution of a Poisson problemwithmixed boundary conditions using CG-ASM-GNN,
CG-ASM-LU and CG methods on a mesh with 58, 539 nodes.

averaged difference in iterations between CG-ASM-GNN and CG-ASM-LU for Neu-
mann problems is 16, whereas it is 7 for Dirichlet problems.
To further understandwhy, let us examine, in Figure 9.8e, the relative error between
the z vector from Algorithm 7 computed with ASM-GNN and ASM preconditioners
at each iteration. The results show that the solutions obtained with ASM-GNN are
closer to the exact one in the Dirichlet case at a magnitude of 10−2, whereas, in the
Neumann case, they are solved with less accuracy at amagnitude of 101. This differ-
ence arises from the resolution of the local Poisson problem using the GNN-based
model, which is less precise in the Neumann case than the Dirichlet one, due to the
many out-of-samples local problems. This is illustrated in Figure 9.8f, which, at each

180

iteration, shows the average relative error of local problems, computed as follows:
at each iteration, we compute the relative error between the solution of the GNN
model and an exact LU solution for each local problem and average across all sub-
domains. The figure clearly demonstrates that the local problems in the Neumann
case are much less accurate than in the Dirichlet case.
To conclude, Figure 9.9 displays the results obtained for solving a Poisson problem
in an extreme configuration. The considered problem is a Poisson problem with
mixed boundary conditions on a rectangular mesh with 58, 539 nodes. Dirichlet
boundary conditions are enforced on the left and right parts of the domain, while
homogeneous boundary conditions are set on the top and bottom parts of the do-
main. Figure 9.9a displays the mesh with different node types: blue for interior
nodes, red for Dirichlet nodes, and yellow for Neumann nodes. Note that homoge-
neous Neumann boundary conditions intentionally cover a large part of the bound-
ary of the global domain. The mesh is split into 59 sub-meshes, as illustrated in
Figure 9.9b, resulting in sub-meshes of approximately 1000 nodes. Finally, Figure
9.9c shows the evolution of the residual error using CG-ASM-GNN, CG-ASM-LU, and
CG. The first observation is that, even in this extreme configuration, CG-ASM-GNN
converges to the desired precision, but it does so at the cost of a significantly larger
number of iterations than the CG-ASM-LU method. However, it does not diverge
and is able to solve the problem in much fewer iterations than the CG method.

9.5 . Conclusion & Discussions

This section explores the construction of ASM-GNN, a hybridmethod that combines
GNN-based models and Schwarz methods. ASM-GNN follows a two-level Additive
Schwarz method in which the resolution of local Poisson problems is addressed
thanks to a GNNmodel. ASM-GNN is used as a preconditioner for a Krylov method,
specifically the Conjugate Gradient method, to build the hybrid solver named CG-
ASM-GNN. The results demonstrate that the proposed method can generalize to
various Poisson problems and consistently converge even in extreme configura-
tions, such as the one displayed in Figure 9.9. The results presented here can be
viewed as a “proof-of-concept” of the potential of such a hybrid method.
The primary goal behind developing this hybrid solver is to harness the computa-
tional power of GPUs for concurrently solving multiple sub-problems in parallel us-
ing the “per-batch” format offered in the Machine Learning area. With this method,
we aim for increased speed compared to existingmethods that typically rely on par-
allel computations on CPUs. Deliberately, we focused on comparing the number of
iterations needed to solve the problem rather than providing detailed computation
time. Subsequent research should focus on assessing the computational efficiency
of applying the ASM-GNN preconditioner compared to other methods. However,
conducting a comprehensive comparison presents challenges for several reasons:

181

i) choice of programming language: Here, all results are presented using our self-
developed Python code, which might not be the optimal programming language
for evaluating High-Performance Computing frameworks, ii) parallel computations
on CPUs: While Python supports parallel computations on CPUs, it is often not opti-
mized for this purpose, iii) appropriate optimization of the developed codes. During
the current thesis writing, we are in the process of scripting the proposed method
in a C++ industrial solver to thoroughly assess its performance.

182

Conclusion

The initial objective of this thesis was to leverage Machine Learning techniques to
accelerate the resolution of incompressible Navier-Stokes equations on general un-
structured meshes. To achieve this, we proposed to investigate Machine Learning
methods for solving the fastidious and time-consuming Pressure Poisson problem
in the context of splitting schemes. Among the various existing Machine Learning
approaches, Graph Neural Networks (GNN) proved to be particularly suitable for
learning on unstructured data such as meshes. However, GNN-basedmodels often
suffer from poor generalization capabilities. While these models may yield reason-
ably accurate results, they frequently lack guarantees, and their precision may not
be sufficient to ensure the consistency of an entire CFD simulation process. As a re-
sult, this thesis explored the development of Graph Neural Network-based models
with enhanced generalization capabilities and accuracy, applied to the resolution of
Poisson Pressure problems in the context of CFD simulations.
Contributions

Primary contributions presented in Part II introduced two novel and original mod-
els: DS-GPS (Chapter 6) and Ψ-GNN (Chapter 7). Both of these contributions were
trained by directlyminimizing the residual equation of the discretized Poisson prob-
lem, drawing inspiration from the Deep Statistical Solvers (DSS) approach (Donon
et al., 2020). DS-GPS and Ψ-GNN, which mainly differ regarding their architectures,
were designed to address the issue of solving Poisson problems on meshes with
varying numbers of nodes. In the original DSS study, the number of Message-
Passing steps required for convergence was fixed and led to challenges with larger
meshes. To alleviate this, DS-GPS was formulated with a recurrent architecture,
iterating on a single block of Message Passing Neural Networks to propagate in-
formation through the mesh, hence resulting in a significantly lighter model. While
DS-GPS can extend its number ofMessage-Passing steps due to its recurrent design,
this iteration count still needs to be fixed by the user at different stages, whether
for training or predicting. Building on the results obtained with DS-GPS, we fur-
ther proposed the Ψ-GNN model, leveraging the Implicit Layer Theory to build an
“infinitely” deep model that can automatically determine the number of Message-
Passing steps required for convergence. This approach significantly enhanced the
generalization capabilities of the model on meshes with varying numbers of nodes.
Additionally, both models were designed with several additional features, and sig-
nificant effort was put into the development of architectures that were less “black-
box” and more respectful of physical constraints. This included explicitly treating
boundary conditions as an intrinsic part of the architecture, for instance. Additional

183

features related to the Ψ-GNN approach demonstrated the capability of the model
to adapt its iteration count based on any initially provided solution, while also pro-
viding convergence guarantees. Essentially, this research has established robust
theoretical groundwork for the development of GNN-based models with improved
capabilities. These models are suitable for addressing linear systems derived from
discretized PDEs in graphs of various sizes. As a result, these advancements are not
limited solely to solving Poisson equations, and they can be applied across various
scenarios involving the discretization of PDEs.
Despite the enhanced generalization abilities of these models, challenges persist
in providing accurate predictions for meshes with a very large number of nodes,
such as those encountered in industrial contexts. Furthermore, their accuracy is
limited to a precision linked to the capacities of the trained model, which presents
a bottleneck in cases where extremely accurate predictions are crucial (e.g., for en-
suring the consistency of a splitting scheme method). To tackle this issue, the last
part of this thesis introduced the concept of hybrid solvers, integrating GNNmodels
with Schwarz methods from the field of Domain Decomposition. Such hybrid ap-
proaches enable scaling these models to handle meshes with a significant number
of nodes (100,000 nodes and more). In these frameworks, the GNN-based models
are used to solve themultiple sub-problems, whose sizes are tailored to the optimal
capabilities of the GNNmodels. In our optimal framework, the hybrid solver is used
as a preconditioner for Krylov methods, such as Conjugate Gradient methods. As a
result, the proposed approach can converge to the solution with any desired pre-
cision, thanks to the Krylov method, and the convergence of the Krylov method is
significantly enhanced using the hybrid approach as a preconditioner. The novelty
is that the constructed preconditioner is a fully GNN-based method. It is applicable
to meshes of any size due to its Domain Decomposition approach and, more im-
portantly, its application is done in parallel on GPUs, yielding efficient execution, in
contrast to traditional methods that use CPU computations.
Perspectives & Further Works

The research presented in this thesis raises several additional questions and may
lead to numerous perspectives for future research.
Firstly, although the initial objective was to accelerate the numerical resolution of
Navier-Stokes equations, we deliberately did not provide any concrete results on
computation times. In fact, the work presented in this thesis contrasts with studies
such as those by Pfaff et al. (2020) or Sanchez-Gonzalez et al. (2020), which attempt
to solve CFD problems using GNN models. These models often take meshes as
input and additional information about the problem at hand, directly predicting a
solution profile at a given time t. Thus, they offer significant time savings as they
skip all the steps of a real numerical simulation (see Chapter 1). These models can

184

indeed provide a rough idea of the solution, which can be useful in some cases,
such as obtaining a quick profile for design optimization. However, they often lack
generalization ability, and cannot be extended to industrial cases of very large di-
mensions. In this thesis, our focus was on solving the Poisson Pressure equation
in the context of splitting schemes, which occurs at each timestep of a numerical
simulation. By doing so, the goal was to leverage Machine Learning approaches
to solve the Poisson Pressure equation more rapidly than classical solvers, while
retaining the guarantees provided by numerical simulators. This facilitates the in-
tegration of Machine Learning models into industrial High-Performance Comput-
ing (HPC) frameworks. As a result, the models developed in this thesis are to be
directly compared with well-known and established methods for solving linear sys-
tems. This includes, for instance, direct and iterative methods as introduced at the
beginning of Part III. However, to compare computation times fairly, a significant ad-
ditional effort must be made. For example, the GNN-basedmodels in Part III do not
really show a performance gain due to the small meshes considered in these test
cases and the already well-optimized methods used for solving such problems. On
the other hand, the development of such Machine Learning models finally makes
sense in Part III. The real issue with traditional methods arises when considering
very large meshes, where, for example, an LU decomposition becomes impractical,
or iterativemethods take too long to converge. By leveraging GNN-basedmodels as
preconditioners for Krylov solvers, we could build a preconditioner whose applica-
tion is essentially parallelized on GPUs while providing all guarantees of the Krylov
method. For instance, in the example of “Formula 1” shape decomposed into 233

sub-domains (Figure 9.7), solving the 233 sub-problems takes about 6 seconds with
the GNN-basedmodel (i.e., one batch of 233 sub-problems solved in parallel on one
GPU), compared to 14 seconds on one CPU. Obviously, these data are very experi-
mental as they are presented using Python, are not optimized, and calculations are
done sequentially on one CPU core. However, this still provides an indication of the
potential performance of such hybrid methods. Therefore, as of writing this thesis,
we are investigating the potential performances of such approaches by integrating
them into industrial codes in C++. In that setting, it will be possible to compare the
performance of the proposed hybrid approach fairly with state-of-the-art precondi-
tioners such as Algebraic Multigrid (AMG) or Incomplete Cholesky (Saad, 2003). It is
worth noting that this work might also be of great interest to the HPC community,
as it is currently very challenging to translate existing codes to run on GPUs. The
method developed in this thesis offers a straightforward way to leverage GPU com-
putations by using reliable Machine Learning models in complex industrial codes.
But other questions still arise. One initial task to develop, for instance, would be
to consider the construction of a dataset in relation to real Poisson Pressure equa-
tions. Indeed, the test cases used in this work were highly academic, and exploiting
these models in real-world scenarios necessitates further consideration in creating
the dataset. This involves aspects such as the number of global simulations in the

185

training set (i.e., a simulation range with varying Reynolds numbers), and howmany
Poisson problems to extract per simulation. Additionally, exploring the extension
of these models to 3D geometries could be worthwhile. This should be easily feasi-
ble since the models only require a graph, i.e., a set of connections between nodes.
However, the graphwould be significantly larger, and theminimization process (i.e.,
through the minimization of the discretized residual) could become more challeng-
ing due to the increased conditioning of problems. One idea to enhance this could
be, for example, to directly precondition the discretized residual equation used for
training the models in Part II.
Finally, two last points can be discussed. Firstly, the models developed in this thesis
can be applied to problemsother than the Poissonproblem. For example, one could
consider using suchmethods to improve the control of adaptivemethods (Adaptive
Mesh Refinements). Before addressing hybrid GNN/Domain Decomposition meth-
ods, we had also considered scaling up these methods by building multigrid GNN-
based models, inspired by Ronneberger et al. (2015); Gao and Ji (2019b); Lino et al.
(2021a) or Liu et al. (2021). However, to be truly competitive with the hybrid method
developed in this thesis, these novel multigrid models should be able to consider
meshes of any size. In this sense, one could think of using the same GNN block that
could act on any mesh hierarchy from fine to coarse meshes and leveraging Atten-
tion GNNs to transfer information. Such an approach, if efficient, would contrast
with existing methods that generally consider a fixed number of mesh hierarchies
and a fixed architecture. Another query directly related to this topic could concern
investigating the use of GNNs to provide efficient pooling methods in the context
of numerical simulations, where preserving crucial information from a mesh is es-
sential for obtaining accurate approximations.
“Le mot de la fin”

With the rise of Machine Learning, the field of numerical simulation has been pro-
foundly reshaped. Nowadays, the development of these “Artificial Intelligence”mod-
els for solving Partial Differential Equations is a highly dynamic and rapidly ad-
vancing area, to the extent that the state-of-the-art presented in this thesis may
already be outdated. Reconciling both worlds (i.e., Machine Learning and Numer-
ical Simulation) is often a complex task due to the "black-box" nature of Machine
Learning methods, which contrasts with the well-established guarantees of classi-
cal equation-solving methods. In this thesis, we proposed a first step towards Ma-
chine Learningmethods that aremore respectful of physical constraints and ensure
method convergence. This is evidenced by the latest work in this thesis, which aims
at the hybridization between classical solvers and Machine Learning methods, and
this, on a large scale. In particular, Machine Learningmethods provide a simple and
effective way to leverage parallel computations on GPUs, where the translation of
well-established legacy codes into such frameworks is still particularly challenging.

186

Although multiple research efforts are deployed, the development of such large-
scale models for complex industrial cases is still in its early stages. However, given
the current advances, optimism iswarranted, and the potential for the development
of Machine Learning models applied to the resolution of PDEs is immense.

187

Bibliography

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, 2019.

F. Alet, A. K. Jeewajee, M. B. Villalonga, A. Rodriguez, T. Lozano-Perez, and L. Kael-
bling. Graph element networks: adaptive, structured computation and memory.
In International Conference on Machine Learning. PMLR, 2019.

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 2019.

S. Bai, V. Koltun, and J. Z. Kolter. Stabilizing equilibriummodels by jacobian regular-
ization. arXiv preprint arXiv:2106.14342, 2021.

N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm, M. Parashar,
A. Patra, J. Sethian, S. Wild, K. Willcox, and S. Lee. Workshop report on basic
research needs for scientific machine learning: Core technologies for artificial
intelligence. 2 2019.

S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
A. Dener, V. Eijkhout, W. Gropp, et al. Petsc users manual. 2019.

G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 2000.
P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in neural information
processing systems, 2016.

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentia-
tion in machine learning: a survey. Journal of Marchine Learning Research, 2018.

M. Baymani, A. Kerayechian, and S. Effati. Artificial neural networks approach for
solving stokes problem. Applied Mathematics, 2010.

W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. SIAM, 2000.
C. G. Broyden. A class of methods for solving nonlinear simultaneous equations.
Mathematics of computation, 1965.

188

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally con-
nected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

J.-N. Brunet, A. Mendizabal, A. Petit, N. Golse, E. Vibert, and S. Cotin. Physics-based
deep neural network for augmented reality during liver surgery. In Medical Im-
age Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International
Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part V 22. Springer,
2019.

C. J. Burke, P. D. Aleo, Y.-C. Chen, X. Liu, J. R. Peterson, G. H. Sembroski, and J. Y.-
Y. Lin. Deblending and classifying astronomical sources with mask r-cnn deep
learning. Monthly Notices of the Royal Astronomical Society, 2019.

S. Cai, Z. Wang, S. Wang, P. Perdikaris, and G. E. Karniadakis. Physics-informed neu-
ral networks for heat transfer problems. Journal of Heat Transfer, 2021.

S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis. Physics-informed neural net-
works (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, 2022.

X.-C. Cai and M. Sarkis. A restricted additive schwarz preconditioner for general
sparse linear systems. Siam journal on scientific computing, 1999.

Y. Cao, Z. Fang, Y. Wu, D.-X. Zhou, and Q. Gu. Towards understanding the spectral
bias of deep learning. arXiv preprint arXiv:1912.01198, 2019.

M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum. A compositional object-
based approach to learning physical dynamics. arXiv preprint arXiv:1612.00341,
2016.

R. Chen, X. Jin, and H. Li. A machine learning based solver for pressure poisson
equations. Theoretical and Applied Mechanics Letters, 2022.

L. Cheng, E. A. Illarramendi, G. Bogopolsky, M. Bauerheim, and B. Cuenot. Using
neural networks to solve the 2d poisson equation for electric field computation
in plasma fluid simulations. arXiv preprint arXiv:2109.13076, 2021.

K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using RNN encoder-decoder for statistical ma-
chine translation. CoRR, 2014.

A. J. Chorin. A numerical method for solving incompressible viscous flow problems.
Journal of Computational Physics, 1967.

E. Chung, H.-H. Kim, M.-F. Lam, and L. Zhao. Learning Adaptive Coarse Spaces of
BDDC Algorithms for Stochastic Elliptic Problems with Oscillatory and High Con-
trast Coefficients. Mathematical and Computational Applications, June 2021.

189

J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent
neural networks on sequence modeling. CoRR, 2014.

C. Cortes, M. Mohri, and A. Rostamizadeh. L2 regularization for learning kernels.
arXiv preprint arXiv:1205.2653, 2012.

Y. L. Cun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard, L. D. Jackel, and D. Hen-
derson. Handwritten Digit Recognition with a Back-Propagation Network. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli. Scientific
Machine Learning Through Physics–Informed Neural Networks: Where we are
and What’s Next. J Sci Comput, July 2022.

T. A. Davis. Direct methods for sparse linear systems. SIAM, 2006.
T. A. Davis, S. Rajamanickam, andW. M. Sid-Lakhdar. A survey of direct methods for
sparse linear systems. Acta Numerica, 2016.

M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information pro-
cessing systems, 2016.

M. Dissanayake andN. Phan-Thien. Neural-network-based approximations for solv-
ing partial differential equations. communications in Numerical Methods in Engi-
neering, 1994.

V. Dolean, P. Jolivet, and F. Nataf. An introduction to domain decomposition methods:
algorithms, theory, and parallel implementation. SIAM, 2015.

V. Dolean, A. Heinlein, S. Mishra, and B. Moseley. Multilevel domain decomposition-
based architectures for physics-informed neural networks, Dec. 2023.

V. Dolean, A. Heinlein, S. Mishra, and B. Moseley. Finite Basis Physics-Informed
Neural Networks as a Schwarz Domain Decomposition Method. In Domain De-
composition Methods in Science and Engineering XXVII, Cham, 2024. Springer Nature
Switzerland.

B. Donon, Z. Liu, W. Liu, I. Guyon, A. Marot, and M. Schoenauer. Deep statistical
solvers. Advances in Neural Information Processing Systems, 2020.

S. R. Dubey, S. K. Singh, and B. B. Chaudhuri. Activation functions in deep learning:
A comprehensive survey and benchmark. Neurocomputing, 2022.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 2011.

190

V. Dwivedi, N. Parashar, and B. Srinivasan. Distributed learningmachines for solving
forward and inverse problems in partial differential equations. Neurocomputing,
2021.

B. J. Erickson, P. Korfiatis, Z. Akkus, and T. L. Kline. Machine learning for medical
imaging. Radiographics, 2017.

W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. Graph neural networks for
social recommendation. In The world wide web conference, 2019.

S. Farrens, A. Lacan, A. Guinot, and A. Vitorelli. Deep transfer learning for blended
source identification in galaxy survey data. Astronomy & Astrophysics, 2022.

M. Fey and J. E. Lenssen. Fast graph representation learningwith pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

K. Fukami, K. Fukagata, and K. Taira. Super-resolution reconstruction of turbulent
flows with machine learning. Journal of Fluid Mechanics, 2019.

M. J. Gander et al. Schwarz methods over the course of time. Electron. Trans. Numer.
Anal, 2008.

H. Gao and S. Ji. Graph u-nets. In international conference onmachine learning. PMLR,
2019a.

H. Gao and S. Ji. Graph u-nets. In international conference onmachine learning. PMLR,
2019b.

A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. "
O’Reilly Media, Inc.", 2022.

C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite elementmesh generatorwith built-
in pre-and post-processing facilities. International journal for numerical methods
in engineering, 2009.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning.
PMLR, 2017.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Message passing
neural networks. Machine learning meets quantum physics, 2020.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artifi-
cial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2010.

191

G. H. Golub and H. A. Van der Vorst. Eigenvalue computation in the 20th century.
Journal of Computational and Applied Mathematics, 2000.

G. H. Golub and A. J. Wathen. An iteration for indefinite systems and its application
to the navier–stokes equations. SIAM Journal on Scientific Computing, 1998.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial networks. Communications
of the ACM, 2020.

A. Greenbaum. Iterative methods for solving linear systems. SIAM, 1997.
P. M. Gresho and R. L. Sani. Incompressible flow and the finite element method.
volume 2: Incompressible flow and finite element. 12 1998.

J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai,
et al. Recent advances in convolutional neural networks. Pattern recognition, 2018.

X. Guo, W. Li, and F. Iorio. Convolutional neural networks for steady flow approxima-
tion. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, 2016.

E. Hajiramezanali, A. Hasanzadeh, K. Narayanan, N. Duffield, M. Zhou, and X. Qian.
Variational graph recurrent neural networks. Advances in neural information pro-
cessing systems, 2019.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 2017.

W. L. Hamilton. Graph representation learning. Morgan & Claypool Publishers, 2020.
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
CoRR, 2015.

A. Heinlein, A. Klawonn, M. Lanser, and J. Weber. Machine Learning in Adaptive
Domain Decomposition Methods—Predicting the Geometric Location of Con-
straints. SIAM J. Sci. Comput., Jan. 2019.

A. Heinlein, A. Klawonn, M. Lanser, and J. Weber. Combining machine learning
and domain decomposition methods for the solution of partial differential equa-
tions—A review. GAMM-Mitteilungen, Mar. 2021a.

A. Heinlein, A. Klawonn, M. Lanser, and J. Weber. Combining Machine Learning
and Adaptive Coarse Spaces—A Hybrid Approach for Robust FETI-DP Methods in
Three Dimensions. SIAM J. Sci. Comput., Jan. 2021b.

192

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
12 1997.

M. Horie and N. Mitsume. Physics-embedded neural networks: E (n)-equivariant
graph neural pde solvers. arXiv preprint arXiv:2205.11912, 2022.

J.-T. Hsieh, S. Zhao, S. Eismann, L. Mirabella, and S. Ermon. Learning neural pde
solvers with convergence guarantees. arXiv preprint arXiv:1906.01200, 2019.

Z. Hu, A. D. Jagtap, G. E. Karniadakis, and K. Kawaguchi. When Do Extended Physics-
InformedNeural Networks (XPINNs) Improve Generalization? SIAM J. Sci. Comput.,
Oct. 2022.

M. F. Hutchinson. A stochastic estimator of the trace of the influence matrix for
laplacian smoothing splines. Communications in Statistics-Simulation and Compu-
tation, 1990.

E. A. Illarramendi, M. Bauerheim, and B. Cuenot. Performance and accuracy assess-
ments of an incompressible fluid solver coupled with a deep convolutional neural
network. arXiv preprint arXiv:2109.09363, 2021.

A. D. Jagtap, E. Kharazmi, and G. E. Karniadakis. Conservative physics-informed neu-
ral networks on discrete domains for conservation laws: Applications to forward
and inverse problems. Computer Methods in Applied Mechanics and Engineering,
June 2020.

A. D. J. . G. E. Karniadakis. Extended Physics-Informed Neural Networks (XPINNs):
A Generalized Space-Time Domain Decomposition Based Deep Learning Frame-
work for Nonlinear Partial Differential Equations. CiCP, June 2020.

G. Karypis and V. Kumar. Metis: A software package for partitioning unstructured
graphs, partitioningmeshes, and computing fill-reducing orderings of sparsema-
trices. 1997.

M. Kawaguti. Numerical solution of the navier-stokes equations for the flow around
a circular cylinder at reynolds number 40. Journal of the Physical Society of Japan,
1953a.

M. Kawaguti. Numerical solution of the navier-stokes equations for the flow around
a circular cylinder at reynolds number 40. Journal of the Physical Society of Japan,
1953b.

E. Kharazmi, Z. Zhang, and G. E. Karniadakis. hp-vpinns: Variational physics-
informed neural networks with domain decomposition. Computer Methods in Ap-
plied Mechanics and Engineering, 2021.

193

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016a.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016b.

T. N. Kipf and M. Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016c.

G. Kissas, Y. Yang, E. Hwuang, W. R. Witschey, J. A. Detre, and P. Perdikaris. Ma-
chine learning in cardiovascular flows modeling: Predicting arterial blood pres-
sure from non-invasive 4D flow MRI data using physics-informed neural net-
works. Computer Methods in Applied Mechanics and Engineering, Jan. 2020.

A. Klawonn, M. Lanser, and J. Weber. Machine learning and domain decomposition
methods – a survey, Dec. 2023.

A. Klawonn, M. Lanser, and J. Weber. Learning adaptive coarse basis functions of
FETI-DP. Journal of Computational Physics, Jan. 2024.

T. Knoke, S. Kinnewig, S. Beuchler, A. Demircan, U. Morgner, and T. Wick. Do-
main Decomposition with Neural Network Interface Approximations for time-
harmonic Maxwell’s equations with different wave numbers, Mar. 2023.

D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer. Machine
learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 2021.

A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney. Characterizing
possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 2021.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems,
2012.

M. Kumar and N. Yadav. Multilayer perceptrons and radial basis function neural
network methods for the solution of differential equations: a survey. Computers
& Mathematics with Applications, 2011.

I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary
and partial differential equations. IEEE transactions on neural networks, 1998.

194

H. P. Langtangen and A. Logg. Solving PDEs in python: the FEniCS tutorial I. Springer
Nature, 2017.

H. P. Langtangen and K.-A. Mardal. Introduction to Numerical Methods for Variational
Problems. 01 2019.

H. P. Langtangen, K.-A. Mardal, and R. Winther. Numerical methods for incompress-
ible viscous flow. Advances in Water Resources, 2002.

M. G. Larson and F. Bengzon. The finite element method: theory, implementation, and
applications. Springer Science & Business Media, 2013.

Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 1995.

H. Lee and I. S. Kang. Neural algorithm for solving differential equations. Journal of
Computational Physics, 1990.

J. Lee, I. Lee, and J. Kang. Self-attention graph pooling. In International conference on
machine learning. PMLR, 2019.

K. Li, K. Tang, T. Wu, and Q. Liao. D3M: A Deep Domain Decomposition Method for
Partial Differential Equations. IEEE Access, 2020a.

S. Li, Y. Xia, Y. Liu, and Q. Liao. A deep domain decomposition method based on
fourier features. Journal of Computational and Applied Mathematics, 2023.

W. Li, X. Xiang, and Y. Xu. Deep Domain Decomposition Method: Elliptic Problems.
In Proceedings of The First Mathematical and Scientific Machine Learning Conference.
PMLR, Aug. 2020b.

W. Li, M. Z. Bazant, and J. Zhu. A physics-guided neural network framework for
elastic plates: Comparison of governing equations-based and energy-based ap-
proaches. Computer Methods in Applied Mechanics and Engineering, Sept. 2021.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Neural operator: Graph kernel network for partial differential equations.
arXiv preprint arXiv:2003.03485, 2020c.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, A. Stuart, K. Bhattacharya, and A. Anand-
kumar. Multipole graph neural operator for parametric partial differential equa-
tions. Advances in Neural Information Processing Systems, 2020d.

M. Lino, C. Cantwell, A. A. Bharath, and S. Fotiadis. Simulating continuummechanics
with multi-scale graph neural networks. arXiv preprint arXiv:2106.04900, 2021a.

195

M. Lino, C. Cantwell, A. A. Bharath, and S. Fotiadis. Simulating continuummechanics
with multi-scale graph neural networks. arXiv preprint arXiv:2106.04900, 2021b.

P.-L. Lions. On the schwarz alternating method. iii: a variant for nonoverlapping
subdomains. In Third international symposium on domain decomposition methods
for partial differential equations. SIAM Philadelphia, 1990.

W. Liu, M. Yagoubi, and M. Schoenauer. Multi-resolution graph neural networks
for pde approximation. In Artificial Neural Networks and Machine Learning–ICANN
2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia,
September 14–17, 2021, Proceedings, Part III 30. Springer, 2021.

D. Lucor, A. Agrawal, and A. Sergent. Physics-aware deep neural networks for sur-
rogate modeling of turbulent natural convection, Mar. 2021.

J. Mandel* and B. Sousedík. Coarse spaces over the ages. In Domain decomposition
methods in science and engineering XIX. Springer, 2010.

Z. Mao, A. D. Jagtap, and G. E. Karniadakis. Physics-informed neural networks for
high-speed flows. Computer Methods in Applied Mechanics and Engineering, Mar.
2020.

S.Mishra andR.Molinaro. Estimates on the generalization error of physics informed
neural networks (pinns) for approximating pdes, 2023.

F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, andM.M. Bronstein. Geometric
deep learning on graphs andmanifolds usingmixturemodel cnns. In Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017.

B. Moseley, A. Markham, and T. Nissen-Meyer. Finite basis physics-informed neu-
ral networks (FBPINNs): a scalable domain decomposition approach for solving
differential equations. Adv Comput Math, July 2023.

M. A. Nabian, R. J. Gladstone, and H. Meidani. Efficient training of physics-informed
neural networks via importance sampling. Computer-Aided Civil and Infrastructure
Engineering, 2021.

R. A. Nicolaides. Deflation of conjugate gradients with applications to boundary
value problems. SIAM Journal on Numerical Analysis, 1987.

S. E. Otto and C. W. Rowley. Linearly recurrent autoencoder networks for learning
dynamics. SIAM Journal on Applied Dynamical Systems, 2019.

A. G. Özbay, A. Hamzehloo, S. Laizet, P. Tzirakis, G. Rizos, and B. Schuller. Poisson
cnn: Convolutional neural networks for the solution of the poisson equation on
a cartesian mesh. Data-Centric Engineering, 2021.

196

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

S. V. Patankar. Numerical heat transfer and fluid flow. Hemisphere Publishing Cor-
poration (CRC Press, Taylor & Francis Group), 1980.

T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

M. Raissi and G. E. Karniadakis. Hidden physics models: Machine learning of non-
linear partial differential equations. Journal of Computational Physics, 2018.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational physics, 2019a.

M. Raissi, Z.Wang, M. S. Triantafyllou, andG. E. Karniadakis. Deep learning of vortex-
induced vibrations. Journal of Fluid Mechanics, Feb. 2019b.

M. Raissi, A. Yazdani, and G. E. Karniadakis. Hidden fluid mechanics: Learning ve-
locity and pressure fields from flow visualizations. Science, 2020.

C. Rao, H. Sun, and Y. Liu. Physics-informed deep learning for incompressible lami-
nar flows. Theoretical and Applied Mechanics Letters, 2020.

F. Recknagel. Applications of machine learning to ecological modelling. Ecological
modelling, 2001.

J. N. Reddy. Introduction to the finite element method. McGraw-Hill Education, 2019.
O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention. Springer, 2015.

D. J. Rose and R. E. Tarjan. Algorithmic aspects of vertex elimination on directed
graphs. SIAM Journal on Applied Mathematics, 1978.

J. W. Ruge and K. Stüben. Algebraic multigrid. In Multigrid methods. SIAM, 1987.
L. Ruiz, F. Gama, and A. Ribeiro. Gated graph recurrent neural networks. IEEE Trans-
actions on Signal Processing, 2020.

D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al. Learning internal representations
by error propagation, 1985.

Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

197

A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell,
and P. Battaglia. Graph networks as learnable physics engines for inference and
control. In International Conference on Machine Learning. PMLR, 2018.

A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia. Learn-
ing to simulate complex physics with graph networks. In International Conference
on Machine Learning. PMLR, 2020.

M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher. Benchmark computations
of laminar flow around a cylinder. Springer, 1996.

H. A. Schwarz. Ueber einen Grenzübergang durch alternirendes Verfahren. Zürcher u.
Furrer, 1870.

K. Selim, A. Logg, andM. Larson. An adaptive finite element splitting method for the
incompressible navier-stokes equations. Computer Methods in Applied Mechanics
and Engineering, 05 2012.

J. Sherman and W. J. Morrison. Adjustment of an inverse matrix corresponding to
a change in one element of a given matrix. The Annals of Mathematical Statistics,
1950.

D. Silvester and A. Wathen. Fast iterative solution of stabilised stokes systems part
ii: Using general block preconditioners. SIAM Journal on Numerical Analysis, 1994.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

N. Smaoui and S. Al-Enezi. Modelling the dynamics of nonlinear partial differential
equations using neural networks. Journal of Computational and Applied Mathemat-
ics, 2004.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 2014.

L. Sun, H. Gao, S. Pan, and J.-X. Wang. Surrogate modeling for fluid flows based on
physics-constrained deep learning without simulation data. Computer Methods in
Applied Mechanics and Engineering, 2020.

A. Taghibakhshi, T. Zaman, L. Olson, N. Nytko, and S.MacLachlan. Learning Interface
Conditions in Domain Decomposition Solvers.

A. Taghibakhshi, N. Nytko, T. U. Zaman, S. Maclachlan, L. Olson, and M. West. MG-
GNN: Multigrid Graph Neural Networks for Learning Multilevel Domain Decom-
position Methods. In Proceedings of the 40th International Conference on Machine
Learning. PMLR, July 2023.

198

W. Tang, T. Shan, X. Dang, M. Li, F. Yang, S. Xu, and J. Wu. Study on a poisson’s
equation solver based on deep learning technique. In 2017 IEEE Electrical Design
of Advanced Packaging and Systems Symposium (EDAPS). IEEE, 2017.

C. Taylor and P. Hood. A numerical solution of the navier-stokes equations using
the finite element technique. Computers & Fluids, 1973.

A. Thom. The flow past circular cylinders at low speeds. Proceedings of the Royal Soci-
ety of London. Series A, Containing Papers of a Mathematical and Physical Character,
1933.

T. Tieleman, G. Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning,
2012.

A. Toselli and O. Widlund. Domain decomposition methods-algorithms and theory.
Springer Science & Business Media, 2004.

J. Tu, G. H. Yeoh, and C. Liu. Computational Fluid Dynamics: A Practical Approach.
Butterworth-Heinemann, USA, 2007.

K. Um, R. Brand, Y. R. Fei, P. Holl, and N. Thuerey. Solver-in-the-loop: Learning from
differentiable physics to interact with iterative pde-solvers. Advances in Neural
Information Processing Systems, 2020.

J. E. Van Engelen and H. H. Hoos. A survey on semi-supervised learning. Machine
learning, 2020.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903, 2017a.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903, 2017b.

Q. Wang, Y. Ma, K. Zhao, and Y. Tian. A comprehensive survey of loss functions in
machine learning. Annals of Data Science, 2020.

S. Wang, X. Yu, and P. Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 2022a.

S. Wang, X. Yu, and P. Perdikaris. When andwhy PINNs fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, Jan. 2022b.

Y. Wang. Solving incompressible Navier-Stokes equations on heterogeneous parallel
architectures. Theses, Université Paris Sud - Paris XI, Apr. 2015.

199

S. Wiewel, M. Becher, and N. Thuerey. Latent space physics: Towards learning the
temporal evolution of fluid flow. In Computer graphics forum. Wiley Online Library,
2019.

F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger. Simplifying graph con-
volutional networks. In International conference on machine learning. PMLR, 2019.

J.-L. Wu, H. Xiao, and E. Paterson. Physics-informed machine learning approach for
augmenting turbulence models: A comprehensive framework. Physical Review
Fluids, 2018.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey on
graph neural networks. IEEE transactions on neural networks and learning systems,
2020.

X. I. A. Yang, S. Zafar, J.-X. Wang, and H. Xiao. Predictive large-eddy-simulation wall
modeling via physics-informed neural networks. Phys. Rev. Fluids, Mar. 2019.

E. Yilmaz and B. German. A convolutional neural network approach to training pre-
dictors for airfoil performance. In 18th AIAA/ISSMO multidisciplinary analysis and
optimization conference, 2017.

M. Yin, X. Zheng, J. D. Humphrey, and G. E. Karniadakis. Non-invasive inference of
thrombus material properties with physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, Mar. 2021.

B. Yu et al. The deep ritz method: a deep learning-based numerical algorithm for
solving variational problems. Communications in Mathematics and Statistics, 2018.

J. Zhang, X. Shi, J. Xie, H.Ma, I. King, andD.-Y. Yeung. Gaan: Gated attention networks
for learning on large and spatiotemporal graphs. arXiv preprint arXiv:1803.07294,
2018a.

J. Zhang, T. He, S. Sra, and A. Jadbabaie. Why gradient clipping accelerates training:
A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

M. Zhang and Y. Chen. Link prediction based on graph neural networks. Advances
in neural information processing systems, 2018.

M. Zhang, Z. Cui, M. Neumann, and Y. Chen. An end-to-end deep learning archi-
tecture for graph classification. In Proceedings of the AAAI conference on artificial
intelligence, 2018b.

Q. Zhu, Z. Liu, and J. Yan. Machine learning for metal additive manufacturing: pre-
dicting temperature and melt pool fluid dynamics using physics-informed neural
networks. Computational Mechanics, 2021.

200

	Motivations & Outline
	I Background and State-of-the-art
	Introduction to Computational Fluid Dynamics
	Governing equations in fluid mechanics
	Numerical strategies for incompressible flow
	The Finite Element method
	Synthetical test cases
	Conclusion

	Introduction to Deep Learning
	Artificial Neural Networks
	Training a Deep Learning model
	Convolutional Neural Networks
	Graph Neural Networks

	Machine Learning for Physics Simulations
	CNNs for physics simulations
	GNNs for physics simulations
	The Physics-Informed approach (PINN)
	Deep Statistical Solvers
	Thesis contributions

	II Graph Neural Network Solvers for Poisson-like problems
	General framework
	Problem statement
	Statistical problem
	Dataset description

	Deep Statistical Solvers
	Introduction
	Methodology
	Experiments & Results
	Limitations

	DS-GPS : A Recurrent GNN Solver
	Introduction
	Methodology
	Experiments & Results
	Conclusion and Limitations

	-GNN : An Implicit GNN Solver
	Introduction
	Methodology
	Theoretical properties
	Experiments & Results
	Discussion and Conclusions

	III Hybrid Solvers
	Introduction to Schwarz methods
	Overview of Schwarz methods
	Discrete formulations
	Schwarz methods as iterative solvers
	Schwarz methods as preconditioners
	Two-level methods

	Hybrid Solvers for Large-Scale Problem Solving
	Introduction
	Machine Learning and Domain Decomposition
	-GNN-Jacobi-Schwarz iterative method
	GNN-based Schwarz Preconditioner
	Conclusion & Discussions

	Conclusion

