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Discipline : Génie Mécanique, Génie Civil

Spécialité : Mécanique
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Résumé

Ce travail concerne le développement d’un modèle d’ordre réduit non-intrusif de structures non-
linéaires géométriques, en vue de remplacer le solveur non-linéaire structure dans le cadre d’un
couplage partitionné pour la résolution numérique de problèmes d’interaction fluide-structure et
en particulier la prédiction des phénomènes d’aéroélasticité rencontrés au sein des turbomachines.
La formulation proposée pour construire ce modèle réduit est basée sur la projection des équa-
tions sur une base de dimension réduite, contenant à la fois des modes linéaires de la structure
ainsi que des modes duaux. Ces derniers ont pour but d’enrichir la base de modes propres afin
de capturer les comportements non-linéaires. Une méthode originale de calcul des coefficients des
efforts non-linéaires projetés dans cette base est également proposée. Des efforts sont imposés à la
structure contrairement aux déplacements imposés habituellement utilisés. Ainsi, les mêmes cas
de chargement peuvent être utilisés à la fois pour la détermination des modes duaux et pour celle
des coefficients des efforts non-linéaires projetés. Dans ce manuscrit, la méthodologie de construc-
tion du modèle réduit est détaillée. Elle est validée dans un premier temps sur un cas simple de
poutre non-linéaire d’Euler-Bernoulli soumise à différents cas de chargement, y compris dans le
cadre d’un couplage fluide-structure partitionné impliquant des vibrations induites par des vortex.
La capacité de ce modèle réduit à remplacer un solveur éléments finis non linéaire y est démontrée.
Une validation sur des cas d’application 3D est également proposée, dont le cas complexe d’une
aube de soufflante d’un moteur réaliste soumise à un chargement aérodynamique instationnaire.

Mots clés : Dynamique des structures, vibrations, non-linéarités géométriques, réduction de
modèle, interaction fluide-structure, aéroélasticité.





Abstract

This work concerns the development of a reduced order model for geometric nonlinear structures,
to replace the nonlinear structure solver within the framework of partitioned coupling for the nu-
merical resolution of fluid-structure interaction problems, and thus the prediction of aeroelasticity
phenomena encountered in turbomachinery. The construction of the reduced order model is based
on a projection of the equations into a basis of reduced dimension, containing both linear modes
of the structure and dual modes. The purpose of the latter is to enhance the basis of linear normal
modes in order to capture the non-linearity. An original method for calculating the coefficients of
the non-linear forces projected into this basis is also proposed. Forces are imposed on the struc-
ture, as opposed to the usual approach of imposed displacements. The same loading cases can thus
be used to determine both the dual modes and the coefficients of the projected non-linear forces.
In this thesis, the methodology to build the reduced order model is detailed. It is first validated
on a simple case of a nonlinear Euler-Bernoulli beam subjected to different loading conditions,
including a partitioned fluid-structure coupling involving vortex-induced vibrations. The ability of
this reduced order model to replace a nonlinear finite element solver is demonstrated in this last
application. Validation on 3D cases is also proposed, including the complex geometry of a realistic
engine fan blade subjected to unsteady aerodynamic loading.

Keywords : Structural dynamics, vibrations, geometric nonlinearity, reduced order model, fluid-
structure interaction, aeroelasticity.
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Introduction

Context

The proven impact of human activity on global warming and the need to preserve the environment
means reducing greenhouse gas emissions. With an average of 100,000 flights a day worldwide,
the air transport sector is particularly concerned, and projects to reduce greenhouse gas emissions
are underway. For example, the European Clean Sky project, renewed in 2014 as Clean Sky 2
[28], is an integral part of the European Commission’s Horizon 2020 Research and Innovation
Program, which aims to develop greener air transport technologies by improving engine efficiency
and reducing CO2 emissions. These programs are continuing in Clean Aviation, particularly at
the European level. The aim is to accelerate technological progress in the aviation sector to
make the European aeronautics industry more competitive and environmentally friendly, through
the development of disruptive technologies to replace the current fleet of aircraft and achieve
the European Commission’s Flightpath 2050 goals [48] set by ACARE (Advisory Council for
Aeronautics Research in Europe). These goals include a 75% reduction in CO2 emissions per
passenger kilometer, and a 90% reduction in nitrogen oxide (NOx) emissions.

As part of their drive to reduce engine fuel consumption, aerospace manufacturers are seeking
to increase engine bypass ratios (the ratio between primary and secondary flows) by increasing the
secondary flow, thereby boosting thrust and improving efficiency. This means increasing the size
of the blades or propellers. Figure 1 illustrates an Ultra High Bypass Ratio (UHBR) jet engine, a
ducted engine with an expected bypass ratio of 15:1. It means that for every volume of air passing
through the combustion chamber (the primary flow), 15 volumes of air bypass it (the secondary
flow). By contrast, the bypass ratio of the LEAP engine is 11:1, and that of the CFM56 is 6:1.

Figure 1: Ultra High Bypass Ratio engine developed jointly by Safran and GE Aerospace in the
CFM company

To further increase the bypass ratio, unshrouded engine architectures called unducted fans are
under study. Examples of unducted fans are presented in Figure 2. Safran proposed a demonstrator
of an unducted fan with contra-rotating blades called Open-Rotor, illustrated in Figure 2b. The
architecture of the latter aims to reduce fuel consumption by 15% compared with the ducted LEAP
engine. The engine is only a demonstrator and not commercialized due to its complexity. On the
contrary, the Revolutionary Innovation for Sustainable Engines (RISE) aircraft engine shown in
Figure 2a consists of a rotating fan and a stator. It is under development jointly by Safran and
GE Aerospace in the CFM company.
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(a) RISE aircraft engine (Safran-GE) (b) Open-rotor (Safran)

Figure 2: New generation of unducted fans (propfans): RISE (a) and Open-rotor (b) aircraft
engines.

To guarantee excellent structural properties with limited weight, complex assemblies of lighter
materials are used. Since the structures are light and slender, they are more flexible. As a result,
these structures are prone to significant structural displacements outside the linear framework,
known as geometric non-linearities. Non-linear effects due to the large-amplitude displacements of
these flexible structures can significantly alter vibration levels under aerodynamic loads. A non-
linear modeling of the structure is therefore necessary to accurately assess the levels of vibration
and to characterize aeroelastic phenomena such as flutter and forced response, which require the
resolution of a coupled problem taking into account both the fluid and the structural domains.
One approach to solve large-scale aeroelastic problems is to couple two different nonlinear solvers,
the first for the fluid domain and the second for the structure domain. The problem is twofold:
on the one hand, the coupling between the solvers leads to computation times too significant to
be acceptable in industry. On the other hand, coupling dedicated solvers (sometimes black box
commercial solvers) is cumbersome to manage in terms of computer architecture and information
transfer from one solver to the other. This is particularly highlighted in the case of dynamic
computations.

Objectives

For industrial configurations, aeroelastic analyses are traditionally conducted by coupling a fluid
solver and a linear reduced-order model for the structure. This reduces computation time and
greatly facilitates the coupling. However, linear calculations and predictions of aeroelastic phe-
nomena are no longer sufficient, and geometric non-linearities should be taken into account in
aeroelastic calculations. In the literature, model reduction methods to capture geometric non-
linearity have been proposed, but these generally address structural issues alone and are not
always compatible with the particular nature of aerodynamic loads or adapted to a coupling with
another solver. This is the reason for this study. The purpose of this PhD work is therefore to
develop a nonlinear reduced order model (ROM) of the structure which can be coupled with a
nonlinear fluid solver (CFD) in order to ease nonlinear aeroelastic analyses. The ROM must be
independent of the full-order model (FOM) in the sense that it should not rely on any call to an
external solver during the computations, but only requires knowledge of the reduced variables.
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Organization of the manuscript

In Chapter 1, the formalism needed to build reduced models for rotating structures subject to
geometric non-linearities is introduced. To this end, the equations of the vibratory dynamics of
rotating structures are first introduced. Subsequently, time and frequency resolution methods for
structural dynamics are presented. Finally, various model reduction methods for geometrically
non-linear structures are described.

The aim of Chapter 2 is to build and validate a reduced-order model characterizing the geo-
metric non-linear displacements of a structure, which could be connected to an external fluid solver.
An extensive literature review on reduced order models is conducted to base our developments on
projection based reduced order models which could be coupled to a fluid solver, while still ac-
counting for geometric non-linear deformations. We specifically develop a reduction method based
on dual modes with an innovative way of calculating the coefficients of the projected non-linear
forces. The aim is to set up a construction process enabling the model to be built systematically,
so that the reduced order model is usable for different test cases. This is achieved by developing
a methodology for constructing the reduction base, and by formatting the calculation of the in-
ternal non-linear forces in the form of a linear system solution to facilitate the resolution. Finally,
we study the ability of the reduced model to characterize geometric non-linear deformations and
compare the results with other reduction methods from the literature on the 2D case of an Euler-
Bernoulli beam with von Kármán hypothesis. Different load cases are studied, in the configuration
with and without centrifugal rotation.

The purpose of Chapter 3 is to assess the ability of the proposed reduced model to handle 3D
finite element cases for further use on complex geometries. To this end, we consider a structure
analogous to the beam studied in Chapter 2, but this time meshed with 3D finite elements. The
reduction method proposed in Chapter 2 is applied to this structure, and the results of the reduced
model are in good agreement with those of the full finite element calculations for a vertical loading
case, with and without considering centrifugal rotation.

Chapter 4 is dedicated to the introduction of the formalism needed to deal with cases of
fluid-structure interaction. To this end, the fluid equations and the arbitrary Lagrangian-Eulerian
formulation are first introduced to study fluid dynamics in a moving mesh. Coupling methods for
dealing with coupled fluid-structure problems are then presented, along with transfer methods for
communicating displacements and forces from one mesh to another.

The aim of Chapter 5 is to demonstrate the ability of the non-linear ROM built in chapter 2
to perform fluid-structure coupling on a 2D case between this model and an external fluid solver.
This is done by making the two solvers communicate with one another to achieve a partitioned
coupling. The fluid-structure interaction consists of the beam studied in Chapter 2, excited by
the von Kármán vortex wake downstream of a fixed cylinder. The ability of the reduced model to
reproduce the high-fidelity solution is demonstrated, notably by accurately recovering the lock-in
phenomenon observed for a certain range of Reynolds numbers.

The objective of Chapter 6 is to consider an industrial application case in order to validate the
reduction approach for realistic structures. To this end, we consider a turbomachinery blade for
which we build our reduced model around a rotation speed corresponding to a nominal operating
case. We first compare the results of the reduced model with those of full finite element calculations
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for arbitrarily chosen load cases. We then recover the unsteady loads acting on the blade from
CFD calculations for the full 360° configuration of the nacelle and apply to the blade a load derived
from the distribution of the unsteady forcing. The results obtained with the reduced model are
compared to those of a high-fidelity calculation highlighting a very good agreement with a reduced
order model of small size and negligible computational cost.



Chapter 1

Model order reduction for geometrical
nonlinear structures in rotation

The purpose of the present chapter is first to present the equations of the dynamics relative to a
structure in rotation subject to geometric nonlinearities. Then temporal and frequency methods of
resolution of the latter equation are presented. The final section consists of a short introduction to
various reduction techniques present in the literature to tackle geometrically nonlinear structures.
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1.1 Dynamic equations of motion for geometrical nonlinear struc-
tures in rotation

In this section, the dynamic equation of motion for geometrically nonlinear structures in rotation
is established. First, the kinematics of a deformable solid in rotation [67, 72] is presented, then
the principle of virtual work is formulated in the moving frame and transposed to the reference
configuration of the solid [42, 170]. Subsequently, the continuous equations are discretized with a
Galerkin approximation and using Finite Elements (FE) to obtain the dynamic equation of motion
in matrix form, with a focus at the end of the section on the case of a constant rotation speed.

1.1.1 Solid kinematics

A deformable solid S of volume Ω0 and surface ∂Ω0 is considered. In this solid, a material point
M of the reference undeformed configuration is defined in the frame Rm = (ex, ey, ez) by

OM =X =



X1

X2

X3




Rm

. (1.1)

The current position of the material point M is defined by OM = x =
(
x1 x2 x3

)T
Rm

in the
deformed configuration. The bijective function Φ links the current position x of the material point
to its position X in the reference undeformed configuration: x = Φ(X, t). The vector u links
the material point M in the reference configuration to the same material point M in the current
configuration:

u(X, t) = Φ(X, t)−X = x−X. (1.2)

Figure 1.1 illustrates the aforementioned notations linking the solid in the reference configuration
its the deformed configuration.

O

ex

ey ey

ez

Reference configuration

X

M
S

Rm

O

ex

ez

Deformed configuration

M

S

u

Rm

x
=
X
+
uX

M

Figure 1.1: Reference and deformed configurations of the solid.
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A fixed inertial frame Rg = (êx, êy, êz) is introduced to distinguish it from the local moving frame
linked to the solid Rm. The movement of the frame Rm regarding the frame Rg is composed of
a translation (written ŝ(t) with coordinates expressed in Rg) and a rotation (written ω(t) with
coordinates expressed in Rm). Figure 1.2 illustrates the movement and deformation of the solid
with time. As shown on the figure, the initial state at t = 0 may be different from the undeformed
configuration of the solid. Indeed, the initial position can be a prestressed position of the solid.
The position of the material point M is described in the moving frame Rm by:

OM =X + u(X, t) = x. (1.3)

Rg

Og

O0

O

êy

êx

ex0

ey0

ey

ex

ez

ω(t)

ŝ(t)

ez0

Initial state (t = 0)

Current state (t > 0)
M0

M(t)

u0

u(
t)x 0

=
X
+
u 0

x
(t
)
=
X

+
u
(t
)

X

X

M

êz

Rm

Rm

M

Figure 1.2: Kinematics of the solid.

The aim is to study the dynamics of the structure in the moving frame. However, the dynamics
equation of motion derives from the local equation of conservation of momentum (Newton’s law of
motion) which is valid in an inertial frame, not in a moving frame. Therefore, the idea is to express
the conservation of momentum in the inertial frame Rg, but with the displacements defined with
respect to the moving frame Rm. The first step consists in writing the acceleration with respect
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to the inertial frame Rg of a material point M of the solid. The relation of composition of the
accelerations stipulates that:

a(M, t)/Rg
= a(M, t)/Rm︸ ︷︷ ︸

relative acceleration

(1.4)

+ a(O, t)/Rg
+ ω × (ω ×OM) +

dω

dt
×OM

︸ ︷︷ ︸
drive acceleration

(1.5)

+ 2ω × dOM

dt

∣∣∣∣
Rm︸ ︷︷ ︸

coriolis acceleration

, (1.6)

where the coordinates of the vectors are expressed in Rm. In this equation, the terms a(M, t)/Rg

and a(M, t)/Rm
are the acceleration of the material point M respectively in the frames Rg and

Rm, while a(O, t)/Rg
is the acceleration of the point O with respect to Rg. The relative velocity

dOM
dt |Rm is the velocity of the material point M with respect to the moving frame Rm. The frame

is not specified in the time derivative of the vector of angular velocity dω/dt = ω̇ since it can be
shown that it is independent from the referential of derivation.
In Equation (1.4), the expression of the relative velocity and acceleration are:

dOM

dt

∣∣∣∣
Rm

= ẋ = u̇, (1.7)

a(M, t)/Rm
=

d2OM

dt2

∣∣∣∣
Rm

= ẍ = ü. (1.8)

Regarding the acceleration a(O, t)/Rg
of the point O, it is convenient to write its coordinates in

Rg, then use a rotation matrix to obtain its coordinates in Rm. To describe in Rg the movement
of a vector whose coordinates are given the moving frame Rm, the following rotation matrix R is
considered:

R =



⟨ex, êx⟩ ⟨ey, êx⟩ ⟨ez, êx⟩
⟨ex, êy⟩ ⟨ey, êy⟩ ⟨ez, êy⟩
⟨ex, êz⟩ ⟨ey, êz⟩ ⟨ez, êz⟩


 . (1.9)

The rotation matrix is orthogonal: RTR = I = RRT . Conversely, the rotation matrix RT provides
with a matrix product the coordinates in Rm of a vector whose coordinates are initially given in
Rg. Deriving the orthogonality relation, the matrix Ω = Ṙ

T
R is introduced:

∂RTR

∂t
= 0, (1.10)

Ṙ
T
R+RT Ṙ = Ω+ΩT = 0. (1.11)

The matrix Ω is a skew-symmetric matrix of dimension three and has therefore only three in-
dependent components. These components are those of the unique angular velocity vector ω =(
ω1(t) ω2(t) ω3(t)

)T
Rm

:

Ω =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (1.12)

The acceleration of the point O with respect to the inertial frame Rg is written ¨̂s. Using the
rotation matrix RT , the expression in the moving frame Rm of such accelerations is:

a(O, t)/Rg
= RT ¨̂s. (1.13)
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Hence, replacing in Equation (1.4), the expression of the acceleration of the material point M with
respect to the inertial frame Rg, with coordinates expressed in the moving frame Rm becomes:

a(M, t)/Rg
= ü+RT ¨̂s+ ω × (ω × (X + u)) + ω̇ × (X + u) + 2ω × u̇. (1.14)

In what follows, the notation ¨̂y is used to describe, with coordinates defined in Rg, the acceleration
of the material point M with respect to the aforementioned inertial frame Rg. Thus, the left
member of Equation (1.14) becomes a(M, t)/Rg

= RT ¨̂y. Besides, the matrix Ω is used to replace
the cross products by matrix products, leading to:

RT ¨̂y = ü+RT ¨̂s+Ω2(X + u) + Ω̇(X + u) + 2Ωu̇. (1.15)

In this section, the kinematics of a deformable solid in rotation were detailed. The acceleration
of a material point regarding the inertial frame was written according to its displacement expressed
in the moving frame.

1.1.2 Strong and weak formulation of the principle of virtual work

The local equation of conservation of momentum is applied in the inertial frame Rg. The coordi-
nates of the quantities involved are written in the current configuration as follows:

div (σ(x, t)) + ρ(x)bv(x, t) = ρ(x)RT ¨̂y, (1.16)

with σ the Cauchy stress tensor and bv the volume forces. The border ∂Ω of the solid S is
partitioned into the sub-border Sd where Dirichlet boundary conditions are applied u(x, t) =

ud(x, t) and the sub-border Γ where Neumann boundary conditions are applied σ(x, t)n(x, t) =
t(x, t) with n is the normal vector pointing outwards of the solid domain and t the imposed surface
force. The sub-borders satisfy the relations: Sd∪Γ = ∂Ω and Sd∩Γ = ∅. The strong formulation
of the problem consists in searching the solution of the following system in the set of functions
belonging to the second order differentiability class C2(Ω):





Local conservation of momentum:

div (σ(x, t)) + ρ(x)bv(x, t) = ρ(x)RT ¨̂y

Boundary conditions:

u(x, t) = ud(x, t) on Sd

σ(x, t)n(x, t) = t(x, t) on Γ

Initial conditions:

u(x, 0) = u0 ∀x ∈ Ω(t)

u̇(x, 0) = u̇0 ∀x ∈ Ω(t)

Constitutive equation:

σ(ε, ε̇)

(1.17)

The strong formulation imposes restrictive derivability conditions. The aim of the weak formu-
lation is to reduce the constraints on the derivability of the solution to a solution belonging to the
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SobolevH1(Ω) set of square-integrable functions and with derivatives also square-integrable. To do
so, the equation of conservation of momentum is multiplied by a compatible virtual displacement
δu(x) and integrated on the total volume Ω(t) to obtain the integral formulation:

∫

Ω(t)

(
div (σ) + ρbv − ρRT ¨̂y

)
· δu dΩ(t) = 0. (1.18)

Rewritten in the form:
∫

Ω(t)

div (σδu) dΩ(t)−
∫

Ω(t)

σ :∇x (δu) dΩ(t)+

∫

Ω(t)

ρbv ·δu dΩ(t)−
∫

Ω(t)

ρRT ¨̂y ·δu dΩ(t) = 0, (1.19)

using the relation: div (σ) · δu = div (σδu)− σ : ∇x (δu) where ∇x corresponds to the gradient
in the current configuration. We remind the reader that the divergence and the gradient here
derivate the quantities regarding the local coordinates.
The Green-Ostrogradsky theorem is applied in the first integral and the stress tensor σ is considered
symmetrical:

∫

Ω(t)

div (σδu) dΩ(t) =

∫

∂Ω

(σδu) · n d∂Ω =

∫

∂Ω

δuTσTn d∂Ω =

∫

∂Ω

δuTσn d∂Ω

=

∫

∂Ω

δuT t d∂Ω =

∫

∂Ω

t · δu d∂Ω. (1.20)

Thus the integral form of the weak formulation of the virtual work principle in the current config-
uration becomes:

∫

Γ

t · δu dΓ(t)−
∫

Ω(t)

σ :∇x (δu) dΩ(t) +

∫

Ω(t)

ρbv · δu dΩ(t)−
∫

Ω(t)

ρRT ¨̂y · δu dΩ(t) = 0 (1.21)

in which the virtual displacement is imposed to be null at the Dirichlet border, meaning that
∫
∂Ω t ·

δu d∂Ω =
∫
Γ t·δu dΓ. The solution u belongs to the set U =

{
u | u ∈ H1(Ω(t)), u = ud on Sd

}

and the virtual displacement δu belongs to δU =
{
δu | δu ∈ H1(Ω(t)), δu = 0 on Sd

}
.

1.1.3 Transposition of the weak formulation of the virtual work principle in
the reference configuration

In this section, the weak formulation of the virtual work principal is transposed in the reference
configuration. The gradient F of the transformation Φ, linking a material point in the reference
configuration to the same material point in the current configuration, is defined as:

F =
dx

dX
=

du

dX
+ I (using x =X + u), (1.22)

and its determinant is written J : J = det(F ).
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Transposition of the acceleration and external volume forces:
Considering a volume dv and an oriented surface nda in the current configuration, the correspond-
ing volume dV and oriented surface NdA in the reference configuration verify:

dv = JdV (1.23)

nda = JF−TNdA. (1.24)

Since dv = JdV and ρ(x) = Jρ0, the transposition of the mass conservation in the reference
configuration reads: ∫

Ω(t)
ρ(x, t)dv =

∫

Ω0

ρ0dV. (1.25)

Therefore, the transposition of the acceleration term and the volume forces in the reference con-
figuration are straightforward and become respectively:

∫

Ω(t)

ρ(x)RT ¨̂y(t) · δu(x, t) dΩ(t) =
∫

Ω0

ρ0R
T ¨̂y(X, t) · δu(X, t) dΩ0 (1.26)

and ∫

Ω(t)

ρ(x)bv(x, t) · δu(x, t) dΩ(t) =
∫

Ω0

ρ0bv(X, t) · δu(X, t) dΩ0 (1.27)

Transposition of the surface forces:
In the weak formulation, the integral form of the surface forces is given by:

∫

Γ(t)

t · δu dΓ(t) =

∫

Γ(t)

δuTσn dΓ(t) (1.28)

The relation between the oriented surfaces (1.24) gives nΓ(t) = JF−TNΓ0. Thus, introducing the
Boussinesq stress tensor (also called first Piola-Kirchhoff stress tensor) Π = JσF−T , the following
relation is obtained:

σn dΓ(t) = JσF−TNΓ0 = ΠNΓ0. (1.29)

The scalar product with the virtual displacement and the integration over the surfaces lead to:
∫

Γ(t)

t · δu dΓ(t) =

∫

Γ(t)

δuTσn dΓ(t) =

∫

Γ0

δuTΠNdΓ0. (1.30)

Finally the transposition of the surface forces in the reference configuration reads:
∫

Γ(t)

t(x, t) · δu(x, t) dΓ(t) =
∫

Γ0

ΠN · δu(X, t) dΓ0. (1.31)
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Transposition of the internal forces:
The weak formulation of the internal forces is the following:

∫

Ω(t)
σ :∇x(δu)dΩ(t) =

∫

Ω0

σ :∇x(δu)JdΩ0, (1.32)

where the gradient operator ∇x in the current configuration can be expressed according to its
counterpart ∇X in the reference configuration by:

∇x(δu) =
∂δu

∂x
=

∂δu

∂X

∂X

∂x
=∇X(δu)F−1. (1.33)

The transposition of the term σ :∇x(δu)JdΩ0 involves the properties of the trace operator:

Jσ :∇x(δu) = Jtr

(
σ∇x(δu)T

)
= tr

(
∇X(δu)TΠ

)
= Π :∇X(δu), (1.34)

leading to the transposition in the reference configuration of the internal forces:

−
∫

Ω(t)
σ :∇x(δu)dΩ(t) = −

∫

Ω0

Π :∇X(δu)dΩ0. (1.35)

Hence the weak formulation of the virtual work in the reference configuration becomes:
∫

Γ0

ΠN · δu Γ0 −
∫

Ω0

Π :∇X(δu)dΩ0 +

∫

Ω0

ρ0bv · δu dΩ0 −
∫

Ω0

ρ0R
T ¨̂y · δu dΩ0 = 0. (1.36)

Nevertheless, the Boussinesq stress tensor Π is not symmetrical and is a hybrid tensor in the
sense that ΠNdA is equal to an elementary force df in the current configuration, meaning that
the Boussinesq stress tensor does not fully satisfy the objective of expressing the stress in the
reference configuration. We can introduce the symmetrical tensor S such that Π = FS called the
second Piola-Kirchhoff stress tensor. The weak formulation in the reference frame with the second
Piola-Kirchhoff stress tensor is the following:
∫

Γ0

FSN · δu Γ0 −
∫

Ω0

FS :∇X(δu)dΩ0 +

∫

Ω0

ρ0bv · δu dΩ0 −
∫

Ω0

ρ0R
T ¨̂y · δu dΩ0 = 0. (1.37)

Besides, the virtual work of the internal forces is usually written with the variation of the Green-
Lagrange strain tensor as follows:

−
∫

Ω0

Π :∇X(δu) dΩ0 = −
∫

Ω0

S : δE dΩ0. (1.38)

Indeed, the Green-Lagrange strain tensor is defined by:

E =
1

2

[∇Xu+ (∇Xu)T + (∇Xu)T∇Xu
]
, (1.39)

its variation is therefore:

δE =
1

2

[∇Xδu+ (∇Xδu)T + (∇Xδu)T (∇Xu) + (∇Xu)T (∇Xδu)
]
. (1.40)

Thus, using the properties of the trace operator, the desired equality is obtained:

S : δE = tr(STδE) = tr(S δE) (1.41)

= tr

(
S

[
(∇Xδu)T (I +∇Xu)︸ ︷︷ ︸

F

])
(1.42)

= tr

(
FS(∇Xδu)T

)
= tr

(
Π(∇Xδu)T

)
= Π : (∇Xδu). (1.43)
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Finally, the weak formulation of the virtual work in the reference configuration becomes:
∫

Γ0

FSN · δu Γ0 −
∫

Ω0

S : δE dΩ0 +

∫

Ω0

ρ0bv · δu dΩ0 −
∫

Ω0

ρ0R
T ¨̂y · δu dΩ0 = 0 (1.44)

The weak formulation of the virtual work principle in the reference configuration can be decom-
posed as the sum of the virtual work of the internal and external forces equal to the virtual work
associated to the acceleration:

δWint + δWext = δWacc (1.45)

with δWint the virtual work of the internal forces:

δWint = −
∫

Ω0

S : δE dΩ0, (1.46)

δWext the virtual work of the external forces:

δWext =

∫

Γ0

FSN · δu Γ0 +

∫

Ω0

ρ0bv · δu dΩ0, (1.47)

and δWacc the virtual work associated to the acceleration:

δWacc =

∫

Ω0

ρ0R
T ¨̂y · δu dΩ0. (1.48)

1.1.4 Virtual work of the internal forces in the frame of finite deformations

In the frame of finite deformations (small strains, large displacements and rotations), the second
Piola-Kirchhoff stress-tensor verifies Hooke’s-law of linear elastic deformations:

S =H : E (1.49)

with H a fourth order tensor called elasticity tensor and depending on the material properties,
in our case only the Young’s modulus E and Poisson’s coefficient ν. It leads to the following
development:

S : δE = E :H : δE (1.50)

=
1

4

(
∇Xu+ (∇Xu)T

)
:H :

(
∇Xδu+ (∇Xδu)T

)

+
1

4

(
∇Xu+ (∇Xu)T

)
:H :

(
(∇Xδu)T (∇Xu) + (∇Xu)T (∇Xδu)

)

+
1

4

(
(∇Xu)T (∇Xu)

)
:H :

(
∇Xδu+ (∇Xδu)T

)

+
1

4

(
(∇Xu)T (∇Xu)

)
:H :

(
(∇Xδu)T (∇Xu) + (∇Xu)T (∇Xδu)

)
(1.51)

The virtual work of the internal forces can therefore be decomposed in three terms that will lead
to respectively linear, quadratic and cubic polynomials of the degrees of freedom in the Finite
Element discretization:

δWint = −
∫

Ω0

S : δE dΩ0 = δW1 + δW2 + δW3, (1.52)
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with

−δW1 =

∫

Ω0

1

4

[
(∇Xu) + (∇Xu)T

]
:H :

[
(∇Xδu) + (∇Xδu)T

]
dΩ0, (1.53)

−δW2 =

∫

Ω0

1

4

[
(∇Xu) + (∇Xu)T

]
:H :

[
(∇Xδu)T (∇Xu)T

]
dΩ0

+

∫

Ω0

1

4

[
(∇Xu) + (∇Xu)T

]
:H :

[
(∇Xu)T (∇Xδu)T

]
dΩ0

+

∫

Ω0

1

4

[
(∇Xu)T (∇Xu)

]
:H :

[
(∇Xδu) + (∇Xδu)T

]
dΩ0, (1.54)

−δW3 =

∫

Ω0

1

4

[
(∇Xu)T (∇Xu)

]
:H :

[
(∇Xδu)T (∇Xu)

]
dΩ0

+

∫

Ω0

1

4

[
(∇Xu)T (∇Xu)

]
:H :

[
(∇Xu)T (∇Xδu)

]
dΩ0. (1.55)

1.1.5 Galerkin approximation

The Galerkin method of Finite Element discretization [9, 209] consists in writing the displacement
u as a linear combination of shape functions (interpolation functions) and the nodal values ui
i ∈ [1, N ]. It is common to apply the same discretization to the virtual displacement:

u(X, t) =

N∑

i=1

N(X) ui(t) (1.56)

δu(X, t) =

N∑

i=1

N(X) δui(t) (1.57)

Galerkin approximation applied to the virtual work of the internal forces:
Introducing the Galerkin decomposition in the components of the virtual work of the internal
forces leads to:

−δWint = −δW1 − δW2 − δW3 = δu
T
(
Kmatu+ fnl2(u) + fnl3(u)

)
, (1.58)

with the degrees of freedom u =
(
u1 . . . uN

)T , the virtual degrees of freedom δu =
(
δu1 . . . δuN

)T ,
the linear stiffness matrix Kmat =

(
Kij

mat

)
(i,j)∈[1,N ]2

and respectively the quadratic and cubic in-

ternal forces fnl2(u) =
(
fnl

k

2

)
k∈[1,N ]

, fnl3(u) =
(
fnl

k

3

)
k∈[1,N ]

defined by:
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Kij
e =

∫

Ω0

1

4

[
(∇XNj) + (∇XNj)

T
]
:H :

[
(∇XNi) + (∇XNi)

T
]
dΩ0 (1.59)

fnl
k

2 =
∑

i,j

[
1

4

∫

Ω0

[
(∇XNi) + (∇XNi)

T
]
:H :

[
(∇XNk)

T (∇XNj)
]

+
[
(∇XNi) + (∇XNi)

T
]
:H :

[
(∇XNj)

T (∇XNk)
]

+
[
(∇XNi)

T (∇XNj)
]
:H :

[
(∇XNk) + (∇XNk)

T
]
dΩ0

]
uiuj (1.60)

fnl
k

3 =
∑

i,j,p

[
1

4

∫

Ω0

[
(∇XNi)(∇XNj)

T
]
:H :

[
(∇XNk)

T (∇XNp)
]

+
[
(∇XNi)(∇XNj)

T
]
:H :

[
(∇XNp)

T (∇XNk)
]
dΩ0

]
uiujup. (1.61)

Galerkin approximation applied to the virtual work of the external forces:
The Galerkin approximation in the virtual work of the external forces writes:

δWext =

∫

Γ0

( N∑

k=1

NT
k δuk

)
(FSN) Γ0 +

∫

Ω0

ρ0

( N∑

k=1

NT
k δuk

)
bv dΩ0 (1.62)

=
N∑

k=1

δuk

[ ∫

Γ0

NT
k (FSN) Γ0 +

∫

Ω0

ρ0N
T
k bv dΩ0

]
(1.63)

= δuT
(
fc + fv

)
, (1.64)

with fc the vector of the external surface forces: fc =
(
fc
k
)
k∈[1,N ]

and fv the vector of the external

volume forces, fv =
(
fv

k
)
k∈[1,N ]

verifying:

fc
k =

∫

Γ0

NT
k (FSN) Γ0, (1.65)

fv
k =

∫

Ω0

ρ0N
T
k bv dΩ0. (1.66)

Galerkin approximation applied to the virtual work associated to the acceleration:
Regarding the virtual work associated to the acceleration, the introduction of the Galerkin ap-
proximation leads to:

δWacc = δu
T
(
Mü+Dgu̇−Kcu+Kau− fω

)
(1.67)

with

• The mass matrix:

M =

(
Mij

)

(i,j)∈[1,N ]2
with Mij =

∫

Ω0

ρ0N
T
i Nj dΩ0
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• The gyroscopic coupling matrix:

Dg =

(
Dg

ij

)

(i,j)∈[1,N ]2
with Dg

ij =

∫

Ω0

2ρ0N
T
i ΩNj dΩ0

• The centrifugal softening matrix:

Kc =

(
Kc

ij

)

(i,j)∈[1,N ]2
with Kc

ij = −
∫

Ω0

ρ0N
T
i Ω

2Nj dΩ0

• The centrifugal acceleration matrix:

Ka =

(
Ka

ij

)

(i,j)∈[1,N ]2
with Ka

ij =

∫

Ω0

ρ0N
T
i Ω̇Nj dΩ0

• The vector of centrifugal forces:

fω =

(
fω

k

)

k∈[1,N ]

with fω
k = −

∫

Ω0

ρ0N
T
k

(
RT ¨̂s+Ω2X + Ω̇X

)
dΩ0

The matrix Kc is named centrifugal softening matrix, because in the case where the rotation
vector coincides with the axis of rotation of the moving frame Rm, for instance the axis ez:
ω =

(
0 0 ω3

)T , the rotation matrix Ω and its square become:

Ω =




0 −ω3 0

ω3 0 0

0 0 0


 and Ω2 = −



ω2
3 0 0

0 ω2
3 0

0 0 0


 (1.68)

Therefore the matrix Kc has a softening effect in the global stiffness (Kmat−Kc+Ka). Previous
developments lead us to write the principal of the virtual works in the following form:

δuT

[
Mü+Dgu̇+

(
Kmat −Kc +Ka

)
u+ fnl2(u) + fnl3(u)− fω − fc − fv

]
= 0 (1.69)

The problem is therefore to find u verifying u(X, t) =
∑N

i=1Ni(X)ui(t) ∈ U such that for any
δu such as δu(X, t) =

∑N
i=1Ni(X)δui(t) ∈ δU the system (1.69) is verified. It leads to solve the

following system, governing the dynamics of the structure:

Mü+Dgu̇+
(
Kmat −Kc +Ka

)
u+ fnl2(u) + fnl3(u) = fc + fv + fω (1.70)

1.1.6 Equation of the dynamics with constant rotation speed

When turbomachines or propellers are considered, the structure is in rotation around a fixed axis
and centrifugal effects contribute to the dynamics. In this work, the rotation speed around its
axis is considered constant. The centrifugal acceleration matrix Ka is therefore null and the total
displacement degrees of freedom of the structure, defined as u in Equation (1.70), are now written
ut. The total displacement is the sum of a static nonlinear displacement us due to the centrifugal
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external force, and of vibrations u around this prestressed position: ut = us +u. The prestressed
position us is solution of:

(Kmat −Kc)us + fnl(us) = fω, (1.71)

with fnl(u) the sum of the quadratic fnl2(u) and cubic fnl3(u) nonlinear forces. Centrifugal effects
are included in the softening matrix Kc and the constant centrifugal load fω. The geometric
nonlinearities fnl are expanded around the prestressed solution us:

fnl(us + u) = fnl(us) +Knl(us)u+ gnl(u), (1.72)

where Knl(us) is the tangent stiffness matrix, i.e. the Jacobian of fnl(ut) evaluated at the pre-
stressed position us and gnl(u) is the vector of the nonlinear forces with respect to the prestressed
position as illustrated in Figure 1.3. In the rotating frame, the equation governing the vibrations
of the structure around the centrifugally prestressed position is:

Mü+Cu̇+
[
Kmat −Kc +Knl(us)

]
︸ ︷︷ ︸

K(Ω)

u+ gnl(u) = fc + fv︸ ︷︷ ︸
fext

, (1.73)

in which the gyroscopic effect was neglected and a Rayleigh structural damping C introduced.
Due to the centrifugal and geometrical nonlinear effects, a hardening or softening behavior can be
observed depending on the speed of rotation and the considered mode [187].

∂fnl
∂ut

∣∣∣∣
us

u

us ut = us + u

fnl(us)

fnl(ut)

gnl(u)

Figure 1.3: Nonlinear geometric forces at constant rotation speed.
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1.2 Methods of resolution

In the previous section, the equation governing the dynamics of the structure was established. For
the sake of simplicity, whether the structure is in rotation or not, the total internal forces including
the stiffness are written fint(u). A simplified form of the equation of the dynamics can thus be
written as follows:

Mü+Cu̇+ fint(u) = f ext. (1.74)

There are two main types of resolution of such an equation. On one side the temporal integration
of the equation relative to initial conditions and a time-dependent external load. On the other side
frequency methods aim to compute directly the limit cycle associated with a harmonic external
force.

1.2.1 Temporal methods

The dynamics of the structure can be solved with a temporal integration from an initial condition.
Temporal resolutions compute the dynamics of the structure during the transient regime reaching
a possible periodic regime also called a dynamic steady state. Numerous temporal solver schemes
exist in the literature for the time integration of dynamical equations like backward differentiation,
Runge-Kutta methods, multi-step methods like the Gear [62] scheme or the Bathe algorithm [9]
and its variations Bathe-β1/β2, ρ∞-Bathe. In structural dynamics, one-step methods of the New-
mark’s family are usually preferred, like the standard Newmark algorithm [134] and its variations
HHT-α [78] and α-generalized [4, 27], briefly recalled in the next paragraph.

The Newmark scheme [157] is based on an acceleration averaged in the time step ∀t ∈ [tn, tn+1] :

ü(t) = (ü(tn) + ü(tn+1))/2 (with the temporal discretization tn+1 = tn +∆t) and two coefficients
γ and β such that:

un+1 = un +∆tu̇n +
∆t2

2
[(1− 2β)ün + 2βün+1] (1.75)

u̇n+1 = u̇n +∆t [(1− γ)ün + γün+1] . (1.76)

The parameters γ, β control the numerical damping, accuracy and stability of the integration
scheme. The values γ = 0.5, β = 0.25 are usually chosen to guarantee linear unconditional
stability, no numerical damping and second-order accuracy. For geometrically nonlinear problems,
Newmark’s scheme is also unconditionally stable with the parameters γ = 0.5 and β ≥ 0.25 [84].
The practical implementation of the nonlinear Newmark algorithm is based on a prediction step
and a correction step, the latter including a Newton-Raphson iterative method for the convergence
of the residual. Figure 1.4 explains in pseudo-code the implementation of the nonlinear Newmark
algorithm.
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Input

M, C, u0, u̇0

fint(u0), fext(t0)

Initial acceleration

ü0 = M−1

[
−Cu̇0 − fint(u0) + fext(t0)

]

Time incrementation

tn+1 = tn +∆t

Prediction

un+1 = un +∆tu̇n + ∆t2

2 (1− 2β)ün

u̇n+1 = u̇n + (1− γ)∆tün

ün+1 = 0

Residual evaluation

rn+1(un+1) = Mün+1 +Cu̇n+1 + fint(un+1)− fext(tn+1)

Convergence?

rn+1 < ε

YES

NO

Newton-Raphson correction

J(un+1)∆u = −rn+1

(∆u = un+1 − un)

Newmark correction

un+1 = un+1 +∆u

u̇n+1 = u̇n+1 +
γ

β∆t
∆u

ün+1 = ün+1 +
1

β∆t2
∆u

Figure 1.4: Nonlinear Newmark integration scheme as presented in [157].

In structural dynamics, a slight numerical damping is sometimes desired in order to mitigate the
large frequencies that have a negligible contribution to the dynamics and that can lead to numerical
instabilities. In Newmark’s scheme, the numerical damping is controlled by the coefficient γ, when
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γ ≥ 0.5. The HHT-α integration scheme was proposed in [78] to introduce numerical damping
while preserving unconditional stability. The Newmark coefficients γ, β are both defined regarding
a single parameter αHHT ∈ [0, 13 [ introducing numerical damping by setting γ ≥ 0.5 and preserving
the unconditional stability:

γ =
1

2
+ αHHT (1.77)

β =
1

4
(1 + αHHT)

2. (1.78)

The coefficient αHHT can be defined according to the asymptotic spectral radius 0.5 ≤ ρ∞ ≤ 1

such that ρ∞ = 1 leads to no numerical damping. The coefficient αHHT is determined from the
asymptotic spectral radius as follows:

αHHT =
1− ρ∞
1 + ρ∞

. (1.79)

Nevertheless, with such a choice of parameters, the usual Newmark scheme loses its second-order
accuracy to a first-order accuracy. The HHT-α integration scheme proposes to keep the second-
order accuracy by modifying the equation of the dynamics in averaging the internal and external
forces between the current and previous time steps via the parameter αHHT :

Mün+1 + (1− αHHT) [Cu̇n+1 + fint(un+1)] + αHHT [Cu̇n + fint(un)]

= (1− αHHT)f ext(tn+1) + αHHTf ext(tn).
(1.80)

Similarly, Chung and Hulbert [27] proposed the α-generalized method, averaging the force
terms in the dynamics equation like the HHT-α method with a coefficient αf but also averaging
the inertial term with a different coefficient αm:

(1− αm)Mün+1 + αmMün + (1− αf ) [Cu̇n+1 + fint(un+1)] + αf [Cu̇n + fint(un)]

= (1− αf )f ext(tn+1) + αf f ext(tn).
(1.81)

The Newmark coefficients γ, β are determined from the coefficients 0 ≤ αm ≤ αf ≤ 0.5 to keep
the second-order accuracy and unconditional stability:

γ =
1

2
+ αf + αm (1.82)

β =
1

4
(1 + αf + αm)2, (1.83)

where the coefficients αm and αf can be expressed from the asymptotic spectral radius with:

αm =
2ρ∞ − 1

ρ∞ + 1
(1.84)

αf =
ρ∞

ρ∞ + 1
. (1.85)

A study of the nonlinear properties of the α-generalized method is proposed in [4] along with a
different nonlinear algorithm for the implementation.
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1.2.2 Frequency methods

The integration of the dynamics of the structure under a periodic external load can result in a
significant transient regime before reaching a periodic steady state. In some cases, the integration
during the transient regime can be computationally expensive to compute for large structures
and of no specific interest. Therefore, frequency methods of integration enable computing only
the periodic steady-state resulting in faster computations. Besides, the computational time of a
continuation method along one parameter such as the frequency of excitation for instance is greatly
reduced and unstable regions are easier to capture than with temporal integrations.

A common frequency method is the Harmonic Balance Method (HBM) [6, 75, 103, 128]. It con-
sists in searching the solution of the dynamics equation directly in the space of periodic functions
and is usually combined with a continuation method with respect to a parameter (for instance the
frequency) to capture the limit cycles. Common continuation methods are for instance the arc-
length and pseudo arc-length methods, the Shooting method or the Asymptotic-Numerical Method
(ANM). The Shooting continuation method [85, 129, 130, 172, 183] consists in starting from a
periodic limit cycle then slightly modifying the continuation parameter and converging to the new
limit cycle with Newton-Raphson iterations. The ANM [29, 31, 127] is a continuation method
along nonlinear branches based on the perturbation method.

This paragraph illustrates the HBM continuation first on the test case of a Duffing oscillator,
then on a Timoshenko beam. The equation governing the dynamics of the Duffing oscillator is the
following:

mẍ+ cẋ+ kx+ αDx
3 = f. (1.86)

In the case considered, the mass m = 1, damping c = 0.05 , stiffness k = 1 and the influence of
the nonlinear factor αD and the external load f are illustrated. Figure 1.5 represents the HBM
continuation of the Duffing oscillator with various levels of external force for a fixed nonlinear
parameter αD = 1 compared to the linear case corresponding to αD = 0. The backbone curve
representing the evolution of the maximal displacement and associated pulsation as a function of
the external force is also represented in the figure and can be approximated as follows [208]:

A =

√
4m(ω2 − ω2

0)

3αD
, (1.87)

with A the amplitude of the displacement and ω0 =
√
k/m the angular frequency of the associated

linear system.
It can be noticed that the unstable region where two solutions exist for the same pulsation is

captured by the HBM continuation. A continuation with temporal methods fails to capture such
an unstable region resulting in a jump from one branch to the other at the bifurcation point.
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Figure 1.5: Frequency response of a Duffing oscillator with increasing external load obtained using
the HBM continuation method.

Similarly, Figure 1.6 represents the HBM continuation for a fixed external force f = 0.1 N and
different signs and amplitudes of the cubic nonlinear parameter αD. The nonlinear behavior of the
oscillator is hardening for positive values of αD and softening for negative values.
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D = -0.1, f = 0.1
D =  0.1, f = 0.1
D =  0.2, f = 0.1
D =  1.0, f = 0.1
D =  2.0, f = 0.1
D =  3.0, f = 0.1
D =  4.0, f = 0.1

Figure 1.6: Frequency response of a Duffing oscillator using the HBM continuation method for
several values of the nonlinear parameters αD.
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The second application illustrates the HBM continuation for the case of a 2D Timoshenko
beam1 reduced to its neutral axis. The beam is bi-clamped and loaded vertically in the middle
with an external load of 1 N. The length of the beam is equal to 1 m, its thickness h = 0.005 m
and its width 0.1 m. The Young’s modulus is equal to E = 104 GPa and the density is ρ =

4400 kg.m−3. The beam is discretized using 6 Finite Elements with linear shape functions and a
reduced integration of the nonlinear terms to avoid shear locking [171]. The damping matrix is
equal to C = 2ξM with a damping factor ξ = 0.005. Figure 1.7 depicts the vertical displacement
at the beam centre divided by the thickness. For such a test case, the geometric nonlinearity is
significant even for small amplitudes of displacement.

150 160 170 180 190 200 210
Pulsation (rad. s 1)

0.0

0.2

0.4

0.6

0.8

Y 
/ h

Linear
Nonlinear

Figure 1.7: Frequency response obtained with HBM continuation of a Timoshenko beam loaded
vertically at the center.

1This model has been developed during the thesis but is not presented here for the sake of brevity.
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1.3 Reduction techniques for nonlinear structures

In the previous section, the structural dynamics equations were established and methods of resolu-
tion were introduced. The resolution of large FE systems is computationally expensive. The topic
of the current section is to present some methods found in the literature to build reduced order
models (ROMs) and thus reduce the size of the system to solve and the computational time. The
focus is on projection-based reduced order models with the determination of the projection basis
and the expression of the projected nonlinear forces. Then, other reduction methods are briefly
introduced.

1.3.1 Projection-based reduced order models

The behavior of the structure is studied thanks to a classical finite element model, whose degrees
of freedom in displacement, written u, verify the equation of the dynamics:

Mü+Cu̇+ fint(u) = fa(ut, u̇t), (1.88)

where M,C, fint, and fa are respectively the mass matrix, the damping matrix, the internal forces
and the aerodynamic forces vector in the case of an aeroelastic problem. The internal forces can
be decomposed as the sum of a linear component Ku with K the elastic stiffness matrix and a
geometric nonlinear component gnl(u).

Projection-based reduced order models consist in projecting the equations of the dynamics
on a wisely-chosen basis of reduced dimension V. The displacements degrees of freedom are
approximated by u ≈ Vq where q are called the generalized coordinates. After projection, the
equation of the dynamics becomes :

VTMV︸ ︷︷ ︸
M̃

q̈+VTCV︸ ︷︷ ︸
C̃

q̇+VTKV︸ ︷︷ ︸
K̃

q+VTgnl(Vq)︸ ︷︷ ︸
g̃nl(q)

= VT fa︸ ︷︷ ︸
f̃a

. (1.89)

The reduction matrix V contains only few vectors, therefore the projected matrices M̃, C̃ and K̃

have negligible dimensions compared to the initial problem.

1.3.1.1 Reduction on a linear basis

Mechanical vibrations can be characterized by linear normal modes Φ = {ϕϕϕ1, · · · ,ϕϕϕn}, where n is
the number of degrees of freedom of the structure. The linear normal modes are solution vectors
of the eigenvalue equation :

(
K− ω2

iM
)
ϕϕϕi = 0 ∀i ∈ [1, n], (1.90)

where ωi are the angular eigenfrequencies.

When the amplitudes of displacement are small and the geometric nonlinearity can be ne-
glected, the problem is linear. In such a case, a satisfactory choice to represent the dynamical
behavior is a reduction basis containing only the first linear normal modes, computed around the
prestressed position, and whose frequencies belong to the excitation band. On the contrary, when
the geometric nonlinearity is significant, a coupling may appear between some low and high fre-
quency modes. Consequently, the first linear modes are no longer sufficient to capture the whole
dynamics and the reduction basis needs to be enriched by other modes in order to account for the
coupling between the modes.



1.3. Reduction techniques for nonlinear structures 25

1.3.1.2 Proper-orthogonal decomposition, a simulation-based reduced order model

When the distribution of the external forces applied to the structure is fixed and known, nonlinear
static solutions (also known as static modes) can be included in the reduction basis. Likewise,
the reduction basis can be obtained from former simulation results using simulation-based meth-
ods such as the Proper-Orthogonal Decomposition (POD). The POD modes can for instance be
determined by Singular Value Decomposition (SVD) from samples of high-fidelity computations
and embrace relevant information characterizing the nonlinear deformation of the structure. The
idea of the POD is to consider na "snapshots" of one or several solutions of the full order system.
Each snapshot is a vector of the displacements of the degrees of freedom under external excita-
tion. Several full-order model simulations with representative external loads are computed, from
which snapshots of those solutions are extracted. The POD method is an optimization problem
consisting in finding an optimal orthogonal base of a lower dimension that minimises the error of
the orthogonal projection. Applications to structural and fluid dynamics are found for example in
[11, 54, 98, 104, 111, 148, 149, 167, 203].

The snapshots are gathered in a matrix A (of size (N×na)) in which columns are the snapshots.
Considering the correlation matrix Rcorr = AAT , the POD modes ΦPOD (called Proper Orthog-
onal Modes) solutions of the POD optimization problem can be computed as the eigenvectors
related to the non-zero eigenvalues of the correlation matrix Rcorr.

RcorrΦPOD = ΦPODDPOD with Rcorr = AAT (1.91)

where DPOD is a diagonal matrix containing the associated eigenvalues (called Proper Orthogonal
Values). Those eigenvalues are real and positive since the matrix Rcorr = AAT is symmetrical and
positively defined. The POD modes are orthogonal, and verify ΦT

POD
ΦPOD = I when appropriately

normalized. This way of calculating the POD modes is used when the dimension of the matrix
Rcorr is small. It is called the direct method. A second method for the computing of the POD
modes is the Singular Value Decomposition of the matrix A:

A = UΣWT with UUT = I and WWT = I (1.92)

Σ =

(
Σr 0

0 0

)
with Σr = diag(λ1, λ2, · · · , λr) (1.93)

The matrices U (N×N) and W (na×na) are orthogonal. Σ is a matrix (N×na) and λ1, λ2, · · · , λr

are singular values of the matrix A with r the rank of the matrix A. Writing Ur and Wr the r

first columns of U and W, the snapshot matrix is given by A = UrΣrWr
T with UrU

T
r = I and

WrW
T
r = I. The eigenvectors of the correlation matrix can easily be computed using the singular

value decomposition considering the following relation:

RcorrUr = AATUr = UrΣ
2
r . (1.94)

Henceforth, the vectors of the matrix Ur are the POD modes and the associated eigenvalues are
DPOD = Σ2.

Another way to compute the POD modes is based on the observation that the eigenvalues (the
diagonal terms of DPOD) of ATA are the sames as the eigenvalues of AAT :

ATA Wr = WrΣ
2 = WrDPOD . (1.95)
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However the POD modes are the eigenvectors of AAT not the eigenvectors of ATA. Nevertheless
the eigenvectors of AAT are linked to the eigenvectors of ATA by the following relation:

UrΣrW
T
r = A =⇒ Ur = A(ΣrWr)

−1 = AWrΣ
−1
r , (1.96)

where Σ−1
r is a diagonal matrix that is a normalisation of the eigenvectors Wr of ATA. The

idea of the snapshot method presented by Sirovich in 1987 is to compute the eigenvectors xa of
the matrix ATA and to determine the POD modes (eigenvectors of AAT ) by multiplicating those
eigenvectors by the matrix of the snapshots A: ΦPOD = Axa. The advantage is that the size
of the matrix ATA is (na × na) which is usually smaller than the size (N × N) of the matrix
AAT . Most of the time, not all those modes are necessary but only the ones with the highest
eigenvalues λk, representing the most significant percentage of the sum of all the eigenvalues. The
POD eigenvalues are ranked from the highest to the lowest λ1, λ2, · · · , λr. Writing Ecu the relative
information criteria of the snapshots captured by the first k POD vectors: Ecu =

∑k
i=1 λi/

∑r
i=1 λi,

an arbitrary way to select the POD modes is to take the ones for which the sum of the respective
eigenvalues represent 99% of the sum of all the eigenvalues (ie Ecu = 0.99). Nevertheless, this
method is arbitrary and biased since the eigenvalues λi span different orders of magnitude and
the criteria of Ecu = 0.99 may be reached with only the first or two first eigenvalues λi while
more are necessary for a satisfactory accuracy. A more accurate selection of them is to observe
the distribution of the eigenvalues with a log scale and see if there is a distinct gap between the
significant and the negligible modes.

The POD modes are optimal compared to the linear modes because they are determined from
snapshots of solutions and are the result of a minimisation problem. Nevertheless, the POD modes
are particularly dependent on the load case, making them inadequate for the various load cases
such as those encountered in aerodynamics. Besides, POD modes require a database of high-fidelity
nonlinear solutions, whose generation involves expensive calculations for industrial applications.

1.3.1.3 Modal derivatives

As explained previously, the truncation of the linear normal modes to build the reduced basis
does not accurately capture the nonlinear phenomena. Specific modes have to be added to the
reduction basis to give a precise account of the nonlinearity. However, the modes added to the
reduction basis should contain information on the coupling between several linear normal modes
and should not depend on specific loading cases. One idea is the extension to the nonlinearity of
the linear normal modes, introducing modal derivatives. Modal derivatives are second-order Taylor
decompositions of the equilibrium position of the structure. Considering a displacement u around
the equilibrium/prestressed position us, the total displacement with respect to the undeformed
position is written: ut = us + u. The modal truncation of the linear normal modes consists in
approximating the displacement u at the first order using the linear normal modes computed on
the position us:

u ≃
nb∑

i=1

ϕϕϕi(us)qi. (1.97)

Nevertheless, this approximation is valid in the linear range, when u is small, meaning that
the displacement is close to the equilibrium position where the linear normal modes are computed.
Therefore, when the displacement around us is larger, the linear normal modes on the current
position ϕϕϕi(us + u) are different than those computed at the equilibrium position ϕϕϕi(us). The
idea of modal derivatives is to consider the evolution of the effective linear normal modes as
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a function of the generalized coordinates from the decomposition (1.97): ϕϕϕi(us + u) = ϕϕϕi(q).

Therefore u ≃
nb∑

i=1

ϕϕϕi(q)qi and the displacement u is approximated with a second order Taylor

decomposition:

u ≈
nb∑

i=1

∂u

∂qi

∣∣∣∣
q=0

qi +

nb∑

i=1

nb∑

j=1

1

2

(
∂2u

∂qi∂qj

∣∣∣∣
q=0

+
∂2u

∂qi∂qj

∣∣∣∣
q=0

)
qiqj . (1.98)

Evaluating the derivatives of the displacement regarding the generalized coordinates using equation
(1.97) gives:

∂u

∂qi
= ϕϕϕi(q) +

nb∑

j=1

∂ϕϕϕi(q)

∂qi
qj (1.99)

∂2u

∂qi∂qj
=

∂ϕϕϕi(q)

∂qj
+

∂ϕϕϕj(q)

∂qi
+

nb∑

k=1

∂2ϕϕϕk(q)

∂qi∂qj
qk (1.100)

The evaluation of the derivatives at the prestressed position are thus:

∂u

∂qi

∣∣∣∣
q=0

= ϕϕϕi(us) (1.101)

∂2u

∂qi∂qj

∣∣∣∣
q=0

=
∂ϕϕϕi

∂qj
(us) +

∂ϕϕϕj

∂qi
(us), (1.102)

and the Taylor expansion of the displacement is finally expressed with the derivative of the linear
normal modes:

u ≈
nb∑

i=1

ϕϕϕi(us) qi +

nb∑

i=1

nb∑

j=1

1

2

(
∂ϕϕϕi

∂qj
(us)

︸ ︷︷ ︸
θij

+
∂ϕϕϕj

∂qi
(us)

︸ ︷︷ ︸
θji

)
qiqj , (1.103)

where the first term is the linear mode computed on the equilibrium position and θij ,θji are the
modal derivatives. They represent the evolution of the mode ϕϕϕi(us) for a displacement in the
direction of the mode ϕϕϕj(us) and vice versa. In what follows the notation ϕϕϕi replaces the notation
ϕϕϕi(us) for the sake of simplicity. Since the linear modes are computed on the equilibrium position
there is no ambiguity. The reduction basis chosen for the projection is finally:

V =

[
ϕϕϕ1, · · · ,ϕϕϕnb︸ ︷︷ ︸
linear modes

,θ11, · · · ,
1

2
(θij + θji), · · · ,θnbnb

︸ ︷︷ ︸
modal derivatives

]
(1.104)

Numerical computation of the modal derivatives: There are several ways to compute
modal derivatives using a FE solver [86, 88, 114, 133, 166, 178]. In [86, 88, 133], the authors
suggest an exact computation of the modal derivatives by differentiating regarding the generalized
coordinates qj the eigenvalue equation (K− ω2

iM)ϕϕϕi = 0 verified by the linear normal mode ϕϕϕi:

(K− ω2
iM)

∂ϕϕϕi

∂qj
+

(
∂K

∂qj
− ∂ω2

i

∂qj
M

)
ϕϕϕi = 0, (1.105)

where K is the stiffness evaluated at the position us, it corresponds to the tangent stiffness matrix
evaluated at the prestressed displacement: Ktan(us). As a reminder, the tangent stiffness matrix



28 Chapter 1. Model order reduction for nonlinear structures

is the derivation of the internal forces fint regarding the displacement: for a total displacement
ut, Ktan(ut) = ∂fint(ut)/∂ut. When the structure is undeformed, the tangent stiffness matrix
corresponds to the elastic stiffness Kmat. In Equation (1.105), the derivative ∂K/∂qj is the
evolution of the tangent stiffness under a displacement in the direction of the mode ϕϕϕj :

∂K

∂qj
=

∂Ktan(us + qjϕϕϕj)

∂qj
. (1.106)

From a numerical point of view, it can be computed in a non-intrusive way using a FE solver with
finite differences, for instance a centered derivation:

∂Ktan

∂qj
=

Ktan(us + hϕϕϕj)−Ktan(us − hϕϕϕj)

2h
(1.107)

where h is a small displacement in the direction of the mode j. At this point, the unknowns are the
modal derivative and the derivative of the associated eigenvalue. A second relation is provided by
the derivation regarding the generalized coordinate qj of the M-orthogonality relation: ϕϕϕT

i Mϕϕϕi = 1

verified by the linear normal modes ϕϕϕi:

ϕϕϕT
i M

∂ϕϕϕi

∂qj
+ϕϕϕT

i M
T ∂ϕϕϕi

∂qj
= 0 (1.108)

=⇒ ϕϕϕT
i M

∂ϕϕϕi

∂qj
= 0, (1.109)

using the symmetry of the mass matrix: M = MT . Hence, the modal derivative ∂ϕϕϕi/∂qj is solution
of the system:



K− ω2

iM Mϕϕϕi

(
Mϕϕϕi

)T
0







∂ϕϕϕi

∂qj

∂ω2
i

∂qj



=



−∂K

∂qj
ϕϕϕi

0


 . (1.110)

The previous method is nevertheless computationally expensive, the latter can be reduced by
neglecting the inertia [86, 88] in Equation (1.105):

K
∂ϕϕϕi

∂qj
= −∂K

∂qj
ϕϕϕi. (1.111)

Such modal derivatives are referred to as static modal derivatives in [178]. The paper also suggests
to compute them with a finite difference derivation:

∂ϕϕϕi

∂qj
=

ϕϕϕi(us +∆hϕϕϕj)−ϕϕϕi(us)

∆h
, (1.112)

where ϕϕϕi(us+∆hϕϕϕj) is the ith linear normal modes computed on the prestressed position us+∆hϕϕϕj .
In [114] the authors suggest the computation of the static modal derivatives using the internal forces
in case the tangent stiffness matrix is not available in the FE solver. Since Ktan = ∂fint/∂u and
u =

∑
i qiϕϕϕi, the derivation of the displacement regarding the generalized coordinate qi becomes:

∂u/qi = ϕϕϕi, it can be observed that:

∂Ktan

∂qj

ϕϕϕi =
∂

∂qj

(
∂fint
∂u

)
∂u

∂qi

=
∂2fint
∂qi∂qj

. (1.113)
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Replacing in Equation (1.111), the static modal derivatives can thus be computed using the internal
forces. The latter are determined numerically using Taylor expansions, for instance:

∂2fint
∂qi∂qj

=
1

4hihj

[
fint (us + hiϕϕϕi + hjϕϕϕj)− fint (us + hiϕϕϕi − hjϕϕϕj)

−fint (us − hiϕϕϕi + hjϕϕϕj) + fint (us − hiϕϕϕi − hjϕϕϕj)

] (1.114)

Enhancing the reduction basis with modal derivatives helps to capture the nonlinearity. Never-
theless, their theory is based on small displacements around an equilibrium position and therefore
the efficiency of the modal derivatives on strongly nonlinear displacements is reduced. Besides,
a major limitation of modal derivatives is their plurality. The number of modal derivatives dras-
tically increases with the number of linear normal modes considered. In a basis containing nb

linear normal modes, nb(nb + 1)/2 modal derivatives exist. Although a criterion to reduce their
number is proposed in [114], it is a serious limitation since the goal is to obtain a reduction basis
with the smallest possible dimension. A selection of the most relevant modal derivatives is thus
necessary. This can be achieved with for example the Maximal Modal Interaction described in
[190] or the Modal Virtual Work proposed in [91]. Applications to industrial fan blade structures
are for instance found in [36–38].

1.3.1.4 Dual modes

Another possibility to enrich the reduction basis is the use of dual modes [100, 124, 142, 204, 205].
The latter are computed from nonlinear static solutions obtained by imposing external loads to
the structure, whose distribution involves the first linear normal modes so that the loads are not
case-dependent. Those nonlinear static solutions contain information on the geometric nonlinear-
ity that is missing from the linear normal modes. Such information is extracted and a SVD is
performed. Eventually, the SVD modes with the highest singular values as well as the modes asso-
ciated to a significant linearized strain energy are the dual modes selected to enrich the reduction
basis.

This section details the determination of dual modes which are added to the projection basis
in order to capture the geometric nonlinearity. A set of external forces are first applied to the
structure as a combination of the first linear normal modes (ϕϕϕ)i∈[1,nb] of the structure:

∀ℓ ∈ [1, nL] f
(ℓ)
ext = K

( nb∑

i=1

α
(ℓ)
i ϕϕϕi

)
, (1.115)

where α
(ℓ)
i are weighting coefficients selected to generate different levels of load cases. The associ-

ated nonlinear static solutions u
(ℓ)
s are computed from the equation:

Ku
(ℓ)
s + gnl(u

(ℓ)) = f
(ℓ)
ext. (1.116)

From those nonlinear static solutions, generalized coordinates q(ℓ) on the modes of the reduc-
tion basis are extracted by least-squares approximations since u(ℓ) ≈ Φq(ℓ). The residual of the
approximation is written r(ℓ). For each nonlinear static solution, the following relation is verified:

u(ℓ) = Φq(ℓ) + r(ℓ), (1.117)

and all the residuals r(ℓ) are gathered in a matrix, from which a singular value decomposition
(SVD) is computed:
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[
r(1), · · · , r(nL)

]
=
[
d1, · · · , dnp

]
diag(σ1, σ2, · · · , σnp)W

T , (1.118)

where (σi)i∈[1,np] are the non-null singular values ordered from the largest to the smallest, (di)i∈[1,np]

the left singular vectors of the decomposition and WT containing the right singular vectors, of
shape (np × nL). The projection of the residual vectors r(ℓ) on the SVD basis vectors is the
following:

r(ℓ) =

np∑

k=1

βℓ
kdk, (1.119)

with βℓ
k = σkWℓk. The sum Er of the linearized strain energy of all the nonlinear residual dis-

placements r(ℓ) is defined in [100] by:

Er =
nL∑

ℓ=1

r(ℓ)
T
Kr(ℓ) =

np∑

k=1

( nL∑

ℓ=1

βℓ
k
2
dT
kKdk

)

︸ ︷︷ ︸
Ek

, (1.120)

since ∀(k, j) ∈ [1, np]
2,dT

k dj = δkj .

As explained in [100], the dual modes selected for inclusion in the reduction basis are the vectors(
di

)
i∈[1,np]

with the largest singular values σi and those contributing the most to the linearized
strain energy, i.e. those leading to the largest values of Ei.

The vectors
(
di

)
i∈[1,np]

ranked by decreasing singular values are selected until the desired
precision is obtained. To do so, the reduction basis Φ is supplemented by the vectors

(
d1,d2, ...,dk

)

to form the matrix V(k) = [Φ,d1, · · · ,dk]. Then the matrix Us collecting all static displacements
u(ℓ) is approximated as V(k)Q(k) by a least-squares method. The dual modes are first selected
with respect to the following criterion to ensure that the static solutions are properly approximated
when adequate linear and dual modes are included in the basis:

max(|Us −V(k)Q(k)|)
max(|Us|)

< εσ (1.121)

The second step is to satisfy a sufficient contribution to the linearized strain energy. The
remaining dual modes candidates are ordered by decreasing linearized strain energy contributions
and are added to the reduction basis until the following error is below the threshold εE :

(
Er −

k∑

i=1

Ei

)

Er
< εE (1.122)

with Ei the contribution to the total linearized strain energy defined in (1.120). The new reduction
basis is finally the concatenation V = [Φ,Φdual] of the first linear normal modes Φ and the selection
of dual modes Φdual satisfying both criteria.

1.3.2 Computation of the nonlinear forces coefficients

When a partitioned fluid-structure coupling is considered, the fluid solver interacts with an external
FE solver to compute the displacement of the structure at every sub-iteration of coupling. The
transfer of data between the fluid and the structure solvers is not an easy task and a significant
advantage is to use a non-intrusive ROM, independent from any FE solver during the online stage.
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However, since the evaluation of the projected nonlinear forces g̃nl(q) = VTgnl(Vq) requires back-
and-forth exchanges between the ROM and the FEM variables, the ROM resulting from Equation
(1.89) is therefore intrusive. More precisely, the physical displacements u ≈ Vq have first to be
assembled before the evaluation of the nonlinear forces gnl(Vq) by the FE solver, which are finally
projected again in the reduced space. It would be of great interest to know the explicit expression
of the projected nonlinear forces g̃nl(q) as a function of the generalized coordinates. Thus the
structural problem could be solved directly in the reduced space:

M̃q̈+ C̃q̇+ K̃q+ g̃nl(q) = f̃a. (1.123)

Considering geometric nonlinearities in the frame of finite displacements (small strains, large
displacements and large rotations) and the Saint Venant-Kirchhoff constitutive model, the pro-
jected nonlinear forces resulting from geometric nonlinearities is a third-order polynomial function
of the generalized coordinates [125, 126]. Indeed, the internal nonlinear forces fnl(u) are cubic in
the degrees of freedom u as shown in Equation (1.59) and so are gnl(u) from Equation (1.72).
Introducing the projection u = Vq in their expression leads to the cubic polynomial expression of
g̃nl(q). Writing g̃knl(q) the kth coordinate of the projected nonlinear force, its expression can be
written explicitly from the generalized coordinates:

g̃knl(q) =

n∑

i=1

n∑

j=i

βk
ijqiqj +

n∑

i=1

n∑

j=i

n∑

m=j

γkijmqiqjqm, (1.124)

with n the number of modes in the reduction basis, while βk
ij and γkijm are respectively the quadratic

and cubic coefficients of the polynomial approximation of the nonlinear forces. Appendix C pro-
vides a formulation of the Jacobian of the projected nonlinear forces that will be exploited for
the resolution of the nonlinear systems. Nevertheless, the coefficients βk

ij and γ k
ijm have yet to be

determined. Two methods are found in the literature. The first one involves the determination of
the coefficients with imposed displacements, called STEP [126] and its necessary corrections for
3D cases [8], [199]. In this method, the coefficients of the polynomial are determined specifically by
imposing to the structure various displacements with the shape of well-chosen linear combinations
of the linear normal modes. The second method relies on prescribed loads to the structure to
determine the coefficients. Such a method is called Implicit Condensation [122], and an Expan-
sion step has been proposed [79]. Prescribed loads instead of displacements are imposed to the
structure, with load distributions derived from the linear normal modes. Both the nonlinear static
solutions and the nonlinear forces are computed. The generalized coordinates on the reduction
basis are extracted from the nonlinear static solutions by means of a least-squares approximation.
The coefficients βk

ij and γkijm are finally obtained by identification between the formula (1.124) and
the nonlinear forces computed with the FE solver.

1.3.2.1 STEP method

The STEP method is a non-intrusive method introduced by Muravyov and Rizzi [126, 158] to build
an autonomous reduced order model with respect to the computation of the nonlinear forces. The
latter are indeed expressed as an explicit function of the generalized coordinates.

The STEP method consists in writing each component k = (1, · · · , n) of g̃nl(q) as a third
order polynomial as shown in Equation (1.124). The coefficients βk

ij and γkijm can be identified in
a non-intrusive way using a finite element software by evaluating the nonlinear forces gnl(u) and
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its projection on the kth mode Vk:

g̃knl(u) = VT
k gnl(u). (1.125)

The coefficients of the polynomial expression (1.124) are computed one by one by imposing to the
structure wisely-chosen combinations of the linear normal modes. The following paragraphs detail
the procedure to compute the coefficients associated with the projection on the kth mode of the
nonlinear internal forces.

Computation of the coefficients βk
ii and γkiii:

The quadratic and cubic coefficients of one repeated index i ∈ {1, · · · , n} are evaluated by imposing
to the structure two opposite displacements along the mode Vi with a chosen amplitude qi:

u1 = Viqi (1.126)

u2 = −Viqi. (1.127)

The projected nonlinear forces associated with such displacements are given by Equation (1.124):

g̃knl(u1) = βk
ii q

2
i + γkiii q

3
i (1.128)

g̃knl(u2) = βk
ii q

2
i − γkiii q

3
i , (1.129)

from which the coefficients βk
ii, γ

k
iii are deduced:

βk
ii =

1

2q2i

[
g̃knl(u1) + g̃knl(u2)

]
(1.130)

γkiii =
1

2q3i

[
g̃knl(u1)− g̃knl(u2)

]
. (1.131)

Since two solutions are necessary to determine the coefficients βk
ii, γ

k
iii for a given k, the number of

static calculations to perform in order to compute those coefficients for all k ∈ {1, · · · , n} is 2n.

Computation of the coefficients βk
ij,γ

k
iij and γkijj:

The next step is the computation of the coefficients involving two indices i ∈ {1, · · · , n} and
j ∈ {1, · · · , n} with i < j. The coefficients computed in the previous paragraph are reused in this
step to determine the coefficients βk

ij ,γ
k
iij and γkijj . Three combinations of the linear normal modes

Vi and Vj are imposed to the structure with respective amplitude qi and qj :

u3 = Viqi +Vjqj (1.132)

u4 = −Viqi −Vjqj (1.133)

u5 = Viqi −Vjqj . (1.134)

The expression of the projected nonlinear forces (Equation (1.124)) associated with those displace-
ments are:

g̃knl(u3) = βk
ii q

2
i + βk

ij qiqj + βk
jj q2j + γkiii q

3
i + γkiij q2i qj + γkijj qiq

2
j + γkjjj q3j (1.135)

g̃knl(u4) = βk
ii q

2
i + βk

ij qiqj + βk
jj q2j − γkiii q

3
i − γkiij q2i qj − γkijj qiq

2
j − γkjjj q3j (1.136)

g̃knl(u5) = βk
ii q

2
i − βk

ij qiqj + βk
jj q2j + γkiii q

3
i − γkiij q2i qj + γkijj qiq

2
j − γkjjj q3j , (1.137)
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from which the coefficients βk
ij , γ

k
ijj and γkiij are obtained as:

βk
ij =

1

2qiqj

[
g̃knl(u3) + g̃knl(u4)− 2βk

iiq
2
i − 2βk

jjq
2
j

]
(1.138)

γkijj =
1

2qiq2j

[
g̃knl(u3) + g̃knl(u5)− 2βk

iiq
2
i − 2βk

jjq
2
j − 2γkiiiq

3
i

]
(1.139)

γkiij =
1

2q2i qj

[
−g̃knl(u4)− g̃knl(u5) + 2βk

iiq
2
i + 2βk

jjq
2
j − 2γkjjjq

3
j

]
. (1.140)

The determination of the coefficients of this second step for all k ∈ {1, · · · , n} requires the com-
putation of 3

2n(n− 1) static nonlinear solutions.

Computation of the coefficients γkijm:

The last step of the method consists in the determination of the coefficients γkijm for i ∈ {1, · · · , n},
j ∈ {1, · · · , n} and m ∈ {1, · · · , n} with i < j < m. Only one displacement is required, defined
as the sum of the three linear normal modes Vi,Vj and Vm with the respective amplitudes qi, qj
and qm:

u6 = Viqi +Vjqj +Vmqm. (1.141)

The projected internal forces resulting from the displacements u6 involve all combinations of the
generalized coordinates qi, qj and qm:

g̃knl(u6) = βk
iiq

2
i + βk

ijqiqj + βk
imqiqm + βk

jjq
2
j + βk

jmqjqm + βk
mmq2m + γkiiiq

3
i

+γkiijq
2
i qj + γkiimq2i qm + γkijjqiq

2
j + γkijmqiqjqm + γkimmqiq

2
m

+γkjjjq
3
j + γkjjmq2j qm + γkjmmqjq

2
m + γkmmmq3m,

(1.142)

from which the coefficient γkijm is determined, taking advantage of the coefficients already known
from the previous steps:

γkijm =
1

qiqjqm

[
g̃knl(u6)− βk

iiq
2
i − βk

ijqiqj − βk
imqiqm − βk

jjq
2
j − βk

jmqjqm − βk
mmq2m

−γkiiiq3i − γkiijq
2
i qj − γkiimq2i qm − γkijjqiq

2
j − γkimmqiq

2
m

−γkjjjq3j − γkjjmq2j qm − γkjmmqjq
2
m − γkmmmq3m

]
.

(1.143)

The number of static nonlinear computations necessary to compute all the coefficients γkijm is equal
to = 1

6n(n − 1)(n − 2). Hence, the total number of nonlinear finite element static computations
needed to determine all the coefficients of the STEP method is equal to 2n+ 3

2n(n− 1) + 1
6n(n−

1)(n − 2) = 1
6(n

3 + 6n2 + 5n). Consequently, the number of STEP coefficients grow significantly
with the size of the reduced basis.

The identification of the coefficients with the STEP method is particularly efficient for von
Kármán beams and plates applications where the expression of the nonlinear forces is cubic [65,
118]. Nevertheless, for 3D structures, the determination of the coefficients with the STEP method
in its original form has limitations due to imposed displacements that constrain the natural Poisson
volume deformations, resulting in imposing significant local internal forces polluting the numerical
resolution with large numbers leading to numerical inaccuracies. Thus the STEP coefficients
depends strongly on the amplitudes qi, qj , qm of the imposed displacements for 3D cases. For each
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problem there is a range of adequate amplitudes qi, qj , qm where the coefficients are well determined
and independent of the imposed amplitude. Improvements of the STEP method for 3D structures
are found in the literature such as a POD correction of the coefficients called StepC [8] and a
modified STEP [199] where the displacements are imposed only on specific degrees of freedom in
order to let the Poisson volume deformation free. Another approach consisting in computing the
nonlinear forces element-wise is proposed in [99] and hyper reduction techniques are suggested to
reduce its computational cost.

1.3.2.2 Implicit Condensation and Expansion

The idea of the Implicit Condensation method [122] is to select in the reduction basis the first
nb linear normal modes: Φ = [ϕϕϕ1, · · · ,ϕϕϕnb

] corresponding usually to bending modes for slender
structures. Then the nonlinear forces coefficients of Equation (1.124) are identified thanks to static
nonlinear displacements obtained under load cases. A set of nL loading cases f

(1)
ext, f

(2)
ext, · · · , f

(nL)
ext

are introduced. The distribution of each load case ℓ ∈ [1, nL] is defined as a linear combination of
the linear normal modes:

f
(ℓ)
ext = λ

(ℓ)
1 ϕϕϕ1 + λ

(ℓ)
2 ϕϕϕ2 + · · ·+ λ(ℓ)

nb
ϕϕϕnb

. (1.144)

The determination of the quadratic and cubic coefficients of the reduced nonlinear forces is
carried out by identification between Equation (1.124) and the projection of the internal nonlinear
forces obtained with the nonlinear static computations under the loads (1.144): Ku(ℓ)+gnl(u

(ℓ)) =

f
(ℓ)
ext. In the original IC method, the reduction basis comprises exclusively bending modes. There-

fore, the contribution of the other modes, for instance the membrane modes of beam or shells, is
omitted in the result. The specificity of the ICE method is to improve the solution obtained with
the IC method by adding a post-processing step whose aim is to enrich the displacement solution
with information on the membrane displacement that is not contained in the few linear normal
modes selected. The assumption is that the total displacement u is the sum of the approximated
solution obtained with the first linear normal modes selected ub and a set of Expansion modes
Ψ multiplied by generalized coordinates η. Such generalized coordinates are defined as quadratic
functions of the generalized coordinates associated to the selected modes Φ:

uICE = ub + um =

nb∑

k=1

ϕϕϕkqk +

nm∑

k=1

ψkηk = Φq+Ψη. (1.145)

The first linear bending modes (ϕϕϕk)k∈[1,nb] are known as well as the corresponding generalized
coordinates qk. On the contrary, the modal amplitudes of the Expansion modes Ψ are obtained
as quadratic combinations of the modal amplitudes relative to the first linear normal modes qk:

η =
[
q21 q1q2 · · · q1qnb

q22 q2q3 · · · q2qnb
· · · q2

nb

]T
. (1.146)

Nevertheless, the nm = nb(nb+1)/2 Expansion modes
(
ψq

)
q∈[1,nm]

are not known and have to be
determined during the construction of the reduced order model. To this end, a matrix (Qm)(nm×nL)

(respectively (Qb)(nb×nL)
) is built, whose lines are the generalized amplitudes (ηq)q∈[1,nm] (respec-

tively (qk)k∈[1,nb]) and the columns their values for each static solutions associated to a load-
ing f

(ℓ)
ext. Introducing the matrix (Ut)(nb×nL)

whose columns are the nonlinear static solutions

u(ℓ)
ICE

= u
(ℓ)
b + u

(ℓ)
m leads to the matrix system:

Ut = ΦQb +ΨQm. (1.147)
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The Expansion modes used for the ICE reconstruction of the displacement are then obtained by:

Ψ =
[
Ut −ΦQb

]
Q+

m, (1.148)

where Q+
m is the pseudo-inverse of Qm. In [79], the authors suggest using the first bending modes

in the reduction basis, therefore the Expansion modes are mostly modes with a predominant
membrane contribution. During the temporal resolution of the dynamics equations of motion, the
structural response in terms of modal bending amplitudes ub is determined. The corresponding
membrane displacements ηk are then computed with Equation (1.146) and the total displacement
is finally rebuilt as u = ub + um. Equation (1.146) is a quadratic mapping or quadratic modal
condensation [80] and is valid for von Kármán beams but is a priori an approximation for more
complex structures. Besides, for cantilever structures, the IC method with bending modes and its
expansion ICE becomes inaccurate in dynamic cases with large axial displacements, which will be
shown in section 2.3. Indeed, since only bending modes are included in the reduced basis, there is
no equation relative to the membrane dynamics in the reduced system and the static reconstruction
of the Expansion may be inaccurate.

1.3.3 Reduction methods based on different approaches

The previous section was dedicated to projection-based reduced order models with the determina-
tion of the reduction basis capable of capturing geometric nonlinearities as well as the determina-
tion of an explicit expression of the internal nonlinear forces projected in such a basis. Different
approaches exist in the literature. For instance, an adaptation of the Koiter–Newton method is
proposed in [177] to accurately compute large deflections. Hyper-reduction methods are also rele-
vant; they are also projection-based but the computation of the internal forces is different in the
sense that they are computed in a subset, not at all degrees of freedom. In contrast to projection-
based methods, nonlinear normal modes are based on the reduction in the normal form of the
equations governing the dynamics thus introducing a change of variable between the physical de-
grees of freedom and the normal coordinates. The reduced dynamics is computed in an invariant
manifold of small dimension, then rebuilt in the physical space via the change of variable.

1.3.3.1 Hyper-reduction techniques

The issue raised by the classical projection VT fint(Vq) of the internal forces in the reduced space
is that the internal forces are known in the physical space, not the reduced space. It means that
the online cost of such a projection is very expensive. Indeed, at each evaluation of the internal
force fint, but also tangent stiffness ∂fint/∂u, such evaluation should be carried out in the physical
space. The displacement u is first approximated by Vq, then the internal forces fint(Vq) are com-
puted in each element and assembled. The result is finally projected in the reduced space. The
computational cost of such a procedure is very significant. Considering geometric nonlinearities,
an explicit expression of the projected nonlinear forces as a cubic polynomial of the generalized
coordinates is proposed in section 1.3.2. Such expression is valid only for geometrical nonlinearities
and not for other complex types of nonlinearities. The idea of hyper-reduction methods is different
in the sense that the internal forces are still computed in the physical space but only at some
carefully chosen points and interpolated at the others.

The Direct Empirical Interpolation Method (DEIM), introduced by S. Chaturantabut and D.
C. Sorensen [26], is based on the approximation of the internal forces by a product between a
subspace matrix D ∈ RN×mD and a coefficients vector c:

fint(u(t)) ≈ Dc(t). (1.149)
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The system is over-determined, the coefficients vector c is chosen with a boolean matrix E =[
eρ1 , eρ2 , · · · , eρmD

]
∈ RN×mD where eρj is the ρth

j column of the identity matrix IN such that:

ET fint(u(t)) = (ETD)c(t). (1.150)

The coefficients vector c is uniquely defined by c(t) = (ETD)−1ET fint(u(t)) supposing ETD

nonsingular. The approximation of the internal forces is finally:

fint(u) ≈ Dc(t) = D(ETD)−1 ET fint(u(t)). (1.151)

During the online stage of the computation, the nonlinear forces are evaluated only at the degrees
of freedom specified by the interpolation indices constituting the matrix E. It is what is meant
by the matrix product between the transpose of the boolean matrix and the assembled internal
force: ET fint(u(t)) but not what is performed numerically since such assembling is precisely what
the method aims to avoid. It is also the difficulty of the method. Indeed, to be efficient the FE
code should be able to compute the internal forces only at the desired dofs, which is cumbersome
to implement in industrial FE codes. The DEIM approximation of the internal forces in Equation
(1.151) requires the determination of the reduction basis D and the mD ≪ N interpolation indices
{ρ1, · · · , ρmD}. The matrix D for the projection into a subspace is usually a POD basis obtained
with a SVD of snapshots of internal forces

[
fint(u(t1)), fint(u(t2)), · · · , fint(u(tn))

]
and the

interpolation indices required to build the matrix E are obtained with a greedy algorithm based
on the projection basis. Therefore the accuracy of the DEIM method is solely depending on the
quality of the reduction basis. Besides, the method has a major drawback which is the loss of
symmetry of the system as well as the loss of consistency and stability [49]. Applying the DEIM
to only the purely nonlinear internal forces gnl(u) reduces the possible impact of the loss of these
properties.

In finite elements in general and more particularly in 3D meshes, nodes have several neigh-
bouring elements. The evaluation of the internal force at one dof needs the evaluation of all the
neighbouring elements of the selected dof. Thus more evaluations than only the collocation dofs are
needed. To counter that issue, P. Tiso and D.J.Rixen suggested the unassembled DEIM (UDEIM)
method [191]. This method is the use of the DEIM method on the unassembled system to avoid
the previously mentioned necessity to evaluate all neighbouring elements of the collocation dofs.
However, the matrix D has to be built with POD on unassembled internal force snapshots. Be-
sides DEIM and UDEIM collocation processes being equivalent, the major drawback of the DEIM
method in terms of loss of symmetry, consistency and stability are also affecting the UDEIM
method.

While the DEIM method approximates the internal forces in the physical space and then
projects them into a reduced basis, the Energy Conserving Mesh Sampling and Weighting (ECSW)
method computes an approximation of the reduced internal forces, preserving the symmetry, sta-
bility and consistency. Introduced in the field of computer graphics [3], this method was then
transposed to nonlinear dynamic problems [25, 49, 50]. The ECSW method consists in finding a
relevant approximation of the virtual work of the reduced internal forces by restricting the compu-
tation to a subset of fewer elements and introducing weighting factors to characterise the energy
of the full system as well as make sure of the positiveness of the virtual work. The elements of the
subset and the associated weighting factors are the solutions to an optimization problem aiming
to find the maximum of weighting factors equal to zero (meaning the lowest number of elements to
consider in the subset) while respecting the equation with a given tolerance. Such an optimization
problem is solved by a Non-Negative Least Square solver, requiring a significant computational
time. A reduction of the computational time is proposed in [25] and an approximate solution is
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often selected. The advantage of the ECSW method over the DEIM and the UDEIM is that it
is based on the virtual work principle and maintains properties such as symmetry, stability and
consistency.

1.3.3.2 Nonlinear Normal Modes and invariant manifolds

Nonlinear normal modes are adapted to polynomial nonlinearities and consist in searching periodic
solutions in the vicinity of the resonating frequency. In its original form, the first step is the
projection of the equations of the dynamics in the space of all the linear modes Φ consisting of
N coupled oscillators. For instance, the homogeneous equation relative to the oscillator k is the
following:

ẍk + 2ξpẋk + ω2
kxk +

N∑

i,j

gkijxixj +

N∑

i,j,m

hkijmxixjxm = 0, (1.152)

with xk the degrees of freedom of the oscillators. In this equation the external forces are not con-
sidered, they are added in the second member afterwards during the computation of the solution.
In the linear case, without the nonlinear terms, the projection results in N uncoupled oscillators,
represented by hyperplanes in the phase space as illustrated in Figure 1.8a. It means that a motion
initiated along one mode does not trigger the motion of other modes. However, when nonlinear
terms are present, the oscillators are coupled and a motion along one mode triggers a motion along
other modes. The first definition of the nonlinear modes is a family of periodic orbits around the
equilibrium. The existence of such orbits is proved by the Lyapunov theorem [112]. This concept
was taken up by Rosenberg [160–164] as the periodic orbits of a nonlinear mode. It is an analytic
approach based on an energetic formulation of the conservative system (without damping). The
analytical approach inspired several studies [154, 196, 197] and a numerical approach for the com-
putation of such nonlinear modes was proposed in [179].

Another definition of nonlinear modes was proposed by Shaw & Pierre [173–175]. They intro-
duced the nonlinear modes as invariant manifolds in the phase space, tangent to the corresponding
linear modes at the origin as illustrated in Figure 1.8b. With such a definition, the nonlinear modes
can be seen as an extension of the linear mode to the nonlinearity. A generalization to damped
systems is possible in contradiction with the definition of Rosenberg. Shaw & Pierre’s definition
of the nonlinear modes is based on the center manifold theory [22, 68, 97]. A separation between
lightly damped "master modes" and strongly damped "slave modes". The reduced dynamics is
governed by the master modes while the movement of the slave modes is defined as a function
of the master modes. Several methods of computation were proposed such as the multiple-scale
method [106, 107, 195] and complex formulations [93, 131, 132, 175]. A reformulation of the
method using polar coordinates to compute the geometry of the manifold was proposed in [144].
The computation of nonlinear normal modes was also performed in the conservative case with
continuation methods like Shooting [141] and Harmonic Balance [66]. To treat nonconservative
systems, a pseudo-periodic variation of the nonlinear modes called complex nonlinear modes was
proposed in [108, 109] and contact applications were treated in [94, 95, 101, 102]. Besides, it is
worth mentioning that the invariant manifold satisfying the definition of Shaw & Pierre is not
unique: Haller proved the existence of a unique manifold (called spectral submanifold) under ap-
propriate nonresonance and spectral quotient conditions [73].
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Figure 1.8: Linear (a) and nonlinear (b) invariant manifolds containing the periodic orbits of the
linear/nonlinear problem with two degrees of freedom proposed in [176].
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The limitation of such a formulation is that the variables used to compute the dynamics in the
manifold are the master modes. The problem is that a fold in the manifold cannot be captured. The
Normal Form approach overcomes such a limitation by introducing a nonlinear change of variable
between the master modes and the normal coordinates by transposing the equation of the dynamics
to its normal form. This transposition to the normal form derives from the Poincaré and Poincaré-
Dulac theorems [46, 150]. The theorems are based on a first-order dynamical formalism. Thus,
the velocities are added as variables in the equations of motion (1.152) of the N oscillators. The
vector X = [x1, y1, · · · , xk, yk, · · · , xN , yN ] of size 2N is considered and the oscillators’ equations
are transformed into a first-order system:

Ẋ = F(X) = ΛX+N2(X) +N3(X), (1.153)

in which the equations relative to the kth oscillator are:

ẋk = yk (1.154)

ẏk = −2ξkẋk − ω2
kxk −

N∑

i,j

gkijxixj −
N∑

i,j,m

hkijmxixjxm, (1.155)

where Λ is the diagonal matrix containing the eigenvalues (λi)i=1,N of the associated linear sys-
tem while N2(X),N3(X) are respectively the quadratic and cubic nonlinearities. According to
Poincaré’s theorem, a nonlinear change of variable Z(X) exists such that the system (1.153) be-
comes linear in the absence of internal resonances:

Ż = ΛX. (1.156)

Internal resonances are relations between the eigenvalues. An internal resonance of order p is a
relation: λi =

∑N
j=1mjλj with mj ≥ 0 and

∑N
j=1mj = p. Poincaré-Dulac’s theorem demonstrates

that in the case of internal resonances, the linear relation cannot be obtained and nonlinear terms
relative to the internal resonances are kept. The equation in the normal form is thus:

Ż = ΛX+M2(X) +M3(X) + · · · , (1.157)

where M2(X),M3(X) and the higher orders contain only the resonating monomials. However, in
the dynamical system (1.153), the eigenvalues are complex conjugates: Λ = diag{±iωk} leading
to trivial internal resonances of the form: +iωj = +iωj + iωk − iωk for any j, k ∈ [1, N ]2. To
implement the reduction to the normal form, [192] suggested a change of variable of the third
order in the entire system between the physical and normal coordinates:

xk = Rk + P1(Ri, Si) (1.158)

yk = Sk + P2(Ri, Si), (1.159)

with P1,P2 polynomial functions of the normal coordinates (Ri, Si)i∈[1,N ], which expressions are
detailed in the article [192]. With such a change of variable, all non-resonating monomials are
eliminated leading to fewer nonlinear terms in the expression. The dynamics is computed in the
space of the normal coordinates Rk, Sk and then rebuilt in the physical space xk, yk. To study the
vibrations along one or several master modes, the number of equations in the reduced dynamics is
considerably reduced since only a few nonlinear couplings remain leading to a significant truncation
of the system. An explicit development up to the third order is provided, both for the conservative
and damped systems. The expressions are given in the absence of non-trivial internal resonances,
the latter requiring keeping additional terms in the normal form. A method of parametrisation
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of the change of variable was proposed in [16–18, 74] introducing polynomial developments in
the change of variable and equations leading to an under-determined system. The determination
of the system links the Shaw & Pierre approach referred to as graph style and the normal form
approach called normal form style. The graph style approach consists in keeping linear relations
between the normal coordinates and the master coordinates, while the normal form style is based
on nonlinear change of variables. A non-intrusive implementation of the parametrisation method
regarding an external FE solver is proposed in [202] under the name direct normal form (DNF).
The parametrisation is there restricted to the second and third orders. To allow developments
to arbitrary orders of parametrisation, an intrusive approach is detailed in [200]. In the previous
methods, the construction of the nonlinear modes is based on the homogeneous equation, the
external load is omitted and applied afterwards. Including a polynomial decomposition of the
periodic external load is possible and results in time-dependent manifolds [138, 151].

1.4 Conclusion of the chapter

This first chapter introduced the dynamics of a structure in rotation around a fixed axis at constant
rotation speed along with a description of temporal and frequency resolution methods of such
equations. Then some common reduction methods were presented to reduce the dimension of
the system to solve. The focus was first made on projection-based reduction methods for which
the difficulty resides in the determination of the reduction basis capturing the nonlinearity and
the determination of an explicit expression of the projected nonlinear forces. Finally, reduction
methods based on other approaches were summarized. First hyper-reduction methods, computing
the nonlinear forces only at some degrees of freedom are mentioned, then nonlinear normal modes
are introduced. Such an approach is based on the computation of the dynamics in an invariant
manifold instead of a projection on a linear basis. In the next chapter, the requirements of the
structural ROM to tackle fluid-structure interaction problems are explained. A new reduced order
model is proposed and tested on a simple test case of a beam model.



Chapter 2

Development of a non-intrusive ROM
for aeroelastic coupling

In this chapter, the specificity of the fluid-structure coupling in the construction of reduced order
models is first explained. Then, taking those considerations into account, a new reduced order
model based on the implicit condensation and dual modes is introduced and further referred to as
ICDual. Finally, the efficiency of such a ROM is evaluated thanks to a 2D Euler-Bernoulli/von
Kármán beam model, first without, then with centrifugal rotation around a fixed axis. The interest
of such a beam model is that the nonlinearity is cubic in the degrees of freedom. Therefore,
the proposed ROM is directly transposable to 3D finite element applications with Saint Venant-
Kirchhoff models where the geometric nonlinearity is known to be cubic in the degrees of freedom.
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2.1 Reduction techniques for FSI

In the classical context of aeroelasticity, it is sufficient to consider linear structures when assessing
stability. However, the need to reduce fuel consumption in the aeronautical industry has led to
the development of higher-performance, lighter structures, resulting in geometric non-linearities
induced by large displacements, modifying their static and dynamic behaviors. In this thesis, we
focus on "high-fidelity" calculations to take into account non-linearities on both the structure and
fluid sides. In the present chapter, the purpose is to build a non-linear reduced model only for the
structure. Fluid dynamics is not reduced and is calculated using a CFD solver. Chapter 4 describes
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the fluid part and the coupling in more detail. To treat fluid-structure interaction problems of
large dimensions, a linear reduced order model is often considered [23, 69–71, 116]. Besides, via
forced-response of small amplitude, an aerodynamic damping and stiffness can be identified, and
aeroelastic phenomena investigated [30, 44]. However, such method cannot be applied to large
amplitude vibrations where both the fluid and the structure undergo a nonlinear behavior. The
context of this work is to capture with high-fidelity the behavior of the fluid and to build a
nonlinear ROM for the structure. A weak coupling approach between the fluid solver elsA [19] and
a nonlinear reduced order model using complex nonlinear modes was proposed in [136] to treat
friction at blade roots. Regarding geometric nonlinearities, [123] coupled a fluid solver with an
ICE ROM to replace the structural solver and compute the aeroelastic response of a wing. The
specificity of the aerodynamic forces is that those are follower forces leading to a dependency of the
load to the position. Considering a reduction method based on invariant manifolds, the load has
to be either explicitly known leading to time dependent invariant manifolds, or is not considered
in the construction of the model but is applied afterwards. Examples of such methods for fluid-
structure interaction problems are found in [2, 110, 193]. In the present work, a projection-based
ROM is considered, with a reduction basis consisting of both linear normal modes and a pertinent
set of dual modes. The nonlinear forces in the reduced space are approximated as a third-order
polynomial of the generalized coordinates whose coefficients are identified via imposed loads.

2.2 A new reduced order model combining dual modes and the
implicit condensation (ICDual)

In this section, an original reduction method using dual modes and determining the coefficients
of the projected nonlinear forces with imposed loads is detailed. Such method will be referred to
as ICDual. First, the determination of the dual modes to improve the reduction basis is detailed.
Then, two methods to determine the coefficients of the projected nonlinear forces using prescribed
loads are proposed. The originality of the method lies in the determination of the projected
nonlinear forces. The coefficients associated to both the linear normal modes and the dual modes
in the reduction basis are obtained from imposed loads generated with the linear normal modes
shapes only. Thus the same loads cases can be used to determine the dual modes and the projected
nonlinear forces coefficients. This first method is similar to the Implicit Condensation method in
the sense that it exploits the FE nonlinear forces while a second is based on the tangent stiffness
matrices and is detailed further.

2.2.1 Computation of the nonlinear forces coefficients

The coefficients of the nonlinear forces approximation are computed similarly to the IC method
in the sense that prescribed loads are applied to the structure. However, the reduction basis
considered in the present work does not only contain linear normal modes, but also dual modes.
Here, the loads are not imposed on the entire basis containing both linear normal modes and dual
modes as suggested in [122, 143], but only on the linear normal modes. Indeed, applying loads to
the dual modes produces internal forces whose amplitudes differ by several orders of magnitude
from those associated to linear modes. The choice of the weighting coefficients to impose those
loads becomes tricky and strongly alters the results.

In this thesis, external loads are therefore prescribed only from a combination of linear modes,
but displacements associated to dual modes are also included in the static solutions because of
the nonlinear coupling. The same loads as those used for the determination of the dual modes
Equation (1.115) can thus be reused and possibly supplemented by additional load cases. With
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such distribution of loads based on the linear modes, the ROM can be used for different load
cases, such as aerodynamic forces for instance since the prescribed loads in Equation (1.115)
are rather generic. Besides, the product with the stiffness matrix provides an estimation of the
amplitude of the real physical displacement. Indeed, if the geometric nonlinearity was neglected,
the displacement obtained by such a load case would exactly be the distribution imposed by
the linear combination of modes

∑nb
i=1 α

(ℓ)
i ϕϕϕi. Since geometrical nonlinearities affect the static

displacement and generally result in smaller displacements or with similar order of magnitude
than linear ones, the previous remark gives an upper limit to the order of magnitude of the
displacement. This observation provides a strategy to select the coefficients α

(ℓ)
i so that the loads

imposed are large enough to trigger geometric nonlinearities, and not too large to remain below
the yields stresses of the materials. From this set of nL external loadings, the nL nonlinear static
displacements are obtained by solving, with a Newton-Raphson algorithm, the nonlinear static
equations:

Ku
(ℓ)
s + fnl(u

(ℓ)
s ) = f

(ℓ)
ext, (2.1)

Then the associated generalized coordinates q(ℓ) are computed by a least-squares approximation
using the pseudo-inverse of V from the equation:

q(ℓ) = (VTV)−1VTu
(ℓ)
s . (2.2)

At this point nL couples
(
q(ℓ), fnl(u

(ℓ)
s )
)

are determined and satisfy the following system for the

unknowns βk
ij and γkijm:

f̃k
nl(q

(ℓ)) = VT
k fnl(Vq(ℓ)) =

n∑

i=1

n∑

j=i

βk
ijq

(ℓ)
i q

(ℓ)
j +

n∑

i=1

n∑

j=i

n∑

m=j

γkijmq
(ℓ)
i q

(ℓ)
j q(ℓ)m . (2.3)

The previous system of equations for each k ∈ [1, n] can be written in the matrix form as follows:
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...
fnl

T (u
(nL)
s )



Vk (2.4)

with: {
qquad(q) =

[
(q1)

2 q1q2 q2q2 q2q3 q3q3 · · · (qn)
2
]T

qcub(q) =
[
(q1)

3 q1q1q2 q1q2q2 q1q2q3 q1q3q3 · · · (qn)
3
]T

.
(2.5)

If the FE code provides the quadratic and cubic components of fnl separately, the nonlinear coef-
ficients can be identified individually by solving two different systems. Otherwise, the coefficients
have to be identified simultaneously by solving the system (2.4) that can be written as follows:

[
Qquad Qcub

] [βk

γk

]
≈




fnl
T (u

(1)
s )

...
fnl

T (u
(nL)
s )


Vk (2.6)

For each k and n ≥ 3, the system includes n(n + 1)/2 unknowns for the coefficients βk
ij and

(n3 + 3n2 + 2n)/6 for the coefficients γkijm. The system is thus well determined when the number
of loads nL is equal to the number of coefficients; otherwise the system is over- or under-determined
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and a least-squares approximation is necessary. Note that when the problem presents symmetries,
a significant number of coefficients are null and less load cases are required. When the quadratic
and cubic coefficients cannot be computed separately, penalized regression methods such as Ridge,
Lasso [189] or Elastic Net [210] can be preferred to the usual least-squares due to the possibly large
condition number of the system. Two advantages of the proposed procedure over the identification
of coefficients based on prescribed displacements can be mentioned. Firstly, for 3D structures,
no correction is required unlike the case where displacements are imposed [7, 199]. Secondly, the
load cases and the associated solutions, computed to determine the dual modes, are reused here
in the determination of the force coefficients. It is worth mentioning that more load cases may be
necessary to identify the coefficients according to the number of unknowns in the system to solve,
especially when the quadratic and cubic nonlinear forces cannot be identified separately.

2.2.2 Variant using the tangent stiffness matrix

When available as an output of the FE code, the use of the tangent stiffness matrix is suggested
in [143] to compute the coefficients. Indeed, considering the Jacobian of the projected nonlinear
forces, the system writes:




δQquad(q
(1))

δQquad(q
(2))

...
δQquad(q

(nL))







βk
11

βk
12
...

βk
nn


+




δQcub(q
(1))

δQcub(q
(2))

...
δQcub(q

(nL))







γk111
γk112

...
γknnn


 ≈




K̃
(1)

nl,k

K̃
(2)

nl,k
...

K̃
(nL)

nl,k



, (2.7)

where

δQquad(q) =




∂qquad(q)

∂q1
...

∂qquad(q)

∂qn



, δQcub(q) =




∂qcub(q)

∂q1
...

∂qcub(q)

∂qn



, (2.8)

and where the notation K̃
(ℓ)

nl,k corresponds to the transpose of the kth row of the matrix Knl
(ℓ) =

VTKnl(u
(ℓ)
s )V. As in the case with the nonlinear forces fnl, when the quadratic and cubic com-

ponents of Knl can be treated separately, the nonlinear coefficients βk and γk can be identified
individually by solving two different systems, otherwise the full system can be solved. In [142],
the tangent stiffness matrix is evaluated with imposed displacements. Here, the tangent stiffness
matrix Knl(u

(ℓ)
s ) is evaluated for the nonlinear static solutions u(ℓ) (ℓ ∈ [1, nL]) computed under

the loads f (ℓ)ext. Each nonlinear static solution u(ℓ) gives a set of n equations, compared to only one
equation with the nonlinear force fnl(u

(ℓ)). Thus, the number of static solutions necessary to com-
pute the coefficients is much lower than with the method based on nonlinear forces in section 2.2.1.

Once the reduction basis and the coefficients of the nonlinear internal forces have been calcu-
lated, the coupling between this ROM and a fluid solver can be performed. The fluid-structure
coupling procedure used in this work is discussed in the chapter 4 and applied in chapter 5.
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2.3 Application to a one-dimensional Euler-Bernoulli beam with
von Kármán hypothesis

This section provides details on an Euler-Bernoulli beam model, the shear deformation of the
sections is thus neglected. In each element of the discretized beam, the von Kármán hypothesis of
small axial strain/ moderate rotations is assumed. Such beam formulation is then used in section
2.3.2 to evaluate the efficiency of the ROMs under several load cases.

Y
G

M

m

O

X

ds

dX u(X + dX)

v
(X

+
d
X
)

u(X)

θ(X)

v
(X

)

ex

ey

Figure 2.1: Lagrangian kinematics of the beam.

A material point M in the initial geometry is described in the reference frame (ex, ey) by its
lagrangian coordinates (X,Y ). The same material point is written m in the deformed geometry.
Figure 2.1 illustrates the notations used in the beam formulation. The position vector of the
material point M in the initial and deformed configurations are:

OM = Xex + Y ey (2.9)

Om = OM + u(M). (2.10)

The position of the material point M is defined by a solid rotation R(θ) of the section around the
associated point G on the neutral axis. The displacements vector u(M) is therefore:

u(M) = u(G) + [R(θ)− I]GM with R(θ) =

(
cos θ − sin θ

sin θ cos θ

)

(ex,ey)

(2.11)

Writing u(G) = uex + vey the coordinates of the point G on the neutral axis and noting that
GM = Y ey, then the displacement u(M) writes:

u(M) = [u− Y sin θ]︸ ︷︷ ︸
ux

ex + [v − Y (cos θ − 1)]︸ ︷︷ ︸
uy

ey, (2.12)

where ux(X,Y, t) and uy(X,Y, t) are respectively the axial and transverse components of the
displacement u = u(X,Y, t) of the point M. The position of the point m is therefore:

Om = OM + u(M) = (X + u− Y sin θ)ex + (v + Y cos θ)ey. (2.13)
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Engineering strain
Supposing first that the shear deformation is allowed in the beam formulation, the extension/compression
of an infinitesimal distance dX on the neutral axis of the beam is measured by the engineering
strain ẽ. The angle θ is the rotation of the section with shear deformation and φ the angle of
rotation of the section without shear strain, the difference is written γ̃ = θ − φ.

ex

ey
e′xe′y

v
+
d
v

v

γ̃(X)
φ(X)

θ(X)

(1
+
e)
dX

ds =
(1 +

ẽ)d
X

dX

u u+ du

Figure 2.2: Definition of the engineering strain.

Figure 2.2 represents the engineering strain and the rotation of the section when shear deformation
is allowed. The following relations are obtained:

sinφ =
dv

ds
=

v′

1 + ẽ
, (2.14)

cosφ =
du+ dX

ds
=

1 + u′

1 + ẽ
, (2.15)

(2.16)

in which the notations u′ and v′ are introduced respectively for du/dX and dv/dX. The strain
of the neutral axis in the direction perpendicular to the section is written e and its expression
according to the variables u, v, θ is:

(1 + e) = (1 + ẽ) cos γ̃ = (1 + ẽ) cos(θ − φ) (2.17)

= (1 + ẽ)
[
cos θ cosφ+ sin θ sinφ

]
(2.18)

= (1 + ẽ)
[
cos θ

(
1 + u′

1 + ẽ

)
+ sin θ

(
v′

1 + ẽ

)]
(2.19)

= (1 + u′) cos θ + v′ sin θ, (2.20)
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while the expression of the shear deformation is:

γ = −(1 + ẽ) sin γ̃ = −(1 + ẽ) sin(θ − φ) (2.21)

= −(1 + ẽ)
[
sin θ cosφ− sinφ cos θ

]
(2.22)

= −(1 + ẽ)
[
sin θ

(
1 + u′

1 + ẽ

)
−
(

v′

1 + ẽ

)
cos θ

]
(2.23)

= −(1 + u′) sin θ + v′ cos θ. (2.24)

The Bernoulli beam formulation stipulates that the shear deformation is neglected (γ = 0), it
implies that the rotation of the section is perpendicular to the neutral axis: γ̃ = 0 thus φ = θ and
ẽ = e.

The von Kármán beam model
The gradient of the displacement of the point M is given by the following expression:

∇u =




∂ux
∂X

∂ux
∂Y

∂uy
∂X

∂uy
∂Y


 =

(
u′ − Y θ′ cos θ − sin θ

v′ − Y θ′ sin θ cos θ − 1

)
, (2.25)

from which an expression of the Green-Lagrange strain tensor can be derived:

E =
1

2

[
∇u+∇uT +∇uT∇u

]
. (2.26)

The individual components of the Green-Lagrange strain tensor are thus:

Exx =
1

2

[
(1 + u′)2 + v′2 − 1

]
− Y θ′

[
(1 + u′) cos θ + v′ sin θ

]
+

1

2
Y 2θ′2, (2.27)

Exy = Eyx =
1

2

[
− (1 + u′) sin θ + v′ cos θ

]
=

γ

2
= 0, (2.28)

Eyy = 0. (2.29)

Therefore, the only non-null component of the Green-Lagrange strain tensor is the axial component.
Its evaluation on the neutral axis (Y = 0) is written E0

xx and has the following expression:

E0
xx =

1

2

[
(1 + u′)2 + v′2 − 1

]
=

1

2

[
(1 + e)2 − 1

]
. (2.30)

The von Kármán hypothesis of small axial deformation and moderate rotations for Bernoulli beams
translates into small e and u′, but moderate θ = v′. Since the engineering strain is small,

e ≈ E0
xx =

1

2

[
(1 + u′)2 + v′2 − 1

]
= u′ +

1

2
u′2 +

1

2
v′2, (2.31)

and as u′ is small, the von Kármán hypothesis takes the following form for the engineering strain:

e ≈ E0
xx ≈ u′ +

1

2
v′2 = u′ +

1

2
θ2. (2.32)
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Approximation of the Green-Lagrange strain tensor for small strains
In the von Kármán hypothesis of small strain detailed above, the link between the engineering strain
e and the axial component on the neutral axis of the Green-Lagrange strain tensor is provided.
In this paragraph, an expression of the Green-Lagrange strain tensor in the entire section as a
function of the engineering strain e and the curvature κ is detailed. The idea of the small strain
approximation of the Green-Lagrange strain tensor is to allow large rotations while neglecting the
quadratic part of the pure deformation. The gradient of the transformation is defined by:

F = ∇(Om) = I+∇u =

(
1 + u′ − Y θ′ cos θ − sin θ

v′ − Y θ′ sin θ cos θ

)
(2.33)

=

(
1 + u′ 0

v′ 0

)
+R(θ)

(−Y θ′ 0

0 1

)
(2.34)

The transformation is decomposed into a rotation and a pure deformation, it is the polar decom-
position of the gradient of the transformation:

F = R(θ)U (2.35)

with R(θ) the rotation operator, an orthogonal matrix, and U the pure deformation:

U = R(θ)−1F = R(θ)TF = R(−θ)F (2.36)

=

(
(1 + u′) cos θ + v′ cos θ − Y θ′ 0

−(1 + u′) sin θ + v′ cos θ 1

)
. (2.37)

Since γ = −(1 + u′) sin θ + v′ cos θ = 0, the pure deformation U becomes:

U =

(
1 0

0 1

)

︸ ︷︷ ︸
I

+

(
e− Y θ′ 0

0 0

)

︸ ︷︷ ︸
written L

. (2.38)

With such decomposition, the Green-Lagrange strain tensor becomes:

E =
1

2

(
F TF − I

)
=

1

2

(
UT R(θ)TR(θ)︸ ︷︷ ︸

I

U − I
)
=

1

2

(
UTU − I

)
=

1

2

(
L+LT +LTL

)
, (2.39)

with:

LTL =

(
(e− Y θ′)2 0

0 0

)
(2.40)

The quadratic part of the pure deformation, LTL, is neglected since it is a product of small terms.
First, the strain deformation e is small because the axial strains are considered small. Second, the
term Y θ′ is small since κ = θ′ is of the order of magnitude of 1

R with R the radius of curvature
which is much larger than |Y | (|R|>> |Y |). Therefore the Green-Lagrange strain tensor becomes:

E ≈ 1

2

(
L+LT

)
=

(
e− Y κ 0

0 0

)
(2.41)



2.3. Application to a 1D Euler-Bernoulli beam with von Kármán hypothesis 49

2.3.1 Virtual work principle

The virtual work principle stipulates that for any virtual displacement δu applied to the structure,
the sum of the virtual work of the internal forces δWint and the virtual work of the external forces
δWext is equal to the virtual work associated with the acceleration δWacc:

δWint + δWacc = δWacc (2.42)

with

δWacc =

∫∫∫

V
ρa/Rg

· δu dV (2.43)

δWint = −
∫∫∫

V
S : δE · δu dV (2.44)

δWacc =

∫∫∫

V
fvolume

ext · δu dV +

∫∫

S
f surface

ext · δu dS (2.45)

(2.46)

Virtual work of the internal forces
Considering a linear isotropic elastic material of Young’s modulus E and following the Saint
Venant-Kirchhoff constitutive law, the relation between the Piola-Kirchhoff stress tensor and the
Green-Lagrange strain tensor is the following:

E =
1 + ν

E
S− ν

E
trace(S)I. (2.47)

Therefore, in the case of the present beam, the only non-zero component of the Piola-Kirchhoff
stress tensor is the axial component and is equal to Sxx = EExx = E(e − Y κ). The virtual work
of the internal forces is thus

δWint = −
∫∫∫

V
SxxδExx dV (2.48)

= −
∫∫∫

V
E(e− Y κ)(δe− Y δκ) dV. (2.49)

After integration in the section of the beam, the virtual work of the internal forces of the beam is
obtained:

δWint = −
∫ L

0

(
EAeδe+ EIκδκ

)
dX, (2.50)

where A is the area of the section and I the inertia, and using the relations:
∫

Y

∫

Z
dY dZ = A (2.51)

∫

Y
Y 2dY = I (2.52)

∫

Y
Y dY = 0. (2.53)

In the current case of the Bernoulli beam with von Kármán hypothesis, the membrane strain, the
curvature and their variations are:

e = u′ +
1

2
θ2 =⇒ δe = δu′ + θδθ (2.54)

κ =
∂θ

∂X
= θ′ =⇒ δκ = δθ′ (2.55)
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and the virtual work of the internal forces becomes:

δWint = −
∫ L

0

(
EAeδe+ EIκδκ

)
dX (2.56)

= −
∫ L

0

[
EA(u′ +

2

2
θ2)(δu′ + θδθ) + EIθ′δθ′

]
dX (2.57)

= −
∫ L

0

[ (
EAu′δu′ + EIθ′δθ′

)
︸ ︷︷ ︸

linear contribution

+EA(u′θδθ +
1

2
θ2δu′)

︸ ︷︷ ︸
quadratic contribution

+
1

2
EAθ3δθ
︸ ︷︷ ︸

cubic contribution

]
dX (2.58)

Finite elements discretization in an element

θ1

θ2

u1

v1

u2

v2

Figure 2.3: Degrees of freedom in one element of the beam.

In this paragraph, the FE discretization of the beam is introduced and will be later used in the
virtual work principle. The FE discretization of Euler-Bernoulli beams is based on linear shape
functions for the axial degrees of freedom and cubic Hermitian shape functions for the vertical
and rotation degrees of freedom. Considering one element, the associated nodal values written
u1, v1, θ1, u2, v2, θ2 are represented in Figure 2.3. Let x ∈ [0, Le] with Le the length of the element
e; the horizontal and vertical displacement in the element write:

u(x) = N1(x)u1 +N2(x)u2 (2.59)

v(x) = H1(x)v1 +H2(x)θ1 +H3(x)v2 +H4(x)θ2 (2.60)

or under matrix form for the vector of unknowns ue =
[
u1 v1 θ1 u2 v2 θ2

]T :

[
ue(x)

ve(x)

]
= Nue with N =

(
Nu

Nv

)
=

(
N1 0 0 N2 0 0

0 H1 H2 0 H3 H4

)
(2.61)

The shape functions N1 and N2 are linear while the shape functions H1, H2, H3 and H3 are 3rd
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order Hermite functions: 



N1(x) = 1− x

Le

N2(x) =
x

Le

H1(x) =

(
1 +

2x

Le

)(
1− x

Le

)2

H2(x) = x

(
1− x

Le

)2

H3(x) =
x2

Le

(
3− 2x

Le

)

H4(x) =
x2

Le

(
x

Le
− 1

)

(2.62)

Besides, the rotation of the section is given by:

θe(x) =
dve(x)

dx
=

dNv(x)

dx
ue ≡ Nv

′
ue (2.63)

with

Nv
′
=

[
0

dH1(x)

dx

dH2(x)

dx
0

dH3(x)

dx

dH4(x)

dx

]
(2.64)

Finite elements discretization introduced in the virtual work of the internal forces
As explained previously, the virtual work of the internal forces is the sum of a linear, quadratic
and cubic contributions, written respectively −δW (1)

int , −δW (2)
int and −δW (3)

int :

−δW (1)
int =

∫ Le

0

(
EAu′δu′ + EIθ′δθ′

)
dX (2.65)

−δW (2)
int =

∫ Le

0
EA(u′θδθ +

1

2
δu′θ2) dX (2.66)

−δW (3)
int =

∫ Le

0

1

2
EAθ3δθ dX (2.67)

The FE discretization is then introduced in these expressions. Considering first the linear contri-
bution, the FE discretization leads to:

−δW (1)
int =

∫ Le

0

(
EAu′δu′ + EIθ′δθ′

)
dX (2.68)

=

∫ Le

0

[
EA(N

′
uδue)

T (N
′
uue) + EI(N

′′
vδue)

T (N
′′
vue)

]
dX (2.69)

= δuT
e

(∫ Le

0

[
EA(N

′
u

T
)(N

′
u) + EI(N

′′
v

T
)(N

′′
v)

]
dX

)
ue (2.70)

= δuT
e Ke ue (2.71)
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with Ke the elastic stiffness matrix of the element:

Ke =

∫ Le

0

[
EA(N

′
u

T
)(N

′
u) + EI(N

′′
v

T
)(N

′′
v)

]
dX (2.72)

=
EA

Le




1 0 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0




+
EI

L3
e




0 0 0 0 0 0

0 12 6Le 0 −12 6Le

0 6Le 4L2
e 0 −6Le 2L2

e

0 0 0 0 0 0

0 −12 −6Le 0 12 −6Le

0 6Le 2L2
e 0 −6Le 4L2

e




(2.73)

The integration of the quadratic and cubic contributions of the internal nonlinear forces is slightly
different. In fact, using an exact integration of the shape functions with the von Kármán hypothesis
may lead to membrane locking, especially for a free boundary condition [155]. Indeed, at a free
end (here at x = L for a cantilever beam), the membrane strain is null for any position X in the
last element:

e = 0 =
∂u

∂X
+

1

2

(
∂v

∂X

)2

. (2.74)

It means that the degrees of the polynomial approximations of ∂u/∂X and (∂v/∂X)2 have to be
the same. However, the shape functions for u are linear and those for v are cubic. Therefore, the
above-mentioned constraint is not satisfied and leads to excessively stiff elements. This membrane-
locking phenomenon is significantly accentuated when the lengths of the discretization elements
are large. As explained in [155], a numerical way to prevent such a locking is to perform a reduced-
integration with a single Gauss point of the nonlinear terms in the FE discretization of −δW (2)

int

and −δW (3)
int . After integration, the quadratic and cubic contributions of the virtual work of the

internal forces are the following:

−δW (2)
int =

∫ Le

0
EA(u′θδθ +

1

2
δu′θ2) dX = δuT

e f
quad
nl (ue) (2.75)

−δW (3)
int =

∫ Le

0

1

2
EAθ3δθ dX = δuT

e f
cub
nl (ue), (2.76)

where fquadnl (ue) and f cubnl (ue) are respectively the vectors of the quadratic and cubic nonlinear
forces. Their computation with the symbolic Python library Sympy leads to the following expres-
sions:

fquadnl =
EA

32L2
e

[
−fanl −12f bnl −2Lef

b
nl fanl 12f bnl −2Lef

b
nl

]T (2.77)

f cubnl =
EA

512L3
e

[
0 6f cnl Lef

c
nl 0 −6f cnl Lef

c
nl

]T (2.78)

with 



fanl = L2
e(θ1 + θ2)

2 + 12Le(θ1 + θ2)(v1 − v2) + 36(v1 − v2)
2

f bnl = (u1 − u2)[Le(θ1 + θ2) + 6(v1 − v2)]

f cnl = L2
e(θ1 + θ2)

2
[
Le(θ1 + θ2) + 18(v1 − v2)

]

+ 108(v1 − v2)
2
[
Le(θ1 + θ2) + 2(v1 − v2)

]
(2.79)

Finally, the virtual work in an element of the internal forces verifies

−δWint = δu
T
e

[
Keue + fquadnl (ue) + f cubnl (ue)

]
(2.80)
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Finite elements discretization introduced in the virtual work of the external forces
The expression of the virtual work of the external forces is:

δWacc =

∫∫∫

V
fvolume

ext · δu dV +

∫∫

S
f surface

ext · δu dS. (2.81)

Introducing the FE discretization in the expression for one element leads to:

δWacc = δu
T
e f ext, (2.82)

where f ext is the vector of the external forces.

Virtual work associated to the acceleration
The expression of the virtual work associated to the acceleration is the following:

δWacc =

∫∫∫

V
ρa/Rg

· δu dV (2.83)

The acceleration of a material point M is obtained by deriving twice Equation (2.13) with respect
to time , leading to:

a(M)/Rg
=
[
ü− Y (θ̈cosθ − θ̇2sinθ)

]
ex +

[
v̈ − Y (θ̈sinθ + θ̇2cosθ)

]
ey (2.84)

Regarding the virtual displacement, it is obtained from the expression of the continuous displace-
ment field:

u = [u− Y sin θ] ex + [v − Y (cos θ − 1)] ey (2.85)

δu = [δu− Y cos θδθ] ex + [δv − Y sin θδθ] ey (2.86)

Therefore

a(M)/Rg
· δu =

[
ü− Y (θ̈cosθ − θ̇2sinθ)

][
δu− Y cos θδθ

]

+
[
v̈ − Y (θ̈sinθ + θ̇2cosθ)

][
δv − Y sin θδθ

] (2.87)

Developing and simplifying the expressions, we obtain:

a(M)/Rg
· δu = üδu+ v̈δv + Y 2θ̈δθ + Y

[
· · ·
]

(2.88)

where the expression Y
[
· · ·
]

is not developed because it will be canceled by the integration of an
odd function between opposed limits.
Considering the previous developments, the expression of the virtual work associated to the accel-
eration becomes:

δWacc =

∫∫∫

V
ρa(M)/Rg

· δu dV =

∫ L

0
ρA
[
üδu+ v̈δvδu

]
+ ρIθ̈δθ dX (2.89)

Therefore, the FE discretization in an element of the contribution independent of the rotation,
written δWacc becomes:

δWacc = δu
T
e

(∫ L

0
ρA
[
Nu Nv

] [Nu

Nv

]
dX +

∫ L

0
ρI
(
N

′
v

T
N

′
v

)
dX

)

︸ ︷︷ ︸
written Me

üe = δu
T
e Meüe (2.90)
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with Me the elementary mass matrix. Generally, the contribution of the rotational inertia is
negligible. In this work, the mass matrix of one element is computed under the assumption that
the local rotational inertia of the section is neglected and has the following expression:

Me =
ρA

2

∫ Le

0
NTN dx (2.91)

= ρA
Le

420




140 0 0 70 0 0

0 156 22Le 0 54 −13Le

0 22Le 4L2
e 0 13Le −3L2

e

70 0 0 140 0 0

0 54 13Le 0 156 −22Le

0 −13Le −3L2
e 0 −22Le 4L2

e




(2.92)

Finally the virtual work principle in an element of the beam leads to the equation:

δWacc − δWint − δWacc = 0 (2.93)

δuT
e

[
Meüe +Keue + fquadnl (ue) + f cubnl (ue)− f ext

]
= 0 (2.94)

Since this equation is verified for all admissible virtual displacements, the equation of the dynamics
after assembling on all the elements is thus:

Mü+Ku+ fnl2(u) + fnl3(u) = f ext , (2.95)

where u is the vector of all the degrees of freedom, M and K the mass and stiffness matrices,
fnl2(u) and fnl3(u) the quadratic and cubic internal forces and f ext the vector of external forces.

Particular case of static solution under external loads with no axial contribution
When no axial load is applied, the linear and non-linear components of the vertical displacement
and the rotation are identical since the nonlinearity is restricted to the axial displacement. This
behavior is explained by the following developments. The static nonlinear equation in one element
is considered and writes as follows:

Keue + fquadnl (ue) + f cubnl (ue) = f ext. (2.96)

The six equations of the above system are:
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(2.97)
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When no external axial load is applied (Fx1 = 0 = Fx2), the associated equations lead to the
equation:

32Le(u2 − u1) = fanl(v1, θ1, v2, θ2). (2.98)

Since fanl is independent of the axial displacements u1 and u2, the above equation provides a
relation between the displacement u2 − u1 and the other degrees of freedom v1, θ1, v2, θ2. Re-
garding the equations relative to Fy1 , Fθ1 , Fv2 , Fθ2 , the linear and nonlinear solutions are the
same if the nonlinear terms in f bnl and f cnl cancel one another, which is the case if the relation:
32Lef

b
nl(u1, v1, θ1, u2, v2, θ2) + f cnl(v1, θ1, v2, θ2) = 0 is verified. The nonlinear forces f cnl are inde-

pendent of the axial degrees of freedom, however, f bnl can be expressed using the difference u2−u1
as follows:

f bnl = (u2 − u1)
[
Le(θ1 + θ2) + 6(v1 − v2)

]
. (2.99)

Therefore, when no axial load is applied, using relation (2.98) in the expression of f bnl gives:

f bnl =
[
Le(θ1 + θ2) + 6(v1 − v2)

]
fanl, (2.100)

and the relation 32Lef
b
nl(u1, v1, θ1, u2, v2, θ2) + f cnl(v1, θ1, v2, θ2) = 0 is verified. Thus, the terms

in f bnl and f cnl in the system (2.97) cancel one another in the equations relative to Fy1 , Fθ1 , Fy2

and Fθ2 . Consequently, the vertical displacement and the rotations are equivalent in the linear
and nonlinear cases when no axial load is applied. The previous development was carried out at
the scale of a single element. After the assembling on all the elements, it remains true in the
clamped-free configuration, where the nonlinearity in vertical displacements and rotations cancel
one another by telescoping from one element to the next, starting from the free end. It is however
not true for clamped-clamped configurations for instance.

Despite what has just been described, this von Kármán beam model will still be used in the
following for a clamped-free configuration under vertical and follower static loads. In the first case,
there will still be axial non-linear effects generated by the imposed transverse force and, in the
case of follower forces, there is a coupling between axial and transverse displacement.
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2.3.2 Application of the reduced order model to the beam case

A clamped-free beam of rectangular cross-section is considered for the application. The beam is
discretized with 50 elements in which the von Kármán hypothesis is considered. The dimensions
and properties of the beam are presented in Table 2.1. It is well known that the Euler-Bernoulli
beam model with von Kármán hypothesis has a limited range of validity, as shown for example
in [187]. Indeed, under external loads with no axial contribution, the nonlinear vertical and
rotational components vanish, leading to purely axial nonlinearity (see paragraph 2.3.1). This
model is however considered here because geometric nonlinearities in such a case are cubic in the
degrees of freedom (see Equation (2.58)). The proposed ROM is therefore directly transposable to
3D finite element applications with Saint Venant-Kirchhoff model where the geometric nonlinearity
is known to be cubic in the degrees of freedom (as shown in Equation 1.58).

Beam dimensions
L (length) 4 m
h (thickness) 7.10−2 m
b (width) 3h

Material properties
E 100 GPa
ρ 4, 400 kg.m−3

Table 2.1: Dimensions and material properties of the beam

In the beam model, the linear bending and membrane linear normal modes are uncoupled due
to the independence of the contribution along u and v, θ in the mass and stiffness matrices. Figure
2.4 represents the shape of the first three linear modes and Figure 2.5 shows the modal frequencies
of the linear bending and membrane modes. It is observed that the first linear modes in terms
of frequency are bending modes while the modal frequencies of the first membrane modes are
significantly higher. As far as linear computations are concerned, the dynamics is well captured
by the linear normal modes whose associated frequencies are included in the span of excitation
frequencies. However, when geometric nonlinearities are at stake, a nonlinear coupling appears
between the linear normal modes. Consequently, the excitation of low-frequency bending modes
triggers the movement of high-frequency membrane modes. Thus, to obtain accurate results, all
the modes that are excited should be added to the reduction basis which would lead to a large
reduction basis. In the beam case, almost all the membrane modes should be considered in addition
to the first linear bending modes. On the other hand, dual modes contain the nonlinear coupling
due to the geometric nonlinearities and enable to capture the nonlinearity with few modes in the
reduction basis.
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Figure 2.4: First three linear mode shapes of the beam.
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Figure 2.5: Frequencies of the bending and membrane linear normal modes.

2.3.2.1 Reduced order beam model with dual modes

The first three linear normal modes are initially considered in order to build the reduction basis.
Those modes are bending modes that do not capture the in-plane dynamics. As explained in the
previous section, the basis is completed with dual modes determined by imposing loads to the
structure, with the distribution defined in Equation (1.144) as the combination of the first three
linear modes:

f
(ℓ)
ext = K

(
± α

(ℓ)
1 ϕϕϕ1 ± α

(ℓ)
2 ϕϕϕ2 ± α

(ℓ)
3 ϕϕϕ3

)
, (2.101)
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with the modes ϕϕϕ1,ϕϕϕ2,ϕϕϕ3 normalized by their maximal vertical value and α
(ℓ)
1 ∈ {10h, 0}, α

(ℓ)
2 ∈

{1h, 0}, α(ℓ)
3 ∈ {1h, 0}. Such coefficients for the loads are chosen to promote nonlinearity along

the first linear modes and include a smaller contribution along the second and third modes. The
values of 10h and 1h are arbitrarily chosen since we expect to observe a significant nonlinearity
in the test cases when the linear displacement is greater than 10 times the beam’s thickness, but
the nonlinear displacements along the other modes are expected to be rather small. Other loading
amplitudes were tested and the same coefficients were obtained, except when the amplitudes chosen
were excessively large or too small to trigger nonlinearities, which is the same problem as when
displacements are imposed. With this range of amplitudes α(ℓ)

i , the first linear mode is considered
as a dominant mode undergoing large deformations and is slightly perturbed in the direction of
the other linear normal modes. The loads are imposed positively and negatively so that no side is
favored in the construction of the database of nonlinear static solutions for the nL = 26 different
load cases corresponding to all the possible combinations with three modes.

A singular value decomposition of the static solution residuals r(ℓ) is then performed according
to the process of selection of the dual modes detailed in section 1.3.1.4. The singular values and
the linearized strain energies of the dual mode candidates are plotted in Figure 2.6. In the present
case, the SVD modes with the highest singular values are also those with the highest linearized
strain energy contribution. The dual modes appended to the initial basis of linear modes are thus
the vectors d{1,2,3,4,5}. In cases such as the present configuration, it could be argued that only
the criterion of the singular values can be retained. However, the criterion based on the energy
highlights, among the dual mode candidates with large singular value, those with a significant
membrane contribution. When there is no clear drop in the singular values, it was observed on
other configurations that some dual modes candidates with a small contribution to the linearized
energy may contribute less to the dynamics and are not necessary in the reduction basis. The new
reduction basis considered is therefore the concatenation of the first 3 linear normal modes and the
5 dual modes: V = [Φ,d{1,2,3,4,5}]. It is worth mentioning that for beam applications, the dual
modes leading to a high linearized strain energy have a negligible bending contribution compared
to their axial contribution. Indeed, the axial stiffness of a beam is larger than the bending stiffness.
Thus, the linearized strain energy associated to vectors with dominant membrane contribution is
usually larger than the one of modes with dominant bending contribution. With this selection of
dual modes, the relative error in precision defined in Equation (1.121) is εσ = O(10−6) and the
relative error in linearized strain energy contribution defined in Equation (1.122) is εE = O(10−8).

Once the reduction basis V is obtained, the next step in the construction of the model is the
determination of the projected nonlinear forces from the expression (2.3). The coefficients of the
polynomial are identified with the Implicit Condensation method by imposing load cases defined
as in Equation (2.101). The loads and associated nonlinear static solutions defined previously for
the selection of the dual modes are reused here. Besides, due to symmetry considerations on the
geometry and the linear normal modes, many nonlinear coefficients are vanishing. Some coefficients
are also vanishing because the dual modes have only axial contributions, leading to null coefficients
in the expression of the internal forces for the von Kármán beam detailed in Equation (2.79). Since
the expression of the nonlinear forces fnl is explicitly known for our beam problem, the internal
nonlinear forces can be decomposed in their quadratic fquadnl and their cubic f cubnl contributions.
The quadratic and cubic coefficients introduced in Equation (2.4) can therefore be splitted in
two different matrices. The nonlinear force coefficients are then identified from two independent
systems which are better conditioned when considered separately. It has been verified on this
test case, that the nonlinear coefficients obtained using the nonlinear forces as well as those using
the tangent stiffness matrices (method detailed in section 2.2.2) match exactly with a symbolic
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Figure 2.6: Singular values and linearized strain energies of the static solution residuals.

computation of the coefficients. A method based on imposed displacements [126, 143] also resulted
in the same coefficients. In the rest of the document, the Implicit Condensation method with dual
modes will be called ICDual, to differentiate the method from the classical IC method including
only bending modes and from the ICE method with the expansion step.

2.3.2.2 Structural response under different load cases

In this section, the efficiency of the ROM will be evaluated on two different load cases illustrated in
Figure 2.7: a vertically distributed load along the beam and a follower load at the tip. The ICDual
ROM will be compared to the ICE solution and to the solution obtained with the nonlinear full-
order model (FOM), firstly on a static load case, then under a dynamic load case at the resonance
of the first linear normal mode.

(a) Load case 1 (b) Load case 2

Figure 2.7: Load cases considered: (a) Distributed vertical load; (b) Follower load at tip.

Load case 1: Vertical distributed load along the beam
The first loading case consists of a vertical uniformly distributed load on the beam. The total load
applied to the beam is 80,000 N, meaning a uniformly distributed load density of 20,000 N/m.
The geometric nonlinearity alters the vertical amplitude of the displacement and produces a sig-
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nificant axial shortening due to the coupling between the axial and vertical displacements. On
the contrary, the linear computation does not lead to any axial shortening since bending and
traction-compression are not coupled.

The classical Implicit Condensation method (IC) and its Expansion (ICE) are compared to
the ICDual ROM and to the linear and nonlinear reference solutions in Figure 2.8. Regarding
the IC/ICE ROMs, the first 3 linear normal modes are used in the reduction basis. The vertical
displacement of the beam is well captured by the IC method. However, the axial displacement
is not captured at all. The reason is that the reduction basis contains only bending modes, thus
no equation solves the axial displacement in the reduced system. Nonetheless, the Expansion step
(ICE) enables to rebuild the axial displacement in post-processing and matches with the FOM
solution. With the ICE method, the nonlinear static solution was obtained with only 3 linear
normal modes. The solution is first computed with the IC method and then post-processed with
the Expansion step. The ICE method is very accurate on this static case since the reconstruction
step of the Expansion phase is based on a static correction which is adapted here to capture the
missing membrane effect.

The ICDual ROM contains the same linear bending modes as the ICE method, completed
with the five dual modes determined previously. Such a ROM perfectly captures the nonlinear FE
solution as a result of the computation, while the same result was obtained with the ICE method
only after the Expansion step.
Table 2.2 represents the relative cumulative error for to the axial ui and vertical vi degrees of
freedom:

εcumul =

N∑

i=1

√(
ui − uFOM

i

)2
+
(
vi − vFOM

i

)2

N∑

i=1

√(
uFOM
i

)2
+
(
vFOM
i

)2
(2.102)

Table 2.2: Error between the nonlinear FOM and ROM solutions of the beam displacement for
several amplitudes of static distributed load.

Relative cumulative error εcumul (%)
Total load integrated (N) 40,000 60,000 80,000

Linear FOM 6.67 9.98 13.25

ICE ROM 2.28× 10−2 2.32× 10−2 2.38× 10−2

ICDual ROM 2.29× 10−2 2.34× 10−2 2.41× 10−2

The error is computed on the norm of the displacement. Since the ICE and ICDual ROMs are
both very close to the FOM result, the error component by component gives the same conclusions.
This validates the approach followed here with a reduction basis enriched with dual modes in pre-
processing. Nevertheless, the ICDual method solves the coupled dynamics of the system in bending
and traction-compression, instead of restricting the dynamics to the bending and rebuilding the
coupling with the ICE afterwards. This will be of paramount importance for the following dynamic
application.

The ICDual method is now evaluated on a dynamic case and compared to the result of the
ICE method. The load distribution is the same as the static case, but its amplitude is reduced
to 1,400 N/m to obtain displacements with the same order of magnitude as the fluid-structure
interaction case of section 5. A sinusoidal time dependency is applied to the loading with a
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Figure 2.8: Nonlinear static displacement of the clamped-free von Kármán beam, loaded with a
vertical uniformly distributed load along the beam of 20,000 N/m. Comparison between the linear
FOM, nonlinear FOM, the IC/ICE and ICDual solutions.

frequency f0 = 3.37 Hz (frequency of the first mode) and the time step for the temporal integration
is equal to 2 × 10−3 s. A Rayleigh damping C = 2ξω0M is considered, with ξ = 5 × 10−2 and
ω0 = 2πf0 the pulsation of the first linear normal mode. Figure 2.9 displays the vertical and axial
displacements at the tip of the beam once the periodic regime is established. The time integration
is carried out using a classical nonlinear Newmark algorithm with Newton-Raphson iterations.
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Figure 2.9: Nonlinear dynamic displacement of the clamped-free Euler-Bernoulli/von Kármán
beam, loaded vertically with a uniformly distributed load of 1,400 N/m and of frequency f0 =

3.37Hz. Comparison of the vertical (a) and axial (b) displacements at the tip of the beam between
the nonlinear FE solution, the ICE and the ICDual computations.

The vertical displacement plotted in Figure 2.9(a) is very close in terms of amplitude for both
the ICE and the ICDual methods. The ICE vertical displacement is however exactly the linear
solution as shown in Table 2.3, while the ICDual solution captures exactly the nonlinear coupling
affecting the vertical amplitude. Besides there is a slight phase shift of 9.70◦ between the reference
nonlinear solution and the ICE and linear solutions.
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Table 2.3: Relative error of the maximal displacement of the beam tip in periodic regime between
the reference nonlinear FOM model and the linear FOM, ICE ROM and ICDual ROM models.

Relative error of the tip displacement (%)
Y component X component

Linear FOM 2.63 100

ICE ROM 2.63 5.18

ICDual ROM 2.02× 10−4 6.27× 10−4

Table 2.3 contains the relative axial (|xmax−xFOM
max |/|xFOM

max |) and vertical (|ymax−yFOM
max |/|yFOM

max |)
errors of the maximal displacements of the beam tip in periodic regime between the reference
nonlinear FOM model and the different reduced order models. The ICDual ROM captures perfectly
the axial dynamics, both in terms of amplitude and phase (Figure 2.9(b)), whereas the ICE method
is inaccurate. This result highlights the drawback of the ICE method where the dynamics of the
system in traction-compression is not computed by the projected equation of the dynamics but
rebuilt a posteriori with limited information. Besides, the Expansion step of the ICE method is
a static reconstruction which depends only on the generalized coordinates of the bending modes,
not on the velocity or the acceleration. With the ICE method, the axial displacement is therefore
governed only by the projection of the beam on the bending modes, whatever the dynamics of
it, whether it is static, quasi-static or strongly dynamic. Moreover, increasing the number of
modes in the reduction basis to 8 or 10 modes does not improve the axial ICE solution since the
dynamics in traction-compression is missing in the reduced equation of the dynamics Equation
(1.89). On the contrary, with only 5 dual modes added to the reduction basis, the dynamics, both
in traction-compression and in bending is perfectly captured.

Load case 2: Follower force at the tip
The second load case considered is a punctual follower load applied at the tip of the beam. In this
case, the solution is inherently nonlinear since the external loads depends on the beam’s position
which undergoes large nonlinear displacements. The amplitude of the load is equal to 30,000 N.
Figure 2.10 represents the classical IC and ICE solutions compared to the ICDual solution. Con-
trary to the previous static load case, the ICE solution no longer matches the nonlinear reference
solution. Indeed, the projection of the follower force on the reduction basis filters out the axial
components since the basis includes only bending modes with vertical contributions. Finally, the
ICE method behaves as if the external load case was a purely vertical load since the Expansion
step is not able to retrieve a correction adapted to the follower load. Increasing the number of
linear normal modes in the reduction basis for the ICE method to 8 and even 10 did not improve
the solution since the additional modes are still bending modes. The solution may be improved
by introducing membrane modes, or, as suggested in the literature, to treat follower forces as an
extension of the ICE method [135].

Unlike the ICE solution, the ICDual ROM perfectly captures the nonlinear FOM solution as
shown in Figure 2.10 and its precision is quantified in Table 2.4. Indeed, with the dual modes in
the reduction basis, the external forces are well represented in the reduction basis and the solution
of the reduced system gives the correct nonlinear static solution.
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Figure 2.10: Nonlinear static displacement of the clamped-free Bernoullli/von Kármán beam,
loaded at the tip with a follower load of 30,000 N. Comparison between the nonlinear, the IC, ICE
and ICDual solutions.

The dynamics of the structure is then studied with a sinusoidal follower load, with the same
frequency as the previous load case and an amplitude of 2,500 N. The Rayleigh damping and
time step are also unchanged from the previous test case. Figure 2.11 shows the evolution in the
periodic regime of the axial displacement at the tip of the beam and Table 2.5 summarizes the
relative errors of the models compared to the nonlinear FOM solution.

The ICDual solution matches the FOM solution like for the other test case, while the ICE
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Table 2.4: Error regarding the nonlinear FOM solution of the beam displacement for several
amplitudes of static follower load at tip.

Relative cumulative error εcumul (%)
Load (N) 10,000 20,000 30,000

ICE ROM 1.25 4.91 10.60

ICDual ROM 1.039× 10−1 1.288× 10−1 2.814× 10−1
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Figure 2.11: Nonlinear dynamic displacement of the clamped-free Euler-Bernoulli/von Kármán
beam loaded at the tip with a dynamic follower load of amplitude 2,500 N and of frequency
f0 = 3.37 Hz. Comparison of the axial displacement at the tip of the beam between the nonlinear
FE solution, the ICE and the ICDual computations.

solution presents a phase shift of 12◦ and does not render the axial displacement accurately. Other
test cases were also considered such as a purely vertical load at the tip and a follower distributed
load. The results under such load cases are not presented here for the sake of brevity but similar
conclusions were obtained. Both the ICE and ICDual ROMs were accurate for the static vertical
load at the tip but only the ICDual ROM was accurate in the dynamic case. Regarding the
distributed follower load, only the ICDual ROM was accurate for both the static and dynamic
cases.

In this section, the ICDual ROM was built for an Euler-Bernoulli/von Kármán beam and
compared on different load configurations to solutions obtained with the IC and ICE methods.
For all cases, both the static and dynamic nonlinear responses were precisely captured. The
limitations of the classical ICE method have been highlighted, especially when dealing with follower
forces or dynamic loads. Since the dual modes added in the reduction basis have only membrane
contribution, it could be argued that linear membrane modes could be used instead. However, to
obtain similar results with pure membrane modes it has been verified that for this configuration
it is necessary to include all the membrane modes. This would lead to a tremendous number of
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Table 2.5: Relative error of the maximal displacement of the beam tip in periodic regime between
the reference nonlinear FOM model and the ICE and ICDual ROM models.

Relative error of the tip displacement (%)
Y component X component

ICE ROM 2.472 4.919

ICDual ROM 3.643× 10−3 8.175× 10−3

coefficients (O(105)) to identify for the additional 49 membrane modes, whereas similar results are
obtained with only 5 dual modes. The reader will find the previous results in the following journal
paper [58].

2.3.3 Beam in rotation around a fixed axis

In this section, the beam is subject to centrifugal rotation. It is clamped on a disk at a distance
R = 10 cm from the axis of rotation ey and is turning around this axis ey at the constant
rotation speed ω = 500 rpm. First, the theoretical aspects of the beam formulation in rotation are
presented, then applications on similar load cases as for the case without rotation are treated.

2.3.3.1 Theoretical aspects

The inertial fixed frame is written Rg(O, êx, êy, êz) and the moving frame Rm(O, ex, ey, ez).
Figure 2.12 provides an illustration of the study case with the notations used.

O êy

ey

R

ex

v

u

ω

êx

êz = ez

Figure 2.12: Beam in rotation around a fixed axis. Diagram inspired from [171].

The distance R of the clamped condition to the rotation axis is added in the expression of the
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vector Om that becomes:

Om = [R+X + u− Y sinθ]ex + [v + Y cosθ]ey (2.103)

The velocity and acceleration of the point M in the inertial frame are expressed via the combination
of accelerations:

V (M)/Rg
= V (M)/Rm

+Ωey ×Om (2.104)

a(M)/Rg
= a(M)/Rm︸ ︷︷ ︸

relative acc.

+2Ωey × V (M)/Rm︸ ︷︷ ︸
coriolis acc.

+Ωey ×
(
Ωey ×Om

)
︸ ︷︷ ︸

drive acc.

, (2.105)

where the velocity and acceleration in the rotating frame Rm are given by::

V (M)/Rm
=
[
u̇− Y θ̇cosθ

]
ex +

[
v̇ − Y θ̇sinθ

]
ey (2.106)

a(M)/Rm
=
[
ü− Y (θ̈cosθ − θ̇2sinθ)

]
ex +

[
v̈ − Y (θ̈sinθ + θ̇2cosθ)

]
ey (2.107)

Therefore, the acceleration of the material point M in the inertial frame Rg becomes:

a(M)/Rg
= a(M)/Rm

+ 2Ωey × V (M)/Rm
+Ωey ×

(
Ωey ×Om

)

=
[
ü− Y (θ̈cosθ − θ̇2sinθ)− Ω2(R+X + u− Y sinθ)

]
ex

+
[
v̈ − Y (θ̈sinθ + θ̇2cosθ)

]
ey

− 2Ω(u̇− Y θ̇cosθ)ez

(2.108)

Virtual work principle
In order to obtain the equation of the dynamics for the beam case in rotation, the virtual work
principle is applied. The virtual work of the internal and external forces remain unchanged from
the case without rotation, however, new contributions are added to the virtual work associated to
the acceleration. The expression of the virtual work associated to the acceleration is the following:

δWacc =

∫∫∫

V
ρa/Rg

· δu dV, (2.109)

with the virtual displacement: δu = [δu− Y cos θδθ] ex + [δv − Y sin θδθ] ey. The scalar product
of the virtual displacement with the acceleration leads to the expression:

a(M)/Rg
· δu =

[
ü− Ω2(R+X + u)

]
δu+ v̈δv + Y 2

[
θ̈ − Ω2 sin θ cos θ

]
δθ + Y

[
· · ·
]

(2.110)

where the expression Y
[
· · ·
]

is not developed since it will be cancelled by the integration for
symmetry reasons. Considering the previous developments, the expression of the virtual work
associated to the acceleration becomes:

δWacc =

∫∫∫

V
ρa/Rg

· δu dV

=

∫ L

0

[
ρAüδu+ ρAv̈δv + ρIθ̈

]
dX

︸ ︷︷ ︸
contribution already present without rotation

−
∫ L

0

[
ρAΩ2(R+X + u)δu+ ρIΩ2 sin θ cos θδθ

]
dX

︸ ︷︷ ︸
contribution added by the rotation

(2.111)
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The contribution to the virtual work of the acceleration is decomposed in a contribution in-
dependent of the rotation δW 0

acc and a contribution depending on the centrifugal rotation δWΩ
acc:

δWacc = δW 0
acc+δWΩ

acc. The contribution added by the rotation can be decomposed in three terms
as follows:

δWΩ
acc = δWΩ(1)

acc + δWΩ(2)
acc + δWΩ(3)

acc (2.112)

with

δWΩ(1)
acc = −ρAΩ2

∫ L

0
(R+X)δu dX (2.113)

δWΩ(2)
acc = −ρAΩ2

∫ L

0
uδu dX (2.114)

δWΩ(3)
acc = −ρIΩ2

∫ L

0
sin θ cos θδθ dX (2.115)

≈ −ρIΩ2

∫ L

0
θδθ dX (2.116)

The last term is linearized with the approximation sin θ cos θ = θ to define later a centrifugal
softening matrix in the FE discretization. It is worth mentioning that the choice made here is a
stronger approximation than the von Kármán hypothesis, thus limiting the validity of the model
to small rotations. Nevertheless, the term ρI being much smaller than ρA in our applications,
and the associated term contributing only partially to the total stiffness, the approximation made
above has a negligible effect and the beam model used remains valid for moderate rotations.

The Finite Element discretization is then introduced in the different contributions of the virtual
work associated to the acceleration. The FE discretization in one element of the contribution
independent of the rotation was already detailed in the case without centrifugal rotation and takes
the following form: δW 0

acc = δuT
e Meüe, see Equation (2.90). A constant vector f eω is introduced

in the FE discretization of the contribution δW
Ω(1)
acc :

δWΩ(1)
acc = −ρAΩ2

∫ L

0
(R+X) Nuδue︸ ︷︷ ︸

=δuT
e Nu

T

dX = δuT
e

(
−ρAΩ2

∫ L

0
(R+X)Nu

T dX

)

︸ ︷︷ ︸
feω

, (2.117)

and the centrifugal softening matrix Ke
c arises from the FE discretization of δWΩ(2)

acc and δW
Ω(3)
acc :

δWΩ(2)
acc + δWΩ(3)

acc = −
∫ L

0
ρAΩ2 [u][δu]︸ ︷︷ ︸

=[δu]T [u]

+ρIΩ2 [θ][δθ]︸ ︷︷ ︸
=[δθ]T [θ]

dX (2.118)

= δuT
e

(
−
∫ L

0
ρAΩ2

(
Nu

TNu

)
+ ρIΩ2

(
N

′
v

T )(
N

′
v

)
dX

)

︸ ︷︷ ︸
Ke

c

ue. (2.119)

Finally the virtual work in one element associated to the acceleration writes:

δWacc = δu
T
e (Meüe −Ke

cue − f eω) (2.120)
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with

Ke
c = ρAΩ2

∫ L

0

(
Nu

TNu

)
dX + ρIΩ2

∫ L

0

(
N

′
v

T
N

′
v

)
dX (2.121)

=
ρAΩ2Le

6




2 0 0 1 0 0

0 0 0 0 0

0 0 0 0

2 0 0

sym 0 0

0




+
ρIΩ2

30Le




0 0 0 0 0 0

36 3Le 0 −36 3Le

4L2
e 0 −3Le −L2

e

0 0 0

sym 36 −3Le

4L2
e




(2.122)

f eω = ρAΩ2

∫ L

0
(R+X)Nu

T dX (2.123)

=
ρAΩ2Le

6




Le + 3R

0

0

2Le + 3R

0

0




(2.124)

The virtual work principle in one element (δWacc − δWint − δWacc = 0) applied to the beam in
rotation around the fixed axis at constant rotation speed becomes:

δuT
e

[
Meüe −Ke

cue − f eω +Keue + fquadnl (ue) + f cubnl (ue)− f ext

]
= 0. (2.125)

This equation being verified for all admissible virtual displacements, after assembling with all the
elements, the equation of the dynamics of the beam in rotation is deduced:

Mü+
(
K−Kc

)
u+ fnl2(ut) + fnl3(ut) = f ext + fω, (2.126)

with ut the total displacement defined regarding the undeformed geometry of the beam. The
total displacement ut is the sum of a static nonlinear displacement us due to the centrifugal
external force, and of vibrations u around this prestressed position. With a similar development
as in section 1.1.6 and introducing a structural Rayleigh damping matrix C, the equation of the
dynamics around the prestressed position writes:

Mü+Cu̇+ (K−Kc +Knl(us)
)
u+ gnl2(u) + gnl3(u) = f ext (2.127)

2.3.3.2 Applications

Due to the centrifugal rotation, the total stiffness of the system is changed and the linear modes
cannot be separated into pure bending and membrane modes. The shape of the first three linear
normal modes remains however similar to those in the case without rotation but with less curvature
due to centrifugal effects as illustrated in Figure 2.13. The associated frequencies are respectively
9.54, 29.97 and 68.80 Hz. Besides, the observation made in paragraph 2.3.1 where a purely vertical
load induced only axial nonlinearity is no longer true when the structure rotates because the total
stiffness and the expressions of the purely nonlinear forces have changed.
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Figure 2.13: First three linear normal modes of the von Kármán beam in rotation at 500 rpm
(−•−) compared to their counterpart at 0 rpm (−−).

ICDual ROM for the beam model in rotation:
Similarly to the case without rotation, the first three linear modes are first considered in the
reduction basis and the loads imposed to determine the dual modes have the same shape as
in Equation (2.101) with the same weighting coefficients. The only difference lies in the mode
shapes plotted above in Figure 2.13. Figure 2.14 represents the singular values associated and the
linearized strain energies of the dual mode candidates. Compared to the case without rotation
(Figure 2.6), there is no clear drop in the singular values. It means that with the first five
singular modes, the precision of the residual is lower since the other singular modes have a larger
contribution than for the non-rotating case. Those five first dual mode candidates have a negligible
vertical contribution and are considered to be modes with membrane contribution. Even though
no particular drop is observed for the singular values, a clear one is observed for the complement
linearized strain energy. The first five singular modes are chosen as dual modes to enrich the
reduction basis.



2.3. Application to a 1D Euler-Bernoulli beam with von Kármán hypothesis 71

1 3 5 7 9 11 13 15 17 19 21 23 25
k

100

10 4

10 8

10 12

10 16

10 20

10 24

No
rm

al
ize

d 
sin

gu
la

r v
al

ue
s /

 
 li

ne
ar

ize
d 

st
ra

in
 e

ne
rg

ie
s

k
max

Ek
Emax

Figure 2.14: Singular values and linearized strain energies of the static solution residuals for the
beam case in rotation at 500 rpm.

Static load cases:
In this paragraph, the beam in rotation is subject to three different static load cases. Their
amplitude is larger than for the non-rotating case to reach significant transverse displacements
despite the centrifugal load:

• S1: a vertical load uniformly distributed along the beam of 140,000 N/m.

• S2: a vertical load of amplitude 210,000 N at the tip of the beam.

• S3: a follower load of amplitude 210,000 N at the tip of the beam.

Figure 2.15 presents the comparison between the nonlinear static displacement, the linear one
and the displacements obtained with the ICE/ICDual ROMs under the static distributed load
S1. Figure 2.16 illustrates a similar comparison under the vertical load at the tip S2, and Figure
2.17 under the follower load at the tip S3. The errors with respect to the full-order model are
presented in Table 2.6. Similar conclusions as those without rotation can be drawn. Under static
non-follower loads, both the ICE and ICDual capture accurately the FOM solution. However, only
the ICDual ROM captures accurately the static deflection due to a better projection of the follower
load. It is worth mentioning that under centrifugal rotation and a load at the tip, the curvature of
the beam is accentuated compared to the case without rotation, while the curvature of the linear
normal modes is on the contrary reduced (see Figure 2.13).
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Figure 2.15: Nonlinear static displacement of the clamped-free von Kármán beam subject to the
static load case S1. Comparison between the linear FOM, nonlinear FOM, the ICE and ICDual
solutions.
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Figure 2.16: Nonlinear static displacement of the clamped-free von Kármán beam subject to
the static load case S2. Comparison between the linear FOM, nonlinear FOM, ICE and ICDual
solutions.
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Figure 2.17: Nonlinear static displacement of the clamped-free von Kármán beam subject to the
static load case S3. Comparison between the nonlinear, the IC, ICE and ICDual solutions.

Table 2.6: Error regarding the nonlinear FOM solution of the beam displacement for the different
load cases in rotation.

Relative cumulative error εcumul (%)
Load case S1 S2 S3

Linear FOM 11.58 11.67 16.39

ICE ROM 0.14 0.75 8.48

ICDual ROM 0.13 0.75 1.37

Dynamic load cases:
In this paragraph, the beam in rotation is subject to three different dynamic load cases. The
frequency of excitation corresponds to the resonance frequency of the first mode in rotation f500

0 Hz,
the time step is 1 × 10−3s and a Rayleigh damping is added: C = 2ξω500

0 M with ξ = 5 × 10−2.
The external load distributions D1, D2 and D3 of the sinusoidal dynamic load are the following,
their amplitude is 3.5% the amplitude of the static cases S1, S2 and S3 respectively:

• D1: a vertical load uniformly distributed along the beam of 4,900 N/m.

• D2: a vertical load of amplitude 7,350 N at the tip of the beam.

• D3: a follower load of amplitude 7,350 N at the tip of the beam.

Figure 2.18 represents the vertical and axial temporal displacements of the beam tip in the
periodic regime computed with the different models under the load D1. While the ICDual ROM
perfectly captures the nonlinear dynamics, the ICE ROM presents a slight phase shift and strongly
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overestimates the axial displacement. The same conclusion is observed with the test cases D2 and
D3. It is also interesting to notice that unlike the non-rotating case, the vertical displacement of
the ICE solution is not superimposed to the linear solution.
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Figure 2.18: Nonlinear dynamic displacement of the clamped-free von Kármán beam in rotation
at 500 rpm, under the dynamic load case D1. Comparison of the vertical (a) and axial (b)
displacements at the tip of the beam between the nonlinear FE solution, the ICE and the ICDual
computations.

The linear solution presents a phase shift of 38◦ for the test case D1 and of 34◦ for the test
cases D2 and D3 while the ICDual ROM solution is perfectly in phase with the FOM solution. The
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phase shift of the ICE ROM is equal to 17◦ for all load cases. The relative errors of the models on
the maximal Y and X tip displacements for the test cases considered are presented respectively in
Tables 2.7 and 2.8.

Table 2.7: Relative error, for the different dynamic load cases, of the maximal vertical displacement
of the beam tip in periodic regime between the reference nonlinear FOM model and the linear FOM,
ICE ROM and ICDual ROM models.

Relative error of the tip Y displacement (%)
Load case D1 D2 D3

Linear FOM 25.22 19.10 17.80

ICE ROM (3 modes) 18.41 14.96 13.78

ICE ROM (8 modes) 18.41 14.95 13.78

ICDual ROM 2.99× 10−3 2.48× 10−2 2.53× 10−2

Table 2.8: Relative error, for the different dynamic load cases, of the maximal axial displacement
of the beam tip in periodic regime between the reference nonlinear FOM model and the linear
FOM, ICE ROM and ICDual ROM models.

Relative error of the tip X displacement (%)
Load case D1 D2 D3

Linear FOM 100 100 100

ICE ROM (3 modes) 37.93 30.81 28.20

ICE ROM (8 modes) 37.94 30.79 28.18

ICDual ROM 2.15× 10−2 3.90× 10−2 4.05× 10−2

The drawback of the ICE method is accentuated in the case of the beam in rotation. The ICE
method computes the dynamics only for the first bending modes and the membrane dynamics is
not computed in the reduced equation of the dynamics. For this reason, the axial dynamics is
inaccurately rebuilt during the Expansion step. A difference in terms of amplitude and phase shift
is also observed in the vertical displacement. Indeed, the ICE method assumes that the nonlinear
forces coefficients present in the equation of the linear modes "implicitly" contain information
about the membrane/bending coupling and somehow translate the effect of the axial nonlinearity
in the vertical displacement. Nevertheless, it is observed in the test cases that both the vertical and
axial displacements are imprecise and not improved with the ICE ROM built with 8 linear normal
modes. This highlights the necessity to precisely compute the membrane/bending coupling, which
is what the ICDual ROM does. The dual modes included in the reduction basis better capture
the nonlinear coupling and result in more accurate solutions.

2.4 Conclusion of the chapter

In this chapter, the reduced order model ICDual was presented and evaluated on academic test
cases for various load cases and the results were compared to other projection-based ROMs. This
model is based on completing the linear normal modes basis with dual modes and identifying the
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projected nonlinear forces via imposed loads. The ICDual ROM is non-intrusive and not affected
by the fact that aerodynamic forces are follower forces depending on the deformed position. Such
a ROM is built and evaluated in this chapter for a one-dimensional Euler-Bernoulli beam with the
von Kármán hypothesis, first without rotation, then subject to a centrifugal rotation at constant
speed around a fixed axis. The accuracy of such a ROM was exhaustively tested on different load
cases, local or distributed, follower or not, static and dynamic. The comparison with the classical
ICE method highlighted that for static cases, both the ICDual and ICE models precisely capture
the static deformation, except for follower forces where the ICE ROM does not take properly into
account the component of the external load that is orthogonal to the linear modes included in
the basis. Regarding dynamic vibrations, the comparison with the ICE method illustrated the
necessity to accurately compute the nonlinear dynamical membrane/bending coupling, which is
what the ICDual ROM does, while the ICE ROM rebuilds it poorly. The von Kármán beam model
and 3D finite element applications with the Saint Venant-Kirchhoff model have in common that
the internal nonlinear forces are cubic in the degrees of freedom. The ICDual ROM is therefore
directly transposable to such applications, as demonstrated in chapters 3 and 6.



Chapter 3

Application to 3D finite elements
models using an external FE solver

The purpose of this chapter is to apply the ICDual ROM to 3D finite element structures using
an external solver. Indeed, such a ROM is non-intrusive and adapted to FE models where the
internal nonlinear forces have a cubic dependence to the degrees of freedom. A simple test case of
a 3D cantilever beam-like structure equivalent to the one studied in the previous chapter is thus
considered in this chapter, first without, then subject to centrifugal rotation.

Contents
3.1 Vibrations of a 3D cantilever beam-like structure without rotation . . . 77
3.2 Rotation at a constant speed . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3 Notes on the non-intrusive computation of the projected non-linear forces

coefficients for 3D structures . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.1 Vibrations of a 3D cantilever beam-like structure without ro-
tation

The case considered has the same geometry as the beam studied in the previous chapter (same
dimensions), but is discretized with 3D HEX20 finite elements (360 elements, 2181 nodes). As a
reminder, the length of the beam is equal to 4 m, its thickness 7.10−2 m and its width 21.10−2 m.
The Young’s modulus is equal to 100 GPa, the density 4,400 kg.m−3 and the Poisson’s ratio is equal
to 0.3. Reference full-order computations are performed using the FE solver Code_Aster [47]. In
this section, we first investigate the case of the cantilever beam without rotation. The first three
linear normal modes of the structure are shown in Figure 3.1. Their frequencies are respectively
3.38 Hz, 10.11 Hz and 21.17 Hz. In the 2D beam case, the first two linear modes correspond to
the first and the third ones of the present case and their frequencies are respectively 3.37 Hz and
21.11 Hz.

Construction of the ROM
The linear normal modes basis is enriched with dual modes according to the process presented
in section 1.3.1.4. A set of loads are applied to the beam; the residuals of the nonlinear static
solutions are extracted and a SVD is performed on the matrix gathering these residuals. Figure
3.2 shows the first singular values of the SVD as well as the linearized strain energies of the SVD
modes. On this graph, we notice that the first two SVD modes with the largest linearized strain
energies correspond also to those with the highest singular values. We limit ourselves to those
two modes to enhance the linear normal modes basis. With only two additional dual modes, the
number of coefficients for the projected nonlinear forces is reasonable and no additional nonlinear
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Figure 3.1: Visualization of the first 3 linear normal modes of the beam at 0 rpm. The mesh is
the initial geometry.

static solutions are needed to compute the coefficients than those used for the determination of the
dual modes. The shape of those dual modes is illustrated in Figure 3.3 showing that those modes
are characterized by a purely axial deformation. Indeed, the first linear normal modes correspond
to bending movements, triggering membrane displacements due to geometric nonlinearity.
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Figure 3.2: Normalized singular values (green) and linearized strain energies (purple) of the modes
obtained by the SVD of the matrix of residuals.

Figure 3.3: Two first dual modes added to the linear basis.
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Nonlinear response under a static load
First, a static external load of amplitude 30,000 N is applied vertically at the tip of the beam. Fig-
ure 3.4 presents a comparison of the static deflections between the nonlinear FOM and the ROMs.
For such a case, the ICE and ICDual reduced order models are superimposed with the nonlinear
FOM solution. Both the static nonlinear solutions obtained with the ICE method and the ICDual
method capture the nonlinear behavior of the structure. Nevertheless, the nonlinear static solution
of the ICE method matches with the FOM solution after the expansion postprocessing step, while
with the ICDual approach, the nonlinear solution is captured directly from the resolution of the
reduced system. The relative cumulative errors defined in Equation (2.102) are 0.38% for the ICE
and ICDual ROM, and 14% for the linear ROM.
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Figure 3.4: Comparison of the nonlinear static solution between the nonlinear FOM and the
different ROMs.

Nonlinear response under a dynamic load
A dynamic sinusoidal load is then applied vertically at the tip of the beam, with an amplitude
of 2,500 N, and a forcing frequency equal to the one of the first linear normal mode (3.38 Hz).
The time integration is performed using an HHT-α scheme with αHHT = 0.05 and a time step of
2.10−3s. Besides, a Rayleigh viscous damping is considered: C = 2ξω0M with a damping ratio
ξ = 0.05 and ω0 the pulsation of the first linear normal mode. Figure 3.5 depicts the nonlinear
displacement of the FOM over one period and Figure 3.6 represents the axial and vertical temporal
displacements of the node in the center of the tip of the beam.
For such levels of deformation, the geometric nonlinearity of the structure is significant. Figure 3.7
represents the vertical and axial displacements of the node at the tip middle of the beam. Phase
shifts of 14.5◦ and 9.7◦ are observed with respect to the FOM for respectively the ICE and ICDual
ROMs.
Figure 3.8 compares the maximal displacements in the periodic regime of the FOM solution, the
linear ROM solution and the solutions obtained with the reduced order models ICE and ICDual.
The errors on the maximal axial and vertical displacements are quantified in Table 3.1. The
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Figure 3.5: Nonlinear FOM displacements over a period.
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Figure 3.6: Temporal vertical (a) and axial (b) displacements of the tip of the beam.

linear ROM solution does not capture at all the axial shortening of the beam resulting from the
nonlinearity. The axial shortening is captured by the Expansion step of the ICE method but
slightly differs from the FOM solution, which was not the case for the previous test case with a
static load. This difference results from the Expansion step of the ICE method which is based on
a static reconstruction of the solution from the bending dynamics, but the membrane dynamics
itself is not solved in the reduced equation of the dynamics. On the contrary, the addition of
dual modes to the reduction basis leads to the resolution of the dynamics in traction-compression
directly in the reduced equation of the dynamics. Therefore, no reconstruction is needed and the
dynamics is more accurately captured.
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Figure 3.7: Temporal vertical (a) and axial (b) displacements of the tip of the beam. Comparison
between the FOM and the linear, ICE and ICDual ROMs.
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Figure 3.8: Comparison of the maximal displacements in periodic regime between the FOM and
the different ROM solutions. The beam is subjected to a vertical sinusoidal load at the tip of
amplitude 2,500 N and frequency 3.38 Hz.

Table 3.1: Relative error of the maximal displacement of the beam tip in periodic regime between
the reference nonlinear FOM model and the linear FOM, ICE ROM and ICDual ROM models.

Relative error of the tip displacement (%)
Y component X component

Linear FOM 1.91 100

ICE ROM 3.05 5.20

ICDual ROM 0.48 1.27
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3.2 Rotation at a constant speed

In this section, the beam is shifted by 10 cm from the vertical axis and rotates around the latter at
a constant speed of 500 rpm. Centrifugal effects arise and the equilibrium position of the structure
is the prestressed position due to the centrifugal forces, around which the linear normal modes
are computed. The shape of the first three linear normal modes are very similar to those without
rotation (see Figure 3.9) but their respective modal frequencies become 9.67 Hz, 10.86 Hz and
30.22 Hz. Then the process of determining the dual modes is applied. Figure 3.10 represents the
singular values and the linearized strain energies of the SVD modes. The dual modes selected
are the first two SVD modes, which have a similar shape as those of the case without rotation
illustrated in Figure 3.3. The relative cumulative errors defined in Equation (2.102) are 2.3% for
the ICE, 2.8% for the ICDual ROM, and 11.8% for the linear ROM.

Figure 3.9: Visualization of the first 3 linear normal modes of the beam at 500 rpm. The mesh is
the initial geometry and the feature edges their counterpart at 0 rpm.
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Figure 3.10: Normalized singular values (green) and linearized strain energies (purple) of the SVD
modes of the beam in rotation at 500 rpm.
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Similarly to the non-rotating analysis of the beam, a static load is applied vertically at the tip.
In order to reach a comparable level of displacement, the applied load amplitude (210,000 N) is
seven times larger than in the case without rotation. Figure 3.11 illustrates the linear and nonlinear
static deflections under such a load case and Figure 3.12 compares the static deflection in the middle
line between the nonlinear FOM and the ROM solutions. As in the non-rotating case, the linear
ROM solution does not capture the bending/membrane displacement coupling resulting from the
geometric nonlinearity. Both the ICE and ICDual models capture the nonlinear coupling leading
to axial shortening. Nevertheless, due to the axial centrifugal forces and the vertical loading at
the tip, the curvature of the beam is larger than the case without rotation. Such curvature is not
perfectly captured by the ROMs. Regarding the position of the tip, the ICDual solution matches
with the FOM solution, while the ICE solution underestimates the vertical displacement.

Figure 3.11: Comparison of the nonlinear and linear static deflections. The beam is in rotation at
500 rpm subject to a vertical static load at the tip of 210,000 N.
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Figure 3.12: Comparison of the static deflections between the FOM and the different ROMs. The
beam is in rotation at 500 rpm subject to a vertical static load at the tip of 210000 N.
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To echo the beam test case without rotation, this second study deals with a dynamic loading
applied vertically at the tip. The frequency of excitation is the one of the first linear normal mode
in rotation (9.67 Hz) and its amplitude is 7,350 N, about three times the load of the non-rotating
case in order to reach a similar magnitude of displacements. The same integration scheme as for
the case without rotation is used but the time step is reduced by half. The Rayleigh damping
is kept unchanged. The nonlinear solutions with the ICE and ICDual reduced order models are
also computed. Figure 3.14 represents the vertical and axial displacements of the node at the tip
middle of the beam. Phase shifts of 27.8◦ and 17.4◦ with respect to the FOM are observed for
respectively the ICE and ICDual ROMs. The maximal amplitudes in the periodic regime of the
different models are illustrated in Figure 3.13 and the errors on the maximal axial and vertical
displacements are quantified in Table 3.2. While the solution with dual modes has a negligible
error with respect to the nonlinear FOM solution, the ICE method slightly underestimates the
amplitude of displacement; more linear normal modes would be needed in the reduction basis for
the ICE method.
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Figure 3.13: Comparison of the maximal displacement in periodic regime between the FOM and
the different ROM solutions. The beam is subject to a vertical sinusoidal load at the tip, of
amplitude 7350 N and frequency 9.67 Hz.

Table 3.2: Relative error in the rotating case of the maximal displacement of the beam tip in
periodic regime between the reference nonlinear FOM model and the linear FOM, ICE ROM and
ICDual ROM models.

Relative error of the tip displacement (%)
Y component X component

Linear FOM 6.41 100

ICE ROM 4.15 7.77

ICDual ROM 0.14 2.34



86 Chapter 3. Application to 3D finite elements models using an external FE solver

3.80 3.82 3.84 3.86 3.88 3.90
Time (s)

10

5

0

5

10

 Z
 / 

h 

Linear solution
Nonlinear solution
ICE solution
ICDual solution

(a) Vertical displacement

3.80 3.82 3.84 3.86 3.88 3.90
Time (s)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

 X
 / 

h 

Linear solution
Nonlinear solution
ICE solution
ICDual solution

(b) Axial displacement

Figure 3.14: Temporal axial and vertical displacements of the tip of the beam. Comparison between
the FOM and the linear, ICE and ICDual ROMs.

The same static solutions were used to build both the ICE and ICDual ROMs, meaning that
the offline costs of the construction of the reduced order models are the same. By adding two
dual modes to the reduction basis, the ICDual ROM improves the dynamic solution compared to
the ICE ROM. Besides, building an ICE ROM with the first five linear normal modes does not
improve the dynamic solution. However, it slightly improves the static solution thanks to the 15

postprocessing modes. In the test cases, the choice was made to remain general in the sense that
the first three linear modes are used. However, since the external load is vertical along z and the
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beam is symmetrical and isotropic, no movement in the y direction is triggered and the second
linear normal mode does not contribute. The solutions can be improved by considering the first
three linear normal modes in the (x, z) plane, which means considering the first, third and fifth
linear normal modes illustrated in Figure 3.15. Indeed, the second and fourth linear normal modes
are the first and second bending modes in the y direction shown in Figure 3.16.

Figure 3.15: First three linear modes in the (x, z) plane of the beam in rotation at 500 rpm around
the axis z.

Figure 3.16: Second and fourth linear modes of the beam in rotation at 500 rpm around the axis
z.

The dual modes built from the new reduction basis of the three first linear normal modes in
the plane (x, z) are represented in Figure 3.17. Similarly to the previous reduction basis of linear
normal modes, those dual modes are characterized by a membrane contribution. The solutions
of the different ROMs for the static load case are represented in Figure 3.18. Both the ICE
and ICDual are improved compared to the previous case with the reduction basis containing the
transverse mode. The relative cumulative errors are here 0.70% for the ICE ROM and 1.52% for
the ICDual ROM whereas the errors where respectively 2.3% and 2.8% when taking into account
the transverse modes. As noted before, the combination of the vertical load at the tip of the beam
and the centrifugal rotation leads to a stronger curvature of the beam than for the case without
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Figure 3.17: First two dual modes based on the first three linear normal modes in the (x, z) plane
illustrated in Figure 3.15.

rotation. The third linear normal mode in the (x, z) plane helps capture such a curvature. The
improvement of the ICE ROM is significant thanks to the six postprocessing modes and the ICE
ROM is thus particularly accurate for this static case. The ICDual ROM is also improved and
accurate, representing the nonlinear FOM static solution with an error of the order of magnitude
of one percent.
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Figure 3.18: Comparison of the static deflections between the FOM and the different ROMs with
reduction basis based on the first three linear modes in the (x, z) plane. The beam is in rotation
at 500 rpm subject to a vertical static load at the tip of 210,000 N.

The fact that the ICDual ROM computes the nonlinear solution during the resolution and not in
postprocessing will make a difference in the dynamic case. The solutions of the ROMs under the
dynamic sinusoidal load case are shown in Figure 3.19. The phase shift of the ICE method remains
27◦ while the phase shift of the ICDual method is reduced to only 7◦. Besides, the vertical and
axial displacements in the periodic regime are slightly improved for the ICE ROM and the axial
displacement of the ICDual ROM is greatly enhanced as shown in Table 3.3.
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Figure 3.19: Temporal axial and vertical displacements of the tip of the beam. Comparison between
the FOM and the linear, ICE and ICDual ROMs built with reduction basis based on the first three
linear modes in the (x, z) plane.
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Table 3.3: Relative error in the rotating case of the maximal displacement of the beam tip in
periodic regime between the reference nonlinear FOM model and the linear FOM, ICE ROM and
ICDual ROM models built with reduction basis based on the first three linear modes in the (x, z)
plane.

Relative error of the tip displacement (%)
Y component X component

Linear FOM 6.41 100

ICE ROM 3.48 6.15

ICDual ROM 1.08 0.34

3.3 Notes on the non-intrusive computation of the projected non-
linear forces coefficients for 3D structures

In this section, we give some advice for the non-intrusive computation of the projected nonlinear
forces coefficients using an external FE solver. The non-intrusive characteristic of the computation
of the coefficients is considered necessary for industrial applications. An intrusive determination
of the coefficients would be easier and more accurate, but it means that we need to have access
to the code sources, which is not the case for commercial FE codes. The other possibility is to
build our own FE solver with all the beam, shell, 3D volume, and composite elements necessary to
tackle complex industrial geometries where locally added masses are also sometimes present. This
goes beyond the context of this work. For this reason, one of the constraints for the ROM is the
non-intrusiveness regarding an external FE solver.

Nonlinear coefficients may be determined with non-intrusive approaches either by imposed dis-
placements or by imposed loads. The advantage of imposing displacements is to determine the
coefficients one by one with pertinent combinations of displacements such as the STEP method.
It works well for 1D structures with polynomial nonlinearities. However, for 3D structures, we
already mentioned that it leads to numerical artifacts linked to the prescription of volume defor-
mation [199]. Indeed, huge non-desired local efforts are introduced to impose the volume, polluting
the numerical computation of the coefficients. The use of imposed loads instead of imposed dis-
placements in the ICDual method prevents such inaccuracies. On the contrary, the nonlinear forces
coefficients cannot be determined one by one but through the resolution of the linear system of
Equation (2.4). Nevertheless, some precautions may be necessary to avoid numerical inaccuracies
due to a possibly large condition number. First, the quadratic and cubic contributions of the
nonlinear forces are usually not provided separately by the FE solvers so the determination of the
coefficients cannot be splitted into two smaller systems instead of a single one. Second, the nor-
malization of the linear normal modes and their contribution may lead to generalized coordinates
of different orders of magnitude. The result is that the system to solve in Equation (2.4) has a con-
dition number that may be large, affecting the robustness of the determination of the coefficients.
One idea to circumvent such a problem is to deal with normalized generalized coordinates. Indeed,
we remind the reader that generalized coordinates (q(ℓ))ℓ∈[1,nL] are obtained from the nonlinear
static solutions (u

(ℓ)
s )ℓ∈[1,nL]. To normalize the computation of the coefficients, we divide all the

components q(ℓ)k of the vectors of generalized coordinates q(ℓ) by the maximal absolute value of qk
for all the load cases: q̃

(ℓ)
k = q

(ℓ)
k /max(|q(ℓ)k |)ℓ∈[1,nL]. Such a normalization limits the discrepancies

in the orders of magnitude of the monomials q̃iq̃j and q̃iq̃j q̃m of generalized coordinates in the sys-
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tem to solve. The coefficients obtained are normalized and have to be then multiplied afterwards
by the normalizations of the generalized coordinates to obtain their physical value.

A second point is linked to the number of static solutions available. As mentioned in section
2.2.1, the static solutions are built by imposing external forces using the shape of the linear normal
modes and not the dual modes. However, the number of coefficients to determine when dual modes
are included in the reduction basis is larger than the number of coefficients to determine with only
the linear normal modes in the reduction basis. Consequently, the number of static solutions for
a square system (Equation 2.2.1) in the resolution of the coefficients is (n3 + 6n2 + 5n)/6 with
n the number of modes in the reduction basis. However, depending on the geometries and the
symmetries, a lot of coefficients are usually null or negligible. For this reason, it is sometimes
interesting to prefer a penalized least-squares approximation such as Ridge, Lasso [189] or Elastic-
net [210] to the standard least-squares approximation. The advantage of such regression methods
is double. First, the resolution of ill-posed systems is improved. Second, it avoids excessively large
coefficients and sets negligible coefficients close to or equal to zero, especially the Lasso regression.
In his work, penalized regressions with cross-validation were used thanks to the Python library
Scikit-learn [140].

When the number of available static solutions is very low, it is interesting to get rid of negligible
coefficients to gain precision in the computation of the others. To do so, a first computation of
the nonlinear forces coefficients is performed. Considering the mode k, for each static solutions
(u

(ℓ)
s )ℓ∈[1,nL], the projected nonlinear forces along the mode k is considered:

g̃knl(q
(ℓ)) = VT

k gnl(Vq(ℓ)) =

n∑

i=1

n∑

j=i

βk
ijq

(ℓ)
i q

(ℓ)
j +

n∑

i=1

n∑

j=i

n∑

m=j

γkijmq
(ℓ)
i q

(ℓ)
j q(ℓ)m . (3.1)

This projected nonlinear force is the sum of quadratic and cubic contributions βk
ijq

(ℓ)
i q

(ℓ)
j and

γkijmq
(ℓ)
i q

(ℓ)
j q

(ℓ)
m . In this decomposition, some contributions may be negligible compared to others.

For example, if the maximal absolute contribution is βk
11q

(ℓ)
1 q

(ℓ)
1 and |βk

13q
(ℓ)
1 q

(ℓ)
3 |/|βk

11q
(ℓ)
1 q

(ℓ)
1 |< 10−5,

then the contribution βk
13q

(ℓ)
1 q

(ℓ)
3 is negligible for the load case ℓ. If a contribution is negligible for

all load cases, the associated coefficient can be set to zero. A new computation of the system
with fewer unknowns is therefore more precise. This process can be repeated as a fixed-point
procedure until no new negligible coefficients are found. Performing this process for all the modes
and considering the previous point about the normalization improves the robustness of the method
when only a few static solutions are available. For instance, the static solutions used to determine
the dual modes can be reused without the need for further nonlinear static computations. It
also means that the number of static solutions necessary is lower than for a determination of the
coefficients by imposed displacements. Indeed, when dual modes are considered and the projected
nonlinear forces coefficients are computed by imposed displacements, a first set of nonlinear static
solutions are necessary to determine the dual modes, and another larger set is necessary to compute
the coefficient. With the ICDual method, only the static solutions are necessary to determine the
dual modes with potentially a few additional solutions when a lot of dual modes are included in
the basis.

3.4 Conclusion of the chapter

In this chapter, the ICDual method was applied to a 3D FE cantilever beam-like structure. One
case without centrifugal rotation and one with were studied. Both were subjected to a vertical
load at the tip. The results are similar to those of the previous study of the Euler-Bernoulli/von
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Kármán beam presented the previous chapter. Indeed, the eigenfrequencies and amplitudes of
displacement are close and it was observed with both models that the differences in vertical am-
plitude between the linear and nonlinear solutions are more pronounced for the rotating case than
for the non-rotating case. The conclusions of the reduction methods are also similar in the sense
that both the ICE and ICDual ROM were accurate considering static loads, while the dynamic
loads showed the limit of the ICE postprocessing reconstruction although the ICDual ROM re-
mained particularly accurate. The ICDual ROM is built in a non-intrusive way from the FE solver
Code_Aster [47], both for the determination of the dual modes and the computation of the pro-
jected nonlinear coefficients, thus validating the approach for 3D structures. An application to the
complex geometry of a fan blade is found in chapter 6.



Chapter 4

Partitioned fluid-structure coupling
procedure between the fluid solver and

the structural ROM

In this chapter, the fluid equations of the coupled problem are introduced. The Navier-Stokes
equations are considered to depict the fluid dynamics. Since the fluid mesh is deformed by the
displacement of the structure, an Arbitrary Lagrangian-Eulerian (ALE) formulation is used for the
CFD computations. Common mesh deformations techniques are then presented and illustrated
with simple test cases. To compute fluid-structure interaction problems, two approaches are found
in the literature: a monolithic and a partitioned coupling. A paragraph is dedicated to both
approaches but it is the partitioned approach that will be used in this work. Finally, transfer
methods for the loads and displacements between the fluid and structure meshes are explained.
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4.1 Arbitrary Lagrangian-Eulerian formulation to consider the mov-
ing structure in the fluid

In the frame of fluid-structure interaction, the displacements of the structure due to aerodynamic
loads change the position of the fluid boundary. A moving mesh is therefore considered and
the Arbitrary Lagrangian-Eulerian formulation for the fluid equations is commonly used. In this
section, the Navier-Stokes equations in Eulerian formulation are first reminded along with common
constitutive equations. Then those equations in the Arbitrary Lagrangian-Eulerian formulation
are provided.
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4.1.1 Navier-Stokes equations in Eulerian formulation

In the field of computational fluid dynamics, the Eulerian description of the flow field is the way of
observing the fluid motion by focusing on a specific location in space, which the fluid flow passes
through as time passes. In the Eulerian description, the local equations of conservation for the
fluid take the following form:

• Mass conservation equation:
∂ρ

∂t
+∇ · (ρv) = 0. (4.1)

• Momentum conservation equation:

∂(ρv)

∂t
+∇ · (ρv ⊗ v − τ + pI) = 0, (4.2)

where the source term due to the gravity is ignored and τ is the viscous stress tensor of the fluid.

• Conservation of the total specific energy E:

∂(ρE)

∂t
+∇ · (ρEv + pv − τv + q) = 0. (4.3)

The term "specific" means per unit of mass. The total specific energy is defined by E = e+ v2/2

with e the specific internal energy. The equations (4.1), (4.2) and (4.3) are the Navier-Stokes
equations. It is common to introduce the vector of the conservative variables W and the fluxes
F , sum of the convective and diffusive fluxes:

W =




ρ

ρv

ρE


 , F =




ρv

ρv ⊗ v + pI− τ
ρEv + pv − τv + q


 . (4.4)

The Navier-Stokes equations thus take the following form representing the temporal variation of
the conservative variables W due to the losses by the diffusive and convective fluxes and by the
creation through a source term. The source terms are not written here but are for instance due to
the rotation1, gravity or electromagnetism:

∂W

∂t
+∇ ·F(W ) = 0. (4.5)

4.1.2 Constitutive equations

The aforementioned equations of conservation are valid for all types of fluids. As such, the Navier-
Stokes equations cannot be solved since there are too many unknowns. Constitutive equations
describing the interdependency of the variables have to be added to the system such as Fourier’s
law of heat conduction and the hypothesis of Newtonian fluids for the viscous tensor for instance.
Besides, the density and viscosity of compressible fluids depend on the temperature. Regarding
gases, the perfect gas equation and Sutherland’s law for the dynamic viscosity are commonly
considered for the constitutive equations.

1For the turbomachine case treated in chapter 6, the equations are formulated in the relative frame and source
terms are thus present due to the Coriolis and centrifugal effects.
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Thermal conduction
Fourier’s law of heat conduction is the constitutive equation expressing the diffusive flux resulting
from the variation in temperature: q = −κT∇T with κT (in W.m−1.K−1) the thermal conductivity
of the fluid.

Newtonian fluids
A Newtonian fluid is a fluid for which the viscous stresses depend linearly on the local deformation
rate. The deformation rate tensor of the fluid is the sum of two contributions: the shear with
constant volume

[
∇v + (∇v)T

]
/2− (∇ · v)I/3 and the isotropic expansion (∇ · v)I/3. Likewise,

the viscous stress tensor can also be seen as the sum of the two contributions : τ = τ shear + τ exp.
A fluid is Newtonian when there is proportionality respectively between τ shear and the shear with
constant volume and between τ exp and the isotropic expansion:

τ shear = 2µ
[
∇v + (∇v)T

]
, (4.6)

τ exp = λ
(∇ · v)I

3
, (4.7)

with λ the second viscosity coefficient and µ the shear viscosity or first viscosity coefficient. The
hypothesis of Stokes consists in neglecting the second viscosity coefficient λ = 0, leading to:

τ = µ

[
∇v + (∇v)T − 2

3
(∇ · v)I

]
. (4.8)

Perfect gas equation
The perfect gas is a common model in which the intermolecular forces are neglected. The perfect
gas equation links the pressure to the density and the temperature:

p = p(ρ, T ) = ρrT, (4.9)

with r = R/M the specific gas constant, in which R is the universal gas constant: R =

8.314 J.K−1.mol−1 and M is the molar mass of the gas.

Sutherland’s law
Sutherland’s law is a semi-empirical relation specific for gases, expressing the dynamic viscosity of
the fluid as a function of the temperature:

µ(T ) = µref

(
T

Tref

)3/2 Tref + S

T + S
, (4.10)

where Tref is the temperature of reference 273.15 K, S is a constant depending on the fluid and
µref is the dynamic viscosity of the fluid at the temperature Tref .

4.1.3 Navier-Stokes equations in ALE formulation

In the Lagrangian approach, the computational mesh follows the particle motion and the grid nodes
are permanently connected to the same material points. The principle of the Eulerian formulation
is that the mesh is fixed in space and the particles move with respect to the mesh grid. A significant
drawback for both methods is that the refinement of the mesh is fixed in space and fails to capture
flow details that might occur out of the refined places. The Lagrangian approach is the classical
formulation to treat mechanical structures undergoing large amplitude displacements while the
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Eulerian formalism is common for fluid dynamics. In the frame of fluid-structure interaction, the
displacement of the structure imposes a movement to the fluid mesh. Thus, it is common to
adopt the Arbitrary Lagrangian-Eulerian (ALE) framework [43] to compute the fluid equations
with respect to a moving mesh. The aim of the ALE formulation is indeed to allow freedom of
moving the mesh, which can be moved arbitrarily as desired. Thus the ALE formulation enables to
handle large distortions that were problematic in a purely Lagrangian approach and with a better
accuracy than with only an Eulerian approach.

In a fluid-structure framework, the fluid mesh is deformed by the movement of the fluid-
structure boundary. Figure 4.1 presents schematically the movement of a mesh ξ due to the
displacement and deformation of the solid ΩS in the fluid domain ΩF . The moving fluid-structure
interface is represented by Γ.

ΩS(t)

ΩF (t)

Γ(t− δt)

ξ(t− δt)

ξ(t)

Γ(t)

Figure 4.1: Simplified representation of the mesh movement justifying the ALE formulation for
the fluid equations.

Writing ΩF a control volume in the fluid domain and SF (t) its surface, the Reynolds transport
theorem applied to the conservative variables W in the control volume ΩF stipulates that:

d

dt

∫

ΩF

W dΩF =

∫

ΩF

∂W

∂t
dΩF +

∫

SF (t)
(Wv̂) · n dSF (t), (4.11)

with v̂ the velocity at the interface SF (t) of the control volume and Wv̂ =
[
ρv̂ ρv ⊗ v̂ ρEv̂

]T

the flux exiting the control volume through the normal vector n pointing outwards. The integration
over the control volume ΩF of the local Equation (4.5) writes:

∫

ΩF

[
∂W

∂t
+∇ ·F(W )

]
dΩF = 0. (4.12)

The application of the Green-Ostrogradsky theorem provides the relation:
∫

ΩF

[
∂W

∂t
+∇ ·F(W )

]
dΩF =

∫

ΩF

∂W

∂t
dΩF +

∫

SF (t)
F(W ) · n dSF (t). (4.13)
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Thus, the second integral in (4.11) can be replaced by the integral of the flux of the conservative
variables W : ∫

ΩF

∂W

∂t
dΩF = −

∫

SF (t)
F(W ) · n dSF (t). (4.14)

Finally, the integral formulation of the Navier-Stokes equations in ALE formulation is:

d

dt

∫

ΩF

W dΩF +

∫

SF (t)
F(W , v̂) · n dSF (t) = 0, (4.15)

with

F(W , v̂) =



ρ(v − v̂)
ρv ⊗ (v − v̂) + pI− τ
ρE(v − v̂) + pv − τv + q


 . (4.16)

4.2 Mesh deformation techniques

The structural deformation at the interface uΓ has to be propagated inside the fluid computational
domain to accommodate with the deformed position of the interface. The fluid mesh coordinates
are denoted ξ = [ξI, ξΓ] with ξI the internal grid coordinates and ξΓ the fluid mesh coordinates
on Γ, these latter satisfy ξΓ = uΓ.

One approach to perform a mesh deformation is based on a structural analogy to propagate
the deformation in the whole fluid domain [45]. The fluid domain is assimilated to a linear elastic
material where prescribed displacements are imposed on the interface Γ. The analogous elastic
material is characterized by a Young’s modulus E and a Poisson’s coefficient ν. The problem is
formulated with a classical FE formulation as Kmeshξ = 0 in ΩF with Kmesh a stiffness matrix
resulting from the assembly of all the local stiffness matrices, along with the constraint ξΓ = uΓ.
The stiffness in a fluid mesh cell Kk is defined by:

Kk =

∫

Ωk

NTCN dΩk, (4.17)

with C the linear isotropic elastic tensor. For 3D cases and using the Voigt notation, the tensor
C is defined by:

C =
E

(1 + ν)(1− 2ν)




1− ν ν ν 0 0 0

1− ν ν 0 0 0

1− ν 0 0 0

1/2− ν 0 0

sym. 1/2− ν 0

1/2− ν




. (4.18)

The Young’s modulus considered to build the stiffness matrix is however not uniform in the fluid
domain but depends on the mesh metrics. It is a function of the cell volume, the idea is to increase
the stiffness in the regions where the mesh is strongly refined, for instance in the fluid boundary
layers at the walls. A common approach is to consider a Young’s modulus inversely proportional
to a power function of the mesh size. The total finite element problem is decomposed as:



KII

mesh KIΓ
mesh

KΓI
mesh KΓΓ

mesh






ξI

ξΓ


 =




0

RΓ


 , (4.19)
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with RΓ the reaction on the fluid-structure interface Γ. Therefore, the internal displacements of
the fluid mesh ξI are obtained as the solution of the linear problem:

KII
meshξI = −KIΓ

meshξΓ (4.20)

To illustrate the method, Figure 4.2 shows the mesh deformation with structural analogy of a
simple configuration meshed with tetrahedral elements. The white square representing the solid
is subject to a translation, a rotation and a deformation. The mesh deformation with structural
analogy is computed with the FEniCSx Finite Elements Python library.

(a) Initial configuration (b) Translation

(c) Anti-clockwise rotation (d) Axial stretching

Figure 4.2: Mesh deformation examples on a simple 2D configuration.

The mesh deformation with structural analogy of a more applicative case is represented in
Figure 4.3. The case corresponds to a flexible beam attached to a fixed cylinder. The fluid domain
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is meshed with a structured grid. The mesh deformation displayed corresponds to a structural
displacement with the shape of the 5th mode of the beam.

Figure 4.3: Fluid mesh deformation for the case of a beam attached to a fixed cylinder. The shape
of the structural deformation corresponds to the 5th mode of the beam.

Other mesh deformation approaches are found in the literature. For instance, the TransFinite
Interpolation (TFI) method [60] is an analytical method for the deformation of structured meshes
using interpolation functions depending on the curvilinear coordinates of the mesh and matching
exactly the displacements at the interface. Since the method is analytical, the computational time
of the mesh deformation is minimal. Radial Basis Functions (RBF) are also relevant for mesh
deformation [32]. The mesh deformation ξ(x) for a point x in space is given by:

ξ(x) =
N∑

i=1

αiϕ(||x− xΓ,i||) + p(x), (4.21)

with ϕ(x) the radial basis kernel functions with a compact support, p(x) a polynomial function
and αi weighting coefficients determined from the N known displacements ξ(xΓ,i) at the interface
(additional control points can also be considered). The mesh deformation can also be computed
based on a distance metric d with the Inverse Distance Weighting (IDW) method [207]. In such
method, the mesh deformation is evaluated as follows:

ξ(x) =





∑N
i=1wi(x)ξΓ,i∑N

i=1wi(x)
if ∀i d(x,xΓ,i) ̸= 0

ξΓ,i else

(4.22)

with ξΓ,i = ξ(xΓ,i) and wi(x) = 1/d(x,xΓ,i)
p where p is a positive integer power monitoring the

influence of the distance on the weighting coefficient. To handle large displacements and rotations,
a mesh deformation method based on quaternions is also proposed in [119].
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4.3 Coupling procedures to couple the solvers

The numerical computation of fluid-structure interaction problems is challenging since the dy-
namics of the structure and of the fluid are intertwined. The boundary condition for the fluid
is the structural displacement and the boundary conditions for the structure are the fluid loads.
Besides, in the ALE formulation, the mesh deformation in the fluid domain due to the structural
displacement should also be computed. In the literature, two fundamentally different approaches
are implemented to solve a fluid-structure interaction problem [82]. On the one hand, the idea is to
compute all the physics simultaneously in one large system. This approach is called the monolithic
approach. The equations for the fluid, the structure, the mesh deformation and the transfers of
loads and displacements are all gathered in one single system. On the other hand, the partitioned
approach consists of two different solvers for the fluid and the structure. The two solvers exchange
the necessary boundary conditions to one another in a specific integration sequence for each time
increment. Figure 4.4 illustrates both approaches with simplified diagrams.

Fluid solver Structure solver
F/S interface

Transfer of loads
and displacements

Mesh deformation

(a) Partitioned coupling

Fluid dynamics

Solid dynamicsF/S coupling

F/S coupling

(b) Monolithic coupling

Figure 4.4: Schematic representation of the monolithic and partitioned coupling approaches.

The following paragraphs provide a short introduction to both methods with their respective
advantages and drawbacks.

Monolithic approach
As mentioned above, the monolithic approach consists of the implicit resolution of a single system
gathering the equations for the fluid, the structure, the mesh deformation and the transfers. Thus,
all the components of the coupling are solved simultaneously in a single time increment loop, en-
suring the stability and convergence of the coupling. The implicit formulation of the system also
allows time steps that are not excessively small. Examples of fluid-structure interaction problems
solved with the monolithic approach can be found in [76, 82, 83, 194]. The drawback of monolithic
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approaches is that it leads to nonlinear systems of large dimensions with values spanning several
orders of magnitude corresponding to the different physics, at the expense of the condition number
of the system. It is common to normalize the equations to obtain non-dimensional quantities to
help the numerical resolution and to highlight physical phenomena according to the mass ratios.
Nonetheless, the computation of the large linear systems in the nonlinear resolution loop is a chal-
lenge for monolithic approaches [40, 63, 76, 156]. Iterative methods such as GMRES (Generalized
Minimal Residual) algorithms are commonly used along with specific preconditioners adapted to
the particular shape of the matrix of the system.

Partitioned approach
In a partitioned coupling, different solvers are considered for the fluid and the structure. This allows
for more modularity between the solvers. Besides, another advantage is that there is a dedicated
solver for each physics, in which all the desired complexity can be easier integrated, which is
cumbersome with a monolithic solver. The easiest partitioned coupling consists in alternating the
fluid and the structure computations once per time step. This approach is called weak coupling
or loosely-coupled approach. Two examples of loosely-coupled algorithms are illustrated in Figure
4.5.

1

Structure

Fluid

un un+1

ũn ũn+1

fn+1
a

W n W n+12

3

4

(a) Conventional serial weak coupling procedure

1

un un+1

ũn+1/2

f
n+1/2
a

W n−1/2 W n+1/2

4
Structure

Fluid
2

3

(b) Non-collocated weak coupling procedure with offset of half-a-time-step

Figure 4.5: Examples of weak coupling algorithms. The serial weak coupling (a) and the non-
collocated weak coupling (b) procedures.

The fluid solver receives a prediction ũ of the structural displacement, computes the new conser-
vative variables W and returns the actualized aerodynamic forces fa to the structural solver. A
relaxation for the aerodynamic forces is sometimes suggested in the literature. Several choices for
the prediction ũ are available in the literature. In [53], the author demonstrates that with proper
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integration schemes and expressions for the prediction, the loosely-coupled algorithms can satisfy
second-order temporal accuracy without additional sub-iterations. Examples of weak coupling
algorithms are for instance found in [55, 82] and in [51, 53, 147] with applications to aeroelastic
configurations in the latters. A FSI application with large structural displacements is tackled in
[184]. The weak coupling schemes presented in Figure 4.5 result in a temporal shift between the
two solvers [147]. The fluid-structure interface conditions in velocity, displacement and stresses
do not match exactly between the two solvers at each time step of the coupling. The convergence
of the total fluid-structure problem is not guaranteed, which may lead to a loss of stability, of
accuracy and the numerical solution to diverge from the physical solution. Besides, the temporal
shift between the solvers can result in a purely numeric addition of energy to the system since the
work exchanged between the two solvers is not perfectly balanced [147], which leads to added-mass
instabilities [24, 59].

Parallel partitioned algorithms are also proposed in the literature. Figure 4.6 illustrates a simple
parallel coupling algorithm. The fluid and structural solvers do not wait for their counterpart to
actualize their variables according to the information they just provided, both solvers run at the
same time. The two solvers only communicate with one another at given time intervals. Such
coupling methods reduce significantly the computational time at the expense of a slight loss of
accuracy. Variants of the parallel coupling shown in Figure 4.6 are for instance described in [51, 55],
including sub-cycling to improve the accuracy.

un un+1

ũnfna ũn+1fn+1
a

W n W n+1

Structure

Fluid
2

2

1

Figure 4.6: Example of parallel coupling between the fluid and structural solvers.

To satisfy the conditions at the fluid-structure interface and control the convergence of the
global fluid-structure problem, an implicit partitioned coupling (also called strong coupling) is
common. The approach consists of adding coupling sub-iterations within the same time step. Fig-
ure 4.7 illustrates the principle of a strong coupling with coupling sub-iterations before computing
the next time step.
It is convenient for those sub-iterations to be fixed-point iterations between the solvers such as in
[5, 13, 41, 121]. Nevertheless, other methods are possible such as a Gauss-Seidel procedure [96] or,
as described in [5], the use of Robin-Neumann conditions with semi-implicit or implicit coupling.
Another possibility is Newton-Raphson iterations on the global fluid-structure problem [56] where
each physics is also converged independently before the Newton correction. It is less common
since the cross jacobian operators are either not available or approximated by finite differences or
simplified expressions. The paper ([56]) provides a strategy to better evaluate those operators. The
main advantages of the implicit partitioned coupling with sub-iterations are that the convergence
is controlled and that it is not prone to added-mass instabilities. Nevertheless, in some cases the
number of sub-iterations necessary to satisfy a given convergence criterion might be particularly
large [77], increasing the computational cost of the method. In chapter 5, a strong coupling is
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Coupling sub-iterations

Figure 4.7: Strong parallel coupling between the fluid and structural solvers.

considered with fixed-point sub-iterations between the fluid and structure solvers in a single time
step. The different steps of such a partitioned coupling are summarized in flowchart 4.8.
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Figure 4.8: The different steps of the partitioned coupling method used in this work.
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It is worth mentioning that for both the monolithic and the partitioned approaches, the trans-
mission of the information between the fluid and structural equations is not straightforward since
the meshes are different in general. The transfers of loads from the fluid to the structure and of
displacements from the structure to the fluid require interpolation techniques between the meshes
[13, 33, 52]. Examples of transfer methods are presented in the next section.

4.4 Transfer of the loads and displacements from one mesh to the
other

It is common in fluid-structure applications that the meshes for the structure and for the fluid do
not match. For instance, one can consider an unstructured tetrahedral mesh for the structure and
a structured mesh for the fluid solver. Besides, the local refinements for the structural FE solver
and for the Finite Volume fluid solver are different. Thus, the fluid and structural meshes are not
coinciding at the interface. The structural displacements at the interface with the fluid should be
translated in the fluid mesh boundary. Conversely, the loads of the fluid on the structure’s skin
have to be transferred to the nodes of the FE structural mesh.

4.4.1 Transfer of the structural displacement of the structural mesh to the
aerodynamic mesh

When the fluid and structural meshes do not match at the fluid-structure interface, it is necessary
to translate the structural displacements to the fluid mesh to update the boundary condition. To
this end, an interpolation via Radial Basis Functions is suitable [10, 14, 169, 206]. We consider N
points xs,i = (xs,i, ys,i, zs,i)

T in space corresponding to initial position of the structural nodes on
the interface and x̂s,i = (x̂s,i, ŷs,i, ẑs,i)

T the known displacements at those nodes. Considering a
point x = (x, y, z)T on the fluid boundary, the idea is to interpolate the displacement, for a given
direction of space (x, y or z), with a function f(x) defined as follows:





f(x) =

N∑

i=1

ciϕ(||x− xs,i||) + p(x),

f(xs,i) = di ∀i ∈ [1, N ],

(4.23)

where di is x̂s,i, ŷs,i or ẑs,i according to the direction of space considered, ||x−xs,i|| is the distance
between the point x and the point xs,i, ϕ is a radial basis function and p(x) is a polynomial.
To guarantee the uniqueness of the solution, a constraint on the coefficients ci is added. For all
polynomial pj of degree inferior or equal to the degree of the polynomial p, the coefficients ci must
satisfy the relation:

N∑

i=1

cipj(x) = 0. (4.24)

Several kernel functions are available for ϕ, the most common are presented in Table 4.1 where r

represents the distance.
There are conditions on the degree of the polynomial depending on the positiveness conditions of
the kernel function and the uniqueness of the solution. For conditionally positive RBF of second
order such as the Thin Plate Spline, the polynomial p has to be linear:

p(x) = α0 + α1x+ α2y + α3z. (4.25)
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Name Kernel function

Volume Spline f(r) = r

Thin Plate Spline f(r) = r2 log(r)

Gaussian f(r) = exp(−r2)
Inverse multiquadrics f(r) =

1

1 + r2

Wendland f(r) =

{
(1− r)4(4r + 1), 0 ≤ r ≤ 1

0 else

Table 4.1: Common radial basis functions.

So far, no direction of space was specified in the description of the method but the coefficients
should be computed along the x, y and z directions. In practice, there are different coefficients
cx = (cxi )i∈[1,N ], cy = (cyi )i∈[1,N ], cz = (czi )i∈[1,N ] and αx = (αx

i )i∈[1,N ], αy = (αy
i )i∈[1,N ], αz =

(αz
i )i∈[1,N ] to compute in order to recover the total displacement in space. Considering the direction

x for instance, the system to solve to determine the coefficients cx and αx is the following:
[

0 P

P T A

][
αx

cx

]
=

[
0

dx

]
, (4.26)

where the coefficients of the matrix A = (Aij(i,j)∈[1,N ]2) are defined by Aij = ϕ(||xs,i−xs,j ||), the
vector dx in the second member is dx = (x̂s,1, · · · x̂s,N )T and the expression of the matrix P is the
following:

P =




1 1 · · · 1

xs,1 xs,2 · · · xs,N

ys,1 ys,2 · · · ys,N

zs,1 zs,2 · · · zs,N



. (4.27)

It is important to mention that the system (4.26) can only be solved if the control points x are not
all coplanar. Likewise, the coefficients (cy,αy) and (cz,αz) are obtained by solving the system
(4.26) in which dx is replaced respectively by dy = (ŷs,1, · · · ŷs,N )T and by dz = (ẑs,1, · · · ẑs,N )T .
Finally, the interpolated displacement x̂ = (x̂, ŷ, ẑ)T for any point x on the fluid mesh boundary
is obtained by:

x̂ =



x̂

ŷ

ẑ


 =




x+
N∑

i=1

cxi ϕ(||x− xs,i||) + αx
0 + αx

1 + αx
2 + αx

3

y +

N∑

i=1

cyi ϕ(||x− xs,i||) + αy
0 + αy

1 + αy
2 + αy

3

z +
N∑

i=1

cziϕ(||x− xs,i||) + αz
0 + αz

1 + αz
2 + αz

3




. (4.28)

Figure 4.9 illustrates the interpolation of the structural displacement to the fluid mesh on an
arbitrary displacement. In the example, the structural mesh considered is the tetrahedral mesh
while the fluid mesh is built with quadrangle elements. The initial meshes are colored in gray and
the deformed meshes in green. The initial positions of the structural nodes are plotted in red (•)
and their position after displacement in blue (•). The movement imposed on the structural nodes is
arbitrary and voluntarily exaggerated. The interpolation of the displacement on the fluid mesh is
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performed with Thin Plate Spline RBF functions. This didactic test case shows the ability of RBF
methods to interpolate smoothly the fluid mesh displacement from a given structural displacement.

Structural nodes initial position
Structural nodes deformed position

Structural mesh

Deformed mesh
Initial mesh

Fluid mesh

Structural mesh deformation Fluid mesh interpolation with RBF

Figure 4.9: Example of interpolation of the structural displacement to the fluid mesh with RBF
functions (Thin Plate Spline kernel functions here).

4.4.2 Transfer of the fluid loads to the structure

To compute the response of the structure to the fluid loads on the interface, it is necessary to
translate those loads to the FE structural mesh as illustrated in Figure 4.10.

Aerodynamic forces in the center of the mesh cells

Mesh of the fluid Mesh of the structure

Forces transferred at the nodes of the structural mesh

Figure 4.10: Schematic representation of the load transfer between the fluid and the structural
meshes.

Several methods exist in the literature such as projections [115], interpolations or the use of
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spline functions [10, 186]. The most commonly used for aeroelastic computations are the Nearest-
Neighbor Interpolation, the Weighted Residual Method and the RBF interpolation [33, 34, 52].
A conservative transfer consists in preserving the energy over the interface [52], which implies a
mathematical relation between the operator transferring the structural displacement to the fluid
mesh and conversely the operator transferring the fluid loads to the structural mesh [34]. When
the transfer operators do not satisfy this mathematical relation but require constant forces and
displacements to be exactly interpolated across the interface, the approach is referred to as con-
sistent [34]. In the present work, the transfer method consists in equalizing the virtual works
between the fluid mesh grid GF and the structural grid GS. Writing N the number of nodes of
the structural grid, we choose a basis of admissible displacement fields {δui}i∈[1,N ] and write the
equality between the work of the fluid load fa and the loads on the structure fs for each of the
displacement fields {δui}i∈[1,N ]:

∀i ∈ [1, N ], δW GF
i = δW GS

i , (4.29)

with δW GF
i and δW GS

i the virtual works associated respectively to the loads on the fluid and
structural meshes. The virtual work is the sum of the scalar products between the loads and
the virtual displacements at every point of the meshes. The chosen basis of admissible functions
{δui}i∈[1,N ] consists of RBF functions defined on the structural grid. Each RBF function δui is
built on the structural grid with a unitary displacement at the node Pi of the structural grid and
null at the other nodes. Thus, the N functions {δui}i∈[1,N ] are built with the N nodes of the
structural grid thanks to the resolutions of a smoothing system (4.26). Eventually, the expression
of each function δui is the following:

δui =



δuxi

δuyi

δuzi


 =




N∑

j=1

cxi ϕ(||x− xs,i||) + αx
0 + αx

1x+ αx
2y + αx

3z

N∑

j=1

cyi ϕ(||x− xs,i||) + αy
0 + αy

1x+ αy
2y + αy

3z

N∑

j=1

cziϕ(||x− xs,i||) + αz
0 + αz

1x+ αz
2y + αz

3z




. (4.30)

Those functions are defined analytically. Therefore, the projection of the fluid loads on them is
possible at every point of the fluid mesh, leading to the system (4.29) for each function δui. The
resolution of those equations provides the interpolation of the loads from the fluid mesh to the
nodes of the structural mesh. Besides, it can be shown that this transfer method preserves the
total loads and torques.

4.5 Conclusion of the chapter

This chapter presented a brief theoretical background for fluid-structure interaction applications.
The equations relative to the fluid were introduced in the frame of a moving mesh via the ALE
formulation. Common mesh deformation techniques were subsequently introduced. Then, different
coupling procedures were briefly introduced, with a focus on the coupling scheme chosen in this
work which is a partitioned strong coupling with fixed-point sub-iterations. Since the fluid and
structural meshes do not coincide, transfer methods between the structural and fluid meshes were
finally described: the transfer of displacements on one side and of loads on the other. Some
theoretical aspects described in this chapter are applied in the following chapter to treat a 2D case
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of fluid-structure interaction, where the reduced order model developed in section 2.2 is considered
for the structural solver.



Chapter 5

Application to the fluid-structure
coupling on a two-dimensional example

The purpose of this chapter is to study the efficiency of the ICDual ROM in the frame of fluid-
structure interaction. Indeed, aerodynamic forces are complex, distributed and follower loads. The
test case of interest consists in placing the beam studied in section 2.3.2 in the wake of a fixed
cylinder. The vortex street behind the cylinder triggers the nonlinear vibrations of the beam.
First, the vortex street behind an isolated cylinder is analyzed, then the beam is placed behind the
cylinder and a partitioned coupling is performed. Finally, the behavior of the system in a range of
Reynolds numbers is investigated and a lock-in region is observed both with the full order and the
reduced order model. The results of this chapter are published in the following journal paper [58].
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5.1 Numerical setup

The boundary conditions of the test case are depicted in Figure 5.1. A no-slip adiabatic wall
condition is imposed to the fluid on the surface of the fixed cylinder and of the flexible beam. Non-
reflecting boundary conditions with a constant axial velocity are imposed at the inlet and outlet
borders. The upper and lower boundary conditions are chosen far enough from the structure in
order to avoid confinement effects that would impact the vortex shedding behind the cylinder. At
those walls, slip boundary conditions are imposed unlike in [194] where no-slip boundary conditions
are applied. With upper and lower slip boundary conditions, the case without the beam placed
behind the cylinder produces the classical von Kármán vortex street. This first case is considered in
section 5.2. The Strouhal number associated to this vortex shedding will be compared to Roshko’s
Strouhal number relation [165] to validate the representativeness of the test case.
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Figure 5.1: Computational domain and boundary condition of the fluid-structure interaction test
case.

The structured fluid mesh is illustrated in Figures 5.2 and 5.3. The mesh is refined around the
structure and in the near wake, then is progressively coarsened from the structure to the external
domain boundaries.

Figure 5.2: Mesh and dimensions of the fluid domain around the cylinder and the beam.

The Finite Volume CFD software elsA [19] (ONERA-Safran property) is considered to solve the
fluid dynamics. We chose this CFD solver to anticipate industrial aeroelastic applications. A
diatomic gas model is chosen, following the perfect gas equations. Its properties are detailed in
Table 5.1. The density of the fluid is deduced from the perfect gas equation:

ρ∞ =
p∞

Rspecific T∞
= 1.17 kg.m−3. (5.1)

The viscosity µ∞ is set to 0.4 Pa.s to have the targeted Reynolds number with a reasonable inlet
velocity (equivalent to Mach number 0.1) and a given diameter D:

Re =
ρ∞U∞D

µ∞
= 200. (5.2)
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Figure 5.3: Focus of the mesh in the close vicinity of the cylinder and the beam. The beam
thickness is discretized with 3 Finite Volumes cells.

Physical quantity Value

T∞ 300 K
p∞ 101,325 Pa
γ 1.4

Rspecific 287.053 J.kg−1.K−1

cv = 5
2Rspecific 717 J.kg−1.K−1

Table 5.1: Fluid properties for the flow around the cylinder.

The convective fluxes are approximated by the AUSM+ (P) MiLES scheme [113, 120] to benefit
from its low dissipation property and its ability to model low-Mach boundary layer flows. The
time step for unsteady simulations is dt = 4.11 × 10−3 s. The time integration for the fluid is
performed with the multi-step Gear method [61, 62].

5.2 Von Kármán vortices in the wake of the cylinder without beam

In this section, we consider only the fixed cylinder, without the beam. This test case is a common
application in fluid dynamics. The idea is to check that the CFD solver accurately captures the
fluid dynamics at the Reynolds number considered. As illustrated by figure 5.4 a typical von
Kármán vortex street develops in the wake of the cylinder. The dimensionless Strouhal number
St defined below characterizes the flow periodicity based on the vortex shedding frequency Fs, the
characteristic length (diameter cylinder D) and the inflow velocity U∞ as :

St =
FsD

U∞
. (5.3)

For the flow around the cylinder, the Strouhal number can be evaluated by the relation St = 0.212−
2.7/Re proposed by Roshko [165] based on experimental data in the range 200 ≤ Re ≤ 2, 000.
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Figure 5.4: Von Kármán vortices in the wake of the fixed cylinder. Visualization of the vorticity
magnitude.

Figures 5.5a and 5.5b represent respectively the drag and lift forces that the cylinder undergoes.
The periodic oscillations of the vortex emissions can be observed in those figures. For each oscilla-
tion of the lift force Fy, two counter-rotating vortices are shed. Thus, the oscillation frequency of
the drag force Fx is twice the oscillation frequency of Fy. With the shedding frequency Fs = 3.42 Hz
evaluated from the lift force, the Strouhal number obtained with the present simulation is St =
0.197 which is very close to the value St = 0.212− 2.7/Re = 0.198 provided by Roshko’s relation
for Re = 200. This validates the numerical fluid model which is then extended in the next section
to a fluid-structure interaction case.

(a) Drag force Fx (b) Lift force Fy

Figure 5.5: Aerodynamic drag (a) and lift (b) forces on the cylinder resulting from the vortex
shedding in the wake.
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5.3 Fluid-structure interaction between a flexible beam and the
wake of the cylinder

The flexible beam studied in section 2.3.2 is now placed in the wake of the fixed cylinder. The
movement of a flexible beam triggered by the vortices has already been studied in [188, 194]
on a similar test case. A first approach presented in Appendix A consisted in a monolithic FE
computation of the test case considered with an incompressible fluid and a 2D Saint Venant-
Kirchhoff formulation for the structure. In the present chapter, the idea is to compute the same
fluid-structure interaction application with a partitioned approach, a compressible formulation for
the fluid equation and the beam model studied in section 2.3 for the structure. The structural
full order model is replaced by the ROM developed previously in order to facilitate the coupling
while including a nonlinear effect in the structure. Partitioned approaches are often preferred to
monolithic ones to tackle large industrial applications. Indeed, there are dedicated solvers for each
physics, which would be difficult to manage in a single monolithic algorithm, the latter requiring
tremendous memory resources.

Start

Time increment
t ← t+ ∆t

i = 0

Coupling iterations, F/S equilibrium
i ← i+ 1

i−1q(t), i−1q̇(t)

Fluid solver

if̃
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Reduced structure solver
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q(t) = iq(t)

q̇(t) = iq̇(t)

f̃
(t)

a = if̃
(t)

a

End

Figure 5.6: Partitioned coupling procedure between the fluid solver and the nonlinear reduced
structural solver. The projection of the aerodynamics forces in the reduced basis is denoted here
by f̃a = VT fa.

The displacements on the beam’s wet surface are interpolated from the displacements and rotations
of the neutral axis. The axial discretization of the beam is the same as the axial local fluid mesh
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at the skin of the beam. As a result, no specific load transfer method is needed to propagate the
aerodynamic forces from the fluid mesh to the structural one. The first linear mode eigenfrequency
is equal to 3.37 Hz which is very close to the frequency of the vortex shedding (3.42Hz). No struc-
tural damping was introduced in order to reach high amplitudes of deformation. The partitioned
coupling procedure between the fluid solver and the structural nonlinear ROM is summarized in
the flowchart Figure 5.6. The CFD computation and the mesh deformation are computed by the
aeroelastic module of elsA [64]. Developments were made around the code to replace the initial
linear ROM by a structural solver to enable the computation of the beam FOM model and the
nonlinear ROM.

The time integration of the structural solver is performed with the HHT-α method (αHHT =

0.01), including Newton-Raphson iterations during each time step. The HHT-α method which
belongs to the one-step Newmark’s family of time integration methods is more robust to tackle this
coupled problem. Indeed, the approximation of the acceleration in the basic Newmark method may
induce perturbations that can destabilize the coupling. This problem has been encountered here
(as in [35]) and can be avoided with the HHT-α method. The precision of such methods remains of
second-order accuracy (for linear cases) but a light numerical damping [157] is introduced, which
stabilizes the coupling. Compared to the previous case without the beam (Figure 5.4), the shed
vortices strongly interact with the flexible beam and the wake is significantly modified. This
interaction produces a complex unsteady aerodynamic forcing that generates beam’s vibration
with a significant level of amplitude. The maximum level of amplitude is indeed about of the order
of magnitude of the cylinder radius. Figure 5.7 illustrates the unsteady flow during one period in
the periodic regime.

t

t+ T/2

t+ T/4

t+ 3T/4

Figure 5.7: Vorticity magnitude field over one period in the periodic regime of the fluid-structure
interaction between the vortices in the wake of the cylinder and the flexible beam.
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After a quite long transient, the axial and vertical forces on the beam’s wet surface reach a periodic
regime whose envelope is visible on Figure 5.8. Figure 5.9 illustrates the evolution with time of
the vertical and axial displacements at the tip of the beam. The same behavior as for the forces
is observed: the displacements converge to a periodic state after a long transient. The maximal
vertical displacement reached is about ten times the beam’s thickness, i.e. almost the value of the
cylinder radius. The maximal axial shortening of the beam is about 1.2 times the beam’s thickness:
the nonlinearity is therefore significant in this case and has to be properly taken into account in
the resolution of the structural dynamics.
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Figure 5.8: Time evolution of the aerodynamic forces integrated on the surface of the beam. Drag
force Fx (a) and lift force Fy (b).

To satisfy the fluid-structure equilibrium at a given time step before moving to the next one,
fixed-point iterations are carried out between the fluid solver and the structural solver. Figures
5.10a and 5.10b represent respectively the evolution of the generalized coordinate of the first mode
(resp. the aerodynamic forces projected on the first mode) during the periodic regime. Five fixed-
point iterations are performed before moving to the next time step. The generalized coordinate is
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Figure 5.9: Evolution of the vertical (a) and axial (b) temporal displacements of the tip of the
beam.

converged after only one iteration, while five iterations are however needed for the aerodynamic
forces to be stabilized.
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Figure 5.10: Convergence of the generalized coordinate (a) and the aerodynamic force (b) associ-
ated to the first mode, during the fixed-point equilibrium loop.

The reference solution obtained with the FOM and presented in Figure 5.9 is now compared
in Figure 5.11 to the linear solution and to the solution evaluated with the ICDual model for
the structure. The ICDual model is the one investigated in section 2.3.2 and includes the first
three linear normal modes and the five dual modes determined previously to enrich the projection
basis. As already reported in section 2.3.2 with the purely structural test cases, the linear solution
introduces a spurious phase shift and the axial shortening is not captured at all. For the time
interval shown on Figure 5.11a, the linear response is in advance of two periods with respect
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to the nonlinear solution: this is illustrated by the horizontal arrow joining the peak values of
the linear solution and the corresponding nonlinear solution. On the contrary, the reduced order
model captures precisely (though not perfectly) both the vertical and axial displacements during
the transient and the periodic regimes.

(a) Vertical displacement
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(b) Horizontal displacement

Figure 5.11: Vertical (a) and axial (b) displacements of the tip of the beam during the aeroelastic
coupling in the periodic regime. Comparison between the linear and nonlinear FE solutions and
the one obtained with the ICDual ROM.



5.3. FSI between a flexible beam and the wake of the cylinder 119

Finally, the coupled behavior of the beam is investigated over a range of Reynolds number
around Re = 200. Indeed, when both the vortex shedding frequency Fs (corresponding to a given
Re with Roshko’s relation) and the first eigenmode frequency f0 of the beam are close, a lock-in
phenomenon arises and both frequencies match : Fs = f0 for a certain range of Reynolds number.
However, when the Reynold number is sufficiently modified, the vortex shedding frequency deviates
progressively from the first eigenmode frequency of the beam and the frequencies are no longer
locked.

Figures 5.12 and 5.13 represent respectively the frequency of vibration of the beam and its
vertical amplitude of vibration at the tip as a function of the Reynolds number, evaluated from
the coupled aeroelastic solutions computed with linear or non-linear beam formulations. When
the frequency of the vortex shedding is far from the eigenmode frequency f0, the amplitudes
of vibration are so small that their frequency is imposed by the fluid flow. However, when the
frequency of the vortex shedding is close to f0, the vibration of the structure and the vortex
shedding both respond at a unique frequency for a range of Reynolds numbers. Besides, the range
of Reynolds numbers of the plateau slightly differs between the linear and nonlinear cases. It is
important to note that the ICDual ROM performs very well in the context of this challenging
coupled FSI problem: the lock-in region predicted by the full order model is perfectly captured by
the coupled solution computed with the ICDual ROM, both in terms of frequency and amplitude
of vibration.
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Figure 5.12: Evolution of the frequency of response of the beam with the Reynolds number of the
fluid.

Below and after the range of frequencies characterized by the lock-in phenomenon, the beam
responds both at the frequency imposed by the fluid flow and to a lesser extent at the eigenmode
frequency f0. It leads to a beating interference pattern visible in Figures 5.14a and 5.14c rep-
resenting the evolution of the beam tip vertical displacement at Reynolds numbers 180 and 220
respectively. The Fast Fourier Transforms (FFT) of the previous displacements are also illustrated
in Figures 5.14a and 5.14c, where both frequencies are distinctly noticeable. On the contrary, in
the lock-in region, the unsteady response locks on a single frequency, as shown in Figures 5.14b.
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Figure 5.13: Evolution of the amplitude of vertical displacement at the tip of the beam with the
Reynolds number of the fluid.

5.4 Conclusion of the chapter

In this chapter, the 2D fluid-structure interaction test case of a flexible beam in the wake of a
fixed cylinder is considered. A partitioned coupling has been implemented between the fluid solver
elsA and the von Kármán beam model studied in section 2.3. First, a CFD computation of the
cylinder alone was performed, then the flexible beam is added in the vortex street of the cylinder.
This last test case demonstrates the potential of coupling a structural ROM based on an original
formulation with dual modes for aeroelastic problems. The ICDual ROM matches very accurately
the FOM solutions and is easily coupled in the framework of a partitioned approach since the
reduced order model is independent of any FE solver. The influence of the structural nonlinearity
has finally been highlighted in terms of lock-in frequency and the ROM is able to capture this
effect very precisely. In this test case, the comparison with the FOM solution was possible because
it is a beam model. However, the high-fidelity resolution of a coupled problem is not possible for
3D structures with a large number of degrees of freedom, which justifies the use of the nonlinear
ROM. In the next chapter, the precision of the ICDual ROM is investigated on a more complex
geometry which is a 3D turbomachine blade.
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(c) Reynolds numbers 220: time response (left) and FFT (right)

Figure 5.14: Temporal evolution and Fast Fourier Transforms of the beam tip vertical displace-
ments in the fluid flow at Reynolds numbers 180, 200 and 220.





Chapter 6

Application to an industrial test case of
a turbomachine blade

In this chapter, we consider the complex 3D structure of a fan blade representative of an UHBR
turbofan. While the test cases studied in the precedent chapters were symmetric, the geometry of
the blade considered in this chapter is more complex leading to geometric nonlinearities involving
membrane stretching, bending and torsion together. The objective is to investigate the accuracy
of the structural reduced order model for such structures with representative aerodynamic loads.
First, the fan configuration is presented. Then the ICDual ROM is built for a selected operating
point and tested for a given static load. Subsequently, a CFD computation on the entire fan is
performed. Finally, the periodic components of the unsteady aerodynamic loads are determined
and the load distribution is applied to the structure to compare the accuracy of the different
models. Some results of this chapter are published in the following journal paper [57]. More
results and details are provided in this manuscript.
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6.1 Presentation of the fan configuration

In this chapter, a fan configuration from an UHBR turbofan is considered. Such jet engine configu-
ration aims to increase the bypass ratio compared to current engines. It is a shrouded configuration
with blades of large dimensions. In the present work, the structure of interest is not the entire
wheel but a single fan blade (all blades being the same). Figure 6.1 illustrates the full engine
configuration (a) and the fan blade of interest (b).
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(a) (b)

Figure 6.1: Visualization of the full engine model and the fan blades.

The original blade structural model has been adapted to enable a dynamic analysis restricted to
a single fan blade. For that purpose, the blade root was removed and replaced by a clamped
boundary condition. The Young’s modulus is equal to 110 GPa, the density 4,500 kg.m−3 and the
Poisson’s ratio is equal to 0.318. The blade is discretized in 66,640 HEX8 finite elements, with 6
elements in the blade thickness. The structural mesh of the blade is shown in Figure 6.2 from two
different angles of view.

Figure 6.2: Mesh of the blade.

The structure is in rotation around the fixed axis x. Therefore, centrifugal effects are present and
the dynamics of the structure is studied around the prestressed position shown in Figure 6.4. The
linear normal modes shapes of the structure and their associated modal frequencies are modified
by the rotation speed since they are computed relative to the prestressed position. Figure 6.3 is a
Campbell diagram showing the evolution of the frequencies of the first three linear normal modes
with the rotation speed. The black dotted lines represent the engine orders.
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Figure 6.3: Campbell diagram of the blade structure for the first three structural modes.

The first linear normal modes are respectively the first bending mode (named 1F), the second
bending mode (2F) and the first torsion mode (1T). It is noticed on the Campbell diagram, that
at 2,750 rpm, the modes 2F and 1T are close to multiples of the rotation speed. Resonance can
therefore be observed at this rotating speed for those modes, which should be avoided. In what
follows, the rotating speed considered is 2,750 rpm in order to study the structural behavior under
large displacements. The prestressed position of the blade is shown in Figure 6.4. Due to the
centrifugal force, an untwisting of the blade is observed in the present case.

Figure 6.4: Prestressed position (in red) of the blade in rotation at 2,750 rpm. The initial geometry
is represented in gray.

In the following section, the reduced order model for the structure is built around the centrifugally
prestressed position shown in Figure 6.4.
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6.2 Construction of the reduced order model

The linear normal modes considered in the ROM are the first three modes computed around the
prestressed position at the rotation speed of 2,750 rpm. Those linear normal modes are respectively
the first bending (1F), the second bending (2F) and the first torsion (1T) modes, illustrated in
Figure 6.5.

Figure 6.5: First three linear normal modes (1F, 2F and 1T) of the blade at 2,750 rpm.

The dual modes selection process is applied to the blade around the centrifugally prestressed
position. The singular values and linearized strain energies are shown in Figure 6.6. As we can
observe, there is no clear drop in the singular values due to the strong nonlinearity of the twisted
geometry of the blade.
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Figure 6.6: Normalized singular values and linearized strain energies of the SVD modes of the
blade in rotation at 2,750 rpm.

Figure 6.7 illustrates the first four dual modes candidates corresponding to the four largest singular
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values and contributors to the linearized strain energy. Their shape is interesting since we recognize
bending and torsion but mostly displacements that can be compared to "membrane" contributions.
In fact, the dual modes shapes highlight the nonlinear displacement at the points where the blade
undergoes a significant stretching due to geometric nonlinearities such as the tip leading and
trailing edges. Such displacements are indeed absent from the linear normal modes. For the range
of displacement of the applications considered, a first consideration with only one dual mode gives
particularly accurate results. The reduction basis is thus enhanced with one additional dual mode,
the first one. Its shape is illustrated in Figure 6.7a.

(a) First dual mode (b) Second dual mode

(c) Third dual mode (d) Fourth dual mode

Figure 6.7: First four dual modes of the blade, determined from the three first linear normal modes
around the prestressed position at 2,750 rpm.

The reduction basis consists thus of four modes: the first three linear normal modes and one
additional dual mode. The nonlinear force coefficients are then identified from the imposed loads
according to the ICDual process. In what follows, the efficiency of such a ROM is first tested with
a given static load, then a periodic load based on the distribution of aerodynamic forces.
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6.3 Nonlinear response under a static load

In this section, a static load is applied to the structure. The load is based on the shape of the first
linear normal mode at Ω = 2,750 rpm as follows:

f ext = −15hK(Ω)
ϕϕϕΩ
1

max|ϕϕϕΩ
1 |
, (6.1)

with h the average thickness of the blade tip. For such a load shape, the maximal amplitude of
the linear solution is 15 times the thickness of the blade tip. Figure 6.8a represents the solution
obtained under the static load of Equation (6.1) and Figure 6.8b under its opposite.

(a) (b)

Figure 6.8: Comparison between the FOM and the ROM solutions under the static load (6.1) (a)
and under its opposite (b).

The geometrical nonlinearity is significant for such amplitudes. The nonlinear ICDual solution
matches perfectly with the FOM solution but the ICE solution presents a slight deviation at the
tip, while the linear ROM solution overestimates the static displacement. In this test case, the
external load applied to the structure is arbitrary. To evaluate the efficiency of the ROM on a
representative load case, the unsteady aerodynamic loads of the engine are computed.

6.4 Determination of the aerodynamic forces

In this section, a CFD computation of the full 360◦ fan-OGV-nacelle configuration is performed.
First a steady RANS computation, then an unsteady URANS computation starting from the steady
solution. The aerodynamic grid consists of roughly 16 million cells. The CFD solver is the finite
volume elsA solver (ONERA-Safran property) [19]. Figure 6.1 at the beginning of the chapter
illustrates the engine configuration with the nacelle, the fan and OGV blades. Only the secondary
flow is computed, the primary flow that crosses the combustion chamber is not computed but
imposed as a boundary condition.

6.4.1 Steady aerodynamic forces

The steady aerodynamic computation is performed at Mach 0.8, for a zero angle of attack of the
engine and for an altitude of 35,000 feet. The Roe [159] spatial scheme is considered, with the
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van Albada flux limiter [198]. The turbulence model is the Spalart-Allmaras model [180, 181].
Mixing plane boundary conditions are imposed at the fan/OGV interfaces [39, 81, 168]. Figure
6.9 represents the steady aerodynamic pressure field in the fan and OGV. Some streamlines are
also represented to visualize the flow direction in the absolute frame. In the view, the fan blades
are moving from bottom to top and the OGV blades are static to redirect the flow.

Figure 6.9: Steady aerodynamic pressure field in the fan and OGV at Mach 0.8.

The CFD computation is performed in parallel on 96 processors and 10,000 iterations are needed
until a satisfactory convergence is reached (see Figure 6.10).
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Figure 6.10: Evolution of the residual of the conservative variables. The results are normalized by
the respective initial values.
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The distribution of the resulting aerodynamic forces on the fan blade considered is represented in
Figure 6.11 with different scales for the visualization.
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Figure 6.11: Steady aerodynamic forces on the suction side (top) and the pressure side (bottom)
of the blade.

Figure 6.12 shows the steady pressure field on the suction and pressure sides of the blade. A
pressure decrease is observed on the suction side after the leading edge, while the pressure increases
on the pressure side with a maximum near the trailing edge. The evolution of the pressure around
the blade at about two-thirds of the span is plotted in Figure 6.13 to highlight the pressure gradients
along the profile.
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(a) Suction side (b) Pressure side

Figure 6.12: Steady pressure on the suction (a) and pressure (b) sides.
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Figure 6.13: Evolution of the pressure along the suction and pressure sides at 2/3 of the blade
span.
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6.4.2 Unsteady aerodynamic forces

The nacelle inlet presents a dissymmetry. Figure 6.14 is a side view of the nacelle, where the
offset between the top and bottom edges is clearly visible. As a result, the inlet flow is subject
to a distortion pattern. Figure 6.15 illustrates this distortion pattern by representing the vertical
deviation angle in the inlet. During each rotation, a fan blade travels through the distortion
pattern and is thus subject to a periodic forcing.

Figure 6.14: Visualization of the dissymetry in the nacelle.

Figure 6.15: Front view of the vertical deviation angle atan2(vz/vx) of the velocity in the inlet.
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The mixing plane boundary conditions of the steady computation are replaced by sliding mesh
conditions. The time discretization consists in 360 time steps for a full rotation of the fan wheel
and the time integration is performed with the dual time-stepping method [12, 92]. The temporal
evolution of the aerodynamic forces integrated on the blade is represented in Figure 6.16, where
the levels of amplitude due to the forced response are significant.
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Figure 6.16: Unsteady aerodynamic forces integrated on the entire blade.
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Figures 6.17 represent the Fast-Fourier Transform of the integrated forces on the blade in the
y direction. The FFT is computed subtracting the mean value of the signal which corresponds to
the steady-state solution. The y direction is the direction in which the blade responds the most to
the forcing imposed by the inlet distortion. As expected, a peak is observed at the rotation speed
as well as a smaller contribution of the harmonics.
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Figure 6.17: Fast-Fourier Transform in linear (a) and logarithmic (b) scales of the integrated forces
on the blade in the y direction. fΩ represents the frequency of rotation of the fan.

The periodic forcing applies at every point of the blade. Figure 6.18 shows the time evolution of
the pressure at two different points of the blade.
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Figure 6.18: Time evolution of the pressure at local points on the suction side.

At every point of the blade surface, we compute the Fourier decomposition of the aerodynamic
forces to obtain the amplitudes of the harmonics of the signal. The constant terms correspond
to the steady solution shown in Figure 6.11. Only the components of the first harmonics are
kept since the amplitudes along the other harmonics are negligible. The amplitudes of the sine
F s
x , F

s
y , F

s
z and cosine F c
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c
z components of the first harmonics of the unsteady aerodynamic
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forces are shown on the suction and pressure sides respectively in Figures 6.19 and 6.20.
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Figure 6.19: Amplitudes of the sine and cosine components of the first harmonics of the unsteady
aerodynamic forces on the suction side.
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Figure 6.20: Amplitudes of the sine and cosine components of the first harmonics of the unsteady
aerodynamic forces on the pressure side.
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6.5 Nonlinear response of the structure

The purpose of this section is to compare the FOM solution to the linear and nonlinear reduced
solutions under a dynamic load. The Fourier coefficients in the decomposition of the unsteady
aerodynamic loads are transferred from the aerodynamic mesh to the neighbouring nodes of the
structural mesh. The transfer method is the energy method based on the conservation of the
virtual work described in section 4.4.2 to satisfy the equality between the virtual work of the
aerodynamic loads and the transferred loads imposed on the structure. Such a load distribution of
the fluctuating components is applied to the structure at the frequency of the forcing phenomenon
(i.e. the rotation speed) and with the desired amplitude. A Rayleigh damping is also added to
the system: C = 2ξω2,750

0 M with ξ = 0.05. Figure 6.21 represents the time evolution of the tip
leading edge of the blade along the Y direction and Figure 6.22 shows the maximal positive and
negative displacements in the periodic regime for the different models.
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Figure 6.21: Time response of the tip leading edge along the Y direction.

As expected, the levels of vibration of the nonlinear models are much lower than the linear one.
There is a significant difference between the ICE and ICDual ROMs, the latter resulting in lower
levels of vibrations that are closer to those obtained with the FOM computation. The computations
of the FOM dynamic solution take about 10 hours using parallel computing and a significant
memory with the solver Code_Aster, while the resolution with the ROMs takes less than 10
seconds on a single processor. The ICDual ROM built on the centrifugally prestressed position
captures accurately the geometrically nonlinear vibrations of the blade.
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Figure 6.22: Maximal positive (a) and negative (b) displacements in periodic regime of the different
models.

6.6 Conclusion of the chapter

In this chapter, the reduction method ICDual is applied to a complex 3D geometry of a turboma-
chine blade, prestressed due to the centrifugal rotation. An arbitrary static load is first applied,
then a dynamic load based on unsteady aerodynamic loads. The shape of the aerodynamic loads
was obtained from a CFD computation of the full 360◦ fan-OGV-nacelle configuration of the UHBR
engine. Both for the static and the dynamic load cases, the ICDual ROM captured accurately the
nonlinear displacements of the blade. The precision of the ROM opens the perspective of a strong
coupling in the future, in particular for open rotor and stator engine configurations with blades of
large diameters.



Conclusion and perspectives

The aim of this thesis work was to develop a methodology for the construction of a reduced
order model for geometrically nonlinear structures. In addition, this reduced model should enable
simple coupling with an external fluid solver to perform fluid-structure computation in order to
study aeroelastic applications. We present here the general conclusions of the work carried out in
this manuscript, followed by perspectives and a critical look at the work.

Conclusion

In this work we first focused on the formalism of the equations governing the vibration of geometric
non-linear structures in rotation, along with temporal and frequency methods of resolution. We
then conducted a literature review of reduced order models adapted to geometric nonlinearities. In
view of the constraints in terms of coupling, the non-intrusive approach and the reduced number of
modes desired in the reduction base, the use of dual modes was considered a relevant candidate. We
thus developed a methodology for the construction of the reduced order model based on dual modes
and including an innovative way of calculating the coefficients of projected non-linear forces via the
application of imposed loads. The advantage is that the imposed loads used to determine the dual
modes are reused to calculate the above-mentioned coefficients, thus limiting the number of static
calculations required. In addition, the application of loads bypasses a problem encountered with
3D structure for the identification of the coefficients by imposed displacements, which produces
numerical artefacts in the resolution due to imposed volume deformations.

A first application was carried out on a von Kármán beam, demonstrating the ability of such
a reduced order model to accurately capture the nonlinear dynamic behavior under various loads:
punctual, distributed and follower. Both the non-rotating case and the case of the beam in rotation
around a fixed axis were tackled. This is followed by an application to the 3D finite element case
on the same geometry, where the non-intrusive approach to an external finite element solver makes
sense.

The second area of study concerned the fluid-structure coupling based on the ALE formulation
along with the issues of mesh deformation and transfer of forces and displacements between non-
coincident meshes. The aim being to be able to handle industrial configurations, we chose a
partitioned coupling between two separate solvers: one for the fluid and another for the structure.
As the scope of this thesis is restricted to model order reduction for the structure only, it is
necessary to be able to simply connect ours to any external fluid solver to perform partitioned
coupling. A fluid-structure interaction application is performed between the von Kármán beam
previously studied and the vortex wake behind a fixed cylinder to which the beam is attached.
The results obtained with the reduced model accurately reflect the solutions of the full model and
the lock-in phenomenon is very well captured, both in terms of frequency range and amplitude of
vibrations observed.

The last study of this work concerns the application to the case of a turbomachine fan blade.
This case is complex in terms of number of degrees of freedom and of geometry. We built the
reduced order model around an operating point and conducted a first study of the accuracy of
the reduced order model on arbitrary static loading cases. Given the good agreement with the
high-fidelity solution, we then turned our attention to unsteady aerodynamic loads. To this end,
we performed an unsteady CFD calculation on the complete 360° configuration of the engine and
recovered the forces acting on the blade. The forces were characterized by a periodic forcing at
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the engine rotation frequency resulting from nacelle asymmetry. We identified the distribution of
the harmonic components of the forces acting on the blade and built an unsteady force on which
we based our comparison between the reduced model and the high-fidelity solution. Even though
the case studied is complex, the reduced order model accurately retrieves the full order solution.

Discussion and perspectives

The dual modes approach is interesting because it is non-intrusive and independent of a given
loading case. It means that the modes obtained can be used for different loading cases. In
addition, the singular value decomposition allows control of the desired accuracy regarding the
residual of the imposed loading cases. However, it has been observed in some cases that there may
be no clear drop in the singular values, which in some cases means that numerous dual modes
should be taken into account. For this reason, the additional criterion in terms of linearized strain
energy is relevant. It enables to dissociate the dual modes candidates that contribute the most to
the linear part of the system’s energy from those that contribute the least.

One of the aims of this thesis is to build a reduced model that is non-intrusive. Non-
intrusiveness is important because it enables the use of industrial finite element codes. These
codes are optimized and rich in complex elements, making them ideally suited to complex aero-
nautical structures. However, they do not allow intrusive access to the core of the code for reasons
of industrial secrecy. The non-intrusive character of the reduced model is therefore necessary.
However, it is also a very strong constraint when dealing with the determination of the projected
non-linear forces coefficients. A non-intrusive determination of the coefficients of the projected
non-linear forces is difficult, both with imposed displacements and with imposed forces. In the
first case, the coefficients can be determined one by one, but we have pointed out that imposing
displacements leads to erroneous volume deformations which pollute the identification of the coef-
ficients. This is not the case when imposed forces are used. Nevertheless, the identification of the
coefficients is no longer done separately in this case, but by solving an often ill-conditioned global
system. To limit this, we proposed the determination of quadratic and cubic coefficients separately
(when available), as well as a method of determination using the tangent stiffness matrix. In ad-
dition, precautions are taken and detailed in section 3.3 to improve the resolution of the system
computing the projected non-linear force coefficients. The non-intrusive approach therefore results
in a compromise between improved accuracy through the addition of more dual modes, and a
possibly less accurate determination of the coefficient in the presence of many modes. It would be
interesting to adopt a stochastic approach to assess the uncertainty in determining the coefficients.
Work on this subject can be found in the literature, for example in [20, 21, 146].

Regarding the structural reduced order model, an interesting prospect would be the construc-
tion of a parametric reduced order model as a function of the rotation velocity to deal with different
operating points. Work has already been done to interpolate the matrices in linear cases [105] and
for the prestressed displacement in [182]. A Gaussian parametric approach to projected nonlinear
coefficients is proposed in [139] for the ICE method, an extension to the reduced model built in
this thesis is conceivable. Regarding the parametrization as a function of rotation speed, it is
worth mentioning that an intrusive approach based on the parametrization of invariant manifolds
is presented in [117].

In the literature, mistuning is one of the problems associated with rotating structures and
aeroelasticity. This problem is not dealt with in this thesis and deserves special attention. Indeed,
applications to mistuning of geometric nonlinear reduced models can be found in the literature
[20, 146, 153]. It is conceivable to use the reduced order model presented in this work to study
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cases of mistuning, whether it is due to a manufacturing defect or intentional to avoid possible
instabilities.

It is true that for a large proportion of aeroelastic applications, the computational cost is
mainly driven by the resolution of the fluid rather than the structure. However, for industrial
applications involving complex structures, the computational cost of the structure becomes signif-
icant. Furthermore, the coupling with a complex fluid solver leads to takes a considerable amount
of time due to the coupling sub-iterations and the information transfer between the solvers. It
is worth mentioning that simplified fluid dynamics models are also available in the literature, for
instance the Theodorsen [185] or lifting line [152] theories. In these cases, it is not the fluid but
the structure that requires the most computational resources. The long-term perspective is to use
reduced order models both for the structure and the fluid to be efficient in both fields. While
the scope of this thesis was restricted solely to the construction of the former, there are reduction
methods in the literature for the fluid as well. In this work, a case of strong coupling was performed
on a 2D configuration of a flexible beam placed in the vortex wake of a fixed cylinder. An obvious
prospect is the study of a strong coupling case in the context of an industrial application. The
work presented in this manuscript thus opens the door to many perspectives and improvements.
The reduced order model developed in this thesis is not restricted to turbomachine applications.
Helicopter blades, aircraft propeller, wind turbines and VTOL aircrafts face the problematic of
geometric nonlinearities in rotating structures. Non-rotating structures can also be studied with
such reduced order model, for example the large aspect ratio wings of future aircrafts. A parti-
tioned coupling between the reduced order model and a fluid solver enables the study of nonlinear
aeroelastic phenomena with strong coupling algorithms and at reasonable costs. Such an approach
makes it possible to perform numerical simulations of aeroelastic phenomena encountered in aero-
nautics, for instance forced response, flutter, lock-in and limit cycles or gust response. One can
also think of aeroelastic phenomena specific to turbomachines such as rotating stall or surge.
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Appendix A

Monolithic coupling between the fluid
flow and a flexible beam

In this section, a monolithic approach of the fluid-structure interaction problem presented in
chapter 5 is considered. The fluid equation is the incompressible Navier-Stokes equation and
the structure follows the Saint Venant-Kirchhoff model. Both the fluid and the solid equations are
written in the Lagrangian form in the reference frame. The fluid-structure interface conditions are
imposed thanks to Lagrangian multipliers. The associated equations are developed in [145] and not
rewritten here for brevity and to avoid the introduction of numerous notations used in this appendix
only. As in [145], the equations are scaled with relevant quantities for non-dimensionalization. The
difference with the approach in section 5 are thus the monolithic approach, the incompressibility
hypothesis and the 2D FE approach for the structure.

The computation is performed with the FEniCSx Finite Element Python library and the sys-
tems are solved with PETSc. The time integration scheme considered is the second-order implicit
Backward Differentiation scheme (BDF2) [15, 61] and the associated system is solved with a GM-
RES solver with the usual jacobi preconditioner. It is worth mentioning that the jacobi precon-
ditioner is not particularly relevant for fluid-structure interaction problems due to the particular
shape of the system. More relevant preconditioners are for instance proposed in [89, 145]. The time
step is equal to 200 iterations per estimated period. The estimated period is based on the strouhal
number of the cylinder alone problem and the Roshko formula stipulating: St = 0.212− 2.7/Re.

Figure A.1: Unstructured mesh of the FSI problem with the beam and the cylinder.

The mesh is unstructured with 2D tetrahedral elements. The total mesh for both the fluid
and the structure consists in 66,141 cells and 33,343 points and is illustrated in Figure A.1. A
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zoom in the vicinity of the beam is shown in Figure A.2, in which the fluid-structure interface is
highlighted in red. The boundary conditions are the same as those in 5.1.

Figure A.2: Zoom of the unstructured mesh in the vicinity of the cylinder and the beam. The
fluid-structure interface is highlighted in red (-).

The mesh deformation technique is the solid deformation analogy with variable stiffness based on
the cell size. Figure A.3 illustrates the mesh deformation of the beam at a given time.

Figure A.3: Visualization of the mesh deformation around the beam.
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Figure A.4 shows the velocity field at a given time both in the reference and the deformed config-
urations. Figure A.5 displays the vorticity field in both configurations at the same time.

(a) Reference configuration

(b) Deformed configuration

Figure A.4: Velocity field of the monolithic cylinder-beam FSI application respectively in the
reference (a) and deformed (b) configurations.
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(a) Reference configuration

(b) Deformed configuration

Figure A.5: Vorticity field of the monolithic cylinder-beam FSI application respectively in the
reference (a) and deformed (b) configurations.
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The vertical and axial temporal displacements of the beam’s tip are plotted in Figure A.6. The
order of magnitude of the amplitudes of displacement are similar as in chapter 5 despite the main
differences in implementation that are the incompressibility of the fluid and the FE formulation
for the structure.

19500 19600 19700 19800 19900 20000
Time increments

10

5

0

5

10

Y 
/ h

(a)

19500 19600 19700 19800 19900 20000
Time increments

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

X 
/ h

(b)

Figure A.6: Vertical (a) and axial (b) displacement of the beam tip.





Appendix B

Comparison of the results with the
Direct Normal Form reduction technique

B.1 Direct normal form reduction method with a single master
mode and damping

In this appendix, the Direct Normal Form (DNF) reduction method [202] is applied to the von
Kármán beam applications and the 3D beam applications. The DNF method is a non-intrusive
method to perform a reduction to the normal form up to the third order with an external FE
solver. The coefficients of the normal form are computed via imposed displacements. In this
section, the reduction to a single master mode is considered, and damping is included. Under such
considerations, the reduced dynamics takes the following form:

R̈1 + (ζm + ζKω2
1)Ṙ1 + ω2

1R1 + (A1
111 + h1111)R

3
1 +B1

111R1Ṙ
2
1 + C1

111R
2
1Ṙ1 = 0, (B.1)

with R1 the normal coordinate along the master mode, ω1 the pulsation of the linear normal
associated to the master mode, ζm and ζK the Rayleigh damping coefficients and A1

111, h1111,
B1

111, C1
111 the coefficients of the reduction to the normal form whose expressions will be detailed

further. The equation of the dynamics in the normal form (B.1) is defined with no second member.
Indeed, the expression of the coefficients and mappings are deduced from the equation without
second member. The external load specific to the loading case is then projected on the linear
normal master mode and added on the right side of Equation (B.1). It is also possible to include
the external load during the construction of the model [138], which leads to a time-dependent
manifold. In this section, the notations of the article are kept for a better understanding since
only a few details are provided in this appendix.
The physical degrees of freedom are written X and the velocities Ẋ. In the damped case, the article
[202] provides the formulas for a quadratic mapping between the normal and modal coordinates:

X = ϕ1R1 + ā11R
2
1 + b̄11Ṙ

2
1 + c̄11R1Ṙ1, (B.2)

Ẋ = ϕ1Ṙ1 + ᾱ11R
2
1 + β̄1111Ṙ

2
1 + γ̄11R1Ṙ1, (B.3)

with ϕ1 the linear normal mode considered as master mode, R1 the normal coordinate of the
master mode and ā11, b̄11, c̄11, ᾱ11, β̄11, γ̄11 the different mappings. The determination of the
mappings and normal form coefficients is non-intrusive and incremental. The first step consists in
evaluating the quadratic form G (ϕ1, ϕ1) by imposing to the structure the displacements q1ϕ1 and
its opposite and in computing the associated internal nonlinear forces:

G (ϕ1, ϕ1) =
1

2q21

[
fnl(q1ϕ1) + fnl(−q1ϕ1)

]
. (B.4)

The amplitude of the displacement imposed along the linear normal mode ϕ1 is controlled by
the chosen amplitude q1. The vector G (ϕ1, ϕ1) corresponds to the quadratic part of the internal
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nonlinear forces resulting from a displacement ϕ1q1. The cubic part of such a displacement is given
by:

H (ϕ1, ϕ1, ϕ1) =
1

2q31

[
fnl(q1ϕ1)− fnl(−q1ϕ1)

]
. (B.5)

The mappings in the expressions (B.2) are all determined thanks to the intermediate vectors
Z̄s11, Z̄d11 and Z̄ss11 defined by:

Z̄s11 =
[
4ω2

1M−K
]−1

G (ϕ1, ϕ1) , (B.6)

Z̄d11 = −K−1G (ϕ1, ϕ1) , (B.7)

Z̄ss11 =
[
4ω2

1M−K
]−1

MZ̄s11, (B.8)

with M and K the mass and stiffness matrices respectively. From those vectors, the expression of
the mappings are:

ā11 =
1

2
(Z̄d11 + Z̄s11), (B.9)

b̄11 =
1

2ω2
1

(Z̄d11 − Z̄s11), (B.10)

c̄11 =
Z̄d11

2

(
1

ω2
1

ζM + ζK

)
− Z̄s11

2

(
1

ω2
1

ζM + 5ζK

)
+ 2Z̄ss11(2ω

2
1ζK − ζM ), (B.11)

ᾱ11 = −ω2
1 c̄11, (B.12)

β̄11 = c̄11 − 2(ζM + ζKω2
1)b̄11, (B.13)

γ̄11 = 2Z̄s11. (B.14)

(B.15)

Finally, the coefficients A1
111, B

1
111, C

1
111 and h1111 in the reduced dynamics (B.1) are given by the

expressions:

A1
111 = 2ϕT

1 G (ϕ1, ā11) , (B.16)

B1
111 = 2ϕT

1 G
(
ϕ1, b̄11

)
, (B.17)

C1
111 = 2ϕT

1 G (ϕ1, c̄11) , (B.18)

h1111 = 2ϕT
1 H (ϕ1, ϕ1, ϕ1) , (B.19)

where G (ϕ1, ā11) ,G
(
ϕ1, b̄11

)
and G (ϕ1, c̄11) are quadratic forms evaluated by imposing displace-

ments to the structure. For instance, G (ϕ1, ā11) is obtained by first imposing the displacements
qaā11 and its opposite to compute the quadratic part of the nonlinear internal forces associated to
the displacement qaā11: G (ā11, ā11):

G (ā11, ā11) =
1

2q2a

[
fnl(qaā11) + fnl(−qaā11)

]
. (B.20)

Then, the displacement q1ϕ1 + qaā11 and its opposite are imposed to the structure to get the
resulting internal nonlinear forces and compute the vector G (ϕ1, ā11):

G (ϕ1, ā11) =
1

4q1qa

[
fnl(ϕ1q1 + ā11qa) + fnl(−q1ϕ1 − qaā11)− 2q21G (ϕ1, ϕ1)− 2q2aG (ā11, ā11)

]

(B.21)
The vectors G (ϕ1, ā11) ,G

(
ϕ1, b̄11

)
and G (ϕ1, c̄11) are obtained with an analogous process.
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B.2 Application to the von Kármán beam model

In this section, the DNF reduction technique is applied to the case of the von Kármán beam of
section 2.3. Dynamic load cases are considered and the solutions are compared to those obtained
with the ICE and ICDual models. First the non-rotating case of the beam considered, then the
beam is in rotation around the vertical axis at 500 rpm.

B.2.1 Non-rotating case

The first application consists in the beam from section 2.3 without centrifugal rotation. Three
different load cases entitled D1, D2, D3 are considered:

• D1: A vertical load uniformly distributed along the beam of 1,400 N/m.

• D2: A vertical load of amplitude 2,500 N at the tip of the beam.

• D3: A follower load of amplitude 2,500 N at the tip of the beam.

The loads D1 and D3 were already tackled with the linear, ICE and ICDual methods in section 2.3.
The results are here compared with those of the DNF method. Figure B.1 illustrates the beam’s
tip vertical and axial displacements in periodic regime under the load case D2. The relative errors
in amplitude regarding the nonlinear FOM solution for the three load cases are gathered in Tables
B.1 and B.2.

Table B.1: Relative error, for the different dynamic load cases, of the maximal vertical displacement
of the beam tip in periodic regime. Comparison between the reference nonlinear FOM model, the
linear FOM, ICE ROM, ICDual ROM and DNF models.

Relative error of the tip Y displacement (%)
Load case D1 D2 D3

Linear FOM 2.63 4.29 2.47

ICE ROM 2.63 4.29 2.47

ICDual ROM 2.02× 10−4 3.63× 10−3 3.64× 10−3

DNF ROM 6.69× 10−1 8.07× 10−1 8.93× 10−1

Table B.2: Relative error, for the different dynamic load cases, of the maximal axial displacement
of the beam tip in periodic regime. Comparison between the reference nonlinear FOM model, the
linear FOM, ICE ROM, ICDual ROM and DNF models.

Relative error of the tip X displacement (%)
Load case D1 D2 D3

Linear FOM 100 100 100

ICE ROM 5.18 8.67 4.92

ICDual ROM 6.27× 10−4 8.04× 10−3 8.18× 10−3

DNF ROM 1.20 1.55 1.84
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Figure B.1: Nonlinear dynamic displacement of the clamped-free von Kármán beam under the
dynamic load case D2. Comparison of the vertical (a) and axial (b) displacements at the tip of
the beam in periodic regime between the nonlinear FE, ICE, ICDual and DNF solutions.

The loads are periodic at the frequency of the first linear normal mode. The DNF ROM considered
is thus defined with one master mode which is the first linear normal mode. With only one mode,
the results are particularly accurate for the three load cases. An error slightly above the percent
is observed for the axial displacement but the result is however still better than the ICE method
with 3 modes. The phase shifts of the different models are gathered in Table B.3.
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Table B.3: Phase shift in periodic regime at the beam tip for the different dynamic load cases.
Comparison between the reference nonlinear FOM model, the linear FOM, ICE ROM, ICDual
ROM and DNF models.

Phase shift (◦)
Load case D1 D2 D3

Linear FOM 9.7 12.1 12.1

ICE ROM 9.7 12.1 12.1

ICDual ROM 0 0 0

DNF 3.5 2.3 2.3

Vertical load at tip at a different excitation frequency
In the previous test cases, the frequency of excitation of the external loads was exactly the one
of the first linear normal mode considered as master mode. Here, the frequency of excitation is
slightly shifted to 5 Hz, which is still in the vicinity of the frequency of the first linear normal
mode (3.38 Hz) but far from the frequency of the second mode (21.21 Hz). The DNF ROM is not
changed and the external load considered is the vertical load at the tip of the beam with amplitude
2,500 N and frequency 5 Hz. It corresponds to the load case D2 with a frequency of 5 Hz. With
such excitation, the amplitudes of vertical displacement are close to the linear range, but an axial
displacement is observed anyway and absent from the linear solution. Figure B.2 illustrates the
vertical and axial displacements of the beam’s tip in periodic regime and the quantitative errors
are gathered in B.4.

Table B.4: Relative error of the maximal displacement of the beam tip in periodic regime under a
vertical load at tip of amplitude 2,500 N and frequency 5 Hz. Comparison between the reference
nonlinear FOM model, the linear model, the ICE, ICDual and DNF ROMs.

Relative error of the tip displacement (%)
Y component X component

Linear 3.24× 10−2 100

ICE 2.19× 10−1 4.77× 10−1

ICDual 1.86× 10−1 4.49× 10−1

DNF 4.12 12.02

In such a case, the DNF method tends to overestimate the displacements. The latter are small and
perfectly captured by the ICE method. The phase shifts are however negligible with all models:
0.18◦ for the DNF method and 0◦ for the linear, ICE and ICDual methods. Since the excitation
frequency does not correspond to the frequency associated to the master mode, the DNF method is
slightly inaccurate. To improve the results, it could be interesting to use several master modes, or
higher orders of nonlinear developments in the normal form (via an intrusive approach however).
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Figure B.2: Nonlinear dynamic displacement of the clamped-free von Kármán beam under a
vertical load at tip of amplitude 2,500 N and frequency 5 Hz. Comparison of the vertical (a) and
axial (b) displacements at the tip of the beam in periodic regime between the nonlinear FE, ICE,
ICDual and DNF solutions.
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Computation of a static case with the DNF method
The principle of the reduction to the normal form is to compute periodic solutions in the vicinity
of the linear normal modes. Considering Equation (B.1), it can be interesting to compute static
loads by getting rid of the acceleration and velocity terms and solve the equation:

ω2
1R1 + (A1

111 + h1111)R
3
1 = ϕT

1 f ext, (B.22)

then rebuild the physical solution with the mapping X = ϕ1R1 + ā11R
2
1. The test case considered

is a static vertical load of 30,000 N at the tip of the beam. The beam deformation is shown in
Figure B.3. The results are inaccurate in the vertical direction for the DNF method while they
are inaccurate in the axial direction for the linear solution. Solving Equation (B.22) in itself
to compute static load is not appropriate. Indeed, for static cases there is no excitation mode
from which the notion of master mode derives. For static linear cases, several modes should be
considered in order to retrieve the linear FOM solution. For instance, the linear ROM with only
the first linear mode is plotted on Figure B.3 and also shows inaccurate results. The DNF method
with several master modes was not tested in this work though it would be interesting to see if it
improves the static results.
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Figure B.3: Nonlinear static displacement of the clamped-free von Kármán beam, loaded vertically
at the tip with a load of 30,000 N.
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B.2.2 Rotation around the vertical axis at 500 rpm

The beam is now in rotation at 500 rpm around the vertical axis as in section 2.3.3. The following
three dynamical load cases are reproduced with the DNF ROM.

• D1_500: A vertical load uniformly distributed along the beam of 4,900 N/m.

• D2_500: A vertical load of amplitude 7,350 N at the tip of the beam.

• D3_500: A follower load of amplitude 7,350 N at the tip of the beam.

Figure B.4 shows the beam’s tip vertical and axial displacements in periodic regime under the
load case D2_500. The relative errors in vertical and axial amplitudes in periodic regime for the
different load cases are gathered respectively in Tables B.5 and B.6.

Table B.5: Relative error of the maximal vertical displacement in periodic regime of the beam tip
for the different dynamic load cases of the beam in rotation. Comparison between the reference
nonlinear FOM model, the linear FOM, ICE ROM, ICDual ROM and DNF models.

Relative error of the tip Y displacement (%)
Load case D1_500 D2_500 D3_500

Linear FOM 25.22 19.10 17.80

ICE ROM 18.41 14.96 13.78

ICDual ROM 2.99× 10−3 2.48× 10−2 2.53× 10−2

DNF 1.33 7.56× 10−1 1.66

Table B.6: Relative error of the maximal axial displacement in periodic regime of the beam tip
for the different dynamic load cases of the beam in rotation. Comparison between the reference
nonlinear FOM model, the linear FOM, ICE ROM, ICDual ROM and DNF models.

Relative error of the tip X displacement (%)
Load case D1_500 D2_500 D3_500

Linear FOM 100 100 100

ICE ROM 37.93 30.81 28.20

ICDual ROM 2.15× 10−2 3.90× 10−2 4.05× 10−2

DNF 4.46 2.52 4.26

The DNF method with the reduction to the appropriate master mode (the first linear mode)
improves significantly the ICE results. Nevertheless, the errors in the rotating case are slightly
higher than the errors without rotation. The fact that the amplitude of the external loads are
larger than those of the non-rotating case while the model is built for a zero second member
may justify the increased errors. The phase shift is equal to 6.5◦ for all three load cases with the
DNF method, 17.2◦ with the ICE ROM and 0◦ with the ICDual ROM. The linear FOM solution
presents a phase shift of 37.8◦ for the load case D1 and phase shifts of 34.3◦ for the load cases D2
and D3.
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Figure B.4: Nonlinear dynamic displacement of the clamped-free von Kármán beam in rotation
at 500 rpm, subject to the dynamic load case D2. Comparison of the vertical (a) and axial (b)
displacements at the tip of the beam in periodic regime between the nonlinear FE, ICE, ICDual
and DNF solutions.

In the different examples studied in this section, the DNF reduction method with a single
master mode proved to be a good compromise for periodic external loads with a frequency of
excitation in the vicinity of a linear normal mode. In such cases, the DNF method improved the
ICE solution. However, for a frequency of excitation not corresponding to the frequency associated
to the master mode, the accuracy of the DNF method was lower than the ICE method as shown
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in Figure B.2. The ICDual ROM contains more modes in the reduction basis, leading to very
accurate results for the test cases considered. The results of the DNF method are satisfactory
but could be improved by taking the external load case into account during the construction of
the model. Indeed, the DNF method is not built independently of the external load, it is built
regarding an external load that is null. The external load is applied afterwards in the equation
where it was supposedly null. Thus, a possibly strong approximation is made, which is accentuated
with the amplitude of the load imposed. The ICE and ICDual ROMs are built independently of
the external load case. It is taken into account in the projected equation of the dynamics, without
stronger approximation than the projection into the reduction basis.
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B.3 Application to the 3D beam-like structure

In this section, the DNF method is applied to the non-rotating and rotating cases of the 3D
beam-like structure of chapter 3. The fact that a 3D FE structure is considered imposes to
carefully compute the DNF coefficients. Indeed, the non-intrusive determination of the coefficients
is based on imposed displacements. However, it is well known and explained in [199], that imposing
3D displacements can lead to numerical errors. To limit the issue of volume perturbations, the
displacements here are imposed only on the upper skin of the beam, the other elements are free to
follow the movement. Besides, each DNF coefficient is computed for several amplitudes of imposed
displacements. The values obtained for the different amplitudes are compared to find a range of
validity where the values of the coefficients are independent from the amplitude imposed, as they
should be according to the theory.

B.3.1 Non-rotating case

In the DNF method, the first step consists in computing accurately the vector G (ϕ1, ϕ1). Such
a vector is computed via the formula (B.4) using the FE solver. In practice, the mode ϕ1 is first
normalized by its maximal displacement so that its maximal displacement is equal to 1. Then, the
normalized mode is multiplied by the amplitude qG, thus controlling the amplitude of displacement
imposed regarding the beam thickness h:

G (ϕ1, ϕ1) =
1

2q2G

[
fnl

(
qGh

ϕ1

max|ϕ1|

)
+ fnl

(
−qGh

ϕ1

max|ϕ1|

)]
. (B.23)

The vector G (ϕ1, ϕ1) is computed for several amplitudes of qG. To control the range of validity
of the result obtained, the displacements at the beam tip of the vector ā11 are compared for
the different values of G (ϕ1, ϕ1) obtained with the different amplitudes q1 imposed. Indeed, ā11
depends directly on G (ϕ1, ϕ1) and is homogeneous to a displacement. It is more convenient
to compare a displacement at a specific point where it is maximal, than compare the values of
an arbitrary point in G (ϕ1, ϕ1) representing the quadratic part of the internal nonlinear forces
associated to the displacement ϕ1. Figure B.5 represents the displacement at the beam’s tip of
the vector ā11 with the amplitude of the displacement imposed qG. It can be observed that the
displacements obtained for the different amplitudes imposed do not vary more than after the sixth
decimal. Thus, the range of validity of imposed displacements for G (ϕ1, ϕ1) is large and the
amplitude chosen is qG = 1, meaning a displacement imposed with a maximal amplitude equal to
the beam’s thickness. The vector ā11 is a membrane contribution, it is represented in Figure B.6.
Now that G (ϕ1, ϕ1) is known, all the vectors ā11, b̄11, c̄11, ᾱ11, β̄11 and γ̄11 can be determined.
The scalar coefficients A1

111, B
1
111 and C1

111 have yet to be computed. They depend on G (ϕ1, ā11),
G
(
ϕ1, b̄11

)
and G (ϕ1, c̄11) respectively. Those vectors need to be correctly evaluated with the

FE solver via imposed displacements. To evaluate G (ϕ1, ā11), the determination of the vector
G (ā11, ā11) is required. The latter is computed with the FE solver by:

G (ā11, ā11) =
1

2q2a

[
fnl

(
qah

ā11
max|ā11|

)
+ fnl

(
−qah

ā11
max|ā11|

)]
, (B.24)

where the amplitude of the imposed displacement is controlled by qa. Then, the vector G (ϕ1, ā11)
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Figure B.5: Dependency of the axial displacement at the beam tip of the vector ā11 to the imposed
amplitude of displacement qG.

(a)

(b)

Figure B.6: Visualization of the vector ā11. On the entire beam (a) and at the tip (b).

is evaluated with the FE solver via the formula:

G (ϕ1, ā11) =
1

4qGqa

[
fnl

(
qGh

ϕ1

max|ϕ1|
+ qah

ā11
max|ā11|

)

+fnl

(
−qGh

ϕ1

max|ϕ1|
− qah

ā11
max|ā11|

)

−2q2GG (ϕ1, ϕ1)− 2q2aG (ā11, ā11)

]
.

(B.25)
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Finally the coefficient A1
111 is obtained by projection: A1

111 = 2ϕT
1 G (ϕ1, ā11). The amplitude

qG taken is qG = 1 chosen previously for the evaluation of G (ϕ1, ϕ1) and several values of qa are
considered. Figure B.7 illustrates the values of the coefficient A1

111 for different amplitudes of qa. A
plateau is observed in the range qa ∈ [10−3, 10−1], where A1

111 is constant and equal to −5,008.218.
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Figure B.7: Dependency of the coefficient A1
111 to the imposed amplitude of displacement qa.

A similar procedure is applied to compute the coefficients B1
111 and C1

111, with imposed amplitudes
written respectively qb and qc. Figure B.8 shows the dependency of the coefficient B1

111 to the
amplitude qb of the imposed displacement. A plateau is observed for qb ∈ [10−3, 10−1] and the
value of B1

111 for qb = 0.1 is equal to 1.113 × 10−3. Regarding the coefficient C1
111, its value is

constant for qc ∈ [10−3, 10−2] as shown in Figure B.9. The value of C1
111 for an imposed amplitude

qc = 0.01 is equal to −4.029× 10−6.
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Figure B.8: Dependency of the coefficient B1
111 to the imposed amplitude of displacement qb.
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Figure B.9: Dependency of the coefficient C1
111 to the imposed amplitude of displacement qc.

The last coefficient to determine is h1111. It is evaluated by imposing a displacement along the mode
ϕ1 to the beam to compute the vector H (ϕ1, ϕ1, ϕ1), then project this vector to evaluate h1111 =

2ϕT
1 H (ϕ1, ϕ1, ϕ1). Due to the numerical perturbations of imposing displacements to compute

internal forces, the amplitude to impose for computing G (ϕ1, ϕ1) and H (ϕ1, ϕ1, ϕ1) are not a
priori equal. The vector H (ϕ1, ϕ1, ϕ1) is evaluated with the FE solver by imposing a displacement
of amplitude qH as follows:

H (ϕ1, ϕ1, ϕ1) =
1

2q3H

[
fnl

(
qHh

ϕ1

max|ϕ1|

)
− fnl

(
−qHh

ϕ1

max|ϕ1|

)]
. (B.26)

The coefficient h1111 is computed for several amplitudes qH . Figure B.10 illustrates the dependency
of the coefficient h1111 to the amplitude qH of the imposed displacement. A plateau is observed for
qH ∈ [10−2, 100], where h1111 is equal to 5,008.037. The coefficients B1

111 and C1
111 are very small

whereas the coefficients A1
111 and h1111 have a much larger contribution and are of opposed signs.

Those coefficients are partly compensating one another in the factor (A1
111 + h1111) of R3 in the

expression of the dynamics in the normal form B.1.
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Figure B.10: Dependency of the coefficient h1111 to the imposed amplitude of displacement.

The test case for the application is a vertical periodic load at the tip of the beam of amplitude
2,500 N at the frequency of the first linear mode. The temporal vertical and axial tip displacements
in periodic regime are plotted in Figure B.11. The relative errors regarding the FOM solution of
the different models are gathered in Table B.7. The relative errors in the vertical and axial
displacements are lower than those of the ICE solution and higher than those of the ICDual
solution. The phase shifts are 0◦ for the linear solution, 14.6◦ for the ICE solution, 9.7◦ for the
ICDual solution and 19.3◦ for the DNF solution.

Table B.7: Relative error of the maximal displacement of the beam tip in periodic regime under a
vertical load at tip of amplitude 2,500 N and frequency 3.38 Hz. Comparison between the reference
nonlinear FOM model, the linear model, the ICE, ICDual and DNF ROMs.

Relative error of the tip displacement (%)
Y component X component

Linear 1.91 100

ICE 3.05 5.20

ICDual 0.48 1.27

DNF 1.62 2.25
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Figure B.11: Nonlinear dynamic displacement of the clamped-free 3D beam-like structure subject
to a vertical load at the tip of amplitude 2,500 N and frequency 3.38 Hz.
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B.3.2 Rotating around the vertical axis at 500 rpm

The beam is now in rotation at 500 rpm around the vertical axis. In the DNF formulations, the
stiffness matrix K is now the total stiffness in rotation K(Ω) and the internal nonlinear forces
fnl are replaced by gnl. Figure B.12 represents the displacement of the vector ā11 at the beam
tip according to the amplitude qG of the imposed displacement. Like the case without rotation,
the variations are observed after the sixth decimal and are thus negligible. Thus, the range of
validity for the imposed displacements to compute G (ϕ1, ϕ1) is large and the amplitude chosen is
qG = 1, meaning an imposed displacement in the order of magnitude of the thickness of the beam.
Similarly to the non-rotating case, the vector ā11 is a membrane contribution and its deformation
is similar to the one illustrated in Figure B.6 for the non-rotating case.
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Figure B.12: Dependency of the axial displacement of the vector ā11 at the beam tip to the imposed
amplitude of displacement qG. The beam is in rotation around the vertical axis at 500 rpm.

The vector G (ϕ1, ϕ1) determined, the mappings ā11, b̄11, c̄11, ᾱ11, β̄11 and γ̄11 are deduced. With
the same process as for the non-rotating case, the coefficients A1

111, B
1
111 and C1

111 are determined
by imposing the adequate displacements along respectively ā11, b̄11 and c̄11 with the amplitudes
qa, qb and qc respectively. Figure B.13 represents the variations of the coefficient A1

111 with the
amplitude qa of the imposed displacement. A plateau is observed for qa ∈ [10−3, 10−1], where A1

111

is constant equal to −3,149.644.
The coefficients B1

111 and C1
111 are evaluated with imposed displacements via the amplitudes re-

spectively qb and qc. Figures B.14 and B.15 show respectively the dependency of the coefficient
B1

111 and C1
111 to the respective amplitudes qb and qc of the imposed displacements. For both

cases, constant values are obtained for qb and qc in the range [10−3, 10−1]. For qb and qc equal to
0.1, the coefficient B1

111 is equal to 9.232× 10−4 and C1
111 is equal to −1.879× 10−5.
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Figure B.13: Dependency of the coefficient A1
111 to the imposed amplitude qa of displacement. The

beam is in rotation around the vertical axis at 500 rpm.
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Figure B.14: Dependency of the coefficient B1
111 to the imposed amplitude qb of displacement. The

beam is in rotation around the vertical axis at 500 rpm.
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Figure B.15: Dependency of the coefficient C1
111 to the imposed amplitude qc of displacement. The

beam is in rotation around the vertical axis at 500 rpm.

The DNF coefficient h1111 is also evaluated from imposed displacements of several amplitudes qH .
Figure B.16 represents the dependency of the coefficient h1111 to the amplitude qH of imposed
displacement. Contrary to the other coefficients and to the non-rotating case, the coefficient h1111
is very sensitive to the amplitude of displacement imposed. In Figure B.16 (a), a plateau is observed
for qH ∈ [10−1, 40]. However, looking closer in Figure B.16 (b), there is no such plateau. The
value chosen for the moment corresponds to qH = 26 and gives h1111 = 3,148, 167. In Figure B.16
(b), the value of the coefficient −A1

111 is plotted on the graph. In the normal form, the coefficients
A1

111 and h1111 are summed in factor of R3. The value of the sum A1
111 +h1111 determines the cubic

nonlinearity of the normal form and the softening or hardening behavior of the dynamics. Since
no clear plateau is observed in the dependency of h1111 to qH , both a hardening and a softening
behavior are possible according to the value chosen. In the present case with the value qH = 26

chosen, the behavior is softening.
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Figure B.16: Dependency of the coefficient h1111 to the imposed amplitude qH of displacement.
The beam is in rotation around the vertical axis at 500 rpm.

Figure B.17 represents the temporal solutions with the different ROMs and the nonlinear FOM
model for the test case of a vertical periodic load at the tip of the beam of amplitude 7,350 N and
frequency 9.67 Hz. This test case was already tackled in section 3.2. The ICE and ICDual ROMs
are those built with the 3 first linear normal modes in the (x,z) plane. The reader may refer to
section 3.2 for more details about the ICE and ICDual ROMs considered. The relative errors of
the maximal vertical and axial displacements with the different ROMs are gathered in Table B.8.
The DNF ROM is particularly precise regarding the vertical displacement and has a relative error
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lower than 3% for the axial displacement. The phase shifts are 7.0◦ for the linear and ICDual
solutions, 27.8◦ for the ICE solution and 3.1◦ for the DNF solution.
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Figure B.17: Nonlinear dynamic displacement of the clamped-free 3D beam-like structure subject
to a vertical load at the tip of amplitude 7,350 N and frequency 9.67 Hz.
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Table B.8: Relative error of the maximal displacement of the beam tip in periodic regime under a
vertical load at tip of amplitude 7,350 N and frequency 9.67 Hz. Comparison between the reference
nonlinear FOM model, the linear model and the ICE, ICDual and DNF ROMs.

Relative error of the tip displacement (%)
Y component X component

Linear 6.41 100

ICE 3.48 6.15

ICDual 1.08 0.34

DNF 0.13 2.73

Nevertheless, has shown in Figure B.16, the determination of the coefficient h1111 is not clear
since such a coefficient varies in a non-negligible range with the amplitude of displacement imposed.
The imposed amplitude qH = 26 provides good results. Figure B.18 shows the results of the
abovementioned test case with DNF ROMs built with a coefficient h1111 obtained with the imposed
amplitudes qH = 20 and qH = 32. For qH = 20 and qH = 26, the behavior is softening since
A1

111 + h1111 < 0. However, for qH = 32, A1
111 + h1111 > 0 and the behavior is hardening. It

is observed in Figure B.18 that the value of the coefficient h1111 strongly affects the phases and
amplitudes obtained.
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Figure B.18: Nonlinear dynamic displacement of the clamped-free 3D beam-like structure subject
to a vertical load at the tip of amplitude 7,350 N and frequency 9.67 Hz. Comparison between
the FOM solution and the DNF ROMs with different coefficients C1

111 obtained from imposed
displacements of different amplitudes qH .

B.4 Conclusion

In this appendix, the Direct Normal Form reduction method with only one master mode is pre-
sented and evaluated on some test cases tackled in the manuscript that are the von Kármán beam
and the 3D beam-like structure, both with and without rotation. The results obtained capture
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accurately though not exactly the nonlinear FOM solutions. For 3D structures, a sensitivity in-
vestigation to the amplitude of imposed displacement is necessary in order to build an accurate
DNF model. It was seen for the rotating case that some coefficients are highly sensitive to the
amplitude of imposed displacement.



Appendix C

Jacobian of the reduced nonlinear forces

The expression of the projected nonlinear forces in the reduced space is a third-order polynomial
of the generalized coordinates. Let k ∈ [1, n] and n ≥ 3, the projected non-linear forces in the IC
method are:

f̃k
nl(q) =

n∑

i=1

n∑

j=i

βk
ijqiqj +

n∑

i=1

n∑

j=i

n∑

m=j

γkijmqiqjqm (C.1)

For the resolution of the nonlinear problems, an explicit expression of the jacobian matrix of
those internal nonlinear forces is required for the iterative Newton procedure. The coefficient at
the line k and the column ℓ of the jacobian matrix of the non-linear forces is equal to:

(
∂f̃k

nl(q)

∂qℓ

)
=

∂

∂qℓ




n∑

i=1

n∑

j=i

βk
ijqiqj


+

∂

∂qℓ




n∑

i=1

n∑

j=i

n∑

m=j

γkijmqiqjqm




=

n∑

i=1

Bk,ℓ
i qi +

n∑

i=1

n∑

j=i

Gk,ℓ
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Appendix D

Application of the reduced order model
to a bi-clamped Bernoulli/von Kármán

beam

The applications considered in section 2.3 are cantilevered examples. Those examples were ad-
dressed because cantilever beams are challenging for reduced order models of geometrically non-
linear structures. It is nevertheless interesting to evaluate the efficiency of the ICDual ROM in
a clamped-clamped configuration. The non-linearity is indeed stronger for the clamped-clamped
beam and the ICDual ROM is accurate as well. Figure D.1 represents the displacement of the
beam of 2.3, this time clamped-clamped, and subjected to a vertical load at the center of ampli-
tude 300, 000 N. Figure D.2 shows the vertical displacement at the center of the clamped-clamped
beam, subjected to a vertical sinusoidal load at the center of amplitude 60, 000 N and at the
frequency of the first linear mode. For both the static and dynamic test cases, the ICDual ROM
matches with the full order model. It is worth mentioning that the coefficients of the projected
nonlinear forces obtained with the forced-based method are in agreement with those obtained with
a displacement-based method as well as those with a symbolic computations.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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0.5
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Y 
/ h

Linear solution
Nonlinear solution
ICDual solution

Figure D.1: Displacement of a clamped-clamped subjected to a vertical load at the center of
amplitude 300, 000 N.
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Figure D.2: Vertical displacement at the center of the clamped-clamped beam, subjected to a
vertical sinusoidal load at the center of amplitude 60, 000 N and at the frequency of the first linear
mode.
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Résumé du mémoire (en français)

Introduction

La recherche de meilleures performances pour les futurs moteurs d’avion conduit à des hélices et des
pales plus grandes, et donc à des structures plus flexibles. Cette flexibilité engendre des amplitudes
de déformation plus importantes, nécessitant une modélisation prenant en compte les non-linéarités
géométriques pour évaluer précisément les niveaux de vibrations et caractériser les phénomènes
aéroélastiques tels que le flottement et la réponse forcée. L’étude de ces phénomènes requière la
résolution d’un problème couplé prenant en compte à la fois les domaines fluide et structure. Une
approche pour résoudre les problèmes aéroélastiques consiste à coupler deux solveurs non-linéaires
différents pour le fluide et pour la structure. Néanmoins, dans le cadre d’applications industrielles,
les ressources de calcul en temps et en mémoire d’un tel couplage sont souvent trop importantes.
En outre, la plupart des solveurs fluides et structures ne sont pas conçus pour communiquer entre
eux, rendant le transfert d’informations d’un solveur à l’autre laborieux.

Afin de faciliter le couplage et réduire les temps de calcul, une approche efficace consiste à
coupler un solveur non-linéaire pour la partie fluide avec un modèle d’ordre réduit non-linéaire
de la structure. Pour être efficace, le modèle d’ordre réduit doit être conçu de manière non
intrusive, indépendant du modèle d’éléments finis complet pendant le calcul, ne nécessitant pas
de solveur extérieur mais seulement la connaissance des composantes réduites. Il est à noter que
la dynamique du fluide peut également être représentée par des modèles de moindre fidélité (par
exemple les théories de Theodorsen et de Lifting-line) ou par des modèles d’ordre réduit s’appuyant
sur des approches haute-fidélité comme des formulation hybrides ou data-driven. Dans ce travail,
la dynamique du fluide n’est pas réduite et calculée à l’aide d’un solveur CFD haute fidélité. Notre
travail se concentre uniquement sur l’élaboration d’un modèle d’ordre réduit pour la structure,
sous la contrainte d’un couplage avec un solveur fluide externe.

Dans la littérature, l’étude des phénomènes aéroélastiques sur des configurations industrielles
est généralement effectuée en couplant un solveur fluide avec un modèle d’ordre réduit linéaire pour
la structure. Or nous avons évoqué le fait qu’une modélisation linéaire n’est plus suffisante pour
rendre compte de ces phénomènes sur les structures élancées. Des modèles réduits non-linéaires
pour la structure sont courants dans la littérature et nous en détaillons certains dans ce travail,
mais ils ne sont généralement pas élaborés dans une optique de couplage.

C’est ce qui justifie cette étude qui consiste à développer un modèle d’ordre réduit pour la
structure dans le cadre de non-linéarités géométriques et sous la contrainte d’un couplage simple
avec un quelconque solveur fluide externe. Ce modèle d’ordre réduit doit pouvoir être construit
de manière non-intrusive à partir d’un solveur éléments finis industriel afin d’être en mesure de
traiter des structures aéronautiques complexes.

Les contributions de cette thèse résident dans l’élaboration d’une méthode innovante de con-
struction du modèle d’ordre réduit non-linéaire de manière non intrusive par rapport à un solveur
éléments finis, ainsi que dans le couplage de ce modèle réduit avec un solveur fluide industriel pour
caractériser des phénomènes d’interaction fluide-structure.
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Chapitre 1: Réduction de modèle pour des structures non-linéaires
géométriques en rotation

Le premier chapitre de ce manuscrit établit le contexte théorique relatif à la modélisation de
la structure. Nous considérons une loi de comportement élastique linéaire pour le matériau, se
traduisant par la loi de Hooke liant les tenseurs des contraintes de Piola-Kirchhoff S et celui de
Green-Lagrange E des déformations : S = H : E, ainsi qu’une cinématique de grands déplace-
ments pour ce dernier:

E =
1

2

[∇Xu+ (∇Xu)T + (∇Xu)T∇Xu
]
. (6.1)

La dynamique de la structure est étudiée dans son repère mobile en rotation à vitesse constante
autour d’un axe fixe. Une discrétisation de Galerkin par éléments finis est adoptée. Notant u les
degrés de liberté de la structure, ces derniers sont solutions de l’équation:

Mü+Cu̇+
[
Kmat −Kc +Knl(us)

]
︸ ︷︷ ︸

K(Ω)

u+ gnl(u) = fa, (6.2)

avec M la matrice de masse, C l’amortissement de Rayleigh, Kmat la matrice de raideur matériaux,
Kc la matrice d’assouplissement centrifuge, Knl(us) la partie non-linéaire de la matrice tangente
de raideur (jacobienne des efforts internes non-linéaires) évaluée en la solution précontrainte us,
gnl les efforts internes non-linéaires et fa l’effort aérodynamique extérieur imposé en supplément
des efforts centrifuges. Les expressions de ces matrices et vecteurs sont données dans le chapitre
et il est important pour la suite de préciser que la composante purement non-linéaire des efforts
internes gnl est cubique en les degrés de liberté.

La résolution de l’équation de la dynamique est possible selon deux approches. La première
est une résolution temporelle, intégrant l’équation (6.2) à partir de conditions initiales, du régime
transitoire jusqu’à l’établissement d’un régime permanent. Les schémas d’intégration temporelle
sont abondants dans la littérature tels que les schémas de différentiation d’Euler (explicites et
implicites), les méthodes de Runge-Kutta, les schémas multi-pas comme ceux de Gear [62] ou de
Bathe [9] et ses variantes Bathe-β1/β2, ρ∞-Bathe. Pour résoudre la dynamique de la structure,
les méthodes à un pas de la famille des méthodes de Newmark [134] et ses variantes HHT-α [78]
et α-generalized [4, 27] sont habituellement privilégiées.

La seconde approche pour résoudre les équations dynamiques de la structure est dite fréquen-
tielle. L’idée est que le calcul temporel du régime transitoire avant l’établissement du régime
permanent est parfois long et bien souvent non exploité par la suite. Les méthodes fréquentielles
permettent de ne calculer que le régime permanent établi. Cela permet également de déterminer
ce dernier pour différentes fréquences d’excitation via des techniques de continuation telles que les
méthodes dites de tir (Shooting) [85, 129, 130, 172, 183], d’équilibrage harmonique [6, 75, 103, 128]
ou asymptotiques numériques [29, 31, 127]. Les méthodes de continuations temporelles sont en
effet très coûteuses du fait de l’intégration des régimes transitoires et les parties instables sont
difficilement accessibles contrairement à l’utilisation des méthodes fréquentielles.

L’équation de la dynamique (6.2) constitue le modèle dit "complet" et comporte un nombre
conséquent de degrés de libertés. Comme précisé en introduction, la résolution du système complet
et le couplage de ce dernier avec un autre code de calcul nécessite des ressources numériques et des
temps de calcul souvent inabordables. C’est pourquoi des méthodes dites de réduction de modèle
sont développées afin de réduire la dimension du système à résoudre et de ce fait les ressources
nécessaires.
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Les modèles réduits dits par projection consistent à projeter les équations de la dynamique dans
une base de dimension réduite V judicieusement choisie. Les degrés de liberté des déplacements
sont approximés par u ≈ Vq où q est le vecteur des coordonnées dites généralisées. Après
projection, l’equation de la dynamique devient:

VTMV︸ ︷︷ ︸
M̃

q̈+VTCV︸ ︷︷ ︸
C̃

q̇+VTKV︸ ︷︷ ︸
K̃

q+VTgnl(Vq)︸ ︷︷ ︸
g̃nl(q)

= VT fa︸ ︷︷ ︸
f̃a

. (6.3)

La base de réduction V ne contient que peu de vecteurs, ce qui conduit à des matrices projetées M̃,
C̃ et K̃ de dimensions négligeables au regard du problème initial. L’enjeu est donc de déterminer
une base de réduction capable de rendre compte du comportement non-linéaire de la structure. Une
seconde contrainte que nous détaillerons plus loin consiste à déterminer une expression explicite
des efforts non-linéaires projetés g̃nl(q). En effet, la projection VTgnl(Vq) est intrusive car
elle nécessite un calcul dans le domaine complet par un solveur éléments finis, ce qui n’est pas
souhaitable.

Les vibrations de la structure peuvent être caractérisées par les modes normaux linéaires de
celle-ci: Φ = {ϕϕϕ1, · · · ,ϕϕϕN} avec N le nombre de degrés de liberté de la structure. Les modes
normaux linéaires sont solutions de l’équation aux valeurs propres:

(
K− ω2

iM
)
ϕϕϕi = 0 ∀i ∈ [1, N ], (6.4)

avec ωi les pulsations dont dérivent les fréquences propres de ces modes. Lorsque les amplitudes
de déplacement sont faibles et que les non-linéarités géométriques peuvent de ce fait être négligées,
le problème devient linéaire. Dans un tel cas, le choix d’une base de réduction exclusivement
constituée d’un nombre réduit de modes normaux linéaires est un choix pertinent pour représenter
le comportement dynamique de la structure. Il suffit de prendre les modes de la structure dont la
fréquence propre est contenue dans la gamme de fréquences des excitations externes. En revanche,
en présence de non-linéarités géométriques, un couplage apparait entre des modes basse et haute
fréquence. Par conséquent, les premiers modes linéaires ne sont plus suffisants pour capturer la
dynamique et la base de réduction doit être enrichie par des modes additionnels prenant en compte
le couplage non-linéaire des modes.

Une possibilité est l’exploitation de résultats de simulations haute-fidélité déjà calculées par
des méthodes POD [1, 54, 98, 111]. Le problème majeur est d’une part que les calculs préliminaires
sont très coûteux et d’autre part qu’ils dépendent du cas de chargement. Une autre possibilité est
l’utilisation de dérivées modales [87, 91, 114, 133, 166, 178], qui sont une expansion de Taylor des
modes linéaires afin de capturer la non-linéarité proche. Le nombre de dérivés modales évolue de
manière quadratique avec celui des modes linéaires. Bien qu’il existe des méthodes pour sélection-
ner les plus pertinentes [114], une telle pluralité peut être problématique. La littérature propose
également un enrichissement de la base de réduction par modes duaux [100, 124, 142, 204, 205].
Ces derniers sont obtenus à partir d’une décomposition en valeurs singulières de solutions sta-
tiques résultant d’efforts imposés avec une forme particulière. Les efforts sont en effet construits
en s’appuyant sur les modes linéaires de la structure afin que les modes duaux enrichissant la base
de réduction ne privilégient pas de cas de chargement spécifique. Nous reviendrons sur les modes
duaux dans le Chapitre 2.

Dans le cadre d’un couplage fluide-structure partitionné, le solveur fluide intéragit avec un
solveur éléments finis qui calcule, à chaque sous-itération de couplage, le déplacement de la struc-
ture soumise au chargement aérodynamique. L’échange d’informations entre les solveurs fluide
et structure n’est pas trivial, d’où l’intérêt d’utiliser un modèle d’ordre réduit non-intrusif et au-
tonome dans le sens où le solveur éléments finis n’est pas appelé pendant le calcul. Or, l’évaluation
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des efforts projetés g̃nl(q) = VTgnl(Vq) dans l’équation (6.3) nécessite des aller-retours entre les
variables réduites et celles du modèle complet. En effet, le déplacement physique u ≈ Vq doit dans
un premier temps être assemblé puis évalué dans le domaine complet par le solveur éléments finis
(calcul de gnl(Vq)), pour être ensuite projeté à nouveau dans l’espace réduit. Nous comprenons
que l’intérêt serait de connaitre une expression explicite de g̃nl(q) en fonction des coordonnées
généralisées, ce qui permettrait d’évaluer cette quantité directement dans l’espace réduit. Notre
travail se plaçant dans le cadre de problèmes d’élasticité en petites déformations locales et grands
déplacements et rotations, régi par un modèle de comportement de Saint Venant-Kirchhoff, les ef-
forts non-linéaires internes gnl(u) sont cubiques en les degrés de liberté u [125, 126]. L’introduction
de l’approximation linéaire u ≈ Vq dans leur expression conduit à des efforts non-linéaires projetés
g̃nl(q) cubiques en les coordonnées généralisées q. Notant g̃knl(q) la kième coordonnée de g̃nl(q),
nous pouvons écrire son expression de manière explicite de la manière suivante:

g̃knl(q) =
n∑

i=1

n∑

j=i

βk
ijqiqj +

n∑

i=1

n∑

j=i

n∑

m=j

γkijmqiqjqm, (6.5)

avec n le nombre de modes dans la base de réduction, alors que βk
ij et γkijm sont les coefficients

respectivement quadratiques et cubiques de l’expression polynomiale. Ces coefficients restent à
déterminer. Pour cela deux méthodes se distinguent dans la littérature. La première consiste à
déterminer ces coefficients un par un en imposant à la structure des déplacements astucieusement
choisis, cette méthode est appelée STEP [126]. Il faut toutefois garder en mémoire qu’évaluer des
efforts internes sur ces déplacements imposés avec des structures 3D peut entrainer des artefacts
numériques [199]. La seconde méthode est basée non pas sur des déplacements mais sur des
efforts imposés à la structure, avec une forme particulière issue des modes normaux linéaires. Une
telle méthode est connue sous le nom de Implicit Condensation (IC) [122]. Elle se restreint à ne
considérer que les premiers modes linéaires de la structure, identifier les coefficients des efforts
non-linéaires projetés par efforts imposés, puis une étape de reconstruction a posteriori du calcul
appelée Expansion [79] est proposée pour rendre compte du couplage non-linéaire entre les modes.
Dans le chapitre 2 nous proposons une méthode innovante s’affranchissant de cette reconstruction
a posteriori peu précise, et qui ne se restreint pas à uniquement des modes linéaires dans la base
de réduction, tout en gardant des efforts imposés similaires.

Il existe d’autres approches pour construire des modèles d’ordres réduits pour des structures
non-linéaires géométriques. Une famille de méthodes appelées Hyper-réduction consistent à évaluer
les efforts internes non-linéaires toujours dans le domaine complet, mais seulement pour un nombre
réduit de degrés de libertés judicieusement choisis. Nous pouvons citer par exemple les méthodes
DEIM [26] et ses dérivées UDEIM [191] et ECSW [3]. Ces méthodes restant intrusives elles
peuvent ne pas être évidentes à mettre en pratique et sont moins compatibles avec un couplage
fluide-structure.

Afin d’étudier la réponse non-linéaire de la structure autour de résonances, la théorie des
modes non-linéaires est très présente dans la littérature. Elle ne consiste pas en une projection
dans une base de dimension réduite mais en un changement de variable non-linéaire pour passer des
variables réduites aux physiques. La dynamique de la structure évolue dans une variété tangente
aux modes linéaires à l’origine et est pilotée par des modes dits maitres alors que les autres modes,
appelés esclaves, ont un comportement fonction de ces modes maitres [173–175, 201]. L’unicité
de la variété sous certaines conditions est prouvée dans [90], conduisant à la théorie des sous-
variétés spectrales [73]. Auparavant limitée à des changements de variables d’ordre faibles, la
méthode de paramétrisation des variétés invariantes [16–18, 74] a permis l’application de la théorie
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à des systèmes de grande dimension avec des développements à ordre arbitraire et de traiter les
résonnance internes [200]. La prise en compte de l’effort extérieur dans la construction du modèle
est également possible [137, 138]. La construction du modèle étant intrusive dans le code source
éléments finis, une approche non-intrusive limitée à l’ordre 3 est également proposée dans [202].
Des applications en interaction fluide-structure sont présentes dans la littérature [2, 110, 193]
mais l’approche n’est pas prévue dans sa construction pour des efforts extérieurs dépendants de la
position, ce que sont les efforts aérodynamiques. Il est également utile de mentionner les modes
complexes non-linéaires proposés dans [108, 109], basés sur une variation pseudo-périodique des
modes non-linéaires, qui permettent également de traiter des non-linéarités de frottement aux
contacts [94, 95, 101, 102].

Chapitre 2: Développement d’un modèle réduit non-intrusif pour
le couplage aéroélastique

Ce chapitre détaille la construction du modèle réduit proposé et traite une première application à
un cas de poutre de von Kármán.

Construction du modèle réduit: Le couplage du modèle réduit structure avec un solveur fluide
et les applications aéronautiques imposent plusieurs contraintes. La première est que les structures
étant complexes, nous nous imposons que la construction du modèle puisse faire appel de manière
non-intrusive à un logiciel éléments finis industriel. De plus, une fois construit, le modèle réduit ne
doit plus avoir à faire appel au solveur éléments finis et est entièrement déterminé par les matrices
réduites et coordonnées généralisées, notamment pour les efforts non-linéaires internes projetés
g̃nl(q). La seconde contrainte vient des applications aéroélastiques qui ont pour particularité que
les efforts aérodynamiques extérieurs s’exerçant sur la structure sont suiveurs donc dépendent
de la position et qu’ils ont également un contenu fréquentiel très riche. Ces deux points posent
problème vis à vis d’une réduction par modes non-linéaires et la littérature manque de recul sur
ce point. Dans ce chapitre nous proposons un modèle réduit par projection, que nous appellerons
ICDual, avec enrichissement de la base de réduction par modes duaux et une expression des efforts
non-linéaires projetés identifiée par efforts imposés.

Le base de modes propres de la structure est enrichie par des modes duaux. La détermination
de ces derniers nécessite le calcul de solutions statiques à des efforts imposés de la forme suivante:

∀ℓ ∈ [1, nL] f
(ℓ)
ext = K

( nb∑

i=1

α
(ℓ)
i ϕϕϕi

)
, (6.6)

où (ϕϕϕ)i∈[1,nb] sont les modes normaux linéaires de la structure considérés et α
(ℓ)
i des coefficients

de pondération. Les efforts imposés de la sorte sont intéressants car ils sont basés exclusivement
sur la forme des modes linéaires et non sur des cas de chargements particuliers qui seraient alors
privilégiés par le modèle dans certaines applications au détriment d’autres. Les solutions non-
linéaires statiques résultant de ces chargements sont solutions des équations:

∀ℓ ∈ [1, nL] Ku
(ℓ)
s + fnl(u

(ℓ)
s ) = f

(ℓ)
ext. (6.7)

L’idée est ensuite d’extraire les coordonnées généralisées q(ℓ) associées aux projections sur les
modes de ces solutions statiques. En effet, comme u

(ℓ)
s ≈ Φq(ℓ), les coordonnées q(ℓ) sont calculées

par moindres carrés et les résidus de l’approximation sont écrits r(ℓ) ce qui donne:

∀ℓ ∈ [1, nL] u
(ℓ)
s = Φq(ℓ) + r(ℓ). (6.8)
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Les résidus r(ℓ) sont ensuite rassemblés dans une matrice dont une décomposition en valeurs sin-
gulières est effectuée:

[
r(1), · · · , r(nL)

]
=
[
d1, · · · , dnp

]
diag(σ1, σ2, · · · , σnp)W

T , (6.9)

où (σi)i∈[1,np] sont les valeurs singulières non nulles, ordonnées de la plus élevée à la plus faible,
(di)i∈[1,np] sont les vecteurs singuliers à gauche de la décomposition et WT les vecteurs singuliers
à droite. La projection des vecteurs des résidus sur les vecteurs de la décomposition en valeur
singulière est la suivante:

r(ℓ) =

np∑

k=1

βℓ
kdk, (6.10)

avec βℓ
k = σkWℓk. La somme Er des énergies de déformation linéarisées associées à chaque résidu

a pour expression:

Er =
nL∑

ℓ=1

r(ℓ)
T
Kr(ℓ) =

np∑

k=1

( nL∑

ℓ=1

βℓ
k
2
dT
kKdk

)

︸ ︷︷ ︸
Ek

, (6.11)

car ∀(k, j) ∈ [1, np]
2,dT

k dj = δkj . Comme expliqué dans [100], les modes duaux choisis pour com-
pléter la base de réduction sont les vecteurs

(
di

)
i∈[1,np]

associés d’une part aux valeurs singulières
σk les plus élevées, et d’autre part ceux contribuant le plus à l’énergie de déformation linéarisée,
c’est-à-dire ceux pour lesquels Ei est le plus élevé. La base de réduction est finalement la con-
caténation entre les modes propres linéaires choisis et les modes duaux sélectionnés V = [Φ,Φdual].

L’étape suivante consiste à déterminer l’expression explicite de g̃nl(q) comme développement
cubique en les coordonnées généralisées q, selon l’expression donnée en équation (6.5). Les coeffi-
cients de la décomposition polynomiale des efforts sont déterminés par efforts imposés selon la forme
(6.6). En ce sens la méthode est similaire à la méthode IC. Nous imposons des efforts construits
uniquement à partir des modes linéaires mais nous considérons une base de réduction plus riche du
fait des modes duaux. Les modes duaux ne sont en effet pas utilisés pour imposer les efforts car ils
génèrent des efforts internes dont l’amplitude diffère de plusieurs ordres de grandeurs par rapport
à leurs homologues linéaires, ce qui entraine des difficultés numériques. D’autant que cela n’est
pas nécessaire car l’application d’efforts selon l’expression (6.6) conduit à des déplacements pour
lesquels les modes duaux sont eux aussi mis à contribution. Un avantage non négligeable est égale-
ment que les solutions statiques calculées pour déterminer les modes duaux peuvent être réutilisées
pour la détermination des coefficients de g̃nl(q), ce qui réduit le nombre de calculs à effectuer en
comparaison avec une détermination par déplacements imposés. De plus, l’application d’efforts
pour déterminer les coefficients permet d’éviter les éventuels problèmes numériques résultant de
l’imposition de déplacements modaux sur les structures tridimensionnelles.

Comme pour la détermination des modes duaux, les nL solutions statiques sont notées u
(ℓ)
s .

Les coordonnées généralisées associées sont déterminées par moindres carrés en utilisant la pseudo-
inverse de la base de réduction V:

q(ℓ) = (VTV)−1VTu
(ℓ)
s . (6.12)

A ce stade, nL couples
(
q(ℓ), fnl(u

(ℓ)
s )
)

sont déterminés et satisfons les systèmes suivants (pour

chaque mode k) aux inconnues βk
ij and γkijm:

f̃k
nl(q

(ℓ)) = VT
k fnl(Vq(ℓ)) =

n∑

i=1

n∑

j=i

βk
ijq

(ℓ)
i q

(ℓ)
j +

n∑

i=1

n∑

j=i

n∑

m=j

γkijmq
(ℓ)
i q

(ℓ)
j q(ℓ)m . (6.13)
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En fonction du nombre de cas de chargements utilisés, le système est soit carré, soit sur ou sous-
déterminé, auquel cas une résolution par moindres carrés est nécessaire. Le conditionnement du
système étant parfois élevé, des méthodes de régressions pénalisées telles que Ridge, Lasso [189]
ou Elastic Net [210] peuvent être préférées.

Application à une poutre de Bernoullli/von Kármán: Dans ce chapitre, une première
application du modèle réduit présenté consiste en une poutre de Bernoulli/von Kármán. Le modèle
réduit ICDual présenté en début de chapitre est dans un premier temps construit. La figure 6.3
représente les critères en valeurs singulières et énergie pour la sélection des modes duaux. Cinq
modes duaux sont retenus pour enrichir la base de réduction contenant les trois premiers modes
normaux linéaires.
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Figure 6.3: Valeurs singulières et énergies de déformations linéarisées des résidus des solutions
statiques pour la détermination des modes duaux.

Différents cas de chargement sont étudiés, dans un premier temps statiques, puis dynamiques.
Le premier chargement est distribué le long de la poutre et le second est pontuel et suiveur en
son extrémité. Les figures 6.4a et 6.4b illustrent les déformées statiques de la poutre soumise aux
chargements respectivement distribué et suiveur. Les solutions linéaires et non-linéaires du modèle
complet sont comparées aux solutions réduites IC, ICE et ICDual. Pour rappel, la solution IC est la
solution ICE avant l’étape de post-traitement appelée Expansion. Dans le cas de l’effort distribué
les solutions ICE et ICDual sont en très bon accord avec le modèle non-linéaire complet. Il est
important de mentionner qu’il en est de même pour un effort vertical à l’extrémité non-suiveur. En
revanche, pour un effort suiveur, seule la solution ICDual capture précisément la solution exacte.
Ce cas test identifie une première limitation de la méthode ICE et l’intérêt des modes duaux dans la
base de réduction. En effet, l’effort est suiveur mais la base de projection linéaire pour la méthode
ICE ne contient que des modes de flexion caractérisés par une composante axiale nulle. Ainsi, la
composante axiale de l’effort suiveur est tronquée par la projection et seule celle verticale est prise
en compte. Dans le cadre de la méthode ICDual, les modes duaux, dotés d’une composante axiale,
permettent de prendre en considération l’effort suiveur dans sa totalité.

Les réponses de la poutre à des sollicitations dynamiques sont ensuite étudiées. La figure 6.5
illustre les déplacements verticaux et axiaux de l’extrémité de la poutre soumise à un charge-
ment suiveur. Un comportement analogue est observé pour un chargement non suiveur ainsi
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Figure 6.4: Déformée non-linéaire statique de la poutre de Bernoullli/von Kármán encastrée-libre
soumise à un chargement distribué (a) et suiveur (b).

qu’un chargement distribué. Pour une telle configuration, les réponses verticales linéaires et non-
linéaires sont proches, moyennant un déphasage. En revanche, la formulation non-linéaire de la
poutre traduit un raccourcissement axial, ce que le calcul linéaire ne prend pas en compte. Le
modèle réduit ICDual capture parfaitement la dynamique dans les directions verticales et axiales
ainsi que le déphasage. Au contraire, le modèle réduit ICE est déphasé et ne capture que approx-
imativement les déplacements non-linéaires. La raison est que le couplage membrane-flexion n’est
que reconstruit en post-traitement à partir de considérations statiques. Au contraire, le couplage
dynamique entre membrane et flexion est directement calculé (plutôt que reconstruit) via les modes
duaux avec le modèle ICDual.

9.4 9.5 9.6 9.7 9.8 9.9 10.0
Time (s)

10

5

0

5

10

 Y
 / 

h 

Linear solution
Nonlinear solution
ICE solution
ICDual solution

(a) Déplacement vertical

9.4 9.5 9.6 9.7 9.8 9.9 10.0
Time (s)

1.5

1.0

0.5

0.0

0.5

 X
 / 

h 

Linear solution
Nonlinear solution
ICE solution
ICDual solution

(b) Déplacement axial

Figure 6.5: Déplacement non-linéaire dynamique à l’extrémité de la poutre de Bernoulli/von Kár-
mán encastrée-libre soumise à un chargement suiveur sinusoidal en bout de poutre d’amplitude
2,500 N et de fréquence f0 = 3.37 Hz. Comparaison des résultats des différents modèles.

Le cas de la poutre en rotation centrifuge à 500 tr/min autour d’un axe fixe est également
étudié pour des cas de chargements analogues. Les conclusions des cas statiques sont les mêmes
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avec un bon accord des solutions ICE et ICDual dans les cas non-suiveurs alors que seule la
méthode ICDual est efficace dans le cas suiveur pour les raisons détaillées précédemment. Les
conclusions des cas dynamiques sont également similaires à celles des cas sans rotation dans le sens
où la limitation du post-traitement ICE est mis en évidence alors que la méthode ICDual capture
parfaitement la solution de référence. La figure 6.6 illustre les déplacements verticaux et axiaux
de l’extrémité de la poutre soumise à un chargement suiveur dans le cas en rotation. Ici encore les
conclusions sont simillaires avec le chargement non-suiveur et celui distribué. Il est intéressant de
préciser que la non-linéarité du modèle est plus riche dans le cas en rotation, ce qui accentue les
erreurs du modèle ICE sans affecter la précision de la méthode ICDual.
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Figure 6.6: Déplacement non-linéaire dynamique à l’extrémité de la poutre de Bernoulli/von Kár-
mán encastrée-libre en rotation à 500 tr/min soumise à un chargement suiveur sinusoidal en bout
de poutre d’amplitude 7,350 N et de fréquence correspondant à celle du premier mode en rotation.
Comparaison des résultats des différents modèles.

Dans ce chapitre, nous avons proposé un modèle réduit, ICDual, s’appuyant sur les modes
duaux et innovant dans la façon d’évaluer les coefficients des efforts non-linéaires projetés. Un
premier cas d’étude consistant en une poutre de Bernoulli/von Kármán donne des résultats très
satisfaisants.

Chapitre 3: Application à des éléments finis 3D à l’aide un solveur
éléments finis externe

Le troisième chapitre de ce manuscrit de thèse a pour but d’appliquer notre méthode de réduc-
tion dans le cadre d’éléments finis 3D avec l’utilisation non-intrusive d’un solveur industriel, ici
Code_Aster. Nous reprenons la géométrie de la poutre du chapitre précédent, désormais maillée
avec des éléments finis 3D HEX20. Une première configuration sans rotation puis une seconde à
500 tr/min sont considérées. Les cas de chargements sont un effort vertical en bout de poutre,
dans un premier temps statique, puis dynamique.

Le modèle réduit est construit à partir des trois premiers modes linéaires. Ces modes sont
illustrés sur la figure 6.7. On peut remarquer que le second mode n’est pas dans le même plan que
le premier et le troisième.
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Figure 6.7: Visualisation des 3 premiers modes normaux de la poutre en rotation centrifuge à
500 tr/min. La configuration maillée correspond à la géométrie initiale et les traits continus
illustrent les modes correspondants du cas sans rotation.

Nous ne retenons que les deux premiers modes duaux dans le processus de sélection afin d’avoir
un nombre faible de coefficients à déterminer mais également car nous ne souhaitons pas enrichir
la dynamique dans la direction Y. Ces modes sont illustrés en figure 6.8.

Figure 6.8: Représentation des deux premiers modes duaux obtenus à partie des trois premiers
modes linéaires.

La réponse non-linéaire de la poutre à un chargement statique vertical en son extrémité est
notamment caractérisée par un raccourcissement axial. Comme pour l’application du chapitre
précédent, un bon accord est observé entre la solution éléments finis et les solutions obtenues avec
les modèles ICE et ICDual pour les chargements statiques. La solution ICDual est toutefois plus
précise que la solution ICE dans le cas en rotation. En ce qui concerne les réponses aux charge-
ments dynamiques, la reconstruction en post-traitement de la méthode ICE est approximative
comme dans le chapitre précédent. La méthode ICDual permet elle une meilleure prise en compte
du couplage membrane-flexion et donne de meilleurs résultats, moyennant un léger déphasage. La
figure 6.9 illustre le déplacement maximal en régime permanent de la poutre soumise à un charge-
ment vertical sinusoidal. Le déplacement est illustré sur la ligne moyenne de la poutre 3D et un
zoom sur le bout de la poutre est associé à la figure, mettant en évidence le raccourcissement axial
dû à la non-linéarité.
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Figure 6.9: Comparaison du déplacement maximal en régime permanent entre le modèle éléments
finis complet et les modèles réduits. La poutre est soumise à un chargement vertical sinusoidal en
son extrémité, d’amplitude 7350 N et de fréquence 9.67 Hz.

Dans ce chapitre nous avons mis en évidence qu’avec seulement deux modes duaux supplé-
mentaires et aucun calcul statique additionel, l’utilisation du modèle réduit ICDual permet une
amélioration significative des résultats par rapport à une approche ICE classique.

Chapitre 4: Procédure de couplage partitionné entre le solveur flu-
ide et le modèle réduit structure

Ce chapitre présente des éléments théoriques nécessaires au couplage fluide-structure tels que celui
effectué dans le chapitre suivant. La dynamique du fluide est régie par les équations de Navier-
Stokes. En l’absence de terme source, ces équations prennent la forme suivante:

∂W

∂t
+∇ ·F(W ) = 0. (6.14)

avec W =
[
ρ ρv ρE

]T
le vecteur des variables conservatives et F leur flux. Dans le cadre

d’un couplage fluide-structure, le déplacement de la structure en raison des efforts aérodynamiques
conduit au mouvement de la condition limite pour le fluide. Par propagation de la condition limite,
le maillage est mis en mouvement dans son ensemble. Pour rendre compte de la dynamique du fluide
dans un maillage mobile il est courant d’écrire les équations de Navier-Stokes en formulation ALE
(Arbitrary Lagrangian-Eulerian). La forme intégrale des équations de Navier-Stokes appliquée à
un élément de volume ΩF de surface SF (t) en formulation ALE est la suivante:

d

dt

∫

ΩF

W dΩF +

∫

SF (t)
F(W , v̂) · n dSF (t) = 0, (6.15)
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où le flux à travers la surface a pour expression:

F(W , v̂) =



ρ(v − v̂)
ρv ⊗ (v − v̂) + pI− τ
ρE(v − v̂) + pv − τv + q


 . (6.16)

dans laquelle τ est le tenseur des contraintes visqueuses et q le flux de chaleur.

Comme évoqué précédemment, la déformation de la structure à l’interface doit être propagée
dans le domaine de calcul et le maillage fluide est ainsi déformé au cours du couplage. Il existe
différentes méthodes de déformation du maillage. Par exemple, une méthode consiste en une
analogie structurale. Le domaine fluide est assimilé à un matériau linéaire élastique auquel un
déplacement est prescrit à l’interface [45]. Le matériau est caractérisé par un module d’Young E

et un coefficient de Poisson ν. La déformation de maillage est alors calculée comme un problème
classique éléments finis. Toutefois, le module d’Young et le coefficient de Poisson ne sont pas
uniformes dans le maillage mais dépendent des tailles locales des cellules. Le but est d’augmenter
la rigidité dans les régions de maillage fortement raffinées telles que les couches limites proches
parois. Cette méthode de déformation de maillage est celle utilisée dans ce travail. Il existe
également d’autres méthodes de déformation de maillage telles que la méthode TFI (TransFinite
Interpolation) [60] qui est une méthode analytique basée sur des fonctions d’interpolation,
dépendant des coordonnées curvilignes du maillage, et satisfaisant le déplacement à l’interface.
Cette méthode étant analytique, elle est très rapide. Toutefois elle ne s’applique qu’aux maillages
structurés. Il est également possible d’utiliser des fonctions de bases radiales (RBF) [32] pour
déformer le maillage ou la méthode IDW (Inverse Distance Weighting) [207] basée sur la distance
à des points de contrôle. Une déformation du maillage impliquant de très grandes rotations
pouvant parfois poser problème, il existe des méthodes de déformation utilisant les quaternions.

Le calcul numérique des problèmes d’interaction fluide-structure est difficile car la dynamique
de la structure et celle du fluide sont imbriquées. En effet, la condition limite pour le fluide est
le déplacement de la structure et les conditions limites pour la structure sont les charges aéro-
dynamiques du fluide. Dans la littérature, deux approches fondamentalement différentes existent
pour résoudre un problème d’interaction fluide-structure [82]. D’une part, l’idée est de résoudre
toute la physique simultanément dans un unique système, cette approche est appelée l’approche
monolithique. D’autre part, l’approche partitionnée consiste en deux solveurs différents pour le
fluide et la structure, qui s’échangent les informations nécessaires avec un schéma spécifique.

Comme mentionné ci-dessus, l’approche monolithique consiste en la résolution implicite d’un
système unique regroupant les équations du fluide, de la structure, de la déformation du maillage
et des transferts. Ainsi, toutes les composantes du couplage sont résolues simultanément dans
une seule boucle d’incrémentation temporelle, ce qui garantit la stabilité et la convergence du
couplage. La formulation implicite du système permet également des pas de temps qui ne sont
pas excessivement petits. Des exemples de problèmes d’interaction fluide-structure résolus avec
l’approche monolithique peuvent être trouvés dans [76, 82, 83, 194]. L’inconvénient des approches
monolithiques est qu’elles conduisent à des systèmes non linéaires de grandes dimensions dont la
résolution est parfois difficule [40, 63, 76, 156].

Dans le cadre d’un couplage partitionné, des solveurs différents sont considérés pour le fluide
et la structure. Cela permet une plus grande modularité. En outre, un autre avantage est qu’il
existe un solveur dédié pour chaque physique, dans lequel toute la complexité souhaitée peut être
intégrée plus facilement, ce qui est plus difficile à mettre en oeuvre dans une approche monolithique.
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Le couplage partitionné le plus simple consiste à alterner les calculs du fluide et de la structure
à chaque pas de temps, on appelle cela le couplage faible. Chaque solveur communique à son
homologue des valeurs prédites selon un schéma particulier. Avec des schémas de prédiction et
d’intégration bien choisis, il est possible de garantir une précision temporelle de second ordre [53].
Des exemples de couplage faible se trouvent par exemple dans [55, 82, 184] et [51, 53, 147] avec
des applications aux configurations aéroélastiques dans ces derniers. Toutefois, les schémas de
couplage faible entraînent un décalage temporel entre les deux solveurs [147] et les conditions à
l’interface fluide-structure en termes de vitesse, de déplacement et de contraintes ne correspondent
pas exactement entre les deux solveurs à chaque pas de temps du couplage. La convergence de
l’ensemble du problème fluide-structure n’est pas garantie, ce qui peut entraîner une perte de
stabilité et de précision et faire diverger la solution numérique de la solution physique. En outre,
le décalage temporel entre les solveurs peut se traduire par un ajout purement numérique d’énergie
au système puisque le travail échangé entre les deux solveurs n’est pas parfaitement équilibré [147],
ce qui conduit à des instabilités de masse ajoutée [24, 59]. La littérature propose également des
schémas de couplage parallèles [51, 55]. Lors de tels couplages, les solveurs fluide et structure
n’attendent pas que leur homologue actualise ses variables en fonction des informations tout juste
fournies, les deux solveurs fonctionnent en même temps. Ils ne communiquent entre eux qu’à des
intervalles de temps spécifiques. Ces méthodes de couplage réduisent considérablement le temps
de calcul au prix d’une légère perte de précision.

Pour satisfaire les conditions à l’interface fluide-structure et contrôler la convergence du prob-
lème global, un couplage partitionné implicite (également appelé couplage fort) est courant. Cette
approche consiste à ajouter des sous-itérations de couplage au cours du même pas de temps. Il est
courant que ces sous-itérations soient des itérations de point fixe entre les solveurs, c’est ce qui est
fait par exemple dans [5, 13, 41, 121]. Les principaux avantages du couplage partitionné implicite
avec sous-itérations sont que la convergence est contrôlée et qu’elle n’est pas sujette à des insta-
bilités de masse ajoutée. Néanmoins, dans certains cas, le nombre de sous-itérations nécessaires
pour satisfaire un critère de convergence donné peut être particulièrement élevé, ce qui augmente
le coût de calcul de la méthode. Dans le chapitre suivant, un couplage fort est considéré avec des
sous-itérations de point fixe entre les solveurs fluide et structure au sein d’un même pas de temps.
Les différentes étapes d’un tel couplage partitionné sont résumées dans la figure 6.10.

Que ce soit avec une approche monolithique ou partionnée, il est nécessaire de garder en
mémoire que les maillages fluide et structure sont dans la majorité des cas non-coincidents et
que la transmission des informations d’un maillage à l’autre n’est pas trivialle. Le transfert des
efforts du maillage fluide vers le maillage structure et le transfert des déplacements du maillage
structure au maillage fluide ont recours à des techniques d’interpolation entre les maillages. Une
interpolation par fonctions de bases radiales est souvent utilisée pour interpoler la déformation de la
structure dans le maillage fluide [10, 14, 169, 206]. Inversement, les efforts aérodynamiques peuvent
être reportés sur le maillage fluide à l’aide de différentes méthodes comme des projections [115]
ou l’utilisation de fonctions Splines [10, 186], les méthodes les plus courantes étant toutefois des
méthodes de plus proches voisins, de RBF ou la méthode Weighted Residual Method [33, 34, 52].
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Figure 6.10: Les différentes étapes du couplage partitionné utilisé dans ce travail.

Chapitre 5: Application du couplage fluide-structure à un exemple
bidimensionnel

Le but de ce chapitre est d’étudier l’efficacité du modèle réduit ICDual dans un cas d’interaction
fluide-structure. En effet, les forces aérodynamiques sont des efforts complexes, à la fois distribués
et suiveurs. Le cas test d’intérêt consiste à placer la poutre étudiée au chapitre 2 dans le sillage
tourbillonnaire en aval d’un cylindre fixe.

Un couplage partitionné est mis en oeuvre. La dynamique du fluide est calculée au moyen du
solveur volumes finis elsA [19] (propriété de conjointe de l’ONERA et Safran). Le choix de ce
solveur en particulier est d’anticiper de futures applications aéroélastiques industrielles. Les flux
convectifs sont approximés avec le schéma AUSM+ (P) MiLES [113, 120], afin de bénéficier d’une
faible dissipation et sa bonne précision pour des écoulements à basse vitesse. En ce qui concerne
le solveur structure, un schéma d’intégration temporelle HHT-α est utilisé, incluant à chaque pas
de temps des sous-itérations de Newton-Raphson pour la convergence des équations non-linéaires.
La figure 6.11 illustre le couplage au cours d’une période, l’écoulement du fluide est à Reynolds
200. Les déplacements verticaux et axiaux de l’extrémité de la poutre en régime permanent sont
représentés en figure 6.12. La solution obtenue avec le modèle réduit ICDual est comparée à celles
des modèles complets linéaires et non-linéaires. Le modèle réduit ICDual est celui de l’application
sans rotation du chapitre 2 avec les trois modes linéaires et les cinq modes duaux. On remarque
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Figure 6.11: Visualisation du champ de l’amplitude de la vorticité au cours d’une période en
régime permanent, dans le cas de l’interaction fluide-structure entre le détachement de vortex
dans le sillage d’un cylindre fixe et la poutre flexible.

que le raccourcissement axial n’est pas capturé par le calcul linéaire et le déplacement vertical
présente un déphasage vis à vis de la solution exacte. Sur la durée de calcul considérée, la réponse
linéaire est en avance de presque deux périodes sur la solution exacte. Au contraire, le modèle
réduit ICDual capture très précisément la solution non-linéaire, tant lors du régime transitoire que
du régime permanent.

Le comportement couplé de la poutre est ensuite étudié sur une gamme de nombres de Reynolds
autour de Re = 200. En effet, lorsque la fréquence du détachement tourbillonnaire et la fréquence
propre de la poutre sont proches, un phénomène de verrouillage en fréquence apparait appelé
lock-in. Les figures 6.13a et 6.13b représentent respectivement la fréquence de vibration de la
poutre et son amplitude de déplacement vertical à l’extrémité, en fonction du nombre de Reynolds.
Lorsque la fréquence du détachement tourbillonnaire est éloignée de la fréquence du mode propre,
les amplitudes de vibration sont si faibles que leur fréquence est imposée par l’écoulement du
fluide. Cependant, lorsque la fréquence du détachement tourbillonnaire est proche de la fréquence
propre, la vibration de la structure et le détachement tourbillonnaire répondent tous deux à une
fréquence unique, sur toute une gamme de nombres de Reynolds. En outre, l’étendue du plateau
diffère légèrement entre les cas linéaires et non linéaires. Avant et après la plage de fréquences
caractérisée par le phénomène de verrouillage, la poutre répond à la fois à la fréquence imposée par
l’écoulement du fluide et, dans une moindre mesure, à la fréquence du mode propre. Il en résulte
une phénomène de battement.

On remarque que le modèle réduit ICDual donne des résultats très bons pour ce problème
complexe d’interaction fluide-structure: la région de verrouillage en fréquence prédite par le modèle
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Figure 6.12: Déplacement vertical (a) et axial (b) du bout de la poutre lors du couplage aéroélas-
tique en régime permanent établi.
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(a) Evolution de la fréquence de vibration de la
poutre pour différents nombres de Reynolds.
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(b) Evolution de l’amplitude du déplacement verti-
val en bout de poutre pour différents nombres de
Reynolds.

Figure 6.13: Mise en évidence du phénomène aéroélastique de lock-in pour les différents modèles,
en terme de fréquence (a) et d’amplitude (b).

complet est parfaitement capturée lors des calculs couplés avec le modèle réduit, à la fois en terme
de fréquences et d’amplitudes de vibration. Ce dernier cas test démontre le potentiel d’un couplage
entre un modèle réduit de structure basé sur une formulation originale avec des modes duaux pour
les problèmes aéroélastiques. Le modèle réduit ICDual rend très précisément compte de la solution
non-linéaire de référence et est facilement couplé dans le cadre d’une approche partitionnée, car
il est indépendant de tout solveur éléments finis. L’influence de la non-linéarité géométrique a
été mise en évidence en termes de fréquence d’accrochage et le modèle réduit a été capable de
capturer cet effet de manière très précise. Pour ce cas test, la comparaison avec la solution du
modèle complet a été possible car il s’agit d’un modèle de poutre. Cependant, la résolution haute
fidélité d’un problème couplé est très coûteuse et difficile à mettre en oeuvre pour les structures
3D avec un grand nombre de degrés de liberté, ce qui justifie l’utilisation d’un modèle réduit
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non linéaire. Dans le chapitre suivant, la précision du modèle réduit ICDual est étudiée sur une
géométrie plus complexe, à savoir une aube de turbomachine en éléments finis 3D.

Chapitre 6: Application à un cas test industriel d’aube de turbo-
machine

Dans ce chapitre, nous considérons une structure 3D complexe d’une aube de soufflante représen-
tative d’un turboréacteur UHBR. L’objectif est d’étudier la précision et la robustesse du modèle
d’ordre réduit pour de telles structures avec des charges aérodynamiques représentatives.

(a) (b)

Figure 6.14: Visualisation du moteur complet (a) et zoom sur des aubes du fan (b).

La figure 6.14 illustre la configuration complète du moteur (à gauche) et l’aube de soufflante
qui nous intéresse (à droite). Nous ne considérons qu’une seule aube de soufflante (toutes les aubes
étant identiques). Le modèle structurel original de l’aube a été adapté pour permettre une analyse
dynamique limitée à une seule aube : à cette fin, le pied de l’aube a été supprimé et remplacé
par une condition limite d’encastrement. Le module d’Young est égal à 110 GPa, la densité à
4500 kg.m−3 et le coefficient de Poisson à 0, 318. L’aube est discrétisée en 66640 éléments finis
HEX8, avec 6 éléments dans l’épaisseur.

La structure est en rotation autour d’un axe fixe à une vitesse de 2,750 tr/min. Les effets
centrifuges sont présents et la dynamique de la structure est étudiée autour de la position précon-
trainte qui correspond à un léger dévrillage de l’aube. Les formes des modes normaux linéaires de la
structure et leurs fréquences modales associées sont modifiées par la vitesse de rotation puisqu’elles
sont calculées par rapport à la position précontrainte. Les premiers modes normaux linéaires sont
respectivement le premier mode de flexion (appelé 1F), le deuxième mode de flexion (2F) et le
premier mode de torsion (1T). La base de réduction est enrichie avec un mode dual. Les modes
constituant la base de réduction sont représentés en figure 6.15.

Dans un premier temps, un effort statique arbitraire est considéré, puis un effort dynamique
issu d’efforts aérodynamiques instationnaires. La Figure 6.16 illustre les solutions des différents
modèles dans le cas du chargement statique, défini par f ext = 15hK(Ω)ϕϕϕ2750

1 /max|ϕϕϕ2750
1 |. La non-

linéarité géométrique est significative pour de telles amplitudes. La solution non linéaire ICDual
est en très bon accord avec la solution FOM, mais la solution ICE présente une légère déviation
à l’extrémité du bord d’attaque alors que la solution linéaire surestime fortement le déplacement
statique.
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(a) Trois premiers modes linéaires à 2,750 tr/min. (b) Premier mode dual.

Figure 6.15: Modes de la base de réduction. Trois premiers modes linéaires (a) à 2,750 tr/min et
premier mode dual (b) construit à partir de ces modes.

Figure 6.16: Comparaison entre la solution du modèle complet et celles des modèles réduits pour
la structure soumise au chargement f ext = 15hK(Ω)ϕϕϕ2750

1 /max|ϕϕϕ2750
1 |.

Un calcul CFD de la configuration 360◦ fan-OGV-nacelle (illustrée en figure 6.14) est ensuite ef-
fectué, premièrement un calcul stationnaire, puis instationnaire à partir de ce premier. Le maillage
aérodynamique est constitué d’environ 16 millions de cellules. Le solveur CFD est le solveur de vol-
umes finis elsA [19]. Les distributions des efforts aérodynamiques résultants sur l’aube considérée
sont représentées sur la figure 6.17.

L’entrée de la nacelle présente une dissymétrie. En conséquence, le flux d’entrée est soumis à
un motif de distorsion. A chaque tour, une aube fan traverse le motif de distorsion et est donc
soumise à un forçage périodique. Un calcul CFD instationnaire est effectué et la décomposition de
Fourier des forces aérodynamiques instationnaires est calculée pour obtenir les amplitudes et les
phases en chaque point de la surface de l’aube. Le terme constant de la décomposition de Fourier
correspond à la solution stationnaire illustrée en figure 6.17. En ce qui concerne les harmoniques,
seules les premières harmoniques sont conservées car les amplitudes le long des suivantes sont
négligeables. Les coefficients de Fourier locaux sont ensuite transférés du maillage aérodynamique
aux noeuds voisins du maillage structurel avec une méthode énergétique basée sur la conservation
du travail virtuel.
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Figure 6.17: Efforts aérodynamiques stationnaires sur l’extrados (en haut) et sur l’intrados (en
bas) de l’aube.

La répartition des composantes fluctuantes des efforts est ensuite appliquée à la structure à
la fréquence du phénomène de forçage (i.e. la vitesse de rotation) et à l’amplitude souhaitée, en
plus de la composante constante. Un amortissement de Rayleigh est également considéré dans le
système : C = 2ξω2750

0 M avec ξ = 0.05. La figure 6.18 représente l’évolution temporelle au bord
d’attaque en bout d’aube dans la direction Y.
Comme attendu, les niveaux de vibration des modèles non linéaires sont beaucoup plus faibles que
ceux du modèle linéaire. Il existe une différence non négligeable entre les modèles réduits ICE et
ICDual, ce dernier présente des niveaux de vibration plus faibles et plus proches de ceux obtenus
avec le calcul éléments finis de référence. Le calcul de la solution dynamique du modèle éléments
finis complet prend environ 10 heures en utilisant du calcul parallèle et une utilisation mémoire
importante alors que la résolution avec les modèles réduits s’effectue en moins de 10 secondes sur
un seul processeur.
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Figure 6.18: Réponse temporelle dans la direction Y à l’extrémité du bord d’attaque en bout
d’aube.

Conclusion

Dans cette étude, nous nous sommes dans un premier temps concentrés sur le formalisme des équa-
tions régissant la vibration des structures géométriques non linéaires en rotation, ainsi que sur les
méthodes de résolution temporelle et fréquentielle. Ensuite, une revue de la littérature sur les
modèles d’ordre réduit adaptés aux non-linéarités géométriques a été effectuée. En tenant compte
des contraintes en termes de couplage, de l’approche non intrusive et du nombre réduit de modes
souhaités dans la base de réduction, l’utilisation de modes duaux a été considérée comme un can-
didat pertinent. Nous avons ainsi développé une méthodologie de construction du modèle d’ordre
réduit basée sur les modes duaux et incluant une manière innovante de calculer les coefficients
des forces non linéaires projetées via l’application de charges imposées. Cette approche présente
l’avantage de réutiliser les charges imposées pour déterminer les modes duaux dans le calcul des
coefficients des efforts non-linéaires projetés, limitant ainsi le nombre de calculs statiques néces-
saires. En outre, l’application d’efforts contourne une difficulté rencontrée avec les structures 3D
en ce qui concerne l’identification des coefficients par des déplacements imposés, pouvant générer
des artefacts numériques dans la résolution en raison des déformations volumiques imposées. Une
première application à une poutre de von Kármán à démontré la capacité d’un tel modèle d’ordre
réduit à capturer avec précision le comportement dynamique non linéaire sous différents cas de
chargement : des efforts ponctuels et distribués, suiveurs ou non. Les cas sans et avec rotation
autour d’un axe fixe ont été abordés. Cette première étude à été suivie d’une application aux
éléments finis 3D sur la même géométrie, où l’approche non intrusive avec un solveur d’éléments
finis externe prend tout son sens. Le deuxième axe d’étude se concentre sur le couplage fluide-
structure, les problèmes de déformation du maillage et le transfert des forces et déplacements qui
en découlent. Avec pour objectif de traiter des configurations industrielles, nous avons choisi un
couplage partitionné entre deux solveurs distincts (un pour le fluide et un autre pour la struc-
ture). Bien que le champ d’application de cette thèse soit limité à la réduction de modèle pour
la structure, il est nécessaire de pouvoir connecter simplement notre modèle réduit à n’importe
quel solveur fluide externe pour réaliser le couplage partitionné. Une application en interaction
fluide-structure a ensuite été menée entre la poutre de von Kármán précédemment étudiée et le sil-
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lage tourbillonnaire en aval d’un cylindre fixe auquel la poutre est attachée. Les résultats obtenus
avec le modèle réduit sont en excellent accord avec les solutions du modèle complet, capturant
parfaitement le phénomène de verrouillage en fréquence, tant en termes de gamme de fréquences
que d’amplitude des vibrations observées. La dernière étude de ce travail concerne l’application
à une aube de soufflante de turbomachine. Ce cas est complexe tant par sa géométrie que par le
nombre de degrés de liberté le constituant. Nous avons construit le modèle d’ordre réduit autour
d’un point de fonctionnement et mené une première étude de la précision du modèle d’ordre réduit
sur des cas de chargement statique arbitraires. Après avoir confirmé la bonne concordance avec la
solution haute-fidélité, nous nous sommes penchés sur des efforts aérodynamiques instationnaires.
À cette fin, des calculs CFD instationnaires ont été effectués sur la configuration complète du
moteur et récupéré les efforts agissant sur l’aube. Ces efforts sont caractérisés par un forçage
périodique à la fréquence de rotation du moteur résultant de l’asymétrie de la nacelle. Nous avons
identifié la distribution des composantes harmoniques des efforts agissant sur l’aube et construit un
chargement instationnaire représentatif à partir duquel nous avons basé notre comparaison entre
le modèle réduit et la solution haute-fidélité. Malgré la complexité du cas étudié, la solution du
modèle complet à été capturée avec précision par le modèle d’ordre réduit proposé.

Perspectives

Le modèle réduit proposé est non intrusif, permettant ainsi d’être construit à partir d’un solveur
éléments finis industriel. Ces codes, optimisés et riches en éléments sophistiqués, conviennent
parfaitement aux structures aéronautiques complexes. Cependant, en raison du secret industriel,
un accès intrusif au cœur du code n’est pas possible, justifiant le caractère non intrusif du modèle
réduit. L’ajout de modes duaux à la base de réduction enrichit cette dernière. La décomposition
en valeurs singulières permet de contrôler la précision souhaitée en ce qui concerne le résidu des cas
de charge imposés. Dans certains cas, l’absence de chute nette des valeurs singulières indique la
nécessité de prendre en compte de nombreux modes duaux, justifiant l’ajout du critère d’énergie de
déformation linéarisée pour distinguer les contributions les plus et moins significatives. Toutefois,
il a été observé dans certains cas qu’il n’y a pas de chute nette des valeurs singulières, ce qui signifie
dans certains cas que de nombreux modes duaux doivent être pris en compte. C’est pourquoi le
critère supplémentaire en termes d’énergie de déformation linéarisée est pertinent car il permet de
distinguer les modes duaux candidats qui contribuent le plus à la partie linéaire de l’énergie du
système de ceux qui y contribuent le moins. Dans ce travail, un cas de couplage fort a été réalisé sur
une configuration 2D d’une poutre flexible placée dans le sillage tourbillonnaire d’un cylindre fixe.
Une perspective évidente est l’étude d’un cas de couplage fort dans le contexte d’une application
industrielle. Bien que le temps de calcul pour de nombreuses applications aéroélastiques soit
principalement dû à la résolution du fluide, pour des structures complexes en contexte industriel,
le coût de calcul de la structure devient significatif. Il faut également mentionner que des modèles
simplifiés de dynamique des fluides sont également disponibles dans la littérature, par exemple les
théories de Theodorsen [185] ou de la ligne portante [152]. Dans ces cas, ce n’est pas le fluide mais la
structure qui nécessite le plus de ressources informatiques. Il existe dans la littérature des modèles
réduits pour les fluides, la perspective à long terme est d’utiliser des modèles d’ordre réduit à la
fois pour la structure et le fluide afin d’être efficace dans les deux domaines. Dans la littérature,
le désaccordage est l’un des problèmes associés aux structures tournantes et à l’aéroélasticité.
Ce problème n’est pas traité dans cette thèse et mérite une attention particulière. En effet,
des applications de modèles réduits non linéaires géométriques pour traiter des phénomènes de
désaccordage peuvent être trouvées dans [20, 146, 153]. L’étude de tels phénomènes avec le modèle
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réduit proposé est une perspective envisageable. Comme axes d’amélioration du modèle réduit
proposé il serait intéressant de développer une version paramétrique en fonction de la vitesse
de rotation afin de pouvoir considérer plusieurs points de fonctionnement. On trouve dans la
littérature des travaux au sujet d’une telle paramétrisation [105, 117, 139, 182]. L’adoption d’une
approche stochastique pour évaluer l’incertitude dans la détermination des coefficients d’efforts non
linéaires projetés, basée sur les travaux [20, 21, 146], serait une perspective également pertinente.
Le modèle réduit présenté dans ce manuscrit ouvre la porte à de nombreuses perspectives et
améliorations. Son utilisation n’est pas limitée aux applications relatives aux turbomachines,
mais s’étend aux pales d’hélicoptères, aux hélices d’avions, aux éoliennes et aux véhicules VTOL,
confrontés aux défis des non-linéarités géométriques. Des applications non tournantes, telles que
les ailes à grand allongement des futurs avions, peuvent également être étudiées avec ce modèle
d’ordre réduit.
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