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Résumé
Titre : Connexité dans les ensembles algébriques réels : algorithmes et applications

Mots clés : calcul formel, systèmes polynomiaux, géométrie algébrique réelle, robotique

Résumé : Cette thèse de doctorat porte sur la conception et l’analyse d’algorithmes, relevant
du calcul formel, pour la résolution de systèmes polynomiaux. Plus précisément, nous
considérons le problème du comptage du nombre de composantes connexes de l’ensemble
des solutions réelles de systèmes d’équations polynomiales à variables réelles, ainsi que
le problème de décider si deux solutions réelles d’un tel système vivent dans une même
composante connexe de son ensemble de solutions réelles. Ces problèmes sont centraux en
géométrie algébrique réelle et trouvent des applications en robotique.

Le cadre méthodologique choisi est celui du calcul de cartes routières, introduit par Canny
en 1988 : il s’agit de calculer une courbe contenue dans l’ensemble des solutions dont
l’intersection avec chacune de ses composantes connexes est connexe. Nous décrivons un
algorithme calculant de telles cartes routières qui, sous des hypothèses de régularité satisfaites
génériquement, a une complexité sous-quadratique en la taille de la sortie, cette dernière
étant asymptotiquement quasi optimale. Ceci étend aux cas non compacts les meilleures
complexités connues pour ce problème. Nous montrons aussi que le coût du calcul de
nombre de composantes connexes d’une courbe algébrique réelle (vivant dans un espace de
dimension arbitraire) est similaire au coût du calcul de la topologie de sa projection sur un
plan générique. Enfin, nous montrons comment ces avancées, combinées aux algorithmes de
la géométrie algébrique réelle permettent de concevoir un algorithme testant la cuspidalité
de mécanismes articulés.

Abstract

Title: Connectivity in real algebraic sets: algorithms and applications

Keywords: computer algebra, polynomial systems, real algebraic geometry, robotics

Abstract: This PhD thesis focuses on the design and the analysis of computer algebra algo-
rithms for solving polynomial systems. More precisely, we address the problems of counting
the number of connected components of sets of real solutions to systems of polynomial
equations with real coefficients and of answering connectivity queries over such real solution
sets. These problems are central in real algebraic geometry and find applications in robotics.

The chosen framework is the one of roadmaps, introduced by Canny in 1988: it consists in
computing a curve, included in the solution set under consideration, which has a connected
intersection with all its connected components. We design an algorithm which, under some
regularity assumptions which are satisfied generically, computes such roadmaps in time
subquadratic w.r.t. the output size. This latter quantity is nearly optimal. This extends to non
compact situations the best complexity results known for such a computational problem. We
also show that the cost to compute the number of connected components of a real algebraic
curve (lying in a space of arbitrary dimension) is nearly the same as the one of computing the
topology of its projection on a generic plane. Last, by combining these results with algorithms
of real algebraic geometry, we design an algorithm to decide the cuspidality of robots.
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Introduction 1
1.1 Context and motivations

As computer capacities increase, the range of what can be computed progresses everyday fur-
ther in the realm of mathematics. This paradigm shift has propelled us beyond human limits,
as witnessed in the last decade with the computer-aided proofs of the four-hundred-year-old
Kepler Conjecture on sphere packing [Lag11, HAB+17] or on Gessel’s walks [KKZS09, BK09].
At the intersection of mathematics and computer science, this thesis belongs to the area of
computer algebra, also known as symbolic computation. The methodology adopted in this
field can be succinctly summarized as follows:

a) identify the suitable mathematical framework for articulating specific problems arising
from practical applications;

b) develop and employ mathematical tools to exhibit the solutions to these problems,
with an emphasis on exactness and completeness;

c) combine mathematical insights with techniques from computer science to design
algorithms computing well-chosen representations of these solutions;

d) assess the theoretical performances of the algorithms;

e) implement these algorithms within computer algebra systems or using low-level
programming languages.

It is important to note that the final step involves the challenge of efficiently representing and
computing sophisticated data structures. As a natural extension of this process, researchers
in symbolic computation are likely to apply their expertise to address specific instances of
the initial problem, coming from diverse application areas.

In contrast with numerical methods, which provide approximate solutions, algorithms in
computer algebra are designed to output exact answers, that is satisfying the two distinct
requirements:

• precision: no loss of information in the computation process;

• completeness: a solution is found if and only if it exists.

In particular, it allows to solve decision problems such as deciding the existence of solutions
for a problem described by polynomial constraints or the existence of a collision-free
trajectory for an object in an ambient space populated with obstacles. Furthermore, these
requirements ensure that the algorithms output comprehensive descriptions of the solutions,
providing features such as arbitrary precision or convenient manipulation for subsequent
computations.
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1.1.1 Computational real algebraic geometry

In this thesis, our primary focus is directed towards solving geometric problems that are
described by polynomial systems. These systems arise from various areas of application such
as cryptography [KS99, FJ03], signal processing [FdSMR98, GCMT02], etc.. Following the
methodology described earlier, the natural mathematical context we explore is algebraic

geometry whose basic objects are algebraic sets, representing solutions in an algebraically
closed field C – such as the complex numbers C – to systems of polynomial equations of type

f1 = · · · = fs = 0,

where the fi’s are multivariate polynomials with coefficients in C. Chapter 2 provides an
introduction to the main notions of algebraic geometry we will use in this document, to
which we refer the reader.

However, our target applications address a more specific problem: the exploration of
real solutions within polynomial systems. This problem belongs to the field of mathematics
named of real algebraic geometry (also known as semi-algebraic geometry), whose basic ob-
jects are semi-algebraic sets, that is the solutions within real closed fields R, a generalization
of the real numbers R, of finite unions of systems of polynomial equations and inequalities
of the type

f1 = · · · = fs = 0, g1 > 0, . . . , gr > 0,

where the fi’s and the gj ’s are multivariate polynomials with coefficients in R. We refer the
reader to Chapter 4 for an introduction to real algebraic geometry and the important results
associated with semi-algebraic sets and maps between them. Problems involving semi-alge-
braic sets arise in a wide variety of areas such as robotics [Can88a, CR04, CSS23], biology
[FT22, YSCG22], computer vision [FMRS08, GNBS22], stability analysis of differential
equations [LS93, WR13, HS12], optimisation [Las01, FRPM06], rigidity [JW18] or program
verification [Tiw10, GHMM23]. The strategies developed to solve these applications rely on
a combination of fundamental algorithmic problems in real algebraic geometry that stem
from the following two important properties that distinguish semi-algebraic sets. Let S be a
semi-algebraic set then,

(stability) the projection of S on a coordinate subspace is a semi-algebraic set;

(finiteness) S has finitely many connected components.

Hence, given a semi-algebraic set S, one can naturally ask to:

(A) compute a description of the projection of S on a coordinate subspace;

(B) compute sample points in each connected component of S;

(C) decide if two points lie in the same connected component of S;

(D) count the number of connected component of S.

The analysis of these problems, as well as the design and implementation of algorithms to
solve them, constitute the spearhead of computational real algebraic geometry.
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Remark that given a solution for (B) and (C) one can deduce a solution for (D) as follows:
given sample points in each connected component, decide which of these points belong to
the same component, and extract a set of unique representatives for these components. The
number of these points then equals the number of connected components, an important
topological invariant for mathematicians (this is the first Betti number).

When evaluating the performance of the algorithms under investigation, a fundamental
measure is their complexity, which measures the number of operations with unit cost they
perform during their execution. To define asymptotic classes of complexity we use the Big
Oh notation as follows. Let f and g be real-valued functions, we say that f = O(g) if the
function f/g is defined and bounded for large enough input values. Moreover, as in some
situations logarithmic factors can be reasonably ignored, we also use the soft Oh notation:
f = Õ (g) if f = O(g loga g) for some a > 0.

A first global approach to solve fundamental problems of computational real algebraic
geometry involves the comprehensive computation of the topology inherent to the given
input semi-algebraic set, denoted as S ⊂ Rn, where n assumes a positive integer value. This
is tackled by computing a so-called Cylindrical Algebraic Decomposition (CAD) adapted to S,
using the algorithm introduced by Collins in [Col75]. In essence, a CAD adapted to S is a
partition of the ambient space Rn into finitely many cells, each of which is homeomorphic
to an open ball, and such that S is the union of such cells. Nevertheless, on input a semi-al-
gebraic set defined by s polynomials of maximum degree D, the complexity of computing
such a decomposition is

(sD)2O(n)

.

This bound is doubly exponential in n, the ambient dimension, and polynomial in s and
D, which renders this strategy infeasible for applications where the value of n exceeds 4.
Moreover, the algorithm of Collins is optimal in the sense that there exists semi-algebraic
sets for which any adapted CAD has size doubly exponential in n [DH88, BD07].

Nevertheless, all is not without hope, as the topological complexity of an arbitrary se-
mi-algebraic set cannot exceed O(snD)n [GV09], that is singly exponential in n. This
bound, commonly referred to as (Oleinik-Petrovsky-)Thom-Milnor’s bound originates from
the pioneer respective works [OP49, Ole51, Tho65, Mil64], and is asymptotically tight.
Moreover, as mentioned in e.g. [BR18], in computational real algebraic geometry, it is
commonly held that computing topological invariants – such as the number of connected
components – or deciding topological properties on a semi-algebraic set should be achieved
by algorithms with complexity aligned to the mathematical bounds it satisfies.

This motivates the current active research for dedicated algorithms addressing specific

fundamental problems in computational real algebraic geometry with complexity as close as
possible to the related mathematical bound. Matching these bounds would then constitute a
form of optimum as discussed above, with the first milestone being the singly exponential

complexity. For instance, the best known algorithm solving the above problem (B) has
complexity snDO(n), for an input semi-algebraic set defined by s polynomials, in n variables,
of maximum degree D. We refer to Chapter 5 for further discussions of these aspects and a
historical overview.
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In this thesis, we focus on the connectivity queries problem, that is Problem (C). This
problem emerged within the context of robotics to address motion planning problems. The
pioneering work of addressing this issue was undertaken by Schwartz and Sharir in [SS83c],
followed by the influential PhD thesis of Canny [Can88a]. To introduce the aforementioned
context, we present in the next subsection the piano mover’s problem.

1.1.2 The piano mover’s problem

We present here a simplified version of robotics concepts, terminology and notations from
[LaV06, Chapter 4], to which we refer for a complete study of the topic – see also [Lat91,
Lau98]. We will then see how it boils down to problems in computational real algebraic
geometry.

1.1.2.a. The general robotic problem

A robot can be modeled as an application R : C → W that maps a point in the configuration
space C – joint angles, global position and orientation – to a point in the workspace W –
usually the position and orientation of its end-effector. While the workspace is typically R2

or R3 and involves a small number of variables, the configuration space can be much more
complicated and can involve many more unknowns.

Example 1.1.1.

a) If the robot is reduced to a point in Rn, thenW = C = Rn and R is the identity map
as the end-effector is the robot itself.

b) This is not true for a higher dimensional object, as it requires to set its orientation.
Considering a three-dimensional object whose end-effector is one of its points, we
have C = Rn × SO(3), where SO(3) is the special orthogonal group of 3D rotations,
andW = R3. Hence, using elementary Euclidean geometry, one can explicitly write
R.

c) Similarly, one can consider manipulators, such
as the three-revolute joints robotic arms depicted
on the opposite figure. Its end-effector is the green
ball that is located by its vector of Cartesian co-
ordinates x = (x1, x1, x3). The workspace is then
R3. Its joints are parameterized by the array of the
three angles θ = (θ1, θ2, θ3). Then one can choose
for the configuration space either R3 or the 3-torus
T3 = Rn/(2πZ)n.
This robot is further studied in Section 9.3 of
Chapter 9.

Workspaces are typically populated with obstacles that can either come from the envi-
ronment – human operator, limited maneuverability, etc. – or the robot itself – joint limits,
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self-collision, singular positions, etc.. Then, mechanism designers are willing to identify
collision-free paths in C bringing R’s end-effector from one point ofW to a given other.

More precisely, let O be the closed subset ofW defining the obstacle region and let

Cfree = ¶q ∈ C ♣ R(q) /∈ O♢

be the free space. We present below a particular instance of motion planning.

Definition 1.1.2 (Piano Mover’s problem). Given C,W,R,O and Cfree as above, on input

1. an initial configuration qI ∈ Cfree;

2. a goal configuration qG ∈ Cfree;

decide the existence of a path γ : [0, 1]→ Cfree such that γ(0) = qI and γ(1) = qG. Moreover,
in case such a path exists, compute it.

As mentioned above, the difficulty of this problem comes from the unbounded dimension
of C. An illustration of this problem is given in Figure 1.1.

Figure 1.1. An illustration of the piano mover’s problem adapted from [LaV06, Fig. 4.11]. Here, Cobs

is nothing but the complement of Cfree in C, that is R−1(O), the set of configuration
inducing a collision.

According to [LaV06], there are two main methodologies addressing the piano mover’s
problem: the sampling based one and the combinatorial one. The first approach avoids the
explicit representation of Cfree and proceeds by a sampling and interpolation strategy. In
essence, it constructs a finite graph of points Cfree, by iterative local expansion starting,
from qI and qG [LaV06, §5.4.1]. This reduces the problem of connecting pairs of points in
Cfree, whose relative distance must be smaller than an experimentally chosen parameter
∆q [LaV06, §5.3.4]. The choice of the distance in C is of importance as emphasized in
[MPL23] (referring to [LaV06]): “it must capture within the same quantity different degrees
of freedom of the system which have different units” (e.g. angles and lengths). For instance,
in [MPL23], the authors propose to quantify the distance between two configurations by the
minimum volume swept by the robot, over all possible paths between these configurations.
Finally, the algorithm makes calls to collision detection subroutines at each point under
consideration, to decide which are in Cfree – see [LaV06, Section 5.3] for such subroutines.
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Although the sampling-based planning methods benefit from numerical methods to effi-
ciently provide answers of possibly extreme precision, they cannot achieve the completeness

criterion that computer algebra algorithms do satisfy. Indeed, for instance, such algorithms
cannot certify that no path exists between two configurations, but with limited precision
(that still remains to be set). We will see in the next subsection, with the cuspidality decision
problem, that this completeness criterion is a requirement that comes for applications as
well. Note that weaker versions of completeness can be satisfied by sample-based algorithms,
such as the probabilistic completeness or the resolution completeness [LaV06, p.186].

Hence, to meet the requirements of computer algebra algorithms, we adopt the combina-
torial approach, that relies on explicit description of Cfree to provide exact answers to the
piano mover’s problem.

1.1.2.b. Real algebraic piano mover’s problem

Let n > 0 and assume that C = Rn for some real closed field R. Then, following the
pioneering works of [SS83c] (see also [LaV06, Section 3.1.2]), we assume that the free
space Cfree can be described using finitely many polynomial equations and inequalities: that
is, Cfree is a semi-algebraic set of Rn 1.

We say that two points are semi-algebraically path-connected if they can be connected by a
semi-algebraic path, that is a continuous map γ : [0, 1]→ S whose graph is a semi-algebraic
set of Rn+1. We then reformulate the piano mover’s problem in real algebraic geometry
terms as follows.

Definition 1.1.3 (Connectivity queries in semi-algebraic sets). Let n ≥ 1, and let S be a
semi-algebraic set of Rn. Given two points x and y in S, decide whether x and y can be
semi-algebraically path-connected in S and describe such a path when it exists.

While, from the point of view we adopted, this problem clearly finds applications in
robotics [Can88a, SS83c, CSS23, Wen07, NS17], it appears also in other areas such as
computational geometry [ELLS09] or rigidity problems – see [LSdW20].

Outline of the sequel

We now introduce the thesis’ primary contributions along two main lines.

The first section tackles a challenging robotics problem, relying on efficiently solving
the piano mover’s problem.

The second section offers an overview of the current best known methods for resolving
connectivity queries, and introduces our three most significant contributions that extend
existing state-of-the-art results

1Note that this assumption is not so restrictive since, according to [LaV06, Section 3.1.2]: it is “sufficient to express
any model of interest”. This can be clearly seen considering that most of the robotics problems can be described
by Euclidean geometry, and that the cosine and sine of an angle are nothing but the coordinates of a point on a
circle.
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1.2 An application of computer algebra to robotics

This section relates the contributions developed in Chapter 9. We chose to present this
contribution first, as it allows us to introduce, through a topical application, the context for
the remaining contributions.

We start by introducing the cuspidality decision problem for manipulators, whose resolu-
tion constitutes a first contribution for this thesis. We show that it boils down to a geometric
problem that can be solved using theoretic and algorithmic tools from real algebraic geome-
try, we introduce succinctly.

1.2.1 Problem statement

Cuspidal robots were discovered at the end of the eighties [PCI88]. A cuspidal robot can
move from one of its inverse kinematic solutions to another one without meeting a singular
configuration that is, a configuration where it loses degrees of freedom. A major consequence
is that determining in which solution the robot operates during motion planning trajectories
for cuspidal robots is more challenging than for noncuspidal ones [Wen04]. Knowing
whether a robot under design is cuspidal or not is thus of primary importance.

Most existing industrial robots are known to be noncuspidal because they rely on some
specific geometric design rules such as their last three joint axes intersecting at a common
point [Wen97]. Recently, however, new robots have been proposed that do not follow the
aforementioned design rule, which, in turn, could make them cuspidal.2 Hence, obtaining
an algorithm for deciding cuspidality is of first importance in this context of mechanism
design.

In the following we employ ourselves to follow the methodology of computer algebra
algorithm design we sketched at the very beginning of this document. To emphasize each of
these steps we will recall them, where appropriate.

“a) identify the suitable mathematical framework for articulating specific problems

arising from practical applications;”

Let f = (f1, . . . , fs) be a sequence of polynomials in Q[x1, . . . , xn] and V = V (f) ⊂ Cn

be the algebraic set it defines (i.e. the set of common complex solutions to the fi’s). We
denote by VR = V ∩Rn the real trace of V . LetR = (r1, . . . , rd) be a sequence of polynomials
in Q[x1, . . . , xn]. By a slight abuse of notation, we still denote by R the map

R : y ∈ Cn 7→ (r1(y), . . . , rd(y)) ∈ Cd,

and R♣VR
denotes the restriction of R to VR. As seen in the previous section, many robots

can be represented with such a map R. Indeed, these are polynomial maps that map the
configuration of their joints, which are usually lengths and angles, to the position of their
end-effector. However, due to the Cartesian parametrization of many problems, robots
behave as polynomial maps in the cosines and sines of the angles. Then, replacing the

2See e.g. https://achille0.medium.com/why-has-no-one-heard-of-cuspidal-robots-fa2fa60ffe9b
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occurrences of cos and sin by new variables c and s, and adding c2 + s2 − 1 to f , one gets a
formulation as the one previously described.

We denote by K(R, V ) the union of the set of critical points of the restriction of R to V
and the set of singular points of V . Roughly speaking, these points are the ones where R is
not locally invertible, that is, the singular configurations of the robot under consideration.
We refer to Section 2.5 of Chapter 2 for a precise introduction to these objects.

Following the formalism introduced in [Wen92], we then propose the following formula-
tion of the cuspidality decision problem.

Definition 1.2.1. The map R♣VR
is cuspidal if there exist two distinct points y and y′ in VR

such that the following holds:

(i) R(y) = R(y′);

(ii) y and y′ are semi-algebraically path connected in VR −K(R, V ).

If two such points y and y′ exist, we say that they form a cuspidal pair of the restriction of
R to VR. Note that such a pair is not unique in general.

The above definition goes back to some original works in robotics and mechanism design
which we present below. The cuspidality decision problem can be then formulated as follows.

Problem I

On input f and R as above, decide whether R♣VR
is cuspidal.

The formulation of Problem I, shows that cuspidality decision belong naturally to the
realm of computational real algebraic geometry. Note, in addition, that it can be seen as an
infinite version of the piano mover’s problem, in the sense that it asks if any pair of distinct
points of the infinite set ⋃

z∈Rd

R−1
♣VR

(z)×R−1
♣VR

(z)

are semi-algebraically path-connected in the semi-algebraic set VR −K(R, V ) of Rn.

Prior works. Cuspidal robots have been studied mostly for a specific family of robots made
with three revolute joints mutually orthogonal [Wen07]. Such robots were shown to be
cuspidal if and only if they have at least one cusp point in their workspace [EOW95, SSC+22].
Accordingly, an algorithm can be designed as follows. On input the inverse kinematic
polynomial associated with the robot at hand, it counts the number of triple roots of this
polynomial. If this number is nonzero, it means that the robot has at least one cusp and is
thus cuspidal [Cor05]. We refer to [WC22] for a recent overview of cuspidal robots.

However, for a general robot, no necessary and sufficient condition is known to decide if
this robot is cuspidal or not. Thus, no general algorithm has been devised that can decide if
a given arbitrary robot is cuspidal or not.
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1.2.2 Contribution: a general decision algorithm

We recall first some terminology of commutative algebra and algebraic geometry. In the
following, f are polynomials as above and V = V (f) ⊂ Cn is the algebraic set defined by
f . As presented in Section 2.1 of Chapter 2, V can be uniquely decomposed into finitely
many irreducible components. When all these components have the same dimension d, we
say that V is equidimensional of dimension d, or d-equidimensional. The ideal generated by
f , denoted ⟨f⟩, is said to be radical if, for any k > 0, gk ∈ ⟨f⟩ implies g ∈ ⟨f⟩. Assume
now that ⟨f⟩ is radical, and V (f) is d-equidimensional. The points y ∈ V at which the
Jacobian matrix of f has rank n − d are called regular points and the set of those points
is denoted by reg(V ). The others are called singular points; the set of singular points of V
(its singular locus) is denoted by sing(V ) and is an algebraic subset of V . We refer to the
Subsection 2.1.5 of Chapter 2 for a more comprehensive introduction to these concepts.

Hence, we say that the assumption (Acusp) holds, if:

(Acusp) the ideal ⟨f⟩ is radical, V (f) is d-equidimensional and VR ̸⊂ sing(V ).

The first two parts of this regularity assumption allow one to conveniently describe the
critical locus K(R, V ) by means of minors of the Jacobian matrix Jac[f ,R]. Moreover, the
second part ensures that the dimension of the real algebraic set VR matches the one of V .
This can be restated as: the Jacobian matrix Jac(f) has maximal rank n− d in at least one
point of VR. Note this assumption can be satisfied using algorithms whose complexities are
bounded by the one of our main algorithm – see [Lec03, SYZ21].

Contribution. Together with D. Chablat, M. Safey El Din, D. Salunkhe and P. Wenger, we
design in Chapter 9 an algorithm for deciding the cuspidality on input f and R as above,
satisfying the above regularity assumption (Acusp). Moreover, when the restriction of the
map R to VR is cuspidal, the algorithm has the ability to output a witness of cuspidality, i.e.
a cuspidal pair and an encoding of a semi-algebraic path that connects them in VR without
meeting K(R, V ).

We also analyze the bit complexity of this algorithm and prove that cuspidality can be
decided in time singly exponential in n, polynomial in the maximum degree of the input
polynomials, the integer d and quasi-linear in the maximum bit size of the input coefficients.
We refer to Section 3.1 of Chapter 3 for definitions and discussions on (bit) complexity and
quantitative bounds associated with polynomials. This leads to the following statement.

Contribution to Problem I

Theorem 1.2.2. Let f = (f1, . . . , fs) andR = (r1, . . . , rd) be two sequences of polynomials

in Q[x1, . . . , xn], let V = V (f) and VR = V ∩ Rn. Let D be the maximum degree of these

polynomials and let τ be a bound on the bit size of the coefficients of the input polynomials.

Then, under assumption (Acusp), one can decide the cuspidality of the restriction of the map

R to VR using at most

Õ (τ) ((s+ d)D)O(n2)

bit operations.

1.2 An application of computer algebra to robotics 9



In the following, we sketch how such a result has been obtained and refer to Chapter 9
for the full proof and algorithm’s description.

1.2.3 Sketch of resolution

We aim to provide in this subsection a pedagogical presentation of the resolution of Problem I.
This leads us, along the way, to introduce key results and objects of real algebraic geometry,
and its algorithmic counterpart.

According to the “computer algebra procedure” we sketched in the beginning, the next
step is to:

“b) develop and employ mathematical tools to exhibit the solutions to these problems,

with an emphasis on exactness and completeness;”

To exhibit an algorithmic solution to Problem I, we use a strategy commonly adopted
in computational mathematics, that is reducing infinite problems, to finitely many cases.
Then, dealing with each of these cases, we deduce a solution for the initial problem. To do
so, we apply a semi-algebraic version of Thom’s isotopy lemma from [CS92] which allows
us to define regions where the fibers of R are of the same type – more precisely, they are
semi-algebraic homeomorphic to each other. We refer to Section 4.4 of Chapter 4 for an
introduction to this advanced theorem of real algebraic geometry.

More precisely, let Sval(R, V ) be the set of singular values of the restriction of R to V , i.e.
the image by R of the set K(R, V ):

Sval(R, V ) = R(K(R, V )).

The restriction of the map R to V is said to be proper at a point y ∈ Cd if there exists a
ball B ⊂ Cd containing y such that R−1(B) ∩ V is closed and bounded. The restriction of
R to V is said to be proper if it is proper at every point of Cd. We denote by P∞(R, V ) be
the set of points of Cd at which R is not proper. According to [Jel99, Theorem 3.8] this set
is contained in a proper algebraic set of Cd.

Finally, we denote by Atyp(R, V ) the set of atypical values of the restriction of R to V , that
is the union Sval(R, V ) ∪ P∞(R, V ). We also consider Atyp(R, V )

Z

the Zariski closure in Cd

of Atyp(R, V ), that is the smallest algebraic set of Cd containing Atyp(R, V ).
Then, according to Thom’s isotopy Lemma, the following holds. Let C be a connected

component of Rd −Atyp(R, V )
Z

, and z0 ∈ C. Then, there exists a cuspidal pair in

⋃

z∈C

R−1
♣VR

(z)×R−1
♣VR

(z)

if and only if there exists one inR−1
♣VR

(z0)×R−1
♣VR

(z0), which is a finite set by (Acusp). Moreover,

as seen above, since Rd −Atyp(R, V )
Z

is an (open) semi-algebraic set, it has finitely many
such connected components C. This leads to the following geometric pseudo-algorithm.

This leads us to the third and fourth steps of the procedure, that is:

“c) combine mathematical insights with techniques from computer science to design

algorithms computing well-chosen representations of these solutions;”
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Algorithm 1 Cuspidality decision

Input: f and R as above, satisfying assumption (Acusp).

Output: A decision on the cuspidality of the restriction of R to VR = V (f) ∩ Rn.

1: compute polynomials g1, . . . , gp whose common zero set is Atyp(R,V (f))
Z

;

2: compute at least one point zi in each connected component Ci, of the open semi-alge-

braic set Rd −Atyp(R,V (f))
Z

, defined in Rd by

g2
1 + · · ·+ g2

p ̸= 0.

3: for 1 ≤ i ≤ ℓ do

4: for y ̸= y′ ∈ R−1
♣VR

(zi) do

5: if y and y′ connected in VR −K(R,V (f)) then

6: Return True

7: Return False

and
”d) assess the theoretical performances of the algorithms;”.

There are three distinct steps in the above algorithm. In the following, we describe how
to perform each of them, using subroutines from computational real algebraic geometry–
emphasized in color – and give associated complexity estimates. Recall that, the input
consists of polynomials f = (f1, . . . , fs) and R = (r1, . . . , rd) in Q[x1, . . . , xn] of maximum
degree D, and coefficients’ bitsize bounded by τ .

The first step involves the computation of polynomials defining an algebraic set containing
the union of the singular values Sval(R, V ) and the set of non-properness P∞(R, V ). Such
computations are tackled by quantifier elimination over the reals, using the algorithm of
[BPR06, Theorem 14.22] which we do not detail here, but refer to Section 5.1 of Chapter 5
instead. As there are at most two quantifier alternates, this step can be done using no
more than τ(sD)O(nd) bit operations. The outcome of such step is a sequence of (sD)O(nd)

polynomials g = (g1, . . . , gp) ⊂ Q[x1, . . . , xd] of degrees bounded by DO(n).
The second step involves the computation of sample points in each connected component

the semi-algebraic set of Rd defined by

g2
1 + · · ·+ g2

p ̸= 0.

Such a semi-algebraic set is open and is often met in the context of robotics, as it represents
a set of configurations to avoid, outside which the robot operates. Using the algorithm of
best known complexity described in [LS22, Corollary 3], computing these sample points is
done using at most τ(nd)O(nd) bit operations as well. A comprehensive historical overview
of algorithms performing such operations can be found in Section 5.2 of Chapter 5.

Finally, the last step, consists in considering the finitely many pairs (y,y′) of distinct
points in R−1

♣VR

(zi) and decide if y and y′ are semi-algebraically path-connected in the
semi-algebraic set VR − K(R, V ). This clearly belongs to the class of connectivity queries
problems, as formulated in Definition 1.1.3. The best known algorithm in this case can
be found in [BPR06, Theorem 16.27.c)] and performs at most Õ (τ) ((s + d)D)O(n2) bit
operations, which bounds the overall complexity.
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We also addressed a proof of concept of the last step of the “computer algebra procedure”.
More precisely, we set up a prototype implementation of this algorithm in the computer
algebra system Maple. We present the results in the last section of Chapter 9.

However, no efficient, ready-to-use, implementation has been written, in particular due to
the lack of an efficient and practical algorithm for answering connectivity queries in semi-al-
gebraic sets. Moreover, one sees that in terms of complexity, this step is the bottleneck of the
whole algorithm. Hence, the rest of the chapter is devoted to present the contributions made
in this thesis to improve the complexity and practicality of connectivity queries algorithm.

1.3 Solving connectivity queries in semi-algebraic sets

In the sequel, for the sake of the generality, we consider a real field Q, its real closure R and
its algebraic closure C (one can think of them as Q, R and C without losing much of the
intuition). We refer the reader to Section 4.1 of Chapter 4 for an introduction to the theory
of real closed fields.

When dealing with semi-algebraic sets, the classic notion of connectedness on Rn cannot
be extended as such for any real closed field Rn. Hence, we say that a semi-algebraic
set S ⊂ Rn is semi-algebraically connected if any two points of S can be connected by a
semi-algebraic path lying in S. As mentioned in the beginning, a semi-algebraic set S
has finitely many semi-algebraically connected components. These are semi-algebraically
connected, both open and closed, semi-algebraic subsets of S, whose disjoint union is S. We
refer to Section 4.2 of Chapter 4 for a presentation of these concepts and related results.
Note that for R = R, the notions of classical and semi-algebraic connectedness coincide for
semi-algebraic sets.

We then reformulate the connectivity queries problem as follows.

Problem II

Let n ≥ 1, and let S be a semi-algebraic set of Rn and two points x and y in S.
Decide whether x and y belong to the same semi-algebraically connected component of S.

When its existence is established, the description of a semi-algebraic path connecting the
two points will be a consequence of the decision process.

As briefly mentioned in Subsection 1.1.1, Schwartz, Sharir, and others developed in a
series of works [SS83a, SS83c, SS83b, SA84, SS84, SSH86] the first exact algorithm for
connectivity queries in semi-algebraic sets. This is based on Collins’ CAD algorithm [Col75]
discussed above, and methods for adjacency determination of cells successively introduced
in [ACM84a, ACM84b, ACM85, Arn88]. However, using the CAD algorithm induces the
aforementioned prohibitive doubly exponential complexity with respect to the number of
variables. This stands in contrast to Thom-Milnor’s bound, which calls for singly exponential

topological complexity. This gap motivated the search for singly exponential algorithms.
Moreover, as seen in Subsection 1.1.2, for applications in robotics, the dimension of the free
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space Cfree is much smaller than the one of the ambient space [BPR06, Lat91]. This justifies
the motivation to substitute the number of variables with this dimension in the exponents.

To this end, Canny introduced in [Can88a] the concept of roadmaps as an alternative to
cylindrical algebraic decomposition. Roadmaps are one-dimensional semi-algebraic subsets
of a given semi-algebraic set S that are non-empty and semi-algebraically connected within
each semi-algebraically connected component of S. This reduces the connectivity problem
on semi-algebraic sets of arbitrary dimension to the one of sets of dimension one, which can
be solved in polynomial time with respect to the input size – see Subsection 1.3.3.

Then, Canny provided in [Can88a, Can93] the first algorithms for computing roadmaps;
we call such algorithms roadmap algorithms. Suppose that S ⊂ Rn is a semi-algebraic
set defined by s polynomials of degree at most D. Canny obtained in [Can88a, Can93] a
Monte Carlo roadmap algorithm using (sD)O(n2) arithmetic operations in Q. A deterministic
version is also given, with a runtime (sD)O(n4). This striking and important result was then
reconsidered and improved in [VG90, GR93, HRS94a] (among others) to obtain in [BPR00]
a deterministic algorithm using (sD)O(n2) field operations; this was the state-of-the-art for a
decade.

Note that all these algorithms are based on the same following geometric solving pattern.
First, a curve, defined as the critical locus of a projection on a plane, is computed; it meets all
semi-algebraically connected components of the set under study. Next, connectivity failures
are repaired by slicing our set with appropriate hyperplanes and performing recursive calls
over these slices.

y′

y

y′

y

Figure 1.2. Illustration of the two steps of Canny’s algorithm on a torus in R3, with two query points
y and y′. On the left, the one-dimensional polar variety associated with the projection
on the plane below is computed. It intersects the unique connected component, but this
intersection is not connected and contains neither y nor y′. To repair these failures, we
add fibers containing the critical points of a projection on a line and the query points.
This gives the figure on the right.

In [SS11], Safey El Din and Schost achieved a significant advancement by generalizing
this geometric solving pattern to higher dimensional subsets. They propose subsequently a
Monte Carlo roadmap algorithm with complexity exponential in O(n1.5), improving upon
the initial O(n2) exponent for the first time. However, this algorithm was designed for
smooth and bounded real algebraic hypersurfaces. Subsequent work in [BR14, BRSS14] led to
further enhancements, ultimately resulting in [SS17] with a Monte Carlo roadmap algorithm
for smooth and bounded real algebraic sets. For an input being the real trace of an algebraic

1.3 Solving connectivity queries in semi-algebraic sets 13



set V ⊂ Cn, of dimension d, defined by polynomials of maximum degrees D, this algorithm
features a complexity of (nD)O(n log(d)).

Problem II.a

The next crucial step in enhancing roadmap algorithms for efficient connectivity queries
solving involves relaxing the input assumptions while preserving existing complexity
bounds.

Contribution to Problem II.a

Chapters 6 and 7 make partial headway in this regard by eliminating the boundedness
assumption. The following two sections delve deeper into these developments.

Remark 1.3.1. Note that relaxing the compactness assumption marks a key milestone in
extending roadmap algorithms. Indeed, as seen above, for many applications one needs to
deal with semi-algebraic sets defined as the complement of a real hypersurface defined by
f = 0 where f is a multivariate polynomial. This can be tackled by computing a roadmap
for the unbounded real algebraic set defined by tf − 1 = 0 where t is a new variable.

As we now shift our focus to real algebraic sets, let us introduce a more contemporary
definition from [SS11] of roadmaps, which originates from [Can88b, §5].

Definition 1.3.2. Let V ⊂ Cn be a d-equidimensional algebraic set and let P be a finite

subset of V ∩Rn. For 0 ≤ i ≤ d, a i-roadmap R of (V,P) is an algebraic set of Cn having
the following properties.

(RM1) For each semi-algebraically connected component C of V ∩ Rn, the set C ∩ R is
non-empty and semi-algebraically connected;

(RM2) R is contained in V ;

(RM3) R has dimension at most i;

(RM4) R contains P.

The points of P are called the query points. A roadmap is a 1-roadmap.

The connectivity of V ∩Rn is “captured” by (RM1) and (RM2), while property (RM3)
controls the dimension of the roadmap and (RM4) allows to answer connectivity queries
on P. Recent algorithms obtained in [SS11, BR14, BRSS14, SS17] are all based on a
connectivity result of [SS11], which makes the boundedness assumption we want to drop.
We present it below.

1.3.1 Connectivity results for roadmap algorithms

Let 0 ≤ d ≤ n and V ⊂ Cn be a d-equidimensional algebraic set and assume that sing(V ) is
finite. For 1 ≤ i ≤ n, let πi be the canonical projection,

πi : (y1, . . . ,yn) 7−→ (y1, . . . ,yi)
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For a polynomial map φ : Cn → Cm a point y ∈ V is a critical point of φ if y ∈ reg(V ) and
the differential of the restriction of φ to V at y, denoted by dyφ, is not surjective, that is

dyφ(Ty V ) ⊊ Cm,

where Ty V denotes the tangent space to V at y. We will denote by W ◦(φ, V ) the set
of the critical points of φ on V . A critical value is the image of a critical point. We set
K(φ, V ) = W ◦(φ, V ) ∪ sing(V ). The points of K(φ, V ) are called the singular points of φ
on V . We refer to Section 2.5 of Chapter 2 for further details.

x1 x2

Z

W ◦(π1, Z)
x1 x2

Z

W ◦(x2
1 + x2

2, Z)

Figure 1.3. Real trace of the critical locus on a sphere Z for: the projection on the first coordinate
π1 (left); the polynomial map ϕ associated to x2

1 + x2
2 ∈ R[x1, x2, x3] (right). Let

x = (x1,x2,x3) ∈ Z. The differential of the restriction of π1 to Z at x is the restriction
of π1 to Tx Z. The image is not C if, and only if, Tx Z is orthogonal to the x1-axis, so that
critical points of the restriction of π to Z occur at (±1, 0, 0). Besides, the differential of
the restriction of ϕ to Z at x is the restriction of −2x3 · π3 to Tx Z. Hence, x is a critical
point of the restriction of ϕ to Z if, and only if, either x3 = 0 or Tx Z is orthogonal to the
x3-axis.

For 1 ≤ i ≤ d, we denote by W (πi, V ) the i-th polar variety defined as the Zariski closure
of the critical locus W ◦(πi, V ) of the restriction of πi to V . Further, we extend this definition
by considering φ = (φ1, . . . , φn) ⊂ Q[x1, . . . , xn] and, for 1 ≤ i ≤ n, the map

φi : Cn −→ Ci

y 7→ (φ1(y), . . . , φi(y))
. (1.1)

Following [BGHP04, BGHP05, BGH+10] we denote similarly W (φi, V ) the i-th generalized

polar variety defined as the Zariski closure of the critical locus W ◦(φi, V ) of the restriction of
φi to V . Polar varieties and their properties are further discussed in Section 2.6 of Chapter 2.

We recall below [SS11, Theorem 14] (see also [BRSS14, Proposition 3.3] for a slight
variant of it), making use of polar varieties to establish connectivity statements.

Theorem 1.3.3 ([SS11, Theorem 14]). For 2 ≤ i ≤ d, assume that the following holds:
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• V ∩Rn is bounded;

• W (πi, V ) is either empty or (i− 1)-equidimensional and smooth outside sing(V );

• for any y ∈ Ci−1, π−1
i−1(y) ∩ V is either empty or (d− i+ 1)-equidimensional;

• W (π1,W (πi, V )) is finite.

Let P ⊂ V be a finite set and

Ki = W (π1,W (πi, V )) ∪ sing(V ) ∪ P and Fi = π−1
i−1(πi−1(Ki)) ∩ V.

Then, W (πi, V ) ∪ Fi is a d̃-roadmap for (V,P), where d̃ = max¶i− 1, d− i+ 1♢.

For the special case i = 2, this result was originally proved by Canny in [Can88a, Can88b].
A variant of it, again assuming i = 2, is given for general semi-algebraic sets in [Can93,
Can91]. By dropping the restriction i = 2, the result in [SS11, Theorem 14] allows more
freedom in the choice of i, and then, in the design of roadmap algorithms to obtain a better
complexity. The rationale is as follows.

From the above result, one naturally designs a recursive algorithm reducing the problem
to algebraic subsets of smaller dimensions, which raises a complexity that is roughly DO(nρ),
where ρ is the depth of recursion and D is the maximum degree of input equations defining
V . Restricting to i = 2, one expects (up to some linear change of variables or other technical
manipulations) a situation where W (π2, V ) has dimension at most 1 and F2 has dimension
d − 1 (see e.g. [SS11, Lemma 31]). Hence, the depth of the recursion is n, which yields
a complexity in (nD)O(n2). In [SS11], using a baby steps/giant steps strategy, it is shown
that one can take i ≃

√
d and then have a depth of the recursion ≃

√
d which results in

the complexity bound (nD)O(n
√

n). This algorithm has been generalized in [BRSS14] for
general algebraic sets. It has the same complexity but makes use of infinitesimals. Finally, in
[SS17], it is shown how to apply [SS11, Theorem 14] with i ≃ d

2 so that the depth becomes
≃ log2(d) and the complexity (nD)O(n log2(d)).

Such connectivity results and the algorithms that derive from them are at the foundations
of many implementations for answering connectivity queries in real algebraic sets. As
far as we know, the first one was reported in [MS06], showing that, at that time, basic
computer algebra tools were mature enough to implement rather easily roadmap algo-
rithms. More recently, practical results were reported on applications of roadmap algorithms
to kinematic singularity analysis in [CSS20, CSS23], showing the interest in developing
roadmap algorithms beyond applications to motion planning. In parallel, the interest in
roadmap algorithms keeps growing as they have also been adapted to the numerical side
[HMP00, BDRH+13, IC14, BBH+17, CWF20]. This illustrates the interest in improving
roadmap algorithms and the connectivity results they rely on.

Dropping the boundedness assumption in this scheme was done in [BR14, BRSS14] using
infinitesimal deformation techniques. The algorithms proposed use respectively (nD)O(n

√
n)

and (nD)O(n log2(n)) arithmetic operations in Q. However, the use of infinitesimals induces
a growth of intermediate data. The algorithm in [BR14] is not polynomial in its output size,
which is (nD)O(n log(n)). In non-bounded cases, one could also study the intersection of V
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with either [−c, c]n or a ball of radius c, for c large enough, but we would then have to deal
with semi-algebraic sets instead of real algebraic sets, in which case [SS11, Theorem 14] is
still not sufficient.

Problem II.a.(i)

The first step towards an algorithm dealing with unbounded smooth real algebraic sets
with a complexity similar to that of [SS17], is to obtain a new connectivity statement with
no boundedness assumption and the same freedom brought by the one of [SS11].

Contribution: a generalized connectivity result

Together with M. Safey El Din and É. Schost, we answered Problem II.a.(i) by generalizing
Theorem 1.3.3 to unbounded cases. Hereafter, we state this result, and we refer to Chapter 6
for the complete proof.

Let V ⊂ Cn be an algebraic set defined over Q and d > 0 be an integer. We say that V
satisfies assumption (A) when

(A) V is d-equidimensional and its singular locus sing(V ) is finite.

For φ = (φ1, . . . , φn) ⊂ Q[x1, . . . , xn], we say that φ satisfies assumption (P) when

(P) the restriction of the map φ1 to V ∩Rn is proper and bounded from below.

For instance, choosing arbitrary a point, then the map φ1 defined as the squared Euclidean
distance to this point, naturally satisfies condition (P).

We denote by Wi = W (φi, V ) the Zariski closure of the set of critical points of the
restriction of φi to V . For 2 ≤ i ≤ d and φ as above, we say that (φ, i) satisfies assumption
(B) when

(B1) Wi is either empty or (i− 1)-equidimensional and sing(Wi) ⊂ sing(V );

(B2) for any y = (y1, . . . ,yi) ∈ Ci, V ∩φ−1
i−1(y) is either empty or (d−i+1)-equidimensional.

Note that when B1 holds, sing(Wi) and the critical loci of polynomial maps restricted to
Wi are well-defined. For Si a finite subset of V , we say that Si satisfies assumption (C) when

(C1) Si is finite;

(C2) Si has a non-empty intersection with every semi-algebraically connected component
of W (φ1,Wi) ∩Rn.

Finally, similarly to Theorem 1.3.3, for P ⊂ V finite, we let

Ki = W (φ1, V ) ∪ Si ∪ sing(V ) ∪ P and Fi = φ−1
i−1(φi−1(Ki)) ∩ V.

Contribution to Problem II.a.(i)

Theorem 1.3.4. Let V, d, i in ¶1, . . . , d♢, φ and Si as above, and assume that assumptions

(A), (B), (C) and (P) hold.

Then the algebraic set Wi∪Fi is a is a d̃-roadmap for (V,P), where d̃ = max¶i−1, d−i+1♢.
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Comparing with the formulation in Theorem 1.3.3, the above theorem directly generalizes
[SS11, Theorem 14] by relaxing the boundedness assumption. Moreover, as in [BRSS14,
Proposition 3.3], it does not require W (φ1,Wi) to be finite, but only to have in hand at least
one point in each of its semi-algebraically connected components.

1.3.2 Roadmap algorithm

Recall that the best known complexity is reached by the algorithm of [SS17], which runs in
time (nD)O(n log d), where d is the dimension of the input algebraic set, which is assumed
to be smooth and bounded. Moreover, explicit constants in the big Oh exponent are given,
showing that the algorithm runs in time subquadratic in the degree bound of the output.
As mentioned earlier, removing these assumptions using techniques from [Can95, BPR00,
BR14, BRSS14] would require the introduction of possibly several infinitesimals, resulting
in increased intermediate data size and, in particular, the loss of the subquadratic behavior.

For this reason, we have extended the connectivity result underlying the algorithm in
[SS17] to generalize it to unbounded cases without any prior infinitesimal deformation.

Problem II.a.(ii)

This now leaves the problem of putting this new connectivity result into practice, and
design a roadmap algorithm for smooth real algebraic sets with output size and arithmetic
complexity similar to the ones in [SS17], but without using the boundedness assumption.

Contribution: genericity results

Let V ⊂ Cn be a d-equidimensional algebraic set, with sing(V ) finite. Our goal is to design
an algorithm computing a roadmap for V using the new connectivity result in Theorem 1.3.4.
To achieve this, we first need to satisfy the assumptions of this theorem, namely (A), (B),
(C), and (P). For simplicity, we will omit discussion of query points in this paragraph.

While (A) holds by assumption, taking, for any α1 = (α1,1, . . . , α1,n) ∈ Rn,

φ1(x1, . . . , xn) =

n∑

i=1

x2
i + α1,ixi (1.2)

allows to satisfy (P), as its restriction to Rn is a proper map, bounded from below by
−∑n

i=1 α
2
1,i/4. Besides, a set Si satisfying assumption (C) can be computed using sample

point algorithms that we presented in Section 1.2 for the resolution of the cuspidality
problem, and of which an extensive study can be found in Section 5.2 of Chapter 5.

Finally, (B) is a regularity assumption on the generalized i-th polar variety associated with
a polynomial map φ, and its fibers. It corresponds to the generalization of the second and
third assumptions of Theorem 1.3.3, which are satisfied in [SS17] using a random linear
change of variables on V . This leads to the use of the notion of genericity that we review
below.

Genericity. In the following, we use the notion of genericity, that will be a key ingredient
for some contributions of this thesis. Roughly speaking, a property that depends on a vector
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of values of parameters λ ∈ Cm for some m ≥ 1, is said to be generically true, if there exists
a non-zero polynomial G ∈ C[x1, . . . , xm] such that if G(λ) ̸= 0, this property holds. The set
Cm −V (G) is called non-empty Zariski open set3, and the λ’s such that G(λ) ̸= 0 are called
generic. These notions are discussed extensively in Section 2.4 of Chapter 2.

More precisely, in [SS17, Propositions 3.4, 3.5 & 3.7], the authors prove that, by perform-
ing a generic linear change of variables on V , the last three assumptions of Theorem 1.3.3 are
satisfied. However, as we work with general polynomial maps instead of linear projections,
we cannot rely on the genericity results of [SS17]. Moreover, performing such changes of
variables would make us lose the structure of φ1 chosen in (1.2). Instead, we propose to set
φ as follows.

Contribution to Problem II.a

For 2 ≤ j ≤ n, let αj = (αj,1, . . . , αj,n) ∈ Cn and

φ1(X,α1) =

n∑

k=1

x2
i + α1,kxk and φj(X,αj) =

n∑

k=1

αj,kxk, (1.3)

and φ = (φ1, . . . , φn). Then, we prove in the Sections 7.6 and 7.7 of Chapter 7, for a
generic choice of α = (α1, . . . ,αn) ∈ Cn2

, then for any 1 ≤ i ≤ d + 1, (φ, i) satisfies
assumption (B) – that is Propositions 7.2.13 and 7.2.16.

It is worth mentioning, that we also prove in Section 7.5 that for a generic α ∈ Cn2

,
the restriction to W (φi, V ) of φi−1 is finite – that is Proposition 7.2.3 – generalizing the
Noether position obtained in [SS03a, Proposition 2 ] – see also Theorem 2.6.3. We refer to
Subsection 2.3.4 for an introduction to finite maps and Noether position, and to Section 2.6
of Chapter 2 for an extensive overview of generic polar varieties and their properties.

Therefore, selecting a random vector of parameter’s values α ∈ Cn2

, and taking φ as in
(1.3), according to the above discussion, one satisfies the assumptions of Theorem 1.3.4
with high probability – see Subsection 2.4.3 of Chapter 2. This is where the first elements of
randomization are needed. A second element comes from the use of a variant of [SS17],
which is also a Monte Carlo algorithm.

Contribution: a new roadmap algorithm

Proving and using the aforementioned genericity results, with M. Safey El Din and É. Schost,
we made effective the generalized connectivity result presented above by designing a Monte
Carlo roadmap algorithm for smooth, potentially unbounded algebraic sets, which exhibits
similar performance to that of [SS17]. The full development of these results can be found in
Chapter 7.

More precisely, on input a sequence of polynomials of maximum degree D that defines a
smooth algebraic set V and query points P in V , our algorithm computes a roadmap for
(V,P). Moreover, the output size and running times of our algorithm are both polynomial
in (nD)n log d where d is the dimension of V . As far as we know, the best previously known

3The algebraic sets form the closed set of the so-called Zariski topology, so that Cm − V (G) is open in this
topology.
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algorithm dealing with such sets is the one of [BR14], and has an output size and running
time polynomial in (nD)n log2 n.

Let φ be a generic polynomial map as in (1.3). Following the discussion held in the
previous subsection, a natural design for our new roadmap algorithm would be to follow the
balanced recursive structure adopted in [SS17], computing recursively generalized polar
varieties and fibers associated with φ, using Theorem 1.3.4. However, as φ1 is proper and
bounded below on Rn, its fibers are bounded algebraic sets. Our algorithm works as follows:

• compute the second generalized polar variety W2 = W (φ2, V ), which is a curve by
(B1);

• next, use a variant of the algorithm in [SS17], to compute a roadmap RF2
of the

bounded algebraic set

F2 =

ℓ⋃

i=1

V ∩φ−1
1 (vi)

for some v1, . . . , vℓ in R, that are the points of φ1(K1) ∩R, reusing the notations of
Theorem 1.3.4. This algebraic set has dimension dim(V )− 1 by assumption (B2).

This scheme, depicted in Figure 1.4, reduces the problem to the bounded case without
introducing any infinitesimals. It involves splitting the roadmap into a one-dimensional
unbounded component and a lower-dimensional bounded one.

(V, d) d-roadmap of V

i = 2

(W2, 1)
⋃

(F2, d− 1) (d− 1)-roadmap of V

(W2, 1)
⋃

(RF2 , 1) 1-roadmap of V

Definition 1.3.2

RoadmapBounded [SS17]

Theorem 1.3.4

[SS11]/Theorem 1.3.3

Figure 1.4. Structure diagram of the algorithm presented in Chapter 7, as outlined above, reusing the
same notations. The three rows represent the primary steps. On the left, pairs indicate
the computed objects at each step along with their associated dimensions. On the right,
we give the roadmap definition that is satisfied by the union of the objects on the same
row, according to the right connectivity result. Finally, RoadmapBounded refers to the
algorithm from [SS17] that computes roadmaps of smooth bounded algebraic sets.
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Data structures

Before presenting our main algorithm, we need to introduce the adapted data structures
we use to efficiently encode and manipulate the inputs and outputs. For a more detailed
introduction and discussions about these structures, we refer to Chapter 3. The natural
input of our roadmap algorithm is the data of a sequence of polynomials defining a real
algebraic set and finitely many real algebraic query points in this set. We assume that the
input polynomials have coefficients in a computable field Q of characteristic zero – typically
Q = Q.

Straight-line programs. Polynomials given as input will be represented as straight-line pro-

grams, which is a flexible way of representing multivariate polynomials as a division and
loop-free sequence of operations. Formally, a straight-line program Γ, computing polynomials
in Q[x1, . . . , xn], is a finite sequence Γ = (γ1, . . . , γE) such that for all 1 ≤ i ≤ E, one of the
two following statements holds:

• γi = λi with λi ∈ Q;

• γi = (opi, ai, bi) with opi ∈ ¶+,−,×♢ and −n+ 1 ≤ ai, bi < i.

To Γ we associate polynomials G−n+1, . . . , GE such that Gi = xi+n for −n+ 1 ≤ i ≤ 0, and
for 1 ≤ i ≤ E:

• if γi = λi ∈ Q then Gi = λi;

• if γi = (opi, ai, bi) then Gi = Gai
opi Gbi

.

Then we say that Γ computes some polynomials f1, . . . , fc in Q[X] if ¶f1, . . . , fc♢ ⊂
¶G−n+1, . . . , GE♢. The integer E is the length of the straight-line program Γ. By con-
vention, we note Γ0 = (0) the straight-line program of length 1 that computes the zero
polynomial.

Because of the good behavior of such a representation with respect to linear changes
of variables, it is used as input in many algorithms for solving polynomial systems [Kri02,
GHM+98, GHMP97, GHMP95, GLS01, Lec00]. It is not restrictive since any polynomial of
degree D in n variables, can be computed with a straight-line program of length O(Dn) by
simply evaluating and summing all its monomials. For more details on straight-line programs
and a discussion on the different polynomial representations, see Section 3.2 in Chapter 3.

While the coefficients of the input polynomials can be finitely represented as such, this is
not the case for the input query points, that have real algebraic coefficients.

Zero-dimensional parametrizations. To encode finite sets of points with algebraic coor-
dinates over a field Q, we use zero-dimensional parametrizations. A zero-dimensional
parametrization P with coefficients in Q consists of:

• polynomials (ω, ρ1, . . . , ρn) in Q[u] where u is a new variable, ω is a monic square-free
polynomial and it holds that deg(ρi) < deg(w),

• a linear form l in variables x1, . . . , xn,
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such that
l(ρ1, . . . , ρn) = u

∂ω

∂u
mod ω.

Such a data structure encodes the finite set of points, denoted by Z(P), defined as follows

Z(P) =

{(
ρ1

∂ω/∂u
(ϑ), . . . ,

ρn

∂ω/∂u
(ϑ)

)
∈ Cn ♣ ω(ϑ) = 0

}
.

According to this definition, the roots of ω are exactly the values taken by l on Z(P). We
define the degree of such a parametrization P as the degree of the polynomial ω, which is
exactly the cardinality of Z(P). By convention, we note P∅ = (1) the zero-dimensional
parametrization that encodes the empty set.

As the output of a roadmap algorithm is an algebraic curve, that is an equidimensional
algebraic set of dimension 1, we need compact and flexible encoding for such objects.

One-dimensional parametrizations. To encode algebraic curves defined over Q we use one-

dimensional (rational) parametrizations. A one-dimensional rational parametrization R with
coefficients in Q is a pair as follows:

• polynomials (ω, ρ1, . . . , ρn) in Q[u, v] where u and v are new variables, ω is a square-
free polynomial, that is monic in u and v, and such that deg(ρi) < deg(w),

• linear forms (l, l′) in the variables x1, . . . , xn,

such that
l(ρ1, . . . , ρn) = u

∂ω

∂u
mod ω

and
l′(ρ1, . . . , ρn) = v

∂ω

∂u
mod ω.

Such a data structure encodes the algebraic curve, denoted by Z(R), defined as the Zariski
closure of the following constructible set

{(
ρ1

∂ω/∂u
(ϑ, η), . . . ,

ρn

∂ω/∂u
(ϑ, η)

)
∈ Cn ♣ ω(ϑ, η) = 0,

∂ω

∂u
(ϑ, η) ̸= 0

}
.

We define the degree of such a parametrization R as the degree of ω. It is the maximum of
the cardinalities of the finite sets obtained by intersecting Z(R) with a hyperplane, hence
the degree of the curve Z(R). Note that such a parametrization R of degree δ involves
O(nδ2) coefficients.

Main result. We say that (f1, . . . , fc) ⊂ Q[X] is a reduced regular sequence if for every
i ∈ ¶1, . . . , c♢, the ideal ⟨f1, . . . , fi⟩ is radical and the algebraic set V (f1, . . . , fi) ⊂ Cn is
either empty or (n− i)-equidimensional.
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Contribution to Problem II.a.(ii)

Theorem 1.3.5. Let f = (f1, . . . , fc) be a reduced regular sequence in Q[x1, . . . , xn], let D

be bounding the degrees of the fi’s and suppose that Γ is a straight-line program of length

E evaluating f . Assume that V (f) ⊂ Cn has finitely many singular points.

Let P be a zero-dimensional parametrization of degree µ with Z(P) ⊂ V (f). There

exists a Monte Carlo algorithm which, on input Γ and P computes a one-dimensional

parametrization R of a roadmap of (V (f),Z(P)) of degree

B = µn4d log2(d)+O(d) D2nlog2(d)+O(n) = µ(nD)O(n log2(d)),

where d = n− c, using EB3 arithmetic operations in Q.

Therefore, we dropped the boundedness assumption on V (f)∩Rn from [SS17, Theorem
1.1], maintaining a complexity similar to that algorithm. It is worth noting that the above
arithmetic complexity is cubic in the degree bound B on the output; the output size itself is
O
(
nB2

)
elements in Q. Hence, as in [SS17], our runtime is subquadratic in the bound on

the output size.

In fact, the bound obtained in Theorem 7.1.1 of Chapter 7 is more precise than the one
given above, and as in [SS17, Theorem 1], it makes completely explicit the exponent.

The output degree of the above algorithm is bounded by

B
′ = Õ

(
µ163d(n log2(n))4(d−1+6 log2(d−1))(log2(d−1)+6)D2(n+2)(log2(d−1)+4)

)
.

and the arithmetic complexity is at most

Õ
(
µ3169dE(n log2(n))12(d+6 log2(d−1))(log2(d−1)+7)D6(n+2)(log2(d−1)+5)

)
.

Remark that the latter bound can also be written in terms of B′ as:

Õ
(
E(n log2(n))12(d+7 log2(d−1)+1)D6(n+2)

B
′3
)

We expect that algorithmic progress on the computation of roadmaps for real algebraic
and semi-algebraic sets will lead to implementations that will automate the analysis of
kinematic singularities e.g. serial and parallel manipulators. In particular, there are many
families of robots where these algorithms could be used if they scale enough. This is the case
e.g. of 6R manipulators (see e.g. the results on the number of aspects in [Wen07] which
need to be extended) in the context of serial manipulators, for the study of self-motion
spaces of parallel platforms such as Gough-Stewart ones (the case of such manipulators
with 6 lengths still remains open, see e.g. [NS17]) and for the identification of cuspidal
manipulators presented above. As mentioned earlier, relaxing the boundedness assumption
is a crucial step for these applications. Indeed, many of them involve open semi-algebraic
sets, which can be readily reduced to unbounded algebraic sets.
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1.3.3 Solving connectivity queries on curves

In the previous subsection, we discussed the reduction of connectivity queries from arbitrary
dimensions, to such ones on one-dimensional semi-algebraic sets, in the original space,
using roadmaps. This emphasizes the importance of efficiently solving the one-dimensional
case. However, there is a lack of algorithms in the literature that are both general and have
favorable complexity bounds for this problem. Indeed, the polynomial complexity class, in
terms of the input curve’s degree, is too coarse for our study as the natural input for these
algorithms will be roadmaps with degrees exponential in the number of variables.

Problem II.b

In Chapter 8, we address the problem of designing an algorithm for answering connectivity
queries on real algebraic curves in Rn, defined as real traces of algebraic curves of Cn.
More precisely, given representations of an algebraic curve C and a finite set P of points
of C , we want to compute a partition of P, grouping the points lying in the same semi-al-
gebraically connected components of C ∩ Rn, and count the number of such components.

Magnitude. We say that f ∈ Z[x1, . . . , xn] has magnitude (δ, τ), if the total degree of f is
bounded by δ and all coefficients have absolute values at most 2τ . This extends to a sequence
of polynomials by bounding all entries in the same way. Complexity results are expressed
with (δ, τ) bounding the magnitude of the polynomials defining C .

Prior works. The problem of answering connectivity queries on a real algebraic curve has
been tackled only through the computation of a piecewise linear approximation sharing
the same topology as the curve under study. We succinctly present hereafter the existing
approaches and best known results and refer to Subsection 5.3.3 of Chapter 5 for more
comprehensive statements.

Computing the topology of plane algebraic curves in R2 is extensively studied: by subdivi-
sion algorithm [BCGY08, LMP08], variants of Cylindrical Algebraic Decomposition methods
[BEKS13, CLP+10, DDR+22, Dia09, DRR14, EKW07, GE96, KS15, KS12, MSW15, SW05,
DET07, DET09], or also a hybrid approach such as [AMW08]. In particular, [KS15, DDR+22]
obtain the best known complexity bound in Õ(δ5(δ + τ)), by computing quantitative bounds
on (bivariate) real root isolation of the considered polynomials.

The problem in R3 has been less studied. This is done through various approaches such
as computing the topology of the projection on various planes [AS05, GLMT05, CJL13] or
lifting the plane projection by algebraic considerations [El 08, DMR08, DMR12]. Yet, few of
these papers give a complexity bound for the computation of such topology [CJL13, DMR12],
and [JC21] obtains the best known complexity in Õ(δ19(δ + τ)).

For the general case of real algebraic curves in Rn the sole known method relies on a
variation of the CAD algorithm, drawing from the concepts established in [SS83c]. While the
complexity bounds of this algorithm might raise concerns due to their potentially prohibitive
nature, in the special case we consider, this approach exhibits a polynomial complexity in
the degree δ of the input curve. More comprehensive details on this method can be found in
[SS11, p.6], where it is primarily constructed upon the CAD algorithm outlined in [Col75],
the adjacency relation methods presented in [SS83c], and Puiseux expansion computations
as discussed in works like [Duv89].
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However, the aforementioned CAD-based algorithm does not explicitly provide the con-
stant factor in the exponent. And as observed in the cases of R2 and R3, this constant could
be quite large, which explains the lack of efficient implementation for the general case.
However, it is important to note that all the algorithms discussed in this context compute the
comprehensive topology of the input curve, requiring the output to be isotopy equivalent to
the input. Yet, for connectivity issues, it suffices for the output to share the same connectivity
properties. Relaxing the assumptions on the output, we develop in Chapter 8, an algorithm
that addresses this problem while maintaining the same complexity bounds as in the planar
case. The rest of this section is devoted to presenting this contribution.

Contribution: efficient algorithm for connectivity queries on real algebraic curves

Together with Md N. Islam and A. Poteaux, we designed an algorithm that answers Prob-
lem II.b, by counting the number of connected components of the real curve under study,
and decides which query point lies in which connected component, in time quasi-linear in
N6, where N is the maximum of the degrees and coefficient bit-sizes of the polynomials
given as input. This matches the currently best known bound for computing the topology of
real plane curves. The main novelty of this algorithm is the avoidance of the computation of
the comprehensive topology of the curve.

Genericity assumptions. This algorithm relies on specific genericity assumptions for the
input curve, of which we describe the main ones below.

These assumptions, along with other technical conditions, are proven to be satisfied
through a prior generic change of variables, in Section 8.2 of Chapter 8. This is done
by extending well-known results from algebraic geometry on the dimension on secant
varieties, to affine singular curves in an ambient space of arbitrary dimension. In
particular, generic linear changes of variables in the affine space are translated to the
projective setting through projections onto linear spaces within a non-empty Zariski open
subset of Grassmanian varieties.

The connectivity analysis of the input curve is greatly simplified thanks to these assump-
tions. Roughly speaking, they allow to reduce the study to its plane projection along with a
finite number of points in this plane called apparent singularities, which need to be identified.
These apparent singularities correspond to the points that overlap when projecting on a
plane. In particular, the local connectivity “above” the apparent singularities – i.e. in the
fiber of their plane projection – will be straightforward.

Sketch of the algorithm. Let C ⊂ Cn be an algebraic curve defined by polynomials in Q[X]

and P ⊂ reg(C ) be finite. For all x ∈ reg(C ), Tx C is the right-kernel of Jac(f): it is the
tangent line of C at x. For 1 ≤ i ≤ n we let πi : Cn → Ci be the canonical projection on
the first i variables. In the following, we outline our algorithm – that is also depicted in
Figure 1.5 – while introducing the key illustrative genericity assumptions (which can be
recovered through generic linear changes of coordinates). For a detailed list, we refer to
Chapter 8. For the sake of simplicity, we do not consider query points.
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Figure 1.5. Illustration of the algorithm designed in Chapter 8, on input an algebraic curve C ⊂ C3

whose real trace is the union of two disjoint circles, represented in different colors. On the
left figure, the algorithm first computes a piecewise linear approximation G ⊂ R2 of the
real trace of the plane projection π2(C ). Then, it identifies in G the apparent singularities
(in red) introduced by points overlapping through π2. On the right, the fake self-crossings
in G associated with these apparent singularities are removed by connecting the pairwise
opposite neighborhood vertices. This process outputs a combinatorial graph G

′ that shares
the same connectivity properties as C .

The first step is to reduce the analysis to the projection on the plane defined by the first
two coordinates, up to finitely many overlapping points:

(H1) there is a one-dimensional parametrization R = (Ω, (x1, x2)) encoding C , with Ω =

(ω, x1, x2, ρ3, . . . , ρn) ⊂ Q[x1, x2].

As mentioned in Section 3.4 of Chapter 3, such a parametrization exists up to a generic linear
change of coordinates affecting the first two coordinates. In particular, the restriction to C

of the projection π2 is birational onto its image C2 = π2(C )4. In particular, this means that
C and C2 share the same connectivity properties at all but finitely many points. Moreover,
(H1) says that C2 = V (ω), and that π2 is invertible outside sing(C2)5.

We now describe the overlapping points. If C2 ⊂ C2 is the Zariski closure of π2(C ), the
set of apparent singularities of C2 is defined as app(C2) = sing(C2)− π2(sing(C )). These are
the singularities introduced by π2. A singular point of C2 is called a node if it is an ordinary
double point that is the intersection of two branches of transversal tangent lines (see [El 08,
§3.1]). Then, the following two assumptions say that overlaps involves at most two regular

points, and their projection is a node of C2:

(H2) Let z ∈ sing(C2), if z /∈ app(C2) then π−1
2 (z) ∩ C has cardinality 1;

if z ∈ app(C2) then z is a node and π−1
2 (z) ∩ C has cardinality 2.

In other words, the finitely many overlaps involve exactly two branches, whose projections
intersect transversally. According to Figure 1.6 this makes the local topology straightforward
as it corresponds to only one of the three cases.

4The restriction to an algebraic set V of a polynomial map is birational if it has inverse a rational function on a
non-empty Zariski open subset of V .

5Indeed, since C2 is defined by the sole polynomial ω, both its derivatives must vanish at singular points of C2.
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z ∈ app(C2) z /∈ app(C2) z ∈ app(C2)

Figure 1.6. A local representation of three different configurations of the curve that projects onto a
node. According to (H2) only these three cases can occur.

But Figure 1.6 tells us more; in terms of local connectivity there are only two cases to
consider: whether the two branches intersect each other or not. This leads to the following
strategy:

Step 1: compute the topology of C2;

Step 2: for each node (α, β) of C2 decide if it is an apparent singularity or not.

Suppose that the input polynomials describing C have magnitude (δ, τ). Then, Step 1 can
be tackled using any exact algorithm for computing the topology of a planar real algebraic
curve. As seen in the presentation of the prior works, this is a very active research topic, and
the best known bit-complexity bound is Õ

(
δ6 + δ5τ

)
in [KS15, DDR+22].

As for Step 2, according to (H2), it is equivalent to decide whether there are at least
two points of C , that project on (α, β). According to the following assumption, this can be
decided inside π3(C ):

(H3) the restriction of π3 to C is injective.

More precisely, we lift the possible solutions in the fiber π2(α, β) ∩ π3(C ) using Puiseux
series expansion, which leads to the following criterion, that generalizes the one of [El 08].
Using the parametrization (ω, x1, x2, ρ3, . . . , ρn) given by (H1):

Lemma. z ∈ app(C2) ⇐⇒ z is a node of C2 and (∂2
x2
ω · ∂x1

ρ3 − ∂2
x1x2

ω · ∂x2
ρ3)(z) ̸= 0

Remark that this criterion involves only derivatives of only two polynomials of the one-di-
mensional parametrization encoding C . Hence, using resultant and gcd computations, one
can compute a zero-dimensional parametrization encoding the nodes of C2 and extract the
apparent singularities using the above criterion. We show in Section 8.5 of Chapter 8 that
this process can be done within Õ

(
δ6 + δ5τ

)
bit operations as well.

Finally, at this stage, we have a topologically correct piecewise linear approximation of C2,
together with an encoding of the apparent singularities. Using the local conic structure of
semi-algebraic sets – see Subsection 4.4.2 of Chapter 4 – we show that removing the fake self-
crossings associated with the apparent singularities in the piecewise linear approximation,
one gets a combinatorial graph that shares the same connectivity properties than C . This step,
depicted in Figure 1.5, comes at a negligible additional computational cost compared to the
previous ones.
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Main result. To answer Problem II.b, our algorithm must take as input descriptions of an
algebraic curve C ⊂ Cn and finitely many points P in C ∩ Rn. On output, we expect a
description of a partition of P, grouping the points lying in the same connected components
of C ∩ Rn. Such an algorithm can be directly derived from the one described above: in
the planar topology computation, we add the points in π2(P) as vertices of the piecewise
linear approximation of π2(C ) ∩ R2. Generically, none of the points in π2(P) are apparent
singularities, so these vertices are not removed in the process. Therefore, two vertices are
connected in the output combinatorial graph if and only if the associated points in π2(P),
and consequently P, lie in C ∩ Rn.

Before stating our main result, that contains both the correction and a complexity bound
of the algorithm described above, let us say a few words about inputs and outputs.

Input: on input sequences of polynomials defining C and P, the first step is to perform
a generic linear change of variable to meet the genericity assumptions and to compute
one-dimensional parametrizations R and P encoding C and P. However, these steps have
bit complexity at most cubic in the degree of input algebraic sets, thus fitting within our
overall complexity – see [SS17, SS18, GM19]. We will assume that the input has undergone
this preprocessing step, as answering connectivity queries on the sheared curve is equivalent
to doing so on the original curve.

Output: to efficiently describe a partition of P, we avoid computing parametrizations
encoding subsets. Instead, we identify the points of P by their rank when ordered by their
first coordinate, which are all distinct by genericity. This identification is computationally
achieved using univariate root isolation, which is part of planar topology computation. This
approach yields a compact output, requiring at most Õ (♣P♣) bits.

Following the strategy described above, leads to the following result.

Contribution to Problem II.b

Let R ⊂ Z[x1, x2] and P ⊂ Z[x1] as above of respective magnitudes (δ, τ) and (µ, κ).
There exists an algorithm which, on input R and P, computes a partition of bit size
Õ (µ), grouping the points of P ∩ Rn lying in the same semi-algebraically connected
component of C ∩ Rn, using

Õ(δ6 + µ6 + δ5τ + µ5κ)

bit operations.

This is to be compared with the best complexity Õ(δ19(δ + τ)) known to analyze the
topology of space curve. Note that the dependency on n in the complexity bound is “hidden”
within the potential degrees of the parametrizations and the corresponding algebraic sets.
Indeed, according to Bézout’s bound, an algebraic set, defined by polynomials, of degree at
most D, can have degree at most Dn.
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1.4 Conclusion and Perspectives

In this section, we outline the short-term and long-term research prospects related to the
contributions presented in this thesis. These prospects primarily revolve around further
enhancing the efficiency and generality of our methods, as well as expanding the scope and
tackling more challenging applications.

1.4.1 Roadmap algorithms

As seen in the previous sections, roadmap algorithms are the main tool for solving connec-
tivity queries on real algebraic sets and, a fortiori, semi-algebraic sets.

State-of-art. On input a semi-algebraic set S of Rn defined by s polynomials with coeffi-
cients in Q of maximum degree D, the best known roadmap algorithm is the one of [BPR00].
It performs (sD)O(n2) arithmetic operations in Q. When S is an arbitrary real algebraic set
of dimension d, this bound decreases to (nD)O(n log2 d) with the algorithm of [BR14]. Finally,
the best-known complexity bound for roadmap algorithms is obtained in Chapter 7, with
(nD)O(n log d) for smooth real algebraic sets. Moreover, the constants in the exponent are
made explicit, which gives an output roadmap of degree

n4d log2(d)+O(d)D2n log2(d)+O(n). (1.4)

In the following, we mention different directions to improve these results.

Semi-algebraic sets. The next step is then to extend the applicability of the best roadmap
algorithm to semi-algebraic sets, as applications involve such sets as seen for the cuspidality
problems. One way is to reformulate the inequalities and inequations as equations, using an
extra variable t as follows:

g ≥ 0→ g − t2 = 0, g > 0→ g · t2 − 1 = 0, g ̸= 0→ g · t− 1 = 0.

This allows to apply as such roadmap algorithms for general real algebraic sets, and provided
additional regularity assumptions, our algorithm for smooth real algebraic sets. However,
these techniques increase the number of variables and the degree in the input systems,
making the methods unpractical.

Another approach is to consider the case of closed semi-algebraic sets, that is of the form

f1 = · · · = fp = 0, g1 ≥ 0, . . . gs ≥ 0,

where the fi’s and gi’s are polynomials in Q[x1, . . . , xn]. We also make the assumption that
(f1, . . . , fp, gi1

, . . . , giℓ
) is a reduced regular sequence defining a smooth algebraic set for all

¶i1, . . . , iℓ♢ ⊂ ¶1, . . . , s♢, which is typically satisfied for the targeted applications.
Thanks to the intermediate results obtained in the proof of the new connectivity result in

Chapter 6, we should be able to obtain a new generalization to the semi-algebraic case (but
under the regularity assumptions just described). Indeed, we can rely on the extension of the
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notion of critical points and values to the semi-algebraic case, which consists in considering
the critical points and values of the functions under consideration on the boundaries defined
by the reduced regular sequences (f1, . . . , fp, gi1 , . . . , giℓ

) for ¶i1, . . . , iℓ♢ ⊂ ¶1, . . . , s♢. The
assumption of regularity ensures good topological properties (namely a Whitney stratification
of S) which then allows us to use the semi-algebraic version of Thom’s first isotopy lemma
of [CS92] to its full potential, and mimic the proof of the connectivity result of Chapter 6.

Here again, the passage from the connectivity result to the algorithm will require new
results. Having to consider the edge of S will induce a combinatorial factor in the complexity,
which should then be sn(nD)O(n log(n)). Note this does not require the introduction of any
infinitesimal.

General semi-algebraic sets. This leaves the problem to tackle open, possibly singular semi-
algebraic sets. The first step would be to generalize the algorithm developed in Chapters 6
and 7 to singular algebraic sets, keeping a similar complexity bound.

A first approach would be to investigate deformation techniques to reduce to the smooth
case, but without explicitly manipulating infinitesimals. This has been successfully achieved
for the computation of sample points in each semi-algebraically connected component of a
semi-algebraic set, which also relies on critical point methods – see Section 5.2 of Chapter 5.
This passes by the computation of a basis for an elimination ideal, using Gröbner bases. In
particular, this involves saturated ideals, for which a new promising algorithm has been
proposed in [BES23] and is under integration in the library msolve6.

Reduce the size of intermediate data. Let V ⊂ Cn be an equidimensional algebraic set
such that V ∩ Rn is bounded, and for 1 ≤ i ≤ n the canonical projections πi on the
first i-th variables. Recall that any roadmap algorithm’s first steps are to compute the
polar variety Wi = W (πi, V ), that intersect every connected component, and to repair
its connectivity failures in these components, by adjoining fibers V ∩ π−1

i−1(πi−1(z)), for z
ranging in W (π1,Wi) ∪ sing(V ), which is assumed to be finite. Indeed, according to the
semi-algebraic version of Thom’s first isotopy lemma, this is where the topology change of
Wi can occur, and then the number of connected components is likely to change.

However, one could expect to reduce the number of fibers by taking them only at the points
z ∈W (π1, V ) ∪ sing(V ), which form a subset of W (π1,Wi) ∪ sing(V ), which is expected to
be of much smaller size. The intuition is that the “relevant” connected components of the
polar variety on which it is necessary to consider fibers are those containing at least one
point of W (π1, V ) ∪ sing(V ). For these, taking fibers from W (π1, V ) ∪ sing(V ) captures the
change of the topology of the embedding variety V changes. This can be seen in the example
of the torus in Figure 1.7. Therefore, we expect to generalize the connectivity result for
roadmap algorithms, to avoid including all the critical points in W (π1,Wi) and reduce both
the size of the intermediate data and the computational cost of the computation of such
points. Some estimates on these two latter quantities can be found in Subsection 7.3.2 of
Chapter 7, which are based on [SS17, Section 6] and [SS18]. Concretely, this would reduce
the constants in the exponents in (1.4).

6https://msolve.lip6.fr
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Figure 1.7. Illustration of the critical loci considered for the computation of a roadmap for a three-
dimensional torus V . The second polar variety W2 = W (π2, V ) is the red curve. The
points of W (π1, V ) are the red sphere, while the points of W (π1, Wi) not in W (π1, V )
are in green; V is smooth here. You can see that “scanning” the variety along the x-axis,
while the type of the fibers might change at the green sphere, the number of connected
components of W2 remain the same between two consecutive red spheres.

Structured systems. Another avenue for improvement would be to take into account the
possible structure of the input system for computing roadmaps, following the work initiated
in [SS18], which solves efficiently zero-dimensional systems with a multi-homogeneous
structure. Of particular interest is the case where the input polynomial system is quadratic
as the degree bounds turn out to be much nicer. Indeed, according to [SS18, Corollary 2],
the critical points of the restriction of the projection on the first coordinate to a smooth
equidimensional algebraic set V ⊂ Cn defined by p polynomials of maximum degrees D,
has maximum degree (

n− 1

p− 1

)
Dp(D − 1)n−p,

that is exponential in n and p. However, when D = 2, this bound reduces to
(

n−1
p−1

)
2p, which

is still exponential in p but only polynomial in n, the number of variables. Hence, for p fixed
we can target, as done in [SS18] for zero-dimensional system, roadmap algorithms whose
complexity would be polynomial in (2n)p log2(n−p), on input V as above.

This is also to be related with the bound nO(s) proved by Barvinok [Bar97] on the
topological complexity of semi-algebraic sets of Rn defined by s quadratic inequalities – see
also [Bas17, §3.6]. Similarly to the Thom-Milnor’s bound discussed in Subsection 5.2.1 of
Chapter 5, this gives a lower bound of complexity that one can hope to get close to.

Towards optimal roadmap algorithms. As further discussed in Subsection 5.2.1 of Chapter 5,
the topological complexity of semi-algebraic sets is upper bounded by Thom-Milnor’s bound.
This constitutes a lower bound for roadmap algorithms. We hope to achieve it, why?
Achieving such a complexity bound for roadmap algorithm would probably require to drop
the recursive structure in roadmap algorithms as the complexity of computing critical points
matches the complexity class of this lower bound.
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Software. We already have a prototype implementation for roadmaps which mimics the
approach from [MS06]. This is based a recursive scheme similar to the one introduced by
Canny but takes fibers at rational points between critical values instead of manipulating
symbolically real algebraic numbers.

This prototype implementation is fast enough to tackle the singularity analysis of a 6
revolute joint PUMA robot. This challenging robotic problem involves dealing with an open
semi-algebraic set. The outcome was a roadmap of degree 8000, computed in three hours.

In the coming years, we aim at developing a robust and efficient implementation of
asymptotically optimal roadmap algorithms whose practical behaviour does reflect the
complexity gains obtained during this PhD and in forthcoming theoretical developments.
For algebraic elimination algorithms, we will rely on the msolve7 library [BES21] which
allows to compute efficiently rational parametrizations of algebraic curves.

1.4.2 Connectivity queries on semi-algebraic curves

Dealing efficiently with the connectivity analysis of roadmaps is a key step in connectivity
queries decision, as their degree can be very large. Moreover, the best-known algorithms
have complexity subquadratic in their output size, so that the analysis of roadmaps, can
quickly become the bottleneck of the whole process.

State-of-art. The connectivity analysis of an arbitrary semi-algebraic curve of Rn defined
as the intersection of an algebraic curve of degree at most δ and s inequalities of maximum
degrees δ, can be performed in complexity polynomial in sδ. But the degree of the latter
complexity has not been bounded yet. We refer to Subsection 5.3.3 of Chapter 5 for more
details. For real algebraic curves of Rn, the outcome of Chapter 8, is the first Monte Carlo
algorithm with complexity Õ

(
δ6
)
, which matches the best-known bound for curve of R2.

The probabilistic nature of this algorithm is due to a prior random linear change of variable
to satisfy genericity assumptions, with high probability.

Deterministic algorithm. A first direction for improvement lies in making our algorithm
deterministic. This could involve simplifying or eliminating the genericity assumptions
we currently rely on. For instance, we could explore techniques to handle more complex
apparent singularities using Puiseux series expansion or leverage the fact that the plane
projection need not be in a generic position when using the algorithm of [DDR+22]. Another
approach, employed by algorithms like those in [KS15] and [JC21], is to deterministically
find a change of variables that places the curve in a generic position.

Union of curves. As the natural output of roadmap algorithms is the union of several curves,
adapting the algorithm for such inputs would be of great benefit. Indeed, if C1 and C2 are
two curves of respective degree δ1 and δ2 , then C1 ∪ C2 has degree δ1 + δ2. The key idea is
that it suffices to decide:

1. decide which query points lie in the same connected component of each curve,

7https://msolve.lip6.fr
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2. to merge the connected components of the respective curves C1 and C2 that contain a
point of C1 ∩ C2 (which is generically finite).

Semi-algebraic curves. We also aim at generalizing algorithms for answering connectivity
to the case of semi-algebraic sets. This involves modifying the algorithm to include inequal-
ities g1 > 0, . . . , gs > 0 in the input. The algorithm would use a structure similar to the
variant for unions, to obtain a finer partition of query points for each 1 ≤ i ≤ s, grouping
the points that belong to the same connected component of the algebraic curve and for
which the sign of gi is constant. This would imply a combinatorial factor of sDδ where D is
a bound on the degree of the gi’s, and δ is the degree of the algebraic curve.

Further complexity improvements. The most costly steps of the algorithms for answering
connectivity queries on semi-algebraic curves (in the vein of the one developed in this PhD)
are the (a) the computation of topology of the projection of the set under study on some
plane and the (b) the identification of apparent singularities.

To improve the first one, an idea would be to avoid the computation of the comprehensive
topology of plane curve for connectivity considerations. For instance, this could be done by
constructing, on the fly, the partition of the query points, while scanning the plane curve
along the x-axis, using e.g. hybrid symbolic-numeric techniques.

To improve the second step, the main direction seems to investigate parametrizations for
nodes of smaller size, which are cheaper to compute.

Software. As emphasized above, the step of answering connectivity queries on curves as
efficiently as possible is crucial since the input from roadmap algorithms might have a size
which is singly exponential w.r.t. the number of variables. Hence, we target to design
efficient implementations. This work has already started with an optimized implementation
for subresultant and gcd computations involving multi-modular computations, partly using
the FLINT8 library and the real root isolator of the msolve library.

1.4.3 Applications

In this thesis, we successfully designed an algorithm for solving an open problem from
robotics, from a general point of view. This employed many high-level routines from the
state-of-the-art of computational real algebraic geometry, and advanced results from real
algebraic geometry. Moreover, using a prototype implementation, we showed a proof of
concept of the practical application of this algorithm.

Extension to semi-algebraic sets. In some situations, kinematic maps modeling robots must
be restricted to semi-algebraic algebraic sets e.g. due to constraints on the configuration of
the joints. Most of the ingredients used in the proof already apply to the semi-algebraic case:
Thom’s first isotopy lemma, roadmap algorithm, sample points computation, real quantifier
elimination.

8https://flintlib.org/
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Software. We aim at developing a toolbox, easy to use by researchers in robotics and
engineers, which is based on the aforementioned software developments on roadmaps
and curves, that will provide specific functionalities which are of interest to analyze the
geometry of robots (cuspidality decision, kinematic singularity analysis, etc.). Note that the
computation of sample points already benefits from such an efficient implementation in the
software RAGlib9 software written with the computer algebra programming language Maple.
Recently, some significant progress has been made on quantifier elimination [LS21]. This
makes realistic this ambitious project in the coming years.

New applications Many other problems from applications translate into real algebro-
geometric problems. Among them are, we mention quantum computing, rigidity theory
[JW18] or program verification [GHMM23, Tiw10].

1.5 Structure of the thesis

This thesis is structured in two parts, which serve different purposes.

In the first part, we present notions from the literature that will be used extensively in the
second part. This part aims to fix the background and notations, as well as give pedagogic
developments, that might not exist in the literature of this thesis’s topic. In some chapters,
we also provide preliminary results that serve as the basis for our further work. These results
are derived from well-established textbook materials.

⊛E Pluribus Anus In Chapter 2: “Algebraic geometry”, we lay the groundwork by introducing the funda-
mental tools of complex (as opposed to real) algebraic geometry. Our emphasis here is
on the notions of genericity and critical loci of polynomial maps, which are ubiquitous
in our contributions. Our main references are [Sha13, Har77, Ful08, Eis95, CLO15].

⊛E Pluribus Anus In Chapter 3: “Computational algebraic geometry”, we transition to the computational
aspects. We describe our computational framework as well as the different representa-
tions of polynomials and objects from algebraic geometry introduced in the previous
chapter. Moreover, we present two significant computational tools, namely Gröbner
bases and geometric resolutions. Our main references are [CLO15, GG13, Eis95]

⊛E Pluribus Anus In Chapter 4: “Real algebraic geometry”, we shift our focus to the real domain. Here,
we explore the theory of real closed fields and their extensions, laying the groundwork
for understanding the core concepts of real algebraic geometry. Our main references
are [BCR98, BPR06].

⊛E Pluribus Anus In Chapter 5: “Computational real algebraic geometry”, we provide an extended
historical overview of three pivotal challenges in computational real algebraic geometry.
These are real quantifier elimination, the computation of sample points in each semi-
algebraically connected component of a semi-algebraic set, and solving connectivity
queries within such sets. Our main references are [BPR06, Bas17].

9RAGlib: https://www-polsys.lip6.fr/~safey/RAGLib/
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In the second part, we give the comprehensive proofs of the four main contributions we
described in this chapter. This includes:

⊛E Pluribus Anus In Chapter 6: “A new connectivity result for unbounded smooth real algebraic sets”, we
present the proof of the generalized connectivity we presented in Subsection 1.3.1.
This proof has been the main contribution of the paper [PSS24] (with M. Safey El Din
and É. Schost), which is published in the Journal of Symbolic Computation.

⊛E Pluribus Anus In Chapter 7: “A nearly optimal algorithm for unbounded smooth real algebraic sets”,
we detail the generalized roadmap algorithm of Subsection 1.3.2 designed from the
connectivity result of the previous chapter. Most of the chapter is devoted to the proof
of genericity results, and complexity estimates. The content of this chapter will be very
soon submitted as a paper, with M. Safey El Din and É. Schost.

⊛E Pluribus Anus In Chapter 8: “Answering connectivity queries on real algebraic curves”, we present
and prove the correction and complexity estimate of the algorithm described in
Subsection 1.3.3. We also prove that the assumptions on the input, hold generically.
These results are the main contribution of the paper [IPP23] (with N. Islam and
A. Poteaux), which has been published in the proceedings of ISSAC 2023 - 48th
International Symposium on Symbolic and Algebraic Computation, Jul 2023, Tromsø,
Norway.

⊛E Pluribus Anus In Chapter 9: “Real algebraic geometry in action: application to robotics”, we present
a detailed version of the resolution of the robotics problem sketched in Section 1.2.
This is the content of the paper [CPS+22] (with D. Chablat, M. Safey El Din, D.
Salunkhe, P. Wenger), which has been published in the proceedings of ISSAC 2022
- 47th International Symposium on Symbolic and Algebraic Computation, Jul 2022,
Lille, France.
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Algebraic geometry 2
As seen in the previous chapter, we are interested in problems defined by polynomials. These
sets are called algebraic sets and are the basic objects of algebraic geometry of which we aim
to provide key aspects in this chapter.

We start by providing in Section 2.1 the first definitions and essential properties of affine
algebraic sets before presenting their projective counterparts in Section 2.2. Moving forward,
Section 2.3 examines the mappings between algebraic sets and discusses noteworthy classes
among them. Building upon the previously introduced Zariski topology, we then review in
Section 2.4 the concept of genericity, which is central in this thesis. Finally, in Section 2.5
we explore the notion of critical points before describing in Section 2.6 an important class
of critical loci, namely polar varieties, that maintains substantial relevance throughout our
study.

In the sequel, we denote by C an algebraically closed field of characteristic zero. Let
n ≥ 1 and X = x1, . . . , xn be indeterminates. We write C[X] or C[x1, . . . , xn] for the
ring of polynomials in the indeterminates x1, . . . , xn, with coefficients in C. For the results
and notions introduced in this chapter we refer, when omitted, to the classic literature in
(computational) algebraic geometry such as [Sha13, Har77, Ful08, Eis95, CLO15].

2.1 Definitions and main properties

2.1.1 Affine algebraic sets

Definition 2.1.1. An affine algebraic set of Cn is a subset of Cn that can be written as

¶y ∈ Cn ♣ f1(y) = · · · = fp(y) = 0♢,

where (f1 . . . , fp) ⊂ C[x1, . . . , xn]. For f = (f1, . . . , fp) ⊂ C[x1, . . . , xn], we denote by V (f)

or V (f1, . . . , fp) the algebraic set of Cn defined by f .

Let V be an affine algebraic set of Cn, the affine algebraic subsets of V are the algebraic
sets of Cn, that are contained in V .

Finally, an affine hypersurface is an algebraic set that is the zero-set of a single polynomial.

In the following, when it is clear from the context, affine algebraic sets are simply referred
as algebraic sets. The ambiguity could come from the dual notion of projective algebraic
sets, that we introduce in Section 2.2.

Let f = (f1 . . . , fp) ⊂ C[x1, . . . , xn] be a finite sequence of polynomials. For any y ∈ Cn,
we denote by f(y) the point (f1(y), . . . , fp(y)) ∈ Cp, where the fj ’s are evaluated at the
entries of y. Moreover f(y) = 0 stands for f1(y) = · · · = fp(y) = 0.
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Example 2.1.2.

a) The empty set ∅, Cn and any finite subset of Cn are algebraic sets.

b) The proper algebraic sets of C are exactly the finite subsets of C.

c) The unit circle or the hyperbola are algebraic sets of C2 defined by the vanishing set
of the polynomials x2 + y2 − 1 and xy − 1, respectively. Their projection on any of the
two coordinates is respectively C and C⋆. The latter is not an algebraic set.

d) Let M(X) ⊂ C[X]p×q, where p, q are positive integers, be a matrix with polynomial
entries. Hence, the locus of Cn where M has rank at most r ≤ min(p, q) − 1 is an
algebraic set, defined by the vanishing of all the minors of size r + 1 of M .

Remark 2.1.3.

a) The family of algebraic sets is closed under intersection and finite union. However, it
is not closed under complementation and then, it is not stable under projections.

b) The family of sets defined by the vanishing of equations and inequations enjoy nicer
stability properties. More precisely, the elements of such an obtained family are called
the constructible sets and, according to [BPR06, Theorem 1.32], this family is stable
under the aforementioned operations.

c) Any basic constructible set of Cn can actually be defined as the projection of an
algebraic set of Cn+1 as follows. Let f1, . . . , fp in C[X] and y ∈ Cn then

f1(y) ̸= 0, . . . , fp(y) ̸= 0 ⇔ (f1 · · · fp)(y) ̸= 0 ⇔ ∃u ∈ C, u · (f1 · · · fp)(y) = 1.

Hence, the constructible set defined by the simultaneous non-vanishing of f1, . . . , fp,
is the projection of the algebraic set defined by the vanishing of u · (f1 · · · fp)− 1.

We will occasionally employ the following refinement.

Definition 2.1.4. Let D be a subring of C. We say that the set V ⊂ Cn is a D-algebraic set

of Cn, if it is the zero-set of a finite set of polynomials in D[x1, . . . , xn]. Then there exists
f ⊂D[x1, . . . , xn] such that V = V (f).

Let us consider the converse problem: given an arbitrary set, consider the set of polynomi-
als vanishing at each point of this set.

Definition 2.1.5. Let X be a subset of Cn, we denote by

I(X) = ¶f ∈ C[x1, . . . , xn] s.t. ∀y ∈ X, f(y) = 0♢

the set of polynomials vanishing on X. The set I(X) is an ideal of C[x1, . . . , xn], and is
called the ideal of definition of X.

The following theorem is fundamental in algebraic geometry as it allows one to character-
ize the algebraic sets as the common vanishing locus of finitely many polynomials.
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Theorem 2.1.6 (Hilbert’s basis theorem for field [Eis95, Theorem 1.2]).
Let K be a field, the ring K[x1, . . . , xn] is Noetherian. In other words, the two following

equivalent assertions hold:

1. every ideal of K[x1, . . . , xn] is finitely generated;

2. there is no infinite strictly increasing chain of ideals of K[x1, . . . , xn].

Thus, one can extend the notation V to ideals: given an ideal I of C[x1, . . . , xn], and let
f1, . . . , fp be generators of I given by Theorem 2.1.6, we note V (I) = V (f1, . . . , fp).

We can state now a fundamental result in algebraic geometry that is Hilbert’s Nullstellen-
satz, which requires C to be algebraically closed. We start with the Weak Nullstellensatz,
which is the historic version of the former one.

Theorem 2.1.7 (Weak Nullstellensatz). [Eis95, Corollary 1.7] Let I be an ideal of C[X].

Then, V (I) = ∅ if and only if 1 ∈ I.

Example 2.1.8. The above result does not hold anymore when C is not algebraically closed.
For example, the zero-set of x2 + 1 in R is empty, but 1 /∈ (x2 + 1) ·R[x].

Nonetheless, we will investigate in Chapter 4, the situation where the underlying fields
are real closed fields. The latter fields are closely connected to algebraically closed fields as
adding the square root of −1 raises an algebraically closed field.

Note that the latter condition of Theorem 2.1.7 means that I = C[X]. This theorem gives
an effective criterion for deciding the emptiness of an algebraic set. This is a particular case
of the ideal membership problem, and we will see in Section 3.3 how it can be solved using
Gröbner bases, by computing normal forms.

This result is of importance as it guarantees that the only ideal representing the empty
algebraic set is the entire polynomial ring C[X] (unlike the above example). Pushing forward
this identification between ideals and algebraic sets leads to the Strong Nullstellensatz.

Definition 2.1.9. Let I be an ideal of C[x1, . . . , xn], the radical of I is the set

√
I = ¶f ∈ C[x1, . . . , xn] ♣ ∃k ≥ 1, fk ∈ I♢.

An ideal I is radical if I =
√
I. In particular

√
I is radical.

We can now formulate the Strong Nullstellensatz, which is equivalent to its “Weak”
counterpart of Theorem 2.1.7. This constitutes the original Hilbert’s Nullstellensatz.

Theorem 2.1.10 (Strong Nullstellensatz). [Eis95, Theorem 1.6] Let I be an ideal of C[X],

then I(V (I)) =
√
I.

Remark that, by definition, for any algebraic set V ⊂ Cn, V (I(V )) = V . As a consequence,
V (I) = V (

√
I) and I(V ) is a radical ideal. Therefore the above theorem gives a (inclusion-

reversing) bijective correspondence between (affine) algebraic sets of Cn and radical ideals
of C[X] (see e.g. [CLO15, Theorem 7] or [Eis95, Corollary 1.10]).
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2.1.2 Zariski topology

Definition 2.1.11. The Zariski topology on Cn is the topology whose closed sets are the
algebraic sets of Cn.

The following notions then come naturally with this topology.

Definition 2.1.12. Let X be a subset of Cn.
The Zariski closure ofX is defined, according to the underlying topology, as the intersection

of all the algebraic sets that contain X. It will be denoted by X
Z

.
The set X is said to be Zariski dense in Y ⊂ Cn if X

Z

= Y .

Note that, by definition, a subset of Cn is Zariski dense in its Zariski closure. The following
proposition gives an effective characterization of the Zariski closure.

Proposition 2.1.13 ([CLO15, Chap. 4, §4, Proposition 1]). The Zariski closure of a set

X ⊂ Cn is the algebraic set V (I(X)).

We now address a topological notion that is particularly relevant to Zariski topology, as
the following Theorem 2.1.19 shows.

Definition 2.1.14. A subset V ⊂ Cn is said to be irreducible if it cannot be written as
V = V1 ∪ V2 for distinct proper algebraic subsets V1, V2 ⊊ V . Otherwise, it is said to be
reducible.

Example 2.1.15.

a) A finite algebraic set is irreducible if and only if it is a singleton.

b) The algebraic set V (xy) ⊂ C2 is reducible as V (xy) = V (x) ∪ V (y). However the
two components V (x) and V (y) are irreducible, and we will see that they are unique,
up to ordering.

c) For f ∈ C[X], the hypersurface V (f) is irreducible if, and only if, the polynomial f is
irreducible.

According to the following proposition, the notion of Zariski irreducibility is mainly
relevant for algebraic sets. Hence, in the following, we will simply refer to irreducibility for
algebraic sets.

Proposition 2.1.16. A subset X ⊂ Cn is irreducible if and only if its Zariski closure X
Z

is.

The following proposition gives an equivalent algebraic criterion for irreducible algebraic
sets.

Proposition 2.1.17 ([CLO15, Chap. 4, §5, Proposition 3]). An algebraic set V ⊂ Cn is

irreducible if and only if its ideal of definition I(V ) is a prime ideal.

Example 2.1.18. The set Cn is irreducible in the Zariski topology as its ideal of definition
I(Cn) = ¶0♢ is a prime ideal. However, note that Cn is reducible in the usual complex
topology.
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The following theorem is central to the study of algebraic sets. It allows, in particular, to
prove properties on irreducible components of a given algebraic set, before extending it to
the whole set. Besides, important applications of irreducibility such as dimension (see next
subsection), can be extended to general algebraic sets.

Theorem 2.1.19 (Irreducible decomposition [CLO15, Chap. 4, §6, Theorem 4]).

Let V ⊂ Cn be an algebraic set. There exist m ≥ 1 and V1, . . . , Vm, irreducible algebraic

subsets of V , such that the following holds:

• V = V1 ∪ . . . ∪ Vm;

• for any 1 ≤ i ̸= j ≤ m, Vi ̸⊂ Vj .

The Vi’s are called the irreducible components of V , and are unique, up to permutation.

The computation of the irreducible decomposition of an algebraic set is a challenging
problem that is tackled by algorithms from commutative algebra. Indeed, as suggested
by Proposition 2.1.17, the irreducible components are obtained by the computation of the
so-called primary components. Efficient algorithms can be found in [GTZ88, EHV92] and
we refer to [BW93, Chapter 8] and [AL94, §4.4] for an overview.

We now present some interesting properties of Zariski open sets, that will be central
in this manuscript. As introduced in Section 2.4 below, this gives an effective geometric
characterization for genericity properties.

Let V be an algebraic set, recall that a Zariski open subset of V is a set that can be written
as V −W , where W is an algebraic set.

Proposition 2.1.20. Let V be an irreducible algebraic set, then any non-empty Zariski open

subset O of V is Zariski dense in V .

Moreover, for any other non-empty Zariski open subset O ′ of V , O∩O ′ is a non-empty Zariski

open set.

In particular, according to Example 2.1.18, any two non-empty Zariski open subsets of Cn

are Zariski-dense in Cn and intersect each other.

Besides, a non-empty Zariski open subset of an algebraic set V is Zariski dense in any
irreducible component of V it intersects. Similarly, two such non-empty Zariski open subsets
of V , intersect in an irreducible component W of V if and only if they both intersect W .

It is worth noting that, when C = C the field of complex numbers, these notions match
the ones of the more natural analytic topology on Cn. Indeed, a non-empty Zariski open
subset of Cn is dense for the analytic topology, and its complement has measure 0 for the
usual Lebesgue measure.

We end this paragraph with an interesting (and quite unusual) property of open cover
in the Zariski topology. This is to be connected with the concept of atlases introduced in
Chapter 7.

Proposition 2.1.21. Any algebraic set V of Cn is compact in the Zariski topology. In particular,

any open cover of V (or of any Zariski open subset of V ) has a finite subcover.
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2.1.3 Dimension

We can now give a first natural quantitative bound on algebraic sets.

Definition 2.1.22. The dimension of an irreducible algebraic set V is the maximal length d
of strictly increasing chains V0 ⊊ . . . ⊊ Vd of non-empty irreducible algebraic subsets of V .
We note dim(V ) this dimension.

Remark 2.1.23. The dimension of an irreducible algebraic set always exists and is finite.
However, the property of finite dimension is independent of the Noetherian property given
by the Hilbert’s Theorem 2.1.6, as one might expect at first; see [Eis95, Exercise 9.6].

We can now extend this definition to reducible algebraic sets using their irreducible
decomposition.

Definition 2.1.24. The dimension of an algebraic set V of Cn, denoted dim(V ), is the
maximum of the dimensions of its irreducible components.

The algebraic set V is equidimensional of dimension d (or d-equidimensional or of pure
dimension d) if all its irreducible components have dimension d.

Example 2.1.25.

a) Finite algebraic sets and Cn are equidimensional algebraic sets of respective dimen-
sions 0 and n.

b) Equidimensional algebraic sets of dimension 1 and 2 are called respectively algebraic
curves and surfaces.

c) For any non-zero f ∈ C[X], the hypersurface V (f) ⊂ Cn is an equidimensional
algebraic set of dimension n− 1.

d) The algebraic set V (xy, xz) is not equidimensional as it has two irreducible compo-
nents V (x) and V (y, z) of respective dimension 2 and 1.

As for the irreducible decomposition, one can be interested in computing an equi-
dimensional decomposition of an algebraic set, that is write it as a a union of equidimensional
algebraic sets. Note that, contrary to the irreducible decomposition, such a decomposition is
not unique, as one can have many equidimensional components of the same dimension.

We finish by a useful result that will be used for proofs of genericity.

Proposition 2.1.26. Let V be an irreducible algebraic set, then any proper algebraic subset of

V has dimension at most dim(V )− 1.

2.1.4 Degree

We now deal with another quantitative bound on algebraic sets, that quantifies the complexity
of an algebraic set of fixed dimension. We follow a simplification of the original geometric
construction from [Hei83].

Consider an algebraic set V , of dimension d. We will see, in Section 2.3, that fixing the
image of sufficiently “generic” – this term is precisely defined in Section 2.4 – d linear forms,
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one gets finitely many points in V . Hence, the dimension quantifies the number of “degrees
of freedom” of a point lying on V .

Besides, one can show – see Theorem 2.3.12 – that there exists a non-empty Zariski open
subset O of Cd such that the number of points obtained by fixing the image of d generic
linear forms at a point of O is constant, and maximal. This number is called the degree of an
algebraic set.

Definition 2.1.27 ([Hei83, Definition 1]). Let f = (f1, . . . , fp) ⊂ C[X] defining an equi-

dimensional algebraic set V = V (f) of dimension d. The degree of V , denoted by deg(V ), is
defined as the maximum of

card(V (f , ℓ1, . . . , ℓd))

where ℓ1, . . . , ℓd ∈ C[X] are affine forms (i.e. polynomials of degree ≤ 1) such that the
above cardinality is finite.

The notion of degree can be extended to general algebraic sets in two ways:

(weak degree) as the degree of the equidimensional components of maximum dimension;

(strong degree) as the sum of the degrees of its equidimensional components.

In the following, either of the two definitions can be chosen, since the results do not depend
on this choice. Moreover, most of the algebraic sets used in this will be equidimensional, for
which both definitions agree.

Example 2.1.28.

a) A finite algebraic set has dimension zero, so that its degree equals its cardinality.

b) The degree of a non-empty algebraic set is never zero. Indeed, any point (y1, . . . ,yn) ∈
V is clearly contained in V ∩ V (x1 − y1, . . . , xd − yd).

c) As dim(Cn) = n, and as an affine system of equations admits either 1 of infinitely
many solutions, then Cn has degree 1.

d) The degree of a hypersurface is the degree of its defining polynomial i.e. for f ∈ C[X],
deg(V (f)) = deg(f).

It is worth noting that the degree of an algebraic set depends intrinsically of the embedding
of the given algebraic set. Hence, unlike the dimension, the degree is not an invariant
quantity under isomorphism. For example, the curves defined by y = xm, for m ≥ 2, are
isomorphic to C, but have degree m > 1.

Proposition 2.1.29 ([Hei83, Remark 2]). Let V and W be algebraic sets of Cn, then

deg(V ∪W ) ≤ deg(V ) + deg(W ).

Proposition 2.1.30 ([Hei83, Proposition 2]). If V ⊂ Cn and W ⊂ Cm are algebraic sets,

then

deg(V ×W ) = deg(V ) · deg(W ).
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The following result is the main result about degrees of algebraic sets.

Theorem 2.1.31 (Heintz-Bezout’s bound [Hei83, Theorem 1]). Let V and W be algebraic

sets of Cn, then

deg(V ∩W ) ≤ deg(V ) · deg(W ).

Example 2.1.32. In particular, if f1, . . . , fp ∈ C[X] are polynomials of total degree bounded
by D ≥ 1, then deg(V (f1, . . . , fp)) ≤ Dp by Theorem 2.1.31.

An important variant of this result is reported below, in the finite case, where the bound is
independent of the number of polynomials. In applications, the latter bound is much better
since p is typically large compared to n [Hei83].

Theorem 2.1.33 ([Hei83, Corollary 1]). Let (f1, . . . , fp) ⊂ C[X], then any finite algebraic

set that is defined using the fi’s has cardinality at most (1 +D)n, where D =
∑

1≤i≤p deg(fi).

Note that, for n fixed, the above bound is asymptotically optimal (take fi = xd
i − 1 for

1 ≤ i ≤ n). Note also that adapted Bézout’s bounds exist, for structured cases such as
multi-homogeneous polynomials systems [SS18].

Other approaches exist to define the degree of algebraic sets, typically as the degree of
their ideal of definition [Har77, Eis95, Ful98, Lan02, HHPS21, Laz21]. These are anterior
to the one in consideration here and take into account the multiplicities of points.

2.1.5 Regularity and Jacobian criterion

Definition 2.1.34. Let f = (f1, . . . , fp), where fi ∈ C[x1, . . . , xn] for 1 ≤ i ≤ p. The
Jacobian matrix of f is the matrix of size p× n with coefficients in C[x1, . . . , xn] defined as
follows:

Jac(f) =




∂f1

∂x1
· · · ∂f1

∂xn

...
...

∂fp

∂x1
· · · ∂fp

∂xn


 .

The evaluation of Jac(f) at y ∈ Cn is denoted by Jacy(f).

Proposition 2.1.35 ([CLO15, Chap. 9, §6, Proposition 2]). Let V ⊂ Cn be an algebraic set

and let f = (f1, . . . , fp) be a set of generators of I(V ) (given by Theorem 2.1.6).

Then, for any y ∈ V , the right-kernel of Jacy(f) does not depend on the choice of the

generators in f . It is called the Zariski tangent space of V at y and is denoted Ty V .

An important local notion for algebraic sets is the smoothness at a point. We can define
regular and singular points by the rise of the dimension of a tangent space at a point, or
equivalently, by the drop of its codimension. Recall that the rank of a matrix is the dimension
of the vector space spanned by its columns.

Proposition 2.1.36. Let V ⊂ Cn be a d-equidimensional algebraic set and let f = (f1, . . . , fp)

be a set of generators of I(V ). Then rank Jacy f ≤ n− d for any y ∈ V and:

• if rank Jacy f = n− d, then y is called a regular point;
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• if rank Jacy f < n− d, then y is called a singular point.

We denote by reg(V ) (resp. sing(V )) the set of all regular (resp. singular) points of V . A

smooth algebraic set is an algebraic set with no singular points.

Example 2.1.37. Let f ∈ C[X] be a non-zero square-free polynomial. We have seen that
the hypersurface V (f) is equidimensional of dimension n−1 and by Hilbert’s Nullstellensatz
I(V (f)) = f . Hence, the singular points of V (f) are the y ∈ V (f) where Jacy(f) has not
full rank 1, that is when all the first partial derivatives of f vanish. In other words,

sing(V (f)) = V (f,
∂f

∂x1
, . . . ,

∂f

∂xn
).

Theorem 2.1.38 ([CLO15, Chap. 9, §6, Theorem 8]). Let V be a d-equidimensional algebraic

set, then sing(V ) is a proper algebraic subset of V of dimension at most d− 1.

We finish with an important and useful result given by the rank of the Jacobian matrix at
a point, namely the Jacobian criterion.

Theorem 2.1.39 ([Eis95, Theorem 16.19] and [SS11, Lemma 15]). Let f = (f1, . . . , fp) ⊂
C[X] and let the constructible set

X = ¶y ∈ V (f) s.t. rank Jacy(f) = p♢.

Suppose that V (f) is non-empty and X is Zariski dense in V (f). Then the ideal ⟨f⟩, generated

by f , is radical, and V (f) is an equidimensional algebraic set of dimension n− p.

A direct consequence of the above result is that X is exactly the set of regular points of V ,
so that if X = V (f), then it is smooth.

2.2 Projective algebraic sets

Definition 2.2.1. The projective space Pn(C) of dimension n, over C, is the set of equivalence
classes of points in Cn+1 − ¶0♢:

[y0 : · · · : yn] = ¶(λy0, . . . , λyn), λ ∈ C⋆♢.

Here, [y0 : · · · : yn] are the homogeneous coordinates of the associated class in Pn(C). When
there will be no ambiguity from the context, Pn(C) will be simply denoted by Pn.

The projective space Pn can be seen as the set of lines of Cn+1 that pass through the
origin as there is a one-to-one correspondence between these two sets (see [CLO15, Chap.
8, §2, Exercise 1]). The following proposition shows that Pn is made of n+ 1 copies of Cn,
up to some trivial injections.

Proposition 2.2.2 ([CLO15, Chap. 8, §2, Corollary 3]). There exists a decomposition

Pn =

n⋃

i=0

Ui,
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where, for each 0 ≤ i ≤ n

Ui = ¶[y0 : · · · : yn] ∈ Pn s.t. yi ̸= 0♢.

is in one-to-one correspondence with Cn. The Ui’s are then called the affine charts of Pn.

By contrast, we introduce the complement of the affine spaces in Pn.

Definition 2.2.3. For each 0 ≤ i ≤ n let

H∞
i = ¶[y0 : · · · : yn] ∈ Pn s.t. yi = 0♢,

it is called the hyperplane at infinity with respect to the affine chart defined by Pn −H∞
i .

Indeed, according to the previous proposition, Cn and H∞
i are complement to each other in

Pn.

Recall that a polynomial f ∈ C[x0, x1, . . . , xn] is homogeneous of degree D if all its
monomial terms have the same total degree D. Hence, for any (y0, . . . ,yn) ∈ Cn+1 and
λ ∈ C⋆, then

f(λy0, . . . , λyn) = λDf(y0, . . . ,yn).

In particular, if (y0, . . . ,yn) is a root of f , then so is every element of [y0 : · · · : yn]. Hence,
we can extend the notion of root of homogeneous polynomials to elements of the projective
space Pn. This leads to the projective counterpart of algebraic sets.

Definition 2.2.4. A projective algebraic set V of Pn, is a subset of Pn that can be written as

¶y ∈ Pn s.t. f1(y) = · · · = fp(y) = 0♢,

where f1, . . . , fp are homogeneous polynomials in C[x0, x1, . . . , xn]. We extend to the pro-
jective settings the notations from the affine case, e.g. V (f1, . . . , fp) denotes the projective
algebraic set defined by f1, . . . , fp.

Proposition 2.2.5 ([CLO15, Chap. 8, §2, Proposition 6]). Let f = (f1, . . . , fp) be a sequence

of homogeneous polynomials of C[x0, x1, . . . , xn] . Then, using the notation of Proposition 2.2.2,

the set V (f) ∩ U0 can be identified with the affine variety

V (g1, . . . , gp) ⊂ Cn,

where gi(x1, . . . , xn) = fi(1, x1, . . . , xn), for each 1 ≤ i ≤ p.

According to the previous proposition, we can see affine algebraic sets as locally closed
sets of Pn. In the following, we will identify the affine algebraic sets of Cn with their
corresponding set in U0. This leads to the notion of (Zariski) projective closure.

Definition 2.2.6. The projective closure V ⊂ Pn of an affine algebraic set V ⊂ Cn, is the
intersection of all the projective algebraic sets containing V .

The conjunction of Propositions 2.2.2 and 2.2.5 shows that any projective algebraic set can
be covered by affine charts, where they can be identified as an affine algebraic set. Hence,
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the local notions in affine algebraic sets, introduced in Subsection 2.1.5, can be naturally
extended to the projective setting. We do not detail this further, and refer to [Sha13, Chap.
2, §1] instead.

2.3 Mappings on algebraic sets

2.3.1 Polynomial maps

We start by considering the scalar polynomial maps defined on algebraic sets.

Definition 2.3.1. Let V be an algebraic set of Cn, a polynomial function on V is a map
of the form y ∈ V 7→ f(y) ∈ C, where f ∈ C[X]. The set of polynomial functions on V ,
denoted C[V ] is a ring called the coordinate ring of V . Moreover,

C[V ] ⋍ C[X]/I(V ),

where ⋍ denotes the existence of an isomorphism.

The bijective correspondence given by Theorem 2.1.10 raises, through quotient, a bi-
jective correspondence between the algebraic sets V and their associated coordinate ring
C[X]/I(V ). Since I(V ) can range over all possible radical ideals, the coordinate rings are
exactly the C-algebras that are reduced and finitely generated, also called affine algebras for
this reason (see e.g. [Eis95, Corollary 1.8]). Therefore, we have a bijective correspondence
between the affine algebraic sets of Cn and the affine C-algebra

A first illustration of this correspondence is the following.

Proposition 2.3.2. Let V be an algebraic set of Cn, then

(i) V is irreducible if and only if C[V ] is an integral domain;

(ii) the Krull dimension of the ring C[V ] is exactly the dimension of V .

We now naturally extend the notion of polynomial functions, to the one of polynomial
maps.

Definition 2.3.3. Let V ⊂ Cn and W ⊂ Cm be two algebraic sets. A polynomial map
between V and W is a map that can be written as

φ : V → W

y 7→ (φ1(y), . . . , φm(y))
,

where (φ1, . . . , φm) ⊂ C[X].

To a polynomial map, we can associate its dual, associated to the coordinate rings of the
starting and ending algebraic sets of this map.
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Definition 2.3.4 (Pullback [Sha13, Chap. 1, §2.3, p.30]). Reusing the notation of Defini-
tion 2.3.3, the pullback φ∗ of φ is the C-algebra homomorphism

φ∗ : C[W ] −→ C[V ]

f 7−→ f ◦φ
.

Conversely, for every C-algebra homomorphism ψ : C[W ] → C[V ], there exists a unique
polynomial map φ : V →W such that ψ = φ∗.

Hence, the correspondence between algebraic sets and their coordinate rings can be
extended to the polynomial maps between algebraic sets and their pullbacks. This describes
an equivalence between the category of the affine algebraic sets, and the category of the
affine C-algebras, reversing the arrows of the morphisms (see e.g. [Eis95, Corollary 1.10]).
This translates into a perfect correspondence between the two categories of objects and the
morphisms between them, as many results in the following will illustrate.

In the rest of this section, and without further precision, we refer to V,W and φ as in the
above definition.

2.3.2 Isomorphisms

Definition 2.3.5. Let V ⊂ Cn and W ⊂ Cm be two algebraic sets. We say that a polynomial
map φ : V →W is an isomorphism, if it bijective and φ−1 is polynomial as well. In this case,
we say that V and W are isomorphic algebraic sets.

Recall that a polynomial map is said to be Zariski continuous if the inverse image of any
algebraic set, is an algebraic set. It is a Zariski homeomorphism if, in addition, it is bijective
and has a continuous inverse.

Lemma 2.3.6. A polynomial map is a continuous map for the Zariski topology. Hence an

isomorphism is a Zariski homeomorphism.

Proof. Let V ⊂ Cn and W ⊂ Cm be algebraic sets and let φ : V → W be a polynomial
map. Since W is an algebraic set, there exist h1, . . . , hp in C[x1, . . . , xm] such that W =

V (h1, . . . , hp). Let Z be a Zariski closed subset of W , then there exist hp+1, . . . , hs, in
C[x1, . . . xm], with s ≥ p+ 1, and such that

Z = V (hp+1, . . . , hs) ∩W = V (h1, . . . hs).

Since φ is polynomial there exists (φ1, . . . , φm) ⊂ C[x1, . . . , xn] such that

φ−1(Z) = ¶y ∈ Cn ♣ ∀ 1 ≤ i ≤ s, hi(φ1(y), . . . , φm(y)) = 0♢ ∩X.

For all 1 ≤ i ≤ s, let gi = hi(φ1, . . . , φm) ∈ C[x1, . . . , xn]. Note that

φ−1(Z) = V (g1, . . . , gs) ∩X,

which is a Zariski closed subset of X. In conclusion, since the inverse image of every Zariski
closed set of W is a Zariski closed set of X, then φ : V →W is a Zariski continuous map.
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If φ is an isomorphism, then φ−1 is polynomial, so it is Zariski continuous by the first
item. Hence, φ is a homeomorphism for the Zariski topology.

Remark 2.3.7. Note that the converse of the above proposition is not true. Indeed, consider
the map φ from C to itself, exchanging 0 and 1, and being the identity elsewhere. Then, φ
is a Zariski homeomorphism, but not an isomorphism.

The following result shows that equidimensionality (and thus dimension) is invariant
through isomorphisms.

Lemma 2.3.8. Assume that φ : V →W is an isomorphism, then the following hold:

1. the irreducible components of V and W are in one-to-one correspondence through φ;

2. the algebraic set V is d-equidimensional if and only if W is.

Proof. Let V ′ be an irreducible component of V , then φ(V ′) is Zariski closed as φ is a Zariski
homeomorphism by Lemma 2.3.6. Suppose that

φ(V ′) = W1 ∪W2,

where W1 and W2 are two Zariski closed sets of W . Then V ′ = φ−1(W1) ∪φ−1(W2) and by
Lemma 2.3.6, φ−1(Wi) is a Zariski closed subset of W for i = 1, 2. Then, as V ′ is irreducible,
it is either equal to φ−1(W1) or φ−1(W2). Equivalently, φ(V ′) is either equal to W1 or W2.
Thus φ(V ′) is an irreducible component of W . One proves the converse by replacing V and
φ by W and φ−1 respectively. To conclude, we have proved that φ is a correspondence
between the irreducible components of V and W . Since φ is bijective, this correspondence
is one-to-one.

Let us tackle the second statement. Let V ′ be an irreducible component of V . According
to the first item, there exists a unique irreducible component W ′ of W such that V ′ and
W ′ are isomorphic through φ. Assuming that V ′ has dimension d, there exists by [Sha13,
Corollary 1.5] a strictly increasing chain V ′

0 ⊊ . . . ⊊ V ′
d of non-empty irreducible algebraic

subsets of V ′. Thus,
φ(V ′

0) ⊊ . . . ⊊ φ(V ′
d)

is a strictly increasing chain of irreducible algebraic subset of W ′ (by the first item) so
that dimW ′ ≥ dimV ′ holds. The same argument for φ−1 leads to dimW ′ ≤ dimV ′. All
in all, one finally gets dimW ′ = dimV ′. To conclude, if V is d-equidimensional, all its
irreducible components have dimension d. Then, according to the previous paragraph, all
the irreducible components of W have dimension d and W is d-equidimensional as well.
The converse is proved identically.

We also have the following dual criterion, using the equivalence described above.

Proposition 2.3.9. The polynomial map φ is an isomorphism of algebraic sets if and only if its

pullback φ∗ is an isomorphism of rings. In consequence, V and W are isomorphic if and only if

C[V ] and C[W ] are (as ring).
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2.3.3 Dominant maps

Definition 2.3.10 (Dominant morphism). We say that φ : V →W is dominant if the image
of every irreducible component V ′ of V , is Zariski dense in W , that is φ(V ′)

Z

= W .

The following proposition characterizes algebraically the dominant morphisms.

Proposition 2.3.11. The polynomial map φ : V →W dominant if and only if φ∗ : C[W ]→
C[V ] is injective. In particular, φ∗ defines an isomorphic inclusion C[W ] →֒ C[V ] in this case.

The above algebraic property of dominant maps allows to prove powerful results on these
maps as the following one, which will be extensively used in this document.

Proposition 2.3.12 (Theorem on the dimension of the fiber [Sha13, Theorem 1.25]).
Let φ : V →W be a dominant map, then dimW ≤ dimV , and

(i) for any z ∈W , dimφ−1(z) ≥ dimV − dimW ;

(ii) there exists a non-empty Zariski open subset O of W , such that dimφ−1(z) = dimV −
dimW for every z ∈ O.

Example 2.3.13. Let H be the algebraic set of C2 defined by xy−1 = 0, then the projection
π : (x, y) ∈H 7→ x ∈ C is a dominant, but not surjective, map. Indeed, C[x] clearly injects
into

C[H ] ≃ ¶f(x) + g(y), f, g ∈ C[t]♢.

One checks that for z ∈ C⋆, π−1(0) is zero-dimensional, but π−1(0) is empty.

2.3.4 Finite maps

We recall that, given two rings R and R′ and an injective homomorphism R →֒ R′, we say
that R′ is an extension of R. We also say that R →֒ R′ is a ring extension.

Definition 2.3.14 (Integral extension). Let R →֒ R′ be a ring extension, we say that an
element a ∈ R′ is integral over R if there exists a monic polynomial f ∈ R[t] such that
f(a) = 0.

The extension R →֒ R′ is integral, if every element of R′ is integral over R.

Remark that, if R and R′ are fields, then the notion of integral extension corresponds to
the one of the algebraic extension.

Proposition 2.3.15. A ring extension R →֒ R′ is integral if and only if R′ ≃ R[a1, . . . , an], for

integral elements a1, . . . , an ∈ R′.

Definition 2.3.16. A polynomial map φ : V →W is a finite map if

1. φ is dominant;

2. the extension K[Y ] →֒ K[X] induced by the pullback φ∗ of φ, is integral.

Proposition 2.3.17 ([Sha13, Chap. 1, §5.3, p.61]). A finite map has finite fibers.
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Example 2.3.18. Below are three examples (in R2) of dominant maps, where φ is the
restriction of the projection on the first variable, restricted to different algebraic sets of C2.

(a)

V = V (y2 − x2) W = C

(b)

V = V (xy − 1) W = C

(c)

V = V (xy) W = C

a) Here, the map is not finite as φ−1(0) ∩ V (y2 − x2) is infinite. Hence, according to the
contrapositive of Proposition 2.3.17, φ cannot be finite.

b) The restriction of φ has, this time, finite fibers, but is not finite, as the class of y
in C[x, y]/ ⟨xy − 1⟩ is not integral over C[x]. In particular, this proves that Proposi-
tion 2.3.17 admits no converse. One also sees that this map is not proper at 0, the
notion of finite and proper maps are closely related (see e.g. the remark after [Sha13,
Theorem 1.11]).

c) Finally, in this case, the restriction of φ is a finite map, as the defining equation
y2 − x2 = 0 gives directly a monic annihilator, with coefficient in C[x] of the class of y
in C[x, y]/

〈
x2 − y2

〉
.

Theorem 2.3.19 ([Sha13, Theorem 1.12]). A finite map is surjective and Zariski closed i.e. it

maps algebraic sets, to algebraic sets.

In particular, according to Theorem 2.3.12, if φ : V → W is finite, then V and W have
same dimension. Another consequence of the above theorem is the following one. It can be
seen as a converse of Proposition 2.1.20.

Theorem 2.3.20 ([Sha13, Theorem 1.14]). If φ : V → W is a dominant map, then φ(V )

contains a non-empty Zariski open subset of Y .

We end this subsection with a fundamental result on the existence of finite maps.

Theorem 2.3.21 (Noether normalization [Sha13, Theorem 1.18]). Let V be an algebraic set

of dimension d. Then, there exist linear forms ℓ1, . . . , ℓd ∈ C[V ] such that the map

l : V −→ Cd

y 7→ (ℓ1(y), . . . , ℓd(y))

is a finite map. Moreover, the coefficients of such ℓ1, . . . , ℓd can be chosen in a non-empty Zariski

open subset of Cdn.

2.3.5 Rational maps

In this subsection, V is supposed to be irreducible.
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Definition 2.3.22. The field of fraction of the coordinate ring C[V ] is called the field of

(rational) functions of V , and is denoted C(V ).
Note that C(V ) can be defined as follows. Let OV (resp. MV ) be the set of f/g ∈

C(x1, . . . , xn), where g /∈ I(V ) (resp. f ∈ I(V )). Then

C(V ) = OV /MV .

As V is irreducible, we have seen that C[V ] is an integral domain, and then can be
embedded into its field of fraction. In other words, polynomial functions are rational.

Definition 2.3.23. A rational function φ ∈ C(V ) is regular at a point y ∈ V , if there exists
f, g ∈ C[V ] such that φ = f/g and g(y) ̸= 0. In this case, we note φ(y) = f(y)/g(y) the
value of φ at y.

Theorem 2.3.24 ([Sha13, Theorem 1.7]). Let φ ∈ C(V ). The set of points at which φ is

regular is a non-empty Zariski open subset of V . Moreover, if φ is regular on all V , then

φ ∈ C[V ] i.e φ is a polynomial function.

Definition 2.3.25. A rational map φ : V → W ⊂ Cm, is a sequence of rational functions
(φ1, . . . , φm) ⊂ C(V ) such that

φ(y) = (φ1(y), . . . , φm(y)) ∈W,

for all y ∈ V where all the φi’s are regular. We naturally extend the notion of value and
regularity of rational functions to rational maps.

The image of V under φ is the set

φ(V ) =
{
φ(y) s.t. y ∈ V and φ is regular at y

}

Definition 2.3.26. A rational map φ : V →W is birational if it has an inverse rational map
ψ : W → V , that is φ(V ) and ψ(W ) are Zariski dense in W and V respectively, and ψ ◦φ
and φ ◦ψ are the identity maps, on their respective sets of regularity. In this case, we say
that V and W are birational or birationally equivalent.

Proposition 2.3.27 ([Sha13, Chap. 1, §3.3, p.38]). The algebraic sets V andW are birational

if and only if the fields C(V ) and C(W ) are isomorphic over C.

We conclude this subsection with a general result that illustrates the nature of birational
equivalence.

Theorem 2.3.28 ([Sha13, Theorem 1.8 and Remark 1.2]). Let V be an irreducible algebraic

set of dimension d. Then, there exist linear forms ℓ1, . . . , ℓd+1 ∈ C[V ] and a polynomial

f ∈ C[z1, . . . zd+1] such that the polynomial map

l : V −→ V (f) ⊂ Cd+1

y 7→ (ℓ1(y), . . . , ℓd+1(y))

is birational. Moreover, the coefficients of such ℓ1, . . . , ℓd+1 can be chosen in a non-empty

Zariski open subset of C(d+1)n.
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This result is to be compared with Theorem 2.3.21. Theorem 2.3.28 shows that adding
one more dimension, one can represent a non-empty Zariski open subset of the algebraic set
as a hypersurface.

2.4 Genericity properties

This section is devoted to the notion of genericity, which will be a powerful concept for
proving assumptions that will hold “most of the time”, that is for “most of” the instances of
a class of objects.

In this work, we will use extensively the notion of genericity and generic objects. Note
that in algebraic geometry, the term “general” is sometimes preferred. However, according
to [Har77, p.54]:

’using “generic” and “general” interchangeably is one of the more venial sins associ-

ated with the use of the word(s)’.

In this section, we address to make precise the use of this notion and its variations.

2.4.1 Definition and examples

Definition 2.4.1 ([Har77, p.53]). Let ¶Xp♢p∈V be a family of objects (sets, maps, etc.)
indexed by the points of an irreducible algebraic set V of Cn.

Hence, we say that a generic object X ∈ ¶Xp♢p∈V satisfies a property P, if there exists a
non-empty Zariski open subset O of V , such that for all p ∈ O, Xp satisfies P.

In this case, we also say that an object of ¶Xp♢p∈V generically satisfies P or, that for a
generic choice of p ∈ V , P holds (for Xp).

Similarly, we will say that P generically holds on ¶Xp♢p∈V or, when it is clear from the
context, that P is a genericity property.

Note that, as seen in Proposition 2.1.20, if C = C the field of complex numbers, then
the complement of O has zero measure for the usual Lebesgue measure on Cm. Moreover,
Proposition 2.1.20 also says that the conjunction of finitely many genericity properties is
still a genericity property.

Example 2.4.2. Let V be an algebraic set of Cn of dimension d, we can reformulate the
previously seen theorems as follows:

a) Theorem 2.1.38: a generic point of V is smooth;

b) Theorem 2.3.24: a rational map φ ∈ C(V ) is regular at a generic point of V ;

c) Theorem 2.3.21: linear forms (ℓ1, . . . , ℓd) generically form a finite map on V ;

d) Theorem 2.3.28: linear forms (ℓ1, . . . , ℓd+1) generically form a birational map on V ;

e) Theorem 2.3.12: if W is an algebraic set of dimension m and V is equidimensional, a
generic fiber of a regular map φ : V →W has dimension n−m.
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2.4.2 Changes of variables

Many of the genericity results we will see in this work are about properties of canonical
projections, which will be satisfied through some generic linear changes of coordinates.
More precisely, let GLn(C) be the group of invertible matrices of size n, with coefficients in
C then we use the following notations.

Definition 2.4.3 (Change of variables). Let A ∈ GLn(C). For f ∈ C[X], we note fA the
polynomial f(AX), that is the resulting polynomial after the change of variables X 7→ AX.
Besides, we denote by V A the image of V by the map ΦA : y 7→ A−1y.

The above notations are coherent since, for f = (f1, . . . , fp) ⊂ C[X] and A ∈ GLn(C),

V (fA) = ΦA (V (f)) = V (f)A.

Moreover, if πi : Cn → C is the projection on the i-th coordinate, and bi is the i-th row of
A−1, then the following diagram commutes:

V V A

C
⟨bi,·⟩

ΦA

πi
.

Therefore, for a generic choice of A, the restriction π̃i : V A → Cn is a generic linear form in
the variables x1, . . . , xn. In this case, we say that the new variable yi = ⟨bi,X⟩ is in generic

position with respect to V .

Note that linear changes of variables correspond to the action of the group GLn(C) on
the algebraic sets V of Cn, and the dual action on their coordinate ring C[V ] (see [CLO15,
Chap. 7]).

We can hence reformulate the above Theorems 2.3.21 and 2.3.28, replacing the generic
linear forms by a generic linear change of variable.

Corollary 2.4.4. Let V be an equidimensional algebraic set of dimension d. Then, there exists

a non-empty Zariski open subset A of Cn2

such that for any every A ∈ A ∩ GLn(C) the

following holds:

1. (Theorem 2.3.21) the restriction to V A, of the canonical projection on x1, . . . , xd, is a

finite map;

2. (Theorem 2.3.28) the restriction to V A, of the canonical projection on x1, . . . , xd+1,

realizes a birational map on some hypersurface of Cd+1.

In other words, if the variables x1, . . . , xd (resp. x1, . . . , xd+1) are in generic position with
respect to V A, then the respective above statements hold on V A. In particular, when the
first statement holds, we say that x1, . . . , xd are in Noether position with respect to V A.
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2.4.3 Probabilistic and algorithmic aspects

Schwartz-Zippel’s Lemma gives a way to estimate the probability for a generic property to
hold, for a random selection of parameters. In other words, the probability that a randomly
selected element is generic.

This justifies quantitatively the intuition that a generic property holds “most of the time”.

Proposition 2.4.5 (Schwartz-Zippel lemma [DL78],[Zip79, Theorem 1] and [Sch80, Lemma
1]). Let K be a field and f ∈ K[x1, . . . , xn] be a non-zero polynomial of total degree at most

D ≥ 0.

Then, for a finite S ⊂ K, the number of zeros of f in Sn is at most D · (cardS)n−1.

Hence, for any q ≥ 1, selecting a point y ∈ Kn, whose entries are chosen independently
and uniformly in a subset of cardinality at least 2qD, it annihilates f with probability at most
2−q. This also gives a probabilistic method for testing if a polynomial is zero with probability
1− 2−q, using at most q evaluations.

The previous result gives then a strategy for ensuring that some genericity property
P holds, with some prescribed success probability. Indeed, by definition, and without
loss of generality, there exists some polynomial f ∈ C[X] such that, if f(y) ̸= 0, then
P holds. While computing such a polynomial f can be challenging and computationally
expensive, bounding its degree can be usually done using variants of Bézout’s bound (e.g.
[Hei83, SS18]) or quantitative versions of transversality theorems of Subsection 2.5.2 (see
e.g. [EGS23]).

Hence, given some positive integer D, according to Proposition 2.4.5, for a point y whose
entries are taken randomly from a set of cardinality at least 2qD, property P holds with
probability at least 1− 2q. This leads to the design of randomized algorithms.

Definition 2.4.6 ([MR95, p.3]). A randomized algorithm is an algorithm that makes random
choices during execution.

Most of the algorithms designed in this work will be randomized algorithms as their
successes will rely on the successive random selection of generic parameters λ1,λ2, . . . in
affine spaces Ca1 ,Ca2 , . . . . These represent a particular class of randomized algorithms,
namely the Monte Carlo algorithms.

Definition 2.4.7 ([MR95, p.9]). A Monte Carlo algorithm is a randomized algorithm whose
output can be incorrect, with bounded (typically small) probability.

Most of our algorithms will be of Monte Carlo type. Indeed, while we can make the
probability of success arbitrarily close to 1, we cannot always completely guarantee the
correctness of the output with reasonable complexity. Nevertheless, in cases when we can
detect failure, our procedures will output fail (though not returning fail does not guarantee
correctness).
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2.5 Critical points

2.5.1 Definition and characterization

In this subsection, we let V be a d-equidimensional algebraic set and φ : Cn → Cm be a
polynomial map.

Definition 2.5.1. Let y ∈ V . The differential map (sometimes called linear part) dyφ of the
restriction of φ to V at y, is defined as the linear map

dyφ : Ty V −→ Cm

u 7→ Jacy(φ) · u .

Definition 2.5.2. A point y ∈ V is a critical point of the restriction of φ to V if y ∈ reg(V )

(see Proposition 2.1.36) and dyφ, is not surjective, that is

dyφ(Ty V ) ̸= Cm.

We will denote by W ◦(φ, V ) the set of the critical points of φ on V . A point in Cm that is
the image of a critical point is called a critical value, otherwise it is called a regular value.

Let K(φ, V ) = W ◦(φ, V ) ∪ sing(V ), it is called the set of singular points of φ on V .

Example 2.5.3. In Figure 2.1, the real trace of the critical locus on a sphere Z is depicted
for: the projection on the first coordinate π1 (left); the polynomial map φ associated to
x2

1 + x2
2 ∈ R[x1, x2, x3] (right). Let y = (y1,y2,y3) ∈ Z. The differential of the restriction

of π1 to Z at y is the restriction of π1 to Ty Z. The image is not C if and only if Ty Z is
orthogonal to the x1-axis, so that critical points of the restriction of π to Z occur at (±1, 0, 0).
Besides, the differential of the restriction of φ to Z at y is the restriction of −2x3 · π3 to
Ty Z. Hence, y is a critical point of the restriction of φ to Z if and only if either y3 = 0 or
Ty Z is orthogonal the x3-axis.

The following criterion provides an algebraic characterization of critical points.

Proposition 2.5.4 (Jacobian criterion [SS17, Lemma A.2]). Let g = (g1, . . . , gp) be genera-

tors of I(V ), then

W ◦(φ, V ) =

{
y ∈ V ♣ rank Jacy(g) = n− d

and rank Jacy([g,φ]) < n− d+m

}
;

K(φ, V ) = ¶y ∈ V ♣ rank Jacy([g,φ]) < n− d+m♢.

Let us present a direct consequence of this result, which gives a more effective criterion
for the singular points of a polynomial map.

Proposition 2.5.5. Let R be a ring, n,m ≥ 1 be integers, and M ∈Mm,n(R) an m×n matrix

with coefficients in R. For any integer p such that 1 ≤ p ≤ min(m,n), a minor of order p or a

p-minor of M is the determinant of a p× p submatrix of M .

Then, the matrix M has a rank less than p if and only if all its p-minors are zeros.
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Figure 2.1. Two examples of critical loci on the sphere described in the Example 2.5.3.

Corollary 2.5.6. The set K(φ, V ) is the algebraic subset of V defined by the vanishing of g

and the (n− d+m)-minors of Jac([g,φ]).

Proof. One directly deduces from Proposition 2.5.4 that K(φ, V ) is exactly the intersection
of V , the zero-set of g, with the set of points y ∈ Cn where rank Jacy([g,φ]) < n− d+m.
The latter set is the zero-set of the (n− d+m)-minors of Jac([g,φ]).

Example 2.5.7. If one considers φ = (x1, . . . , xm), then φ is associated to the projection πm

on the m first coordinates. Then, by Corollary 2.5.6, we have the following characterization
[SS17, Lemma A.3]. The algebraic set K(πm, V ) is the subset of V defined by the vanishing
of f and the p-minors of Jac(f ,m); where Jac(f ,m) is the Jacobian matrix of f with respect
to (xm+1, . . . , xn).

2.5.2 Transversality theorems

The notion of transversality aims at describing intersections with linear spaces. These notions
are then applied to differentiable manifolds and their maps to give important results that
come from these situations; we refer to [Dem00] for a complete introduction.

These concepts translate well to algebraic sets, as well as the associated theorems, which
give important tools to study critical values and points. Indeed a map is not transverse to a
point in its image if and only if this point is a critical value.

We start with an algebraic version of Sard’s Lemma, which states that a map is transverse
to most of the points in its image. An original formulation can be found in [Dem00, Theorem
3.6.7].

Theorem 2.5.8 (Algebraic Sard’s Lemma [SS17, Proposition B.2.]). Let V be an equi-

dimensional algebraic set of Cn, and let φ : V → Cm be a polynomial map. Then the set

singular values of φ is contained in a hypersurface of Cm.
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Figure 2.2. Transverse (left) and non-transverse (right) intersections of surfaces and lines in the
three-dimensional space.

In other words, the complement of φ(W ◦(φ, V )) is contained in a non-empty Zariski open of

Cm.

According to the previous section, another formulation of the above result is that a generic
point of Cm is a regular value of φ.

Note that this theorem is a slight extension in affine cases of results from the more classic
literature of algebraic geometry. Namely, [Mum95, Proposition 3.7], where V is supposed to
be irreducible and φ dominant, and [Sha13, Theorem 2.27] where V is supposed smooth.
In the latter version, it is called Second Bertini’s Theorem. The first Bertini’s theorem giving
a criterion for the irreducibility of generic fibers of a polynomial map.

We end this paragraph with an algebraic version of Thom’s weak transversality theorem,
in the particular case of the transversality to a point. The original formulation, in the setting
of differential manifolds, can be found in [Dem00, Theorem 3.7.4].

Theorem 2.5.9 (Algebraic Thom’s weak transversality [SS17, Proposition B.3.]). Let Φ :

Cn ×Cd → Cm be a polynomial map. Assume that there exists a Zariski open subset O of Cn

such that 0 is a regular value of the restriction of Φ to O ×Cd. Then, there exists a non-empty

Zariski open subset U of Cd such that for all ϑ ∈ U , 0 is a regular value of Φ(·, ϑ) on O.

These two theorems are fundamental for proving genericity assumptions on algebraic
sets. In particular, many of the genericity results of the next subsection can be proved using
transversality considerations.

2.6 Polar varieties

We have defined and characterized in the previous section the set of critical points of
polynomials maps. As in the theory of differential manifolds, these critical loci are of
importance in algebraic geometry and their real counterpart that we will study in Chapter 4.
Indeed the data of well-chosen critical loci allows one to characterize and describe the
underlying (real) algebraic set. This motivated the introduction of polar varieties.

60 Chapter 2 Algebraic geometry



Polar varieties are critical loci of the canonical projections πi : (x1, . . . , xn) 7→ (x1, . . . , xi),
for 1 ≤ i ≤ n. The general study of polar loci goes back to Severi [Sev02, Sev32], whose
ideas were taken up by [Tod38] to define characteristic classes, and later developed by
[Por71, Poh65, Tei82, BGHP04, BGHP05, BGH+10, SS03a, BGHM01, SS17], among others.
See [Pie78, Tei88, Bra00, BGH+10] for a more extensive history of polar varieties.

2.6.1 Definition and first properties

In this work, we consider slightly more general objects that are critical loci of arbitrary graded
polynomial maps. Following the terminology introduced in [BGHP04, BGHP05, BGH+10],
we call them generalized polar varieties.

In the following, let V be a d-equidimensional algebraic set of Cn and φ = (φ1, . . . , φn) ⊂
C[X]. For 1 ≤ i ≤ n, we define the map

φi : Cn −→ Ci

y 7→ (φ1(y), . . . , φi(y))
(2.1)

Following the ideas of [BGHP04, BGHP05, BGH+10] we denote by similarly W (φi, V ) the
i-th generalized polar variety defined as the Zariski closure of the critical locus W ◦(φi, V ) of
the restriction of φi to V .

Definition 2.6.1 (Generalized polar variety). Let 1 ≤ i ≤ n, we denote by W (φi, V ) the
i-th generalized polar variety defined as the Zariski closure of the critical locus W ◦(φi, V )

(then called the open polar variety) of the restriction of φi to V . In particular, W (πi, V ) is
the (classic) i-th polar variety.

Remark that by minimality of the Zariski closure,

W ◦(φi, V ) ⊂ W (φi, V ) ⊂ K(φi, V ) ⊂ V.

Hence K(φi, V ) = W (φi, V ) ∪ sing(V ) but the union is not necessarily disjoint.

The proposition is a direct generalization of [SS17, Lemma A.4-5], using Corollary 2.5.6.

Proposition 2.6.2. Let 1 ≤ j ≤ i ≤ n, then

(i) W ◦(φj , V ) ⊂W ◦(φi, V );

(ii) W ◦(φj , V ) ⊂W (φj , V ) ⊂ K(φj ,W (φi, V )), if W (φi, V ) is equidimensional.

2.6.2 Properties of generic classic polar varieties

As mentioned in Subsection 2.4.2, polar loci of generic linear forms can be equivalently
considered as classic polar varieties on algebraic sets, on which a generic linear change of
variables has been performed. The latter are called generic polar varieties. In the following,
we give some important properties, from the literature, that generic (classic) polar varieties
satisfy.
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In the following, we consider a d-equidimensional algebraic set V ⊂ Cn with finitely

many singular points i.e. such that sing(V ) is finite. We first present a generalization of the
Noether normalization for polar varieties.

Theorem 2.6.3 (Noether position for polar varieties [SS03a, Proposition 2]). For each

1 ≤ i ≤ d, there exists a non-empty Zariski open subset Ai of Cn2

, such that for every

A ∈ A ∩ GLn(C), the following holds. The algebraic set W (πi, V
A) has dimension at most

i−1, and the restriction of πi−1 toW (πi, V
A) is finite. In other words, the variables x1, . . . , xi−1

are in Noether position with respect to W (πi, V
A).

The following theorem outlines the expected regularity properties of generic polar vari-
eties.

Theorem 2.6.4 (Regularity of generic polar varieties [SS17, Proposition 3.4]). For each

1 ≤ i ≤ d, there exists a non-empty Zariski open subset Ai of Cn2

, such that for every

A ∈ A ∩GLn(C), the following holds. Let Wi = W (πi, V
A), either it is empty or

(i) Wi is equidimensional of dimension i− 1 and,

(ii) if i ≤ (d+ 3)/2, then sing(Wi) ⊂ sing(V A).

Remark that the condition i ≤ (d+ 3)/2 is a necessary one, as in [BGH+10, Section 3],
the authors exhibit a general method to construct singular higher dimensional polar varieties
from smooth algebraic sets. However, this condition can be relaxed in the particular case of
hypersurfaces.

Proposition 2.6.5. Let f ∈ C[X] be a non-constant square-free polynomial, then there exists

a non-empty Zariski open subset Ai of Cn2

, such that for every A ∈ A ∩GLn(C),

sing(W (πi,V (fA))) ⊂ sing(V (fA)).

We end this paragraph by considering critical loci on polar varieties.

Theorem 2.6.6 (Critical points on generic polar varieties [SS17, Proposition 3.5]). For

each 1 ≤ i ≤ (d + 3)/2, there exists a non-empty Zariski open subset Ai of Cn2

, such that

for every A ∈ A ∩ GLn(C), the following holds. Let Wi = W (πi, V
A), it is either empty or

equidimensional of dimension i− 1 and K(π1,Wi) is finite.

In Chapter 7, we prove that the same results hold for generic generalized polar varieties,
in the sense that one can add a generic linear form to the given polynomial map. Namely,
the generalizations of Theorems 2.6.3, 2.6.4 and 2.6.5 correspond to respectively Proposi-
tions 7.2.3,7.2.13 and 7.2.14. These properties allow us to adapt the proofs and algorithms
of [SS11, SS17] to a more general setting.
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Computational algebraic

geometry

3

In this chapter, we address the problem of computing objects of algebraic geometry that
we introduced in the previous chapter. As shown, geometric computations can be reduced
to algebraic manipulations on polynomials and ideals they generate. Hence, our focus
shifts toward algorithmic procedures for handling these objects, including the exploration of
approaches for their efficient representation.

More precisely, Section 3.1 addresses computational complexity, providing the framework
for evaluating algorithmic performance and comparing different strategies. Furthermore,
Section 3.2 delves into various methodologies and associated properties related to polyno-
mial representation. With these polynomial representations established, the exploration
extends to suitable representations for algebraic sets. A first approach is presented in Sec-
tion 3.3, introducing Gröbner bases to provide a convenient representation of the defining
ideals of algebraic sets. We also discuss relevant algorithmic techniques. Finally, Section 3.4
adopts a geometric perspective to introduce rational parametrizations. In this section, we
survey different definitions and computational approaches related to this concept.

3.1 Computational complexity

We start with considerations on the ground settings of our study, defining the elementary
operations and addressing computational cost quantification.

Computable field. In the following, we consider a computable field Q that is an algebraic
structure where one can represent elements and has algorithms for computing and operating
tests on them. Therefore, in this work, we will not go further into the details of the
manipulation of the elements of Q. As we will mainly work in characteristic 0, the field
of rational numbers Q will be the main example for such a field Q. However, for other
applications or efficient computations over Q through the Chinese Remainder theorem, finite
fields Fq are widely used.

Complexity. The computational cost of the algorithms is measured through the notion of
complexity. Fixing a computational model in Q, the available operations and their unit cost
we define

• the time complexity measuring the sum of the unit costs of the elementary operations
performed by the algorithm;
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• the space complexity measuring the amount of memory used during the execution of
the algorithm.

For the sake of completeness, we mention that the Random Access Machine computational
model will be the one considered in this work. We refer to [AH74] for further details on
these aspects. Further, we will not deal with space complexity and mainly focus on making
algorithms terminate in a tractable amount of time. This point of view deserves to be
discussed since algebraic computations on multivariate polynomials can require a significant
amount of RAM. However, this falls behind the scope of this work.

Instead, we will distinguish the two following types of time complexities in this document.

• The arithmetic complexity which is the total number of arithmetic operations in Q. This
complexity is relevant when the cost of the arithmetic operations is preponderant and
each of them is essentially constant. Hence, the parameters of such complexities will
be the size of the input objects (degree, dimension, etc.), but we will ignore the one of
the elements of the base field. This complexity suits well to finite fields, but not always
for rationals as the cost of arithmetic operations grows with the size of the numbers.

However, arithmetic complexity bounds can give bounds on the degree and the height1

of the polynomials involved in the computation as shown in e.g. [SS18]. Hence, these
bounds give first estimates on the expected bit complexity that we introduce below.

• The bit complexity (or Boolean complexity), is designed for computations involving
integers (and then rationals) as it measures the number of bit operations performed
by the algorithm. More precisely, arithmetic operations on Z are decomposed into
modular computations on B-words integers, that are represented in B-bit chunks.
Hence, the bitsize log2(a) of the input integers a will influence the total cost according
to this complexity.

Usually, arithmetic complexity will be the first goal of any complexity estimate of computer
algebra algorithms as it is easier to conduct. Moreover, as we mentioned, many implementa-
tions of procedures rely on modular computation which makes the arithmetic complexity
relevant in some sense. For an overview of this theory see [BCS97]. As we meet most of the
time situations where polynomials have integer coefficients (up to multiply by some constant
integer), we eventually target the bit-complexity, which reflects better the real performances.

Also, we will always consider the worst-case complexity, that is the maximum of the
complexity of the executions of an algorithm for all possible inputs of a fixed size.

Asymptotic complexity. Recall that a partial function is a function that does not have to be
defined for every value. We refer to [GG13, §25.7] for this paragraph, and [GKP94] for a
complete discussion of these notions.

1The height of a non-zero polynomial f is the maximum of the bitsizes of v and the coefficients of vf , where
v ∈ N is the minimal common denominator non-zero coefficients of f .
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Definition 3.1.1 (Big Oh). Let p ≥ 1 and g : Np → R be a partial function. We denote by
O(g) the set of all partial function f : Np → R for which there exist N,C ∈ N such that for
all k1, . . . , kp ≥ N , both f and g are defined at (k1, . . . , kp) and

♣f(k1, . . . , kp) ♣≤ C ♣g(k1, . . . , kp) ♣ .

We will use the following common abuse of notation. For any h : N × R → R, f(n) =

h(n,O(g(n))) will stand for f = h(n, k(n)), with k ∈ O(g).

The Big-Oh notation allows to describe the asymptotic behavior of quantities, up to some
bounded variations. It will be extensively used for describing the asymptotic complexity of
algorithms, when the size of the inputs become “large”.

Example 3.1.2. According to the algorithm of Schönhage & Strassen [GG13, Theorem 8.24],
two integers of maximum bit size τ can be multiplied in bit complexity O(τ log τ log log τ).

Remark 3.1.3. In this thesis, we will often meet complexities with big Oh in exponents, as
most of the complexities in real algebraic geometry are at least exponential in the number
of variables (see Chapter 5). Precautions have to be taken with exponentiation of O, indeed

e2n = eO(n) but e2n = (en)2 ̸= O(en).

The constant hidden in the O influence strongly the rate of growth when being in the
exponent. In Chapter 7 we will see a situation when having an explicit constant is crucial.

In some situations, we might want to describe an even more big picture of the asymptotic
behavior of algorithms. For instance, the algorithm of Example 3.1.2 has complexity
essentially linear. The soft Oh notation, introduced by [BLS88], aims to make the previous
sentence precise.

Definition 3.1.4 (Soft Oh). Let p ≥ 1 and g : Np → R be a partial function. We denote by
Õ (g) the set

O
(
g(n) · (log2(3 + g(n))

O(1)
)
)
.

Hence the soft Oh characterizes the class of functions that shares the same asymptotic
behavior, up to some multiplicative power of logarithms. Note that the constant 3 is only
here to make the logarithm greater than 1.

Definition 3.1.5 (Orders of growth). Given a univariate polynomial f ∈ R[x], the rate of
growths can be classified as shown in the table below. In the row labeled “Time”, to provide
intuitive context, we present an order of magnitude estimation for the time that an algorithm
within this category would require for an input size of n = 20, with unit operations taking
approximately 10−8 seconds.

Growth constant logari
thmic

linear soft
linear

polyno
mial

singly
expo.

doubly
expo.

Complexity O(1) Õ (1) O(n) Õ (n) O(nf(n)) O(2f(n)) O(22f(n)

)

Time (n = 20) 10−8 s 10−8 s 10−7 s 10−7 s 10−4 s 10−2 s > 10106

s

Example
Memory
access

Binary
search

Mod
add.

Fast
mult.

Mat
mult.

SAT
solving

Quantifier
elim.
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We end by defining two categories of algorithms, that can be considered as the ones of
(nearly)-optimal complexity.

Definition 3.1.6 (Optimal algorithms). If N is the sum of the size of the input and the
output, an algorithm will be called optimal – resp. nearly-optimal – when its complexity is
bounded by O(N) – resp. Õ ((N)).

3.2 Polynomial representations

In order to manipulate multivariate polynomials, one needs to be able to represent them
efficiently. Hence, appropriate data structures need to be defined, depending on the context.

3.2.1 Dense representation

Let f ∈ Q[x1, . . . , xn] be a multivariate polynomial with coefficients in Q, of total degree D.
By definition f can be written as a sum of monomials as follows

f =
∑

i1,...,in≥0
i1+···+in≤D

ai1,...,in
xi1

1 · · ·xin
n ,

where ai1,...,in
̸= 0 for at least one of the (i1, . . . , in) such that i1 + . . .+ in = D, provided

that f ̸= 0. Representing f as the complete array of the ai1,...,in
’s and the associated multi-

indices (i1, . . . , in), is called the dense representation. It is the most direct way to represent
polynomials in a computer and it is optimal for generic polynomials. The length of such
representation is the number of coefficients in the array.

Proposition 3.2.1. The dense representation of a polynomial f ∈ Q[x1, . . . , xn] of total degree

D ≥ 0 has length (
n+D

D

)
.

Factorization and Gcd computations of multivariate polynomials can be done in random
polynomial time in the length of their dense representations. However, according to the
above proposition, this length grows exponentially in the number of variables, and more
importantly in the degree of the polynomial.

Example 3.2.2 ([GG13, §16.6]). Let the Fermat polynomial x3
1 + x3

2 − x3
3 ∈ Q[x1, x2, x3], it

has total degree 3, and its dense representation reads

f = 1 · x3
1 + 0 · x2

1x2 + 0 · x2
1x3 + 0 · x2

1 + 0 · x1x
2
2 + 0 · x1x2x3 + 0 · x1x

2
3

+ 0 · x1x2 + 0 · x1x3 + 0 · x1 + 1 · x3
2 + 0 · x2

2x3 + 0 · x2
2

+ 0 · x2x
2
3 + 0 · x2x3 + 0 · x2 + (−1) · x3

3 + 0 · x2
3 + 0 · x3 + 0 · 1.

As seen in the above example, even if polynomials have generically as many non-zero
coefficients as the length of their dense representation (they are called dense polynomials),
this is not the case for some of the ones we can meet.
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3.2.2 Sparse representation

As seen in the previous subsection, one can also represent a polynomial by the list of
its non-zero coefficients, together with the associated monomial. More precisely, given a
polynomial f ∈ Q[x1, . . . , xn] of total degree D, its support supp(f) is the finite subset of the
(i1, . . . , in) ∈ Nn for which the coefficient of f associated to xi1 · · ·xin is non-zero. Hence,
the sparse representation of f consists in the data of supp(f) and the array of the ai1,...,in

’s
for each (i1, . . . , in) ∈ supp(f), so that

f =
∑

(i1,...,in)∈supp(f)

ai1,...,in
xi1

1 · · ·xin
n .

The advantage of such a representation is that it optimizes the stored data with respect
to the polynomial sparsity. As seen in Example 3.2.2, sparse representation is the natural
mathematical notation and many natural problems coming from applications tend to be
sparse (see e.g. [GG13, §24.4] or [CPS+22, §5]).

However, no known algorithms can factor sparse polynomials in a time polynomial in the
length of the representation (that is the number of non-zero terms). Moreover, the output
size of such algorithms tends to uncontrollably grow, sometimes more than polynomial in
the input size (addition and multiplication might have output size which is respectively
double and quadratic in the input size). We refer to [Roc18] for an overview of what is
possible or not with sparse polynomials.

3.2.3 Straight-line programs

In the previous subsection, we have seen that when trying to reduce the input size using
sparse representations, one loses efficiency (complexity and output size) of the algorithm in
the length of the description. According to [GG13, p. 464]:

“The key to get over this hurdle is to consider even more concise representations”.

The idea is to represent polynomials as arithmetic circuits computing a polynomial f ∈
Q[x1, . . . , xn] from the variables x1, . . . , xn and the constants of Q, using only the arithmetic
operations +,× and −. More precisely, these circuits are directed acyclic graphs, whose
input are the variables and the constants of Q, the outputs are the polynomials computed
and the internal nodes represent arithmetic operations (except division) of their parent
nodes. The value of a polynomial can be computed by evaluating its arithmetic circuit, on
input the values of the variables.

Arithmetic circuits can also be represented as straight-line programs. Formally, a straight-
line program Γ, computing polynomials in Q[x1, . . . , xn], is a finite sequence Γ = (γ1, . . . , γE)

such that for all 1 ≤ i ≤ E, one of the two following holds:

• γi = λi with λi ∈ Q;

• γi = (opi, ai, bi) with opi ∈ ¶+,−,×♢ and −n+ 1 ≤ ai, bi < i.
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Figure 3.1. Arithmetic circuits computing in Q[x1, x2, x3] the polynomials, from left to right: x3
1 +

x3
2 − x3

3, x2m

1 and (x1 + 1)2m

.

To Γ we associate polynomials G−n+1, . . . , GE such that Gi = xi+n for −n+ 1 ≤ i ≤ 0, and
for 1 ≤ i ≤ E:

• if γi = λi ∈ Q then Gi = λi;

• if γi = (opi, ai, bi) then Gi = Gai
opi Gbi

.

Then we say that Γ computes some polynomials f1, . . . , fc ∈ Q[X] if ¶f1, . . . , fc♢ ⊂
¶G−n+1, . . . , GE♢. The integer E is the length of the straight-line program Γ. By con-
vention, we note Γ0 = (0) the straight-line program of length 1 that computes the zero
polynomial.

Example 3.2.3. We give an illustrating example presented in [Kri02, Section 1.1]. For
m ∈ N∗, a straight-line program computing x2m

in Q[x] is given by taking





γ1 = (×, 1, 1)

γ2 = (×, 1, 1)
...

γm = (×,m,m)

where we associate G1 = x2 to γ1, G2 = G2
1 = x4 to γ2 and so on with Gm = G2

m−1 = x2m

which is associated to γm. Such a program has length m, while the dense and sparse
representations of x2m

have respective length 2m + 1 and 1. But remark that a straight-line
program computing (x+ 1)2m

can be obtained by inserting at the beginning of the straight-
line program (1, (+, 1, 0)), which computes x + 1. The latter modification increments the
length by two, while both dense and sparse representations have now maximal length 2m.

As seen in Figure 3.1 and Example 3.2.3, straight-line programs allow good input size for
various polynomials, while both dense and sparse representations fail to have a compact
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expression. Moreover, contrary to sparse representations, there exist algorithm computing
factorizations [Kal85, Kal89] and gcd’s [Kal88] in random polynomial-time in the length
of the input straight-line programs. In addition, their nice behavior with respect to linear
changes of variables, make it used as input in many algorithms for solving polynomial
systems [Kri02, GHM+98, GHMP97, GHMP95, GLS01, Lec00, SS17].

It is worth noting that computing with such representations is not restrictive since any
polynomial of degree D in n variables, can be computed with a straight-line program of
length O(Dn) by simply evaluating and summing all its monomials.

3.3 Gröbner bases

Now we have different representations for polynomials defining the algebraic sets, we need
to compute efficient and powerful representations of their ideals of definition. To this end,
we introduce in this section Gröbner bases, their properties and discuss their computation.
We will denote by Q a field and by C its algebraic closure.

3.3.1 Monomial orders

Definition 3.3.1. A monomial is a polynomial of the form xα = xα1
1 · · ·xαn

n with α =

(α1, . . . , αn) ∈ Nn. We note ♣α♣ = α1 + · · ·+ αn the total degree of xα.

Definition 3.3.2. A monomial order on Q[X], is an order ≻ on the monomial xα ∈ Q[X]

which satisfies the following assumptions:

(i) ≻ is a total order i.e. xβ ≻ xα or xα ≻ xβ for any α, β ∈ Nn;

(ii) ≻ is compatible with multiplication: if xβ ≻ xα then xβ+γ ≻ xα+γ , for any α, β, γ ∈
Nn;

(iii) xα ≻ x0 for all α ∈ Nn − ¶0, . . . , 0♢.

Such an order does not depend on the base field Q as it is induced by an order on the
multi-exponents in Nn.

In the following, and without further precision, we denote by ≻ any monomial order
on Q[X]. The three above assumptions imply in particular that ≻ is a well-order, that is
every non-empty subset of monomials of Q[X] has a smallest element (see [Eis95, Lemma
15.2] or [CLO15, Chap. 2, §2,Lemma 2]. Hence, given a polynomial f ∈ Q[X], ≻ orders its
finitely many monomials in such a way that there is a smallest and a largest term in f .

Definition 3.3.3. Let aαx
α be the largest term of f ∈ Q[X], then aαx

α is called the leading

term of f and is denoted by lt≻(f). Moreover aα and xα will be called the leading coefficient

lc≻(f) and the leading monomial lm≻(f).

Example 3.3.4. Let α, β ∈ Nn. We list below the most frequently monomial orders
encountered in the literature. We will discuss their interest in later in this section.

3.3 Gröbner bases 69



a) (Lexicographic order): xα ≻lex x
β if if the leftmost nonzero entry of the vector difference

α− β ∈ Zn is positive;

b) (Graded Lex Order): xα ≻grlex x
β if ♣α♣ > ♣β♣ or ♣α♣ = ♣β♣ and xα ≻lex x

β

c) (Graded Reverse Lex Order): xα ≻grevlex x
β if ♣α♣ > ♣β♣ or ♣α♣ = ♣β♣ and the rightmost

nonzero entry of α− β ∈ Zn is negative;

The following theorem is a generalization of the Euclidean division in the multivariate
setting. The price of such a generalization is the loss of uniqueness.

Theorem 3.3.5 (Polynomial division [CLO15, Chap. 2, §3, Theorem 3]). Let (f1, . . . , fp)

be an ordered sequence of non-zero polynomials in Q[X]. For all f ∈ Q[X], there exists

polynomials (q1, . . . , qp, r) in Q[X] such that

f = q1f1 + · · ·+ qpfp + r,

and such that the following holds:

1. for all 1 ≤ i ≤ r, either qifi = 0 or lt≻(f) ⪰ lt≻(qifi);

2. either r = 0 or r is a Q-linear combination of monomials, none of which is divisible by

any of lt≻(f1), . . . , lt≻(fp).

Note that the proof of such a result (e.g. in [CLO15]) relies on an explicit algorithm
for computing such qi’s and r, known as polynomial division algorithm. According to the
following example, the output polynomials (q1, . . . , qp, r) depend strongly on the order of
the polynomials in (f1, . . . , fp) .

Example 3.3.6. Let f = x1x
2
2 − x1, f1 = x1x2 − 1 and f2 = x2

2 − 1, we consider the
lexicographic order x1 ≻lex x2. Then the divisions of f by (f1, f2) and by (f2, f1) give
respectively

x1x
2
2 − x1 = x2 · (x1x2 − 1) + 0 · (x2

2 − 1) + (−x1 + x2)

and x1x
2
2 − x1 = x1 · (x2

2 − 1) + 0 · (x1x2 − 1) + 0.

In particular, one sees from the second division, that f ∈ ⟨f1, f2⟩, while it is not clear from
the first one.

According to Example 3.3.6, one cannot decide the membership of a polynomial to an
ideal from the division by any set of generators of this ideal. Gröbner bases have been
introduced to solve this problem.

3.3.2 Gröbner bases: definition and properties

Definition 3.3.7 (Gröbner basis [CLO15, Chap. 2, §5, Definition 5 and §7, Definition 4]). A
finite subset G = ¶g1, . . . , gp♢ of an ideal ¶0♢ ̸= I ⊂ Q[X], is said to be a ≻-Gröbner basis

(or ≻-standard basis) if
⟨lt≻(g1), . . . , lt≻(gp)⟩ = ⟨lt≻(I)⟩ ,
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where lt≻(I) = ¶lt≻(f), f ∈ I♢. Moreover, we set ∅ to be the Gröbner basis of ¶0♢, using the
convention ⟨∅⟩ = ¶0♢.

Moreover, G is called a reduced ≻-Gröbner basis if it satisfies the following:

(i) lc≻(g) = 1 for all g ∈ G;

(ii) for all g ∈ G, no monomial of g lies in ⟨lt≻(G− ¶g♢)⟩.

When it is clear from the context, we will omit the mention of the monomial order in
consideration. The following theorem ensures the non-vacuity of this definition as well as
the uniqueness of reduced Gröbner bases.

Theorem 3.3.8 (Existence and uniqueness [CLO15, Chap. 2, §7, Theorem 5]). Every

non-zero ideal I ⊂ Q[X] has a unique reduced Gröbner basis.

Even if the uniqueness is not preserved, the existence of not necessarily reduced Gröbner
bases is of course guaranteed as well. Not that Theorem 3.3.8 reduce the problem of deciding
the equality of ideals to the one of computing two reduced Gröbner bases.

We can now start to give the properties of such bases, the first proposition justifying the
generating aspect behind the “basis” denomination.

Proposition 3.3.9 ([CLO15, Chap. 2, §5, Corollary 6]). A Gröbner basis of an ideal constitutes

a generating set.

We now state the exceptional properties of these sets of generators, regarding the polyno-
mial division. This justifies the uniqueness aspect associated to the “basis” denomination. In
particular, it answers the problem emphasized in Example 3.3.6 and the following remarks.

Proposition 3.3.10 ([CLO15, Chap. 2, §6, Proposition 1]). Let G be a Gröbner basis of an

ideal I ⊂ Q[X]. Then, the remainder of the polynomial division (from Theorem 3.3.5) of any

f ∈ Q[X] by the elements of G (regardless of their order) is unique. It is called the normal
form of f with respect to G and is denoted by NFG(f).

In particular, it solves the ideal membership problem mentioned above, as follows.

Corollary 3.3.11 ([CLO15, Chap. 2, §6, Corollary 2]). Let G be a Gröbner basis of an ideal

I ⊂ Q[X] and f ∈ Q[X]. Then, f ∈ I if and only if NFG(f) = 0.

3.3.3 Application to geometric computations

We now describe the geometric operations that can be performed using Gröbner bases for
the ideal of definition of the algebraic sets in consideration. According to the correspondence
emphasized in Chapter 2, the ideal theoretic operations that can be performed using Gröbner
bases have a geometric counterpart for algebraic sets.

A fundamental property of Gröbner is their notably nice behavior with elimination, which
corresponds to projection of algebraic sets as shown by the following theorem. Computing
the projection of algebraic sets is an important problem in algebraic geometry e.g. for
computing critical values of polynomial maps as we will see in Chapter 5.
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Theorem 3.3.12 ([CLO15, Chap. 3, §2, Theorem 2]). Let V ⊂ Cn be an algebraic set and

πi : (x1, . . . , xn) 7→ (x1, . . . , xi) be the canonical projection on the first i variables. Then

I
(
πi(V )

)
= I(V ) ∩C[x1, . . . , xi].

It is worth noting that, such results for projection can be extended to any polynomial
maps. Indeed, for any polynomial φ ∈ C[X], one can consider the algebraic set Z of Cn+1

made of the points (y, t) such that y ∈ V and t = φ(y). Hence, the following diagram
commutes:

V Z

C

φ
π1 .

We have seen that computing projection boils down to compute elimination ideals, let us
see now how to do so using Gröbner bases. We first need the notion of elimination orders.

Definition 3.3.13 (Elimination order). Let X ′ ⊂X be a subset of variables, a monomial
order ≻X′ is said to be a X ′-elimination order provided that any xi ∈X −X ′ is larger than
any monomial of Q[X ′].

Example 3.3.14 ([CLO15, Chap. 3, §1, Exercise 6]).

a) The lexicographic order is an ¶x1, . . . , xℓ♢-elimination order for any 1 ≤ ℓ ≤ n.

b) Let I ⊂ ¶1, . . . , n♢. Define the following order: let α, β ∈ Nn, then xα ≻ xβ if

∑

i∈I

αi >
∑

i∈I

βi or
∑

i∈I

αi =
∑

i∈I

βi and xα ≻grevlex x
β .

Then, if X ′ = ¶xi, i ∈ I♢, this order is an X ′-elimination order due to Bayer and
Stillman [BS87]. This is a particular case of weighted order – see e.g. [Rob86].

c) Similarly, for a partition X = X ′ ∪X ′′,and α, β ∈ Nn, decompose α = (α′, α′′) and
β = (β′, β′′) according to this partition. Then define the order: α ≻ β if

xα′′ ≻grevlex x
β′′

or xα′′

= xβ′′

and xα′ ≻grevlex x
β′

.

This is a X ′-elimination order, which is a particular case of a product order, as it mixes
two orders on disjoint sets of variables.

Hence, given an elimination order, the following theorem reduces the computation of an
elimination ideal, to the computation of a Gröbner basis for this order.

Theorem 3.3.15 (Elimination theorem [CLO15, Chap. 3, §1, Theorem 2. and Exercise 5]).
Let X = X ′ ∪X ′′ be a partition of X and let I be an ideal of Q[X]. Let G be a ≻X′ -Gröbner

basis of I then G ∩Q[X ′′] is a Gröbner basis of I ∩Q[X ′′] for the order induced by ≻X′ on

Q[X ′′].

Example 3.3.16.
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a) Using the last two elimination orders of Example 3.3.14, one sees that it obtains a
≻grevlex-Gröbner basis in Q[X ′′]. This is of importance for computations as we will
see in the next subsection.

b) As we will see in Chapter 5, computing the critical values of projections is a crucial
step for computing the topology of the real trace of an algebraic set. This can be done
using the previous theorem as follows.

Let V = V (x2
1 + x2

2 + x2
3 − 1) ⊂ C2 be the complex sphere. Since V is smooth,

according to Corollary 2.5.6, the critical points of the projection π1 on x1 are the
points of V satisfying x2 = x3 = 0. Hence, the ideal of definition of K(π1, V ) is〈
x2

1 + x2
2 − 1, x2, x3

〉
, and its reduced Gröbner basis with respect to the order x3 ≻lex

x2 ≻lex x1 is
¶x2

1 − 1, x2, x3♢.

Therefore, according to Theorem 3.3.15, ¶x2
1 − 1♢ generates the ideal of definition of

the Zariski closure of π1(K(π1, V )). As this set is finite, the latter closure is the set
itself.

We end this subsection with two applications of this result.

Proposition 3.3.17 ([CLO15, Chap 4., §3, Theorem 11]). Let I, J be ideals of Q[X], y an

indeterminate and ≻ an ¶y♢-elimination order on Q[X, y]. Then, if G is a ≻-Gröbner of the

ideal

(yI + (1− y)J) ⊂ Q[X, y],

then G ∩Q[X] is a Gröbner basis of I ∩ J .

Hence, as V (I ∩ J) = V (I) ∪ V (J), this gives an algorithm for computing an algebraic
representation of the union of algebraic sets.

The following trick is due to Rabinowitsch, who used it in [Rab30] to prove the equivalence
between the so-called “weak” and “strong” Nullstellensatz. Recall that, given two ideal
I, J ⊂ Q[X], the saturation of I by J is the set

I : J∞ = ¶f ∈ C[X] s.t. ∃k ∈ Z, fJk ⊂ I♢,

where Jk is the ideal product of J with itself, k times.

Proposition 3.3.18 (Rabinowitsch trick [CLO15, Chap. 4, §4, Theorem 14]). Let I ⊂ Q[X]

be an ideal, g ∈ Q[X] a polynomial, y a new variable and ≻ an ¶y♢-elimination order on

Q[X, y]. Then if G is a ≻-Gröbner of the ideal

(I + ⟨1− yg⟩) ⊂ Q[X, y],

then G ∩Q[X] is a Gröbner basis of I : ⟨g⟩∞.

Geometrically speaking, according to [CLO15, Chap. 4, §4, Theorem 10],

V (I : J∞) = V (I)− V (J)
Z

.
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Moreover, if J = ⟨g1, . . . , gq⟩, then V (I)− V (J) = V (I)− V (g1 · · · gq). Hence, the above
trick allows us to compute the Zariski closure of the difference of algebraic sets as in the
following example.

Example 3.3.19. Recall that, in Section 2.6, given a polynomial map φ = (φ1, . . . , φn) we
defined the i- th generalized polar variety of an algebraic set V ⊂ Cn as the Zariski closure
of

W ◦(φi, V ) = K(φi, V )− sing(V ).

Since generators of the ideals of definition of K(φi, V ) and sing(V ) are given by Corol-
lary 2.5.6, one can compute generators of the ideal of definition of the i-th generalized polar
variety, using the above trick.

3.3.4 Computing Gröbner bases

We have seen that Gröbner bases constitute a set of generators enjoying many interesting
properties. Moreover, the data of such a basis allows one to perform many computations in
algebraic geometry.

In this subsection, we address the problem of computing such bases and give a rough
historical overview of the related works.

3.3.4.a. Buchberger’s algorithm

After introducing and laying the theoretical foundations of Gröbner bases, Bruno Buchberger
proposed the first algorithm to compute them in successively [Buc65, Buc70, Buc76].

Description. This algorithm starts from a set of generators ¶f1, . . . , fp♢ of the input ideal I
and computes new generators with new leading terms using the so-called S-polynomials
defined below. This way, it increases the size of the ideal generated by the leading term, until
it covers all ⟨lt≻(I)⟩ (which always happens in finite time by Hilbert’s basis Theorem 2.1.6).

Definition 3.3.20 ([CLO15, Chap. 2, §6, Definition 4]). Let f, g in Q[X] be non-zero
polynomials, and let xγ be the least common multiple lcm(lm≻(f), lm≻(g)). The S-polynomial

of f and g is

S≻(f, g) =
xγ

lt≻(f)
· f − xγ

lt≻(g)
· g ∈ Q[X].

One sees that the S-polynomials have been constructed on purpose to annihilate the
leading term of f , with the one of g, creating a possibly new one.

Then, Buchberger’s algorithm consists in performing iteratively the two following steps.
Suppose that we have a generating ordered set H = (f1, . . . , fp):

Step 1: choose a pair (fi, fj) from H, and compute their S-polynomial S≻(fi, fj);

Step 2: reduce S≻(fi, fj) w.r.t H i.e. compute the remainder of the division of S≻(fi, fj) by H.

As said above, these two steps increase the size of the ideal generated by the leading mono-
mials, with polynomials lying in the ideal. And according to Hilbert’s basis Theorem 2.1.6
this latter sequence of ideals must stabilize to its maximum lt≻(I) at some point.
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The following result gives an effective criterion for deciding if a generating set is a
Gröbner basis, using S-polynomials. In particular, this constitutes a stopping criterion for
Buchberger’s algorithm.

Theorem 3.3.21 (Buchberger’s criterion [CLO15, Chap. 2, §6, Theorem 6]). Let I ⊂ Q[X]

be an ideal and G = ¶g1, . . . , gp♢ be a generating set. Then, G is a ≻ −Gröbner basis of I if

and only if for all 1 ≤ i ̸= j ≤ p, the remainder of the division of S≻(gi, gj) by G (ordered in

some way) is zero.

Finally, given a Gröbner basis output by Buchberger’s algorithm, one can deduce a reduced

one according to [CLO15, Lemma 3]. This is done by removing the elements whose leading
term reduces to zero w.r.t. the leading terms of the other elements, and making monic the
remaining ones. One can also modify the algorithm to compute directly, “on the fly”, a
reduced Gröbner basis (see [Buc85]).

3.3.4.b. Drawbacks and solutions

Each of the above two steps reveals an intrinsic weakness of this algorithm. Indeed, in the
first step, the pairs are chosen freely among the current generating set, and this choice has
an impact on the performance. Indeed, in the second step, it is observed that most of the
S-polynomials either reduce to 0 w.r.t H or do not play any further role in the computation
and are not part of the reduced Gröbner basis. Hence, computing and reducing these
S-polynomials constitute useless operations to compute a Gröbner basis, and can amount to
most of the computing time.

Several strategies have been developed to overcome these two weaknesses and then
improve Buchberger’s algorithm. A partial overview can be found in [Buc01].

Pairs selection. Several strategies have been proposed for efficiently selecting the pairs
with which to calculate S-polynomials [Buc85, GM88, GMN+91, BW93].

Later, Faugère proposes to avoid this selection in his F4 algorithm, presented in [Fau99],
which relies on fast linear algebra methods. This algorithm first computes a so-called
Macaulay matrix, that is a matrix indexed by monomials, from the current generating set.
Then, it carries out many S-polynomial computations and reductions at a time by computing
an echelon form of the aforementioned matrix. This strategy is very efficient in practice and
it (and its variants) represents the state-of-the art algorithms for computing Gröner bases.
It is implemented in many computer algebra systems such as Magma2, Maple3 or libraries
such as FGb4 [Fau10] and msolve5 [BES21].

Avoid zero reductions. To avoid computing useless S-polynomials, that is the one that will
reduce to 0 in the final Gröbner basis one approach is to refine Buchberger’s criterion of
Theorem 3.3.21; see e.g. [Buc79, KB78] and [CLO15, Chap. 2 §9]. As an illustration, the
following result allows to detect such zero reduction using an inexpensive criterion.

2https://magma.maths.usyd.edu.au/magma/handbook/groebner_bases
3https://fr.maplesoft.com/support/help/Maple/view.aspx?path=Groebner
4https://www-polsys.lip6.fr/~jcf/FGb/index.html
5https://msolve.lip6.fr
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Proposition 3.3.22 ([CLO15, Chap. 2, §10, Proposition 1]). Let G ⊂ Q[X] be a finite set

and let f, g ∈ G. If

lcm(lm≻(f), lm≻(g)) = lm≻(f) · lm≻(g),

then S(f, g) will reduce to zero in any Gröbner basis computed from G.

More recently in [Fau02], Faugère proposed to keep track of the previous computations
that lead to zero reductions using signatures of polynomials. He then proposed a signature-
based algorithm, F5, which avoids many reductions to zero, with a small additional cost.
Moreover, for generic input systems (namely regular sequences), this algorithm avoids all

reductions to zero. Many other signature-based algorithms have been subsequently proposed
and a comprehensive survey can be found in [EF17]. It is worth noting that many of the
encountered systems from real algebraic geometry come from determinantal systems, which
are generic. However, very recent work focuses on adapting F5 for these systems and already
allows one to avoid all reductions to zero in some cases [GNS23].

This new algorithm already showed practical efficiency in solving challenging problems in
cryptography that were previously intractable (by e.g. F4) [FJ03]. However, few implemen-
tations of F5 algorithm are available as understanding and implementing signature-based
algorithms seems challenging as the size of the signatures can grow very rapidly. We mention
below a non-exhaustive list of implementations of variants of F5:

• a C++ source code of implementations presented in [RS12] 6;

• a high-level implementation in SINGULAR of the variant G2V, presented in [GGV10] 7;

• a Julia implementation is part of the AlgebraicSolving.jl package 8.

3.3.4.c. Change of monomial order

According to their definition, Gröbner bases are associated with a monomial order. Hence,
depending on this choice, the cost of Gröbner bases computations can vary considerably and
changes of variables or order often can reduce this cost.

For instance, in [BS87], Bayer and Stillman showed that most of the times, Gröbner bases
with respect to the grevlex order should have minimal degree; in the zero-dimensional
case [CGH88, CGH91] gives an exponential bound on the degree, while [Laz83] proves
asymptotic optimal bounds under some conditions. On the other hand, lexicographic order
is better suited for computations as the associated bases convey more geometric information
(elimination, triangular systems, etc.); see e.g. [Tri78, GM89, Laz92] in the zero-dimensional
case. However, lexicographic Gröbner bases often come with higher degrees and terms
[Laz83].

A fruitful approach for overcoming this obstacle is to compute a Gröbner basis with
respect to a more appropriate order and subsequently convert the result into the desired
order, typically lexicographic or elimination order. This concept traces its origins back to

6http://www.broune.com/papers/issac2012.html
7http://www.math.clemson.edu/~sgao/code/g2v.sing
8https://algebraic-solving.github.io/
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Buchberger’s work in [Buc70], while a historical account of the evolution of this idea can be
found in [CKM97].

In the zero-dimensional case, this is efficiently tackled by the so-called FGLM algorithm,
named after Faugère, Gianni, Lazard and Mora [FGLM93]. This algorithm exploits the fact
that the coordinate ring C[X]/I of a zero-dimensional ideal has the structure of a finite

dimensional C-vector space, of which a basis can be easily derived from a Gröbner basis of
I(V ). In particular, they showed that for the computation of a lexicographic basis from a
grevlex basis, this strategy is usually much faster than a direct application of Gröbner basis
algorithms.

Note that variants of this algorithm have been developed recently such as the typically
much faster Sparse-FGLM [FM17] that exploits the typical sparsity of the matrices in
consideration. Additionally, a parametric version of the FGLM algorithm has also been
presented in [DH17], and a version tailored for colon ideals has been introduced very
recently in [BES23]. It is also noteworthy to mention that in [BES23], the authors present a
variant of the F4 algorithm designed for computing saturated ideals, effectively bypassing
the need to compute a Gröbner basis with respect to an elimination order as seen in
Subsection 3.3.3.

We end this Subsection by mentioning the positive dimensional case where FGLM-like
algorithms fail. To our knowledge, only two approaches exist for the general case: the
Hilbert function approach of Traverso [Tra96] and the Gröbner walks introduced by Collart,
Kalkbrener, and Mall [CKM97]. The latter relies on the theory of Gröbner fan introduced
by Mora and Robbiano in [MR88] and is interesting as it is independent of the dimension
of the ideal. Roughly speaking, the algorithm takes as input two monomial orders ≻ and
≻′, and a ≻-Gröbner basis G of an ideal I ⊂ C[X]. Then, it constructs a finite “path” of
monomial orders ≻=≻0, . . . ,≻m=≻′ and bases G0, . . . , Gm such that Gi is a ≻i-Gröbner
basis. Due to the “proximity” of Gi+1 to Gi, where the corresponding cones of the Gröbner
Fan of I are adjacent, the computation of Gi+1 from Gi becomes relatively straightforward.

In [AGK97], the authors showed good practical performance for this method, even
compared to FGLM, in the zero-dimensional case, at that time. Relatively recent progress
has also been made to make this algorithm more practical, mainly by improving the choice
of the path of monomial orders [Tra00, FJLT07].

3.4 Rational parametrizations

In this section, we present another type of representation for algebraic sets: rational
parametrization. Although they enjoy less algebraic properties than Gröbner bases, they
allow better degree bounds and interesting complexities for elementary manipulations,
especially in low dimensions (see [SS17, Section J]).

In fact, in generic coordinates, a rational parametrization of an algebraic set V is very
similar to a lexicographic Gröbner basis of its associated ideal I(V ). The latter has the
so-called “shape lemma form”, where the first coordinates are the zeros of a polynomial and
the others are polynomial functions of the former. However, the coefficients of the latter
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polynomials tend to be very large – see [ABRW96, Section 6]– and this is what rational
parametrizations try to avoid.

Intuitively, rational parametrizations can be seen as an effective application of a slight
generalization of Theorem 2.3.28. The latter says that every equidimensional algebraic set
V of dimension d is birational to a hypersurface H of Cd+1. In other words, a non-empty
Zariski open subset of V , can be parameterized by rational functions in d+ 1 variables lying
on a hypersurface H of Cd+1.

Remark 3.4.1. Note that the rational parametrizations presented here need not be confused
with parametrizations of rational algebraic sets by Cd. While the former has its parameters
lying in some hypersurface defined implicitly as a projection of the algebraic set, the latter
has parameters varying freely in Cd. Hence, the parametrizations we deal with here always
exist and do not assume more assumptions than the equidimensionality one.

This idea goes back to the works of Kronecker and König, [Kro82, Kön03] and is also
referred to as Kronecker parametrization. For a d-equidimensional algebraic set of Cn, it has
the form





x1 =
w1

∂xd+1
q

(
ℓ1(X), . . . , ℓd+1(X)

)

...

xn =
wn

∂xd+1
q

(
ℓ1(X), . . . , ℓd+1(X)

)
and q(ℓ1(X), . . . , ℓd+1(X)) = 0

where

• q, v1, . . . , vn are polynomials in x1, . . . , xd+1, with q square-free and monic as a univari-
ate polynomial in xi, for 1 ≤ i ≤ d+ 1;

• ℓ1, . . . , ℓd+1 are generic linear forms in x1, . . . , xn.

These notions were also later reconsidered by Macaulay in [Mac16], where he provides a
good summary of the previous works.

These parametrizations have been rediscovered in [GHMP95, Par95] for dealing with the
zero-dimensional case. It has subsequently been used in a broad range of applications, to
efficiently solve polynomial systems with finitely many solutions [GM89, Can88a, HRS90,
Laz92, LL91, Lec00, GLS01, ABRW96, GHMP97, GHM+98, Rou99]. We refer to [CPHM01,
Section 2.2] for a historical overview. We give hereafter a precise definition of the rational
parametrization in this case, that will be called a zero-dimensional parametrization.

Definition 3.4.2 (Zero-dimensional parametrizations [SS17, §1.2]). A zero-dimensional
parametrization P with coefficients in Q is the data of:

• polynomials (ω, ρ1, . . . , ρn) in Q[u] where u is an indeterminate, ω is a monic square-
free polynomial and it holds that deg(ρi) < deg(w),

• a Q-linear form l in the indeterminates x1, . . . , xn,

such that
l(ρ1, . . . , ρn) = u

∂ω

∂u
mod ω.
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Such a data structure encodes the finite algebraic sets of Cn, denoted by Z(P) defined as
follows:

Z(P) =

{(
ρ1

∂uω
(ϑ), . . . ,

ρn

∂uω
(ϑ)

)
∈ Cn s.t. ω(ϑ) = 0

}
.

The degree of P is the one of ω, which is exactly the one of Z(P) (i.e. its cardinality). By
convention, we note P∅ = (1) the zero-dimensional parametrization that encodes the empty
set.

In particular, given such a parametrization, one can compute isolating disks (or intervals
for the real roots) of the solutions as follows. First isolate the roots of the eliminating
polynomial ω using tailor-made algorithms such as [RZ04, SM16, KRS16, MSW15, KS15,
Mor22]. Then use interval arithmetic to derive isolating areas of the coordinates of the
solution that is the image of the roots of ω by the rational functions ρ1/∂uω, . . . , ρn/∂uω.

Such parametrizations can be computed using different approaches. The first one, intro-
duced first in [ABRW96] and later developed by Rouiller in [Rou99], consists in computing
the so-called Rational Univariate Representation (RUR) of an ideal using Gröbner bases com-
putations. Note that this representation might need some straightforward post-treatment
to be a zero-dimensional parametrization, as the input ideals of the algorithm need not
be radical. In particular, the RUR captures the root multiplicities of the input system. An
implementation of this algorithm has been integrated into the computer algebra system
Maple.9

Besides, another approach to compute such parametrization consists in computing the
so-called geometric resolutions introduced in [GLS01]. In [GLS01], the authors propose a
probabilistic algorithm relying on incremental lifting and intersecting of curves and using
extensively straight-line programs. See [DL08] for a simplified and pedagogical presentation
of this algorithm. The complexity of this strategy is polynomial in the degrees of the
intermediate algebraic sets computed, which is bounded by the degree of the input by
Bézout bound (see Theorem 2.1.31). Two implementations are available in respectively the
Kronecker [Lec02] and the Geomsolvex [Lec12] libraries of the computer algebra systems
Magma10 and Mathemagix11, respectively.

We mention also a parametric version of geometric resolution introduced in [Sch03].
Consider a polynomial system f(z1, . . . , zr,X) with coefficients in Q, in the indeterminates
x1, . . . , xn and with parameters z1, . . . , zr. Suppose that the parameters are in Noether
position with respect to the algebraic set of Cr+n defined by f , in particular for a generic
η ∈ Cr, f(η,X) defines a zero-dimensional algebraic set. Hence, a parametric geometric

resolution of f , is a zero-dimensional parametrization P with coefficients in Q(z1, . . . , zr),
together with a polynomial h ∈ Q[z1, . . . , zr], such that if h(η) ̸= 0 then the specialization
of P at η is a zero-dimensional parametrization of V (f(η,X)) ⊂ Cn. In other words,
parametric geometric resolutions describe the solutions in an algebraically closed field of
a parametric system, as the parameters range in a non-empty Zariski open set. However,
when considering the solutions in a non-algebraically closed field it is not sufficient. The
case of “real solutions” is much harder and is extensively studied in [Le21, LS22].

9https://fr.maplesoft.com/support/help/maple/view.aspx?path=Groebner/

RationalUnivariateRepresentation
10http://magma.maths.usyd.edu.au/magma/
11http://www.mathemagix.org
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We end this section by dealing with the one-dimensional case. As it will be ubiquitous in
this thesis, we also give a precise definition.

Definition 3.4.3 (One-dimensional parametrizations [SS17, §1.2]). A one-dimensional

rational parametrization R with coefficients in Q is the data of:

• polynomials (ω, ρ1, . . . , ρn) in Q[u, v] where u and v are indeterminates, ω is a monic
square-free polynomial and with deg(ρi) < deg(w),

• linear forms (l, l′) in the indeterminates x1, . . . , xn,

such that

l(ρ1, . . . , ρn) = u
∂ω

∂u
mod ω and l′(ρ1, . . . , ρn) = v

∂ω

∂u
mod ω.

Such a data structure encodes the algebraic curve, denoted by Z(R), defined as the Zariski
closure of the following constructible set

{(
ρ1

∂uω
(ϑ, η), . . . ,

ρn

∂uω
(ϑ, η)

)
∈ Cn s.t. ω(ϑ, η) = 0,

∂ω

∂u
(ϑ, η) ̸= 0

}
.

The degree of R is the defined as the one of ω, which is actually the degree of Z(R) as an
algebraic set. Note that such a parametrization R of degree δ involves O(nδ2) coefficients.

Such parametrizations for algebraic curves always exist by [Sch03], and efficient algo-
rithms for computing them can be found in [Lec00, GM19] and [SS17, Appendix J, §5], all
based on geometric resolution algorithm from [GLS01].

We will extensively use rational parametrization for encoding algebraic (finitely many)
points (query points, critical points, etc.) and curves (mainly roadmaps). In particular, as
straight-line programs, they will often constitute the standard input/output of our algorithms.
The reasons, briefly mentioned at the beginning of this section, are twofold.

• First, they allow compact representations. Indeed, the classic Kronecker representation
does not require the denominator to be the derivative of the eliminating polynomial.
Even more, in the zero-dimensional case, one can even avoid denominators. However,
this constraint on the denominator allows to control both the degree (bounded by
the one of the algebraic set) and the bitsize of the coefficients; see [ABRW96, Rou99,
GLS01, DS04].

• Secondly, rational parametrizations allow to perform basic operations such as unions,
intersections, (inverse) projections or changes of variables, with complexity polynomial
in the degree of the parametrizations (that is of the algebraic sets in consideration).

Finally, we mention the algorithms of [Lec00, GM19] that compute Kronecker representa-
tions of equidimensional algebraic sets of positive dimension. In particular, in the recent
[GM19], the authors give a randomized algorithm tackling locally closed sets defined by
polynomials with integer coefficients and provide a bound on its bit complexity. This bound
is roughly quadratic in the Bézout bound of the system, and linear in its bitsize.
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Real algebraic geometry 4
In this chapter, we study the properties of algebraic sets defined on fields that are gener-
alizations of the field of real numbers, and in particular, not algebraically closed. As the
foundational Hilbert’s Nullstellensatz does not hold anymore, the theory of algebraic geome-
try elaborated in Chapter 2 is not valid anymore. However, we will see that, considering a
wider class of sets, namely the semi-algebraic sets, one can get powerful results that have
many connections with differential analysis on R.

In Section 4.1 we first introduce the theory of real closed fields and their extensions,
highlighting the significant example of algebraic Puiseux series as a tool for investigating
infinitesimals. Moving forward, Section 4.2 provides an introduction to semi-algebraic
sets and semi-algebraic maps defined over real fields. Emphasis is placed on discussing
the topology of these constructs and their behavior concerning real closed extensions.
Additionally, Section 4.3 explores an alternative geometric characterization of algebraic
Puiseux series, namely semi-algebraic germs. This approach yields valuable insights into local
properties. Lastly, Section 4.4 investigates aspects of semi-algebraic differential geometry,
enabling us to establish the influential Implicit Function and Thom’s first isotopy theorems.

4.1 Real fields and their extensions

4.1.1 The theory of real closed fields

Real closed fields are fields that share many important properties with R the field of real
numbers, and where important results from the standard analysis on R still hold. However,
by contrast with the set of real numbers, general real closed fields can contain infinitesimal
(or equivalently unbounded) elements, and then not being Archimedean. When omitted, we
refer to [BCR98] and to [BPR06] for most of the definitions and results introduced here.

Definition 4.1.1. An ordered set (A,⪯) is a set A, together with a binary relation ⪯, that
satisfies the following assertions:

• ⪯ is reflexive: a ⪯ a;

• ⪯ is transitive: if a ⪯ b and b ⪯ c then a ⪯ c;

• ⪯ is anti-symmetric: a ⪯ b and b ⪯ a if and only if a = b.

We say that (A,⪯) is totally ordered if, in addition, ⪯ is total that is for every a, b ∈ A, a ⪯ b
or b ⪯ a does hold. If so, a ≺ b will stand for a ⪯ b together with a ̸= b. We define ⪰ and ≻
in a symmetric way.

Example 4.1.2.
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a) The set P(X) of the subsets of a set X, together with ⊂, the inclusion of sets, is an
ordered set

b) The set of integers Z, together with the divisibility relation ♣, is an ordered set.

c) The nonnegative integers N, together with its natural order ≤, is a totally ordered set.

Definition 4.1.3. An ordered ring (R,⪯) is a ring R, together with a total order ⪯ such that
(R,⪯) is an ordered set and ⪯ is compatible with the ring structure of R that is:

• if a ⪯ b then a+ c ⪯ b+ c for any a, b, c in R;

• if 0 ⪯ a and 0 ⪯ b then 0 ⪯ ab for any a, b in R.

If, in addition, R is a field, then (R,⪯) is an ordered field.

Example 4.1.4.

a) The ring Z, together with its natural order ≤, is an ordered ring.

b) The fields Q and R, together with their natural order ≤, are ordered fields.

c) The complex field C, together with the lexicographic order ⪯lex:

a+ ib ⪯lex c+ id⇐⇒ a < c or a = c and b ≤ d,

is a totally ordered set. It is not an ordered field though, as ⪯lex is not compatible with
the ring structure of (C,+,×).

Besides, the order on real parts ⪯rea of complex numbers:

a+ ib ⪯rea c+ id⇐⇒ a ≤ c,

is compatible with the ring structure of (C,+,×), but is not total.

Actually, the following result implies that C cannot be ordered as a field.

We now consider a particular class of ordered fields, whose order relations gives particular

Theorem 4.1.5 ([BCR98, Theorem 1.1.8]). Let Q be a field, the following statements are

equivalent:

1. Q can be ordered;

2. −1 is not a sum of squares in Q.

3. for every a1, . . . , an in Q, if
∑n

i=1 a
2
i = 0, then a1 = · · · = an = 0.

Definition 4.1.6 ([BCR98, Definition 1.1.9]). A field Q, satisfying the equivalent properties
of Theorem 4.1.5, is called a real field.

Example 4.1.7.

a) The fields Q and R are real fields.
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b) Back to Example 4.1.4.c), as −1 = i2, the field C is not a real field. Hence, it cannot
be ordered as a field i.e. there is no total order ⪯ such that (C,⪯) is an ordered field.

c) If Q is a real field, then there exists an order on Q(x), the field of rational fractions with
coefficients in Q. This order is such that x is infinitesimal over Q (see Subsection 4.1.2).
Hence Q(x) is a real field.

d) Every field of non-zero characteristic is not a real field, as it cannot be ordered.

Let us recall some classic notions of field theory.

Proposition-definition 4.1.8. Let C and K be two fields such that C ⊂ K up to an injective

morphism of fields. Then, the following holds:

1. K is a C-vector space and is called an extension of C, denoted by K/C;

2. K/C is algebraic if every element of K is a root of a nonzero polynomial with coefficients

in C;

3. C is algebraically closed if every non-constant polynomial in C[x] has a root in C. Then,

if K/C is algebraic, the extension is trivial i.e. K = C.

Definition 4.1.9 ([BCR98, Definition 1.2.1]). A field R is a real closed field if it is a real
field that has no non-trivial real algebraic extension.

Since R can be seen as a model of a real closed field, it is important to ensure that
fundamental properties of differentiable functions over R still hold over real closed fields.

Definition 4.1.10 ([BPR06, p.45]). A field R has the intermediate value property if R is an
ordered field such that: for any polynomial f ∈ R[x] such that f(a)f(b) < 0, where a < b in
R, there exists c ∈ (a, b) such that f(c) = 0.

The following fundamental theorem gives equivalent characterizations of real closed fields.
It shows, in particular, that the intermediate value property is a precise requirement for a real
field to be closed.

Theorem 4.1.11 ([BPR06, Theorem 2.17]). Let R be a field, the following statements are

equivalent:

1. R is real closed;

2. R has the intermediate value property;

3. there is a unique ordering of R such that any nonnegative element of R has a square root

in R and every polynomial in R[x] with odd degree, has a root in R;

4. R[i] = R[x]/(x2 + 1) is an algebraically closed field.

Example 4.1.12. The real field R is real closed, as R[i] = C, but Q is not, as
√

2 /∈ Q.

A real closed field also satisfies many important theorems and properties that hold in R,
such as polynomial versions of Mean Value or Rolle’s theorem (see [BCR98, Proposition
1.2.6 and Corollaries 1.2.7 and 1.2.8]). The following theorem forms a converse to the last
statement of Theorem 4.1.11.
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Theorem 4.1.13 ([BPR06, Theorem 2.42]). Let C be an algebraically closed field of charac-

teristic zero. Then there exists a real closed field R ⊂ C such that R[i] = C, where i ∈ C.

We conclude this section, with the natural notion of real closure, which intuitively follows
the algebraically closed one.

Definition 4.1.14 ([BCR98, Definition 1.3.1]). An algebraic extension R of an ordered
field K, is called a real closure of K if R is real closed and if its unique ordering extends the
ordering of K.

As for algebraic closure, the existence of such real closure is always guaranteed and has
some uniqueness properties. However, it is worth noting that the uniqueness of real closure
is, in some sense, stronger than the one of algebraic closure (see [BCR98, Remark 1.3.5]).

Theorem 4.1.15 ((Artin-Schreier) [BCR98, Theorem 1.3.2]). The real closure of K exists

and is unique, up to a K-isomorphism.

We end this paragraph with a useful criterion to construct the real closure of a real field,
from any of its real closed extensions.

Proposition 4.1.16 ([BPR06, Exercise 2.40]). Let R be a real closed field extending K. Then

the real closure of K is exactly the subfield of elements of R that are algebraic over K.

Example 4.1.17.

a) Let Ralg be the field of real algebraic numbers over Q. Since Q ⊂ R and R is real closed,
Ralg is the real closure of Q. In particular, this proves that Ralg is real closed. Of course,
the latter can also be proved more directly using one of the last two characterizations
of Theorem 4.1.11.

b) The following subsection details the construction of a noticeable example of real
closure: the field of algebraic Puiseux series. This is the smallest real closed extension
R′ of a real closed field, containing elements that are infinitesimal over R.

4.1.2 Algebraic Puiseux series: seeking infinitesimals

Given any ordered field K, we denote by ♣a♣ the absolute value of an element a ∈ K that is
the maximum of a and −a.

Definition 4.1.18. Let K ⊂ K′ be two ordered fields such that the inclusion is order
preserving. We say that an element of K′ is:

1. infinitesimal over K if its absolute value is positive and smaller than any positive
element of K;

2. unbounded over K if its absolute value is positive and greater than any element of K.

Remark 4.1.19. Given the same notations, if ε ∈ K′ is infinitesimal over K, then, as it
is nonzero, ε−1 ∈ K′ is unbounded over K. Moreover, if such ε exists, then K′ is non-

Archimedean since ♣ε♣ is smaller than 1/n ∈ K for any positive integer n.
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In the following, we fix an arbitrary closed field R, and we construct, step by step, a
real closed extension R′, of R, that contains infinitesimals over R. Then, using Proposi-
tion 4.1.16, we directly get, from R′, the real closure of R.

Definition 4.1.20 ([BCR98, Example 1.1.2]). Let R(ε) be the field of rational fractions with
coefficients in R and for 0 ≤ m ≤ n, let

f(ε) = amε
m + am+1ε

m+1 + · · ·+ anε
n

be a nonzero polynomial in R[ε] such that am ̸= 0. Let g ∈ R[ε]\¶0♢, we say that:

1. f is positive (or 0 < f) if and only if 0 < am;

2. f/g ∈ R(ε) is positive (or 0 < f/g) if and only if fg is.

Hence, for any F,G in R(ε), we say that F ≤ G if and only if F = G or 0 < G− F .

Proposition 4.1.21 ([BPR06, Exercise 2.9]). Given the order defined in Definition 4.1.20,

the following holds:

1. (R(ε),≤) is an ordered field;

2. the inclusion R ⊂ R(ε) is order preserving;

3. ε is an infinitesimal element of R(ε) over R.

The above proposition claims that R(ε) is a real extension of R containing infinitesimals
over R as requested. But R(ε) is not real closed as the following proposition illustrates.

Proposition 4.1.22. The field R(ε) equipped with the order of Definition 4.1.20 is not real

closed.

Proof. Let R[[ε]] denote the ring of formal power series in ε with coefficients in R. Let R((ε))

be the field of Laurent series in ε with coefficients in R, that is the quotient field of R[[ε]].

Remark that R((ε)) contains R(ε) and algebraic elements over R(ε) that are not in R(ε)

as well. Hence, the subfield of R((ε)) of algebraic elements over R(ε) is a non-trivial real
algebraic extension of R(ε), that is R(ε) is not real closed, by Definition 4.1.9.

However recalling Theorem 4.1.15, to find the real closure of R(ε), one just needs to find
any real closed extension of R(ε). However, the field R((ε)) seen above is not real closed as
well, as it does not contain square roots of ε, which is a positive element. Fixing this failure,
we define the so-called set of Puiseux series.

Definition 4.1.23 (Puiseux Series). The set R⟨⟨ε⟩⟩ of Puiseux Series with coefficients in R is
the set of formal series defined as follows:

R⟨⟨ε⟩⟩ =



a =

∑

i≥k

aiε
i/q ♣ ai ∈ R, k ∈ Z, q ∈ N⋆



 .
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By this means, we add the roots of the polynomials of the form Xq − εi with i ∈ Z and
q > 0. Indeed, as a positive element, one requires that ε has square roots in the real closure
containing it.

Finally, our goal is achieved according to the following theorem.

Theorem 4.1.24 ([BPR06, Theorem 2.113]). The set R⟨⟨ε⟩⟩ of Puiseux series is a real closed

field.

Remark 4.1.25. The order on R⟨⟨ε⟩⟩ is the unique order that satisfies: given a = a1ε
r
1 +

a2ε
r
2 + · · · ∈ R⟨⟨ε⟩⟩ with a1 ̸= 0, then a is nonnegative if and only if a1 is.

Corollary 4.1.26. Let R⟨ε⟩ be the subfield of elements of R⟨⟨ε⟩⟩ that are algebraic over R(ε).

Then R⟨ε⟩ is the real closure of R(ε), equipped with the order of Definition 4.1.20, and is called

the field of algebraic Puiseux series.

We conclude by considering the limit morphism that connects some elements in R⟨ε⟩ to
ones in R. This constitutes the main motivation for the introduction of infinitesimals in this
thesis. This will allow us, in the next subsection, to use infinitesimal calculus in an algebraic
framework.

Recall that a discrete valuation ring A is a principal ring, which is local, that is A has a
unique maximal ideal m. Hence, A/m is the residual field of A. Let t be a generator of m, it
is called a uniformizer, and satisfies m = (t) as A is principal. For any a ∈ A, there exists a
unique i ≥ 0 such that (a) = (ti); such an integer i is called the valuation of a in A.

Proposition 4.1.27 ([BPR06, Proposition 2.121]). Let R⟨ε⟩b be the set of algebraic Puiseux

series bounded over R i.e. the elements of R⟨ε⟩ with an absolute value less than a positive

element of R. Then,

R⟨ε⟩b =



a =

∑

i≥0

aiε
i/q ♣ a ∈ R⟨ε⟩, q ∈ N⋆, ai ∈ R



 ,

and R⟨ε⟩b is a discrete valuation ring of valuation v(a) = infai ̸=0 i, of uniformizer ε and

residual field is R.

Definition 4.1.28. The limit morphism is the canonical projection from R⟨ε⟩b to its residual
field:

limε : R⟨ε⟩b → R.

This morphism maps any
∑

i≥0 aiε
i/q ∈ R⟨ε⟩b to its first coefficient a0.

Puiseux series can be defined over arbitrary fields, of any characteristic. As shown in this
subsection, they can inherit important properties from their base field. In particular the
Newton-Puiseux theorem [Eis95, Corollary 13.15] claims that, if K is an algebraically closed
field of characteristic zero, then K⟨⟨ε⟩⟩ is the algebraic closure of the field of Laurent series
K((ε)). Remark that it is also a consequence of Theorems 4.1.24 and 4.1.11 and 4.1.13 since
R⟨⟨ε⟩⟩[i] = R[i]⟨⟨ε⟩⟩. The Newton-Puiseux theorem has an important historic application,
which motivated the introduction of Puiseux series, for the study of plane algebraic curves
(see [Eis95, Corollary 13.16]).
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4.2 Semi-algebraic sets and maps

We recall here some basic ingredients of semi-algebraic geometry. In the following, let n > 0,
and X = x1, . . . , xn be indeterminates. We also fix a real closed field R, and let C be its
algebraic closure. When omitted, we refer to [BCR98] and [BPR06] for the definitions and
results introduced here.

4.2.1 Semi-algebraic sets

Following the algebro-geometric spirit of Chapter 2, in real algebraic geometry we first
consider the real counterpart of algebraic sets.

Definition 4.2.1. A real algebraic set of Rn is a subset of Rn that can be written as

¶y ∈ Rn ♣ f1(y) = 0, . . . , fp(y) = 0♢ ,

where f1, . . . , fp ∈ R[x1, . . . , xn].

The following proposition shows the first difference with algebraic sets. It can be easily
proved that any real algebraic set can be defined by a single equation, by considering the
sum of the squares of the polynomials defining the real algebraic set.

Proposition 4.2.2. Any real algebraic set of Rn can be written as the zero-set of a single

f ∈ R[X].

Example 4.2.3. Let E = ¶x ∈ Rn ♣ f(x) = 0♢ where f ⊂ R[x1, . . . , xn], be a real algebraic
set of Rn. Then V = ¶x ∈ Cn ♣ f(x) = 0♢ is an algebraic set of Cn and E = V ∩Rn.

This is an example of importance as in the second part of this thesis we will extensively
study real algebraic sets through the algebraic set defined by some defining polynomials.
This allows one to use the powerful machinery of algebraic geometry from the previous
chapters. Finally, one ultimately considers the real trace of the objects in consideration.

However, we need to consider a more general family of sets defined over Rn for stability
reasons.

Definition 4.2.4. A semi-algebraic set of Rn is a subset of Rn that can be written as a finite
union of basic semi-algebraic sets of the form:

¶y ∈ Rn ♣ f1(y) = · · · = fp(y) = 0, g1(y) > 0, . . . , gq(y) > 0♢ ,

where f1, . . . , fp, g1, . . . gq ∈ R[x1, . . . , xn].

Example 4.2.5.

a) Every real algebraic set of Rn is a semi-algebraic set.

b) Every interior of a polygon (resp. polyhedra) is a semi-algebraic set of R2 (resp. of
R3).
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c) The following sets are not semi-algebraic sets: Zn, ¶(x, y) ∈ R2 ♣ y = cos(x)♢ and the
infinite “zigzag” ¶(x, y) ∈ R2 ♣ y = d(x,Z) = ♣x− ⌊x+ 1/2⌋♣♢.

d) The semi-algebraic sets of R are exactly the finite unions of points and open intervals.

The following proposition ensures that the family of semi-algebraic sets is stable under
finitely many elementary set operations.

Proposition 4.2.6. Let A ⊂ Rn and B ⊂ Rn, for m > 0, be semi-algebraic sets. Then,

1. Rn −A is a semi-algebraic set of Rn;

2. if m = n, A ∪B and A ∩B are semi-algebraic sets of Rn;

3. A×B is a semi-algebraic set of Rn+m.

The following striking theorem is fundamental in computational semi-algebraic geometry.
Together with the above proposition, it shows that the family of semi-algebraic sets enjoy
strong stability properties. The first proof has been given by Tarski [Tar51], and made
completely effective in a following paper of Seidenberg [Sei54].

Theorem 4.2.7 (Tarski-Seidenberg Theorem [BPR06, Theorem 2.92]). Let S ⊂ Rn+1 and

π : Rn+1 → Rn be the projection on the first n coordinates. Then, π(S) is a semi-algebraic set

of Rn.

However, the projection of a real algebraic set is, in general, not a real algebraic set, but it
is a semi-algebraic set. Conversely, Motzkin [Mot70] proved that every semi-algebraic set of
Rn is actually the projection of a real algebraic set of Rn+1. An important application of the
two previous stability results is the following reformulation. This illustrates the ubiquity of
semi-algebraic sets in real algebraic geometry.

Definition 4.2.8 ([BCR98, Definition 2.2.3]). A first-order formula in the language of the
ordered fields, with parameters in R, is a formula written as finite conjunctions, disjunctions,
negations, and universal or existential quantifiers in R on variables y1, . . . , ym, starting
from atomic formulas which are of the type f(y1, . . . , ym) = 0 of g(y1, . . . , ym) > 0, where
f, g ∈ R[y1, . . . , ym].

The free variables x1, . . . , xn of a formula Φ are the ones appearing in the formula, which
are not quantified. In this case, we note Φ(x1, . . . , xn). The realization of Φ, is the set of
x ∈ Rn such that Φ(x) is true. Finally, a quantifier-free formula is a formula involving no
quantifiers or, equivalently, involving only free variables.

Looking at the above definitions, semi-algebraic sets can be naturally written as the
realization of quantifier-free formulas and conversely. The conjunction of Proposition 4.2.6
and Theorem 4.2.7 gives way more. Indeed, the realization of existential (and universal
by negation) quantifiers can be seen as projections of realizations of formulas with fewer
(one-block) quantifiers.

Theorem 4.2.9 ([BCR98, Theorem 2.2.4]). Let Ψ(x1, . . . , xn) be a first-order formula in

the language of the ordered fields, with coefficients in R. Then the realization of Φ is a

semi-algebraic set.
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Example 4.2.10.

a) Let Φ(x, y) be the formula “∃z ∈ R s.t. x2 + y2 + z2 = 1”. According to the above
theorem, the realization of Φ is a semi-algebraic set. In this case, it is the unit disk
¶(x, y) ∈ R2 s.t. x2 + y2 ≤ 1♢. Remark that the realization of Φ(x, y) can also be seen
as the projection of the 2-sphere S = ¶(x, y, z) ∈ R3 s.t. x2 + y2 + z2 = 1♢ on the
first two coordinates. Hence, Theorem 4.2.7, gives the same conclusion.

b) ([BPR06, Remark 3.2]) Let S = ¶(x, y) ∈ R2 s.t. x3 − x2 − y2 > 0♢, and

S = ¶(x, y) ∈ R2 s.t. ∀r > 0,∃(x′, y′) ∈ S, (x− x′)2 + (y − y′)2 < r2♢.

Then, by Theorem 4.2.9, S is a semi-algebraic set. Such a set will be called the
Euclidean closure of S in the next subsection. It is worth noting that S = ¶(x, y) ∈
R2 s.t. x3 − x2 − y2 ≥ 0 and x ≥ 1♢ and not ¶(x, y) ∈ R2 s.t. x3 − x2 − y2 ≥ 0♢
as one could expect.

c) ([BCR98, Example 2.1.5.e]) The realization of the formula Φ(x, y) : “∃n ∈ N s.t. y =

nx′′ is not a semi-algebraic set. Indeed, as Φ is a first-order formula, in the language
of the ordered fields, its parameter n does not range over a real closed field.

A reformulation of Theorem 4.2.9 is that the realization of any such formula can be written
as the realization of a quantifier-free formula. A direct consequence is the decidability of the
first-order theory of real closed fields (that is involving only first-order formulas). Although
the original proof of Theorem 4.2.7 was constructive, its complexity cannot be bounded by
any finite tower of exponents, which makes it impractical for actual computations. We will
discuss more in detail the algorithmic aspects of quantifier elimination later in Chapter 5.

4.2.2 Topology of semi-algebraic sets

In order to work with semi-algebraic sets, we introduce in this section the Euclidean topology
on Rn, that derives from the classical one on Rn. For that, we use the ordering structure on
R to define the following basic objects.

Definition 4.2.11. Let y ∈ (y1, . . . ,yn) ∈ Rn, r ∈ R and r > 0. We denote by:

• ♣♣y♣♣ the unique positive square root of y2
1 + · · ·+ y2

n;

• Bn(y, r) = ¶z ∈ Rn s.t. ♣♣y − z♣♣ < r♢ the open ball of radius r, centered at y;

• Bn(y, r) = ¶z ∈ Rn s.t. ♣♣y − z♣♣ ≤ r♢ the closed ball of radius r, centered at y;

• Sn−1(y, r) = ¶z ∈ Rn s.t. ♣♣y − z♣♣ = r♢ the (n− 1)-sphere of radius r, centered aty.

The euclidean topology on Rn is the one whose open sets are the unions of open balls. Recall
that the closed sets are then, the complements of the open sets. Moreover, for a set S ⊂ Rn,
we note S the (Euclidean) closure of S, that is the intersection of all closed sets containing S
(for the Euclidean topology).
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Remark 4.2.12. Note that, Bn(y, r), Bn(y, r) and Sn−1(y, r) are semi-algebraic sets. More-
over, according to Theorem 4.2.9, the closure of a semi-algebraic set is a semi-algebraic set.
Hence, semi-algebraic sets behave well with the Euclidean topology on Rn.

We now focus on the notion of connectivity for semi-algebraic sets. This notion will be
central to this thesis.

Definition 4.2.13 ([BCR98, Definition 2.4.2]). A semi-algebraic set S of Rn is semi-algebra-

ically connected if S is not the disjoint union of two non-empty semi-algebraic sets that are
both closed in S.

The following example, from [BPR06, Section 3.2], illustrates why a semi-algebraic
definition of connectedness is required when dealing with arbitrary closed fields.

Example 4.2.14. Consider R to be Ralg, the field of real algebraic numbers. Then, we have
the following disjoint union:

Ralg = Ralg ∩ (−∞, π)
⋃

Ralg ∩ (π,+∞)

The sets are both closed in Ralg, as each one is the complement of the other, and is open in
Ralg. However, neither Ralg ∩ (−∞, π) nor Ralg ∩ (π,+∞) are semi-algebraic sets of Ralg, as
these are finite unions of points and open interval, and π /∈ Ralg. Thus Ralg is disconnected.
However, Ralg is not semi-algebraically disconnected.

The following proposition ensures that the notion of semi-algebraic connectedness behaves
well with elementary semi-algebraic sets.

Proposition 4.2.15 ([BPR06, Propositions 3.9, 3.11]). The field R, its intervals, and the

open cubes (0, 1)n are semi-algebraically connected.

We end this subsection with the fundamental theorem about semi-algebraically connected
sets.

Theorem 4.2.16 ([BCR98, Theorem 2.4.4]). Every semi-algebraic set S ⊂ Rn is a dis-

joint union of a finite number of non-empty semi-algebraically connected semi-algebraic sets

C1, . . . , CN which are both open and closed in S. The sets C1, . . . , CN are called the semi-alge-
braically connected components of S.

The following direct consequence will be useful when characterizing the semi-algebraically
connected components of a semi-algebraic set.

Proposition 4.2.17. Using the same notations as in the above theorem, let x ∈ S. Then, there

is a unique 1 ≤ i ≤ N , such that Ci contains x and Ci is the union of all the semi-algebraically

connected sets containing x.

In particular, any semi-algebraically connected semi-algebraic subset of S containing Ci equals

Ci.

It is worth noting that, the fact that semi-algebraic sets have finitely many semi-algebra-
ically connected component leads to natural algorithmic questions. In particular, this allows
to compute finite representations of these components and to bound the complexity of these
procedures. Together with Theorem 4.2.7, these results constitute the theoretic foundations
of computational real algebraic geometry as we will discuss in Chapter 5.
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4.2.3 Semi-algebraic maps

We now consider, together with the notion of semi-algebraic sets, the family of maps that
preserve this structure. In this subsection, we consider two semi-algebraic sets A ⊂ Rn and
B ⊂ Rm.

Definition 4.2.18. A map f : A→ B is semi-algebraic if its graph

Graph(f) = ¶(x, f(x)) for x ∈ A♢,

is a semi-algebraic set of Rn+m.

Proposition 4.2.19. Let f : A→ B be a semi-algebraic map then:

1. the composition g ◦ f is a semi-algebraic map, for any semi-algebraic set C and semi-alge-

braic map g : B → C;

2. for any semi-algebraic sets A′ ⊂ A and B′ ⊂ B, the sets f(B′) and f−1(B′) are semi-al-

gebraic sets of Rn and Rm respectively.

As we defined a topology for the semi-algebraic sets, an important family of semi-algebraic
maps are the ones preserving the open sets.

Definition 4.2.20. We say that f : A→ B is a semi-algebraic continuous map if, for every
semi-algebraic open subset B′ ⊂ B, f−1(B′) is open.

As for semi-algebraic maps, the family of semi-algebraic continuous maps is stable under
composition and arithmetic operations.

Example 4.2.21.

a) Any (restriction to a semi-algebraic set of a) polynomial map, with coefficients in R, is
a semi-algebraic continuous map.

b) The function x ∈ [−1, 1] 7→
√

1− x2 ∈ [1, 1] whose graph is the upper-half unit circle
is semi-algebraic.

c) Any rational fraction f/g, where f, g ∈ R[x], restricts to a semi-algebraic map on the
semi-algebraic set ¶x ∈ R s.t. g(x) ̸= 0♢ (and any semi-algebraic subsets of it). In
particular, any birational map (see Definition 2.3.26) h restricts to a bijective map on
a non-empty semi-algebraic set, such that, both h and h−1, are semi-algebraic and
continuous maps.

The last above example revealed an important subfamily of semi-algebraic continuous
maps that preserve the topological properties of semi-algebraic sets.

Definition 4.2.22. We say that f : A → B is a semi-algebraic homeomorphism if f is a
bijection such that both f and f−1 are semi-algebraic continuous maps.

We end this subsection by giving a direct, but important result on the stability of semi-al-
gebraic connectedness with respect to semi-algebraic homeomorphisms.
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Proposition 4.2.23 ([BPR06, Exercise 3.8]). Let f : A→ B be a semi-algebraic homeomor-

phism. Then, the semi-algebraically connected subsets of A and B are in correspondence through

f . In particular, the semi-algebraically connected components of A and B are in one-to-one
correspondence through f .

A noticeable application of the above result in this thesis will be when f is the restriction
of an isomorphism of algebraic sets, to their real traces.

Another important example of semi-algebraic continuous maps in this work will be the
following one.

Definition 4.2.24. Let y,y′ ∈ A. A semi-algebraic path connecting y to y′ in A, is a
semi-algebraic continuous map γ : [0, 1]→ A such that γ(0) = y and γ(1) = y′.

These semi-algebraic paths are ubiquitous when studying the semi-algebraic connectedness
of semi-algebraic sets. Indeed, unlike the Euclidean topology, the notions of connectedness
and path-connectedness coincide for semi-algebraic sets.

Theorem 4.2.25 ([BPR06, Theorem 5.23]). A semi-algebraic set S is semi-algebraically

connected if and only if for every pair (y,y′) ∈ S2, there exists a semi-algebraic path connecting

y to y′ in S (that is S is semi-algebraically path connected).

Note that in classical geometry, a set can be connected while not being path-connected.
A counter-example is the topological closure of the graph of the function f : x ∈]0, 1] 7→
sin( 1

x ) ∈ R. However, the latter set is not semi-algebraic. In fact, according to [BPR06,
Theorem 5.22], a semi-algebraic set of Rn is semi-algebraically connected if, and only if, it is
connected (in the usual sense).

4.2.4 Extension of semi-algebraic sets and functions

In this subsection, we consider an arbitrary closed field R and a real closed extension R′,
whose unique order extends the one of R (e.g. R′ = R⟨ε⟩).

We start by the Transfer Principle on real closed fields, that allow us to extend first-order
formulas to real closed extensions.

Theorem 4.2.26 ([BPR06, Theorem 2.98]). Let R′ be a real closed extension of R and Φ be

a first-order formula in the language of the ordered fields, with parameters in R. Then Φ is

true in R if and only if it is true in R′.

Hence, according to the Tarski-Seindenberg theorem, this leads to the following definition
for extension of semi-algebraic sets.

Definition 4.2.27. Let S be a semi-algebraic set of Rn, and Φ(X) be a quantifier-free
formula, whose realization in Rn is S. Then, the extension of S to R′, is defined as the
realization of Φ(X) in (R′)n, that is the set of points y ∈ (R′)n such that Φ(y) is true. We
denote this extension by ext(S,R′) and it does not depend of Φ.

A direct consequence of this definition is the following one.
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Proposition 4.2.28 ([BPR06, Proposition 2.105]). The inclusion mapping S ⊂ Rn 7→
ext(S,R′) ⊂ (R′)n preserves the Boolean operations (finite intersection, finite union, and

complementation) and the inclusion.

Example 4.2.29. Let S be the semi-algebraic set (2, 3)∩Ralg of Ralg. Then, the Euler number
e /∈ S but e ∈ ext(S,R).

The extension operation also preserve semi-algebraic connectedness as the following
proposition shows.

Proposition 4.2.30 ([BPR06, Proposition 5.24]). Let S be a semi-algebraic set of Rn, and

C1, . . . , Cℓ be its semi-algebraically connected components. Then ext(C1,R
′), . . . , ext(Cℓ,R

′)

are the semi-algebraically connected components of ext(S,R′).

In particular, S is semi-algebraically connected component if and only if ext(S,R′) is.

As semi-algebraic sets, semi-algebraic maps can be extended to larger real closed fields.

Definition 4.2.31. Let f : S → T be a semi-algebraic map. Then, ext(Graph(f),R′) is the
graph of a semi-algebraic map

ext(f,R′) : ext(S,R′)→ ext(T,R′),

that is called the extension of f to R′.

Proposition 4.2.32. With the notation of the above definition, for any semi-algebraic subsets

A ⊂ S and B ⊂ T , the following holds:

ext(f(A),R′) = ext(f,R′)
(

ext(A,R′)
)

;

ext(f−1(B),R′) = ext(f,R′)−1
(

ext(B,R′)
)
.

In particular, the extension of a semi-algebraic homeomorphism is still a semi-algebraic homeo-

morphism.

The case where R′ = R⟨ε⟩ is of particular interest, as it allows one to work with semi-al-
gebraic sets and maps at some infinitesimal neighborhood, considering their extension to
R⟨ε⟩. This brings methods from analysis to the current algebraic settings. The following
result is an illustration of this use.

Proposition 4.2.33 ([BPR06, Proposition 3.6]). Let S be a semi-algebraic set and f be

a semi-algebraic map defined on S. Then, f is continuous in x ∈ S if and only if for all

y ∈ ext(S,R⟨ε⟩)
limε ext(f,R⟨ε⟩)(y) = f(x).

This characterization of continuity gives the intuition of the algebraic Puiseux series to
behave as semi-algebraic paths, of infinitesimal length, lying in the prescribed semi-algebraic
set. The next section aims to precise this intuition using the notion of semi-algebraic germs.
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4.3 Semi-algebraic germs

Let us now examine an alternative geometric description of algebraic Puiseux series. We
follow here the approach presented in [BPR06, Section 3.3].

Definition 4.3.1. The set of germs of semi-algebraic continuous functions at the right of the

origin is the set of the equivalence classes of semi-algebraic continuous functions f : (0, t)→
R, for t > 0, with respect to the equivalent relation:

f ∼ g if and only if there exists t0 > 0 such that f(t) = g(t) for every t ∈ (0, t0).

This set can be equipped with a ring structure that naturally derive from the one of the ring
of semi-algebraic functions. In particular, the 0 (respectively 1) of this new ring is the germ
associated with the constant 0 (respectively 1) function. Moreover, as the semi-algebraic
sets of R are finite union of points and open intervals, for any representative f of a germ φ,
there exists t0 > 0 such that f does not vanish on (0, t0). Hence, the inverse of φ ̸= 0 can
be defined, along with its sign, which matches that of f on the interval (0, t0). One checks
that the algebraic structure and order thus defined make the set of germs of semi-algebraic
continuous functions an ordered field.

The following theorem states that this structure constitutes a real closed field. Moreover,
by [BPR06, Proposition 2.104], it is an algebraic extension of R(ε), which gives the second
part of statement of the theorem.

Theorem 4.3.2 ([BPR06, Theorem 3.13, 3.16 & 3.17]). The set of germs of semi-algebraic

continuous functions at the right of the origin is a real closed field.

Moreover, it is the real closure of R(ε) equipped with the order defined in Proposition 4.1.21.

Hence it is isomorphic to the field of algebraic Puiseux series R⟨ε⟩.

Remark 4.3.3. The isomorphic equivalence between these two fields can be understood as
follows. Let ε > 0 and f : (0, ε)→ R be a continuous semi-algebraic function. According to
[BPR06, Proposition 2.104], the graph of f is a branch of a real algebraic plane curve, that
is, there exists a non-zero polynomial P ∈ R[t, s] such that P (t, f(t)) = 0 for every t ∈ (0, ε).
Besides, according to the Newton-Puiseux theorem [Wal78, Theorem 3.1], the latter branch
can be parameterized by a Puiseux series, that is, there exists σ ∈ R⟨⟨t⟩⟩ such that

f(t) = σ(t) for all t ∈ (0, ε).

Since by definition P (t, σ) = 0, then σ is algebraic over R i.e. σ ∈ R⟨t⟩.

Remark 4.3.4. According to the proof of the above theorem – see e.g. [BPR06, p.102] –,
1 ∈ R(ε) is sent to the class of the constant function t ∈ (0, 1) 7→ 1 ∈ R and ε ∈ R(ε) is sent
to the class of the identity map t ∈ (0, 1) 7→ t ∈ R.

We end this section with important results that derive from this alternative representation.

Proposition 4.3.5 ([BPR06, Proposition 3.19]). Let S be a semi-algebraic subset of Rn and

φ = (φ1, . . . , φn) ∈ R⟨ε⟩n.
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Let f1, . . . , fn be representatives of φ1, . . . , φn, on a common segment (0, t0), where t0 > 0. We

note f = (f1, . . . , fn). Then, the following holds:

φ ∈ ext(S,R⟨ε⟩)⇐⇒ ∃ t′0 ∈ (0, t0), ∀ t ∈ (0, t′0), f(t) ∈ S.

Another important property of R⟨ε⟩ is that, sentences that are true on R[ε], are also true
on a sufficiently small interval (0, r) ⊂ R.

Proposition 4.3.6 ([BPR06, Proposition 3.20]). Let Φ be a first-order formula in the language

of ordered fields, with coefficients in R[ε] and for t ∈ R, let Φ′(t) be the sentence obtained by

replacing ε with t in Φ.

Then, Φ is true if and only if there exists t0 ∈ R such that Φ′(t) is true for every t ∈ (0, t0).

Example 4.3.7. Let S be a semi-algebraic set of Rn and let x be a point in the closure of S.
Then,

∀ t > 0, B(x, t) ∩ S ̸= ∅.

The sentences defining S and B(0, t) are in the language of ordered fields with coefficients
in R[t]. Hence by Proposition 4.3.6,

B(x, ε) ∩ ext(S,R′) ̸= ∅.

This is actually the core of Theorem 4.3.9.

The following proposition comes directly from [BPR06, Proposition 3.21]. We propose
here a more detailed statement, that will be useful in some proofs of Chapter 6. As it
requires some precautions, we propose an extended version of the proof proposed in
[BPR06, Proposition 3.21].

Proposition 4.3.8 ([BPR06, Proposition 3.21]). Let a be a positive element of R and let

f : (0, a)→ R be a continuous, bounded, semi-algebraic function. Then there exists a continu-

ous, bounded, semi-algebraic function f : [0, a)→ R that extends f and such that:

f(0) = limε φ,

where φ is the semi-algebraic germ of f at the right of the origin.

Proof. Let φ be the germ of f at the right of the origin. Since f is bounded on (0, a), then
φ is bounded by an element of R by Proposition 4.3.5. Hence, φ ∈ R⟨ε⟩b and ℓ = limε φ is
defined. Let f : [0, a)→ R be such that

f(t) =





ℓ if t = 0;

f(t) else.

The graph of f is the union of the graph of f with the point ¶(0, ℓ)♢, then f is semi-algebraic
and bounded. Let η > 0 and X = ¶t ∈ R ♣ ♣f(t) − ℓ♣ < η♢. Since limε(f(ε) − ℓ) = 0, then
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f(ε)− ℓ is an infinitesimal over R and ε ∈ ext(X,R⟨ε⟩). Then, by Proposition 4.3.5, there
exists t0 ∈ R such that,

∀t ∈ (0, a), ♣t♣ < t0 =⇒ ♣f(t)− ℓ♣ < η,

as ε is associated with the germ of the identity map. Hence f is continuous in 0. Finally, as
f is continuous on (0, a), the bounded semi-algebraic function f is continuous on [0, a).

An important consequence is the following one.

Theorem 4.3.9 (Curve selection lemma [BPR06, Theorem 3.22]). Let S be a semi-algebraic

set of Rn and let x be in its closure S. Then there exists a semi-algebraic path γ : [0, 1)→ S

such that

γ(0) = x and γ((0, 1)) ⊂ S.

This theorem concretely illustrates the isomorphic correspondence between the algebraic
Puiseux series and the germs of semi-algebraic functions at the right of the origins. Indeed,
from this result, one can associate the infinitesimally close points from an algebraic set S –
that is in S – to semi-algebraic paths lying in S at the right of the origin, ending in S.

As for the notion of connectedness, the compact sets1 do not behave as well in the
Euclidean topology on Rn, than in the one on Rn. For instance, closed intervals such as
[0, 1] in Ralg of R⟨ε⟩ are not compact, neither the images of such sets through continuous
functions [BPR06, §3.4]. However, closed semi-algebraic sets (such as [0, 1]) enjoy some of
the properties sought for compact ones, as the following important one.

Proposition 4.3.10 ([BPR06, Theorem 3.23]). Let S be a closed, bounded semi-algebraic

set and let f be a semi-algebraic continuous function defined on S. Then f(S) is a closed and

bounded semi-algebraic set.

4.4 Real algebraic differential geometry

In the previous sections, we introduced the foundational notions of real algebraic geometry
through the introduction of semi-algebraic sets and maps on real closed fields (and their
extension), followed by various properties. We end this chapter by listing some fundamental
results from this theory. Many of these results find their origin from classic theorems of
the theory of differentiable manifolds on R. We do not intend to provide an exhaustive
overview of the topic; instead, we refer the reader to the classic literature [BCR98, BPR06],
from which this content is primarily sourced. Note that many results presented here can be
generalized to o-minimal structures that include for instance classes of sets definable with
the exponential functions (see [Dri98]).

1Recall that a compact set is a set for which every open covering has a finite subcovering.
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4.4.1 Implicit Function Theorem

Definition 4.4.1. Let f : (a, b)→ R be a semi-algebraic function, we say that f is differen-

tiable at x ∈ (a, b), with derivative f ′(x) if

∀ r > 0, ∃ δ > 0, ∀h, ♣h♣ < δ =⇒
∣∣∣∣
f(x+ h)− f(x)

h
− f ′(x)

∣∣∣∣ < r;

we also say that lim
h→0

(f(x+ h)− f(x))/h = f ′(x).

We say that f is differentiable on an open semi-algebraic subset U ⊂ (a, b) if it is
differentiable at every x ∈ U . In this case,

f ′ : U −→ R

x 7−→ f ′(x)

is the derivative of f on U .

From the above definition of the derivative, it is defined by a first-order formula in the
language of the ordered fields, with parameters in R. Hence, the following proposition is a
direct consequence of Theorem 4.2.9.

Proposition 4.4.2. [BCR98, Proposition 2.9.1] Let f : (a, b) → R be a semi-algebraic

function, differentiable on some open semi-algebraic subset U ⊂ (a, b), then f is continuous and

its derivative f ′ is a semi-algebraic function.

We classically extend these definitions to semi-algebraic maps as follows.

Definition 4.4.3. Let f : U ⊂ Rn → R be a multivariate semi-algebraic function. Let
1 ≤ i ≤ n, we say that f admits a partial derivative ∂f

∂xi
at y = (y1, . . . ,yn) ∈ U , with respect

to the variable xi, if

lim
h→0

f(y1, . . . ,yi−1,yi + h,yi+1, . . . ,yn)− f(y1, . . . ,yn)

h
=

∂f

∂xi
(y).

If f = (f1, . . . , fk) : U → Rk is a semi-algebraic map, then the Jacobian matrix of f at
y ∈ U , is the matrix

Jacy(f) =




∂f1

∂x1
(y) · · · ∂f1

∂xn
(y)

...
...

∂fk

∂x1
(y) · · · ∂fk

∂xn
(y)



,

whose determinant is called the Jacobian of f at y. Finally the derivative dyf of f at y is
the linear map from Rn to Rk whose matrix is Jacy(f).

It is clear from the definition that partial derivatives are semi-algebraic functions by
Proposition 4.4.2. Since we defined properly the derivation of semi-algebraic maps of Rk,
one can naturally consider higher-order derivatives. Similarly to the class of C k map, we
define the so-called ring of Nash functions.
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Definition 4.4.4. Let U ⊂ Rn and V ⊂ Rk be semi-algebraic sets with U open. The set
of semi-algebraic maps from U to V which admit continuous partial derivatives up to order
ℓ ≥ 0 is denoted by Sℓ(U, V ).

The set S∞(U, V ) is the intersection of all the sets Sℓ(U, V ) for ℓ ≥ 0 and the ring
S∞(U,R), abbreviated S∞(U), is called the ring of Nash functions from U to R.

Example 4.4.5. The following functions are of Nash type: polynomials maps on R, rational
functions on their domain of definition, x 7→

√
1− x2 on (−1, 1).

In the following, Sℓ for 1 ≤ ℓ ≤ ∞, will denote either any Sℓ for ℓ ≥ 1, or S∞. We extend
the notion of semi-algebraic homeomorphisms to this class of sets.

Definition 4.4.6 ([BCR98, Definition 2.9.2-3]). Let ℓ ≥ 1, and let U ⊂ Rn and V ⊂ Rk be
semi-algebraic open sets. A Sℓ-diffeomorphism f from U to V is a semi-algebraic bijection
from U to V such that f ∈ Sℓ(U, V ) and f−1 ∈ Sℓ(V,U). When l = ∞, f is called a Nash

diffeomorphism.

Recall that a semi-algebraic open neighborhood of a point y0 ∈ Rn is a semi-algebraic
open set containing y0.

Theorem 4.4.7 (Semi-algebraic Inverse Function Theorem [BCR98, Proposition 2.9.7]). Let

U0 be a semi-algebraic open neighborhood of 0 ∈ Rk and let f ∈ Sℓ(U0,R
k) where 1 ≤ ℓ ≤ ∞,

such that f(0) = 0 and Jacy(f) is invertible.

Then there exist semi-algebraic open neighborhoods U , V of 0 ∈ Rk, with U ⊂ U0, such that

f restricts to a Sℓ-diffeomorphism from U to V .

Theorem 4.4.8 (Semi-algebraic Implicit Function Theorem [BCR98, Corollary 2.9.8]). Let

W be a semi-algebraic open neighborhood of a point (x0,y0) ∈ Rn+k. Let 1 ≤ ℓ ≤ ∞ and

g ∈ Sℓ(W,Rk) be a semi-algebraic map such that g(x0,y0) = 0 and Jac(x0,y0)(g(x0, ·)) is

invertible.

Then, there exist semi-algebraic open neighborhoods U and V of x0 and y0, respectively,

and a semi-algebraic map f ∈ Sℓ(U, V ) such that f(x0) = y0 and for all (x,y) ∈ U × V , the

following holds:

g(x,y) = 0⇐⇒ y = f(x)

4.4.2 Trivializations

In semi-algebraic geometry, we are interested in describing and classifying the topology
of slices of the studied varieties. This is done through homeomorphisms that we call
trivializations.

Definition 4.4.9 (Trivialization [CS95]). Let X, Y and Y ′ be semi-algebraic sets such that
Y ′ ⊂ Y , and let f : X → Y be a continuous semi-algebraic map. A semi-algebraic trivializa-
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tion of f over Y ′ with fiber F is a semi-algebraic homeomorphism Ψ = (Ψ0, f) : f−1(Y ′)→
F × Y ′ such that the following diagrams commutes:

f−1(Y ′) F × Y ′

Y ′f

Ψ

πY ′

where πY ′ is the projection onto Y ′. We say that Ψ is compatible with X ′ ⊂ X if there is
F ′ ⊂ F such that Ψ−1(F ′ × Y ′) = X ′ ∩ f−1(Y ′).

The following theorem, originally proved in a slightly weaker form by Hardt in [Har80],
shows that any semi-algebraic map is trivial over finitely many regions. In other words, its
fibers can be classified in finitely many types.

Theorem 4.4.10 (Semi-algebraic Hardt’s triviality [BPR06, Theorem 5.46]). Let S ⊂ Rn

and T ⊂ Rk be semi-algebraic sets. Given a continuous semi-algebraic function f : S → T ,

there exists a finite partition

T =

n⋃

i=1

Ti

into semi-algebraic sets, such that for each i = 1, . . . , n and any xi ∈ Ti there exists a semi-al-

gebraic trivialization Ψi = (Ψ0
i , f) : f−1(Ti)→ Ti × f−1(xi) of f over Ti with fiber f−1(xi)

such that Ψ0
i (y) = (y) for all y ∈ f−1(xi).

Moreover, if S1, . . . , Sq are semi-algebraic subsets of S, then we can ask each Ψi to be

compatible with every Bj , for 1 ≤ j ≤ q.

An important application of the above theorem is the following one. It roughly says that
semi-algebraic sets are locally homeomorphic to cones at non-isolated points. Recall that
Sn−1(x, r) and Bn(x, r) denote respectively the sphere and the closed ball of Rn, centered
at x ∈ Rn, with radius r > 0.

Theorem 4.4.11 (Local conic structure [BCR98, Theorem 9.3.6]). Let S be a semi-algebraic

subset of Rn, and x a non-isolated point of S. Then there exist r ∈ R, r > 0, and for every r′,

0 < r′ ≤ r, a semi-algebraic homeomorphism Ψ : Bn(x, r′)→ Bn(x, r′) such that:

• ♣♣Ψ(y)− x♣♣ = ♣♣y − x♣♣ for every y ∈ Bn(x, r′);

• the restriction of Ψ to Sn−1(x, r′) is the identity mapping;

• Ψ
(
S ∩Bn(x, r′)

)
is a cone with vertex x and base S ∩ Sn−1(x, r′).

This will be particularly useful in Chapter 8 when studying plane curves locally at singu-
larities, identifying the incoming/outgoing branches with their intersection to a sufficiently
small circle. It is worth noting that a similar result exists for a retraction “at infinity”: for a
sufficiently large r > 0, a semi-algebraic set can be continuously retracted to its intersection
with Bn(0, r); see [BCR98, Corollary 9.3.7] or [BPR06, Proposition 5.49].
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Figure 4.1. Illustration of the local conic structure at a point of a semi-algebraic set whose intersection
with a ball is depicted in red on the left. Theorem 4.4.11 says that this intersection is
homeomorphic with the cone generated by the intersection with the sphere. In other
words, topologically speaking, “nothing happens” inside the ball.

The above Hardt’s triviality gives the existence of a partition where a map can be trivialized,
but does not provide any description of it. In particular, one can be interested in constructing
(sub)-cells of this partition, or even deciding if a subset satisfies this. This is the purpose
of Thom’s isotopy lemma whose introduction (and its variants) will provide the rest of this
section.

We first extend the classic notion of differentiable submanifolds to the Nash settings.

Definition 4.4.12 (Nash manifold [BCR98, Definition 2.9.9]). A semi-algebraic subset
M ⊂ Rn is a Nash submanifold of Rn of dimension d if for every y ∈M , there exist

• open semi-algebraic neighborhoods Ω0 and Ωy in Rn of respectively 0 and y ,

• a Nash diffeomorphism Ψ : Ω0 → Ωy, such that

Ψ(0) = y and Ψ
(

(Rd × ¶0♢) ∩ Ω0)
)

= M ∩ Ωy.

Moreover, we define the tangent space to M at y as the affine space:

TyM = y + dyφ
(
Rd × ¶0♢

)
.

In other words, a Nash submanifold M of Rn of dimension d is at every point locally
diffeomorphic (in terms of Nash functions) to some Euclidean space Rd, so that it can
be locally differentially parameterized by d variables. Moreover, according to [BPR06,
Proposition 3.32], for any y ∈ M , and any S∞ curve γ : [−1, 1] → Rn, contained in M ,
such that γ(0) = y, y + γ′(0) ∈ TyM , as expected. Hence, this matches the definition from
the theory of C ∞ manifolds.

Definition 4.4.13 (Nash maps [BCR98, Definition 2.9.9] and [BPR06, page 111]). Let M
be a Nash manifold of Rn, and f : M → Rk a semi-algebraic map. We say that f is a Nash

map if for every y ∈M , and Ω0 and Ψ as in Definition 4.4.12, the restriction

f ◦Ψ ∈ S∞
(

(Rd × ¶0♢) ∩ Ω0, Rk
)
.
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In this case, the linear map df(x) : TyM → Rk, defined by

df(y)(v) = f(y) + d(f ◦ φ)(0)
(

dφ−1(y)(v − y)
)
,

is called the derivative of f at y.

Definition 4.4.14 (Submersion). Let M be Nash manifold of Rn, we say that a map
f : M → Rk is a Nash submersion at y ∈ M if it is a Nash map such that the linear map
dyf : TyM → Rk is surjective.

Example 4.4.15. Let φ, f1, . . . fp ∈ R[X] be polynomials with real coefficients and suppose
that V = V (f1, . . . , fp) ⊂ Cn is equidimensional. Then, for all y ∈ V ∩Rn, the restriction
of φ to M = V ∩Rn− sing(V ) is a submersion if and only if φ(y) is a regular value. Indeed,
as a smooth algebraic set, M = V ∩Rn − sing(V ) is a Nash manifold and φ is a Nash map.
Moreover, since y is non-singular, then by locality

TyM = Ty(V ∩Rn) = Ty V ∩Rn

by [BCR98, Proposition 3.3.11]. Hence, dφ(TyM) = Rn as dφ(Ty V ) = C by definition of
the critical points.

Finally, as mentioned at the end of the previous section, the notion of compactness is not
well-behaved in general real closed fields. Hence, as suggested by Proposition 4.3.10, we
use instead the notion of closed bounded semi-algebraic sets.

Definition 4.4.16 (Proper map [Esc01]). A semi-algebraic map f : A ⊂ Rn → B ⊂ Rk

between semi-algebraic subsets A and B is said to be proper if f−1(K) is closed and bounded
for any closed and bounded semi-algebraic subset K ⊂ B.

Thom’s first isotopy lemma is a classical result of differential geometry that allows one
to construct diffeomorphisms between submanifolds [GWDPL76]. In the context of real
algebraic geometry, given semi-algebraic data, a semi-algebraic version of this theorem has
been obtained in [CS95, Theorem 1]. This is done by replacing the integration of some
vector fields with the trivialization of some proper surjective submersions using a result
previously obtained in [CS92, Theorem 2.4].

Theorem 4.4.17 (Semi-algebraic Thom’s first isotopy lemma [CS95, Theorem 1]).
Let M be a Nash submanifold of Rn of dimension d ≥ 1 and let f : M → Rk be a Nash map.

Then, for any semi-algebraic open subset N ⊂ Rk such that the restriction of f to f−1(N)

is a proper Nash submersion, the following holds. Let η ∈ N , there exists a semi-algebraic

trivialization of f over N with fiber f−1(η), that is a semi-algebraic homeomorphism:

Ψ =
(
Ψ0, f♣f−1(N)

)
: f−1(N) −→ f−1(η)×N,

such that Ψ0(y) = y for all y ∈ f−1(η).

Note that the above formulation of the more general [CS95, Theorem 1], is in the
particular case where the locally closed semi-algebraic set M is reduced to one stratum
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(or union of strata) of dimension d. A semi-algebraic version of the second Thom’s isotopy
lemma, dealing with families of semi-algebraic maps, can be found in [Esc01].

We conclude this section by noting that there are extensions to Thom’s isotopy lemma
for non-proper maps. These are obtained by considering the set of generalized critical
values introduced by Rabier in [Rab97], which has been later shown to be of zero-measure
by Kurdyka, Orro and Simon in [KOS00]. These results have been further developed, in
particular towards effective construction of the generalized critical values. For an overview
and recent contributions on these aspects, we refer to [Fer22] and references therein.
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Computational real algebraic

geometry

5

In the previous chapter, we introduced the theoretical foundations of real algebraic geometry,
as well as many important results in this area. In particular, Tarski-Seidenberg theorem
showed that problems arising from the first-order theory on a real closed field R are always
decidable, by the mean of a quantifier-free formula arising from this theory. Making this
result effective at first sight purely theoretical, brings the following algorithmic problem:

(A) on input a first-order formula in the language of the ordered fields, with parameters in
R, compute a quantifier-free equivalent formula.

Besides, as seen in Chapter 4, semi-algebraic sets have finitely many semi-algebraically
connected components so that one can be interested in computing a finite set of (not
necessarily unique) representative points of these components. In particular, this allows one
to decide the emptiness of given semi-algebraic sets. This raises the second problem we
address here:

(B) given a semi-algebraic set S, compute a finite sample subset of S meeting every
semi-algebraically connected components of S.

Finally, once a set of representatives of the semi-algebraically connected component of
a semi-algebraic set is computed, one can ask to identify which of them lie in the same
component and eventually, extract a subset of unique representatives. This allows, in
particular, to count the number of these components. This problem, related to motion

planning problems can be stated as follows:

(C) decide if two points lie in the same semi-algebraically connected component of a given
semi-algebraic set.

In the following, we deal with the problems (A), (B) and (C) in respectively Sections 5.1,
5.2 and 5.3. We target, in each section, to give a rough historic overview of the approaches
developed to solve them, as well as the best-known complexity results. As these problems
constitute the main framework of the contributions of this thesis, this chapter intersects –
though being distinct to – Chapter 1, to which we refer for some more technical insights.

5.1 Real quantifier elimination

According to Tarski-Seidenberg’s theorem [Tar51, Sei54], problems that can be expressed in
the first-order logic are decidable. Recall that this theorem states that any first-order formula
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expressed in the language of the ordered fields, with parameters in R, is equivalent to a
quantifier-free such formula. Hence, the first step towards the aforementioned computational
problems is the computation of quantifier-free equivalent formula; this is called real quantifier

elimination.

In the following, we roughly describe two algorithmic approaches, in chronological order,
to solve this problem. We refer to [Bas17] for a complete survey on this topic.

5.1.1 Tarski-Seidenberg elimination

The proof given by Tarski and Seidenberg in respectively [Tar51] and [Sei54] is effective
and hence gives a first algorithm for performing quantifier elimination. This method relies
on Sturm’s theorem on real root counting, utilizing a methodology that eliminates variables
recursively. This approach involves a parametric variant of the Euclidean remainder sequence,
as detailed in [BPR06, §2.4].

However, the utilization of the Euclidean remainder sequence leads to rapid growth in the
number and degrees of the polynomials in the remaining variables, and introduce denomi-
nators increasing the number of branches in the computation. Consequently, the complexity
of this method defies bounding by any tower of exponents with a fixed height, rendering it
non-elementary recursive – that is that cannot be described using only elementary recursive
functions.

Note that in the case of a formula with no free variable, an elementary recursive algorithm
can be found in [Mon75]. This particular instance of quantifier elimination is called The

General Decision Problem.

5.1.2 Cylindrical algebraic decomposition

In order to overcome the unpractical complexity of Tarski-Seidenberg’s method, Collins
introduced in [Col75] the so-called Cylindrical Algebraic Decomposition (CAD). The ideas
behind this decomposition can be found before in the literature, and were used e.g. in
[Loj64] for describing the triangulation of semi-analytic sets.

5.1.2.a. Definition

We start with the definition of the cylindrical algebraic decomposition of the ambient space.

Definition 5.1.1 (Cylindrical Algebraic Decomposition [BPR06, Definition 5.1]). A cylindri-
cal algebraic decomposition of Rn is a sequence S1, . . . ,Sn where, for each 1 ≤ i ≤ n, Si is
a finite partition of Ri into semi-algebraic subsets, called the cells of level i, which satisfy the
following properties:

• Each cell S ∈ S1 is either a point or an open interval.

• For every 1 ≤ i < n and every S ∈ Si, there are finitely many continuous semi-
algebraic functions ξS,1 < . . . < ξS,ℓS

: S → R such that the cylinder S ×R ⊂ Ri+1 is
the disjoint union of cells of Si+1 each of which is:
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– either the graph of one of the functions ξS,j , for j = 1, . . . , ℓS:

¶(y′, yj+1) ∈ S ×R ♣ yj+1 = ξS,j(y)♢,

– or a band of the cylinder bounded from below and from above by the graphs of
the functions ξS,j and ξS,j+1, for j = 0, . . . , ℓS , where we take ξS,0 = −∞ and
ξS,ℓS+1

= +∞:

¶(y′, yj+1) ∈ S ×R ♣ ξS,j(y′) < yj+1 < ξS,j+1(y′)♢.

A Cylindrical Algebraic Decomposition of the space Rn, consists, as the name suggests,
of a recursive partition of the subspaces Ri, for 2 ≤ i ≤ n, into cylinders with lower-
dimensional cells as base, which are sliced by semi-algebraic functions defined on these
lower-dimensional cells.

Example 5.1.2. A trivial CAD of Rn is obtained by taking the trivial partition Si =

¶(−∞,+∞)i♢ for all 1 ≤ i ≤ n. Indeed, (−∞,+∞) is an open interval, and for each
1 ≤ i < n, the cylinder Si ×R is exactly Ri+1 = (−∞,+∞)i+1 ∈ Si+1. This CAD contains a
unique cell at each level.

In fact, up to some homeomorphism, the geometry of cells is not more complicated that
in the above example, according to the following proposition.

Proposition 5.1.3 ([BPR06, Proposition 5.3]). Every cell of a cylindrical algebraic decomposi-

tion is semi-algebraically homeomorphic to an open i-hypercube (0, 1)i – with (0, 1)0 being a

point by convention. In particular, they are semi-algebraically connected.

As seen in Example 5.1.2, computing a CAD of Rn can be done straightforwardly and
the definition does not allow more information about a specific semi-algebraic set of Rn.
Indeed, as the definition of the CAD describes the rules for slicing the ambient space – that
is in cylinder and following semi-algebraic paths – given a semi-algebraic set S, we need to
describe how to perform these slices w.r.t. the boundaries of S.

Definition 5.1.4. Given a semi-algebraic set S ⊂ Rn, we say that a cylindrical algebraic
decomposition of Rn is adapted to S if S is a union of cells. More precisely, if S1, . . . ,Sn is a
CAD adapted to S, then for every cell C ∈ Sn, either C ⊂ S or C ∩ S = ∅.

Example 5.1.5 ([BPR06, Example 5.4]). In the figure below is depicted a CAD adapted to
the sphere S 2 of R3. One sees that this decomposition can be constructed incrementally,
from R to R3, adapting to the respective projections of S 2.
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We consider the successive projection of S 2 through π2 and π1. The latter is [−1, 1], hence
we partition R into the three intervals: (−∞,−1), (−1, 1) and (1,+∞); together with the
two endpoints −1 and 1. This constitutes a CAD S1 of R adapted to [−1, 1].

Next, this decomposition is lifted into a CAD S1,S2 of R2 adapted to the unit disk D . We
slice the cylinders above each of the intervals and points of S1, along the boundaries of D ,
which are semi-algebraic by [BPR06, Proposition 3.1]. This defines the cells of level 2 of S2.

Finally, the lifting step is repeated above each of the cells of S2, slicing the cylinder along
the boundaries of S 2. This raises S3. We refer to [BPR06, Example 5.4] for the complete
semi-algebraic formulas defining the cells described here.

5.1.2.b. Computational aspects

Following the ideas of the above example, we get the following important result due to
Collins [Col75] and Wüthrich [Wüt76]. Note that a more recent description can be found in
[BPR06, Chapter 11].

Theorem 5.1.6. Let S be a semi-algebraic set of Rn defined by s polynomials of maximum

degree D. Then there exists a cylindrical algebraic decomposition of Rn adapted to S, and it

can be computed in time (sD)2O(n)

.

Algorithms that, on input polynomials defining a semi-algebraic set, compute a CAD
adapted to this set are called CAD algorithms. They are mainly based on two steps, that
have been sketched in Example 5.1.5.

1. The first step consists of recursive projections of the input semi-algebraic set. This
step relies on subresultant computations, which is a variant of Euclidean remainder
sequence avoiding denominators in the coefficients and controlling their growth rate
(compared to Euclidean remainders) – see e.g. [GG13, §6.10].

2. The second step consists of incrementally lifting an explicit representation of cylindrical
algebraic decompositions adapted to the previously computed projections.

At each recursive projection step in the first step, the degree of the involved polynomials is
squared, and since the depth is the number of variables, this leads to the doubly exponential
bound given above.
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Provided a CAD adapted to a semi-algebraic set, one solves the real quantifier elimination
problem within the same complexity bounds – see [Bro99] and [BPR06, §11.3]). Moreover,
many other problems can be tackled such as described in [BPR06, Remark 11.46] and
[SS83c]. In particular, one can compute a triangulation of a semi-algebraic set from a CAD,
and then extract the topological invariants.

Hence, the CAD algorithm given by Collins in [Col75] is the first algorithm performing
real quantifier elimination within an elementary recursive complexity method. It is worth
emphasizing that the main reason is the use of subresultant sequences instead of Euclidean
remainder sequences. Indeed, this allows, in particular, better control of the number of
branches in the computation.

Note that several improvements have been subsequently proposed to Collins’ algorithm,
in e.g. [CH91, Hon92, Bro99, Bro01, Laz94, McC88, BM20]. See [Nai21] for an overview.

On the implementation side, CAD and then CAD-based quantifier elimination is available
in different software, namely:

• the interactive command-line program QEPCAD1 [CH91, Bro03];

• the software system Mathematica2 [Str06];

• the SyNRAC3 [IYA14, YA07b, YA07a, AY03] and RegularChains4 [CM16, CM14] pack-
ages of the computer algebra system (CAS) Maple;

• the REDLOG5 package [SS03b, DS97] of the CAS REDUCE.

5.1.2.c. Discussion

Although the elementary recursive complexity of Collins’ CAD algorithm is a striking improve-
ment for eliminating quantifiers, the doubly exponential complexity bound is prohibitive for
problems involving more than 4 variables.

Moreover, this bound lies in the optimal complexity class for this problem. Indeed, real
quantifier elimination has a doubly exponential lower bound (even with only one free
variable). In [DH88] Davenport and Heintz constructed formulas such that any equivalent
quantifier-free formula is doubly exponentially larger than the original one. More recently,
in [BD07], Brown and Davenport proved that this doubly exponential lower bound on size
occurs even with a single free variable and all quantified input polynomials being linear. In
the same paper, they also show that there are classes of semi-algebraic sets for which the
CAD algorithm outputs doubly exponentially many cells, regardless of the chosen order of
the variables.

However, the examples constructed in [DH88] have a large number of quantifier alter-
nation. Hence, by fixing the number of quantifier alternates, one can construct algorithms
with complexity singly exponential in the number of variables.

1QEPCAD: https://www.usna.edu/CS/qepcadweb/B/QEPCAD.html
2Mathematica: http://www.wolfram.com/mathematica/
3SyNRAC: http://www.fujitsu.com/jp/group/labs/en/resources/tech/announced-tools/synrac/
4RegularChains: https://www.regularchains.org/
5REDLOG: http://www.redlog.eu/
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These are based on the critical point method pioneered by Grigoriev and Vorobjov [GV88,
GV92] and Renegar [Ren92] that we discuss in the next section. The idea is to reduce the
elimination of one block of quantifiers to the computation of parameter-dependent sample
points in each semi-algebraically connected component of a compact and closed semi-
algebraic set. This, in particular, involves infinitesimal deformations that give interesting
complexity bounds but are not suited for practical implementations. Then, the first step
outputs a tree of realizable sign conditions for the input polynomials which can be used to
perform real quantifier elimination using Sign Determination Algorithms [BOKR84, RS90,
Per11]. We refer to [BPR96a] and [BPR06, Section 14] for a complete presentation of this
method.

5.2 Sample points algorithms

As mentioned in the introduction, the problem of computing at least one point on each semi-
algebraically connected component of a given semi-algebraic set is a problem of importance
in semi-algebraic geometry, and often constitutes a basic subroutine of many algorithms that
handle semi-algebraic sets.

In the sequel, let f = (f1, . . . , fp) and g = (g1, . . . , gs) be sequences in Q[x1, . . . , xn] of
maximum degree D ≥ 0. We denote by S (f , g) the basic semi-algebraic set of Rn defined
by

f1 = · · · = fp = 0, g1 > 0, . . . , gs > 0.

5.2.1 General approach and lower complexity bound

A first approach would be to compute a cylindrical algebraic decomposition adapted to
S (f , g) using the algorithm seen in the previous section, but the prohibitive doubly exponen-

tial complexity ((p+s)D)2O(n)

leads us to look for more specialized, but less computationally
expensive methods. Indeed, an adapted CAD allows an exhaustive description of S (f , g)

while we target here a particular instance in the wide range of problems that CAD can solve.

Moreover, the cost of computing sample points in each semi-algebraically connected
component of S (f , g) cannot be lower than the number of these components. This latter
number is not larger than the (Oleinik-Petrovsky-)Thom-Milnor’s bound: O((p + s)nD)n

– this reduces to O((p + s)D)n for the subclass of closed semi-algebraic sets. Note that
this bound originates from the independent works of [OP49, Ole51],[Tho65] and [Mil64,
Theorem 2] on real algebraic sets, later extended to semi-algebraic sets and improved in
[BPR96b, Bas99a, Bas03, GV05, GV09] – see [BPR05] for a survey. Note, in addition, that
this bound is sharp as a semi-algebraic set defined by the non-vanishing of s products of D
generic affine forms, have at least (CsD)n semi-algebraically connected components, for
some constant C > 0 [Bas17, Remark 3.3]. Hence, any optimal algorithm computing sample
points on the semi-algebraically connected components of S (f , g), must have complexity
singly exponential in the number of variables n.
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5.2.2 Deterministic algorithms: towards optimal complexity

5.2.2.a. The critical point method

The data of such lower bounds motivated the pioneer work of Grigoriev and Vorobjov [GV88]
and its improvements [Can88c, HSR89, GV92, Ren92, HRS93, Can93, Can95, HRS94b]
which gave rise to a new family of algorithms based on the so-called critical point method.
This method relies on the fact that any proper non-negative polynomial map reaches its
extrema on any real algebraic set, so that the critical locus of its restriction to S (f , g) meets
every semi-algebraically connected components of S (f , g). Provided a good choice of such
a polynomial map, one gets either no (in case S (f , g) is empty) or finitely many such critical
points, that can be computed using Gröbner bases or Geometric Resolution Techniques as
seen in Chapter 3. However according to the Heintz-Bézout bound, the number of critical
points cannot exceed DO(n). Hence, [GV88] gives the first singly exponential algorithm
for computing sample points in every semi-algebraically connected component of a real
algebraic set, and the bound DO(n) is reached for the first time in [Can88c, Ren92] on real
algebraic sets.

5.2.2.b. Distinguishing combinatorial and algebraic complexity

Later, in [BPR96a, BPR97, BPR98] Basu, Pollack and Roy extended these techniques to
semi-algebraic sets reducing the general case to several smooth and bounded real algebraic
sets as follows. First, it considers the hypersurface defined by f = 0 where f = f2

1 + · · ·+ f2
p

to handle a unique equation. Next, it introduces an infinitesimal ε to reduce the original
problem to the one of computing sample points in each connected component of the real
algebraic set defined by

f = 0, gi1
= ε, . . . , gim

= ε,

where ¶i1, . . . , im♢ ⊂ ¶1, . . . , s♢. The latter is done through [BPR06, Proposition 13.2]
which allows one to reduce the original problem to one of computing sample points in
real algebraic sets. Hence, by introducing another infinitesimal, one can reduce the latter
problem to the case of smooth bounded hypersurfaces.

The resulting algorithm has complexity bounded by snDO(n), separating the combinatorial
(polynomial) component sn, the number of real algebraic boundaries of S (f , g), from the
geometric component DO(n), the degrees of the (complex) algebraic sets associated with
these boundaries. Note that the exponent of s can be taken as the (typically much smaller)
dimension of S (f , g) in the sense of [BPR06, Section 5.3]. We refer to [BPR06, Section 12.6
and 13.3] for a more recent description of these algorithms. We give below a formulation of
this result in the context of this manuscript, where the output is encoded by zero-dimensional
parametrizations.

Theorem 5.2.1 ([BPR06, Theorem 13.24]). There exists a deterministic algorithm which

on input f and g, with D the maximum degree of the fi’s and the gi’s, computes at least one

point per semi-algebraically connected component of S (f , g) by means of zero-dimensional

parametrizations of degree bounded by DO(n) using at most

snDO(n)
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arithmetic operations in Q. Moreover, if the polynomials in g and h have coefficients in Q, of

maximum bit size τ , then the bit-complexity is at most τsnDO(n).

5.2.2.c. Drawbacks

The primary drawback of the approach described in the last paragraph lies in its practical
computational cost. Indeed, manipulating even a small number of infinitesimals is expensive,
although this aspect does not impact the asymptotic complexity bounds when using the big
Oh in the exponent. Moreover, the constant in the exponent is not made explicit, but this
constant has a big impact on the performance as mentioned in Remark 3.1.3. Making this
constant explicit is even the main motivation of the works conducted in Chapters 6 and 7.

These observations are emphasized in [ARS02, Saf01], and Hong shows in [Hon91] that
the methods of Grigorév and Vorobjov [GV88] and Renegar [Ren92] are not usable in
practice before concluding that:

“theoretical analyses based on the big O notation are too coarse for comparing

decision algorithms over the reals”.

This assertion finds support through experiments conducted in [RRS00] on the algorithms
of [HRS93, BPR96a, Roy96]. Nonetheless, this perturbation method stands out as the
current sole approach offering deterministic algorithms with the most favorable worst-case
complexity bound.

5.2.3 Randomized algorithms: towards practical efficiency

In order to fill the gap between theoretical complexity and practical efficiency a new family of
algorithms appeared subsequently, still based on the critical point method. These algorithms
are randomized (or probabilistic) as they rely on a prior generic change of variables (except
for [SS04]); see Section 2.4 for an introduction to genericity aspects.

Another aspect of these algorithms is that they target complexity bounds that depend
on intrinsic quantitative data such as the dimension and the degree of the algebraic sets in
Cn associated to the input semi-algebraic given as input or sometimes the length of the
representation (usually straight-line programs) of the input polynomials – see Section 3.2.
This is to be compared to extrinsic data that depends on the way the input system of dense
polynomials is given. These are the number of variables, the number of polynomials, their
maximum degrees and bitsize coefficients – see [Bas17, §2.6].

In the following, for the sake of comparison, we keep providing the complexity bounds
according to the extrinsic data, by the mean of Heintz-Bezout’s bound. Recall that the works
presented in the previous section provide algorithms with a complexity polynomial in the
Heintz-Bezout’s bound, manipulating several infinitesimals. In this section, the algorithms
target to improve practical efficiency by:

1. avoiding working directly with more than one infinitesimal (most of the time such
infinitesimals are avoided);

2. making explicit the degree of this polynomial dependence (the best ones being essen-
tially cubic).
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5.2.3.a. Algebraic sets

The particular case of real algebraic sets has known several striking improvements during
the decade 2000’s. In the following approaches, the real algebraic set VR = S (f , 0) ⊂ Rn

is considered as the real trace of the complex algebraic set V (f) ⊂ Cn. This allows one to
use the whole toolbox of algebraically closed algebraic geometry we presented in Chapter 2.
This is also the approach developed in our contributions.

A first approach was adopted by Bank, Giusti, Heintz and Mbakop in a series of works
[BGHM97, BGHM01] for respectively smooth compact hypersurfaces and smooth compact
complete intersections. They prove that the critical points of the projection on a generic line
can be described as generic polar varieties that we discussed in Section 2.6. Using geometric
resolution algorithms – see Section 3.4 – they obtain a complexity bound cubic in the degree
of V . This work is then extended to non-compact cases, with the same cubic bound, in
another series of work [BGHP04, BGHP05, BGH+10] by the mean of generic generalized
polar varieties, that are nothing but critical loci of quadratic forms – see Section 2.6.

At the same time, Safey El Din developed in his PhD thesis [Saf01] another family of
algorithms, presented in [RRS00, ARS02], dealing with general algebraic sets by considering
the critical points of the square of a distance function to a generic point. To handle positive
dimensional singularities [RRS00] uses a single infinitesimal deformation in some specific
cases, while [ARS02] recursively studies the real points of the singular locus. While the
reduction to the compact case is also achieved by considering critical points of a quadratic
form, the algorithms in this paragraph differ from those of the previous paragraph as they rely
on Gröbner basis computations to eventually compute Rational Univariate Representations
– see Sections 3.3 and 3.4 respectively. While no explicit complexity bound is provided,
these algorithms, and in particular the one of [ARS02], showed practical efficiency to solve
challenging problems.

As summarized in [SS04], at this point, a severe dilemma was posed. On the one hand,
the distance-based approaches allow to tackle non-compact situations, but involve higher
output degrees which limit their performances. On the other hand, despite the efficiency of
projection-based methods, they are limited to compact situations where it is expensive to
reduce to (infinitesimal deformations).

This dilemma was eventually resolved by Safey El Din and Schost in [SS03a] who proposed
an algorithm for smooth unbounded algebraic sets based on critical loci of generic projections.
The algorithm proceeds by computing sections of some generic polar varieties that are zero-
dimensional thanks to Noether position properties – See Theorem 2.6.3 – and whose union
intersects all the targeted components. Using the geometric resolution algorithm, they obtain
a complexity cubic in the Heintz-Bezout’s bound. This algorithm is somehow extended in
[SS04] to general real algebraic sets, by replacing the generic properness assumptions, by
the computation of the properness defect of projections. This makes, in particular, this
algorithm deterministic. However, the complexity is not estimated and suspected not to be
polynomial in the Heintz-Bézout’s bound. It is worth noting that it still has shown good
practical behavior, especially for low-dimensional problems. Finally, in [Saf05], Safey El Din
proposes an adapted version of [SS03a] to singular real hypersurfaces, keeping the cubic
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complexity. The key idea is to avoid the explicit manipulation of infinitesimals by computing
a basis of some elimination ideal.

We end this paragraph by mentioning that the bit-complexity and error probability of the
algorithm of [SS03a] has very recently been studied in [EGS23], from which the following
theorem is adapted.

Theorem 5.2.2 ([SS03a, Theorem 3] & [EGS23, Theorem 1.1]). There exists a probabilistic
algorithm which on input f = (f1, . . . , fp), of degrees bounded by D, computes at least one

point per semi-algebraically connected component of V (f) ∩Rn by means of zero-dimensional

parametrizations of degree bounded by Dn+p using at most

Õ
(
D3n+2p+1

)

arithmetic operations in Q. Moreover, if the polynomials in f have coefficients in Q, of

maximum bit sizes τ , then the bit-complexity is at most Õ
(
τD3n+2p+1

)
.

5.2.3.b. Semi-algebraic sets

We end this section by mentioning the extension of the algorithm from the previous para-
graph to semi-algebraic sets. In the case of semi-algebraic sets defined by non-strict inequali-
ties, [BPR06, Proposition 13.1] allows the authors of [LRS04] to reduced to several algebraic
sets, on which they apply the algorithm of [SS03a]. They then obtain a complexity bound
cubic in the degree of each of these algebraic sets, allowing them to solve a challenging
pattern-matching problem.

The case of strict inequalities cannot be tackled similarly as [BPR06, Proposition 13.2]
requires the introduction of infinitesimals, which would make complexity bounds fall into the
ones of the previous subsection. The literature does, however, include efficient algorithms
for open semi-algebraic sets, that are defined by only strict inequalities.

In [SED07], computing the generalized critical values of a polynomial function, Safey El
Din obtains a quadratic algorithm for semi-algebraic sets defined by a single strict inequality
f > 0. Later, in the context of the resolution of a camera positioning problem, the authors
describe in [FMRS08] an algorithm for bounded semi-algebraic sets defined by inequations
and strict inequalities. It uses the ideas introduced in [Saf05] (later generalized in [HS12,
Lemma 10 and 11]) to avoid explicitly introducing infinitesimals. However, no complexity
bound is given. This algorithm is then extended to non-bounded situations in [LS22] (see
also [Le21]) in the case of semi-algebraic sets defined by inequations, with a complexity
bound that is essentially cubic in the Heintz-Bézout’s bound. This is obtained by combining
the results of [FMRS08], properness results of [SS03a], together with multi-homogeneous
bounds proved in [Sch03, SS18]. Following [BPR06, Theorem 13.18] they also provide a
corollary routine that computes sample points with rational coefficients. We provide an
adapted version of the latter below.

Theorem 5.2.3 ([LS22, Corollary 3]). There exists an algorithm which on input h =

(h1, . . . , ht) in Q[x1, . . . , xn], of maximum degrees D, computes a set of points Q in Qn of car-
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dinality at most (2tD)n and such that Q meets every semi-algebraically connected components

of Rn − ∪t
i=1V (hi) using

Õ

((
D + n

n

)
tn+1 23n D2n+1

)

arithmetic operations in Q. Moreover, if the polynomials in h have coefficients in Q, of

maximum bit sizes τ , then the bit-complexity is at most τ(tD)O(n) bit operations.

The large increase in the bit complexity bound is due to the worst-case possibly large
bitsize of the small value in Q chosen to relax the strict inequalities – see [LS22, Remark 2].
However, this worst-case bound does not occur in practice.

We end this subsection by mentioning that many of the algorithms presented here (and
still unpublished others) are available in the RAGlib6 software written with the computer
algebra programming language Maple.

5.3 Connectivity queries

The problem of solving connectivity queries in semi-algebraic sets has been first considered
by Schwartz and Sharir in [SS83c] in order to solve motion planning problems coming from
robotics. We refer to Chapter 1 for a presentation of this problem and discussion on the
choice of the framework of algebraic methods developed here to solve it. Another motivation
has a more topological flavor. Given a set of representatives of the semi-algebraically co-
nnected components of a given semi-algebraic set, deciding which ones lie in the same
component allows one to extract a set of unique representative. In particular, this gives the
number of these components. We recall first the problem we address here.

Definition 5.3.1 (Connectivity queries in semi-algebraic sets). Let n ≥ 1, and S ⊂ Rn be a
semi-algebraic set defined by s polynomials of degrees bounded by D.

Given y,y′ ∈ S, decide whether y and y′ belong to the same semi-algebraically connected
component of S.

5.3.1 A first CAD-based approach

Remark that this problem is equivalent to deciding the truth of the following formula:

∃γ : [0, 1]→ S, γ(0) = y, γ(1) = y′ and γ ∈ S0 ((0, 1), S) .

However, the formulation of this problem does not belong to the first-order theory, since a
function appears in the quantifiers. In fact, it is proved in [Bas99b] (see also [BDLW98] in a
more general context) that semi-algebraic connectivity problems are not expressible by a
first-order formula. Hence, an algorithm for deciding this problem does not follow directly
from Tarski-Seidenberg theorem and the methods considered in the previous sections.

However, as mentioned in the first section, one can derive from a CAD adapted to S, a
triangulation. Hence this allows to solve topological problems of any type. Following this

6RAGlib: https://www-polsys.lip6.fr/~safey/RAGLib/

5.3 Connectivity queries 113



idea, and the approach outlined in [Rei79], Schwartz, Sharir and collaborators developed
in a series of works [SS83a, SS83c, SS83b, SA84, SS84, SSH86] the first exact algorithm
solving connectivity queries into semi-algebraic sets. This is based on Collins’ CAD algorithm
discussed above, to compute a decomposition of S in finitely many semi-algebraically co-
nnected cells. Hence, computing points in each of these cells, the algorithm connects the
ones lying in adjacency cells using methods introduced in successively [ACM84a, ACM84b,
ACM85, Arn88]. However, as their method is based on the computation of a CAD, it has
complexity at least doubly exponential in the number of variables. This complexity is
prohibitive for any interesting application e.g. in robotics where the number of variables of
the configuration space can be quite large.

As discussed at the beginning of the previous section, this doubly exponential complexity
is all the more unsatisfactory in that topological complexity (and in particular the number
of semi-algebraically connected component) is at most singly exponential in the number
of variables, according to the Thom-Milnor’s sharp bound. Moreover, the fact that optimal
algorithms (that is with complexity polynomial in this latter bound) have been obtained for
the computation of sample points in every semi-algebraically connected component enforced
the idea that one can hope to target singly exponential bounds.

Finally, in applications such as robotics the dimension of the algebraic set in consideration
(that embeds the collision-free space) is significantly smaller than the one of the ambient
space [BPR06, Lat91]. Hence, this also justifies the effort to replace the number of variables
with this dimension in the exponents.

5.3.2 Roadmap algorithms

5.3.2.a. Definition

In [Can88a], Canny introduced the concept of roadmaps to circumvent the need for comput-
ing a cylindrical algebraic decomposition (CAD). Essentially, a roadmap is a one-dimensional
semi-algebraic subset of a given semi-algebraic set that is non-empty and semi-algebraically
connected within each semi-algebraically connected component of the set. Hence, this
approach reduces the connectivity problem from an arbitrary dimension to dimension one.
As we will see in the next section, the latter can be solved in a time polynomial in the degree
of the input curve. In regards to the complexity bounds of roadmap algorithms, this does
not change the overall cost.

For the sake of simplicity, we consider as in the previous section, basic semi-algebraic sets
S (g,h) defined by

g1 = · · · = gp = 0, h1 > 0, . . . , ht > 0.

where g = (g1, . . . , gp) and h = (h1, . . . , ht) are sequences of polynomials in Q[x1, . . . , xn].
Moreover, we consider a finite set of points P ⊂ S (g,h) on which connectivity queries are
addressed: these are called query points.

We give below a modern definition of roadmaps, following the works of [SS11].

Definition 5.3.2. A roadmap R for (S (g,h),P), is a real algebraic curve, such that:

• P is contained in R;
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• the intersection R with the semi-algebraic set defined by h1 > 0, . . . , ht > 0 is con-
tained in S (g,h) and has a non-empty and semi-algebraically connected intersection
with all its semi-algebraically connected components.

From this definition, a roadmap captures the connectivity of S (g,h) as well as the relative
positions of the query points P. Hence connectivity queries on S (g,h) are reduced to
connectivity queries on the curve defined by the roadmap.

5.3.2.b. First algorithms

Canny proposed the first Monte-Carlo algorithm in [Can88a, Can88b], with subsequent
modifications in [Can91, Can93], that constructs roadmaps – a.k.a. roadmap algorithms for
general semi-algebraic sets with complexity bounded by sn log(s)DO(n2).

Canny’s approach is based on more advanced critical point methods, inspired by Morse
Theory. Roughly speaking, the algorithm starts by computing the critical locus of a generic
plane projection π2 = (π2,1, π2,2) : Rn → R2, that forms a silhouette curve of the semi-alge-
braically connected components. This curve intersects each semi-algebraically connected
component of the input semi-algebraic set, but this curve might not be connected inside
these components, and then not preserve the original connectivity. According to Morse
Theory, the topology changes occur at the critical values of π2,1. Hence, to repair the
connectivity failures of the silhouette, the algorithm computes (n− 1)-dimensional slices
of the input semi-algebraic set at these critical values. Computing recursively a roadmap
of this (n− 1)-dimensional slice, until it outputs only curves, this yields a roadmap, in the
sense of the above definition. Figure 5.1 depicts this two-step computation.

y′

y

y′

y

Figure 5.1. Illustration of the two steps of Canny’s algorithm on a torus in R3, with two query points
y and y′. On the left, the one-dimensional polar variety associated with the projection
on the plane below is computed. It intersects the unique connected component, but this
intersection is not connected, and does not contain neither y nor y′. To repair these
failures, we add fibers containing the critical points of a projection on a line and the query
points. This gives the right figure.

For a more detailed description of this algorithm and the underlying topological results,
we refer to Subsection 1.3.2.

The algorithm of Canny is probabilistic in the sense that it performs a generic linear change
of variables on the input to satisfy stratification assumptions – of Whitney’s type – in order
to apply a semi-algebraic version of Thom’s first isotopy lemma – see Section 4.4 – to each
stratum. A deterministic version is also given by Canny in [Can91, Can93], which relies on
deformation techniques, requiring computations in extensions of the base field of quite large
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degree – about O(s + n2). Even though this gives the worse complexity sn log(s)DO(n4),
this is the first deterministic algorithm solving the general problem with singly exponential
complexity bound. Moreover, both complexity bounds split the combinatorial part (which is
nearly optimal) from the algebraic one (see the previous section).

An alternative direction, taken by [GV92, HRS90, HRS94a, GR93], offers determinis-
tic roadmap algorithms for general semi-algebraic sets. Although their complexities are
bound by the coarse bound (sD)nO(1)

– in particular we loose the combinatorial/algebraic
separation – they avoid stratification and strong position assumptions.

This change led Basu, Pollack, and Roy to develop in [BPR00] – further detailed in [BPR06]
– a deterministic roadmap algorithm for general semi-algebraic sets, with complexity in
sd+1DO(n2), where d is the dimension of a real algebraic set containing S. To achieve this
complexity, the algorithm reduces to bounded smooth algebraic sets using a constant number
of infinitesimals, which limits the algebraic complexity to DO(n2). Moreover, we recover the
separated combinatorial part, whose degree is the (possibly much lower) dimension of the
input problem. We report, hereafter a formal version of this result, adapted to our case.

Theorem 5.3.3 ([BPR00] [BPR06, Algorithm 16.26]). Let g, h as above and P be a zero-

dimensional parametrization encoding the set P. Assume that the entries of g and h have

degree bounded by D and let δ be the degree of P. There exists an algorithm ROADMAP which

computes a one-dimensional rational parametrization encoding a roadmap for (S (g,h),P)

using tn+1DO(n2) arithmetic operations in Q. Besides, the degree of the output rational

parametrization is polynomial in tn+1δDn2

. Moreover, if the polynomials in f , g and P have

coefficients in Q, of maximum bit sizes τ , then the bit-complexity is at most

Õ (τ) tO(n)δDO(n2)

bit operations.

However, no practical improvement followed the complexity breakthrough of the above
algorithm. In order to obtain efficient implementation, Mezzarobba and Safey El Din
presented a practical version of Canny’s algorithm for smooth compact algebraic sets in
[MS06], with roughly the same complexity. Instead of repairing the connectivity failures of
the polar variety by fibers at critical values – which are typically real algebraic numbers – they
take fibers at rational numbers separating these values. Hence, this replaces computations
in towers of algebraic extensions, by specialization of coordinates at rational numbers.
Additionally, the authors detailed the constant in the exponent and showed that this version
runs in time cubic in its output size. This is the first complexity result of this kind.

5.3.2.c. Modern algorithms

The exponent in O(n2) remained the state-of-the-art for a decade until Safey El din and
Schost proposed in [SS11] a new recursive approach resulting in a Monte-Carlo roadmap
algorithm for smooth bounded real hypersurfaces, with complexity DO(n1.5). The key idea
was to see in Canny’s strategy as a recursive scheme, reducing the problem to algebraic
subsets of smaller dimensions. One can show that the complexity of such a strategy is
roughly DO(nρ), where ρ is the depth of recursion. For an input dimension d, the strict
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subsets are polar varieties, which are already one-dimensional, and fibers of dimension
d − 1. Hence, the depth of recursion is at most d, which brings the O(n2) bound. Hence,
considering higher dimensional varieties, one can better balance the dimension reduction
between polar varieties and fibers, and then reduce the depth. This requires, in particular,
to extend the connectivity result of Canny to handle higher dimensional polar varieties
[SS11, Theorem 14]. Then, adopting a baby-step/giant-step scheme, the authors give a
roadmap algorithm whose depth of recursion is

√
n, which gives the claimed complexity

bound. This algorithm is later extended to a deterministic version in [BRSS14], handling
arbitrary real algebraic sets, for the same complexity bound. This is done by introducing a
constant number of infinitesimal deformations.

The natural next step is the divide and conquer strategy, which provides the optimal
recursive depth. This is accomplished by Basu and Roy in [BR14], providing a deterministic
roadmap algorithm for general real algebraic sets, with complexity (nlog(n)D)O(n log2(n)).
However, this algorithm is not polynomial in its output size as it introduces O(log(n))

infinitesimals. In particular, this makes the algorithm of theoretic flavor only.

Finally, Safey El Din and Schost proposed in [SS17] a nearly optimal Monte-Carlo al-
gorithm, based on a divide and conquer strategy as well, and with the better complexity
bound (nD)O(n log(d)). By making explicit the constants in the exponent, they proved that
this algorithm achieves sub-quadratic complexity in the output size. This algorithm makes no
use of infinitesimals but only tackles smooth bounded algebraic sets. However, even under
these assumptions, it outperforms all previous methods. Relaxing the last assumptions on
the input while keeping the same complexity bounds is the next step for roadmap algorithms.
In particular in Chapters 6 and 7 we solve partly this problem, by removing the compactness
assumption.

5.3.2.d. Related problems and applications

Note also that contributions have also been made on numeric [HMP00, IC14, BDRH+13,
BBH+17, CWF20] or hybrid symbolic/numeric [HRSS20, Hon10] roadmap algorithms,
based on Canny’s approach. On another aspect, a more extensive concern revolves around
the computation of semi-algebraic formulas describing the semi-algebraically connected
components. Notably, [CGV92, HRS94a] tackled this problem, achieving an algorithmic
complexity of (sD)nO(1)

. Later, in [BPR06, Chapter 16], using a parametric version of the
roadmap algorithm introduced in [BPR00], Basu, Pollack and Roy are able to compute a
description of the semi-algebraically connected component using quantifier-free formulas,
with complexity sn+1DO(n4).

The important development of roadmap algorithms allowed to solve various challenging
applications such as in computational geometry, for Voronoi diagrams [ELLS07, ELLS09],
or in robotics [CSS20, CSS23]. We refer to [CLH+05, Lat91] for an overview of the use of
roadmap algorithms in the context of robotics.
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5.3.3 Solving connectivity queries on semi-algebraic curves

We saw in the previous subsection, that, using roadmaps, one can reduce connectivity
queries problems in arbitrary dimensions, to the case of connectivity queries problems for
semi-algebraic sets of dimension one, lying in the original ambient space. Finding efficient
methods to tackle the one-dimensional problem is then a crucial and challenging step for
solving the general one. Indeed, as roadmaps have typically exponential degree, algorithms
that are polynomial in the degree of the input curve, end up with complexity exponential in
the number of variables in the roadmap setting.

Recall that an isotopy of Rn is an application H : Rn × [0, 1]→ Rn such that y ∈ Rn 7→
H(y, 0) is the identity map of Rn and for all t ∈ [0, 1], the map y ∈ Rn 7→ H(y, t) is a
homeomorphism. Then we say that two subsets Y and Z of Rn are isotopy equivalent
if there exists an isotopy H of Rn such that H(Y, 1) = Z. In particular, any path in Y

continuously deforms in a path in Z through H.

Consider polynomials h = (h1, . . . , hs) ∈ Q[X] and the semi-algebraic curve D ⊂ Rn

defined as the intersection of an algebraic curve C ⊂ Cn with the open semi-algebraic set
S (0,h) defined by

h1 > 0, . . . , ht > 0.

The main result of this subsection is that on input a description of D , answering connectivity
queries on D can be done in time which is linear in the number of inequalities t and polynomial

in the degree δ of C . This is done by running algorithms that compute a piecewise linear
curve that is isotopy equivalent to the input curve, and which can be considered as a graph.
Then, deciding connectivity queries on this curve is reduced to deciding connectivity queries
on a graph, which is a classically solved algorithmic problem (see for e.g. [CLRS09, Section
22.2]).

Figure 5.2. On the left, a plot in Maple of a plane real algebraic curve of degree 25, defined as the
plane projection of the intersection of two generic surfaces of R3 of degree 5. On the right,
the plot outputted by the software ISOTOP7, that represent a piecewise-linear curve, that
is isotopy equivalent to the first curve.

First remark that one can first reduce to the case of real algebraic curves. Indeed,
computing the arrangements between C ∩ Rn and each of the curves V (hi) ∩ Rn, for
i = 1 . . . t, one can compute the intersection C with S (0,h). This eventually leads to an
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additional combinatorial factor of tDδ, where δ is the degree of C and D is a bound on the
degrees of the hi’s.

The case of plane algebraic curves in R2 has been extensively is extensively studied: by
subdivision algorithm [BCGY08, LMP08], variants of Cylindrical Algebraic Decomposition
methods [BEKS13, CLP+10, DDR+22, Dia09, DRR14, EKW07, GE96, KS15, KS12, MSW15,
SW05, DET07, DET09], as well as hybrid approach such as [AMW08]. In particular, [KS15,
DDR+22] obtain the best-known complexity bound in Õ(δ5(δ + τ)), where δ is the degree
of the algebraic curve in C2 defined by the input polynomials. This is done by computing
quantitative bounds on (bivariate) real root isolation of the considered polynomials. An
implementation of the algorithm based on [CLP+10], written in the computer algebra
programming language Maple, is available in the software ISOTOP7

The problem of algebraic curves R3 has been less studied. This is done through various
approaches such as computing the topology of the projection on various planes [AS05,
GLMT05, CJL13] or lifting the plane projection by algebraic considerations [El 08, DMR08,
DMR12]. Yet, few of these papers give a complexity bound for the computation of such a
topology [CJL13, DMR12], and [JC21] obtains the best-known complexity in Õ(δ19(δ + τ)).

For the general case of real algebraic curves in Rn (and even Rn), the only known method
is based on a variant of the CAD algorithm, drawing upon the concepts established in
[SS83c]. While the aforementioned algorithm’s complexity bounds may raise concerns due
to their potentially prohibitive nature, it is noteworthy that this approach is polynomial in
the degree δ of the input curves when dealing with curves. Detailed insights into this method
can be found in [SS11, p.6], where it is primarily built upon the CAD algorithm outlined
in [Col75], the adjacency relation methods presented in [SS83c], and Puiseux expansions
computations as discussed in works like [Duv89]. We summarized the above discussion in
the form of the following statement.

Theorem 5.3.4 ([SS11, BPR06]). Let R be a one-dimensional rational parametrization,

h = (h1, . . . , ht) be polynomials and P be a zero-dimensional parametrization such that

Z(P) ⊂ Z(R), all of them with coefficients in Q. Let δP and δR be the respective degrees of P

and R and D be the maximum of δR and the degrees of the polynomials in h.

There exists an algorithm GRAPHISOTOP which, on input R,h and P computes a graph

G = (V, E), with V ⊂ Rn such that:

• the piecewise linear curve CG associated to G , is isotopy equivalent to Z(R) ∩S (0,h);

• the points of V and Z(P)∩S (0,h) are in one-to-one correspondence through the isotopy.

Moreover the algorithm outputs a procedure VERTG , that on input a zero-dimensional parame-

trization Q such that Z(Q) ⊂ Z(P), computes, using a number of arithmetic operations in Q

which is linear in t and polynomial in δP , the subset VQ of vertices of V that are associated to

Z(Q) ∩S (0,h).

7 ISOTOP:https://isotop.gamble.loria.fr/
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This is done using at most t(δPD)O(1) arithmetic operations in Q. Moreover, if the input

polynomials have coefficients in Q, of maximum bit sizes τ , then the bit-complexity of VERTG

and GRAPHISOTOP is at most respectively

τt(δP)O(1) and Õ (τ) t(δPD)O(1)

bit operations.

Hence, given a graph G = (V, E) computed by GRAPHISOTOP the following characteriza-
tion occurs: two points of Z(P) ∩S (0,h) are connected in Z(R) ∩S (0,h) if and only if
the vertices in V, associated with these points, are connected in G .

Concluding this section, it is worth mentioning that the aforementioned algorithm does
not explicitly provide the constant factor in the exponent. As observed in the cases of R2 and
R3, this constant could be quite large. However, it’s important to note that all the algorithms
discussed in this context compute the complete topology of the input curve, requiring the
output to be isotopy equivalent to the input. Yet, for connectivity issues, it suffices for the
output to be semi-algebraic homeomorphic. With this in mind, in Chapter 8, we relax the
isotopy equivalence assumption and develop an algorithm that addresses this problem while
maintaining the same complexity bounds as in the planar case.

Figure 5.3. On the left, a plot in Maple of a plane real algebraic curve of degree 25, defined as the
plane projection of the intersection of two generic surfaces of R3 of degree 5. On the right,
the plot in Matplotlib a piecewise-linear curve, that is semi-algebraic homeomorphic to the
first curve. The latter has been obtained with a prototype implementation in Sagemath.
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A new connectivity result for

unbounded smooth real

algebraic sets

6

Abstract. As introduced in Section 1.3 of Chapter 1, the problem of answering connectivity
queries in real algebraic sets is tackled through the computation of so-called roadmaps which
are real algebraic subsets of the set V under study, of dimension at most one, and which have
a connected intersection with all semi-algebraically connected components of V . Current
algorithms for computing roadmaps rely on statements establishing connectivity properties
of some well-chosen subsets of V , assuming that V is bounded.

In this chapter, we tackle the first step towards the extension of the new generation
of roadmap algorithms to more general inputs. More precisely, we extend connectivity
statements, on which roadmap algorithms rely, by dropping the boundedness assumption on
the algebraic sets under study. This exploits properties of so-called generalized polar varieties,
which are critical loci of the considered variety, for some well-chosen polynomial maps.
This will allows us, in the next chapter, to extend to unbounded cases the state-of-the-art
algorithms

This is joint work with M. Safey El Din and É. Schost.

6.1 Introduction

Let Q be a real field of real closure R and let C be its algebraic closure (one can think
about Q, R and C without losing much) and let n ≥ 0 be an integer. Let V ⊂ Cn be an
algebraic set defined over Q, that is defined by polynomials with coefficients in Q. As seen
in Subsection 1.3, the problem of solving connectivity queries on some finitely many query
points P ⊂ V ∩Rn, in the real algebraic set V ∩Rn, can be reduced to the computation of a
roadmap of (V,P) – see also Subsection 5.3. We have also seen in Subsection 1.3.1 that the
effective construction of roadmaps, given a defining system for V , relies on the connectivity
statement we recall below, which makes the assumption that V has finitely many singular
points and V ∩Rn is bounded.

Let 0 ≤ d ≤ n and V ⊂ Cn be a d-equidimensional algebraic set and assume that sing(V )

is finite. For 1 ≤ i ≤ n, let πi be the canonical projection,

πi : (y1, . . . ,yn) 7−→ (y1, . . . ,yi)

For 1 ≤ i ≤ d, we denote by W (πi, V ) the i-th polar variety defined as the Zariski closure of
the critical locus W ◦(πi, V ) of the restriction of πi to V . We recall below [SS11, Theorem 14]
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(see also [BRSS14, Proposition 3.3] for a slight variant of it), making use of polar varieties
to establish connectivity statements.

Theorem ([SS11, Theorem 14]). For 2 ≤ i ≤ d, assume that the following holds:

• V ∩Rn is bounded;

• W (πi, V ) is either empty or (i− 1)-equidimensional and smooth outside sing(V );

• for any y ∈ Ci−1, π−1
i−1(y) ∩ V is either empty or (d− i+ 1)-equidimensional;

• W (π1,W (πi, V )) is finite.

Let P ⊂ V be a finite set and

Ki = W (π1,W (πi, V )) ∪ sing(V ) ∪ P and Fi = π−1
i−1(πi−1(Ki)) ∩ V.

Then, the real trace of W (πi, V )∪ Fi has a non-empty and semi-algebraically connected intersec-

tion with each semi-algebraically connected component of V ∩Rn.

From the above result, one naturally designs a recursive algorithm reducing the problem
to algebraic subsets of smaller dimensions, which raises a complexity that is roughly DO(nρ),
where ρ is the depth of recursion and D is the maximum degree of input equations defining
V . Using this strategy, the algorithm with the best-known complexity bound (nD)O(n log2(d))

has been obtained in [SS17], using a divide and conquer strategy. This algorithm assumes,
in particular, that the input defines a smooth and bounded algebraic set.

Dropping the boundedness assumption in this scheme was done in [BR14, BRSS14] using
infinitesimal deformation techniques. The proposed algorithms use respectively (nD)O(n

√
n)

and (nD)O(n log2(n)) arithmetic operations in Q. However, the use of infinitesimals induces
a growth of intermediate data. The algorithm in [BR14] is not polynomial in its output size,
which is (nD)O(n log(n)). In non-bounded cases, one could also study the intersection of V
with either [−c, c]n or a ball of radius c, for c large enough, but we would then have to deal
with semi-algebraic sets instead of real algebraic sets, in which case [SS11, Theorem 14] is
still not sufficient.

Open problem for Chapter 6

The first step towards an algorithm dealing with unbounded smooth real algebraic sets
with a complexity similar to that of [SS17], is to obtain a new connectivity statement with
no boundedness assumption and the same freedom brought by the one of [SS11].

In this chapter, we focus on the proof of such a new connectivity statement which
generalizes the one of [SS11] to the unbounded case and will be used in the next chapter to
obtain asymptotically faster algorithms for computing roadmaps without assuming the real
algebraic set defined by the input is bounded.

Hereafter, the following notation will be used. Let φ = (φ1, . . . , φn) ⊂ Q[x1, . . . , xn] then,
for 1 ≤ i ≤ n, we denote by φi the polynomial map defined by

φi : Cn −→ Ci

y 7→ (φ1(y), . . . , φi(y))

. (6.1)
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Further, we extend this definition by considering φ = (φ1, . . . , φn) ⊂ Q[x1, . . . , xn] and, for
1 ≤ i ≤ n, the map

φi : Cn −→ Ci

y 7→ (φ1(y), . . . , φi(y))

. (6.2)

Following [BGHP04, BGHP05, BGH+10] we denote similarly W (φi, V ) the i-th generalized

polar variety defined as the Zariski closure of the critical locus W ◦(φi, V ) of the restriction
of φi to V . Polar varieties and their properties are discussed in Section 2.6 of Chapter 2

Main result. Let V ⊂ Cn be an algebraic set defined over Q and d > 0 be an integer. We
say that V satisfies assumption (A) when

(A) V is d-equidimensional and its singular locus sing(V ) is finite.

For φ = (φ1, . . . , φn) ⊂ Q[x1, . . . , xn], we say that φ satisfies assumption (P) when

(P) the restriction of the map φ1 to V ∩Rn is proper and bounded from below.

We denote by Wi = W (φi, V ) the Zariski closure of the set of critical points of the
restriction of φi to V . For 2 ≤ i ≤ d and φ as above, we say that (φ, i) satisfies assumption
(B) when

(B1) Wi is either empty or (i− 1)-equidimensional and smooth outside sing(V );

(B2) for any y = (y1, . . . ,yi) ∈ Ci, V ∩φ−1
i−1(y) is either empty or (d−i+1)-equidimensional.

Note that when B1 holds, sing(Wi) and critical loci of polynomial maps restricted to Wi

are well-defined. For Si a finite subset of V , we say that Si satisfies assumption (C) when

(C1) Si is finite;

(C2) Si has a non-empty intersection with every semi-algebraically connected component
of W (φ1,Wi) ∩Rn.

Finally, using a construction similar to the one used in [SS11, Theorem 14], we let

Ki = W (φ1, V ) ∪ Si ∪ sing(V ) and Fi = φ−1
i−1(φi−1(Ki)) ∩ V.

Contribution to the open problem

Theorem 6.1.1. For V, d, i in ¶1, . . . , d♢, φ and Si as above, and under assumptions (A),

(B), (C) and (P), the subset Wi ∪ Fi has a non-empty and semi-algebraically connected

intersection with each semi-algebraically connected component of V ∩Rn.

The proof structure of the above result follows a pattern similar to the one of [SS11]. Its
foundations rely on the following basic idea, sweeping the ambient space with level sets of
φ1, having a look at the connectivity of V ∩φ1

−1(]−∞, a]) and (Wi ∪ Fi)∩φ1
−1(]−∞, a]).

The bulk of the proof consists in showing that these two slices share the same connectivity
properties. When one does not assume that i = 2 but does assume boundedness, one can
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take for φ1 a linear projection, so that its level sets are hyperplanes. In this context, the proof
in [SS11] also uses ingredients such as Thom’s isotopy lemma, which can be used thanks
to the boundedness assumption. Dropping the boundedness assumption makes these steps
more difficult and requires us to use a higher degree polynomial for φ1 (e.g. a quadratic
form) to ensure assumption (P). This in turn makes the geometric analysis more involved
since now, the level sets of φ1 are not hyperplanes anymore.

Structure of the chapter. Section 6.2 proves two auxiliary results which analyze the
connectivity of fibers of some polynomial maps. These are used in the proof of Theo-
rem 6.1.1, which is given in Section 6.3.

6.2 Connectivity and critical values

In this section we consider for n ≥ 1 an equidimensional algebraic set Z ⊂ Cn of dimension
d > 0. We are going to prove two main connectivity results on the semi-algebraically
connected components of Z ∩ Rn through some polynomial map. These results, along
with ingredients of Morse theory such as critical loci and critical values of polynomial
maps, will be essential in the proof of Theorem 6.1.1. Most of the results presented here
are generalizations of those given in [SS11, Section 3] in the unbounded case, replacing
projections by suitable polynomial maps.

6.2.1 Connectivity changes at critical values

The main result of this subsection is to prove the following proposition, which deals with
the connectivity changes of semi-algebraically connected components in the neighbourhood
of singular values of a polynomial map.

Let X be a subset of Cn, U ⊂ R and f ∈ R[x1, . . . , xn]. With a slight abuse of notation,
we still denote by f the polynomial map y ∈ Cn 7→ f(y) ∈ C, and we write X♣f∈U =

X ∩ f−1(U) ∩Rn. In particular if u ∈ R we note

X♣f<u = X♣f∈]−∞,u[, X♣f≤u = X♣f∈]−∞,u] and X♣f=u = X♣f∈¶u♢.

Proposition 6.2.1. Let φ : Cn → C be a regular map defined over R. Let A ⊂ Rk be a

semi-algebraically connected semi-algebraic set, and u ∈ R and

γ : A→ Z♣ϕ≤u −
(
Z♣ϕ=u ∩K(φ, Z)

)

be a continuous semi-algebraic map. Then there exists a unique semi-algebraically connected

component B of Z♣ϕ<u such that γ(A) ⊂ B.

Notation 6.2.2. In this subsection we fix a regular (polynomial) map φ : Cn → C defined
over R. With a slight abuse of notation, the underlying polynomial in R[x1, . . . , xn] will be
denoted in the same manner.

126 Chapter 6 A new connectivity result for unbounded smooth real algebraic sets



We start by proving an extended version of [SS11, Lemma 6]. This can be seen as
the founding stone of all the connectivity results presented in this paper. For any y ∈
Z ∩ Rn − K(φ, Z), it shows the existence of a regular map α : Z → Cn+1 such that Z
and α(Z) are isomorphic, with π1 ◦ α = φ on α(Z) and that there is an open Euclidean
neighborhood N of α(y) such that the implicit function theorem applies to α(Z)∩N . (Recall
that an open Euclidean neighborhood of a point y ∈ Rn is any subset of Rn that contains y
and is open for the Euclidean topology on Rn.)

Lemma 6.2.3. Let y = (y1, . . . ,yn) be in Z ∩Rn −K(φ, Z). Then, there exists a regular

map α : Z → Cn+1 such that the following holds :

a) there exist open Euclidean neighborhoods N ′ ⊂ Rd of πd(α(y)) and N ⊂ Rn+1 of α(y),

and a continuous semi-algebraic map f : N ′ → Rn+1−d such that:

α(Z) ∩N =
{

(z′,f(z′)) ♣ z′ ∈ N ′};

b) α : Z → α(Z) is an isomorphism of algebraic sets defined over R;

c) φ ◦α−1 = π1 on α(Z).

Proof. Let Oy ⊂ Rn be an open Euclidean neighborhood of y and let g = (g1, . . . , gn−d) be
an (n−d)-tuple of polynomials in C[x1, . . . , xn], such that Z ∩Oy = V (g)∩Oy and Jacy(g)

has full rank n− d. Such a Oy and g are given by [BCR98, Proposition 3.3.10] since y is in
reg(Z). Also, since y /∈W (φ, Z), there exists a non-zero (n−d+ 1)-minor of Jacy([g,φ]) by
Corollary 2.5.6. Therefore, there exists a permutation σ of ¶1, . . . , n♢ such that the matrix




∂g
∂xσ(i)

(y)

∂ϕ
∂xσ(i)

(y)




d≤j≤n

is invertible. Let x0 be a new variable and define h as the following finite subset of
polynomials of R[x0, x1, . . . , xn],

h = (g̃, φ̃) =
(
g(σ−1 · (x1, . . . , xn)),φ(σ−1 · (x1, . . . , xn))− x0

)

where τ · (x1, . . . , xn) = (xτ(1), . . . , xτ(n)) for any permutation τ of ¶1, . . . , n♢. Hence,

V (h) ∩ (R ×Oy) =
{

(φ(z), σ · z) ♣ z ∈ Z ∩ Oy
}
⊂ Rn+1.

By the chain rule, for any 1 ≤ j ≤ n and z ∈ Rn,

∂g̃

∂xj
(φ(z),z) =

∂g

∂xσ(j)
(σ−1 · z) and

∂φ̃

∂xj
(φ(z),z) =

∂φ

∂xσ(j)
(σ−1 · z).
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Hence, for Jac(f , i) the Jacobian matrix of f with respect to (xi+1, . . . , xn), and ỹ =

(φ(y), σ · y),

Jac
ỹ
(h, d− 1) =




Jac
ỹ
(g̃, d− 1)

Jac
ỹ
(φ̃, d− 1)


 =




∂g
∂xσ(i)

(y)

∂ϕ
∂xσ(i)

(y)




d≤j≤n

,

which is invertible by assumption on σ.

Therefore, applying the semi-algebraic implicit function theorem [BPR06, Th 3.30] to h,
there is an open Euclidean neighborhoods N ′ ⊂ Rd of (φ(y),y′) where y′ = (yσ(ℓ), 1 ≤
ℓ ≤ d− 1), an open Euclidean neighborhood N ′′ ⊂ Rn−d+1 of y′′ = (yσ(ℓ), d ≤ ℓ ≤ n) and
a map f = (f1, . . . , fn−d+1) ∈ S∞(N ′, N ′′) (since φ and the gi’s are polynomials) such that:

∀z = (z′,z′′) ∈ N ′ ×N ′′,
[
h(z) = 0⇐⇒ z′′ = f(z′)

]

Then, let N = (N ′ ×N ′′) ∩ (R × σ · Oy) ⊂ Rn+1, the previous assertion becomes:

{
(φ(z), σ · z) ♣ z ∈ Z

}
∩N =

{
(z′,f(z′)) ♣ z′ ∈ N ′} (6.3)

Finally, we claim that taking α : z ∈ Z 7→ (φ(z), σ · z) ends the proof. Indeed, by equa-
tion (6.3), assertion a) immediately holds since N ′ and N are Euclidean open neighborhood
of πd(α(y)) and α(y) respectively. Further, one checks that α is a Zariski isomorphism, of
inverse σ−1 after projecting on the last n coordinates, which proves b). Finally, one sees that
π1 ◦α = φ so that c) holds as well.

Remark 6.2.4. The previous lemma shows in particular that Z ∩Rn −K(φ, Z) is a Nash
manifold (see [BPR06, Section 3.4]) of dimension d, i.e. locally S∞-diffeomorphic to Rd.

Lemma 6.2.5. Let y be in Z ∩ Rn − K(φ, Z) and u = φ(y). Then there exists an open

Euclidean neighborhood N(y) of y such that the following holds:

a) N(y) is semi-algebraically connected;

b) (Z ∩N(y))♣ϕ<u is non-empty and semi-algebraically connected;

c) (Z ∩N(y))♣ϕ=u is contained in (Z ∩N(y))♣ϕ<u.

This result is illustrated by Figure 6.1.

Proof. Let α, N ′, N and f be obtained by applying Lemma 6.2.3. Let F : z′ ∈ N ′ 7→
(z′,f(z′)) ∈ N . Let ε > 0 be such that

B = B (πd(α(y)), ε) ⊂ N ′ ⊂ Rd

where B (πd(α(y)), ε) is the open ball of Rd with radius ε and center πd(α(y)). We claim
that taking N(y) = α−1(F (B)) is enough to prove the result.

First, F (B) is open, semi-algebraic and semi-algebraically connected, since F is an open
continuous map on B. Then, by assumptions on α, together with Proposition 4.2.23,
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x1

π−1
1 (y1)

Z ∩Rn

y

(Z ∩N(y))π1<y1

N(y)Zπ1<y1

x1

π−1
1 (y1)

Z ∩Rny(Z ∩N(y))π1<y1

N(y)

Zπ1<y1

Figure 6.1. Illustration of Lemma 6.2.5 where φ = π1, u = y1 and Z is isomorphic to V (x2
1 + x2

2 −
1)×V (x1 +x2

2). On the left, y is not critical and one sees that it satisfies all the statements.
On the right y is critical, and (Z ∩ N(y))♣π1<y1 is disconnected. Note that in both cases,
y1 is a critical value.

α−1(F (B)) is a semi-algebraically connected open neighborhood of y. Hence N(y) satisfies
statement a).

Besides, remark that F (B) ⊂ α(Z), so that

(α(Z) ∩ F (B))♣π1<u = F (B)♣π1<u = F (B♣π1<u)

as π1(F (z′)) = π1(z′) for z′ ∈ N ′. Since π1(α(y)) = φ(y) = u, the semi-algebraic set
B♣π1<u is non-empty and semi-algebraically connected (since B is convex), and so is its
image through F by [BPR06, Section 3.2]. But remark that for all X ⊂ R,

(Z ∩N(y))♣ϕ∈X = α−1
(
(α(Z) ∩ F (B))♣π1∈X

)
= α−1 ◦ F (B♣π1∈X), (6.4)

since φ ◦ α−1 = π1. Therefore, by Proposition 4.2.23, (Z ∩ N(y))♣ϕ<u is non-empty and
semi-algebraically connected, as claimed in statement b).

To prove assertion c), remark that B♣π1=u is contained in B♣π1<u, so that α−1 ◦ F (B♣π1=u)

is contained in α−1 ◦ F (B♣π1<u). Since F and α−1 are continuous,

α−1 ◦ F
(
B♣π1<u

)
⊂ α−1 ◦ F

(
B♣π1<u

)
.

Finally, by (6.4), we get

(Z ∩N(y))♣ϕ=u ⊂ (Z ∩N(y)♣ϕ<u.
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x1

π−1
1 (y1)

Z ∩Rn

y

(Z ∩N(y))<y1

N(y)By

x1

π−1
1 (y1)

Z ∩Rny(Z ∩N(y))<y1

N(y)

By

B′y

Figure 6.2. Illustration of Lemma 6.2.6 where φ = π1, u = y1 and Z is isomorphic to V (x2
1 +

x2
2 − 1) × V (x1 + x2

2). On the left y is not critical and one sees that y ∈ By and
(Z ∩ N(y))♣π1<y1 ⊂ By. However on the right, y is critical, and one observes that y
belongs to both By and B′

y, and, in addition, that (Z ∩ N(y))♣π1<y1 is not contained in
any of these components. Note that in both cases, y1 is a critical value.

Lemma 6.2.6. Let y be in Z ∩Rn −K(φ, Z), let u = φ(y) and let N(y) as in Lemma 6.2.5.

Then, there exists a unique semi-algebraically connected component By of Z♣ϕ<u such that

y ∈ By. Moreover,

(Z ∩N(y))♣ϕ<u ⊂ By.

This lemma is illustrated in Figure 6.2.

Proof. By the second item of Lemma 6.2.5, (Z ∩N(y))♣ϕ<u is non-empty and semi-algebra-
ically connected. Thus, it is contained in a semi-algebraically connected component By of
Z♣ϕ<u. Since the semi-algebraically connected components of Z♣ϕ<u are pairwise disjoint,
By is well defined and unique. Moreover by Lemma 6.2.5,

y ∈ (Z ∩N(y))♣ϕ<u ⊂ By.

Finally, suppose that there exists another connected component B′ of Z♣ϕ<u such that y ∈ B′.
Then y belongs to the closure of B′, so that N(y) ∩B′ ̸= ∅, since N(y) is a neighborhood
of y. Thus B′ ∩ By is not empty, and since they are both semi-algebraically connected
components of the same set, B′ = By.

Let us see a geometric consequence of this result. The following lemma shows that if u is
the least element of R such that the hypersurface φ−1(¶u♢) intersects a semi-algebraically
connected component C of Z ∩Rn, then this intersection consists entirely of singular points
of φ on Z. It is illustrated by Figure 6.3.

Lemma 6.2.7. Let y ∈ Z ∩Rn with u = φ(y) and let C be the semi-algebraically connected

component of Z♣ϕ≤u containing y. If C♣ϕ<u = ∅ then C = C♣ϕ=u ⊂ K(φ, Z). In particular,

y ∈ K(φ, Z).
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x1

x2
x3

TyZ

Z♣π1≤u

π1(TyZ)

Z ∩ R3 TyZ = π−1
1 (−r)

ϕ−1(ϕ(y))

Z ∩ R3

C♣ϕ=ϕ(y)

y = (−r, 0, 0)

0

dyϕ = −2rπ1

r

x1 x2

x3

Figure 6.3. Illustration of Lemma 6.2.7 in two cases. On the left, φ = π1 and Z ∩ R3 is a torus. The
plane ¶x1 = u♢ indicated satisfies C♣ϕ<u = ∅. One sees that C♣ϕ=u ⊂ K(φ, Z), and
indeed C♣ϕ=u = ¶y♢. On the right, φ is the square of the Euclidean norm, and Z is a
cylinder of radius r. Remark first that C♣ϕ<r = ∅. Moreover, for x = (x1,x2, 0) ∈ Z,
the differential at x of restriction of ϕ to Z is the restriction of the projection on the
(x1, x2)-plane to Tx Z. Since these two latter planes are orthogonal, x is indeed a critical
point.

Proof. If C♣ϕ<u = ∅, since C ⊂ Z♣ϕ≤u then C = C♣ϕ=u holds. Let us prove the contrapositive
of the rest of the lemma. Suppose that C♣ϕ=u ̸⊂ K(φ, Z), and let

z ∈ C♣ϕ=u −K(φ, Z).

Let Bz be the semi-algebraically connected component of Z♣ϕ<u obtained by applying
Lemma 6.2.6. Since Bz contains z and is a semi-algebraically connected set of Z♣ϕ≤u,
Bz ⊂ C. Hence C♣ϕ<u contains (Bz)♣ϕ<u = Bz, which is then not empty.

We prove now an important consequence of the previous lemma. It is a fundamental prop-
erty of generalized polar varieties and motivates their introduction among the ingredients of
a roadmap.

Proposition 6.2.8. Let u ∈ R and let B be a bounded semi-algebraically connected component

of Z♣ϕ<u. Then B ∩K(φ, Z) ̸= ∅.

Proof. Since φ is a semi-algebraic continuous map and B is semi-algebraic, then φ(B)

is a closed and bounded semi-algebraic set by [BPR06, Theorem 3.23]. In particular, φ
reaches its minimum φ(z) on B and since ∅ ̸= B ⊂ Z♣ϕ<u,then φ(z) < u. But B is a
semi-algebraically connected component of Z♣ϕ<u, so in particular it is closed in Z♣ϕ<u, so
that

B −B ⊂ Z♣ϕ=u.

Therefore z ∈ B and as B♣ϕ<ϕ(z) is empty (z is a minimizer), B♣ϕ=ϕ(z) and z is in K(φ, Z)

by Lemma 6.2.7. Finally z ∈ B ∩K(φ, Z), and the latter is non-empty.
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We are now able to prove a weaker version of Proposition 6.2.1, which is illustrated in
Figure 6.4. It deals with the particular case when the map has values in some fiber Z♣ϕ=u,
where u ∈ R.

Lemma 6.2.9. Let u ∈ R and A ⊂ Rk be a semi-algebraically connected set. Let

γ : A −→ Z♣ϕ=u −K(φ, Z)

be a continuous semi-algebraic map. Then there exists a unique semi-algebraically connected

component B of Z♣ϕ<u such that γ(A) ⊂ B.

x1

Z ∩ Rn

γ(A)

B

Z|π1=u

Z|π1=u ∩K(π1, Z)

x1

Z ∩ Rn

γ(A)

Z|π1=u ∩K(π1, Z)

B′B

Z|π1=u

Figure 6.4. Illustration of the proof of Proposition 6.2.1 where φ = π1 and Z is isomorphic to
V (x2

1 +x2
2 −1)×V (x1 +x2

2) in two cases. On the left the γ(A)∩ (Z♣π1=u ∩K(π1, Z)) = ∅
and on the right, this intersection is non-empty.

Proof. Let a0 ∈ A and y = γ(a0), by assumption, y ∈ Z♣ϕ=u − K(φ, Z). Then by Lem-
mas 6.2.5 and 6.2.6, there exist an open neighborhood N(y) of y and a semi-algebraically
connected component By of Z♣ϕ<u such that

(Z ∩N(y))♣ϕ=u ⊂ (Z ∩N(y))♣ϕ<u ⊂ By.

Hence for every z ∈ (Z ∩N(y))♣ϕ=u −K(φ, Z), z ∈ By so that Bz = By by application of
Lemma 6.2.6. Since γ is a continuous semi-algebraic map, there exists an open semi-algebraic
neighborhood N ′(a0) of a0 such that

γ(N ′(a0)) ⊂ (Z ∩N(y))♣ϕ=u −K(φ, Z).

Hence the map a 7→ Bγ(a) is constant on N(a0). Let

B : a ∈ A 7→ Bγ(a) ∈ P(Z♣ϕ<u)
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be the map given by Lemma 6.2.6, where P(Z♣ϕ<u) denote the power set of Z♣ϕ<u. We
proved that B is locally constant on A and then, equivalently, continuous for the discrete
topology on P(Z♣ϕ<u). But since A is semi-algebraically connected, B(A) is connected for
the discrete topology, that is B is constant A.

Let then B be the constant value that B takes on A. By Lemma 6.2.6, for all a ∈ A,
γ(a) ∈ Bγ(a) = B, that is γ(A) ⊂ B. Besides, if B′ is another semi-algebraically connected
component of Z♣ϕ<u such that γ(A) ⊂ B′, then for all a ∈ A,

γ(a) ∈ B ∩B′ ∩ Z♣ϕ=u −K(φ, Z),

so that B = B′ by uniqueness in Lemma 6.2.6.

We can now prove the main proposition by sticking together all the pieces. The points of
the map that belong to the fiber Z♣ϕ=u are managed by Lemma 6.2.9, while the remaining
ones, in Z♣ϕ<u, are more convenient to deal with. This proof is illustrated by Figure 6.5.

Proof of Proposition 6.2.1. Since γ is semi-algebraic and continuous, γ(A) is semi-algebra-
ically connected. Hence, if γ(A) ⊂ Z♣ϕ<u, it is contained in a unique semi-algebraically
connected component B of Z♣ϕ<u and we are done.

We assume now that γ(A) ̸⊂ Z♣ϕ<u. Let G = γ−1(Z♣ϕ=u). It is a closed subset of A since
Z♣ϕ=u is closed in Z♣ϕ≤u and γ is continuous. Then, let G1, . . . , GN be the semi-algebraically
connected components of G; they are closed in A since they are closed in G, which is closed
in A. Besides, let H1, . . . ,HM be the semi-algebraically connected components of A − G.
They are open in A since they are open in A−G , which is open in A.

We define a map B : A → P(Z♣ϕ<u), where P(Z♣ϕ<u) is the power set of Z♣ϕ<u. The
family formed by both G1, . . . , GN and H1, . . . HM is a partition of A; hence, we can define
B by defining it on this partition.

Hi : Since Hi ⊂ A−G, γ(Hi) ⊂ Z♣ϕ<u and γ(Hi) is semi-algebraically connected as γ is
continuous. Then, there exists a unique semi-algebraically connected component Bi of
Z♣ϕ<u such that γ(Hi) ⊂ Bi ⊂ Bi.

Gi : Since Gi is semi-algebraically connected and γ(Gi) ⊂ Z♣ϕ=u −K(φ, Z), Lemma 6.2.9
with A = Gi states that there is a unique semi-algebraically connected component B′

i

of Z♣ϕ<u such that γ(Gi) ⊂ B′
i.

Therefore, for all a ∈ A, let B such that

B(a) =





Bi if a ∈ Hi

B′
i if a ∈ Gi

so that γ(a) ∈ B(a).

Let us show that B is locally constant, that is, for every a ∈ A, there exists an open Euclidean
neighborhood N(a) ⊂ A of a, such that for all a′ ∈ N(a), B(a′) = B(a). Then, we will
conclude by connectedness as above. Let a ∈ A and 1 ≤ i ≤ max(M,N).

• If a ∈ Hi, since Hi is open in A, there exists an open Euclidean neighborhood N(a) of
a contained in Hi. By construction, for all a′ ∈ N(a), B(a′) = B(a). Moreover, since
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Hi is semi-algebraically connected, this also proves that B is actually constant on Hi,
and we let B(Hi) be the unique value it assumes on Hi.

• Else a ∈ Gi, since the Gj ’s are closed in A, then a does not belong to the closure of
any other Gj , j ̸= i. However, the set

J =
{

1 ≤ j ≤M ♣ a ∈ Hj

}

is not empty. By construction, γ(a) ∈ B(a) and by definition of J , for every j ∈ J ,
γ(a) ∈ B(Hj). But, by Lemma 6.2.6 applied with y = γ(a), such a semi-algebraically
connected component is unique. Hence for all j ∈ J , B(Hj) = B(a). One can then
take N(a) = B(a, r) with r > 0 such that this open ball intersects either the Hj ’s for
j ∈ J or Gi, and only them.

Finally, we proved that B is locally constant and then, equivalently, continuous for the
discrete topology on P(Z♣ϕ<u). Since A is semi-algebraically connected, B(A) is connected
for the discrete topology and B is constant on A. Denoting by B ⊂ Z♣ϕ<u the unique
value it assumes, we have γ(A) ⊂ B as claimed. Besides if B′ is another semi-algebraically
connected component of Z♣ϕ<u such that γ(A) ⊂ B′, then in particular B ∩ B′ contains
γ(G1) ⊂ Z♣ϕ=u −K(φ, Z), so that B = B′ by Lemma 6.2.9.

x1

Z ∩ Rn

G1

H1 H2

B

Z|π1=u

Z|π1=u ∩K(π1, Z)

x1

Z ∩ Rn

Z|π1=u ∩K(π1, Z)

G1

H1 H2

B′B

Z|π1=u

Figure 6.5. Illustration of the proof of Proposition 6.2.1 with φ = π1 and Z is isomorphic to V (x2
1 +

x2
2 − 1) ×V (x1 + x2

2) in two cases. The intersection γ(A) ∩ (Z♣π1=u ∩ K(π1, Z)) is empty
on the left while, on the right, it is not.

We then deduce the following consequence on the semi-algebraically connected compo-
nents of Z with respect to φ. This result is illustrated in Figure 6.6.

Corollary 6.2.10. Let φ : Cn → C be a regular map defined over R and Z ⊂ Cn be an

equidimensional algebraic set of positive dimension. Let u ∈ R such that Z♣ϕ=u ∩K(φ, Z) = ∅
and let C be a semi-algebraically connected component of Z♣ϕ≤u. Then, C♣ϕ<u is a semi-alge-

braically connected component of Z♣ϕ<u.
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Proof. Let γ be the inclusion map γ : C →֒ Z♣ϕ≤u. Since Z♣ϕ=u∩K(φ, Z) = ∅, γ satisfies the
assumptions of Proposition 6.2.1 with A = C. Then there exists a unique semi-algebraically
connected component B of Z♣ϕ<u such that C ⊂ B, so that C♣ϕ<u ⊂ B♣ϕ<u = B.

First, since Z♣ϕ=u ∩K(φ, Z) = ∅ by assumption, then in particular C♣ϕ=u ̸⊂ K(φ, Z). By
the contrapositive of Lemma 6.2.7, C♣ϕ<u is not empty. Hence, since B is a semi-algebra-
ically connected set of Z♣ϕ≤u, containing C♣ϕ<u, B is contained in the semi-algebraically
connected component C of Z♣ϕ≤u. Finally B ⊂ Z♣ϕ<u ∩ C = C♣ϕ<u and C♣ϕ<u = B, which
is a semi-algebraically connected component of Z♣ϕ<u.

x1

π−1
1 (u)

Z ∩ Rn
Cπ1<u

C

x1

π−1
1 (u)

Z ∩ Rn

Cπ1<u

C

Figure 6.6. Illustration of Corollary 6.2.10 where φ = π1 and Z is isomorphic to V (x2
1 + x2

2 − 1) ×
V (x1 + x2

2). On the left Z♣π1=u ∩ K(π1, Z) = ∅ and one sees that C♣π1<u is still a semi-
algebraically connected component of Z♣π1<u. On the right Z♣π1=u ∩ K(π1, Z) ̸= ∅ and
one sees that C♣π1<u is disconnected.

6.2.2 Fibration and critical values

As in [SS11, Section 3.2] we are going to use a Nash version of Thom’s isotopy lemma,
stated in [CS95, Theorem 1], which, again, is an ingredient of Morse theory. We refer to
Section 4.4 for the definitions of Nash diffeomorphisms, manifolds and submersions together
with their properties.

Proposition 6.2.11. Letφ : Cn → C be a regular map defined over R andA ⊂ φ−1((−∞, w))∩
Rn be a semi-algebraically connected semi-algebraic set. Let v < w such that A♣ϕ∈(v,w) is a

non-empty Nash manifold, bounded, closed in φ−1((v, w))∩Rn and such that φ is a submersion

on A♣ϕ∈(v,w). Then for all u ∈ [v, w), A♣ϕ≤u is non-empty and semi-algebraically connected.

Proof. We first prove that φ : A♣ϕ∈(v,w) → (v, w) is a proper surjective submersion. Since
A♣ϕ∈(v,w) is bounded and φ is semi-algebraic and continuous, φ : A♣ϕ∈(v,w) → (v, w) is a
proper map. Let us prove that φ is also surjective on A♣ϕ∈(v,w) that is

φ(A♣ϕ∈(v,w)) = (v, w).
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By assumption, φ is a submersion from A♣ϕ∈(v,w) to (v, w). Then by the semi-algebraic
inverse function theorem [BPR06, Proposition 3.29], φ is an open map. Besides, as A♣ϕ∈(v,w)

is closed and bounded, there exists a closed and bounded semi-algebraic set X ⊂ Rn such
that A♣ϕ∈(v,w) = X ∩φ−1((v, w)) = X♣ϕ∈(v,w). Then

φ(A♣ϕ∈(v,w)) = φ(X♣ϕ∈(v,w)) = φ(X) ∩ (v, w).

Since X is bounded and closed, φ(X) is closed and bounded by [BPR06, Theorem 3.23].
Hence, φ(A♣ϕ∈(v,w)) is both open and closed in (v, w). Since (v, w) is semi-algebraically
connected, φ(A♣ϕ∈(v,w)) = (v, w).

By the Nash version of Thom’s isotopy lemma [CS95, Theorem 1], since the map
φ : A♣ϕ∈(v,w) → (v, w) is a proper surjective submersion, it is a globally trivial fibration.
Hence, for ζ ∈ (v, w), there exists a Nash diffeomorphism Ψ of the form

Ψ: A♣ϕ∈(v,w) −→ (v, w)×A♣ϕ=ζ

y 7−→ ( φ(y) , ψ(y) ).

We now proceed to prove the main statement of the proposition. There are, at first sight,
two different situations to consider: whether u > v or u = v (see Figure 6.7). Using Puiseux
series, we actually prove them simultaneously.

Take u ∈ [v, w); we prove that A♣ϕ≤u is non-empty and semi-algebraically connected. To
prove that A♣ϕ=u is non-empty, we consider z ∈ A♣ϕ=ζ and the map

γ : [0, 1) −→ A♣ϕ∈(v,w)

t 7−→ Ψ−1(tu+ (1− t)ζ,z).

This map is well defined and continuous, since Ψ is a Nash diffeomorphism from A♣ϕ∈(v,w)

to (v, w)×A♣ϕ=ζ , and satisfies φ(γ(t)) = tu+ (1− t)ζ for every t ∈ [0, 1). Moreover γ is a
bounded map as A♣ϕ∈(v,w) is bounded by assumption. Then, by [BPR06, Proposition 3.21],
γ can be continuously extended to [0, 1], with φ(γ(t)) = tu+ (1− t)ζ continuous on [0, 1],
and φ(γ(1)) = u. Finally γ(1) ∈ A♣ϕ≤u and A♣ϕ≤u is not empty.

We prove now that A♣ϕ≤u is semi-algebraically connected. Consider two points y and y′

in A♣ϕ≤u. Since A is semi-algebraically connected by assumption, there exists a continuous
path γ : [0, 1]→ A such that γ(0) = y and γ(1) = y′. Let us construct, from γ, another path
that lies in A♣ϕ≤u.

Let ε be an infinitesimal, and let R′ = R⟨ε⟩ be the field of algebraic Puiseux series in
ε (see [BPR06, Section 2.6]). We denote by A′, (v, w)′,Ψ′, ψ′,φ′ and γ′ the extensions
of respectively A, (v, w),Ψ, ψ,φ and γ to R′ in the sense of [BPR06, Proposition 2.108].
According to [BPR06, Exercise 2.110], Ψ′ : A′

♣ϕ∈(v,w)′ → (v, w)′ ×A′
♣ϕ=ζ is a bijective map.

Then let g′ : [0, 1]′ ⊂ R′ → A′ be such that

g′(t) = γ′(t) if φ′(γ′(t)) ≤ u+ ε,

g′(t) = Ψ′−1(u+ ε, ψ′(γ′(t))) if u+ ε ≤ φ′(γ′(t)) < w.
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This map is well defined since u + ε ∈ (v, w) and if φ′(γ′(t)) = u + ε, then Ψ′−1(u +

ε, ψ′(γ′(t))) = γ′(t). Moreover g′ is a continuous semi-algebraic map since by [BPR06,
Exercise 3.4], Ψ′−1, ψ′ and γ′ are continuous semi-algebraic maps.

Finally one observes that g′ is bounded over R. Indeed if φ′(γ′(t)) ≤ u + ε, then
g′(t) = γ(t), which is continuous on [0, 1]′ and then bounded over R. Else φ′(γ′(t)) ∈ (v, w)

and g′(t) ∈ A′
♣ϕ∈(v,w)′ , which is bounded over R by [BPR06, Proposition 3.19] since

A♣ϕ∈(v,w) is. Hence, its imageG′ = g′([0, 1]′) is a semi-algebraically connected semi-algebraic
set, bounded over R and contained in A′

♣ϕ≤u+ε.

LetG = limε G
′. By [BPR06, Proposition 12.49], G is a closed and bounded semi-algebraic

set. Then, since φ is a continuous semi-algebraic map defined over G, by [BPR06, Lemma
3.24] for all z′ ∈ G′,

φ(limε z
′) = limεφ(z′) ≤ limε (u+ ε) = u

So that G is contained in A♣ϕ≤u. In addition, since G′ is semi-algebraically connected and
bounded over R, then by [BPR06, Proposition 12.49], G is semi-algebraically connected
and contains y = limε g(0) and y′ = limε g(1). We deduce that there exists, inside G, a
semi-algebraic path connecting y to y′ in A♣ϕ≤u, which ends the proof.

x1

Z ∩ Rn

Zw

Zu

Zv

Ψ

y y′

γ

g

K(π1, Z)

x1

Z ∩ Rn

Zw

Zv+ε

Zv

Ψ

y y’

γ g′

K(π1, Z)

Figure 6.7. Illustration of the two cases covered by the proof of Proposition 6.2.11 where φ = π1

and A = Z♣π1<w, where Z is isomorphic to V (x2
1 + x2

2 − 1) × V (x1 + x2
2). The two cases

are quite similar; we consider here the one where v is a critical value. One sees that Ψ
connects all the slices A♣π1=u for u ∈ (v, w)′. This diffeomorphism allows to transform
the problematic parts (not in A♣π1≤u) of the initial path γ (in green), into another path g

(in red), that lies in A♣π1=u ⊂ A♣π1≤u.

The following result is a consequence of Proposition 6.2.11 as it deals with a particular
case. An illustration of this statement can be found in Figure 6.8.

Corollary 6.2.12. Let Z ⊂ Cn be an equidimensional algebraic set of positive dimension and

let φ : Cn → C be a regular map defined over R and proper on Z ∩Rn. Let v < w be in R
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such that Z♣ϕ∈(v,w] ∩K(φ, Z) = ∅, and let C be a semi-algebraically connected component of

Z♣ϕ≤w. Then, C♣ϕ≤v is a semi-algebraically connected component of Z♣ϕ≤v.

Proof. As C♣ϕ<w = C ∩ φ−1((−∞, w)) ∩Rn, we are going to use Proposition 6.2.1 with
A = C♣ϕ<w.

First we need to prove that C♣ϕ<w is a non-empty semi-algebraically connected semi-
algebraic set. Since Z♣ϕ=w ∩K(φ, Z) = ∅, by Corollary 6.2.10 C♣ϕ<w is a semi-algebraically
connected component of Z♣ϕ<w. Hence it is non-empty and semi-algebraically connected.

Then, we need to prove that C♣ϕ∈(v,w) is a non-empty Nash manifold, bounded and closed
in φ−1((v, w)) ∩Rn. Suppose first that C♣ϕ∈(v,w) = ∅. Then

C♣ϕ≤v ∪ C♣ϕ=w = C and C♣ϕ≤v ∩ C♣ϕ=w = ∅.

Since C is semi-algebraically connected, either C♣ϕ≤v or C♣ϕ=w is empty (as they are both
closed in C). In both cases our conclusion follows. It remains to tackle the case where
C♣ϕ∈(v,w) is not empty, which we assume to hold from now on.

We prove that C♣ϕ∈(v,w) is bounded. Observe that C♣ϕ∈(v,w) ⊂ C♣ϕ∈[v,w] = C ∩ Rn ∩
φ−1([v, w]). Recall that φ is proper on Z ∩Rn by assumption, and thus on C ∩Rn. Hence,
C♣ϕ∈[v,w] is bounded. Besides C♣ϕ∈(v,w) is closed in φ−1((v, w)) ∩Rn as

C♣ϕ∈(v,w) = C ∩φ−1((v, w)) ∩Rn,

and C is closed in Rn as it is closed in the closed set Z♣ϕ≤w. Since C♣ϕ∈(v,w) ∩K(φ, Z) = ∅
then by [BCR98, Proposition 3.3.11], C♣ϕ∈(v,w) is a Nash manifold of dimension dim(Z).

To apply Proposition 6.2.1, it remains to prove that φ is a Nash submersion on C♣ϕ∈(v,w).
Let y ∈ C♣ϕ∈(v,w). Since y /∈ sing(Z), then Ty C♣ϕ∈(v,w) = Ty Z ∩ Rn according to
[BCR98, Proposition 3.3.11]. Since C♣ϕ∈(v,w) ∩K(φ, Z) = ∅, dyφ is onto on Ty Z and since
dimZ > 0, the image dyφ(Ty Z) is C. Hence

dyφ(Ty C♣ϕ∈(v,w)) = R.

We just established that all the assumptions of Proposition 6.2.11 are satisfied. One can then
apply it to C♣ϕ<w and conclude that C♣ϕ≤v is non-empty and semi-algebraically connected.
Finally, since C is a semi-algebraically connected component of Z♣ϕ≤w, any semi-algebraica-
lly connected component of Z♣ϕ≤v contained in C is contained in C♣ϕ≤v. Thus C♣ϕ≤v is a
semi-algebraically connected component of Z♣ϕ≤v.

6.3 Proof of the main connectivity result

Recall that φ = (φ1, . . . , φn) ⊂ R[x1, . . . , xn] and for 1 ≤ i ≤ n,φi : y 7→ (φ1(y), . . . , φi(y)).
We denote by Wi = W (φi, V ) the Zariski closure of the set of critical points of the restriction
of φi to V and recall that

Ki = W (φ1, V ) ∪ Si ∪ sing(V ) and Fi = φ−1
i−1(φi−1(Ki)) ∩ V,
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x1

π−1
1 (w)

Z ∩ Rn

π−1
1 (v)

C Cπ1≤v

x1

π−1
1 (w)

Z ∩ Rn

π−1
1 (v)

C

Cπ1≤v

Figure 6.8. Illustration of Corollary 6.2.12 where φ = π1 and Z is isomorphic to V (x2
1 + x2

2 −
1) × V (x1 + x2

2) in two cases. On the left Z♣π1∈(v,w) ∩ K(π1, Z) = ∅ and we see
that C♣π1≤v is still a semi-algebraically connected component of Z♣π1≤v. On the right
Z♣π1∈(v,w) ∩ K(π1, Z) contains a point and we see that C♣π1≤v is semi-algebraically
disconnected.

where Si is a given subset of V . We suppose that the following assumptions hold:

(A) V is d-equidimensional and its singular locus sing(V ) is finite;

(P) the restriction of the map φ1 to V ∩Rn is proper and bounded from below;

(B1) Wi is either empty or (i− 1)-equidimensional and smooth outside sing(V );

(B2) for any y = (y1, . . . ,yi) ∈ Ci, V ∩φ−1
i−1(y) is either empty or (d−i+1)-equidimensional;

(C1) Si is finite;

(C2) Si has a non-empty intersection with every semi-algebraically connected component of
W (φ1,Wi) ∩Rn.

Then the goal of this section is to prove that Wi ∪ Fi intersects each semi-algebraically
connected component of V ∩Rn and that their intersection is semi-algebraically connected.

Let R = Fi ∪Wi. We prove that the following so-called roadmap property holds:

RM: “For any semi-algebraically connected component C of V ∩Rn, the set C ∩R is

non-empty and semi-algebraically connected”,

by proving a truncated version of RM and show that it is enough. For u ∈ R let

RM(u): “For any semi-algebraically connected component C of V♣ϕ
1≤
u, the set C ∩R is

non-empty and semi-algebraically connected”.

Lemma 6.3.1. If RM(u) holds for all u ∈ R, then RM holds.
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Proof. Let C be a semi-algebraically connected component of V ∩Rn. Since C is non-empty
and semi-algebraically connected, there exist y and y′ in C, and a semi-algebraic path
γ : [0, 1]→ C connecting them. Let

u = max¶φ1(γ(t)), t ∈ [0, 1]♢ ∈ R.

Such a maximum u exists by continuity of γ and φ1, since [0, 1] is closed and bounded, and
it follows that γ([0, 1]) ⊂ V♣ϕ

1≤
u. Since γ([0, 1]) is semi-algebraically connected, there exists

a (unique) semi-algebraically connected component B of V♣ϕ
1≤
u containing γ([0, 1]). In

particular, B contains y and y′. Since RM(u) holds by assumption, then B ∩R is non-empty.
But as y ∈ B ∩ C and B is semi-algebraically connected, C contains B. Finally, C ∩ R
contains B ∩R and the former is non-empty.

We can suppose now, in addition, that y and y′ are in C∩R, and let B be defined as above.
Then, y and y′ are in B ∩ R, which is semi-algebraically connected by RM(u). Therefore
y and y′ are connected by a semi-algebraic path in B ∩ R. Since B ⊂ C, y and y′ are
semi-algebraically connected in C ∩R. In conclusion, C ∩R is semi-algebraically connected
and RM holds.

Remark 6.3.2. The previous lemma trivially holds in the case of [SS11, Theorem 14], since
V ∩Rn is assumed to be bounded. Indeed, in this case, considering u = maxy∈V ∩Rn φ1(y),
one has V♣ϕ

1≤
u = V ∩Rn.

6.3.1 Restoring connectivity

Before proving RM(u) for all u ∈ R, we need to prove the following result, which constitutes
the core of the proof of Theorem 6.1.1. This proposition shows that the connectivity property
of our roadmap candidate is satisfied when u is increasing towards singular points of φ1 on
V . This is ensured by the addition of the fibers Fi.

Proposition 6.3.3. Let u ∈ R and C be a semi-algebraically connected component of V♣ϕ
1≤
u

such that C♣ϕ1<
u is non-empty. Let B be a semi-algebraically connected component of C♣ϕ1<

u,

then:

1. B ∩ (Fi ∪Wi) is non-empty;

2. Any point y ∈ B ∩ (Fi ∪ Wi) can be connected to a point z ∈ B ∩ (Fi ∪ Wi) by a

semi-algebraic path in B ∩ (Fi ∪Wi).

Let us begin with a technical lemma:

Lemma 6.3.4. Let K be a real closed field containing R and K be its algebraic closure. Let

Z ⊂ K
n

be a d-equidimensional algebraic set, where d > 0. Assume that for any z ∈ K
i−1

,

Z ∩φ−1
i−1(z) is either empty or (d− i+ 1)-equidimensional.

Let B be a bounded semi-algebraically connected component of Z ∩Kn and let y ∈ B. Let H

be the semi-algebraically connected component of B ∩φ−1
i−1(φi−1(y)) containing y. Then, the

intersection H ∩K(φi, Z) is not empty.
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Proof. Let Y = Z ∩φ−1
i−1(φi−1(y)). By assumption, Y is an equidimensional algebraic set of

dimension d− i+ 1. Besides, H is a bounded semi-algebraically connected component of
Y ∩Kn, since B is a bounded semi-algebraically connected component of Z ∩Kn.

Recall that φ = (φ1, . . . , φn). Then φi(H) ⊂ R is a closed and bounded semi-algebraic
set by [BPR06, Theorem 3.23]. In particular, φi reaches its minimum on H. Let z ∈ H be
such that φi(z) = minφi(H), so that H♣φi<φi(z) is empty. Then, by Lemma 6.2.7,

z ∈ H ∩K(φi, Y ).

Let g ⊂ K[x1, . . . , xn] be a finite sequence of generators of I(Z), so that Y = V (g,φi−1 −
φi−1(y)). Since Y is (d− i+ 1)-equidimensional, Proposition 2.5.4 establishes that z is such
that

rank




Jacz(g)

Jacz(φi−1)

Jacz(φi)



< n− (d− (i− 1)) + 1.

Since φi = (φi−1, φi), one deduces that

rank




Jacz(g)

Jacz(φi)


 < n− d+ i,

which means that z ∈ H ∩K(φi, Z). Finally, the latter set is non-empty and the statement
is proved.

Notation 6.3.5. For the rest of the subsection let u, C and B as defined in Proposition 6.3.3.

Let us deal with one particular case of the second item of Proposition 6.3.3.

Lemma 6.3.6. Let y be in B ∩ Fi. Then, there exists a point z ∈ B ∩ (Fi ∪ Wi) and a

semi-algebraic path in B ∩ (Fi ∪Wi) connecting y to z.

Proof. Let y be in ∈ B ∩ Fi. We assume that y /∈ B so that φ1(y) = u, otherwise taking
z = y would end the proof. Since y ∈ B, by the curve selection lemma [BPR06, Th. 3.22],
there exists a semi-algebraic path γ : [0, 1] → Rn such that γ(0) = y and γ(t) ∈ B for all
t ∈ (0, 1]. Let ε be an infinitesimal, R′ = R ⟨ε⟩ be the field of algebraic Puiseux series and
ψ = (ψ1, . . . , ψn) be the semi-algebraic germ of γ at the right of the origin (see [BPR06,
Section 3.3]). According to [BPR06, Theorem 3.17], we can identify ψ with an element of
(R′)n (by a slight abuse of notation, we will denote them in the same manner). Hence by
[BPR06, Proposition 3.21], limε ψ = y. Let finally

H = ext(B,R′) ∩φ−1
i−1(φi−1(ψ)) ⊂ (R′)n

where ext(B,R′) is the extension of B to R′ and φφj for 1 ≤ j ≤ n, with some notation
abuse, still denote the extension of φφj to R′.

Since γ((0, 1)) ⊂ B, by [BPR06, Proposition 3.19], ψ is in ext(B,R′). Hence, ψ in H and
H is non-empty. Moreover B is bounded since φ1 : V ∩Rn → R is a proper map bounded
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below by assumption (P). Then [BPR06, Proposition 3.19] states that ext(B,R′) and then
H are bounded over R. Hence the map limε is well defined on H and

y ∈ limε H = ¶limε y
′, y′ ∈ H♢ ⊂ Rn.

Finally, as φi−1 is semi-algebraic and continuous, limε H is contained in B ∩φ−1
i−1(φi−1(y))

by [BPR06, Lemma 3.24]. But y ∈ Fi, so that

φ−1
i−1(φi−1(y)) ⊂ φ−1

i−1(φi−1(Ki)),

and finally limε H is actually in B ∩ Fi.

Let H1 be the semi-algebraically connected component of H containing ψ. By [BPR06,
Proposition 5.24], limε H1 is the semi-algebraically connected component of limε H con-
taining y. Actually, we just proved that every w in limε H1 can be semi-algebraically
connected to y into B ∩Fi. We find now some w ∈ limε H1 that can be connected to a point
z ∈ B ∩ (Fi ∪Wi) to end the proof. Such a w must be the origin of a germ of semi-algebraic
functions that lies in B ∩ (Wi ∪ Fi).

By assumption (A), V is d-equidimensional. By assumption (B2), for all z ∈ V , the
algebraic set V ∩ φ−1

i−1(φi−1(z)) is (d− i+ 1)-equidimensional. Then, if we denote by C′

the algebraic closure of R′, it is an algebraic closed extension of C, so that the algebraic sets
of (C′)n

Z =
{
z ∈ (C′)n ♣ ∀h ∈ I(V ), h(z) = 0

}
and Z ∩φ−1

i−1(φi−1(ψ)))

are equidimensional of dimension respectively d and (d− i+ 1). Since B is a semi-algebra-
ically connected component of V♣ϕ1<

u, then, by [BPR06, Proposition 5.24], ext(B,R′) is a
semi-algebraically connected component of

ext(V♣ϕ1<
u,R′) = ext(V ∩Rn,R′)♣ϕ1<

u = Z♣ϕ1<u,

by [BPR06, Transfer Principle, Th. 2.98]. Then, since H1 is a semi-algebraically connected
component of H = ext(B,R′) ∩ φ−1

i−1(φi−1(ψ)), one can apply Lemma 6.3.4 on Z with
K = R′. Hence

H1 ∩K(φi, Z) ̸= ∅.

By Corollary 2.5.6, K(φi, Z) is defined over R as V and φi are. Then, by [BPR06, Transfer
Principle, Th. 2.98],

K(φi, Z) ∩ (R′)n = ext(K(φi, V ) ∩Rn,R′),

so that

∅ ⊊ H1 ∩ ext(K(φi, V ) ∩Rn,R′) ⊂ ext(B ∩K(φi, V ),R′).
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Therefore let ζ ∈ ext(B ∩K(φi, V ),R′), let w = limε ζ and τ be a representative of ζ on
(0, t0), where t0 > 0. By [BPR06, Proposition 3.21], we can continuously extend τ to 0 such
that τ(0) = w. Besides for all t ∈ (0, t0),

τ(t) ∈ B ∩K(φi, V ) ⊂ B ∩ (Wi ∪ Fi).

Then τ([0, t0)) ⊂ B ∩ (Fi ∪Wi) so that

w ∈ B ∩ (Fi ∪Wi) and z = τ(t0/2) ∈ B ∩ (Fi ∪Wi).

Besides, since w ∈ limε H1 we have seen that it can be connected to y a semi-algebraic path
in B∩ (Fi∪Wi). In the end, there exist two consecutive paths into B∩ (Fi∪Wi), connecting
y to w, and w to z ∈ B ∩R (namely τ).

x

x1

Z ∩ Rn

B

Fi

Wi

limεH1

ψ

γ

y

g

ζ
z

w

H1

Figure 6.9. Illustration of proof of Lemma 6.3.6 with φ1 = π1 and V is isomorphic to V (x2
1 + x2

2 −
1) × V (x1 − x2

2). Elements of H1 can be seen as curves of infinitesimal lengths, starting
from a point of limε H1, and lying in B. Here, limε H1 is the set of points that share the
same first coordinate than y. Hence, the above proof consisted in choosing a ζ in H1, that
lives “inside” Wi ∪ sing(V ) (actually in ext(Wi ∪ sing(V ), R⟨ε⟩)).

We can now prove Proposition 6.3.3. This proof is illustrated by Figure 6.9.

Proof of Proposition 6.3.3. Let B be a semi-algebraically connected component of C♣ϕ1<
u.

Since φ1 is a proper map bounded from below on V ∩Rn by assumption P, C♣ϕ1<
u, and

then B, are bounded. Then applying Proposition 6.2.8 shows that:

∅ ⊊ B ∩K(φ1, V ) ⊂ B ∩ Fi ⊂ B ∩ (Fi ∪Wi).

The first item is then proved. Let y ∈ B ∩ (Fi ∪Wi). To prove the second item, one only
needs to consider the case where y ∈ B ∩ (Wi − Fi) according to Lemma 6.3.6. Moreover
one can assume that y /∈ B and then φ1(y) = u, otherwise, taking z = y, would end the
proof.
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Let D be the semi-algebraically connected component of (Wi)♣ϕ
1≤
u containing y. We

consider two disjoint cases.

1. If D ̸⊂ B, there exists y′ ∈ D such that y′ /∈ B. Then let γ : [0, 1] → D such that
γ(0) = y and γ(1) = y′. Hence, if

t1 = max¶t ∈ [0, 1) ♣ γ(t) ∈ B♢,

then γ(t1) ∈ K(φ1, V ) by the contrapositive of statement c) of Lemma 6.2.5. Since
K(φ1, V ) ⊂ Fi, we can apply Lemma 6.3.6 to γ(t1) and find z ∈ B ∩ (Fi ∪Wi) that is
connected to γ(t1) and then to y by a semi-algebraic path in B ∩ (Fi ∪Wi).

2. If D ⊂ B, we claim that there exists some z ∈ D ∩ Fi. Indeed since D is a semi-alge-
braically connected component of (Wi)♣ϕ1≤u and φ1 is a proper map, D is bounded.
Then by Proposition 6.2.8 there exists y′ ∈ D ∩ K(φ1,Wi). If y′ ∈ sing(Wi) then
y′ ∈ sing(V ) by assumption B1 and taking z = y′ ∈ Fi one concludes as in the first
item.

Else y′ is in W (φ1,Wi), and we let E be the semi-algebraically connected compo-
nent of W (φ1,Wi) containing y′. Since φ1(W (φ1,Wi)) is finite by Sard’s lemma,
φ1(E) = ¶φ1(y′)♢, so that E ⊂ (Wi)♣ϕ1≤u. Hence, since E is semi-algebraically co-
nnected, E ⊂ D. By assumption C2, there exists z ∈ E∩Si, so that z ∈ D∩Si ⊂ D∩Fi

and we are done.

Then we can connect y to z inside D ⊂ B ∩Wi and since z is in D ∩ Fi, which is
contained in B∩Fi, we can connect similarly z to some z′ ∈ B∩(Fi∪Wi) inside B∩Fi

by Lemma 6.3.6. Putting things together, y is connected to some z′ ∈ B ∩ (Fi ∪Wi)

by a semi-algebraic path in B ∩ Fi.

Corollary 6.3.7. Let u ∈ R such that for all u′ < u, RM(u′) holds. Let C be a semi-algebraica-

lly connected component of V♣ϕ
1≤
u such that C♣ϕ1<

u is non-empty. If B is a semi-algebraically

connected component of C♣ϕ1<
u, then B ∩R is non-empty and semi-algebraically connected.

Proof. Let y and y′ be in B ∩ R. According to Proposition 6.3.3, they can respectively
be connected to some z and z′ in B ∩ R, by a semi-algebraic path in B ∩ R. As B is
semi-algebraically connected, there exists a semi-algebraic path γ : [0, 1]→ B connecting z
to z′. Let

u′ = max
{
φ1(γ(t)) ♣ t ∈ [0, 1]

}
,

so that γ([0, 1]) ⊂ V♣ϕ
1≤
u′. Such a u′ exists by continuity of γ, and satisfies u′ < u, as [0, 1]

is closed and bounded.

Let B′ be the semi-algebraically connected component of B♣ϕ
1≤
u′ that contains γ([0, 1]).

Since B′ is also a semi-algebraically connected component of V♣ϕ
1≤
u′, property RM(u′)

states that B′ ∩R is non-empty and semi-algebraically connected. Then, as z and z′ are in
B′ ∩R, they can be connected by a semi-algebraic path in B′ ∩R, and then, in B ∩R. Thus
y and y′ are connected by a semi-algebraic path in B ∩R and we are done.
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6.3.2 Recursive proof of the truncated roadmap property

In order to prove that RM(u) holds for all u ∈ R, one can consider two disjoint cases:
whether u is a real singular value of φ1, that is u ∈ φ1(Ki), or not. The following lemma
allows us to proceed by induction.

Lemma 6.3.8. The set φ1(Ki) is non-empty and finite.

Proof. By the algebraic version of Sard’s theorem [SS17, Proposition B.2], the set of critical
values of φ1 on V is an algebraic set of C of dimension 0. Then, it is either empty or
non-empty but finite. Hence, φ1(Ki) is either empty or non-empty but finite, as Si and
sing(V ) are, by assumption. Moreover since φ1 is a proper map bounded from below on
V ∩Rn by assumption (P), for any u ∈ R, Z♣ϕ<u is bounded. Then, since V is not empty,
by Proposition 6.2.8 the sets K(φ1, V ) and then φ1(Ki) are not empty.

We denote by v1 < . . . < vℓ the points of φ1(Ki ∩Rn) and, in addition, let vℓ+1 = +∞.
We proceed by proving the two following steps.

Step 1: Let u ∈ R, if RM(u′) holds for all u′ < u, then RM(u) holds.

Step 2: Let j ∈ ¶1, . . . , ℓ♢, if RM(vj) holds, then for all u ∈ (vj , vj+1), RM(u) holds.

Remark that, by Lemma 6.2.7, v1 = minV ∩Rn φ1, since V ∩Rn is closed. Then for u′ < v1,
V♣ϕ≤u′ = ∅ and RM(u′) trivially holds. Hence, proving these two steps is enough to prove
RM(u) for all u in R, by an immediate induction.

Proposition 6.3.9 (Step 1). Let u ∈ R. Assume that for all u′ < u, RM(u′) holds. Then

RM(u) holds.

The proof of this proposition is illustrated by Figure 6.10.

Proof. Let u ∈ R be such that for all u′ < u, RM(u′) holds and let C be a semi-algebra-
ically connected component of V♣ϕ

1≤
u. We have to prove that C ∩ R is non-empty and

semi-algebraically connected.
If C♣ϕ1<

u is empty, then, by Lemma 6.2.7, C ⊂ K(φ1, V ). But the points of K(φ1, V ) are
either in Wi or in sing(V ) ⊂ Fi. Hence K(φ1, V ) ⊂ R and C ∩R = C, which is non-empty
and semi-algebraically connected by definition.

From now on, C♣ϕ1<
u is supposed to be non-empty and let B1, . . . , Br be its semi-alge-

braically connected components. According to Corollary 6.3.7, for all 1 ≤ j ≤ r, Bj ∩R is
non-empty and semi-algebraically connected. Then, as Bj ⊂ C,

Bj ∩R ⊂ C ∩R

for every 1 ≤ j ≤ r, and C ∩R is non-empty.
Let us now prove that C∩R is semi-algebraically connected. Let y and y′ in C∩R. As C is

semi-algebraically connected, there exists a semi-algebraically continuous map γ : [0, 1]→ C

such that γ(0) = y and γ(1) = y′. Now let

G = γ−1(C♣ϕ1=
u ∩K(φ1, V )) and H = [0, 1]−G.
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We denote by G1, . . . , GN the connected components of G and H1, . . . ,HM those of H.
The sets Hj for 1 ≤ j ≤ M are open intervals of [0, 1], and we note ℓj = inf(Hj) and
rj = sup(Hj). Since γ(G) already lies in C ∩ R, let us establish that for every 1 ≤ j ≤ M ,
γ(ℓj) and γ(rj) can be connected by another semi-algebraic path τj in C ∩R.

Let 1 ≤ j ≤M , then γ(Hj)∩(C♣ϕ1=
u∩K(φ1, V )) = ∅ by definition. Moreover, γ(Hj) ⊂ C

so that
γ(Hj) ∩ (V♣ϕ1=

u ∩K(φ1, V )) = ∅.

Hence, since Hj is connected, there exists (by Proposition 6.2.1) a unique semi-algebraically
connected component B of V♣ϕ1<

u such that γ(Hj) ⊂ B. But γ(Hj) ⊂ C, so that B and
thus B are actually contained in C. Therefore, B is actually a semi-algebraically connected
component of C♣ϕ1<

u and there exists 1 ≤ k ≤ r such that B = Bk. At this step γ(Hj) ⊂ Bk,
so that

γ([ℓj , rj ]) = γ(Hj) ⊂ γ(Hj) ⊂ Bk,

and both γ(ℓj) and γ(rj) are in Bk. Remark that both ℓj and rj are in G, so that both γ(ℓj)

and γ(rj) are in K(φ1, V ) ⊂ Fi ⊂ R. Thus, both γ(ℓj) and γ(rj) are in Bk∩R. According to
Corollary 6.3.7, they can be connected by a semi-algebraic path τj : [0, 1]→ Bk ∩R ⊂ C ∩R.

In conclusion, we have proved that for 1 ≤ j ≤ M , γ(ℓj) and γ(rj) can be connected
by a semi-algebraic path τj in C ∩ R. Therefore the semi-algebraic sub-paths γ♣Hj

can be
replaced by the τj ’s, which lie in C ∩R. Moreover, for all 1 ≤ j ≤ N

γ(Gj) ⊂ C ∩R.

Since the Hj ’s and Gj ’s form a partition of [0, 1], by putting together alternatively the τj ’s
and the γ♣Gj

’s, one obtains a semi-algebraic path in C ∩R connecting y = γ(0) to y′ = γ(1).
And we are done.

x

x1

Z ∩ Rn

C

Fi

Wi

γ(H1)

τ([0, 1])

y

y’

Figure 6.10. Illustration of proof of Proposition 6.3.9 with φ1 = π1 and V is isomorphic to V (x2
1 +

x2
2 − 1) × V (x1 − x2

2). Here, only y′ belongs to C♣π1=u ∩ K(π1, V ). Then we replace
the path γ = γ♣H1 by a path τ1 that lies in the intersection of the roadmap and the
semi-algebraically connected component C.
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x

x1

Z ∩ Rn

Cπ1≤vj

C

Wi

D

D′y

z

y’

z’

Figure 6.11. Illustration of proof of Proposition 6.3.10 with φ1 = π1 and V is isomorphic to V (x2
1 +

x2
2 − 1) × V (x1 − x2

2). We connect the points y and y′ in C ∩ Wi to respectively z and
z′ in C♣π1≤vj

. Then we are reduced to the case of Step 1.

Proposition 6.3.10 (Step 2). Let j ∈ ¶1, . . . , ℓ♢, if RM(vj) holds, then for all u ∈ (vj , vj+1),

RM(u) holds.

The proof of this proposition is illustrated by Figure 6.11 above.

Proof. Let j ∈ ¶0, . . . , ℓ♢ and u ∈ (vj , vj+1). Let C be a semi-algebraically connected
component of V♣ϕ

1≤
u; we have to prove that C ∩ R is non-empty and semi-algebraically

connected.
Let us first prove that C♣ϕ

1≤
vj ∩ R is non-empty and semi-algebraically connected. By

assumption (A), V is an equidimensional algebraic set of positive dimension, and by as-
sumption (P), the restriction of φ1 to V ∩Rn is a proper map bounded below. Moreover, as
φ1 (K(φ1, V ) ∩Rn) ⊂ ¶v1, . . . , vℓ♢, then

V♣ϕ1∈
(vj , u] ∩K(φ1, V ) = ∅.

Then using Corollary 6.2.12, one deduces that C♣ϕ
1≤
vj is a semi-algebraically connected

component of V♣ϕ
1≤
vj . Hence, by property RM(vj), the set C♣ϕ

1≤
vj ∩R is non-empty and

semi-algebraically connected. In particular, C ∩R is non-empty.
Let us now prove that C ∩R is semi-algebraically connected. Let y be in C ∩R. According

to the previous paragraph, one just need to be able to connect y to a point z of C♣ϕ
1≤
vj ∩R

by a semi-algebraic path in C ∩R and then apply RM(vj). First, if y ∈ C♣ϕ
1≤
vj ∩R, there is

nothing to do. Suppose now that y ∈ C♣ϕ1∈
(vj , u] ∩R. We claim that actually

y ∈ C ∩Wi.

Indeed, if y ∈ C ∩ Fi, then φi−1(y) ∈ φi−1(Ki) and φ1(y) would be one of the v1, . . . , vℓ.
Let D be the semi-algebraically connected component of (C ∩Wi)♣ϕ1≤u containing y.

Remark that D is a semi-algebraically connected component of (Wi)♣ϕ1≤u, as it contains
y and is contained in C. Since φ1(W (φ1,Wi)) is finite by Sard’s lemma, we get that
φ1(W (φ1,Wi)) ⊂ φ1(Si), by assumption (C2), so that

(vj , u) ∩φ1(W (φ1,Wi)) = ∅.
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Since Wi is equidimensional and smooth outside sing(V ), then by Corollary 6.2.12, D♣ϕ1≤vj

is a semi-algebraically connected component of (Wi)♣ϕ1≤vj
. Therefore, let z ∈ D♣ϕ

1≤
vj .

Since D is semi-algebraically connected, there exists a semi-algebraic path, connecting
y ∈ D ⊂ C ∩R to

z ∈ D♣ϕ
1≤
vj ⊂ C♣ϕ

1≤
vj ∩R

in D ⊂ C ∩R. We are done.

Conclusion
In this chapter, we proved a new connectivity result for constructing roadmaps for
smooth unbounded algebraic sets. This has been done by adapting the proofs and
constructions designed in [SS11] for linear projections to general polynomial maps.

This provides the theoretical tools for a new class of roadmap algorithms dealing
with unbounded real algebraic sets, without prior infinitesimal deformation to satisfy
the original connectivity result.

Hence, adapting the construction of [SS17], one can hope to emulate the same
structure of their algorithm, relying this time on the new connectivity result. This
would allow to get similar complexity performances while relaxing the boundedness
assumption on the input. This is the purpose of the next chapter.
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A nearly optimal algorithm for

unbounded smooth real

algebraic sets

7

Abstract. In this chapter, we make effective the new connectivity result proved in the
previous chapter to design a Monte Carlo algorithm which, on input a finite sequence of
polynomials with coefficients in a real field Q, defining an algebraic set V ⊂ Cn, with C the
algebraic closure of Q, satisfying regularity assumptions and an algebraic representation
of finitely many sample points P in V , computes a roadmap for (V,P). This algorithm
generalizes the state-of-the-art algorithm designed in [SS17] by dropping a boundedness
assumption on the real trace of V .

The output size and running times of our algorithm are both polynomial in (nD)n log d

where D is the maximal degree of the input equations and d is the dimension of V . As far as
we know, the best previously known algorithm dealing with such sets has an output size and
running time polynomial in (nD)n log2 n. Moreover, the constants in the exponent of this
complexity bound are made explicit, as in [SS17].

This is joint work with M. Safey El Din and É. Schost.

7.1 Introduction

Let Q be a real field and let R (resp. C) be a real (resp. algebraic) closure of Q. Further,
n ≥ 0 is an integer. Let V ⊂ Cn be an algebraic set defined over Q, that is defined by
polynomials with coefficients in Q. As seen in Section 1.3, the problem of solving connectivity
queries on some finitely many query points P ⊂ V ∩Rn, in the real algebraic set V ∩Rn, can
be reduced to the computation of a roadmap of (V,P) – see also Section 5.3. The algorithm
with the best known complexity can be found in [SS17]. This algorithm runs in time
(nD)O(n log d), where d is the dimension of the input algebraic set, which is assumed to be
smooth and bounded. Moreover, explicit constants in the big Oh exponent are given, showing
that the algorithm runs in time subquadratic in the degree bound of the output. As mentioned
earlier, removing these assumptions using techniques from [Can95, BPR00, BR14, BRSS14]
would require the introduction of possibly several infinitesimals, resulting in increased
intermediate data size and, in particular, the loss of the subquadratic behavior.

For this reason, in the previous chapter we have extended the connectivity result un-
derlying the algorithm in [SS17] to generalize it to unbounded cases without any prior
infinitesimal deformation.
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Open problem for Chapter 7

This now leaves the problem of putting this new connectivity result into practice, and
design a roadmap algorithm for smooth real algebraic sets with output size and arithmetic
complexity similar to the ones in [SS17], but without using the boundedness assumption.

In this chapter, we design a Monte Carlo algorithm for computing roadmaps based
on this latter result, assuming regularity assumptions on the system defining V . Under
those assumptions, this improves the state of the art complexity. We illustrate now how
Theorem 6.1.1 is used in this chapter to generalize the algorithms of [SS17] to the case of
unbounded smooth real algebraic sets.

Let V ⊂ Cn be an equidimensional algebraic set of dimension d given as the solutions of
some polynomials f1, . . . , fc in Q[x1, . . . , xn]. Assume that sing(V ) is finite. Take

φ1 =

n∑

k=1

x2
k − akxk and for 2 ≤ j ≤ n φj =

n∑

k=1

bj,kxk,

where a = (a1, . . . ,an) ∈ Qn and, for 2 ≤ j ≤ n, bj = (bj,1, . . . , bj,n) ∈ Qn. Then, the
assumption (P) holds, that is:

(P) the restriction of the map φ1 to V ∩Rn is proper and bounded from below.

Now for some chosen 2 ≤ i ≤ d, let Wi and Fi be respectively the polar variety and set of
fibers as defined in the statement of Theorem 6.1.1. Then, following the preliminary results
of [BGHP05, BGH+10], we prove that for a generic choice of a and b, assumption (B) do
hold:

(B1) Wi is either empty or (i− 1)-equidimensional and smooth outside sing(V );

(B2) for any y = (y1, . . . ,yi) ∈ Ci, V ∩φ−1
i−1(y) is either empty or (d−i+1)-equidimensional.

Finally, one can compute a set S ⊂W (φ1,Wi) ⊂ V by using any algorithm such as [BPR06,
Chap. 13] or [SS03a], returning sample points in all connected components of real algebraic
sets. Then, such a set S satisfies the last assumption (C) of Theorem 6.1.1:

(C1) Si is finite;

(C2) Si has a non-empty intersection with every semi-algebraically connected component
of W (φ1,Wi) ∩Rn.

Therefore, one can apply Theorem 6.1.1 to V , φ and i. We deduce that Wi ∪ Fi has a
non-empty and connected intersection with all connected components of V ∩Rn, but it is in
general an object of dimension greater than 1, so more work is needed.

The design our new algorithm takes i = 2. Then, W2 is expected to have dimension 1 (or
be empty), so no further computation is needed. On the other hand, F2 still has dimension
d− 1, but a key observation is that F2 is now bounded. Then, one can directly apply a slight
variant of the algorithm in [SS17] taking F2 as input: that algorithm already keeps the
depth of recursion bounded by log2(n), but we should now handle the fact that we work in
a hypersurface defined as some level sets of φ1. Again, all of this is under the assumption
that one can make F2 satisfy the assumptions of Theorem 6.1.1.
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The purpose of this chapter is to conduct this approach. First, by ensuring that the
assumptions of Theorem 6.1.1 hold for a “generic” choice of φ (and precise the way this
choice is made). Then, by describing precisely the algorithmic steps, taking close attention
to the size of the manipulated objects, and the complexities of these manipulations.

Open subproblems for Chapter 7

More precisely, the steps to obtain nearly optimal algorithms for computing roadmaps of
smooth real algebraic sets, without boundedness assumptions, are:

• to study how the constructions of generalized Lagrange systems introduced in [SS17]
for encoding polar varieties associated to linear projections can be reused in our
context; this is covered by Section 7.4;

• to prove that assumption (B) holds for some generic choice of a and b for our polar
varieties, which by contrast to those used in [SS17] are no more associated to linear
projections; this is the purpose of Sections 7.5, 7.6 and 7.7;

• to prove that the variant of the algorithm designed in [SS17] discussed above
still has a complexity similar to the one obtained in [SS17]; this is tackled by
Subsection 7.4.5.

Main result. Answering all these problems and putting together the solutions, we get the
following result. Recall that (f1, . . . , fc) ⊂ Q[X] is said to be a reduced regular sequence if for
every i ∈ ¶1, . . . , c♢, the ideal ⟨f1, . . . , fi⟩ is radical and the algebraic set V (f1, . . . , fi) ⊂ Cn

is either empty or (n− i)-equidimensional.

Contribution to the open problem

Theorem 7.1.1. Let f = (f1, . . . , fc) be a reduced regular sequence in Q[X], with X =

x1, . . . , xn, let D be the maximal degree of the fi’s and suppose that Γ is a straight-line

program of length E evaluating f . Suppose additionally that V (f) ⊂ Cn has finitely many

singular points.

Let P be a zero-dimensional parametrization of degree µ with Z(P) ⊂ V (f). There

exists a Monte Carlo algorithm which, on input Γ and P computes a one-dimensional

parametrization R of a roadmap of (V (f),Z(P)) of degree

Õ
(
µ163d(n log2(n))2(2d−2+12 log2(d−1))(log2(d−1)+6)D(2n+4)(log2(d−1)+4)

)
,

that is in µ(nD)O(n log2(d)), using

Õ
(
µ3169dE(n log2(n))6(2d+12 log2(d−1))(log2(d−1)+7)D3(2n+4)(log2(d−1)+5)

)
,

that is in µE(nD)O(n log2(d)), arithmetic operations in Q, with d = n− c.

Hence, we dropped the boundedness assumption on V (f)∩Rn made in [SS17, Theorem
1.1], still keeping a complexity similar to the algorithm presented in [SS17]. Note that
the arithmetic complexity statement above is cubic in the degree bound B on the output;
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the output size itself is O
(
nB2

)
elements in Q. Hence, as in [SS17], our runtime is

subquadratic in the bound on the output size. The example below illustrates an application
of this algorithm on a simple example.

Example 7.1.2. Let V = V (g) ⊂ C3 be the hypersurface defined by the vanishing set of
the polynomial g = x3

1 + x3
2 + x3

3 − x1 − x2 − x3 − 1 ∈ Q[x1, x2, x3]. As a hypersurface, V is
2-equidimensional and since sing(V ) = ∅, V satisfies (A).

Let φ = ((x1 − 1)2 + x2
2 + x2

3, x1, x2) ⊂ Q[x1, x2, x3]. As the restriction of φ1 to Rn is the
square of the Euclidean distance to (1, 0, 0), (P) is satisfied. Since 2 ≤ i ≤ d, we must take
i = 2. Then we see that one can write

W2 = V (f, (3x1x3 + 1)(x1 − x3) + 3x2
3 − 1).

One checks that W2 is 1-equidimensional and has no singular point as well, so that (φ, 2)

satisfies (B1). Let K2 = W ◦(φ1,W2), which is a finite set of cardinality 45 (of which 5 are
real). Besides, for any α ∈ C,

V ∩φ−1
1 (α) = V (f, (x1 − 1)2 + x2

2 + x2
3 − α)

is either empty or an equidimensional algebraic set of dimension 1. Therefore, (φ, 2) satisfies
(B). Finally, since W ◦(φ1,W2) ∩ R3 is a finite set, assumption (C) holds vacuously. Recall
that, by definition, F2 = φ1

−1(φ1(K2)) ∩ V . In conclusion, by Theorem 6.1.1, W2 ∪ F2 is a
1-roadmap of (V, ∅). Figure 7.1 illustrates this example.

Figure 7.1. An illustration of Example 7.1.2. The real trace V ∩ R3 is plotted twice as a grid. On the
left, W2 ∩ R3 is represented as red lines, and the crosses represent all the real points of
K2. Then, on the right, we replaced the points of K2 by the fibers of F2 ∩R3 (black lines),
to repair the connectivity failures of W2 ∩ R3. In particular, F2 ∩ R3 connects the semi-
algebraically connected components of W2 ∩ R3 that lie in the same semi-algebraically
connected component of V ∩ R3.
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7.2 Preliminaries

7.2.1 Minors, rank and submatrices

We present here some technical results on the minors and the rank of a certain class of
matrices that will occur in this chapter, when dealing with particular cases and incidence
varieties in Section 7.4.

Lemma 7.2.1. Let q ≥ 1 and 1 ≤ c ≤ p be integers. Let A,B,C be respectively c× p, c× q and

i× p matrices with coefficients in a commutative ring R such that M1 and M2 are the following

(c+ q)× (q + p) matrices:

M1 =



B A

Iq O


 and M2 =



O A

Iq C


 ,

where Iq is the identity matrix of size q. Let m ∈ R and 0 ≤ e ≤ c, then for k = 1, 2 the

following conditions are equivalent:

1. m is the determinant of a (q + e)-submatrix of Mk that contains Iq;

2. (−1)qem is an e-minor of A.

In this case, if 1 ≤ i1 ≤ · · · ≤ ie ≤ c and 1 ≤ j1, . . . , je ≤ p are the indices of respectively the

rows and the columns of A selected in item 2, then the corresponding rows and columns in Mk

are of respective indices

1 ≤ i1 ≤ · · · ≤ ie ≤ c+ 1 ≤ · · · ≤ c+ q and 1 ≤ · · · ≤ q ≤ q + j1 ≤ · · · ≤ q + je.

Proof. The determinant of any submatrix of Mi containing Iq can be reduced, up to the sign
(−1)qe, to a minor of A by using the cofactor expansion with respect to the last q rows of
M1 (resp. the first q columns of M2). Conversely, any e-minor of A is a (q + e)-minor of
Mk, by extending the associated submatrix of A to a submatrix of Mk containing Iq. The
correspondence between indices stated above is then straightforward.

Lemma 7.2.2. With the notation of Lemma 7.2.1, if R is a field, then rank(Mk) = rank(A) +

q ≥ q for k = 1, 2.

Proof. For k = 1, performing row operations allows us to replace B by the zero matrix, after
which the claim becomes evident. For k = 2, use column operations.

7.2.2 Polynomial maps, generalized polar varieties and fibers

Let Z ⊂ Cn be an equidimensional algebraic set and φ = (φ1, . . . , φm) be a finite set of
polynomials of C[X]; we still denote by φ : Z → Cm the restriction of the polynomial map
induced by φ to Z.

LetK(φ, Z) = W ◦(φ, Z)
⋃

sing(Z) be the set of singular points of φ on Z – see Section 2.5
of Chapter 2. Recall that, when Z is defined by a reduced regular sequence f = (f1, . . . , fc),
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K(φ, Z) is the defined as the intersection of Z with the set of points of Cn where the
Jacobian matrix of (f ,φ) has rank at most c+m− 1 (see [SS17, Lemma A.2]).

For 1 ≤ i ≤ m, we set

φi : Cn → Ci

y 7→ (φ1(y), . . . , φi(y)).

Given the maps (φi)1≤i≤m, we denote W ◦(φi, Z), W (φi, Z) and K(φi, Z) by respectively
W ◦
ϕ(i, Z), Wϕ(i, Z) and Kϕ(i, Z). For i = 0, we let C0 be a singleton of the form C0 = ¶•♢,

and φ0 : y ∈ Cn → • ∈ C0 be the unique possible map. Then for all y ∈ C0, φ−1
0 (y) = Cn;

we set W ◦
ϕ(0, Z) = Wϕ(0, Z) = ∅. For 0 ≤ i ≤ m, the set Wϕ(i, Z) is called the i-th

generalized polar variety associated to φ on Z. We refer to Section 2.6 of Chapter 2 for an
extended discussion on polar varieties.

The main result we state in this subsection is the following (the somewhat lengthy proof
is in Section 7.5). It establishes some genericity properties of generalized polar varieties
associated to a class of polynomial maps. It is a generalization of [SS03a, Theorem 1], which
only deals with projections.

Proposition 7.2.3. Let V ⊂ Cn be a d-equidimensional algebraic set with finitely many

singular points and θ be in C[X]. Let 2 ≤ r ≤ d+ 1. For α = (α1, . . . ,αr) in Crn, we define

φ = (φ1(X,α1), . . . , φr(X,αr)), where for 2 ≤ j ≤ m

φ1(X,α1) = θ(X) +

n∑

k=1

α1,kxk and φj(X,αj) =

n∑

k=1

αj,kxk.

Then, there exists a non-empty Zariski open subset ΩI(V, θ) ⊂ Crn such that for every α ∈
ΩI(V, θ) and i ∈ ¶1, . . . , r♢, the following holds:

1. either Wϕ(i, V ) is empty or (i− 1)-equidimensional;

2. the restriction of φi−1 to Wϕ(i, V ) is a Zariski-closed map;

3. for any z ∈ Ci−1, the fiber Kϕ(i, V ) ∩φ−1
i−1(z) is finite.

The connectivity result Theorem 6.1.1 of the previous chapter involve of generalized polar
varieties satisfying these properties, but also of fibers of polynomial maps. This pushes us to
fix some notations below.

Remark 7.2.4. Let φ = (φ1, . . . , φr) be polynomials in C[X] and an integer 1 ≤ e ≤ r. Given
an algebraic set V ⊂ Cn and a set Q ⊂ Ce, the fiber of V over Q with respect to φ is the set
V♣ϕe∈ Q = V ∩φ−1

e (Q). We say that V lies over Q with respect to φ if φe(V ) ⊂ Q. Finally, for
z ∈ Ce, the set V♣ϕe∈ ¶z♢ will be denoted by V♣ϕe= z.

7.2.3 Charts and atlases of algebraic sets

We say that an algebraic set is complete intersection if it can be defined by a number of
equations equal to its codimension. Not all algebraic sets are complete intersections; for
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instance determinantal varieties and, consequently, a whole class of generalized polar
varieties, are a prototype of non-complete intersections. This creates complications to
control the complexity of algorithms manipulating generalized polar varieties recursively.

However, we may use local representations which describe Zariski open subsets of an
algebraic set with a number of equations equal to its codimension.

Such local representations are obtained by considering locally closed sets. We say that
a subset V ◦ of Cn is locally closed if there exist an open O and a closed Zariski subset Z
of Cn such that V ◦ = Z ∩ O. In that case, the dimension of V ◦ is the dimension of its
Zariski closure V , and V ◦ is said to be equidimensional if V is. In this situation, we define
reg(V ◦) = reg(V ) ∩ V ◦ and sing(V ◦) = sing(V ) ∩ V ◦, and V ◦ is said to be non-singular if
reg(V ◦) = V ◦. For f = (f1, . . . , fc) ⊂ C[X] with c ≤ n, we define the locally closed set
V ◦

reg(f) as the set of all y where the Jacobian matrix Jac(f) of f has full rank c. We will
denote by Vreg(f) the Zariski closure of V ◦

reg(f).
A chart associated to an algebraic set V ⊂ Cn can be seen as a local representation of V

by another locally closed subset of V that is smooth and in complete intersection. We recall
hereafter the definitions introduced in [SS17, Section 2.5], which we slightly generalize.
Below, for a polynomial m in C[X], recall that we write O(m) = Cn − V (m).

Definition 7.2.5 (Charts of algebraic sets). Let 1 ≤ e ≤ r ≤ n + 1 be integers and
φ = (φ1, . . . , φr) ⊂ C[X]. Let Q ⊂ Ce be a finite set and V, S ⊂ Cn be algebraic sets
lying over Q with respect to φ. We say that a pair of the form χ = (m,h) with m and
h = (h1 . . . , hc) in C[X] is a chart of (V,Q, S,φ) if the following holds:

(C1) O(m) ∩ V − S is non-empty;

(C2) O(m) ∩ V − S = O(m) ∩ V (h)♣ϕe∈ Q − S;

(C3) e+ c ≤ n;

(C4) for all y ∈ O(m) ∩ V − S, Jacy([h,φe]) has full rank c+ e.

When φ = (x1, . . . , xn) defines the canonical projection, one will simply refer to χ as a chart
of (V,Q, S), and if e = 0 as a chart of (V, S) (no matter what φ is).

The first condition C1 ensures that χ is not trivial, and the following ones ensure that χ is
a smooth representation of V − S in complete intersection (typically, for V equidimensional,
S contains the singular points of V ). This is a generalization of [SS17, Definition 2.2] in the
sense that, if φ = (x1, . . . , xn), one recovers the same definition.

Lemma 7.2.6. Let V, S ⊂ Cn be two algebraic sets with V d-equidimensional. Let χ = (m,h),

with h = (h1, . . . , hc), be a chart of (V, S) and φ = (φ1, . . . , φn+1) ⊂ C[X]. Then, for

1 ≤ i ≤ d+ 1 and y ∈ O(m) ∩ V − S, y lies in Wϕ(i, V ) if and only if Jacy([h,φi]) does not

have full rank c+ i.

Proof. Let y ∈ O(m)∩ V −S. By [SS17, Lemma A.8], y ∈ reg(V ), so that y lies in Wϕ(i, V )

if and only if it lies in W ◦
ϕ(i, V ). Besides, by [SS17, Lemma A.7], Ty V coincide with

ker Jacy(h). Hence, by definition y lies in Wϕ(i, V ) if and only if dyφi(ker Jacy(h)) ̸= Ci.
But the latter, is equivalent to saying that the matrix Jacy([h,φi]) does not have full rank
c+ i.
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A straightforward rewriting of Lemma 7.2.6 is the following which provides a local
description of polar variety by means of a critical locus on a variety defined by a complete
intersection.

Lemma 7.2.7. Reusing the notation of Lemma 7.2.6, the sets Wϕ(i, V ) and W ◦
ϕ(i,Vreg(h))

coincide in O(m)− S.

Together with the notion of charts, we define atlases as a collection of charts that cover
the whole algebraic set we consider.

Definition 7.2.8 (Atlases of algebraic sets). Let 1 ≤ e ≤ n be integers and the sequence
φ = (φ1, . . . , φn+1) ⊂ C[X]. LetQ ⊂ Ce be a finite set and V, S ⊂ Cn be algebraic sets lying
over Q with respect to φ. Let χ = (χj)1≤j≤s with χj = (mj ,hj) for all j, and m ∈ C[X]

and h = (h1 . . . , hc) ⊂ C[X]. We say that χ is an atlas of (V,Q, S,φ) if the following holds:

(A1) s ≥ 1;

(A2) for each 1 ≤ j ≤ s, χi is a chart of (V,Q, S,φ);

(A3) V − S ⊂ ⋃1≤j≤sO(mj).

When φ = (x1, . . . , xn) is defines the canonical projection, one simply refers to χ as an atlas
of (V,Q, S), and if e = 0 as an atlas of (V, S).

Here the definition is the same as [SS17, Definition 2.3]. Note that, according to [SS17,
Lemma A.13], there exists an atlas of (V, sing(V )) for any equidimensional algebraic set V .
This allows us to construct atlases of objects of V through regular representations.

7.2.4 Charts and atlases for generalized polar varieties

We deal now with the geometry of generalized polar varieties (under genericity assumptions)
and show how to define charts and atlases for them. In the following, if no mention is
made, we let φ = (φ1, . . . , φn+1) ⊂ C[X]; for 1 ≤ i ≤ n, we denote by φi the sequence
(φ1, . . . , φi) and, by a slight abuse of notation, the polynomial map it defines.

Definition 7.2.9. Let h = (h1, . . . , hc) ⊂ C[X] with 1 ≤ c ≤ n and let i ∈ ¶1, . . . , n − c♢.
Let m′′ be a (c+ i− 1)-minor of Jac([h,φi]) containing the rows of Jac(φi). We denote by
Hϕ(h, i,m′′) the sequence of (c+ i)-minors of Jac([h,φi]) obtained by successively adding
the missing row and a missing column of Jac([h,φi]) to m′′. This sequence has length
n− c− i+ 1.

Then, given a chart χ = (m,h) of some algebraic set V , we can define a candidate for
being a chart of generalized polar varieties associated to φi and V (h) ∩ O(m).

Definition 7.2.10. Let V, S ⊂ Cn be two algebraic sets, χ = (m,h) be a chart of (V, S), with
h of length c and i ∈ ¶1, . . . , n− c♢. For every c-minor m′ of Jac(h) and every (c+ i− 1)-
minor m′′ of Jac(h,φi) containing the rows of Jac(φi), we define Wchart(χ,m

′,m′′,φi) as
the pair:

Wchart(χ,m
′,m′′,φi) =

(
mm′m′′,

(
h,Hϕ(h, i,m′′)

) )
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Then, the definition of the associated atlas comes naturally. Let V, S ⊂ Cn be two algebraic
sets with V d-equidimensional, χ = (χj)1≤j≤s be an atlas of (V, S) (with χj = (mj ,hj))
and i ∈ ¶1, . . . , d♢. Since V is d-equidimensional, by [SS17, Lemma A.12], all the sequences
of polynomials hj have same cardinality c = n− d.

Definition 7.2.11. We let Watlas(χ, V, S,φ, i) be the sequence of all Wchart(χj ,m
′,m′′,φi)

for every j ∈ ¶1, . . . , s♢, every c-minor m′ of Jac(hj) and every (c + i − 1)-minor m′′ of
Jac(hj ,φi) containing the rows of Jac(φi), for which O(mjm

′m′′) ∩Wϕ(i, V ) − S is not
empty.

These constructions generalize the ones introduced in [SS17, Section 3.1] in the following
sense: for φ = (x1, . . . , xn), except for some trivial cases, the objects we just defined match
the ones in [SS17, Definition 3.1 to 3.3], possibly up to signs (which are inconsequential).
The next lemma makes this more precise; in this lemma, we write π = (x1, . . . , xn) and
πi = (x1, . . . , xi).

Lemma 7.2.12. Let V, S be algebraic sets and h = (h1, . . . , hc) ⊂ C[X]. Let 1 ≤ i ≤ n − c
and m′′ be a (c + i − 1)-minor of Jac(h,πi), containing the rows of Jac(πi). Then either

m′′ = 0 or

1. µ′′ = (−1)i(c−1)m′′ is a (c− 1)-minor of Jac(h, i);

2. Hπ (h, i,m′′) = (−1)icH, where H is the (n− c− i+ 1)-sequence of c-minors of Jac(h, i)

obtained by successively adding the missing row and the missing columns of Jac(h, i) to

µ′′;

3. if χ = (h,m) is a chart of (V, S), then for every c-minor m′ of Jac(h),

Wchart(χ,m
′,m′′) = Wchart(χ,m

′, (−1)i(c−1)µ′′) =
(
mm′m′′, (h, (−1)icH)

)
,

with H as above.

Assume, in addition, that V is d-equidimensional, with d = n − c. Let χ = (χj)1≤j≤s be an

atlas of (V, S), with χj = (hj ,mj), and let c be the common cardinality of the hj ’s. Then

4. Watlas(χ, V, S,π , i) is the sequence of all those Wchart(χj ,m
′, (−1)i(c−1)µ′′), for j ∈

¶1, . . . , s♢ and for m′, µ′′ respectively a c-minor of Jac(hj) and a (c − 1)-minor of

Jac(hj , i) for which O(mjm
′µ′′) ∩W (πi, V )− S is not empty.

Proof. According to Lemma 7.2.1, up to the sign (−1)i(c−1), the (c− 1)-minors of Jac(h, i)

are exactly the (i+ c− 1)-minors of Jac(h,πi) containing the identity matrix Ii = Jac(πi),
since

Jacx1,...,xn
(h,πi) =




Jacx1,...,xi
(h) Jacxi+1,...,xn

(h)

Ii O


 .

Since m′′ contains the rows of Jac(πi) = [Ii O], either it actually contains Ii or it is zero,
as a zero row appears. We assume the first case; then, by the discussion above, µ′′ =

(−1)i(c−1)m′′ is the determinant of a (c− 1)-submatrix M of Jac(h, i) = Jacxi+1,...,xn
(h).
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The row and columns of Jac(h, i) that are not in M have respective indices 1 ≤ k ≤ c and
1 ≤ ℓ1 ≤ . . . ≤ ℓn−i−c+1 ≤ n. Since m′′ contains Ii, the rows and columns of Jac(h,πi) that
are not in m′′ have respective indices 1 ≤ k′ ≤ c and i+ 1 ≤ ℓ′

1 ≤ . . . ≤ ℓ′
n−c−i+1 ≤ n. Then,

according to Lemma 7.2.1, for all 1 ≤ j ≤ n− c− i+ 1,

k = k′ and ℓj = ℓ′
j − i.

Hence, by Lemma 7.2.1, the (c + i)-minors obtained by adding the missing row and the
missing columns of Jac(h,πi) to the submatrix used to define m′′ are exactly the c-minors
of Jac(h, i) obtained by adding the missing row and the missing columns of Jac(h, i) to µ′′,
up to a factor (−1)ic. This gives the second statement. The third statement is then nothing
but the definition of Wchart(χ,m,m

′′).
of
Finally, consider an atlas χ of (V, S). By Lemma 7.2.1, for j ∈ ¶1, . . . , s♢, all (c−1)-minors

µ′′ of Jac(hj , i) are, up to sign, (c+i−1)-minors of Jac(hj ,πi) built with the rows of Jac(πi).
Conversely, let j ∈ ¶1, . . . , s♢, m′ be a c-minor of Jac(hj) and let m′′ be a (c+ i− 1)-minor
of Jac(hj ,πi) containing the rows of Jac(πi). Then either m′′ = 0, so that O(m′′) and then
O(mjm

′m′′)∩W (πi, V )− S is empty, or µ′′ = (−1)i(c−1)m′′ is a (c− 1)-minor of Jac(hj , i).
Hence, according to the third item, for j ∈ ¶1, . . . , s♢ and any c-minor m′ of Jac(hj), the
sequences of

• all those Wchart(χj ,m
′,m′′) for every (c + i − 1)-minor m′′ of Jac(h,πi) containing

the rows of Jac(πi), for which O(mjm
′m′′) ∩W (πi, V )− S is not empty, and

• all those Wchart(χj ,m
′, (−1)i(c−1)m′′) for every (c−1)-minor µ′ of Jac(hj , i) for which

O(mjm
′m′′) ∩W (πi, V )− S is not empty,

are equal to Watlas(χ, V, S,π , i).

We can now state the main result of this subsection, which we prove in Section 7.6. This
is a generalization of [SS17, Proposition 3.4] which only deals with the case of projections.

Proposition 7.2.13. Let V, S ⊂ Cn be two algebraic sets with V d-equidimensional and S

finite and χ be an atlas of (V, S). Let 2 ≤ r ≤ d+ 1 and θ = (θ1, . . . , θr) and ξ = (ξ1, . . . , ξr),

and for 1 ≤ j ≤ r, let αj = (αj,1, . . . , αj,n) ∈ Cn and

φj(X,αj) = θj(X) +

n∑

k=1

αj,kxk + ξj(αj) ∈ C[X].

where θj ∈ C[X] and ξj : Cn → C is a polynomial map, with coefficients in C.

There exists a non-empty Zariski open subset ΩW(χ, V, S,θ, ξ) ⊂ Crn such that for every

α ∈ ΩW(χ, V, S,θ, ξ), writing φ = (φ1(X,α), . . . , φr(X,α)), the following holds. For i in

¶1, . . . , r♢, either Wϕ(i, V ) is empty or

1. Wϕ(i, V ) is an equidimensional algebraic set of dimension i− 1;

2. if 2 ≤ i ≤ (d+ 3)/2, then Watlas(χ, V, S,φ, i) is an atlas of (Wϕ(i, V ), S)

and sing(Wϕ(i, V )) ⊂ S.
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We end this subsection with a statement we use further for the proof of our main algorithm.

Proposition 7.2.14. Let V ⊂ Cn be a d-equidimensional algebraic set with d ≥ 1 and sing(V )

finite. Let θ ∈ C[X], and for i = 1, 2, let αi = (αi,1, . . . , αi,n) in Cn and

φ1(X,α1) = θ(X) +

n∑

k=1

α1,kxk and φ2(X,α2) =

n∑

k=1

α2,kxk.

Then there exists a non-empty Zariski open subset ΩK(V, θ) ⊂ C2n such that for every α =

(α1,α2) ∈ ΩK(V, θ), and φ = (φ1(X,α1), φ2(X,α2)), the following holds. Either Wϕ(2, V )

is empty or

1. Wϕ(2, V ) is 1-equidimensional;

2. the sets W ◦
ϕ(1,Wϕ(2, V )), Wϕ(1,Wϕ(2, V )) and Kϕ(1,Wϕ(2, V )) are finite.

Proof. Let χ be an atlas of (V, sing(V )), as obtained by applying [SS17, Lemma A.13]. Let
ΩK(V,θ) be the intersection of the non-empty Zariski open subsets ΩI(V, θ) and

ΩW(χ, V, sing(V ), (θ, 0), 0)

of C2n, obtained by applying respectively Propositions 7.2.3 and 7.2.13 with r = 2 (recall
that we assume d ≥ 1). From now on, choose α = (α1,α2) ∈ ΩK(V, θ) and let φ =

(φ1(X,α1), φ2(X,α2)). In the following, we denote Wϕ(2, V ) by W2. Suppose W2 is
non-empty, otherwise the result trivially holds.

Since α ∈ ΩW(χ, V, sing(V ),θ, 0) and 2 ≤ (d+ 3)/2 for d ≥ 1, then, by Proposition 7.2.13,
W2 is equidimensional of dimension 1 and sing(W2) ⊂ sing(V ) is finite. Hence KW =

Wϕ(1,W2) is well defined and the following inclusion holds

KW ⊂
⋃

z∈ϕ1(KW )

W2 ∩φ−1
1 (z)

By the algebraic version of Sard’s lemma from [SS17, Proposition B.2], φ1(Wϕ(1,W2)) is
finite. Besides, since α ∈ ΩI(V, θ), then by Proposition 7.2.3, φ−1

1 (z) ∩W2 is finite for any
z ∈ C.

Hence, as a set contained in a finite union of finite sets, KW is finite, and so are W ◦
ϕ(1,W2)

and Kϕ(1,W2) = KW ∪ sing(W2).

7.2.5 Charts and atlases for fibers of polynomial maps

We now study the regularity and dimensions of fibers of some generic polynomial maps over
algebraic sets. The construction we introduce below is quite similar to the one in [SS17],
but a bit more general.

Definition 7.2.15. Let V, S ⊂ Cn be two algebraic sets with V d-equidimensional, χ =

(χj)1≤j≤s be an atlas of (V, S). Let 1 ≤ e ≤ r ≤ n + 1 be integers and φ = (φ1, . . . , φr) ⊂
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C[X]. For Q ⊂ Ce we define Fatlas(χ, V,Q, S,φ) as the sequence of all χj = (mj ,hj) such
that O(mj) ∩ FQ − SQ is not empty, where

FQ = V♣ϕe∈ Q and SQ =
(
S ∪Wϕ(e, V )

)
♣ϕe∈ Q

.

The above definition, is a direct generalization of [SS17, Definition 3.6], where φ =

(x1, . . . , xn). The main result of this subsection is the following proposition, which we prove
in Section 7.7.

Proposition 7.2.16. Let V, S ⊂ Cn be two algebraic sets with V d-equidimensional and S

finite. Let χ be an atlas of (V, S). Let 2 ≤ r ≤ d + 1 and φ = (φ1, . . . , φr) ⊂ C[X]. For

2 ≤ j ≤ d, let αj = (αj,1, . . . , αj,n) ∈ Cn and

φ1(X,α1) = θ(X) +

n∑

k=1

α1,kxk and φj(X,αj) =

n∑

k=1

αj,kxk

where θ ∈ C[X].

There exists a non-empty Zariski open subset ΩF(χ, V, S, θ) ⊂ Crn such that for every α =

(α1, . . . ,αr) ∈ ΩF(χ, V, S, θ) and writing φ = (φ1(X,α1), . . . , φr(X,αr)), the following

holds. Let 0 ≤ e ≤ d, Q ∈ Ce a finite subset and FQ and SQ be as in Definition 7.2.15. Then

either FQ is empty or

1. SQ is finite;

2. VQ is an equidimensional algebraic set of dimension d− e;

3. Fatlas(χ, V,Q, S,φ) is an atlas of (FQ, SQ) and sing(FQ) ⊂ SQ.

7.3 The algorithm

7.3.1 Overall description

Recall that X denotes a sequence of n indeterminates x1, . . . , xn. In this chapter, we also
consider a family A = (ai,j)1≤i,j≤n of n2 new indeterminates, which stand for generic
parameters. For 1 ≤ i, j ≤ n, we note ai = (ai,1, . . . , ai,n), so that A≤i represents the
subfamily (a1, . . . , ai). An element α ∈ Cin will often be represented as a vector of length i
of the form (α1, . . . ,αi), with all αj = (αj,1, . . . , αj,n) ∈ Cn.

Then, as suggested by Propositions 7.2.3, 7.2.13, 7.2.14 and 7.2.16, we will consider
polynomials of the form:

ϕi(X, ai) = θi(X) +

n∑

j=1

ai,jxj + ξi(ai) ∈ R[X,A]. (7.1)

where 1 ≤ i ≤ n, θi ∈ R[X] and ξi ∈ R[A]. We can choose θi so that the polynomial map
ϕi inherits some useful properties. For instance, taking θi = x2

1 + · · ·+ x2
n, for any αi in Rn,

the polynomial map associated to ϕi(X,αi) is proper and bounded from below on Rn.
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Hereafter, we describe, on an example, the core idea of the the strategy that guided the
design of our algorithm and the choice of data structures.

Example 7.3.1. Consider the algebraic set V = V (f) ⊂ C4 defined as the vanishing locus
of the polynomial

f =

4∑

i=1

(x3
i − xi)− 1 ∈ Q[x1, x2, x3, x4].

We want to compute a roadmap of (V, ∅) (or simply V ). Following the strategy we
designed in the introduction, V must satisfies some regularity properties, that is

(H1) V is d-equidimensional, d ≥ 2, and sing(V ) is finite.

The first part of the assumption can be satisfied by computing an equidimensional decom-
position of V that is done within the complexity bounds considered in this work (see e.g.
[Lec03] for the best-known complexity bound for a probabilistic algorithm. Besides, the
condition d ≥ 2 is not restrictive as the case d = 1 is trivial for roadmap computations. The
smoothness assumption is more restrictive. Indeed, it can be satisfied using deformation
techniques, such as done in [BR14, BRSS14], but these steps would not fit, as such, in our
complexity bounds.

Let us check that, in our example, V satisfies H1. We will describe further a subroutine
SingularPoints, to compute sing(V ) as long as this holds.

Checking (H1). As an hypersurface, V is irreducible, and then equidimensional, of dimension 3. The
partial derivatives of f , ∂f

∂xi
= 3x2

i − 1, for 1 ≤ i ≤ 4, do not simultaneously vanish on
V . Hence, sing(V ) = ∅, and V satisfies assumption (H1).

We want to choose a sequence of polynomial φ = (φ1, . . . ,φn) in Q[X] such that the
following holds:

(H2) the restriction of φ1 to V ∩ Rn is proper and bounded from below;

(H3) W2 = Wϕ(2, V ) is 1 equidimensional, and smooth outside sing(V );

(H4) for any z ∈ C, V♣ϕ1= z is (d− 1)-equidimensional;

(H5) Kϕ(1,W2) is finite.

In addition, let K = Kϕ(1,W2) ∪ sing(V ) and F = V ∩φ−1
1 (φ1(K)). We require that

(H6) PW = F ∩W2 is finite.

Then, under the above assumptions if RF is a roadmap of (F,PW ), then W2 ∪ RF is
a roadmap of V . This statement, is a consequence of both [SS11, Proposition 2] and
Theorem 6.1.1, and will be properly stated and proved in Proposition 7.3.10. This splits
the problem of computing a roadmap of V into the computation of representations of W2,
F and PW , and a roadmap of (F,PW ). Since F ∩ Rn is bounded, by assumption (H2), the
latter computation can be done using the algorithm of [SS17].

We describe this process more precisely with our example. Each step consisting in checking
the assumptions, and computing the associated objects.
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Checking (H2/3). Set first φ =
(∑4

i=1 x
2
i , x2, x3, x4

)
. The restriction of φ1 to V ∩R4 is proper and

non-negative. We can then compute a representation of W2 = Wϕ(2, V ), before
computing one for its singular locus sing(W2). However, the latter singular set is not
empty, while sing(V ) is. This contradicts the assumptions needed in Theorem 6.1.1
and the strategy for computing a roadmap of V designed in the introduction might
fail.

Following Propositions 7.2.3, 7.2.13, 7.2.14 and 7.2.16 from the preliminaries, we pro-
pose the following. To prevent these regularity failures, and to satisfy all assumptions
of Theorem 6.1.1, while keeping the properties of φ, we add to φ1 a generic linear
form, e.g. x1 − x4.

Hence, consider now the finite sequence φ of polynomials maps

φ =

(
4∑

i=1

x2
i + x1 − x4, x2, x3, x4

)
,

whose restriction to R4 is still a proper and bounded below map, by construction. If
the linear form we added has been sufficiently randomly chosen, Proposition 7.2.13
claims that W2 satisfies assumption (H3).

Using Gröbner basis computations on a determinantal ideal defining W2, we computes
a representation of W2, and next sing(W2), that turns out to be empty, as requested.
More generally, computing the two previous sets efficiently is the purpose of the
algorithm SolvePolar, presented in Lemma 7.3.5.

Checking (H4). By Proposition 7.2.16, this assumption holds if we have added to φ a linear form that
is generic enough. Using the Jacobian criterion, we can check that in our case, for any
z ∈ C, the fiber Fz = V ∩ φ−1

1 (z) is an equidimensional algebraic set of dimension
2 (if it is not empty). Moreover the singular locus of Fz is contained in the finite set
Wϕ(1, V ). Computing the latter set is tackled by the subroutine Crit, presented in
Lemma 7.3.4.

Checking (H5). We also need to check the finiteness and compute the set Kϕ(1,W2). If φ is generic
enough, the finiteness is ensured by Proposition 7.2.14; computing this set is the
purpose of the algorithm CritPolar, presented in Lemma 7.3.7. In our case, there are
finitely many (more precisely 129) such points, and 23 of them are real.

Checking (H6). We need to compute the set K = Kϕ(1,W2) ∪ sing(V ). As the two members of the
unions have been computed by the algorithms CritPolar and SingularPoints, respectively,
one can compute this union using the procedure Union from [SS17, Lemma J.3] (also
presented in the next subsection).

Then, for φ generic enough, Proposition 7.2.3 ensures that the last assumption holds.
The computation of PW boils down to computing finitely many fibers on the restriction
of φ1 to W2. This is the purpose of the algorithm FiberPolar, presented in Lemma 7.3.7.

At this point, we have computed representations of W2 and PW , and ensured that all
assumptions of Theorem 6.1.1 are satisfied. Hence, one only need to compute a roadmap
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of (F,PW ). This is the purpose of the algorithm RoadmapBounded, presented in Proposi-
tion 7.3.8.

7.3.2 Subroutines

Our algorithm (Algorithm 2) makes use of several subroutines which allow us to manipu-
late zero-dimensional and one-dimensional parametrizations, polar varieties and fibers of
polynomial maps in order to make effective Theorem 6.1.1.

As a reminder, in this chapter, we manipulate subroutines that involve selecting suitable
parameters in Qi, for some i ≥ 1. These algorithms are probabilistic, which means that
there exists a non-zero polynomial ∆, such that for a randomly chosen parameter λ ∈ Qi,
success is achieved if ∆(λ) ̸= 0. However, it is important to note that these algorithms
are considered Monte Carlo, as their output’s correctness cannot be guaranteed within
a reasonable complexity. In certain cases, where we can identify errors, we require our
procedures to output fail. However, the absence of this output does not guarantee correctness.

Let 1 ≤ c ≤ n, and f = (f1, . . . , fc) be a sequence of polynomials in R[X]. We say that f
satisfies assumption (A) if

(A) : f is a reduced regular sequence, with d = n− c ≥ 2, and sing(V (f)) is finite.

In particular, the zero-set of f is then either empty or d-equidimensional.

7.3.2.a. Basic subroutines

The first two subroutines we use are described in [SS17] and are used to compute sing(V (f))

(on input a straight-line program evaluating f) and to compute a rational parametrization
encoding the union of zero-dimensional sets or the union of algebraic curves. They are both
Monte Carlo algorithms, in the sense described above, and can output fail in case errors have
been detected during the execution. However, in case of success, the following holds.

• SingularPoints, described in [SS17, Section J.5.4], takes as input a straight-line program
Γ that evaluates polynomials f ∈ C[X] satisfying assumption (A) and outputs a zero-
dimensional parametrization describing sing(V (f)).

• Union, described in [SS17, Lemma J.3] (resp. [SS17, Lemma J.8]), takes as input two
zero-dimensional (resp. one-dimensional) parametrizations P1 and P2 and outputs a
zero-dimensional (resp. one-dimensional) parametrization encoding Z(P1) ∪ Z(P2).

We now describe basic subroutines performing elementary operations on straight-line
program and zero-dimensional parametrizations. The first one allows to generate a generic
polynomial with a prescribed structure.

Lemma 7.3.2. Let 1 ≤ i ≤ n and α = (α1, . . . ,αi) ∈ Cin. Then there exists an algorithm

PhiGen which takes as input α and returns a straight-line program Γϕ of length 2(i+ 1)n− i
computing in Q[X]:

φ1 =

n∑

k=1

x2
k + α1,kxk and φj =

n∑

k=1

αj,kxk for 2 ≤ j ≤ i.
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Proof. For 1 ≤ j ≤ i, the straight-line program

Γj =
(

(×, αj,1,−n+ 1), . . . , (×, αj,n, 0), (+, n, 1), . . . , (+, 2n− 1, n− 1)
)

has length 2n− 1 and computes
∑n

k=1 αj,kxk in Q[X]. Similarly, the straight-line program

Γ =
(

(×− n+ 1,−n+ 1), . . . , (×, 0, 0), (+, n, 1), . . . , (+, 2n− 1, n− 1)
)
,

has length 2n− 1, and computes
∑n

k=1 x
2
k in Q[X]. Hence, there exists a straight-line pro-

gram Γ′
1, of length 4n− 1, computing φ1 as defined in the statement. Then, up to translation

of indices, the straight-line program Γϕ = (Γ′
1,Γ2, . . . ,Γi), has length 2(i + 1)n − i, that

computes φ1, . . . , φi, as defined in the statement, in Q[X].

Hereafter, we present a procedure computing the image of a zero-dimensional parametri-
zation by a polynomial map, given as a straight-line program, generalizing the subroutine
Projection from [SS17, Lemma J.5]. The proof of the next lemma is given in Subsection 7.4.1.

Lemma 7.3.3. Let P be a zero-dimensional parametrization of degree κ such that Z(P) ⊂ Cn

and let Γϕ be a straight-line program of length E′ computing polynomials φ = (φ1, . . . , φi).

There exists a Monte Carlo algorithm Image which, on input Γϕ, P and j ∈ ¶1, . . . , i♢, outputs

either fail or a zero-dimensional parametrization Q, of degree at most κ, using

Õ
(
(n2κ+ E′)κ

)

operations in Q. In case of success, Z(Q) = φj(Z(P)).

7.3.2.b. Subroutines for polar varieties

The next subroutines are used to compute generalized polar varieties and quantities related
to them. The proof of all statements below can be found in Subsection 7.4.4. In this
subsection, we fix 1 ≤ c ≤ n− 1 and we refer to the following objects:

• sequences of polynomials g = (g1, . . . , gc) and φ = (φ1, φ2) in Q[x1, . . . , xn], of
degrees bounded by D, such that g satisfies assumption (A); we note d = n− c;

• straight-line programs Γ and Γϕ, of respective lengths E and E′, computing respec-
tively g and φ;

• zero-dimensional parametrizations S and Q′′, of respective degrees σ and κ′′, describ-
ing finite sets S ⊂ Cn and Q′′ ⊂ C, such that sing(V (g)) ⊂ S;

• an atlas χ of (V (g), S), given by [SS17, Lemma A.13], as S is finite and contains
sing(V (g)).

We start with the subroutine Crit, which is used for computing critical and singular points
of some polynomial map, again under some regularity assumption. These critical points are
nothing but zero-dimensional polar varieties.
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Lemma 7.3.4. Assume that Kϕ(1,V (g)) is finite. There exists a Monte Carlo algorithm

Crit which takes as input Γ, Γϕ and S and which outputs either fail or a zero-dimensional

parametrization SF , with coefficients in Q, of degree at most

(
n+ 1

d

)
Dc+2(D − 1)d + σ

such that, in case of success, Z(SF ) = Kϕ(1,V (g)) ∪ S, and using at most

Õ
(
E′′(n+ 2)4d+8D2n+3(D − 1)2d + nσ2

)

operations in Q, where E′′ = E + E′.

We now tackle higher dimensional cases, with the subroutine SolvePolar which, under
some assumptions, computes one-dimensional parametrization encoding one-dimensional
generalized polar varieties.

Lemma 7.3.5. Let W = Wϕ(2,V (g)) and assume that one of the following holds

• W is empty or

• W is 1-equidimensional, with sing(W ) ⊂ S, and Watlas(χ,V (g), S,φ, 2) is an atlas of

(W,S)

Then, there exists a Monte Carlo probabilistic algorithm SolvePolar which takes as input Γ, Γϕ

and S and which outputs either fail or a one-dimensional parametrization W2, with coefficients

in Q, of degree at most

δ = (n+ c+ 4)Dc+2(D − 1)d(c+ 2)d.

such that, in case of success, Z(W2) = W . It uses at most

Õ
(
(n+ c)3(E′′ + (n+ c)3)Dδ3 + (n+ c)δσ2

)

operations in Q, where E′′ = E + E′.

The subroutine CritPolar is devoted to compute critical points of the restriction of some
polynomial map to a generalized polar variety of dimension at most one. It generalizes the
subroutine W1 from [SS17, Proposition 6.4].

Lemma 7.3.6. Let W = Wϕ(2,V (g)) and assume that either W is empty, or

• W is 1-equidimensional, with sing(W ) ⊂ S, and Watlas(χ,V (g), S,φ, 2) is an atlas of

(W,S),

• and Wϕ(1,W ) is finite.

There exists a Monte Carlo algorithm CritPolar which takes as input Γ, Γϕ and S and which

outputs either fail or a zero-dimensional parametrization K , with coefficients in Q, such that

Z(K ) = Wϕ(1,W ) ∪ S using at most

Õ
(
(n+ c)12E′′D3δ2 + (n+ c)σ2

)
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operations in Q, where E′′ = E + E′, and δ = (n + c + 4)Dc+2(D − 1)d(c + 2)d. Moreover

K has degree at most δ(n+ c+ 4)D + σ.

Finally, we consider the subroutine FiberPolar which, given polynomials defining a gener-
alized polar variety of dimension at most one, a polynomial map and some real algebraic
numbers, computes the fibers of the polynomial map over the polar variety.

Lemma 7.3.7. Let W = Wϕ(2,V (g)) and assume that either W is empty, or

• W is 1-equidimensional, with sing(W ) ⊂ S, and Watlas(χ,V (g), S,φ, 2) is an atlas of

(W,S);

• W ∩φ−1
1 (Q′′) is finite;

There exists a Monte Carlo algorithm FiberPolar which takes as input Γ, Γϕ, S and Q′′ and

which outputs either fail or a zero-dimensional parametrization Q, with coefficients in Q, such

that Z(Q) =
(
W ∩φ−1

1 (Q′′)
)
∪ S, using at most

Õ
(
(n+ c)4

(
E′′ + (n+ c)2

)
Dκ′′2δ2 + (n+ c)σ2

)

operations in Q, where E′′ = E +E′, and δ = (n+ c+ 4)Dc+2(D− 1)d(c+ 2)d. Moreover, Q

has degree at most κ′′δ + σ.

7.3.2.c. Subroutines for computing roadmaps in the bounded case

As seen above, in Example 7.3.1, we are ultimately led to compute a roadmap for a bounded
real algebraic set. Moreover this set is given as fibers over finitely many algebraic points
of the restriction of a polynomial map to an bigger algebraic set. To do so, we come back
to the case of projections, where φ = π , before calling the algorithm RoadmapRecLagrange

from [SS17]. The description and the complexity analysis of this procedure are given in
Subsection 7.4.5. The subtlety comes from the fact that, in [SS17], the correction and
complexity estimate of RoadmapRecLagrange are only given in the particular case when the
input describes an algebraic set that is not fiber of any polynomial. More precisely, we prove
in Subsection 7.4.5 the following result.

Proposition 7.3.8. Let Γ and Γϕ be straight-line programs, of respective length E and E′,

computing respectively polynomials g = (g1, . . . , gc) and φ = (φ1, . . . , φn) in Q[x1, . . . , xn],

of degrees bounded by D. Assume that g satisfies (A). Let Q and SQ be zero-dimensional para-

metrizations of respective degrees κ and σ that encode finite sets Q ⊂ Ce (for some 0 < e ≤ n)

and SQ ⊂ Cn, respectively. Let V = V (g) and FQ = V♣ϕe∈ Q, and assume that

• FQ is equidimensional of dimension d− e, where d = n− c;

• Fatlas(χ, V,Q,φ) is an atlas of (FQ, SQ), and sing(FQ) ⊂ SQ;

• the real algebraic set FQ ∩Rn is bounded.

Consider additionally a zero-dimensional parametrization P of degree µ encoding a finite

subset P of FQ, which contains SQ. Assume that σ ≤ ((n+ e)D)n+e.
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There exists a probabilistic algorithm RoadmapBounded which takes as input the pair

((Γ,Γϕ,Q,S ),P) and which, in case of success, outputs a roadmap of (FQ,P), of degree

Õ
(

(µ+ κ)163dF (nF log2(nF ))2(2dF +12 log2(dF ))(log2(dF )+5)D(2nF +1)(log2(dF )+3)
)
,

where nF = n+ e and dF = d− e, and using

Õ
(

(µ+ κ)3169dF (E + E′ + e)(nF log2(nF ))6(2dF +12 log2(dF ))(log2(dF )+6)D3(2nF +1)(log2(dF )+4)
)

arithmetic operations in Q.

7.3.3 Description of the main algorithm

Now, we describe hereafter the main algorithm that is expected to compute roadmaps of
smooth unbounded real algebraic sets. In addition to the subroutines mentioned above, we
define Random as a procedure that takes as input a set X and returns a random element in
X. Together with PhiGen, it allows to generate “generic enough” polynomial maps so that
the results of the previous section do apply (Propositions 7.2.3, 7.2.13, 7.2.14 and 7.2.16).

Algorithm 2 Roadmap algorithm for smooth unbounded real algebraic sets.

Input: ▷ a straight-line program Γ that evaluates polynomials f = (f1, . . . , fc) ⊂ Q[X],
satisfying assumption (A); we note V = V (f);

▷ a zero-dimensional parametrization P0 encoding a finite set P0 ⊂ V .

Output: a one-dimensional parametrization R encoding a roadmap of (V,P0).

1: S ← SingularPoints(Γ); //Z(S ) = sing(V );

2: P ← Union(P0,S ); //P := Z(P) = P0 ∪ sing(V )

3: α ← Random(Q2n);
4: Γϕ ← PhiGen(α); //Γϕ computes φ =

(
♣♣X♣♣2 + ⟨α1,X⟩ , ⟨α2,X⟩

)

5: W2 ← SolvePolar(Γ,Γϕ,S ); //W2 := Z(W2) = Wϕ(2, V );

6: K ← CritPolar(Γ,Γϕ,P); //K := Z(K ) = Wϕ(1,W2) ∪ P0 ∪ sing(V );

7: Q ← Image(Γϕ, 1,K ); //Q := Z(Q) = φ1(K);

8: PF ← FiberPolar(Γ,Γϕ,Q,P); //Z(PF ) = [W2 ∪ P0 ∪ sing(V )] ∩φ−1
1 (Q);

9: SF ← Crit(Γ,Γϕ,S ) //Z(SF ) = Kϕ(1, V );

10: RF ← RoadmapBounded
(
(Γ,Γϕ,Q,SF ),PF

)
//Z(RF ) is a roadmap of

(
V ∩φ−1

1 (Q),Z(PF )
)
;

11: return Union(W2,RF ) //W2 ∪ Z(RF ) is a roadmap of (V,P0).

7.3.4 Correctness

This subsection is devoted to the proof of the following theorem, which directly implies
Theorem 7.1.1.

Theorem 7.3.9. Let Γ be a straight-line program of length E evaluating polynomials f =

(f1, . . . , fc) of degrees bounded by D, satisfying (A). Let P0 be a zero-dimensional paramet-

rization of degree µ encoding a finite subset of V (f) ⊂ Cn. Then there exists a non-empty

Zariski open Ω ⊂ C2n such that the following holds.
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Let α ∈ Q2n the vector randomly chosen in the execution of Algorithm 2, then if α ∈ Ω, and

if the calls to the subroutines

SingularPoints, Union, SolvePolar, CritPolar, Image, FiberPolar, Crit and RoadmapBounded

are successful then, on inputs Γ,Γα and P0, Algorithm 2 either returns a one-dimensional

parametrization of degree

Õ
(
µ163d(n log2(n))2(2d−2+12 log2(d−1))(log2(d−1)+6)D(2n+4)(log2(d−1)+4)

)

using

Õ
(
µ3169dE(n log2(n))6(2d+12 log2(d−1))(log2(d−1)+7)D3(2n+4)(log2(d−1)+5)

)

arithmetic operations in Q, with d = n− c.
In case of success, the output of Algorithm 2 describes a roadmap of (V (f),Z(P0)).

The correctness of Algorithm 2 relies mainly on the conjunction of Theorem 6.1.1 and
[SS11, Proposition 2], that form the following statement, with slightly stronger assumptions,
which hold in our context.

Proposition 7.3.10. Let V ⊂ Cn be a Q-algebraic set of dimension d and let P0 be a finite

subset of V . Let φ = (φ1, φ2) ⊂ R[X] and W = Wϕ(2, V ). Suppose that the following holds:

(H1) V is equidimensional and sing(V ) is finite;

(H2) the restriction of φ1 to V ∩Rn is a proper map bounded from below;

(H3) W is either empty or 1-equidimensional and smooth outside sing(V );

(H4) for any y ∈ C2, the set V ∩φ−1
1 (y) is either empty or (d− 1)-equidimensional;

(H5) Kϕ(1,W ) is finite.

Let further K = Kϕ(1,W )∪P0∪ sing(V ) and F = V ∩φ−1
1 (φ1(K)). Assume in addition that

(H6) PW = F ∩W is finite.

If RF is a roadmap of (F,P0 ∪ PW ), then W ∪RF is a roadmap of (V,P0).

Proof. Remark first that the so-called assumptions A, P and B from the connectivity re-
sult from of Theorem 6.1.1 are direct consequences of assumptions H1 to H4. Besides,
Wϕ(1, V ) ⊂ Kϕ(1,W ) and sing(W ) ⊂ sing(V ), by [SS17, Lemma A.5.] together with
assumption H3. Hence, one can write

K = Wϕ(1, V ) ∪ S ∪ sing(V ).

where S = Wϕ(1,W ) ∪ P0. By H5, S is a finite subset of V , that intersects every semi-
algebraically connected component of Wϕ(1,W ) ∩ Rn by definition. Hence, S satisfies
assumption C of of Theorem 6.1.1. By application of this latter result, W ∪ F has then
a non-empty and semi-algebraically connected intersection with every semi-algebraically
connected component of V ∩Rn and it contains P0 by construction.
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Moreover, by H6, F ∩W is finite, so that by [SS11, Proposition 2], the following holds. If
RW andRF are roadmaps of respectively (W,P0∪PW ) and (F,P0∪PW ), thenRW ∪RF is
a roadmap of (V,P0). But remark that W is a roadmap of (W,PW ) since W has dimension
one. Besides, [SS11, Proposition 2] can be slightly generalized as only one of RW or RF

must contain P0. Hence taking RW = W , allows to conclude.

Proof of Theorem 7.3.9. Let Γ and P0 be the inputs of the Algorithm 2 and assume that
Γ evaluates polynomials f = (f1, . . . , fc) satisfying assumption A. Let V = V (f) and
P0 = Z(P0).

Recall that we assume all calls to the subroutines SingularPoints, Union, SolvePolar, CritPo-

lar, Image, FiberPolar, Crit and RoadmapBounded do succeed.

Steps 1 -2. According to [SS17, Proposition J.35], the procedure SingularPoints outputs a
zero-dimensional parametrization S describing sing(V ) using Õ(ED4n+1) operations in Q.
By [SS17, Proposition I.1] (or [SS18, Proposition 3]) S has degree at most

σS =

(
n− 1

c− 1

)
Dc(D − 1)d =

(
n− 1

d

)
Dc(D − 1)d ∈ O(ndDn)

Then, according to [SS17, Lemma J.3] and our assumptions, the procedure Union outputs a
zero-dimensional parametrization P of degree at most

δP = µ+ σS = O(µ+ ndDn), using Õ(n(µ2 + n2dD2n)) operations in Q

which describes P := P0 ∪ sing(V ).

Besides, since V is equidimensional, there exists, by [SS17, Lemma A.13], an atlas χ of
(V, sing(V )). According to Definition 7.2.8, χ is an atlas of (V,P) as well.

Steps 3 -4. By definition of the procedure Random, α is an arbitrary element of Q2n, and
according to Lemma 7.3.2, Γϕ is a straight-line program of length E′ = 6n − 2 = O(n),
which evaluates φ = (θ(X) + ⟨α1,X⟩ , ⟨α2,X⟩), where θ = x2

1 + · · · + x2
n. In particular,

E′′ := E + E′ = O(E + n).

Let Ω be the intersection of the following four non-empty Zariski open subsets of C2n:

ΩI(V, θ), ΩW(χ, V, sing(V ), θ, 0), ΩK(V, θ) and ΩF(χ, V, sing(V ), θ),

defined respectively by Propositions 7.2.3, 7.2.13, 7.2.14 and 7.2.16 applied to V , φ and
possibly χ. The set Ω is a non-empty Zariski open subset of C2n as well, and from now on,
we suppose that α ∈ Ω.

Step 5. Let W = Wϕ(2, V ). Since α ∈ ΩW(χ, V, sing(V ), θ, 0), by Proposition 7.2.13, either
W is empty or it is equidimensional of dimension 1, with sing(W ) ⊂ sing(V ). Moreover, in
the latter case, since (d+ 3)/2 ≥ 2 by assumption, Watlas(χ, V, sing(V ), φ, 2) is an atlas of
(W, sing(V )).
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Hence, by Lemma 7.3.5 and our assumptions, SolvePolar returns a one-dimensional
parametrization W2, of degree at most

δ = (n+ c+ 4)Dc+2(D − 1)d(c+ 2)d = O(nd+1Dn+2),

such that Z(W2) = W , using at most

Õ
(
(n+ c)3(E + (n+ c)3)Dδ3 + (n+ c)δσ2

S

)
= Õ

(
n3d+4(E + n3)D3n+7

)

operations in Q.

Steps 6 -7. Since we assume α ∈ ΩK(V, θ), Proposition 7.2.14 states that either W is
empty or it is equidimensional of dimension 1, and Wϕ(1,W ) is finite. Moreover, since
α ∈ ΩW(χ, V, sing(V ), θ, 0), we deduce by Proposition 7.2.13 that Watlas(χ, V,P, φ, 2) is an
atlas of (W,P), as W is 1-equidimensional or empty and P0 is finite.

Let K = Wϕ(1,W )∪P. By Lemma 7.3.6, CritPolar returns either fail or a zero-dimensional
parametrization K , of degree at most

δK = δ(n+ c+ 4)D + δP = O
(
nd+2Dn+3 + µ

)
,

using at most

Õ
(
(n+ c)12(E + n)D3δ2 + (n+ c)δ2

P

)
= Õ

(
n2d+14(E + n)D2n+7 + nµ2

)

operations in Q. Moreover, by assumption, K describes K. Finally, let Q = φ1(K) then, by
Lemma 7.3.3 and our assumptions, there exists a procedure Image that, on input Γϕ,K and
j = 1, outputs a zero-dimensional parametrization Q, of degree less than δK , such that, in
case of success, Z(Q) = Q. Moreover, since by Lemma 7.3.2, Γϕ has length in O(n), then
the execution of Image uses at most

Õ
(
(n2δK + n)δK

)
= Õ

(
n2d+6D2n+6

)

operations in Q.

Step 8. Since α ∈ ΩI(V, θ), by Proposition 7.2.3, W ∩φ−1
1 (z) is finite for any z ∈ C. In par-

ticular, W ∩φ−1
1 (Q) is finite, since Q = Z(Q) is. Besides, as seen above, Watlas(χ, V,P, φ, 2)

is an atlas of (W,P) since α ∈ ΩW(χ, V, sing(V ), θ, 0).

Let PF = [W ∩φ−1
1 (Q)] ∪ P. By Lemma 7.3.7 and our assumptions, FiberPolar outputs a

zero-dimensional parametrization PF , of degree bounded by

µPF
= δK δ + δP = O(n2d+3D2n+5 + µ),

using at most

Õ
(
(n+ c)4(E + (n+ c)2)Dδ2

K δ2 + (n+ c)δ2
P

)
= Õ

(
n4d+10(E + n2)D4n+10 + nµ2

)
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operations in Q and such that PF describes PF . Besides, remark that by definition φ(P) ⊂
φ(Q) so that PF = [W ∪ P] ∩φ−1

1 (Q).

Step 9. Since α ∈ ΩW(χ, V, sing(V ), θ, 0), by Proposition 7.2.13 Wϕ(1, V ) is finite. Besides,
under assumption (A), V is equidimensional with finitely many singular points. Let SF =

Kϕ(1, V ). By Lemma 7.3.4 and our assumptions, Crit outputs a zero-dimensional parametri-
zation SF , which describes SF , of degree bounded by

σSF
=

(
n+ 1

d

)
Dc+2(D − 1)d = O(ndDn+2)

using at most

Õ
(
(n+ 2)4d+8(E + n)D2n+3(D − 1)2d + nσ2

S

)
= Õ

(
n4d+8(E + n)D4n+3

)

operations in Q.

Step 10. Since f satisfies assumption (A), the ideal ⟨f⟩ generated by the polynomials in f
is radical. Besides, the restriction of φ1 to V (f) ∩Rn is naturally proper and bounded from
below by −∑n

i=1 α
2
1,i/4. Hence, as Q = Z(Q) is finite, then Q ∩R is bounded and so is

V ∩Rn ∩φ−1
1 (Q ∩R2) = V ∩φ−1

1 (Q) ∩Rn,

as φ ⊂ Q[X], since α ∈ Q2n by above.
Let FQ = V ∩φ−1

1 (Q). Since α ∈ ΩF(χ, V, sing(V ), θ), by Proposition 7.2.16 FQ is either
empty or equidimensional of dimension d− 1, with sing(FQ) ⊂ SQ, where

SQ := sing(V ) ∪ [Wϕ(1, V ) ∩φ−1
1 (Q)] = Kϕ(1, V ),

since φ1(Kϕ(1, V )) ⊂ φ1(Q). Moreover, in the latter case, Fatlas(χ, V,Q, sing(V ),φ) is an
atlas of (FQ, SQ). Finally, by above, the zero-dimensional parametrizations PF and SF

describe respectively finite sets PF and SF such that

SQ = SF ⊂ PF ⊂ FQ,

and SF has degree σSF
≤ (nD)n+2. Finally, recall that Q and PF both have degree

bounded by Õ
(
µ+ n2d+3D2n+5

)
. Hence, according to Proposition 7.3.8, and after a few

straightforward simplifications, we deduce that RoadmapBounded either outputs fail or a
one-dimensional parametrization RF of degree at most

BRF
= Õ

(
µ163d(n log2(n))2(2d−2+12 log2(d−1))(log2(d−1)+6)D(2n+4)(log2(d−1)+4)

)
,

using

Õ
(
µ3169dE(n log2(n))6(2d+12 log2(d−1))(log2(d−1)+7)D3(2n+4)(log2(d−1)+5)

)

operations in Q. Moreover, in case of success, RF describes a roadmap of (FQ,PF ).
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Step 11. Remark that, W2 and RF both have degree at most BRF
. Hence, by [SS17, Lemma

J.8], on input W2 and RF , Union either outputs fail or a one-dimensional parametrization
of degree at most Õ(BRF

) using Õ(nB3
RF

) operations in Q. Therefore, the complexity of
this step is bounded by the one of previous step. Moreover, in case of success, the output
describes W ∪ FQ.

By above, under assumption (A), all assumptions from Proposition 7.3.10 are satisfied.
Hence, since Z(RF ) is a roadmap of (FQ,PF ) and PF = P∪(FQ∩W ), by Proposition 7.3.10,
Algorithm 2 returns a roadmap of (V,P). Since P contains P0, the output is a roadmap of
(V,P0) as well.

In conclusion, if α ∈ Ω and all calls to the subroutines are successful then, on input Γ,
Γα and P0 such that assumption (A) is satisfied, Algorithm 2 outputs a one-dimensional
parametrization encoding a roadmap of (V,P0). Moreover this parametrization is bounded
by BRF

and all steps have complexity bounded by the one of Step 10. Since these bounds
match the ones given in the statement of Theorem 7.3.9, we are done.

Our main result, namely Theorem 7.1.1, is a direct consequence of Theorem 7.3.9 since,
if n− c < 2 then V (f) is a roadmap of (V (f),Z(P)).

Remark 7.3.11. Remark that, as long as the restriction of φ1 to V (f) ∩Rn is proper and
bounded below, the above proof still holds. This could allow one, a more ad-hoc choice for
φ.

7.4 Subroutines

7.4.1 Proof of Lemma 7.3.3

Lemma 7.4.1. Let Γ and Γϕ be straight-line programs of respective lengths E and E′ computing

sequences of polynomials respectively f and φ = (φ1, . . . , φi) in Q[x1, . . . , xn]. Then there

exists an algorithm IncSLP which takes as input Γ, Γϕ and returns a straight-line program Γ̃ of

length

E + E′ + i,

that evaluates fϕ = (f , φ1 − e1, . . . , φi − ei) in Q[E,X], where E = (e1, . . . , ei) are new

variables.

Proof. Up to reordering, we can suppose that the polynomials φ1, . . . , φi correspond to the
respective indices E′ − i+ 1, . . . , E′ in Γϕ. Let 1 ≤ j ≤ N , then the straight-line program

Γϕ−E =
(

Γϕ, (+, E′ − i+ 1, −n− i+ 1), . . . , (+, E′, −n)
)

has length E′ + i and computes (φ1 − e1, . . . , φi − ei) in Q[e1, . . . , ei, x1, . . . , xn]. Finally let

Γ′ = (Γ,Γϕ−E),

then Γ′ is a straight-line program of length E + E′ + i, that computes fϕ = (f , φ1 −
e1, . . . , φi − ei) in Q[e1, . . . , ei, x1, . . . , xn].
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Let 1 ≤ i ≤ n be integers and φ = (φ1, . . . , φi) ⊂ C[X] and

Ψϕ : Cn → Ci+n

y 7→ (φ(y),y)

.

Then Ψϕ is an isomorphic embedding of algebraic sets, with inverse the projection on the
last n coordinates. We call Ψϕ the incidence isomorphism associated to φ.

Let V ⊂ Cn be a d-equidimensional algebraic set with 1 ≤ d ≤ n. Then V ϕ = Ψϕ(V ) ⊂
Ci+n is called the incidence variety associated to V with respect to φ, or in short, the incidence
variety of (V,φ).

Finally, we note π = (e1, . . . , ei) so that for 0 ≤ j ≤ i, πj is the canonical projection on
the first j coordinates in Ci+n. The following lemma is immediate, and illustrates the main
feature that motivates the introduction of incidence varieties.

Lemma 7.4.2. For any 0 ≤ j ≤ i, the following diagram commutes

V V ϕ

Cj

Ψϕ

φj

πj .

Lemma 7.4.3. Let Q be a zero-dimensional parametrization of degree κ such that Z(Q) ⊂
Cn and let Γϕ be a straight-line program of length E′ which evaluates polynomials φ =

(φ1, . . . , φi). There exists an algorithm IncParam which takes as input Q, Γϕ and returns a

zero-dimensional parametrization Q̃ of degree κ and encoding Ψϕ(Z(Q)) ⊂ Ci+n, where Ψϕ

is the incidence isomorphism associated to φ, using

Õ (E′κ)

operations in Q.

Proof. Write Q = ((q, v1, . . . , vn), l) following the definition of zero-dimensional parametri-
zations given in the introduction. Since

Z(Q) = ¶(v1(t), . . . , vn(t)) ♣ q(t) = 0♢

then

Ψϕ(Z(Q)) =
{(
φ1

(
v1(t), . . . , vn(t)

)
, . . . , φi

(
v1(t), . . . , vn(t)

)
, v1(t), . . . , vn(t)

)
♣ q(t) = 0

}
.

Let e1, . . . , ei be new indeterminates and l′(e1, . . . , ei, x1, . . . , xn) = l(x1, . . . , xn) and for
all 1 ≤ j ≤ i, let wj = φj(v1, . . . , vn

)
mod q ∈ Q[t]. Hence, we claim that taking Q̃ =

((q, w1, . . . , wi, v1, . . . , vn), l) one gets a zero-dimensional parametrization of Ψϕ(Z(Q)).
Indeed, deg(wj) < deg(q), for all 1 ≤ j ≤ i, and

l′
(
w1, . . . , wi, v1, . . . , vn

)
= l
(
v1, . . . , vn

)
= t.
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Besides, computing Q̃ is done by evaluating Γϕ at v1, . . . , vn doing all operations modulo q;
this can be done using Õ (E′κ) operations in Q.

We can now prove Lemma 7.3.3.

Proof of Lemma 7.3.3. Let Ψϕ be the incidence isomorphism associated to φ. According to
Lemma 7.4.2, the image of Z(P) by φj , can be obtained by projecting the incidence variety
Ψϕ(Z(P)) on the first j coordinates.

Hence the algorithm Image can be performed as follows. First, according to Lemma 7.4.3,
there exists an algorithm IncParam which, on input P and Γϕ, computes a zero-dimensional
parametrization P̃ of degree κ, encoding Ψϕ(Z(P)) ⊂ Cj+n, and using Õ (E′κ) operations
in Q. Secondly, according to [SS17, Lemma J.5.], there exists an algorithm Projection which,
on input P̃ and j ∈ ¶1, . . . , i♢, computes a zero-dimensional parametrization Q encoding

πj(P̃) = πj (Ψϕ(Z(P))) = φj(Z(P)),

using Õ
(
n2κ2

)
operations in Q. □

7.4.2 Auxiliary results for generalized polar varieties

We reuse the notation introduced in the previous subsection. Let E = (e1 . . . , ei) be new
indeterminates. Recall that V ⊂ Cn is a d-equidimensional algebraic set.

Lemma 7.4.4. Let h ⊂ C[X] be a set of generators of I(V ). Then

hϕ = (h, φ1 − e1, . . . , φi − e1) ⊂ C[E,X]

is a set of generator of I(V ϕ) ⊂ C[E,X], which is equidimensional of dimension d.

Proof. Remark that by Lemma 7.2.2, for any (t,y) ∈ V ϕ,

rank Jact,y(hϕ) = rank



O Jacy(h)

−Ii Jacy(φ)


 = rank Jacy(h) + i,

so that for all y ∈ reg(V ), since Jac(h) has rank n− d at y, then Jac(hϕ) has rank n− d+ i

at Ψϕ(y). Hence, since reg(V ) is Zariski dense in V , by [SS11, Lemma 15] ⟨hϕ⟩ is an
equidimensional radical ideal of dimension d.

Besides, let (t,y) ∈ Cn, then hϕ(t,y) = 0 if and only if h(y) = 0 and φ(y) = t that
is (t,y) ∈ V ϕ since h generates I(V ). Hence V (⟨hϕ⟩) = V ϕ so that by the Hilbert’s
Nullstellensatz [Eis95, Theorem 1.6],

I(V ϕ) =
√
⟨hϕ⟩ = ⟨hϕ⟩ .

The following lemma shows an important consequence of Lemma 7.4.2 for polar varieties.
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Lemma 7.4.5. For 0 ≤ j ≤ i, the restriction of Ψϕ induces an isomorphism between Wϕ(j, V )

(resp. Kϕ(j, V )) and W (πj , V
ϕ) (resp. K(πj , V

ϕ)).

Proof. Let h be generators of I(V ). By Lemma 7.4.4, hϕ are generators of I(V ). Let y ∈ V ,
yϕ = Ψϕ(y) ∈ V ϕ and 0 ≤ j ≤ i. Then by Lemma 7.2.2,

rank Jacyϕ([hϕ,πj ]) = rank




O Jacy(h)

−Ii Jacy(φ)

Ij O O




= rank Jacy([h,φj ]) + i, (7.2)

where Iℓ denotes the ℓ × ℓ identity matrix. Since both V and V ϕ are d-equidimensional,
then by [SS17, Lemma A.2.], Kϕ(j, V ) and K(πj , V

ϕ) are the sets of points y ∈ V and
yϕ ∈ V ϕ where respectively

Jacy([h,φj ]) < n− d+ j and Jacyϕ([hϕ,πj ]) < n+ i− d+ j.

Hence by (7.2), the two conditions are equivalent so that Ψϕ(Kϕ(j, V )) = K(πj , V
ϕ) for

all 0 ≤ j ≤ i. In particular, for j = 0, Ψϕ(sing(V )) = sing(V ϕ), so that for all 0 ≤ j ≤ i,

Ψϕ(W ◦
ϕ(j, V )) = W ◦(πj , V

ϕ).

Since Ψϕ is an isomorphism of algebraic sets, it is a homeomorphism for the Zariski topology,
so that it maps the Zariski closure of sets to the Zariski closure of their image. Hence, we
can conclude that Ψϕ(Wϕ(j, V )) = W (πj , V

ϕ) for all 0 ≤ j ≤ i.

Lemma 7.4.6 (Chart and atlases). Let 1 ≤ e ≤ n, Q ⊂ Ce be a finite set and S be an algebraic

set such that V and S lie over Q with respect to φ. By a slight abuse of notation, we denote

equally m ∈ C[X] when seen in C[E,X]. Then, the following holds.

1. Let χ = (m,h) ⊂ C[X] be a chart of (V,Q, S,φ), then χϕ = (m,hϕ) ⊂ C[E,X] is a

chart of (V ϕ, Q, Sϕ,π), where Sϕ = Ψϕ(S).

2. Let χ = (χj)1≤j≤s be an atlas of (V,Q, S,φ), then if χϕ = (χϕj )1≤j≤s as defined in the

previous item, χϕ is an atlas of (V ϕ, Q, Sϕ,π).

Proof. We start with the first statement, let Q,S and χ = (m,h) be as in the statement. It
holds that:

C1 : Let y ∈ O(m) ∩ V − S, which is non-empty by property C1 of χ. Then by definition
Ψϕ(y) ∈ V ϕ, and since Ψϕ is an isomorphism on V ϕ, Ψϕ(y) /∈ Sϕ. Finally since
m ∈ C[X], then m(Ψϕ(y)) = m(y) ̸= 0 so that O(m) ∩ V ϕ − Sϕ is not empty.

C2 : Note that since m ∈ C[X], Ψϕ(O(m)) is defined by m ̸= 0. By a slight abuse of
notation, we still denote this Zariski open set O(m). Hence, it follows from the
definition of Ψϕ that Ψϕ(O(m)∩V −S) = O(m)∩V ϕ−Sϕ. Besides, by Lemma 7.4.2,
πe ◦Ψϕ and φe coincide on V . Then

Z♣ϕe∈ Q = Ψϕ(Z)♣πe∈ Q for any Z ⊂ V.
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Finally, as seen in the proof of Lemma 7.4.4, Ψϕ(V (h)) = V (hϕ). Hence by property
C2 of χ,

O(m) ∩ V ϕ − Sϕ = Ψϕ(O(m) ∩ V (h)♣ϕe∈ Q − S) = O(m) ∩ V (hϕ)♣πe∈ Q − Sϕ,

since O(m) ∩ V (h)♣ϕe∈ Q − S is a subset of V .

C3 : Let c be the cardinality of h, then hϕ has cardinality c+ i. Hence by property C3 of χ,
e+ c+ i ≤ i+ n as required.

C4 : Finally let yϕ = (t,y) ∈ O(m)∩V ϕ−Sϕ, we know from above that y ∈ O(m)∩V −S,
so that by property C4 of χ, Jacy[h,φe] has full rank c+ e. But by the equality (7.2)
in the proof of Lemma 7.4.5, this means that Jacyϕ([hϕ,πe]) has full rank c+ i+ e as
required.

Now we have shown that charts can be transferred to incidence varieties, let us prove that
this naturally gives rise to atlases. Consider an atlas χ = (χj)1≤j≤s of (V,Q, S,φ), and let
χϕ = (χϕj )1≤j≤s, where for all 1 ≤ j ≤ s, χϕj is defined from χj as above. We proved that
χϕ is an atlas of (V ϕ, Q, Sϕ,π).

Property A1 is straightforward, and A2 is given by the first statement of this lemma which
we just proved. Finally, since Ψϕ(V −S) = V ϕ−Sϕ, then for any yϕ = (t,y) ∈ V ϕ−Sϕ, by
property A3 of χ, there exists 1 ≤ j ≤ s such that mj(yϕ) = mj(y) ̸= 0. Then χϕ satisfies
property A3 of atlases.

We deduce the following results for two important particular cases.

Lemma 7.4.7. Let S ⊂ Cn be an algebraic set, χ = (m,h) and χ = (χj)1≤j≤s be respectively a

chart and an atlas of (V, S), and let χϕ and χϕ the chart and atlas constructed from respectively

χ and χϕ as in Lemma 7.4.6. The following holds.

1. If h has cardinality c, then for any c-minor m′ of Jac(h) and any (c+ i− 1)-minor m′′ of

Jac([h,φi]), containing the rows of Jac(φi), the following holds. IfWchart(χ,m
′,m′′) is a

chart of W = (Wϕ(i, V ), S), thenWchart(χ
ϕ,m′,m′′) is a chart of W ϕ = (W (πi, V

ϕ), Sϕ).

2. If Watlas(χ, V, S,φ, i) is an atlas of W then, Watlas(χ
ϕ, V ϕ, Sϕ,π , i) is an atlas of W ϕ.

Proof. Let m′ and m′′ be respectively a c-minor of Jac(h) and a (c + i − 1)-minor of
Jac([h,φi]), containing the rows of Jac(φi). Assume that

Wchart(χ,m
′,m′′,φ) =

(
mm′m′′,

(
h,Hϕ(h, i,m′′)

) )

is a chart of W . By C1, O(mm′m′′) ∩Wϕ(i, V )− S is not empty, so that m′ and m′′ are not
identically zero. Since

Jac(hϕ) =



O Jac(h)

−Ii Jac(φi)


 ,

Lemma 7.2.1 shows that m′ is a (c+ i)-minor of Jac(hϕ) and m′′ is a (c+ i+ i− 1)-minor
of Jac(hϕ,πi) containing Ii = Jac(πi). Hence, according to Definition 7.2.10,

Wchart(χ
ϕ,m′,m′′) =

(
mm′m′′, (hϕ,Hπ (hϕ, i,m′′))

)
,
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where, by definition, Hπ (hϕ, i,m′′) is the sequence of (c + i + i)-minors of Jac([hϕ,πi])

obtained by successively adding the missing row and the missing columns of Jac([hϕ,πi])

to m′′.

But, since m′′ ̸= 0, Lemma 7.2.12 implies that Hproj(hϕ, i,m′′) is, as well, the sequence
of (c+ i)-minors obtained by successively adding the missing row and the missing columns
of Jac(hϕ, i) = Jac([h,φi) to m′′. We deduce that

Hπ (hϕ, i,m′′) = Hϕ(h, i,m′′),

so that if g = (h,Hϕ(h, i,m′′)), then gϕ = (hϕ,Hπ (hϕ, i,m′′)). Hence Wchart(χ
ϕ,m′,m′′)

is exactly the chart constructed from Wchart(χ,m
′,m′′,φ) in Lemma 7.4.6, and since, by

Lemma 7.4.5, Ψϕ(Wϕ(i, V )) = W (πi, V
ϕ), the first statement of Lemma 7.4.6 implies that

Wchart(χ
ϕ,m′,m′′) is a chart of W ϕ.

To prove the second assertion, remark that by the third assertion of Lemma 7.2.12,
Watlas(χ

ϕ, V ϕ, Sϕ,π , i) is the sequence of all those Wchart(χ
ϕ
j ,m

′,m′′), for j ∈ ¶1, . . . , s♢
and for m′,m′′ respectively a c + i-minor of Jac(hϕj ) and a (c + i− 1)-minor of Jac(hϕj , i)

for which O(mjm
′m′′) ∩W (πi, V

ϕ)− S is not empty.

As seen above, the polynomials m′ and m′′ are actually c-minors of Jac(hj) and (c +

i − 1)-minors of Jac([hϕj ,φi]), and in the first point, we prove that Wchart(χ
ϕ
j ,m

′,m′′) is
the chart constructed in the first point of Lemma 7.4.6 from Wchart(χj ,m

′,m′′). Hence
Watlas(χ

ϕ, V ϕ, Sϕ,π , i) is exactly the atlas constructed from Watlas(χ, V, S,φ, i) in the
second item of Lemma 7.4.6. In conclusion, by Lemma 7.4.6, if Watlas(χ, V, S,φ, i) is an
atlas of W , then Watlas(χ

ϕ, V ϕ, Sϕ,π , i) is an atlas of W ϕ.

Lemma 7.4.8. Let 1 ≤ e ≤ n, Q ⊂ Ce be a finite set and S be an algebraic set such that V

and S lie over Q with respect to φ. Let further

F =
(
V♣ϕe∈ Q, (S ∪Wϕ(e, V ))♣ϕe∈ Q

)
and F

ϕ =
(
V ϕ♣πe∈ Q, (Sϕ ∪W (πe, V

ϕ))♣πe∈ Q

)
.

Let χ = (m,h) and χ = (χj)1≤j≤s be respectively a chart and an atlas of (V,Q, S,φ) and let

χϕ and χϕ the chart and atlas constructed from respectively χ and χϕ as in Lemma 7.4.6.

If Fatlas(χ, V,Q, S,φ) is an atlas of F then Fatlas(χ
ϕ, V ϕ, Q, Sϕ,π) is an atlas of Fϕ.

Proof. Without loss of generality one can assume that S ⊂ V . Since by Lemma 7.4.2, πe ◦Ψϕ

and φe coincide on V , then

Ψϕ
(
(S ∪Wϕ(e, V ))♣ϕe∈ Q

)
= (Sϕ ∪W (πe, V

ϕ))♣πe∈ Q.

Hence, for any 1 ≤ j ≤ s,

O(mj)∩V ϕ♣πe∈ Q−(Sϕ∪W (πe, V
ϕ))♣πe∈ Q = Ψϕ

(
O(mj) ∩ V♣ϕe∈ Q − (S ∪Wϕ(e, V ))♣ϕe∈ Q

)
,

so that these sets are not-empty for the same j’s in ¶1, . . . , s♢. Hence Fatlas(χ
ϕ, V ϕ, Q, Sϕ,π)

is exactly the atlas constructed from Fatlas(χ, V,Q, S,π) in Lemma 7.4.6.

In conclusion, by the second assertion of Lemma 7.4.6, if Fatlas(χ, V,Q, S,π) is an atlas
of F then Fatlas(χ, V,Q, S,π) is an atlas of Fϕ.
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7.4.3 Lagrange systems

We present here a simplified version of generalized Lagrange systems defined in [SS17,
Section 5.2] to encode polar varieties and provide equivalent results adapted to our case. As
we only use a simplified version (involving a single block of Lagrange multipliers), we call
them simply Lagrange systems.

7.4.3.a. Definitions

The following is nothing but a simplified version of [SS17, Definition 5.3].

Definition 7.4.9. A Lagrange system is a triple L = (Γ,Q,S ) where

• Γ is a straight-line program evaluating a sequence F = (f , g) ⊂ Q[X,L], where

− X = (X1, . . . , Xn) and L = (L1, . . . , Lm);

− f = (f1, . . . , fp) ⊂ Q[X] and g = (g1, . . . , gq) ⊂ Q[X,L] with degL g ≤ 1;

• Q is a zero-dimensional parametrization with coefficients in Q, with Q = Z(Q) ⊂ Ce;

• S is a zero-dimensional parametrization with coefficients in Q, with S = Z(S ) ⊂ Cn

lying over Q;

• (n+m)− (p+ q) ≥ e.

We also define N and P as respectively the number of variables and equations, so that

N = n+m, P = p+ q and d = N − e− P ≥ 0.

One checks that such a Lagrange system is also a generalized Lagrange system in the sense
of [SS17, Definition 5.3]. We can then define the same objects associated to such systems as
follows. We denote by πX : CN → Cn the projection on the variables associated to X in
any set of CN defined by equations in C[X,L].

Definition 7.4.10. Let L = (Γ,Q,S ) be a Lagrange system and all associated data defined
in Definition 7.4.9. We define the following objects:

• the type of L is the triplet T = (n,p, e) where n = (n,m) and p = (p, q);

• U (L) = πX

(
V (F )♣πe∈ Q − π−1

X (S)
)
⊂ Cn

• U (L)
Z ⊂ Cn the Zariski closure of U (L).

Then we say that L defines U (L)
Z

.

We see here that Lagrange systems are nothing but generalized Lagrange systems of type
(1,n,p, e). We now define local and global normal forms, that can be seen as equivalent to
charts and atlases for Lagrange systems where replacing the notion of complete intersection
by the one of normal form presented below.

For any non-zero polynomial M of a polynomial ring C[Y ] we denote by C[Y ]M the
localization of C[Y ] at M , that is the of all g/M j where g ∈ C[Y ] and j ∈ N.
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Definition 7.4.11. For a non-zero M ∈ Q[X] and polynomials H ⊂ Q[X,L]M , we say that
H is in normal form in Q[X,L] if these polynomials have the form

H = (h1, . . . , hc, L1 − ρ1, . . . , Lm − ρm),

where the hj ’s are in Q[X] and the ρj ’s are in Q[X]M . We call h = (h1, . . . , hc) and
ρ = (Lj − ρj)1≤j≤m respectively the X and L components of H.

Definition 7.4.12. A local normal form of a Lagrange system L = (Γ,Q,S ) is the data of
ψ = (m, d,h,H) that satisfies the following conditions:

L1 m, d ∈ Q[X] − ¶0♢ and H is in normal form in Q[X,L]md with X-component h =

(h1, . . . , hc);

L2 H and F have the same cardinality n− c = N − P ;

L3 ⟨F , I(Q)⟩ = ⟨H, I(Q)⟩ in Q[X,L]m,d;

L4 (m,h) is a chart of (V,Q, S);

L5 d does not vanish on O(m) ∩U (L).

Given such a local normal form ψ we will note χ = (m,h) the associated chart.

As for atlases and charts, we define now global normal forms using local normal forms.

Definition 7.4.13. A global normal form of a Lagrange system L = (Γ,Q,S ) is the data of
ψ = (ψj)1≤j≤s such that:

G1 each ψj = (mj , dj ,hj ,Hj) is a local normal form;

G2 χ = ((mj ,hj))1≤j≤s is an atlas of (V,Q, S).

Let further Y = (Y1, . . . , Yr) be algebraic subsets of Cn. A global normal form of (L; Y )

is the data of a global normal form ψ = (ψj)1≤j≤s of L such that for all 1 ≤ j ≤ s and
1 ≤ k ≤ r:

G3 for any irreducible component Y of Yk contained in V and such that O(mj) ∩ Y − S is
not empty, O(mjdj) ∩ Y − S is not empty.

We say that L (resp. (L; Y )) has the global normal form property if there exists a global
normal form ψ of L (resp. (L; Y )) and we will note χ the associated atlas.

7.4.3.b. Lagrange system for polar varieties

We give here a slightly different version of results presented in [SS17, Section 5.5]. We first
recall the construction of [SS17, Definition 5.11] adapted to our more elementary case.

Definition 7.4.14. Let L = (Γ, (1),S ) be a Lagrange system of type ((n, 0), (p, 0), 0), let
f ⊂ C[X] be the polynomials which are evaluated by Γ and let i ∈ ¶1, . . . , n− p♢.

Let L = (L1, . . . , Lp) be new indeterminates, for u = (u1, . . . , up) ∈ Qp, define

Fu =
(
f , Lagrange(f , i,L), u1L1 + · · ·+ upLp − 1

)
,
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where Lagrange(f , i,L) denotes the entries of

[
L1 · · · Lp

]
· Jac(f , i).

We define Wlag(L,u, i) as the triplet (Γu,Q,S ), where Γu is a straight-line program that
evaluates Fu, it is a Lagrange system of type ((n, p), (p, n− i+ 1), 0).

We can now prove an analog of [SS17, Proposition 5.13].

Proposition 7.4.15. Let V, S ⊂ Cn be two algebraic sets with V d-equidimensional and S

finite. Let χ be an atlas of (V, S) and let i ∈ ¶2, . . . , (d + 3)/2♢. Write W = W (πi, V ) and

assume that the following holds. Either W is empty or it is equidimensional of dimension i− 1,

with sing(W ) ⊂ S, and Watlas(χ, V, S,π , i) is an atlas of (W,S).

Let L = (Γ, (1),S ) be a Lagrange system such that V = U (L) and S = Z(S ). Let

Y = (Y1, . . . , Yr) be algebraic sets in Cn and let finally ψ be a global normal form for

(L; (W,Y )) such that χ is the associated atlas of (V, S). There exists a non-empty Zariski

open subset I (L,ψ,Y ) of Cp such that for all u ∈ I (L,ψ,Y ) ∩Qp, the following holds:

• Wlag(L,u, i) is a Lagrange system that defines W ;

• if W ̸= ∅, then (Wlag(L,u, i); Y ) has a global normal form with atlas Watlas(χ, V, S,π , i).

Proof. The statement of this proposition is identical as [SS17, Proposition 5.13] except that,
in [SS17, Proposition 5.13], our assumptions on W are replaced by a generic linear change
of variables on V . [SS17, Proposition 5.13] claims the same statements on V A where A is
assumed to lie in a non-empty Zariski open set G1(χ, V, ∅, S, i) defined in [SS17, Proposition
3.4].

In the proof of [SS17, Proposition 5.13], the fact that A ∈ G1(χ, V, ∅, S, i) allows to
assume that the statements of [SS17, Proposition 3.4] but also [SS17, Lemma B.12] hold.
In our proposition stated above, according to Lemma 7.2.12, the assumptions on W are
exactly the statement of [SS17, Proposition 3.4], while [SS17, Lemma B.12] is nothing
but a consequence of these facts. Therefore, under these assumptions, the proof of [SS17,
Proposition 5.13] can be replicated, mutatis mutandis, for V instead of V A, and constitutes
a valid proof for the above statement.

7.4.3.c. Lagrange system for fibers

Definition 7.4.16. Let L = (Γ, (1),S ) be a Lagrange system of type ((n, 0), (p, 0), 0) and
let e ∈ ¶1, . . . , n− p♢. Let Q′′ be a zero-dimensional parametrization that encodes a finite
set Q′′ ⊂ Ce and let S ′′ be a zero-dimensional parametrization that encodes a finite set
S′′ ⊂ Cn lying over Q′′. We define Flag(L,Q′′,S ′′) as the triplet (Γ,Q′′,S ′′), it is a
Lagrange system of type ((n, 0), (p, 0), e).

As in the previous paragraph, we state an analog of [SS17, Proposition 5.16] where we
replaced the assumption of a generic linear change of variables, by the assumptions that
such a change of variables allows to satisfy. In addition, we handle here the more general
situation where, using the notation below, W = W (πe, V

ϕ), as the case W = W (πe+1, V
ϕ)

considered in [SS17] can be deduced from the former.
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Proposition 7.4.17. Let V, S ⊂ Cn be two algebraic sets with V d-equidimensional and S

finite. Let χ be an atlas of (V, S) and let e ∈ ¶2, . . . , (d+ 3)/2♢. Define W = W (πe, V
ϕ) and

let Q′′ and S ′′ be zero-dimensional parametrizations with coefficients in Q that respectively

encode a finite set Q′′ ⊂ Ce and S′′ = S ∪W♣πe∈ Q′′ and let V ′′ = V♣πe∈ Q′′ . Assume that S′′

is finite and, either V ′′ is empty or its is equidimensional of dimension d − e, with sing(V ′′)

contained in S′′, and Fatlas(χ, V, S,Q
′′,π) is an atlas of (V ′′, Q′′, S′′).

Let L = (Γ, (1),S ) be a Lagrange system such that V = U (L) and S = Z(S ). Let

Y = (Y1, . . . , Yr) be algebraic sets in Cn and let finally ψ be a global normal form for

(L; (V ′′,Y )) such that χ is the associated atlas of (V, S). Then the following holds:

• Flag(L,Q′′,S ′′) is a Lagrange system that defines V ′′;

• if V ′′ ̸= ∅, then the pair (Flag(L,Q′′,S ′′); Y ) has a global normal form whose atlas is

Fatlas(χ, V,Q
′′, S,π).

Proof. As above the statement of this proposition is identical to the one in [SS17, Proposition
5.16] except that the assumptions on S′′ and V ′′ are replaced by a generic change of variables
on V . Indeed, [SS17, Proposition 5.16] claims the same statements, as we do, on V A where
A is assumed to lie in a non-empty Zariski open set G3(χ, V, ∅, S, e) defined in [SS17,
Proposition 3.7].

In the proof of [SS17, Proposition 5.17], the fact that A ∈ G3(χ, V, ∅, S, e) allows to
assume that the statements of [SS17, Proposition 3.7] but also [SS17, Lemma C.1] hold.
In the case of the proposition stated above, the assumptions on S′′ and V ′′ are exactly the
statement of [SS17, Proposition 3.7], while [SS17, Lemma C.1] is nothing but a consequence
of these facts. Therefore, under these assumptions, the proof of [SS17, Proposition 5.17]
can be replicated, mutatis mutandis, for V instead of V A, and constitutes a valid proof for
the above statement.

7.4.4 Proofs of Lemmas 7.3.4, 7.3.5, 7.3.6 and 7.3.7

As done in the paragraph 7.3.2.b, we fix 1 ≤ c ≤ n− 1 and we refer to the following objects:

• sequences of polynomials g = (g1, . . . , gc) and φ = (φ1, φ2) in Q[X], of maximal
degrees D, such that g satisfies assumption A that is: g is a reduced regular sequence
and sing(V (g)) is finite;

• straight-line programs Γ and Γϕ, of respective lengths E and E′, computing respec-
tively g and φ;

• the equidimensional algebraic set V = V (g), of dimension d = n− c, defined by g;

• zero-dimensional parametrizations S and Q′′, of respective degrees σ and κ′′, describ-
ing finite sets S ⊂ Cn and Q′′ ⊂ C, such that sing(V ) ⊂ S;

• an atlas χ of (V, S), given by [SS17, Lemma A.13], as S is finite and contains sing(V ).

Let Ψϕ be the incidence isomorphism associated toφ and let gϕ as defined in Lemma 7.4.4,
so that Ṽ := V (gϕ) = Ψϕ(V ). According to Lemmas 7.4.4 and 7.4.5, Ṽ ⊂ C2+n is
equidimensional with finitely many singular points.
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Lemma 7.4.18. Let Y = (Y1, . . . , Yr) be algebraic sets in Cn. There exists an algorithm such

that, on input Γ,S and Γϕ, runs using at most Õ (E′σ) operations in Q, and outputs

• Γ̃, a straight-line program of length E + E′ + 2, computing gϕ ,

• S̃ , a zero-dimensional parametrization of degree σ, encoding S̃ = Ψϕ(S),

such that the following holds. The Lagrange system L̃ = (Γ̃, (1), S̃ ) of type ((2 + n, 0), (2 +

c, 0), 0) defines Ṽ , and (L̃,Y ) has a global normal form.

Proof. By Lemmas 7.4.1 and 7.4.3, there exist algorithms IncSLP and IncParam respectively,
which, on input Γ,S and Γϕ, output Γ̃ and S̃ as described in the statement, using at most
Õ (E′σ) operations in Q. Let L̃ = (Γ̃, (1), S̃ ). By Lemma 7.4.4, gϕ is a reduced regular
sequence as g is. Then, according to [SS17, Proposition 5.10], L̃ defines a Lagrange system
that defines Ṽ and ψ = ((1, 1, gϕ , gϕ)) is a global normal form of (L̃,Y ).

We deduce an algorithm for computing critical points on V .

Proof of Lemma 7.3.4. By Lemmas 7.4.4, 7.4.2 and 7.4.5, Wϕ(1, V ) can be obtained by
projecting the incidence polar variety W (π1, Ṽ ) on the last n coordinates. Computing
a parametrization of the latter set can then be done using the algorithm W1 of [SS17,
Proposition 6.3] on the Lagrange system given by [SS17, Proposition 5.10].

According to Lemma 7.4.18, we can compute a Lagrange system L̃ of type ((2 + n, 0), (2 +

c, 0), 0), with the global normal form property, that defines Ṽ . Hence, by [SS17, Proposition
6.4], there exists a Monte Carlo algorithm W1 which, on input L̃, either fails or returns a
zero-dimensional parametrization W̃1 which described it using at most

Õ
(
(E + E′)(n+ 2)4d+8D2n+3(D − 1)2d + nσ2

)

operations in Q. Moreover, in case of success, W̃1 describes W (π1, Ṽ )− S̃, with the notation
of Lemma 7.4.18. Besides, by [SS17, Proposition I.1] (or [SS18, Proposition 3]) the degree
of K(π1, Ṽ ) is upper bounded by

(
n+1
c+1

)
Dc+2(D − 1)d =

(
n+1

d

)
Dc+2(D − 1)d.

Finally, by Lemma 7.4.5, Wϕ(1, V ) can be obtained by projecting W (π1, Ṽ ) on the last
n coordinates and taking the union with S. This is done by performing the subroutines
Projection and Union [SS17, Lemma J.3 and J.5] which uses at most

Õ
(
n2
(

n+1
c+1

)2
D2c+4(D − 1)2d + nσ2

)

operations in Q. □

In the following, we consider the polar varieties W = Wϕ(2, V ) and W̃ = W (π2, Ṽ ) so
that, by Lemma 7.4.5, W̃ = Ψϕ(W ).
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Lemma 7.4.19. Let Y = (Y1, . . . , Yr) be algebraic sets in Cn. There exists a Monte Carlo

algorithm which, on input Γ,S and Γϕ, runs using at most Õ (E′σ + n(E + E′)) operations

in Q, and outputs a Lagrange system L̃W of type

(
(2 + n, 2 + c), (2 + c, n+ 1), 0

)
.

Either W is empty or assume that W is 1-equidimensional, with sing(W ) ⊂ S, and in addition

that Watlas(χ, V, S,φ, 2) is an atlas of (W,S). Then, in case of success, L̃W defines W (π2, Ṽ )

and (L̃W ,Y ) has a global normal form.

Proof. According to Lemma 7.4.18, one can compute, using Õ (E′σ) operations in Q, a
Lagrange system L̃ of type ((2 + n, 0), (2 + c, 0), 0), defining Ṽ , and such that (L̃, (W̃ ,Y ))

has a global normal form ψ.

Let u be an arbitrary element of Qc+2, such an element can be provided by the procedure
Random we mentioned in Subsection 7.3.3. Let L̃W = WLagrange(L̃,u, 2), according to
Definition 7.4.14, L̃W is a Lagrange system of type

(
(2 + n, 2 + c), (2 + c, n+ 1), 0

)
.

Computing L̃W boils down to apply Baur-Strassen’s algorithm [BS83] to obtain a straight-
line program evaluating the Jacobian matrix associated to g,φ as in the proof of [SS17,
Lemma O.1].

By assumption, either W is empty, and so is W̃ , or W is equidimensional of dimension
1, with sing(W ) ⊂ S. Then, by Lemma 7.4.5, W̃ is equidimensional of dimension 1, with
sing(W̃ ) ⊂ Ψϕ(S) = S̃. Moreover, as Watlas(χ, V, S,φ, 2) is an atlas of (W,S) then, by
Lemma 7.4.7, Watlas(χ

ϕ, Ṽ , S̃,π , 2) is an atlas of (W̃ , S̃).

Therefore, by Proposition 7.4.15, there exists a non-empty Zariski open subset I (L̃,ψ,Y )

of Cp such that, if u ∈ I (L̃,ψ,Y ) then, either W̃ ̸= ∅ or (L̃W ,Y ) admits a global normal
form. In both cases, L̃W is a Lagrange system that defines W̃ .

Proof of Lemma 7.3.5. According to Lemmas 7.4.4, 7.4.2 and 7.4.5, Wϕ(2, V ) can be
obtained by projecting the incidence polar variety W (π2, Ṽ ) on the last n coordinates. Com-
puting a parametrization of the latter set can then be done using the algorithm SolveLagrange

of [SS17, Proposition 6.3] on the Lagrange system given by Proposition 7.4.15.

By Lemma 7.4.19, we can compute a Lagrange system L̃W defining W (π2, Ṽ ), that admits
a global normal form. Then, by [SS17, Proposition 6.3], there exists a Monte Carlo algorithm
SolveLagrange which, on input L̃W , either fails or returns a one-dimensional parametrization
W̃ of degree at most

δ = (n+ c+ 4)Dc+2(D − 1)d(c+ 2)d,

describing U (L̃W ), which is exactly W̃ by Proposition 7.4.15. Moreover, by [SS17, Proposi-
tion 6.3], the execution of SolveLagrange uses at most

Õ
(
(n+ c)3(E + E′ + (n+ c)3)Dδ3 + (n+ c)δσ2

)
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operations in Q. Finally, by Lemma 7.4.5, W can be obtained by projecting W̃ on the last
n coordinates. Hence, running Projection, with input W̃ and n, we get a one-dimensional
parametrization W , of degree at most δ, encoding W . According to [SS17, Lemma J.9.], the
latter operation costs at most Õ

(
n2δ3

)
operations in Q. □

Proof of Lemma 7.3.6. By Lemma 7.4.19, we can compute a Lagrange system L̃W defining
W (π2, Ṽ ), such that (L̃W ;W (π1, W̃ )) has the global normal form property. Hence, by
[SS17, Proposition 6.4], there exists a Monte Carlo algorithm W1 which, on input L̃W , either
fails or returns a zero-dimensional parametrization K̃ of degree at most δ(n+ c)D, where

δ = (n+ c+ 4)Dc+2(D − 1)d(c+ 2)d,

describing W (π1,U (L̃W )) − S̃, which is exactly W (π1, W̃ ) − S̃ by Proposition 7.4.15.
Moreover, by [SS17, Proposition 6.3], the execution of W1 uses at most

Õ
(
(n+ c)12(E + E′)D3δ2 + (n+ c)σ2

)

operations in Q. Finally, by Lemma 7.4.5, Wϕ(1,W ) can be obtained by projectingW (π1, W̃ )

on the last n coordinates and taking the union with S. This is done, using the subrou-
tines Projection and Union which, according to [SS17, Lemma J.3 and J.5], use at most
Õ
(
(n+ c)4D2δ2 + nσ2

)
operations in Q. □

Proof of Lemma 7.3.7. By Lemma 7.4.19, we can compute a Lagrange system L̃W defining
W (π2, Ṽ ), such that (L̃W ; W̃ ∩ π−1

1 (Q̃′′)) has the global normal form property. Hence, by
[SS17, Proposition 6.5], there exists a Monte Carlo algorithm Fiber which, on input L̃W ,
either fails or returns a zero-dimensional parametrization F̃ of degree at most κ′′δ where

δ = (n+ c+ 4)Dc+2(D − 1)d(c+ 2)d,

describing [U (L̃W )∩π−1
1 (Q̃′′)]−S̃, which is exactly [W̃∩π−1

1 (Q̃′′)]−S̃ by Proposition 7.4.15.
Moreover, by [SS17, Proposition 6.3], the execution of FiberPolar uses at most

Õ
(
(n+ c)4

[
E + E′ + (n+ c)2

]
D(κ′′)2δ2 + (n+ c)σ2

)

operations in Q,according to [SS17, Definition 6.1]. Finally, by Lemma 7.4.5, W ∩φ−1
1 (Q′′)

can be obtained by projecting W̃ ∩ π−1
1 (Q̃′′) on the last n coordinates and taking the union

with S.. This is done, using the subroutines Projection and Union which, according to [SS17,
Lemma J.3 and J.5], use at most Õ

(
(n+ c)2(κ′′)2δ2 + nσ2

)
operations. □

7.4.5 Proof of Proposition 7.3.8

This paragraph is devoted to prove Proposition 7.3.8. We recall its statement below.

Proposition (7.3.8). Let Γ and Γϕ be straight-line programs, of respective length E and E′,

computing respectively polynomials g = (g1, . . . , gp) and φ = (φ1, . . . , φn) in Q[x1, . . . , xn],
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of degrees bounded by D. Assume that g satisfies (A). Let Q and SQ be zero-dimensional para-

metrizations of respective degrees κ and σ that encode finite sets Q ⊂ Ce (for some 0 < e ≤ n)

and SQ ⊂ Cn, respectively. Let V = V (g) and FQ = V♣ϕe∈ Q, and assume that

• FQ is equidimensional of dimension d− e, where d = n− p;

• Fatlas(χ, V,Q,φ) is an atlas of (FQ, SQ), and sing(FQ) ⊂ SQ;

• the real algebraic set FQ ∩Rn is bounded.

Consider additionally a zero-dimensional parametrization P of degree µ encoding a finite

subset P of FQ, which contains SQ. Assume that σ ≤ ((n+ e)D)n+e.

There exists a probabilistic algorithm RoadmapBounded which takes as input the pair

((Γ,Γϕ,Q,S ),P) and which, in case of success, outputs a roadmap of (FQ,P), of degree

Õ
(

(µ+ κ)163dF (nF log2(nF ))2(2dF +12 log2(dF ))(log2(dF )+5)D(2nF +1)(log2(dF )+3)
)
,

where nF = n+ e and dF = d− e, and using

Õ
(

(µ+ κ)3169dF (E + E′ + e)(nF log2(nF ))6(2dF +12 log2(dF ))(log2(dF )+6)D3(2nF +1)(log2(dF )+4)
)

arithmetic operations in Q.

We start by proving a variant of this result for when φ encodes projections. Then,
using incidence varieties and the associated subroutines, we will generalize it to arbitrary
polynomial maps.

7.4.5.a. The particular case of projections

We study here, the call to the algorithm RoadmapRecLagrange from [SS17, Sec. 7.1]. It takes
as input a Lagrange system Lρ = (Γρ,Qρ,Sρ) having the global normal form property, and
where Z(Q) is not empty. The following proposition ensures the correction of such a call
and describes the related complexity, with respect to [SS17]. Let x1, . . . , xm, where m ≥ 0,
be new indeterminates.

Proposition 7.4.20. Let f = (f1, . . . , fpρ
) ⊂ Q[x1, . . . , xm] be given by a straight-line program

Γρ of length Eρ with deg(fi) ≤ D for 1 ≤ i ≤ pρ, let Qρ and Sρ be zero-dimensional paramet-

rizations which have respective degrees κρ and σρ and encode finitely many points in respectively

Ceρ (for some eρ > 0) and in Cm. Assume that the Lagrange system Lρ = (Γρ,Qρ,Sρ) has the

global normal form property. Let dρ = m− pρ − eρ, hence the dimension of V (Γρ)♣πeρ
∈ Z(Qρ).

Consider a zero-dimensional parametrization Pρ of degree µρ such that Z(Pρ) is a finite

subset of V (Γρ)♣πeρ
∈ Z(Qρ) which contains Z(Sρ). Assume that σρ ≤ (mD)m.

There exists a Monte Carlo algorithm RoadmapBounded which takes as input the pair

((Γρ,Qρ,Sρ),Pρ) and which, in case of success, outputs a roadmap for (V (Γρ)♣πeρ
∈ Z(Qρ),Pρ)

of degree

O˜
(

(µρ + κρ)163dρ(m log2(m))2(2d+12 log2(dρ))(log2(dρ)+5)D(2m+1)(log2(dρ)+3)
)
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using

O˜
(

(µρ + κρ)3169dρEρ(m log2(m))6(2d+12 log2(dρ))(log2(dρ)+6)D3(2m+1)(log2(dρ)+4)
)

arithmetic operations in Q.

Proof. Since, by assumption, Lρ has the global normal form property, one can call the
algorithm RoadmapRecLagrange from [SS17, Sec. 7.1] on input Lρ = (Γρ,Qρ,Sρ) and Pρ.
This algorithm computes data-structures, which are called generalized Lagrange systems,
that encode:

• a polar variety in V (Γρ)♣πeρ
∈ Z(Qρ) of dimension d̃− 1 ≃ dρ/2 for d̃ = ⌊dρ+3

2 ⌋;

• appropriate fibers in V (Γρ)♣πeρ
∈ Z(Qρ) of dimension dρ − (d̃− 1) ≃ dρ/2.

A generalized Lagrange system (see [SS17, Def. 5.3]) is encoded by a triplet L = (Γ,Q,S )

such that Γ is a straight-line program that evaluates some polynomials F = (f ,f1, . . . ,fs)

where

• f lies in Q[X], with X = (x1, . . . , xm);

• fi lies in Q[X,L1, . . . ,Li] and has length pi, where the Lj ’s are sequences of extra
variables of length mj (these are called blocks of Lagrange multipliers);

• for any fi,j in fi, the degree of fi,j in Lj is at most 1 for 1 ≤ i ≤ pi and 1 ≤ j ≤ i.

Also, Q (resp. S ) is a zero-dimensional parametrization encoding points in Ce (resp. Cm).

The algebraic set of Cm defined by L = (Γ,Q,S ) is the Zariski closure of the projection
on the X-space of V (F )♣π

X,e
∈ Z(Q) \ π−1

X
(Z(S )).

Short description of RoadmapRecLagrange. From a generalized Lagrange system L satisfy-
ing the global normal form property and encoding some algebraic set X, one can build a
generalized Lagrange system encoding a polar variety W over X using [SS17, Def 5.11 and
Prop. 5.13], which satisfies the global normal form property, up to some generic enough
linear change of coordinates and some restriction on the dimension of W . Additionally,
given finitely many base points Q′ ⊂ Ce′

encoded by a zero-dimensional parametrization
Q′, [SS17, Def. 5.14 and Prop. 5.16] show how to deduce from L and Q′ a generalized
Lagrange system for X♣π

e′ ∈ Q′ satisfying the global normal form property, again assuming
the coordinate system is generic enough.

Maintaining the global normal form property allows us to call recursively the procedure
RoadmapRecLagrange. All in all, these computations are organised in a binary tree T , whose
root is denoted by ρ. Each child node τ encodes computations performed by a recursive call
with input some generalized Lagrange system Lτ = (Γτ ,Qτ ,Sτ ) and some zero-dimensional
parametrization Pτ encoding some control points. Both Lτ and Pτ have been computed
by the parent node. Correctness is proved in [SS17, Sec. N.3]. Further, we denote by κτ , στ

and µτ the respective degrees of Qτ , Sτ and Pτ .
The dimension of V(Lτ ) is denoted by dτ . Calling RoadmapRecLagrange, with input Lτ

sets d̃τ = ⌊dτ +3
2 ⌋ and computes
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(a) a generalized Lagrange system L′
τ encoding the polar variety W = W (eτ , d

′
τ ,V(Lτ )A),

where A is randomly chosen;

(b) a zero-dimensional parametrization Bτ which encodes the union of W (eτ , 1,W ) with
Z(P)

A; we denote its degree by βτ ; note that by construction (see [SS17, ], Z(Bτ )

contains Z(Sτ ));

(c) a zero-dimensional parametrization Q′′
τ which encodes the projection of Bτ on the e′′

τ

first coordinates (with e′′
τ = eτ + d̃τ − 1 ); we denote its degree by κ′′

τ ;

(d) a zero-dimensional parametrization P ′
τ encoding Z(Pτ )

A ∪ Yτ with

Yτ = V (V(L′
τ ))♣π

e′′
τ

∈ Z(Q′′
τ )

and a zero-dimensional parametrization and P ′′
τ which encodes those points of Z(P ′

τ )

which project on Z(Q′′
τ ); further we denote their degrees by µ′

τ and µ′′
τ , the degree of

Yτ will be denoted by γτ ;

(e) zero-dimensional parametrizations S ′
τ and S ′′

τ of respective degrees σ′
τ and σ′′

τ which
do encode Z(Sτ )

A ∪ Yτ and those points of Z(S ′′
τ ) which project on Z(Q′′

τ ); note that
by construction, Z(S ′

τ ) and Z(S ′′
τ ) are contained in Z(P ′

τ ) and Z(P ′′
τ ) respectively;

(f) and, finally, a generalized Lagrange system L′′
τ which encodes V(Lτ )♣π

e′′
τ

∈ Z(Q′′
τ ).

The recursive calls of RoadmapRecLagrange are then performed on (L′
τ ,P

′
τ ) and (L′′

τ ,P
′′
τ ).

For a given generalized Lagrange system Lτ corresponding to some node τ , the number
of blocks of Lagrange multipliers is denoted by kτ . The total number of variables (resp.
polynomials) lying in Q[X,L1, . . . ,Li] for i ≤ kτ is denoted by Mi,τ (resp. Pi,τ ). By
construction, for i = 0, we have P0,τ = pρ. For i = kτ , we denote Mkτ ,τ (resp. Pkτ ,τ ) by Mτ

(resp. Pτ ).

As in [SS17, Sec. 6.1], we attach to each such generalized Lagrange system the quantity

δτ = (Pτ + 1)kτDp(D − 1)m−eτ −pρ

kτ −1∏

i=0

M
Mi,τ −eτ −Pi,τ

i+1,τ .

We establish below that the degree of V(Lτ ) is bounded by κτδτ .

Complexity analysis. The complexity of RoadmapRecLagrange is analysed in [SS17, Sec.
O], assuming that eρ = 0 (see [SS17, Prop. O.7]). This is done by proceeding in two steps:

• Step (i) proves some elementary bounds on the number of variables and polynomials
(the mi’s and the pi’s) involved in the data-structures encoding these polar varieties
and fibers in the recursive calls (see [SS17, Sec. O.1]);

• Step (ii) proves uniform degree bounds for the parametrizations P ′
τ ,P

′′
τ , Bτ , Q′

τ ,Q
′′
τ ,

as well as S ′
τ ,S

′′
τ where τ ranges over all nodes of the binary tree T . Uniform degree

bounds are also given for all V(Lτ ).
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These degree bounds are used in combination with the complexity estimates of [SS17,
Sec. 6.2] for solving generalized Lagrange systems and [SS17, Sec. J.1 and J.2] which
do depend polynomially on these bounds and the ones established in (i).

Since the total number of nodes is O(m), it suffices to take m times the sum of all costs
established by (ii). Hereafter, we slightly extend this analysis when eρ > 0, following the
same reasoning, which we recall step by step by highlighting the main (and tiny) differences.

Step (i). We start with step (i). Both [SS17, Lemma O.1] and [SS17, Lemma O.2] control
the lengths of the straight-line programs, the numbers of blocks of Lagrange multipliers
and their lengths, as well as the numbers of polynomials and total number of variables
remain valid, assuming eρ = 0. Their proofs are based on how these quantity evolve
when building generalized Lagrange systems encoding polar varieties and fibers (see [SS17,
Lemmas 5.12 and 5.15]). This is not changed in our context where the initial call to
RoadmapRecLagrange is done with some base points Z(Qρ) with eρ > 0 because for each
note τ , we take d̃τ = ⌊dτ +3

2 ⌋ as in [SS17]. This implies that the conclusions of [SS17,
Lemma O.1] and [SS17, Lemma O.2] still hold when taking dρ = m− pρ − eρ.

All in all, we deduce that:

• the maximum number of blocks of Lagrange multipliers and the depth of T are
bounded by ⌈log2(dρ)⌉

• All straight-line programs have length bounded by 4m4+2 log2(dρ)(Eρ +m4)

• the total number of variables for the generalized Lagrange system Lτ is bounded by
(m2)

dρ
hτ

+1 where hτ is the height of the node τ .

Step (ii). We can now investigate Step (ii). The two main quantities to consider are

δ = 16dρ+2m2dρ+12 log2(dρ)Dm

and
ζ = (µρ + κρ)162(dρ+3)(m log2(m))2(2dρ+12 log2(dρ))D(2m+1)(log2(dρ+2)).

The first step is to prove that for any node τ , the degree of V(Lτ ) is dominated by κτδ.
Using the global normal form property, [SS17, Prop. 5.13 and 6.2] prove that the degree of
V(Lτ ) is upper bounded by κτδτ . Recall that, by definition,

δτ = (Pτ + 1)kτDp(D − 1)m−eτ −pρ

kτ −1∏

i=0

M
Mi,τ −eτ −Pi,τ

i+1,τ .

[SS17, Lemma O.4] shows that the above left-hand side quantity is dominated by δ, using
the results of Step (i) which we proved to still hold. We then deduce that the degree of
V(Lτ ) is upper bounded by κτδ.

[SS17, Lemma O.5] establishes recurrence formulas for the quantities βτ , γτ , µτ + κτ and
στ when τ ranges in the set of nodes of the binary tree T . It states that, letting τ ′ and τ ′′

be the two children of τ , βτ , γτ , µτ ′ + κτ ′ , µτ ′′ + κτ ′′ , στ ′ and στ ′′ are bounded above by

2δ2ζτ (µτ + κτ ) where ζτ =
(
m2 log2(m)D

) dρ

2hτ
+1

(here hτ is the height of τ) in the context
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of [SS17] with eρ = 0 and assuming that Z(Sτ ) is contained in Z(Pτ ) for any node τ of T
(this is used to prove the statements on στ , στ ′ and στ ′′). In the context of [SS17], we have
Z(Sρ) = ∅. In our context, we still take d̃τ = ⌊dτ +3

2 ⌋ as in [SS17], hence the structure of our
binary tree T is the same as the one in [SS17]. Also we assume that Z(Sρ) is contained in
Z(Pτ ) and that its degree is bounded by (mD)m. This is enough to transpose the recursion
performed in the proof of [SS17, Lemma O.5 and Prop.O.3] and deduce that µτ , κτ and στ

are bounded by ζ when τ ranges over the set of nodes of T .
The runtime estimates in [SS17, Sec. O.3] to compute the parametrizations and general-

ized Lagrange systems in steps (a) to (f) above are then the same (they depend on δ, ζ and
the above bounds on deduced at Step (i)). The statements of [SS17, Lemmas O.8, O.9, O.10
and O.11] can then be applied here mutatis mutandis which, as in [SS17, Sec. O.3], allow
us to deduce the same statement as [SS17, Prop. O.7], i.e. that the total runtime lies in

O˜
(

(µρ + κρ)3169dρEρ(m log2(m))6(2d+12 log2(dρ))(log2(dρ)+6)D3(2m+1)(log2(dρ)+4)
)

and outputs a roadmap of degree in

O˜
(

(µρ + κρ)163dρ(m log2(m))2(2d+12 log2(dρ))(log2(dρ)+5)D(2m+1)(log2(dρ)+3)
)
.

7.4.5.b. Proof of Proposition 7.3.8

To prove Proposition 7.3.8, we now show how to return to the case of projections from
the general one, before calling the procedure RoadmapRecLagrange, whose complexity is
analysed in Proposition 7.4.20.

Consider the notations introduced in the statement of the proposition. In the following let
Ψϕe

be the incidence isomorphism associated to φe and let gϕe as defined in Lemma 7.4.4,
so that Ṽ := V (gϕe) = Ψϕe

(V ). According to Lemma 7.4.4 and 7.4.5, Ṽ ⊂ Ce+n is
equidimensional with finitely many singular points. Additionally, let F̃Q = Ψϕe

(FQ) and
S̃Q = Ψϕe

(SQ), so that F̃Q = Ṽ♣πe∈ Q, according to Lemma 7.4.2

Lemma 7.4.21. There exists an algorithm such that, on input Γ, Γϕ, Q and S as above, runs

using at most Õ (E′σ) operations in Q, and outputs a Lagrange system L̃F of type

(
(e+ n, 0), (e+ c, 0), e

)
.

Under the assumptions of Proposition 7.3.8, L̃F has a global normal form, and defines F̃Q.

Proof. According to Lemma 7.4.18, we can compute a Lagrange system L̃ of type ((e +

n, 0), (e + c, 0), 0), with the global normal form property, that defines Ṽ . Let L̃F =

Flag(L̃,Q,S ), as defined in Definition 7.4.16, it is a Lagrange system of type

(( (e+ n, 0), (e+ c, 0), e) .

By assumptions of Proposition 7.3.8, either FQ is empty, and so is F̃Q, or FQ is equi-
dimensional of dimension d − e, with sing(FQ) ⊂ SQ. Then, by Lemma 7.4.5, F̃Q is
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equidimensional of dimension d − e, with sing(F̃Q) ⊂ Ψϕ(SQ) = S̃Q. Moreover, as
Fatlas(χ, V, SQ,φ) is an atlas of (FQ, SQ) then, by Lemma 7.4.8, Fatlas(χ

ϕ, Ṽ , S̃Q,π) is
an atlas of (F̃Q, S̃Q).

Hence, by Proposition 7.4.17, either F̃Q = ∅ or L̃F admits a global normal form.

Suppose now that the Lagrange system L̃F , given by Lemma 7.4.21 has been computed.
According to Lemma 7.4.3, one can compute a zero-dimensional parametrization P̃, en-
coding P̃ = Ψϕe

(P), within the same complexity bound. One checks, by assumption, that
S̃Q ⊂ P̃ ⊂ F̃Q and that S̃Q has degree bounded by ((n+ e)D)n+e.

Therefore, according to Proposition 7.4.20, there exists a Monte Carlo algorithm RoadmapRe-

cLagrange which, on input L̃F and P̃, outputs, in case of success, a roadmap R̃FQ
of (F̃Q, P̃)

of degree

Õ
(

(µ+ κ)163dF (nF log2(nF ))2(2dF +12 log2(dF ))(log2(dF )+5)D(2nF +1)(log2(dF )+3)
)
,

where nF = n+ e and dF = d− e, and using

Õ
(

(µ+ κ)3169dF (E + E′ + e)(nF log2(nF ))6(2dF +12 log2(dF ))(log2(dF )+6)D3(2nF +1)(log2(dF )+4)
)

arithmetic operations in Q.

Finally, let BRM be the degree bound, given above, on the roadmap R̃FQ
of (F̃Q, Q̃) output

by RoadmapRecLagrange. Then, by [SS17, Lemma J.9], one can compute the projection RFQ
,

of R̃FQ
, on the last n variables. The complexity of such step is bounded by Õ

(
n2

F B3
RM

)
,

that is bounded by

Õ
(

(µ+ κ)3169dF (nF log2(nF ))6(2dF +12 log2(dF ))(log2(dF )+6)D3(2nF +1)(log2(dF )+3)
)
,

operations in Q. Finally, since Ψϕe
is an isomorphism of algebraic sets, it induces a one-to-

one homeomorphic correspondence between the semi-algebraically connected components
of F̃Q ∩RnF and FQ ∩Rn by Proposition 4.2.23. Therefore, RFQ

is a roadmap of (FQ,P).

7.5 Proof of Proposition 7.2.3: finiteness of fibers

We recall the statement of the proposition we adress to prove.

Proposition (7.2.3). Let V ⊂ Cn be a d-equidimensional algebraic set with finitely many

singular points and θ be in C[X]. Let 2 ≤ r ≤ d+ 1. For α = (α1, . . . ,αr) in Crn, we define

φ = (φ1(X,α1), . . . , φr(X,αr)), where for 2 ≤ j ≤ r

φ1(X,α1) = θ(X) +

n∑

k=1

α1,kxk and φj(X,αj) =

n∑

k=1

αj,kxk.

Then, there exists a non-empty Zariski open subset ΩI(V, θ, r) ⊂ Crn such that for every

α ∈ ΩI(V, θ, r) and i ∈ ¶1, . . . , r♢, the following holds:

1. either Wϕ(i, V ) is empty or (i− 1)-equidimensional;
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2. the restriction of φi−1 to Wϕ(i, V ) is a Zariski-closed map;

3. for any z ∈ Ci−1, the fiber Kϕ(i, V ) ∩φ−1
i−1(z) is finite.

The rest of this section is devoted to the proof of this result. We first establish a general
lower bound on the dimension of the non-empty generalized polar varieties. This is a direct
generalization of [SS17, Lemma B.5. & B.13.].

Lemma 7.5.1. Let K be an algebraically closed field, and let V ⊂ Kn be a d-equidimensional

algebraic set. Then, for any φ = (ϕ1, . . . , ϕd+1) ⊂ K[X], and any 1 ≤ i ≤ d+ 1, all irreducible

components of Wϕ(i, V ) have dimension at least i− 1.

Proof. Since V is d-equidimensional, the case i = d+ 1 is immediate; assume now that i ≤ d.
According to [SS17, Lemma A.13], there exists an atlas χ = (χj)1≤j≤s of (V, sing(V )).
For 1 ≤ j ≤ s, let χj = (mj ,hj). By [SS17, Lemma A.12], hj has cardinality c = n − d.
According to Lemma 7.2.6, fix j ∈ ¶1, . . . , s♢, the following holds in O(mj)− sing(V ),

Wϕ(i, V ) = ¶y ∈ V ◦
reg(hj) ♣ rank(Jacy(hj ,φi) < c+ i♢ = W ◦

ϕ(i,V ◦
reg(hj)). (7.3)

Let y ∈ W ◦
ϕ(i, V ) = Wϕ(i, V ) − sing(V ). Since y ∈ V , there exists j ∈ ¶1, . . . , s♢ such

that y ∈ O(mj). Hence, by (7.3), in O(mj) − sing(V ), the irreducible component of
Wϕ(i, V ) containing y is the same as the irreducible component of the Zariski closure of
W ◦
ϕ(i,V ◦

reg(hj)) containing y. Since these irreducible components are equal over a non-
empty Zariski open set, they have same dimension by [Sha13, Theorem 1.19]. Hence,
proving that this common dimension is at least i− 1 allows us to conclude.

Let m ⊂ K[X] be the ideal generated by the (c+ i)-minors of Jac[hj ,φi]. Then,

W ◦
ϕ(i,V ◦

reg(hj)) = V ◦
reg(hj) ∩ V (m)

which is contained in the algebraic set Vreg(hj) ∩ V (m). We assume that Vreg(hj) ∩ V (m) is
not empty otherwise the statement of the proposition trivially holds.

Note that any irreducible component Z of Vreg(hj) ∩ V (m), has an ideal of definition p in
K[Vreg(hj)] that is an isolated prime component of the determinantal ideal m · K[Vreg(hj)].
Then by [EN62, Theorem 3.], p has height at most n− c− (i− 1) so that the codimension of
Z in Vreg(hj) is at most n− c− (i− 1). Since Vreg(hj) has dimension n− c, the dimension
of Z is then at most i− 1.

One concludes by observing that, any irreducible component of the Zariski closure of
W ◦
ϕ(i,V ◦

reg(hj)) is the union of irreducible components of Vreg(hj) ∩ V (m).
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7.5.1 An adapted Noether normalization lemma

Consider an algebraically closed field K, let f = (f1, . . . , fm) : Kn → Km be a polynomial
map and V ⊂ Kn and let Y ⊂ Km be algebraic sets such that f(V ) ⊂ Y . Finally, consider
the restriction f̃ : V → Y of f , and recall that the pullback f̃∗ of f̃ is defined by

f̃∗ : K[Y ] = K[y1, . . . , ym]/I(Y ) −→ K[V ] = K[x1, . . . , xn]/I(V )

g 7−→ g ◦ f
.

Definition 7.5.2 ([Sha13, Section 5.3]). We say that the restriction f̃ of f is a finite map if

1. f(V ) is dense in Y , which is equivalent to f̃∗ being injective;

2. the extension K[Y ] →֒ K[V ] induced by f̃∗ is integral.

The following lemma shows that to verify such conditions, we may not have to work over
an algebraically closed field: if V and Y are defined over a subfield K of K, finiteness of f̃ is
equivalent to the pullback K[Y ]/I(Y )→ K[X]/I(V ) being injective and integral.

Lemma 7.5.3. Let K ⊂ L be two fields, let I, J be ideals in respectively K[Y ] = K[y1, . . . , ym]

and K[X] = K[x1, . . . , xn] and let I ′, J ′ be their extensions in respectively L[Y ] and L[X].

Let finally f = (f1, . . . , fm) be in K[X], such that for g in I, g ◦ f is in J .

Consider the ring homomorphisms ζK : K[Y ]/I → K[X]/J and ζL : L[Y ]/I ′ → L[X]/J ′,

that both map yj to fj , for all j. Then, ζK is injective, resp. integral, if and only if ζL is.

Proof. Injectivity of ζK is equivalent to the equality between ideals I = (JK[Y ,X] + ⟨y1 −
f1, . . . , ym−fm⟩)∩K[Y ]; similarly, injectivity of ζL is equivalent to I ′ = (J ′L[Y ,X]+ ⟨y1−
f1, . . . , ym−fm⟩)∩L[Y ]. These properties can be determined by Gröbner basis calculations;
since the generators of I, J are the same as those of I ′, J ′, they are thus equivalent.

Next, integrality of ζK directly implies that of ζL. Conversely, integrality of ζL is equivalent
to the existence of polynomials G1, . . . , Gn in L[y1, . . . , ym, s], all monic in s, such that
Gj(f1, . . . , fm, xj) is in J ′ for all j. If we assume that such polynomials exist, we can then
linearize these membership equalities, reducing such properties to the existence of a solution
to certain linear system with entries in K. Since we know that a solution exists with entries
in L, one must also exist with entries in K. This then yields integrality of ζK.

The Noether normalization lemma says that for V r-dimensional and Y = Kr, the
restriction of a generic linear mapping Kn → Km to V is finite. We give here a proof of
this lemma adapted to our setting, where the shape of the projections we perform is made
explicit. We start with a statement for ideals rather than algebraic sets.

Proposition 7.5.4 (Noether normalization). Let K be a field, let J be an ideal in K[X] and

let r be the dimension of its zero-set over an algebraic closure of K. Let further a be r(n− r)
new indeterminates. Then the K(a)-algebra homomorphism

ζa : K(a)[z1, . . . , zr] −→ K(a)[X]/JK(a)[X]

zj 7−→ xj +

n−r∑

k=1

aj,k xr+k mod J
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is injective and makes K(a)[X]/JK(a)[X] integral over K(a)[z1, . . . , zr].

Proof. We proceed by induction on the number n of variables. The case n = 0 is straightfor-
ward. Assume now that n > 0 and that the statement holds for k < n variables. Remark
that if J = ¶0♢, we have r = n, ζa is the isomorphism K[z1 . . . , zn]→ K[X] mapping zi to
xi for all i (which is then integral); in this case, we are done.

Assume now that J ̸= ¶0♢, and let f be non-zero in J . Let δ be the total degree of f and
let ℓ = (ℓ1, . . . , ℓn−1) be new indeterminates. Writing f =

∑
i1,...,in

ci1,...,in
xi1

1 · · ·xin
n , the

leading coefficient of f(x1 + ℓ1xn, . . . , xn−1 + ℓn−1xn, xn) in xn is

∑

i1+···+in=δ

ci1,...,in
ℓi1

1 · · · ℓ
in−1

n−1 = fδ(ℓ1, . . . , ℓn−1, 1)

where fδ is the homogeneous degree-δ component of f . Therefore, if F = fδ(ℓ1, . . . , ℓn−1, 1),
then F is not the zero polynomial and the polynomial

1

F
f(x1 + ℓ1xn, . . . , xn−1 + ℓn−1xn, xn) ∈ K(ℓ)[X]

is monic in xn. Let further J ′ be the extension of J to K(ℓ)[X], let Y = (y1, . . . , yn−1) be
new indeterminates and consider the K(ℓ)-algebra homomorphism

τ : K(ℓ)[Y ] −→ K(ℓ)[X]

yj 7−→ xj − ℓjxn

;

the contraction J ′c = τ−1(J ′) is an ideal in K(ℓ)[Y ]. For 1 ≤ j ≤ n − 1, let [yj ] = yj

mod J ′c and for 1 ≤ k ≤ n let [xj ] = xj mod J ′. Then let

[τ ] : K(ℓ)[Y ]/J ′c −→ K(ℓ)[X]/J ′

[yj ] 7−→ [xj ]− ℓj [xn]

and
g(s) =

1

F
f
(
[y1] + ℓ1s, . . . , [yn−1] + ℓn−1s, s

)
∈
(

K(ℓ)[Y ]/J ′c
)

[s];

this is a monic polynomial in s.

If we extend [τ ] to a K(ℓ)-algebra homomorphism K(ℓ)[Y ]/J ′c [s] → K(ℓ)[X]/J ′ [s], g
satisfies

[τ ](g)
(
[xn]

)
=

1

F
f([x1], . . . , [xn]) = 0,

since f ∈ J by assumption. Since [τ ] is by construction injective, it makes K(ℓ)[X]/J ′ an
integral extension of K(ℓ)[Y ]/J ′c (the integral dependence relation for [xj ], for j < n, is
obtained by replacing s by (s− [yj ])/ℓj in g and clearing denominators).

In particular, these two rings have the same Krull dimension [Kun85, Corollary 2.13].
This latter dimension is the same as that of K[X]/J (because it can be read off a Gröbner
basis of J , and such Gröbner bases are also Gröbner bases of J ′), that is, r. In other words,
the zero-set of J ′c over an algebraic closure of K(ℓ) has dimension r.
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Then we can apply the induction hypothesis to J ′c ⊂ K(ℓ)[Y ]. If we consider r(n− 1− r)
new indeterminates b = (bi,j)1≤i≤r,1≤j≤n−1−r, and introduce Z = (z1, . . . , zr), the K(ℓ, b)-
algebra homomorphism

ηb : K(ℓ, b)[Z] −→ K(ℓ, b)[Y ]/J ′cK(ℓ, b)[Y ]

zj 7−→ [yj ] +
n−1−r∑

k=1

bj,k [yr+k]

is thus injective and realizes an integral extension of the polynomial ring K(ℓ, b)[Z]. On the
other hand, by Lemma 7.5.3, the extended map

[τ ]e : K(ℓ, b)[Y ]/J ′cK(ℓ, b)[Y ] −→ K(ℓ, b)[X]/J ′K(ℓ, b)[X]

remains injective and integral. By transitivity, it follows that the K(ℓ, b)-algebra homomor-
phism

[τ ]e ◦ ηb : K(ℓ, b)[Z] −→ K(ℓ, b)[X]/J ′K(ℓ, b)[X]

zj 7−→ [xj ] +

n−r∑

k=1

mj,k [xr+k]

,

where for all 1 ≤ j ≤ r,

mj =

(
bj,1, . . . , bj,n−1−r, −ℓj −

n−1−r∑

k=1

bj,k ℓr+k

)
,

is injective and integral as well. In particular, the restriction of [τ ]e ◦ ηb to a mapping
K(m)[Z]→ K(m)[X]/JK(m)[X] is still injective and integral, by Lemma 7.5.3 (here, we
write K(m) = K(m1,1, . . . ,mr(n−r))).

Letting a be r(n − r) new indeterminates, we observe that ι : ai,j 7→ mi,j defines a
K-isomorphism K(a) → K(m) ⊂ K(ℓ, b), since the entries of m are K-algebraically
independent. The conclusion follows.

Corollary 7.5.5. Let V ⊂ Cn be an r-dimensional algebraic set. Let a = (ai,j)1≤i≤r,1≤j≤n−r

be r(n− r) new indeterminates and let VK ⊂ Kn be the extension of V to the algebraic closure

K of K = C(a). Then the restriction f̃ : VK → Kr of the polynomial map f = (f1, . . . , fr)

given by

fj = xj +
n−r∑

k=1

aj,k xr+k, 1 ≤ j ≤ r

is finite.

Proof. Let J be the defining ideal of V in C[X]. Letting Z = z1, . . . , zr be r new indetermi-
nates, the previous proposition shows that f̃∗ : C(a)[Z]→ C(a)[X]/JC(a)[X] is injective
and integral. By Lemma 7.5.3, we further deduce that it is also the case for the extension of
f∗ : K[Z]→ K[X]/JK[X].

Because C is algebraically closed, J remains radical in K[X], so that JK[X] is the defining
ideal of VK, and we are done.
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7.5.2 Finiteness on polar varieties

In this section, we prove the core of the Proposition 7.2.3, by proving finiteness properties
on the restriction of the considered morphisms to their associated polar varieties.

Proposition 7.5.6. Let V ⊂ Cn be a d-equidimensional algebraic set with finitely many

singular points and let θ ∈ C[X]. For α = (α1, . . . ,αd+1) in C(d+1)n, and for 2 ≤ j ≤ d+ 1,

let

φ1(X,α1) = θ(X) +
n∑

k=1

α1,kxk and φj(X,αj) =
n∑

k=1

αj,kxk.

Then for any 1 ≤ i ≤ d+ 1, there exists a non-empty Zariski open set Ωi ⊂ C(d+1)n such that if

α ∈ Ωi and φ = (φ1(X,α1), . . . , φd+1(X,αd+1)), then the restriction of φi−1 to Wϕ(i, V ) is

a finite map.

Proof. Let a = (ai)1≤j≤d+1, with aj = (aj,1, . . . , aj,n) for all j, be (d+ 1)n new indetermi-
nates, and let C(a) be the field of rational fractions in the entries of a. We let K be the
algebraic closure of C(a), and we denote by VK ⊂ Kn the extension of V to K. Let further

ϕ1(X, a1) = θ(X) +

n∑

k=1

a1,kxk and ϕj(X, aj) =

n∑

k=1

aj,kxk, 2 ≤ j ≤ d+ 1

and define φ = (ϕ1, . . . , ϕd+1) in C(a)[X]; as before, for 1 ≤ i ≤ d + 1, we write φi =

(ϕ1, . . . , ϕi). We will prove the following property, which we call P(i), by decreasing
mathematical induction, for i = d+ 1, . . . , 1:

P(i) : the restriction of φi−1 to Wϕ(i, VK) is a finite map.

Let us first see how to deduce the proposition from this claim; hence, we start by fixing i in
1, . . . , d+ 1 and assume that P(i) holds.

Since φi and VK are defined by polynomials with coefficients in C(a), it is also the
case for Wϕ(i, VK) by [SS17, Lemma A.2]. Then P(i) shows (via the discussion preceding
Lemma 7.5.3) that the pullback φ̃∗

i−1 : C(a)[z1, . . . , zi−1] → C(a)[X]/I(Wϕ(i, VK)) is
injective and integral.

• Injectivity means that the ideal generated by I(Wϕ(i, VK)) and z1−ϕ1, . . . , zi−1−ϕi−1

in C(a)[z1, . . . , zi−1,X] has a trivial intersection with C(a)[z1, . . . , zi−1]. Then, this
remains true for the restriction of φi−1 to Wϕ(i, V ) for α in a non-empty Zariski-open
set in C(d+1)n. For instance, it is enough to ensure that the numerators and denomina-
tors of the coefficients of all polynomials appearing in a lexicographic Gröbner basis
computation for the ideal above, in C(a)[z1, . . . , zi−1,X], do not vanish at α.

• Integrality means that there exist nmonic polynomials P1, . . . , Pn in C(a)[z1, . . . , zi−1][s]

such that all polynomials

Pj (φ1, . . . , φi−1, xj) , 1 ≤ j ≤ n

belong to I(Wϕ(i, VK) in C(a)[X]. Taking G ∈ C[a] as the least common multiple
of the denominators of all coefficients that appear in these membership relations, we
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see that for α in C(d+1)n, if G(α) ̸= 0, φi−1 makes C[X]/I(Wϕ(i, V )) integral over
C[z1, . . . , zi−1].

Initial case: i = d+1. We prove P(d+1). As Ty VK has dimension d, for every y ∈ reg(VK),
the polar variety Wϕ(d+ 1, VK) is nothing but VK (since the latter only admits finitely many
singular points); hence, we have to prove that the restriction of φd to VK is finite.

Let y1, . . . , yd be new variables and consider the algebraic set V ′ ⊂ Cd+n defined by
y1 − θ, y2, . . . , yd and all polynomials f , for f in I(V ); as above, we denote its extension to
Kd+n by V ′

K
. Apply Corollary 7.5.5 to V ′ (which is still of dimension d): we deduce that the

restriction of φd to V ′
K

is finite. Since V ′
K

and VK are isomorphic (since V ′
K

is a graph above
VK), we are done with this case.

Induction step: 1 ≤ i ≤ d. Assume now that P(i + 1) holds. Thus, the restriction of φi

to a mapping Wϕ(i + 1, VK) → Ki is finite. By [Sha13, Theorem 1.12] this restriction is
a Zariski-closed map so that, since Wϕ(i, VK) ⊂ Wϕ(i + 1, VK), φi(Wϕ(i, VK)) ⊂ Ki is an
algebraic set and the restriction of φi to a mapping Wϕ(i, VK)→ φi(Wϕ(i, VK)) is finite as
well.

Let Y = (y1, . . . , yi) be new indeterminates. Because these sets are defined over C(a), we
deduce that the pullback C(a)[Y ]/I(φi(Wϕ(i, VK))) → C(a)[X]/I(Wϕ(i, VK)) that maps
yj to φj (for all j ≤ i) is injective and integral (Lemma 7.5.3).

On another hand, by the theorem on the dimension of the fibers [Sha13, Theorem 1.25],
for any irreducible component C of Wϕ(i, VK) and for a generic y ∈ φi(C),

dimC − dimφi(C) = dimφ−1
i (y) ∩ C = 0

since, as a finite map, the restriction of φi to Wϕ(i, VK) has finite fibers. By an algebraic
version of Sard’s theorem [SS17, Proposition B.2]

dim φi(Wϕ(i, VK)) ≤ i− 1,

so that dimWϕ(i, VK) ≤ i − 1 as well. Together with Lemma 7.5.1, this proves that both
Wϕ(i, VK) and its image φi(Wϕ(i, VK)) are either empty or equidimensional of dimension
i− 1. If they are empty, there is nothing to do, so suppose it is not the case.

Let Z = (z1, . . . , zi−1) and ℓ = (ℓ1, . . . , ℓi−1) be new indeterminates. Since Wϕ(i, VK), and
thus its image φi(Wϕ(i, VK)), are defined over C(a), we can apply Noether normalization
to φi(Wϕ(i, VK)) (Proposition 7.5.4) with coefficients in C(a), and deduce that the C(a, ℓ)-
algebra homomorphism

ζ : C(a, ℓ)[Z] −→ C(a, ℓ)[Y ]/I(φi(Wϕ(i, VK)))

zj 7−→ yj + ℓjyi mod I(φi(Wϕ(i, VK)))
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is injective and integral. Besides, we deduce from Lemma 7.5.3 that after scalar exten-
sion, the ring homomorphism C(a, ℓ)[Y ]/I(φi(Wϕ(i, VK))) → C(a, ℓ)[X]/I(Wϕ(i, VK))

that maps yj to φj (for all j ≤ i) is still injective and integral. If we set

ψj = ϕj + ℓjϕi for 1 ≤ j ≤ i− 1 and ψj = ϕj for i ≤ j ≤ d+ 1, (7.4)

and finally ψ = (ψ1, . . . , ψd+1) ⊂ C(a, ℓ)[X], then, by transitivity,

ψi−1 : C(a, ℓ)[Z] −→ C(a, ℓ)[X]/I(Wϕ(i, VK))

zj 7−→ ψj(X) mod I(Wϕ(i, VK))

is injective and integral as well.
Since the first i entries of ψ are elementary row operations of the first i entries of φ, we

deduce that Wϕ(i, VK) = Wψ(i, VK). Besides, injecting the definition of the ϕj ’s in (7.4),
one gets that ψ(X) = φ(X,m), where

m = (a1 + ℓ1ai, . . . ,ai−1 + ℓi−1ai,ai, . . . ,ad+1)

is a vector of (d + 1)n C-algebraically independent elements of C(a, ℓ). Through the
isomorphism C(a, ℓ)→ C(m), we see that

φi−1 : C(a, ℓ)[Z] −→ C(a, ℓ)[X]/I(Wϕ(i, VK))

zj 7−→ ϕj(X) mod I(Wϕ(i, VK))

is injective and integral. From Lemma 7.5.3, we see that this precisely gives that the
restriction of φi−1 to Wϕ(i, VK) is finite. This ends the proof of the induction step, and, by
mathematical induction, of the proposition.

7.5.3 Proof of the main proposition

We conclude by proving Proposition 7.2.3, which is a direct consequence of the previous
results. Let V , θ and 2 ≤ r ≤ d+ 1 as given in the statement of the proposition.

Let Ω be the non-empty Zariski open subset of C(d+1)n obtained as the intersection, for
all 1 ≤ i ≤ d+ 1, of the Ωi’s given by application of Proposition 7.5.6. Let a = (ai)1≤i≤d+1,
where ai = (ai,1, . . . , ai,n) be (d + 1)n new indeterminates. By definition, there exists
f = (f1, . . . , fp) ⊂ C[a], such that Ω = C(d+1)n − V (f). Then, let ΩI(V, θ, r) be the
projection on the first rn coordinates of Ω, it is the union, for all α′′ ∈ C(d+1−r)n, of the
non-empty Zariski open sets

Crn − V (f(a′,α′′)) ,

where a′ = (a1, . . . ,ar), hence a non-empty Zariski open subset of Crn.
Let α′ ∈ ΩI(V, θ, r) and φ = (φ1(X,α′

1), . . . , φr(X,α′
r)). Let i ∈ ¶1, . . . , r♢ then, there

existsα′′ ∈ C(d+1−r)n such that (α′,α′′) ∈ Ωi. Therefore by Proposition 7.5.6, the restriction
of φi−1 to Wϕ(i, V ) is finite.
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In particular, by [Sha13, Section 5.3], the restriction ofφi−1 toWϕ(i, V ) is a Zariski-closed
map that has finite fibers. Moreover, since sing(V ) is finite, we deduce thatKϕ(i, V )∩φ−1

i−1(z)

is finite for any z ∈ Ci−1. Finally, as a consequence, and by [Sha13, Theorem 1.12 and
1.25], Wϕ(i, V ) is equidimensional of dimension i− 1. It is worth noting that the latter can
also be seen as a consequence of [Sha13, Theorem 1.25] and Lemma 7.5.1.

7.6 Proof of Proposition 7.2.13: atlases for polar

varieties

This section is devoted to prove Proposition 7.2.13, that we recall below.

Proposition (7.2.13). Let V, S ⊂ Cn be two algebraic sets with V d-equidimensional and S

finite and χ be an atlas of (V, S). For 2 ≤ r ≤ d+ 1, let θ = (θ1, . . . , θr) and ξ = (ξ1, . . . , ξr),

and for 1 ≤ j ≤ r, let αj = (αj,1, . . . , αj,n) ∈ Cn and

φj(X,αj) = θj(X) +

n∑

k=1

αj,kxk + ξj(αj) ∈ C[X].

where θj ∈ C[X] and ξj : Cn → C is a polynomial map, with coefficients in C.

There exists a non-empty Zariski open subset ΩW(χ, V, S,θ, ξ, r) ⊂ Crn such that for every

α ∈ ΩW(χ, V, S,θ, ξ, r), writing φ = (φ1(X,α), . . . , φr(X,α)), the following holds. For i in

¶1, . . . , r♢, either Wϕ(i, V ) is empty or

1. Wϕ(i, V ) is an equidimensional algebraic set of dimension i− 1;

2. if 2 ≤ i ≤ (d+ 3)/2, then Watlas(χ, V, S,φ, i) is an atlas of (Wϕ(i, V ), S)

and sing(Wϕ(i, V )) ⊂ S.

7.6.1 Regularity properties

In this subsection, we fix the three integers (d, r, i) such that 2 ≤ r ≤ d + 1 ≤ n + 1 and

1 ≤ i ≤ r.

For 1 ≤ j ≤ i, let aj = (aj,1, . . . , aj,n) be new indeterminates, and let A = (aj)1≤j≤i.
For 1 ≤ j ≤ i, we will also denote by A≤j , the subfamily (a1, . . . , aj). Finally, we consider
sequences h = (h1, . . . , hc) ⊂ C[X], where c = n− d, and ϕ = (ϕ1, . . . , ϕi) such that

ϕj(X, aj) = θj(X) +
n∑

k=1

aj,kxk + ξj(aj) ∈ C[X,A≤j ],

for 1 ≤ j ≤ i. We start by investigating the regular situation. The first step towards the
proof of Proposition 7.2.13 is to establish the following statement.

Proposition 7.6.1. There exists a non-empty Zariski open set Ωhi ⊂ Cin, such that for all

α ∈ Ωhi , and φ =
(
ϕ1(X,α1), . . . , ϕi(X,αi)

)
⊂ C[X], the following holds:

1. for all y ∈ V ◦
reg(h), there exists a c-minor m′ of Jac(h) such that m′(y) ̸= 0;
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2. the irreducible components of Wϕ(i,Vreg(h)) have dimension less than i− 1;

Assume now that i ≤ (d + 3)/2, and let m′ be any c-minor of Jac(h) and let m′′ be any

(c+ i− 1)-minors of Jac([h,φi]) containing the rows of Jac(φi). Then, the following holds:

3. for all y ∈ V ◦
reg(h) there exists m′′ as above, such that m′′(y) ̸= 0;

4. W ◦
ϕ(i,V ◦

reg(h)) is defined on O(m′m′′) by the vanishing of (h,Hϕ(h, i,m′′));

5. Jac(h,Hϕ(h, i,m′′)) has full rank n− (i− 1) on O(m′m′′) ∩W ◦
ϕ(i,V ◦

reg(h)).

7.6.1.a. Rank estimates

We start by proving some genericity results on the ranks of some jacobian matrix. Two direct
consequences (namely Corollaries 7.6.3 and 7.6.4) of Proposition 7.6.2 below will establish
the third statement of Proposition 7.6.1.

Let 1 ≤ p ≤ n− 1 and M(X,A≤1) be a p× n matrix with coefficients in C[X,A≤1]. For
1 ≤ j ≤ i, let

Jj(X,A≤j) =




M(X,A≤1)

∂x1
ϕ1(X, a1,1) · · · ∂xn

ϕ1(X, a1,n)
...

...

∂x1ϕj(X, aj,1) · · · ∂xn
ϕj(X, aj,n)




,

where for all 1 ≤ k ≤ i and 1 ≤ ℓ ≤ n, ∂xℓ
ϕk = ∂θk(X)

∂xℓ
+ ak,ℓ ∈ C[X, ak,ℓ]. The

Proposition 7.6.2 below generalizes [SS17, Proposition B.6]. Our proof follows the same
pattern as the one of [SS17, Proposition B.6].

Proposition 7.6.2. Assume that there exists a non-empty Zariski open subset E0 ⊂ Cn such

that for all (y,α) ∈ V ◦
reg(h)× E0, the matrix M(y,α) has full rank p. Then, for every

1 ≤ j ≤ min ¶ i, c− p+ (d+ 3)/2 ♢ ,

there exists a non-empty Zariski open subset Ei ⊂ Cin such that for all (y,α) ∈ V ◦
reg(h)× Ei,

rankM(y,α) = p and rank Ji(y,α) ≥ p+ j − 1.

Before proving the above proposition, we first give two direct consequences of it, whose
conjunction proves the third item of Proposition 7.6.1. Taking M = Jac(h), the next lemma
is a direct consequence of the definition of V ◦

reg(h).

Corollary 7.6.3. If 1 ≤ i ≤ (d + 3)/2 then, there exists a non-empty Zariski open subset

E ′
i ⊂ Cin such that for all (y,α) ∈ V ◦

reg(h)× E ′
i , the matrix Jac(y,α)([h, ϕ]) has rank at least

c+ i− 1.
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Besides we deduce the following more subtle consequence.

Corollary 7.6.4. If 1 ≤ i ≤ (n+ c+ 1)/2 then, there exists a non-empty Zariski open subset

E ′′
i ⊂ Cin such that for all (y,α) ∈ V ◦

reg(h)× E ′′
i , the matrix Jac(y,α)(ϕ) has full rank i.

Proof. Take M = Jac(ϕ1). The matrix Jac(ϕ1) has not full rank if, and only if, all the
derivatives of ϕ1 vanish at this point. Following the proof strategy of Lemma 7.6.6, let

Z◦ = Z ∩ V ◦
reg(h) ⊂ Cn+n where Z = V

(
h,
∂ϕ1

∂x1
, . . . ,

∂ϕ1

∂xn

)
.

whose following Jacobian matrix, has full rank c+ n at any (y,α) ∈ Z◦

Jac(X,a1,1,...a1,n)

(
h,
∂ϕ1

∂x1
, . . . ,

∂ϕ1

∂xn

)
=




Jac(h) O

∗ 1 · · · 0
...

...
. . .

...

∗ 0 · · · 1




.

Hence, by the Jacobian criterion [Eis95, Theorem 16.19], Z◦ is either empty or a d-
equidimensional locally closed set. Since d < n by assumption, then the projection of
Z◦ on the variables A≤1 is a proper subset of Cn and taking E0 as its complement allows us
to conclude.

Indeed, for any 1 ≤ i ≤ (n+ 2)/2, by Proposition 7.6.2, there exists a non-empty Zariski
open subset Ei of Cin such that for all (y,α) ∈ V ◦

reg(h)× Ei,

rank Jac(y,α)(ϕ1, . . . , ϕi) = rank Jac(y,α)(ϕ1, ϕ1, . . . , ϕi) = 1 + i− 1 = i.

The rest of this paragraph is devoted to the proof of Proposition 7.6.2. Following the
construction of the proof of [SS17, Proposition B.6], we proceed by induction on j. For all
1 ≤ j ≤ min¶i, ⌊c− p+ (d+ 3)/2♢, we denote by Rj the statement of Proposition 7.6.2.

Initial case: j = 1. By assumption, there exists a non-empty Zariski open subset E0 ⊂ Cn

such that for all (y,α) ∈ V ◦
reg(h)× E0, the matrix M(y,α1) has full rank p. Therefore, the

matrix J1, containing M , has rank at least p. This proves that R1 holds.

Induction step: 2 ≤ j ≤ min{ i, c− p+ (d+ 3)/2 }. Assume that Rj−1 holds, and let
us prove that so does Rj . Let M be the set of ordered pairs m = (mr,mc) where

• ¶1, . . . , p♢ ⊂ mr ⊂ ¶1, . . . , p+ j − 1♢

• mc ⊂ ¶1, . . . , n♢

• ♣mr♣ = ♣mc♣ = p+ j − 2

Then, for each such m, let Jm be the square submatrix of Jj obtained by selecting the
rows and the columns in respectively mr and mc. Such a submatrix can also be obtained
by removing from Ji, n − p − j + 2 columns and and two rows, which includes the last
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row. Besides, let δm ∈ C[X,A≤j−1] be the determinant of Jm, that is the (p+ j − 2)-minor
of Jj associated to m. Finally, let Subj be the subset of m ∈ M such that there exists
(y,α) ∈ V ◦

reg(h)×Cjn such that δm(y,α) ̸= 0.

Lemma 7.6.5. The set Subj , thus defined, is not empty.

Proof. By induction assumption Rj−1, there exists a non-empty Zariski open subset Ej−1 ⊂
C(j−1)n such that for all (y,α′) ∈ V ◦

reg(h)× Ej−1, the matrix Jj−1(y,α′) has rank at least
p+j−2 andM(y,α′) has full rank p. We deduce that there exists a non-zero (p+j−2)-minor
of Jj−1(y,α′) containing the rows of M(y,α′). Then, by definition of M,

∀(y,α′) ∈ V ◦
reg(h)× Ej−1, ∃m ∈M, δm(y,α′) ̸= 0, (7.5)

where δm ∈ C[X,A≤j−1]. This proves, in particular, that Subj is not empty, as neither
Vreg(h) nor Ej−1 is empty.

We now prove the following lemma, which is the key step in the proof of Rj .

Lemma 7.6.6. For all m ∈ Subj , there exists a non-empty Zariski open subset Em ⊂ Cjn such

that, for all (y,α) ∈ V ◦
reg(h)× Em, if δm(y,α) ̸= 0, then Jj(y,α) has rank at least p+ j − 1.

Proof. Let m ∈ Subj , we proceed to show that the subset of the α ∈ Cjn such that, for all
y ∈ V ◦

reg(h), δm(y,α) ̸= 0 and Jj(y,α) has rank at most p+ j− 2 is a proper algebraic subset

of Cjn. Then, taking the complement will give us Em.

Up to reordering, assume that the rows and columns of Jj that are not in Jm are the
ones of respective indices p+ j − 1, p+ j (the last two rows) and p− j + 3, . . . , n (the last
n − p + j − 2 columns). In other words, (p + k, ℓ) /∈ mr × mc for all k ∈ ¶j − 1, j♢ and
ℓ ∈ ¶p− j + 3, . . . , n♢. For such k, ℓ, we denote by δk,ℓ the minor of Jj obtained by adding
to Jm the row and column indexed by respectively p + k and ℓ. Let A′′ be the subset of
elements of A≤ formed by the 2(n− p− j + 2) indeterminates

aj−1,p−j+3, . . . , aj−1,n and aj,p−i+3, . . . , aj,n,

and letA′ = A≤j−A′′. Remark then that for any such k ∈ ¶j−1, j♢ and ℓ ∈ ¶p−j+3, . . . , n♢,
by co-factor expansion there exists a polynomial gk,ℓ ∈ C[X,A′] such that

δu,v = δm ·
∂ϕk

∂xℓ
(X, ak,ℓ) + gk,ℓ(X,A′) (7.6)

Let δ be the sequence of the 2(n− p− j + 2) minors δk,ℓ. We proceed to prove that, the
set of specialization values α ∈ Cjn of the genericity parameters (the entries of A≤j), such
that all these minors in δ(X,α) are identically zero but not δm(X,α), is a proper algebraic
subset of Cjn. Hence, let t a new indeterminate and consider the locally closed set

Z◦ = Z ∩ V ◦
reg(h) ⊂ Cn+jn+1 where Z = V (h, δ, 1− tδm) .

One observes that if (y,α, t) ∈ Z◦ then y ∈ V ◦
reg(h), δm(y,α) ̸= 0 and all the δk,ℓ’s vanish.
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We claim first that Z◦ is not empty. Indeed, since m ∈ Subj , there exists (y,α) ∈
V ◦

reg(h)×Cjn such that δm(y,α) ̸= 0. Since δm ∈ C[X,A′], it is independent of the entries
of A′′. Besides, for any k ∈ ¶j − 1, j♢ and ℓ ∈ ¶p− j + 3, . . . , n♢,

∂ϕk

∂xℓ
(y, ak,ℓ) =

∂θk

∂xℓ
(X) + ak,ℓ ∈ C[X][A′′] (7.7)

is a non-constant polynomial in the entries of A′′. Then, according to (7.6), for every such
k, ℓ, one can choose αk,ℓ ∈ C such that δk,ℓ(y,α

′, αk,ℓ) = 0. Let α̃ be the element of Cjn

obtained by this choice, then

(
y, α̃, 1/δm(y, α̃)

)
∈ Z◦.

We deduce that Z◦ is non-empty. We now estimate the dimension of Z◦ . According to (7.6)
and (7.7) the following Jacobian matrix has full rank c+ 2(n− p− j + 2) + 1 at every point
of Z◦:

Jac(X,A′,A′′,t)(h, δ, 1− tδm) =




Jac(h) O O 0

∗ ∗ ∗ δm 0
... 0

0
. . . 0

...

∗ ∗ 0 δm 0

∗ ∗ ∗ ∗ ∗ ∗ δm




.

Therefore, by the Jacobian criterion [Eis95, Theorem 16.19], Z◦ is an equidimensional
locally closed set of dimension jn− (n− p) + 2(j − 2). Let Z ′ ⊂ Cjn be the Zariski closure
of the projection of Z◦ on the coordinates associated to the variables A, then

dimZ ′ ≤ dimZ◦ = jn+ d− 2(n− p) + 2(j − 2) < jn since j ≤ c− p+ (d+ 3)/2.

Hence Z ′ is a proper algebraic set of Cjn, so that its complement Em a non-empty Zariski
open subset of Cjn. Further, for any (y,α) ∈ V ◦

reg(h)× Em such that δm does not vanish at
(y,α), the point (

y, α, 1/δm(y,α)
)
/∈ Z◦

otherwise α would be in Z ′. Hence, there exists (k, ℓ) as above such that δk,ℓ(y,α) ̸= 0, so
that Jj(y,α) has a non-zero (c+ j − 1)-minor, and then, has rank at least c+ j − 1. This
proves the lemma.

We can now conclude on the induction step as follows. Since, by Lemma 7.6.5, Subj is
not empty, let

Ej = (Ej−1 ×Cn) ∩
⋂

m∈Subj

Em,

where the Em are the non-empty Zariski open sets given by Lemma 7.6.6. Remark first that
Ej is a non-empty Zariski open subset of Cjn since it is a finite intersection of non-empty
Zariksi open sets. Let (y,α′,αj) ∈ V ◦

reg(h)×Ej , as seen in (7.5), there exists m0 ∈ Subj such
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that δm0
(y,α′) ̸= 0. By construction, α = (α′,αj) belongs to Em0

so that, by Lemma 7.6.6,
Jj(y,α) has rank at least p+ j − 1. Besides, since α′ ∈ Ej−1, M(y,α′) has full rank p.

In conclusion, we proved that Rj , which the induction step, and, by mathematical induc-
tion, this proves Proposition 7.6.2.

7.6.1.b. Dimension estimates

In this paragraph, we aim to prove the second point of Proposition 7.6.1, using transversality
results. Let

Φ: Cn × Cin × Cc × Ci −→ Cc × Cn

( y , α , λ , ϑ ) 7−→
(
h(y) , t[λ,ϑ] · Jac(y,α)(h, ϕ)

)

and for any α ∈ Cin, let Φα = (y,λ,ϑ) 7→ Φ(y,λ,ϑ,α). The interest of such a map is
illustrated by the following lemma. Let A ⊂ Cn+in+c+i be the Zariski open subset of the
elements (y,λ,ϑ) where λ ̸= O and Jacy(h) has full rank.

Lemma 7.6.7. Let α ∈ Cin and

W ◦
α =

{
y ∈ Cn ♣ y ∈ V ◦

reg(h) and rank Jac(y,α)(h, ϕ) ≤ c+ i− 1
}
.

Then W ◦
α = πX

(
A ∩ Φ−1

α (O)
)
.

Proof. Let α ∈ Cin and y ∈ V ◦
reg(h). Then y ∈W ◦

α if and only if Jac(y,α)(h, ϕ) has not full
rank, which is equivalent to having a non-zero vector in its cokernel by duality. Besides,
since y ∈ V ◦

reg(h), the matrix Jacy(h) has full rank. Hence y belongs to W ◦
α if and only if

there exists a non-zero vector (λ,ϑ) ∈ Cc+i such that Φ(y,α,λ,ϑ) = 0 and Jacy(h) has
full rank. Finally ϑ cannot be zero otherwise Jacy(h) would have a non-trivial left-kernel
(containing λ), and then would not be full rank.

Lemma 7.6.8. Let A ⊂ Cn+c+i be the Zariski open subset of the elements (y,λ,ϑ) where

ϑ ̸= O and Jacy(h) has full rank. There exists a non-empty Zariski open subset Di ⊂ Cin such

that for all α ∈ Di, Jac(y,λ,ϑ) Φα has full rank c+ n at any (y,λ,ϑ) ∈ A ∩ Φ−1
α (O).

Proof. We have

Jac(X,λ,ϑ,a1,...,ai) Φ =




Jac(h) O O · · · O

∗ ∗ ϑ1In · · · ϑiIn




where In is the identity matrix of size n. Let α ∈ Cin, and (y,λ,ϑ) ∈ A such that the
above Jacobian matrix has full rank c + n at (y,α,λ,ϑ). Hence O is a regular value of
Φ on A ×Cin. Therefore, by the Thom’s weak transversality theorem [SS17, Proposition
B.3], there exists a non-empty Zariski open subset Di ⊂ Cin such that for all α ∈ Di, O is a
regular value of Φα on A . In other words, for all α ∈ Di, the matrix Jac Φα has full rank
c+ n over A ∩ Φ−1

α (O).
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Lemma 7.6.9. Let Di ⊂ Cin be the non-empty Zariski subset defined in Lemma 7.6.8. Then,

for all α ∈ Di, W ◦
α has dimension at most i− 1.

Proof. Let α ∈ Di and suppose that W ◦
α is not empty. Then, according to Lemma 7.6.7,

A ∩ Φ−1
α (O) is non-empty as well. By Lemma 7.6.8 and [SS17, Lemma A.1], A ∩ Φ−1

α (O)

is a non-singular equidimensional locally closed set and

dim
(
A ∩ Φ−1

α (O)
)

= n+ c+ i− (c+ n) = i.

Let C be the Zariski closure of A ∩ Φ−1
α (O) and (Cj)1≤j≤ℓ be its irreducible components.

For all 1 ≤ j ≤ ℓ, let Tj be the Zariski closure of πX(Cj). Since W ◦
α ⊂

⋃
1≤j≤ℓ Tj , it is

enough to prove that dimTj ≤ i− 1 for all 1 ≤ j ≤ ℓ.
Fix 1 ≤ j ≤ ℓ. The restriction πX : Cj → Tj is a dominant regular map between two

irreducible algebraic sets. Then one can apply the theorem on the dimension of fibers from
[Sha13, Theorem 1.25] and claim that there exists a non-empty Zariski open subset Ω1 of
Tj such that

∀z ∈ Ω1, dim
(
π−1
X (z) ∩ Cj

)
= dimCj − dimTj = i− dimTj . (7.8)

Then it is enough to prove that dim(π−1
X (z)∩Cj) ≥ 1. Let J ′ = ¶1 ≤ k ≤ ℓ ♣ Tk = Tj♢. Then

it holds that
Ω2 = Tj −

⋃

k /∈J′

Tk

is a non-empty Zariski open subset of Tj . Besides, for all z ∈ Ω2, π−1
X (z) ∩Cj = π−1

X (z) ∩C
which is the Zariski closure of π−1

X (z) ∩A ∩ Φ−1
α (O) if and only if z ∈W ◦

α (otherwise it is
empty).

However, by definition, C ′
j = A ∩ Φ−1

α (O) ∩ Cj is a non-empty Zariski open subset of
Cj , and then πX(C ′

j) is a non-empty Zariski subset of Tj . Since it contains πX(C ′
j), the set

Ω3 = W ◦
α ∩ Tj is a non-empty Zariski open subset of Tj as well.

Now, let Ω = Ω1 ∩ Ω2 ∩ Ω3, it is a non-empty (Zariski open) subset of Tj , and let z ∈ Ω.
Since z is in Ω3, it is in W ◦

α by definition. Besides, z ∈ Ω2, so that

dim(π−1
X (z) ∩ Cj) = dim

(
π−1
X (z) ∩A ∩ Φ−1

α (O)
)
.

Since z ∈ Ω1, together with (7.8), one gets that

∀z ∈ Ω, z ∈W ◦
α and dimTj = i− dim

(
π−1
X (z) ∩A ∩ Φ−1

α (O)
)
, (7.9)

Let z ∈ Ω, remark that

π−1
X (z) ∩A ∩ Φ−1

α (O) = ¶z♢ ×
(
Ez ∩ O(ϑe+1, . . . , ϑi)

)

where Ez is a linear subspace of Cc+i. Indeed, Ez is defined by homogeneous linear
equations in the entries of (λ,ϑ). Since z ∈W ◦

α ⊂ πX(A ∩Φ−1
α (O)), there exists a non-zero

(λ,ϑ) ∈ Cc+i such that (z,λ,ϑ) ∈ A ∩Φ−1
α (O). Then Ez contains a non-zero vector, so that

dimEz ≥ 1. Finally, injecting this inequality in (7.9) leads to dimTj ≤ i− 1 as required.
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7.6.1.c. Proof of Proposition 7.6.1.

We can now tackle the proof of the main proposition of this subsection. Recall that we have
fixed three integers (d, r, i) such that 2 ≤ r ≤ d + 1 ≤ n + 1 and 1 ≤ i ≤ r. Moreover, we
consider polynomials h = (h1, . . . , hc) in C[X], where c = n−d. Finally, let ϕ = (ϕ1, . . . , ϕi),
such that

ϕj(X, aj) = θj(X) +

n∑

k=1

aj,kxk + ξj(aj) ∈ C[X,A≤j ],

for all 1 ≤ j ≤ i. Let Ωhi be the non-empty Zariski open subset of Cin defined by

Ωhi =





Di ∩ E ′
i ∩ E ′′

i if i ≤ (d+ 3)/2;

Di else,

where Di, E ′
i and E ′′

i are the non-empty Zariski open sets given respectively by Lemma 7.6.8,
Corollaries 7.6.3 and 7.6.4. Note that the assumptions of Corollary 7.6.4 since d ≤ n− 1.

Now let α ∈ Ωhi and φ = (ϕ1(X,α), . . . , ϕi(X,α)). The first item of the proposition
is a direct consequence definition of V ◦

reg(h). Besides, according to [SS17, Lemma A.2],
the set W ◦

α defined in Lemma 7.6.7 is nothing but W ◦
ϕ(i,Vreg(h)), whose Zariski closure is

W ◦
ϕ(i,Vreg(h)), by definition. Hence, since α ∈ Di, the second item is exactly the statement

of Lemma 7.6.9.

Suppose now that i ≤ (d+3)/2, so that α ∈ E ′
i ∩E ′′

i . Hence, by Corollaries 7.6.3 and 7.6.4,
for all y ∈ V ◦

reg(h),

rank Jacy(φi) = i and rank Jacy(h,φi) ≥ c+ i− 1.

Hence, there exists a (c+ i− 1)-minor m′′ of Jacy(h,φi), containing the rows of Jac(φi),
that does not vanish at y. This proves the third item.

In the remaining we proceed to prove the last two items. Let m′ be a c-minor of Jac(h)

and m′′ be a (c + i − 1)-minor of Jac([h,φi]) containing the rows of Jac(φi). Assume,
without loss of generality, that m′′ is not the zero polynomial. The next lemma establishes
the second to last item of Proposition 7.6.1.

Lemma 7.6.10. Let m′ and m′′ as above. The set W ◦
ϕ(i,V ◦

reg(h)) is defined on O(m′m′′) by

the vanishing set of the polynomials (h,Hϕ(h, i,m′′)). Equivalently,

O(m′m′′) ∩ W ◦
ϕ(i,V ◦

reg(h)) = O(m′m′′) ∩ V
(
h,Hϕ(h, i,m′′)

)
.

Proof. Inside the Zariski open set O(m′), the matrix Jac(h) has full rank, which implies by
[SS17, Lemma A.2] that

O(m′) ∩W ◦
ϕ(i,V ◦

reg(h)) = O(m′) ∩
{
y ∈ V (h) ♣ rank(Jac([h,φi]) < c+ i

}
.
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Besides, by the exchange lemma [BGHM01, Lemma 1], if m is a (c+ i)-minor of Jac([h,φi]),
then one can write

m′′m =
∑

j=1

εjmjm
′′
j where εj = ±1 and N ∈ ¶1, . . . , d− i+ 1♢

and where m′′
j (resp. mj) is obtained by successively adding to m′′ (resp. removing to m)

the missing row and a missing column of Jac([h,φi]) that are in m. Remark that, for such a
m, all the m′′

j ’s are in Hϕ(h, i,m′′), by definition.

Hence, for all y ∈ V (h), if m′′(y) ̸= 0, then all the (c+ i)-minors of Jac([h,φi]) vanish at
y if and only if all the polynomials of Hϕ(h, i,m′′) vanish at y. In other words:

O(m′m′′) ∩W ◦
ϕ(i,V ◦

reg(h)) = O(m′m′′) ∩ V
(
h,Hϕ(h, i,m′′)

)
.

In order to prove the the last item of Proposition 7.6.1, we need introduce Lagrange sys-
tems for general polynomial applications. This generalizes, in some sense, the construction
of [SS17, Subsection 5.1], also presented in Subsection 7.4.3.

Let L1, . . . , Lc and T1, . . . , Ti be new indeterminates, since m′′ ̸= 0, consider the ring
of rational fractions C[X, L1, . . . , Lc, T1, . . . , Ti]m′′ that are of the form f/(m′′)r, for f ∈
C[X, L1, . . . , Lc, T1, . . . , Ti] and r ∈ N. This the localization ring at the multiplicative set
¶(m′′)r ♣ r ∈ N♢.

Let IW the ideal of C[X, L1, . . . , Lc, T1, . . . , Ti]m′′ generated by the entries of

h, [L1, . . . , Lc, T1, . . . , Ti] ·




Jac(h)

Jac(φi)


 .

The following lemma is an immediate generalization of [SS17, Proposition 5.2.].

Lemma 7.6.11. Let 1 ≤ ι ≤ c such that the index of the row of Jac([h,φi]) not in m′′ has

index ι. Then there exist (λj)1≤j ̸=ι≤c and (τj)1≤j≤i in C[X]m′′ such that IW is generated by

the entries of

h, LιHϕ(h, i,m′′), (Lj − λjLι)1≤j ̸=ι≤c, (Tj − τjLι)1≤j≤i. (7.10)

Proof. For the sake of simplicity, suppose that m′′ is the lower-left minor of Jac([h,φi]), so
that ι = 1. Then Hϕ(h, i,m′′) is the sequence of minors obtained by adding the first row
and columns in the ones of index c+ i, . . . , n. We denote by M1, . . . ,Mn−c−i+1 these minors.
Then, we write

Jac(h,φi) =




u1,c+i−1 w1,n−c−i+1

mc+i−1,c+i−1 vc+i−1,n−c−i+1




such that m′′ = det(m) and the indices are the dimensions of the submatrices. As m′′ is not
zero, it is a unit of C[X, L1, . . . , Lc, T1, . . . , Ti]m′′ , so that m has an inverse with coefficients
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in the same ring, given by m′′−1 and the cofactor matrix of m. Hence IW is generated by
the entries of h and

[L1, . . . , Lc, T1, . . . , Ti] · Jac([h,φi]) ·



m−1 O

O 1


 ·



Ic+i−1 −v

O 1




= [L1, . . . , Lc, T1, . . . , Ti] ·



um−1 w − um−1v

Ic+i−1 O


 ,

where Ic+i−1 is the identity matrix of size c + i − 1. The first c − 1 entries are the Lj −
[um−1]jL1 for 1 < j ≤ c and the i followings are the Tj − [um−1]jL1 for 1 ≤ j ≤ i. Hence
taking (λ, τ ) = um−1 gives the last terms in (7.10).

Finally, sincem is invertible, we can compute the minors M1, . . . ,Mn−c−i+1 of Jac(h,φi),
using the block structure we described above (see e.g. [Ber09, Proposition 2.8.3] and [Sil00,
Theorem 1]) to obtain that for all 1 ≤ j ≤ n− c− i+ 1,

Mj = (−1)c+i−1m′′[w − um−1v]j .

Hence, the last n− c− i+1 entries are, except for the sign, L1M1/m
′′, . . . , L1Mn−c−i+1/m

′′,
we are done.

The next lemma ends the proof of the last item Proposition 7.6.1, and then conclude the
proof of the whole Proposition.

Lemma 7.6.12. The Jacobian matrix associated to the polynomials in (h,Hϕ(h, i,m′′)) has

full rank n− (i− 1) at every point of the set O(m′m′′) ∩ W ◦
ϕ(i,V ◦

reg(h)).

Proof. Recall that φ = (ϕ1(X,α), . . . , ϕi(X, α)), where α ∈ Ωhi . Then, remark that


h(X), [L1, . . . , Lc, T1, . . . , Ti] ·




JacX(h)

JacX(φi)





 = Φα

(
X, L1, . . . , Lc, T1, . . . , Ti

)
,

where Φα is the polynomial map considered in Lemma 7.6.8. Let (λj)1≤j ̸=ι≤c and (τj)1≤j≤i

in C[X]m′′ given by Lemma 7.6.11.

Now fix y ∈ O(m′m′′) ∩Wϕ(i,V ◦
reg(h)), and let λ = (λj)1≤j≤c and ϑ = (ϑj)1≤j≤i where

λι = 1 and λj = λj(y) for all 1 ≤ j ̸= ι ≤ c,
ϑj = τj(y) for all 1 ≤ j ≤ i.

These are well defined since m′′(y) ̸= 0. Since h and Hϕ(h, i,m′′) vanish at y, by
Lemma 7.6.10, all the polynomials in (7.10) vanish at (y,λ,ϑ). Moreover, according
to Lemma 7.6.11 and the above remark, the polynomials in (7.10) and the entries of
Φα(X, L1, . . . , Lc, T1, . . . , Ti) generates the same ideal IW in C[X]m′′ . Hence, sincem′′(y) ̸=
0, the entries of Φα vanish at (y,λ,ϑ) as well, that is Φα(y,λ,ϑ) = O
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Besides, since y ∈ O(m′), then Jacy(h) has full rank. Then, ϑ cannot be zero, since
λ ̸= O Jac(h) has a trivial left-kernel. Hence, according to the notation of Lemma 7.6.8,
(y,λ,ϑ) ∈ A ∩ Φ−1

α (O). Therefore, by Lemma 7.6.8, Jac Φα has full rank n+ c at (y,λ,ϑ),
as α ∈ Di ⊂ Ωhi .

Finally, remark that the sequence of polynomials in (7.10) has length n+c. Hence, since the
latters generate the same ideal than the entries of the entries of Φα(X, L1, . . . , Lc, T1, . . . , Ti),
their Jacobian matrix has full rank n + c at this point as well. Computing this Jacobian
matrix the latter rank statement amounts to the Jacobian matrix of

(
h, Hϕ(h, i,m′′)

)

having full rank n− (i− 1) at y.

7.6.2 Proof of Proposition 7.2.13

Let V, S ⊂ Cn be be two algebraic sets with V d-equidimensional and S finite, and let
χ = (χj)1≤j≤s be an atlas of (V, S) with χj = (mj ,hj) for 1 ≤ j ≤ s. According to [SS17,
Lemma A.12], all the hj ’s have same cardinality c = n− d.

Besides, let 2 ≤ r ≤ d+ 1 and the sequences θ = (θ1, . . . , ξr) and ξ = (ξ1, . . . , ξr) in C[X].
For 1 ≤ j ≤ r, let αj = (αj,1, . . . , αj,n) ∈ Cn and

φj(X,αj) = θj(X) +

n∑

k=1

αj,kxk + ξj(αj) ∈ C[X].

Then, for 1 ≤ i ≤ r, we can apply Proposition 7.6.1 to the sequences hj , θ and ξ, there exist
a non-empty Zariski open subset Ω(hj , i) of Cin such that for all α ∈ Ω(hj , i), the sequence
φ = (φ1(X,α), . . . , φi(X,α)) satisfies the statements of Proposition 7.6.1. Then we define
the following non-empty Zariski open subset of Crn,

ΩW(χ, V, S,θ, ξ, r) =
⋂

1≤i≤r

⋂

1≤j≤s

Ω(hj , i)×C(r−i)n.

Fix now α ∈ ΩW(χ, V, S,θ, ξ, r) and φ = (φ1(X,α), . . . , φr(X,α)). From now on, fix
also 1 ≤ i ≤ r and suppose that Wϕ(i, V ) is not empty. In the following, and for conciseness,
we might identify Ω(hj , i) to Ω(hj , i) × C(r−i)n. in a straightforward way. We start with
the first item statement of Proposition 7.2.13. Again, it is proved through the properties of
atlases, but when i is restricted to some values.

Lemma 7.6.13. The algebraic set Wϕ(i, V ) is equidimensional of dimension i− 1.

Proof. By Lemma 7.2.7, for all 1 ≤ j ≤ s, as χj is a chart of (V, S) then,

O(mj) ∩Wϕ(i, V )− S = O(mj) ∩W ◦
ϕ(i,Vreg(hj))− S.

Let y ∈Wϕ(i, V )− S. Since y ∈ V , by property A3 of the atlas χ, there exists j ∈ ¶1, . . . , s♢
such that y ∈ O(mj). Hence, by the above equality, in O(mj)−S, the irreducible component
of Wϕ(i, V ) containing y coincides with the one of Wϕ(i,Vreg(hj)) containing y. Since these
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irreducible components are equal over a non-empty Zariski open set, they have the same
dimension (see e.g. [Ful08, Proposition 10.(1)]). By the second item of Proposition 7.6.1,
since α ∈ Ω(hj , i), this dimension is less than i− 1.

We just showed that the Zariski closure of Wϕ(i, V ) − S has dimension less than i − 1.
If i = 1, since S is finite this means that Wϕ(i, V ) is finite as well and we are done. If
i ≥ 2, then by Lemma 7.5.1, the irreducible components of Wϕ(i, V ) have dimension at
least i− 1 ≥ 1 so that the Zariski closure of Wϕ(i, V )− S is Wϕ(i, V ). Hence the irreducible
components of Wϕ(i, V ) have dimension exactly i− 1

We now prove a strict generalization of [SS17, Lemma B.12.] which gives the key
arguments for the proof of the second item statement of Proposition 7.2.13.

Lemma 7.6.14. Let χ = (m,h) be a chart of (V, S). Then for any c-minor m′ of Jac(h) and

any (c+ i− 1)-minor m′′ of Jac([h,φi]), containing the rows of Jac(φi), the following holds.

1. The sets O(mm′m′′)∩Wϕ(i, V )−S and O(mm′m′′)∩V (h,Hϕ(h, i,m′′))−S coincides;

2. if they are not empty, then Wchart(χ,m
′,m′′) is a chart of (Wϕ(i, V ), S).

Moreover, if i ≤ (d+ 3)/2 then the following holds.

3. The sets O(mm′m′′)− S, for all m′,m′′ as above, cover O(m) ∩ V − S;

4. the sets O(mm′m′′)− S, for all m′,m′′ as above, O(m) ∩Wϕ(i, V )− S.

Proof. By Lemma 7.2.7, since χ is a chart of (V, S),

O(m) ∩Wϕ(i, V )− S = O(m) ∩W ◦
ϕ(i,Vreg(h))− S.

Besides, by the second to last item of Proposition 7.6.1, W ◦
ϕ(i,Vreg(h)) is defined inO(m′m′′)

by the vanishing of the polynomials (h,Hϕ(h, i,m′′)), so that

O(mm′m′′) ∩Wϕ(i, V )− S = O(mm′m′′) ∩ V (h,Hϕ(hj , i,m
′′))− S. (7.11)

The first item is proved. Suppose now that the former sets are not-empty, we proceed to prove
that Wchart(χ,m

′,m′′) is a chart of (Wϕ(i, V ), S). Property C1 holds by assumption, while
property C2 of Wchart(χ,m

′,m′′) is exactly equation (7.11). Besides, since (h,Hϕ(hj , i,m
′′))

has length n− i− 1 ≤ n, then C3 holds as well. Finally, by the last item of Proposition 7.6.1,
Jac(h,Hϕ(h, i,m′′)) has full rank on

O(m′m′′) ∩W ◦
ϕ(Vreg(h), V ).

Then, by (7.11), Jac(h,Hϕ(h, i,m′′)) has full rank on O(mm′m′′) ∩Wϕ(i, V ) − S. This
proves thatWchart(χ,m

′,m′′) satisfies the last property C4 of charts and the second statement
of the lemma is proved.

Suppose now that i ≤ (d + 3)/2 and let y ∈ O(m) ∩ V − S. Then, by property C4

of χ, Jac(h) has full rank in y, so that y ∈ V ◦
reg(h). Therefore, by the first and third

item of Proposition 7.6.1, there exists a c-minor m′ of Jac(h) and a (c + i − 1)-minor
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m′′ of Jac([h,φi]), containing the rows of Jac(φi), such that (m′m′′)(y) ̸= 0. Hence
y ∈ O(mm′m′′)− S and the third item of the lemma is proved.

Finally, if y ∈ O(m)∩Wϕ(i, V )−S, then one still has y ∈ O(mm′m′′)−S, asWϕ(i, V ) ⊂ V .
This proves the last item.

We can now prove the second statement of Proposition 7.2.13. With the above lemmas,
it is mainly a matter of verification. Suppose that 2 ≤ i ≤ (d + 3)/2. We prove that
Watlas(χ, V, S,φ, i) is an atlas of (Wϕ(i, V ), S). In the following, for 1 ≤ j ≤ s, we refer
to m′

j and m′′
j as respectively a c-minor of Jac(hj) and a (c+ i− 1)-minor of Jac([hj ,φi]),

containing the rows of Jac(φi).

A1 : Since, by Lemma 7.6.13, Wϕ(i, V ) has dimension at least 1, it is not contained in S.
In particular, there exists 1 ≤ j ≤ s such that O(mj) ∩Wϕ(i, V ) − S is not empty.
Hence, by the third item of Lemma 7.6.14, there exist minors m′

j and m′′
j such that

O(mjm
′
jm

′′
j ) ∩Wϕ(i, V )− S is not empty.

A2 : For mj ,m′
j and m′′

j as in the previous item, since O(mjm
′
jm

′′
j ) ∩Wϕ(i, V )− S is not

empty, then the second item of Lemma 7.6.14 shows that Wchart(χj ,m
′
j ,m

′′
j ) is a chart

of (Wϕ(i, V ), S).

A3 : Let y ∈Wϕ(i, V )− S, by property A3 of χ there exists 1 ≤ j ≤ s such that y ∈ O(mj).
Then, by the third item of Lemma 7.6.14, there exist m′

j and m′′
j as in the previous

points such that y ∈ O(mjm
′
jm

′′
j ). In particular O(mjm

′
jm

′′
j ) ∩Wϕ(i, V ) − S is not

empty.

Hence Watlas(χ, V, S,φ, i) is an atlas of (Wϕ(i, V ), S), and since we proved that Wϕ(i, V )

is equidimensional, then by [SS17, Lemma A.12] sing(Wϕ(i, V )) ⊂ S.

7.7 Proof of Proposition 7.2.16: atlases for fibers

This section is devoted to the proof of Proposition 7.2.16. We recall its statement below.

Proposition (7.2.16). Let V, S ⊂ Cn be two algebraic sets with V d-equidimensional and

S finite. Let χ be an atlas of (V, S). Let 2 ≤ r ≤ d + 1 and φ = (φ1, . . . , φr) ⊂ C[X]. For

2 ≤ j ≤ d, let αj = (αj,1, . . . , αj,n) ∈ Cn and

φ1(X,α1) = θ(X) +

n∑

k=1

α1,kxk and φj(X,αj) =

n∑

k=1

αj,kxk

where θ ∈ C[X].

There exists a non-empty Zariski open subset ΩF(χ, V, S, θ, r) ⊂ Crn such that for every α =

(α1, . . . ,αr) ∈ ΩF(χ, V, S, θ, r) and writing φ = (φ1(X,α1), . . . , φr(X,αr)), the following

holds. Let 0 ≤ e ≤ d, Q ∈ Ce a finite subset and FQ and SQ be as in Definition 7.2.15. Then

either FQ is empty or

1. SQ is finite;
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2. VQ is an equidimensional algebraic set of dimension d− e;

3. Fatlas(χ, V,Q, S,φ) is an atlas of (FQ, SQ) and sing(FQ) ⊂ SQ.

Let V, S and χ = (χj)1≤j≤s be as above, with χj = (mj ,hj) for 1 ≤ j ≤ s. Consider and
integer 2 ≤ r ≤ d + 1, we show in the following that it suffices to take ΩF(χ, V,Q, S, θ, r)

as the non-empty Zariski open subset ΩI(V, θ, r) of Crn obtained by the application of
Proposition 7.2.3 to V, θ and r.

Let α ∈ ΩF(χ, V, S, θ, r) and φ = (φ1(X,α), . . . ,φr(X,α)) where for 2 ≤ j ≤ r,

φ1(X,α1) = θ(X) +

n∑

k=1

α1,kxk and φj(X,αj) =

n∑

k=1

αj,kxk

For 1 ≤ e ≤ r − 1, let Q ⊂ Ce be a finite set and FQ, SQ as in Definition 7.2.15. Suppose
also that FQ is not empty. We start with the following lemma, proving local statements on
the fibers. It is a direct generalization of [SS17, Lemma C.1].

Lemma 7.7.1. Let 1 ≤ j ≤ s and m = mj , h = hj and χ = (m,h). Then either O(m) ∩ FQ

is empty or χ is a chart of (FQ, Q, SQ,φ), and SQ is finite.

Proof. Remark first that since α ∈ Ω(V, θ), then by Proposition 7.2.3, the set

SQ =
(
S ∪Wϕ(e, V )

)
∩φ−1

e (Q)

is finite, since S and Q are. Assume now that O(m)∩FQ is not empty, then let us prove that
χ is a chart of (FQ, Q, SQ,φ).

C1 : This holds by assumption.

C2 : By property C2 of χ, the sets FQ and V (h)♣ϕe∈ Q coincide in O(m) − S. But since
S ⊂ SQ in φ−1

e (Q) then these sets coincide in O(m)− SQ as well.

C3 : Since V is d-equidimensional, then by [SS17, Lemma A.12], c = n− d. Hence, since
e ≤ r− 1 ≤ d, the inequality e+ c ≤ n holds.

C4 : Finally, let y ∈ O(m)∩FQ−SQ. Since y /∈ SQ then y /∈Wϕ(e, V )∩φ−1
e (Q), but since

y ∈ φ−1
e (Q) then actually y /∈Wϕ(e, V ). Hence since y ∈ O(m), then by Lemma 7.2.6,

Jacy(h,φe) has full rank c+ e.

All the properties of charts being satisfied, we are done.

We now proceed to prove Proposition 7.2.16. The first statement is given by Lemma 7.7.1.
If e = d, then the second statement is satisfied by the last item Proposition 7.2.3, since
Kϕ(d + 1, V ) = V . Assume now that e < d. By Krull’s principal ideal Theorem [Eis95,
Theorem B.] or equivalently the theorem on the dimension of fibers [Sha13, Theorem 1.25],
all irreducible components of FQ have dimension at least d− e > 0.

We now prove the last statement that is that Fatlas(χ, V,Q, S,φ) is an atlas of (FQ, Q, SQ,φ):

A1 : Since FQ has positive dimension and SQ is finite, then FQ − SQ is not empty. Since
FQ ⊂ V , then by property A3 of χ, there exists 1 ≤ j ≤ s such that O(mj) ∩ FQ − SQ

is not empty.
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A2 : Let 1 ≤ j ≤ s such that O(mj) ∩ FQ − SQ is not empty, then by Lemma 7.7.1, χj is a
chart of (FQ, Q, SQ,φ). Since the elements of Fatlas(χ, V,Q, S,φ) are exactly such χj ,
we are done.

A3 : Finally let y ∈ FQ−SQ, since y ∈ φ−1
e (Q) then y /∈ S. Since FQ ⊂ V , then by property

A3 of χ, there exists 1 ≤ j ≤ s such that y ∈ O(mj). In particular, O(mj) ∩ FQ − SQ

is non-empty, so that χj ∈ Fatlas(χ, V,Q, S,φ).

Hence, Fatlas(χ, V,Q, S,φ) is an atlas of (FQ, Q, SQ,φ). In particular, since V is d-equidi-
mensional, all the hj ’s have same cardinality c = n− d by [SS17, Lemma A.12]. Hence by
[SS17, Lemma A.11], FQ − SQ is a non-singular (d− e)-equidimensional locally closed set.
Since FQ has positive dimension and SQ is finite, we deduce that FQ is the Zariski closure
of FQ − SQ and then, is a (d− e)-equidimensional algebraic set, smooth outside SQ. This
concludes the proof of Proposition 7.2.16.
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Answering connectivity

queries on real algebraic

curves

8

Abstract. As seen in the previous chapters, deciding connectivity queries in real algebraic
sets of arbitrary dimension can be reduced to deciding such ones in the one-dimensional
case i.e. on real algebraic curves, in the original space, using roadmaps. This leaves open
the problem of efficiently solving the one-dimensional case.

In this chapter, we consider the problem of answering connectivity queries on a real
algebraic curve. The curve is given as the real trace of an algebraic curve, assumed to be
in generic position, and being encoded by a one-dimensional parametrization. The query
points are given by a zero-dimensional parametrization.

We design an algorithm which counts the number of connected components of the real
curve under study, and decides which query point lies in which connected component, in
time quasi-linear in N6, where N is the maximum of the degrees and coefficient bit-sizes of
the polynomials given as input. Additionally, the algorithm maintains a cubic complexity in
input size. Notably, this performance aligns with the best-known bound for computing the
topology of real plane curves, in contrast to the prior algorithm for space curves, which has
a complexity of order N20.

The main novelty of this algorithm is the avoidance of the computation of the comprehen-
sive topology of the curve.

This is joint work with Md N. Islam and A. Poteaux.

8.1 Introduction
In the previous chapters, we discussed the reduction of connectivity queries on real algebraic
sets of arbitrary dimension, to such ones on one-dimensional semi-algebraic sets, in the
original space, using roadmaps. This emphasizes the importance of efficiently solving the
one-dimensional case. However, there is a lack of algorithms in the literature that are both
general and have favorable complexity bounds for this problem. Indeed, the polynomial
complexity class, in terms of the input curve’s degree, is too coarse as the natural input for
these algorithms will be roadmaps with degrees exponential in the number of variables.

Open problem for Chapter 8

In this chapter, we address the problem of designing an efficient algorithm for answering
connectivity queries on real algebraic curves in Rn, defined as real traces of algebraic
curves of Cn. More precisely, given representations of an algebraic curve C and a finite
set P of points of C , we want to compute a partition of P, grouping the points lying in
the same connected components of C ∩ Rn, and count the number of such components.
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Prior works. The above problem has been previously tackled only through the computation
of a piecewise linear approximation sharing the same topology as the one of the curve under
study. We refer to Subsection 5.3.3 of Chapter 5 for a more comprehensive overview of the
literature on these approaches.

Assume that C is given as polynomials of magnitude (δ, τ). In R2, approaches using
subdivision algorithms and variants of Cylindrical Algebraic Decomposition methods have
been successful. Notably, [KS15, DDR+22] achieved a complexity Õ(δ5(δ+τ)) by computing
quantitative bounds on real root isolation. In R3, research progress has been relatively
scarce, with only a few papers providing complexity bounds. [JC21] obtained the best-
known complexity Õ(δ19(δ + τ)). For real algebraic curves in Rn, this relies on a variation
of the Cylindrical Algebraic Decomposition algorithm of Collins [Col75] – see Section 5.1 of
Chapter 5. This approach, described in [SS11], exhibits polynomial complexity in δ – see
Theorem 5.3.4.

These approaches have limitations. Either they assume the ambient space to be of small
dimension or they do not explicitly provide the constant factor in the exponent. This is due
to the fact that they compute the comprehensive topology of the input curve, requiring the
output to share the same topology as the one of the input.

Yet, to answer connectivity queries, it suffices for the output to share the same connectivity
properties.

Main result. Consider a real field Q, its real closure R and its algebraic closure C. Let
also X = (x1, . . . , xn) be a sequence of indeterminates, where n ≥ 1. In this chapter, C

is an algebraic curve defined by polynomials with coefficients in Q. For 1 ≤ i ≤ n we let
πi : Cn → Ci be the canonical projection on the first i variables. We note C2 ⊂ C2 and
C3 ⊂ C3 the Zariski closures of respectively π2(C ) and π3(C ). We note e.g. CR and C2,R,
respectively the real traces of C and C2. Then, e.g. K(π1,C ) ∩Rn and K(π1,C2) ∩R2 will
be denoted by K(π1,CR) and K(π1,C2,R).

Under genericity assumptions, we reduce the study of a curve CR to the one of its image
C3,R by the projection π3, as their real traces generically share the same connectivity
properties. Moreover, by refining the approach developed in [IP11] (based on [El 08]),
we show that one does not need to compute the topology of C3,R in order to answer

connectivity queries. More precisely, under genericity assumptions, that we make explicit
below, we first compute the topology of C2,R i.e. an isotopic graph. Next, the connectivity
of C3,R i.e. a homeomorphic graph, is deduced from the topology of C2,R, adapting
results from [El 08]. A geometric outcome is that the topological analysis needed to be
done at some special points of C2,R, which are called apparent singularities, can be much
simplified when one only needs to answer connectivity queries. This has a significant
impact on the complexity.

The set of apparent singularities of C2 is defined as app(C2) = sing(C2) − π2(sing(C )).
These are the singularities introduced by π2. A singular point of C2 is called a node if it is an
ordinary double point (see [El 08, §3.1]).
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We now give a precise formulation of our genericity properties mentioned above, which
can be seen as a generalization of the ones in [El 08]. For x in reg(C ) – resp. reg(C2) – , we
denote by Tx C – resp. Tx C2 – the tangent space to C – resp. C2 – at x. These are here
lines of Cn – resp. C2.

Let C ⊂ Cn be an algebraic curve and P ⊂ reg(C ) be finite. The pair (C ,P) satisfies (H)

if:

(H1) for 1 ≤ i ≤ n, Q[C ] is integral over Q[Ci], where Ci = πi(C ) is an algebraic curve;

(H2) for all x ∈ reg(C ), π2(Tx C ) is a tangent line to C2 at π2(x);

(H3) the restriction of π3 to C is injective;

(H4) if y ∈ app(C2) then

(H4
′ ) π−1

2 (y) ∩ C has cardinality 2;

(H4
′′) y is a node of C2;

(H5) K(π1,C2) ∪ π2(P) is finite and π1 is injective on it;

(H6) π−1
2 (π2(x)) ∩ C = ¶x♢, for all x ∈ K(π1,C ) ∪ P;

(H7) there is a one-dimensional parametrization R = (Ω, (x1, x2)) encoding C , with Ω =

(ω, x1, x2, ρ3, . . . , ρn) ⊂ Q[x1, x2].

We omit P when the context is clear.

Contributions to the open problem

In Section 8.2, we prove that assumption (H) holds for an algebraic curve in generic

position C that is, there is a Zariski open dense subset A of GLn(C) such that for any
A ∈ A the sheared curve C A satisfies (H).

Theorem 8.1.1. Let R ⊂ Z[x1, x2] be a one-dimensional parametrization encoding an

algebraic curve C ⊂ Cn satisfying (H) and P ⊂ Z[x1] a zero-dimensional parametriza-

tion encoding a finite subset of C . Let (δ, τ) and (µ, κ) be the magnitudes of R and P,

respectively.

There exists an algorithm which, on input R and P, computes a partition of the points of

Z(P) ∩ Rn lying in the same semi-algebraically connected component of C ∩ Rn, using

Õ(δ6 + µ6 + δ5τ + µ5κ)

bit operations. In particular, it is cubic in the size of the input.

This is to be compared with the best complexity Õ(δ19(δ + τ)) known to analyze the
topology of curves in R3. Note that the dependency on n in the complexity bound is “hidden”
within the potential degrees of the parametrizations and the corresponding algebraic sets.
Indeed, according to Bézout’s bound, an algebraic set, defined by polynomials, of degree
at most D, can have degree at most Dn. We refer to Subsection 1.3.3 of Chapter 1 for an
overview of the key ingredients of the algorithm presented in the following.
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Outline of the chapter. In Section 8.2, we establish genericity conditions using secant
varieties and Grassmanians to ensure the validity of assumption (H) after a generic linear
coordinate change. Under these conditions, we present two key theoretical results that
form the foundation of our algorithm.
The first result, in Section 8.3, identifies the finitely many apparent singularities in the
projected curve C2, where local connectivity differs from that of C . This involves Puiseux
series expansion at the nodes of C2 to establish a straightforward criterion.
The second step, detailed in Section 8.4, analyzes local connectivity in the fiber of these
apparent singularities to deduce the complete connectivity of C from C2’s topology. This
process leverages tools from real algebraic geometry, such as infinitesimals, and exploits
the local conic structure of semi-algebraic sets.
Finally, in Section 9.2, we describe the complexity of each algorithmic step and conclude
with a formal proof of Theorem 8.1.1. Our analysis heavily relies on computations
involving gcd and resultants, as well as complexity bounds for real root isolation of
triangular bivariate polynomial systems.

8.2 Curves in generic position

We now prove that (H) holds for an algebraic curve in generic position C that is, there is an
open dense subset A of GLn(C) such that for any A ∈ A the sheared curve C A satisfies (H).
We refer to Subsection 2.4 of Chapter 2 for a detailed discussion on the notion of genericity.
Note that in this section, Q can be any field of characteristic 0.

8.2.1 Generic projections of affine curves

The results below are well known in the case of smooth projective curves (see e.g. [Har77,
IV. Thm 3.10] or [Mum95, §7B.] for C = C), and have been generalized subsequently in e.g.
[HR79, KKBT08]. A version for complex singular affine space curves is proved in [FGT09,
Prop 5.2] under regularity assumptions. We present here a generalization of [FGT09, Prop
5.2] for any singular (affine) algebraic curve, following the proof and using more general
objects and results from the literature.

Let n ≥ 3, C ⊂ Cn an affine algebraic curve and P ⊂ C a finite subset. Recall that we
denote by Pn the projective space Pn(C), of dimension n over C, and that its elements write
as [x0 : · · · : xn]. Let H∞ = ¶[x0 : · · · : xn] ∈ Pn ♣ x0 = 0♢ be the hyperplane at infinity
with respect to the affine open chart given by Pn −H∞ (see e.g. [Har77, I.2]) We finally
let C be the projective closure of C in Pn. These objects are introduced and discussed in
Subsection 2.2, and we refer the reader for the following of this section.

We denote by G(1, n) = G(2, n+ 1) the Grassmanian of lines in Pn, and, for x ̸= y in Pn,
by L(x,y) ∈ G(1, n) the line containing x and y. We first introduce some special line for C .
Let x,y be distinct points of C and s = L(x,y) then,

• the line s will be called the secant line of C determined by x and y;
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• if s intersects C in a third point, distinct from x,y, then s is called a trisecant line of C ;

• if there are distinct x′,y′ ∈ s ∩ reg(C ) such that Tx′ C and Ty′ C are coplanar, then it
will be called a secant line with coplanar tangents of C .

Then, we define Sec(C ),Tri(C ) and CoPl(C ) as the sets of points in Pn that lie on
respectively a secant, trisecant and secant with coplanar tangents of C . Finally, we denote
by Tg(C ) the set of points in Pn that lie on the tangent line Tx C for some x ∈ reg(C ).

Lemma 8.2.1. The sets Sec(C ) and Tg(C ) are algebraic sets of dimension ≤ 3 and ≤ 2,

respectively. If, in addition, C is not a plane curve, then Tri(C ) and CoPl(C ) are algebraic sets

of dimension ≤ 2. Finally, none of these sets contains H∞.

Proof. Let C 1, . . . ,C m the irreducible components of C , i, j ∈ ¶1, . . . ,m♢, possibly equal,
and Σi,j ⊂ G(1, n) the Zariski closure of the image of

C i × C j − ¶(y,y) ♣ y ∈ C i ∩ C j♢

through the map (y,z) 7→ L(y,z). As the image of a Cartesian product of two irreducible
curves, Σi,j is an irreducible algebraic set. Such a secant being uniquely determined by
fixing two points in C i and C j , Σi,j has dimension ≤ 2 by [Sha13, Thm 1.25]. Then, if
Σ =

⋃
i,j Σi,j is the secant variety of C , it has dimension ≤ 2 and contains the secant lines in

G(1, n). As elements of G(1, n) are algebraic sets of dimension 1, Sec(C ) has Zariski closure
of dimension ≤ 3.

Consider now, the set

Γi =
{

(u,y) ∈ Pn × C i s.t. y ∈ reg(C ) and u ∈ Ty C
}

and consider the projections φi : Γi → Pn and ψi : Γi → C i. For all y in the Zariski open
subset reg(C )∩C i of Ci, ψ−1

i (y) is exactly Ty C , which has dimension 1. Hence, by [Sha13,
Thm 1.25], φi(Γi) has Zariski closure of dimension ≤ 2. Since Tg(C ) = ∪iφi(Γi), we are
done.

Assume now, that C is not a plane curve then, by [KKBT08, Thm 2], the set of trisecant
lines of C is a subset of G(1, n) whose Zariski closure has dimension ≤ 1. Then, as seen
above, Tri(C ) has Zariski closure of dimension ≤ 2.

Now, let Mi,j be the subset of Σi,j consisting of secant lines intersecting C at points whose
tangents are all contained in the same plane. We are going to prove that the Zariski closure
of Mi,j has dimension ≤ 1. Together with the dimension bound on Tri(C ), this will bound
the dimension of CoPl(C ).

Suppose first that C i and C j are not coplanar components. Then, there is y ∈ C i−sing(C )

such that l = Ty C and C j are not coplanar. If pl : Pn → Pn−2 denotes the projection of
center l, then pl(C j) is not a point. As C j is irreducible, and by [Sha13, Thm 1.25], the
Zariski closure R of pl(C j) is an irreducible algebraic subset of Pn−2 of dimension 1. Hence,
by [Sha13, Thm 1.25] again, there is a finite set K1 ⊂ Pn−2 such that for all w ∈ R\K1,

p−1
l (w) ∩ C j
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is finite. Besides, by Sard’s Theorem [Sha13, Thm 2.27], there exists a finite set K2 ⊂ Pn−2

such that R\K2 does not contain any critical value of the restriction of pl to C j . Then, for
w in R\[K1 ∪K2 ∪ pl(sing(C ))],

p−1
l (w) ∩ C j = ¶z1, . . . ,zk♢

with k ≥ 1, and for all 1 ≤ i ≤ k, zi ∈ reg(C ) and pl(Tzi
C ) has dimension 1. Hence, y

and zi have no coplanar tangents for all 1 ≤ i ≤ k. In particular, the secant line L(y,z1)

contains two points having no coplanar tangents so that

L(y,z1) ∈ Σi,j −Mi,j ,

and then Mi,j ⊊ Σi,j . In conclusion, the Zariski closure of Mi,j is a proper algebraic subset,
and since Σi,j is irreducible, this closure has dimension ≤ 1.

If now C i and C j are coplanar, Σi,j is the Zariski closure of Mi,j and one of the following
holds. If i = j and C i is a line, then Σi,j is reduced to the line associated to C i and has
dimension 0. Else, there exists a unique plane Si,j containing C i and C j , so that any line of
Σi,j must be contained in Si,j . In both cases, Σi,j , thus the closure of Mi,j , have dimension
≤ 1. Then, the Zariski closure of the union M of all Mi,j for i, j ∈ ¶1, . . . ,m♢, is an algebraic
subset of G(1, n) of dimension ≤ 1 as requested.

Remark now that a secant with coplanar tangents is either a trisecant, or a secant
intersecting C in exactly two regular points with coplanar tangents. Hence, the set of secants
with coplanar tangents of C is contained in the union of M and the set of trisecant lines of
C . By the previous discussion, it has dimension ≤ 1, so that the Zariski closure of CoPl(C )

has dimension ≤ 2.

Since C −H∞ can be identified with C , the former is a Zariski open subset of C , so that
C ∩H∞ is finite. In particular, H∞ contains finitely many secant or tangent lines of C and
then, cannot be contained in Sec(C ) or Tg(C ). Since Tri(C ) and CoPl(C ) are contained in
Sec(C ), they cannot contain H∞ as well.

In the following, for 0 ≤ r ≤ n − 1, we denote by G(r, n − 1) = G(r + 1, n) the set of
r-dimensional projective linear subspaces of H∞. Recall that using Plücker embedding (see
e.g. [Sha13, Example 1.24]), G(r, n − 1) can be embedded in P( n

r+1) −1 as an irreducible
algebraic set of dimension (r + 1)(n− r). The next lemma is then a direct consequence of
[Sha13, Thm 1.25].

Lemma 8.2.2. Let X ⊂ H∞ be an algebraic set of dimension m ≤ n− 1. Then, for any i ≥ m
there exists a non-empty Zariski open subset Ei of G(n−1− i, n−1) such that for every E ∈ Ei,

the set E ∩X is finite and, if i > m, it is empty.

Recall that P is a finite set of control points in C − sing(C ).

Proposition 8.2.3. If C is not a plane curve, then for all 1 ≤ i ≤ n−1, there exists a non-empty

Zariski open subset Ei of G(n− 1− i, n− 1) such that for all E ∈ Ei, the following holds. Let

pE : C → Pi be the projection with center E, then pE is a finite regular map and
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(i) for all x ∈ P, pE(Tx C ) is a projective line of Pi.

If, in addition, i ≥ 2 then,

(ii) item (i) holds for any x ∈ reg C ;

(iii) for any x ∈ C , there exists at most one point x′ ∈ C , distinct from x, such that

pE(x) = pE(x′);

(iv) there exists finitely many such pairs (x,x′), all satisfying x,x′ ∈ reg(C ) − P and

pE(Tx C ) ̸= pE(Tx′ C );

(v) if i ≥ 3, there is no such pair.

Proof. Fix 1 ≤ i ≤ n− 1 and suppose that C is not plane. As a proper Zariski closed set of C ,

X1 := H∞ ∩ C

is finite. By Lemma 8.2.2, as i > 0, there is a non-empty Zariski open subset E1 of
G(n − 1 − i, n − 1) such that for all E ∈ E1, E ∩ X1 is empty. Moreover, any (n − i)-
dimensional space containing E cannot contain an irreducible component of C (it would
be a line, intersecting E at some point of E ∩ C = E ∩ X1, which is empty). Thus, the
projection with center E ∈ E1 induces a finite map on C , regular by definition.

According to Lemma 8.2.1, the set of points lying on a tangent or a trisecant line of C

is an algebraic set of dimension ≤ 2. Since H∞ contains finitely many such tangents or
trisecants,

X2 = (Tg(C ) ∪ Tri(C )) ∩H∞

has dimension at most 1. By Lemma 8.2.2, as i ≥ 1, there exists a non-empty Zariski
open subset E2 of G(n− 1− i, n− 1) such that any E ∈ E2 intersects finitely many points
of Tg(C ) ∪ Tri(C ). Besides, there are finitely many tangents intersecting the finite set P,
so that by Lemma 8.2.2, up to intersecting E2 with a non-empty Zariski open subset of
G(n− 1− i, n− 1), one can assume that none of these tangents intersect P. This proves (i).

Assume now i ≥ 2. By Lemma 8.2.2, no E ∈ E2 intersects points in Tg(C ) ∪ Tri(C ).
In particular, any (n − i)-dimensional space containing E cannot contain a tangent nor
a trisecant, and, as seen above, this means that no tangent, or three distinct points, are
mapped to one point. This proves respectively (ii) and (iii).

According to Lemma 8.2.1, the set

X3 = Sec(C ) ∩H∞

of points in H∞, lying on a secant line of C , is algebraic of dimension ≤ 2. By Lemma 8.2.2
(i ≥ 2), there is a non-empty Zariski open subset E3 of G(n − 1 − i, n − 1) such that any
E ∈ E3 contains finitely many points lying on a secant line of C i.e., as before, there are
finitely many pairs of points which are mapped to the same point in Pi.
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Besides, the set of secants intersecting sing(C ) ∪ P is a proper algebraic subset of the
secant variety of C . Hence, by Lemma 8.2.2, up to intersecting E3 with a non-empty Zariski
open subset of G(n − 1 − i, n − 1), one can assume that none of these secants intersect
sing(C ) ∪ P.

Finally, by Lemma 8.2.2, as CoPl(C ) ∩ H∞ has dimension ≤ 1. As seen above, up to
intersecting E3 with a non-empty Zariski open subset of G(n− 1− i, n− 1), one can assume
that these secants intersect C at points with no coplanar tangents, which cannot be mapped
to the same line. All in all, for any E ∈ E3, (iv) holds.

According to Lemma 8.2.2, if moreover i ≥ 3, no E ∈ E3 intersects points in Sec(C )

that is, no two distinct points are mapped to the same image. This proves (v). Taking
Ei = E1 ∩ E2 ∩ E3 finally ends the proof.

We can now state the affine counterpart of Proposition 8.2.3.

Corollary 8.2.4. There exists a non-empty Zariski open set A of GLn(C) such that for all

A ∈ A and 1 ≤ i ≤ n, the following holds: the restriction of πi to C A is a finite morphism, and

(i) for all x ∈ PA, πi(Tx C A) is a line of Ci.

If, in addition, i ≥ 2 then,

(ii) item (i) holds for any x ∈ reg(C A);

(iii) the restriction of πi to C A is not injective at x if and only if i = 2 and π2(x) ∈ app(C A
2 );

(iv) app(C A
2 ) contains only nodes, with exactly two preimages through π2, none of them being

in PA;

Proof. If C is a plane curve, it is straightforward. Suppose from now on n ≥ 3 and C not
plane.

If i = n, there is nothing to prove, so let 1 ≤ i ≤ n − 1. Let C be the projective closure
of C , which is not a plane either and let Ei be the non-empty Zariski open subset of
G(n− 1− i, n− 1) given by Proposition 8.2.3.

According to Plücker embedding, there exists a surjective regular map from the set of i
linearly independent vectors a1, . . . ,ai of Cn to the set of (n−1−i)-dimensional (projective)
linear subspaces of H∞, defined by

x0 = 0 and aj,1x1 + · · ·+ aj,nxn = 0 for 1 ≤ j ≤ i.

Hence, there exists a non-empty Zariski open set Ai of GLn(C) of matrices A such that the
first i rows of A−1 are mapped to some E ∈ Ei, through the above map. Moreover, for any
A ∈ Ai the following holds. Consider,

Ã =




1 O

O A


 ,
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and for 1 ≤ j ≤ n, let aj = (aj,1, . . . ,aj,n) be the rows of A. If L0 = x0 and for 1 ≤ j ≤ i,
Lj = aj,1x1 + · · ·+aj,nxn, then the equations L0, . . . , Li define a projective linear subspace
E of H∞, such that E ∈ Ei and, by definition (see e.g. [Sha13, Example 1.27]),

pE : C
Ã → Pi

x 7→ [x0 : · · · : xi]

.

Therefore, the restriction of pE to the affine chart Pn − H∞ can be identified with the
restriction of πi to C A. According to Proposition 8.2.3, the restriction of πi to C A is a
finite morphism satisfying item (i). Assume now that i ≥ 2 then, assertion (ii) is a direct
consequence of item (ii) of Proposition 8.2.3.

Besides, let x ∈ C A such that there is x′ ∈ C A satisfying x′ ̸= x and πi(x) = πi(x
′). Then,

by Proposition 8.2.3, (iii) to (v), x′ is unique, both x,x′ /∈ sing(C A) ∪ PA, and necessarily
i = 2. Moreover, Tx C A and Tx′ C A map to distinct lines of C2, crossing at π2(x): it is a
node.

Hence, x ∈ app(C A
2 ) and π2(x) is a node, with exactly two preimages, none of them

being in PA. Conversely from Proposition 8.2.3, (ii), all points of app(C A
2 ) have at least

two preimages in C A. This proves (iii) and (iv). Taking A =
⋂n−1

i=1 Ai concludes.

8.2.2 Recovering (H)

Proposition 8.2.5. Let C ⊂ Cn be an algebraic curve and a finite subset P ⊂ reg(C ). There

exists a non-empty Zariski open set A ⊂ GLn(C) such that, for any A ∈ A, (C A,PA) satisfies

(H).

Proof. Let A1 ⊂ GLn(C) be the non-empty Zariski open subset defined in Corollary 8.2.4
and let A ∈ A1. For all 1 ≤ i ≤ n, the restriction of πi to C A is a finite morphism,
so that C A

i = πi(C
A) is an algebraic curve. Since C is integral over Q, the extension

Q[C A
i ]→֒Q[C A] is integral as well: (H1) is satisfied. Applying Corollary 8.2.4, for i = 3 and

i = 2 shows that the curve C A satisfies respectively (H3) on the one hand and (H2) and (H4)

on the other.

Let A = (ai,j)1≤i,j≤n and t be new indeterminates, the former ones standing for the entries
of a square matrix of size n × n. Since A1 is non-empty and Zariski open, there exists
a non-zero polynomial F ∈ C[A], such that A ∈ A1 if F (A) ̸= 0. Besides, according to
[BE02, §4.2] (or [GE96, §3.2]), there exists a non-zero polynomial G ∈ C[A, t] such that, if
F (A) ̸= 0 and G(A, b) ̸= 0 then, for

B =




1 b O

0 1 O

O O In−2



,

the curve C BA
2 is a plane curve in generic position in the sense of [BE02, §4.2] and [El 08,

Def 3.3]. In particular, π1 maps no tangent line of any singular point of C2 to a point and its
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restriction of π1 to the finite set W ◦(π1,C
BA
2 ) is injective. Let P2 = π2(P). As P2 ∪ sing(C2)

is finite, we can assume that π1 is injective on PBA
2 ∪ sing(C BA

2 ) as well. But, for any
x ∈W ◦(π1,C

BA
2 ), π1(x) is a point, so that x is neither in sing(C BA

2 ) nor PBA
2 , by genericity

of C BA
2 and item (i) of Corollary 8.2.4 respectively. Then, let b ∈ C such that G(A, b) is

not zero and let B be as above. The subset A2 ⊂ GLn(C) of elements of the form BA′

where F (A′)G(A′, b) ̸= 0 is a non-empty Zariski open subset. Moreover, for any A ∈ A2, C A

satisfies (H5).

Take A ∈ A1 ∩ A2 and let x ∈ K(π1,C
A) ∪ PA and y = π2(x). Suppose there is x′ ∈ C A

such that x′ ̸= x and π2(x′) = y. By (iii), x ∈ W ◦(π1,C
A) and y is a node in app(C A

2 ),
with vertical tangent line π2(Tx C A): this is impossible by above (A ∈ A2, so that C A

2 is in
generic position). Therefore, C A satisfies (H6).

We proceed similarly for (H7). Let A ∈ A1. By (H1), C A is in Noether position (for
π1). Let D = (d3, . . . , dn) be new variables. By [DL08, Cor 3.4 & 3.5], there is H ∈ C[A, D]

non-zero such that, if F (A) ̸= 0 and H(A,d) ̸= 0, then the following holds: if µd =

x2 + d3x3 + · · · + dnxn is a linear form, then there is R = (ω, ρ1, . . . , ρn) ⊂ Q[x1, v] such
that (R, x1, µd) is a one-dimensional parametrization encoding C A. Let d ∈ Cn−1 such that
H(A,d) is not zero and

C =




1 O O

0 1 d

O O In−2



.

The subset A3 ⊂ GLn(C) of elements, of the form CA′, where F (A′) and H(A′, c) are both
not zero, is a non-empty Zariski open subset where C A satisfies (H7).

Finally, for A ∈ A := A1 ∩ A2 ∩ A3, C A satisfies (H).

8.3 Detect apparent singularities

We generalize the criterion of [El 08] used to identify apparent singularities in plane projec-
tion of space curve. We keep notations given in Section 8.1, and assume for the rest of the

document that (C ,P) satisfies (H). We start by an adapted version of [El 08, Lemma 4.1]
(the equivalence relation modulo I(C ) is denoted ≡). Note that in this section, Q can be
any field of characteristic 0.

Lemma 8.3.1. Let (α, β) be a node of C2. There are exactly two power-series y1, y2 ∈ C[[x1−α]]

such that for i = 1, 2, if zi = ρ3(x1,yi)
∂x2 ω(x1,yi) then:

1. ω(x1, yi) ≡ 0 and yi(α) = β but y′
1(α) ̸= y′

2(α);

2. h(x1, yi, zi) ≡ 0 for any h ∈ I(C ) ∩Q[x1, x2, x3]

and zi ∈ C[[x1 − α]].

Proof. According to (H5) and (H7), C2 is in generic position in the sense of [GE96, Def 3.1].
As (α, β) is a node of C2 = V (ω), then β is a double root of ω(α, x2) by [GE96, Prop 2.1 &
Thm 3.1]. From the Puiseux theorem (see e.g. [Eis95, Cor 13.16]), there are exactly two
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Puiseux series y1, y2 of C2 at (α, β). And for i = 1, 2, from [El 08, §3.2], yi ∈ C[[x1 − α]],
hence, ω(x1, yi) ≡ 0 and yi(α) = β. Besides, as (α, β) is a node, we have y′

1(α) ̸= y′
2(α).

This concludes the proof of assertion (1).

Let h ∈ I(C ) ∩Q[x1, x2, x3]. By Euclidean division, there are u, r ∈ Q[x1, x2] and m ≥ 0

such that
(∂x2

ω)m · h = u(∂x2
ω · x3 − ρ3) + r.

Since I(C ) ∩Q[x1, x2] = ∫ω, ω divides r in Q[x1, x2], so that,

(∂x2ω(x1, yi))
m · h(x1, yi, zi) ≡ 0,

for i = 1, 2. As ∂x2
ω(x1, yi) cannot be identically zero - K(π1,C2) is finite by (H5),

h(x1, yi, zi) ≡ 0.

Finally, by (H1), Q[C3] is integral over Q[C2], so that there is

h0 ∈ I(C3) = I(C ) ∩Q[x1, x2, x3]

monic in x3. From above, for i = 1, 2, h0(x1, yi, zi) ≡ 0 and zi is integral over C[[x1 − α]].
As C is an algebraically closed field of characteristic 0, C[[x1−α]] is integrally closed [Eis95,
Cor 13.15]. Thus, as a fraction, zi ∈ C[[x1 − α]].

Proposition 8.3.2. The following assertions are equivalent:

1. y ∈ app(C2);

2. y is a node of C2 and

(∂2
x2
ω · ∂x1

ρ3 − ∂2
x1x2

ω · ∂x2
ρ3)(y) ̸= 0. (8.1)

Proof. Assume that y = (α, β) is a node. We first prove that if (8.1) holds then, there are
two distinct points of C that project on y. By Lemma 8.3.1, there exist y1, y2 ∈ C[[x1 − α]]

such that y′
1(α) ̸= y′

2(α) and yi(α) = β and ω(x1, yi) ≡ 0, for i = 1, 2. For i = 1, 2 let
zi = ρ3(x1,yi)

∂x2 ω(x1,yi) . By Lemma 8.3.1,

∂x2
ω(x1, yi) · zi ≡ ρ3(x1, yi).

Since zi ∈ C[[x1 − α]], by derivation and evaluation in x1 = α,

(
∂2

x1x2
ω(y) + y′

i(α)∂2
x2
ω(y)

)
zi(α) = ∂x1

ρ3(y) + y′
i(α)∂x2

ρ3(y). (8.2)

By Lemma 8.3.1, ω(x1, yi) ≡ 0. Differentiating twice and evaluating in α, we get

∂2
x1
ω(y) + 2y′

i(α)∂2
x1x2

ω(y) + y′
i(α)2∂2

x2
ω(y) = 0.

Since y′
1(α) ̸= y′

2(α) by Lemma 8.3.1, they are simple roots of

∂2
x1
ω(y) + 2U∂2

x1x2
ω(y) + U2∂2

x2
ω(y) ∈ C[U ].
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Therefore,
∂2

x1x2
ω(y) + y′

i(α)∂2
x2
ω(y) ̸= 0. (8.3)

Now let H : C→ C such that for all t ∈ C

H(t) =
∂x1ρ3(y) + t · ∂x2ρ3(y)

∂2
x1x2

ω(y) + t · ∂2
x2
ω(y)

.

Using (8.2) and according to (8.3), H(y′
i(α)) = zi(α) for i = 1, 2. But H is either bijective

or constant, whether (8.1) respectively holds or not. As y′
1(α) ̸= y′

2(α), (8.1) holds if and
only if z1(α) ̸= z2(α). By Lemma 8.3.1, (2), z1 = (α, β, z1(α)) and z2 = (α, β, z2(α)) are
points of C3 projecting on y. From (H3), there are x,x′ in C that project on resp. z1 and z2.
They are distinct if and only if (8.1) holds.

We can now prove the equivalence statement. We just proved that, if y is a node and
(8.1) holds then, y is the projection of two distinct points, that cannot be singular by (H5).
Conversely, either y is not a node, and we conclude by (H4) or, by the above discussion, it is
the projection of a point of C , with two distinct tangent lines (that project on the ones of y).
Hence, y is the projection of a singular point and then, not in app(C2), by definition.

8.4 Connectivity recovery

We now investigate the connectivity relation between CR and C2,R. The following lemma is
partly adapted from [El 08, Lemma 6.2].

Lemma 8.4.1. Let x = (x1 . . . ,xn) ∈ K(π1,C ), then x ∈ Rn if and only if x1 ∈ R, and

K(π1,C2)− app(C2) = π2

(
K(π1,C )

)
.

Proof. The second point is a direct consequence of (H2), as the non-singular critical points
of C project to the ones of C2.

Let x ∈ K(π1,C ), and assume x1 ∈ R. By [GE96, Prop 3.1], as C is in generic position,
computing sub-resultant sequences gives a rise to σ2 ∈ Q[x1] such that x2 = σ2(x1) ∈ R.
By (H6), the line V (x1 − x1, x2 − x2) intersects C at exactly one point. Hence, by [CLO15,
Thm 3.2], computing a Gröbner basis of the ideal

I(C ) + ∫x1 − x1, x2 − x2 ⊂ R[X]

with respect to the lexicographic order x1 ≺ · · · ≺ xn gives a rise to n − 2 polynomials
σ3, . . . , σn such that σi ∈ R[x1, . . . , xi−1] and σi(x1, . . . ,xi−1) = xi, for 3 ≤ i ≤ n. Hence,
the triangular system formed by the σi’s raises polynomials τ2, . . . , τn ∈ R[x1] such that
xi = τi(x1) for i ≥ 2, thus x ∈ Rn. The converse is straightforward.

The following lemma shows that, except at apparent singularities, the real traces of C

and C2 share the same connectivity properties.
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Lemma 8.4.2. The restriction of π2 to CR−π−1
2 (app(C2)) is a semi-algebraic homeomorphism

of inverse φ2, defined on C2,R − app(C2) such that

for all y /∈ K(π1,C2), φ2(y) =
(
y,

ρ3(y)

∂x2
ω(y)

, . . . ,
ρn(y)

∂x2
ω(y)

)
.

Proof. Consider y ∈ C2,R − app(C2). As C2 = V (ω), either ∂x2
ω(y) is non-zero or y ∈

K(π1,C2,R)− app(C2). In the latter case, according to Lemma 8.4.1

π−1
2 (y) ∩ C ⊂ K(π1,CR).

By (H6) there is a unique x ∈ K(π1,CR) − π−1
2 (app(C2)) such that π2(x) = y. Let

φ2 : C2,R − app(C2)→ Rn be defined as:

▷ if y ∈ K(π1,C2)− app(C2), then φ2(y) is the unique x satisfying π2(x) = y;

▷ else φ2(y) =
(
y, (ρ3/∂x2

ω)(y), . . . , (ρn/∂x2
ω)(y)

)
.

Since its graph is a semi-algebraic set by construction, φ2 is a semi-algebraic map according
to [BPR06, §2.5.2]. Moreover, if y ∈ C2,R − app(C2), then φ2(y) is the unique element of
CR − π−1

2 (app(C2)) such that π2(φ2(y)) = y.

Since ∂x2ω(y) does not vanish on this set, φ2 is continuous on C2,R−K(π1,C2). We prove
that it is continuous everywhere. Let y ∈ K(π1,C2,R) − app(C2) and suppose there is a
semi-algebraic path γ : [0, 1] → C2,R, such that γ(0) = y and γ(t) ∈ C2,R − K(π1,C2), for
all t > 0. Consider the semi-algebraic path τ : t ∈ (0, 1] 7→ φ2(γ(t)) ∈ CR. Since π2 is a
proper map by (H1), τ is bounded. Thus, by [BPR06, Prop 3.21], τ can be continuously
extended in t = 0 and by continuity, τ(0) ∈ CR and π2(τ(0)) = π2(φ2(y)) = y. Hence, by
uniqueness τ(0) = φ2(y) and, by [BPR06, Prop 3.6 & 3.20], φ2 is continuous in y. Since
K(π1,C2) is finite, no such path γ exists if and only if both y and x are isolated points so
that φ2 is trivially continuous at y.

In conclusion, φ2 is a semi-algebraic map, continuous on C2,R − app(C2), of inverse the
restriction of π2 to CR − π−1

2 (app(C2)) by Lemma 8.4.1. Hence, this latter restriction is a
semi-algebraic homeomorphism, as stated.

It remains to investigate how the connectivity of the real traces of C and C2 are related
close to apparent singularities. Recall that an (ambient) isotopy of Rn is a continuous
map H : Rn × [0, 1]→ Rn such that y 7→ H(y, 0) is the identity map and y 7→ H(y, t) is a
homeomorphism for t ∈ [0, 1]. Then two subsets Y and Z of Rn are isotopy equivalent if
there is an isotopy H of Rn such that H(Y, 1) = Z.

Recall also that a graph G is the data of a set V of vertices, together with a set E of
edges ¶v,v′♢, where v,v′ ∈ V. For any y,y′ ∈ R2, we will denote by [y,y′], the closed line
segment ¶(1 − t)y + ty′, t ∈ [0, 1]♢. Then, if V ⊂ R2, we call the piecewise linear curve,
denoted CG , associated to G the union of [v,v′] for all ¶v,v′♢ ∈ E . In the following, we note
P2 = π2(P).

Definition 8.4.3. Let G2 = (V2, E2) be a graph, with V2 ⊂ R2. Then we say that G2 is a real

topology graph of (C2,P2) if
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1. C2,R is isotopy equivalent to CG2
;

2. the points of K(π1,C2,R) ∪ P2,R are embedded in V2;

3. no two points of K(π1,C2,R) have adjacent vertices in G .

For the rest of this section, let G2 be a real topology graph of (C2,P2), H the induced
isotopy and, for t ∈ [0, 1], Ht : y ∈ R2 → H(y, t), so that H1(CG2

) = C2,R.
Consider semi-algebraic paths γ1, . . . , γ4 in R2, all starting from a unique point p ∈ R2,

and not intersecting each other elsewhere (see Figure 8.1), so that the γi’s can be pairwise
associated with respect to their unique opposite branch at p: given an orientation of R2 and
a sufficiently small circle centered at p, we arrange the γ′

is around p with respect to their
unique intersection with this circle [BCR98, Thm 9.3.6]; we then pairwise associate them to
the one after next in the above arrangement (it does not depend on the chosen orientation).
Up to reindexing, say that (γ1, γ3) and (γ2, γ4) are the unique pairs of opposite branches at p.

The next lemma follows directly from classical results in knots and braids theory, see
[BZ02, Prop 1.9-10] for the key arguments.

Lemma 8.4.4. Let the γi’s as above, and any isotopy H̃ of R2. The curves (H̃1(γ1), H̃1(γ3))

and (H̃1(γ2), H̃1(γ4)) do not intersect each other, except at H̃1(p). They are the unique pairs of

opposite branches at this point.

This property allows us to deduce relations between edges of G2, from relations between
the associated branches of C2,R.

Figure 8.1. The figure illustrates the context of Lemma 8.4.4 with two possible ordering of the branches;
the braid structure appears here clearly.

Lemma 8.4.5. Let y = (α, β) ∈ app(C2,R). There are exactly five distinct vertices v0, . . . ,v4 ∈
V2 such that H1(v0) = y and for 1 ≤ i ≤ 4:

1. ¶v0,vi♢ ∈ E2 and H1(vi) /∈ app(C2);

2. if ei = [v0,vi], the e′
is do not cross each other except at v0;

3. there exists unique semi-algebraic paths τ1, . . . , τ4 such that for

τi : [0, 1]→ CR,





π2(τi([0, 1])) = H1(ei)

π2(τi(0)) = y
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4. assume that (e1, e3) and (e2, e4) are the two unique pairs of opposite edges of G2 at

v0. Then, there exist x1 ̸= x2 in π−1
2 (y) ∩ CR, such that x1 = τ1(0) = τ3(0) and

x2 = τ2(0) = τ4(0).

Proof. Let v0 = H−1
1 (y). As y is a node, there are exactly four distinct vertices v1, . . . ,v4 ∈

V2 such that ¶v0,vi♢ ∈ E2, for 1 ≤ i ≤ 4. Indeed, for 1 ≤ i ≤ 4, let

ei : t ∈ [0, 1] 7→ v0 + t(vi − v0) ∈ R2

and γi = H1 ◦ ei. Then the γi’s are the four branches of C2,R incident in y. Remark that, by
the third item of Definition 8.4.3, none of the H1(vi)’s lie in K(π1,C2,R), since H1(v0) = y

does. Besides, by the second item, the γi’s do not intersect K(π1,C2), except in y.
In particular, the γ′

is do not contain points of app(C2) and intersect each other only at y.
Hence, by Lemma 8.4.4, through H1, the ei’s intersect each other only at v0.

Besides, let i ∈ ¶1, . . . , 4♢, and for 0 < t ≤ 1, let τi(t) = φ2(γi(t)), where φ2 is defined in
Lemma 8.4.2. It is a well-defined semi-algebraic path by the above discussion. Moreover,
by Lemma 8.4.2, τi(t) ∈ CR and π2(τ(t)) = γ(t) = H1(ei(t)), for all 0 < t ≤ 1. Since π2 is a
proper map by (H1), [BPR06, Prop 3.21] implies that τi can be continuously extended in
t = 0. Moreover, by continuity, π2(τi(0)) = y.

Finally, y being a node, there exist points θ1 ̸= θ2 in R2 and 1 ≤ i1, i2, i3, i4 ≤ 4 such that,

θ1 = γ′
i1

(0) = γ′
i3

(0) and θ2 = γ′
i2

(0) = γ′
i4

(0).

This means that the branches (γi1
, γi3

) and (γi2
, γi4

) are the two pairs of opposite branches
of C2 at y. Then, by Lemma 8.4.4, (ei1

, ei3
) and (ei2

, ei4
) are the two pairs of opposite edges

of G2 at y. For the sake of clarity assume, without loss of generality that ik = k for all
1 ≤ k ≤ 4. By continuity, there exist ϑ1 ̸= ϑ2 in Rn such that

ϑ1 = τ ′
1(0) = τ ′

3(0) and ϑ2 = τ ′
2(0) = τ ′

4(0),

and τi(0) ∈ π−1
2 (y)∩CR for 1 ≤ i ≤ 4. But as y ∈ app(C2), π−1

2 (y)∩C contains two distinct
non-singular points, of distinct tangent lines, by (H2) and (H4). Since the τ ′

i(0)’s are tangent
lines of C , necessarily, τ1(0) and τ3(0) are equal to one of these points, while τ2(0) and τ4(0)

are equal to the other one (if multiple branches converge at a point or the tangent lines
differ, it becomes singular).

If Vapp = H−1
1 (app(C2)) ⊂ V2 is the subset of apparent nodes, then Lemma 8.4.5 provides

a procedure to compute a new graph G , from which we can deduce connectivity queries on
C .

Definition 8.4.6. Let NodeResolution be the procedure that takes as input G2 and Vapp as
above and outputs the graph G = (V, E) as follows (we keep notations of Lemma 8.4.5).

1. For all v ∈ Vapp, compute the adjacent vertices v1, . . . ,v4 of v, indexed such that
(e1, e3) and (e2, e4) are opposite edges.

2. Remove v from V2 and replace the four edges (¶v,vk♢)1≤k≤4 by the two edges
(¶vj ,vj+2♢)k=1,2, as depicted in Figure 8.2.

8.4 Connectivity recovery 227



Figure 8.2. This illustration shows how NodeResolution (Definition 8.4.6) modifies G2 at vertices of Vapp.
Here, the dotted and solid lines represent the edges of G2 and G , respectively.

We say that v,v′ ∈ V are connected in a graph G = (V, E) if there exists an ordered
sequence (v0, . . . ,vN+1) of vertices in V such that v0 = v, vN+1 = v′ and ¶vi,vi+1♢ ∈ E ,
for all 0 ≤ i ≤ N .

Proposition 8.4.7. Let G = (V, E) be the graph output by NodeResolution, on input G2 and

Vapp. Then,

1. π2(PR) ⊂ H1(V);

2. y,y′ ∈ PR are semi-algebraically connected in CR if and only if H−1
1 (π2(y)) and

H−1
1 (π2(y′)) are connected in G .

Proof. (H5) and (H6) imply π2(P)∩H1(Vapp) = ∅. Then P2,R = π2(PR) as π2 is injective on
P, and, by definition, P2,R ⊂ V.

We now deal with the second statement. Let x,x′ ∈ PR and

v = H−1
1 (π2(x)) and v′ = H−1

1 (π2(x′))

in V. Assume first that v and v′ are connected in G . Then there exist v1, . . . ,vN ∈ V such
that, if v0 = v and vN+1 = v′, then ¶vi,vi+1♢ ∈ E and H1(vi) /∈ app(C2) for 0 ≤ i ≤ N + 1.
Fix i ∈ ¶0, . . . , N♢. By Lemma 8.4.2, xi = φ2(H1(vi)) and xi+1 = φ2(H1(vi+1)) are
well-defined in CR

If ¶vi,vi+1♢ ∈ E2 then, H1([vi,vi+1]) ∩ app(C2) = ∅, and, by Lemma 8.4.2, xi and xi+1

are semi-algebraically connected in CR through φ2. Otherwise, ¶vi,vi+1♢ /∈ E2, and, by
construction of G , there exists w ∈ Vapp such that ¶vi,w♢ and ¶w,vi+1♢ are in E2. However,
since ¶vi,vi+1♢ ∈ E , then, according to the construction of G ,

ei = [w,vi] and ei+1 = [w,vi+1]

are opposite edges of G2 at w. Hence, by items (2) and (3) of Lemma 8.4.5, there exists a
semi-algebraic path τ : [−1, 1]→ CR connecting xi to xi+1. All in all, by transitivity, x0 = x

and xN+1 = x′ are semi-algebraically connected in CR, and we are done.
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Conversely, suppose that x and x′ are semi-algebraically connected in CR and let τ :

[0, 1]→ CR be a semi-algebraic path such that τ(0) = x and τ(1) = x′. Let γ = π2 ◦ τ , and

¶t1, . . . , tN♢ = γ−1
(
H1(V2)

)
⊂ (0, 1)

such that t1 < . . . < tN . Let t0 = 0, tN+1 = 1 and for 0 ≤ i ≤ N + 1, vi = H−1
1 (γ(ti)) ∈ V2.

By assumption, ¶vi,vi+1♢ ∈ E2 for all i ∈ ¶0, . . . , N♢. Let us prove by induction that for
0 ≤ i ≤ N + 1, either vi ∈ Vapp or vi is connected to v0 in G . If i = 0, there is nothing to
prove, so let 1 ≤ i ≤ N and suppose that the statement holds for all 0 ≤ j < i.

Assume vi+1 /∈ Vapp. Then, either vi /∈ Vapp, and, by induction hypothesis, vi+1 and v0 are
connected, through vi, in G . Either vi ∈ Vapp and, by Lemma 8.4.5, there are exactly four
distinct w1,w2,w3,w4 ∈ V − Vapp such that ¶vi,wj♢ ∈ E2, for 1 ≤ j ≤ 4. Assume, without
loss of generality, that vi+1 = w1. Then, there is j1 ∈ ¶2, 3, 4♢ such that vi−1 = wj1

. Using
the notation of Lemma 8.4.5, assume, without loss of generality, that e3 = [vi,w3] is the
opposite branch of e1 = [vi,w1] in G2 at vi. Then, by items (2) and (3) of Lemma 8.4.5, we
have j0 = 3, since τ([ti−1, ti]) is connected to τ([ti, ti+1]). By construction of G , w1 = vi+1

is connected to w3 = vi−1 in G , so that, by induction, vi+1 is connected to v0, through vi−1.
Hence, v = vN+1 and v′ = v0 are connected in G , proving the converse.

Proposition 8.4.7 also implies that G and CR share the same number of semi-algebraically
connected components. Therefore, by computing G , one can determine this number and
answer connectivity queries on PR.

8.5 Algorithm

We now provide an algorithm for solving connectivity queries over real algebraic curves,
whose different steps correspond sequentially, except for one, to the different sections of this
chapter.

Given a sequence of polynomials defining an algebraic curve, the first step is to perform
a linear change of variable, generic enough to ensure assumption (H), and to compute
a one-dimensional parametrization encoding it. Answering connectivity queries on the
sheared curve is equivalent to do so on the original curve. By [GM19, Thm 6.18] (or [SS17,
Prop 6.3]), computing such a parametrization has complexity cubic in the degree of the
curve, thus bounded by our overall complexity. Besides, according to [SS17, § J], changing
variables in zero and one-dimensional parametrizations has similar complexity. Hence, for
the sake of clarity, we omit these two steps.

Following the state of the art of curve topology computation, we consider polynomials
with integer coefficients, so that Q = Q, R = R and C = C. Moreover, we denote by ⪯1 the
preorder on points of Rn w.r.t. the first coordinate, when they are distinct.

8.5.1 Subroutines

We assume that R = (ω, ρ3, . . . , ρn) has coefficients in Z and magnitude (δ, τ), and consider a
zero-dimensional parametrization P = (λ, ϑ2, . . . , ϑn), with coefficients in Z and magnitude
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(µ, κ) encoding P. Note that R2 = (ω, ρ2) and P2 = (λ, ϑ2) are parametrizations encoding
respectively C2 and P2. We denote further R = Resx2

(ω, ∂x2
ω). Since, by (H7), ω is monic

in x2, its roots are exactly the abscissas of K(π1,C2). From (H5), points of app(C2) can
be identified by their abscissa, which, following Proposition 8.3.2, can be reduced to gcd
computations.

Proposition 8.5.1. There exists an algorithm ApparentSingularities taking as input R, as

above, and computing a square-free polynomial qapp ∈ Z[x1], of magnitude (δ2, Õ(δ2 + δτ))

such that

app(C2) = ¶(α, β) ∈ K(π1,C2) ♣ qapp(α) = 0♢,

using Õ(δ6 + δ5τ) bit operations.

Proof. Let (α, β) ∈ K(π1,C2). According to [El 08, Thm 3.2.(ii)], since C satisfies (H), (α, β)

is a node if and only if α is a double root of R, i.e. if and only if α is a root of

q = gcd(R∗, R′)/ gcd(R∗, R′, R′′),

where R∗ is the square-free part of R. Moreover, let (sr1, sr1,0) be the first subresultant
sequence of (ω, ∂x2

ω). By [GE96, Thm 3.1], if q(α) = 0 then, sr1(α) ̸= 0, and

sr1(α) · β = − sr1,0(α).

Let A(x1, x2) be the polynomial on the left-hand side of (8.1) in Proposition 8.3.2, and
u be a new indeterminate. Let Ã(x1, x2, u) be the homogenization of A in x2, and B =

Ã(x1,− sr1,0, sr1). Then, from Proposition 8.3.2, the square-free polynomial

qapp = q/ gcd(q,B)

vanishes at α if and only if (α, β) ∈ app(C2), as required.

We now deal with the quantitative bounds. By [MSW15, Lemma 14], R, R∗, sr1 and
sr1,0 have magnitude (δ2, Õ(δ2 + δτ)) and can be computed using Õ(δ6 + δ5τ) bit opera-
tions. Hence, by [GG13, Cor 11.14] and [MSW15, Lemma 12], computing gcd(R∗, R′),
gcd(R∗, R′, R′′) and then q can be done using Õ(δ4 + δ3τ) bit operations. Moreover, by
[MSW15, Lemma 11], q has magnitude (δ2, Õ(δ2 + δτ)).

Besides, Ã has magnitude (O(δ), Õ(τ)), so that B has magnitude

(
Õ(δ3), Õ(δ3 + δ2τ)

)
.

Hence, by [GG13, Cor 11.14] computing, gcd(q,B) requires Õ(δ6 + δ5τ) bit operations.
From this, computing qapp costs Õ(δ4 + δ3τ) bit operations, by [DDR+22, Prop 2.15]. Finally,
qapp has magnitude (δ2, Õ(δ2 + δτ)), by [MSW15, Lemma 11].

Suppose now that the polynomial qapp, from Proposition 8.5.1, has been computed. We
can compute a real topology graph of (C2,P2), while identifying the vertices corresponding
to app(C2) and P2.
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Proposition 8.5.2. There exists an algorithm Topo2D taking as input R, P2 and qapp as

above and computing G = (V, E), a real topology graph of (C2,P2), of size at most O(δ3 + δµ),

using

Õ(δ6 + δ5τ + µ6 + µ5κ)

bit operations. It also outputs sequences Vapp and VP , of elements of V, that are in one-to-one

correspondence with resp. the points of app(C2,R) and P2,R, ordered with respect to ⪯1.

Proof. According to [KS15, Thm 14], and more recently [DDR+22, Thm 1.1], there is an
algorithm that computes a planar graph G , whose associated piecewise linear curve CG , is
isotopy equivalent to C2,R, using Õ(δ6 + δ5τ) bit operations. Under slight modifications,
these algorithms can compute the claimed output of Topo2D, within the same complexity
bounds. For clarity, we only consider the algorithm of [DDR+22], that we roughly describe.

Let α1 < · · · < αN be the abscissas of the points of K(π1,C2,R). They are distinct by
(H5). [DDR+22, Prop 2.24] first computes disjoint isolating intervals for each αi. Then,
[DDR+22, Prop 3.13] isolates the ordinates of the points above each αi. This process gives
rise to isolating boxes, which stand for vertices in the final graph. The algorithm eventually
connects these boxes to separating vertices above regular values in the intervals (αj , αj+1).
The latter is done by counting the number of incoming left and right branches in each
box. For points of K(π1,C2,R), it is tackled by [DDR+22, §4.2-4], while for others it is
straightforward (exactly one branch from each side).

The above process computes a graph G = (V, E), such that CG is isotopy equivalent to
C2,R. Remark that V contains a subset VK of vertices associated to the unique point of
K(π1,C2,R) above the αi’s, all separated by vertices associated to regular points. Moreover,
by Proposition 8.5.1, Vapp is exactly the subset of VK, associated to the αi’s where qapp

vanishes. Then, according to [DDR+22, Prop 2.24] and Proposition 8.5.1, one can compute
disjoint isolating intervals of the roots of R and qapp and identify all common roots, using

Õ(δ6 + δ5τ)

bit operations. This gives Vapp.

Hence, it remains to show that introducing vertices for control points P2,R (together with
those above and below) can be done in the claimed bound. First, recall that D = (λ, ϑ2)

encodes P2. According to [DDR+22, Prop 2.24] again, we can compute disjoint isolating
intervals for all distinct (by (H5)) real roots of λ and R, using at most

Õ(δ6 + δ5τ + µ6 + µ5κ)

bit operations. Next, let g(x1, x2) = λ′ · x2 − ϑ2. It is a bivariate polynomial with magnitude
(µ, κ). Then, according to [DDR+22, Prop 3.14], for each root β of λ, we can compute
isolating intervals for all roots x2 of (ω · g)(β,x2), and identify the unique common roots,
within the same complexity bound. This gives VP . Moreover, since P ∩ K(π1,C2,R) = ∅, as
seen above, the connection step for the introduced vertices is straightforward, and does not
affect the complexity bound.
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Finally, since we consider at most δ2 + µ fibers, each of them containing at most δ points
then, taking in account the regular separating fibers, we get at most O(δ3 + δµ) vertices and
edges.

8.5.2 The algorithm

Let IndConnectComp be an algorithm taking as input a graph G = (V, E), and a sequence
V = (v1, . . . ,vN ) of vertices of G . It outputs a partition I1, . . . , Is of ¶1, . . . , N♢, grouping
the indices of the vi’s lying in the same connected components of G .

Algorithm 3 ConnectCurve

Input: R = (ω, ρ3, . . . , ρn) ⊂ Z[x1, x2] encoding an algebraic curve C ⊂ Cn and P =

(λ, ϑ2, . . . , ϑn) ⊂ Z[x1] encoding points p1 ⪯1 · · · ⪯1 pµ of CR, such that (C ,P) satisfies
(H).

Output: a partition of ¶1, . . . , µ♢ grouping the indices of the pi’s lying in the same semi-al-
gebraically connected component of CR.

1: P2 ← (λ, ϑ2);

2: qapp ← ApparentSingularities(R)

3: [G2, Vapp, VP ]← Topo2D (R, P2, qapp) ;

4: G ← NodeResolution(G2, Vapp);

5: return IndConnectComp(VP , G );

The rest of the chapter is then devoted to the proof of Theorem 8.1.1, that is the correction
and complexity bound of the above algorithm.

Proof of Proof of Theorem 8.1.1. Let R = (ω, ρ3, . . . , ρn) ⊂ Z[x1, x2] be a one-dimensio-
nal parametrization of magnitude (δ, τ) encoding an algebraic curve C ⊂ Cn and P =

(λ, ϑ2, . . . , ϑn) ⊂ Z[x1] be a zero-dimensional parametrization of magnitude (µ, κ) encoding
points of CR, such that (C ,P) satisfies (H). Suppose, without loss of generality that
P = ¶p1, . . . ,pµ♢, with p1 ⪯1 · · · ⪯1 pµ.

On input R and P, algorithm ConnectCurve perform the following operations:

Step 1. According to the definition of zero-dimensional parametrizations,

P =

{(
y1,

ϑ2

∂uλ
(y1), . . . ,

ϑn

∂uλ
(y1)

)
∈ Cn ♣ λ(y1) = 0

}
,

so that P2 = (λ, ϑ2) is a zero-dimensional parametrization of magnitude (µ, κ) encoding
P2 = π2(P). This step has constant bit complexity O(1).

Step 2. According to Proposition 8.5.1, on input R, the algorithm ApparentSingularities

outputs a square-free polynomial qapp ∈ Z[x1], of magnitude (δ2, Õ(δ2 + δτ)) such that

app(C2) = ¶(α, β) ∈ K(π1,C2) ♣ qapp(α) = 0♢,

using Õ(δ6 + δ5τ) bit operations.

232 Chapter 8 Answering connectivity queries on real algebraic curves



Step 2. According to Proposition 8.5.2, on input R, P2 and qapp as above the algorithm
Topo2D computes G2 = (V, E), a real topology graph of (C2,P2), of size at most O(δ3 + δµ),
using

Õ(δ6 + δ5τ + µ6 + µ5κ)

bit operations. It also outputs sequences Vapp and VP , of elements of V, that are in one-to-
one correspondence with respectively the points of app(C2,R) and P2,R, ordered with respect
to ⪯1.

Step 4. Let G be the graph output by the procedure NodeResolution, on input G2, as
described in Definition 8.4.6. This procedure perform an operation of constant bit complexity
at each vertex of Vapp, that has cardinality the one of app(C2,R) by Proposition 8.5.2.
According to Proposition 8.5.1, this latter cardinality is bounded by δ2, so that bit complexity
of this step is O(δ2).

Step 5. Finally, let I1, . . . , Is be the subsets output by the procedure IndConnectComp, on
input VP and G . According to e.g. [CLRS09, §22.2] this procedure has bit complexity linear
in the size of G , that is O(δ3 + δµ).

According to Proposition 8.5.2, VP = (v1, . . . ,vµ) is in one-to-one correspondence with
P2,R = (p1, . . . ,vµ). Hence, by the correction of IndConnectComp, I1, . . . , Is is a partition of
¶1, . . . , µ♢.

Without loss of generality, suppose that the one-to-one correspondence between VP and
P2,R associates vi to pi, for all 1 ≤ i ≤ µ. Let i, j ∈ ¶1, . . . , µ♢. According to the correction of
IndConnectComp, i and j belong to the same Ik ∈ ¶I1, . . . , Is♢ if and only if vi and vj belong
to the same connected component of G , and according to Proposition 8.4.7, this holds if and
only if pi and pj belong to the same semi-algebraically connected component of CR.

Therefore, the subsets I1, . . . , Is output by algorithm ConnectCurve is a partition of
¶1, . . . , µ♢ grouping the integers that correspond to ranks, with respect to ⪯1, of points in PR

that belong to the same semi-algebraically connected component of CR. This is equivalent to
a partition of the points of PR as these have distinct first coordinate, and one can order them
by univariate root isolation, using Õ

(
µ3 + κµ2

)
bit operations according to [KS15, Theorem

5]. This fits within the overall complexity bound of ConnectCurve. □

As mentioned before, the number of connected components of the graph G computed
equals the number of semi-algebraically connected components of CR. As an extension, for
curves given as unions, Algorithm 3 can be applied to each curve, where query points are
extended to include pairwise common intersection points. The resulting subsets are then
merged based on their shared points.
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Real algebraic geometry in

action: application to robotics

9

Abstract. In the previous chapters, we improved the different algorithmic steps to answer
connectivity queries on real algebraic sets, which is a key subroutine of computational real
algebraic geometry. In this chapter, we illustrate the application of real algebraic geometry
and its algorithmic subroutines to solve an open problem in robotics: the identification of
cuspidal robots.

Cuspidal robots are the ones with at least two inverse kinematic solutions that can be
connected by a singularity-free path. Deciding the cuspidality of generic 3R robots has
been studied in the past, but extending the study to six-degree-of-freedom robots can be a
challenging problem. Many robots can be modeled as a polynomial map together with a
real algebraic set so that the notion of cuspidality can be extended to these data.

We design an algorithm that, on input a polynomial map in n indeterminates, and s

polynomials in the same indeterminates, describing a real algebraic set VR of dimension
d, decides the cuspidality of the restriction of the map to VR. Moreover, if D and τ are,
respectively, the maximum degree and the maximum bit size of the coefficients of the input
polynomials, this algorithm runs in time quasi-linear in τ and polynomial in ((s+ d)D)O(n2).

It relies on many high-level algorithms in computer algebra which use advanced methods
on real algebraic sets and critical loci of polynomial maps, including roadmap algorithms. As
far as we know, this is the first algorithm that tackles the cuspidality problem from a general
point of view.

This is joint work with D. Chablat, M. Safey El Din, D. Salunkhe and P. Wenger.

9.1 Introduction

Cuspidal robots were discovered at the end of the eighties [PCI88]. A cuspidal robot can
move from one of its inverse kinematic solutions to another one without meeting a singular
configuration, that is a configuration where it loses degrees of freedom. A major consequence
is that determining in which solution the robot operates during motion planning trajectories
for cuspidal robots is more challenging than for noncuspidal ones [Wen04]. Knowing
whether a robot under design is cuspidal or not is thus of primary importance.

Most existing industrial robots are known to be noncuspidal because they rely on some
specific geometric design rules such as their last three joint axes intersecting at a common
point [Wen97]. Recently, however, new robots have been proposed that do not follow the
aforementioned design rule, which, in turn, could make them cuspidal1. Hence, obtaining

1See e.g. https://achille0.medium.com/why-has-no-one-heard-of-cuspidal-robots-fa2fa60ffe9b
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an algorithm for deciding cuspidality is of first importance in this context of mechanism
design.

Problem statement. Let f = (f1, . . . , fs) be a sequence of polynomials in Q[x1, . . . , xn] and
V = V (f) ⊂ Cn be the algebraic set it defines (i.e. the set of common complex solutions to
the fi’s). We denote by VR = V ∩ Rn the real trace of V . Let R = (r1, . . . , rd) be a sequence
of polynomials in Q[x1, . . . , xn]. By a slight abuse of notation, we still denote by R the map

R : y ∈ Cn 7→ (r1(y), . . . , rd(y)) ∈ Cd,

and R♣VR
denotes the restriction of R to VR. Many robots can be represented with such

a map R. Indeed, these are polynomial maps that map the configuration of their joints,
which are usually lengths and angles, to the position of their end-effector. However, due
to the Cartesian parametrization of many problems, robots behave as polynomial maps in
the cosines and sines of the angles. Then, replacing the occurrences of cos and sin by new
variables c and s, and adding c2 + s2 − 1 to f , one gets a formulation as the one previously
described.

We denote by K(R, V ) the union of the set of critical points of the restriction of R to
V and the set of singular points of V . We refer to Section 2.5 of Chapter 2 for a precise
introduction to these objects. Following the formalism introduced in [Wen92], we then
propose the following formulation of the cuspidality decision problem.

Definition 9.1.1. The map R♣VR
is cuspidal if there exist two distinct points y and y′ in VR

such that the following holds:

(i) R(y) = R(y′);

(ii) y and y′ are semi-algebraically path connected in VR −K(R, V ).

If two such points y and y′ exist, we say that they form a cuspidal pair of the restriction of
R to VR. Note that such a pair is not unique in general.

The above definition goes back to some original works in robotics and mechanism design
which we present below. The cuspidality decision problem can be then formulated as follows.

Open problem for Chapter 9

On input f and R as above, decide whether R♣VR
is cuspidal.

Prior works. Cuspidal robots have been studied mostly for a specific family of robots made
with three revolute joints mutually orthogonal [Wen07]. Such robots were shown to be
cuspidal if and only if they have at least one cusp point in their workspace [EOW95, SSC+22].
Accordingly, an algorithm can be designed as follows. On input the inverse kinematic
polynomial associated with the robot at hand, it counts the number of triple roots of this
polynomial. If this number is nonzero, it means that the robot has at least one cusp and is
thus cuspidal [Cor05]. We refer to [WC22] for a recent overview on cuspidal robots.

However, for a general robot, no necessary and sufficient condition is known to decide if
this robot is cuspidal or not. Thus, no general algorithm has been devised that can decide if
a given arbitrary robot is cuspidal or not.
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In the whole chapter, we make the following assumption:

(Acusp) the ideal generated by f , which we denote by ⟨f⟩, is radical and equidimensional of
dimension d and VR is not contained in the singular set of V .

The first two parts of this regularity assumption allow one to conveniently describe the
critical locus K(R, V ) by the mean of minors of the Jacobian matrix Jac[f ,R]. Moreover,
the second part ensures that the dimension of the real algebraic set VR matches the one of
V . This can be restated as: the Jacobian matrix Jac(f) has maximal rank n− d in at least
one point of VR and at all points of a Zariski dense subset of V . Note this assumption can be
satisfied using algorithms whose complexities are bounded by the one of our main algorithm
– see [SYZ21].

Contribution. In this chapter, we design an algorithm for deciding the cuspidality on input
f and R as above, satisfying the above regularity assumption (Acusp). Moreover, when the
restriction of the map R to VR is cuspidal, the algorithm has the ability to output a witness
of cuspidality, i.e. a cuspidal pair and an encoding of a semi-algebraic path that connects
them in VR without meeting K(R, V ).

We also analyze the bit complexity of this algorithm and prove that cuspidality can be
decided in time singly exponential in n, polynomial in the maximum degree of the input
polynomials, the integer d and quasi-linear in the maximum bit size of the input coefficients.
We refer to Section 3.1 of Chapter 3 for definitions and discussions on (bit) complexity and
quantitative bounds associated to polynomials. This leads to the following statement.

Contribution to the open problem

Theorem 9.1.2. Let f = (f1, . . . , fs) andR = (r1, . . . , rd) be two sequences of polynomials

in Q[x1, . . . , xn], let V = V (f) and VR = V ∩ Rn. Let D be the maximum degree of these

polynomials and let τ be a bound on the bit size of the coefficients of the input polynomials.

Then, under assumption (Acusp), one can decide the cuspidality of the restriction of the map

R to VR using at most

Õ (τ) ((s+ d)D)O(n2)

bit operations.

To provide an algorithmic solution to the cuspidality decision problem, we apply a semi-
algebraic version of Thom’s isotopy lemma from [CS92]. This lemma allows us to define
regions in which the fibers of R exhibit the same topological properties, i.e., they are semi-
algebraic homeomorphic to each other. For a comprehensive introduction to this advanced
theorem in real algebraic geometry, please refer to Section 4.4 in Chapter 4.

These regions are delineated by the shared non-vanishing of polynomials g1, . . . , gq,
which are computed using two-block real quantifier elimination. Subsequently, finding
representatives for each of these regions defined by these polynomials involves computing
sample points in the semi-algebraically connected components of the complement of V (g1)∪
· · · ∪ V (gq). This process relies on the critical point method, extensively discussed in
Section 5.2 of Chapter 5.
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We then face the task of deciding the existence of cuspidal pairs within the fibers of these
finitely many representatives. This reduces to solving finitely many connectivity queries in a
semi-algebraic set. As extensively discussed in previous chapters, this challenge is addressed
using roadmap algorithms. These algorithms also rely on advanced critical point methods
and are presented more succinctly in Section 5.3 of Chapter 5.

We also addressed a proof of concept by setting up a prototype implementation of this
algorithm in the computer algebra system Maple, whose application to two robots are
presented in Section 9.3.

Structure of the chapter. Section 9.2 is devoted to the formal description of our al-
gorithm and its proof of correctness. The complexity analysis is completed in the
Subsection 9.2.4. Finally, Section 9.3 illustrates how our algorithm runs on a concrete
application from robotics.

9.2 Algorithm

In this section, after introducing the subroutines we will use, we present our main algorithm,
that is Algorithm 4, and prove its correction, as well as a complexity bound. This algorithm
takes as input f and R as above, satisfying (Acusp) and decides the cuspidality of the
restriction of R to the real solution set VR = V ∩ Rn where V = V (f).

We first introduce some objects and notations. Recall that K(R, V ) denotes the union
of the set of critical points of the restriction of R to V and the set of singular points of V .
Further, we denote by Sval(R, V ) the set of singular values of the restriction of R to V , i.e.
the image by R of the set K(R, V ):

Sval(R, V ) = R(K(R, V )).

Under assumption (Acusp), the set K(R, V ) is the set of common complex solutions to the
polynomials in f and the set of minors of size n of the Jacobian matrix Jac[f ,R] associated
to f ,R (see e.g. [SS17, Lemma A.2.]).

The restriction of the map R to V is said to be proper at a point y ∈ Cd if there exists a
ball B ⊂ Cd containing y such that R−1(B) ∩ V is closed and bounded. The restriction of
R to V is said to be proper if it is proper at every point of Cd.

We denote by P∞(R, V ) be the set of points of Cd at which R is not proper. According to
[Jel99, Theorem 3.8.] it is contained in a proper algebraic set of Cd.

Finally we denote by Atyp(R, V ) the set of atypical values of the restriction of R to V , that
is the union Sval(R, V ) ∪ P∞(R, V ), and let

Spec(R, V ) = R−1(Atyp(R, V )) ∩ V

the set of special points of the restriction of R to V that map to atypical values. We denote
by Atyp(R, V )

Z

the Zariski closure in Cd of the set of atypical values.
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9.2.1 Subroutines

The algorithm we design in this paper for deciding cuspidality relies on a family of high-level
subroutines for solving polynomial systems over the reals with different specifications. These
are carefully presented and discussed in Sections 5.2 and 5.3 of Chapter 5.

The first routine SAMPLEPOINTS we use takes as input a polynomial system of equations
and s inequalities in Q[x1, . . . , xn] and returns a zero-dimensional parametrization of at
least one point per connected component of the real solution set to the input system. When
the input polynomials have degree at most D, this can be done in time singly exponential
in n and polynomial in D and s. The specifications of such a procedure are detailed in
Theorem 5.2.1 of Chapter 5.

Besides, we will also use a variant SAMPLEPOINTSRATIONAL from [LS22], that takes as
input a polynomial system of s inequations and output rational points in at least one point
per connected component of the real solution set to the input system. This is done within
the same complexity bounds. Again, the specifications can be found in Theorem 5.2.3 of
Chapter 5.

Such procedures rely on the critical point method introduced in [GV88] and developed in
[SS03a, BPR06, LS22]. A comprehensive overview as well as historical considerations can
be found in Section 5.2 of Chapter 5.

The second subroutine ROADMAP we rely on, still takes as input a polynomial system
of equations and s inequalities, as well as a zero-dimensional parametrization encoding
some query points in the solution set S ⊂ Rn to the input system. It then computes an
one-dimensional parametrization for a semi-algebraic curve, called a roadmap, which has a
non-empty and connected intersection with all connected components of S and contains all
the query points. This is done in bit complexity singly exponential in n, polynomial in D
and s.

As seen in the previous chapter, the computation of such roadmaps relies on more
advanced critical point methods initiated by Canny in [Can88a, Can91, Can93] and contin-
uously improved in [BPR00, SS11, BR14, BRSS14, SS17] as well as in this document. We
refer to Subsection 5.3.2 of Chapter 5 for historic discussion of these algorithms.

The third subroutine GRAPHISOTOP takes as input a one-dimensional parametrization
encoding an algebraic curve, as well as s inequalities, and a zero-dimensional parametri-
zation encoding some query points on the curve, satisfying the inequalities. It computes a
piecewise linear approximation that is isotopy equivalent to the semi-algebraic curve defined
by the subset of the input algebraic curve satisfying the input inequalities. Moreover, the
vertices of this approximation are in one-to-one correspondence with the input query points.
The output of the algorithm also includes a procedure VERTG that on input a zero-dimensio-
nal parametrization encoding a subset of the query points, output the associated vertices in
the approximation. This is done in bit complexity polynomial in the degree of the input curve
and the number of query points and linear in s. We refer to Subsection 5.3.3 of Chapter 5
for detailed discussion on this algorithm, and in particular to Theorem 5.3.4 for the precise
specifications and complexity bounds.
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In addition to the above high-level procedures, we present hereafter basic subroutines that
we use to manipulate rational parametrizations, polynomials and graphs. In the following,
P∅ will denote a zero-dimensional parametrization of Rn encoding the empty set, and ()

will denote the empty sequence. Besides, given a polynomial sequence h = (hi)1≤i≤ι we
will note ±h = (±hi)1≤i≤ι.

The procedure UNION takes as input two zero-dimensional parametrizations P and P ′

of degree δP and δP′ and returns a zero-dimensional parametrization of Z(P) ∪ Z(P ′) of
degree δP + δP′ . See [SS17, Lemma J.3.] for a description of this procedure.

The procedures CRIT and ATYPICALVALUES take as input a polynomial map R and a
finite sequence of polynomials h. Assuming that h satisfies assumption (Acusp), these two
procedures output finite sequences of polynomials whose complex zero-sets are respectively
K(R,V (h)) and a proper subset of Cd containing Atyp(R,V (h))

Z

. We refer to [SS17,
Lemma A.2] for a description of CRIT. The latter is obtained using more involved algebraic
elimination routine we describe in the Subsection 9.2.4.

Let G = (V, E) be a graph and let v, v′ ∈ V be two vertices. We say that v and v′ are
connected in G if there exists a sequence (v1, . . . , vm) of vertices in V such that for all
1 ≤ i < m,

v1 = v, v2 = v′ and ¶vi, vi+1♢ ∈ E .

The procedure GRAPHCONNECTED takes as input G = (V, E) and (v, v′) and outputs True

if and only if v and v′ are connected in G . Else it outputs False. This subroutine is
classic among graph problems, and can be done using well-know algorithms such as the
breadth-first search algorithm [CLRS09, Section 22.2].

9.2.2 Algorithm description

We now turn to the description of our main algorithm as below. It proceeds by computing a
zero-dimensional parametrization P of a set of points that provides cuspidal pairs of the
restriction of R to VR whenever such a pair exists. In other words, if no cuspidal pair can be
found among Z(P), then the restriction of R to VR is not cuspidal.

Hence, to solve our cuspidality problem, it suffices to compute a graph which is isotopy
equivalent to a roadmap of VR−K(R, V ) connecting the points of Z(P) that lie in the same
semi-algebraically connected component of VR −K(R, V ).

9.2.3 Correctness proof

The correction of Algorithm 4 is stated by the following proposition.

Proposition 9.2.1. Let f = (f1, . . . , fs) and R = (r1, . . . , rd) be two sequences of polynomials

in Q[x1, . . . , xn] , let V = V (f) and VR = V ∩ Rn. Then, under assumption (Acusp), the

restriction of the map R to VR is cuspidal if and only if, with inputs f and R, Algorithm 4

outputs True.

The rest of this section is devoted to prove this correctness statement. We assume by now
the assumptions of Proposition 9.2.1 to hold.
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Algorithm 4 Cuspidality algorithm

Input: Two sequences f = (f1, . . . , fs) and R = (r1, . . . , rd) of polynomials in Q[x1, . . . , xn]

that satisfy assumption (Acusp).
Output: A decision, True or False, on the cuspidality of the restriction ofR to VR = V ∩Rn

where V = V (f).
1: g = (g1, . . . , gp)←ATYPICALVALUES(R,f);
2: Q ←SAMPLEPOINTSRATIONAL

(
g2

1 + · · ·+ g2
p

)
;

3: P ←P∅;
4: for q = (q1, . . . , qd) ∈ Q do

5: Rq ← (r1 − q1, . . . , rd − qd);
6: Pq ←SAMPLEPOINTS((f ,Rq), ());
7: P ←UNION(P,Pq);
8: end for

9: ∆← CRIT(R,f);
10: R ←ROADMAP(f ,±∆,P);
11:

(
G = (V, E), VERTG

)
←GRAPHISOTOP(R,±∆,P);

12: for q ∈ Q do

13: Vq ←VERTG (Pq);
14: for (v1,v2) ∈ V2

q do

15: if GRAPHCONNECTED((v1,v2),G ) and v1 ̸= v2 then

16: return True;
17: end if

18: end for

19: end for

20: return False.

Note that fibers of the restriction of R to V are generically finite by [Sha13, Theorem
1.25], and in particular by [SS17, Lemma A.2], for every p ∈ Cd − Atyp(R, V ), the fiber
R−1(p) ∩ V is finite.

We start by an elementary lemma establishing that two distinct “regular” points of R on
VR, having the same image through R, must be separated by Spec(R, V ).

Lemma 9.2.2. Let y and y′ be two distinct points of VR−Spec(R, V ) such that R(y) = R(y′).

Then y and y′ belong to distinct semi-algebraically connected components of VR − Spec(R, V ).

Proof. Let us proceed by contradiction and suppose there exists a path γ : [0, 1] → VR −
Spec(R, V ) such that γ(0) = y and γ(1) = y′. By definition, R(γ([0, 1])) ⊂ Rd −Atyp(R, V )

Z

Let C be the semi-algebraically connected component of Rd −Atyp(R, V )
Z

that contains
R(γ([0, 1])). According to Theorem 4.4.17, there exists a homeomorphism

Ψ: R−1(C) ∩ VR → C × R−1(R(y)) ∩ VR

z 7→
(
R(z) , Ψ0(z)

) ,
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such that the image of any semi-algebraically connected component ofR−1(C)∩VR, through
Ψ0, is a singleton. Since γ([0, 1]) is contained in R−1(C) ∩ VR, then y and y′ belong to the
same semi-algebraically connected component of R−1(C) ∩ VR, so that Ψ0(y) = Ψ0(y′).
Since R(y) = R(y′), then y = y′ by injectivity of Ψ. This contradicts the assumption y ̸= y′

and proves the Lemma.

In other words, any potential cuspidal pair must contain points from different semi-alge-
braically connected components of the complement of Spec(R, V ) in VR. This leads naturally
to the following construction that we call here a cuspidality graph.

Definition 9.2.3. Let V ⊂ Rn and G = (V, E) be a graph. Then we say that G is a cuspidality

graph of the restriction of R to VR if the following holds.

(i) The set V is contained in VR − Spec(R, V ) and intersects every semi-algebraically
connected component of VR − Spec(R, V ).

(ii) Let v,v′ ∈ V be such that R(v) = R(v′). Then v and v′ are semi-algebraically
connected in VR −K(R, V ) if and only if they are in G .

(iii) Let v ∈ V, then R−1 (R(v)) ∩ VR ⊂ V.

Remark that it is straightforward that such a graph exists, and, under assumption (Acusp),
it can be supposed to be finite since VR − Spec(R, V ) has finitely many semi-algebraically
connected components and R has finite fibers out of Atyp(R, V ).

Then the following result reduces the problem of deciding the cuspidality of the restriction
of R to VR to a connectivity problem on a finite graph.

Lemma 9.2.4. Let G = (V, E) be a cuspidality graph of the restriction of R to VR. Then

the restriction of R to VR is cuspidal if and only if there exist two distinct vertices v,v′ ∈ V,

connected in G , and such that R(v) = R(v′).

Proof. If such points v and v′ exist, they form a cuspidal pair of the restriction of R to VR,
so that this map is cuspidal.

Conversely, suppose that the restriction of R to VR is cuspidal so that there exist two
distinct points y and y′ in VR − Spec(R, V ) having the same image through R and that
belong to the same semi-algebraically connected component C of VR −K(R, V ). Then, by
Lemma 9.2.2, there exist two distinct semi-algebraically connected components H and H ′ of
VR − Spec(R, V ) such that y ∈ H and y′ ∈ H ′. Remark that both H and H ′ are contained in
C since H and H ′ are two semi-algebraically connected subsets of VR −K(R, V ) that have a
non-empty intersection with C.

By the first item of Definition 9.2.3, V ∩ H is not empty. Then let v ∈ V ∩ H, one has
v ∈ C by the above remark. Hence, by the second item of Definition 9.2.3, one only need to
prove the existence of v′ ∈ V ∩H ′ such that R(v) = R(v′).

Since H is semi-algebraically connected, there exists a path γ : [0, 1] → H such that
γ(0) = y and γ(1) = v. Recalling that H ⊂ VR − Spec(R, V ), then

R(γ([0, 1]) ∩ Atyp(R, V ) = ∅.
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Let T be the semi-algebraically connected component of Rd − Atyp(R, V )
Z

that contains
R(γ([0, 1])). According to Theorem 4.4.17, there exists a homeomorphism

Ψ: R−1(T ) ∩ VR → T × R−1(R(y)) ∩ VR

z 7→
(
R(z) , Ψ0(z)

) ,

such that the image of any semi-algebraically connected component ofR−1(T )∩VR, through
Ψ0, is a singleton. In particular since v ∈ H, then Ψ(v) = (R(v),Ψ0(y)).

Let v′ = Ψ−1(R(v),Ψ0(y′)). By definition, R(v′) = R(v), so that by the last item of
Definition 9.2.3, v′ ∈ V. Finally, remark that the path

γ′ : [0, 1] → R−1(T ) ∩ VR
t 7→ Ψ−1(R(γ(t)),Ψ0(y′))

,

is defined for all t ∈ [0, 1] and γ′(0) = y′ ∈ H ′. Hence v′ = γ′(1) ∈ H ′ since H ′ is
semi-algebraically connected.

In conclusion, there exist v and v′ in V having the same image throughR, such that v ̸= v′

since H ∩H ′ = ∅. Moreover, since H ∪H ′ ⊂ C, then by the second point of Definition 9.2.3,
v and v′ are connected in G . The equivalence is established.

Figure 9.1. Illustration with n = 3 and d = 2 of the proof of Lemma 9.2.4 where R is the projection
of the surface VR ⊂ Rn drawn above the plane Rd on the figure. Given a cuspidality
graph G =

(
¶v, v′, v1♢, E

)
and a cuspidal pair formed by y and y′, one finds, using

Theorem 4.4.17, two vertices v and v′ that satisfy the statement.

Finally, we prove that taking the inverse image of a specific sample set of points is enough
to satisfy the first item of Definition 9.2.3.
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Lemma 9.2.5. Let Q ⊂ Rd that intersects every semi-algebraically connected component

of Rd − Atyp(R, V )
Z

and let P = VR ∩ R−1(Q). Then P intersects every semi-algebraically

connected component of VR − Spec(R, V ).

Proof. Let H be a semi-algebraically connected component of VR − Spec(R, V ) we need to
prove that H∩P is not empty. Let y ∈ H, and let T be the semi-algebraically connected com-
ponent of Rd −Atyp(R, V )

Z

that contains R(y). By assumption, there exists p ∈ P ∩ T . Let
σ : [0, 1]→ H be a path such that σ(0) = R(y) and σ(1) = p. Since σ lie in Rd−Atyp(R, V )

Z

,
the path σ([0, 1]) is still contained in T . Then according to Theorem 4.4.17, there exists a
homeomorphism

Ψ: R−1(T ) ∩ VR → T × R−1(R(y)) ∩ VR

z 7→
(
R(z) , Ψ0(z)

) ,

such that the image of any semi-algebraically connected component ofR−1(T )∩VR, through
Ψ0, is a singleton.

Let γ : t ∈ [0, 1] 7→ Ψ−1(σ(t),Ψ0(y)), it satisfies γ(0) = y ∈ H. Since H is semi-algebra-
ically connected, then v = γ(1) belongs to H. Moreover, since σ(1) = p, then by uniqueness
R(v) = p so that v ∈ P and H ∩ P is not empty as claimed.

We can now proceed to prove the correction of Algorithm 4.

Proof of Proposition 9.2.1. Let g,Q,P,∆,R and G = (V, E) be the data obtained in the
execution of Algorithm 4. Let us prove that we can derive from G a graph G̃ that is a cuspidal
graph of the restriction of R to VR. Then, using this fact and Lemma 9.2.4, we prove that
the tests on G that are operated in Algorithm 4, are enough to conclude on the cuspidality
of the restriction of R to VR. Remark that according to the description of the subroutines
ATYPICALVALUES and CRIT, the following holds

Atyp(R, V )
Z

= V (g), V ∩R−1(Q) =
⋃

q∈Q
V (f ,R− q)

and K(R, V ) = V (f ,∆).

Then, according to the first item of Theorem 5.3.4 there exists an isotopyH of Rn such that
H(CG , 1) = Z(R) ∩ Rn −K(R, V ) where CG is the piecewise linear curve of Rn associated
to G . We denote further y 7→ H(y, 1) by H1. Let Ṽ = H1(V) and

Ẽ = ¶¶H1(v),H1(v′)♢ ♣ ¶v,v′♢ ∈ E♢ .

Let G̃ = (Ṽ, Ẽ) be the graph thus defined. According to the second item of Theorem 5.3.4
the equality Ṽ = Z(P) ∩ Rn holds since

Z(P) ⊂ R−1(Q) and Q∩Atyp(R, V )
Z

= ∅.
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Moreover the following map is a bijection

H1 ×H1 : E → Ẽ

¶v,v′♢ 7→ ¶H1(v),H1(v′)♢
.

Let us show that G̃ is a cuspidality graph of the restriction of R to VR.

By Theorem 5.2.3, the finite set Q ⊂ Rd intersects every semi-algebraically connected
component of Rd −Atyp(R, V )

Z

. Then by Lemma 9.2.5, every semi-algebraically connected
component of VR − K(R, V ) has a non-empty intersection with VR ∩ R−1(Q). As Q is
finite and does not intersect Sval(R, V ), the set VR ∩ R−1(Q) is a finite union of the sets
VR ∩R−1(q), which are finite by [SS17, Lemma A.2]. Hence VR ∩R−1(Q) is finite so that its
semi-algebraically connected components are reduced to its points. Hence by Theorem 5.2.1,
VR ∩R−1(Q) is equal to Z(P)∩Rn which is itself equal to Ṽ . Therefore, G̃ satisfies the first
item of Definition 9.2.3.

Let v,v′ ∈ Ṽ. According to Theorem 5.3.3, since v and v′ are in Z(P) ∩ Rn, they are
connected in VR −K(R, V ) if and only if they are connected in

Z(R) ∩ Rn −K(R, V ).

However by Theorem 5.3.4, since Z(P) ⊂ Z(R), then v and v′ are connected in Z(R)∩Rn−
K(R, V ) if and only if H−1

1 (v) and H−1
1 (v′) are connected in G . But the latter statement is

equivalent to saying that v and v′ are connected in G̃ sinceH1×H1 is a bijection. Therefore,
G̃ satisfies the second item of Definition 9.2.3.

Finally G̃ satisfies the last item of Definition 9.2.3 since for all v ∈ Ṽ,

VR ∩R−1(R(v)) ⊂ VR ∩R−1(Q) = Z(P) ∩ Rn = Ṽ.

In conclusion, G̃ is a cuspidal graph of the restriction of R to VR. Let us prove now that,
the restriction of R to VR is cuspidal if and only if, on inputs f and R, Algorithm 4 outputs
True.

If Algorithm 4 outputs True, there exists q ∈ Q and v1,v2 ∈ Vq that are connected in
G . Let v = H1(v1) and v′ = H1(v2), then by definition of Ṽ, v and v′ are in Ṽ. According
to Theorem 5.3.4 and the definition of the procedure VERTG , since v1,v2 ∈ Vq, then
R(v) = R(v′) = q. Besides, by definition of Ẽ , v and v′ are connected in G̃ so that by
Lemma 9.2.4, the restriction of R to VR is cuspidal.

Conversely, suppose that the restriction of R to VR is cuspidal. Then by Lemma 9.2.4
there exist two distinct points v,v′ ∈ Ṽ, connected in G̃ , such that R(v) = R(v′). Since
R(Ṽ) ⊂ Q, there exists q ∈ Q such that q = R(v) = R(v′). For such a point q let Pq

and Vq computed in Algorithm 4 at respectively step 2 and step 13. Recall that Pq is
the zero-dimensional parametrization encoding VR ∩R−1(q) and Vq the subset of vertices
of V, that are associated to the points of VR ∩ R−1(q) through H1. Hence according to
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Theorem 5.3.4 and the description of VERTG , H−1
1 (v) and H−1

1 (v′) are distinct and belong
to Vq. Since v and v′ are connected in G̃ , then so are

H−1
1 (v) and H−1

1 (v′)

in G . Hence GRAPHCONNECTED
(
(H−1

1 (v),H−1
1 (v′)),G

)
will outputs True so that Algorithm 4

outputs True.

9.2.4 Complexity analysis

This section is devoted to the proof of the following proposition. Together with Proposi-
tion 9.2.1, it establishes Theorem 9.1.2.

Proposition 9.2.6. Let f = (f1, . . . , fs) and R = (r1, . . . , rd) be two sequences of polynomials

in Q[x1, . . . , xn] and D be the maximum degree of these polynomials. Let τ be a bound on the

bit size of the coefficients of the input polynomials. Then, under assumption (Acusp), with inputs

f and R, the execution of Algorithm 4 terminates using at most

τ⋆((s+ d)D)O(n2)

bit operations.

Proof. Fix f and R, we note V = V (f) and VR = V ∩ Rn. Assume that assumption (Acusp)

holds that is that V is equidimensional of dimension d. Let δ and µ be the maximum degree
of the polynomials in respectively f and R so that D = max¶δ, µ♢, and let τ be a bound on
the bitsize of the input coefficients. We proceed by considering each step of Algorithm 4.

Step 1. The first step of the algorithm consists in computing polynomials whose complex
zero-set is the Zariski closure of the set of atypical values. According to [JK05, Theorem
4.1.], the set Atyp(R, V ) is contained in an hypersurface of Cd degree bounded by

δn−d (nδ + d(µ− δ))d
.

Then, the polynomials in the finite sequence g, given by the call to ATYPICALVALUES, have
degree bounded by ndDn. To compute a polynomial defining them, we rely on the quantifier
elimination algorithm in [BPR06, Chap. 14]. Precisely, the set of non-properness can be
defined naturally by a quantified formula expressing that y is in the set of non-properness if
and only if for any r > 0 there exists ϵ > 0 such that for any y′ ∈ Rd and x′ ∈ R−1(y′) ∩ VR,
∥y − y′∥2 < ϵ implies that ∥x′∥ > r. There is one alternate of quantifiers with blocks of
quantified variables of lengths 1, n+ d+ 1. Solving such a quantifier elimination problem is
done using τ(sD)O((n+d)d) ⊂ τ(sD)O(nd) bit operations by [BPR06, Theorem 14.22] and it
outputs (sD)O(nd) polynomials of degree in DO(n). Computing a polynomial encoding the
critical values is done still using quantifier elimination but in an even simpler way: these are
the projections of the values of R taken at the system f1, . . . , fs and the n− d+ 1 minors of
the Jacobian matrix associated to f ,R.
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Step 2. Since Atyp(R, V )
Z

= V (g), then by Theorem 5.2.3, the call to SAMPLEPOINTSRA-
TIONAL outputs a set Q of cardinality N bounded by nO(d2)DO(nd), using at most

τnO(d2)DO(nd)

bit operations. We denote further Q = ¶q1, . . . , qN♢.

Steps 4-8. Suppose that in the for loop, we consider successively q1 to qN . Let 0 ≤ i ≤ N ,
and let δP,i be the degree of P at the end of the i-th iteration. By Theorem 5.2.1, for
every 1 ≤ i ≤ N , at step 6, SAMPLEPOINTS((f ,R− qi), 0) returns a zero-dimensional
parametrization of degree bounded by DO(n). Then, we have

δP,i ≤ δP,i−1 +DO(n).

Since δP,0 = 0 then δP,N is bounded by nO(d2)DO(nd) since N is bounded by nO(d2)DO(nd).
Since the input has constant size, each call of SAMPLEPOINTS, at step 6, costs at most τDO(n)

bit operations. Besides, since the δP,i’s are in increasing order, according to [SS17, Lemma
J.4.], each call to UNION, at step 7, is polynomial in δP,N .

Therefore, at step 8, P has degree δP bounded by nO(d2)DO(nd) and the total loop
execution is using at most τnO(d2)DO(nd) bit operations.

Step 9. Next, CRIT(R,f) returns a sequence of polynomials ∆ by computing the determi-
nant of all the n× n submatrices Jac[f ,R] according to [SS17, Lemma A.2.]. One sees that
there are

(
s+d

n

)
such minors, which have degrees bounded by n(D − 1).

Step 10. According to the previous step, and by Theorem 5.3.3, ROADMAP(f ,±∆,P)

returns a one-dimensional rational parametrization R using at most

τ⋆

(
s+ d

n

)O(n)

nO(d2)DO(nd)(nD)O(n2)

bit operations which is then bounded by τ⋆((s + d)D)O(n2). Moreover the degree of R is
bounded by ((s+ d)D)O(n2).

Step 11. According to the previous step, and by Theorem 5.3.4, the call to GRAPHISOTOP,
with input (f ,±∆,P), costs at most

τ⋆((s+ d)D)O(n2)

bit operations.

Steps 12-19. At each iteration, the call to VERTG at step 13 requires a number of operations
which is polynomial in δP . Besides the procedure GRAPHCONNECTED, who has bit complexity
linear in δP is called at most N times in the for loop of steps 14-18. Hence, the for loop of
steps 12-19 requires at most nO(d2)DO(nd) bit operations.

In conclusion the whole execution of Algorithm 4 uses at most τ⋆((s + d)D)O(n2) bit
operations, which proves the proposition.
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9.3 Two examples: Orthogonal 3R serial robots

The cuspidal behaviour of 3R serial robots has been analyzed extensively in the past [EOW95,
WEO96]. In this section, we present two examples of orthogonal 3R serial robots in order to
put forth the application of the algorithm. Recall that such robots are modeled as a map that
maps the joint angles of the robot to the position of the end-effector. The joint angles belong
to the so-called the joint space, while the set of the positions of the end-effector is called the
workspace. We refer to Subsection 1.1.2 of Chapter 1 for a quick introduction to robotics.

Both robots considered in this section are orthogonal 3R se-
rial robots like the one depicted in the opposite figure. Such a
robot is defined by its D-H parameters (see [HD64, SSC+22]),
that is the data of lengths d = (d1, d2, d3) and a = (a1, a2, a3)

and angles, fixed here as α = (π/2,−π/2, 0).

The first robot is defined by d = (0, 1, 0) and a = (1, 2, 3/2)

and is similar to the one discussed in [EOW95] and is known

to be cuspidal. From [SSC+22], the robot can be associated to
this kinematic map,

K : R3 −→ R3

θ = (θ1, θ2, θ3) 7−→
(
x1(θ), x2(θ), x3(θ))

)

where for all (θ1, θ2, θ3) ∈ R3,

x1(θ1, θ2, θ3) =
1

2
c1c2(3c3 + 4)− 1

2
s1(3s3 + 2) + c1

x2(θ1, θ2, θ3) =
1

2
s1c2(3c3 + 4) +

1

2
c1(3s3 + 2) + s1

x3(θ1, θ2, θ3) = −1

2
s2(3c3 + 4)

and for i ∈ ¶1, 2, 3♢, ci = cos(θi) and si = sin(θi).

Besides, the second robot is obtained from the first one by varying the lengths: d =

(0, 13/10, 0) and a = (3, 11/10, 3/2), and we show that it is not cuspidal. Note that, according
to [SSC+22], this non-cuspidal nature can also be proved more directly. Similarly, we
consider its kinematic map

K̃ : R3 −→ R3

θ = (θ1, θ2, θ3) 7−→
(
x̃1(θ), x̃2(θ), x̃3(θ))

)

where for all (θ1, θ2, θ3) ∈ R3,

x̃1(θ1, θ2, θ3) =
1

10
c1c2(15c3 + 11)− 1

10
s1(15s3 + 13) + 3c1

x̃2(θ1, θ2, θ3) =
1

10
s1c2(15c3 + 11) +

1

10
c1(15s3 + 13) + 3s1

x̃3(θ1, θ2, θ3) = − 1

10
s2(15c3 + 11).
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The singular postures of the first (resp. second) robot are the points (θ1, θ2, θ3) ∈ R3

where the determinant of the Jacobian matrix JacK of K (resp. Jac K̃ of K̃), vanishes. Let
f = (f1, f2, f3) and R = (r1, r2, r3) (resp. R̃ = (r̃1, r̃2, r̃3)) be sequences of polynomials in
Q[c1, s1, c2, s2, c3, s3] where for all i ∈ ¶1, 2, 3♢

fi = c2
i + s2

i − 1 and ri = xi(θ1, θ2, θ3)
(
resp. r̃i = x̃i(θ1, θ2, θ3)

)
.

Then, the points (θ1, θ2, θ3) ∈ R3 annihilating det(JacK) (resp. det(Jac K̃)) are exactly the
points of R3 such that (c1, s1, c2, s2, c3, s3) ∈ VR and the matrix Jac[f ,R] (resp. Jac[f , R̃])
has not full rank. Since f satisfies assumption (Acusp), the latter points are exactly the points
of K(R,V (f)) ∩ Rn (resp. K(R̃,V (f)) ∩ Rn).

Therefore, the first (resp. second) robot can be also modeled as the restriction of the
polynomial map associated to R (resp. R̃) to the real algebraic set VR = V ∩ Rn, where
V = V (f), and deciding the cuspidality of this map amounts to decide the cuspidality of
the robot. Since assumption (Acusp) is satisfied, we can apply Algorithm 4 to f and R (resp.
R̃) and make this decision.

The set K(R, V ) (resp K(R̃, V )) is defined by the vanishing of the following polynomial

∆ = 6(3c3 + 4)(c2c3 − 2c2s3 − s3)
(

resp. ∆̃ = 3(15c3 + 11)(13c2c3 − 11c2s3 − 30s3)
)
.

Remark that this polynomial does not depend on c1 nor s1. Since V is bounded by de-
sign, the restriction of R (resp. R̃) to V is proper so that Atyp(R, V ) = R(K(R, V ))

(resp. Atyp(R̃, V ) = R̃(K(R̃, V ))). Hence the polynomial whose zero-set is Atyp(R)
Z

(resp.

Atyp(R̃)
Z

) does not depend on c1 nor s1 as well. The computation of this polynomial can be
done by algebraic elimination and can be found in [EOW95].

The application of Algorithm 4 gives rise to two main sets. First, the computation
of a sample set of points that meets every semi-algebraically connected component of

R3 − Atyp(R, V )
Z

(resp. R3 − Atyp(R̃, V )
Z

), is done trough the WITNESSPOINTS function,
which is available in Maple 2020. One can also use the symbolic RAGlib2 software written
with the computer algebra programming language Maple. The output set P (resp. P̃)
is represented in Figure 9.2 where we adopted a two dimensional representation. Since
ρ =

√
x2

1 + x2
2 and x3 do not depend on c1 nor s1, as well as the polynomial defining

Atyp(R, V )
Z

(resp. Atyp(R̃, V )
Z

), it makes sense to look at the projection of Atyp(R)
Z

and P
(resp. Atyp(R̃, V )

Z

and P̃) on the plane associated to (ρ, x3).

Then, taking the inverse solutions of these points through R (resp. R̃), we compute a
roadmap of VR −K(R, V ) (resp. VR −K(R̃, V )) passing through these points. Hence one
can easily identify points that belong to the same semi-algebraically connected component
of VR −K(R, V ) (resp. VR −K(R̃, V )). Hereafter we describe briefly how do we compute

2RAGlib: https://www-polsys.lip6.fr/~safey/RAGLib/
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this roadmap. The first step consists in deforming the semi-algebraic set S = VR − V (∆)

(resp. S̃ = VR − V (∆̃)) into the closed semi-algebraic set that is the union of

S+ = VR ∩ ¶x ∈ R6 ♣ ∆ ≥ ϵ♢

and S− = VR ∩ ¶x ∈ R6 ♣ ∆ ≤ −ϵ♢


resp.

S̃+ = VR ∩ ¶x ∈ R6 ♣ ∆̃ ≥ ϵ♢

and S̃− = VR ∩ ¶x ∈ R6 ♣ ∆̃ ≤ −ϵ♢




with ϵ small enough. Since VR is bounded by design, according to [Can93] or [CSS23,
Proposition 3.5], computing a roadmap of this deformation is enough to obtain a roadmap
of S (resp. S̃). This is done using classical computation of critical loci of projections and
fibers of a projection to repair connectivity failures as described in e.g. [Can88a, Can93].
Moreover we add fibers that pass through the points of P (resp. P̃) to determine the
semi-algebraically connected component of S (resp. S̃) where they belong.

In Figure 9.3 we draw roadmaps for the projections of VR −K(R, V ) and VR −K(R̃, V )

on the plane associated to (c2, s2, c3, s3) that are obtained through the above process.
Indeed since the polynomials ∆ and ∆̃ do not depend on c1 nor s1, we choose to restrict
our connectivity description on this projection, since extending it to the whole space is
immediate. Finally, since the projection of VR on (c2, s2, c3, s3) is two dimensional, we
choose to plot instead the angles θ1, θ2 that are, modulo 2π, uniquely associated to the data
computed.

For the first robot, one the left image of Figure 9.3 are represented four inverse solutions
of one point of P. Among these points, one observes that two pairs of points are lying on the
same connected component (same color) of the roadmap. Hence, both of them are cuspidal
pairs, and the first robot is cuspidal.

For the second robot, the preimages are associated to their image in P̃ that has the same
shape (disk, diamond or square) in the right image of Figure 9.2. While the square point has
no preimages, the diamond one has two, which belong to different connected component
of the roadmap, and the square point has four preimages, each of them in a different
component. Hence, according to Proposition 9.2.1, the second robot is not cuspidal.
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Figure 9.2. Projections on the plane (ρ, x3) of the sets atypical values (red curve) of the orthogonal
3R serial robots under study together with points P (left) and P̃ (right) output by
WITNESSPOINTS, that meet every connected component of the complement of respectively

Atyp (R, V )
Z

(left) and Atyp (R̃, V )
Z

(right). On the left, the full output P for the first
robot is represented as blue diamonds. On the right, for the sake of our discussion, we
represented a subset of P̃ with exactly one point in each connected component.

Figure 9.3. Representation of points in VR − K(R, V ) (left) and VR − K(R̃, V ) (right) that map to
points in respectively P and P̃ through respectively R and R̃. and associated roadmaps
The red lines represent respectively the sets V (∆) and V (∆̃). Roadmaps of the projection
of S+ ∪ S− (left) and S̃+ ∪ S̃−, containing these points, are represented a lines of distinct
colors, one for each connected component. The coordinates are the angles that are
associated to the projection on the plane associated to (c2, s2, c3, s3) of the sets under
consideration.
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