
HAL Id: tel-04592164
https://theses.hal.science/tel-04592164

Submitted on 29 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introducing parsimony to analyse complex data with
model-based clustering

Margot Selosse

To cite this version:
Margot Selosse. Introducing parsimony to analyse complex data with model-based clustering. Other
[cs.OH]. Université de Lyon, 2020. English. �NNT : 2020LYSE2106�. �tel-04592164�

https://theses.hal.science/tel-04592164
https://hal.archives-ouvertes.fr

N° d’ordre NNT : 2020LYSE2106

THESE de DOCTORAT DE L’UNIVERSITÉ DE LYON

Opérée au sein de

L’UNIVERSITÉ LUMIÈRE LYON 2

École Doctorale : ED 512

Informatique et Mathématiques

Discipline : Mathématiques appliquées

Soutenue publiquement le 13 novembre 2020, par :

Margot SELOSSE

Introducing parsimony to analyse complex data

with model-based clustering.

Devant le jury composé de :

Stéphane CHRÉTIEN, Professeur des Universités, Université Lumière Lyon 2, Président

Pierre LATOUCHE, Professeur des Universités, Université de Paris, Rapporteur

Bettina GRÜN, Associate professor, Vienna University of Economics and Business, Rapporteuse

Charles BOUVEYRON, Professeur des Universités, INRIA et Université Côte d’Azur, Examinateur

Claire GORMLEY, Associate professor, University College Dublin, Examinatrice

Charlotte LACLAU, Maître de conférences, Université de Lyon, Examinatrice

Julien JACQUES, Professeur des Universités, Université Lumière Lyon 2, Directeur de thèse

Christophe BIERNACKI, Professeur des Universités, INRIA, Co-Directeur de thèse

Contrat de diffusion

Ce document est diffusé sous le contrat Creative Commons « Paternité – pas de

modification » : vous êtes libre de le reproduire, de le distribuer et de le communiquer au

public à condition d’en mentionner le nom de l’auteur et de ne pas le modifier, le transformer

ni l’adapter.

Acknowledgments

Tout d’abord, je souhaite remercier du fond du coeur mes directeurs Julien Jacques et
Christophe Biernacki. Merci pour votre écoute et votre patience infinie. Julien, merci de
m’avoir initiée à la recherche, merci pour ta confiance et ton soutien infaillible lors de ces
dernières années. Christophe, merci pour tes conseils et tes encouragements. Vous m’avez
appris énormément et je vous en suis sincèrement reconnaissante.

I would like to warmly thank Pierre Latouche and Bettina Grün for agreeing to review
my thesis. Thank you both for the excellent discussions we had in the Working Group, and
thank you to Pierre for all the conversations we had. I really enjoyed the research talks we
had in my thesis comittee, your advices and remarks were always a great help. Thank you
to Claire Gormley, Charles Bouveyron, Stéphane Chrétien and Charlotte Laclau for having
accepted to be part of my jury. Claire, thank you for your support, your advices and all the
nice talks we had. I feel really lucky to have had the chance to work with you.

Merci aux membres du laboratoire ERIC pour leur bonne humeur, leur solidarité et tous
les moments de détente hors-boulot. Merci en particulier à Antoine, Clément, Robin, Jean,
Jairo, les deux Julien et Habiba.

Merci à mes étudiants, merci à Mathieu et Florian que j’ai suivi en projets, et à ceux que
j’ai eu en cours en général. C’est aussi avec vos questions que j’ai progressé, et le temps
passé avec vous tous a confirmé mon goût pour l’enseignement.

Merci évidemment aux membres de ma famille: Eric et Catherine, mes parents à qui je
dois tout, Léa et Emeric, Garance et Yann, Monique et Bernard, Kiko, Jacques. Merci pour
votre amour, merci de me soutenir dans tous mes projets, je vous aime et je suis fière de
vous avoir pour famille.

Gracias a mis queridos suegros Eugenia y Miguel y a mis cuñados Luz y Felicitas, Dámaso
y Inés, Rocío y Lucano y Francisca, por lo geniales que son. Gracias por hacerme sentir
parte de esta familia hermosa, gracias por esos momentos maravillosos que compartimos.
Los quiero mucho y los extraño todos los dias.

Merci/Gracias/Thanks/Danke à mes amis: ceux de longue date, mes différents colo-
cataires, ceux du lycée, de l’INSA, de Worldline, de DM, du hand, de la planche à voile,
de Gre, de la Juntada et de la MLSS. Merci pour tous ces moments de rires/sport/dé-
tente/bouffe. Merci particulièrement à Elise, Maxime, Roxane, Antoine, Thu, Nicolas, San-
dra et Sofiane, Julie, Sarah, Reda, Pauline et Guillaume, Audrey et Maxime, Cécile T.,
Cyndie, Loïc, Jonathan, Xavier et Solène, Manu, Cécile F. et Benoît, Maxime F., David et
Mélanie, Juliette et Guilhem, Juan et Pao, Lucia, Santi L. et Ceci, Nico et Sofi, Javi, Ivan
K., Santi G., Annika, Kasia, Séphora, Sebastian, German, Vanina et Horacio, Josefina et
Francisco, Fernando et Gaby, Sole et Roger et la famille Palacios en général. Merci de faire
partie de ma vie et de l’illuminer tel que vous le faîtes.

Enfin, merci à Miguel, qui me comble de bonheur. Gracias por tu amor, tu apoyo y tu
optimismo indefectibles. Te dedico esta tesis, y todos los futuros capitulos de mi vida.

2

A Miguel.

3

Introducing parsimony to analyse complex data with model-based clustering

In recent years, the production of digitized information has increased exponentially. Web-
sites, social media, smartphones and the Internet of Things in general have contributed to a
massive production of data of all kinds. This overproduction has also led to more complex
data sets in the sense that they are high-dimensional, sparse, heterogeneous or that they
contain missing values. Traditional algorithms and statistical models are no longer sufficient
to handle this kind of data since they do not take into account the already mentioned par-
ticularities and they can not scale to the “big data” phenomenon. Fortunately, the access to
increasing computation power has allowed practitioners to design more complex algorithms
that are being adapted to the complexity of the data.

In statistical analysis (or machine learning), unsupervised learning refers to a type of
algorithms that brings new insights about the data to the user. Some examples include
dimension reduction, pattern recognition and cluster analysis. The goal of cluster analysis
is to find meaningful groups of observations in a data set. These groups are referred to as
“clusters”. In each cluster, the members have something in common that they do not share
with members of other clusters. Performing cluster analysis helps finding a structure in the
data set, which can be helpful in different domains such as medicine, marketing or computer
vision.

Model-based clustering is an unsupervised learning domain that designs probabilistic
models for cluster analysis. Defining a probabilistic model brings many advantages such as
interpretability, model selection criteria and credibility intervals in the Bayesian framework.
Due to their flexibility, those approaches have proved to be efficient in many domains and
they are widely used for the analysis of data. A disadvantage of classical model-based
clustering methods is the high number of parameters to be estimated, which can slow the
inference algorithms and lead to poor results in case of complex data. Designing more
parsimonious models (i.e reducing the number of parameters) is an efficient way to tackle
this problem.

This thesis gathers contributions to introduce parsimony in model-based clustering meth-
ods for complex data sets. In the first two chapters, we focus on co-clustering. Co-clustering
consists in clustering simultaneously the rows and columns of a matrix (or the observations
and the features of a data set). We describe two novel approaches of model-based co-
clustering to handle heterogeneous data sets and textual data sets. The third contribution
is a thorough investigation of a Deep Gaussian Mixture Model which combines model-based
clustering techniques in a deep learning fashion. We detail methodological aspects and pro-
vide numerical experiments on simulated and real data sets for all the contributions.

Keywords: model-based clustering – mixture models – co-clustering – factor analysis – par-
simony.

4

Parcimonie dans les modèles probabilistes pour l'analyse de données complexes

Ces dernières années, la production d’informations numériques a fortement augmenté.
Les sites web, les réseaux sociaux et l’Internet des Objets en général ont contribué à une
production massive de données de tous genres. Cette sur-production a aussi conduit à des
jeux de données plus complexes, dans la mesure où ils sont devenus de haute dimension,
sparses, hétérogènes, ou encore qu’ils contiennent des valeurs manquantes. Les algorithmes
et méthodes traditionnelles ne sont donc plus suffisants pour gérer ce type de données car
ils ne prennent pas en compte ces particularités, et ne peuvent se mettre à l’échelle du
phénomène “Big-Data”. Heureusement, l’accès à des machines de plus en plus puissantes a
permis aux experts de concevoir des algorithmes plus complexes, adaptés à la complexité de
ces données.

L’apprentissage non-supervisé concerne un type d’algorithmes en analyse statistique (ou
apprentissage automatique) qui apporte à l’utilisateur un nouveau point de vue sur les don-
nées. Quelques exemples de méthodes dites non-supervisées sont la réduction de dimension,
la détection de motifs, ou encore la segmentation de données (ou analyse de clusters). L’ob-
jectif de la segmentation de données est de trouver des groupes d’observations dans un jeu de
données. Ces groupes sont appelés “clusters”. Dans chaque cluster, les membres ont quelque
chose en commun qu’ils ne partagent pas avec les membres des autres clusters. Utiliser un
algorithme de clustering aide à trouver une structure dans le jeu de données, ce qui peut-être
utile dans différents domaines comme la médecine, le marketing ou la vision par ordinateur.

Les modèles probabilistes pour le clustering regroupent des méthodes d’apprentissage
non-supervisé pour la segmentation de données. Définir un modèle probabiliste apporte
de nombreux avantages comme l’interprétabilité, la sélection de modèle ou la possibilité
d’estimer des intervalles de confiance. Grâce à leur flexibilité, ces approches ont prouvé leur
efficacité dans différents domaines, et elles sont souvent utilisées pour analyser des données.
Un désavantage des modèles probabilistes pour le clustering classiques, c’est qu’ils requièrent
le calcul de nombreux paramètres, ce qui peut ralentir les différents algorithmes d’inférence
et donner de mauvais résultats dans le contexte de données complexes. Introduire de la
parcimonie (i.e. réduire le nombre de paramètres à estimer) est une manière efficace de
pallier ce problème.

Cette thèse regroupe plusieurs contributions pour introduire de la parcimonie dans les
modèles probabilistes pour le clustering dans le cadre de données complexes. Dans les deux
premiers chapitres, nous nous concentrons sur le co-clustering. Le co-clustering consiste à
effectuer un clustering simultané des lignes et des colonnes d’une matrice (ou des obser-
vations et des variables d’un jeu de données). Nous décrivons deux approches innovantes
de co-clustering probabiliste pour gérer des données hétérogènes et des données textuelles.
La troisième contribution investigue les modèles de mélange gaussiens profonds (ou Deep
Gaussian Mixture Model), qui couple les modèles probabilistes et des techniques de réseau
profond, plus communément appelées Deep Learning. Les aspects méthodologiques sont dé-
taillés, et des expériences numériques sont réalisées sur des jeux de données simulés et réels.

Mots-Clefs : modèles probabilistes – clustering – modèles de mélange – co-clustering – ana-
lyse de facteurs – parcimonie.

5

6

Contents

Notations 10

1 Introduction 15
1.1 Scientific context . 15

1.1.1 Machine Learning 15
1.1.2 Three families of paradigms 16
1.1.3 Complex data 17

1.2 Contributions of the thesis . 18
1.2.1 Focus of the thesis 18
1.2.2 Content of the thesis 18
1.2.3 List of publications and softwares 19

2 State-of-the-art 21
2.1 Model-based clustering . 22

2.1.1 Introduction 22
2.1.2 Finite mixture models 22
2.1.3 Expectation Maximisation algorithm for FMMs 24
2.1.4 Gaussian Mixture Models 25
2.1.5 Model Selection 26
2.1.6 Conclusion 29

2.2 Factor Analysis . 30
2.2.1 Introduction 30
2.2.2 Single Factor Analyser 30
2.2.3 Inference for the Single Factor Analyser 31
2.2.4 Unidentifiability 35
2.2.5 Mixture of Factor Analysers 35
2.2.6 Inference of the Mixture of Factor Analysers 36
2.2.7 Specific MFA models 38
2.2.8 Model selection 39
2.2.9 Conclusion 39

2.3 Model-based co-clustering . 39
2.3.1 Introduction 39
2.3.2 The Latent Block Model 41
2.3.3 Inference of the Latent Block Model 41
2.3.4 Model Selection 47
2.3.5 Conclusion 47

2.4 Appendices . 48
2.4.1 Proof that the EM-algorithm causes the log-likelihood to increase 48

7

2.4.2 EM-algorithm computations for MFA 49

3 Multiple Latent Block Model for mixed data 53
3.1 Introduction . 54
3.2 Multiple Latent Block Model . 55

3.2.1 Definition of the Multiple Latent Block Model 55
3.2.2 Model Inference 57

3.3 Modeling of the different types of data . 60
3.3.1 Modeling nominal data 61
3.3.2 Modeling ordinal data 61
3.3.3 Modeling continuous data 62
3.3.4 Modeling count data 62

3.4 Numerical experiments on artificial data . 63
3.4.1 Simulation settings 63
3.4.2 Parameter and partition estimation 65
3.4.3 Model selection 67
3.4.4 More challenging data sets 68
3.4.5 Missing data 69
3.4.6 Conclusion 69

3.5 Real data applications . 70
3.5.1 Co-clustering of count and continuous data 70
3.5.2 Co-clustering of ordinal and nominal data 72

3.6 Analysing a quality of life survey in oncology - Use case . 75
3.6.1 Data set 76
3.6.2 Application to the survey dataset 77

3.7 Conclusion and perspectives . 81

4 Self-Organised Co-Clustering 83
4.1 Introduction . 83
4.2 Reminders on the Latent Block Model for counting data . 85

4.2.1 The Poisson Latent Block Model (PLBM) 85
4.2.2 Inference 86

4.3 Self-Organised Co-Clustering . 87
4.3.1 An easy-to-read structure 87
4.3.2 The SOCC model and its inference 88
4.3.3 Model selection 90

4.4 Numerical Experiments . 90
4.4.1 Baselines 90
4.4.2 Simulated data set 91
4.4.3 Real data sets experiments 92

4.5 Harry Potter use case . 96
4.5.1 Co-clustering set up 96
4.5.2 Interpretation of the results 97
4.5.3 Conclusions on the study of the Harry Potter data set 101

4.6 Conclusion and perspectives . 101

8

5 Investigations on the Deep Gaussian Mixture Model 103
5.1 Introduction . 103

5.1.1 Neural networks 104
5.1.2 Coupling Deep Learning and Gaussian Mixture Models 106

5.2 Deep Gaussian Mixture Models . 107
5.2.1 Definition of the Deep Gaussian Mixture Model 107
5.2.2 Inference of the model 108
5.2.3 Model selection 111

5.3 Properties of the Deep GMM . 111
5.3.1 Preliminary analysis: simulated data 111
5.3.2 More experiments 113
5.3.3 Applying the DGMM to real data sets 124
5.3.4 Conclusion on the experiments 126

5.4 Suggestion of extension of DGMM to categorical data . 127
5.4.1 Latent Gaussian Models for discrete data 127
5.4.2 LGM and DGMM 128
5.4.3 Solution for categorical data 129
5.4.4 Remarks on the model 132

5.5 Conclusion and perspectives . 132
5.6 Appendices . 133

5.6.1 Importance sampling and unnormalised distributions 133
5.6.2 Tables of correspondences between scripts and sections 134

6 Conclusion and Perspectives 135
6.1 Conclusion . 135
6.2 Perspectives of the MLBM . 136
6.3 Perspectives of the SOCC model . 136
6.4 Perspectives of the DGMM . 137

6.4.1 From a probabilistic point of view 137
6.4.2 From a deep learning point of view 137

References 139

List of Figures 149

List of Tables 151

Long abstract French 154

9

No
ta
tio

ns

Notations

Acronyms .

• ML: Machine Learning,

• FMM: Finite Mixture Model,

• GMM: Gaussian Mixture Model,

• FA: Factor Analysis,

• MFA: Mixture of Factor Analysers,

• LBM: Latent Block Model,

• MLBM: Multiple Latent Block Model,

• SOCC: Self-Organised Co-Clustering,

• DGMM: Deep Gaussian Mixture Model,

• LGM: Latent Gaussian Model,

• IC: Information Criterion,

• BIC: Bayesian Information Criterion,

• ICL: Integrated Completed Likelihood,

• ARI: Adjusted Rand Index,

• NN: Neural Network,

• EM algorithm: Expectation Maximisation algorithm,

• NR algorithm: Newton-Raphson algorithm,

• IS: Importance Sampling.

10

No
ta
tio

ns

Subscripts .

• N : number of rows,

• i: index for rows (from 1 to N),

• J : number of columns,

• j: index for columns (from 1 to J),

• G: number of row-clusters,

• g: index for row-clusters (from 1 to G),

• H: number of column-clusters,

• h: index for column-clusters (from 1 to H),

• q: iteration,

• R: dimension of the latent scores in FA,

• Specific to the MLBM:

– D: number of data matrices for the MLBM,
– d: index for data matrices (from 1 to D) for the MLBM,
– Hd: number of column-clusters of dth matrix for the MLBM,
– Jd: number of columns of dth matrix for the MLBM,

• Specific to the DGMM:

– L: number of layers of a DGMM,
– l: index for layers of a DGMM,
– R: dimensions of the latent scores for each layer, vector of length L,
– R(l): lth element of R, dimension of the latent scores at the lth layer in DGMM,
– G: number of clusters for each layer, vector of length L,
– G(l): lth element of G, number of clusters for layer l in the DGMM.
– g: one of the path of the DGMM network, is also an index for the clusters of the

global GMM of the DGMM, vector of length l,
– gl: lth element of g, index for clusters of layer l.

Data (observed and latent) .

• x: data set, matrix of dimension (N × J),

• xij : cell of x, corresponds to the ith row and jth column,

• v: set of row partitions, N vectors of length G,

• vi: ith element of v, which represents the partition of row i, vector of length G,

11

No
ta
tio

ns

• w: set of column partitions, J vectors of length H,

• wj : jth element of w, which represents the partition of column j, vector of length H,

• wd: column partitions of the dth matrix for the MLBM, Jd vectors of length Hd,

• wd
j : jth element of wd, which represents the partition of column j of the dth matrix,

vector of length Hd.

• z: scores in FA,

• zi: ith row of z, score of row i, vector of length R,

• z(l): scores of the lth layer in Deep GMMs.

• z
(l)
i : ith row of z(l), score of row i at layer l, vector of length R(l)

Parameters .

• θ: all the parameters of a model,

• ν: number of parameters,

• π: row mixing proportions, vector of length G,

• πg: gth element of π, proportion of the gth row-cluster, scalar,

• ρ: column mixing proportions, vector of length H,

• ρh: hth element of ρ, proportion of the hth column-cluster, scalar,

• ρd: column mixing proportions of the dth matrix for the MLBM, vector of length Hd,

• ρdh: hth element of ρd, for the MLBM, proportion of the hth column-cluster, scalar,

• α: parameters of the distributions of the blocks for the LBM,

• αgh: element of α, parameters of block (g, h) for the LBM,

• αd: parameters of the distributions of the blocks of the dth matrix for the MLBM,

• αdgh: element of αd, parameters of block (g, h) of the dth matrix for the MLBM,

• M(., .) is the Multinomial distribution:

– m: number of levels,
– β: proportion parameters of the Multinomial distribution, vector of length m

whose elements are positive and sum to 1.
– βr: rth element of β, proportion of the rth level for a categorical variable.

• BOS(., .) is the BOS ditribution:

– µ: mode parameter of the BOS distribution, integer,
– τ : precision parameter of the BOS distribution, scalar.

• P(.) is the Poisson distribution:

12

No
ta
tio

ns

– δ: part of the parameter for the Poisson distribution, scalar,
– ni.: part of the parameter for the Poisson distribution number of occurrences in

row i,
– n.j : part of the parameter for the Poisson distribution number of occurrences in

column j.

• N (.) Gaussian distribution:

– µ: mean parameter of the unidimensional Gaussian distribution, scalar,
– σ: standard deviation parameter of the unidimensional Gaussian distribution,

scalar.

• Factor Analysis:

– Λ: factor loadings, matrix of dimension (J ×R),
– η: mean, vector of length J ,
– ψ: noise co-variance matrix, diagonal matrix of dimension J .

• Deep GMM:

– πg: mixing proportion of the gth cluster of the global GMM,

– π
(l)
gl : mixing proportion of gth cluster of layer l,

– Λ
(l)
g : factor loadings of the gth cluster of lth layer, matrix of dimension (R(l−1)×

R(l)),

– η
(l)
g : mean of the gth cluster of lth layer, vector of length R(l−1),

– ψ
(l)
g : noise co-variance matrix of the gth cluster of lth layer, diagonal matrix of

dimension R(l−1).

Functions .

• lo(θ;x): observed-data log-likelihood, sometimes written f(x;θ) or p(x;θ),

• lc(θ;x): complete-data log-likelihood, sometimes written f(x,v;θ) or p(x,v;θ),

• ✶(< expr >): indicator function, is equal to 1 when expr is true, and 0 otherwise.

13

In
tro

du
ct
io
n

In
tro

du
ct
io
n1

Introduction

1.1 Scientific context . 15
1.1.1 Machine Learning 15
1.1.2 Three families of paradigms 16
1.1.3 Complex data 17

1.2 Contributions of the thesis . 18
1.2.1 Focus of the thesis 18
1.2.2 Content of the thesis 18
1.2.3 List of publications and softwares 19

1.1 Scientific context .

1.1.1 Machine Learning
In recent times, there has been an increased interest in machine learning. The term “ma-
chine learning” itself is quite broad and not well defined. Statistical learning, data mining,
applied statistics, data science, artificial intelligence, pattern recognition, among others, are
all fields that have been related to machine learning; however, depending on the user and
their background, the meaning of the term “machine learning” may vary. In this thesis, we
use this term to refer to the field in which we use mathematical models coupled with data to
solve complex problems such as predictive maintenance, face recognition, natural language
processing, weather forecasting and so on. These tasks are usually hard to solve as there is
no explicit set of rules that can be used to perform them. Machine learning models are said
to learn from the data since their behavior depends on the data samples that have been fed
into the program as an input. In addition, these algorithms can be used on different data
sets to solve different problems and this is the reason why we consider them as intelligent.

15

In
tro

du
ct
io
n

In
tro

du
ct
io
n

The growing interest in machine learning is due to two factors. First, the availability of digi-
tised information has increased in recent years and now private companies and institutions
have more access to massive data flows through social networks, smartphones, websites and
purchase platforms. Second, this data could not have been stored, preprocessed or anal-
ysed without the enormous increase in computing power, which allows more complex and
powerful models to be designed.

Machine learning algorithms often have a mathematical model of the data that can be used
to describe the interactions between the different features. These models have parameters
that can be tuned by the algorithm so that the observed interactions on the data samples
are consistent with those of the model. The process of changing the parameters in the model
based on data is referred to as “fitting” or “training”, which consists in minimising a loss
function of these parameters, also referred to as the “objective” function.

There are several paradigms within machine learning, each using data in a different way
and for different tasks. We describe now the three main families of paradigms.

1.1.2 Three families of paradigms

1.1.2.a Supervised Learning
In supervised learning, we have two sets of variables. The input variables xi and the label
variables yi. The goal is to learn a mapping f from xi to yi given a training set made of
pairs (xi,yi)i∈{1,...,N}. By noting ŷi = f(xi;θ) the model’s prediction of yi given the model
parameters θ, then the loss function L(yi, ŷi) defines the score based on how precise the
predictions of the model are. The parameters θ are chosen to minimise the loss function on
a data set of given samples (xi,yi)i∈{1,...,N}:

N∑

i

L(yi, ŷi) =
N∑

i

L(yi, f(xi;θ)).

The choice of the loss function depends on the problem that needs to be solved and the
nature of xi and yi. An important property of a “good” machine learning algorithm in
supervised learning is generalization. Generalization means that a model fitted on a certain
data set is also consistent with samples it was not trained with (i.e. unseen samples that
were not part of the training data set).

Many supervised algorithms already exist, such as Linear Regression, Logistic Regres-
sion, Decision Trees and its variants (such as Random Forests) and Support Vector Ma-
chine (Hastie et al., 2001). Lately, the deep learning algorithms also yield state-of-the-art
performances on several tasks involving computer vision, speech recognition and many oth-
ers (Goodfellow et al., 2016).

1.1.2.b Unsupervised learning
Unsupervised learning is broader and less well defined than supervised learning because it
can serve many purposes. Basically, the goal of unsupervised learning is to find interesting
structures in the data x. Usually, there are no label variables y provided, only the input
variables x are. Some examples of unsupervised learning tasks include density estimation,
dimension reduction, feature extraction, generative modeling and cluster analysis.

• Density estimation is the construction of an estimate based on observed data of an
unobservable underlying probability density function. The unobservable density func-
tion is thought of as the density according to which a large population is distributed;

16

In
tro

du
ct
io
n

In
tro

du
ct
io
n

the data are usually thought of as random samples from that population. The most
basic form of density estimation is a rescaled histogram.

• Dimension reduction consists in finding a lower dimensional representation of the data
set while keeping the most important information in the data. This can be useful for
many purposes: for storing the data in a more compact way or for visualising the data
set, for instance.

• Generative modeling consists in assuming that the data are sampled from a process
through a density function p(x;θ) whose parameters θ are to be estimated (or in-
ferred). Once the parameters are obtained, we can generate new data through sam-
pling. The most common technique for this purpose is to maximise the log-likelihood
associated to the data.

• Cluster analysis is the task of gathering the xi samples into different groups (or “clus-
ters”) of similar observations. Observations that turn out to be in the same cluster are,
then, supposed to belong to the same category. For a number G of clusters, the aims
is assigning every observation of the data set x to one of the G clusters. Clustering is
useful for finding structures in the data set and, thus, for a better understanding of
the data.

1.1.2.c Semi-supervised learning
Semi-supervised learning (Chapelle et al., 2010) is halfway between supervised and unsu-
pervised learning in the sense that the labels yi are not available for all the samples xi.
In this case, the goal of a semi-supervised algorithm can be to design a model that uses
the remaining unlabelled samples to get a better performance in the learning task when
compared to using only the labelled samples. An example of semi-supervised learning is
transfer learning (Pan and Yang, 2010), which are models that use the information learnt
from a certain data set (referred to as the “source” data set) to improve the performance
on a different data set (referred to as “target” data set). Finally, semi-supervised learning
is particularly used in the presence of graph data, where the prediction of a label for a node
can be deducted from other labelled nodes and from other attributes of its neighborhood.

1.1.3 Complex data
Most machine learning techniques are well defined and efficient whenever the data set x
is “easy”, which means that it is structured, low-dimensional and that it does not contain
missing data. However, real life data sets are often much more complex than the “toy” data
sets or the data sets easily available on different platforms. The properties that make us
consider a data set as “complex” in this thesis are:

• High-dimensionality, sometimes referred to as the “curse of dimensionality”, relates
to the phenomena that arise when handling data in a high-dimensional space (with
many variables). The common issue is that when the dimensionality increases, the
volume of the space increases so fast that the data become sparse (Bellman, 1966). In
addition, estimation problems arise when the number of observations N is lower than
the number of variables J .

• Heterogeneity, also referred to as “mixed data sets”, relates to the data whose variables
are not of the same nature. For instance, a simple data set with information about

17

In
tro

du
ct
io
n

In
tro

du
ct
io
n

the clients of a company could contain the social status (a categorical variable), the
age (a count variable) and the height and weight (continuous variables) of the clients.
Such a variety of data can be difficult to model mathematically since the variables do
not take values in the same space. Therefore, it is difficult to define a distribution
common to all variables.

• Sparse data refers to data sets where information is rare. Usually, it relates to data
sets with a large majority of zero values. For instance, when we model the interactions
of the users of a large social network by counting the number of messages sent to each
other, the resulting matrix is usually sparse. Indeed, a lot of users never talk to each
other, which results in a large amount of cells equal to zero.

• Data sets with missing values refer to the fact that, sometimes, certain cells do not
have a value. For example, when analysing surveys, it is common to find questions that
were not replied to by certain participants. This can be modelled in different ways, if
we consider wether the respondant did not answer on purpose or unintentionally.

• Streaming data sets are those whose data come as a flow. The most common example of
streaming is when the data come from sensors that actualise values of certain measures
at different times. This kind of data requires special algorithms that are able to receive
new data over time but this topic will not be covered in this thesis.

1.2 Contributions of the thesis .

1.2.1 Focus of the thesis
This thesis focuses on unsupervised learning and, more specifically, on model-based clus-
tering which marries generative modeling and cluster analysis to perform the clustering
task. Model-based clustering designs probabilistic models for cluster analysis. Defining a
probabilistic model brings many advantages such as interpretability and model selection
criteria. Due to their flexibility, these approaches have proved their efficiency in many do-
mains (Bouveyron et al., 2019), and they are methods widely used for the analysis of data. A
disadvantage of classical model-based clustering methods is the high number of parameters
to be estimated, which can slow the inference algorithms and lead to poor results in case of
complex data. Designing more parsimonious models (i.e reducing the number of parameters)
is an efficient way to tackle this problem. This thesis aims at designing novel model-based
approches for complex data. In this work, we handle high-dimensional data, but we also
focus on heterogeneous data sets (data with variables of different nature), missing data and
sparse data sets such as textual data.

1.2.2 Content of the thesis
Chapter 2 recalls the notions necessary for a good understanding of the contributions of
this thesis. First, it details the mathematical aspects of Finite Mixture Models (FMMs),
which are the basis of the model-based clustering approaches. Such notions will be useful
for all the chapters of this thesis. Second, this chapter contains a revision of the factor
analysis paradigm and, particularly, the Mixture of Factor Analysers (MFA) as the basis
for Chapter 5. Finally, this chapter defines the Latent Block Model (LBM), which is a
co-clustering technique. Co-clustering is the task of clustering simultaneously the rows and
the columns of a data set. These notions will be helpful for Chapter 3 and Chapter 4.

18

In
tro

du
ct
io
n

In
tro

du
ct
io
n

All the notions seen in this chapter will rely on the Expectation-Maximisation algorithm
(EM) (Dempster et al., 1977), which is an efficient optimisation algorithm for some model-
based approaches.

Chapter 3 presents an extension of the Multiple Latent Block Model (MLBM) (Robert,
2017) to mixed data. As mentioned above, mixed data sets are hard to model through
probability distributions since the values that are taken by the variables do not lie in the
same space. In the co-clustering case, it is particularly difficult because the algorithm has
to cluster the variables too. Intuitively, it seems odd to cluster variables of different nature
since the purpose of clustering is to gather elements that share something in common. The
MLBM approach consists in extending the Latent Block Model (LBM), a model-based co-
clustering approach, so that it is able to take mixed data into account.

Chapter 4 presents the Self-Organised Co-clustering model (SOCC) for textual data.
The SOCC model was specifically designed for document-term matrices. Document-term
matrices represent textual data sets with documents as observations and all the terms that
are used as variables. Then, for the cell (documenti,termj), it counts how many times termj

was used in documenti. This representation has the advantage of being easy to read and
fast to build. However, it usually results in high-dimensional and extremely sparse matrices
that are difficult to exploit. The SOCC model adapts to these particularities and defines a
model to cluster terms and documents that offers user-friendly results.

Chapter 5 investigates the Deep Gaussian Mixture Model (Deep GMM) (Viroli and
McLachlan, 2019) and its properties. This model is based on the Mixture of Factor Analysis
(MFA) model and consists in stacking MFA layers in a deep learning fashion. This is made
possible by considering that the latent scores of a layer are the data input of the MFA of
the next layer. In this chapter, we empirically show the difficulties to properly estimate the
parameters of the model and we discuss the possible reasons and solutions to tackle these
problems.

1.2.3 List of publications and softwares
PǎƻǅǂƼƺǍǂǈǇǌ

• Margot Selosse, Julien Jacques, Christophe Biernacki, Florence Cousson-Gélie. Analysing
a quality of life survey using a co-clustering model for ordinal data and some dynamic
implications. Journal of the Royal Statistical Society: Series C Applied Statistics,
Wiley, 2019, 68, pp.1327-1349.

• Margot Selosse, Julien Jacques, Christophe Biernacki. Model-based co-clustering for
mixed type data. Computational Statistics and Data Analysis, Elsevier, 2020, 144,
pp.106866.

• Margot Selosse, Julien Jacques, Christophe Biernacki, Textual data summarization
using the Self-Organized Co-Clustering model, Pattern Recognition, 103, 2020.

• Margot Selosse, Julien Jacques, Christophe Biernacki. ordinalClust: an R package for
analysing ordinal data. 2020. to appear in the R journal.

• Margot Selosse, Claire Gormley, Julien Jacques, Christophe Biernacki. A bumpy jour-
ney: exploring deep Gaussian mixture models, NeurIPS 2020 Workshop ICBINB.

19

In
tro

du
ct
io
n

In
tro

du
ct
io
n

R ǉƺƼǄƺǀƾǌ ƺǏƺǂǅƺƻǅƾ ǈǇ CRAN

• ordinalClust: implementation of the method of Chapter 3 exclusively for ordinal
data.

• mixedClust: implementation of the method of Chapter 3 for 5 types of data.

R ǉƺƼǄƺǀƾǌ ƺǏƺǂǅƺƻǅƾ ǈǇ ǋƾǊǎƾǌǍ

• SOCC: implementation of the method of Chapter 4.

• deepMFA: implementation and experiments scripts of Chapter 5.

20

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

2
State-of-the-art

2.1 Model-based clustering . 22
2.1.1 Introduction 22
2.1.2 Finite mixture models 22
2.1.3 Expectation Maximisation algorithm for FMMs 24
2.1.4 Gaussian Mixture Models 25
2.1.5 Model Selection 26
2.1.6 Conclusion 29

2.2 Factor Analysis . 30
2.2.1 Introduction 30
2.2.2 Single Factor Analyser 30
2.2.3 Inference for the Single Factor Analyser 31
2.2.4 Unidentifiability 35
2.2.5 Mixture of Factor Analysers 35
2.2.6 Inference of the Mixture of Factor Analysers 36
2.2.7 Specific MFA models 38
2.2.8 Model selection 39
2.2.9 Conclusion 39

2.3 Model-based co-clustering . 39
2.3.1 Introduction 39
2.3.2 The Latent Block Model 41
2.3.3 Inference of the Latent Block Model 41
2.3.4 Model Selection 47
2.3.5 Conclusion 47

2.4 Appendices . 48
2.4.1 Proof that the EM-algorithm causes the log-likelihood to increase 48
2.4.2 EM-algorithm computations for MFA 49

21

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

2.1 Model-based clustering .

2.1.1 Introduction
Model-based clustering refers to a statistical domain that proposes probabilistic models for
cluster analysis. The goal of cluster analysis is to find meaningful groups of observations in
a data set. These groups are referred to as “clusters”. In each cluster, the members have
something in common that they do not share with members of other clusters. Cluster analy-
sis belongs to the unsupervised type of methods and it can be helpful in many applications.
For example, marketing firms have data about consumers, and it is too time-consuming
to customise shopping offers specific to every consumer. Clustering the clients is a good
solution since it defines a low number of consumer’s clusters. Each cluster can represent
a typical consumption profile. It is then easier to develop an offer or a product for every
profile.

The biological classification system or taxonomy of Linnaeus, applied to plants and an-
imals in the year 1735, is an early example of the grouping of observations (Bouveyron
et al., 2019). Linnaeus divided plants into 24 classes, including flowers with one stamen
(Monandria), flowers with two stamens (Diandria) and flowerless plants (Cryptogamia). His
methods of grouping were based on data; however, the criteria to separate the flowers into
groups were subjective. Cluster analysis is something more: the search for groups in quanti-
tative data using automatic methods. From the early 1930s onwards, a range of automatic
algorithms was proposed, most of which were based on a matrix to measure the similar-
ities between the observations. The purpose of those automatic algorithms was to divide
or partition the data into groups such that the observations within a certain group were
similar among themselves but dissimilar to the observations in other groups with similar
characteristics among themselves as well. The most famous method, referred to as the “k-
means” algorithm, was proposed in Steinhaus (1956) and, nowadays, it is still largely used.
However, these methods leave several practical questions unresolved such as how many clus-
ters we should use, how to compare the results of the many available clustering methods
or how certain we are of a clustering partition. The probabilistic approaches, which specify
probabilistic models for the full data set, have the potential to answer these questions. The
main statistical models for clustering are the finite mixture models in which each group is
modelled by its own probability distribution. In the following section, we describe the finite
mixture models and the Expectation-Maximisation algorithm, which is widely used to infer
their parameters.

2.1.2 Finite mixture models
Finite mixture models are used to model the probability density function of random variables
with a weighted linear combination of G component densities (or cluster densities). They
were first proposed in Pearson and Henrici (1894) where the author modelled the distribution
of ratios between forehead width and body length for 1000 Neapolitan crabs with G = 2
univariate Gaussian distributions.

To define these models, we assume that the data x = (x1, . . . ,xN) consist of N multi-
variate observations, each of dimension J , such that xi = (xi1, . . . , xiJ). A Finite Mixture
Model (FMM) represents the probability distribution (or density function) of an observation

22

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

xi as a finite mixture of weighted average of G probability density functions:

f(xi) =

G∑

g=1

πgfg(xi;αg). (2.1)

In Equation (2.1), πg ≥ 0, ∀g and
∑G
g=1 πg = 1. In addition, fg(.;αg) is the density of the

gth component given the value of its parameter αg. The parameters π1, . . . , πG are referred
to as “mixing proportions” and f1, . . . , fG are referred to as “component densities”. We
can characterise this model via a hierarchical construction by considering a G-dimensional
latent variable vi, that is encoded such that vig = 1 when xi belongs to the gth component,
and vig = 0 otherwise. We give the probability p(vig = 1) = πg. If we assume that the
conditional density of xi given vig = 1 equals fg(xi;αg), then, the joint density of (xi,vi)
can be written as follows:

f(xi,vi;θ) =
G∏

g=1

[πgfg(xi;αg)]
vig . (2.2)

Hence, the marginal density of xi is:

f(xi;θ) =
∑

vi∈V

f(xi,vi)

=
∑

vi∈V

(G∏

g=1

[πgfg(xi;αg)]
vig
)

=

G∑

g=1

πgfg(xi;αg), (2.3)

where V represents all the possible values of vi. Therefore, the data set x can be seen as
an i.i.d sample generated from a FMM with a probability density function f(x;θ) where
θ = (π1, . . . , πG,α1, . . . ,αG) represents all the parameters of the model, and the observed-
data log-likelihood noted as lo(θ;x) is given by:

lo(θ;x) = log
N∏

i=1

f(xi;θ)

=
N∑

i=1

log
G∑

g=1

πgfg(xi;αg). (2.4)

In this thesis, we focus on the homogeneous parametric FMMs whose component densities
arise from the same parametric family such as the Gaussian Mixture Models (GMM) (Celeux
and Govaert, 1995), the t-distribution Mixture Models (Peel and McLachlan, 2000) and the
skew normal Mixture Models (Lin et al., 2007); however, there are other types of FMMs. In
the heterogeneous parametric FMMs, the components densities come from different para-
metric families (see Coretto and Hennig (2011)). The non-parametric FMMs refer to the
cases in which no assumptions are made about the form of fg(.) (e.g. Benaglia et al. (2009)).

There are several inference methods for the FMMs but we focus on the maximum like-
lihood framework (McLachlan and Peel, 2000). The aim of this approach is to maximise

23

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

the log-likelihood as a function with respect to the model parameters θ. There is no way
to maximise the log-likelihood function of Equation (2.4) in a closed form. However, it can
be maximised using iterative procedures such as the Newton-Raphson method and the EM-
algorithm (McLachlan and Peel, 2000). At each iteration, the Newton-Raphson method
requires computing the Hessian matrix of the log-likelihood function and the solution of
ν linear equations, where ν is the number of components of the vector of parameters θ.
When θ is high-dimensional, an iteration of the Newton-Raphson method can become very
expensive. Furthermore, this algorithm is extremely sensitive to the starting value and the
convergence from an arbitrary starting value is not guaranteed. These are the reasons why
the Expectation-Maximisation algorithm is more popular and widely used for the inference
of FMMs. In this thesis, we focus on the EM algorithm and we describe it in the next
section.

2.1.3 Expectation Maximisation algorithm for FMMs
In this framework, we consider the sample x = (x1, . . . ,xN) and it is assumed that the
observation xi is associated to the G-dimensional latent variable vi. The set of vectors
v = (v1, . . . ,vN) is a latent variable and will often be referred to as the “row partitions” or
“partitions”. The complete-data log-likelihood function lc(θ;x,v) can be written as follows:

lc(θ;x,v) = log
N∏

i=1

f(xi,vi;θ)

= log
N∏

i=1

G∏

g=1

(
πgfg(xi;αg)

)vig

=

N∑

i=1

G∑

g=1

vig{logπg + log fg(xi;αg)}. (2.5)

The EM-algorithm consists of iterations composed of two steps: the Expectation (E) step
and the Maximisation (M) step that are iteratively run until convergence. We note θ(q) as
the value of the parameters vector θ after the qth iteration. The EM algorithm starts with
some starting value θ(0).

E-ǌǍƾǉ At the qth iteration, this step consists in computing the expectation of lc(θ,x,v)
conditional to x using θ(q−1). This expectation is sometimes referred to as “the auxiliary
function” in the literature, and we denote it by Q(θ;θ(q−1)):

Q(θ;θ(q−1)) = E[lc(θ,x,v)|x;θ
(q−1)]

=

N∑

i=1

G∑

g=1

E[vig|x;θ
(q−1)]{logπ(q−1)

g + log fg(xi;α(q−1)
g)}

=

N∑

i=1

G∑

g=1

t
(q)
ig {logπ(q−1)

g + log fg(xi;α(q−1)
g)}, (2.6)

where

t
(q)
ig = E[vig|x;θ

(q−1)] =
π
(q−1)
g fg(xi;α

(q−1)
g)

∑G
g′=1 π

(q−1)
g′ fg′(xi|α

(q−1)
g′)

. (2.7)

24

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

t
(q)
ig is the posterior probability that xi belongs to the gth component at iteration q. In

the case of FMMs, the E-step requires computing of t(q)ig for all i ∈ {1, . . . , N} and for all
g ∈ {1, . . . , G}.

M-ǌǍƾǉ On the qth iteration, this step computes the estimate of θ that maximises the
function Q(θ,θ(q−1)):

θ(q) = argmax
θ

Q(θ;θ(q−1)). (2.8)

The estimation of the mixing proportions π(q) = (π
(q)
1 , . . . , π

(q)
G) is evaluated independently

of the estimation of the parameters α(q) = (α
(q)
1 , . . . ,α

(q)
G) that corresponds to the param-

eters of the component densities of the FMM. This is possible since Q(θ;θ(q−1)) can be
written:

Q(θ;θ(q−1)) =

N∑

i=1

G∑

g=1

t
(q)
ig logπ(q−1)

g +

N∑

i=1

G∑

g=1

t
(q)
ig log fg(xi;α(q−1)

g). (2.9)

By taking into account the constraint
∑
g πg = 1, we can maximise Q(θ;θ(q−1)) with respect

to π using the method of the Lagrange multipliers. We obtain the following updates:

π(q)
g =

∑N
i=1 t

(q)
ig

N
, ∀g ∈ {1, . . . , G}. (2.10)

From Equation (2.9), we see that we can obtain α(q) by finding the root of:

N∑

i=1

G∑

g=1

t
(q)
ig

∂ log fg(xi;αg)
∂α

. (2.11)

In Appendix 2.4.1, we explain why an iteration of the EM-algorithm causes the log-likelihood
to increase.

2.1.4 Gaussian Mixture Models
The most common FMMs are those defined by Equation (2.4) whose component densities
arise from multivariate Gaussian densities referred to as “Gaussian Mixture Models” or
GMMs. In this context, a component parameter αg corresponds to the mean vector µg
and covariance matrix Σg. The GMMs are popular since many natural measurements and
processes tend to have Gaussian distributions; thus, populations containing subpopulations
of these measurements will tend to have densities similar to GMMs. The GMMs can be
written as follows:

f(x;θ) =

G∑

g=1

πgfg(x;µg,Σg). (2.12)

The main criticism of the GMMs is that they require the estimation of a large number
of parameters. A J-variate GMM with G components requires computing G × J(J + 1)/2
parameters to estimate the covariance matrices: G × J for the means and G − 1 for the
mixing proportions. In Banfield and Raftery (1993) and Celeux and Govaert (1995), the
authors propose to reduce the parametric complexity of the model from Equation (2.12)

25

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

introduce parsimony and to reduce the number of parameters to be estimated in GMMs, but
we do not necessarily know which of the fourteen models is the best one. At this point, we
have to choose the number of components and the most parsimonious model that best fits the
data. These decisions turn out to be a model selection problem. It is still an active research
topic and for reviews on the matter, we refer to Fernández and Arnold (2016), Fonseca
and Cardoso (2007) and McLachlan and Peel (2000). The most popular methodology for
model selection is to use an information criterion (IC) that aims at balancing fitness (trying
to maximise the log-likelihood function) and parsimony (using penalties associated with
measures of model complexity) to avoid overfitting the data. When using an IC to compare
several models fitted to the same data set, we select the model with the lowest IC value.
The best known information criteria is the Bayesian Information Criterion (Schwarz, 1978)
referred to as “BIC” and the Integrated Classification Likelihood criterion (Biernacki et al.,
2000) referred to as “ICL”. We present the details of these criteria in this section.

2.1.5.a Deriving the Bayesian Information Criterion
In this section, we present how the BIC criterion is derived based on Lebarbier and Mary-
Huard (2004) and Raftery (1995). Let us consider the sample x = (x1, . . . ,xN) of indepen-
dent variables with unkonwn density f . The aim is to estimate f , and we have a finite set
of models {M1, . . . ,Mt} available for this goal. A model Ml corresponds to a density hMl

with parameters θl. We denote the space for values of θl as Θl and we denote the dimension
of θl as νl. Model selection consists in choosing a model among the set of models. The BIC
criterion is set in a Bayesian context, that is to say, Ml and θl are seen as random variables
and have prior distributions noted as p(Ml) and p(θl|Ml). Such an approach is interesting
when the user wants to give more weight to some models through p(Ml). However, the
distribution p(Ml) is usually assumed to be non-informative (i.e. uniform). In addition, we
will see that the prior distribution p(θl|Ml) will not appear in the BIC expression. The BIC
criterion aims at choosing the model Ml that maximises the posterior distribution p(Ml|x):

MBIC = argmax
Ml

p(Ml|x). (2.14)

From the Bayes formula, P (Ml|x) is given by:

P (Ml|x) =
p(x|Ml)p(Ml)

p(x)
. (2.15)

From now, we suppose that p(Ml) is non-informative, i.e. p(M1) = . . . = p(Mt). From
Equations (2.14) and (2.15), we need to maximise p(x|Ml) that can be expressed as follows:

p(x|Ml) =

∫

Θl

p(x,θl|Ml)dθl

=

∫

Θl

hMl
(x;θl)p(θl|Ml)dθl, (2.16)

where hMl
(x;θl) is the density corresponding to model Ml:

hMl
(x;θl) = p(x|θl,Ml). (2.17)

We write the integral of Equation (2.16) with another form:

27

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

p(x|Ml) =

∫

Θl

exp{h(θl)}dθl

with

h(θl) = log
(
hMl

(x,θl)p(θl|Ml)
)
. (2.18)

Usually, p(x|Ml) is intractable. However, we can use the Laplace approximation and write:

p(x|Ml) = exp{h(θ⋆l)}
(2π
N

)νl/2|Hθ⋆
l
|−1/2 +O(N−1), (2.19)

with:

• θ⋆l = argmax
θl

h(θl)
N

and

• Hθ⋆
l

is the Hessian matrix defined by:

Hθ⋆
l
= −

[∂2h(θl)/N
∂θli∂θlj

]

i,j
|θl = θ

⋆
l ,

where θli is the ith coordinate of θl.

From Equations (2.18) and (2.19), we can write:

log p(x|Ml) = loghMl
(x,θ⋆l) + log p(θ⋆l |Ml) +

νl

2
log(2π)− 1

2
log(|Hθ⋆

l
|) +O(N−1). (2.20)

The difficulty is now to evaluate θ⋆l and Hθ⋆
l
. θ⋆l is asymptotically equal to:

θ̂l = argmax
θl

1

N
hMl

(x,θl). (2.21)

Asymptotically, the Hessian matrix Hθ⋆
l

can be replaced by the Fisher’s Information matrix
F
θ̂l

:

F
θ̂l

= −E

([∂2 log gMl
(x,θl)

∂θli∂θlj

]

i,j
|θl = θ̂l

)
, (2.22)

because when N increases, log gMl
(x,θl) increases too, whereas log p(θl|Ml) stays constant.

We substitute θ⋆l by θ̂l and Hθ⋆
l

by F
θ̂l

in Equation (2.20) and get:

log p(x|Ml) =

tends to −∞ when N→∞︷ ︸︸ ︷
loghMl

(x, θ̂l)−
νl

2
logN

+

stays bounded when N→∞: O(1)︷ ︸︸ ︷
log p(θ⋆l |Ml) +

νl

2
log(2π)− 1

2
log(|F

θ̂l
|)+O(N−1/2). (2.23)

We neglect the error terms O(1) and O(N−1/2) and get:

log p(x|Ml) ≈ loghMl
(x, θ̂l)−

νl

2
logN. (2.24)

28

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

The BIC criterion arises from these approximations. More precisely, the BIC of the model
Ml (noted as BICMl

) corresponds to the approximations of −2 log p(x|Ml) and is defined
by:

BICMl
= −2 loghMl

(x, θ̂l) + νl logN
= −2 log p(x|θ̂l,Ml) + νl logN. (2.25)

The model MBIC chosen by this criterion is:

MBIC = argmin
Ml

BICMl
. (2.26)

2.1.5.b Integrated Classification Likelihood criterion
In Biernacki et al. (2000), the authors introduce the ICL criterion, which is a variant of the
BIC method in the sense that the ICL approximates the complete data log-likelihood of the
model, which is written as follows:

log p(x,v|Ml) = log
∫

Θl

p(x,v,θl|Ml)dθl. (2.27)

With a similar reasoning to that of BIC, we find the ICL to be equal to:

ICLMl
= −2 log p(x,v|θ̂l,Ml) + νl logN. (2.28)

The performances of ICL compared to those of BIC in choosing the number of components
have been assessed in multiple works such as Biernacki et al. (2000) and Baudry et al. (2010).
In fact, the ICL turns out to be equal to the BIC penalised by the estimated mean entropy:

ICLMl
= BICMl

−

GMl∑

g

N∑

i

p(vig = 1|x; θ̂l) log p(vig = 1|x; θ̂l). (2.29)

In comparison to the BIC, the ICL introduces an additional term that penalises clustering
configurations that exhibit overlapping groups: low-entropy solutions with well-separated
groups are preferred to configurations that give the best match with regard to the distribu-
tional assumptions. In addition, the ICL criterion will often be chosen over the BIC criterion
when the complete-data log-likelihood is easier to compute than the log-likelihood itself. For
example, this is the case of the Stochastic Block Model (Latouche et al., 2010) or the Latent
Block Model (Nadif and Govaert, 2008), which will be described later.

2.1.6 Conclusion
The notions presented in this section are the basis of the model-based clustering and will be of
help in subsequent chapters. Finite Mixture Models are a powerful framework for estimating
densities and performing clustering on data. However, they can suffer from some drawbacks
due to the high number of parameters to be estimated in high-dimensionality. As we saw
in Section 2.1.4, practitioners tried to find solutions to introduce parsimony in the classical
models. Many other models exist to address this issue and they use different approaches
such as selection of variables (Fop and Murphy, 2018) and dimension reduction (McNicholas
and Murphy, 2008; Bouveyron et al., 2007). In this chapter, we will describe two of these
approaches.

29

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

In the next section, we will study Mixture of Factor Analysers (MFA) (McLachlan and
Peel, 2000) which is a model-based approach for clustering and reducing the dimension of
the data at the same time. In Section 2.3, we will describe the Latent Block Model (Nadif
and Govaert, 2008), which is a model-based co-clustering approach. Co-clustering consists
in clustering simultaneously the rows and the columns of a matrix. We will develop the idea
that, by gathering the features into clusters, co-clustering can be seen as a tool to bring
parsimony to clustering.

2.2 Factor Analysis .

2.2.1 Introduction
As explained in Section 2.1, model-based clustering is a popular tool to group data into
several homogeneous groups. In this section, we describe Factor Analysis (FA) methods,
which rely on the assumption that the observed data was generated from latent variables
with a lower dimension. In Section 2.2.2, we present the single factor analysis, a statistical
method for dimension reduction. In Section 2.2.5, we detail the mixture of factor analysers,
which performs clustering and dimension reduction at the same time.

2.2.2 Single Factor Analyser
In maximum likelihood factor analysis, a vector xi of x is modelled using an R-dimensional
vector of real valued factors, zi. Usually, R is much smaller than J . The generative model
is given by:

xi = Λzi + ui, (2.30)

where Λ is a J × R matrix and is referred to as the “factor loadings”. The R-dimensional
latent variables zi are referred to as “scores”. They are assumed to follow the standard
mutivariate Gaussian distribution N (0, IR), where IR is R-squared identity matrix. The
J-dimensional random variable ui follows the multivariate Gaussian distribution N (0,ψ),
where ψ is a diagonal matrix. The aim of factor analysis is to find θ = (Λ,ψ) that best
models the covariance structure of xi. The scores zi model correlations between the elements
of xi and play the same role as the principal component scores in Principal Component
Analysis: they are informative projections of the data. The variables ui represent the
independent noise in each element of xi. Considering the whole matrix x, we can write the
model in the matricial notation:

x = Λz + u, (2.31)

where z is an R ×N matrix, whose ith column corresponds to zi, and where u is a J ×N

matrix, whose ith row corresponds to ui. Let us note that the factor analysis model, as it was
defined, is deeply related to the probabilistic PCA (Tipping and Bishop, 1999a) whose noise
covariance matrix is assumed to be isotropic (ψ = σ2IR, with σ ∈ R). The observed-data
log-likelihood of the model is written as follows:

lo(θ;x) = log
∫

z

f(x, z;θ)dz, (2.32)

since the scores z are continuous multivariate variables.

30

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

2.2.3 Inference for the Single Factor Analyser
Once again, the Single Factor Analyser is a problem with latent variables (the scores z) and
parameters (Λ and ψ) that has to be resolved iteratively since no closed-form expression
exists for the maximum likelihood estimation of Λ and ψ (McLachlan and Krishnan, 1997).
However, the model can be fitted using the Expectation-Maximisation (EM) algorithm as
considered in Rubin and Thayer (1982). Let us recall that the EM-algorithm requires, in
the first place, computing the expectation of the complete-data log-likelihood. From the
model definition, we use the property of affine transformations of normal random variables
and the property of the sum of normal random vectors to conclude that x is also Gaussian
distributed with mean vector 0 and covariance matrix ΛΛ

T + ψ. Since the data x and
factors z are both Gaussian distributed, their joint density is also Gaussian. In other words,
the complete-data log-likelihood is equal to:

lc(θ;x, z) = logN (0,Σ), (2.33)

where Σ =

[
ΛΛ

T +ψ Λ

Λ
T IR

]
.

Actually, the Single Factor Analyser can be seen as a way of specifying a joint density model
on x using a small number of parameters. Indeed, the case of a Gaussian density with classic
full covariance matrix requires computation J × (J +1)/2 whereas FA requires computation
of J × (R + 1) parameters. This model allows a flexible trade-off between a full covariance
matrix and a diagonal covariance matrix.

From now on, we are going to use convenient properties of the joint Gaussians to show why
maximising the expectation of the complete-data log-likelihood is equivalent to maximising
the expectation of the conditional probability density function f(x|z;θ). We can write the
joint distribution as follows:

lc(θ;x, z) = log f(x|z;θ) + log f(z;θ). (2.34)

With the conditional distribution expressed by:

f(x|z;θ) = N (Λz,ψ). (2.35)

Let us focus on the prior f(z;θ). We have:

log f(z) = −
1

2

N∑

i=1

(zi − 0)T I(zi − 0)−
N

2
ln |IR| −

NJ

2
log(2π)

= −
1

2

N∑

i=1

(zi − 0)T I(zi − 0)−
N

2
ln |IR|+ const. (2.36)

We notice that none of the parameters intervenes in the expression of the prior f(z), meaning
that its derivative with respect to θ is null: log f(z) is irrelevant in the maximisation of the
expectation of the complete-data log-likelihood.

E-ǌǍƾǉ As the authors of Ghahramani and Hinton (1997), we focus on the conditional
distribution f(x|z). That term is written as follows:

31

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

log f(x|z;θ) = −
1

2

N∑

i=1

(xi −Λzi)
Tψ−1(xi −Λzi)−

N

2
ln |ψ| −

NJ

2
log(2π)

= −
1

2

N∑

i=1

(xi −Λzi)
Tψ−1(xi −Λzi)−

N

2
ln |ψ|+ const. (2.37)

In this context, the auxiliary function Q(θ,θ(q−1)) is defined as the expectation of log f(x|z;θ)
with respect to p(z|x):

Q(θ,θ(q−1)) = Ep(z|x)

[
−

1

2

N∑

i=1

(xi −Λzi)
Tψ−1(xi −Λzi)−

N

2
ln |ψ|+ const

]

= −
1

2

N∑

i=1

Ep(z|x)

[
(xi −Λzi)

Tψ−1(xi −Λzi)

]
−
N

2
ln |ψ|+ const

= −
1

2

N∑

i=1

Ep(z|x)

[
xTi ψ

−1xi − z
T
i Λ

Tψ−1xi − x
T
i ψ

−1
Λzi + z

T
i Λ

Tψ−1
Λzi

]

−
N

2
ln |ψ|+ const. (2.38)

The red term can be simplified since xTi ψ−1
Λzi is a scalar; we have:

zTi Λ
Tψ−1xi + x

T
i ψ

−1
Λzi = 2xTi ψ

−1
Λzi.

The blue term simplifies too because of the trace trick:

zTi Λ
Tψ−1

Λzi = tr(ΛTψ−1
Λziz

T
i).

By considering these simplifications and by applying the expectation only on the random
parts of Q(θ,θ(q−1)) with respect to p(z|x), we can write the auxiliary function as follows:

Q(θ,θ(q−1)) = −
1

2

N∑

i=1

(
xTi ψ

−1xi − 2xTi ψ
−1

ΛEp(z|x)

[
zi|xi

]

+ tr(ΛTψ−1
ΛEp(z|x)

[
ziz

T
i |xi

])
−
N

2
ln |ψ|+ const. (2.39)

Therefore, the E-step requires computation of Ep(z|x)[zi|xi] and Ep(z|x)[ziz
T
i |xi]. By defi-

nition, in the case of Gaussian multivariate, we have:

Ep(z|x)[zi|xi] = E[zi] +Λ
T (ΛΛ

T + ψ)−1(xi − E[xi])

= Λ
T (ΛΛ

T + ψ)−1xi (2.40)
= βxi, (2.41)

with β = Λ
T (ΛΛ

T + ψ)−1. Also by definition, we get:

32

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

Ep(z|x)[ziz
T
i |xi] = Ep(z|x)[zi|xi]Ep(z|x)

[
zi|xi

]
)T + Var(zi|xi)

= βxix
T
i β

T + Var(zi|xi)
= I −Λ

T (ΛΛ
T +ψ)−1

Λ+ βxix
T
i β

T

= I − βΛ+ βxix
T
i β

T . (2.42)

M-ǌǍƾǉ For the M-step, we split Q(θ,θ(q−1)) in several terms for convenience:

Q(θ,θ(q−1)) =−
1

2

n∑

i=1

(
xTi ψ

−1xi︸ ︷︷ ︸
A

−2xTi ψ
−1

ΛEp(z|x)

[
zi|xi

]
︸ ︷︷ ︸

B

+

tr(ΛTψ−1
ΛEp(z|x)

[
ziz

T
i |xi

]
︸ ︷︷ ︸

C

)

)
−
N

2
ln |ψ|

︸ ︷︷ ︸
D

+const.

Maximisation of Q with respect to Λ.
The derivatives of A and D are null because they do not depend on Λ. So,

∂Q

∂Λ
= −

1

2

N∑

i=1

(∂B
∂Λ

+
∂C

∂Λ

)
.

We have:

∂B

∂Λ
=

∂

∂Λ

(
− 2xTi ψ

−1
ΛEp(z|x)

[
zi|xi

])

= −2ψ−1xiEp(z|x)
[
zi|xi

]T
,

because ∂aTXb
∂X

= abT and ψ−1 = ψ−1T since ψ is diagonal.

∂C

∂Λ
=

∂

∂Λ

(
tr(ΛTψ−1

ΛEp(z|x)

[
ziz

T
i |xi

])

= (ψ−1
Λ+ ψ−1

Λ)Ep(z|x)
[
ziz

T
i |xi

]

= 2ψ−1
ΛEp(z|x)

[
ziz

T
i |xi

]
,

because ∂tr(XTMX)
X

=MX +MTX. Therefore, we have to resolve:

∂Q

∂Λ
= −

N∑

i=1

ψ−1xiEp(z|x)
[
zi|xi

]T
+

N∑

i=1

ψ−1
ΛEp(z|x)

[
ziz

T
i |xi

]
= 0.

We can then update Λ with:

Λ =
(N∑

i=1

xiEp(z|x)
[
zi|xi

]T)(N∑

i=1

E[ziz
T
i |xi]

)−1
. (2.43)

Maximisation of Q(θ,θ(q−1)) with respect to ψ−1.

33

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

The expression of Q(θ,θ(q−1)) contains more terms with ψ−1 than with ψ. It is more
convenient to derivate with respect to ψ−1:

∂Q

∂ψ−1
= −

1

2

N∑

i=1

(∂A

∂ψ−1
+

∂B

∂ψ−1
+

∂C

∂ψ−1

)
+

∂D

∂ψ−1

∂A

∂ψ−1
= xix

T
i ,

since ∂aTXa
∂X

= aaT .

∂B

∂ψ−1
= −2xi

(
ΛEp(z|x)

[
zi|xi

])T
,

since ∂aTXb
∂X

= abT .

∂C

∂ψ−1
= Λ

(
ΛEp(z|x)

[
ziz

T
i |xi

])T
,

since ∂tr(M1XM2)
∂X

=MT
1 M

T
2 .

∂D

∂ψ−1
=

−N

2

∂ ln |ψ|

∂ψ−1
=

−N

2

∂ ln |ψψ|1/2

∂ψ−1
=

−N

4

∂ ln |ψψ|

∂ψ−1
=
N

2
ψ,

because ψ is diagonal, and we have ∂ log |XX|
∂X−1 = −2XT = −2X.

Therefore, we have to find ψ such that:

∂Q

∂ψ−1
= −

1

2

N∑

i=1

(
xix

T
i − 2xi

(
ΛEp(z|x)

[
zi|xi

])T
+Λ

(
ΛEp(z|x)

[
ziz

T
i |xi

])T
)
−
N

2
ψ = 0.

This leads to:

ψ =
1

N

N∑

i=1

xix
T
i −

1

N

N∑

i=1

2xiEp(z|x)
[
zi|xi

]T
Λ
T +

1

N

N∑

i=1

ΛEp(z|x)

[
ziz

T
i |xi

]T
Λ
T . (2.44)

Furthermore, from Ep(z|x)

[
ziz

T
i |xi

]T
= Ep(z|x)

[
ziz

T
i |xi

]
because Ep(z|x)

[
ziz

T
i |xi

]
is sym-

metric, and from Equation (2.43), we have:

ΛEp(z|x)

[
ziz

T
i |xi

]T
= xiEp(z|x)

[
zi|xi

]
.

So, we get:

ψ =
1

N

N∑

i=1

xix
T
i −

1

N

N∑

i=1

2xiEp(z|x)
[
zi|xi

]T
Λ
T +

1

N

N∑

i=1

xiEp(z|x)
[
zi|xi

]T
Λ
T

=
1

N

N∑

i=1

xix
T
i −

1

N

N∑

i=1

xiEp(z|x)
[
zi|xi

]T
Λ
T . (2.45)

34

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

To constrain ψ to be diagonal, we impose:

ψ =
1

N
diag{

N∑

i=1

xix
T
i −ΛEp(z|x)

[
zi|xi

]
xTi }, (2.46)

where diag(M) means that all the off-diagonal elements of the matrix M are set to zero.

CǈǇǏƾǋǀƾǇƼƾ The EM-algorithm is numerically stable (McLachlan and Krishnan, 1997)
and has good convergence properties in that they ensure that the likelihood is not decreased
after each iteration. However, it is also known to be slow to converge. This could be due to
the typically large fraction of latent variables.

2.2.4 Unidentifiability
In Factor Analysis, the parameters are unidentifiable. To see this, it is necessary to consider
an arbitrary orthogonal matrix Q of dimensions (R×R), satisfying QQT = I. Let us define
Λ̃ = ΛQ. Then, the likelihood function of this model is the same since:

cov(x) = Λ̃Λ̃
T
+ψ

= ΛQQT
Λ
T = ΛΛ

T . (2.47)

Therefore, multiplying Λ by an orthogonal matrix is like rotating z before generating x
but, since z is distributed according to an isotropic Gaussian, it makes no difference to the
likelihood. We can not uniquely identify Λ and, therefore, we can not uniquely identify the
latent scores z either. The common solutions to tackle this problem are listed below:

• To constrain Λ so that it is orthonormal and to order the columns by decreasing
variance of the corresponding latent scores. This approach is used in the case of
Principal Component Analysis.

• To constrain Λ
TψΛ to be diagonal.

• To constrain Λ so that it is a lower triangular full rank matrix with diagonal ele-
ments strictly positive. This form is used, for instance, in Geweke and Zhou (1996)
and Aguilar and West (2000). It provides identification and often useful interpretation
of the model.

• To choose an informative rotation matrix. Many heuristic methods try to find rotation
matrices P that can be used to modify Λ (and the latent factors) so as to try to
increase the interpretability. Among them, varimax is a well-known method for this
purpose (Kaiser, 1958).

2.2.5 Mixture of Factor Analysers
The Mixture of Factor Analysers (G.J. McLachlan and Bean, 2003) is an extension of the
factor analysis model to a mixture with G factor analysers. We assume that xi can be
expressed from a latent random vector zi ∈ R

R such that R ≤ J . In addition, the latent
labels {v1, . . . ,vn} are assumed to be independent unobserved realisations of a categorical
G-dimensional random vector, such that vig = 1 indicates that xi is generated by the gth
factor analyser. The generative process of this model is as follows:

35

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

vi ∼ M(1, (π1, . . . , πG)),

zi ∼ N (0, IR),

ui|vi ∼ N (0,ψg),

xi = ηg +Λgzi + ui,

where Λg is a J × R matrix and ηg ∈ R
J is the mean vector of the gth factor analyser.

In addition, ψg is a diagonal square matrix of dimension J , and π = (πg)g are the mixing
proportions. The latent variable vi represents the partitions and p(vig = 1) = πg. The
marginal density of xi is written as follows:

f(xi;θ) =

G∑

g=1

πgfg(xi;ηg,Σg), (2.48)

such that:

• π = (π1, . . . , πG) are the mixing proportions,

• fg(.;ηg,Σg) is the Gaussian probability density function of parameters ηg and Σg and

• Σg = ΛgΛ
T
g +ψg.

Hence, the observed-data log-likelihood lo(θ;x), is given by:

lo(θ;x) =

N∑

i=1

log
G∑

g=1

πgfg(xi;ηg,Σg). (2.49)

Let us note that the conditional distribution of x is also Gaussian:

p(xi|zi, vig = 1) = N (ηg +Λgzi,ψg). (2.50)

2.2.6 Inference of the Mixture of Factor Analysers
Different kinds of EM-algorithms were proposed for the MFA model. Originally, the authors
of G.J. McLachlan and Bean (2003) proposed an Alternated Expectation Conditional Max-
imisation algorithm (referred to as “AECM algorithm”). Ghahramani and Hinton (1997)
proposed an EM-algorithm for the MFA, but for the special case with ψg = ψ. Zhao and Yu
(2008) developed an Expectation Conditional Maximisation algorithm (referred to as “ECM
algorithm”) to reduce the execution time. In this section, we develop the EM-algorithm
in the same fashion as Ghahramani and Hinton (1997), but we do not apply the equality
constraint on matrix ψg in order to keep the model as comprehensive as possible. The latent
variables in this model are the scores z and the partitions v.

CǈǆǉǎǍǂǇǀ Ǎǁƾ ƾǑǉƾƼǍƺǍǂǈǇ The latent variables are z and v. Therefore, the E-step is
made of two steps (one for each latent variable). The complete data log-likelihood is:

lc(θ;x, z) = log p(x|z,v) + log p(z|v) + log p(v),

36

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

where p(z|v) = p(z) because z does not depend on v. With a similar reasoning as in
Section 2.2.3, Equation 2.36, we get rid of the term p(z|v) and write :

Q(θ,θ(q−1)) = Ep(z,v|x)

[N∑

i=1

(
log p(xi|zi,vi) + log p(vi)

)]
.

We can develop:

Q(θ,θ(q−1)) = Ep(z,v|x)

[N∑

i=1

log
(
p(xi|zi,vi)p(vi)

)]

=

N∑

i=1

Ep(z,v|x)

[
log

G∏

g=1

(
p(xi|zi, vig = 1)p(vig = 1)

)vig
]

=

N∑

i=1

G∑

g=1

Ep(z,v|x)

[
vig log

(
p(xi|zi, vig = 1)p(vig = 1)

)]

=

N∑

i=1

G∑

g=1

Ep(v|x)

[
vig

]
Ep(z|x,v)

[
log
(
p(xi|zi, vig = 1)p(vig = 1)

)]

=

N∑

i=1

G∑

g=1

tigEp(z|x,v)

[
log
(
p(xi|zi, vig = 1)p(vig = 1)

)]
,

with tig ∝ p(xi|vig = 1)p(vig = 1). Therefore, we have:

Q(θ,θ(q−1)) =

N∑

i=1

G∑

g=1

tigEp(z|x,v)

[
const − 1

2
ln |ψg| −

1

2

(
xi − ηg −Λgzi

)T
ψ−1
g

(
xi − ηg −Λgzi

)]
.

If we get rid of the term const and develop:

Q(θ,θ(q−1)) = −
1

2

N∑

i=1

G∑

g=1

tigEp(z|x,v)

[
ln |ψg|+

(
xi − ηg −Λgzi

)T
ψ−1
g

(
xi − ηg −Λgzi

)]
.

The EM-algorithm for the MFA model is as follows for iteration q (see Appendix 2.4.2 for
more details):

(ƺ) FǂǋǌǍ E-ǌǍƾǉ Compute t(q)ig = Ep(v|x)

[
vi|xi

]
for each data point xi, given Λ

(q−1) and
ψ(q−1).

(ƻ) SƾƼǈǇƽ E-ǌǍƾǉ Compute Ep(z|x,v)

[
zi|xi,vi

]
and Ep(z|x,v)

[
ziz

T
i |xi,vi

]
for each data

point xi, given Λ
(q−1)
g and ψ(q−1)

g .

E[zi|xi,vi] = t
(q)
ig × (Λ(q−1)

g

T
(Λ(q−1)

g Λ
(q−1)
g

T
+ψ(q−1)

g)−1)(xi − η
(q−1)
g)

= t
(q)
ig βg(xi − η

(q−1)
g),

37

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

with βg = Λ
(q−1)
g

T
(Λ(q−1)

g Λ
(q−1)
g

T
+ψ

(q−1)
g)−1.

E[ziz
T
i |xi,vi] = t

(q)
ig (I − βgΛ

(q−1)
g + βg(xi − η

(q−1)
g)(xi − η

(q−1)
g)TβTg).

(Ƽ) M ǌǍƾǉ We update the parameters as follows:

η(q)
g =

∑N
i=1 t

(q)
ig

(
xi −Λ

(q−1)
g E

[
zi|xi,v

(q)
])

∑N
i=1 t

(q)
ig

,

Λ
(q)
g =

∑N
i=1 t

(q)
ig

(
(xi − η

(q)
g)E

[
zi|xi,v

]T
E
[
ziz

T
i |xi,v

(q)
]−1
)

∑N
i=1 t

(q)
ig

,

ψ(q)
g =

∑N
i=1 t

(q)
ig

(
(xi − η

(q)
g)(xi − η

(q)
g)T − (xi − η

(q)
g)E

[
zi|xi,v

(q)
]T

Λ
(q)
g

T
)

∑N
i=1 t

(q)
ig

,

π(q)
g =

1

N

N∑

i=1

t
(q)
ig .

2.2.7 Specific MFA models
Mixture of factor analysers are widely used to perform clustering and dimension reduction
at the same time. In the last decades, many models have been built and based on the
model presented in Section 2.2.5. As mentioned above, Ghahramani and Hinton (1997)
propose an EM-algorithm for a very similar model, where ψg = ψ, which makes the model
more parsimonious. The mixture of probabilistic principal component analyis (Tipping and
Bishop, 1999b) is also a special case of the mixture factor analysers, where ψg = ψ and
ψ = σI so that the noise covariance is considered isotropic. A general framework that
includes all these models was proposed in McNicholas and Murphy (2008). The authors
created a family of models known as the parsimonious Gaussian mixture model (PGMM)
family. The PGMM family is composed of 8 models that are coded with three letters that
take the value “U” (unconstrained) or “C” (constrained). The first letter refers to the loading
matrix, which can be common to all groups Λg = Λ (C..) or not (U..). The second letter
indicates if the noise covariance matrix is common to all groups ψg = ψ (.C.) or not (.U.).
The third letter refers to the noise covariance matrix, which can be isotropic ψg = σgI (..C)
or not (..U). For example, the mixture of PPCA is the model UCC, because the loading
matrices are different for each group (U..), the noise covariance is isotropic (..C) and common
to all groups (.C.).

The authors of Baek et al. (2010) proposed the MCFA (Mixture of Common Factor
Analysers) and constrained the model so that the parameters of the resulting GMM share
a common matrix. That is to say, in the standard MFA we have:

µg = ηg and Σg = ΛgΛ
T
g +ψg;

but in the MCFA we have:

38

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

Model Name covariance structure # of parameters
MFA-M ΛgΛ

T
g +ψg (G− 1) +GD +GJ +GR(J − (R− 1)/2) +GJ

MFA-G ΛgΛ
T
g +ψ (G− 1) +GD +GJ +GR(J − (R− 1)/2) + J

PPCA ΛgΛ
T
g + σI (G− 1) +GD +GJ +GR(J − (R− 1)/2) + 1

MCFA ADgA
T +ψ (G− 1) + JR−R(R+ 1)/2 +GR+GR(R+ 1)/2 + J

Table 2.2 – Number of parameters for different MFA models. MFA-G corresponds to MFA described
in Ghahramani and Hinton (1997) and MFA-M corresponds to the MFA described in G.J. McLachlan and Bean

(2003).

µg = Aζg and Σg = ADgA
T +ψ,

such that A is a J ×R orthonormal matrix (ATA = I), ζg is a R-dimensional vector, Dg is
an R × R positive definite symmetric matrix and ψ a diagonal J × J matrix. This model
aims both to lower the complexity of the MFA model and to ease the visualisation of the
clustered data.

2.2.8 Model selection
The BIC criterion applies to Factor Analyis models. As in Section 2.1, it is equal to the
penalised quantity:

BIC = −2 log p(x|θ̂) + ν logN.

and we refer to Table 2.2 to get the number of parameters ν of some of the FA models
mentioned above.

2.2.9 Conclusion
In this section, we have reviewed the basics for factor analysis and the mixture of factor
analysers. These notions will be helpful in the contribution of Chapter 5 where we will
study the Deep GMM, an approach that consists in stacking MFA layers in a deep learning
fashion.

2.3 Model-based co-clustering .

2.3.1 Introduction
Finite Mixture Models (as described in Section 2.1) are a popular tool for performing clus-
tering. Since the clustering algorithms bring out groups of rows into the data set, they also
highlight a structure inherent to the data. However, the recent “big-data” phenomenon has
greatly increased the number of features, leading to the emergence of high-dimensional data
sets. The analysis of a cluster relies on the representative of the cluster (mean, mode,…).
However, in high-dimensional contexts, this representative is described by a large number of
features that makes the clustering more difficult to interpret and makes the summary of the
data set less useful. From this consideration comes the need to also “summarise” the fea-
tures, which can be done by gathering them into clusters in parallel with the usual clustering
of observations. Co-clustering methods seem to be a good option for performing this task
because they perform clustering of rows and columns simultaneously. Figure 2.2 illustrates
well the concept of co-clustering (Govaert and Nadif, 2013). In Image (1), a binary dataset

39

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

criterion such as the ICL criterion (Biernacki et al., 2000) can be used for model selec-
tion purposes including the choice of the number of co-clusters. This technique has proved
its efficiency in the co-clustering of several types of data: continuous (Nadif and Govaert,
2008), nominal (Singh Bhatia et al., 2017), binary (Laclau et al., 2017), ordinal (Jacques
and Biernacki, 2018) and functional data (Slimen et al., 2018; Bouveyron et al., 2018).

2.3.2 The Latent Block Model
The Latent Block Model (LBM) is a widely used model to perform co-clustering (Govaert and
Nadif, 2013). Basically, it assumes that all elements of a block follow the same distribution.
In this section, the assumptions used for the LBM are defined and the mathematical details
are given.

Consider the data matrix x = (xij)i,j , where i ∈ {1, . . . , N} is the row (observation)
index and j ∈ {1, . . . , J} is the column (feature) index. It is assumed that there are G

row-clusters and H column-clusters that correspond to a partition v = (vig)i,g of the rows,
and a partition w = (wjh)j,h of the columns with 1 ≤ g ≤ G and 1 ≤ h ≤ H, where vig is
equal to 1 if row i belongs to cluster g or to 0 otherwise. Similarly, wjh is equal to 1 when
column j belongs to cluster h, and to 0 otherwise.

The first LBM assumption is that the univariate random variables xij are conditionally
independent given the row and column partitions v and w. Therefore, the conditional
probability density function of x given v and w is written:

p(x|v,w;α) =
∏

i,j,g,h

p(xij ;αgh)
vigwjh , (2.51)

where α = (αgh)g,h are the distribution parameters of block (g, h).
The second LBM assumption is that the latent variables v and w are independent so

p(v,w;π,ρ) = p(v;π)p(w;ρ) with:

p(v;π) =
∏
i,g

π
vig
g and p(w;ρ) =

∏
j,h

ρ
wjh

h ,

where πg = p(vig = 1) and ρh = p(wjh = 1). This implies that, for all i, the distribution
of vi is the multinomial distribution M(π1, . . . , πG) and it does not depend on i. Similarly,
for all j, the distribution of wj is the multinomial distribution M(ρ1, . . . , ρH) and it does
not depend on j.

From these considerations, the LBM parameter is defined as θ = (π,ρ,α), where π =
(π1, . . . , πG) and ρ = (ρ1, . . . , ρH) are respectively the rows and columns mixing proportions.
Therefore, if V and W are the sets of all possible labels v and w, the probability density
function of x is written:

p(x;θ) =
∑

(v,w)∈V×W

∏

i,g

πvigg

∏

j,h

ρ
wjh

h

∏

i,j,g,h

p(xij ;αgh)
vigwjh . (2.52)

2.3.3 Inference of the Latent Block Model
As explained in Section 2.1, the EM-algorithm is a well-known method for estimating pa-
rameters with latent variables in the model. In the expectation step, the EM algorithm
requires computing the auxiliary function which is the expectation of the complete data

41

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

log-likelihood. In the Latent Block Model framework, the complete data log-likelihood can
be written as follows:

lc(θ;x,v,w) = log p(x,v,w;θ)

= log p(x|v,w) + log p(v) + log p(w)

=
∑

i,j,g,h

log p(xij |vig, wjh;θ)vigwjh

∑

i,g

log p(vig;θ)vig
∑

j,h

log p(wjh;θ)wjh .

(2.53)

From Equation (2.53), we can write the auxiliary function Q(θ,θ(q−1)) as follows:

Q(θ,θ(q−1)) =
∑

i,g

p(vig = 1|x;θ(q−1)) logπg+

∑

j,h

p(wjh = 1|x;θ(q−1)) log ρh+

∑

i,j,g,h

p(vigwjh = 1|x;θ(q−1)) log p(xij |vigwjh = 1).

(2.54)

This expression contains the probability p(vigwjh = 1|x;θ(q−1)) which needs to consider
all possible values for vi′ andwj′ with i′ 6= i and j′ 6= j. The E-step would require calculation
of GN × HJ terms: for example, if G = 2, H = 2, N = 20 and J = 20; each E-step of
the EM algorithm would need to compute 220 × 220 ≈ 1012 terms, which is not feasible.
In 2.3.3.a and 2.3.3.b, we describe two variants of the EM algorithm to tackle this issue.

2.3.3.a Variational EM algorithm
In Nadif and Govaert (2008), the authors propose using a variational approximation for
the distribution p(v,w|x;θ(q−1)). Let us consider a free distribution q(v,w). Similar to
Equation (2.70), we can write the observed data log-likelihood as the sum of two terms:

lo(θ;x) log p(x;θ) = L(q, θ) + KL(q||p), (2.55)

where

• L(q, θ) represents the expectation of the complete data log-likelihood with respect to
the distribution q(v,w):

Eq(v,w)

[
log
(p(x,v,w;θ)

q(v,w)

)]
, (2.56)

• KL(q||p) is the KL divergence between q(v,w) and p(v,w|x;θ).

E-ǌǍƾǉ Once again, since KL(q||p) is greater or equal to 0, the first term of the RHS of
Equation (2.55) is a lower bound of the log-likelihood, and it is equal to the log-likelihood
if and only if the distribution q(v,w) is equal to the distribution p(v,w|x;θ). However,
as mentioned above, this term is not tractable. In variational inference, the mean-field
approximation assumes that:

42

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

q(v,w) = q(v)q(w).

This results in an independence of the partitions given the data. Therefore, the lower bound
to maximise at the E-step is :

L(q,θ) =
∑

i,g

t
(q)
ig logπg +

∑

j,h

s
(q)
jh log ρh +

∑

i,j,g,h

t
(q)
ig s

(q)
jh log p(xij |αgh)

−
∑

i,g

t
(q)
ig log t(q)ig −

∑

j,h

s
(q)
jh log s(q)jh , (2.57)

where

t
(q)
ig =

π
(q−1)
g

∏H
h=1 f(xi;α

(q−1)
gh)

∑G
g′=1 π

(q−1)
g′

∏H
h=1 f(xi|α

(q−1)
g′h)

and (2.58)

s
(q)
jh =

ρ
(q−1)
h

∏G
g=1 f(xi;α

(q−1)
gh)

∑H
h′=1 ρ

(q−1)
h′

∏G
g=1 f(xi|α

(q−1)
gh′)

. (2.59)

M-ǌǍƾǉ The M-step consists in updating the co-cluster parameters θ(q) to maximise the
complete data log-likelihood. Once again, the Lagrange multipliers are used to update the
row mixing proportions by:

π(q)
g =

1

N

N∑

i=1

t
(q)
ig , (2.60)

and the column mixing proportions by:

ρ
(q)
h =

1

J

J∑

j=1

s
(q)
jh . (2.61)

Likewise, the parameters α(q) are updated by finding the root of:

N∑

i=1

G∑

g=1

J∑

j=1

H∑

h=1

t
(q)
ig s

(q)
jh

∂ log fgh(xij ;αgh)
∂α

. (2.62)

Let us recall that the parameters α depend on the type of the data matrix x. For instance,
with Gaussian data we have α = (µ,Σ).

CǈǇǏƾǋǀƾǇƼƾ The term of Equation (2.56) is a lower bound of the log-likelihood, whose
relevancy depends on the KL divergence which cannot be estimated. Therefore, we need to
know if:

• the parameters θ that maximise (2.56) are close to the parameters that maximise the
log-likelihood,

• the maximum value of (2.56) is close to the maximum of the log-likelihood.

43

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

For classical finite mixture models, Keribin (2009) lists several results regarding the matter.
Wang and Titterington (2004) show that, in the context of FMM with simple exponential
distribution family, the estimator obtained through the mean-field estimator converges to the
value of the true parameters. However, Humphreys and Titterington (2000) show that the
approximation is poor when the number of observations is not high enough. These experi-
mental results and the convergence of the partition shown in Mariadassou and Matias (2015)
let us think that the mean-field approximation will yield satisfying results asymptotically.

Nǎǆƻƾǋ ǈƿ ǂǍƾǋƺǍǂǈǇǌ The VEM-algorithm is deterministic and will increase the approx-
imation of the lower bound of the log-likelihood. To be able to know when to stop the
algorithm, the user should fix a threshold ǫ, and the algorithm is stopped whenever the
difference between this approximation at iteration q and at iteration q − 1 is lower than
ǫ. In practice, users also fix a maximum number of iterations equal to nb.iter so that the
algorithm is stopped when q = nb.iter even if the difference is not lower than ǫ. We denote
the iteration in which one of the two conditions is satisfied as q.final. The final estimation
of the partitions v̂ (or ŵ) is equal to v(q.final) (or w(q.final)) and the final estimation of the
parameters θ̂ is θ(q.final).

CǈǇƼǅǎǌǂǈǇǌ ǈǇ VEM ƺǅǀǈǋǂǍǁǆ The mean-field variational approaches have many ad-
vantages. First, the computation of t(q)ig and s

(q)
jh is easy. Second, the VEM algorithm

converges fast to a local maximum. The drawback of this deterministic approach is that it
is strongly dependent on the initialisation of the algorithm. Moreover, a stationary point
in this algorithm can only be a stationary point in the log-likelihood if the model satisfies
the conditions of the variational approximation. This can be true in some asymptotical
conditions, but it is not always the case with finite distance. In Keribin et al. (2010), the
authors propose the SEM-Gibbs algorithm which simulates the density p(v,w|x;θ) using a
Gibbs sampler (Gelfand and Smith, 1990) instead of approaching it.

2.3.3.b Stochastic EM-Gibbs algorithm
The SEM-Gibbs algorithm is another option to tackle the difficulties regarding the computa-
tion of p(vigwjh = 1|x;θ(q−1)). In the VEM algorithm of section 2.3.3.a, this density is ap-
proximated. With the SEM-Gibbs algorithm, another strategy is considered. It aims at esti-
mating the partitions (v,w) using a Gibbs sampler. The Gibbs sampler consists in sampling
v
(q)
ig and w(q)

jh according to the quantities p(v(q)ig |x,w(q−1);θ(q−1)) and p(w(q)
jh |x,v

(q);θ(q−1))
respectively. Therefore, we repeat the following Expectation and Maximisation steps nb.iter
times.

E-ǌǍƾǉ The estimation step is replaced by the generation of partitions through a Gibbs
sampler. So the algorithm repeats n.iter.gibbs times:

• Sample the row partitions vi for all i ∈ {1, . . . , N}:

v
(q)
i ∼ M(1, t

(q)
i),

with t(q)i a G-dimensional vector such that:

t
(q)
ig =

π
(q−1)
g

∏H
h=1 f(xi;α

(q−1)
gh)

∑G
g′=1 π

(q−1)
g′

∏H
h=1 f(xi|α

(q−1)
g′h)

.

44

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

• Sample the column partitions wj for all j ∈ {1, . . . , J}:

w
(q)
j ∼ M(1, s

(q)
j),

with s(q)j a H-dimensional vector such that:

s
(q)
jh =

ρ
(q−1)
h

∏G
g=1 f(xi;α

(q−1)
gh)

∑H
h′=1 ρ

(q−1)
h′

∏G
g=1 f(xi|α

(q−1)
gh′)

.

In practice, Keribin et al. (2010) finds that a unique iteration of this step is enough. There-
fore, it is recommended to choose n.iter.gibbs = 1 to fasten the algorithm.

M-ǌǍƾǉ The M-step consists in updating the co-cluster parameters θ(q) to maximise the
complete data log-likelihood. Once again, the Lagrange multipliers are used to update the
row mixing proportions by:

π(q)
g =

1

N

N∑

i=1

v
(q)
ig , (2.63)

and the column mixing proportions by:

ρ
(q)
h =

1

J

J∑

j=1

w
(q)
jh . (2.64)

The parameters α(q) are also updated by finding the root of:

N∑

i=1

G∑

g=1

J∑

j=1

H∑

h=1

v
(q)
ig w

(q)
jh

∂ log fgh(xij ;αgh)
∂α

. (2.65)

CǈǇǏƾǋǀƾǇƼƾ For a sufficiently large number of iterations, the samples obtained can be
considered as a realisation of the posterior p(v,w|x;θ(q−1)). However, the estimations
of the partitions and parameters at each iteration q fluctuate around the values of the
built Markov Chain after several iterations. We need to make sure that a sufficiently high
number of iterations nb.burnin occur before regarding samples as realisations of the target
distribution. This is referred to as the “burn-in period”. In addition, the final estimation of
the parameters θ̂ is not θ(nb.iter) but it is equal to the mean (or the mode) of the samples over
the last nb.after.burnin iterations. The Gibbs sampler is then executed for nb.final.gibbs
to sample v and w with θ fixed to θ̂. The final estimations v̂ and ŵ are the modes of this
chain. To summarise this discussion, we have:

nb.iter = nb.burnin+ nb.after.burnin,

where we must ensure that nb.burnin and nb.after.burnin are high enough to have a correct
estimation θ̂. In addition, the Gibbs sampler is run nb.final.gibbs times in order to estimate
the partitions.

45

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

results wiithout it.

CǈǇƼǅǎǌǂǈǇǈǇ Ǎǁƾ SEM-Gǂƻƻǌ ƺǅǀǈǋǂǍǁǆ The SEM-Gibbs algorithm is easy to implement
and is less sensitive to the initialisation than the VEM-algorithm. In addition, it is less likely
to find spurious solutions (Keribin et al., 2010). However, it requires the user to choose the
right number of iterations to correctly estimate the parameters θ.

2.3.4 Model Selection
In the previous Section, we have presented the methods to estimate the parameters and
partitions of the LBM. The number of row-clusters G and column-clusters H were assumed
to be known. Similar to Section 2.1.5, we need a criterion to choose the adequate (G,H).

The BIC criterion is widely used for model-based clustering. However, it requires com-
puting the log-likelihood p(x; θ̂), which is not tractable in the context of the LBM (see
Section 2.3.3). In Keribin et al. (2013), the authors develop an asymptotic approximation
of the ICL for the LBM that is written as follows:

ICL-BIC(G,H) = log p(x, v̂, ŵ; θ̂)

−
1

2
(G− 1) logN −

1

2
(H − 1) log J −

1

2
ν ×GH log(NJ), (2.66)

where ν is the number of components of αgh. We obtain a criterion based on the penalization
by three terms of the complete data log-likelihood. The first one is due to the row-clusters,
the second one is due to the column-cluster and the last one regards the parameters of each
block. We will use this approximation in this thesis.

2.3.5 Conclusion
In this section, we have detailed the Latent Block Model, which is a model-based approach
for co-clustering. Contrary to the MFA (Section 2.2), the LBM does not assume a latent
representation of the data in a lower dimension. However, gathering the variables can be seen
as a way of reducing the dimension because, once the co-clustering is performed, the row-
clusters are represented by the parameters of each column-cluster but not by the parameters
of each column.

The notions reviewed here will be useful for contributions of Chapters 3 and 4. Until
now, we have defined the model in a generic way where α represents the parameters of a
distribution as in the case of Gaussian data, αgh = (µgh,Σgh). However, data sets are often
made of different types of data (count, ordinal, functional, and so on…). Such data sets are
referred to as “mixed data sets”. In chapter 3, we extend the LBM so that it is able to take
into account the mixed data. In chapter 4, we apply the LBM to count data in the specific
context of textual data, which represent a challenge because they are high-dimensional and
sparse. In this contribution, we use the Poisson distribution with constrained parameters to
address these particularities.

47

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

2.4 Appendices .

2.4.1 Proof that the EM-algorithm causes the log-likelihood to increase
We introduce an arbitrary distribution q(v) defined over the latent variables space. In
addition, we define the functional L(q, θ) as follows:

L(q, θ) =
∑

v∈V

q(v) log
[p(x,v;θ)

q(v)

]
. (2.67)

We can write:

L(q, θ) =
∑

v∈V

q(v) log
[p(x,v;θ)

q(v)

]

=
∑

v∈V

q(v) log
[p(v|x;θ)p(x;θ)

q(v)

]

=
∑

v∈V

q(v) log
[p(v|x;θ)

q(v)

]
+ log p(x;θ)

∑

v∈V

q(v)

︸ ︷︷ ︸
=1

. (2.68)

Now, we define the Kullback-Leibler divergence KL(q||p) between q(v) and the posterior
distribution p(v|x;θ) as follows:

KL(q||p) =
∑

v∈V

q(v) log
[q(v)

p(v|x;θ)

]
. (2.69)

Therefore, from Equation (2.68), for any distribution q(v) the following decomposition holds:

log p(x;θ) = L(q, θ) + KL(q||p). (2.70)

The KL divergence satisfies KL(q||p) ≥ 0, with equality, if and only if q(v) = p(v|x;θ). In
other words, L(q, θ) is a lower bound of log p(x;θ).

Let us consider the steps of the EM-algorithm. In the E-step, the lower bound L(q, θ(q−1))
is maximised with respect to q(v) while holding θ(q−1) fixed. From Equation (2.70), we note
that the value of log p(x;θ) does not depend on q(v) and, consequently, the largest value
of L(q,θ(q−1)) will occur when the KL divergence KL(q||p) is equal to 0, i.e., when q(v)
is equal to the posterior distribution p(v|x;θ(q−1)). If we substitute q(v) by p(v|x;θ(q−1))
into Equation (2.67), we see that after the E-step, the lower bound takes the form:

L(q, θ) =
∑

v∈V

p(v|x;θ(q−1))p(x,v;θ)−
∑

v∈V

p(v|x;θ(q−1))p(v|x;θ(q−1))

= Q(θ,θ(q−1))−
∑

v∈V

p(v|x;θ(q−1))p(v|x;θ(q−1)). (2.71)

It can be noted that the second term of Equation (2.71) is independent of θ; so, the lower
bound can be written:

L(q,θ) = Q(θ,θ(q−1)) + const. (2.72)

48

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

In the M-step, the distribution q(v) is held fixed, and we maximise Q(θ,θ(q−1)) with
respect to θ. From Equation (2.71), we see that maximising the auxiliary function is equiv-
alent to maximising L(q, θ) with respect to θ. This will cause the lower bound to increase
unless it is at a maximum already. After the parameter θ is updated to θ(q), the posterior
distribution p(v|x;θ(q)) is no longer equal to the distribution q(v) since it was defined on
the parameter θ(q−1). Therefore, the KL divergence is no longer equal to zero. The next
E-step will change q(v) so that the KL is null, and so forth again. Both the E and M steps
of the EM algorithm increase the value of a bound on the log-likelihood, and the EM steps
change the model parameters in such a way as to cause the log-likehood to increase (or
remain unchanged in case it is at a maximum already).

2.4.2 EM-algorithm computations for MFA
We focus on parameters of cluster g:

Qg = −
1

2

N∑

i=1

tigEp(z|x,v)

[(
xi − ηg −Λgzi

)T
ψ−1
g

(
xi − ηg −Λgzi

)
+ ln |ψg|

]

= −
1

2

N∑

i=1

tigEp(z|x,v)

[
xTi ψ

−1
g zi − x

T
i ψ

−1
g ηg − x

T
i ψ

−1
g Λgzi−

ηTg ψ
−1
g zi + ηTg ψ

−1
g ηg + ηTg ψ

−1
g Λgzi−

zTi Λ
T
g ψ

−1
g xi + z

T
i Λ

T
g ψ

−1
g ηg + z

T
i Λ

T
g ψ

−1
g Λgzi + ln |ψg|

]
.

To the blue terms, we apply the trace trick:

xTi ψ
−1
g zi = tr(ψ−1

g zix
T
i),

ηTg ψ
−1
g ηg = tr(ψ−1

g ηgη
T
g) and

zTi Λ
T
g ψ

−1
g Λgzi = tr(ΛTg ψ

−1
g Λgziz

T
i).

The terms in orange, red and violet are scalars, so :

xTi ψ
−1
g ηg + ηTg ψ

−1
g zi = 2xTi ψ

−1
g ηg,

zTi ψ
−1
g Λgzi + z

T
i Λ

T
g ψ

−1
g zi = 2zTi ψ

−1
g Λgzi and

ηTg ψ
−1
g Λgzi + z

T
i Λ

T
g ψ

−1
g ηg = 2ηTg ψ

−1
g Λgzi.

Therefore, we have:

Qg = −
1

2

N∑

i=1

tigEp(z|x,v)

[
tr(ψ−1

g zix
T
i)− 2xTi ψ

−1
g ηg−

2xTi ψ
−1
g Λgzi + tr(ψ−1

g ηgη
T
g)+

2ηTg ψ
−1
g Λgzi + tr(ΛTg ψ

−1
g Λgziz

T
i) + ln |ψg|

]
.

49

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

We apply the expectation to the concerned terms. For convenience, we note Ep(z|x,v) as E:

Qg = −
1

2

N∑

i=1

tig

(
tr(ψ−1

g zix
T
i)− 2xTi ψ

−1
g ηg−

2zTi ψ
−1
g ΛgE

[
zi|xi,v

]
+ tr(ψ−1

g ηgηTg)+

2ηTgψ
−1
g Λgzi + tr(ΛTgψ

−1
g ΛgE

[
ziz

T
i |xi,v

]
) + ln |ψg|

)
.

MƺǑǂǆǂǌƺǍǂǈǇ ǈƿ Qg ǐ.ǋ.Ǎ. ηg

∂Qg

ηg
=

N∑

i=1

tig

(
ψ−1
g zi − ψ−1

g ηg − ψ−1
g ΛgE

[
zi|xi,v

])
,

∂Qg

∂ηg
= 0 ⇐⇒ ηg =

∑N
i=1 tig

(
xi −ΛgE

[
zi|xi,v

])

∑N
i=1 tig

.

MƺǑǂǆǂǌƺǍǂǈǇ ǈƿ Qg ǐ.ǋ.Ǎ. Λg

∂Qg

∂Λg

=

N∑

i=1

tig

(
ψ−1
g (xi − ηg)E

[
zi|xi,v

]T
−

ψ−1
g ΛgE

[
ziz

T
i |xi,v

]T
)
.

Note that E
[
ziz

T
i |xi,v

]T
= E

[
ziz

T
i |xi,v

]
. So, we have:

∂Qg

∂Λg

= 0 ⇐⇒ Λg =

∑N
i=1 tig

(
(xi − ηg)E

[
zi|zi,xi,v

]T
E
[
ziz

T
i |xi,v

]−1
)

∑N
i=1 tig

.

MƺǑǂǆǂǌƺǍǂǈǇ ǈƿQg ǐ.ǋ.Ǎ. ψ−1
g For convenience, we derive with respect to ψ−1

g and not with
respect to ψg. Favorably, the term ψg is going to appear in the expression of ∂Qg

∂ψ
−1
g

.

∂Qg

ψ−1
g

= −
1

2

N∑

i=1

tig

(
(xi − ηg)(xi − ηg)

T − 2(xi − ηg)E
[
zi|xi,v

]T
ΛTg+

ΛgE
[
ziz

T
i |xi,v

]T
ΛTg − ψg

)
.

Let us focus on the blue term. From the maximisation of Qg w.r.t. Λg, we have:

N∑

i=1

tigΛgE
[
ziz

T
i |xi,v

]T
=

N∑

i=1

tig(xi − ηg)E
[
zi|xi,v

]T
,

50

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

St
at
e-
of
-th

e-
ar
t

therefore, by replacing it in ∂Qg

ψ
−1
g

:

∂Qg

ψ−1
g

= −
1

2

N∑

i=1

tig

(
(xi − ηg)(xi − ηg)

T − (xi − ηg)E
[
zi|xi,v

]T
ΛTg − ψg

)
.

Therefore, we get:

∂Qg

∂ψ−1
g

= 0 ⇐⇒ ψg =

∑N
i=1 tig

(
(xi − ηg)(xi − ηg)

T − (xi − ηg)E
[
zi|xi,v

]T
ΛTg

)

∑N
i=1 tig

.

51

M
LB

M
M
LB

M
M
LB

M
M
LB

M

3
Multiple Latent Block Model for mixed data

3.1 Introduction . 54
3.2 Multiple Latent Block Model . 55

3.2.1 Definition of the Multiple Latent Block Model 55
3.2.2 Model Inference 57

3.3 Modeling of the different types of data . 60
3.3.1 Modeling nominal data 61
3.3.2 Modeling ordinal data 61
3.3.3 Modeling continuous data 62
3.3.4 Modeling count data 62

3.4 Numerical experiments on artificial data . 63
3.4.1 Simulation settings 63
3.4.2 Parameter and partition estimation 65
3.4.3 Model selection 67
3.4.4 More challenging data sets 68
3.4.5 Missing data 69
3.4.6 Conclusion 69

3.5 Real data applications . 70
3.5.1 Co-clustering of count and continuous data 70
3.5.2 Co-clustering of ordinal and nominal data 72

3.6 Analysing a quality of life survey in oncology - Use case . 75
3.6.1 Data set 76
3.6.2 Application to the survey dataset 77

3.7 Conclusion and perspectives . 81

53

M
LB

M
M
LB

M
M
LB

M
M
LB

M

3.1 Introduction .

In this chapter, we present our work published in Selosse et al. (2020b) and Selosse et al.
(2019). In Section 2.3, we presented the Latent Block Model approach, which has proved its
efficiency in co-clustering several types of data separately: continuous (Nadif and Govaert,
2008), nominal (Singh Bhatia et al., 2017), binary (Laclau et al., 2017), ordinal (Jacques and
Biernacki, 2018), and functional (Slimen et al., 2018; Bouveyron et al., 2018). However, this
model as it was defined does not allow using different types of data in the data sets. Indeed,
we saw that a block contains cells xij that are assumed to be drawn from a distribution of
parameter αgh. If the column-cluster corresponding to a block gathers features of different
types, the cells of this block will be different, which makes impossible the assumption they
were drawn from the same distribution. In this chapter, we present an extension of the Latent
Block Model which permits taking heterogeneous data into account in order to tackle this
difficulty.

Heterogeneous data sets are composed of features of different types. For example, in
medicine, a patient’s file can be composed of images (X-rays), text (medical reports), con-
tinuous data (age, blood test results…), categorical data (social category, pregnancy, drug
addiction…), and even functional data (pulse, blood pressure…). Several clustering frame-
works have been developed to address this particularity. The latent class model (Everitt,
1984) is frequently used. It assumes that the variables are conditionally independent upon
the row-cluster membership. Consequently, the joint probability distribution function (p.d.f)
of the features of different types is obtained by the product of the p.d.f of each individual
feature (see an implementation using Mixtcomp software, Biernacki et al. (2015)). However,
when the variables are inherently correlated in a row-cluster, this model is not suitable. To
overcome this issue, the authors of Marbac et al. (2017) want to conserve standard marginal
distributions but also try to loosen the conditional independence of the variables. For this
purpose, they use copula, which allow definition of both the dependence model and the
type of marginal distributions. The proposed model relies on the main assumption that
each cluster follows a Gaussian copula. However, the authors note that model complexity
increases with the number of variables, which is not suitable in a big-data context. Another
way to address the issues of heterogeneous data is to see some variables as the manifestation
of a latent vector. For example, in McParland and Gormley (2016), the clustMD model
considers continuous and categorical data (nominal and ordinal) and assumes that a cate-
gorical variable is the representation of an underlying latent continuous variable. Then, it
is assumed that the continuous variables (observed and unobserved) follow a multivariate
Gaussian mixture model. Until now, these methods have proposed models for basic data
such as categorical (nominal or ordinal) and continuous data. In Bouveyron et al. (2015),
the authors allow the introduction of more complex data such as functional data or networks
by projecting the data set into a reproducing kernel Hilbert space. Regarding the analysis
of variables, multiblock methods, widely used in Chemistry and Biology, handle data sets
that share the same observations but have variables measured differently. They aim at find-
ing underlying relationships between these data sets. In particular, multiblock component
models use latent variables to summarise the relevant information between and within the
sets (see Smilde et al. (2003) for a complete survey).

However, none of these techniques were developed in a co-clustering framework. To
the best of our knowledge, the only work to co-cluster heterogeneous data is Bouchareb
et al. (2017), which extends the LBM for data sets with continuous and binary data. The
present work goes further by proposing an extension that can take into account four types of
data: categorical, continuous, count and ordinal data. Furthermore, the inference algorithm

54

M
LB

M
M
LB

M
M
LB

M
M
LB

M

can deal with missing values and proposes a way to impute them. Finally, the Integrated
Completed Likelihood (ICL) criterion (Biernacki et al., 2000) is adapted to the proposed
model in order to select the number of row-clusters and column-clusters.

The chapter is organised as follows. Section 3.2 gives an overview of the LBM to help
understanding of this paper. Then, it proposes an extension to a new LBM version that
allows heterogeneous data sets. Section 3.2.2 proposes an algorithm for model inference,
based on a Stochastic Expectation Maximization algorithm coupled with a Gibbs sampler
as presented in Section 2.3.3.b. In Section 3.3, a description of the different types of data
that can be taken into account with this method is given, and formulas for model inference
are presented. Section 3.4 assesses the efficiency of the proposed method on simulated data.
Section 3.5 and Section 3.6 show how the method performs on real data sets. Section 3.7
provides a conclusion.

3.2 Multiple Latent Block Model .

In this section, we detail the Multiple Latent Block Model.

3.2.1 Definition of the Multiple Latent Block Model
Now, consider a matrix x composed of D different sets of features. It has N rows and
J =

∑D
d=1 Jd columns, Jd being the number of features of the d-th set:

x = (x1, ...,xD), with xd = (xdij)i=1,...,N ; j=1,...,Jd .

Here, the idea of “sets” of features is introduced to define the features we potentially
want to group together in a column-cluster, and those we do not want to be together. Thus,
features of a same set can be grouped together in an intra-set column-cluster; features of
different sets cannot. There are two reasons for separating features into different sets: a
technical one and a semantic one. Firstly, two features of different types (e.g. a categorical
feature and a continuous one) are chosen so as not to be modeled with a similar probability
distribution, but rather with a standard distribution suitable to their type. Since it will
be assumed later that all the features in a column-cluster have the same p.d.f., such an
assumption is not suitable for features of different types. This is the reason for this work.
Secondly, the user can consider, for practical reasons, that some features necessarily have to
be separated because it does not make sense to gather them in a same column cluster. This
case is explored in Section 3.6 and the reader can refer Selosse et al. (2019) for more details.
The sets of elements (x1, . . . ,xD) are annotated (xd)d with d ∈ {1, . . . , D}.

In the co-clustering framework, it is assumed that G row-clusters and H = H1+ . . .+HD

column-clusters exist, and that they are inherent to the matrix x. Moreover, the sums and
the products relating to sets of features will be written in subscript by the letter d. Again,
the underlying range of variation will be omitted in the sums and products, thus they are
written

∑
d

and
∏
d

.

Finally, a data set may have missing data. This aspect is specific to this chapter since it
was not taken into account in Section 2.3. To handle this particularity, the dth matrix xd
is said to be made up of two sets x̌d and x̂d, where x̌d is the observed data, and x̂d is the
missing data. An element of xd will be annotated x̌dij if xdij is observed, and x̂dij otherwise.
To model missing values, three main processes exist in data analysis (we refer to Little and
Rubin (1986) for a complete review). The Missing Completely At Random (MCAR) process
assumes that the missing data mechanism is unrelated to the values of any variables: for

55

M
LB

M
M
LB

M
M
LB

M
M
LB

M

of the d-th matrix (1 ≤ d ≤ D), ρd = (ρd1, . . . , ρ
d
Hd

) the corresponding mixing proportions,
and let us introduce the notations w = (wd)d and ρ = (ρd)d.

The MLBM relies on several assumptions. The first one states that the D matrices data
are independent conditional on the row and column partitions, and specifically that, for all
t 6= d the matrix xd does not depend on the column partitions wt:

p(x|v,w) = p(x1|v,w1)× . . .× p(xD|v,wD).

The other assumptions of the MLBM are similar to those of the LBM. Firstly, the univariate
random variables xdij are assumed to be conditionally independent on partitions v and wd.
Thus, the conditional probability function of x given v and (wd)d is expressed as:

p(x|v,w;α) =
∏

i,j,g,h,d

p(xdij ;α
d
gh)

vigw
d
jh ,

where α = (αd)d with αd = (αdgh)g,h is the distribution parameters of block (g, h) of matrix
xd.

Second, the latent variables v,w1, . . . ,wD are assumed to be independent, so: p(v,w;π,ρ) =
p(v;π)

∏
d

p(wd;ρd), where:

p(v;π) =
∏
i,g

π
vig
g and p(wd;ρd) =

∏
j,h

ρdh
wd

jh .

The MLBM parameter is thus defined by θ = (π,ρ,α). Moreover, if V and (W d)d are the
sets of all possible labels v and (wd)d, the probability density function p(x;θ) is written:

p(x;θ) =
∑

(v,(wd)d)∈V×(Wd)d

∏

i,g

πvigg

∏

d

∏

j,h

ρdh
wd

jh
∏

i,j,g,h

p(xdij ;α
d
gh)

vigw
d
jh . (3.1)

Note that so far the type of p(xdij ;αdgh) has not been defined. It will be in Section 3.3, based
on the type of xdij (nominal, ordinal, continuous, ...).

Finally, the MAR assumption in the Latent Block Model indicates that we have:

p(x̂dij |v,w
1, . . . ,wD) =

∏

g,h

p(xdij ;α
d
gh)

vigw
d
jh .

3.2.2 Model Inference
The MLBM inference aims at estimating θ that maximises the observed log-likelihood:

l(θ; x̌) =
∑

x̂

log p(x;θ). (3.2)

We saw in Section 2.3 that the classical EM algorithm cannot be used in the LBM framework.
It is still the case in the MLBM context. We saw that different alternatives to the EM
algorithm exist, such as the variational EM algorithm, the SEM-Gibbs algorithm, and other
algorithms linked to Bayesian inference Govaert and Nadif (2013). The SEM-Gibbs version
is used in this chapter because in addition to being known to be less sensitive to initialization,
it is simple to implement. Furthermore, it easily handles missing values x̂ in x, which is an
important advantage for real data sets.

57

M
LB

M
M
LB

M
M
LB

M
M
LB

M

3.2.2.a SEM-Gibbs algorithm
The SEM-Gibbs algorithm begins with an initialization of partitions, parameters and missing
values v(0),w(0),θ(0), x̂(0). This initialization process is described in more details later. The
following five steps describe the q-th iteration, with q ∈ (1, ..., nbSEM). The choice of the
number of iterations (nbSEM) will also be described later.

(ƺ) SƺǆǉǅǂǇǀ ǋǈǐ ǉƺǋǍǂǍǂǈǇǌ Generate the row partitions with:

p(v
(q)
ig = 1 | x,w(q−1);θ(q−1)) ∝ π(q−1)

g ×
∏

d

tdg(x
d
i.|w

d(q−1)

;αd
(q−1)

), (3.3)

where tdg(xdi.|wd(q−1)
;αd

(q−1)

) =
∏
j,h

f(xdij ;αgh
d(q−1)

)w
d
jh

(q−1)

with xdi. = (xdij)j .

Note that this probability depends on the data type of the d-th matrix through the p.d.f
f(xdij ;αgh

d(q−1)

), whose exact expression will be given in Section 3.3.

(ƻ) FǂǋǌǍ M-ǌǍƾǉ This first M-step consists in updating the co-cluster parameters θ(q) to
maximise the completed log-likelihood (3.2). The row mixing proportions are consequently
updated by:

π
(q)
g = 1

N

∑
i

v
(q)
ig ,

and the parameter αd(q) is updated as well. However, the computations depend on the type
of matrix x features. Section 3.3 describes how to update αd(q) according to the type of
variables.

(Ƽ) SƺǆǉǅǂǇǀ ƼǈǅǎǆǇ ǉƺǋǍǂǍǂǈǇǌ For all d ∈ {1, . . . , D} generate the column partitions for
the d-th matrix xd with:

p(wdjh
(q)

= 1 | xd,v(q);θ(q)) ∝ ρdh
(q)

× sdh(x
d
.j |v

(q);αd
(q−1)

), (3.4)

where sdh(xd.j |v(q);αd
(q)

) =
∏
i,g

f(xdij ;αgh
d(q−1)

)v
(q)
ig with xd.j = (xdij)i.

Here, note that sdh obviously depends on the type of the d-th matrix (see Section 3.3).

(ƽ) SƾƼǈǇƽ M-ǌǍƾǉ In this second M-step, the column mixing proportions are updated by:

ρdh
(q)

= 1
Jd

∑
j

wdjh
(q),

and the parameter αd(q) is also updated depending on the data type of the d-th matrix (see
Section 3.3).

The SEM-Gibbs algorithm is iterated for a given number of iterations. The first part
of these iterations is called the burn-in period, meaning that the parameters of θ are not
yet simulated according to its stationary distribution. Consequently, only iterations that
occurred after this burn-in period are taken into account and are referred to as the sampling
distribution hereafter. While the final estimations of discrete parameters give the mode of
the sampling distribution, the final estimations of the continuous parameters give the mean
of the sample distribution. This leads to a final estimation of θ called θ̂. Then, a sample

58

M
LB

M
M
LB

M
M
LB

M
M
LB

M

of (x̂,v,w) is simulated by iterating steps (A) and (B) of the SEM-Gibbs algorithm with
θ = θ̂. The final partitions (v̂, ŵ) and the missing observations x̂ are estimated using the
mode of their marginal sampled distribution.

Pǋǈǉǈǌƺǅ ƿǈǋ ǂǇǂǍǂƺǅǂǓƺǍǂǈǇ ǈƿ Ǎǁƾ MLBM The algorithm starts with an initialization of
the partitions. Then the mixing proportions and the block parameters are estimated with
regard to these partitions. In the case of D = 1, this initialization can be made randomly or
with the k-means algorithm (Brault, 2014). However, when D > 1, these options often lead
to empty clusters. In this thesis, we propose a new specific initialization strategy was worked
out to tackle this issue. It begins with an initial random initialization. However, for the
first nb.init iterations (such that nb.init is less than or equal nb.burnin), whenever a row-
cluster becomes empty, a percentage of the row partitions is sampled from the Multinomial
distribution M(1/G, . . . , 1/G). Concretely, it means that at iteration q, with q ≤ nb.init, if
a row-cluster does not have any element, a percentage of the rows of matrix v(q) are erased,
and randomly re-sampled. Similarly when a column-cluster becomes empty on the dth

matrix, a percentage of the column partitions is sampled from the multinomial distribution
M(1/Hd, . . . , 1/Hd). Therefore, if a column-cluster of the dth matrix does not have any
element at iteration q (q ≤ I), a percentage of the rows of matrix wd(q) are erased, and
randomly re-sampled.

CǁǈǂƼƾ ǈƿ Ǎǁƾ Ǉǎǆƻƾǋ ǈƿ ǂǍƾǋƺǍǂǈǇǌ As explained in Section 2.3.3.b, the SEM-algorithm
can be slow to reach its stationary state. After having arbitrarily chosen the total number
of iterations, the stability of the algorithm has to be checked. To accomplish that, the
evolution of the parameters through the iterations can simply be graphically analysed. If
the parameters are “stable” between the burn-in period and the last iteration then the
number of iterations was well chosen.

3.2.2.b Model Selection
To select the number of blocks (G,H1, . . . , HD), a model selection criterion must be used.
The most standard ones, like Bayesian Information Criterion (BIC) Schwarz (1978), rely
on penalizing the maximum log-likelihood value l(θ̂; x̌). However, due to the dependency
structure of the observed data x̌, this value is not available.

Alternatively, an approximation of the ICL information criterion Biernacki et al. (2000),
called here ICL-BIC, can be invoked to overcome the previous problem due to the depen-
dency structure in the missing variables (x̌,v,w). The key point is that this latter vanishes
since ICL relies on the completed latent block information (v,w), instead of integrating on it
as it is the case in BIC. In particular, Keribin et al. (2013) detailed how to express ICL-BIC
for the general case of categorical data. It is possible to straightforwardly transpose the
ICL-BIC expression given by these authors by following their work step by step, with no
new technical material. As proved in Robert (2017), the resulting MLBM-specific ICL-BIC
is expressed by:

ICL-BIC(G,H1, . . . , HD) =

log p(x̌, v̂, ŵ; θ̂)− 1
2 (G− 1) logN −

∑
d

1
2 (Hd − 1) log Jd −

∑
d

1
2νdGHd log(N × Jd),

where νd is the number of parameters to estimate for the d-th matrix xd. It will depend on
G, Hd and the type of the variables of xd. Table 3.1 in Section 3.3 gives νd for each type of
distribution.

59

M
LB

M
M
LB

M
M
LB

M
M
LB

M

3.2.2.c Proposal of a heuristic strategy to avoid a greedy search on the ICL-BIC values
In theory, to find the best number of blocks (G,H1, . . . , HD), the co-clustering has to be
executed for each possible value and the result with the highest ICL-BIC has to be re-
tained. Let nG be the number of candidate values for G, while nHd

is the number of
candidate values for Hd, d ∈ {1, . . . , D}. Thus, the number of co-clustering to execute is
nG × nH1

× . . . × nHD
. For example, if D = 3 and the user wants to try 10 values for

G and for each Hd, then it would require execution of 104 co-clusterings. Depending on
the data set, it might take too much time to find the best solution. In practice, a good
set (G,H1, . . . , HD) is found using the following heuristic. Let (Gmin) be the minimum
of the candidate values for G. Then, (Hdmin

)d is the minimum of the candidate values
for (Hd)d. The algorithm starts with the set (Gmin, H1min

, . . . , HDmin
). At iteration p,

the current best set (G,H1, . . . , HD) is called (G,H1, . . . , HD)
(p) and is made of values:

(G(p), H
(p)
1 , . . . , H

(p)
D). At the pth iteration, (D + 1) co-clusterings are performed with sets

(G(p) + 1, H
(p)
1 , . . . , H

(p)
D), (G(p), H(p) + 1, . . . , H

(p)
D),…,(G(p), H

(p)
1 , . . . , H

(p)
D + 1). Then, the

ICL-BIC is computed for each result. If none of the ICL-BIC values are better than for
the set (G,H1, . . . , HD)

(p), the algorithm finishes and (G,H1, . . . , HD)
(p) is the set to use.

Otherwise, the set with the highest ICL-BIC is retained, and becomes (G,H1, . . . , HD)
(p+1).

The algorithm then reiterates the same steps.

3.3 Modeling of the different types of data .

Representing the data as a mathematical object is challenging and requires compromise.
Often the user has to find a trade-off between information loss, interpretability and feasibility
for their representation. The model described here can work with the following types of data:
categorical data (nominal, ordinal, binary), count data, continuous data and document-term
matrices. While the probability distributions for nominal (Multinomial), binary (Bernoulli),
count (Poisson) and continuous (Gaussian) data are widely accepted, several ways to model
textual and ordinal data exist.

The simplest way to represent textual data is as a Document-Term count matrix where
a cell counts how many times a term appears in a document. The Poisson distribution is a
good distribution for modeling this matrix because it models the occurrences of an event (in
this case, the appearances of a word). In a more advanced way, the Document-Term TF-IDF
matrix, counts the times a term appears, but penalises the result if this same term appears in
the other documents Jones (1972). The resulting score is continuous numeric which implies
the usage of the Gaussian distribution. In the latter, the “stop-words” terms are discarded.
However, even with the TF-IDF normalisation, the Gaussian distribution is not the best
way to handle Document-Term matrices Salah et al. (2018). Lots of other Document-Term
matrix types exist, and they have proven their efficiency in many applications Ailem et al.
(2017); Laclau et al. (2017). In this work, a simple Document-Term matrix representation is
considered. When handling Document-Term matrix data only (and no other kind of data),
diagonal LBM or equivalent approaches are more appropriate since the matrix is sparse
Ailem et al. (2017, 2016).

Ordinal data is also a sensitive data type. It may seem very easy to model them as if
they were nominal, but doing that would spoil the order between the different levels, which
is an intrinsic property of this type of data. In some applications, it can be interpreted as
continuous Lubke and Muthén (2004) but in other cases it is not an option. For example,
for clinical surveys, psychologists sometimes spend years defining ordinal scales on abstract

60

M
LB

M
M
LB

M
M
LB

M
M
LB

M

concepts like pain, perception of control or anxiety MaloneBeach and Zarit (1995); Zigmond
and Snaith (1983); it is therefore difficult to project their results onto other scales or into a
continuous space. In the present work, a recent distribution for ordinal data (BOS for Binary
Ordinal Search model, Biernacki and Jacques (2016)) is used. It has proven its efficiency
for modeling and clustering ordinal data. The main advantages of the BOS model are its
parsimony and the interpretability of its parameters.

This section describes the expression of the p.d.f f(xdij ;αd
(q−1)

) and the way to update
αd

(q−1) , in the SEM-Gibbs algorithm, depending on the type of the matrix xd. The super-
scripts (q) and (d) are omitted to simplify the expressions.

3.3.1 Modeling nominal data
A nominal variable is a variable that can take on one of a limited, fixed, number of possible
values. Each of the possible values of a categorical variable is referred to as a level. For
a block (g,h) of nominal data, we consider the multinomial distribution M(1,βgh), where
βgh = (βrgh)r=1,...,m, and

m∑
r

βrgh = 1. Therefore, with this type of data, the MLBM block
parameter αgh is quoted as βgh, and the p.d.f is given by:

f(xij ;βgh) =
m∏
r

(βrgh)
✶(xij=r),

where ✶(xij = r) = 1 if xij = r, and 0 otherwise.
The update of each βrgh is:

βrgh = 1
ngh

∑
i,j

vigwjh✶(xij = 1),

where ngh is the number of elements belonging to block (g, h).
Firstly, note that if two nominal variables do not have the same number of levels m,

then their distribution are not defined on the same support. Consequently, such variables
should be separated into different matrices xd of x. Secondly, the co-clustering we propose is
dependent on the order of the levels. For example two categorical features with m = 3 levels
having respective parameters β = (0.1, 0.7, 0.2) and β = (0.7, 0.2, 0.1) won’t be detected as
two variables following the same distribution. Consequently they won’t be grouped together
in a similar column cluster, whereas a simple switch in the order of the levels could change
this and lead to grouping these variables together. Note that this problem is not specific
to co-clustering and is also present in clustering Biernacki and Lourme (2019). While the
user should be aware that the results are conditional on the encoding of levels, this is not
an issue addressed in this work.

3.3.2 Modeling ordinal data
Ordinal data is a special case of nominal data, where the order between the levels has a
meaning.

In the present work, the BOS model (Biernacki and Jacques, 2016) is chosen to model
ordinal data. It is a probability distribution parameterized by a position parameter µgh ∈
{1, . . . ,m} and a precision parameter τgh ∈ [0, 1]. This distribution has interesting properties
from an interpretation standpoint: it rises from the uniform distribution when τgh = 0 to a
more peaked distribution around the mode µgh when τgh increases, and it reaches a Dirac
distribution at the mode µgh when τgh = 1. It is shown in Biernacki and Jacques (2016) that

61

M
LB

M
M
LB

M
M
LB

M
M
LB

M

the BOS distribution is a polynomial function of τgh with degree m − 1 whose coefficients
depend on the position parameter µgh.

Therefore, with this type of data, the MLBM block parameter αgh is quoted as (µgh, τgh),
and the p.d.f is given by:

f(xij ;µgh, τgh) =
m−1∑
r=0

Cr(µgh, xij)τ
r
gh,

where Cr(µgh, xij) is a constant depending on µgh and xij .
Since BOS inference relies on an EM-algorithm, the update of parameter (µgh, τgh) is

obtained through an EM-algorithm. For further details on this algorithm, see Biernacki and
Jacques (2016). Similarly to the nominal variables case, if two ordinal variables do not have
the same number of levels, they have to be separated into different matrices xd of x.

3.3.3 Modeling continuous data
In the continuous case, the unidimensional Gaussian distribution N (µgh, σ

2
gh) is considered.

Thus, the MLBM block parameter αgh is here (µgh, σgh) and the p.d.f is given by:

f(xij ;µgh, σgh) = exp{ −1
2σ2

gh

(xij − µgh)
2}/
√
2πσ2

gh.

The update of parameters (µgh, σ
2
gh) is:

µgh =
1

ngh

∑

i,j

vigwjhxij and σ2
gh =

1

ngh

∑

i,j

vigwjh(xij − µgh)
2.

3.3.4 Modeling count data
Count variables are modeled by the Poisson distribution. For a block (g,h) of count data,
a Poisson distribution with a specific parametrization is considered: P(ni.n.jδgh), where
ni. =

∑
j

xij and n.j =
∑
i

xij are the number of occurrences in row i and the number of

occurrences in column j. The parameters ni. and n.j are independent of the co-clustering
and are consequently preliminary estimated from the count data matrix. Consequently, the
MLBM parameter αgh are only the parameter δgh, which is the effect of the block (g, h)
Govaert and Nadif (2018). The p.d.f is given by:

f(xij ; δgh) =
1
xij !

e−ni.n.jδgh(ni.n.jδgh)
xij .

The update of each parameter δgh is obtained by:

δgh =
1

ng.n.h

∑

i,j

vigwjhxij ,

where ng. =
∑
i,j

vigxij and n.h =
∑
i,j

wjhxij .

Finally, Table 3.1 summarises the number of parameters ν for each type of data described
above.

62

M
LB

M
M
LB

M
M
LB

M
M
LB

M

Table 3.1 – Number of parameters (ν) of the distribution properties

Data type Distribution αgh ν

Nominal Multinomial βgh = (βrgh)r=1,...,m) (m− 1)

Ordinal BOS (µgh, τgh) 2
Continuous Gaussian (µgh, σgh) 2

Count Poisson (µi, νj , δgh) 1

3.4 Numerical experiments on artificial data .

This section has two goals. The first is to show that the proposed inference algorithm works
appropriately. The second is to evaluate the model selection strategy: the efficiency of the
ICL-BIC criterion in selecting the true numbers of clusters and the ability of the heuristic
search to sparsely explore the space of numbers of clusters.

3.4.1 Simulation settings
Two simulation settings are considered. While they both have the same parameters, the
first is built such that (N = J1 = J2 = J3 = J4 = 100), and the second is built with
(N = J1 = J2 = J3 = J4 = 500).

PƺǋƺǆƾǍƾǋǌ ǌƾǍǎǉ Both settings were simulated with four types of distribution: nomi-
nal (with m = 5 levels), continuous, ordinal (with m = 3 levels), and count data. The
number of blocks was set to (G,H1, H2, H3, H4) = (3, 3, 3, 3, 3). Furthermore, the mixing
row proportions were π = (0.2, 0.3, 0.5) and the mixing column proportions were equal to:
ρ1 = (0.25, 0.3, 0.45), ρ2 = (0.2, 0.35, 0.45), ρ3 = (0.25, 0.35, 0.4), ρ4 = (0.25, 0.35, 0.4).
Table 3.2 details the parameters that were assigned to each block.

Table 3.2 – Value of block parameters. For the count data, parameters are not equal between the first and
second simulations because they depend on the margins.

Nominal m = 5
β1, β2, β3, β4, β5

col-cluster 1 col-cluster 2 col-cluster 3
row-cluster 1 0.05,0.05,0.8,0.05,0.05 0.1,0.25,0.3,0.3,0.05 0.1,0.2,0.4,0.2,0.1
row-cluster 2 0.05,0.1,0.7,0.1,0.05 0.8,0.05,0.05,0.05,0.05 0.4,0.05,0.1,0.05,0.4
row-cluster 3 0.2,0.5,0.2,0.05,0.05 0.8,0.05,0.05,0.05,0.05 0.05,0.8,0.05,0.05,0.05

Continuous
µ, σ

Ordinal m = 5
µ, π

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3
row-cluster 1 100,1 0.5,5 -90,5 3,0.4 1,0.2 3,0.7
row-cluster 2 10,4 -15,1 -95,1 2,0.1 3,0.5 2,0.8
row-cluster 3 -20,1 -30,3 500,4 2,0.5 1,0.8 2,0.2

Count 100
δ × 10−5

Count 500
δ × 10−7

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3
row-cluster 1 1.2 5.5 1.2 4.6 20.5 4.9
row-cluster 2 8.3 5.5 0.5 30.0 20.5 1.6
row-cluster 3 1.3 1.3 3.5 5.5 5.6 14.5

63

M
LB

M
M
LB

M
M
LB

M
M
LB

M

Table 3.3 – Value of the block parameters mean absolute error on simulation with N = Jd = 100 for the
continuous, ordinal and count matrices.

Continuous
µ, σ

Ordinal m = 5
µ, π

Count
δ × 10−5

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3
row-cluster 1 0.01,0.01 0.03,0.02 0.02,0.02 0.00,0.05 0.00,0.03 0.00,0.05 0.16 1.89 1.33
row-cluster 2 0.04,0.02 0.00,0.00 0.00,0.00 0.00,0.04 0.00,0.03 0.00,0.05 0.87 1.97 1.4
row-cluster 3 0.00,0.00 0.01,0.01 0.01,0.01 0.00,0.02 0.00,0.03 0.00,0.03 0.34 0.83 1.06

Table 3.4 – Value of the blocks parameters mean absolute error on simulation with N = Jd = 500 for the
continuous, ordinal and count matrices.

Continuous
µ, σ

Ordinal m = 5
µ, π

Count
δ × 10−7

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3
row-cluster 1 0.2,0.03 0.3,0.09 0.1,0.08 0.00,0.04 0.00,0.03 0.00,0.01 0.1 0.2 0.1
row-cluster 2 0.01,0.02 0.1,0.1 0.1,0.06 0.00,0.02 0.00,0.03 0.00,0.04 0.5 0.1 0.1
row-cluster 3 0.00,0.00 0.01,0.01 0.01,0.01 0.00,0.03 0.00,0.02 0.00,0.03 0.3 0.2 0.3

3.4.2.b Partition estimation
The partition estimation is assessed using the Adjusted Rand Index, referred to as “ARI”
Hubert and Arabie (1985). The ARIs for the row and column partitions, on the two simu-
lated data sets are given in Table 3.5. We see that the co-clustering algorithm succeeds in
finding the true partitions for the rows and columns.

Table 3.5 – Mean (standard deviation) ARIs for two data sets N = 100 and N = 500.

N Rows Categorical Continuous Ordinal Count
100 0.98 (0.09) 0.95 (0.14) 0.98 (0.07) 1 (0.01) 0.98 (0.09)
500 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00)

3.4.3 Model selection
In this section, the ICL-BIC criterion’s efficiency is assessed for choosing the right number
of clusters by row and by column. Furthermore, the heuristic search described in 3.2.2.b is
evaluated. The complexity of the problem should be emphasised here. Usually, criteria such
as BIC or ICL are used to find the right number of clusters for the row partitions only. In
the case of co-clustering, they are extended to find the right number of clusters for the row
partitions and the column partitions. In the present work, it is used to find (D+1) numbers
of clusters (one for the rows, and one for each kind of feature). Mathematically, the search
space is much larger which makes the problem more complex.

EǑǁƺǎǌǍǂǏƾ SƾƺǋƼǁ Table 3.6 presents which sets (G,H1, H2, H3, H4) had the best ICL-
BIC value in the exhaustive search. The number of occurrences indicates how many times the
sets were chosen. Note that the right numbers of clusters (G,H1, H2, H3, H4) = (3, 3, 3, 3, 3)
has been chosen more often for the larger data set with (N = Jd = 500). This result is
consistent because the proposed ICL-BIC is based on asymptotic approximations. For the
data set with (N = Jd = 100), the model with (G,H1, H2, H3, H4) = (3, 3, 3, 3, 3) is only
the fourth one to be chosen. However, the average means of the ARI for the co-clustering
when the model chosen was (G,H1, H2, H3, H4) 6= (3, 3, 3, 3, 3), are equal to (0.94 (0.10),
0.93 (0.08), 0.98 (0.02), 0.98 (0.02), 0.98 (0.02)). This means that when the criterion for
model selection does not find the true model, the algorithm still finds good partitions.

67

M
LB

M
M
LB

M
M
LB

M
M
LB

M

Table 3.6 – Exhaustive search results on 20 simulations results.

N = Jd = 100
(G,H1, H2, H3, H4) 34333 34334 43333 33333 44333 34433 34443 44334 44433

number of occurrences 6 3 3 2 2 1 1 1 1

N = Jd = 500
(G,H1, H2, H3, H4) 33333 33332 33323 43333 34342 32323 33343 34332 34322 44332

number of occurrences 6 3 2 2 2 1 1 1 1 1

Table 3.7 – Heuristic search results on 20 simulations results.

N = Jd = 100
(G,H1, H2, H3, H4) 33333 22223 22233 22234 22243 22244 22334 23223 32223 33334 34334 37334

number of occurrences 5 3 3 1 1 1 1 1 1 1 1 1

N = Jd = 500
(G,H1, H2, H3, H4) 33333 32233 22333 23234 32333

number of occurrences 10 5 3 1 1

HƾǎǋǂǌǍǂƼ ǌƾƺǋƼǁ Table 3.7 presents which sets (G,H1, H2, H3, H4) were chosen by the
heuristic search. Once again, the algorithm works better for the larger data set with (N =
Jd = 500), although the results for (N = Jd = 100) are good too.

SƾƺǋƼǁ ƼǈǆǉǎǍƺǍǂǈǇ Ǎǂǆƾ The simulations were run using a Linux 4.9.0-3-amd64 server,
on Debian 9. For the data set with N = Jd = 100, the exhaustive search took 23 minutes,
while the heuristic search took at most 18 minutes. For the data set with N = Jd = 500, the
exhaustive search lasted 33 hours whereas the heuristic search took at most 2 hours. This
means that in the case of a small data set, it can be interesting to run an exhaustive search,
as it does not take much more time than the heuristic search. However, an exhaustive search
as it was performed in this simulation requires knowledge of the neighborhood of the right
set (G,H1, H2, H3, H4). For a larger data set, the heuristic search is recommended as it is
very efficient and up to 15 times faster than the exhaustive search. Furthermore, we can
expect it to be even more than 15 times faster in case of larger data sets than the ones used
in these simulations.

3.4.4 More challenging data sets
In Section 3.4.1 the parameter settings for the continuous variables generate well separated
clusters since the means are separate and the variances small. Besides, the optimal ARIs
(ARIs obtained while knowing the parameters) in line and in column were always equal to
1. In this section, we change these parameters so that the clusters are not well separated
with regard to the continuous variables. We used the simulated data set of Section 3.4.1
with 100 rows and 400 columns and changed the parameters of the continuous variables.
In each block of the diagonal, we have µ = ǫ and σ = 1. On the other blocks, µ = 0 and
σ = 1 (see Table 3.8). We performed the co-clustering algorithm 20 times for ǫ equals to
0.5 and 0.2. Then, we performed the co-clustering 20 times with the data set made of the
continuous variables only. The optimal ARIs of the data set and the ARIs resulting from the
co-clustering are given in Table 3.9. In this simulation, we see that when the co-clustering
algorithm is performed only on the continuous variables, it does not distinguish the different
blocks well. Indeed, the row-clusters are too mixed. However, when the other variables

68

M
LB

M
M
LB

M
M
LB

M
M
LB

M

Table 3.8 – Mean and Standard deviation for the blocks of continuous variables for the more challenging data
sets cases.

col-cluster 1 col-cluster 2 col-cluster 3
row-cluster 1 ǫ,1 0,1 0,1
row-cluster 2 0,1 ǫ,1 0,1
row-cluster 3 0,1 0,1 ǫ,1

Table 3.9 – ARIs for the more challenging data set case.

optimal ARI Rows ARI Categorical ARI Continuous ARI Ordinal ARI Count ARI

ǫ = 0.5
all variables (1,1,0.89,1,1) 0.96 (0.1) 1 (0) 0.85 (0.11) 0.98 (0.09) 0.96 (0.11)

only continuous (0.86,0.90) 0.69 (0.2) - 0.7 (0.16) - -

ǫ = 0.2
all variables (1,1,0.28,1,1) 1 (0) 0.94 (0.17) 0.19 (0.12) 0.94 (0.16) 1 (0)

only continuous (0.14,0.28) 0 (0.03) - 0 (0.03) - -

(categorical, ordinal and counting) are taken into account, the co-clustering succeeds in
finding the true partitions. In addition, the good estimation of the row partitions obtained
thanks to the non-continuous variables improves the column partitions estimation for the
continuous variables.

3.4.5 Missing data
In this section, we investigate the behavior of the ARIs when missing values are introduced
into the data. Again, we used the data set with 100 rows and 400 columns. We performed
the co-clustering algorithm 20 times on the data set with 10%, 20%, 30%, 50% and 75% of
missing values. Resulting ARIs for row and column partitions are given in Table 3.10. We
see that up to 30% of missing values, the ARI does not changes significantly. However, with
more missing values, the ARI for the partitions reduces.

Table 3.10 – ARIs for a data set with missing values.

ARI type Rows Categorical Continuous Ordinal Counting
Original Simulation 0.98 (0.09) 0.95 (0.14) 0.98 (0.07) 1 (0.01) 0.98 (0.09)

10% NA 1 (0) 1 (0) 0.87 (0.2) 1 (0.01) 1 (0.01)
20% NA 1 (0) 1 (0) 0.88 (0.21) 0.99 (0.01) 0.99 (0.02)
30% NA 0.99 (0.04) 0.98 (0.1) 0.98 (0.07) 0.94 (0.14) 0.87 (0.14)
50% NA 0.59 (0.08) 0.99 (0.01) 0.98 (0.07) 0.93 (0.11) 0.76 (0.18)
75% NA 0.23 (0.13) 0.71 (0.07) 0.77 (0.14) 0.46 (0.08) 0.38 (0.2)

3.4.6 Conclusion
As a conclusion for this simulation study, the SEM-Gibbs algorithm is efficient in estimating
the model parameters and the partitions. Regarding model selection, while we know that
the ICL-BIC criterion leads to a consistent estimation of the number of blocks when the
number of rows and column tends to infinity (see Keribin et al. (2013)), its behavior for
finite sample size remains robust. Moreover, using the proposed heuristic search enables
drastic reduction in computing time without significantly decreasing the performance of the
estimation.

69

M
LB

M
M
LB

M
M
LB

M
M
LB

M

When the continuous variables have poorly separated clusters, the co-clustering succeeds
in finding the true row partitions and the true column partitions of the other variables.

When up to 30% of missing values are introduced, the co-clustering succeeds in finding
the true row and column partitions. When there are more than 30% of missing values, it is
more difficult for the co-clustering to find the true partitions.

3.5 Real data applications .

In this section, two real data sets are considered. The first one concerns the famous
TED talks∗ and contains the transcripts and ratings of TED Talks uploaded to the official
TED.com website until September 21st, 2017. It is a mixed data set because the transcripts
are textual data whereas the ratings are numbers. The second data set is the result of a
survey that Slovakian Statistic students gave to people around them. The responses were
categorical with different numbers of levels and some of them were ordinal.

3.5.1 Co-clustering of count and continuous data
Tǁƾ TED ǍƺǅǄǌ ƽƺǍƺ ǌƾǍ TED is a non-profit organization which posts conferences on-line
for free distribution. The conferences address a wide range of topics, including science, cul-
ture and innovation. The TED talks data set† contains information about 2 467 TED Talks.
This work is focused on their transcripts and their ratings given by the users. The rating
system is particular on this website. A list of fourteen words was defined (beautiful, inspir-
ing, persuasive, fascinating, ok, longwinded, confusing, informative, courageous, ingenious,
funny, obnoxious, unconvincing, jaw-dropping). A user wanting to rate a talk is asked to
choose the three words that best describe the talk.

DƺǍƺ ǌƾǍ ǉǋƾ-ǉǋǈƼƾǌǌǂǇǀ First of all, a couple of TED talks were actually a musical per-
formance. Their transcripts were of the form “(Applause)(Music)(Applause)”, which is
informationless, so these talks were removed from the data set. Then, the other transcripts
were projected into a Document-Term matrix, each cell counting the occurrences of a term
in a talk. It appears that some terms that occurred only once were onomatopoeia such
as “aargh” and “aaaaaaaargh”. These terms were removed: we assumed that these words
do not bring valuable information, and that at the same time, removing them reduces the
dimension of the matrix. The ratings variables were used without any changes: no normal-
ization was performed as a pre-processing. In contrast with the Document-Term matrix,
the ratings matrix is not sparse since only 1% of the values are equal to 0. The mean and
standard deviation of the ratings matrix are equal to 175.2 and 538.2 respectively. The re-
sulting matrix is therefore of dimension (2 464× (40 137 + 14)), in other words, N = 2 464,
J1 = 40 137 J2 = 14. The data set is seen as two matrices of different types (D = 2). The
first one is the Document-Term matrix of the transcripts whose occurrences are modeled
by a Poisson distribution. The second matrix represents, for each talk, the number of users
that voted for each of the words in the proposed adjectives list. Given the high number
of votes, this number is modeled by a Normal distribution. This matrix could be seen as
a counting matrix as well. However, the proposed Poisson model takes into account mar-
gins on rows and columns (see ni. and n.j in Section 3.3.4). These margins make sense on
document-term matrices. However, on the rating matrix of this application, they are not as

∗https://www.ted.com/talks
†https://www.kaggle.com/rounakbanik/ted-talks/data

70

M
LB

M
M
LB

M
M
LB

M
M
LB

M

relevant. Furthermore, the Gaussian distribution is more suitable because with a Poisson
distribution, the mean is equal to the variance: over large numbers like those in the rating
matrix, the Poisson parameters are less informative.

Cǈ-ƼǅǎǌǍƾǋǂǇǀ ƺǌ ƺ ǉƺǋǌǂǆǈǇǂǈǎǌ ƼǅǎǌǍƾǋǂǇǀ The main motivation on this data set is to
cluster the TED talks to distinguish the different kinds of talks, and to observe the ratings of
each row-cluster. Using a classical clustering technique is not conceivable because of the high
dimension of the data set. The latent class model, for example, would define a distribution
for each of the 40 151 variables and for each class, which is definitely over-parameterised and
not interpretable. With a co-clustering technique not only will the talks be clustered, but
the variables will be clustered as well, which will result in a small number of interpretable
blocks.

Cǈ-ƼǅǎǌǍƾǋǂǇǀ ǋƾǌǎǅǍǌ After having searched for the highest ICL-BIC as explained in
Section 3.2.2.b with (Gmin, H1min

, H2min
) = (2, 2, 1), the best set (G,H1, H2) was found

to be equal to (8, 6, 2). Figure 3.5 gives a representation of the block parameters. For the
Document-Term matrix, the δ parameters are represented by shades of gray. The lighter
the block, the lower its corresponding δ parameter. When a block’s δ parameter is high, this
means that the column-cluster terms of this block are quite specific to the corresponding
row-cluster. For the ratings matrix, the shades of gray represent the µ parameter of the
resulting blocks. The darker the block, the higher the µ parameter.

First of all, we focus on the row-clusters of the document-term-matrix. Note from the
titles of talks with the same row-cluster number that the co-clustering grouped talks with
similar topics. For example the third group seems to be about high technology and science
with titles such as “A robot that runs and swims like a salamander”, “A mobile fridge for
vaccines” and “The hunt for a supermassive black hole”; whereas the fourth group refers to
politics, with talks called as “Why Brexit happened – and what to do next”, “How ideas
trump crises” , and “Aid for Africa? No thanks.”. From the ratings row-cluster parameters,
it can be seen that the seventh row-cluster’s talks were rated about ten times more than the
documents of the other row-clusters. It is interesting to observe that this corresponds to a
row-cluster closely related to psychology and introspection. Table 3.11 gives an overview of
the Document-Term matrix row-clusters, giving some titles and the topic that was deduced
from them. On the other hand, two row-clusters were more difficult to interpret. For
example, the eighth row-cluster gathers talks with titles such as “Dare to educate Afghan
girls”, “Averting the climate crisis”, “Fighting with nonviolence” and “What it’s like to
be a parent in a war zone”. While the talks tend to be about education and parenting,
the inherent topic is not obvious nor unique. The same issue was observed with the third
row-cluster: with titles such as “The magic of Fibonacci numbers”, “A new equation for
intelligence” and “New thinking on the climate crisis”, it is hard to define a unique subject
for this group.

It is not easy to interpret directly the terms clusters because these column-clusters con-
tain on-average about 6 000 variables. However, we have extracted some of the 100 most
frequent words for some notable blocks with high δ parameters to check if they are rele-
vant to the row-clusters’ topics of Table 3.11. Firstly, from Figure 3.5, on the left, block
(6, 1), corresponding to the 6th row-cluster and 1st column cluster, was noted. Among the
most frequent words are “knowledge”, “future”, “company”, “information”, “community”,
“working”, and“imagine”, which are relevant to the 6th row-cluster topic about innovation
and high-technology. Similarly, block (4, 5) was noted. Some of the most frequent terms
are “phenomenon”, “coffee”, “discovery”, “organisms”, and “suffering”, which correspond to

71

M
LB

M
M
LB

M
M
LB

M
M
LB

M

Table 3.11 – Row-cluster interpretation for the TED talks data set.

Row-cluster
number Example titles Interpreted topics

1

“My year of living biblically”,
“My journey from Marine to actor”,
“How I’m preparing to get Alzheimer’s”,
“12 truths I learned from life and writing”,
“The year I was homeless”

Story-telling

2

“Art that craves your attention”,
“Building a museum of museums on the web”,
“How to engineer a viral music video”,
“A one-man orchestra of the imagination”,
“Moving sculpture”

Art,
Culture

3

“The magic of Fibonacci numbers”,
“How behavioral science can lower your energy bill”,
“New thinking on the climate crisis”,
“A new equation for intelligence”,
“Winning the oil endgame”

Energy,
Climate,

Mathematics

4

“A map of the brain”,
“Your brain hallucinates your conscious reality”,
“Is anatomy destiny?”,
“Growing new organs”,
“A doctor’s case for medical marijuana”

Medicine,
Health

5

“Why Brexit happened – and what to do next”,
“How ideas trump crises”,
“Aid for Africa? No thanks.”,
“The surprising way groups like ISIS stay in power”,
“The attitudes that sparked Arab Spring”

Politics

6

“A robot that runs and swims like a salamander”,
“A mobile fridge for vaccines”,
“The hunt for a supermassive black hole”,
“Hands-on science with squishy circuits”,
“How we’ll find life on other planets”

High technology,
Science,

Innovation

7

“Who are you, really? The puzzle of personality”,
“How to succeed? Get more sleep”,
“Your body language may shape who you are”,
“A kinder, gentler philosophy of success”,
“What really matters at the end of life”

Psychology,
Introspection

8

“What it’s like to be a parent in a war zone”,
“Teachers need real feedback”,
“Averting the climate crisis”,
“Dare to educate Afghan girls”,
“Fighting with nonviolence”

Education,
Crisis

73

M
LB

M
M
LB

M
M
LB

M
M
LB

M

aspects of their life ‡. The responses were defined on different scales; for example, a question
such as “I enjoy listening to music.” could be answered from 1 (“Don’t enjoy at all”) to 5
(“Enjoy very much”). The questions regarding music preferences, movie preferences, hobbies
and interests, spending habits and phobias are seen as 5 levels ordinal data, not only because
the answers are on a scale, but also because two answers can be compared. For example,
questions concerning the music preferences could be : “I enjoy classical music.” or “I enjoy
rock music.”, and both could have a reply on a scale from 1 (“Don’t enjoy at all”) to 5
(“Enjoy very much”). In this case, the order in the responses is clear, and one can easily
compare the two answers of a same user. However, in the case of personality traits, views on
life and opinion, questions could be: “I have to be well prepared before public speaking.”or “I
always keep my promises.”, still on a 5 level scale from 1 (“Strongly disagree”) to 5 (“Strongly
agree”). The order of the responses can not be compared, so considering them to be ordinal
makes their interpretation too arbitrary. That is why these questions were considered to
be categorical variables, with a number of levels equal to 5. Furthermore, demographic
questions such as “What is my gender?”, with responses “Female” and “Male” are modeled
as categorical variables with 2 levels. This survey was completed by 1 010 people.

Thus, the resulting matrix is of dimension (1 010× (80+5+54)), so N = 1 010, J1 = 80,
J2 = 5 and J3 = 54. The data set is seen as three matrices of different types. The first
contains the 80 questions with answers considered as ordinal, with 5 levels. The second
contains the 5 questions with answers considered as nominal, with 2 levels. Finally, the
third contains the 54 questions with answers considered as nominal, with 5 levels.

Finally, the data set had a small amount of missing data (0.4%), which will be estimated
using the SEM-Gibbs algorithm as described in Section 3.2.2.

Cǈ-ƼǅǎǌǍƾǋǂǇǀ ǋƾǌǎǅǍǌ The SEM-Gibbs algorithm used 150 iterations and the burn-in
period was set at 100 iterations. These numbers were defined using the same technique as
in Section 3.5.1, by checking the evolution of several parameters through the SEM-Gibbs
iterations. The best set (G,H1, H2, H3) was found to be equal to (3, 4, 2, 4). Figure 3.6
shows the resulting co-clustering, and Table 3.12 gives the estimated parameters of each
block.

First of all, we notice that the first row-cluster has the lowest position parameter µ on
the first column cluster of ordinal data. This means that people from this group have less
overall enjoyment – or are less interested in, or are less afraid of – the topics of this column
cluster’s questions. These topics included classical music, branded clothing, psychology,
politics and dangerous dogs. In addition, the parameters show that this row-cluster is
quite heterogeneous. This row-cluster has the lowest position parameters π on the two
first column-clusters of ordinal data, and they systematically have the highest β1 and β5
on categorical data with 5 levels. We will now consider the second row-cluster. We notice
that it has a β3 parameter equal to 0.5 on the personality questions first column-clusters,
which is high. It means that people from this row-cluster are quite indecisive about the
topics of these column-clusters. The questions included “I am 100% happy with my life.”,
“I believe all my personality traits are positive.”, “I have lot of friends.”, and “My moods
change quickly.”.

Finally, we analyse the fourth column-cluster of the ordinal variables. We notice that it
has the highest position parameter for all the row-clusters with µ = 5. The questions of
this column-cluster are: “I enjoy listening to music”, “I enjoy watching movies”, “I enjoy
comedies”, “I am interested in internet”, and “I am interested in socializing”. It means that

‡https://www.kaggle.com/cardot/se-young-people-survey/data

74

M
LB

M
M
LB

M
M
LB

M
M
LB

M

dimensions have been identified as a quality of life predictor, such as perceived control of
the illness, which corresponds to the general belief whereby evolution of the disease depends
either on internal factors (action, effort or personal abilities) or on external factors (luck
or destiny) (Cousson-Gélie (2014)), or social support, which assesses perceived availability
(number of people on whom the individual thinks they can count if necessary) and the degree
of satisfaction relating to this support (Sarason et al. (1983)).

The patients were asked to reply to various questionnaires related to distinct dimensions,
the answers being of the ordinal kind with different numbers of levels (Agresti (2010)). They
repeated this task at six different stages of their treatment. Therefore, the resulting dataset
comprises a set of six tables, with the rows representing the patients and the columns repre-
senting the questions. First of all, the psychologists sought to identify psychological profiles.
In particular, they wanted to analyse the mutual influence of the different dimensions for
each profile. To help them with this task, constrained co-clustering was performed.

3.6.1 Data set

3.6.1.a Description of survey population
Several questionnaires were given to N = 161 women having their first surgery for suspicious
breast tumour. These patients were between 31 and 77 years old with an average age of
56.25 years (standard deviation = 9.99). Most were married or living maritally (77.0%).
Nearly half of the patients were active professionally (49.7%) and 38.5% were retired when
they started the study. These 161 patients were asked to answer several questionnaires at
different stages of their treatment: one at their first surgery, and followed by a questionnaire
1, 4, 7, 10, 13 months after this assessment. This means that the patients replied six times
to 134 questions and each answer was given on an ordinal scale (with between four and seven
levels). Therefore, the dataset comprises a set of six matrices of ordinal data such that the
observations (rows) correspond to the patients, and the variables (columns) correspond to
the questions.

The dataset also contains missing values, for which we distinguish two types. The first
type occurred when some patients did not answer any of the questions at one of the six stages
(i.e. they did not return the questionnaire at this stage). In this case, when co-clustering was
performed solely on the answers for this stage, the rows corresponding to these patients were
placed in a special row-cluster called “did not answer”. Co-clustering was then performed
without taking them into account. The second type occurred when some patients failed to
answer to only a couple of questions (i.e. they returned an incomplete questionnaire). In
this case, the patient was taken into account for co-clustering, and the missing values (18
values in total) were estimated by the algorithm. The way the algorithm deals with this
type of missing data is described later on.

3.6.1.b Psychological dimensions
The questionnaires given to the patients were detailed; indeed, the design of questionnaires
is a highly specialized undertaking in psychology. Each questionnaire relates to domains of
life, and each domain is itself divided into dimensions (e.g. MaloneBeach and Zarit (1995)).
Table 3.13 lists the domains and the corresponding dimensions included in the study. In the
questionnaires, most of the questions are associated with a dimension. The few questions
that are not related to one of these psychological dimensions concern the symptoms of the
disease and its treatment (nausea, tiredness, etc.).

76

M
LB

M
M
LB

M
M
LB

M
M
LB

M

Table 3.13 – Table of domains and dimensions raised in the questionnaires.

Domains
Quality of life

(Aaronson et al. (1993))
Social Support

(Sarason et al. (1983))
Specific Social Support
(Pierce et al. (1997))

Emotional State
(Zigmond and Snaith (1983))

Control perception
(Cousson-Gélie (2014))

Dimensions

Physical functioning,
Role functioning,
Emotional functioning,
Cognitive functioning,
Social functioning,
Global health evaluation.

Satisfaction,
Quantity.

Intensity,
Perception of availability,
Conflict.

Anxiety,
Depression.

Causal attribution,
Control perception,
Religion control.

Table 3.14 – Co-clustering result on anxiety, depression and symptom dimensions: estimated BOS parameters
(µgh, τgh) for each cluster (g, h).

Anxiety Depression Symptom
Col.-cluster 1 Col.-cluster 2 Col.-cluster 1 Col.-cluster 2 Col.-cluster 1 Col.-cluster 2

Row-cluster 1 (2,0.77) (2,0.77) (1,0.70) (2,0.83) (2,0.46) (1,0.74)
Row-cluster 2 (2,0.68) (3,0.72) (2,0.47) (2,0.79) (3,0.39) (1,0.42)
Row-cluster 3 (1,0.64) (2,0.44) (1,0.77) (2,0.70) (2,0.58) (1,0.71)
Row-cluster 4 (1,0.67) (2,0.47) (1,0.79) (2,0.71) (1,0.80) (1,0.93)
Row-cluster 5 (2,0.72) (3,0.55) (2,0.64) (2,0.75) (2,0.66) (1,0.77)

3.6.2 Application to the survey dataset

3.6.2.a Constrained co-clustering with different dimensions
Several constrained co-clustering operations were performed on the dataset, with different
dimensions and at different times. This section presents some significant results that were
obtained. In the following experiments, the heuristic search described in Section 3.2.2.b was
executed with Gmin = 3 and Hdmin

= 1 to select the number of row-clusters and column-
clusters (G and (Hd), d ∈ {1, ..., D}). All the ICL-BIC values are available in the appendix.
The choice of a sufficient number of iterations for the SEM algorithm and for the burn-in
period was made empirically. It was noticed that the parameters would stabilize after 150
iterations (or fewer). Therefore, the burn-in period was set to 400 iterations and the total
number of iterations was fixed at 500.

3.6.2.b Anxiety, depression and symptom.
As a first experiment, it was decided to investigate the responses that were given at time T5,
at the end of the treatment. The questions regarding the symptoms of the treatment are
interesting at this time because it marks the point at which the patients had been receiving
chemotherapy for one year. Constrained co-clustering was performed by taking the questions
related to the anxiety, depression and symptom dimensions. In this case, all the questions
have a number of levels m equal to 4. Therefore, the only constraint is the separation of
the questions that are related to different dimensions. The execution time of this set-up is
about 12 seconds with a 2.00GHz Intel Xeon E5 2620 CPU and 8 Go of RAM. The result
of the constrained co-clustering operation is illustrated by Figure 3.7. For all the figures,
clusters are read from left to right and from top to bottom. Table 3.14 details the estimated
BOS parameters (µgh and τgh) for g ∈ {1, ..., G} and h ∈ {1, ..., Hd}, ∀d ∈ {1, ..., D}.

Five row-clusters are highlighted by the co-clustering results. Table 3.14 shows that the
position parameters of the second row-cluster (µ2h)d,h are generally greater than (or equal

77

M
LB

M
M
LB

M
M
LB

M
M
LB

M

that at time T0 there are fewer symptoms in column-cluster 1 than in column-cluster 2,
whereas they are equally shared at times T2 and T5.

3.7 Conclusion and perspectives .

This chapter presents a model-based co-clustering model for data sets made of mixed type
data. It relies on the latent block model and inference is performed using an SEM-Gibbs
algorithm. The method has the great advantage of having an efficient criterion to select the
number of row and column clusters. Furthermore, the parameters that are estimated on each
block allow the user to easily interpret the partitions. Finally, missing data is handled, which
is often useful in the case of real data sets. The efficiency of the algorithm was illustrated
on a simulated data set and then on real data. Moreover, if a user is interested in clustering
the observations, the co-clustering algorithm proposed gives a parsimonious way to do this,
by grouping all the features into a small number of clusters. The R package mixedCoclust,
which implements the MLBM for mixed data is available on CRAN. Furthermore, if the
reader is particularly interested in handling ordinal data, as in Section 3.6, the package
ordinaClust is also available on CRAN, and is able to cluster and classify ordinal data. We
implemented both packages in C++ so that the algorithms run faster.

The proposed model has certain limitations. A major issue is that the variables of different
types cannot be part of the same column-cluster as the model is based on the assumption
that the elements of a same block share the same distribution. It would be interesting to
find an approach to overcome this limitation. Furthermore, as noted in Section 3.3.1, the
way the data is encoded can have a strong impact on the resulting co-clustering partition.
Although there are ways to address the matter in some cases, as detailed in Biernacki and
Lourme (2019), the user should be aware of it. Additionally, the influence of each kind of
feature on the resulting row partitions is to be investigated more deeply in a future work.
Indeed, certain types of data will have more impact on the probability for a row belonging to
a particular row-cluster, even if the D matrices have the same number of features Jd. Also,
the case where the Jd are highly unbalanced should be studied. An interesting approach
could be to give the same importance to the D matrices, even if they do not have the same
number of features. Finally, the way nominal and ordinal variables are modeled can raise
the dimensionality of the problem. When the number of nominal and/or ordinal variables
with differing levels increases, the number of sets xd increases. However, the number of
parameters will not significantly increase, because the proposed model is very parsimonious.
In addition, even though it may significantly increase the number of competing models, the
negative impact on the model selection process time will be limited thanks to the heuristic
search procedure introduced in Section 3.2.2.b.

81

SO
CC

SO
CC

SO
CC

SO
CC

SO
CC

4
Self-Organised Co-Clustering

4.1 Introduction . 83
4.2 Reminders on the Latent Block Model for counting data . 85

4.2.1 The Poisson Latent Block Model (PLBM) 85
4.2.2 Inference 86

4.3 Self-Organised Co-Clustering . 87
4.3.1 An easy-to-read structure 87
4.3.2 The SOCC model and its inference 88
4.3.3 Model selection 90

4.4 Numerical Experiments . 90
4.4.1 Baselines 90
4.4.2 Simulated data set 91
4.4.3 Real data sets experiments 92

4.5 Harry Potter use case . 96
4.5.1 Co-clustering set up 96
4.5.2 Interpretation of the results 97
4.5.3 Conclusions on the study of the Harry Potter data set 101

4.6 Conclusion and perspectives . 101

4.1 Introduction .

While textual data has existed for centuries, its occurence, use and ease of access has ex-
ploded in recent years, thanks in particular to the Internet. Social networks have largely
driven this phenomenon: in 2019, Twitter had almost 474,000 tweets per minute and Face-
book reported 4.3 billion messages posted per day. Access to an infinite number of resources
via forums, the digitisation of newspapers and the creation of websites are also other impor-
tant factors.

83

SO
CC

SO
CC

SO
CC

SO
CC

SO
CC

However, since text is an unstructured type of data, its analysis is not trivial and requires
the use of special methods. The representation of text alone is a challenge, as various recent
papers have shown Wu et al. (2018); Thongtan and Phienthrakul (2019). Most problems
related to the analysis of textual data are still open issues, and are challenged by strong
technological obstacles. Therefore, when users deal with a large unknown corpus, they often
need - as a first step - a global overview of their data set. In other words, users often
need to summarise their data, for example by knowing which documents share the same
topics and the main topics of each cluster. The most famous way to do this is probably the
Latent Dirichlet Allocation model (LDA, Blei et al. (2003)), which proposes a probabilistic
modelling of the words appearing in the documents. Many extensions of LDA have been
proposed over the years. For instance, recently, Mantyla et al. (2018) combines LDA and
clustering algorithms to highlight the main topics of their clusters. In Drosatos and Kaldoudi
(2019), the authors analyse scientific literature related to the field of e-Health. In Yan et al.
(2013), the authors describe the Biterm Topic Model (BTM). It outperforms LDA on short
texts (such as instant messages and tweets) for which LDA performs poorly, due to the
sparsity of the data. In Zhu et al. (2018), the authors propose another version of the BTM:
they represent the biterms (word-pairs) as graphs and use a deep convolutional network to
encode word co-relationships.

This chapter presents the Self-Organised Co-Clustering model (SOCC), published in Selosse
et al. (2020c). It aims at providing a tool to summarise large document-term matrices, whose
rows correspond to documents and columns correspond to terms. Co-clustering was already
successfully used to analyse textual data sets. For example, in Buono and Pio (2015) and
Salah et al. (2018), the authors use distance based methods such as the Non-Negative Ma-
trix Factorisation to cluster the data set. In Laclau and Nadif (2016) the authors propose
a co-clustering using a double k-means, and impose that the meaningful blocks are on the
diagonal. However, as mentioned in Section 2.3 of Chapter 2, these kinds of methods require
choosing the metric ||.|| that best fits the structure of the underlying latent blocks based
on available data, which can be difficult. Furthermore, to the best of our knowledge, these
methods do not propose a way to select the correct number of blocks.

Model-based co-clustering approaches were also proposed to analyse textual data. For
example, in Singh Bhatia et al. (2017), the Latent Block Model is used with the Poisson
distribution. In Selosse et al. (2020b), we also used the Multiple Latent Block Model to
analyse textual data along with continuous data.

However, when dealing with high-dimensional sparse data, several blocks may be mainly
sparse (composed of zeros) and cause inference issues. In addition, highlighting homogeneous
blocks is not always sufficient to obtain easy-to-interpret results. Indeed, despite being
homogeneous, these sparse blocks are not relevant from an interpretation perspective, and
we need a new step to select the pertinent blocks. In other words, it is left to the user to
choose the most useful co-clusters and to determine which term clusters (column-clusters)
are more specific to which document clusters (row-clusters). This task is not straightforward
even with a reasonable number of row and column-clusters. Therefore, it is necessary to
work on a co-clustering technique that offers ready-to-use results.

We can address this problem by imposing a pattern on the co-clustering structure. Such
an approach directly produces the most meaningful co-clusters, and significantly simplifies
the results and their analysis. In the present work, we propose a co-clustering approach
based on the Latent Block Model Govaert and Nadif (2013), in which we impose a struc-
ture wherein column-clusters (clusters of terms) are separated into three parts. In the first
part, each cluster of terms is specific to one cluster of documents. In the second part, each
cluster of terms is specific to two clusters of documents. The third part contains only one

84

SO
CC

SO
CC

SO
CC

SO
CC

SO
CC

column-cluster and gathers terms that are common to all clusters of documents. The main
motivation of this paper is to provide a tool with high comprehensibility: having three
sections offers explicable results, with a reasonable number of co-clusters. The choice to
constrain our model to pairwise interactions between clusters is essentially motivated by the
classical ANOVA modelling, which is usually limited to the two-way analysis. Furthermore,
pairwise interactions are more interpretable than higher order interactions, and interactions
between more than three factors are expected to be infrequent. Figure 4.1 illustrates the
proposed structure. On the left, we present a usual co-clustering with the Poisson Latent
Block Model. On the right, we show a co-clustering with the SOCC structure: thin separa-
tions between the three parts of column-clusters were added, with the noisy blocks as the
lighter ones.

Other works have introduced a structure in their related co-clustering. In Laclau and
Nadif (2017) and Ailem et al. (2017), the authors propose block diagonal co-clustering
techniques, with binary and counting data respectively. Firstly, this consists of constraining
the co-clustering such that the number of row-clusters is equal to the number of column-
clusters. Secondly, the blocks out of the diagonal are considered to be noisy and share the
same parameter. In fact, these models are particular cases of the model we propose: they
constrain the structure to only the first part of column-clusters mentioned above. While
these methods proved their efficiency in the case of document-term matrices, they assume
that a cluster of terms is specific to only one cluster of documents. However, a group of
terms could be specific to several groups of documents. Let us assume for instance that the
documents are research papers, with one cluster related to computer science and another
one related to mathematics. Each cluster has its own specific terms but many terms (for
instance those related to probability distributions) will appear in both communities. In this
work, we address this issue by defining a more complete structure among blocks without
losing interpretability.

Section 4.3 describes the novel method referred to as ‘Self-Organized Co-Clustering’
(SOCC). In Section 4.4, we assess the efficiency of our solution in three ways. Firstly, we use
simulated data, to evaluate the partition estimation of the SOCC model and state-of-the-art
competing models. Secondly, we use real textual data sets to compare the proposed approach
with these models, regarding both document clustering and term clustering. Thirdly, we
describe a use case of the SOCC model on a real labelled data set. In Section 4.5, we detail
an example for using the SOCC model in a truly unsupervised context. The last section
concludes the paper and discusses topics for possible future research.

4.2 Reminders on the Latent Block Model for counting data

In this section, we briefly recall the backgroung for the Poisson Latent Block Model (PLBM).
A more detailed explaination is available in Section 3.3.4 of Chapter 3.

4.2.1 The Poisson Latent Block Model (PLBM)
Counting data, such as those present in document-term matrices, can be modelled using
the Poisson distribution. For a xij belonging to block (g, h) the Poisson distribution is
parameterised with λij such that λij = ni.n.jδgh. Here, the values ni., n.j correspond to a
‘row effect’ and a ‘column effect’ respectively, and are computed as follows:

ni. =
∑

j

xij and n.j =
∑

i

xij .

85

SO
CC

SO
CC

SO
CC

SO
CC

SO
CC

The second section concerns the following
(
G
2

)
column-clusters (h ∈ {G+1, ..., G+

(
G
2

)
}).

In each column-cluster h of this section, two blocks are meaningful. Consequently, each
column-cluster contains terms that are specific to two clusters of documents (row-clusters).

Finally, the common section consists of only one column-cluster and gathers the terms
that are common to all documents.

This structure, as well as the corresponding block effect δ, are illustrated by Figure 4.2,
in which we clearly see the meaningful blocks with δgh = δh and non-meaningful blocks
with δgh = δ. We also discern the organization among these blocks and the three different
sections main, second and common. For instance, in the main section, the first column
cluster is considered to be specific to first row-cluster, thus only the column cluster’s first
block has its own specific distribution with δ1. On the other hand, the other blocks of this
column-cluster are considered to be non-meaningful, and have a block effect parameter δ,
which is common to all non-meaningful blocks. In the second section, we note, for example,
that for h = 4 blocks (1, 4) and (2, 4) are meaningful, and share the same block effect δ4.
This means that terms from column-cluster 4 are specific to documents from row-clusters
1 and 2. Moreover, block (4, 3) is non-meaningful and has the same effect δ as the other
non-meaningful blocks. The common section is a bit particular insofar that it contains only
one column-cluster, so h = 7. This column-cluster contains the terms that are specific to all
groups of documents and its corresponding blocks all share the same δ7.

4.3.2 The SOCC model and its inference

From Section 4.3.1, knowing the column-cluster h we can write: g ∈ Ch ∪ Ch, such that
Ch are the meaningful blocks of column-cluster h and Ch are the non-meaningful blocks of
column-cluster h. In this case, the probability of the SOCC model is written as:

p(x;θ) =
∑

(v,w)
∈V×W

∏

ig

πvigg

∏

jh

ρ
wjh

h

∏

ijh

∏

g∈Ch

f(xij ; δh)
vigwjh

∏

g∈Ch

f(xij ; δ)
vigwjh .

(4.2)

The complete data log-likelihood is given by:

lc(θ;x,v,w) =

∑

ig

vig logπg +
∑

jh

wjh log ρh +
∑

ijh

(

∑

g∈Ch

vigwjh [xij log(ni.n.jδh)− ni.n.jδh − log(xij !)] +

∑

g∈Ch

vigwjh [xij log(ni.n.jδ)− ni.n.jδ − log(xij !)]
)
.

(4.3)

As in Section 4.2.1, the SEM-Gibbs algorithm is chosen to estimate the partitions (v,w)
and parameters θ = (π,ρ, δ) with δ = (δ, δ1, . . . , δH). In contrast with the Poisson LBM,
the Poisson distribution f(xij ; δgh) of block (g, h) will depend on the meaningfulness of
block (g, h). For all h ∈ H if g ∈ Ch, then f(xij ; δgh) = f(xij ; δh), and if g ∈ Ch, then
f(xij ; δgh) = f(xij ; δ), where f is the Poisson p.d.f. given by Equation (4.1).

The SEM-Gibbs algorithm proposed for the Self-Organised Co-Clustering model inference
is summarised below. It iterates the partitions sampling and the update of the parameters

88

SO
CC

SO
CC

SO
CC

SO
CC

SO
CC

(steps 1 to 4) during a given number of iterations (nb.iter). The final parameter estimation,
now denoted by θ̂, is obtained by averaging the model parameters over the sample distribu-
tion (after a burn-in period). Last, the final partitions v̂ and ŵ are estimated with θ = θ̂,
using another Gibbs sampler.

(ƺ) SƺǆǉǅǂǇǀ ǋǈǐ ǉƺǋǍǂǍǂǈǇǌ Generate the row partitions with:

p(v
(q)
ig = 1|x,w(q−1);θ(q−1)) ∝ π(q−1)

g ×
∏

jh

f(xij ; δ
(q−1)
gh)w

(q−1)
jh .

(ƻ) FǂǋǌǍ M ǌǍƾǉ Update the parameters:

π(q)
g =

1

N

∑

i

v
(q)
ig ,

δ(q) =

∑

ijhg∈Ch

v
(q)
ig w

(q−1)
jh xij

∑

ijhg∈Ch

vigw
(q−1)
jh ni.n.j

and

δ
(q)
h =

∑
ijg∈Ch

v
(q)
ig w

(q−1)
jh xij

∑
ijg∈Ch

v
(q)
ig w

(q−1)
jh ni.n.j

.

(Ƽ) SƺǆǉǅǂǇǀ ƼǈǅǎǆǇǌ ǉƺǋǍǂǍǂǈǇǌ Generate the columns partitions with:

p(w
(q)
jh = 1|x,v(q);θ(q)) ∝ ρ

(q−1)
h ×

∏

ig

f(xij ; δ
(q)
gh)

v
(q)
ig .

(ƽ) SƾƼǈǇƽ M ǌǍƾǉ Update the parameters:

ρ
(q)
h =

1

J

∑

j

w
(q)
jh ,

δ(q) and δ
(q)
h as in Step (B).

CǁǈǂƼƾ ǈƿ Ǎǁƾ Ǉǎǆƻƾǋ ǈƿ ǂǍƾǋƺǍǂǈǇǌ For the SEM-Gibbs algorithm, two numbers must
be chosen: the total number of SEM-Gibbs iterations (nb.iter) and the number of iterations
for the burn-in period. These numbers are graphically chosen by visualizing the values of
the model’s parameters along the SEM-Gibbs iterations. The parameters must reach their
stationary state after the burn-in period, and the remaining number of iterations until the
end must be sufficient to compute their respective means.

89

SO
CC

SO
CC

SO
CC

SO
CC

SO
CC

4.3.3 Model selection
The definition of a model selection criterion has two purposes. Firstly, in the context of
unsupervised methods, choosing the number of row-clusters G is an issue. One of the great
advantages of the SOCC model is that the number of column-clusters H is directly fixed
by the number of row-clusters G. Indeed, as explained before, H = G+

(
G
2

)
+ 1. However,

the choice for the number of row-clusters G is still a problem. Second, as described in the
algorithm, the SEM-Gibbs algorithm starts with a random initialization of partitions (v,w).
However, this initialization has an impact on the convergence of the algorithm and on the
resulting estimations. It is therefore recommended to execute the algorithm several times
with different initializations and to have a criterion to choose the best solution.

As detailed in Section 2.3, we use the ICL-BIC approximation. For the SOCC model, is
is given by:

ICL-BIC(G) = log p(θ̂;x, v̂, ŵ)

−
1

2
(G− 1) logN −

1

2
(H − 1) log J −

1

2
(H + 1) log(NJ).

(4.4)

The number G of row-clusters maximizing this criterion must be retained.

4.4 Numerical Experiments .

In this section, we assess the quality of the SOCC model. First of all, we chose seven
clustering, co-clustering and topic-modelling methods to compare the results: we list them
in Section 4.4.1 and refer to them as ‘baselines’. In Section 4.4.2, we simulate data through
the SOCC model’s process generation. We run the baselines algorithms and compare their
results with those of the SOCC model, in terms of partition estimation. We also evaluate
the behaviour of the ICL criterion for choosing the number of row-clusters. In Section 4.4.3,
we used real textual data sets whose documents are known to belong to some predefined
classes and compared the row-clustering (or column-clustering) quality with the baseline
methods. We conclude this section by illustrating with a use case how the SOCC model can
be helpful for interpreting the co-clustering results.

4.4.1 Baselines
Seven clustering, co-clustering and topic-modelling methods were selected as baselines to
compare our results. Two of them are based on the Latent Block Model. The Poisson Latent
Block Model (PLBM,Govaert and Nadif (2010)), as detailed in Section 4.2, is a co-clustering
algorithm that uses the direct application of the Latent Block Model. The Sparse Poisson
Latent Block Model Ailem et al. (2017), referred to as ‘SPLBM’, is a constrained version
of the Poisson Latent Block Model, which was also developed to co-cluster document-term
matrices. This model, already described in the introduction, constrains its structure to the
main structure of our model. Both models were implemented in C++ from the pseudo-code
of their respective papers. The Information Theory Co-Clustering method, referred to as
‘ITCC’ Dhillon et al. (2003), is a co-clustering technique that uses information theory and
the mutual information to discover the blocks. We used the C++ implementation provided by
their authors. The Orthogonal Non-negative Matrix Tri-Factorization method, referred to as
‘ONMTF’ Ding et al. (2006), is a co-clustering algorithm based on matrix factorization. We
implemented the pseudo-code provided in R. The Non-negative Matrix Factorization NMF

90

SO
CC

SO
CC

SO
CC

SO
CC

SO
CC

Table 4.1 – Simulated parameters δgh × 10−7. For each cell xij the Poisson parameter is equal to ni.n.jδgh,
with row margins ni. equal to 2455 on average, and columns margins n.j equal to 249 on average.

Cluster 1 2 3 4 5 6 7

1 8.6 2.9 2.9 49.8 47.8 2.9 34.0

2 2.9 9.0 2.9 49.8 2.9 52.9 34.0

3 2.9 2.9 9.4 2.9 47.8 52.9 34.0

Paatero and Tapper (1994) is a clustering algorithm based on matrix factorization. The
R Package NMF Gaujoux and Seoighe (2010) was used for the experiments. The Spherical
Kmeans clustering method (‘Skmeans’) is the implementation of the kmeans algorithm, but
with embedding of the Cosine similarity (and not the Euclidean distance). The R Package
skmeans Hornik et al. (2012) was used for the experiments. Latent Dirichlet Allocation
(LDA) Blei et al. (2003) is a generative statistical model for topic modelling. The R package
textmineR implementation was used to use it on the data sets. To assess the quality of the
row-clusters, all of these seven methods were used. To assess the quality of the column-
clusters, we obviously only selected the four co-clustering methods.

4.4.2 Simulated data set

4.4.2.a Simulation setting
A data set with N = 120, J = 1 200, G = 3 and H = 7 was simulated. The parameters were
chosen arbitrarily: the row mixing proportions π are equal to (.33, .33, .33) and the column
mixing proportions ρ are equal to (.08, .08, .17, .17, .17, .08, .25). The block effects are given
in Table 4.1.

For the SOCC inference, the total number of iterations of the SEM-Gibbs algortihm was
fixed to 50 with a burn-in period of size 35. In Figure 4.3, the evolution of parameters δ
and δh for the main section is plotted. We see that the parameters stabilise in less than
ten iterations. The numbers of fixed iterations are therefore enough to reach the stationary
state.

4.4.2.b Results
The SOCC model was run on 100 simulations, and the Adjusted Rand Index, referred to as
‘ARI’ Hubert and Arabie (1985) between the true partitions and the estimated partitions
were computed. The ARI for row-clusters was always equal to 1. Regarding the column-
clusters, the mean ARI was equal to .99. It shows that the inference algorithm for SOCC
functions appropriately. It is worth noting that 25% of runs failed to reach a valid solution,
systematically leading to empty clusters solutions. Such behaviour is a well-known drawback
of co-clustering procedures Brault (2014); Selosse et al. (2020b). Nevertheless, this relative
frequency of failures is not too high and not detrimental for the use of the SOCC model.
When we obtain a solution with some empty clusters, we just have to restart the algorithm
with another random initialization.

Furthermore, we executed the competitors’ algorithms on this data set: the ARI boxplots
for all methods are available in Figure 4.4. We see that on this simple data set, most of the
methods perform well in terms of row clustering. This is the reason why we challenge the

91

SO
CC

SO
CC

SO
CC

SO
CC

SO
CC

we have G = G +
(
G
3

)
+ 1 = 56. With 56 column-clusters, the resulting co-clustering

loses its interpretability, which is supposed to be a strength of the model. Therefore, it is
recommended not to use the model when G is superior to 7.

4.4.3.b Assessing the quality of row-clusters
To assess the document clustering quality, the ARI between the known partitions and those
estimated were computed. For each data set, each method was executed 30 times. Figure 4.5
plots the ARIs boxplots for all data sets and methods. We can see on these boxplots that
the SOCC approach obtains the highest median ARIs for the classic3, pubmed4min and
sports data sets. On the classic3 data set, the SOCC model obtains a median ARI of 0.96,
and so does the NMF method. The model with the second highest median ARI (0.95) is
the SPLBM model. On the pubmed4min data set, the median ARI for the SOCC model is
equal to 0.55. The PLBM method yields the second highest ARI value with 0.46. Finally,
on the sports data set, the SOCC obtains the highest median ARI value (0.44), and the
NMF methods ranks second with an ARI value equal to 0.43.

On the other data sets, the SOCC model obtains satisfactory results and ranks as the
second-best method in terms of ARI after Skmeans. This latter clustering method yields
better results on data sets pubmed3, pubmed4, and pubmed5 but it presents one of the
worst performances for classic4, pubmed4min and sports. Therefore, even if it obtains good
results on some data sets, its inconsistency on the other data sets makes it an unreliable
method. For this reason, SOCC seems to be the best method from a document clustering
standpoint. The reason for this success is probably due to the model’s parsimony.

4.4.3.c Assessing the quality of column-clusters
In most studies, the evaluation of co-clustering algorithms is only based on resulting row-
clusters. This is due to the lack of public data sets providing the true partitions for both
observations and features. In document clustering, for example, popular benchmarks pro-
vide the true document labels, while the term clusters remain unknown. To overcome this
problem and improve over currently used evaluation methods, we propose the following
strategy. For a given column-cluster, the ten most frequents terms are extracted. We com-
pute the average Jaccard similarity between these terms on all the documents: this value
is considered as a proximity measure between terms of the column-cluster. We average this
proximity measure over all the column-clusters. In terms of interpretation, this criterion
based on Jaccard similarities is used to assess how a co-clustering gathers terms that often
occur in the same document. We report the scores obtained by the methods on the data sets
in Table 4.3. From these results, it can be seen that for the classic4, pubmed3, pubmed4,
pubmed4min, pubmed5, sports and yahoo data sets, all algorithms perform equally well but
the SOCC model has the highest averaged score. Regarding the classic3 data set, ONMTF
yields a better result (.89), but is closely followed by the SOCC model (.88).

4.4.3.d pubmed4min use case
In this section, we demonstrate using the Pubmed4min data set that the SOCC results are
easy-to-interpret. Regarding the main section, when we seek the 10 most frequent terms of
the first column-cluster, we get ‘varicella’, ‘vaccin’, ‘ag’, ‘children’, ‘year’, ‘immun’, ‘zoster’,
‘hospit’, ‘chickenpox’ and ‘adult’. These terms are closely related to chickenpox (or varicella),
so we can easily guess that the first row-cluster’s documents are about chickenpox. When we

94

SO
CC

SO
CC

SO
CC

SO
CC

SO
CC

Table 4.3 – Average similarity measurements between the top 10 terms of each column-cluster.

Data set SOCC PLBM SPLBM ITCC ONTMF

Classic3 .88 (.07) .86 (.08) .86 (.08) .86 (.08) .89 (.07)

Classic4 .91 (.06) .88 (.07) .88 (.07) .87 (.07) .87 (.07)

Pubmed3 .85 (.13) .77 (.13) .79 (.12) .76 (.13) .80 (.08)

Pubmed4 .88 (.12) .80 (.15) .80 (.13) .80 (.14) .81 (.09)

Pubmed4min .87 (.11) .79 (.13) .81 (.09) .80 (.13) .84 (.08)

Pubmed5 .90 (.12) .78 (.13) .81 (.13) .83 (.13) .85 (.08)

Sports .88 (.11) .79 (.11) .79 (.11) .77 (.11) .78 (.10)

YahooKB1 .85 (.20) .67 (.31) .70 (.33) .69 (.31) .69 (.31)

seek the 10 most frequent terms of the second column-cluster, we get ‘jaundic’, ‘obstruct’,
‘liver’, ‘bile’, ‘biliari’, ‘hepat’, ‘duct’, ‘rat’, ‘stent’ and ‘bilirubin’. Again, we can easily assert
that the second row-cluster’s documents are about jaundice. Regarding the second section,
if we look at column-cluster 5, which corresponds to the terms specific to row-clusters 1
and 2, we get: ‘rate’, ‘complic’, ‘neg’, ‘mortal’, ‘morbid’, ‘infant’, ‘neonat’, ‘bacteri’, ‘safe’,
‘inva’. These terms are mostly related to children, which seems consistent since jaundice and
chickenpox are very common in toddlers and newborns. Furthermore, jaundice can occur
as a complication of chickenpox, justifying the presence of ‘complic’ in the list.

4.5 Harry Potter use case .

In this section, we use the SOCC model on the Harry Potter data set. For each stage of
performing a co-clustering, we show the difficulties encountered by the classical co-clustering
methods and how the SOCC model overcomes them. The Harry Potter data set contains
the first three volumes of the famous series (Rowling (1997, 1998, 1999)), entitled ‘Harry
Potter and the Philosopher’s Stone’, ‘Harry Potter and the Chamber of Secrets’ and ‘Harry
Potter and the Prisoner of Azkaban’. In the resulting Document-Term matrix, each line
represents a chapter, and each column represents a term.

4.5.1 Co-clustering set up
DƺǍƺ ǌƾǍ ǉǋƾ-ǉǋǈƼƾǌǌǂǇǀ The original text was changed. Firstly, the punctuation and
numbers were removed. Secondly, the terms that appeared only once were removed because
they do not often add useful information. The whole was then transformed to a classic
Document-Term frequency matrix. The resulting matrix is of dimensions N = 57 and
J = 6, 884.

96

SO
CC

SO
CC

SO
CC

SO
CC

SO
CC

Table 4.4 – Maximum ICL values for each G tested.

number of row clusters G 2 3 4 5 6 7 8
max ICL value -231774.9 -228133.4 -226650.7 -225895.4 -226709.2 -225072.6 -226035.7

SƾǍǍǂǇǀ Ǎǁƾ Ǉǎǆƻƾǋ ǈƿ ǂǍƾǋƺǍǂǈǇǌ When dealing with a new data set, the user must
choose the total number of iterations and the number of burn-in iterations. For this, they
must execute the SEM-Gibbs algorithm with the different numbers of clusters they want to
test (see paragraph ‘Finding the right numbers of clusters’ below) with an arbitrary number
of iterations. Then, they must check that the parameters reached their stationary state
before the number of burn-in iterations. For the Harry Potter data set, and with G = 7, we
see in Figure 4.6 that the parameters reached their stationary state before the 75th iteration.
The total number of iterations can then be fixed to 100 and the number of burn-in iterations
to 75.

FǂǇƽǂǇǀ Ǎǁƾ ǋǂǀǁǍ Ǉǎǆƻƾǋ ǈƿ ƼǅǎǌǍƾǋǌ For the baselines PLBM, ONMTF and ITCC, the
user has to define two numbers of clusters G and H at this stage. Furthermore, the ONMTF
and ITCC methods have no criteria to define these numbers. The SOCC model induces H
from G so the user only has to choose G. Furthermore, the ICL criterion defines the best
number of clusters once the algorithm is run on the different possibilities. On the Harry
Potter data set, we ran the SEM-Gibbs algorithm for G = {2, 3, 4, 5, 6, 7, 8}, and got the
corresponding ICL values. The largest ICL value was obtained with G = 7. Table 4.4
presents the maximum ICL values for each number of row-clusters tested. Figure 4.7 plots
the Document-Term matrix sorted by row-clusters and column-clusters.

4.5.2 Interpretation of the results
At this stage, the user has a co-clustered Document-Term matrix. Using the methods
ONMTF, ITCC and PLBM, they are able to obtain the chapters of the books that are
gathered into the same group. However, they cannot easily know the main topic of each
group. For example, for the PLBM method, they should find the highest block effect and
observe the corresponding row-cluster and column-cluster to obtain the relevant chapters
and terms. With the SOCC model, the user can directly know which blocks are of interest.
In this section, we studied the terms belonging to column-clusters and found the main
underlying topic. We do not list every term but chose the ones that are most related to the
topic concerned. Here, we develop an interpretation of the column-clusters.

IǇǍƾǋǉǋƾǍƺǍǂǈǇ ǈƿ ƼǈǅǎǆǇ-ƼǅǎǌǍƾǋǌ ƿǈǋ Ǎǁƾ main ǌƾƼǍǂǈǇ Seven clusters in line were
detected by the SOCC model. Therefore, there are also seven column-clusters in the main
section. The first contains the terms specific to the chapters of the first row-cluster, the
second contains the terms specific to the chapters of the second row-cluster, and so on. We
highlight below that this specific co-clustering structure is easily readable for to users.

• Cluster 1: Some terms specific to the chapters of this row-cluster are ‘agony’, ‘hewho-
mustnotbenamed’, ‘pain’, ‘quirrell’ and ‘serpent’. These terms refer to Harry Potter’s
enemy, called Lord Voldemort. People are so afraid of him that they never say his
name aloud and refer to him as ‘he-who-must-not-be-named’. He loves serpents and
torturing his opponents. Quirrell is his servant in Volume 1. We propose for this
cluster the label ‘Voldemort’ for this cluster.

97

SO
CC

SO
CC

SO
CC

SO
CC

SO
CC

• Cluster 2: Some terms specific to the chapters of this row-cluster are ‘animagus’,
‘black’, ‘dementors’, ‘godfather’,‘james’,‘lupin’, ‘murderer’, ‘peter’, ‘pettigrew’, ‘re-
mus’, ‘scabbers’,‘sirius’, ‘transform’ and ‘werewolf’. These terms relate to friendships
of Harry’s father. James Potter, Sirius Black, Remus Lupin and Peter Pettigrew were
friends in Hogwart. Remus was a werewolf so his friends learnt how to transform into
animals to be able to handle his strength when he turned into a a werewolf. Wizards
with this capacity are called animagus. Finally, Pettigrew betrayed their friends and
delivered James to Voldemort. Proposed label: Animagus.

• Cluster 3: Specific related terms here are ‘alicia’, ‘angelina’, ‘beater’, ‘broom’, ‘cap-
tain’, ‘championship’, ‘chaser’, ‘cheers’, ‘commentary’, ‘game’, ‘goalposts’, ‘johnson’,
‘jordan’, ‘katie’, ‘lee’, ‘locker’, ‘match’, ‘quaffle’, ‘refereeing’, ‘scores’, ‘spinnet’, ‘teams’
and ‘win’. These terms relate to Quidditch, a sport where wizard must score points
while flying on magic brooms. Alicia Spinnet, Angelina Johnson and Katie Bell are
players on Harry’s team. Lee Jordan is the match commentator of the school. Pro-
posed label: Quidditch.

• Cluster 4: Here, specific related terms are ‘birthday’, ‘cousin’, ‘drive’, ‘dudley’, ‘durs-
ley’, ‘figg’, ‘moustache’, ‘petunia’, ‘privet’, ‘relative’, ‘television’, ‘uncle’, ‘vernon’.
These terms refer to Harry’s family. When his parents died, his aunt and uncle (Petu-
nia and Vernon Dursley) adopted him. They have a child named Dudley, and the
family lives in the Privet Drive street. Proposed label: the Dursleys.

• Cluster 5: Some terms specific to the chapters of this row-cluster are ‘arthur’, ‘book-
list’, ‘bookshop’, ‘burrow’, ‘molly’, ‘mum’, ‘supplies’, ‘shop’ and ‘weasley’. These terms
relate to the Weasleys. They are members of the family of Ron Weasley, Harry’s best
friend. They live in a house called the Burrow. Arthur and Molly Weasley are Ron’s
parents. Every summer, Harry spends a part of summer with them, and they go to
shop for the supplies for the following year. Proposed label: the Weasleys.

• Cluster 6: Some terms specific to the chapters of this row-cluster are ‘bulstrode’,
‘crabbes’, ‘dueling’, ‘finchfletchey’, ‘goyles’, ‘greenhouse’, ‘justin’, ‘longbottoms’, ‘man-
drakes’, ‘millicent’ and ‘sprout’. These terms are related to Harry’s courses, and in
particular his classmates. Crabbes, Goyles, Justin Finch-Fletchey, Milicent Bulstrode
and Longbottom are all Harry’s classmates. Ms. Sprout is the botany teacher, and
the mandrakes are a special kind of magical plants. Proposed label: classmates.

• Cluster 7: Some terms specific to the chapters of this row-cluster are ‘aragog’, ‘bane’,
‘centaurs’, ‘dragon’, ‘firenze’, ‘fluffy’, ‘forest’, ‘giant’, ‘goblins’, ‘hagrid’, ‘norbert’, ‘spi-
der’ and ‘unicorn’. These terms refer to magical creatures that live in Harry’ world. His
friend Hagrid (a half giant wizard) has a passion about them. He owns a three-headed
dog called Fluffy. In his childhood, he also raised Aragog, a giant spider. Firenze
and Bane are centaurs living in the forest near Harry’s school. Proposed label: magic
creatures.

Therefore, the main section highlights seven main clusters of chapters that are related
to: Voldemort, animagus, Quidditch, the Dursleys, the Weasleys, classmates and magical
creatures.

A ǇǈǍƾ ǈǇ Ǎǁƾmain ǌƾƼǍǂǈǇ Ƽǈǆǉƺǋƾƽ Ǎǈ Ǎǁƾ SPLBMǆǈƽƾǅ Until now, most of the other
co-clustering techniques have shown weaknesses in the overall process: ONMTF and ITCC

99

SO
CC

SO
CC

SO
CC

SO
CC

SO
CC

do not have a criterion to choose the number of blocks. For PLBM, the two numbers G
and H have to be chosen and interpretation is difficult once the co-clustering is performed.
The SPLBM model does not have these problems. In fact, the SPLBM is similar to the
main section in the sense that it considers the meaningful blocks as being on the diagonal
of the matrix. However, the main section is more selective and interpretable. Indeed, when
running the SPLBM on the Harry Potter data set with G = 7, there will be 983 terms per
column-clusters on average. It is therefore difficult to read them all and grasp what each
row-cluster is about. In our case, the second and common sections get a large majority of
the terms. In the same example, on the Harry Potter data set, the main section has 78
terms on average. Therefore, it is easier to read them quickly and get the topic of each
row-cluster, as we just demonstrated above.

IǇǍƾǋǉǋƾǍƺǍǂǈǇ ǈƿ ƼǈǅǎǆǇ-ƼǅǎǌǍƾǋǌ ƿǈǋ Ǎǁƾ second ǌƾƼǍǂǈǇ With regard to the second
section, as mentioned before, its corresponding column-clusters have terms that are related
to two row-clusters. Since we now know what each row-cluster is about individually, from
the main section, we can see the terms that link them. The SOCC model looks for common
words for every row-cluster pair. This can be a limitation: for example, the chapters related
to the Dursleys and the chapters related to Quidditch do not have a lot in common and the
column-cluster related to these two groups of chapters contains only the word ‘card’, which
is unrelated to both. However, most of the column-clusters that relates to two clusters of
chapters are of interest to users. Here are some examples:

• Row clusters 1 and 4, which are about Voldemort and the Dursleys, share meaningful
blocks in column-cluster 10. The corresponding terms include ‘mother’, ‘nephew’,
‘petunias’ and ‘scar’. Petunia Dursley is Harry’s aunt. She is connected to Voldemort
because he killed her sister. He also attempted to kill Harry as a young boy, but
he survived, and he was left with a scar on his forehead. Petunia then adopted her
nephew.

• Row-clusters 1 and 5, which are about Voldemort and the Weasleys share meaningful
blocks in column-cluster 11. This column-cluster has terms such as ‘basilisks’, ‘tom’,
‘riddle’ and ‘ginny’. This makes sense because Ginny is Mr. and Ms. Weasley’s
daughter. She is closely connected to Voldemort in Volume 2. The wizard finds a way
to bring Tom Riddle to life. Tom is the past version of himself, when he was a normal
teenager in the school. Tom casts a spell on Ginny so that she wakes the giant basilisk
serpent up in the Chamber of Secrets. Then, this snake attacks the school’s students.

• Row-clusters 1 and 6, which are about Voldemort and Harry’s classmates share mean-
ingful blocks in column-cluster 12. The correspond terms include ‘ernie’, ‘petrified’
and ‘serpents’. In Volume 2, Ernie is Harry’s classmate. In duelling class, Harry speaks
to a serpent, an ability both he and Voldemort hold. Ernie thinks that he is ordering
the snake to attack Justin Finch-Fletchey. His suspicions grow when Justin is found
petrified in the corridor. He spreads the rumour that Harry’s destiny was to become
a powerful dark wizard and that is why Voldemort wanted to kill him.

• Row-clusters 3 and 5, which are about quidditch and the Weasleys share meaningful
blocks in column-cluster 20. It contains only three words, for which the two most
frequent are ‘fred’ and ‘george’. Fred and George are twins and they are also members
of the Weasley family. Both of them are ‘beaters’ on Harry’s Quidditch team.

100

SO
CC

SO
CC

SO
CC

SO
CC

SO
CC

• Row-clusters 3 and 6, which are about Quidditch and the Harry’s classmates share
meaningful blocks in column-cluster 21. The column-cluster contains the terms ‘crabbe’,
‘goyle’, ‘malefoy’ and ‘slytherins’. Crabbe, Goyle and Malefoy belong to the Slytherin
house at the school. They are Harry’s classmates and hate him. In Volume 3, Harry
and his classmates discover that he faints in the presence of dementors (a creature
that can absorb your soul). Later on in the year, Harry fainted while playing in a
Quidditch match, when Crabbe, Goyle and Malefoy arrived on the field disguised as
dementors.

• Row-clusters 4 and 5, which are about the Dursleys and the Weasleys share meaningful
blocks in column-cluster 23. The corresponding terms include ‘auntie’, ‘bedroom’,
‘brothers’, ‘errol’, ‘ink’, ‘letters’, ‘september’, ‘sons’, ‘summer’ and ‘written’. The
vocabulary related to a family context connects the two row-clusters because both of
them relate to families. The terms ‘summer’ and ‘september’ relate to the fact that
Harry spends part of his summer vacations at his aunt’s place and the other part at
the Weasley’s. The terms ‘errol’, ‘ink’ and ‘letters’ refers to Errol, Ron Weasley’s owl,
which he uses to write to Harry when he is at his aunt’s.

A ǇǈǍƾ ǈǇ Ǎǁƾ common ǌƾƼǍǂǈǇ The common section is composed by a unique column-
cluster. However, this cluster contains the majority of the terms, with ρ29 = 0.63 (thus, 63%
of terms). The corresponding terms include ‘harry’, ‘potter’, ‘ron’, ‘hermiones’, ‘granger’
and ‘hogwarts’. These terms are very important for the Harry Potter story, and at first, it
seems odd that they are not in the main section. However, this phenomenon is explained by
considering that the common section includes the terms that are frequent to all row-clusters.
Furthermore, if the term ‘harry’ appeared in a column-cluster of the main section, it would
not bring any valuable information about the chapters of this row-cluster, since Harry is
present in all chapters.

4.5.3 Conclusions on the study of the Harry Potter data set
This section brought an insight on how to use the SOCC model on a completely unsupervised
data set. Furthermore, for each stage of the process of co-clustering, we indicated how the
tasks left to the user are easier with the SOCC model in comparison with the other co-
clustering methods.

4.6 Conclusion and perspectives .

In this work, we proposed the SOCC model, a novel approach to easily co-cluster textual data
sets. The model offers easy-to-read results, and quickly shows the terms that are specific to
one group of documents, the terms that are specific to two groups of documents, the terms
that are common to all documents. The resulting algorithm is not only more accurate than
other state-of-the-art methods but it is also able to detect the number of co-clusters, as a
result of the ICL-BIC criterion. An R package SOCC is available upon request to perform
these functionalities.

In future work, we could define other structures, for example with clusters of terms
specific to 3 or more groups of documents. The first concern here is the increasing number
of column-clusters (which would require at least

(
G
3

)
more column-clusters). Also, it would

be interesting to investigate a more developed model selection: we can allow the structure to
not have all G+

(
G
2

)
+1 column clusters. For example, in Figure 4.8, we see the pubmed4min

101

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

5
Investigations on the DeepGaussianMixtureModel

5.1 Introduction . 103
5.1.1 Neural networks 104
5.1.2 Coupling Deep Learning and Gaussian Mixture Models 106

5.2 Deep Gaussian Mixture Models . 107
5.2.1 Definition of the Deep Gaussian Mixture Model 107
5.2.2 Inference of the model 108
5.2.3 Model selection 111

5.3 Properties of the Deep GMM . 111
5.3.1 Preliminary analysis: simulated data 111
5.3.2 More experiments 113
5.3.3 Applying the DGMM to real data sets 124
5.3.4 Conclusion on the experiments 126

5.4 Suggestion of extension of DGMM to categorical data . 127
5.4.1 Latent Gaussian Models for discrete data 127
5.4.2 LGM and DGMM 128
5.4.3 Solution for categorical data 129
5.4.4 Remarks on the model 132

5.5 Conclusion and perspectives . 132
5.6 Appendices . 133

5.6.1 Importance sampling and unnormalised distributions 133
5.6.2 Tables of correspondences between scripts and sections 134

5.1 Introduction .

This chapter is a work in collaboration with Claire Gormley from the University College
Dublin, it was published in Selosse et al. (2020a). It consists in a thorough investigation of

103

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

To compute the outputs hl of a layer l, the outputs of the previous layer hl−1 are trans-
formed with a linear transformation Λl (and bias ηl) and subsequently transformed with a
non-linear function σl, also referred to as the “activation function”:

hl = σl(Λlhl−1 + ηl),

with hl (or hl−1) a vector of size R(l) (or R(l−1)), Λl a matrix of size R(l) × R(l−1) and
ηl a vector of size R(l). The outputs of a L-layers network is a linear combination of the
activations in the last layer:

y = ΛyhL + ηy,

where the size Jy of the vector y depends on the task of prediction. The parameter Λy is a
matrix of size Jy×R(L) and ηy is of size Jy. Sometimes, y is also transformed with a certain
non-linear function. When the neural network must predict the class of an observation,
among a finite number of classes, then the “softmax” function will be used so that the
last output corresponds to probabilities for an input to belong to each class. Therefore,
the parameters to estimate are the matrices (Λl)l∈{1,...,L} and the bias (η)l∈{1,...,L}. The
loss function will also depend on the task and on the nature of y. The most common loss
functions are the mean squared error loss (for a continuous target), the binary cross-entropy
(for a binary target) and the multi-class cross-entropy (for a categorical target). Neural
networks are usually optimised using gradient-based methods such as the gradient descent
algorithm. At the qth iteration, the algorithm computes the gradient of the loss function
with respect to the parameters θ = (Λl,ηl)l∈{1,...,L} and updates the parameters with a
small step in the opposite direction of the gradient:

θ(q) = θ(q−1) − α∇θ,

where α is the step size, also referred to as “learning rate” and ∇θ is the gradient of the loss
function with respect to the parameters. Training a neural network is the iterative process of
updating the parameters many times. The most general deep learning architecture is referred
to as the “Multi-Layer Perceptron” (MLP) which is made of “fully-connected” layers. This
means that all the neurons of a layer are connected to all the neurons of the previous layer.

These concepts are the basis of the neural networks but many alternatives exist. Neural
networks have been intensively studied over the last years and they reach the state-of-the-art
performances in supervised and unsupervised learning in many domains. Some well-known
variations of the neural networks are listed below:

• Activation functions: a lot of activation functions exist, some of them are the sigmoid
function, the tanh function, the ReLU function and the Leaky-ReLU function.

• Auto-encoders: this particular family of neural networks learns to copy its input to its
output. It has an internal layer that describes a code used to represent the input, and
it is composed of two main parts: an encoder that maps the input into the code, and a
decoder that maps the code to a reconstruction of the original input. A recent version
of the auto-encoder is the Variational Auto-Encoder (Rezende et al., 2014; Kingma
and Welling, 2013), whose internal layer representation is not fully-connected but are
samples from a standard Gaussian multivariate distribution.

• Dropout: it consists in randomly setting activations to zero in the network during the
training phase. This is a technique to avoid overfitting the data set (Srivastava et al.,
2014).

105

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

• Convolutional Neural Networks (Lecun et al., 1998) (CNN): these neural networks
were also inspired by biological processes and they try to mimic the visual cortex.
First of all, the layers have neurons arranged in 3 dimensions. In addition, the layers
are not fully connected. Each neuron inside a convolutional layer is connected to only
a small region of the previous layer. Therefore, the CNN exploits spatial locality by
enforcing a local connectivity pattern between neurons of adjacent layers.

• Residual Neural Networks (He et al., 2016): they are a special kind of neural networks
that allows neurons outputs to jump over some layers. A motivation for skipping over
layers is to avoid the problem of vanishing gradients, which occurs when the gradient
value becomes too small. It is known that the brain has structures similar to residual
nets in the cerebral cortex.

• Generative Adversarial Nets (Goodfellow et al., 2014): this framework has two net-
works. The “generative network” is trained to generate samples and the “discrimina-
tive network” evaluates their probability to be real (i.e. their probability to not be
made by the generative network). These two networks are adversarial because the
objective of the generative network is to increase the error rate of the discriminative
network (i.e. by producing novel candidates that the discriminative network thinks
they are part of the true data distribution).

5.1.2 Coupling Deep Learning and Gaussian Mixture Models
Neural networks have shown great efficiency in supervised and unsupervised tasks. However,
other methods such as model-based clustering should not be put aside since they still can
be of help in different perspectives. In fact, recent studies show that the Mixture of Factor
Analysers can be effectively estimated from image data and it is able to describe a higher
spectrum of data density than Generative Adversarial Nets (Richardson and Weiss, 2018;
Śmieja et al., 2020). The Deep Gaussian Mixture Model aims at exploiting advantages of
both multi-layer architectures and MFA models. The idea behind that model is to consider a
layer as an MFA. First, the input of the first layer is the data x and each neuron corresponds
to a component of the first mixture. The resulting latent scores z(1) are seen as the output
h1 of the first layer and they are the input of the second layer, whose neurons are also
components of a mixture, and so on, until the last layer whose scores zL are assumed to
be sampled from a standard multivariate Gaussian distribution N (0, I) (as in the classical
MFA model).

One of the earliest papers to define a model with the idea of stacking MFA layers is that
of Tang et al. (2012) where the author refers to the model as the “Deep Mixture of Factor
Analyser”. In this model, the layers are not fully-connected and the architecture is a tree: a
neuron receives an input from only one neuron of the previous layer. In van den Oord and
Schrauwen (2014), the authors define a DGMM model with fully-connected layers, but the
matrices of weights Λ are assumed to be squared. In other words, there is no dimension
reduction between each MFA layer, which leads to important unidentifiability issues. In
the model proposed by Yang et al. (2017), instead of using the MFA model as a layer, the
authors suggest using the MCFA model (Baek et al., 2010): the matrices Λg of a same layer
are therefore assumed to be equal for all g. Finally, Viroli and McLachlan (2019) define the
Deep Gaussian Mixture Model (DGMM) with dimension reduction at each layer and provide
an EM-algorithm for the inference of the parameters. This chapter aims at investigating the
properties of the DGMMs as they were described in Viroli and McLachlan (2019).

106

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

5.2 Deep Gaussian Mixture Models .

5.2.1 Definition of the Deep Gaussian Mixture Model
This section relies on Viroli and McLachlan (2019). Let us assume that there are L layers
and that the data x = (xi)i∈{1,...,N} is generated as follows:

xi = z
(0)
i = η(1)

g1
+Λ

(1)
g1
z
(1)
i + u

(1)
i with prob. π(1)

g1
, g1 ∈ {1, . . . , G(1)}

z
(1)
i = η(2)

g2
+Λ

(2)
g2
z
(2)
i + u

(2)
i with prob. π(2)

g2
, g2 ∈ {1, . . . , G(2)}

. . .

z
(l)
i = η(l+1)

gl+1
+Λ

(l+1)
gl+1

z
(l+1)
i + u

(l+1)
i with prob. π(l+1)

gl+1
, gl+1 ∈ {1, . . . , G(l+1)} (5.1)

. . .

z
(L−1)
i = η(L)

gL
+Λ

(L)
gL
z
(L)
i + u

(L)
i with prob. π(L)

gL
, gL ∈ {1, . . . , G(L)},

where:

• z
(L)
i is a vector of size R(L) and is assumed to be drawn from the Gaussian distribution

N (0, I),

• (u
(l)
i) is a specific random error that follows a Gaussian distribution with expectation

0 and covariance matrices ψ(l)
gl ,

• η
(l)
gl is a vector length R(l),

• Λ
(l)
gl

is a matrix of dimension R(l−1) ×R(l),

• J < . . . < R(l−1) < R(l) for all l.

The vectors u(l)
i are supposed to be independent of the scores z(l). From these considerations,

we see that at each layer l, the conditional distribution of z(l)i given z(l+1)
i is a mixture of

Gaussian distributions such that:

f(z
(l)
i |z

(l+1)
i ;θ) =

G(l+1)∑

gl+1=1

πgl+1
N (η(l+1)

gl+1
+Λ

(l+1)
gl+1

z
(l+1)
i ,ψ(l+1)

gl+1
). (5.2)

In addition, it is important to notice that the marginal probability distribution f(xi;θ)
is a GMM where each component corresponds to one of the possible paths of the network.
Therefore, by denoting G as the set of all possible paths through the network, the DGMM
can be written:

f(xi;θ) =
∑

g∈G

πgN (µg,Σg), (5.3)

where g = (g1, . . . , gL) is one of the possible paths of the network,

πg =

L∏

l=1

π(l)
gl
, (5.4)

107

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

µg = η(1)
g1

+Λ
(1)
g1

(
η(2)
g2

+Λ
(2)
g2

(
. . . (η(L−1)

gL−1
+Λ

(L−1)
gL−1

η(L)
gL

)
))

and (5.5)

Σg = Λ
(1)
g1

(
Λ

(2)
g2

(
. . . (Λ(L)

gL
Λ

(L)
gL

T
+ψ(L)

gL
) . . .

)
Λ

(2)
g2

T
+ψ(2)

g2

)
Λ

(1)
g1

T
+ψ(1)

g1
. (5.6)

We refer to the GMM of Equation (5.3) as the “global GMM” of the DGMM so as not to
confuse it with the GMM of the layers. In addition, the number of possible paths through
the network is denoted as G. In fact, Equation (5.3) can be generalised to all layers: the
margin distributions of all the scores z(l)i are Gaussian mixtures. So, by denoting G̃ as all
the possible paths from the lth layer, and by integrating out the latent variables of the layers
that follow the lth layer, we have:

f(z
(l)
i ;θ) =

∑

g̃∈G̃

π̃g̃N (µ̃
(l+1)
g̃ , Σ̃

(l+1)

g̃) (5.7)

where g̃ = (gl+1, . . . , gL) is a possible path of the network from the lth layer,

π̃g̃ =

L∏

l′=l+1

πgl′ , (5.8)

µ̃g̃ = η(l+1)
gl+1

+Λ
(l+1)
gl+1

(
η(l+2)
gl+2

+Λ
(l+2)
gl+2

(
. . . (η(L−1)

gL−1
+Λ

(L−1)
gL−1

η(L)
gL

)
))

and (5.9)

Σ̃g̃ = Λ
(l+1)
gl+1

(
Λ

(l+2)
gl+2

(
. . . (Λ(L)

gL
Λ

(L)
gL

T
+ψ(L)

gL
) . . .

)
Λ

(l+2)
gl+2

T
+ψ(l+2)

gl+2

)
Λ

(l+1)
gl+1

T
+ψ(l+1)

gl+1
. (5.10)

To conclude, the DGMM has parameters θ = (η
(l)
gl ,Λ

(l)
gl
,ψ

(l)
gl , π

(l)
gl)l∈{1,...,L};gl∈{1,...,G(l)}.

It also has the latent variables v(l) and z(l) where v(l) corresponds to the partition of the
lth layer. In Table 5.1, we list the number of parameters to be estimated for the DGMM
and other model-based clustering methods: the GMMs VVV and EEE models and the MFA
model.

model name mixing
proportions means covariance

matrix factor loadings noise co-variance
matrix

GMM VVV G− 1 GR GJ(J + 1)/2 none none
GMM EEE G− 1 GR J(J + 1)/2 none none

MFA G− 1 GR none GR[R− (R− 1)/2] GR

DGMM
∑L
l=1G

(l) − 1
∑L
l=1G

(l)R(l−1) none
∑L
l=1G

(l)R(l)[R(l−1) − (R(l) − 1)/2]
∑L
l=1G

(l)R(l−1)

Table 5.1 – Number of parameters for four model-based clustering methods.

5.2.2 Inference of the model
Similar to MFA, the DGMM has parameters and latent variables to estimate. Therefore,
the EM algorithm is a candidate to optimise the log-likelihood function with respect to
the parameters and latent variables. However, in the MFA model, the computation of the
expectation of the complete data log-likelihood does not involve p(z;θ) since z is assumed

108

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

to be drawn from the standard Gaussian distribution N (0, I) (see Section 2.4.2 for fur-
ther details). For the DGMM, unless l = L, z(l)l is assumed to be drawn from an MFA
with parameters (π

(l+1)
gl+1 ,η

(l+1)
gl+1 ,Λ

(l+1)
gl+1

,ψ
(l+1)
gl+1)gl+1∈{1,...,G(l+1)}. Thus, the parameters of the

model are involved in the computation of p(z(l);θ) which makes it difficult to optimise the
auxiliary function with all the layers at the same time. A solution to this issue is to perform
the optimisation layer by layer in an iteration of the EM algorithm. In this case, when
we optimise the auxiliary function with respect to the parameters of layer l, the fact that
p(z(l);θ) depends on the parameters of layer l + 1 is not a problem. Therefore, an EM
algorithm similar to that in Section 2.2.6 can be performed. We detail the computations
made at iteration q.

(ƺ) FǂǋǌǍ E-ǌǍƾǉ Before iterating on the layers, the EM algorithm has to compute the ex-
pectation of partitions v of the global GMM of Equation (5.3). It corresponds to estimating
which path g = (g1, . . . , gL) was followed in the network by each observation. This requires
the computation of π(q)

g , µ(q)
g and Σ

(q)
g from Equations 5.4, 5.5 and 5.6. Then, we compute

t
(q)
ig :

t
(q)
ig = E[vig|x;θ

(q−1)] =
π
(q−1)
g fg(xi;µ

(q−1)
g ,Σ(q−1)

g)
∑G

g′=1 π
(q−1)
g′ fg′(xi|µ

(q−1)
g′ ,Σ(q−1)

g)
. (5.11)

Once t(q)ig is known for all i and g, it is straightforward to compute the quantities t(l,q)igl
, which

correspond to the partitions of the GMM of each layer.
Then, the EM algorithm iterates on the layers l ∈ {1, . . . , L} the second E-step and the
M-step.

(ƻ) SƾƼǈǇƽ E-ǌǍƾǉ For layer l, this step consists in computing the expectations of z(l)i given
z
(l−1)
i and v(q)i :

• Ep(z(l)|z(l−1),v)[z
(l)
i |z

(l−1)
i ,v

(q)
i] and

• Ep(z(l)|z(l−1),v)[z
(l)
i z

(l)
i

T
|z

(l−1)
i ,v

(q)
i].

According to Equation (5.2) and (5.7), we have:

f(z
(l−1)
i |z

(l)
i ,v

(q)
i ;θ(q−1)) = N (η(l,q−1)

gl
+Λ

(l,q−1)
gl

z
(l)
i ,ψ(l,q−1)

gl
) and (5.12)

f(z
(l)
i |vi;θ

(q−1)) = N (µ̃
(l+1)
g̃ , Σ̃

(l+1)

g̃). (5.13)

By using the property of conditional multivariate Gaussian distributions, we get:

f(z
(l)
i |z

(l−1)
i ,v

(q)
i ;θ(q−1)) = N (κgl(z

(l−1)
i), ζgl), (5.14)

where

κgl(z
(l−1)
i) = ζgl

(
Λ

(l,q−1)
gl

T
ψ(l,q−1)
gl

−1
(z

(l−1)
i − η(l,q−1)

gl
) + (Σ̃

(l+1)

g̃)−1µ̃
(l+1)
g̃

)
and (5.15)

109

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

ζgl =

(
(Σ̃

(l+1)

g̃)−1 +Λ
(l,q−1)
gl

T
ψ(l,q−1)
gl

−1
Λ

(l,q−1)
gl

)−1

. (5.16)

Viroli and McLachlan (2019) suggest using a stochastic E-step and generating S samples
z
(l)
i

[s]
from Equation (5.14). Then, the expectations can be approximated as follows:

Ep(z(l)|z(l−1),v)[z
(l)
i |z

(l−1)
i ,v

(q)
i] ≈

∑S
s=1 z

(l)
i

[s]

S
and (5.17)

Ep(z(l)|z(l−1),v)[z
(l)
i z

(l)
i

T
|z

(l−1)
i ,v

(q)
i] ≈

∑S
s=1 z

(l)
i

[s]
z
(l)
i

[s]T

S
. (5.18)

However, another option is to approximate the expectations directly with the parameters
κgl and ζgl :

Ep(z(l)|z(l−1),v)[z
(l)
i |z

(l−1)
i ,v

(q)
i] ≈ κgl(z

(l−1)
i) and (5.19)

Ep(z(l)|z(l−1),v)[z
(l)
i z

(l)
i

T
|z

(l−1)
i ,v

(q)
i] ≈ κgl(z

(l−1)
i)κgl(z

(l−1)
i)T + ζgl . (5.20)

Both alternatives were implemented, but the experiments we run in this chapter used the
last one. Indeed, the Stochastic version seems to yield similar results when S > 5 and
sometimes struggles to run all the iterations when S < 5, due to computational errors.

(Ƽ) M ǌǍƾǉ For convenience, we note Ep(z(l)|z(l−1),v) as E. We update the parameters as
follows:

η(l,q)
gl

=

∑N
i=1 t

(l,q)
igl

(
z
(l−1)
i −Λ

(l,q)
gl

E[z
(l)
i |z

(l−1)
i ,v

(q)
i]

)

∑N
i=1 t

(l,q)
igl

,

Λ
(l,q)
gl

=

∑N
i=1 t

(l,q)
igl

(
(z

(l−1)
i − η

(l,q)
gl)E

[
zi|z

(l−1)
i ,v

(q)
i

]T
E[z

(l)
i z

(l)
i

T
|z

(l−1)
i ,v

(q)
i]−1

)

∑N
i=1 t

(l,q)
igl

,

ψ(l,q)
gl

=

∑N
i=1 t

(l,q)
igl

(
(z

(l−1)
i − η

(l,q)
gl)(z

(l−1)
i − η

(l,q)
gl)T − (z

(l−1)
i − η

(l,q)
gl)E[z

(l)
i |z

(l−1)
i ,v

(q)
i]TΛ(l,q)

gl

T
)

∑N
i=1 t

(l,q)
igl

,

π(l,q)
g =

1

N

N∑

i=1

t
(l,q)
igl

.

110

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

5.2.3 Model selection

The BIC criterion applies to DGMM with the same expression −2 log p(x|θ̂) + ν logN (see
Section 2.1.5 for further details). The number of parameters ν is given by:

ν =

L∑

l=1

(G(l) − 1)︸ ︷︷ ︸
mixing proportions

+G(l)R(l−1)
︸ ︷︷ ︸

means

+G(l)R(l)[R(l−1) − (R(l) − 1)/2]︸ ︷︷ ︸
factor loadings

+ G(l)R(l−1)
︸ ︷︷ ︸

noise covariance matrix

,

with R(l−1) = J when l = 1.

5.3 Properties of the Deep GMM .

To our knowledge, there is no assessment of the properties of the estimators of the DGMM
in the literature. In this section, we propose to assess empirically the EM algorithm detailed
above. We simulate data via the generative process of the DGMM with known parameters
and partitions. Then, we run the algorithm to see if it estimates the parameters and parti-
tions well. This investigation is useful because estimating the latent parameters is not easy
due to the multi-layer architecture of the model and to the many latent variables. Further-
more, trying the inference algorithm on a model is a good way to know if the algorithm
needs adjustments (e.g. different initialisations). All the experiments made here are avail-
able with the deepMFA package. In addition, Tables 5.7 and 5.8 list the correspondences
between sections and scripts in Appendix 5.6.2.

5.3.1 Preliminary analysis: simulated data

5.3.1.a Settings for the simulated data set
The data set x was set with N = 4000 and J = 8. The network was built with two
layers (L = 2) such that each layer has three neurons (G(1) = G(2) = 3). In addition,
the latent scores were set to be of dimension R(1) = 5 and R(2) = 2 respectively. The
parameters π(l)

g were set to 1/3 for all g and for all l. The parameters (η
(l)
g ,Λ(l)

g ,ψ
(l)
g)g,l

were sampled from Gaussian whose parameters can be found in the file configuration.R
of the R package deepMFA. For every experiment described below, the EM-algorithm is run
twenty times on the same data set. We compare our results with baselines methods. We
use the mclust package (Scrucca et al., 2016), which performs clustering with the fourteen
GMMs (see Table 2.1) and returns the model with the lower BIC value. We also use the
function kmeans.

5.3.1.b Results on the simulated data sets
We run the EM algorithm with two different initialisations of the partitions: random and
kmeans. Figure 5.2 shows the resulting ARI for the DGMM and its two different initialisa-
tions, the mclust package and the kmeans function, with respect to the true partitions.
First, there is a small difference between the random initialisation and the kmeans initiali-
sation. Second, the DGMM yields poor results since the higher ARI value it gets is equal to
0.80 (with random initialisation) even though the data set was generated through its gen-
erative process. In addition, we note that the mclust algorithm outperforms the DGMM
by getting higher ARI values and by reaching an ARI equal to 1 on three simulations. It

111

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

run number ARI of layer 1 ARI of layer 2
1 0.71 0.06
2 0.49 0.05
3 1 0.06
4 0.4 0.17
5 0.54 0.06
6 0.39 0.08
7 0.51 0.22
8 0.53 0.06
9 0.72 0.25
10 0.1 0.06
11 0.55 0
12 0.73 0.08
13 0.5 0.18
14 1 0.21
15 0.29 0.08
16 0.71 0.11
17 0.16 0
18 0.5 0.17
19 0.57 0.06
20 0.61 0.06

Table 5.2 – ARI results for the GMM of each layer. We see that the latent scores z
(1) do not seem to be

estimated well.

run number layer 1 layer 2 global GMM
1 1, 2, 3 3 7, 8, 9
2 1, 2, 3 1, 3 1, 2, 3, 7, 8, 9
3 1, 2, 3 1, 2 1, 2, 3, 4, 5, 6
4 1, 2, 3 1, 2, 3 1, 2, 3, 4, 5, 7, 8
5 1, 2, 3 1, 3 1, 2, 3, 7, 8, 9
6 1, 2, 3 1 1, 2, 3
7 1, 2, 3 1 1, 2, 3
8 1, 2, 3 2 4, 5, 6
9 1, 2, 3 2, 3 4, 5, 6, 7, 8, 9
10 1, 2, 3 2, 3 4, 5, 6, 7, 8, 9
11 1, 2, 3 1 1, 2, 3
12 1, 2, 3 1 1, 2, 3
13 1, 2, 3 1, 2 1, 2, 3, 4, 5, 6
14 1, 2, 3 1, 2 1, 2, 3, 5, 6
15 1, 2, 3 2, 3 4, 5, 6, 7, 8, 9
16 1, 2, 3 2, 3 4, 5, 6, 7, 8, 9
17 1, 2, 3 1, 2 1, 2, 3, 4, 6
18 1, 2, 3 2, 3 4, 5, 6, 7, 8, 9
19 1, 2, 3 1, 2, 3 1, 2, 3, 4, 7, 8, 9
20 1, 2, 3 2 4, 5, 6

Table 5.3 – The clusters that are present at the end of the EM algorithm for the 20 runs.

115

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

run number layer 1 layer 2 global GMM
1 1, 2, 3 1, 2, 3 2, 3, 4, 5, 7, 8, 9
2 1, 2, 3 1, 2, 3 1, 2, 3, 4, 5, 6, 7, 8, 9
3 1, 2, 3 1, 2, 3 1, 2, 3, 4, 5, 6, 7, 9
4 1, 2, 3 1, 2, 3 1, 2, 3, 4, 5, 6, 7, 8, 9
5 1, 2, 3 1, 2, 3 1, 3, 4, 7, 8, 9
6 1, 2, 3 1, 2, 3 1, 2, 3, 4, 5, 6, 7, 9
7 1, 2, 3 1, 2, 3 1, 2, 3, 6, 7, 8, 9
8 1, 2, 3 1, 2, 3 1, 2, 3, 4, 5, 6, 7, 9
9 1, 2, 3 1, 2, 3 1, 2, 5, 6, 7, 9
10 1, 2, 3 1, 2, 3 1, 2, 3, 4, 5, 6, 7, 9
11 1, 2, 3 1, 2, 3 1, 2, 3, 4, 5, 6, 7, 8, 9
12 1, 2, 3 1, 2, 3 1, 2, 3, 5, 6, 8, 9
13 1, 2, 3 1, 2, 3 1, 2, 3, 4, 5, 7, 8, 9
14 1, 2, 3 1, 2, 3 1, 2, 3, 5, 6, 8
15 1, 2, 3 1, 2, 3 1, 2, 3, 4, 5, 6, 7, 8, 9
16 1, 2, 3 1, 2, 3 1, 2, 3, 4, 5, 6, 7, 8, 9
17 1, 2, 3 1 1, 2, 3
18 1, 2, 3 1, 2, 3 1, 2, 3, 4, 5, 7, 8, 9
19 1, 2, 3 1, 2, 3 1, 2, 3, 5, 6, 7, 8, 9
20 1, 2, 3 1, 2, 3 1, 2, 3, 4, 5, 6, 7, 8, 9

Table 5.4 – The clusters that are present at the end of the EM algorithm for the 20 runs with the initialisation
strategy; we see that several runs fill all the clusters of the layers and of the global GMM.

factor (column) on all the variables (rows) in a factor loading matrix.

• The procrustean rotation (Jackson, 2005) is a rotation with two matrices as input.
It is desired to find the rotation that will best approximate one to the other. In our
work, we use this rotation so that Λ

(l,q)
gl

best approximates Λ
(l,q−1)
gl

, for the loading
matrices not to change radically from an iteration to the other.

It is obvious that when the loading matrices are rotated, the scores (z(l))l also need to be
rotated. Figure 5.10 shows the results obtained. We see that using the varimax rotation
does not improve the performances at all whereas using the procrustes rotation does not
systematically get better results than the original EM algorithm but is able to get slightly
better ARIs for some runs. Overall, using rotations does not get better results than the
mclust function, which can mean that the unindentifiability of the DGMM is not the only
issue of the model.

5.3.2.f ConstrainingΛ(l)
gl

to be a lower triangular full rank matrix

We implement the EM algorithm to force some values of Λ(l)
gl

to be equal to 0, so that it is
a lower triangular full rank matrix. The aim of this experiment is to reduce the number of
parameters to be estimated and to decomplexify the model. The simulation settings were
slightly changed so that the parameters respected the same constraint. These settings can
be found in the file configuration-upper-tri.R. In this case, we also had to run again the
original EM algorithm, the mclust and kmeans functions because the parameters values had
changed. Figure 5.11 shows the ARI for every function. We see that applying this constraint
does not yield better results. If simplifying the parameters of the model does not improve

119

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

5.3.3 Applying the DGMM to real data sets
In the previous section, we have seen that the EM algorithm has trouble finding the true
partitions of data simulated with the DGMM generative process. In this section, we run the
algorithm with real data sets.

5.3.3.a The MNIST data set
PǋƾǌƾǇǍƺǍǂǈǇ ǈƿ Ǎǁƾ ƽƺǍƺǌƾǍ The MNIST dataset (LeCun and Cortes, 2010) is the most
popular data set in deep learning. It has 60000 images of handwritten digits numbers with
grayscale levels. Each image was normalized to fit into a 28 × 28 pixels box. The 28 × 28
matrices were then reshaped as vectors of length 784. The result is a 60000 × 784 matrix
with the grayscale level of each pixel from each image. The dataset contains a 60000 long
vector as well, which indicates the actual number represented by the images. Figure 5.15
shows how some images in the dataset look like.

Figure 5.15 – Samples of the MNIST dataset.

PǋƾǉǋǈƼƾǌǌǂǇǀ ƺǇƽ ƺǅǀǈǋǂǍǁǆ ǌƾǍǍǂǇǀǌ We run a Principal Component Analysis on the
data set and kept the 20 principal features of the PCA. Then, we randomly sampled 1000
observations. Therefore, we have N = 1000 and J = 20. We used a random initialisation
and fixed G(1) = 5 and G(2) = 2 (so that we have 5 × 2 = 10 clusters); and R(1) = 15,
R(1) = 10 and nb.init = 50. We run the EM algorithm 10 times with these settings. We
also used the mclust package and run the kmeans function to compare our results.

RƾǌǎǅǍǌ Figure 5.16 shows the ARI obtained on the MNIST data set. We see that the
DGMM yields better results than mclust and kmeans.
Another interesting result is that the EM algorithm does not seem to suffer from emptiness
of clusters in the case of the MNIST data set. Table 5.5 lists the clusters that are represented
at layer 1, layer 2 and for the global GMM where all the clusters are always filled.

UǌǂǇǀ Ǎǁƾ DGMMǍǈ ǌƺǆǉǅƾ Ǉƾǐ ƽǂǀǂǍǌ ǐǂǍǁ ƽǂƿƿƾǋƾǇǍ Ǉǎǆƻƾǋǌ ǈƿ ǅƺǒƾǋǌ Here, the goal
was to sample new MNIST images from the DGMM generative process. To this purpose,
we had to use the MNIST data set without performing a PCA beforehand. We run the EM
algorithm once, with the settings L = 2, G(1) = 5, G(2) = 2, R(1) = 10, R(2) = 3. We drew

124

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

run number layer 1 layer 2 global GMM
1 1, 2, 3, 4, 5 1, 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
2 1, 2, 3, 4, 5 1, 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
3 1, 2, 3, 4, 5 1, 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
4 1, 2, 3, 4, 5 1, 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
5 1, 2, 3, 4, 5 1, 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
6 1, 2, 3, 4, 5 1, 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
7 1, 2, 3, 4, 5 1, 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
8 1, 2, 3, 4, 5 1, 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
9 1, 2, 3, 4, 5 1, 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
10 1, 2, 3, 4, 5 1, 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Table 5.5 – The clusters that are present at the end of the EM algorithm for the 10 runs with the MNIST data
set. None of the clusters is empty.

5.3.3.b The ecoli data set
The ecoli data set consists of N = 336 proteins classified into their various cellular localiza-
tion sites based on their amino acid sequences. There are J = 7 variables and G = 8 really
unbalanced groups that make the clustering task rather difficult: cp cytoplasm (143), inner
membrane without signal sequence (77), periplasm (52), inner membrane, uncleavable sig-
nal sequence (35), outer membrane (20), outer membrane lipoprotein (5), inner membrane
lipoprotein (2), inner membrane, cleavable signal sequence (2). These data are available
from the UCI machine learning repository∗. We run the mclust and kmeans function 10
times to compare our results, and we run the EM-algorithm with the initialisation strategy
and the Procrustes rotation. In addition, we set L = 2, R(1) = 3, R(2) = 2, G(1) = 4,
G(2) = 2, nb.iter = 30, nb.burnin = 15 and rate = 0.1. Results are shown in Figure 5.18,
where we see that the DGMM is able to get better results than its competitors. However, it
is also less stable, in the sense that it can also get much worse results regarding the partition
estimation.

In Table 5.6, we list the ARI and BIC values for each of the 10 runs on the data set.
We see that the 7th run got the lowest BIC value and also yielded the highest ARI score.
Similarly, we see that the run with the highest BIC value also corresponds to the run with
the lowest ARI value. This means that even though the DGMM model gets less stable
results than the two other methods, the BIC seems to be a good criterion to choose among
the runs when the ground-truth is not known.

5.3.4 Conclusion on the experiments
The DGMM was ingeniously designed to stack MFA layers in a deep learning fashion. In
theory, this would allow capturing complex structures in the data and its nature as a factor
analyser would allow performing clustering on data sets where there are more variables
than observations. However, in practice, the architecture of DGMM involves many latent
variables and parameters resulting in a model that is difficult to infer.

In this section, we simulate a data set with the DGMM generative process and try to
modify the original EM algorithm so that it can address these issues. However, none of
these implementations yields satisfying results in the sense that they are not able to estimate
the true parameters and that a classical GMM always obtains better performances to find

∗https://archive.ics.uci.edu/ml/datasets/Ecoli

126

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

run number ARI score BIC value
1 0.51 -16155
2 0.648 -16411.03
3 0.424 -16528.57
4 0.532 -16268.73
5 0.25 -16176.52
6 0.347 -16292.69
7 0.713 -16581.54
8 0.709 -16337.49
9 0.707 -16181.97
10 0.136 -14694.59

Table 5.6 – ARI and BIC for the 10 runs of the DGMM on the ecoli data set.

whose rth element is written as χir; χi is defined through W , a real valued matrix of size
m × L and w, a J length real valued vector. Therefore, the LGM for discrete data follows
the generative process:

zi ∼ N (µ̃, Σ̃),

χi =Wzi +w,

xi ∼ M(1,φ(χi)),

where φ(χi) is an m-long vector whose rth element φr(χi) is:

φr(χi) = exp
{
χir − log

(m∑

r′=1

exp(χir′)
)}

.

So, we have:

p(xi = r|zi;θ) =
exp(χir)

m∑
r′=1

exp(χir′)
. (5.21)

5.4.2 LGM and DGMM
In the DGMM, we can use the Latent Gaussian Model described above by considering
that the latent variables (zi) were drawn from a DGMM. In this case, we assume that an
observation xi was generated as folllows:

128

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

xi ∼ M(1,φ(χi)), with

χi =Wz
(0)
i +w

z
(0)
i = η(1)

g1
+Λ

(1)
g1
z
(1)
i + u

(1)
i with prob. π(1)

g1
, g1 ∈ {1, . . . , G(1)}

z
(1)
i = η(2)

g2
+Λ

(2)
g2
z
(2)
i + u

(2)
i with prob. π(2)

g2
, g2 ∈ {1, . . . , G(2)}

. . .

z
(l)
i = η(l+1)

gl+1
+Λ

(l+1)
gl+1

z
(l+1)
i + u

(l+1)
i with prob. π(l+1)

gl+1
, gl+1 ∈ {1, . . . , G(l+1)} (5.22)

. . .

z
(L−1)
i = η(L)

gL
+Λ

(L)
gL
z
(L)
i + u

(L)
i with prob. π(L)

gL
, gL ∈ {1, . . . , G(L)}.

From z
(0)
i , the generative model is exactly the same as for the DGMM for continuous data.

However, in the latter, we have z(0)i = xi and not having this equality in the categorical
case can arise some issues for the model inference.

5.4.2.a Why are categorical data a problem for the inference?
In the DGMM, it is important to recall that the EM algorithm requires computing the
expectations Ep(z(l)|z(l−1),v)[z

(l)
i |z

(l−1)
i ,vi] and Ep(z(l)|z(l−1),v)[z

(l)
i z

(l)
i

T
|z

(l−1)
i ,vi].

We can do that because:

p(z
(l)
i |z

(l−1)
i ,vi;θ) = p(z

(l)
i |vi;θ)×

p(z
(l−1)
i |z

(l)
i ,vi;θ)

p(z
(l−1)
i |vi;θ)

, (5.23)

and these three terms are Gaussians, which leads to Equation (5.14).
However, in the categorical case, for l = 0, we need to compute p(z(0)i |xi;θ) with:

p(z
(0)
i |xi,vi;θ) = p(z

(0)
i |vi;θ)×

p(xi|z
(0)
i ;θ)

p(xi;θ)
, (5.24)

and not all these terms are Gaussians. The only Gaussian term is p(z(0)i |vi;θ) and we cannot
find an analytic solution.

5.4.3 Solution for categorical data

5.4.3.a Importance Sampling
GƾǇƾǋǂƼ ǂƽƾƺ ǈƿ IǆǉǈǋǍƺǇƼƾ SƺǆǉǅǂǇǀ Importance sampling (IS) is a useful technique
when we want to approximate an expectation of the form:

Ep(z)[h] =

∫
h(zi)p(zi)dzi. (5.25)

The idea is to choose a proposal distribution q(zi) from which it is easy to draw samples
and rewrite the integral as follows:

Ep(z)[h] =

∫
h(zi)

p(zi)

q(zi)
q(zi)dzi. (5.26)

129

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

We can approximate the expectation with:

Ep(z)[h] ≈
1

S

S∑

s=1

p(z
[s]
i)

q(z
[s]
i)

h(z
[s]
i), (5.27)

where z[s]i ∼ q(z).

AǉǉǅǒǂǇǀ IS Ǎǈ ǈǎǋ ǉǋǈƻǅƾǆ We want to compute:

Ep(z(0)|x,v)[z
(0)
i |xi,vi].

Compared to the definition of IS above, we have zi = z
(0)
i , h(zi) = z

(0)
i and p(zi) =

p(z
(0)
i |xi,vi;θ). Let us consider we know a proposal distribution q(z

(0)
i). Replacing the

corresponding terms in Equation (5.27), we have:

Ep(z(0)|x,v)[z
(0)
i |xi,vi] ≈

1

S

S∑

s=1

p(z
(0)
i

[s]
|xi)

q(z
(0)
i

[s]
)
z
(0)
i

[s]
, (5.28)

with z(0)i

[s]
∼ q(z

(0)
i).

IS seems to be a good candidate to compute the expectation but, in our case, we still have
two issues:

• IS requires computing p(z(0)i

[s]
|xi;θ), which is not feasible for us to do and,

• we do not know how to choose proposal distribution q(z
(0)
i).

5.4.3.b Handling unnormalised distribution

IS can handle cases where the distribution p(z
(0)
i

[s]
|xi;θ) can only be evaluated up to a

normalisation constant, so that p(z(0)i |xi;θ) = p̃(z
(0)
i |xi;θ)/Cp where p̃(z(0)i |xi;θ) can be

evaluated easily, whereas Cp is unknown. Similarly, IS also handles the case where the
proposal distribution q(z

(0)
i) = q̃(z

(0)
i)/Cq has the same property. We then have:

Ep(z(0)|x,v)[z
(0)
i |xi,vi] =

Cq

Cp

∫
z
(0)
i

p̃(z
(0)
i |xi;θ)

q̃(z
(0)
i)

q(z
(0)
i)dz

(0)
i

≈
S∑

s=1

p̃(z
(0)
i

[s]
|xi)/q̃(z

(0)
i

[s]
)

S∑
s′=1

p̃(z
(0)
i

[s′]
|xi)/q̃(z

(0)
i

[s′]
)

z
(0)
i

[s]
, (5.29)

with z(0)i

[s]
∼ q(z

(0)
i). In Appendix 5.6.1, we show how to find this result.

130

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

5.4.3.c Using the Laplace's method as a proposal distribution
LƺǉǅƺƼƾ'ǌǆƾǍǁǈƽ Laplace’s method approximates the integral of the form

∫
exp {h(zi)}dzi

where h(zi) is a function satisfying some regularity conditions. In this method, we first com-
pute the mode mi of h(zi) and its curvature V at the mode; these quantities are defined
as:

mi = argmax
zi

h(zi) and (5.30)

V = −

[
∂2h(zi)

∂zi∂z
T
i

]−1

zi=mi

. (5.31)

Then, we take the first order Taylor series expansion of h(zi) around mi, as shown
in Equation (5.32). The second term in the expansion corresponds to a Gaussian whose
normalising constant is known, which gives us the approximation of Equation (5.33):

∫
exp{h(zi)}dzi ≈

∫
exp

[
h(mi)−

1

2
(zi −mi)V

−1(zi −mi)

]
dzi (5.32)

= exp[h(mi)](|2πV |)1/2. (5.33)

AǉǉǅǒǂǇǀ Ǎǁƾ LƺǉǅƺƼƾ'ǌ ǆƾǍǁǈƽ Ǎǈ ǈǎǋ ǉǋǈƻǅƾǆ We define the function as follows:

h(z
(0)
i) = log p(xi, z(0)i ;θ). (5.34)

For LGM, computing mi is easy since h(z(0)i) is a concave function , and Vi is usually
available in closed form. These quantities can be used to approximate the posterior as
follows:

p(z
(0)
i |xi;θ) ∝ p(xi, z

(0)
i ,θ) = exp[h(z(0)i)] (5.35)

≈ exp[h(mi)] exp
[
−

1

2
(z

(0)
i −mi)

TV −1
i (z

(0)
i)
]

(5.36)

∝ N (z
(0)
i |mi,Vi). (5.37)

5.4.3.d EstimatingW andw
The parameters W and w also have to be estimated. Since we have:

χi =Wz
(0)
i +w and p(xi = r|zi;θ) =

exp(χir)
m∑
r′=1

exp(χir′)
,

finding the parameters W and w0 that maximise p(x = k|z(0)) is like finding the weights of
a softmax function (in other words a neural network with only one neuron).

131

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

5.4.4 Remarks on the model
In this section, we presented a solution to extend the DGMM to categorical data. We chose
to use Importance Sampling coupled with the Laplace’s method as a proposal distribution
to compute the expectations we needed; however, other methods of the literatures could
have been used such as the Hamiltonian Monte Carlo algorithm (Mohamed et al., 2009) or
methods based on Local Variational Bounds (Khan et al., 2010). The DGMM for categorical
data entirely relies on the DGMM for continuous data. Because we could not find a way to
properly estimate the parameters of the latter, we cannot compare the alternatives of the
DGMM for categorical data.

5.5 Conclusion and perspectives .

In theory, the DGMM is a powerful model that can estimate complex distributions by stack-
ing MFA layers in a deep learning fashion. However, we saw through different experiments
that the EM algorithm, deployed to infer its parameters, suffers from drawbacks and strug-
gles to find the global maxima, due to the many latent variables and the local maxima.
Nevertheless, on some real data sets, the DGMM yields satisfying results and offers a nice
generative process to visualise the representant of the clusters in the context of image data
sets. In this thesis, the DGMM was mostly described in the context of continuous variables
but, if the inference drawbacks get solved, it can be easily extended to categorical data.
Finally, the model selection aspects were not further investigated but they could also have a
great impact on the performance of the model. As in neural networks, it would be interest-
ing to understand the differences between shallow and deep networks and be able to build
tools to choose architectures less arbitrarily.

132

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

5.6 Appendices .

5.6.1 Importance sampling and unnormalised distributions
Here, we prove how to find the result of Equation (5.29). From the first part of this equation,
we have:

Ep(z(0)|x,v)[z
(0)
i |xi,vi] =

Cq

Cp

∫
z
(0)
i

p̃(z
(0)
i |xi;θ)

q̃(z
(0)
i)

q(z
(0)
i)dz

(0)
i

≈
Cq

Cp

1

S

S∑

s=1

p̃(z
(0)
i

[s]
|xi)

q̃(z
(0)
i

[s]
)
z
(0)
i

[s]
. (5.38)

We can use the same sample set to estimate the ratio Cq

Cp
with the result:

Cp

Cq
=
Cp

Cq

∫
p̃(z

(0)
i |xi;θ)

Cp
dz

(0)
i

︸ ︷︷ ︸
=1

=
1

Cq

∫
Cq p̃(z

(0)
i |xi;θ)

q̃(z
(0)
i)

q(z
(0)
i)dz

(0)
i

=

∫
p̃(z

(0)
i |xi;θ)

q̃(z
(0)
i)

q(z
(0)
i)dz

(0)
i

≈
S∑

s=1

p̃(z
(0)
i

[s]
|xi)

q̃(z
(0)
i

[s]
)
.

Therefore, we get:

Ep(z(0)|x,v)[z
(0)
i |xi,vi] ≈

S∑

s=1

p̃(z
(0)
i

[s]
|xi)/q̃(z

(0)
i

[s]
)

S∑
s′=1

p̃(z
(0)
i

[s′]
|xi)/q̃(z

(0)
i

[s′]
)

z
(0)
i

[s]
. (5.39)

133

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

De
ep

GM
M

5.6.2 Tables of correspondences between scripts and sections

script name section number
script-1.R Sections 5.3.1.a and 5.3.1.b
script-2.R Section 5.3.1.b
script-3.R Section 5.3.2.a
script-4.R Section 5.3.2.b
script-5.R Section 5.3.2.c
script-6.R Section 5.3.2.d
script-7.R Section 5.3.2.e
script-8.R Section 5.3.2.f
script-9.R Section 5.3.2.g
script-10.R Section 5.3.2.h and Section 5.3.2.i
script-11.R Section 5.3.3.a

Table 5.7 – Scripts and their corresponding sections.

section number script name
Section 5.3.1.a script-1.R
Section 5.3.1.b script-1.R and script-2.R
Section 5.3.2.a script-3.R
Section 5.3.2.b script-4.R
Section 5.3.2.c script-5.R
Section 5.3.2.d script-6.R
Section 5.3.2.e script-7.R
Section 5.3.2.f script-8.R
Section 5.3.2.g script-9.R
Section 5.3.2.h script-10.R
Section 5.3.2.i script-10.R
Section 5.3.3.a script-11.R

Table 5.8 – Sections and their corresponding scripts.

134

Pe
rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s

6
Conclusion and Perspectives

6.1 Conclusion . 135
6.2 Perspectives of the MLBM . 136
6.3 Perspectives of the SOCC model . 136
6.4 Perspectives of the DGMM . 137

6.4.1 From a probabilistic point of view 137
6.4.2 From a deep learning point of view 137

6.1 Conclusion .

This thesis presented several contibutions to bring parsimony to model-based clustering
methods. In Chapter 2, we introduced model-based clustering and some of its most famous
techniques so that the reader gets the necessary background for the next chapters. We first
described the Finite Mixture Model as the basis of all the model-based methods. Then,
we explained in detail the Mixture of Factor Analysers, which are the basis of Chapter 5.
Finally, we reviewed the Latent Block Model, a probabilistic approach of co-clustering, which
is the basis model for the contributions of Chapters 3 and 4.

Our first contribution is detailed in Chapter 3. It defines a co-clustering approach that
is able to take mixed data sets into account. It extends the Latent Block Model and more
particularly the Multiple Latent Block Model (MLBM) (Robert, 2017) to separate column-
clusters of variables of different nature. We detailed the SEM-algorithm to infer the param-
eters of the model and we showed that this method can be of help to analyse different real
data sets.

When we used the MLBM on real data sets, we handled textual data via document-
term matrices, which are sparse and high-dimensional. We observed that interpreting the
LBM and the MLBM was not always easy, which made us design the SOCC model that
we described in Chapter 4. The SOCC model adapts to the complexity of textual data by

135

Pe
rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s

defining and organising noise blocks. Once the co-clustering is run, the user already knows
what the noisy blocks are, hence the user knows which blocks contain specific information.

Chapter 5 is a thorough investigation of the Deep Gaussian Mixture Model (Deep GMM) (Vi-
roli and McLachlan, 2019) and its properties. This model is based on the Mixture of Factor
Analysis (MFA) model and consists in stacking MFA layers in a deep learning fashion. This
is made possible by considering that the latent scores of a layer are the data input of the
MFA of the next layer. In this chapter, we empirically show the difficulties to properly
estimate the parameters of the models and we discuss the possible reasons and solutions to
tackle these problems.

6.2 Perspectives of the MLBM .

In Chapter 3, we presented the MLBM model for mixed data, which is a co-clustering model
able to take heterogeneous data into account. As detailed in Section 3.7, this model has
certain limitations. One of the main flaws is that each kind of variable will have a different
impact on the resulting row partitions even if the D matrices have the same number of
features Jd. Works such as Wang (2001) could be a good avenue to start investigating the
possibility of affiliating weights to the different matrices (xd)d∈{1,...,D}.

Finally, in Section 3.6, we saw that the need of multiple latent blocks is not necessarily
due to the data heterogeneity and that it can be semantic (i.e. the user may need certain
variables not to be into the same column-cluster). We can imagine that some applications
could need a similar separation for the rows too. In other words, the user could need similar
constraints where certain rows cannot be together, resulting in D sets of variables (as in
MLBM), and E sets of observations (the extension). Imposing such a constraint is quite
straightforward, but it makes the model selection more complicated since there would not
be 1 but E numbers of row-clusters to define.

6.3 Perspectives of the SOCC model .

In Chapter 4, we defined the SOCC model, a co-clustering algorithm for textual data sets.
We saw that the main perspective of the model is to define other more flexible structures
where some column-clusters could be removed when they are useless. This could be done
using the ICL but would cost a lot of time of computation.

One of the most important advantages of this model is the interpretability of its results.
For years, the Machine Learning community has tried to improve the performance of their
techniques and has reached State-of-the-Art accuracies with “black box” frameworks such
as neural networks that are hard to explain. However, recently, a part of the community
has shown the importance of explainability and interpretability in ML (Gilpin et al., 2018).
Many domains such as healthcare, insurances, banks and so on, look for deploying ML
systems; so, if we are unable to deploy improved interpretability in our algorithms, the
potential impact of ML will be limited. Therefore, the perspectives of this chapter are not
only about the SOCC model itself but also about the need of designing models with better
interpretability and explainability.

136

Pe
rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s
Pe

rs
pe

ct
ive

s

6.4 Perspectives of the DGMM .

In Chapter 5, we investigated the properties of the DGMM (Viroli and McLachlan, 2019).
We saw that the estimation of the parameters of the DGMM is difficult, and the first
perspective of this chapter would be to find a robust and reliable algorithm to find correct
estimators. We also saw that when this problem is solved, the DGMM for categorical and
mixed data could be investigated so that it is able to take into account more complex data.
In addition, and still considering that inference problems are solved, the fact that DGMM
is both a neural network and a probabilistic model offers many avenues of investigation.

6.4.1 From a probabilistic point of view
The DGMM is based on the MFA model, which is itself based on latent variables z, assumed
to be drawn from the standard multivariate Gaussian distribution N (0, I). In fact, many
probabilistic models rely on such latent variables, we can cite, among others, the Proba-
bilistic Partial Least Squares (el Bouhaddani et al., 2018) and the Probabilistic Canonical
Correlation Analysis (Bach and Jordan, 2005). Such models could possibly be thought in a
deep learning fashion too, and we could investigate the feasibility of a multi-layer architec-
ture to describe the distribution of their latent variables.

6.4.2 From a deep learning point of view
Because the DGMM is somehow a neural network, an interesting perspective would be to
transfer some of the neural networks extensions that were recently found to the model. The
DGMM architecture, for example, can be designed with layers that are not fully-connected
in order to resemble more to a Convolutional Neural Network. This could possibly improve
its performance with image data sets. The dropout technique could also be implemented in
the DGMM context; removing a neuron at layer l would be the equivalent to removing a
cluster at layer l. The ResNets architecture could also be an inspiration for an extension of
the DGMM, although it would require to investigate how to handle the dimension reduction
of the scores z, which is not straightforward.

137

Re
fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es

Bibliography

N. K. Aaronson, S. Ahmedzai, B. Bergman, M. Bullinger, A. Cull, N. J. Duez, A. Filib-
erti, H. Flechtner, S. B. Fleishman, J. C. J. M. d. Haes, S. Kaasa, M. Klee, D. Osoba,
D. Razavi, P. B. Rofe, S. Schraub, K. Sneeuw, M. Sullivan, and F. Takeda. The european
organization for research and treatment of cancer qlq-c30: A quality-of-life instrument
for use in international clinical trials in oncology. JNCI: Journal of the National Cancer
Institute, 85(5):365–376, 1993. doi: 10.1093/jnci/85.5.365.

A. Agresti. Analysis of Ordinal Categorical Data, 2nd Ed. John Wiley & Sons, Inc., 2010.

O. Aguilar and M. West. Bayesian dynamic factor models and portfolio allocation. Journal
of Business & Economic Statistics, 18(3):338–357, 2000.

M. Ailem, F. Role, and M. Nadif. Graph modularity maximization as an effective method
for co-clustering text data. Know.-Based Syst., 109(C):160–173, Oct. 2016.

M. Ailem, F. Role, and M. Nadif. Sparse poisson latent block model for document clustering.
IEEE Trans. Knowl. Data Eng., 29(7):1563–1576, 2017.

F. R. Bach and M. I. Jordan. A probabilistic interpretation of canonical correlation analysis.
Technical report, 2005.

J. Baek, G. Mclachlan, and L. Flack. Mixtures of factor analyzers with common factor
loadings: Applications to the clustering and visualization of high-dimensional data. IEEE
transactions on pattern analysis and machine intelligence, 32:1298–309, 07 2010. doi:
10.1109/TPAMI.2009.149.

J. D. Banfield and A. E. Raftery. Model-based gaussian and non-gaussian clustering. Bio-
metrics, 49(3):803–821, 1993.

J.-P. Baudry, A. E. Raftery, G. Celeux, K. Lo, and R. Gottardo. Combining mixture
components for clustering. Journal of Computational and Graphical Statistics, 19(2):
332–353, 2010.

R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

T. Benaglia, D. Chauveau, and D. R. Hunter. An em-like algorithm for semi- and non-
parametric estimation in multivariate mixtures. Journal of Computational and Graphical
Statistics, 18(2):505–526, 2009.

C. Biernacki and J. Jacques. Model-Based Clustering of Multivariate Ordinal Data Relying
on a Stochastic Binary Search Algorithm. Statistics and Computing, 26(5):929–943, 2016.

139

Re
fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es

C. Biernacki and A. Lourme. Unifying data units and models in (co-)clustering. Adv. Data
Anal. Classif., 13(1):7–31, Mar. 2019. ISSN 1862-5347.

C. Biernacki, G. Celeux, and G. Govaert. Assessing a mixture model for clustering with the
integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine
Intelligence., 22(7):719–725, July 2000.

C. Biernacki, T. Deregnaucourt, and V. Kubicki. Model-based clustering with mixed/missing
data using the new software MixtComp. In CMStatistics 2015 (ERCIM 2015), London,
United Kingdom, Dec. 2015.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022, 2003.

A. Bouchareb, M. Boullé, and F. Rossi. Co-clustering de données mixtes à base des modèles
de mélange. In Actes de la 17ème Conférence Internationale Francophone sur l’Extraction
et gestion des connaissances (EGC’2017), pages 141–152, Grenoble, France, 2017.

C. Bouveyron, S. Girard, and C. Schmid. High-Dimensional Data Clustering. Computational
Statistics and Data Analysis, 52(1):502–519, 2007.

C. Bouveyron, M. Fauvel, and S. Girard. Kernel discriminant analysis and clustering with
parsimonious gaussian process models. Statistics and Computing, 25(6):1143–1162, 2015.
ISSN 0960-3174.

C. Bouveyron, L. Bozzi, J. Jacques, and F. Jollois. The functional latent block model for the
co-clustering of electricity consumption curves. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 67(4):897–915, 2018.

C. Bouveyron, G. Celeux, T. B. Murphy, and A. E. Raftery. Model-Based Clustering and
Classification for Data Science: With Applications in R. Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press, 2019.

V. Brault. Estimation et sélection de modèle pour le modèle des blocs latents. PhD thesis,
Université Paris Sud-Paris XI, 2014.

N. D. Buono and G. Pio. Non-negative matrix tri-factorization for co-clustering: An analysis
of the block matrix. Information Sciences, 301:13 – 26, 2015. ISSN 0020-0255.

G. Celeux and G. Govaert. Gaussian parsimonious clustering models. Pattern Recognition,
28(5):781 – 793, 1995. ISSN 0031-3203.

O. Chapelle, B. Schlkopf, and A. Zien. Semi-Supervised Learning. The MIT Press, 1st
edition, 2010. ISBN 0262514125.

Y. Chen, L. Wang, M. Dong, and J. Hua. Exemplar-based visualization of large document
corpus (infovis2009-1115). IEEE Transactions on Visualization and Computer Graphics,
15(6):1161–1168, Nov. 2009.

P. Coretto and C. Hennig. Maximum likelihood estimation of heterogeneous mixtures of
gaussian and uniform distributions. Journal of Statistical Planning and Inference, 141(1):
462 – 473, 2011. ISSN 0378-3758.

140

Re
fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es

F. Cousson-Gélie. Évolution du contrôle religieux la première année suivant l’annonce d’un
cancer du sein : quels liens avec les stratégies de coping, l’anxiété, la dépression et la
qualité de vie ? Psychologie Francaise, 59(4):331 – 341, 2014. ISSN 0033-2984.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of he Royal Statistical Society, series B, 39(1):1–38, 1977.

I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In Proceed-
ings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’03, pages 89–98, New York, NY, USA, 2003. ACM.

C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix t-factorizations
for clustering. In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06, pages 126–135, New York, NY, USA,
2006. ACM.

A. R. T. Donders, G. J. van der Heijden, T. Stijnen, and K. G. Moons. Review: A gentle
introduction to imputation of missing values. Journal of Clinical Epidemiology, 59(10):
1087 – 1091, 2006.

G. Drosatos and E. Kaldoudi. A probabilistic semantic analysis of ehealth scientific litera-
ture. Journal of Telemedicine and Telecare, 2019.

S. el Bouhaddani, H.-W. Uh, C. Hayward, G. Jongbloed, and J. Houwing-Duistermaat.
Probabilistic partial least squares model: Identifiability, estimation and application. Jour-
nal of Multivariate Analysis, 167(C):331–346, 2018.

B. S. Everitt. Introduction to Latent Variable Models. Chapman and Hall. 1984.

D. Fernández and R. Arnold. Model selection for mixture-based clustering for ordinal data.
Australian & New Zealand Journal of Statistics, 58, 08 2016. doi: 10.1111/anzs.12179.

J. Fonseca and M. Cardoso. Mixture-model cluster analysis using information theoretical
criteria. Intell. Data Anal., 11:155–173, 04 2007. doi: 10.3233/IDA-2007-11204.

M. Fop and T. B. Murphy. Variable selection methods for model-based clustering. Statist.
Surv., 12:18–65, 2018. doi: 10.1214/18-SS119.

R. Gaujoux and C. Seoighe. A flexible r package for nonnegative matrix factorization. BMC
Bioinformatics, 11(1):367, 2010.

A. E. Gelfand and A. F. M. Smith. Sampling-based approaches to calculating marginal
densities. Journal of the American Statistical Association, 85(410):398–409, 1990.

A. Gelman and D. Rubin. Inference from iterative simulation using multiple sequences.
Statistical Science, 7(4):457–472, 1992. ISSN 08834237.

J. Geweke and G. Zhou. Measuring the Pricing Error of the Arbitrage Pricing Theory. CEMA
Working Papers 276, China Economics and Management Academy, Central University of
Finance and Economics, 1996.

Z. Ghahramani and G. E. Hinton. The em algorithm for mixtures of factor analyzers. 1997.

L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. Explaining explana-
tions: An overview of interpretability of machine learning. In 2018 IEEE 5th International
Conference on Data Science and Advanced Analytics (DSAA), pages 80–89, 2018.

141

Re
fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es

D. P. G.J. McLachlan and R. Bean. Modelling high-dimensional data by mixtures of factor
analyzers. Computational Statistics & Data Analysis, 41(3):379 – 388, 2003.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Process-
ing Systems 27, pages 2672–2680. Curran Associates, Inc., 2014.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016. ISBN
0262035618.

G. Govaert and M. Nadif. Latent block model for contingency table. Communications in
Statistics - Theory and Methods, 39(3):416–425, 2010.

G. Govaert and M. Nadif. Co-Clustering. Computing Engineering series. ISTE-Wiley, 2013.

G. Govaert and M. Nadif. Mutual information, phi-squared and model-based co-clustering
for contingency tables. Advances in Data Analysis and Classification, 12(3):455–488, Sep
2018.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778,
2016.

K. Hornik, I. Feinerer, M. Kober, and C. Buchta. Spherical k-means clustering. Journal of
Statistical Software, 50(10):1–22, 2012.

L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193–218,
Dec 1985.

K. Humphreys and D. M. Titterington. Approximate bayesian inference for simple mixtures.
In J. G. Bethlehem and P. G. M. van der Heijden, editors, COMPSTAT, pages 331–336,
Heidelberg, 2000. Physica-Verlag HD. ISBN 978-3-642-57678-2.

J. E. Jackson. Procrustes Rotation. American Cancer Society, 2005. ISBN 9780470011812.
doi: 10.1002/0470011815.b2a13072.

J. Jacques and C. Biernacki. Model-based co-clustering for ordinal data. Computational
Statistics & Data Analysis, 123(C):101–115, 2018.

K. S. Jones. A statistical interpretation of term specificity and its application in retrieval.
Journal of Documentation, 28(1):11–21, 1972.

H. F. Kaiser. The varimax criterion for analytic rotation in factor analysis. Psychometrika,
23(3):187–200, 1958. doi: 10.1007/BF02289233.

G. Karypis. CLUTO a clustering toolkit. Technical Report 02-017, Dept. of Computer
Science, University of Minnesota, 2002.

C. Keribin. Les méthodes bayésiennes variationnelles et leur application en neuroimagerie :
une étude de l’existant. Research Report RR-7091, INRIA, 2009.

142

Re
fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es

C. Keribin, G. Govaert, and G. Celeux. Estimation d’un modèle àblocs latent par l’algo-
rithme sem. 42èmes Journées de Statistique, 05 2010.

C. Keribin, V. Brault, G. Celeux, and G. Govaert. Estimation and Selection for the Latent
Block Model on Categorical Data. Research Report RR-8264, INRIA, Nov. 2013.

M. E. E. Khan, G. Bouchard, K. P. Murphy, and B. M. Marlin. Variational bounds for
mixed-data factor analysis. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23,
pages 1108–1116. Curran Associates, Inc., 2010.

D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2013. cite arxiv:1312.6114.

C. Laclau and M. Nadif. Hard and fuzzy diagonal co-clustering for document-term parti-
tioning. Neurocomput., 193(C):133–147, June 2016.

C. Laclau and M. Nadif. Diagonal latent block model for binary data. Statistics and
Computing, 27(5):1145–1163, 2017.

C. Laclau, I. Redko, B. Matei, Y. Bennani, and V. Brault. Co-clustering through optimal
transport. In Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, pages 1955–1964, 2017.

P. Latouche, E. Birmelé, and C. Ambroise. Bayesian methods for graph clustering. In
A. Fink, B. Lausen, W. Seidel, and A. Ultsch, editors, Advances in Data Analysis, Data
Handling and Business Intelligence, pages 229–239, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

E. Lebarbier and T. Mary-Huard. Le critère BIC : fondements théoriques et interprétation.
Research Report RR-5315, INRIA, 2004.

Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.

T. Lin, J. Lee, and S. Yen. Finite mixture modelling using the skew normal distribution.
Statistica Sinica, 17:909–927, 07 2007.

R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data. John Wiley & Sons,
Inc., New York, NY, USA, 1986. ISBN 0-471-80254-9.

G. Lubke and B. Muthén. Applying multigroup confirmatory factor models for continu-
ous outcomes to likert scale data complicates meaningful group comparisons. Structural
Equation Modeling: A Multidisciplinary Journal, 11(4):514–534, 2004.

E. E. MaloneBeach and S. H. Zarit. Dimensions of social support and social conflict as
predictors of caregiver depression. International Psychogeriatrics, 7(1):25–38, 1995.

M. V. Mantyla, M. Claes, and U. Farooq. Measuring lda topic stability from clusters of
replicated runs. In Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM ’18, New York, NY, USA, 2018.
Association for Computing Machinery. ISBN 9781450358231.

143

Re
fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es

M. Marbac, C. Biernacki, and V. Vandewalle. Model-based clustering of gaussian copulas
for mixed data. Communications in Statistics - Theory and Methods, 46(23), 2017.

M. Mariadassou and C. Matias. Convergence of the groups posterior distribution in latent
or stochastic block models. Bernoulli, 21(1):537–573, 02 2015. doi: 10.3150/13-BEJ579.

G. J. McLachlan and T. Krishnan. The EM algorithm and extensions. Wiley New York,
1997. ISBN 0471123587.

G. J. McLachlan and D. Peel. Finite mixture models. Wiley Series in Probability and
Statistics, New York, 2000.

P. D. McNicholas and T. B. Murphy. Parsimonious gaussian mixture models. Statistics and
Computing, 18(3):285–296, 2008.

D. McParland and I. Gormley. Model based clustering for mixed data: Clustmd. Adv. Data
Anal. Classif., 10(2):155–169, June 2016. ISSN 1862-5347.

D. McParland, C. M. Phillips, L. Brennan, H. M. Roche, and I. C. Gormley. Clustering
high-dimensional mixed data to uncover sub-phenotypes: joint analysis of phenotypic and
genotypic data. Statistics in Medicine, 36(28):4548–4569, 2017.

S. Mohamed, Z. Ghahramani, and K. A. Heller. Bayesian exponential family pca. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Infor-
mation Processing Systems 21, pages 1089–1096. Curran Associates, Inc., 2009.

M. Nadif and G. Govaert. Algorithms for model-based block gaussian clustering. In
DMIN’08, the 2008 International Conference on Data Mining, Las Vegas, Nevada, USA,
July 14-17 2008.

J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal,
7:308–313, 1965.

P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values. Environmetrics, 5:111–126, 06 1994.

S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359, 2010.

K. Pearson and O. M. F. E. Henrici. Iii. contributions to the mathematical theory of
evolution. Philosophical Transactions of the Royal Society of London. (A.), 185:71–110,
1894.

D. Peel and G. J. McLachlan. Robust mixture modelling using the t distribution. Statistics
and Computing, 10(4):339–348, 2000.

G. R. Pierce, I. G. Sarason, B. R. Sarason, J. A. Solky-Butzel, and L. C. Nagle. Assessing
the quality of personal relationships. Journal of Social and Personal Relationships, 14(3):
339–356, 1997.

A. E. Raftery. Bayesian model selection in social research. Sociological Methodology, 25:
111–163, 1995.

144

Re
fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In E. P. Xing and T. Jebara, editors, Proceedings
of the 31st International Conference on Machine Learning, volume 32 of Proceedings of
Machine Learning Research, pages 1278–1286, Bejing, China, 22–24 Jun 2014. PMLR.

E. Richardson and Y. Weiss. On gans and gmms. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, NIPS’18, page 5852–5863, Red
Hook, NY, USA, 2018. Curran Associates Inc.

V. Robert. Classification croisee pour l’analyse de bases de donnees de grandes dimensions
de pharmacovigilance. PhD thesis, Université Paris-Sud, 2017.

J. K. Rowling. Harry Potter and the Philosopher’s Stone, volume 1. Bloomsbury Publishing,
London, 1 edition, June 1997.

J. K. Rowling. Harry Potter and the Chamber of Secrets, volume 1. Bloomsbury Publishing,
London, 1 edition, June 1998.

J. K. Rowling. Harry Potter and the Prisoner of Azkaban, volume 1. Bloomsbury Publishing,
London, 1 edition, June 1999.

D. B. Rubin and D. T. Thayer. Em algorithms for ml factor analysis. Psychometrika, 47
(1):69–76, 1982.

A. Salah, M. Ailem, and M. Nadif. Word co-occurrence regularized non-negative matrix tri-
factorization for text data co-clustering. In Proceedings of the Thirty-Second International
Conference on Artificial Intelligence (AAAI’18), 2018.

I. G. Sarason, H. M. Levine, R. B. Basham, and B. R. Sarason. Assessing social support:
The social support questionnaire. Journal of Personality and Social Psychology, page 139,
1983.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461–464,
1978.

L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery. mclust 5: clustering, classi-
fication and density estimation using Gaussian finite mixture models. The R Jour-
nal, 8(1):205–233, 2016. URL https://journal.r-project.org/archive/2016-1/
scrucca-fop-murphy-etal.pdf.

M. Selosse, J. Jacques, C. Biernacki, and F. Cousson-Gélie. Analysing a quality-of-life survey
by using a coclustering model for ordinal data and some dynamic implications. Journal
of the Royal Statistical Society: Series C (Applied Statistics), in press, 2019.

M. Selosse, C. Gormley, J. Jacques, and C. Biernacki. A bumpy journey: exploring deep
gaussian mixture models. In NeurIPS 2020 Workshop ICBINB, 2020a.

M. Selosse, J. Jacques, and C. Biernacki. Model-based co-clustering for mixed type data.
Computational Statistics & Data Analysis, 144:106866, 2020b. ISSN 0167-9473.

M. Selosse, J. Jacques, and C. Biernacki. Textual data summarization using the self-
organized co-clustering model. Pattern Recognition, 103:107315, 2020c. ISSN 0031-3203.

P. Singh Bhatia, S. Iovleff, and G. Govaert. blockcluster: An R package for model-based
co-clustering. Journal of Statistical Software, 76(9):1–24, 2017.

145

Re
fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es

Y. B. Slimen, S. Allio, and J. Jacques. Model-based co-clustering for functional data. Neu-
rocomputing, 291:97 – 108, 2018. ISSN 0925-2312.

M. Śmieja, M. Przewięźlikowski, and L. Struski. Estimating conditional density of missing
values using deep gaussian mixture model. 2020.

A. K. Smilde, J. A. Westerhuis, and S. d. Jong. A framework for sequential multiblock
component methods. Journal of Chemometrics, 17(6):323–337, 6 2003. ISSN 1099-128X.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.
html.

H. Steinhaus. Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci, 1(804):
801, 1956.

Y. Tang, R. Salakhutdinov, and G. Hinton. Deep mixtures of factor analysers. In Proceedings
of the 29th International Coference on International Conference on Machine Learning,
ICML’12, pages 1123–1130, USA, 2012. Omnipress. ISBN 978-1-4503-1285-1. URL http:
//dl.acm.org/citation.cfm?id=3042573.3042718.

T. Thongtan and T. Phienthrakul. Sentiment classification using document embeddings
trained with cosine similarity. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics: Student Research Workshop, pages 407–414, Florence,
Italy, July 2019. Association for Computational Linguistics.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. JOURNAL
OF THE ROYAL STATISTICAL SOCIETY, SERIES B, 61(3):611–622, 1999a.

M. E. Tipping and C. M. Bishop. Mixtures of probabilistic principal component analyzers.
Neural Comput., 11(2):443–482, 1999b. ISSN 0899-7667.

A. van den Oord and B. Schrauwen. Factoring variations in natural images with deep
gaussian mixture models. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27,
pages 3518–3526. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5227-factoring-variations-in-natural-images-with-deep-gaussian-mixture-models.
pdf.

C. Viroli and G. J. McLachlan. Deep gaussian mixture models. Statistics and Computing,
29(1):43–51, Jan 2019.

B. Wang and D. M. Titterington. Convergence and asymptotic normality of variational
bayesian approximations for exponential family models with missing values. In Proceedings
of the 20th Conference on Uncertainty in Artificial Intelligence, UAI ’04, page 577–584,
Arlington, Virginia, USA, 2004. AUAI Press. ISBN 0974903906.

S. X. Wang. Maximum weighted likelihood estimation. PhD thesis, University of British
Columbia, 2001.

L. Wu, I. E.-H. Yen, K. Xu, F. Xu, A. Balakrishnan, P.-Y. Chen, P. Ravikumar, and M. J.
Witbrock. Word mover’s embedding: From Word2Vec to document embedding. In Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,

146

Re
fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es
Re

fe
re
nc

es

pages 4524–4534, Brussels, Belgium, Oct.-Nov. 2018. Association for Computational Lin-
guistics.

X. Yan, J. Guo, Y. Lan, and X. Cheng. A biterm topic model for short texts. In Proceedings
of the 22nd International Conference on World Wide Web, WWW ’13, pages 1445–1456,
New York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450320351.

X. Yang, K. Huang, and R. Zhang. Deep mixtures of factor analyzers with common load-
ings: A novel deep generative approach to clustering. In Neural Information Processing
- 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18,
2017, Proceedings, Part I, pages 709–719, 2017. doi: 10.1007/978-3-319-70087-8_73.
URL https://doi.org/10.1007/978-3-319-70087-8_73.

J. Zhao and P. Yu. Fast ml estimation for the mixture of factor analyzers via an ecm
algorithm. IEEE transactions on neural networks / a publication of the IEEE Neural
Networks Council, 19:1956–61, 12 2008. doi: 10.1109/TNN.2008.2003467.

Q. Zhu, Z. Feng, and X. Li. GraphBTM: Graph enhanced autoencoded variational inference
for biterm topic model. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 4663–4672, Brussels, Belgium, 2018. Association for
Computational Linguistics.

A. S. Zigmond and R. P. Snaith. The hospital anxiety and depression scale. Acta Psychiatrica
Scandinavica, 67(6):361–370, 1983.

147

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

List of Figures

2.1 Graphical representations of the fourteen models for GMMs, in dimension
J = 2. 26

2.2 Simple example of co-clustering with binary data from Govaert and Nadif
(2013). 40

2.3 Example of a parameter evolution over iterations: we see that the burn-in
period is over at the 100th iteration. 46

3.1 (a) is the matrix x. The blue lines represent the separation of the features that
are not of same type. (b) is the matrix after having performed a co-clustering.
The red lines represent the co-clusters limits. 56

3.2 Evolution of parameters ρ through the SEM-Gibbs algorithm iterations. From
left to right, and from top to bottom, the graph represents the evolution of
the first element of each vector ρ1, ρ2, ρ3 and ρ4. 64

3.3 Mean absolute error for the mixing proportions with N = Jd = 100. 65
3.4 Mean absolute error for the mixing proportions with N = Jd = 500. 66
3.5 Block representation of the Document-Term matrix (left) and of the ratings

matrix (right). The shades of gray represent the δ parameter of each block
for the Document-Term matrix. For the rating matrix, they represent the µ
parameter. 72

3.6 Co-clustering result on Young People Survey. 75
3.7 Results of constrained co-clustering on anxiety, depression and symptom di-

mensions. 78
3.8 Result of constrained co-clustering on dimensions related to social support. . 79
3.9 Co-clustering results for questions related to symptoms, at three different times. 80

4.1 On the left, the usual Poisson Latent Block Model: we see that some blocks
are not easily classifiable into noisy or significant blocks. On the right, the
SOCC approach: we can easily distinguish betwenn the noisy blocks (shown
in a lighter shade) and the significant blocks. 86

4.2 Co-clustering structure of the Self-Organised Co-Clustering model, with block
effect parameters, in the case G = 3. 87

4.3 From left to right, and from top to bottom: change in parameters δ, δ1, δ2,
δ3 when executing the algorithm on the simulated data set. The parameters
reach their stationary state in less than 10 iterations. 92

4.4 ARI for SOCC model and competitors models on simulated data set. 93
4.5 ARIs for document clustering. From left to right and top to bottom: classic3,

classic4, pubmed3, pubmed4, pubmed4min, pubmed5, sports, yahoo. 95

149

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

Li
st

of
Fi
gu

re
s

4.6 Changes in parameters for the Harry Potter data set for δ, δ1, δ2, δ3, δ4, δ5,
δ6, δ7. 98

4.7 Co-clustering of the Harry Potter data set with the SOCC method. From left
to right: the main, the second and the common sections. The graphic was
produced using the Python function spy() with argument markersize set to
1.2. 98

4.8 Co-clustering of pubmed4min data set with the SOCC method. From left
to right: the main, the second and the common sections. The graphic was
produced using the Python function spy() with the argument markersize set
to 1.3. 102

5.1 Visualization of a neural network with two layers. 104
5.2 Boxplots of the ARI for DGMM with random initialisation, DGMM with

kmeans initialisation, mclust and kmeans. 112
5.3 Boxplots of the BIC values for DGMM with random initialisation, DGMM

with kmeans initialisation and mclust. 113
5.4 BIC values over the iterations of the DGMM with random initialisation. The

first two iterations are removed so that the plot’s scale is not too big. 114
5.5 Mutual ARI of 100 runs of the EM-algorithm. None of them gets the same

final partitions. 114
5.6 Boxplots of the ARI for DGMM with random initialisation, and DGMM with

fixed scores: fix.z.100, fix.z.75 and fix.z.50 have respectively 100%, 75% and
50% of their scores fixed to their true value at each iteration. 116

5.7 Boxplots of the ARI for DGMM with random initialisation, and DGMM with
initialisation of the true parameters (start.1) and true parameters with noise
(start.2, start.3, start.4). 117

5.8 Boxplots of the ARI for DGMM with random initialisation, DGMM with the
strategy of initialisation strat.2 corresponds to a rate equal to 0.2, strat.2
corresponds to a rate equal to 0.5 and strat.7 corresponds to a rate equal to
0.7, and mclust. 118

5.9 Boxplots of the ARI for DGMM with random initialisation, DGMM with
loading matrices fixed after a burn-in period and mclust. 120

5.10 Boxplots of the ARI for DGMM with random initialisation, DGMM with two
different rotations of the loading matrices. 121

5.11 Boxplots of the ARI for DGMM with random initialisation, DGMM with the
constraint on the factor loading matrices, mclust and kmeans. 121

5.12 Boxplots of the ARI for DGMM with random initialisation, DGMM with the
constraint on the factor loading matrices, mclust and kmeans. 122

5.13 Boxplots of the ARI for DGMM with random initialisation, DGMM with
Newton-Raphson, mclust and kmeans. 123

5.14 Boxplots of the ARI for DGMM with random initialisation, DGMM with the
hybrid EM only, DGMM with hybrid EM, the strategy of initialisation and
the procrustean rotation, and mclust. 123

5.15 Samples of the MNIST dataset. 124
5.16 Boxplots of the ARI for DGMM with random initialisation, mclust and

kmeans on the MNIST data set. 125
5.17 Samples from the 10 clusters with the DGMM generative process and param-

eters estimated by the EM algorithm. 125

150

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

5.18 Boxplots of the ARI for DGMM with random initialisation, mclust and
kmeans on the ecoli data set. 127

151

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

List of Tables

2.1 The fourteen models for parameterizations of the covariance matrix Σg in
GMMs context. 26

2.2 Number of parameters for different MFA models. MFA-G corresponds to
MFA described in Ghahramani and Hinton (1997) and MFA-M corresponds
to the MFA described in G.J. McLachlan and Bean (2003). 39

3.1 Number of parameters (ν) of the distribution properties 63
3.2 Value of block parameters. For the count data, parameters are not equal

between the first and second simulations because they depend on the margins. 63
3.3 Value of the block parameters mean absolute error on simulation with N =

Jd = 100 for the continuous, ordinal and count matrices. 67
3.4 Value of the blocks parameters mean absolute error on simulation with N =

Jd = 500 for the continuous, ordinal and count matrices. 67
3.5 Mean (standard deviation) ARIs for two data sets N = 100 and N = 500. . . 67
3.6 Exhaustive search results on 20 simulations results. 68
3.7 Heuristic search results on 20 simulations results. 68
3.8 Mean and Standard deviation for the blocks of continuous variables for the

more challenging data sets cases. 69
3.9 ARIs for the more challenging data set case. 69
3.10 ARIs for a data set with missing values. 69
3.11 Row-cluster interpretation for the TED talks data set. 73
3.12 Resulting co-clustering parameters for the student survey data set. 75
3.13 Table of domains and dimensions raised in the questionnaires. 77
3.14 Co-clustering result on anxiety, depression and symptom dimensions: esti-

mated BOS parameters (µgh, τgh) for each cluster (g, h). 77
3.15 Co-clustering result on social support dimensions: estimated BOS parameters

(µgh, τgh) for each cluster (g, h). 79
3.16 Co-clustering results for the symptoms dimension, at three different times:

estimated BOS parameters (µgh, τgh) for each co-cluster (g, h). 80

4.1 Simulated parameters δgh × 10−7. For each cell xij the Poisson parameter
is equal to ni.n.jδgh, with row margins ni. equal to 2455 on average, and
columns margins n.j equal to 249 on average. 91

4.2 Number of row and column-clusters (G,H) selected by ICL-BIC on the 100
simulated data sets, the right one being (3, 7). 92

4.3 Average similarity measurements between the top 10 terms of each column-
cluster. 96

4.4 Maximum ICL values for each G tested. 97

152

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

Li
st

of
Ta

bl
es

5.1 Number of parameters for four model-based clustering methods. 108
5.2 ARI results for the GMM of each layer. We see that the latent scores z(1) do

not seem to be estimated well. 115
5.3 The clusters that are present at the end of the EM algorithm for the 20 runs. 115
5.4 The clusters that are present at the end of the EM algorithm for the 20 runs

with the initialisation strategy; we see that several runs fill all the clusters of
the layers and of the global GMM. 119

5.5 The clusters that are present at the end of the EM algorithm for the 10 runs
with the MNIST data set. None of the clusters is empty. 126

5.6 ARI and BIC for the 10 runs of the DGMM on the ecoli data set. 128
5.7 Scripts and their corresponding sections. 134
5.8 Sections and their corresponding scripts. 134

153

Lo
ng

ab
st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch

Résumé long : Parcimonie dans les modèles probabilistes pour l'ana-
lyse de données complexes .

Apprentissage automatique
Ces dernières années, l’apprentissage automatique (aussi appelé “machine learning” en an-
glais) a reçu beaucoup d’intérêt de la part de la communauté scientifique et du grand pu-
blique. “Intelligence artificielle”, “apprentissage statistique”, “science des données”, sont
tous des termes qui représentent une branche de l’apprentissage automatique ou qui y sont
fortement liés.

On considère que les modèles d’apprentissage automatique apprennent à partir des don-
nées puisque leur comportement dépend des échantillons de données qui ont été introduits
dans le programme en entrée. En outre, ces algorithmes peuvent être utilisés sur différents
ensembles de données pour résoudre différents problèmes et c’est la raison pour laquelle nous
les considérons comme intelligents. L’intérêt croissant pour l’apprentissage automatique est
dû à deux facteurs. Premièrement, la production d’informations numériques a fortement
augmenté ces dernières années, les entreprises et institutions privées ont désormais davan-
tage accès à des flux de données massifs via les réseaux sociaux, les smartphones, les sites
web et les plateformes d’achat. Deuxièmement, ces données n’auraient pas pu être stockées,
prétraitées ou analysées sans l’énorme croissance de la puissance de calcul, qui permet de
concevoir des modèles plus complexes et plus puissants.

Trois familles de paradigmes
Il existe plusieurs paradigmes en apprentissage automatique, qui utilisent les données de
manière différentes, et qui réalisent différents type de tâches. Nous décrivons maintenant les
trois grandes familles de paradigmes de l’apprentissage automatique.

Apprentissage supervisé
En apprentissage supervisé, nous avons deux ensembles de variables. Les variables d’entrée
xi, et les variables labellisées yi. Le but est d’apprendre une application f de xi vers yi, avec
le jeu de données fait de paires (xi,yi)i∈{1,...,N}. En notant ŷi = f(xi;θ) la prédiction du
modèle pour yi sachant les paramètres θ, alors la fonction de perte L(yi, ŷi) définit à quel
point les prédicitions du modèle sont précises. Les paramètres θ sont choisis pour minimiser
cette fonction de perte sur un jeu de données avec les échantillons (xi,yi)i∈{1,...,N} donnés :

N∑

i

L(yi, ŷi) =
N∑

i

L(yi, f(xi;θ)).

Le choix de fonction de perte dépend du problème à résoudre et de la nature de xi et yi. de
nombreux algorithmes supervisés existent déjà, tels que la régression linéaire, la régression
logistique, les arbres de décisions, les machines à vecteur de support. Dernièrement, les
algorithmes impliquant les réseaux de neurones atteignent les performances de l’état de l’art
pour différentes tâches telles que la vision par ordinateur et la reconnaissance vocale.

Apprentissage non-supervisé
L’apprentissage non-supervisé a un sens plus large et moins bien défini que l’apprentissage
supervisé, car il peut servir dans plusieurs cas. Globalement, le rôle de l’apprentissage non-

154

Lo
ng

ab
st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch

supervisé est de trouver des structures au sein des données x. En général, les variables y
ne sont pas fournies, seulement les variables d’entrées x le sont. Les principaux exemples de
tâches non supervisées sont l’estimation de densité, la réduction de dimension, l’extraction
de caractéristques, la modélisation générative et l’analyse de clusters.

• L’estimation de densité est la construction d’un estimateur de la desnité de probabilité,
basé sur les données observées.

• La réduction de dimension consiste à trouver une représentation pour un jeu de don-
nées, et ce dans un espace de plus petite dimension.

• Les modèles génératifs consistent à considérer que les observations d’un jeu de données
ont été échantillonés selon un processus par la fonction de densité p(x;θ), dont les
paramètres θ doivent être estimés.

• L’analyse de clusters est la tâche qui consiste à regrouper les observations xi dans
différents groupes (ou clusters). Les observations qui se trouvent dans le même groupe
sont alors supposées appartenir à une même catégorie.

Apprentissage semi-supervisé
L’apprentissage semi-supervisé est à mi-chemin entre l’apprentissage supervisé et l’appren-
tissage non-supervisé, dans le sens où tous les labels yi ne sont pas nécessairement dispo-
nibles pour toutes les observations xi. Dans ce cas, l’objectif d’un algorithme semi-supervisé
peut être de concevoir un modèle qui utilise les échantillons non-labellisés pour obtenir de
meilleures performances en prédictions, en comparaison avec un algorithme qui n’utiliserait
que les échantillons labellisés.

Données complexes
La plupart des techniques d’apprentissage automatiques sont très efficaces lorsque le jeu
de données est dit “facile”, ce qui signifie qu’il est structuré, en petite dimension, et qu’il
ne contient pas de valeurs manquantes. Cependant, les jeux de données qui représentent
la réalité sont souvent plus compliqués. Les propriétés qui nous font considérer un jeu de
donénes comme “complexe” sont :

• La haute dimension, souvent associée à “la malédiction de la dimension”, qui concerne
les phénomènes qui apparaissent lors de la manipulation de jeux de données avec de
nombreuses variables. Le principal problème est que lorsque le nombre de variables
augmente, le volume de l’espace augmente si rapidement que les données deviennent
sparses. De plus, de nombreux algorithmes ne peuvent pas estimer leurs paramètres
lorsque le nombre d’observations N est supéreur au nombre de variables J .

• L’hétérogénéité des données, ou la mixité des données, concerne les données qui ne
sont pas de même nature. Par exemple, un simple jeu de données sur les clients d’une
entreprise pourrait contenir le statut social (une variable catégorielle), l’âge (une va-
riable de comptage), la taille et le poids du client (des variables continues). Une telle
diversité de type de données peut être difficile à modéliser mathématiquement car les
valeurs des variables ne font pas parti du même espace. C’est donc difficile de choisir
une distribution commune à toutes ces variables.

155

Lo
ng

ab
st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch

• La sparsité se réfère aux jeux de données avec peu d’information. Souvent, cela concerne
les données qui contiennent une majorité de valeurs nulles. Par exemple, lorsque nous
modélisons les intéractions entre utilisateurs d’un réseau social en comptant le nombre
de messages qu’ils s’envoient, la matrice résultante est généralement sparses (beaucoup
d’utilisateurs ne s’envoient jamais de messages).

• Les valeurs manquantes se réfèrent au fait que, parfois, certains éléments d’un jeu de
données n’ont pas de valeur. Par exemple, lorsque l’on analyse un questionnaire auquel
des personnes ont répondu, il est très courant d’observer que certaines questions n’ont
pas été répondues par certains participants. Cela peut être modélisé de différentes ma-
nières, selon si on considère que le participant n’a pas répondu de manière intentionelle
ou non.

• Les jeux de données en continu sont ceux dont les données arrivent en flux. L’exemple
le plus courant concerne les données venant de capteurs dont les valeurs s’actualisent
à différents instants. Ce genre données requièrent des algorithmes spéciaux capables
de recevoir de nouvelles données au fil du temps, mais ce sujet ne sera pas abordé dans
cette thèse.

Contenu de la thèse .

Cette thèse se concentre sur l’apprentissage non-supervisé, et plus spécifiquement sur la
parcimonie de modèles de clustering probabilistes dans le cadre de données complexes. Les
modèles de clustering probabilistes marient les modèles génératifs et l’analyse de clusters.
Ce type de modèle apporte de nombreux avantages tels que l’interprétabilité et la sélection
de modèle. Grâce à leur flexibilité, ces techniques ont prouvé leur efficacité dans de nom-
breux domaines, et sont largement utilisées pour l’analyse de données. Un inconvénient des
méthodes de clustering probabilistes classiques est le nombre élevé de paramètres à estimer,
ce qui peut ralentir les algorithmes d’inférence et conduire à de mauvais résultats dans le cas
de données complexes. Concevoir des modèles plus parcimonieux (c’est à dire avec moins de
paramètres) est un moyen efficace de surmonter ce problème. Cette thèse a pour objectif de
concevoir de nouvelles approches probabilstes adaptées aux données complexes. Nous nous
intéressons à des données en grande dimension, mais aussi à des données hétérogènes, des
données avec des valeurs manquantes et des données sparses telles que les données textuelles.

Le Chapitre 2 rappelle les notions nécessaires pour une bonne compréhension des contri-
butions de la thèse. Premièrement, il détaille les aspects mathématiques des modèles de
mélange finis, qui sont à la base des approches probabilistes de clustering. Ces notions se-
ront utiles pour tous les autres chapitres de cette thèse. Deuxièmement, ce chapitre décrit
l’anayse factorielle, et plus particulièrement le modèle de mélange d’analyse de facteurs, qui
est la base du Chapitre 5. Finalement, ce chapitre définit le modèle des blocs latents (LBM),
qui est une technique de co-clustering. Le co-clustering est une tâche qui consiste à réaliser
le clustering simultané des lignes et des colonnes d’un jeu de données. Ces notions seront
utiles pour le Chapitre 3 et pour le Chapitre 4.

Le Chapitre 3 présente une extension du modèle des blocs latents multiples (MLBM) (Ro-
bert, 2017) aux données hétérogènes. Ces données sont difficiles à modéliser avecune seule et
même distribution car les valeurs des variables ne se trouvent pas dans le même espace. Dans
le cas du co-clustering, c’est particulièrement compliqué, car l’agorithme doit regrouper les
variables aussi. De plus, il peut sembler contre-intuitif de regrouper des variables de nature
différente car l’objectif du clustering est de regrouper des éléments qui ont quelque chose

156

Lo
ng

ab
st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch
Lo

ng
ab

st
ra
ct

Fr
en

ch

en commun. L’approche MLBM consiste à étendre le modèle des blocs latents (LBM) pour
qu’il soit capable de prendre des données hétérogènes en compte.

Le Chapitre 4 présente le modèle SOCC (Self-Organised Co-Clustering model) pour les
données textuelles et plus précisément pour les matrices document-terme. Ces matrices re-
présentent des données textuelles tel que la cellule (documenti,termej) compte combien de
fois le terme termej a été utiisé dans le document documenti. Cette représentation a l’avan-
tage d’être facile à construire et à lire. Cependant, les matrices qui en résultent sont de très
haute dimension et extrêmement sparses, ce qui les rend difficiles à exploiter. Le modèle
SOCC s’adapte à ces particularités et définit un modèle pour le clustering des termes et des
documents qui offre des résultats simples à exploiter.

Le Chapitre 5 investigue le modèle de mélange Gaussian profond (DGMM) (Viroli and
McLachlan, 2019) et ses propriétés. Ce modèle consiste à empiler des couches de MFA, ce qui
résulte en une architecture imitant les réseaux de neurones. Cela est rendu possible en consi-
dérant les scores latents d’une couche comme étant l’entrée du MFA de la couche d’après.
Dans ce chapitre, nous montrons empiriquement les difficultés pour estimer les paramètres
du modèle, puis nous discutons les raisons possibles et les solutions à ces problèmes.
Mots-Clefs : modèles probabilistes – clustering – modèles de mélange – co-clustering – ana-
lyse de facteurs – parcimonie.

157

	selosse_m_pagedetitre
	selosse_m_these
	Notations
	Introduction
	Scientific context
	Machine Learning
	Three families of paradigms
	Complex data

	Contributions of the thesis
	Focus of the thesis
	Content of the thesis
	List of publications and softwares

	State-of-the-art
	Model-based clustering
	Introduction
	Finite mixture models
	Expectation Maximisation algorithm for FMMs
	Gaussian Mixture Models
	Model Selection
	Conclusion

	Factor Analysis
	Introduction
	Single Factor Analyser
	Inference for the Single Factor Analyser
	Unidentifiability
	Mixture of Factor Analysers
	Inference of the Mixture of Factor Analysers
	Specific MFA models
	Model selection
	Conclusion

	Model-based co-clustering
	Introduction
	The Latent Block Model
	Inference of the Latent Block Model
	Model Selection
	Conclusion

	Appendices
	Proof that the EM-algorithm causes the log-likelihood to increase
	EM-algorithm computations for MFA

	Multiple Latent Block Model for mixed data
	Introduction
	Multiple Latent Block Model
	Definition of the Multiple Latent Block Model
	Model Inference

	Modeling of the different types of data
	Modeling nominal data
	Modeling ordinal data
	Modeling continuous data
	Modeling count data

	Numerical experiments on artificial data
	Simulation settings
	Parameter and partition estimation
	Model selection
	More challenging data sets
	Missing data
	Conclusion

	Real data applications
	Co-clustering of count and continuous data
	Co-clustering of ordinal and nominal data

	Analysing a quality of life survey in oncology - Use case
	Data set
	Application to the survey dataset

	Conclusion and perspectives

	Self-Organised Co-Clustering
	Introduction
	Reminders on the Latent Block Model for counting data
	The Poisson Latent Block Model (PLBM)
	Inference

	Self-Organised Co-Clustering
	An easy-to-read structure
	The SOCC model and its inference
	Model selection

	Numerical Experiments
	Baselines
	Simulated data set
	Real data sets experiments

	Harry Potter use case
	Co-clustering set up
	Interpretation of the results
	Conclusions on the study of the Harry Potter data set

	Conclusion and perspectives

	Investigations on the Deep Gaussian Mixture Model
	Introduction
	Neural networks
	Coupling Deep Learning and Gaussian Mixture Models

	Deep Gaussian Mixture Models
	Definition of the Deep Gaussian Mixture Model
	Inference of the model
	Model selection

	Properties of the Deep GMM
	Preliminary analysis: simulated data
	More experiments
	Applying the DGMM to real data sets
	Conclusion on the experiments

	Suggestion of extension of DGMM to categorical data
	Latent Gaussian Models for discrete data
	LGM and DGMM
	Solution for categorical data
	Remarks on the model

	Conclusion and perspectives
	Appendices
	Importance sampling and unnormalised distributions
	Tables of correspondences between scripts and sections

	Conclusion and Perspectives
	Conclusion
	Perspectives of the MLBM
	Perspectives of the SOCC model
	Perspectives of the DGMM
	From a probabilistic point of view
	From a deep learning point of view

	References
	List of Figures
	List of Tables
	Long abstract French

