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Abstract

Recent technological advancements have paved the way for automation in various sectors,
from education to autonomous driving, collaborative robots, and customer service. In the

near future, the success and acceptance of these automated systems will rely upon their profi-
ciency in assessing and responding to human emotional states, an aspect vital to their effective-
ness. This has led to an increasing interest in the development of machine learning models for
emotion recognition and interpretation. Nonetheless, the efficient computer-based assessment
of affective and mental states faces several significant challenges, which include the difficulty of
obtaining sufficient data, the intricacy of labeling, and the complexity of the task. One promising
solution to these challenges lies in the field of anomaly detection, which has demonstrated its
significance in numerous domains. This thesis is dedicated to addressing the multifaceted chal-
lenges in the field of affective computing by leveraging the power of anomaly detection methods.
One of the key challenges addressed is data scarcity, a pervasive issue when striving to construct
machine learning models capable of accurately identifying rare mental states. We study anomaly
detection methods, utilizing unsupervised approaches in two critical applications: Visual Dis-
traction Detection and Psychotic Relapse Prediction. These scenarios represent demanding and
sometimes perilous states for data collection in real-world contexts. The study encompasses a
comprehensive exploration of traditional and deep learning-based models, such as autoencoders,
demonstrating the success of these methods in overcoming the challenges posed by unbalanced
datasets. This success suggests the potential for wider applications in the future, which will help
us better understand and deal with rare and hard-to-collect mental and affective states across
various areas where obtaining sufficient data is not possible.
Furthermore, this research addresses the challenge of inter-variability among individuals in the
domain of affective states, particularly in the context of patients with psychotic relapse. The
study provides a comparative analysis, exploring the strengths and limitations of both global
and personalized models. Personalization is a solution to this challenge, although gathering
sufficient personal data, especially for relapse situations, is challenging. However, by employing
anomaly detection, it becomes feasible to use an individual’s data to model their healthy patterns
and detect anomalies when these patterns deviate from the norm. The findings underscore the
significance of personalization as an avenue for enhancing the precision of models, especially in
scenarios characterized by substantial inter-variability among subjects.
Moreover, the complexity of unbalanced datasets is another focus of this thesis. It explores fea-
ture selection methods tailored to address these specific dataset characteristics. By leveraging
state-of-the-art techniques, including autoencoders, the research advances novel strategies for
addressing feature selection challenges posed by unbalanced datasets in applications such as Vi-
sual Distraction Detection and Psychotic Relapse Prediction.
Finally, the study introduces a novel solution for information fusion from multiple sources, en-
hancing predictive accuracy in affective computing. This novel approach incorporates an inno-
vative difficulty data indicator derived from an autoencoder’s reconstruction error. The outcome
is the development of multimodal continuous emotion recognition systems that exhibit superior
performance. This approach is studied using the ULM TSST dataset for predicting arousal and
valence among participants in stress-induced situations.
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In this thesis, we investigated various applications of anomaly detection methods in affective
computing domain. While these are initial steps showcasing the potential of our proposed ap-
proaches, they also lay the groundwork for further exploration in different applications.
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Résumé

C ette thèse aborde les défis multifacettes dans le domaine de l’informatique affective en ex-
ploitant des méthodes de détection d’anomalies. La prévalence croissante des interactions

entre l’homme et l’ordinateur a souligné la nécessité de systèmes capables de comprendre et de
réagir aux états émotionnels. Les récents progrès technologiques ont ouvert la voie à l’automa-
tisation dans divers secteurs, de l’éducation à la conduite autonome en passant par le service
client. Le succès de ces systèmes automatisés repose sur leur efficacité à évaluer et à répondre
aux états émotionnels humains, un aspect essentiel à leur efficacité.

L’un des principaux défis abordés est la rareté des données, un problème répandu lorsqu’il
s’agit de construire des modèles d’apprentissage automatique capables d’identifier avec précision
des états mentaux rares. Nous étudions les méthodes de détection d’anomalies, en utilisant des
approches non supervisées dans deux applications critiques : la détection de distraction visuelle
et la prédiction de rechute psychotique. Ces scénarios représentent des états exigeants et parfois
dangereux pour la collecte de données dans des contextes réels. L’étude englobe une exploration
complète des modèles traditionnels et basés sur l’apprentissage profond, tels que les autoenco-
deurs, démontrant le succès de ces méthodes pour surmonter les défis posés par des ensembles
de données déséquilibrés.
En outre, cette recherche aborde le défi de l’inter-variabilité entre les individus dans le domaine
des états affectifs, en particulier dans le contexte des patients en rechute psychotique. L’étude
fournit une analyse comparative, explorant les forces et les limites des modèles globaux et per-
sonnalisés. Les résultats soulignent l’importance de la personnalisation comme moyen d’amélio-
rer la précision des modèles, notamment dans les scénarios caractérisés par une inter-variabilité
substantielle entre les sujets.
De plus, la complexité des ensembles de données déséquilibrés est un autre point focal de cette
thèse. Elle explore des méthodes de sélection de caractéristiques adaptées pour aborder ces ca-
ractéristiques spécifiques des ensembles de données. En exploitant des techniques de pointe,
notamment les autoencodeurs, la recherche propose de nouvelles stratégies pour relever les dé-
fis de la sélection de caractéristiques posés par des ensembles de données déséquilibrés dans des
applications telles que la détection de distraction visuelle et la prédiction de rechute psychotique.
Enfin, l’étude introduit une nouvelle solution pour la fusion d’informations provenant de sources
multiples, améliorant la précision prédictive dans le domaine de l’informatique affective. Cette
approche novatrice intègre un indicateur de difficulté des données dérivé de l’erreur de re-
construction de l’autoencodeur. Le résultat est le développement de systèmes de reconnais-
sance d’émotions continues multimodaux qui présentent des performances supérieures. Cette
approche est étudiée à l’aide de l’ensemble de données ULM TSST pour prédire l’excitation et la
valence parmi les participants dans des situations induisant du stress.
Dans cette thèse, nous avons étudié diverses applications des méthodes de détection des anoma-
lies dans le domaine de l’informatique affective. Bien qu’il s’agisse d’étapes initiales démontrant
le potentiel de nos approches proposées, elles jettent également les bases d’une exploration plus
poussée des différentes applications et de leurs variations.
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Résumé étendu

Les progrès rapides de l’intelligence artificielle, de la robotique et de l’automatisation remo-
dèlent en profondeur les industries et les sociétés mondiales. Les transformations attendues

dans nos routines de travail, nos modes de vie et nos interactions sociales pourraient se dérou-
ler à une vitesse et à une échelle sans précédent, surpassant tous les changements précédents
dans l’histoire de l’humanité. Les récentes avancées technologiques ont ouvert la voie à l’au-
tomatisation dans divers domaines, notamment l’apprentissage scolaire, la conduite autonome,
la médecine, le service à la clientèle, etc. L’informatique affective, qui se situe à l’intersection
de l’informatique, de la psychologie et des sciences cognitives, constitue une frontière essen-
tielle pour l’amélioration des interactions homme-machine en intégrant la compréhension des
émotions dans la technologie. Ce domaine interdisciplinaire vise à permettre aux machines de
reconnaître, d’interpréter et de répondre aux émotions humaines.
Dans le domaine de l’intelligence artificielle, l’intégration de l’informatique affective n’est pas
simplement une fonctionnalité avancée ; il s’agit d’un changement fondamental vers des sys-
tèmes plus intuitifs, plus réactifs et plus centrés sur l’humain. Cette évolution est particulière-
ment marquante dans des applications allant des soins de santé, où la prise en charge empa-
thique des patients peut être révolutionnée, au service à la clientèle, où la compréhension et la
réponse aux émotions des consommateurs peuvent grandement améliorer la qualité du service.
En outre, l’intégration de l’informatique affective dans les systèmes autonomes, tels que les véhi-
cules électriques et les maisons intelligentes, pourrait conduire à des expériences plus adaptées
et plus conviviales. Le développement d’algorithmes sophistiqués capables d’analyser et d’inter-
préter les indices émotionnels - des expressions faciales à la tonalité de la voix - est essentiel.
Cela nécessite une approche pluridisciplinaire, mêlant les techniques d’apprentissage automa-
tique (Machine Learning) aux connaissances issues de la recherche psychologique, afin de créer
des algorithmes qui soient non seulement techniquement compétents, mais aussi tenant compte
des dimensions éthiques et culturelles. Ainsi, la recherche de technologies informatiques affec-
tives avancées n’est pas seulement un effort technologique ; c’est une étape vers des machines
plus empathiques, plus compréhensives et, en fin de compte, plus respectueuses de l’être hu-
main. Ce changement de paradigme pourrait redéfinir la dynamique de notre interaction avec la
technologie, en la rendant plus transparente, plus intuitive et plus en phase avec nos besoins et
nos états émotionnels.
Une grande partie de la recherche en informatique affective est centrée sur la reconnaissance
des états émotionnels humains. Il s’agit de tirer parti de diverses modalités telles que les cap-
teurs physiologiques et les caméras pour capturer les réactions humaines telles que les expres-
sions faciales. Cependant, le développement de modèles efficaces et robustes dans le domaine de
l’informatique affective se heurte à plusieurs obstacles. Des défis tels que la rareté des données,
l’incertitude et le coût de l’étiquetage, le déséquilibre des ensembles de données, la fusion d’in-
formations provenant de sources multiples, l’explicabilité des modèles, les exigences en matière
de modèles personnalisés, les préoccupations en matière de respect de la vie privée et les consi-
dérations éthiques constituent des obstacles importants. Parmi les domaines prometteurs pour
relever ces défis, la détection des anomalies se distingue. Ses méthodes offrent des possibilités
d’apprentissage non supervisée rendant la collecte de données annotées moins critique.De plus,
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RÉSUMÉ ÉTENDU

elles génèrent un score d’anomalie, fournissant des informations quantitives sur l’écart à la nor-
male qui peuvent être exploités. Par conséquent, nous avons choisi d’explorer ces méthodes de
détection d’anomalies pour relever des défis tels que la rareté des données, le déséquilibre des
ensembles de données, la personnalisation des modèles, la sélection des caractéristiques, l’expli-
cabilité des modèles et la fusion des données.
Les contributions de cette thèse peuvent être résumées comme suit :

1. Détection d’anomalies dans l’informatique affective : Nous explorons l’application
des méthodes de détection d’anomalies pour détecter des états rares dans le domaine de
l’informatique affective. Cette exploration est menée par le biais d’une approche non su-
pervisée dans deux applications distinctes : la détection des comportements dangereux au
volant, où l’apprentissage supervisé peut être entravé par la collecte de données relatives
aux comportements à risque et présente donc des problèmes éthiques, et la prédiction des
rechutes pour les patients souffrant de troubles psychotiques, qui implique la détection
d’un événement peu fréquent dont la capture peut nécessiter un effort particulier.

2. Modèles globaux et personnalisés : L’examen des états en informatique affective révèle
une variabilité entre les individus, ce qui représente un défi important lors de l’élaboration
de modèles d’évaluation universels. Cette variabilité devient particulièrement importante
lors de l’analyse des patients souffrant de rechute psychotique. En réponse au défi sus-
mentionné, cette étude explore le potentiel des méthodes de détection des anomalies pour
créer des modèles personnalisés de prédiction des rechutes psychotiques. En tirant parti de
techniques de détection d’anomalies non supervisées, nous ouvrons la voie à des systèmes
capables de collecter de manière autonome les données de l’utilisateur final dans des scé-
narios réels, éliminant ainsi la nécessité d’une intervention directe de l’utilisateur ou d’un
étiquetage coûteux. Nous menons une analyse comparative avec des modèles globaux et
explorons les forces et les limites des deux approches.

3. Sélection de caractéristiques pour les ensembles de données déséquilibrés : Lorsque
l’on est confronté à des données limitées (par exemple, des modèles personnalisés) ou à des
coûts d’étiquetage élevés dans des scénarios réels, la sélection des caractéristiques devient
essentielle pour éviter le sur-apprentissage et réduire le coût calculatoire. Nous proposons
d’utiliser les erreurs de reconstruction de l’autoencoder comme métrique pour examiner la
pertinence des caractéristiques pour le problème de la sélection des caractéristiques. Nous
évaluons cette approche dans deux applications critiques : la détection des distractions
visuelles et la prédiction des rechutes psychotiques.

4. Fusion multimodale : Les états affectifs humains se manifestent par divers canaux tels
que la voix, les expressions faciales et les réactions physiologiques, ce qui souligne la néces-
sité de disposer de sources de données à multiples facettes dans les systèmes d’estimation
des états affectifs. L’intégration de modalités multiples, telles que les caméras, les capteurs
physiologiques et les microphones, est essentielle pour améliorer l’efficacité de ces sys-
tèmes. Cependant, le défi provient de la nature hétérogène de ces modalités, ce qui fait
de la fusion multimodale une tâche complexe. Pour y remédier, notre proposition suggère
de tirer parti des auto-encoder et de leurs erreurs de reconstruction comme indices pour
déterminer la pertinence de chaque modalité. Ces erreurs de reconstruction servent d’in-
dicateurs précieux pour guider les algorithmes de fusion multimodale dans la combinaison
efficace de ces diverses sources d’information.

Structure de la thèse et plan
Cette thèse se compose d’un chapitre d’introduction, de quatre chapitres décrivant le travail

de la thèse suivis d’un chapitre contenant les conclusions et les perspectives. Les résumés des
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RÉSUMÉ ÉTENDU

quatres chapitres principaux sont présentés ci-dessous.

■ Chapitre 2 : Contexte et défis à relever.
Ce chapitre constitue une introduction du domaine de l’informatique affective et jette les
bases de nos objectifs de recherche. Nous expliquons les motivations qui sous-tendent notre
travail et la nécessité d’avancer dans ce domaine, en mettant l’accent sur les défis qu’il
présente. En outre, nous présentons le domaine de la détection des anomalies et son rôle
émergeant pour relever ces défis dans le domaine de l’informatique affective. Les chapitres
suivants proposeront des solutions basées sur la détection d’anomalies pour une série de
défis, les états mentaux rares, la personnalisation des modèles, l’explicabilité, la sélection
des caractéristiques et la fusion d’information. Ces solutions seront appliquées à diverses
applications telles que la surveillance du comportement des conducteurs, la prédiction des
rechutes psychotiques et la reconnaissance des émotions dans des environnements stres-
sants. Notre exploration englobera diverses modalités, notamment les signaux physiolo-
giques, le suivi oculaire, la parole, la vidéo et le texte.

■ Chapitre 3 : Détection des états mentaux rares. Nous explorons la détection d’états mentaux
rares de manière non supervisée.Notre étude se concentre sur deux problèmes du monde
réel : La détection des distractions visuelles et la prédiction des rechutes psychotiques.
En employant des méthodologies non supervisées, nous visons à mettre en lumière des
approches innovantes pour l’identification de ces états peu fréquents mais critiques sans
avoir besoin de données étiquetées, ce qui peut être difficile dans ces applications.
Pour chaque application, nous avons sélectionné une base de données appropriée, choisie
stratégiquement pour démontrer l’efficacité de l’approche proposée dans divers contextes.
Nos objectifs englobent trois aspects clés : premièrement, la validation de l’efficacité de
l’approche proposée dans des applications distinctes ; deuxièmement, la comparaison de
diverses méthodes de détection d’anomalies ; et troisièmement, l’évaluation de stratégies
multiples impliquant la sélection de caractéristiques, des techniques supervisées et non
supervisées pour la conduite, et des approches généralisées ou personnalisées pour la pré-
diction des rechutes.
Dans la première étude, nous avons utilisé des approches de détection d’anomalies non su-
pervisées au lieu des méthodes supervisées traditionnelles, qui permettront à terme de sur-
monter les difficultés liées à la collecte de données sur la distraction au volant, qui peut être
dangereuse. En utilisant une base de données obtenue à partir d’un simulateur de conduite,
nous avons entraîné nos modèles sur des exemples de conduite sans distraction et évalué
leurs performances sur des exemples de conduite avec distraction. Nos résultats ont dé-
montré l’efficacité des modèles non supervisés, la méthode "Isolation Forest" apparaissant
comme le meilleur compromis performance/robustesse pour la détection de la distraction.
En outre, nous avons comparé les performances des méthodes non supervisées à celles des
modèles supervisés traditionnels, en soulignant la supériorité de l’approche que nous pro-
posons pour les ensembles de données déséquilibrés ou même dans les scénarios où aucun
échantillon de la classe "anormale" n’est disponible.
Dans la deuxième étude, nous avons examiné l’efficacité des approches d’apprentissage
non supervisé pour la détection des rechutes dans les troubles psychotiques. Nos résultats
indiquent que la méthode "Isolation Forest" et les autoencoders ont affiché les meilleures
performances dans le schéma global, où un modèle unique a été formé sur les données de
tous les patients. Nous avons notamment découvert que les modalités optimales et les com-
binaisons de caractéristiques variaient d’un patient à l’autre, ce qui souligne l’importance
des approches personnalisées dans la détection des rechutes. En outre, nous avons constaté
que le choix du modèle de détection des anomalies et des caractéristiques avait un impact
significatif sur la précision de la détection des rechutes. En adoptant une approche per-
sonnalisée, nous avons obtenu une méthode de détection plus adaptée et individualisée, ce
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qui a permis d’améliorer considérablement la détection des rechutes. Cette étude souligne
l’importance des modèles personnalisés pour un suivi précis et efficace des rechutes.
Dans l’ensemble, nos contributions à la recherche mettent en évidence l’efficacité des mé-
thodes de détection d’anomalies non supervisées dans les tâches de surveillance du com-
portement.

■ Chapitre 4 : Explicabilité et sélection des caractéristiques à l’aide de scores d’anomalie. Dans ce
chapitre, nous étudions l’utilisation d’une méthode de sélection de caractéristiques conçue
pour des ensembles de données déséquilibrés pour les deux tâches d’informatique affec-
tive : la détection de distraction visuelle et les ensembles de données de prédiction de re-
chute psychotique détaillés dans le chapitre 3.
Ce chapitre présente l’utilisation de méthodes de détection d’anomalies pour la sélection
de caractéristiques dans des ensembles de données déséquilibrés. Notre exploration s’ar-
ticule autour de l’utilisation des autoencoders entrainés uniquement sur des données de
classe normale et du calcul des scores de corrélation entre l’erreur de reconstruction des
caractéristiques et les annotations provenant d’échantillons normaux et anormaux. Cette
étude comprend une évaluation complète de la méthode de sélection des caractéristiques
proposée dans le cadre de deux applications : la détection de la distraction visuelle et la
prédiction des rechutes psychotiques.
Dans l’application de la distraction visuelle, nous avons étudié l’impact de l’utilisation de
stratégies de classification binaire, de détection d’anomalies et de modèles de régression.
Notre approche, qui s’appuie sur les scores de corrélation, a fourni des perspectives in-
téressantes sur l’importance des caractéristiques. Elle a notamment mis en évidence les
avantages qu’il y a à commencer par les caractéristiques les plus influentes dans les tâches
de classification et de régression.
Cependant, lorsqu’elles ont été étendues à la tâche plus complexe de "prédiction des re-
chutes psychotiques", qui disposait d’un ensemble de données relativement limité, les stra-
tégies de sélection des caractéristiques ont montré des classements moins cohérents. Cela
a mis en évidence le besoin crucial d’un ensemble de données de validation robuste pour
ces stratégies. En outre, les résultats ont renforcé la nécessité de modèles personnalisés et
souligné la variabilité de l’importance des caractéristiques chez tous les patients.
Notre étude a présenté des résultats prometteurs en utilisant l’erreur de reconstruction
des autoencoders pour obtenir des informations sur l’explicabilité du modèle et l’impor-
tance des caractéristiques. Toutefois, pour valider son efficacité et sa généralisation, cette
méthode doit être testée plus avant sur différents ensembles de données.

■ Chapitre 5 : Fusion multimodale utilisant les scores d’anomalie. Ce chapitre explore une nou-
velle approche de fusion visant à améliorer la prédiction continue des émotions grâce à
une technique de fusion multimodale fondée sur des scores d’anomalie. Ces scores d’ano-
malie sont dérivés des autoencoders entraînés par modalité. Nous étudions cette technique
de fusion en utilisant l’ensemble de données ULM TSST pour la prédiction de l’activation
physiologique ("arousal") et de la valence pour les participants dans des situations induites
par le stress.
Cet ensemble de données incorpore diverses modalités d’information, telles que l’audio, la
vidéo, les biosignaux et le texte, obtenues auprès d’individus dans des conditions de stress.
Notre approche s’est concentrée sur l’utilisation de la fusion tardive avec les modalités au-
dio, vidéo et textuelles. La méthode de fusion proposée, inclue un indicateur de difficulté,
dérivé des erreurs de reconstruction des autoencoders, et prend en compte l’aspect tem-
porel des données. Nous avons mené des études pour analyser l’impact de l’indicateur de
difficulté des données, sur les niveaux de prédiction unimodale et multimodale. À cette
fin, un autoencoder a été entrainé pour chaque ensemble de caractéristiques correspon-
dant à une modalité. Pour l’évaluation, les prédicteurs ont été entrainés avec et sans ces
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indicateurs de difficulté au niveau unimodal et multimodal. Les résultats ont démontré une
amélioration des modèles incluant les indicateurs de difficulté des données, affirmant la na-
ture informative des erreurs de reconstruction des autoencoders et leur importance dans
la fusion unimodale et multimodale.

Conclusions et Perspectives
L’intégration de la détection d’anomalies dans l’informatique affective a permis de relever des

défis majeurs dans ce domaine. Nos recherches ont porté sur diverses applications, notamment
la détection des comportements de conduite dangereux tels que les distractions visuelles pour la
sécurité routière, la prévision des rechutes psychotiques chez les patients souffrant de troubles
mentaux et la prévision continue des émotions des individus dans des situations stressantes. En
utilisant des méthodes de détection d’anomalies, nous avons dépassé les limites de l’apprentis-
sage supervisé traditionnel, qui nécessite toujours des données étiquetées et un équilibre dans les
données, et nous avons réalisé des avancées significatives dans ces domaines. L’une des conclu-
sions commune à ces études est l’importance des erreurs de reconstruction des auto-encoders,
qui a été examinée dans trois contextes distincts, mettant en évidence sa valeur substantielle. Il a
fonctionné comme un indicateur d’anomalie, aidant à l’identification de modèles rares ou anor-
maux. En outre, il a servi de métrique pour l’importance des caractéristiques, contribuant ainsi
à l’explicabilité, et a agi comme une caractéristique supplémentaire pour améliorer la fusion de
sources d’information multiples. L’un de ses avantages par rapport aux scores d’anomalie tradi-
tionnels est la possibilité de disséquer les erreurs de reconstruction, ce qui permet de vérifier les
caractéristiques qui y contribuent.
Nos recherches ont mis en évidence l’adaptabilité des méthodologies de détection des anomalies
dans divers contextes. Au chapitre 3, nous l’avons explorée dans une approche non supervisée,
cruciale pour identifier les états rares lorsque les données d’une classe ne sont pas disponibles.
Au chapitre 4, nous avons étendu son utilisation dans une approche faiblement supervisée, en
utilisant des données étiquetées limitées de la classe minoritaire pour des tâches telles que la
sélection des caractéristiques et l’explicabilité. Enfin, le chapitre 5 a exploré son application dans
un cadre supervisé, en particulier dans la fusion d’informations.

Perspectives

■ L’une des limites que nous avons rencontrées dans l’évaluation de nos approches est la
taille restreinte des ensembles de données utilisés. Pour améliorer la robustesse et la gé-
néralisation de nos résultats, les études futures devraient se concentrer sur la validation
de l’efficacité de nos approches sur des ensembles de données existants plus importants et
plus diversifiés.

■ Dans notre exploration de la surveillance du comportement des conducteurs, notre appli-
cation des méthodes de détection des anomalies s’est avérée efficace pour identifier des
comportements dangereux spécifiques, tels que les distractions visuelles. Cependant, une
piste potentielle de recherche future consiste à valider l’adaptabilité de nos modèles pour
reconnaître un spectre plus large de comportements dangereux. Pour ce faire, les modèles
pourraient être entraînés sur des données normales enrichies de signaux liés non seule-
ment aux distractions, mais aussi à la fatigue et à la somnolence. Par la suite, en testant
ces modèles entraînés sur divers comportements dangereux potentiels, on pourrait vérifier
leur capacité à détecter un plus large éventail de comportements dangereux au-delà des
distractions visuelles. Une telle extension pourrait considérablement améliorer la polyva-
lence et l’applicabilité des techniques de détection d’anomalies pour garantir une sécurité
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globale des conducteurs. Pour les modèles personnalisés de prédiction des rechutes psy-
chotiques, une stratégie d’amélioration pourrait impliquer une étape initiale de formation
d’un modèle général complet utilisant des données agrégées de tous les patients. Par la
suite, l’ajustement de ce modèle général basé sur les données individuelles des patients
pourrait potentiellement améliorer la précision et la robustesse de la prédiction en adap-
tant le modèle aux caractéristiques et aux comportements spécifiques des patients.

■ En outre, l’ajout de données chronologiques dans l’ensemble de données d’eprevention
représenterait une piste d’exploration supplémentaire. L’étude de l’impact de l’ordre chro-
nologique des jours précédant la rechute et des jours de rechute sur les scores d’anomalie
pourrait fournir des informations précieuses. Par exemple, l’observation de l’augmenta-
tion significative des scores d’anomalies dans la phase précédant la rechute pourrait servir
d’indicateur d’alerte précoce. D’autre part, les annotations ne précisaient pas le trouble spé-
cifique du patient. L’étude des performances des modèles non supervisés concernant des
troubles spécifiques pourrait nous permettre d’approfondir notre compréhension de leurs
capacités prédictives dans différents états de santé mentale.

■ Compte tenu des progrès considérables réalisés dans les techniques basées sur les Trans-
formers dans divers domaines de l’intelligence artificielle, leur application potentielle à la
détection d’anomalies à l’aide d’ensembles de données plus importants, en particulier dans
le traitement des données vocales et vidéo, apparaît comme une orientation convaincante
pour les recherches futures. L’intégration des Transformers dans le cadre de la détection
d’anomalies pourrait présenter plusieurs avantages. Une approche pourrait consister à tirer
parti des architectures de Transformers, telles que BERT ou GPT, pour encoder des infor-
mations multimodales à partir de données vocales et vidéo. Ces modèles excellent dans la
capture de modèles complexes et de dépendances au sein des séquences, ce qui pourrait
s’avérer bénéfique pour la détection des anomalies, en particulier dans les flux de données
multimodales.

■ Un défi permanent dans la détection d’anomalies dans le comportement humain tourne au-
tour de sa nature intrinsèquement dynamique. Les modèles conçus pour prédire des événe-
ments tels que les rechutes psychotiques peuvent déclencher de fausses alertes lorsqu’ils
sont confrontés à des changements dans les habitudes quotidiennes des individus. Pour
améliorer la robustesse de ces modèles face à de tels changements, l’exploration de mé-
thodologies telles que l’apprentissage actif ou l’apprentissage incrémental pourrait offrir
des solutions prometteuses. La mise en œuvre de ces techniques d’apprentissage adaptatif
pourrait permettre d’affiner les modèles afin de mieux s’adapter aux changements de com-
portement, ce qui atténuerait les fausses alertes et améliorerait la précision des prédictions.
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1
Introduction

1.1 Goals and contributions of the thesis

T he rapid progress of Artificial Intelligence (AI), robotics, and automation is profoundly re-
shaping global industries and societies. Anticipated transformations in our work routines,

lifestyles, and social interactions are expected to unfold at an unprecedented speed and scale,
surpassing any previous changes in human history. Recent technological advancements have
paved the way for automation across various domains, encompassing educational learning, au-
tonomous driving, medicine, customer service, and more. Affective computing, situated at the
intersection of computer science, psychology, and cognitive science, stands as a pivotal frontier
in improving human-machine interactions by integrating emotional understanding into tech-
nology. This interdisciplinary field aims to enable machines to recognize, interpret, and respond
to human emotions.

In the realm of AI, the integration of affective computing is not merely an advanced feature;
it’s a fundamental shift towards more intuitive, responsive, and human-centric systems. This
evolution is particularly salient in applications ranging from healthcare, where empathetic pa-
tient care can be revolutionized, to customer service, where understanding and responding to
consumer emotions can greatly enhance service quality. Moreover, incorporating affective com-
puting into autonomous systems, such as electric vehicles and smart homes, could lead to more
nuanced and user-friendly experiences. The development of sophisticated algorithms capable
of analyzing and interpreting emotional cues - from facial expressions to voice tonality - is piv-
otal. This necessitates a multidisciplinary approach, intertwining ML techniques with insights
from psychological research to create algorithms that are not only technically proficient but also
culturally and ethically aware. Thus, the pursuit of advanced affective computing technologies
is not just a technological endeavor; it’s a step towards more empathetic, understanding, and
ultimately human-friendly machines. This paradigm shift has the potential to redefine the dy-
namics of our interaction with technology, making it more seamless, intuitive, and aligned with
our emotional needs and states.

Much of the research in affective computing centers around recognizing human emotional
states. This involves leveraging various modalities like physiological sensors and cameras to
capture human reactions such as facial expressions. However, the development of effective and
robust models in this affective computing domain encounters several obstacles. Challenges such
as data scarcity, labeling uncertainty and cost, dataset imbalance, information fusion from mul-
tiple sources, model explainability, personalized model requirements, privacy concerns, and eth-
ical considerations pose significant obstacles. Among the promising domains to address these
challenges, anomaly detection stands out. Its methods often do not rely on labeled data, offering
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avenues for exploration in an unsupervised manner. Anomaly detection algorithms generate an
anomaly score, providing unsupervised insights into the data. Consequently, we chose to ex-
plore anomaly detection methods to tackle challenges such as data scarcity, imbalanced dataset,
model personalization, feature selection, model explainability, and data fusion. The contribu-
tions of this thesis can be summarized as follows:

1. Anomaly Detection in Affective Computing: We explore the application of anomaly
detection methods for detecting rare states within the field of affective computing. This
exploration is conducted through an unsupervised approach in two distinct applications:
Detection of dangerous driving behavior, where supervised learning may be hindered by
the collection of data pertaining to risky behavior and hence presents ethical concerns,
and Relapse Prediction for patients suffering from psychotic disorders, which involves the
detection of an infrequent event that may require extensive recording to capture.

2. Global and PersonalizedModels: The examination of affective computing states reveals
an intervariability among individuals, presenting a substantial challenge when developing
universal models for assessment. This variability becomes especially prominent when an-
alyzing patients with psychotic relapse. In response to the aforementioned challenge, this
study explores the potential of anomaly detection methods to create personalized mod-
els for psychotic relapse prediction. By leveraging unsupervised anomaly detection tech-
niques, we pave the way for systems capable of autonomously collecting end-user data in
real-life scenarios, eliminating the need for direct user intervention or costly labeling. We
conduct a comparative analysis with global models and explore the strengths and limita-
tions of both approaches.

3. Feature Selection for Imbalanced Datasets: When confronted with limited data (e.g.
personalized models) or high labeling costs in real-life scenarios, feature selection becomes
pivotal to prevent overfitting and reduce computational power consumption. We propose
using Auto-Encoder (AE) reconstruction errors (RE) as a metric to examine feature rel-
evance for the feature selection problem. We evaluate this approach across two critical
applications: Visual Distraction Detection and Psychotic Relapse Prediction.

4. Multimodal fusion: Human affective states manifest through diverse channels like voice,
facial expressions, and physiological reactions, underscoring the need for multifaceted
data sources in affective state estimation systems. Integrating multiple modalities, such
as cameras, physiological sensors, and microphones, is crucial for improving the efficiency
of these systems. However, the challenge arises from the heterogeneous nature of these
modalities, making multimodal fusion a complex task. To address this, our proposal sug-
gests leveraging AE and their RE as cues to determine the relevance of each modality.
These RE serve as valuable indicators guiding multimodal fusion algorithms in effectively
combining these diverse sources of information.

1.2 Structure of the thesis and outline
This thesis is composed of a brief introduction, four chapters, and a summary of conclusions

and perspectives. The main points of each chapter are presented below.
■ Chapter 2: Background and Open Challenges. This chapter serves as a comprehensive in-
troduction to the field of affective computing, laying the foundation for our research goals.
We explain the motivations behind our work and the need for advancements in this field,
with a particular focus on the challenges it presents. Additionally, we introduce the domain
of anomaly detection and its pivotal role in addressing these challenges within the field of
affective computing.
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■ Chapter 3: Rare Mental States Detection. We explore the detection of rare mental states in
an unsupervised manner. Our study focuses on addressing two real-world problems: Vi-
sual Distraction detection and psychotic relapse prediction. By employing unsupervised
methodologies, we aim to shed light on innovative approaches for identifying these infre-
quent yet critical states without the need for labeled data, which can be difficult in those
applications.

■ Chapter 4: Explainability and Feature Selection Using Anomaly Scores. In this chapter, we
study the use of a feature selection method designed for imbalanced datasets for the two
affective computing tasks: visual distraction detection and psychotic relapse prediction
datasets detailed in Chapter 3.

■ Chapter 5: Multimodal Fusion using Anomaly scores. This chapter explores a novel fusion
approach aimed at enhancing continuous emotion prediction through a multimodal fusion
technique founded on anomaly scores. These anomaly scores are derived from AE trained
permodality. We study this fusion technique using the ULMTSST dataset for the prediction
of arousal and valence for participants in stress-induced situations.

1.3 Publications and Patents
Through the research conducted in this thesis, our contributions have resulted in several

publications.
1. Articles

■ Hamieh, S., Heiries, V., Al Osman, H., & Godin, C. (2021). Multi-modal fusion for
continuous emotion recognition by using auto-encoders. In Proceedings of the 2nd
on Multimodal Sentiment Analysis Challenge (pp. 21-27).

■ Hamieh, S., Heiries, V., Al Osman, H., & Godin, C. (2023, June). Relapse Detection
in Patients with Psychotic Disorders Using Unsupervised Learning on Smartwatch
Signals. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (pp. 1-2). IEEE.

■ Hamieh, S., Heiries, V., Al Osman, H., Godin, C., & Aloui, S. (2023)Driver Visual Dis-
traction Detection Using Unsupervised Learning Techniques. In ITSC 2023 IEEE In-
ternational Conference on Intelligent Transportation.

■ Hamieh, S., Heiries, V., Al Osman, H., & Godin, C. (2023). Psychotic Disorders Relapse
Prediction from Passive Signals using Anomaly Detection Methods.(under review)

2. PATENT

■ Hamieh, S., Heiries, V., Al Osman, H., & Godin, C. Multi-modal prediction system.
EP4163830.
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2
Background And Open Challenges

In this chapter, we provide an overview of the two fields of affective
computing and anomaly detection. We define Affective Computing
and explore its wide-ranging applications. We define anomaly detec-
tion and describe relevant classical and SOTAmethods and evaluation
measures. We discuss the challenges of both domains and highlight the
ones we will address in the thesis.
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2.1 Introduction
The relevance and significance of understanding human emotions in interaction with ma-

chines have surged recently [1] [2] [3]. The primary objective of this thesis is to delve into
understanding human mental states by utilizing specific data sources such as speech, physio-
logical signals, and facial expressions. These data are instrumental in estimating these states,
requiring models for interpretation. Given the absence of mathematical models, we resort to
Machine Learning (ML) methodologies. The conventional approach predominantly relies on su-
pervised ML models, which have been instrumental in interpreting and analyzing emotional
cues[4] [5]. However, supervised classical ML approaches come with limitations when dealing
with the complexities of human emotions and challenges in data collection. That’s why we pro-
pose an exploration of anomaly detection methods as a potential avenue for improving mental
state recognition. This chapter serves as a comprehensive exploration of Affective Comput-
ing, encompassing its diverse applications, modalities, information fusion, and the challenges
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encountered in this domain. We devote a section to the most used approaches in the classical ap-
proach of supervised learning within affective computing. Subsequently, we delve into anomaly
detection, an intriguing field promising to augment affective computing. The discussion spans
anomaly detection methods and the associated challenges.

2.2 Affective computing
2.2.1 Affective computing definition

Affective computing stands as an interdisciplinary domain that encompasses computer sci-
ence, psychology, and cognitive science. It holds significant implications for the domain of
human-computer interaction, where the fusion of these disciplines holds the potential for trans-
formative advancements. The concept of affective computing was first introduced by Rosalind
Picard in 1995 [6]. It refers to the field of developing devices that can identify, interpret, process,
and even mimic human emotions. In Picard’s influential work [6], she underscores the essential
role that emotions play in human cognition and perception. She goes on to elaborate on how
integrating emotional understanding into technology could lead to the creation of more intuitive
and efficient intelligent machines.

2.2.2 Emotion recognition

One of the main and initial goals of affective computing is emotion recognition. Psycholo-
gists endeavor to describe emotions, and these descriptions are referred to as models. There are
generally two approaches to emotional modeling:

■ Discrete class model: Categorical Emotions approach.
■ Continuous value model: Dimensional Emotion approach.

We will elaborate on each approach in the following subsections.

2.2.2.1 Categorical approach

In the categorical approach, we define emotions as a set of discrete classes. The development
of such models enables the scientific community to effectively distinguish and methodically ar-
range these emotions. Numerous researchers have identified a list of primary or fundamental
emotions, considered to be innate and critical for the species’ survival. The number of these emo-
tions varies depending on the author. Two well-recognized models frequently cited in literature
include Ekman’s Basic Emotions model and Plutchik’s Wheel of Emotions.

■ Ekman [7] identified six emotions, shown in Figure 2.1: anger, disgust, fear, joy, sadness,
and surprise that are distinct and universally recognized.

■ In 1980, Robert Plutchik [9] developed the Emotion Wheel shown in Figure 2.2, which
offers a valuable framework for comprehending emotions and their functions. This wheel
is divided into eight sections, each representing one of the eight primary emotions: joy,
trust, fear, surprise, sadness, anticipation, anger, and disgust. Each primary emotion has an
opposing polar emotion based on the physiological responses it triggers. For example, joy is
the opposite of sadness. Additionally, emotions becomemore intense as they progress from
the outer to the inner parts of the wheel, a gradation that is also reflected in their shading;
the darker the hue, the more intense the emotion. Furthermore, the Emotion Wheel also
illustrates compound emotions that result from the combination of two basic emotions,
such as aggressiveness, which arises from the fusion of vigilance and rage emotions.
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Figure 2.1: Ekman’s six basic emotions. [8]

2.2.2.2 Dimensional approach

As for the dimensional approach, its coordinates in the Euclidean space characterize the emo-
tion. Russel’s CircumplexModel of Affect [10], represented in figure 2.3, is one of themost widely
adopted dimensional representations in affective computing. The circumplex model of emotion
proposes that emotions are arranged within a two-dimensional circular space, defined by the
dimensions of arousal and valence.

1. Valence: Valence is represented along the horizontal axis. The dimensions of valence
represent the positivity or the degree of pleasure/displeasure. For instance, both anger and
disgust are considered unpleasant emotions and rank high on the displeasure scale.

2. Arousal: Arousal is depicted along the vertical axis. The dimension of arousal reflects the
activation (low/high) or the stimulation experienced by an individual. For example, fatigue
is associatedwith low activation, indicating an unenergetic state, while emotions like anger
are linked to high activation, signifying a heightened and intense state of stimulation.

Another known emotional model is the PAD emotional state model [11]. It proposes a three-
dimensional representation of emotions that includes Pleasure, Arousal, and Dominance. Dom-
inance represents the degree of control. While dominance is not as commonly used as dimen-
sions like valence and arousal, it can provide additional insights into the impact of emotions on
cognitive and behavioral processes.
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Figure 2.2: Robert Plutchik’s Wheel of emotions

2.2.3 Other mental state estimation

Additionally, the scope of research in affective computing has expanded beyond basic emo-
tional states to encompass a wider range of human expressions and mental states. For instance,
studies focus on states like laughter [12], attention [13], pain [14], psychological states [15] [16]
[17], social behavior analysis to identify people’s viewpoints on various subjects [18], and detect-
ing protective behavior [19]. In the following section, we’ll explore different domains influenced
by affective computing, highlighting diverse human states studied for predictive analysis.

2.2.4 Applications of affective computing

As technology continues to evolve and automate various sectors, affective computing has
the potential to revolutionize numerous industries. Below are several domains showcasing the
applications of affective computing.

■ Customer Service and Human-Robot Interaction: Affective computing can enhance
customer service interactions by enabling robots or virtual assistants to recognize and re-
spond appropriately to users’ emotions. Examples of such works: developing emotionally
smart chatbots [20], personalized robots for better efficiency [21], real-time Speech emo-
tion recognition system [22].

■ Healthcare: Affective computing can be utilized in mental healthcare to monitor patients’
psychological states and provide personalized interventions. Some work focused on proac-
tive identification of mental health concerns in university students [23], depression detec-
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Figure 2.3: Russell’s (1980) Circumplex Models

tion [15], anxiety detection [16] [24], bipolar disorder diagnosis [17] [25] It could help
in managing stress, anxiety, and depression by analyzing facial expressions, physiological
signals, and speech patterns.

■ Wellbeing: Affective computing has also been used in monitoring human wellbeing. For
example, measuring the effects of social media on its users [26], professional burnout de-
tection [27], stress prediction [28], identification of urban environment effects [29].

■ Automotive sector: Affective computing can contribute to a safer and more comfortable
driving experience. It can help the vehicle adapt its behavior based on the driver’s state.
Therefore, studies have explored using affective computing for driver drowsiness predic-
tion [30], driving distraction detection [31], and monitoring driver’s emotion and behavior
in different conditions [32].

■ Education: In the field of education, affective computing can enhance learning experi-
ences by adapting content and teaching methods based on students’ emotional responses.
Numerous studies have focused on detecting individuals’ emotional states, e.g. engagement
and confusion, to enhance the learning process, particularly in online educational settings
[33] [34] [35] [36]. For example, [13] proposes a model to detect the level of engagement
for special needs students online by analyzing video data.

■ Marketing and Advertising: Affective computing plays a crucial role in enabling mar-
keters to measure consumers’ emotional reactions to advertisements, products, and brands.
This information holds the potential to refine marketing strategies, making them more
captivating and effective. Consequently, a number of studies have been dedicated to the
application of affective computing in the realm of marketing and advertising [37] [38].
For instance, affective computing has been employed to predict purchase likelihood [39],
enhance email marketing [40], and forecast emotional (in)congruency [41].

Moreover, affective computing also contributes to enhancing other domains like smart en-
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vironment [42], gaming and entertainment [43], therapeutic interventions[44]. These are just a
few examples of the diverse applications of affective computing. The field continues to expand
as researchers and practitioners explore new ways to integrate emotional understanding into
technology to improve various aspects of human life.

As shown above, affective computing, with its ability to perceive, interpret, and respond to
human emotions, finds many applications across various domains. More information can be
found in [45]. It provides a general overview of incorporating affective computing in software
systems.

In our research, we have strategically chosen to focus on three distinct applicationswithin the
domains of well-being monitoring, the automotive sector, and mental healthcare. Our selection
is motivated by a commitment to proactive and preventative approaches aimed at enhancing the
quality of human life through advanced emotionally intelligent technologies.

The first application we introduce in this thesis is distraction detection in the Automo-
tive Sector. Distracted driving remains a leading cause of accidents and fatalities on the road.
Leveraging affective computing methods, we intend to develop systems capable of detecting
driver distraction in real-time. The prevention of accidents and the promotion of road safety are
paramount concerns. Our research aims to enhance the driving experience by reducing the risks
associated with distracted driving.

The second application we present is the detection of psychotic relapse in mental health-
care. Individuals with psychotic disorders often experience relapses that can be challenging to
predict and manage. Affective computing offers an opportunity to monitor and predict relapses
by analyzing behavioral cues. Early detection and intervention in psychological relapses can
be transformative for patients with psychotic disorders. It can lead to faster recoveries, reduce
hospitalization rates, and improve the overall quality of life for affected individuals.

The third application is stress Prediction in wellbeing monitoring. Stress is a pervasive
issue in modern society, with profound implications for individual well-being and overall public
health. By harnessing the capabilities of affective computing, we aim to proactively identify
and predict stress levels in individuals. The ability to predict stress can be a crucial factor in
preventing burnout, promoting mental health, and improving overall quality of life. It enables
early interventions and personalized support mechanisms for individuals under stress, leading
to healthier and more resilient communities. Moreover, all of these applications could benefit
from anomaly detection. This is especially relevant given their requirement for collecting states
that are either rare or challenging to record in real-life settings.

2.2.5 Modalities used in affective computing

The focal point of affective computing lies in analyzing human signals to gain insight into
human behavior. Within this domain, various types of features have demonstrated effectiveness
in recognizing emotions or psychological states, including speech, facial expressions, digital data,
and physiological signals.

2.2.5.1 Speech

Speech signals represent the most natural and informative form of human communication.
Additionally, it offers the advantage of being easily and cost-effectively collected. Within speech,
information is embedded explicitly through linguistic components like words and implicitly
through acoustic elements like prosody and specific vocalizations (e.g., laughter or cries).

■ Paralinguistic Acoustic Features We present an overview of the diverse speech repre-
sentations applied in the field of affective computing as shown in Figure 2.4.
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Figure 2.4: Overview of speech representations used in the domain of affective computing from [46]. Abbreviations used
in the figure are Geneva Minimalistic Acoustic Parameter Set (GeMAPS): Geneva Minimalistic Acoustic Parameter Set,
MFCC: Mel-Frequency Cepstral Coefficients, BoAW: Bag of Audio Word, FV: Fisher Vector, AAE: Advarsarial AE, VAE:
Variational AutoEncoder, SSL: SelfSupervised Learning

Hand-crafted Features: Acoustic speech features can be categorized into three primary
groups: prosodic features, qualitative features, and spectral features. Among the
prosodic features are energy, zero-crossing rate, and frequency of pitch. Qualita-
tive features encompass jitter and shimmer. The spectral features category includes
the Mel-Frequency Cepstral Coefficient Mel Frequency Cepstral Coefficients (MFCC),
Linear Prediction Coefficient, Linear Prediction Cepstral Coefficient, Gamma tone Fre-
quency Cepstral Coefficient, Perceptual Linear Prediction, and formants. Numerous
techniques have been introduced to extract speech descriptors, often combined with
various statistical measures to summarize their temporal patterns. Consequently, the
results of early emotion recognition studies lacked comparability and interpretability.
Therefore, collaborative efforts have aimed to establish a concise set of acoustic de-
scriptors based on expert knowledge, leading to representations such as the Geneva
Minimalistic Acoustic Parameter Set (GeMAPS) [47]. Furthermore, instead of analyz-
ing these acoustic descriptors stochastically, an alternative approach was suggested
involving the clustering of these descriptors. The most popular techniques are Bag
of Audio Words (BoAWs) [48] and Fisher Vectors (FVs) [49]. However, some stud-
ies showed that features extracted from Deep Learning DL models outperform hand-
crafted features [50].

DL Features: DL empowers models to extract features at a higher level of abstraction,
enabling them to learn information from speech that is unrestricted by human under-
standing.
1. End-to-end Learning: One approach that has gained prominence is end-to-end

learning. Here, raw data is directly input into the model, which independently
manages both feature extraction and prediction. This method is typically im-
plemented through Convolutional Neural Network (CNN) and has demonstrated
superior performance compared to traditional acoustic features [50]. However, a
significant drawback of this approach is its demand for larger datasets due to the
heightened complexity and increased number of parameters involved in end-to-
end modeling. Additionally, choosing the appropriate network architecture and
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learning method can be challenging, leading to various architecture and hyper-
parameter tuning studies.

2. Transfer Learning: Speech can also be processed as an image by using the spec-
trogram orMel-spectrogram. Therefore, somewell-established architectures from
the field of computer vision for image processing have been adapted for speech
e.g., VGGish[51], Deep Spectrum [52].

3. Unsupervised Learning: The scarcity of emotion-labeled data, despite the vast
amount of unlabeled recordings, has prompted research in affective computing to
explore more label-agnostic approaches. For example, in [53] a Recurrent Neu-
ral Network (RNN)-based AE is trained on a large amount of unlabeled data to
generate a latent representation of emotional speech, thereby enhancing emo-
tion recognition performance. Other works explored the use of Variational Auto-
Encoder (VAE) [54], or Adversarial AE (AAE) [55].

4. Semi-supervised learning: Semi-supervised learning can be achieved through a
two-step process. Initially, a generic representation is learned in an unsupervised
manner, and subsequently, more task-specific features are extracted using labeled
data. In [56], authors employed CNN s to learn local invariant features, and sub-
sequently, these same layers can be fine-tuned to identify emotionally salient fea-
tures by leveraging labeled data. To eliminate the need for a separate unsuper-
vised pre-training step, researchers extended Ladder networks [57], a variant of
denoising AE. This extension allows for the simultaneous minimization of both
supervised and unsupervised cost functions [57].

5. Self-supervised learning: In self-supervised learning, the model learns a univer-
sal data representation during its training by engaging in a predefined task using
only the available data. Among the most commonly used tasks in the literature
is Contrastive Predictive Coding (CPC), which involves distinguishing a masked
frame from another frame [58]. One of the most known self-supervised mod-
els for speech is wav2vec2 which performs better than the best semi-supervised
learning methods [59]. WavLM [60], another self-supervised model, leads the SU-
PERB leaderboard [61], which serves as a benchmark for universal performance
in speech processing.

While handcrafted speech representations offer interpretability, they exhibit significant
variability across speakers, rendering models vulnerable to generalization errors when
dealing with unfamiliar individuals. Conversely, DL based representations can enhance ro-
bustness but lack the direct explanatory power of acoustic and linguistic features. Given the
diverse real-world applications of affective computing, it becomes imperative to achieve not
only accurate assessments but also supplementary insights into decision-making processes.
Furthermore, representations based on deep learning often necessitate larger datasets, height-
ened model complexity, and increased training efforts. Despite numerous studies in this
domain, comprehensive comparisons encompassing awide spectrum of representations for
diverse affect-related tasks employing various models across distinct contexts, languages,
and cultures, remain scarce. Thus, despite recent advancements, fundamental questions
such as the selection of optimal features for emotion recognition persist [46].

■ Linguistic FeaturesAffect is not only conveyed through themanner of expression but also
by the actual words spoken. In the process of text processing, the initial step involves tok-
enization, where the text is broken down into machine-readable units [62]. Subsequently,
an algorithm is applied to generate embeddings, which are vectorized representations of
the text’s content derived from these tokens. As an example, in the case of word embed-
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dings, the text is segmented into words, treating them as fundamental elements of a sen-
tence, with each word corresponding to a distinct feature vector. Consequently, in textual
data, each token is associated with and represented by a single, unique, and deterministic
embedding. This approach ensures the existence of a finite set of targets for analysis and
manipulation. More recently, the use of transformer-based models has enhanced the per-
formance of affect recognition [63] [64] [65] by using models like Bidirectional Encoder
Representations from Transformer (BERT) [66], GPT-2 [67], XLNet [68], RoBERTa [69].

For a more comprehensive exploration of extracted features, the following surveys provide in-
depth insights: [70], [71].

2.2.5.2 Facial expressions and body movements

One of the most intuitive ways to recognize emotions by humans is by examining facial cues.
Mehrabian’s research findings suggest that within a message, the verbal component is respon-
sible for only 7 percent of the overall impact of the message. In contrast, the vocal aspect (such
as voice intonation) is responsible for a more significant portion, at 38 percent, while the facial
expressions of the speaker are responsible for the most substantial influence, accounting for 55
percent of the overall effect of the spoken message [72]. This suggests that facial expressions
constitute the primary modality in human communication. Ekman developed the Facial Action
Coding System (FACS) [73], a method for describing facial movements. It decomposes the fa-
cial expression into a group of particular muscle movements called Action Units (AU), e.g., jaw
drop, as shown in Figure 2.5 with other examples. Similar to speech, in earlier research, expert-
knowledge features such as Local Binary Patterns (LBP) [74], Histograms of Oriented Gradients
(HOG), Multiscale-WLD, Local Directional Patterns (LDP), and Gabor [75] were used as video
baseline features for emotion prediction. More recently, deep representations [76] [77] extracted
through deep Convolutional Neural Network CNN (e.g. VGG-16 [78]) have been used.

Figure 2.5: Action units of the lower face. From [79].

Facial expression, although themost prominent avenue of emotional communication, presents
a disadvantage in that it is often more controlled compared to other forms due to its sensitivity
to various social contexts.
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2.2.5.3 Physiological signals

In addition to observable behavioral changes (e.g. facial expressions and tone) resulting from
changes in a person’s emotions, there are also noticeable alterations in physiological signals
[80]. We present the most relevant features and examples of its use in the domain of affective
computing:

■ Electrocardiogram (ECG) : ECG records electrical heart activity generated during contrac-
tion and relaxation. Common features extracted from ECG signals are Heart Rate (HR)and
Heart Rate Variability (HRV). HR represents the number of heartbeats per unit of time,
while HRVquantifies the variations over time in the period between successive heartbeats.
These features derived from ECG signals play a significant role in the analysis and inter-
pretation of emotional states [81], pain assessment [82], etc.

■ Photoplethysmography (PPG) or Blood Volume Pulse (BVP): BVP employs a photodiode
to measure backscattered light by a skin voxel, which is proportional to the blood vol-
ume. Moreover, PPG is frequently used to measure HR and HRV [83]. In [84], authors
transformed monodimensional PPG signals into images and used DL for cognitive load
detection.

■ Electrodermal Activity (EDA): EDA is assessed through skin resistance by passing current
or voltage through the body and recording variations in voltage or current between sensor
leads. For quite some time, EDA has been a staple in assessing human emotions. Tradition-
ally, sensors were attached to the fingers for this purpose. However, with the advancements
in affective computing and the advent of smartwatches, the sensors have transitioned to
the wrist [85]. Driver drowsiness detection [86] and driver stress prediction [87] are some
of the applications within the field of affective computing using skin conductance.

■ Respiration (RSP) : RSP monitors respiration patterns, including the speed and depth of
a person’s breathing. Most of the sensors are chest-belt mounted piezoelectric sensors
however more technologies are detailed in [88]. Ihmig et al. [89] employed RSP along ECG
and EDA signals to detect and assess anxiety levels.

■ Electromyography (EMG): EMG records the electrical activity of skeletal muscles, utilizing
skin surface electrodes. Findings in [90] indicate that the EMG (Electromyography) signal
performed comparably to the well-established ECG signal in the domain of stress detection
and demonstrated that the EMG signal from the right trapezius muscle exhibits superior
stress recognition capabilities compared to other muscles.

■ Electroencephalogram (EEG) : EEG is a technique that records the electrical fields pro-
duced when neurons in the cerebral cortex become active during synaptic excitation. EEG
is frequently employed as a valuable tool in the supplementary diagnosis of mental health
conditions, including disorders like depression [91]. It is used in several affective comput-
ing applications such as emotion recognition [92], fatigue estimation [93], etc.

2.2.5.4 Other behavioral indicators

Alongside the previously mentioned features, various additional parameters have been ex-
plored for different applications. These include eye-tracker signals [94][95], vehicle information
[96], internet data [97], signals retrieved from smartphones—such as call logs, social media activ-
ity duration, and overall mobile usage [98]. Moreover, data from smartwatches, encompassing
details like sleep patterns and physical activity [99] further enrich the contextual information
available for analysis. This diverse array of features augments the depth and breadth of under-
standing across various scenarios.
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2.2.6 Multimodal fusion
Multimodal fusion refers to the integration of diverse data from varying modalities to lever-

age the complementary nature of these data sources, ultimately enhancing prediction perfor-
mance. This is particularly relevant in affective computing, where a range of information sources,
as shown in the previous section, is available for analysis. Based on the extensive literature on
this topic, multimodal fusion is categorized into three categories: feature-level fusion, decision-
level fusion, and hybrid fusion [100], shown in Figure 2.6. In this section, we expand upon the
fundamental principles of these techniques.

Figure 2.6: Multimodal data fusion methods.

2.2.6.1 Feature-level fusion

Early fusion, also known as feature-level fusion, involves the simultaneous incorporation of
features from all modalities into a single computational model. In this approach, the raw or pre-
processed data from each modality is combined at the very beginning of the analysis pipeline,
resulting in a single feature set. Early fusion enables the model to learn from all modalities
jointly. It offers the advantage of promptly leveraging inter-modality relationships, facilitating
task completion [101]. In [102], a multimodal method was introduced for categorical emotion
recognition by incorporating EEG and micro facial expressions. They fused these modalities at
the feature-level, and their fusion strategy showed considerable performance enhancement, up
to 12% improvement per recognized emotion compared to the unimodal approach.

2.2.6.2 Decision-level fusion

Decision-level Fusion, also referred to as late fusion, in contrast to early fusion, focuses on
combining the predictions generated by individual models trained on separate modalities. Each
modality is processed independently using dedicated models, and their outputs are later merged
or aggregated to make a final decision or prediction. Late fusion provides flexibility by allow-
ing the use of specialized models for each modality, which can be advantageous when dealing
with modalities of different complexities. However, it may require careful consideration of how
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to combine the predictions and handle potential discrepancies between modalities effectively.
Huang et al. [103] showed that late fusion is better at predicting valence and arousal than early
fusion. Sun et al. [104] chose late fusion with aLong Short-Term Memory (LSTM) network that
captures dynamic information as a fusion model.

2.2.6.3 Hybrid fusion

Ahybrid-fusion scheme involves combining feature and decision-level fusion techniques. For
instance, Kim et al. [105] integrated audio and physiological data through three stages. The first
stage is a feature-level fusion of audio and physiological signals. The second stage is decision-
level fusion utilizing unimodal predictions from both audio and physiological sources. Finally,
they conducted another round of decision-level fusion on the output produced by each of the
preceding fusion steps. Chen et al. [106] proposed the joint use of early and late fusion using
bidirectional deep long short-term memory networks. The results showed that early and late
information may be complementary [106].

2.2.7 Discussion

Early fusion may face various challenges. Concatenating features from all modalities in-
creases the dimensionality of the input data. This can pose difficulties when the size of the
dataset is not sufficiently large to support this expanded feature space. In such cases, the risk is
that the model may overfit the data, leading to decreased classification accuracy. Another chal-
lenge associated with early fusion involves data alignment and compatibility between modali-
ties. Modalities may capture data at different time scales or have inherent differences in data
type and format. Ensuring that these diverse sources of information can be effectively inte-
grated and compared can be a complex task. Additionally, early fusion offers less flexibility in
scenarios involving corrupted or missing modalities. When one modality is compromised or un-
available, early fusion may struggle to adapt. In contrast, late fusion offers more flexibility; it can
be adapted if a single modality is missing more easily than early fusion; however, it does not take
into consideration the inter-modality relationship. There is no consensus in the literature on the
best approach, given the limitations and advantages of each technique. The choice between dif-
ferent fusion methods often relies on the dataset specifics and the specific requirements of the
task being addressed.
We’ve highlighted some widely recognized fusion strategies here. However, there are additional
surveys that delve further into categorizing various data fusion techniques, including attention-
based and DL-based fusion as explored in [101], model-level, rule-based, estimation-based, and
classification-based fusion methods as detailed in [107].

2.2.8 Open challenges

Affective computing, although promising, remains in its early stages and requires significant
enhancement to align with real-world application constraints. It encounters various challenges,
particularly concerning sensors (which should be unobtrusive, consume low power, and ensure
data privacy), models for recognizing mental states (which need to be efficient, interpretable,
fault-tolerant, and personalized), actions chosen by the models (which should also be person-
alized and beneficial). As this thesis focuses on mental state estimation, we list some of the
main challenges in affective computing and categorize them into three groups: data, models,
and ethics.
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2.2.8.1 Data challenges

■ Imbalanced dataset: In affective computing, a significant challenge arises from dealing
with unbalanced datasets. This issue occurs when the distribution of affective states in the
dataset is uneven, meaning that some classes are more frequently represented than others.
For example, the IEMOCAP dataset [108] and FER2013 dataset [109], used for emotion and
facial expression recognition, respectively, exhibit imbalanced distributions among emo-
tion categories. Similarly, the eDAIC-Woz dataset [110] is employed for depression detec-
tion, also facing imbalanced data concerns. The imbalance can lead ML models to exhibit
bias and reduced performance, as they may become more adept at predicting the prevalent
emotions while struggling with those less frequently encountered. Therefore, addressing
unbalanced datasets is crucial for creating models that generalize well across the entire
spectrum of affective states.

■ Labeling: The main method for acquiring labeled training data in affective computing is
by manual annotation of data by experts. However, this approach can be exceedingly time-
consuming and costly [111][112]. Furthermore, emotions are inherently ambiguous and are
perceived relatively, resulting in uncertainty in their labeling, especially when annotated
by a single annotator. Such interpretations can be influenced by various factors, including
the annotator’s mood and prior exposure to similar examples [113]. error and subjectivity.

■ Large and Diverse Data: To make progress in the field of affective computing, there
is an urgent need to create high-quality and large datasets [114]. This need is particularly
crucial when employing advancedmethods like DL, known for handling complex tasks and
utilizing various sources of information, as seen in many affective computing applications
[115] [116].

■ Context: Human beings instinctively assess emotions in social interactions by considering
environmental and social factors. Our comprehension of social interactions is enriched by
contextual elements such as the ongoing activity, the individual’s identity, their custom-
ary emotional expressions, and the presence of other people [117]. In the absence of such
context, even humans can misinterpret facial expressions, vocal tones, or body language.
However, the majority of released datasets are typically confined to controlled laboratory
environments [118] or involve acted performances [119] [120]. Consequently, this limita-
tion has the potential to undermine the model’s performance when applied to real-world
settings [121].

2.2.8.2 Model challenges

■ Multimodal Fusion While the advantages of fusion techniques (such as audio-video fu-
sion) for affective computing are anticipated from both engineering and psychological
standpoints, our understanding of how humans accomplish this fusion remains quite lim-
ited. Neurological studies on the fusion of sensory neurons suggest a preference for early
fusion (i.e., feature-level fusion) over late fusion (i.e., decision-level fusion)[122]. Yet, a
persistent challenge remains in constructing suitable joint feature vectors that encompass
features from diverse modalities characterized by distinct time scales, metric levels, and
dynamic structures, all within the constraints of existing methodologies [123] [124]. Given
the current knowledge and techniques, several issues related to fusion demand further in-
vestigation, including determining the optimal level of information fusion from different
data modalities (feature level, decision level, or hybrid), identifying the ideal function for
integration and incorporating reliable estimations of each modality’s predictions.

■ Explainability: An ongoing challenge in the field of affective computing is the develop-
ment of ML models that are both robust and interpretable. Driven by the imperative for
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accuracy, there is a discernible trend toward adopting "black-box" solutions, particularly
those rooted in neural networks, predominantly Deep Learning [125] [126]. Models like
deep neural networks are often considered "black box" models, posing difficulties in com-
prehending their inner workings and hindering trust and customization [127]. Moreover,
the need for explainability is of great importance in fields like education and healthcare,
where the stakes are high and incorrect generalizations can have significant human con-
sequences [128].

■ Personalization: The significance of personalized models in the domain of affective com-
puting is strongly substantiated by empirical findings in social and behavioral sciences. For
example, individuals from different cultures may employ nonverbal gestures in distinct
ways, and there can be variations in the frequency of their utilization [129]. Moreover,
research studies [130] [131] provided evidence of variations in personality traits among
diverse user profiles, encompassing distinctions in age groups, genders, and even cultural
backgrounds.

2.2.8.3 Ethical challenges

■ Bias: Bias is a significant concern within affective computing models. Kiritchenko et al.
[132] showed gender and race bias in experiments done using different algorithms, includ-
ing traditional and DL models. During the assessment of affective computing systems, a
prominent pattern was observed wherein sentences with African-American names tended
to receive higher scores in tasks related to the prediction of anger, fear, and sadness inten-
sity. Conversely, for tasks involving the prediction of joy and valence, most submissions
favored sentences featuring European American names. Moreover, Diaz et al. researched
age-related bias in sentiment analysis and found that sentences containing "young" adjec-
tives are 66% more likely to receive positive scores compared to identical sentences with
"old" adjectives [133]. Many research efforts predominantly focus on identifying and miti-
gating gender bias despite the existence of more pronounced biases in areas such as race,
religion, and intersectionality, which require significant attention [134].

■ Privacy: In the domain of affective computing, privacy is one of the most important eth-
ical concerns. In numerous affective computing applications, sensitive human data is fre-
quently employed, some of which have the potential to uniquely identify an individual
[135]. Studies have shown that data stored in remote cloud servers are vulnerable to at-
tacks, and inferred information can be maliciously used [136] [137]. Moreover, some ap-
plications like emotion recognition raise the issue that emotions are private information.
Hence, this raises the ethical question: is it acceptable to let computers extract such infor-
mation? This question should always be taken into consideration to design only valuable
affective computing technologies.

2.3 Supervised learning methods in affective computing
2.3.1 Introduction

Supervised learning is used in most affective computing systems. These systems typically
utilize various signals as inputs, with the output class labels corresponding to specific affec-
tive states. Initial studies employed traditional classifiers, while later advancements led to the
widespread use of DL methods. In this section, we highlight some of the prominently employed
models in affective computing, spanning from traditional approaches toDLmethodologies, many
of which will be further used in subsequent chapters.
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2.3.2 Classical supervised approaches

We list here some of the most used classification models in supervised learning:

2.3.2.1 Support vector machine

Support Vector Machines (SVM) [138] is a class of ML algorithms known for its efficacy in
solving binary classification problems. It has been used heavily in the domain of emotion recog-
nition [139]. SVM aims to identify an optimal hyperplane that maximizes the margin between
two classes in the feature space. Let’s consider a dataset Ω = {(x1, y1), (x2, y2), ...(xN, yN)} of
N data samples, where xi ∈ Rd represents the sample vector and yi ∈ {1,−1} denotes its class.
SVM [138] consists of finding the optimal hyperplane that separates both classes with the max-
imal margin. The hyperplane is defined by the following equation wTx + b = 0 with w ∈ Rd

and b ∈ R such that yi(wTxi + b) ≥ 1. This last constraint forces each class to be on one side of
the hyperplane. In case the data cannot be separated by a hyperplane in their original space, data
will be projected to another space of higher dimension by using a non-linear function ϕ where
it can be separated. The most popular choices for the kernel function ϕ are polynomial, sigmoid,
or Gaussian radial base function. An example is shown in Figure 2.7, where x data cannot be
separated by a line. We apply a polynomial kernel where ϕ(x) = x2. After projecting the data
into its new space, it can be separated by a straight line.

Figure 2.7: Example of data separated using SVM.

To make the model more robust to noisy data, slack variables can be introduced ξi. These
variables allow soft thresholding. Hence the problem of SVM can be reformulated as:

min
w,b,ξi

1
2
||w||2 + C

N

∑
i=1

ξi (2.1)

subject to:

yi(wTϕ(xi) + b) ≥ 1 − ξi ∀i (2.2)
ξi ≥ 0 ∀i (2.3)

where C > 0 is a constant that determines the compromise between the maximization of the
margin and the training error. The aforementioned problem can be solved using Lagrange mul-
tipliers.
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2.3.2.2 K-Nearest-Neighbors classifier

Another popular classification method in affective computing is K-Nearest Neighbor (KNN)
[140]. This classifier [141] is a variant of instance-based learning. The model does not seek a
comprehensive internal model but rather preserves instances from the training data. Classifica-
tion outcomes are determined by a majority vote from the closest neighbors of each data point,
associating a query point with the class that appears most frequently among its nearest neigh-
bors. K represents the number of neighbors that will be used to assign the data point’s class.

2.3.2.3 Random forest

Some studies also explored Random Forest for emotion recognition [142] [143]. Random
Forest Classifier [144] is an ensemble learning technique that combines the predictions of mul-
tiple decision trees to improve the accuracy and robustness of the classification task. It builds
individual trees by randomly sampling the training data and features, reducing overfitting and
introducing diversity among the trees. The final prediction is determined by majority voting.

2.3.2.4 Gaussian naive Bayes

Naive Bayes was used for predicting emotions from tweets [145], speech features [146][147].
The Naïve Bayes simple probabilistic classifier relies on the application of Bayes’ theorem. In
Naive Bayes, each attribute variable is treated as an independent variable. Therefore for N ob-
servations (x1, .., xi, ...xN), the probability of Class y can be written as:

P(y|x1, ..., xN) =
P(y)∑N

i=1 P(xi|y)
P(x1, .., xN)

(2.4)

Therefore the classification rule can be written as:

ŷ = argmaxyP(y)
N

∑
i=1

P(xi|y) (2.5)

and Maximum A Posteriori (MAP) can be used to estimate P(xi|y) and P(y).
In the case of Gaussian Naïve Bayes, it is assumed that the continuous values associated with
each class follow a Gaussian distribution. Therefore the likelihood of the features is calculated
as follows:

P(xi|y) =
1√

2πσ2
y

exp(−
(xi − µy)

2

2σ2
y

) (2.6)

Where σy and µy are estimated parameters using maximum likelihood.

2.3.3 DL approaches
Following advancements in DL algorithms, they have become extensively employed for af-

fective computing

2.3.3.1 Multi-layer perceptron

Researchers initially evaluated Multilayer Perceptron (MLP), an artificial neural network that
typically exhibited superior performance compared to other conventional algorithms [148] [149].
MLP is a feedforward neural network that learns to map a function f (.) : Rm− > Ro by learning
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from a dataset of samples, where m is the number of dimensions for input X and o is the number
of output dimensions. It is composed of input, output, and hidden layers. Each layer is composed
of one or several neurons, where the output of each neuron in a layer is the result of applying an
activation function to the weighted sum of its inputs from the previous layer. During training,
the network adjusts its weights and biases using the backpropagation algorithm to minimize a
loss function.

2.3.3.2 Recurrent neural networks

The Recurrent Neural Network RNN is a specialized form of artificial neural network de-
signed to manage sequential data. Unlike conventional feedforward neural networks, RNNs
handle input sequences incrementally. Each step in the sequence computes outputs based not
only on the current input but also on previous computations. However, traditional RNNs suffer
from issues like vanishing or exploding gradient problems, which constrain their effectiveness
in capturing long-term dependencies within sequences.

■ Long short-term memory:
Long short-term memory LSTM is a type of recurrent neural network that allows the cap-
ture of temporal information. It can process sequential inputs by using its internal state
(memory). In contrast to conventional RNN, LSTM has a cell variable ct and three gates:
input gate it, output gate ot, and forget gate ft as shown in Figure 2.8. These gates help

Figure 2.8: Long Short-term Memory Cell [150].

the LSTM overcome the vanishing gradient problem that the RNN suffers from. Moreover,
it allows it to better handle long input sequences. The equations of the forward pass of an
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LSTM are the following:

ft = σg(W f xt + U f ht−1 + b f ) (2.7)
it = σg(Wixt + Uiht−1 + bi) (2.8)
ot = σg(Woxt + Uoht−1 + bo) (2.9)
ct = ft ⊗ ct−1 + it ⊗ σh(Wcxt + Ucht−1 + bc) (2.10)
ht = ot ⊗ σh(ct) (2.11)

Where xt is the current passed input, ht is the current hidden state, σg and σh are the
sigmoid and hyperbolic tangent functions, respectively, and ⊗ denotes element-wise mul-
tiplication. W, U, and b are the weight matrices and biases.

■ Gated recurrent unit:
Gated Recurrent Unit (GRU) is a simplified version of the LSTM. It has only two gates: the
update gate zt and the reset gate rt [151] as shown in Figure 2.9. It has fewer parameters
than the LSTM. It typically has a comparable performance to the LSTM [152] [153]. A
forward pass of a sample xt through the GRU is described in the following equations:

zt = σg(Wzxt + Uzht−1 + bz) (2.12)
rt = σg(Wrxt + Urht−1 + br) (2.13)
ĥt = tanh(Whxt + Uh(rt ⊗ ht − 1) + bh) (2.14)
ht = (1 − zt)⊗ ht−1 + zt ⊗ ĥt (2.15)

Figure 2.9: Gated Recurrent Unit Cell [154].

– xt: current passed input
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– ht: hidden state at time t
– σg and σh: sigmoid and hyperbolic tangent functions, respectively
– ⊗: element-wise multiplication
– W, U, and b: weight matrices and biases

■ Bidirectional Recurrent Neural Network
To incorporate information from both past and future contexts into its predictions, Bidirectional
Recurrent Neural Network (BiRNN) analyze input sequences in both forward and backward
directions as depicted in Figure 2.10. Numerous studies have investigated the utilization
of bidirectional networks for emotion recognition, recognizing the predictive advantage
gained from incorporating both future and past inputs for the current prediction [155]
[156] [157].

Figure 2.10: Bidirectional RNN [150].

Numerous studies have employed recurrent models for emotion recognition [4, 158]. These
models are often combined with a CNN serving as a feature extractor [50, 159, 160].

2.3.3.3 Convolutional neural networks

Convolutional Neural Networks CNN have revolutionized the field of computer vision in
many domains e.g., image classification, segmentation, object detection, etc. They consist of
multiple layers, including convolutional layers, pooling layers, and fully connected layers.

1. Convolutional layers: Contains filters or kernels that have smaller dimensions and width
compared to the input volume. The convolutional layer performs dot product calculations
between the input image and a kernel by sliding the kernel across the image. This process
detects local features at various positions within the 2D input.

2. Pooling layers: are typically positioned between 2 consecutive convolutional layers. The
main role of pooling layers is to reduce the number of parameters and computation by
downsampling its input. This layer employs a pooling function, often max or average
pooling.

3. Fully connected layers: are usually used to integrate the features computed by the previous
layers and perform the classification or regression prediction.
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CNN have demonstrated success in affective computing across various modalities, including im-
ages [161, 162], physiological signals [163, 164], and speech [165, 166].

2.3.3.4 Transformers

Transformer is a ML architecture introduced in 2017 by Vaswani et al. [167]. This technique
has revolutionized the field of artificial intelligence in various aspects. It is used in different
domains including natural language processing [168] [169], computer vision [170] [171], audio
processing [172] [173], and multimodal learning [174][175]. Due to their success, they have been
increasingly applied in affective computing, demonstrating superior performance compared to
state-of-the-art methods [176] [177] [178]. The transformer has an encoder-decoder structure
shown in Figure 2.11 while using the self-attention mechanism.

Attention Mechanism The core innovation of transformers is utilizing self-attention for se-
quential data. An attention function can be defined as a process that takes a query along with a
collection of key-value pairs as input and produces an output. In this context, all these elements
- the query, keys, values, and output - are represented as vectors. The output is calculated by
performing a weighted summation of the values, where the weight assigned to each value is
determined by evaluating a compatibility function that measures the relationship between the
query and the corresponding key. This mechanism allows the model to focus on specific pieces
of information from the values based on their relevance to the query, enabling it to capture im-
portant patterns and relationships in the data. For transformers, typically, a scaled dot-product
attention is used where a tuple of inputs, including queries Q and keys K are of dimension dk
and values V of dimension dv mapped to an output as described in the following equation:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (2.16)

The inclusion of a scaling factor 1
dk

in the dot product in the attention function is essential. This
scaling factor is introduced to counteract the issue of dot products becoming excessively large.
Without this scaling, the application of the softmax function could yield very small gradients
during training, causing a vanishing gradient problem.

Multi-head attention Vaswani et al. [167] employmulti-head attention. Rather than employing
a single attention function, the Transformer architecture leverages multi-head attention. In this
approach, the initial queries, keys, and values, each with a dimensionality of dm, are first pro-
jected into lower-dimensional spaces: dk, dk, and dv, respectively. These projections are carried
out using H distinct sets of learned projections. Subsequently, for each of these newly projected
queries, keys, and values, an output is computed through an attention mechanism as specified
in the following equation.

MultiHead(Q, K, V) = Concat(head1, ..., headh)WO

where headi = Attention(QWi
Q, KWi

K, VWi
V)

Where WO, Wi
Q, Wi

K, and Wi
V are parameter matrices of the projections. The model then con-

solidates all these individual outputs, concatenates them, and finally projects them.

Positional encoding Since transformers lack the inherent notion of sequential order (unlike
recurrent neural networks), positional encodings are added to the input embeddings to provide
the model with information about the positions of elements in the input sequence. There exist
various options for handling positional encodings, including both learned and fixed approaches.
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In [167], they adopt a method involving sine and cosine functions with distinct frequencies. The
positional encoding for an element at a given position pos and dimension i is defined as follows:

PE(pos,2i) = sin(pos/100002i/d)

PE(pos,2i+1) = cos(pos/100002i/d)

Where d is the dimension of the output. In this way, each dimension in the positional encoding
is computed using sine and cosine functions with varying frequencies, providing a unique rep-
resentation for each position in the sequence. The wavelengths create a geometric progression
ranging from 2π to 10000.

Figure 2.11: The architecture of the Transformer [167]

2.3.4 Challenges and limitations of supervised learning

Similar to other domains, DL methods have enhanced emotion recognition. Nonetheless, DL
methods often demand extensive data compared to traditional classifiers. Consequently, when
dealing with limited dataset sizes or a restricted number of data points, opting for traditional
approaches is recommended [4]. An inherent drawback for both approaches lies in the necessity
for labeled data across all classes. This can be challenging if obtaining data for one of the classes is
difficult. Consequently, certain works have focused on anomaly detection methods that operate
under unsupervised or weakly supervised conditions. We’ll delve into the details of this domain
in the next section.
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2.4 Anomaly detection
2.4.1 Overview of generalized out-of-distribution detection

The Closed-World Assumption in ML supposes that both training and testing data originate
from the same distribution [179]. This presupposition suggests that the model has encountered
all possible classes and variations during training, and any data encountered during testing be-
longs to the same set of classes or distributions. Essentially, the model operates within a "closed
world," assuming that all necessary information is contained within the training data. However,
in real-world scenarios, this assumption may not hold true. In practical terms, this assump-
tion can become problematic. Models may offer misleading confidence values when faced with
unseen test samples [180] [181], giving rise to concerns about the reliability of classifiers, par-
ticularly in safety-critical applications [182] [183]. Consequently, techniques such as Open-Set
Recognition (OSR) and Out-Of-Distribution (OOD) detection have been developed to address
scenarios where the closed-world assumption may be invalid. Notably, fields such as anomaly
detection, novelty detection, outlier detection, OOD, and OSR have gained prominence. All these
domains fall under the Generalized Out of Distribution detection [184]. While these domains
tackle similar tasks, the subtle distinctions and connections between them are often overlooked.
Our main interest in this thesis is the field of anomaly detection; however, due to the overlap be-
tween the terminologies used in each domain, we will offer a concise overview of each domain,
outlining their objectives and distinctions.

1. Anomaly Detection: Anomaly detection is the identification of rare events, observations,
or elements that show significant differences in behavior from normal data. Typically, these
points represent areas of interest that require detection.

2. Novelty Detection: The term "novel" typically suggests something unknown, new, and
intriguing. Similar to anomaly detection, novelty detection seeks to pinpoint test samples
that do not fit into any established training category. Consequently, in the community,
novelty detection is frequently used interchangeablywith anomaly detection [185]. Despite
this, the motivation behind each domain differs. Novelty detection regards "novel" test
samples as valuable learning resources with a positive learning perspective. [186].

3. Outlier Detection: Detecting outliers involves identifying samples within a dataset that
notably deviate from others, whether due to changes in covariate or semantic aspects. Un-
like previous subdomains of out-of-distribution detection that establish the in-distribution
during training, outlier detection defines the "in-distribution" based on the majority of
observations. Outliers can arise due to shifts in semantics or covariates within the data.
Unlike novelty, outliers are frequently considered as "noise" or "measurement error" to be
eliminated in a dataset.

4. Open Set Recognition: OSR has been introduced to address the challenge of ML models
trained in the closed-world setting, where there is a risk of incorrectly classifying test sam-
ples from unknown classes as one of the known categories with high confidence [187]. OSR
necessitates that the multi-class classifier simultaneously accomplishes two key objectives:

■ accurately classifying test samples from categories present during training.
■ detecting test samples from categories not belonging to any training category.

5. Out-of-distribution Detection: OOD detection is directed at identifying test samples
drawn from a distribution dissimilar to the training distribution, with the distribution’s
definition being context-specific. Usually, the training set encompasses multiple classes,
and out-of-distribution detection should not compromise the model’s ability to classify
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Figure 2.12: Illustration of sub-tasks within a broad out-of-distribution (OOD ) detection framework applied to vision-
based tasks [184].

in-distribution samples accurately. Its distinction from anomaly detection and novelty de-
tection arises from operating in a multi-class environment and the essential requirement
for in-distribution classification. OSR and OOD detection differ primarily in their bench-
mark setups, data utilization during training, and the breadth of tasks they cover [184].
OSR splits a multi-class dataset into in-distribution and OOD parts based on classes, while
OOD detection uses one dataset as in-distribution and finds distinctOOD datasets. OSR
restricts additional data usage for theoretical guarantees [188], contrasting with OOD de-
tection that may leverage extra data for performance. Lastly, OOD detection encompasses
a wider range of tasks, including multi-label classification, reflecting a broader solution
space compared to OSR’s specific focus.

An illustration showcasing various methods for Generalized OOD detection is depicted in Fig-
ure 2.12. In (a), a sensory anomaly detection example is presented: in a training set comprising
colored dog images, a black and white dog image is deemed an anomaly. In (b) and (c), one-
class novelty detection and multi-class novelty detection are demonstrated. In (b), the training
set comprises only dog images, while the novelty is represented by a cat image, considered the
OOD sample to be detected—an aspect that might be of interest for learning. Contrastingly, in
(c), the training set encompasses multiple animal classes, and the novelty emerges as a new class
of animals. In (d), an illustration of OSR and OOD detection is similar to multi-class novelty
detection, with the model tasked to differentiate between each class in the training set. Last, in
(e), outlier detection is applied to all observations without a training/testing scheme, where the
majority represents the normal class, and outliers are samples that deviate from the majority.
The following survey offers in-depth definitions, comparisons, and a comprehensive list of meth-
ods pertaining to the subtasks of generalized OOD [184].
In our research, our attention is directed toward data samples that deviate from the observed
training data but not due to error. Moreover, our primary focus is not on classifying the normal
seen classes. Hence, anomaly detection emerges as the primary domain to explore within the
field of affective computing.

2.4.2 Anomaly detection overview
Anomalies can be categorized into three distinct types, as outlined in [189]: Point Anomalies,

Contextual Anomalies, and Collective Anomalies. Point anomalies are characterized by data
points that deviate from the general pattern of the dataset, such as the presence of an image
of a boat within a dataset primarily consisting of car images. Contextual anomalies, on the
other hand, are data points that are considered irregular within a specific context. For instance,
a heart rate of 120 Beats Per Minute (BPM) during exercise may be normal, but if observed
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while at rest, it becomes a cause for concern. Collective anomalies refer to a collection of data
points that are regarded as abnormal when analyzed as a group, even if they do not stand out
as individual anomalies. For example, a substantial and continuous increase in daily spending
could be considered irregular, while a single day of increased spending might not raise an alarm.
The definitions of Point and Contextual Anomalies align with the rare affective states of interest
in our context. Hence, anomaly detection methods can be effectively applied to identify and
detect such states. Anomaly detection methods can be applied in three approaches [189]:

1. Supervised learning: In supervised learning, the anomaly detection problem is treated as
a classification problem. Labeled data (normal and abnormal) are used to train the model
to distinguish between the two classes. Nevertheless, this approach requires a significant
number of annotated anomaly instances. This can be problematic since anomalies usually
rarely occur. Otherwise, the model will encounter difficulties posed by the unbalanced
nature of the dataset.

2. Semi-supervised learning: The model will be trained using only normal examples. In
this case, the normal characteristics of the data can be captured by the model. Thereby, any
data of a different nature from the training data will cause the model to behave differently
and can then be reported as an anomaly.

3. Unsupervised learning: This approach does not require any labeling. However, it re-
lies on the assumption that anomalies rarely occur in the data. Therefore, if the model is
trained on all the data, it will learn its normal patterns. Any example deviating from these
patterns is considered an anomaly.

Anomaly detectionmethods fall into four categories: density-based, reconstruction-based, distance-
based, and classification-based methods. We explain techniques from each category.

2.4.3 Density-based methods
Density-based techniques aim to characterize the distribution of normal training data, as-

suming under the estimated density model, abnormal test data typically holds a lower likeli-
hood, while normal data exhibits a higher likelihood. One of the most popular density-based
techniques is the Gaussian Mixture Model (GMM).

2.4.3.1 Gaussian mixture model

In the GMM, it is supposed that the data is formed from several Gaussian distributions. For
a multivariate (dimension d) Gaussian distribution, the probability density function of an obser-
vation x is given by:

G(x|µ, Σ) =
1

(2π)
d
2
√
|Σ|

exp− 1
2 (x−µ)TΣ−1(x−µ) (2.17)

Each distribution k is characterized by its mean µk, covariance matrix Σk, and its weight/mixing
coefficient πk, such that ∑K

k=1 πk = 1. Supposing there are K distributions, the probability
density function is defined as follows:

p(x) =
K

∑
k=1

πkG(x|µk, Σk) (2.18)

Using Bayes theorem, for each x, the posterior can be written as:

w = p(k|x) = p(x|k)πk

∑K
k=1 πk p(x|k)

(2.19)
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For each cluster, µ, Σ, and π can be initialized by the K-means algorithm or randomly. Then, the
Expectation-Maximization (EM) algorithm can be applied for the parameter estimation. It can
be summarized in two steps.
E-step("Expectation"): For each xi, we calculate wi = p(k|xi) its probability to belong to cluster
k.
M-step("Maximization"): To maximize the likelihood function, for each cluster k we update
µk, Σk, and πk.

µk =
∑N

i=1 wixi

∑N
i=1 ki

Σk =
∑N

i=1 wi(xi − µk)(xi − µk)
T

∑N
i=1 wi

πk =
1
N

N

∑
i=1

wi

N is the number of observations. The steps are repeated until the reach of convergence. The
GMM method is trained using only normal examples. Next, having estimated the distribution
parameters, we calculate the probability for each testing point. If the probability is lower than a
certain threshold, data is considered an anomaly.

2.4.4 Distance-based methods

Distance-based techniques identify anomalies by computing the distance between test sam-
ples and several saved training data. One of the well-known distance-based methods is Local
Outlier Factor Local Outlier Factor (LOF) .

2.4.4.1 Local Outlier Factor

Local Outlier Factor [190] is one of the unsupervised outlier detection algorithms. It is based
on the philosophy that anomalies are typically less densely surrounded by their neighbors in a
dataset. The method consists of calculating the deviation of the local density of a certain point
from its neighbors. Based on the obtained score of deviation, an example is classified as an outlier
or not.
Let K-distance(A) be the distance between A and its K-th nearest neighbor and NK(A) the
number of K-nearest neighbors of A. We show an example in Figure 2.13. If we suppose K = 2,
the K-neighbors of point A will be B, C, and D. Here, the value of K = 2 but the ||N2(A)|| = 3.
||NK(point)|| will always be greater than or equal to K.
Let the reachability distance (RD) from point A to point B be the maximum of the distance

between A and B and the K-distance of B.

RDK(A, B) = max{K-distance(B), d(A, B)} (2.20)

In Figure 2.14, if K = 2 the RD(A, E) = K-distance(A). However, the RDK(A, F) is the actual
distance between A and F since it is bigger than the K-distance(A).
Then, the Local Reachability Density (LRD) is defined as follows:

LRDK(A) =
1

∑B∈NK(A) RDK(A,B)
|NK(A)|

(2.21)
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Figure 2.13: Illustration of the K-distance of point A.

Figure 2.14: Illustration of the RD for point A.

We calculate the average of the local reachability densities of the neighbors divided by the local
reachability density of the point in order to compute the LOF :

LOFk(A) =
∑B∈Nk(A)

LRDk(B)
LRDk(A)

Nk(A)
(2.22)

If LOF(A) > 1 this indicates that A has a lower density than its neighbors, and it is considered
as an outlier. Otherwise, it is considered as normal.

2.4.5 Classification-based methods
Classification-based methods are based on finding the decision boundary between normal

and abnormal samples. Among the well-known techniques in this realm are the One Class Sup-
port Vector Machines (OCSVM) , Isolation Forest, and Elliptical Envelope.
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2.4.5.1 OCSVM

The fundamental concept of SVM explained in section 2.3.2.1 is versatile and has inspired
adaptations to the anomaly detection domain. First, we will explain the mechanism of the tradi-
tional SVM , followed by the introduction of the two specialized approaches for anomaly detec-
tion: OCSVM by Scholkopf [191] and Class Support Vector Machine by Tax and Duin [192].

■ One Class Support Vector Machine by Scholkopf: One Class Support Vector Machine
OCSVM [191] is a variation of standard SVM ; it was introduced as a novelty detection
solution. It groups all the normal data samples as one class and the origin as the second
class. The goal is to separate those classes, thereby maximizing the distance between the
separating hyperplane and the origin. Therefore, the problem can be reformulated as the
following:

min
w,ρ,ξi

1
2
||w||2 + 1

νn

n

∑
i=1

ξi − ρ (2.23)

subject to:

(w.ϕ(xi) + b) ≥ ρ − ξi ∀i (2.24)
ξi ≥ 0 ∀i (2.25)

Where ρ is the offset,ν is a value between 0 and 1 that represents the upper bound on the
fraction of outliers and the lower bound on the fraction of support vectors. The decision
values are obtained using:

f (x) = w.ϕ(xi)− ρ (2.26)

■ Class Support Vector Machine by Tax and Duin: Another approach is introduced in
[192]; the authors search for an optimal hypersphere that includes all of the data. The
volume of the hypersphere of center a and radius R should be minimized, which leads to
the following optimization problem:

min
R,a,ξi

(R2 + C
n

∑
i=1

ξi) (2.27)

subject to:

||xi − a||2 ≤ R2 + ξi ∀i (2.28)
ξi ≥ 0 ∀i (2.29)

Similar to the former approaches, slack variables ξi are introduced to allow soft threshold-
ing, and C is a constant to penalize the errors.

2.4.5.2 Isolation forest

Isolation forest [193] is an anomaly detection method that does not exploit any density or
distance measure. It considers a point as an anomaly if it is easy to separate it from the rest of
the data. It operates by modeling normal data to isolate anomalies that are both infrequent and
distinctive in the feature space. The algorithm achieves this by constructing a random forest,
where decision trees are grown randomly. At each node, features are selected randomly, and
a threshold value is chosen to split the dataset. The process continues until all instances are
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effectively isolated from each other. The anomaly score of a point x in a dataset of N examples
is defined as:

AnomalyScore(x) = 2−
E{h(x)}

c(N) (2.30)

where E{h(x)} is the expected path length for isolating a point and is calculated as the mean
of the path lengths needed to isolate the point across all generated trees. C(N) represents the
average value of h(x) for a dataset of size N and can be computed as:

c(N) = 2H(N − 1)− 2(N − 1)
N

(2.31)

where HN denotes the Nth harmonic number, which can be approximated by ln(N) + γ with
γ ≈ 0.577 (Euler–Mascheroni’s constant). The anomaly threshold is set between 0 and 1. A
higher anomaly score, closer to 1, indicates a higher likelihood of the point being an anomaly,
while a score closer to 0 suggests a higher likelihood of it being a normal data point.

2.4.5.3 Elliptical envelope

The Elliptical Envelopemethod adopts a Gaussian distributionmodel for the data. Its primary
goal is to determine a boundary ellipse that encompasses the majority of data points, with any
points falling outside this ellipse considered as anomalies or outliers. To achieve this, the routine
utilizes the FAST-Minimum Covariance Determinate method to determine the shape and size of
the ellipse [194]. This algorithm iteratively calculates the Mahalanobis distance defined by

dMahalanobis =
√
(xi − µ)TC−1(xi − µ) (2.32)

which measures how many standard deviations a data point deviates from the mean. The al-
gorithm proceeds by selecting subsamples from the original dataset and calculates the µ and
covariance matrix C. Subsequently, the Mahalanobis distance is computed for each data point
xi. The algorithm then selects subsamples corresponding to small values of the Mahalanobis
distance. It recalculates the mean, covariance matrix, and Mahalanobis distance values. This
iterative process continues until the determinant of the covariance matrix reaches convergence.
Among all the subsamples, the covariance matrix with the smallest determinant is identified.
This covariance matrix is then utilized to define an ellipse that encompasses a portion of the
original data. Data points residing within the surface of this ellipse are categorized as ’inliers’
while those situated outside of the ellipse are designated as ’outliers’ or anomalous data points.
These outliers can subsequently be considered for further analysis or potential removal from the
dataset.

2.4.6 Reconstruction-based methods
Reconstruction-based methods rely on the concept that the encoder-decoder framework,

trained on normal data, typically generates distinct outputs for normal and abnormal samples.
Leveraging the variation in model performance can serve as an indicator for anomaly detec-
tion. Various DL methods have been employed through three distinct approaches. The first
approach employs a DL model as a feature extractor, which is responsible for transforming high-
dimensional data into a lower-dimensional representation. Subsequently, a statistical anomaly
detection method is applied to this lower-dimensional data [195]. The second approach adheres
to the concept of anomaly detection through failure. Here, a deep model is trained on "normal"
data with the goal of accomplishing a specific task. If the model fails to perform the task ef-
fectively for one data point[196] [197], then the point is considered to be anomalous. The third
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approach combines elements from both of the previously mentioned approaches. In this sce-
nario, two models are trained in tandem. The feature extractor encodes the data into a new
latent space, and subsequently, the anomaly detector is applied to the latent features, facilitating
a comprehensive approach to anomaly detection. There are various DL architectures popularly
used in anomaly detection [198] [199] [200].

2.4.6.1 AEs

AE are a specific type of MLP.
In the case of AE, the output is identical to the input. In the case of a basic AE with one hidden
layer, an input example x ∈ Rd will pass through the hidden layer h(x) ∈ Rp where:

h(x) = g(W1x + b1) (2.33)

Where g(z) is a non-linear activation function. Then, the model will decode the hidden repre-
sentation h(x) to produce a reconstruction of the input x̂ ∈ Rd:

x̂ = g(W2h(x) + b2) (2.34)

The training of theAE consists in finding the parametersW1, W2, b1, b2 thatminimize the Reconstruction
Error (RE), which is described in the following loss function:

RE = L(W1, W2, b1, b2) = ∑
x∈Rd

||x − x̂||2 (2.35)

After training the AE successfully on “normal” data, we provide testing data. If, for a particular
data point, the RE is large (above a pre-defined threshold), then the AE has failed to reconstruct
it correctly. This point is classified as anomalous data. If it’s small, then the data is classified as
normal.

2.4.6.2 Variational auto-encoders

In 2014, Kingma et al. [201] proposed the VAE as a solution to the following intractable
problem: Given a dataset X of N i.i.d observations that is generated by a hidden variable z
where we are interested in a computation of p(z|x), where:

p(z|x) = p(x|z)p(z)
p(x)

(2.36)

As a solution, the Auto-encoding Variational Bayes proposes approximating p(z|x) by q(z|x).
The VAE structure, illustrated in Figure 2.15, is composed of two parts Encoder "Recognition
model" and the decoder "Generative model". Dissimilar to AEs, VAE encodes the inputs into a
mean vector and a standard deviation vector of the latent space distribution instead of a fixed
variable vector. Next, a random sampling method is applied to obtain a sampled latent represen-
tation z. Finally, the sampled z is fed into the decoder part of the VAE that aims to reconstruct
the initial input.
In VAE, the prior of the latent space pθ(z) is assumed to be a normal distribution, and pθ(x|z)
is the marginal likelihood following the distribution ∼ N(µ(z); σ(z)I). Therefore, qϕ(z|x) an
approximate posterior, can be assumed following the distribution ∼ N(µ(x); σ(x)I). The loss
function of the VAE can be reformulated as the following:

L(θ, ϕ; x, z) = Eqϕ(z|x)[log pθ(x|z)]− DKL(qϕ(z|x)||pθ(z)) (2.37)
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Figure 2.15: Illustration of a Variational Auto-Encoder.

where the first term Eqϕ(z|x)[log pθ(x|z)] represents the RE between the original input and the
decoded output from the sampled latent attributes, whereas the second term represents the
Kullback-Leibler divergence between the variational posterior approximate qϕ(z|x) and the prior
of the latent variables pθ(z). In essence, this term forces the model to approximate a latent dis-
tribution that is as close as possible to a normal distribution. However, to optimize the loss
function, we must be able to run back-propagation through the model, which is problematic
due to the presence of the sampling node. To resolve this issue, a "Reparameterization trick"
is introduced. Since z is a random variable from a Gaussian distribution, it can be expressed
as z = µ + σ.ϵ where ϵ ∼ N(0, 1). This approach facilitates the integration of the necessary
random component for sampling from the latent distribution while maintaining a series of dif-
ferentiable operations crucial for backpropagation. VAE can be used for data augmentation. The
estimate of the θ parameters can be used to generate data that is similar to the original dataset.
It can also be used for data representation by using qϕ(z|x). Furthermore, it can be exploited
in any case, whereas prior over x is required for inference tasks, e.g., denoising. Although Vari-
ational Auto-Encoders and traditional AE have a similar architecture, they have a fundamental
difference in their mechanisms. As mentioned before, AE encodes each input sample into a fixed
vector, whereas VAE encodes it into a latent distribution. Transforming the inputs into a dis-
tribution of variables instead of fixed values of variables allows the model to learn a smooth
representation of the data. It will not only be able to discriminate between classes but also dis-
tribute the data evenly in the latent space. This provides a wider coverage of the possible values
of data.
Many studies explored the use of VAE for anomaly detection [202] [203] [204]. In [205], the
authors developed a VAE model to capture resilient local features across short windows fol-
lowed by an LSTM module for anomaly detection in time series data. An alternative approach
is presented in [206], employing a β-VAE for anomaly detection. Notably, the calculation of the
anomaly score in this approach involves a combination of the input’s reconstruction and gra-
dient loss. Following the computation of anomaly scores, a decision rule is applied, comparing
against a predefined threshold to ascertain whether a given sample qualifies as an anomaly.

2.4.6.3 Generative adversarial network

Generative Adversarial Network (GAN) is a type of generative artificial NN introduced by
Goodfellow et al. in 2014 [207]. GAN has also been utilized for anomaly detection in several
domains, including medical diagnosis, network security, finance fraud, infrastructure inspection,
and industrial defect detection [208]. Given the success of GAN , many variations have been
developed for anomaly detection in image data [209][210], time series data [211] [212] [213], and
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other fields[214][215]. However, most of those variations are based onGANomaly, AnoGAN, and
EGBAD [216].

Vanilla GAN The concept of GAN lies in training two artificial NN adversarially: the discrim-
inator D and the generator G. The goal of the generator’s training is to model the underlying
distribution of the input data and generate data from random noise that is as similar as possible
to the training or ’real’ data. Whereas the discriminator plays the role of a binary classifier that’s
able to distinguish between real training data and fake generated from the Generator data. When
the discriminator evaluates real data, it assigns a value of "1" while it assigns "0" for generated
data. The loss function guiding the discriminator’s training can be expressed as shown in the
following formula:

maxV(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (2.38)

where x is the data point from the training dataset, and z is a random noise vector sampled from
a noise distribution pz(z). In contrast, the generator’s objective is to produce outputs that the
discriminator classifies as real and assigns a value of "1." Consequently, the corresponding loss
function for the generator takes the form shown in the formula:

minV(D, G) = Ez∼pz(z)[log(1 − D(G(z)))] (2.39)

The combination of both formulas yields:

minGmaxDV(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (2.40)

The generator continuously adjusts its parameters based on the feedback from the discriminator.
This adversarial loop continues until the GAN reaches a state of equilibriumwhere the generator
generates data that closely matches the distribution of real data. An example is shown in Figure
2.16, where a GAN is trained on a dataset of digits.

Figure 2.16: Example of a Generative Adversarial Networks(GAN)

AnoGAN AnoGAN [197] has a generator and a discriminator like a traditional GAN . AnoGAN
learns to create a mapping from the latent space representation (z) to a sample similar to train-
ing data. Subsequently, it leverages this acquired representation to map novel, unseen samples
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back to the latent space using backpropagation. For testing, the difference or residual between
the original test data point and the reconstructed data point is used as an anomaly score. This
architecture was first proposed to detect abnormal samples of optical coherence tomography
images of the retina. However, the approach suffers from several disadvantages, including the
difficulty of anomaly score interpretation and bad testing time performance [217]. Efficient GAN-
BasedAnomalyDetection (EGBAD)[218] leverages the Bidirectional GenerativeAdversarial Net-
work (BiGAN) architecture to enhance anomaly detection and overcome limitations seen in the
AnoGAN approach. BiGAN [219] extends the traditional GAN framework by incorporating an
encoder E alongside the generator G. The encoder learns the inverse mapping of examples in
data space to latent variable space. Unlike standard GAN that operate solely in data space (com-
paring data x to generated data G(z)), BiGAN’s discriminator D evaluates both data and latent
space, specifically comparing tuples of (data x, E(x)) to (generated data G(z), z). The data space
is flattened and concatenated with the latent space vector before being fed into the discriminator
D. In this context, the latent representation z can be seen as a "label" for the corresponding data
x, obtained without the need for explicit supervision. BiGAN’s training objective is defined as a
minimax objective, optimizing the interplay between the generator and discriminator. One of the
main advantages of EGBAD is that it doesn’t require backpropagation to calculate the anomaly
score, making it more computationally efficient. This approach outperformed the competing
architectures on MNIST [220] and KDD19 [221].

GANomaly In 2018, Ackay et al. [222] introducedGANomaly, an approach inspired byAnoGAN
[197] and EGBAD[218]. In Figure 2.17, we present the architecture of GANomaly. The differ-
ence between GANomaly and other GAN architectures is the generator consists of an AE G
composed of encoder GE, decoder GD, and an encoder E. First, the AE learns to map the input
x to a compressed latent representation z, where z = GE(x). Then, the decoder part of the AE
reconstructs the initial input using z. The generated input x̂ = GD(z) is then passed to E where
it is downscaled to ẑ = E(x̂). For testing data x, the anomaly score is defined as:

A(x) = ||GE(x)− E(G(x))||1 (2.41)

The authors conducted experiments in different scenarios and found that the GANomaly [222]
exhibited superior performance over AnoGAN [197] and EGBAD [218].

Figure 2.17: Architecture of GANomaly [222]
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2.4.6.4 Transformers-based anomaly detection

Given their ability to process large sequences of data, transformers have also been utilized
for anomaly detection. In [223], the authors proposed a time-series anomaly detection approach
utilizing a Transformer architecture to effectively capture dynamic patterns in sequential data
through self-attention mechanisms. The model comprises multiple Transformer encoder layers
in the encoder and a 1D convolutional layer in the decoder. The anomaly detection is based on
the discrepancy between predicted and actual values at each timestamp, with data exceeding a
predefined threshold classified as anomalies. Their results show that the transformer approach
outperforms traditional Long LSTM and CNN approaches across several time-series datasets
benchmark [223]. Huang et al. [224] introduced a novel log-based model that leverages a hier-
archical transformer structure for anomaly detection in system log data. Comparative experi-
ments demonstrate the superior performance of the transformer model, particularly in modeling
log sequences, as the proposed approach is evaluated on three log datasets, surpassing existing
anomaly detection methods. It was also implemented for anomaly detection in images [225],
acoustics [226], video[227], and wearable signals [228][229][230].

2.4.7 Comparison

Anomaly detection is a critical task in various domains, and both ML and DL methods have
been employed to tackle it. Each approach offers distinct advantages and has its own set of
limitations. Traditional methods prove efficient with small datasets and are less computation-
ally intensive. However, classical approaches may struggle with high-dimensional, intricate data
and often require manual feature engineering. On the other hand, DL methods excel in handling
complex, high-dimensional data and automatically learn relevant features, reducing the need for
feature extraction. Nevertheless, these models are data-hungry and demand substantial compu-
tational resources, potentially rendering them impractical in situations where large datasets are
unavailable, or resource constraints apply [231]. Moreover, due to their complex architectures,
they suffer from training problems. For example, GAN suffer from mode collapse, gradient van-
ishing, stopping problem, and instability [232]. Skavara et al. [233] highlight that the choice of
the optimal anomaly detection model depends on various contextual factors, including data type
and hyperparameter tuning strategies, emphasizing the need for a thoughtful selection process
tailored to specific use cases.

2.4.8 Hyperparameter tuning for anomaly detection models

Tuning hyperparameters in anomaly detection presents a notable challenge, particularly due
to data scarcity and the preference to minimize reliance on labeled data in model training. De-
spite this, models inherently possess hyperparameters that require optimization. Broadly, two
approaches exist in this domain:

1. Opting for default parameters recommended in the literature [234] [235][236]. [237] [238]
[239]

2. Selecting parameters that yield the best performance on the testing dataset [240] [241]
[242]. The first approach tends to provide a pessimistic estimate of the model’s perfor-
mance, while the second approach often leads to unrealistic performance maximization.

In our work, we choose the first approach due to its feasibility of being employed in the real
world for data-scarce applications.
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2.4.9 Performance evaluation metrics
Irrespective of the anomaly detection method chosen, assessing its performance is crucial to

determine its suitability for a particular application. Therefore, this section introduces widely
recognized evaluation metrics for anomaly detection, which we will use throughout our experi-
ments:

2.4.9.1 Receiver operating characteristic area under curve

In the context of anomaly detection, algorithms typically produce real-valued anomaly scores
as output. The determination of True Positive (TP) number of anomalies correctly predicted as
positives, True Negative (TN) number of normal examples classified as negatives, False Positive
(FP) number of normal samples misclassified as positives, and False Negative (FN) number of
anomalies misclassified as negatives relies on the selection of a threshold. Usually, there exists a
trade-off between the quantity of TP and FN generated by an algorithm. The Receiver Operating
Characteristic Area Under Curve (ROC AUC) is a graphical representation that illustrates this
trade-off. The ROC AUC displays, for various threshold selections, the True Positive Rate (TPR)
and the False Positive Rate (FPR). TPR is calculated as:

TPR =
TP

TP + FN
(2.42)

representing the ratio of TP to the sum of TP and FN (i.e. number of positive examples). On the
other hand, FPR is computed as:

FPR =
FP

FP + TN
(2.43)

A ROC AUC of 1 indicates a perfect classifier that perfectly separates positive and negative in-
stances. A ROC AUC of 0.5 suggests a classifier with no discriminatory power, essentially per-
forming as well as random guessing. A ROC AUC between 0.5 and 1 indicates varying degrees
of classifier performance, with a higher value indicating a better performance.

2.4.9.2 Precision-Recall Area Under Curve

The Precision-Recall Area Under Curve (PR AUC) curve shows, for all possible threshold
choices, the Precision vs. Recall. The precision is defined as follows:

Precision =
TP

TP + FP
(2.44)

The recall is defined as follows:

Recall =
TP

TP + FN
(2.45)

PRAUC is particularly useful when dealing with class imbalance [243].

2.4.9.3 F-score

The F-score or F1 score is a metric used in classification tasks, especially when dealing with
imbalanced classes. It’s the harmonic mean of precision and recall and is calculated using the
following formula:

F1 = 2
Precision ∗ Recall
Precision + Recall

(2.46)
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2.4.9.4 Balanced accuracy

Balanced accuracy finds application in both binary and multi-class classification scenarios.
It represents the average between Recall and specificity, offering value, particularly in situations
involving imbalanced data, where one target class significantly outweighs the other in represen-
tation.

Balancedaccuracy =
Recall + Speci f ity

2
(2.47)

where Specifity is the True Negative Rate (TNR) and can be calculated as follows:

Speci f ity =
TN

TN + FP
(2.48)

2.4.10 Challenges in anomaly detection
Anomaly detection exhibits versatility across numerous domains and applications; nonethe-

less, it encounters both universal challenges and application-specific challenges. In the subse-
quent discussion, we highlight some of the most critical challenges in this domain.

1. What is Normal? One of the main difficulties lies in precisely defining the parameters of
normal behavior. Setting the boundaries for a normal region that includes every possible
normal instance is challenging.

2. Dynamic NormalcyNormal behavior exhibits a dynamic nature, constantly evolving and
adapting. Consequently, maintaining an accurate representation of normality over time
becomes a challenging endeavor.

3. Contextual Anomaly: Anomaly, as a concept, is highly context-dependent. What may
constitute an anomaly in one domain, such as the medical field, might be deemed entirely
normal in another domain, like financial markets. This contextual relativity presents obsta-
cles when transferring anomaly detection techniques across different domains or subjects.

4. Lack of labeled data: Finding labeled data as normal/abnormal is rare. Moreover, anoma-
lies, by their infrequent nature, restrict the possibility of rigorously evaluating the robust-
ness of anomaly detection systems.

5. Explainability: Most anomaly detection methods do not provide an explanation of why
data is classified as abnormal. This could be problematic in critical domains, e.g., medicine.

6. Distinguishing Noise from Anomalies Discriminating between random noise and gen-
uine anomalies can be a challenging task. This differentiation demands the application of
advanced techniques and robust algorithms.

In summary, the domain of anomaly detection underscores the need for a comprehensive un-
derstanding of these challenges. Effectively addressing these complexities is paramount for the
development of accurate and dependable anomaly detection systems across diverse domains.
Many of these challenges find potential solutions through extensive data collection. For in-
stance, gathering extensive and diverse data enables the establishment of normal behavior or
patterns, contingent on the scale and diversity of the dataset. Continual data collection ad-
dresses the challenge of evolving normal behavior by facilitating model updates. Additionally, a
large amount of normal and anomaly examples increases the robustness of the model in distin-
guishing between noise and genuine anomalies. In our research, we concentrate on addressing
the following challenges: "lack of labeled data", "contextual anomaly", and "explainability." Our
emphasis on unsupervised models in Chapter 3 addresses the challenge of unlabeled data, focus-
ing solely on normal behavior. Relapse behavior varies among patients, illustrating a contextual
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anomaly. Exploring the advantages of unsupervised methods allows us to construct personalized
models with less data. Moreover, we delve into explainability using AE, aiming to determine the
most important features influencing the model’s decisions in two applications: visual distraction
detection and psychotic relapse prediction.

2.5 Anomaly detection in affective computing
Given the persistent challenge of acquiring sufficient data in the domain of affective comput-

ing, particularly for relatively rare and ethically sensitive behaviors, e.g., aggression, researchers
have recently begun to explore the use of anomaly detection techniques. These methods allow
researchers to identify and analyze rare behavior within limited datasets by treating them as
anomalies or deviations from normal behavior patterns. In [244], anomaly detection is used to
detect inattentive pupils from surveillance video. Baliniskite et al. [245] employed an anomaly
detector (Isolation Forest) along with an emotion predictor to discern anomalies in behavior,
thereby reducing the likelihood of flagging non-threatening abnormal behaviors. Ding et al.
employed GMM to detect abnormal emotional states in drivers [246]. In [247], the authors in-
troduced the EMO&LY dataset, designed specifically to provoke abnormal emotional reactions
in participants by altering the established protocol. They employed OCSVM and GMM to detect
these abnormal emotions on audio and video-extracted features. Their study highlighted the ef-
ficacy of unsupervised classifiers in effectively discerning anomalous samples from normal ones.
Hu et al. used an AE with a recurrent graph attention network to detect social behavior anoma-
lies in highway drivers [248]. Pillai et al. have showcased the potential of mobile sensing for the
detection of rare life events in real-world scenarios [249]. In their research, the authors present a
multitask learning architecture composed of two core elements: first, an encoder-decoder frame-
work based on LSTM for the computation of an anomaly score, and second, a sequence predictor
aimed at providing context to the anomaly score by deducing transitions in workplace perfor-
mance [249]. Zhu et al. [250] developed an unsupervisedmethod for abnormal emotion detection
by merging Gaussian Mixture VAE with CNN . Their approach was compared against state-of-
the-art methods, demonstrating superior performance. Ye et al. proposed an anomaly detection
model for autonomous behavior public transport, addressing the scarcity of relevant datasets by
leveraging similar datasets. Their model, based on a VAE trained on normal data, demonstrated
efficacy in detecting anomalies akin to scenarios like someone falling, attacking, and fighting
[251]. Across the studies, the definition of abnormal emotions or behavior tends to be specific to
the dataset. Since there is no clear standard for abnormal state or emotion, the authors establish
distinct criteria for abnormal state based on the characteristics of each dataset.

At the start of this PhD, there was limited research in applying anomaly detection meth-
ods to affective computing. Previous efforts were constrained to employing anomaly detection
solely as classifiers. This involved training on a predominant class to establish it as the norm
and identify deviations such as inattention, negative emotions, rare events, etc., as illustrated in
earlier examples. Our work further explored this application in visual distraction detection and
psychotic relapse prediction. Moreover, we utilized anomaly detection methods to tackle cru-
cial challenges in affective computing, including combining information, personalizing models,
selecting key features, and improving comprehensibility.

2.6 Conclusion
This chapter introduced affective computing and elucidated the challenges it encounters,

particularly concerning the complexities in acquiring relevant data. Conventional supervised
learning approaches often face limitations in these scenarios. Hence, we delved into the do-
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main of anomaly detection, citing pertinent works that underscore its significance in address-
ing the challenges encountered in affective computing. Subsequent chapters will offer anomaly
detection-based solutions for a range of challenges, including rare mental states, model personal-
ization, explainability, feature selection, and information fusion. These solutions will be applied
across diverse applications, such as driver behaviormonitoring, psychotic relapse prediction, and
emotion recognition in stress-inducing environments. Our exploration will encompass various
modalities, including physiological signals, eye-tracking, speech, video, and text.
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3
Rare Mental States Detection

This chapter highlights our contributions to utilizing anomaly detec-
tion methods for the detection of rare mental states. Our focus is on
two specific applications: visual distraction and psychotic relapse de-
tection. Each application is presented in its own dedicated section.
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3.1 Introduction
In Chapter 2, we highlighted numerous challenges within the realm of affective comput-

ing, notably emphasizing the issue of data scarcity. This challenge becomes more pronounced
when attempting to capture data in authentic real-life settings, especially when targeting rare
occurrences. One strategy to tackle this challenge involves simulating these infrequent events
within a controlled laboratory environment. For instance, many emotion datasets are con-
structed through acted or induced scenarios. For the IEMOCAP dataset, ten trained actors il-
lustrate emotions through scripted and non-scripted interactions [108]. However, the efficacy
of models trained on simulated data often falters when deployed in genuine real-world settings
[252] [253]. Hence, the acquisition of authentic, real-world data becomes crucial. Neverthe-
less, collecting such data is impeded by obstacles such as data labeling, and data diversity which
are discussed in Chapter 2. An illustrative case is driver behavior monitoring, where the sheer
volume of data and a multitude of signals make manual labeling an impractical task [96].

In affective computing, numerous applications aim to detect rare yet critical situations (like
aggression) or undesirable mental states (such as depression), which are fortunately inherently
infrequent. Conversely, acquiring normal data is comparably easier. For instance, a train com-
pany might readily have videos depicting passengers’ regular behaviors but scarcely capture
instances of passenger aggression. This imbalance in data distribution frequently causes con-
ventional and widely used supervised learning models to underperform. One proposed strategy
to address the detection of these rare mental states or undesired events involves reframing the
classification problem as an anomaly detection problem. This reframing aims to develop ro-
bust models better equipped to handle real-world settings. As illustrated in Section 2.5, while
a few works have begun exploring this concept, it remains relatively novel and is at its incep-
tion stage. The initial results are promising, urging further investigation and validation of this
approach before implementing it in real-life applications. In this chapter, we investigate this con-
cept within two preventive applications´Abnormal driving behavior detection´ and ´Psychotic
relapse prediction´. Each application underscores the key specifications of our approach: First,
the imperative need to detect rare and critical events that must be averted. Second, the rarity of
these events implies that continuous data collection in real-life scenarios predominantly yields
normal data instances.

One of the critical situations to be detected is abnormal driving behavior that might endanger
the driver´s life and other people on the road. Data collected by the World Health Organization
shows that the principal cause of death for children and adults between ages 5 and 29 was road
traffic injuries. Furthermore, traffic crashes result in approximately 1.3 million deaths [254].
Monitoring driving behavior and detecting anomalies can significantly improve road safety and
coordination, empowering drivers to make informed decisions. However, gathering data on dan-
gerous or anomalous behavior exposes drivers to risks. Hence, employing an anomaly detection
approach becomes pertinent for this application. To assess its relevance, we initially employ data
acquired in a simulated environment for the specific task of visual distraction detection. If proven
effective, this method could potentially be adopted for this task and for a broader spectrum of
abnormal behaviors in real-world settings.
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Another significant application involves predicting relapses in patients with psychotic dis-
orders. Given the infrequent occurrence of relapses and the challenges and expenses associated
with labeling such data, employing anomaly detection becomes promising for predicting these
rare mental states. The initial findings outlined in [99] have encouraged further exploration
of this task. This exploration was further stimulated by the e-Prevention challenge [255] in-
troduced in ICASSP´23, which focused on unsupervised learning and specifically emphasized
anomaly detection.

The contributions presented in this chapter can be summarized as follows:
■ Anomaly detection remains a promising yet underutilized category of ML methods within
affective computing. Our research stands out as one of the few efforts dedicated to lever-
aging anomaly detection methods for the identification of rare mental states.

■ Our exploration spans two domains: visual distraction detection and psychotic relapse pre-
diction. Notably, our research is the first to use anomaly detection techniques for visual
distraction, specifically with signals from non-invasive sensors. As for the application for
psychotic relapse prediction, we further explored the use of anomaly detection for psy-
chotic relapse prediction, building upon prior prevention works. We emphasized classical
methods due to their efficacy with limited data, particularly relevant in a data-scarce do-
main.

■ We also investigated personalized models tailored for each patient for psychotic relapse
prediction, considering the implications and advantages brought about by the utilization
of anomaly detection methods. Also, we conducted a comprehensive study encompassing
diverse features and models for better understanding and applicability.

The remainder of this chapter is structured as follows: We begin this chapter by providing a
SOTA of the current advancements in both visual distraction detection and psychotic relapse
prediction in Section 3.2. Then, The chapter is organized into two parts dedicated each to one
application. The first part focuses on our driver monitoring application as a proof of concept
for visual distraction detection. In section 3.3.1, we elaborate on the dataset we used for vi-
sual distraction detection. It’s followed by a detailed description of our experimental setup in
section 3.3.2. The subsequent section, Section 4.4.3, outlines our findings. This encompasses
comparisons between various anomaly detection methods and classical supervised techniques
across different data balance scenarios, along with an assessment of whether anomaly scores
effectively estimate the degree of abnormality. Finally, Section 3.3.4 encapsulates the conclusion
drawn from this section. In 3.4, we go into the details of our study on psychotic relapse pre-
diction. In Section 3.4, we delve into our study on psychotic relapse prediction, introducing the
dataset utilized, data pre-processing steps, and feature extraction detailed in Section 3.4.1. Sub-
sequently, we expand on our proposed methodologies in Section 3.4.2, where we introduce and
explore two distinct schemes: the global scheme and the personalized scheme. The outcomes
and findings derived from our experiments are presented in Section 3.4.3. Finally, we conclude
this chapter in Section 3.5.

3.2 State of the art for rare mental state detection
In Chapter 2 section 2.5, we discussed the application of anomaly detection methods in var-

ious affective computing scenarios to identify rare states that are challenging to collect. In this
section, we delve deeper into the specific research approaches we are interested in for detecting
rare states related to abnormal driving behavior and predicting psychotic relapse.
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3.2.1 Abnormal driving behavior

■ Supervised learning approach: Initially, traditional supervised ML algorithms were used
for abnormal driving behavior, e.g., Singular Value Decomposition (SVD) [256], SVM [95],
and Random Forest [257]. However, with the recent advances in DL, researchers are in-
creasingly deploying DL algorithms to predict inattention. Wollmer et al. used a LSTM
network that outperformed the traditional SVM approach [258]. Moreover, some studies
have used modern computer vision techniques for image and video processing to extract
features automatically, which outperformed the traditional ML methods [259], [260]. Chen
et al. developed an automatically constructed deep CNN that extracted high dimensional
mappings of various sources of information and detected different types of driver distrac-
tion [261]. Recently, [262] demonstrated the effectiveness of an ensemble model for driver
anomaly detection in a supervised learning approach. However, supervised classical ap-
proaches, which depend on labeled data, may face limitations. The expense involved in
data collection could prevent the coverage of all potential abnormal driving behaviors. In
contrast, unsupervised approaches offer the advantage of gathering extensive real-life data
at a significantly lower cost because it does not require labeling. As a result, researchers
have explored weakly-supervised and unsupervised anomaly detection methods as an al-
ternative for identifying dangerous driving behaviors.

■ weakly supervised: Some works tried to alleviate the need for dangerous driving behavior
data collection by developing weakly supervised models [263] [264] [265]. In [266], a novel
contrastive learning method is introduced to distinguish between normal and anomalous
driving behaviors using the Driver Anomaly Detection (DAD) dataset. This dataset com-
prises video clips illustrating normal driving and instances of abnormal behavior depicted
as distracting acts. The approach involves learning embeddings of these clips using CNN
layers and employing contrastive learning techniques. Specifically, the method maximizes
the similarity among embeddings of normal driving clips while emphasizing dissimilar-
ity between representations of normal and abnormal driving. Their proposed similarity
measure successfully identifies abnormal driving in new samples, showcasing promising
results, including the detection of unseen anomalous actions. However, a notable limitation
remains: the model still requires abnormal data during the training process.

■ Unsupervised approach: Zhang et al. [96] introduced SafeDrive, an unsupervised approach
tailored for the detection of abnormal driving behaviors through the analysis of exten-
sive vehicle data. Utilizing a Statistical Graph derived from normal behaviors in a sizable
dataset, SafeDrive effectively identifies anomalies within real-time driving data streams.
However, their methodology predominantly relies on vehicle data (e.g. RPM, swerve an-
gle, and gear position), which presents a challenge as certain behaviors flagged as unsafe
might be contextually safe given specific environmental conditions or influenced by the
behaviors of other drivers. In [267], the authors introduce the utilization of conditional
GAN for detecting driving anomalies, employing physiological and CAN-Bus data 1. Their
findings support the efficacy of unsupervised methods; however, the evaluation lacks com-
parison with other anomaly detection techniques. Moreover, Dairi et al. [268] proposed
detecting drunk driving behavior by combining t-distributed stochastic neighbor embed-
ding (t-SNE) as a feature extractor with the Isolation Forest algorithm. Qiu et al. [269]
introduced an unsupervised technique to identify irregular driving behaviors employing
conditional GANs and contrastive learning. Their method involves training a conditional
GAN for each modality, predicting forthcoming signals. They subsequently fuse the in-

1A sequential broadcast bus was developed to facilitate communication among the electronic control units installed in the
vehicle.
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formation from these modalities by utilizing the layer embedding from the discriminator.
Their contrastive loss implementation employs a triplet loss function, aiming to minimize
the distance between predicted and observed data while maximizing the distance between
predicted data and a randomly selected segment within the dataset.

The literature has witnessed a surge in research leveraging normal data for unsupervised driver
behavior anomaly detection, yet few studies offer comparative analyses among these methods.
Our work aligns with these studies but focuses on eliminating the need for labeled abnormal
data, enhancing real-world applicability. We conduct a comprehensive evaluation spanning clas-
sical to DL-based anomaly detection methods. Furthermore, we concentrate on leveraging non-
intrusive sensors, particularly eye-tracking features.

3.2.2 Psychotic relapse detection

Similar to visual distraction detection, Classical supervised learning methods have been ap-
plied to detect psychotic disorders and relapses, such as Support Vector Machine [270], deep
CNN [271], LSTM neural network [272], etc. Othmani et al. [273] developed two models, one for
depression (anomaly model) and one for non-depression (anomaly-free model), and identified
relapse by determining if a sample is more strongly correlated with the depression model.

Recently, due to the rare occurring nature of relapse, unsupervised anomaly detection meth-
ods have been proposed for relapse detection [274] [275]. In a two-country longitudinal study,
authors investigated the application of anomaly detection to predict relapses in patients exhibit-
ing symptoms of psychosis [276]. This recent study showed that the frequency of anomalies
increased 2.12 times in the month before and 2.78 times in the month after a relapse compared
to other times. In [277], authors studied relapse prediction using anomaly detection-based con-
volutional variational autoencoder (CVAE) on speech signals. They compared the performances
of CVAE and a deterministic convolutional autoencoder CAE baseline for the global and per-
sonalized schemes. Their results showed that the CVAEs and CAE baseline achieved a similar
performance for the personalized scheme. However, the CVAE performed significantly better
than the CAE baseline for the global scheme. Furthermore, [99] compared the use of four differ-
ent AE architecture models for detecting relapses in patients with different psychotic disorders
using physiological signals collected by smartwatches. Calgagno et al. employed transformer
models personalized per patient to detect psychotic relapse using wearable signals.

The prediction of psychotic relapse remains a complex and underexplored area, demanding
further investigation to refine outcomes and deepen our understanding, especially concerning
unsupervised methodologies. Few studies have tackled this area with limited datasets, under-
scoring the need for more research to validate existing findings. Moreover, there’s an ongoing
requirement to identify optimal features for improved prediction accuracy. Our research focuses
on advancing anomaly detection-based models for predicting psychotic relapses. We employ
methodologies such as AE and compare their efficacy against classical methods. This explo-
ration is relevant, especially for detecting rare states within smaller databases. Additionally, our
study explores the personalization of models across various levels, including anomaly detection
methods and feature combinations.

3.3 Anomaly detection methods for driver monitoring:
a proof of concept

The first application under consideration is monitoring driving behavior. Given the com-
plexity of the driving task, drivers must maintain physical, mental, and visual engagement. Any
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compromise in these aspects causes anomalous behavior and can lead to severe or fatal accidents.
Anomalous driving behaviors encompass a range, from fatigue and drowsiness to distraction and
alcohol consumption. However, most research tends to concentrate on detecting these behav-
iors individually [278] [279]. Numerous studies have pursued this task by employing the con-
ventional supervised learning approach, necessitating instances of both normal and abnormal
behavior in a balanced distribution. However, as previously mentioned, this requirement either
endangers drivers to induce such events or demands data acquired within a simulated environ-
ment, compromising performance. Hence, we propose to construct a model that characterizes
normal driving behavior through anomaly detection methods. By leveraging anomaly scores, we
aim to establish an indicator of a driver’s capability to operate a vehicle safely. Our initial step,
as a contribution, involves validating the relevance and feasibility of this idea before employing
it in the real world. As a proof of concept, we focus first on one type of dangerous driving:
visual distraction detection. Although visual distraction isn’t directly a mental state; it occurs
when a driver’s attention shifts away from the road, causing their brain to engage with stimuli
unrelated to driving. Moreover, driver monitoring falls within the realm of affective computing,
where technologies gauge and respond to human emotions and behaviors, aiding in the assess-
ment of a driver’s cognitive state and potential distractions. We choose the distraction detection
task as it has been found to be one of the primary causes of car accidents [280] [281], [282]. Sev-
eral experiments have established that engaging in a secondary task other than driving caused
a delay in response time [283] [284], delay in the detection of visual stimuli [285], and a weak-
ened driving performance [286]. Moreover, several accidents have been reported in autonomous
driving vehicles that resulted in fatalities. With respect to autonomous driving, driver distrac-
tion during emergencies prevented the drivers in these scenarios from taking the appropriate
corrective actions [261]. Our primary contribution is to ascertain the relevance and feasibility
of this idea. To achieve this, we require data that simulate dangerous driving situations, specif-
ically focusing on distracted driving. Distracted driving serves as an ideal starting point due to
the ease of accessing related datasets and its significant impact on safety. The objectives of this
following section are to:

1. Select a comprehensive dataset for this proof of concept.
2. Compare various anomaly detection methods.
3. Compare anomaly detection methods with supervised learning, particularly in scenarios

where the dataset exhibits an imbalance, containing a higher frequency of normal instances
compared to abnormal ones. To simulate this data imbalance, we will deliberately create
a dataset that mirrors such real-world conditions. This comparative analysis will shed
light on the efficacy and performance of these two approaches when handling imbalanced
datasets.

4. Evaluate our proposal to use anomaly scores as indicators of abnormal driving (distraction
levels during driving).

3.3.1 Dataset

The dataset utilized in our research originates from the European project HADRIAN ("Holis-
tic Approach for Driver Role Integration and Automation Allocation for European Mobility
Needs" [287]), developed in collaboration with our laboratory at CEA. Contrary to traditional
automotive approaches that primarily focus on integrating automated driving as a new vehicle
function for commercial purposes, HADRIAN places a premium on crafting comprehensive mo-
bility services. This broader approach encompasses road infrastructure elements and accounts
for human drivers, shaping the dataset with a specific emphasis on the drivers’ states and re-
quirements. Given the critical importance of this task, numerous research endeavors have con-
centrated on constructing datasets for monitoring driver behavior [266] [288] [289]. Some of
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these datasets concentrate solely on one modality [266] [288], while others focus on specific
types of abnormal driving [290] [291] [292]. However, the distinctive feature of the HADRIAN
project lies in its inclusion of simulations and its broad scope. It does not confine itself to a single
form of abnormal behavior but encompasses various risky behaviors such as ’Fatigue’, ’Visual
distraction’, and ’Stress’. This characteristic opens up possibilities to further explore our anomaly
detection method for a range of abnormal behaviors. Furthermore, the dataset employs diverse
sensor types. The dataset includes video recordings, physiological measurements, eye-tracking
data, and signals linked to driving simulators. Another advantage of this dataset is the provision
of two driving modes, manual and autonomous, offering a comprehensive representation of var-
ied driving scenarios. It also allows us to test our method on two different datasets that share
the same abnormal behavior ¨distraction¨ but do differ in normal driving behavior.

3.3.1.1 Participant selection

The dataset consists of 43 participants aged between 26 and 54 years old (40 of them aremale).
All participants hold a valid B driving license and have jobs that require daily driving. All the
realized experiments were conducted in agreement with the code of Ethics of the World Medical
Association[293].

3.3.1.2 Driving simulation environment

The experiments were conducted using a Nervtech driving simulator system [294] that has
a real car seat and steering wheel as shown in Figure 3.1. In addition, a surround sound system,
a four-degree freedom motion platform, and three screens are used.

Figure 3.1: A driving session setup

3.3.1.3 Scenarios

As depicted in Figure 3.3, each participant engaged in two driving sessions: a "control ses-
sion" and a "distraction session". Within each session, two modes of driving, "manual "and "au-
tonomous driving" modes were sequentially explored, resulting in four distinct sessions. The
numbers of examples in each partition are presented in Figure 3.2. The distribution of the con-
trol (non-distracted) versus distraction scenarios in the dataset does not mirror their occurrence
rates in real-life settings, where distracted driving is notably less frequent than normal driv-
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ing. However, our primary focus was on acquiring as many distracted examples as possible to
thoroughly test the models’ capabilities in detecting distraction.

Figure 3.2: Number of examples in the driving scenarios

In the autonomous driving mode, the participant did not participate in driving. During the
"control scenario" the participant drove in an undisturbed environment for approximately five
minutes, representing our definition of normal behavior setting. Conversely, in the "distraction
scenario", the participant drove while simultaneously using a tablet for about 20 minutes (~10
minutes in manual driving mode and ~10 minutes in autonomous driving mode). Therefore, the
distraction scenario encompasses both normal and abnormal behaviors. The subject was also
asked to use the tablet in three ways: while it is mounted to the dashboard, while holding it with
one hand, and while holding it with both hands. Such interactions pose potential risks in real-
world scenarios, which is precisely why we opted for simulated data and why we exclusively
utilize the control scenario to train our anomaly detection model.

Figure 3.3: Driving scenario
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3.3.1.4 Sensors and features

During the driving session, the drivers’ eye movements are tracked using a Smart Eye Pro
system [295]. Also, the participants’ physiological signals ECG , EDA, respiration movements,
and blood volume pressure were recorded using the Plux system [296] and video using Intel
Realsense D435i [297]. Moreover, the face temperature was measured using FLIR A325sc [298].
The SCANeR studio [299] driving simulator software tracks dynamic vehicle information e.g.,
speed, lane crossing rate, etc.
Given our focus on visual distraction detection and the consistent findings in prior research
highlighting the significance of eye-tracking features in this context [94][95][300], we specifi-
cally concentrate on eye-tracker features calculated by the smart-eye system within a 30-second
time window. These features include ’Saccade magnitude’, ’Saccade rate’, ’Saccade peak veloc-
ity’, ’Eye position entropy’, ’Gaze heading mean’, ’Gaze heading standard deviation’, ’Gaze pitch
mean’, ’Gaze pitch standard deviation’, ’Head heading mean’, ’Head heading standard deviation’,
’Head pitch mean’, and ’Head pitch standard deviation’.

3.3.1.5 Annotation

In the dataset, two judges continuously annotated the data by observing videos of the driver
and the driving scene. Throughout the distraction session, they identified instances of distraction-
related activities such as "Looking out the left window" or "Writing on a device," noting both the
start and end times of these acts. In order to evaluate our ideas, we developed a distraction level
indicator from those objective annotations. It will be considered as our "gold standard" for our
evaluations. We segmented the recordings into smaller windows of 30 seconds each, comprising
25 frames per second. For each frame, we binarize the annotation: if one of the annotators indi-
cated at least one distraction-related action, the frame will be labeled 1, otherwise 0. As shown
in Figure 3.5, for each clip, the level of distraction is equal to the number of frames labeled 1
divided by the total number of frames. We illustrate an example of the evolution of distraction
levels for a single driver during the distraction scenario in Figure 3.4. In Table 3.1, we show the

Figure 3.4: Temporal evolution of driver distraction levels during distraction scenario in autonomous driving mode

distribution of distraction levels across the two driving modes data in all the distraction sessions.
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Table 3.1: Distraction level distribution in autonomous and manual driving mode data

Scenario Driving mode Distraction level l Number of examples

Distraction Autonomous l = 0 181

0 < l ≤ 25 87

25 < l ≤ 75 132

l > 75 1234

Distraction Manual l = 0 291

0 < l ≤ 25 89

25 < l ≤ 75 148

l > 75 1197

Figure 3.5: Distraction level "gold standard" for our experiments

3.3.2 ML experimental setup and data partitioning

3.3.2.1 Our idea: Learning using only "normal" data

Our approach can be summarized in two steps: Model fitting and Anomaly Detection. During
the training phase, the models are exclusively exposed to normal data, representing the major-
ity class. In this stage, the model learns the patterns and distributions within the normal data
(non-distracted driving). During the testing phase, we introduce a mix of normal and rare data
(distracted data), designated as abnormal data, falling under the minority class. The model then
produces an anomaly score, quantifying the dissimilarity of the new data compared to the normal
data it encountered during training. Subsequently, these scores can be thresholded to generate
binary predictions classifying the data as normal or abnormal.
While we explore a variety of techniques, the training process remains consistent across all mod-
els, as illustrated in Figure 3.6. We implement OCSVM , LOF , Elliptic Envelope, and Isolation
Forest using the Scikit-learn library [301]. As mentioned in Chapter 2 Section 2.4.8, we choose
the pessimistic approach and adopt the default parameters of the anomaly detection models. For
OCSVM , we use rbf kernel, degree = 3, and nu= 0.1. For the isolation forest, we set the number
of estimators to 100, and contamination to 0.1. The number of neighbors is set to 20 for the LOF
, and the distance used for computation is ‘Minkowski’, with a contamination rate of 0.1 for the
elliptical envelope. We use Tensorflow [302] to implement the auto-encoder. We choose an en-
coder composed of one dense layer comprising 4 neurons that projects data into a 2-dimensional
space. The decoder is also composed of one dense layer of 4 neurons. The choice of the hyper-
parameters was based on having compressing layers. We set the threshold by taking the right
value of the 99% confidence interval on the RE of the normal data.
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Figure 3.6: Rare states detection using anomaly detection methods.

3.3.2.2 Classical approach: Supervised learning

Furthermore, we train classical supervised models to compare with our proposed method.
We employ five classical supervised models: MLP, SVM , K-neighbors classifier, Random Forest
(RF), and Gaussian Naïve Bayes classifier detailed in Chapter 2. Our MLP is configured with
two dense layers, one containing four neurons and the other containing two neurons. The loss
function is the classical binary cross-entropy loss.

3.3.2.3 Comparison between anomaly detection and Classical Approach

To strengthen the validation of our anomaly detection-based approach, we conduct several
classical methods evaluation across various simulated data distribution scenarios. These scenar-
ios encompass different degrees of data imbalance, closely mirroring realistic data distributions
found in real-world settings. Imbalanced datasets often pose challenges for classical learning
methods, leading to less emphasis on the underrepresented class. Approaches to address this
imbalance, such as duplicating samples from the underrepresented class or adjusting the loss
function, have been explored. Thus, we have included scenarios that incorporate augmented
data solutions.

3.3.2.4 Level of distraction estimation using anomaly score

In addition to evaluating the utility of anomaly scores for binary classification (identification
of distraction), we leverage the continuous nature of available annotations to test if the anomaly
score can provide an estimation of the distraction level. To assess the viability of this approach,
we calculate the correlation between the anomaly scores obtained from themodels in Experiment
1 and the distraction level labels within our dataset. For the OCSVM, the anomaly score is the
signed distance of each point to the separating hyperplane. As for LOF, we take the negative of
the outlier factor. For Isolation Forest, we use the number of splits required to isolate the data
as the anomaly score. For the AE, we use the reconstruction error. Last, the elliptic envelope
algorithm employs the squared Mahalanobis distance between the observation and training data
distribution to derive its anomaly score.
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3.3.2.5 Data partitions

In our study, we conduct a series of experiments considering the two distinct driving modes:
manual and autonomous. Given the variance in normal driving behavior between these modes,
we train separate models and present the resulting outcomes for each driving mode. Each ex-
periment utilizes the dataset corresponding to the respective driving mode:

■ Supervised Classification: For training, we use the N (number of examples in the control
scenario) control samples as the normal examples (Negative Class) and randomly choose
N samples with extreme distraction level >75% as the abnormal examples (Positive Class)
to create a balanced training dataset where N is the number of examples in the control
session. To test the models’ performance, we test using data from the distraction session.
Similar to the training data, we take the data annotated with 0 as the level of distraction
for the negative class and data annotated higher than 75% as the level of distraction for the
positive class.

■ Anomaly Detection: The training data includes the N examples from the control scenario
only. We use the same testing dataset used in supervised classification.

■ Comparison between supervised and unsupervised: We present four scenarios for this ex-
periment.

1. Scenario 1: We train the model using N normal examples from the control and 0.1×N
anomalous examples randomly chosen from the distraction session (with distraction
level > 75 %).

2. Scenario 2: We train the model using N normal examples from the control and 0.3×N
anomalous examples randomly chosen from the distraction session (with distraction
level > 75 %).

3. Scenario 3: We train the model using the data from scenario 1 with augmentation,
where we duplicate the examples of distracted driving until we reach an equal number
of normal and abnormal instances.

4. Scenario 4: We train the model using the data from scenario 2 with augmentation,
where we duplicate the examples of distracted driving until we reach an equal num-
ber of normal and abnormal instances.
All scenarios are tested using the same testing dataset used in supervised classifica-
tion.

■ Level of distraction estimation using anomaly score: after training the anomaly detection
models, we calculate the Pearson correlation coefficient between the annotated distraction
level and the anomaly scores of each method. For this experiment, we use all the examples
in the distraction scenario to have data with different levels of distraction ranging from 0%
to 100%.

3.3.3 Anomaly detection-based methods evaluation

In this section, our objective is to evaluate anomaly detection methods. To accomplish this,
we first assess supervised classificationmethods, aiming to later compare their performancewith
that of anomaly detection methods.
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3.3.3.1 Supervised classification results

Table 3.2 illustrates the outcomes of binary classification through various supervised classical
models. The results indicate comparable performances among the models. SVM stands out as
the best-performing model for manual driving data, while KNN exhibit superior performance for
autonomous driving data. The performance on the autonomous dataset is superior to the ones
achieved on the manual dataset for all models. It is worth noting that further improvements can
be achieved by applying grid search to optimize the model’s hyperparameters. However, the
primary objective here is not solely focused on achieving the highest performance but rather
gaining insights into the performance range of classical supervised methods.

Table 3.2: Comparison of supervised methods using F1 and balanced accuracy on the manual driving data.

Driving Scenario Model MLP SVM K-Neighbors RF Naïve Bayes

Manual
F1 0.81 0.84 0.82 0.83 0.83

Balanced accuracy 81.97 84.96 81.97 83.92 83.33

Autonomous
F1 0.89 0.89 0.89 0.89 0.87

Balanced accuracy 88.72 88.4 89.31 88.77 87.41

3.3.3.2 Anomaly detection results

In Table 3.3, we present the F1 and balanced accuracy of each model on the manual and
autonomous driving modes data separately. For the manual driving scenario, results show that
the elliptic envelope outperforms the rest of the methods with 0.83% F1 and 82.28% balanced
accuracy. However, AE shows the worst performance F1 at 0.57% and balanced accuracy at
68.22%. For the autonomous driving data, results show that the best-performing model is the
LOF . Similarly to supervised models, we also observe that the models generally perform better
on autonomous driving mode data. An explanation for this result may be that in the autonomous
driving mode, the driver can possibly be completely engaged in the distracting task, whereas in
the manual driving mode, they may still have to steer the wheel or check the road. This can
make the separation between distracted and not distracted data easier in the autonomous mode.
For both driving modes, LOF and Isolation Forest exhibit robustness, which could potentially
be attributed to lower sensitivity to hyperparameter tuning compared to other anomaly detec-
tion methods. To comprehensively evaluate the performance of anomaly detection methods,

Table 3.3: Comparison of unsupervised methods by F1 and balanced accuracy.

Driving Scenario Model OCSVM LOF Isolation Forest Elliptic Envelope AE

Manual
F1 0.58 0.81 0.82 0.83 0.57

Balanced accuracy 68.9 78.22 82.46 82.28 68.22

Autonomous
F1 0.5 0.9 0.87 0.84 0.79

Balanced accuracy 65.63 89.13 87.35 84.85 82.64

we compute the ROC AUC and PR AUCscores. As elaborated in Chapter 2, these metrics serve
as prominent benchmarks for assessment. In Figure 3.7, we present the ROC AUC values for
various models concerning the manual and autonomous driving datasets. For the manual data
(depicted on the left side of Figure 3.7), the models exhibit fairly similar performance when the
hard thresholding step of the anomaly scores is removed. Most models achieve ROC AUC scores
around 0.88, demonstrating consistent performance, except for the AE model, which registers a
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slightly lower score of 0.83 compared to other methods.
On the right side, the ROC AUC scores for the autonomous dataset mirror the trend observed in
the F1 score and balanced accuracy metrics, with all models displaying enhanced performance.
Each model attains a ROC AUC of 0.94, except for the AE model, which achieves a slightly lower
score of 0.91. This consistent improvement underscores the efficacy of these models in anomaly
detection for autonomous driving scenarios. Additionally, the results underscore a lower perfor-
mance by the AE , suggesting a potential need for more fine-tuning to reach parity with other
methods.
We also provide the PR AUC scores in Table 3.4 which further confirm our findings in Table 3.3

Figure 3.7: ROC AUC performance for the anomaly detection on autonomous and manual driving modes.

and Figure 3.7.

Table 3.4: PR AUC performance for the anomaly detection on autonomous and manual driving modes.

Model OCSVM Isolation Forest LOF Elliptic Envelope AE

Manual Driving 0.97 0.97 0.97 0.96 0.94

Autonomous Driving 0.99 0.99 0.99 0.99 0.98

Based on the outcomes obtained from anomaly detection methods, we observed that de-
tecting distractions in autonomous mode is more straightforward compared to manual mode.
Furthermore, most anomaly detection methods exhibited comparable performances, except for
AE, which might require fine-tuning to yield better results.

3.3.3.3 Comparison with supervised learning approach performance

To assess the sensitivity of supervised learning models to class imbalance, we evaluate the
best supervised models (SVM for the manual dataset and KNN for the autonomous dataset) in
various data distribution scenarios. Table 3.5 demonstrates that supervised learning, even with
data augmentation, is penalized by the imbalance in the dataset, even when using 0.3xN dis-
tracted samples, which does not correspond to a significant imbalance in class distribution. In
the case of a balanced dataset, anomaly detection methods yield a performance that is similar to
that of supervised methods. Consequently, being agnostic of anomalous examples, our unsuper-
vised methods perform better than the supervised models when the dataset is imbalanced. This
outcome showcases the effectiveness of our approach in simulating real-world scenarios with
limited or imbalanced labeled data, achieving comparable results to a supervised learning model
trained on a balanced dataset.
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Table 3.5: Comparison of best-supervised models performance using varying number of anomalous examples

manual data autonomous data

Number of anomalous examples

SVM KNN

F1 Balanced Accuracy F1 Balanced Accuracy

Scenario 1: 0.1*N 0.39 61.95 0.68 75.85

Scenario 2: 0.3*N 0.7 76.76 0.89 90.12

Scenario 3: 0.1*N+ Data augmentation 0.39 62.24 0.74 79.51

Scenario 4: 0.3*N + Data augmentation 0.71 76.87 0.9 90.64

Balanced dataset N 0.84 84.96 0.89 89.31

Elliptic Envelope LOF

0 0.83 82.28 0.9 89.13

3.3.3.4 Level of distraction estimation using anomaly score

Table 3.6: Correlation between anomaly scores of models and the annotated level of distraction

Model OCSVM Isolation Forest LOF Elliptic Envelope AE

Manual Driving 0.59 0.57 0.49 0.4 0.38

Autonomous Driving 0.65 0.6 0.56 0.43 0.42

In the preceding subsections, we demonstrated the utility of anomaly scores derived from
anomaly detection methods for identifying distracted instances. We showcased the significance
of this approach in learning from data without or with limited anomalous examples. Further-
more, we want to explore if the anomaly detection methods can yield information about the
level of distraction. The hypothesis is that the anomaly score could serve as an estimate of the
distraction level. To assess this, we compute the Pearson correlation coefficient between the
annotated distraction level and the anomaly scores obtained from each method. We use all the
data from the distraction scenario to have data with different levels of distraction ranging from
0% to 100%. Table 3.6 shows that all obtained anomaly scores are correlated with the level of
distraction. Results also show that OCSVM shows the strongest correlation, with 0.59 on manual
driving data and 0.65 on autonomous driving data. Furthermore, our analysis reveals that the
Isolation Forest consistently demonstrates robust performance across all evaluations, emerging
as one of the most resilient models. In contrast, the AE exhibits lower performance compared
to other classical methods. The dataset’s dimensionality and size may contribute to classical
methods outperforming the AE. This initial attempt to estimate the level of abnormality us-
ing anomaly scores in an affective computing application showcased a significant correlation,
providing encouragement for further exploration of this approach.

3.3.4 Conclusion
In this study, our objective was to assess anomaly detection methods for predicting abnormal

driving behavior, negating the need for risky data collection. Utilizing a database derived from
a driving simulator ensured safe data procurement, facilitating the evaluation, with visual dis-
traction detection chosen as the targeted abnormal behavior. Our comparisons spanned various
anomaly detection techniques, encompassing classical and DL methods, using multiple metrics
(F1 score, balanced accuracy, ROC AUC, and PR AUC). Our analysis revealed LOF and Isolation
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Forest as the most robust models across all metrics for both manual and autonomous datasets.
Additionally, we conducted experiments in supervised classification, demonstrating that our
anomaly detection methods outperformed supervised approaches in imbalanced datasets and
yielded similar performance in balanced datasets, underscoring the effectiveness of our approach.
Moreover, we introduced the concept of estimating the level of abnormal behavior from anomaly
scores in affective computing applications. The correlation results encourage further investiga-
tion of this approach. This holds promise in tailoring feedback to users based on this estimated
level. The evaluation of our work encompassed both manual and autonomous driving modes. In
autonomous vehicles, our model’s scores can serve the crucial purpose of determining when it’s
safe to transition control back to the driver. Conversely, in manual mode, it can offer insights
into detecting potentially hazardous driving behaviors. Nonetheless, for real-world implemen-
tation, it’s essential to test smaller time window—a facet not extensively explored in our study,
as our primary aim was to establish the viability of anomaly detection methods for identifying
dangerous driving behavior as a proof of concept.

3.4 Learning behavioral patterns to detect psychotic re-
lapses

In the preceding section, we evaluated our anomaly detection approach in the domain of
driver monitoring, demonstrating its potential usefulness for detecting dangerous driving be-
havior. Mental health represents another promising avenue for this approach, as highlighted in
previous studies in section 3.3.2.1. In mental health, relapse detection of patients with psychotic
disorders holds paramount importance. Based on the results of previous studies [99], we further
investigate tackling this problem with an anomaly detection approach.

Psychotic Relapse is defined as the reappearance of psychotic symptoms following a period
of remission. Detecting relapse in the early stages of mental illness can facilitate quicker and
easier recovery [303]. The increased prevalence of smart devices, especially smartwatches [304],
[305] presents an opportunity for continuous behaviormonitoring, potentially aiding in the early
detection of relapses. However, obtaining relapse data to train and test models is a challenge.
Relapse is a rare occurrence that affects a relatively small percentage of the population, neces-
sitating extended periods of data acquisition to record its incidence. As a result, researchers
are inclined to develop unsupervised models that only require non-relapse (i.e., normal) data.
This approach helps address the challenge posed by the absence of relapse data or imbalanced
datasets. Therefore, employing anomaly detection methods where relapse is considered as an
anomaly presents a viable solution to tackle these challenges effectively. Expanding on previous
research [99], our study delves deeper into this concept. The subject was also highlighted in a
challenge held at ICASSP23 [255], utilizing the same dataset. Hence, we’ve chosen to utilize the
e-prevention dataset for our exploration. Following data pre-processing and feature extraction,
akin to the driver monitoring study, we conducted a comparative analysis of various anomaly
detection methods, one of which ranked second in the e-prevention challenge [306]. Moreover,
recognizing the significance of personalization in mental health applications due to the diverse
and individualized nature of mental disorders, we delved deeper into this aspect. To explore
the implications of personalization, we compared models trained using all patient data against
models trained solely on patient-specific datasets. This nuanced analysis aimed to discern the
impact of personalization on the accuracy and efficacy of our anomaly detection approach in the
context of mental health and relapse detection.
The contributions outlined in this section can be summarized as follows:

■ Assessment and comparison of multiple anomaly detection methods for relapse detection,
employing signals from wearable devices.
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■ Comparing general models trained on collective patient data against models customized
for individual patients.

■ A comprehensive exploration of diverse feature combinations and models across the entire
patient cohort.

3.4.1 Dataset

Relapse prediction, an increasingly important area of study, faces challenges in obtaining
datasets due to privacy concerns and regulatory restrictions. Several datasets pertinent to this
field are either unavailable [307] [308] to the public or limited to specific data sources, such as
mobile signals [309] [310]. In our study, we utilized the dataset from the ICASSP’23 Grand Chal-
lenge e-Prevention [255], offering an opportunity to examine patient data and detect relapses
among individuals within the psychotic spectrum without relying on labeled relapse data. This
dataset comprises daily signal recordings from a smartwatch from ten patients diagnosed with
various psychotic disorders, including Schizoaffective Disorder, Bipolar I Disorder, Brief Psy-
chotic Episode, Schizophreniform Disorder, and Schizophrenia. We provide a summary of the
mental disorders encompassed within the dataset:

■ Bipolar disorder, formerly recognized as manic depression, is a psychological disorder
marked by alternating episodes of depression and extended periods of abnormally height-
ened mood, each persisting for days to weeks [311]. When the heightened mood is intense
and linked to psychosis, it is referred to as mania; if it’s less severe, it’s referred to as hy-
pomania. In the state of mania, individuals exhibit abnormal levels of energy and can feel
excessively joyful or irritable, frequently leading to impulsive decisions [312].

■ Schizophrenia is a mental disorder marked by persistent or recurring episodes of psy-
chosis[313]. Psychosis is a state of the mind that leads to challenges in distinguishing
reality from non-reality. Symptoms can encompass delusions, hallucinations, and various
other characteristics. Furthermore, individuals with schizophrenia may exhibit incoherent
speech and engage in behavior that is not contextually appropriate [314].

■ Schizoaffective disorder is a mental condition distinguished by irregular thought processes
and mood instability. Individuals diagnosed with Schizoaffective disorder exhibit symp-
toms of both schizophrenia, typically involving psychosis, and a mood disorder, which
could be either bipolar disorder or depression [315].

■ Schizophreniform disorder is a mental health condition that is diagnosed when symptoms
resembling those of schizophrenia are present for a substantial duration of time, usually at
least a month. However, the individual does not display the necessary signs of disruption
persisting for the entire six-month period required for a schizophrenia diagnosis [316].

We selected this dataset for its public availability and previous use in anomaly detection studies.
It provides insights into the feasibility of our work, facilitates comparisons, and includes diverse
psychotic disorders. Also, it includes long-term recordings of patients, enabling monitoring over
extended periods. Furthermore, these signals are collected via wearable devices. Studies demon-
strate the growing acceptance of smartwatches for monitoring daily activities or signals [304],
[305]. Additionally, research findings [317] indicate that most patients found consistent data
tracking motivating and expressed a desire to continue such monitoring. This highlights the
practicality of implementing a monitoring device in real-life scenarios.

The daily signals were recorded using a Samsung Gear S3 Frontier smartwatch equipped with
an accelerometer, gyroscope, and non-invasive heart rate monitor. The recorded data includes
heart rate, RR interval, accelerometer and gyroscope coordinates, sleep state at five-second in-
tervals throughout the day, periods of physical activity, and the total number of steps. The an-
notated data distinguishes between Relapse and Normal days, identified by clinicians based on
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monthly mental health assessments, questionnaires filled out regarding general psychopathol-
ogy and relapse state, communication between patients and their physician and family, and the
necessity for hospitalization. However, the nature of the relapse was not disclosed, and they did
not indicate the chronological order of relapse days.

The dataset is partitioned into three subsets: Training (containing only normal data), Vali-
dation (containing normal and relapse data), and Testing data (containing normal and relapse
data). The testing dataset and validation dataset have approximately the same data distribution.
An inherent imbalance between relapse and non-relapse data is observed, common in real-world
settings. The recorded days vary among patients, with patient 1 having the highest number of
training days (248) and patient 9 with the lowest (105), detailed in Table 3.7. It’s important to
note that certain patients display extremely low relapse days, such as 3 days for patients 5 and
9, and 4 days for patient 7. These instances are highlighted in italic and bold in the results, in-
dicating their significance as findings to be carefully considered due to the limited number of
relapse days. This scarcity of relapse data poses challenges in evaluation, highlighting the need
for models that can be trained without relying heavily on relapse days.

Table 3.7: Number of days for each patient per each data partition.

Patient Training Validation Validation Testing Testing

Non Relapse Non Relapse Relapse Non Relapse Relapse

1 248 31 9 31 10

2 179 22 57 23 57

3 204 25 13 26 13

4 168 21 17 21 17

5 176 22 3 23 4

6 217 27 22 28 22

7 210 26 4 27 5

8 230 29 93 29 94

9 105 13 3 14 4

10 169 21 73 74 22

3.4.2 Proposed methodology

Figure 3.8 illustrates the key steps of our method, which include data pre-processing, model
fitting using non-relapse data, and evaluation. In the following sections, we will provide a de-
tailed explanation of each step, clarifying the techniques and processes employed.

3.4.2.1 Data pre-processing and features extraction

■ Data cleaning:
Before feature extraction, we cleaned the collected data files by removing duplicate time
intervals in the recordings, discarding heart rate values outside the acceptable range of 30
to 200 BPM, and removing heart rate values deviating more than 20% from the heart rate
calculated using RR intervals. We also discarded accelerometer and gyroscope norm data
outside the intervals [-19.6, 19.6], [-573, 573] following the challenge guidelines and elimi-
nated instances of negative step counts in physical activity data.
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Figure 3.8: Proposed Method schema for psychotic relapse prediction.

Missing data resulting from data cleaning or the patient not wearing the watch were re-
placed by the median of the following feature over all days in the training dataset for the
specific patient.

■ Feature Extraction:
Physical activity disruption has been shown to be a key feature for psychological state
classification [318], [319]. Chapman et al. [320] conducted a study on 99 adult patients
with different psychological disorders. Their results show that physical activity patterns
extracted using accelerometers differ with the nature of the disorder. Moreover, Spulber et
al. [321] showed that physical activity is also linked to the severity of the symptoms. In
a study conducted on participants with Bipolar Affective Disorder, a decrease in physical
activity was indicative of an increase in clinical symptoms of depression [322]. Sleep distur-
bance is also linked to mental health disorders such as schizophrenia [323]. It is also used
as an indicator for relapse detection [274], [324]. Lambrichts et al. found that patients with
sleep disturbance are more likely to relapse [325]. Physiological signals such as heart rate
variability have been shown to strongly correlate with several psychotic disorders [326],
[327]. For example, Esaki et al. observed an association between circadian activity rhythm,
mood, and depressive episode relapses in patients with bipolar disorder [328].
Therefore, we segmented the signals and extracted the following features from each seg-
ment, including mean heart rate, the standard deviation of heart rate, the norm of ac-
celerometer coordinates, the norm of gyroscope coordinates, the percentage of sleeping
time, and the total number of steps. Supposing that the act of wearing the watch and
maintaining the setup might be affected during relapse periods, we computed the watch-
wearing duration by considering the initial missing data as the time during which the pa-
tient removed the watch. In total, we obtained 7 features. We refer to the features % of
sleeping time by sleep, mean of the heart rate and its standard deviation by HR, accelerom-
eter norm by Acc, Gyroscope norm by Gyr, and Percentage of time wearing the watch by
%WW. Finally, we standardize data per patient similarly to [99]. We illustrate an example
of the sleeping pattern for patient 6 on both a relapse and a non-relapse day in Figure 3.9.
The figure demonstrates a notable variation between the two.
Additionally, we sought to investigate whether changes in daily patterns during relapse

87



CHAPTER 3. RARE MENTAL STATES DETECTION

were more pronounced within specific time windows. To explore this, we conducted ex-
periments using four distinct time window lengths: 5 minutes, 1 hour, 4 hours, and 24
hours.

Figure 3.9: Difference in sleeping behavior between relapse day and normal day for patient 6.

3.4.2.2 Models

Our study focuses on learning patterns of physical, sleep, and physiological activity during
normal non-relapse days to detect any deviations from relapse. To accomplish this objective, we
adopt a methodology similar to the driving behavior monitoring study. We utilize classical and
DL anomaly detection methods and test: AE, LOF , Elliptical Envelope, and One-Class SVM. Ad-
ditionally, we introduce an LSTM AE, a pertinent addition in this context as temporal patterns
related to relapse might be present, unlike in the case of visual distraction detection. The input
for classical models involves concatenating features calculated over the time segment length for
24 hours. For instance, with a time window length of 1 hour, the input will be a vector of size 7 *
24 (7 features, 24 hours). Conversely, for a time window length of 24 hours, it reduces to a vector
of size 7. In the case of LSTM, the data is inputted sequentially, where each input dimension
represents the time window length by 7.
For OCSVM , isolation forest, LOF , and elliptical envelope we use the same parameters as for
the study for visual distraction detection detailed in section 3.3.2.1. As for the AE, to account for
varying input sizes, which depend on the number of features and time window size for calculat-
ing the features, we opt to have one hidden layer with N/2 number of hidden neurons for both AE
and LSTM AE, where N is the number of features. We train the model using the Adam optimizer,
the Mean Squared Error (MSE) as the loss function, a batch size of 16, and a maximum of 1000
epochs. We use 20% of the training dataset for early stopping with patience of 10 epochs. In the
case of LOF , IF, OCSVM , and elliptical envelope, we use the distance function as an anomaly
score, while the averaged RE of the input is used in the case of the AE.

3.4.2.3 Training settings and evaluation

After the phase of feature extraction, several pivotal questions have emerged during the con-
struction of our relapse detection system that we aim to address. These questions primarily
revolve around determining:
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■ The pertinent selection of features for the relapse detection system.
■ We have calculated features over different time lengths, and what time window is the most
efficient.

■ The most effective anomaly detection method to employ.
■ The suitability and performance comparison between general and personalized models for
this application.

These questions will be key in shaping the subsequent steps of our approach. Our study aims to
offer a thorough exploration of how the selection of features interacts with the choice of models
and timewindow for feature extraction. This investigationwill encompass both a global perspec-
tive and a personalized approach, providing a deeper understanding of the complex dynamics at
play in relapse prediction .

■ Global scheme: It involves training a single model using data from all patients. This ap-
proach enables us to evaluate the generalization potential of unsupervised learning tech-
niques for detecting relapses in psychotic disorders. Prior to training, we apply the min-
max normalization technique on every feature across all patients’ data after normalizing
the data per patient. This normalization process ensures consistency and comparability of
the features used in the training process.

■ Personalized scheme: We train, validate, and test the model exclusively on each patient’s
data. This approach may result in models that are tailored to the unique characteristics of
each individual’s data, potentially increasing the accuracy of predictions for that specific
individual.

We assess the predictive performance of each method by comparing them to the relapse labels,
using two commonly used metrics introduced in section 2.4.9: ROC AUC and PR AUC. We also
compare using the average of both those metrics, which was used in the e-prevention challenge
to rank the best models [255].

3.4.3 Results and discussion

In this section, we present our results in the global and personalized scheme. All the results
presented were evaluated on the validation dataset, except for the comparison between person-
alized and global models at the end of the study was done on the testing dataset.

3.4.3.1 Global scheme

In this section, we showcase the results of our global scheme performance assessment. Ini-
tially, we conduct an exhaustive search over all potential combinations of features, models, and
time window durations (TMW) to identify the best-performing configurations. Furthermore, we
scrutinize the influence of each variable individually—namely features, models, and TMW—by
maintaining one variable fixed while altering the others, calculating the average performance to
assess the robustness of each model. Additionally, we employ Analysis Of Variance (ANOVA)
tests to determine if the selection of the model or feature combination significantly impacts
model performance.

1. Exhaustive search best models
Table 3.8 presents the top-performing models in the global scheme, irrespective of the fea-
ture set and TMW. In contrast to the results found in 4.4.3 where AE was least performant
for visual distraction detection, we found that the top three performing models are AE.
It’s probable that the hyperparameters are better suited for this particular problem. How-
ever, further analysis of the models’ performance on average should be provided to verify
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the difference in performance. The feature combinations that produce the best results are
sleep ratio, heart ratemean and standard deviation, and accelerometer and gyroscope norm,
yielding a mean performance score of 0.671. Moreover, the TMW of the best 2 models is 24
hours, and for the third is 4 hours.

Table 3.8: Top 3 performing models in global scheme using exhaustive search

Featureset Model ROC AUC PR AUC Average TMW

Sleep, HR, acc,gyr AE 0.658 0.684 0.671 24hrs

Sleep, HR, steps AE 0.639 0.678 0.659 24hrs

Sleep, %WW, HR AE 0.655 0.661 0.658 4hrs

2. Sensor selection
Table 3.9 presents the performance metrics for all possible combinations of modalities
within the global scheme. In the table, the entries under the ROC AUCand PR AUC columns
represent the average ROC AUC and PR AUC values, respectively, calculated across all
models and all time window lengths (TMW): 5 minutes, 1 hour, 4 hours, and 24 hours.
The column labeled ’Mean Performance Score’ gives the mean value of the corresponding
ROC AUC and PR AUC entries in the same row, providing an overall performance mea-
sure for each feature set. Based on the Table results, the best features for global relapse
detection on average are sleep and heart rate features (including mean and standard devi-
ation) with a mean performance score of 0.6. These results agree with the results of the
exhaustive search in Table 3.8. Moreover, HRis the best-performing single feature, with
a mean performance score of 0.59. Whereas steps is the worst performing feature with a
mean performance score of 0.51.
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Table 3.9: Global scheme performance average across all feature sets on the validation set

Featureset ROC AUC PR AUC Average

sleep, HR 0.596 0.618 0.607

sleep, % WW, HR 0.581 0.609 0.595

HR 0.578 0.609 0.593

Sleep, HR, acc,gyr 0.579 0.607 0.593

Sleep, HR, steps 0.573 0.599 0.586

% WW,HR 0.568 0.602 0.585

sleep, % WW, HR, acc,gyr 0.566 0.598 0.582

sleep 0.564 0.598 0.581

HR, acc,gyr 0.562 0.591 0.576

sleep, % WW, HR, steps 0.56 0.588 0.574

HR, steps 0.555 0.59 0.572

sleep, HR, acc,gyr, steps 0.557 0.588 0.572

% WW, HR, acc,gyr 0.552 0.588 0.57

sleep, % WW, HR, acc,gyr, steps 0.548 0.584 0.566

% WW, HR, steps 0.545 0.581 0.563

HR, acc,gyr, steps 0.545 0.578 0.561

sleep, steps 0.536 0.573 0.555

sleep, % WW 0.537 0.573 0.555

Sleep ,acc,gyr 0.528 0.573 0.551

% WW, HR, acc,gyr, steps 0.53 0.57 0.55

sleep, % WW, acc,gyr 0.525 0.568 0.546

sleep,acc,gyr,steps 0.514 0.559 0.537

% WW 0.512 0.561 0.536

Sleep, % WW, steps 0.514 0.556 0.535

% WW, acc,gyr 0.505 0.555 0.53

Acc,gyr 0.502 0.553 0.527

sleep, % WW, acc,gyr, steps 0.502 0.551 0.526

Steps 0.485 0.546 0.515

% WW, acc,gyr, steps 0.483 0.54 0.512

acc,gyr, steps 0.481 0.539 0.51

% WW, steps 0.476 0.538 0.507
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3. Model selection
Furthermore, in Table 3.10, we calculate the average ROC AUC, PR AUC, and mean perfor-
mance score (mean of ROC AUC and PR AUC) for each model across all possible feature
combinations and all TMW. These feature combinations were presented in 3.9. As shown
in 3.10, the isolation forest model achieves the highest mean performance score (0.572)
whereas LSTM AE achieves the worst mean performance score (0.526). These results fur-
ther show the robustness of isolation forest which was found in 4.4.3. Additionally, the AE
model emerged as the second-best performer on average, with approximately same per-
formance as the Isolation Forest model. Interestingly, it secured the top position in the
exhaustive search.

Table 3.10: Global scheme performance average across all models on the validation set

Model ROC AUC PR AUC Average

Isolation Forest 0.552 0.592 0.572

AE 0.555 0.587 0.571

Elliptical Envelope 0.552 0.586 0.569

OCSVM 0.524 0.566 0.545

LOF 0.523 0.564 0.544

LSTMAE 0.501 0.551 0.526

4. TMW selection
To assess the effect of varying the TMW used to extract the features, in Table 3.11, we
calculated the average ROC AUC and PR AUC across all feature sets andmodels. Moreover,
as in the previous tables, we computed the mean performance score (mean of ROC AUC
and PR AUC). We considered a TMWof ’5minutes’, ’1 hour’, ’4 hours’, and ’24 hours’. Table
3.11 illustrates that there is a slight variation in the performance depending on the TMW
used for feature extraction, indicating that daily patterns may differ significantly across
patients. Consequently, their use might not be globally relevant. These features may be
more pertinent for personalizedmodels, as we’ll explore further in the personalized scheme
results.

Table 3.11: Global scheme performance average across all time windows on the validation set

Period ROC AUC PR AUC Total

5 minutes 0.544 0.582 0.563

1 hour 0.537 0.572 0.554

4 hours 0.541 0.577 0.559

24 hours 0.529 0.575 0.552

5. Sensor and model selection effect significance
ANOVA is a statistical method based on the law of total variance to determine if there is
a difference between the means of several groups. It is commonly used to determine if a
quantitative variable is dependent on a categorical variable. Therefore, we conduct a two-
wayANOVA test to evaluate: 1. the effect of the choice of the anomaly detectionmodel, and
2. the choice of the feature set on the relapse detection performance. The results are shown
in Table 3.12. The obtained p-value, denoted as p1, for the effect of the choice of feature set
on the model’s performance, is approximately 0, indicating that the selection of features

92



3.4. LEARNING BEHAVIORAL PATTERNS TO DETECT PSYCHOTIC RELAPSES

significantly affects the model’s performance. This result suggests that different feature
combinations have a notable impact on the accuracy of relapse detection. Similarly, the
p-value p2 obtained for the effect of the choice of the model on relapse detection accuracy
is also approximately 0. This finding indicates that the choice of the model significantly
influences the overall accuracy of relapse detection. Different models exhibit varying levels
of performance in detecting relapses among patients with psychotic disorders. Lastly, the
p-value p3 tests the interaction between the choice of model and the choice of feature set.
The value of p3 reveals that there is a significant combined effect of the model choice and
the choice of the selected feature set.

Table 3.12: 2way-Anova Results for global models results

p1 p2 p3

0.000 0.0009 0.0235

3.4.3.2 Personalized scheme

In this subsection, we present the results of the personalized scheme. Similar to the global
scheme, we test different combinations of features, different anomaly detection methods, and
different TMW for feature extraction.

1. Exhaustive search
In Table 3.13, we present the best-performingmodel for each patient irrespective of the fea-
ture set and TMW for feature extraction. Notably, the results demonstrate that the optimal
modalities and feature combinations and TMW vary across different patients, highlight-
ing the importance of personalized approaches in relapse detection. The best-performing
model is patient 1’smodelwith amean performance score (mean of ROC AUC and PR AUC)
of 0.938. Conversely, the worst performing model is patient 3’s model with a score of 0.727.
The obtained results demonstrate notably superior performance compared to those derived
from the exhaustive search within the global scheme for all patients in Table 3.8. This out-
come signifies a positive stride toward the necessity of personalized models for relapse
prediction. However, to draw more definitive conclusions, additional assessments on the
testing set are required which will be provided at the end of the study. Furthermore, LOF
and Isolation Forest, which demonstrated prominence in the visual distraction detection
results outlined in Section 4.4.3, also emerge as prominent models in this context. We also
observed that features related to sleep and heart rate are consistently prevalent in the se-
lected best-performing configurations.
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Table 3.13: Best personalized model performance for each patient

Patient Period Model Featureset ROC AUC PR AUC Average

1 1hr Isolation Forest sleep, %WW, acc, gyr, steps 0.953 0.924 0.938

2 24hrs LOF sleep, acc, gyr 0.698 0.853 0.776

3 24hrs LOF sleep 0.752 0.702 0.727

4 1hr Isolation Forest %WW, HR 0.866 0.849 0.857

5 5min AE sleep 0.833 0.738 0.786

6 4hrs LOF %WW, HR, acc, gyr, steps 0.785 0.749 0.767

7 5min LOF HR, steps 0.74 0.721 0.73

8 4hrs AE Sleep, %WW, HR, acc,gyr 0.769 0.911 0.84

9 1hr OCSVM %WW 0.949 0.867 0.908

10 4hrs Elliptical Envelope sleep, %WW 0.743 0.896 0.82

2. Sensor selection
To further analyze the performance of unsupervised learning approaches in personalized
relapse detection, we evaluated the average performance of different feature combinations
for each patient across all models and all TMW. In Table 3.14, we present the top five
performing feature sets over 31 combinations in terms of the average of ROC AUC and
PR AUC for each patient. As in Table 3.13, the results of Table 3.14 show that the best
feature set and best model differ from one patient to another. However, it is worth noting
that some features appear in the best-performing feature sets for most of the patients. For
instance, ‘%WW’ is part of the best-performing feature sets for all patients. ‘sleep’ appears
in the best-performing feature sets for all patients, except patient 6. ‘HR’ features in the
best sets of all patients, except patient 3. ’Sleep’, ’HR’, and ’%WW’ were among the top
features in the global model, showcasing their robust generalization. ‘acc_gyr’ appears in
all sets except for those of patients 5 and 9. In contrast, ’steps’ only features for patients 3
and 5.

Table 3.14: Top five performing features for each patient

Patient featureset ROC AUC PR AUC Average
1 sleep, HR, acc,gyr 0.706 0.417 0.561

sleep,%WW, HR, acc,gyr 0.703 0.419 0.561
sleep, acc,gyr 0.69 0.425 0.558
sleep, HR 0.71 0.401 0.556

sleep, %WW, acc,gyr 0.683 0.424 0.553
2 sleep, %WW, acc,gyr 0.55 0.675 0.613

%WW, acc,gyr 0.543 0.668 0.605
sleep, %WW, HR, acc,gyr 0.536 0.662 0.599

continues on the next page
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Table 3.14 – Continuation

Patient featureset ROC AUC PR AUC Average
acc,gyr 0.532 0.662 0.597
%WW 0.525 0.667 0.596

3 sleep, %WW, acc,gyr 0.608 0.497 0.553
%WW, acc,gyr 0.594 0.486 0.54

acc,gyr 0.584 0.486 0.535
sleep, acc,gyr 0.588 0.472 0.53
acc,gyr, steps 0.581 0.469 0.525

4 sleep, %WW, HR 0.704 0.667 0.685
%WW, HR, acc,gyr 0.681 0.659 0.67

sleep, %WW, HR, acc,gyr 0.68 0.661 0.67
%WW, HR 0.683 0.653 0.668

sleep, HR, acc,gyr 0.674 0.658 0.666
5 %WW 0.419 0.388 0.403

sleep, %WW 0.699 0.31 0.504
sleep 0.656 0.275 0.466
%WW 0.64 0.281 0.46

sleep, %WW, HR 0.641 0.262 0.452
6 acc,gyr, steps 0.574 0.495 0.535

acc,gyr 0.576 0.481 0.528
steps 0.551 0.502 0.527

%WW, HR, acc,gyr, steps 0.562 0.481 0.522
%WW, acc,gyr, steps 0.558 0.485 0.522

7 Sleep 0.556 0.231 0.394
sleep, %WW 0.513 0.217 0.365

sleep, %WW, acc,gyr 0.431 0.194 0.313
%WW 0.416 0.179 0.297

sleep, %WW,HR 0.411 0.166 0.288
8 sleep, %WW,HR 0.654 0.759 0.707

sleep, %WW, HR, acc,gyr 0.633 0.755 0.694
sleep, HR 0.634 0.748 0.691

sleep, %WW 0.622 0.754 0.688
continues on the next page
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Table 3.14 – Continuation

Patient featureset ROC AUC PR AUC Average
sleep, HR, acc,gyr 0.625 0.747 0.686

9 %WW 0.633 0.45 0.542
sleep, %WW 0.556 0.325 0.441

sleep, %WW,HR 0.532 0.305 0.418
%WW,HR 0.516 0.309 0.413
sleep 0.491 0.313 0.402

10 sleep 0.631 0.753 0.692
sleep, %WW 0.594 0.748 0.671
Sleep, acc,gyr 0.567 0.725 0.646

sleep, %WW, acc,gyr 0.56 0.731 0.646
sleep, HR 0.562 0.724 0.643

3. Model selection
In figure 3.10, we show the average of ROC AUC and PR AUC of each model across all feature
sets and possible TMW. Unlike the global scheme where models perform similarly on all patients’
data, in the personalized scheme, models show significant differences in their performance on each
patient’s data. The results further highlight the importance of individualizedmodels across different
patients for relapse prediction.

4. TMW selection
In Figure 3.11, the average of ROC AUC and PR AUC performance of each time window (TMW)
for feature extraction across all feature sets and models are presented for each patient. Unlike the
global scheme results in Table 3.11, where different TMWs showed similar averaged performance,
the personalized scheme exhibits significant differences. For instance, for patient 1, a 5-minute
TMW yields an average of 0.46, while a 4-hour TMW yields 0.56, a noticeable variation across dif-
ferent time windows for each patient. This discrepancy suggests that the detection of temporal
patterns may vary for different time periods among patients. Furthermore, the absence of a uni-
versal TMW for all patients might explain why, in the global scheme results, all TMWs exhibited
similar performance levels. Additionally, we notice a distinct trend in the scores—they progres-
sively increase until reaching the optimal TMW and subsequently decrease. This consistent trend
strongly suggests a tangible influence of the time window on the personalized models.

5. Sensor and model selection effect significance
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Figure 3.10: Personalized scheme performance average across all models on the validation set

Table 3.15: 2-way ANOVA on personalized models results

Patient p1 p2 p3

1 0.000 0.000 0.8446

2 0.0000 0.0000 0.0118

3 0.0000 0.0001 0.1320

4 0.0000 0.0000 0.1578

5 0.0000 0.0000 0.0035

6 0.0000 0.0000 0.3394

7 0.0000 0.0000 0.0038

8 0.0000 0.0000 0.4908

9 0.0000 0.0024 0.4159

10 0.0000 0.0000 0.2721

We also conducted a two-way ANOVA test to evaluate the effect of the choice of the anomaly de-
tection model and the choice of the features on the relapse detection performance on personalized
models. The results are shown in Table 3.15. The value p1 presents the p-value for the null hypoth-
esis that the group means of each feature set are not significantly different. For all patients, p1 ∼ 0
which suggests that the choice of the feature set has a significant effect on the performance of the
model. Similarly, the value p2 presents the p-value for the null hypothesis that the group means
of the models are not significantly different. For all patients, p2 ∼ 0, which implies that the choice
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Figure 3.11: Personalized scheme performance for each period per patient

of the model has a significant effect on the relapse detection accuracy. Finally, p3 value assesses
whether there is an interaction between the choice of the model and the choice of the feature set.
According to the ANOVA test, such interaction is only evident for patients 2, 5, and 7 .
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3.4.3.3 Final evaluation on testing dataset

Table 3.16: Model performance for each patient on testing dataset

Patient

ROC AUC PR AUC

All Best Global All Best Global

features features model features features model

1 0.706 0.81 0.703 0.504 0.698 0.483

2 0.518 0.439 0.561 0.744 0.677 0.761

3 0.512 0.559 0.654 0.347 0.413 0.467

4 0.683 0.773 0.538 0.661 0.754 0.59

5 0.804 0.783 0.37 0.499 0.521 0.145

6 0.49 0.524 0.659 0.466 0.527 0.569

7 0.4 0.496 0.526 0.157 0.275 0.193

8 0.548 0.506 0.427 0.81 0.79 0.734

9 0.357 0.536 0.446 0.209 0.303 0.24

10 0.479 0.539 0.476 0.767 0.797 0.756

AVERAGE 0.549 0.596 0.536 0.516 0.575 0.493

AVERAGE 0.558 0.592 0.574 0.613 0.658 0.617

-Patients5,7,9

Furthermore, we assess the performance of both the optimal global model and the optimal
personalized model for each patient. These models are determined through an exhaustive search
on the validation dataset. Additionally, we evaluate the performance of the best model achieved
via an exhaustive search, considering all available features. We calculated the averaged perfor-
mance also without the patients with very low number of patients as well. As shown in Table
3.16, on average, employing the global model yields the least favorable performance, while utiliz-
ing the personalizedmodel leads to the best results. This observation underscores the superiority
of personalized models in comparison to the global approach in terms of relapse detection accu-
racy. Moreover, the notable performance difference between personalized models employing all
features (scoring 0.549 in ROC AUC and 0.516 PR AUC ) compared to those utilizing only the best
features (scoring 0.596 in ROC AUC and 0.575 in PR AUC) distinctly highlights the substantial
influence of feature selection in improving the model´s robustness and generalization capacity
which will be further explored in the next chapter.

3.5 Conclusion
In this chapter, We considered real-life applications where our aim is to identify undesir-

able events, inherently rarer than positive patterns. For this purpose, we proposed leverag-
ing anomaly detection as a solution and conducted an evaluation to assess its applicability. To
achieve this, we selected two pivotal applications within the affective computing domain: driver
monitoring and relapse detection for patients with mental disorders. Both applications target
predicting rare states whose data collection is not feasible and can benefit from anomaly detec-
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tion. For each application we selected a suitable database, strategically chosen to demonstrate
the effectiveness of our proposed approach across diverse contexts. Our objectives encompassed
three key aspects: first, the validation of the proposed approach’s efficiency in distinct applica-
tions; second, the comparison of various anomaly detection methods; and third, the assessment
of multiple strategies involving feature selection, supervised and unsupervised techniques for
driving, and generalized or personalized approaches for relapse prediction.

In the first study, we focused on distraction detection in the context of road safety. By em-
ploying unsupervised anomaly detection approaches instead of traditional supervised ML meth-
ods, we overcame the challenges associated with collecting distracted driving data, which can
be dangerous. Using a database obtained from a driving simulator, we trained our models on
non-distracted driving examples and evaluated their performance on distracted driving exam-
ples. Our findings demonstrated the efficiency of unsupervised models, with Isolation Forest
emerging as the best model for distraction detection. Additionally, we compared the perfor-
mance of unsupervised methods to traditional supervised models, highlighting the superiority
of our proposed approach for imbalanced datasets or even in scenarios where no samples of the
"anomalous" class were available

In the second study, we investigated the effectiveness of unsupervised learning approaches
for relapse detection in psychotic disorders. Our results indicated that the Isolation Forest and the
AE anomaly detection method exhibited the highest performance in the global scheme, where
a single model was trained on data from all patients. Notably, we discovered that the optimal
modalities and feature combinations varied across different patients, emphasizing the signifi-
cance of personalized approaches in relapse detection. Moreover, we found that the choice of
anomaly detection model and features significantly impacted the accuracy of relapse detection.
By adopting a personalized approach, we achieved a more tailored and individualized detection
method, leading to substantial improvements in relapse detection. This study underscores the
importance of personalized models for accurate and effective relapse monitoring.
Overall, our research contributions highlight the efficiency and efficacy of unsupervised anomaly
detection methods in behavior monitoring tasks. By circumventing the limitations of traditional
supervised approaches and leveraging the power of anomaly detection, we have demonstrated
advancements in both distraction detection and relapse detection. An intriguing finding from
the personalized scheme results underscores the significance of feature selection in determin-
ing performance. In the upcoming chapter, we will further explore feature selection using the
same datasets for detecting rare mental states such as visual distraction detection and psychotic
relapse prediction.
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4
Explainability and Feature Selection Using

Anomaly Scores

In this chapter, we propose the use of AE-based reconstruction errors
for feature selection and explainability in the context of detecting rare
mental states. We explore the use of this idea in two distinct scenarios:
"visual distraction detection" and "psychotic relapse prediction".
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CHAPTER 4. EXPLAINABILITY AND FEATURE SELECTION USING ANOMALY SCORES

4.1 Introduction
In the previous chapter, we tackled the challenge of detecting rare states through an unsu-

pervised approach, bypassing the issue of imbalanced data. We examined two real-life applica-
tions in affective computing: visual distraction detection and psychotic relapse prediction. When
constructing models for real-world applications, identifying the crucial features and sensors for
data collection stands as a critical step. For instance, collecting signals related to heart rate vari-
ability solely for detecting distracted driving might incur unnecessary costs and computational
demands. Hence, feature selection plays a pivotal role in efficiently gathering data. Feature selec-
tion not only enhances performance and reduces computational costs but also provides valuable
insights into the decision-making processes of ML models [329]. Unfortunately, many existing
feature selection methods often overlook the critical issue of class imbalance, resulting in subop-
timal performance for the detection of the minority class [330][331]. Paradoxically, the minority
class often holds greater significance in various applications [332] [333]. This underscores the
need for its careful recognition and accurate classification. For instance, consider the context of
fraud detection, where it is of utmost importance to detect a rare malicious transaction within
a larger population of normal transactions. Moreover, in certain domains like medicine, the
ability to identify discriminative traits or features distinguishing the majority class (typically
representing normal or healthy instances) from the minority class (typically denoting disease
or anomaly) is of utmost importance. For instance, it can be valuable in comprehending their
origin or enabling early intervention by tracking these features across specific targeted or at-risk
populations.

In this chapter, we extend the work from Chapter 3 by introducing a feature selection method
that assesses the importance of features based on anomaly detection methods. Our proposed ap-
proach involves training an AE solely on normal data—undistracted driving for visual distraction
detection and non-relapse data for psychotic relapse prediction. Subsequently, we evaluate the
correlation scores between annotations and the reconstruction error of each feature within a
dataset containing both normal and abnormal instances (i.e., distracted and relapse data). These
correlation scores serve as indicators of feature importance, enabling us to rank the features.
Finally, we conduct an evaluation of the feature selection by assessing model performance using
the top-ranked and lowest-ranked features.

This chapter also tackles the issue of explainability. Humans have continuously endeavored
to seek explanations to grasp and interpret their environment [334]. This pursuit extends to
understanding black box decisions made by ML systems. It’s crucial to comprehend the ratio-
nale behind a model’s predictions to guarantee its reliability and safety when used in real-world
applications. This understanding aids in detecting biases and enhancing trust [335]. Hence, we
discuss how our proposed method contributes to enhancing explainability for affective comput-
ingmodels. We apply this method to two distinct applications introduced in the previous chapter,
both facing imbalanced data settings. These applications are well-suited for this approach due to
the challenges associated with data scarcity—either due to the risks involved in data collection
or the infrequent occurrence of the event in focus. Additionally, both applications stand to gain
from an explainable approach. Lastly, we engage in two tasks with differing levels of complexity:
one yielding easily interpretable results and the other showcasing the method’s performance in
handling more intricate tasks. The key contributions of this chapter can be outlined as follows:

■ Introduction of a novel feature selection technique designed specifically for unbalanced
datasets, leveraging the power of AE.

■ In-depth analysis of feature influence for visual distraction detection and psychotic relapse
prediction personalized for each patient.

The remainder of the chapter follows this structure: In Section 4.2, we introduce various known
types of feature selection methods. Section 4.3 details our proposed method specifically tailored
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for imbalanced datasets. This method is examined within the context of two distinct applications
outlined in Chapter 3: Visual Distraction Detection and Psychotic Relapse Prediction. Section
4.4 shows into the impact of the feature selection method applied for driver distraction detection
across three tasks: anomaly detection, classification, and regression, with results presented in
Section 4.4.3. Following that, we present the results obtained regarding psychotic relapse pre-
diction in Section 4.5. Additionally, in Section 4.6, we compare our proposed method with a
similar approach from the literature. Furthermore, we discuss how our approach contributes to
explainability in Section 4.7. Finally, we conclude our chapter in Section 4.8.

4.2 Feature selection methods
Feature selection is a key process withinML and data analysis that involves choosing a subset

of relevant features (also known as variables or attributes) from a larger set of available features
in a dataset. The goal of feature selection is to improve the performance and efficiency of a
ML model by focusing only on the most important and informative features while discarding
or ignoring less pertinent or redundant ones. This holds particular importance with smaller
databases, aiming to mitigate model complexity and prevent overfitting issues.

4.2.1 Feature selection methods categories

Feature selection methods can be broadly categorized into three types, which we present in
Figure 4.1.

■ Filter methods: Filter methods [336] evaluate the relevance of features using statistical
measures or scores, often independently of the ML algorithm to be used as shown in Fig-
ure 4.1. Various assessment criteria have been introduced for filter methods. Some key
criteria include the feature’s discriminative capability in separating samples [337], mutual
information [338], and feature correlation [339].

■ Wrapper methods Wrapper methods [340] assess the performance of a ML model using
different subsets of features. These methods involve training and evaluating the model
multiple times with different feature combinations. However, these methods are generally
computationally expensive, and their convergence to a global optimum is not guaranteed.
Recursive Feature Elimination (RFE) [341] and forward/backward selection [342] are exam-
ples of wrapper methods. Another example involves exhaustive feature selection, where
they perform a brute-force assessment of feature subsets. The ideal subset is chosen by
optimizing a designated performance metric while employing any given regressor or clas-
sifier.

■ Embeddedmethods Embedded methods [343] integrate feature selection into the process
of constructing the model. Techniques like L2,1-norm regularization [344] and tree-based
feature importance [345] are embedded methods, as they naturally select relevant features
during the training process.

Each method carries its own set of advantages and drawbacks. Wrapper methods, although
effective, suffer from high computational cost, restricting their practical application [347]. On
the other hand, filter methods are computationally more efficient, assign a score for each feature,
and are model-independent but tend to overlook feature interdependencies. Embedded methods
strike a balance between filter and wrapper approaches by integrating feature selection into
model learning. However, they still maintain a dependence on the model employed and often
involve hyperparameters that require tuning to achieve optimal performance.
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Figure 4.1: General Framework of the process of (a): filter method, (b): wrapper method, and (c): embedded method.
Adapted from [346].

4.2.2 Feature selection for imbalanced datasets
Data imbalance remains a persistent concern in feature selection research [346]. Certain

research findings indicate that employing conventional feature selection methods without ac-
counting for class imbalance can result in a performance decline. Yin et al. [330] conducted a
study demonstrating that feature selection has the potential to amplify the overlap between dis-
tributions of different classes. This amplification is traced back to the significant bias towards
the majority class, which subsequently hampers the efficiency of classification tasks. Despite
the widespread domain of feature selection, only a limited amount of literature focuses on ad-
dressing data imbalance [348]. Some approaches have been developed to tackle feature selection
challenges within unbalanced data scenarios. For wrapper methods, researchers have explored
metrics less sensitive to class imbalance like the ROC AUC [349], F-measure[350] [351], and
balanced loss function[352]. Embedded methods, on the other hand, handle this issue by incor-
porating a regularization term [344].

Our contribution lies in providing a solution to the feature selection within imbalanced
datasets by leveraging anomaly detection techniques. Specifically, we employ the reconstruc-
tion error generated by an AE trained exclusively on normal data (majority class), thus reducing
reliance on minority class data. This method, similar to filter methods, assigns scores to each
feature. However, it is crucial to note that all features are interrelated within the autoencoder
architecture, which can be used as the classifier as well.

4.3 Proposed method based on anomaly detection
In Chapter 2, we explained the utilization of AE for anomaly detection, primarily by train-

ing them solely on normal data. During the test phase, when a new sample is presented, any
instance significantly divergent from the learned normal data pattern results in the AE’s inabil-
ity to reconstruct the input effectively. This inability manifests as a higher reconstruction error
across all features, subsequently serving as an anomaly score. In our study, we operate under
the assumption that the AE struggles to accurately reconstruct features crucial for distinguishing
between the normal and abnormal classes. Our aim is to leverage this discrepancy in reconstruc-
tion errors to discern the relative importance of these features.
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Our method focuses on an imbalanced setup where the minority class is notably smaller than
the majority class. The training dataset consists of (input, target) pairs {(x1, y1), . . . ,(xN, yN)}
where yi is the target (discrete values of 1 and 0 or a continuous variable) and X ∈ RP×N is
the input matrix and we have N0 examples from class 0 and N1 from class 1 and N1 « N0, with
the objective of distinguishing between two conditional multivariate probability distributions,
denoted as P0 and P1. A critical aspect of this method is the identification of a feature set F that
enables the differentiation between these distributions, with |F| < P.
To achieve this, an AE is used in two phases presented in 4.2.

■ Phase 1: Similar to the AE-based anomaly detection method, the data points are divided
into training D1 and feature selection D2 datasets, where the training set includes N′ sam-
ples from the majority class only (class 0), and D2 has N′′ examples from majority and
minority class. This enables, in the training phase, unsupervised training on the overrep-
resented majority class.

■ Phase 2: After training the AE, we compute the RE of the samples of set D2. Following
this, we compute the correlation score between the reconstruction error of each feature and
the corresponding annotation. These correlation scores serve as an indicator of feature im-
portance, where higher scores indicate greater importance. The selection of discriminating
features is achieved by applying a threshold.

This feature selection method is designed specifically for imbalanced datasets. During the train-
ing phase, the autoencoder leverages the available data from the majority class to train. In con-
trast, the feature selection step using simple correlation doesn’t demand an extensive number of
examples.

Figure 4.2: Our proposed feature selection approach using AE.
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4.4 Feature selection for driver distraction detection
As previously mentioned, gathering instances of distracted driving in real-world scenarios

poses significant risks. Hence, we require a specialized feature selection method suitable for
imbalanced data settings. We evaluate our approach specifically on the HADRIAN subset dedi-
cated to visual distraction detection, aiming to discern the significance of features employed in
this context. The specifics of the dataset are outlined in Chapter 3. Our assessment of feature
selection encompasses three distinct tasks: classification, regression, and anomaly detection, al-
lowing us to explore its impact across varied domains.

4.4.1 Data

We use the dataset introduced in Chapter 3 for visual distraction detection of autonomous
driving mode.
In this chapter, the data partitioning differs from that in Chapter 3 due to several reasons, includ-
ing the execution of multiple tasks beyond anomaly detection. Additionally, this data requires
labeled samples from the anomalous class for feature rankings, necessitating a separate dataset
that was not previously seen during the training of the autoencoder or used in calculating the
correlation scores for evaluating the estimation of the level of distraction. To thoroughly eval-
uate the performance of our proposed feature selection method, we divided the available data
into three distinct subsets: D1, D2, and D3, each serving different purposes within our study.

■ D1 comprises data exclusively fromnon-distracted driving scenarios, totaling 211 examples
from the control scenario. This subset is primarily utilized for fitting the AE model, which
will subsequently be employed for feature selection.

■ D2 encompasses a more diverse dataset, including both non-distracted and distracted driv-
ing data from the distraction scenario, comprising a total of 235 examples. It servesmultiple
purposes within our analysis. It is used for calculating correlation scores and conducting
feature selection. Within this set, 84 examples fall within the category of distractions with
a severity level of less than or equal to 25, 66 examples pertain to distractions with severity
levels between 25 and 75, and the remaining 85 examples correspond to distractions with
a severity level exceeding 75. Additionally, D2 is employed for training supervised mod-
els in our study. Furthermore, it is divided into the same distraction severity categories as
previously mentioned.

■ D3 dataset mirrors the composition of D2, containing a total of 235 examples from both
non-distracted and distracted driving scenarios. This subset serves as the evaluation dataset
for testing the performance of our models.

In our feature selection process, we have incorporated an expanded set of features compared
to the ones utilized in Chapter 3. The selected features for this analysis encompass ’Looking at
road’, ’Saccade magnitude’, ’Saccade rate’, ’Saccade peak velocity’, ’Eye position entropy’, ’Gaze
heading mean’, ’Gaze heading standard deviation’, ’Gaze pitch mean’, ’Gaze pitch standard devi-
ation’, ’Head heading mean’, ’Head heading standard deviation’, ’Head pitch mean’, ’Head pitch
standard deviation’, ’ECG Interbeat Intervals (IBI)’, and ’BVP IBI’. We have expanded the feature
set to facilitate a more comprehensive evaluation of our feature selection method. This aug-
mented feature set has been carefully curated to include features that are known to be crucial
for distraction detection including ’Looking at road’, as well as less influential features for vi-
sual distraction detection, including ’ECG IBI’ and ’BVP IBI’. In order to compute the "Looking
at road" feature, we define a plane that covers the windshield surface. Then, we use the gaze
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estimation to determine if the gaze vector intersects with the plane. If true, we consider that the
driver is looking at the road. Else, the driver is not looking at the road.

4.4.2 Experiments
In this section, we present the series of experiments conducted. Initially, we perform feature

selection for visual distraction detection, followed by an evaluation of our outcomes across three
tasks: classification, anomaly detection, and regression.

■ Feature Selection: To obtain feature rankings, we employ an AEmodel consisting of three
dense layers with 4, 2, and 4 neurons, respectively. This is the same architecture that was
used in Chapter 3. The AE is trained exclusively using the D1 dataset, which contains non-
distracted driving data. To obtain feature scores, we feed the model with data from D2 and
subsequently calculate the correlation scores.

■ Classification: To assess the impact of the feature selection method on the classification
task, which aims to distinguish between two classes (Class 0 representing non-distracted
driving and Class 1 representing distracted driving), we employ C-Support Vector Classi-
fication implemented using the sklearn library. Our model is trained using examples from
the D2 subset. Subsequently, the model’s performance is evaluated using the D3 subset.
Examples with a distraction level of <=50% represent "Class 0" and examples with a dis-
traction level greater than 50% represent "Class 1". This approach allows us to determine
how effectively the selected features discriminate between the most significant distraction
levels in our classification task.

■ Anomaly Detection:

Regarding the anomaly detection task, we employ a One-Class SVM approach. During the
training phase, the model is exclusively trained using normal data, which corresponds to
scenarios with a distraction level of <=50%, derived from the D2 subset. Subsequently, for
testing, the model is evaluated using D3 subset, where examples with a distraction level
<=50% are considered normal samples, and examples with a distraction level greater than
50% are treated as abnormal samples.

■ Regression:

For the regression task, we opt for Epsilon-Support Vector Regression as our modeling
approach. The model is trained using all of the examples in the D2, which includes both
non-distracted and distracted driving scenarios. Subsequently, we evaluate the model’s
performance using the D3 subset. This regression task aims to predict and assess the ac-
curacy of distraction level estimates based on the selected features, encompassing a wide
range of distraction levels.

4.4.3 Results
In this section, we present the results of our evaluation of the proposed feature selection

method across three model types: binary classification, anomaly detection, and regression mod-
els. We investigate two distinct approaches: "Best to worst" and "worst to best," where features
were added to the models incrementally based on their importance rankings. Our evaluation
considered a range of feature subset sizes, from 1 to 15 features. In the "best to worst" approach,
we systematically add features to the model, beginning with the feature having the highest im-
portance ranking. Conversely, in the "worst to best" approach, we initiate the model with the
feature that had the lowest importance ranking or correlation score.

■ Feature Ranking:
In Table 4.1, we present the obtained correlation scores between each feature and our tar-
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Table 4.1: Feature ranking using our proposed feature selection method.

Feature Name Correlation Score

Looking at road 0.64

Gaze pitch mean 0.54

Head pitch standard deviation 0.47

Gaze pitch standard deviation 0.40

Head pitch mean 0.38

BVP IBI 0.33

ECG IBI 0.33

Saccade rate 0.31

Eye position entropy 0.28

Head heading mean 0.28

Head heading standard deviation 0.23

Saccade magnitude 0.18

Saccade peak velocity 0.17

Gaze heading mean 0.16

Gaze heading standard deviation 0.14

get variable ’distraction level’. The feature ’Looking at road’, which we added due to its
relevance to distraction, emerges as the most crucial feature with a high correlation score
of 0.64, suggesting its strong positive association with distraction levels. Features such as
’Gaze pitchmean’, ’Head pitch standard deviation’, and ’Gaze pitch standard deviation’ also
exhibit notable correlations, highlighting their relevance. Whereas the features ’ECG IBI’
and ’BVP IBI’, which are not relevant to visual distraction obtain 0.33, significantly less than
the feature "Looking at road". We use these scores in the best-to-worst and worst-to-best
approaches, as described before in the following experiments, to evaluate the effectiveness
of our feature selection method.

■ Classification Task: In Figure 4.3, we present the outcomes of our feature selection ap-
proach evaluation using a binary classifier. In "best to worst", we initially start with the
most influential feature, "Looking at road". Consequently, the classifier has a high classifi-
cation accuracy of 83.4% using just this single feature. As we continue to add features in
descending order of importance, the accuracy of the classifier slightly improves and reaches
its peak at 12 features with an accuracy of 86.38% . The little improvement in performance
(3%) indicates that the remaining features bring little relevant information in comparison to
solely using the best feature. This strategy allows us to leverage the most critical features
right from the beginning, potentially leading to a fast and effective classification model. In
contrast, we start with ’Gaze heading standard deviation’ in "worst to best". As a result, the
initial classification accuracy was low. This observation is significant as it highlights that
the initial feature lacked discriminatory power for binary classification, with an accuracy
of 51.91%, closely resembling random guessing’s 50% accuracy rate, which confirms that a
low correlation between reconstruction error of the feature and the annotations indicates a
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less relevant feature. However, as we gradually incorporate features in ascending order of
importance, the classification accuracy improves progressively. This strategy is informative
as it demonstrates the challenges posed by less influential features initially and highlights
the gradual improvement that can be achieved by adding more important features. Both
strategies offer valuable insights into how the order of feature inclusion impacts the perfor-
mance of a binary classifier. "Best to Worst" highlights the potential benefits of leveraging
highly influential features early on, while "Worst to Best" underscores the initial difficulty
of using less important features and their limited impact on classification accuracy. More-
over, the results reveal that the rankings generated by the feature selection method indeed
reflect the discriminatory capability of each feature. The highest-ranked feature achieved
an accuracy of 83.4%, whereas the lowest-ranked feature yielded an accuracy of 51.91%.

Figure 4.3: Distraction detection classification performance using best to worst and worst to best strategies.

■ Anomaly Detection Task: Moreover, we evaluate the performance of an anomaly detec-
tion model using ROC AUC and PR AUCmetrics for both the "best to worst" and "worst to
best" feature selection strategies. Table 4.2 summarizes the results of this evaluation. For
the "best to worst" strategy, we observed consistently high ROC AUC scores ranging from
0.918 to 0.931, indicating themodel’s ability to distinguish between normal (non-distracted)
and anomalous (distracted) data effectively. PR AUCscores also remained consistently high,
demonstrating the model’s precision in identifying anomalies. The highest performance
achieved on average was 0.936 with 10 features close to the performance achieved by the
top feature. Conversely, the "worst to best" strategy showed contrasting results. Initially,
the ROC AUC and PR AUC scores were notably lower 0.513 and 0.511 respectively, reflect-
ing the challenge of beginning with less important features. However, as more crucial
features were incorporated, we observed a gradual improvement in both ROC AUC and
PR AUC scores. The highest average performance of 0.924 was achieved when utilizing
all features, which was approximately achieved by the model’s performance when using
only the top-ranked feature. These results emphasize the critical role of feature selection
in anomaly detection which leads to models with better generalization capabilities.

■ Regression Task:

In our regression task, we assessed the performance of our model usingMSE and the coeffi-
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Table 4.2: Anomaly detection performance

Number of Features
Best to Worst Worst to Best

ROC AUC PR AUC Average ROC AUC PR AUC Average

1 0.923 0.936 0.93 0.513 0.511 0.512

2 0.92 0.935 0.928 0.588 0.613 0.6

3 0.918 0.931 0.925 0.73 0.727 0.728

4 0.928 0.938 0.933 0.732 0.72 0.726

5 0.924 0.937 0.931 0.731 0.721 0.726

6 0.927 0.939 0.933 0.743 0.738 0.74

7 0.929 0.94 0.934 0.747 0.743 0.745

8 0.93 0.941 0.936 0.757 0.753 0.755

9 0.927 0.938 0.932 0.765 0.762 0.764

10 0.931 0.942 0.936 0.764 0.762 0.763

11 0.927 0.938 0.932 0.782 0.778 0.78

12 0.928 0.937 0.933 0.849 0.844 0.846

13 0.928 0.936 0.932 0.855 0.85 0.852

14 0.919 0.928 0.924 0.886 0.891 0.889

15 0.919 0.928 0.924 0.919 0.928 0.924

cient of determination (R2) for both the "best to worst" and "worst to best" feature selection
strategies, as summarized in Table 4.3. For the "best to worst" strategy, MSE and R2 reached
0.073 and 0.602, respectively, starting from the first feature, and achieved their best perfor-
mance using only two features, with an MSE of 0.067 and an R2 of 0.633. Conversely, the
"worst to best" strategy initially exhibited higher MSE and a lower R2 value, indicating
poorer predictive performance when less important features were introduced. The peak
performance for the "worst to best" strategy was achieved when all features were used,
resulting in an MSE of 0.082 and an R2 of 0.552. These results reinforce the critical role of
feature selection in regression tasks.

Throughout the analysis of all tasks, the performance of the highest ranked feature ¨Looking at
road¨ achieved high results. The inclusion of additional features contributes minimally to per-
formance improvement. It strongly indicates that the feature "looking at the road" encapsulates
the majority of critical information.

4.5 Feature selection for personalized psychotic relapse
prediction

In the second application, we apply ourmethod to predict psychotic relapses. Here, we exper-
iment with employing the feature selection method to develop personalized models. Therefore,
for each patient, we train an AE for feature selection and an anomaly detection model for relapse
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Table 4.3: Regression performance on the visual distraction dataset.

Number of Features
Best to Worst Worst to Best

MSE R2 MSE R2

1 0.073 0.602 0.214 -0.173

2 0.067 0.633 0.189 -0.035

3 0.079 0.57 0.15 0.18

4 0.07 0.614 0.146 0.202

5 0.068 0.628 0.144 0.211

6 0.071 0.609 0.139 0.24

7 0.072 0.605 0.133 0.271

8 0.073 0.6 0.124 0.32

9 0.074 0.594 0.122 0.333

10 0.074 0.594 0.124 0.324

11 0.073 0.599 0.115 0.372

12 0.073 0.599 0.09 0.506

13 0.072 0.604 0.095 0.477

14 0.084 0.543 0.091 0.502

15 0.082 0.552 0.082 0.552

prediction

4.5.1 Data

In our study, we employ the dataset discussed in Chapter 3. However, we utilize subsets of
this dataset differently for various purposes in our analysis. Therefore, we changed their names
to avoid confusion about the purpose of their use. We follow the same data division into three
subsets:

■ D1 is the training data used in Chapter 3. This set exclusively comprises non-relapse data.
We use it for training the AE used for feature selection and relapse predictor model.

■ D2 is the validation dataset. It consists of both relapse and non-relapse days data. We use
it primarily for the ranking features by computing the correlation scores.

■ D3 is the testing dataset. It is employed to evaluate the performance of the feature selection
methods.

The table 3.7 in Chapter 3 shows the distribution of relapse and non-relapse days in the partitions.

4.5.2 Experiments

We aim to evaluate feature selectionmethods for each patient. Consequently, for each patient,
we execute the following steps:

■ AE for Feature Selection:
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For each patient, we employ a simple AE architecture featuring a single hidden layer com-
prising 4 neurons (similar to Chapter 3 ). During the model training phase, we utilize the
Adam optimizer and implement the MSE as the loss function. The batch size is set to 16,
with a maximum training duration of 1000 epochs. To enhance training efficiency and
avoid overfitting, we implement an early stopping mechanism, using 20% of the training
dataset for this purpose and setting a patience threshold of 10 epochs.

■ Anomaly Detection Models:

To assess the effectiveness of our feature selection methods, we conducted tests using
anomaly detection models tailored to each patient’s data. We use the anomaly detection
models that were identified as the best-performing models through a grid search process,
as detailed in Chapter 3. We present the selected models for each patient in Table 4.4.

Table 4.4: Anomaly detection models for patients

Patient Anomaly Detection Model

1 Isolation Forest

2 LOF

3 LOF

4 Isolation Forest

5 AE

6 LOF

7 LOF

8 AE

9 OCSVM

10 Elliptical Envelope

■ Features:

As for the features, we use all the features used in Chapter 3 calculated over a 24-hour
time window, which includes: the mean heart rate, the standard deviation of the heart
rate, the norm of the accelerometer coordinates, the norm of the gyroscope coordinates,
the percentage of sleeping time, and the total number of steps. To validate the efficacy of
the proposed approach, we introduce a noise feature created by random sampling from a
uniform distribution within the range [0,1]. This noise feature serves as a reference for
features expected to have low scores and minimal relevance.

4.5.3 Results

Table 4.5 presents feature data rankings for patients, in the context of detecting relapse in pa-
tients with psychotic disorders, from patient 1 (P1) through patient 10 (P10). Patient 1 emerges as
distinctive, exhibiting the highest correlation score (0.75) for the "HR_mean" feature, implying
its strong predictive power for this patient. Moreover, patient 4 has 3 features approximately
around 0.4 while the rest of the patients have low correlation scores. In contrast, Patient 5
demonstrates predominantly zero correlations across all features, however, this patient had only
3 relapse days in the validation set. The results may indicate that for the available features, the
distinction of relapse is easier for patients 1 and 4 and more difficult for the remaining patients
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which is consistent with the results obtained in 3.16 except for patient 5 whose relapse days are
very low. Furthermore, the results show that there is no feature that consistently demonstrates
high efficiency in predicting relapse for all patients. All features exhibit negative correlations
with relapse for at least one patient, indicating that none of the features are universally reliable
for relapse prediction across the entire patient cohort. This observation underscores the indi-
vidualized nature of psychotic disorder relapse prediction. Furthermore, when compared to the
correlation scores observed in the visual distraction detection task, the scores are notably lower,
indicating the heightened complexity of this particular task in contrast to distraction detection
and the need for more relevant features for relapse prediction. Moreover, these scores highlight
the varying degrees of difficulty across different patients within this task and the need for more
relevant features that possess a higher discriminative power.

Table 4.5: Feature scores for patients using our proposed approach.

Features
Correlation Scores

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

sleep 0.70 0.10 -0.06 0.38 -0.01 0.27 0.07 0.31 -0.27 0.15

sleep_index 0.15 0.02 -0.07 0.20 -0.13 -0.02 0.06 0.17 -0.32 -0.07

HR_mean 0.75 -0.03 0.14 0.37 -0.00 0.14 0.01 0.28 -0.01 -0.03

HR_std 0.51 -0.05 0.11 0.40 -0.02 0.08 0.21 0.18 -0.27 0.01

acc 0.13 0.08 0.25 0.29 -0.20 -0.05 0.04 0.00 -0.11 0.00

gyr 0.52 0.18 -0.15 0.31 -0.16 -0.12 -0.13 0.24 -0.26 -0.06

steps 0.21 -0.06 0.27 0.33 0.00 -0.02 0.15 0.02 -0.17 -0.08

noise 0.12 0.03 0.03 -0.10 -0.05 0.00 -0.13 -0.14 0.06 -0.12

Table 4.6 presents the performance of anomaly detection models using two different strate-
gies for feature selection across multiple patients. The table is divided into two sections: "Best
to Worst" and "Worst to Best". The performance metrics evaluated are ROC AUC, PR AUC, and
the total score. the analysis of the anomaly detection models’ performance shows that for all
patients the best-ranked feature consistently outperforms the worst-ranked feature. However,
there is an exception for Patient 7, where the worst feature performs better in terms of ROC AUC
and PR AUCscores. This can be attributed to the limitation of the small validation dataset for
calculating correlation scores. Moreover, the best testing performances (highest total scores) are
often achieved with fewer features than the total number of available features. However, for
certain patients, the "Worst to Best" scenario leads to the optimal feature combination. This sug-
gests that the strategy’s effectiveness might be compromised due to the relatively small dataset
and high complexity of the task.

Table 4.6: Anomaly detection models performance using feature selection.

Patient Number of features
Best to Worst Worst to Best

ROC AUC PR AUC Total ROC AUC PR AUC Total

1

1 0.7 0.571 0.636 0.513 0.252 0.382
continues on the next page
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Table 4.6 – Continuation

Patient Number of features
Best to Worst Worst to Best

ROC AUC PR AUC Total ROC AUC PR AUC Total
2 0.606 0.453 0.53 0.519 0.261 0.39
3 0.629 0.464 0.546 0.426 0.263 0.344
4 0.594 0.407 0.5 0.461 0.363 0.412
5 0.677 0.504 0.59 0.577 0.384 0.48
6 0.671 0.522 0.596 0.723 0.564 0.644

7 0.661 0.44 0.55 0.561 0.339 0.45
8 0.652 0.551 0.602 0.652 0.551 0.602

2

1 0.486 0.747 0.616 0.445 0.684 0.564
2 0.423 0.661 0.542 0.619 0.816 0.718
3 0.439 0.677 0.558 0.651 0.817 0.734

4 0.394 0.644 0.519 0.617 0.784 0.7
5 0.511 0.708 0.609 0.578 0.768 0.673
6 0.431 0.682 0.556 0.518 0.735 0.626
7 0.482 0.713 0.597 0.542 0.742 0.642
8 0.55 0.752 0.651 0.55 0.752 0.651

3

1 0.584 0.437 0.51 0.405 0.296 0.351
2 0.389 0.282 0.336 0.524 0.439 0.482
3 0.462 0.315 0.388 0.562 0.465 0.514

4 0.497 0.405 0.451 0.586 0.441 0.514
5 0.429 0.41 0.42 0.473 0.328 0.4
6 0.482 0.368 0.425 0.536 0.352 0.444
7 0.462 0.338 0.4 0.393 0.289 0.341
8 0.473 0.383 0.428 0.473 0.383 0.428

4

1 0.689 0.663 0.676 0.532 0.538 0.535

2 0.683 0.623 0.653 0.485 0.49 0.488
3 0.588 0.589 0.588 0.448 0.461 0.454
4 0.594 0.573 0.583 0.485 0.516 0.5
5 0.625 0.564 0.594 0.471 0.506 0.488
6 0.583 0.53 0.556 0.501 0.48 0.49

continues on the next page
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Table 4.6 – Continuation

Patient Number of features
Best to Worst Worst to Best

ROC AUC PR AUC Total ROC AUC PR AUC Total
7 0.594 0.526 0.56 0.476 0.46 0.468
8 0.552 0.516 0.534 0.552 0.516 0.534

5

1 0.38 0.151 0.266 0.228 0.12 0.174
2 0.554 0.195 0.375 0.185 0.116 0.15
3 0.424 0.159 0.292 0.185 0.112 0.148
4 0.467 0.172 0.32 0.457 0.158 0.308

5 0.446 0.165 0.306 0.261 0.122 0.192
6 0.37 0.14 0.255 0.217 0.116 0.166
7 0.304 0.132 0.218 0.174 0.11 0.142
8 0.315 0.134 0.224 0.359 0.14 0.25

6

1 0.666 0.634 0.65 0.477 0.451 0.464
2 0.461 0.44 0.45 0.558 0.504 0.531

3 0.445 0.402 0.424 0.448 0.41 0.429
4 0.424 0.404 0.414 0.385 0.448 0.416
5 0.533 0.462 0.498 0.473 0.474 0.474
6 0.459 0.428 0.444 0.403 0.441 0.422
7 0.481 0.442 0.462 0.495 0.472 0.484
8 0.502 0.459 0.481 0.502 0.459 0.481

7

1 0.367 0.155 0.261 0.504 0.183 0.344

2 0.53 0.179 0.355 0.43 0.153 0.292
3 0.526 0.19 0.358 0.496 0.19 0.343
4 0.57 0.504 0.537 0.356 0.162 0.259
5 0.578 0.239 0.408 0.274 0.126 0.2
6 0.467 0.176 0.322 0.348 0.16 0.254
7 0.333 0.136 0.234 0.348 0.209 0.278
8 0.267 0.127 0.197 0.267 0.127 0.197

8

1 0.473 0.752 0.612 0.441 0.75 0.596
2 0.393 0.722 0.558 0.447 0.753 0.6
3 0.4 0.726 0.563 0.534 0.804 0.669

continues on the next page
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Table 4.6 – Continuation

Patient Number of features
Best to Worst Worst to Best

ROC AUC PR AUC Total ROC AUC PR AUC Total
4 0.401 0.726 0.564 0.539 0.81 0.675

5 0.42 0.737 0.578 0.506 0.771 0.639
6 0.385 0.724 0.554 0.486 0.771 0.629
7 0.42 0.738 0.579 0.454 0.751 0.602
8 0.475 0.751 0.613 0.396 0.731 0.564

9

1 0.571 0.297 0.434 0.304 0.195 0.25
2 0.714 0.381 0.548 0.321 0.204 0.262

3 0.589 0.287 0.438 0.179 0.169 0.174
4 0.482 0.246 0.364 0.161 0.167 0.164
5 0.411 0.224 0.318 0.125 0.162 0.144
6 0.464 0.244 0.354 0.125 0.162 0.144
7 0.321 0.199 0.26 0.161 0.168 0.164
8 0.161 0.168 0.164 0.161 0.168 0.164

10

1 0.441 0.757 0.599 0.387 0.737 0.562
2 0.523 0.772 0.648 0.456 0.746 0.601
3 0.517 0.769 0.643 0.555 0.783 0.669
4 0.507 0.775 0.641 0.518 0.77 0.644
5 0.602 0.818 0.71 0.536 0.78 0.658
6 0.619 0.837 0.728 0.57 0.801 0.686
7 0.577 0.809 0.693 0.585 0.811 0.698

8 0.557 0.805 0.681 0.557 0.805 0.681

4.6 Comparison with related work
Following the development of our method, we came across a similar technique designed for

feature selection in imbalanced data settings. Massi et al. introduced a feature selection method
specifically tailored to identifying significant features capable of effectively distinguishing be-
tween the minority and majority classes in highly imbalanced binary classification scenarios
[353]. They use an ensemble of deep sparse AE to obtain the ranking of the features. They train
an ensemble of B learners (autoencoders). Each learner is trained using a tailored sampling pro-
cedure, utilizing subsets of the data. The dataset for each learner is split into training and testing
sets. The training sets comprise only the majority class, while the testing set consists of an equal
distribution of majority and minority class data points. In contrast to our approach, in their
method, they compute feature rankings(∆) by generating RE matrices from test sets and calcu-
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lating average REs per feature per class (minority andmajority classes). This vector identifies the
features that display noteworthy differences in REs between the majority and minority classes.
Discriminative feature selection is accomplished by implementing a threshold δ ∈ {0, 1}. We
implement this method in both applications (visual distraction detection and psychotic relapse
prediction) and proceed to compare the outcomes between this approach and ours. Due to the
limited size of our datasets, we made an adjustment in our evaluations by employing a single AE
instead of multiple deep stacked AE as shown in Figure 4.4.

Figure 4.4: Our adapted implementation of the proposed method by Massi et al. [353].

4.6.1 Visual distraction detection

In Table 4.7, we provide the Delta Scores obtained for each feature using themethod proposed
byMassi et al [353]. Notably, the feature ’Looking at road’ emerges as the most important feature
with a high score of 2.77, while ’Gaze heading standard deviation’ is ranked as the least significant
feature with a comparatively lower Delta Score of 0.18. It is worth noting that the overall ranking
of features is similar to that obtained with our approach; however, there are differences in the
rankings for features occupying positions from the 9th to the 14th. In Figure 4.5, we compare
the performance improvements achieved by adding the most important features one by one for
the three tasks: anomaly detection, classification, and regression. The graphs reveal that both
strategies yield similar performance improvements. In the regression task, our feature selection
slightly outperforms the other strategy.
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Table 4.7: Delta scores

Feature Name Delta Score

Looking at road 2.77

Gaze pitch mean 2.14

Head pitch standard deviation 0.82

Gaze pitch standard deviation 0.77

Head pitch mean 0.65

BVP IBI 0.57

ECG IBI 0.57

Saccade rate 0.51

Head heading mean 0.49

Eye position entropy 0.41

Gaze heading mean 0.41

Head heading standard deviation 0.38

Saccade magnitude 0.33

Saccade peak velocity 0.26

Gaze heading standard deviation 0.18

4.6.2 Psychotic relapse prediction

We also evaluated the approach on psychotic relapse prediction. Table 4.8 presents feature
data ranking for patients in the context of detecting relapse in patients with psychotic disor-
ders. Each column represents a different patient, from patient 1 (P1) through patient 10 (P10).
The table includes various features, and for each feature, the table displays the corresponding
delta values for each patient. The delta values highlight the importance of different features in
detecting relapse. Notably, the features of heart rate, gyroscope, and steps seem to have rela-
tively higher values for patient 1 than sleep. Similar to our method, patients 1 and 4 display the
highest scores. Moreover, patient 8 also exhibits notable scores. However, the feature rankings
for patient 4 appear to offer more discriminatory information compared to patient 1, which is
inconsistent with the outcomes from our proposed approach in Table 3.6 and the testing results
detailed in the previous chapter in Table 3.16. In the table, it is intriguing to observe that patient 9
has a relatively high positive value for this noise feature. This finding raises several possibilities.
It could suggest that, for this specific patient, none of the features are inherently strong indi-
cators for relapse prediction. Alternatively, it might indicate that the feature selection method
applied in this context may not be capturing the critical features effectively. However, due to
the number of abnormal examples in the validation and testing sets (only three), it is difficult to
conclude. Moreover, it is essential to note that the importance of these features varies among
patients. For instance, while "HR_std" is particularly important for patient 4 with a value of
0.575, it may not be as relevant for other patients, (e.g. negative values for patients 2,5,7, and 9).
This diversity underscores the personalized nature of healthcare for individuals with psychotic
disorders, highlighting the need to tailor feature selection and modeling to each patient’s unique
characteristics.
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Figure 4.5: Performances obtained with feature selection using our proposed approach and the approach proposed by
Massi et al.

Table 4.8: Feature Data for Patients

Features
Delta Scores

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

sleep 0.112 0.038 -0.05 0.128 -0.181 -0.095 0.008 0.215 -0.073 0.049

sleep_index 0.099 -0.056 -0.083 0.094 -0.07 0.109 0.017 0.114 0.002 -0.035

HR_mean 0.311 0.072 0.102 0.229 0.196 0.059 0.029 0.189 0.048 0.062

HR_std 0.196 -0.103 0.092 0.575 -0.25 0.083 -0.11 0.31 -0.148 0.031

acc 0.036 0.091 0.063 0.123 -0.107 -0.025 0.071 0.035 -0.178 0.011

gyr 0.26 -0.004 -0.047 0.21 -0.054 -0.076 -0.209 0.095 0.074 -0.009

steps 0.185 -0.064 0.108 0.21 -0.052 -0.004 0.135 0.007 -0.141 -0.117

noise -0.061 -0.122 -0.065 0.049 -0.013 -0.044 -0.134 0.022 0.094 -0.045

The feature rankings show variations between both approaches, we compare across all pa-
tients the performance of their best and worst ranked features, as depicted in Figure 4.6. In 4.6.a,
we calculate the performance of the best ranked feature for each patient and in 4.6.b we cal-
culate the performance of the worst ranked feature for each patient. The performances of the
best-ranked features from both approaches are generally very close, indicating that both strate-
gies tend to identify strong features similarly across most patients except for patient 6 where
our strategy‘s best feature significantly outperforms the one obtained through their approach.
However, in the case of the least ranked feature, the worst-ranked features from the approach
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by Massi et al. [353] outperformed those of our approach for most patients, thereby rendering
the rankings from our approach more consistent. Moreover, considering the results from both
strategies, it becomes apparent that there is a need for a larger dataset to establish more robust
feature rankings.
Both methods exhibited comparable performance in the visual distraction task, showcasing

Figure 4.6: (a): Anomaly detection averaged performance for each patient using the best ranked feature our proposed
strategy and Massi et al. approach. (b): Anomaly detection averaged performance for each patient using the worst
ranked feature our proposed strategy and Massi et al. approach.

good efficiency. However, when applied to the psychotic relapse prediction, discrepancies arose
between the outcomes of the two approaches. Due to the relatively low results of the feature
scores in the second task, the identification of crucial features became challenging, especially
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given the small validation set. An advantageous aspect of our approach lies in its consideration
of the continuous value of the annotation. Nonetheless, reaching conclusive results demands
further testing and analysis.

4.7 Potential exploitation of the proposed method
Our method can be exploited in several ways to provide more explainability and insights into

the model:
■ Feature Importance: The feature rankings offer valuable insights into the significance
of each feature within the anomaly detection process. This grants explanations regarding
which features the model deems relevant. For example, for distraction detection, we found
that the feature ‘Looking at road‘ is very important for the detection of distraction, whereas
‘ECG IBI‘ was not relevant. Furthermore, it sheds light on variations in the manifestation
of certain phenomena, such as personalized relapse prediction. Without conducting the
exhaustive search as we had done in the previous chapter, the results obtained through the
feature selection method illustrate the varying importance of the features for each individ-
ual patient.

■ Multiple types of anomaly classification: In scenarios involving anomaly detection,
such as identifying abnormal behaviors in driving like fatigue, distraction, or stress, con-
ventional models often detect anomalies without specifying the specific behavior trigger-
ing them. However, our approach can enhance this process by targeting and identifying
various types of dangerous driving behaviors. To achieve this, we can train a unique AE
for different behavior-related signals within the normal state. To compute the correlation
scores, we can utilize a small dataset encompassing both normal and abnormal instances
specifically tailored to each subgroup, such as fatigue, drowsiness, and distraction. This
approach will enable us to isolate and identify the key features critical for detecting each
specific behavior within the driving context. During testing, when an instance is flagged
as an anomaly, our approach can verify the features contributing most to the RE. Then,
by leveraging our feature rankings obtained during training, we can categorize abnormal
behavior into known driving anomaly categories. This approach represents a deeper dive
into anomaly detection, aiming not only to detect anomalies but also to attribute them to
specific known driving behaviors, potentially offering more nuanced insights into various
dangerous driving patterns.

■ Sensors Selection: The application of this method extends to scenarios where a multitude
of signals are collected without a clear understanding of their significance. For example,
in the domain of driving visual distraction detection, our method’s findings showcase that
signals like ECG and BVP contribute minimally to distinguishing between distracted and
non-distracted behavior. This insight can aid in prioritizing and focusing resources on
more influential sensors, potentially streamlining data collection efforts and computational
resources in scenarios where signal acquisition is resource-intensive or costly.

4.8 Conclusion
This chapter explored the use of anomaly detection methods for feature selection within

imbalanced datasets. Our exploration revolves around leveraging AE trained solely on normal
class data and calculating correlation scores between the reconstruction error of features and
annotations from both normal and abnormal samples. This study encompasses a comprehensive
evaluation of our proposed feature selection method within two applications: visual distraction
detection and psychotic relapse prediction.
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In the visual distraction application, we investigated the impact of employing strategies for
binary classification, anomaly detection, and regression models. Our approach, relying on corre-
lation scores, provided insightful perspectives on feature importance. Particularly, it highlighted
the benefits of beginning with highly influential features in classification tasks and regression.

However, when extended to the more intricate "psychotic relapse prediction" task, which had
a relatively constrained dataset, the feature selection strategies showcased less consistent feature
rankings. This highlighted the crucial need for a robust validation dataset for these strategies.
Additionally, the results reinforced the necessity for personalized models and underscored the
variability in feature importance across all patients.

Our study presented promising results by utilizing AE reconstruction error for gaining in-
sights into model explainability and feature importance. However, to validate its efficiency and
generalizability, this method warrants further testing across various datasets.
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5
Multimodal Fusion Using Anomaly scores

In this chapter, we present and evaluate a new multimodal fusion ap-
proach. We introduce difficulty indicators for each modality’s data
as additional inputs to enhance signal fusion. Our proposed method
is tested on the ULM-TSST dataset from the Muse-Stress challenge at
ACM Multimedia21, where it secured the second position.
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CHAPTER 5. MULTIMODAL FUSION USING ANOMALY SCORES

5.1 Introduction
As discussed in Chapter 2, affective expressions inherently involve multiple modalities. An

emotion encompasses three distinct components: a subjective experience, a physiological re-
sponse, and an expressive response [354]. The latter two are most prominently manifested
through facial expressions, speech, and physiological indicators like heart rate or electroder-
mal activity. Both humans and computers recognize emotions by analyzing several types of sig-
nals. Extensive research has been dedicated to identifying the most effective modalities and fea-
tures for affective computing. Some studies focus solely on predicting emotions through specific
modalities such as speech [355], video [356], or physiological signals [357]. Conversely, other
works explore the multimodal nature of emotion expression by simultaneously fusing multiple
modalities to predict emotions [358, 359].

In Chapter 2 Section 2.2.6, we explain in detail the most adopted fusion techniques in modal-
ities fusion in affective computing. It can be summarized into three categories: early, late, and
hybrid fusion. However, there remains no consensus on the optimal approach for fusing multiple
modalities in emotion recognition [124].
Instead of focusing on the techniques and models used for fusion, some works focused on en-
hancing the data prediction and fusion process by including additional information by calculat-
ing an additional learning task to the model. Zhang et al.[360] used data difficulty indicators in
dynamic difficulty awareness training (DDAT). DDAT relies on the assumption that a model will
perform better if it is provided with the learning difficulty of the data. They train a model that
reconstructs the input and predicts emotions in a multi-task learning framework. They calculate
the RE of the inputs and use it as a difficulty indicator to update the model. The RE is re-injected
into the model to update its weights accordingly. For fusion, they used a linear regression model
which input are the original prediction and the corresponding difficulty indicator, without con-
sidering temporal influences on the fusion of predictions.
In our work, we have drawn inspiration from their approach but extended it further. Our archi-
tecture is designed to leverage data difficulty indicators for multimodal fusion, utilizing recurrent
models to fuse predictions. Moreover, we specifically evaluate the impact of adding the RE in
the fusion process alone, which was not covered in their research. Our evaluation centers on
the ULM TSST emotion database, encompassing multiple modalities with the goal of predicting
arousal and valence.

The rest of this chapter is structured as follows: Section 5.2 provides a detailed overview of
our proposed approach. Following this, we introduce the dataset and the computed features used
to evaluate our fusion methods in Section 5.3.1.1. We present the results of our ablation studies
and comparisons with other works in Section 5.4. Finally, we conclude our findings in Section
5.5.

5.2 Proposed multimodal fusion scheme
In multimodal prediction, the significance of each modality can fluctuate based on various

factors. An example in emotion prediction: if an unseen facial expression accompanies a familiar
speech pattern indicating happiness, the model should emphasize the speech modality more for
the prediction. Another instance could involve a malfunctioning sensor providing erratic signals
different fromwhat it learned during training; here, themodel should relymore on the consistent,
normal signals it’s accustomed to. These scenarios exemplify one factor influencing the change
in modalities’ importance, namely encountering signals dissimilar to the model’s training data.
However, there are other contributing factors to consider e.g. context. In our work, we focus
on the difficulty indicator reflecting the dissimilarity from the training dataset. In this section,
we explain our proposed approach for multimodal fusion prediction that takes into account data
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difficulty indicators. We adopt the late fusion strategy where the fusion is done on the decision
level. The proposed approach is divided into three steps: Data difficulty indicator estimation,
Unimodal predictions, and Multimodal fusion.

5.2.1 Step 1: Data difficulty indicator estimation

As mentioned in Chapter 2, AE are used to solve the high dimensionality problem since an
increase in dimensions raises the required complexity of the model, the demand in data, and the
computation capacities. More recently, AE is being used to detect anomalies as we explored in
Chapter 3. In this context, the average RE of the input determines whether it’s considered an
anomaly. It serves as a measure of dissimilarity from the training data. Similar to the approach
in Zhang et al. [360], we are exploring this metric as a measure of difficulty. We train a specific
AE for each feature set. Post-training the AE, we calculate a difficulty indicator for each feature
set of every input. We define the difficulty indicator as the averaged MSE between the input and
its reconstruction.

5.2.2 Step 2: Unimodal predictions

Since we are adopting late fusion, we perform predictions of each feature set separately.
For each feature set, we train a regressor where the input is the feature and the data difficulty
indicator is obtained from the AE specific to the feature set.

5.2.3 Step 3: Multimodal predictions

The last step is multimodal fusion. We feed our fusion model with the predictions from each
feature set and the difficulty indicator of the respective input, as shown in Figure 5.1.

Figure 5.1: Diagram of the proposed solution. Xi refers to the ith unimodal features set. X̃i refers to their reconstruction
using the AE. RE refers to the averaged reconstructed error. Ỹi refers to the unimodal prediction using the ith features
set and Ỹi refers to the multi-modal prediction.

5.3 Model architecture and training settings
For each feature set, we train a separate AE for calculating the data difficulty indicators and

a regressor for arousal and valence continuous prediction. We implement our solution using
the Pytorch toolkit [361]. For each feature set, our unimodal predictors, AE, and late fusion
model share the same architecture: four-layered bi-directional RNN with 64 hidden neurons
followed by a feedforward layer. We evaluate two types of RNNs: a LSTM and a GRU net-
works. The choice between LSTM , GRU , Bidirectional Long Short-Term Memory (BiLSTM),
and Bidirectional Gated Recurrent Unit (BiGRU) as recurrent layer is determined based on the
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results on the validation set. We utilize the Adam optimizer and varied learning rates (0.001,
0.005, 0.0005). As a form of regularization, we apply dropout and evaluate with several rates (0.1,
0.2, or 0.5). We train the model for 100 epochs at most and apply early stopping if the validation
performance does not improve after 15 epochs. For the loss function proposed in the challenge
[362], we use the Concordance Correlation Coefficient (CCC) loss [363] which is defined as:

L = 1 − CCC, (5.1)

where
CCC =

2ρσ̂yσy

σ̂2
y + σ2

y + (µ̂y − µy)2 (5.2)

and µ̂y and µy are the mean of the prediction Ŷ and the label Y, and σ̂y and σy are the corre-
sponding standard deviations. ρ is the Pearson Correlation Coefficient (PCC) between Ŷ and Y.
Thereby the predictions that exhibit a strong correlation with the gold standard but deviate in
value are penalized according to the extent of their deviation [364].

5.3.1 Dataset
5.3.1.1 Datasets for emotion recognition

The first step in constructing an effective ML model is identifying an appropriate dataset.
In emotion recognition, datasets typically fall into three categories: acted, induced, and natural
[365]. Acted datasets involve individuals being directed to display specific emotions. Induced
datasets create controlled settings specifically designed to elicit particular emotions. Meanwhile,
natural datasets are gathered from people spontaneously expressing or reacting to emotions. It’s
important to note that collecting natural datasets poses the greatest challenge due to ethical and
privacy concerns.

Certain datasets are limited to a single modality. For instance, RAF-DB [366] exclusively com-
prises facial images, while Berlin DB [367] solely contains utterances from German-speaking
individuals. Exploring these databases is intriguing as they concentrate on a single modality,
making them suitable for scenarios where only one type of signal can be recorded. However,
this approach doesn’t leverage multiple sources of information, potentially limiting robustness.
Hence, our focus lies on databases encompassing multiple modalities exclusively. Among the
notable multimodal datasets, RAVDESS [368] offers audiovisual recordings featuring 24 profes-
sional actors annotated across various emotion categories. IEMOCAP [369], another renowned
database in affective computing, includes audio, speech, motion capture, and textual recordings
of both scripted and unscripted conversations. It encompasses annotations for categorical emo-
tions as well as dimensional labels like valence, activation, and dominance. However, findings
suggested that real-world expressions are often subtler than acted ones [370], potentially leading
to reduced model performance in practical applications. Therefore, we aimed towards induced
or natural datasets.

Moreover, our focus on emotion prediction in the dimensional approach, unconstrained by
specific emotion categories, led us to consider datasets with continuous annotations. The fol-
lowing datasets are also multimodal and have continuous annotations of emotions. SEWA DB
[365] is a rich database collected in the wild in diverse settings and includes several ethnici-
ties. RECOLA [371] encompasses audio, video, and physiological recordings of participants in
a spontaneous collaborative environment. ULM-TSST [362], includes audio, video, and physio-
logical signals captured within a stress-inducing environment. Our choice to work with ULM
TSST stems from its emphasis on stress-inducing settings, aligning with our interest in proactive
well-being applications. Furthermore, ULM TSST was introduced in the MUSE challenge [362],
providing us with an opportunity to position our work within the broader research community
for comparison and evaluation.
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5.3.1.2 ULM-TSST dataset description

It consists of 69 German-speaking participants, aged between 18 and 39 years, in a stress-
inducing setup following the Trier Social Stress Test procedure [372]. Following a short prepa-
ration period, participants are instructed to deliver an oral presentation. This takes place in a
simulated job interview environment where two interviewers are present, though they remain
silent for a duration of five minutes. Video and physiological recordings are taken during the
presentation. The total duration of the database is 5h: 47 min: 27s. Arousal and valence are
annotated by three raters and the fusion of the annotations is done using the Rater Aligned An-
notation Weighting method. The given modalities are audio, video, and transcripts in addition
to the physiological signals EDA,ECG, respiration, and heart rate (BPM).

5.3.1.3 Dataset partitionning

For a thorough evaluation, the dataset is divided into three subsets: train, devel (validation),
and test. The partitionwas provided by the organizers of the challenge. We present the number of
unique sessions provided in each partition in Table 5.1. Each session corresponds to a participant.
Additionally, Figure 5.2 illustrates the distributions of arousal and valence values across the

Table 5.1: Number of unique videos and total duration of data in each partition of the dataset ULM-TSST

Partition Number of sessions Total duration

Train 41 3:25:56

Devel 14 1 :10 :50

Test 14 1 :10 :41

∑ 69 5 :47 :27

dataset partitions. It reveals a consistent distribution pattern of arousal and valence across all
partitions.

Figure 5.2: Frequency distribution in the partitions train, development, and test for the continuous values of arousal
and valence [362].

127



CHAPTER 5. MULTIMODAL FUSION USING ANOMALY SCORES

5.3.2 Features

The MuSe2021 provides a range of relevant extracted acoustic, visual, and textual features
for the participants to use. However, we discarded the physiological signals due to their low
performance in this dataset [362]. We explored the performance of high-level and low-level
features for continuous emotion prediction. In our approach, we used the following parameter
sets provided in the dataset due to their reported good performance for emotion recognition
tasks [362][373][374] [375].

5.3.2.1 Acoustic features

Extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) features We explore using
the extended GenevaMinimalistic Acoustic Parameter Set eGeMAPS [47] which can be extracted
using the free openSMILE toolkit [376]. It consists of Low-Level Descriptors (LLD) including:

■ Frequency Parameters: Pitch, jitter, the bandwidth of first formant( formant 1), and for-
mant 1,2, and 3 frequency, and Formant 2-3 bandwidth.

■ Energy Parameters: Shimmer, loudness, harmonics-to-noise ratio
■ Spectral Parameters: Alpha Ratio, Hammarberg Index, Spectral Slope 0-500 Hz and 500-
1500 Hz, Formant 1, 2, and 3 relative energy, Harmonic difference H1-H2, Harmonic dif-
ference H1-A3, Mel-Frequency Cepstral Coefficients 1-4, spectral flux.
The functionals arithmetic mean and coefficient of variation are applied to all these LLD
over voiced regions only except for MFCC 1-4 and spectral flux. For MFCC 1-4 and spectral
flux, the functionals are calculated over voiced regions only and voiced and unvoiced re-
gions together. For both loudness and pitch, an additional set of 8 functionals is employed.
These functionals encompass the 20th, 50th, and 80th percentiles, the range spanning from
the 20th to the 80th percentile, and the mean and standard deviation of the slopes in the
rising and falling segments of the signal. In addition, the set includes the mean value of
the Alpha Ratio, the Hammarberg Index, and the spectral slopes within the 0-500 Hz and
500-1500 Hz frequency ranges across all unvoiced segments. Furthermore, the parameter
set incorporates the equivalent sound level.

■ Temporal Parameters: rate of loudness peaks, mean length and the standard deviation of
continuously voiced regions, mean length and the standard deviation of unvoiced regions,
and number of continuous voiced regions per second.

The total number of parameters in eGeMAPS is 88. We normalize the eGeMAPS features.

DeepSpectrum DeepSpectrum features [52] were also tested in our experiments. DeepSpec-
trum had been trained on spectrograms of audio snores, utilizing a deep CNN (VGG-19) that had
been pre-trained for image recognition. The default extraction settings were maintained to yield
a feature set with dimensions of 4096.

5.3.2.2 Visual features

Face action unit Using the Multi Cascaded Convolutional Neural Networks (MTCNN)[377]
shown in Figure 5.3, 17 facial action unit intensities are obtained from the center and left sides
of the face.

VGGFace The VGGface [378] architecture was initially intended for supervised facial recog-
nition tasks. The network was trained on a substantial dataset consisting of 2.6 million faces,
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representing more than 2,500 unique identities. Moreover, by detaching the top layer of a pre-
trained version, it can provide a 512-feature vector output referred to as VGGface. The input to
the network was obtained using the MTCNN.

Figure 5.3: MTCNN architecture [377].

5.3.2.3 Textual features

BERT : For the textual modality, BERT [379] features are provided. The high-level contextual
embedding proved to deliver state-of-the-art results for several Natural Language Processing
(NLP) tasks [380] [381]. BERT is specifically engineered to pre-train deep bidirectional represen-
tations from unannotated text data. It achieves this by considering both left and right contexts
simultaneously in all layers. Consequently, the pre-trained BERT model can be fine-tuned with
the addition of just one extra output layer. During the inference process, the context-driven
representations are retained, with a specific vector associated with each word. This differs from
static word embeddings, which provide a single vector for each word regardless of context. The
features are computed by summing the outputs from the last four BERT layers, resulting in a
768-dimensional similar to [104]. Since the Ulm-TSST is a German database, BERT (base) that
has been pre-trained on German texts is used.

5.4 Results
In this section, we will outline the outcomes of our experiments aimed at identifying the op-

timal recurrent layer and loss function for our model. Additionally, we will show the results of
unimodal predictions across different modalities and features, examining the impact of integrat-
ing the data difficulty indicator as supplementary input for these predictions. Furthermore, we
present our exploration of combining unimodal predictions to identify the most effective feature
combinations and assess the effect of incorporating the difficulty indicator into the fusion pro-
cess. Finally, we will compare our findings with other methods applied to the ULM TSST dataset.

5.4.1 Ablation study
5.4.1.1 Network architecture study

We conduct an ablation study to determine the best type of recurrent layer for our model. We
explore four types of models: LSTM , GRU , BiGRU, and BiLSTM using the standard approach
where only unimodal features are inputted to the model. All of the four models are 4-layered
networks with 64 hidden neurons. We present the results of the performance of each model in
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Tables 5.2 and 5.3 for arousal and valence respectively. Generally, the BiGRU and BiLSTMmodels
outperform both LSTM and GRU models. These results show that both past and future infor-
mation is relevant for emotion prediction. Since BiGRU and BiLSTM have close performances
and BiGRU have fewer parameters, we choose to continue with BiGRU model to target better
generalization on the testing set.

Table 5.2: CCC performance comparison between recurrent models for unimodal predictions on arousal dimension on
the validation set.

Features LSTM BiLSTM GRU BiGRU

eGeMAPS 0.4714 0.5466 0.4739 0.5322

VGGface 0.1809 0.3561 0.1283 0.2293

FAU 0.3260 0.3637 0.3641 0.3688

BERT 0.2250 0.3166 0.2349 0.2681

DeepSpectrum 0.3339 0.2617 0.2538 0.2185

Table 5.3: CCC performance comparison between recurrent models for unimodal predictions on valence dimension on
the validation set.

Features LSTM BiLSTM GRU BiGRU

eGeMAPS 0.5926 0.5597 0.5671 0.5646

VGGface 0.5650 0.5671 0.5414 0.6481

FAU 0.5480 0.5952 0.5531 0.5143

BERT 0.3025 0.2538 0.2828 0.4473

DeepSpectrum 0.5548 0.5678 0.5532 0.5630

5.4.1.2 Loss function study

We also experiment with 3 loss functions on the BiGRU model: “CCC”, “MSE”, and “L1” loss.
Generally, CCC gives better performance as shown in Table 5.4 and 5.5. The results agree with
the findings in [382] [50]. This coherence is expected as our primary focus was enhancing the
CCC between the predictions and annotations.

Table 5.4: CCC performance on the arousal obtained by using different loss functions on the validation set.

Features MSE L1 CCC

eGeMAPS 0.3038 0.3306 0.5322

VGGFace 0.0772 0.0159 0.2293

FAU 0.3083 0.4354 0.3688

BERT 0.3277 0.3160 0.2681

DeepSpectrum 0.0666 0.1201 0.2185
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Table 5.5: CCC performance on the valence obtained by using different loss functions on the validation set.

Features MSE L1 CCC

eGeMAPS 0.4465 0.4414 0.5646

VGGFace 0.5354 0.3980 0.6481

FAU 0.4011 0.2885 0.5143

BERT 0.3658 0.3095 0.4473

DeepSpectrum 0.5262 0.4984 0.5630

5.4.2 Influence of difficulty data indicator

5.4.2.1 Unimodal level

This experiment aimed to assess the impact of the data difficulty indicator on the model’s
prediction. Tables 5.6 and 5.7 showcase the performance on the validation set for arousal and
valence prediction under two scenarios. In the first, the predictor receives input from a single
feature set. In the second, the model receives the feature set along with data difficulty indicators,
acquired via the AE trained on this feature set’s data. Across most modalities for both tasks, the
results demonstrate improvement, indicating that incorporating difficulty information enhances
the model’s performance. These findings align with [360], highlighting that providing insights
into prediction difficulty notably enhances model performance. These results strongly advocate
further exploration of this indicator’s influence at the multimodal fusion level.

Table 5.6: CCC performance comparison for unimodal predictions on arousal dimension on the validation set

Modalities Features
Model Inputs

Unimodal Features Unimodal Features + RE

Audio
eGeMAPS 0.5322 0.5829

DeepSpectrum 0.2185 0.2498

video
VGGFace 0.2293 0.3926

FAU 0.3688 0.3668

Text BERT 0.2681 0.3457

Table 5.7: CCC performance comparison for unimodal predictions on valence dimension on the validation set

Modalities Features
Model Inputs

Unimodal Features Unimodal Features + RE

Audio
eGeMAPS 0.5646 0.6353

DeepSpectrum 0.5630 0.5676

Videoo
VGGFace 0.6481 0.6798

FAU 0.5143 0.5307

Text BERT 0.4473 0.4655
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5.4.2.2 Multimodal level

In this section, we aim to identify which feature combination gives the best results. For this
purpose, we take the trained models predictions which we trained separately using the feature
set and its data difficulty indicator. The results here present the fusion of predictions using the
outputs of the models only. We try several combinations for fusion, as shown in Table 5.8. We
observe that adding the textual modality causes a drop in performance; this can be explained by
the fact that textual information in interviews may not reflect true emotions. We also observe
that adding DeepSpectrum features does not improve the performance. This could be the result
of the high dimensionality of this feature set (4096 features), which would necessitate a more
complex model to leverage the information of these features. When fusing several modalities,
the performance is improved significantly, further affirming the advantage of utilizing several
modalities for emotion prediction. The optimal combination involves audio and video features,
precisely the feature sets comprising eGeMAPS, VGGFace, and FAU. It’s noteworthy that the
best-performing feature combination encompasses both low-level features (FAU) and high-level
features (VGGFace). We aimed to assess the impact of integrating data difficulty levels into the

Table 5.8: CCC performance of multi-modal features on the arousal and valence dimension on the validation set.

Modalities Features Arousal Valence

A+V eGeMAPS + VGGFace 0.6205 0.7024

A+V+T eGeMAPS + VGGFace + BERT 0.6031 0.6811

A+V eGeMAPS + VGGFace + DeepSpectrum 0.6199 0.7320

A+V eGeMAPS + VGGFace + FAU 0.6469 0.7653

multimodal fusion process. We conducted the multimodal fusion in two scenarios: first, us-
ing predictions from each feature set solely, and second, fusing both predictions and the data
difficulty indicator of each feature set. Leveraging the optimal combination of unimodal pre-
dictions (eGeMAPS + VGGFace + FAU) outlined in Table 5.8, our results, as depicted in Table
5.9, demonstrate improved performance when incorporating the data difficulty indicator as ad-
ditional features during fusion for both arousal and valence. This substantiates the utility and
effectiveness of this feature in the fusion process.
Table 5.9: Multimodal fusion CCC performance on arousal and valence using as fusion model inputs, unimodal predic-
tions only (first row) and unimodal prediction along with RE (second row) on the validation set.

Inputs Arousal Valence

Fused Unimodal predictions 0.6469 0.7653

Fused Unimodal predictions + RE 0.6554 0.8036

5.4.3 Results comparison of methods proposed in the literature

Our work on the ULM-TSST dataset marked one of the initial studies conducted with this
specific dataset. In this section, we present concurrent studies that were done around the same
period as our research and the results obtained from each research on the testing dataset. The
research listed here represents the highest-ranking solutions alongside our work for the MUSE
stress sub-challenge [362]. In their study [383], authors employed a combination of acoustic
features like eGeMAPS, DeepSpectrum, MFCC, INTERSPEECH 2009 (IS09), and INTERSPEECH
2010 (IS10), along with visual features such as FAU, Emonet, and SENET. Their exploration in-
volved both early and late fusion techniques by a bidirectional LSTMmodel. Their results showed
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that late fusion has a superior performance. Their findings revealed that the optimal combi-
nation for arousal was FAUs+eGeMAPS, whereas, for valence, FAUs+eGeMAPS+Emonet+IS10
showed the best performance. Duong et al. [384] examined all available features within the
MUSE dataset, including eGeMAPS, DeepSpectrum, VGGish, FAU, VGGface and BERT. They
introduced a positional encoding created by encoding timestamps for each frame within the in-
put sequence. These encoded features were then fed into a self-attention temporal CNN and
LSTM. Their multimodal predictions were fused using two fully connected layers. For valence
and arousal predictions, they selected the best audio and video features for arousal and valence
(FAU + eGeMAPS) determined through an ablation study conducted on the development set. Ma
et al. [385] used a model consisting of a self-attention layer with a LSTM followed by a fully con-
nected layer. They predicted from the following features eGeMAPS, VGGface, ECG, RESP, and
BPM fed [385] and performed late fusion with BiLSTM. A common finding across all research
was the performance drop between the development set and the testing set. This suggests a po-
tential difference in data distribution between these two datasets. Also, similar to our findings,
the text modality didn’t appear to be efficient for predicting arousal and valence in this dataset.

The results in Table 5.10 showcase various approaches, with the top-performing model in-
corporating biosignals, signifying their efficacy in predictions. Additionally, the integration of
a self-attention mechanism, as observed in [385] and [384], led to improvements. Our work
secured the second rank among these studies. An intriguing avenue for future research could
involve testing whether our proposed solution can be further enhanced by incorporating a self-
attention mechanism.
In the following year, the ULM TSST dataset featured in a MUSE subchallenge [386], prompting
several research efforts to predict arousal and valence [387] [388] [389] [390] [391] [392]. How-
ever, the challenge organizers altered the annotation for arousal, preventing direct comparison
without retraining our models.

Table 5.10: Proposed solutions for continuous emotion prediction on the ULM TSST dataset in the literature.

Arousal Valence Total

[385] 0.615 0.460 0.538

Our approach [393] 0.595 0.427 0.511

[384] 0.613 0.405 0.509

[383] 0.3054 0.664 .485

5.5 Conclusion
In this chapter, we investigated the integration of anomaly detection methods to enhance

multimodal fusion in predicting continuous emotions, specifically arousal and valence, using
the ULM TSST dataset. This dataset incorporates various information modalities, such as audio,
video, biosignals, and text, obtained from individuals in stress-induced conditions. Our approach
focused on employing late fusion with audio, video, and text modalities.

We conducted studies to analyze the impact of a data difficulty indicator, derived from the
RE of AE, on both unimodal and multimodal prediction levels. To this purpose AE were trained
for each feature set specifically to obtain the data difficulty indicators. For evaluation, predic-
tors were trained with and without these difficulty indicators both on unimodal and multimodal
levels. The outcomes demonstrated an improvement in models trained with the data difficulty
indicators, affirming the informative nature of the AE RE and its significance in unimodal and
multimodal fusion.
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Additionally, our findings revealed that the most effective modalities for emotion prediction
were audio and video, specifically eGeMAPS, FAU, and VGGFace as the optimal combination.
Surprisingly, the text modality exhibited a drop in performance, contributing less effectively to
the predictive model.

However, a limitation of our work was the potential overfitting of the model to the validation
set, a common issue observed in other proposed solutions in the literature. The disparity in
CCC performance between the validation and test sets suggests a need for additional data to
ensure generalization. Implementing data augmentation methods could potentially address this
limitation.
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Conclusion

6.1 Conclusions

E xploring anomaly detectionwithin affective computing has provided solutions tomajor chal-
lenges in the field. Our research spanned various applications, including detecting danger-

ous driving behavior, such as visual distractions for road safety, predicting psychotic relapses
in mental health patients, and continuously predicting emotions for individuals under stressful
situations. By utilizing anomaly detection methods, we overcame the limitations of traditional
supervised learning, which requires labeled data and balanced datasets, and achieved signifi-
cant advancements in these domains. Moreover, our work explored several types of modalities:
speech, video, text, physiological signals, and eye-tracking features.

First, we explored detecting rare mental states using anomaly detection methods. The funda-
mental principle underlying our approach involved training a model to comprehend the distribu-
tion patterns within the normal data. When presented with new samples, the model calculates
their distance or dissimilarity in comparison to the data it has been trained on. Any signifi-
cant deviation from this learned pattern indicates that the sample belongs to the rare class that
we aim to detect. We explored applying this approach to two affective computing applications:
Dangerous driving behavior and psychotic relapse prediction.

The dangerous driving behavior detection was tested on a dataset containing normal driv-
ing behavior and distracted driving behavior. For the relapse prediction, the data contained the
logged daily activity of patients during relapse and non-relapse days. In both applications, the
models were trained on normal data, which was represented by non-distracted driving for the
first application and non-relapse days for the second application. Our study encompassed var-
ious anomaly detection-based methods, including OCSVM , Isolation Forest, Elliptic Envelope,
LOF , and AE. Our comparison with supervised models in various data imbalances reinforced
the validity of applying these approaches to real-world scenarios to overcome the obstacle of
collecting dangerous or costly data. Specifically, the Isolation Forest demonstrated robustness in
imbalanced datasets in most of the experiments, delivering superior performance. Moreover, for
the psychotic relapse prediction, we leveraged the use of anomaly detection methods to develop
personalized models for each patient and conducted a thorough study on the influence of the
choice of models, features, and time window for calculating the features on the performance
of relapse prediction. Our results underscored the necessity for tailored approaches in men-
tal health monitoring, establishing a foundation for more accurate and personalized detection
methods.

Moreover, we aimed to provide deeper insights and a better understanding of key features
crucial in identifying rare states. Therefore, we explored the use of AE’s RE, evaluating its effec-
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tiveness across tasks of varying complexity levels: visual distraction detection (low complexity)
and psychotic relapse prediction (high complexity). Our methodology involved calculating cor-
relation scores between data annotations and the RE of samples, both normal and abnormal.
Higher correlations indicated greater feature relevance. This approach efficiently identified the
most and least influential features in visual distraction detection. However, with the more com-
plex dataset for relapse prediction, our findings unveiled varying and low feature importance
across individual patients. This emphasized the essentiality of personalized models in mental
health monitoring and highlighted the crucial need for more pertinent features, especially in the
context of psychotic relapse prediction.

In the final chapter, our primary focus was integrating data difficulty indicators into the fu-
sion model to augment its performance. These indicators are extracted from AE trained for
each modality by calculating the averaged RE for each sample. These indicators offer additional
insights into the dissimilarity of the sample from the observed training data and, hence, their
difficulty. We evaluated the approach and the impact of these indicators in the application of
predicting emotions, specifically in stressful scenarios. Our findings highlighted how these in-
dicators substantially improved the fusion process involving multiple modalities. This suggests
their potential to enhance robustness, especially in environments where a single modality might
be compromised.

A consistent finding throughout these studies was the significance of the AE’s RE, which
was examined across three distinct contexts, showcasing its substantial value. It functioned as
an anomaly indicator, aiding in the identification of rare or abnormal patterns. Additionally, it
served as a metric for feature importance, contributing to explainability, and acted as an aug-
menting feature for enhancing the fusion of multiple information sources. One of its distinct
advantages over traditional anomaly scores is the ability to dissect the RE, allowing verification
of the contributing features.

Our research has highlighted the adaptability of anomaly detection methodologies across
diverse contexts. In Chapter 3, we explored it in an unsupervised approach, which is crucial for
identifying rare states when data from one class is unavailable. In Chapter 4, we extended its
use in a weakly supervised approach, utilizing limited labeled data from the minority class for
tasks like feature selection and explainability. Finally, Chapter 5 explored its application in a
supervised setting, particularly in information fusion.

6.2 Perspectives
Whileworking on this thesis, we have identified several challenges alongwith ideas for future

work. In this section, we delve into perspectives pertaining to datasets, model evaluation, and
model improvement.

6.2.1 Datasets related perspectives

■ The absence of chronological data in the eprevention dataset represents an intriguing av-
enue for exploration. Investigating the impact of the chronological order of pre-relapse
and relapse days on anomaly scores could yield valuable insights. For instance, observing
whether anomaly scores increase significantly in the pre-relapse phase might serve as an
early warning indicator. The annotation do not include the specific disorder of the patient.
Exploring the performance of unsupervised models concerning specific disorders could
deepen our understanding of their predictive capabilities across different mental health
conditions. This exploration could significantly deepen our understanding of their predic-
tive capabilities concerning distinct disorders. Such insights could be particularly valuable
in feature selection and explainability efforts, allowing for the identification of which fea-
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tures correspond to specific relapses, whether globally or for individual patients or groups,
facilitating tailored treatment strategies.

■ A fundamental challenge encountered in this thesis revolves around the scarcity of ex-
tensive databases, a prevalent issue in various domains within affective computing. This
scarcity is particularly problematic when addressing the detection of rare behaviors, such
as anxiety attacks or relapses. The limited availability of larger datasets poses a significant
obstacle in exploring anomaly detection techniques, especially concerning mental health
applications, where datasets are both small and exceedingly complex. Therefore, future
work can rely on datasets that depict normal behavior without the need for manual label-
ing.

■ Anomaly detection methods in affective computing, while showing promise, still linger
in a relatively early developmental phase. A common challenge observed across various
works, including our own, is the reliance on individually defined norms or abnormalities.
While this approach aids method exploration, it restricts comparability across studies. The
subjectivity in defining what’s normal or abnormal, often context-dependent and relative,
necessitates standardization in datasets for anomaly detection in affective computing. Ini-
tiatives like the E-prevention challenge provide an opportunity for researchers to bench-
mark various agnostic methods using the same dataset and specific metrics. Standardized
datasets and shared evaluation frameworks could substantially enhance comparability and
collective advancements within the research community. Moreover, fostering collabora-
tion and extending datasets to include multiple modalities would further enrich research
exploration and enhance the efficacy of anomaly detection methods in affective computing.

6.2.2 Model and approach evaluation perspectives

■ One limitation we encountered in evaluating our approaches was the restricted size of
the datasets used. To improve the robustness and generalizability of our findings, future
studies should focus on validating the efficiency of our approaches on larger and more
diverse existing datasets.

■ In our exploration of driver behavior monitoring, our application of anomaly detection
methods proved effective in identifying specific dangerous behaviors, such as visual dis-
tractions. However, a potential avenue for future research lies in validating the adaptabil-
ity of our models to recognize a broader spectrum of hazardous behaviors. Models can be
trained on normal data only using signals related not just to distractions but also to fatigue
and drowsiness. Subsequently, testing these trained models across various behaviors could
ascertain their capability to detect a wider range of hazardous behaviors beyond visual dis-
tractions. Such an extension could significantly enhance the versatility and applicability of
anomaly detection techniques in ensuring comprehensive driver safety.

■ Exploring the wider applicability of the feature selectionmethod in diverse regression tasks
could provide amore comprehensive assessment of its effectiveness and robustness. Specif-
ically, delving deeper into its explainability potential within tasks could yield valuable
insights into how and why certain features are deemed important by the model. Addi-
tionally, conducting a comparative evaluation with other commonly used feature selection
techniques, particularly in terms of computational efficiency, would be beneficial. Under-
standing how this method stacks up against existing techniques could provide a clearer
picture of its advantages and areas for improvement.

■ The proposed multimodal fusion scheme using reconstruction errors and temporal depen-
dencies have shown promise in our study. To further validate its efficiency, an interesting
approach would involve intentionally adding artificial noise to certain modalities. This
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would allow us to observe how the fusion model responds, verifying if it assigns less im-
portance to the noisy modalities and prioritizes the non-noisy ones. This would verify
our hypothesis that RE helps the fusion to use most reliable modalities. This kind of ex-
perimentation could potentially enhance our understanding of the model’s robustness and
adaptability. Moreover, expanding the application of these fusion techniques to other do-
mains could be valuable. For instance, investigating their efficacy in different contexts or
industries, such as healthcare or manufacturing, might uncover their broader applicability
and potential advantages in various real-world scenarios.

6.2.3 Model improvement perspectives
■ Given the significant strides witnessed in transformer-based techniques across diverse AI
domains, their potential application in anomaly detection using larger datasets, especially
in processing speech and video data, emerges as a compelling direction for future investiga-
tion. Integrating transformers into anomaly detection frameworks could introduce several
advantages. One approach could involve leveraging transformer architectures, like BERT
or GPT, to encode multimodal information from speech and video data. These models ex-
cel in capturing complex patterns and dependencies within sequences, which could prove
beneficial in detecting anomalies, particularly in multimodal data streams.

■ For personalized models in predicting psychotic relapse, an enhancement strategy could
involve an initial step of training a comprehensive, general model using data aggregated
from all patients. Subsequently, fine-tuning this general model based on individual patient
data could potentially improve predictive accuracy and robustness by tailoring the model
to specific patient characteristics and patterns.

■ An ongoing challenge within anomaly detection in human behavior revolves around its
inherently dynamic nature. Models designed for predicting events like psychotic relapse
might trigger false alarms when confronted with alterations in individuals’ daily routines.
To enhance the robustness of these models in the face of such changes, exploring method-
ologies like active learning or incremental learning could offer promising solutions. Imple-
menting these adaptive learning techniques might assist in fine-tuning the models to better
adapt to shifts in behavior, thereby mitigating false alarms and improving the accuracy of
predictions.
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