
HAL Id: tel-04592491
https://theses.hal.science/tel-04592491v1

Submitted on 29 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the mechanized verification of the meta-theory of
contracts and its instantiation to differential dynamic

logic
Stéphane Kastenbaum

To cite this version:
Stéphane Kastenbaum. On the mechanized verification of the meta-theory of contracts and its in-
stantiation to differential dynamic logic. Other [cs.OH]. Université de Rennes, 2023. English. �NNT :
2023URENS013�. �tel-04592491�

https://theses.hal.science/tel-04592491v1
https://hal.archives-ouvertes.fr

Par

Stéphane KASTENBAUM

THÈSE DE DOCTORAT DE

L'UNIVERSITE DE RENNES

ECOLE DOCTORALE N° 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Electronique
Spécialité : Informatique

On the mechanized verification of the meta-theory of contracts and its
instantiation to differential dynamic logic

Thèse présentée et soutenue à Rennes, le 5 mai 2023
Unité de recherche : Inria, Centre Inria Rennes-Bretagne Atlantique (Inria-Rennes)

Rapporteurs avant soutenance :

Jérôme Hugues Directeur de Recherche à Carnegie Mellon Institute
Dominique Merry Professeur à Télécom Nancy

Composition du Jury :

Président : Jérôme Hugues Directeur de Recherche à Carnegie Mellon Institute
Examinateurs : Dominique Merry Professeur à Télécom Nancy

Régine Laleau Professeure à l’Université Paris-Est Créteil
Dir. de thèse : Jean-Pierre Talpin Directeur de Recherche à Inria
Enc. de thèse : Benoit Boyer Ingénieur de Recherche à Mitsubishi Electric R&D Centre Europe

Abstract

The rise of complexity and heterogeneity of safe-critical systems that surround
us poses a challenge to existing workflows employed to design them. Critical
components of such systems need to be designed with precision, and their safety
must be ensured before they are made available to the public.

However, reasoning about an entire, possibly large, complex, heterogeneous
system based on such precise component specifications is certainly not humanly
possible. Moreover, the cost associated with building, testing and possibly
rebuilding systems pushes designers to model a system beforehand and to
validate models as thoroughly as possible before actually building the system.

Modeling systems is a difficult task prone to errors, formal methods helps the
designer to validate their soundness and safety. The complexity of the systems
leaves the designer no choice but to have a component-based approach, namely,
to separate the task of modeling a system into multiple subtasks (components)
and combine them afterward (composition).

An effort have been made to construct formal methods to validate large
and complex systems andto allow the combined specification and validation of
components of cyber-physical systems. A central difficulty of such validation
frameworks, or workflows, is to verify the safety of the global system from the
validated specifications of heterogeneous, individual components.

Contract theory addresses this problem. It starts from assume/guarantee
(A/G) contracts as specifications of components. An individual contract can be
validated against a component by verifying that its assumptions and guarantees
over-approximate the pre- and post-conditions that would result from valid
evaluations of the component model. Then, contracts of individual components
can be composed, by verifying that the assumptions of one match the guarantees
of the others.

This first part of this manuscript defines an algebraic formalization of as-
sume/guarantee contracts that is formally proven to validate a meta-theory of
contract. It is defined as a type class and parameterized by a logic, in order
to maximize the scope of its applicability. To demonstrate this capability, our
formalization is instantiated with Platzer’s differential dynamic logic, in order
to provide a fully verified contract theory for modeling cyber-physical systems.

Our model of assume/guarantee contracts is entirely implemented in the
calculus of construction of the proof assistant Coq. It comprises the algebraic
operators of composition, conjunction, abstraction, refinement, variables intro-

iii

iv

duction and elimination.
The second part of the manuscript describes a practical use case for the

definition of both the meta-theory and parametric A/G contracts models. It
proceeds by instantiating the contract model with differential dynamic logic and
by considering two instances of the contracts model in this logic: with hybrid
and abstract dL programs.

Finally, we exercise the use of both instances on a typical case-study to
illustrate the power of the theory to model components and their contractual
abstractions.

Résumé en français

Les systèmes cyber-physiques (SCP) sont des assemblages complexes de com-
posants matériels et logiciels en réseau, conçus pour détecter, évaluer et réagir
aux changements de leur environnement physique. Leur nature hétérogène et leur
échelle étendue les rendent incroyablement complexes à modéliser avec précision,
ce qui représente un véritable défi pour les ingénieurs et les chercheurs. La
variété de technologies impliquées, allant des capteurs aux actionneurs en passant
par les systèmes de traitement de données, rend la tâche de compréhension et
de modélisation des interactions entre ces différents éléments encore plus ardue.
En outre, les SCP sont souvent responsables de missions critiques, comme les
systèmes de transport autonomes ou les infrastructures de santé, ce qui ajoute
une pression supplémentaire pour garantir leur fiabilité et leur sécurité.

La vérification formelle des SCP est donc d’une importance capitale pour
s’assurer de leur bon fonctionnement et de leur sécurité. En utilisant des
méthodes formelles, il est possible de fournir des garanties mathématiques
sur le comportement du système et de détecter les éventuelles erreurs dès
les phases de conception, évitant ainsi des problèmes coûteux et dangereux
à l’avenir. Cependant, en raison de la complexité et de la taille des SCP, la
vérification formelle devient rapidement difficile, voire impossible, sans une
approche adéquate.

C’est ici que l’abstraction des modèles se révèle être une approche cru-
ciale pour rendre la vérification formelle réalisable pour les SCP. En utilisant
l’abstraction, les ingénieurs peuvent simplifier la représentation des composants
et des interactions, en se concentrant sur les aspects essentiels pour la vérification
tout en masquant les détails complexes. Cela permet de réduire la complexité
globale du système et de faciliter la vérification modulaire, en traitant chaque
composant de manière individuelle avant de les combiner pour former le système
complet.

Pour répondre à cette complexité et faciliter la vérification modulaire, les
concepteurs de SCP adoptent souvent une approche basée sur les composants.
Cette approche consiste à diviser le système en sous-systèmes ou composants
individuels, chacun étant responsable d’une partie spécifique du comportement
global. En validant chaque composant individuellement, les ingénieurs peuvent
s’assurer que les propriétés requises sont respectées avant de les combiner pour
former le système complet. Cette approche ”diviser pour mieux régner” permet
également de gérer la complexité en gérant chaque partie du système séparément,

v

vi

simplifiant ainsi la vérification et la maintenance à grande échelle.
Des efforts considérables ont été déployés pour développer des méthodes

formelles et des méthodologies de conception pour les SCP, en particulier pour
la vérification combinée de composants discrets et continus. Cela implique de
mettre en place des cadres de validation solides qui permettent de spécifier et de
vérifier les comportements individuels des composants, puis de les composer pour
former le système global. Les contrats, dans ce contexte, ont émergé comme
une approche prometteuse pour concevoir et vérifier des systèmes complexes en
utilisant des abstractions. Ils permettent de spécifier les comportements attendus
des composants sous forme d’hypothèses et de garanties, abstrayant ainsi leur
implémentation interne. Cela facilite la vérification modulaire et la composition
des composants pour former le système global. En outre, les contrats offrent une
certaine flexibilité en permettant d’utiliser différentes logiques pour définir les
comportements des composants, ce qui les rend adaptables à une grande variété
de SCP.

Les contrats d’assomption/garantie abstraient les modèles de composants
pour fournir un processus de vérification solide, structuré et modulaire : un
contrat individuel peut être validé par rapport à un composant en vérifiant que
ses hypothèses et ses garanties se rapprochent de la sémantique du composant par
les pré-conditions et les post-conditions qui résulteraient d’évaluations valides du
modèle du composant. Ensuite, les contrats des composants individuels peuvent
être composés en vérifiant que les hypothèses de l’un correspondent aux garanties
des autres.

Alors que les abstractions de modèles par des contrats sont généralement
prouvées concordant avec les modèles (sémantique) des composants, aucune
théories de contrats n’a, à notre connaissance, été formellement prouvé correcte
jusqu’à présent. Dans ce but, nous présentons la formalisation d’une théorie
générique de contrat assomption/garantie dans l’assistant de preuve Coq. Nous
identifions et prouvons les théorèmes qui garantissent son exactitude. Notre
théorie est générique, ou paramétrique, en ce sens qu’elle peut être instanciée et
utilisée avec n’importe quelle logique donnée, en particulier les logiques hybrides,
dans lesquelles des systèmes cyber-physiques très complexes peuvent être décrits
de manière uniforme.

La première partie de ce manuscrit définit la formalisation algébrique des con-
trats d’assomption/garantie qui est formellement prouvée pour valider une méta-
théorie des contrats. Ce travail se base sur la théorie des contrats assomption/-
garantie et de la méta-théorie des contrats définie par Benveniste et al. [Ben+15b].
Dans ces travaux, la méta théorie des contrats donne un cadre pour définir
un d’autres théorie de contrats, dont la théorie des contrats assomption/-
garantie. Dans ce cadre la théorie assomption/garantie, définit les contrats
comme l’assemblage d’une assomption sans laquelle le composant n’a pas de
fonctionnement définit, et une garantie qui est assuré par le composant (sous
condition que son assomption soit validée). Formellement, les composants, as-
somptions et garanties sont définis comme des ensembles de comportements
hypothétiques du système. Les relations de compositions, conjonctions, raf-
finements et autres sont définis comme des opérations sur ces ensembles tels

vii

que l’union, l’intersection ou le complémentaires. Avec cette approche, on peut
instancier la théorie avec des logiques différentes en changeant la définitions des
comportements.

Notre modèle de contrats assomption/garantie, conçu pour garantir la sûreté
et la fiabilité des systèmes cyber-physiques, a été entièrement implémenté dans
l’environnement de preuve Coq, qui offre une plateforme puissante pour la
vérification formelle. Cette implémentation comprend une gamme complète
d’opérateurs algébriques essentiels, tels que la composition, la conjonction,
l’implémentation et le raffinement, permettant ainsi de spécifier les contrats
de manière formelle et expressive. L’un des avantages clés de notre modèle
est la flexibilité qu’il offre grâce à la paramétrisation de la logique comme une
classe de type. Cette approche permet une modularité adaptée à la théorie,
permettant aux concepteurs de choisir la logique la mieux adaptée à leurs
besoins spécifiques. Cela signifie que notre modèle peut être facilement adapté
à différentes logiques, y compris les logiques hybrides, qui sont couramment
utilisées pour décrire les systèmes cyber-physiques complexes. Cette flexibilité
fait du modèle de contrats assomption/garantie un outil polyvalent pour la
vérification formelle dans une grande variété de domaines. Après avoir mis en
place notre modèle de contrats assomption/garantie, nous avons procédé à une
validation rigoureuse en le confrontant à la méta-théorie des contrats. Cette
étape cruciale garantit la cohérence et la solidité de notre approche en s’assurant
que les propriétés fondamentales des contrats sont respectées et préservées
tout au long du processus de spécification et de vérification. Cette validation
approfondie renforce la confiance dans l’utilisation de notre modèle pour la
vérification formelle des systèmes cyber-physiques. Par souci de transparence et
de partage avec la communauté scientifique, nous avons rendu tout le code associé
à notre modèle de contrats assomption/garantie disponible en accès libre. Vous
pouvez consulter et accéder à l’ensemble du code à l’adresse suivante : https:
//gitlab.inria.fr/skastenb/differential-contracts. Cette initiative de
mise à disposition du code source vise à encourager la collaboration, les discussions
scientifiques et à faciliter les travaux futurs dans le domaine de la vérification
formelle des systèmes cyber-physiques.

L’une des fonctionnalités clés de notre modèle est le mécanisme d’extension
de l’alphabet, qui joue un rôle essentiel dans la définition des contrats. Ce
mécanisme permet de définir les contrats sur un ensemble spécifique de variables,
l’alphabet, qui capture les aspects pertinents du comportement du système.
La validation de ce mécanisme garantit la robustesse de notre approche et son
adéquation aux contraintes du monde réel, où la spécification des contrats doit
souvent être limitée à un sous-ensemble des variables du système pour des raisons
de complexité et de performance.

En outre, nous avons également implémenté le processus d’élimination des
variables, qui permet d’abstraire les contrats en supprimant certaines de leurs
variables. Cette fonctionnalité est précieuse pour simplifier la vérification en se
concentrant sur les aspects essentiels des contrats, tout en masquant les détails
moins pertinents. L’efficacité de cette abstraction est cruciale pour gérer la
complexité croissante des systèmes cyber-physiques tout en maintenant un niveau

https://gitlab.inria.fr/skastenb/differential-contracts
https://gitlab.inria.fr/skastenb/differential-contracts

viii

élevé de confiance dans leur comportement vérifié.
Enfin, pour faciliter l’utilisation et l’instanciation de notre théorie des contrats

assomption/garantie, nous avons créé une interface qui permet aux concepteurs
de spécifier la logique souhaitée en tant que paramètre. Cette interface exige
que la logique donnée soit basée sur des expressions dont l’alphabet est explicite
pour chaque formule et que l’ensemble des expressions soit clos par les relations
de négations, de conjonctions et de disjonctions. Cette approche modulaire
facilite l’intégration de différentes logiques dans notre modèle de contrats, offrant
ainsi une solution flexible et adaptable pour la vérification formelle des systèmes
cyber-physiques dans divers domaines d’application.

La deuxième partie du manuscrit décrit un cas pratique d’utilisation de
la définition des modèles de méta-théorie et de contrats A/G paramétriques.
Il s’agit de l’instanciation des contrats assomption/garantis avec une logique
dynamique différentielle comme paramètre. Cela est prouvé en considérant le
modèle des programmes hybrides et les programmes abstraits, comme deux
instances distinctes pour modéliser les composants concrets et les contrats dans
la logique.

La première instance considère les programmes hybrides pour modéliser les
composants. Pour définir l’instance, nous devons déterminer la valeur de deux
types : value et ident. Le type value correspond au domaine de définitions des
variables tandis que ident correspond au type des identifiants de ces variables.
Dans Coq dL, les variables sont identifiés avec un type ad-hoc : KAssignable et
ont leur valeur dans les réels R. C’est donc avec ces types que l’on définit ident

et value. Dans cette instance, les programmes hybrides définit dans la théorie
sont légèrement modifiés pour inclure dans leur type l’alphabet sur lequel ils sont
définis. C’est-à-dire, que l’on définit un prédicat qui assure que toutes les variables
d’un programme hybride sont incluse dans l’alphabet des variables. Pour cela on
utilise les mécanismes de sémantiques statiques pour extraires toutes les variables
liées (écrites par le programme) et les variables libres (lus par le programme), pour
vérifier qu’elles sont bien présente dans l’alphabet dans l’alphabet. L’instance
est validée par la preuve d’un théorème reliant la relation de raffinement définie
pour la logique dynamique différentielle à la relation de raffinement pour les
composants dans la théorie des contrats d’assomption/garantie. Cette preuve
utilise plusieurs lemmes qui ont été développé pour vérifier la sémantique de
substitution uniforme et qui ont été implémenté dans Coq dL. Parmis ces lemmes
il y a le lemme de la coincidence qui stipule que deux programmes étant égaux
sur toutes les variables libres et liées, sont aussi égaux sur les variables non-libres
et non-liées. La preuve utilise aussi le lemme d’effet liées, qui exprime qu’un
programme ne modifie pas les variables non-liées.

La deuxième instance définit des programmes abstraits : des programmes
hybrides réduits pour décrire des pré-conditions et des post-conditions. Elle se
traduit en programmes hybrides, c’est-à-dire que l’ensemble des programmes
abstraits est un sous-ensemble des programmes hybrides. Les programmes
abstraits ont l’avantage d’être fermés par la conjonction et la négation. Nous
prouvons que cette traduction ou concrétisation est correct par rapport à la
satisfiabilité. L’instanciation de la théorie des contrats avec des programmes

ix

abstraits nous donne des contrats définis avec des programmes abstraits en
tant qu’hypothèses et garanties. Les contrats sont accompagnés des opérateurs
définis dans la théorie, à savoir la conjonction, le raffinement et la composition.
L’implémentation d’un composant de contrat par un contrat est également définie
entre les composants définis comme des programmes hybrides et les contrats
définis avec des programmes abstraits.

Enfin, nous exerçons l’utilisation des deux instances sur une étude de cas
typique afin d’illustrer la puissance de la théorie pour modéliser les composants
et leurs abstractions contractuelles. L’exemple choisit est celui de la cuve d’eau
dont l’arrivée d’eau est réglé par une valve. La valve ajuste le flot d’arrivée en
fonction de la hauteur de l’eau dans la cuve. Le système doit assurer que la cuve
ne déborde pas lors de son fonctionnement. Nous définissons les composants
et leur spécification dans la théorie de l’assomption/garantie des contrats, et
nous montrons les obligations de preuve nécessaires pour prouver la cohérence
du modèle résultant. Cette étude de cas démontre l’intérêt pratique de notre
approche pour valider formellement des systèmes cyber-physique de large échelle.

Á Léandre et Gwenaëlle

Remerciement

Tout d’abord, je me dois de remercier mon directeur de thèse Jean-Pierre Talpin,
merci de m’avoir soutenu, et d’avoir été patient lorsque je me perdais dans les
méandres de la recherche. Merci aussi à Benoit Boyer, mon co-encadrant de thèse
qui m’a accompagné pendant ces trois années de recherches avec ses conseils
avisés et son soutien indéfectible.

J’aimerais aussi remercier Régine Laleau d’avoir accepté de faire partie de
mon jury, ainsi que Jérome Hughes et Dominique Mery d’avoir été les rapporteurs.
Merci à vous trois d’avoir posé votre regard critiques et bienveillant sur mes
travaux de thèse.

Je remercie aussi Patrice Quinton et Khalil Ghorbal, qui forment à eux deux
mon comité de soutient individuel. Nos réunion m’ont été précieuses, vous avez
su me remettre sur les rails lorsque j’en avais besoin.

Ma thèse s’est faite en garde alterné au centre de R&D Mitsubishi Electric,
ainsi je remercie autant ceux qui m’ont permis de faire cette thèse: David, Luc,
Magalie et Marie, que mes collègues : David, Denis, Florian, François, Enzo et
Emilie.

Merci aussi à mon équipe Inria, Tea, Liang Cong, Lucas, Jean-Joseph,
Shenghao et Benjamin. Notre équipe était petite mais soudée, ce fut un plaisir
de travailler avec vous et d’échanger nos problèmes au quotidien. En plus de
mon équipe, j’aimerais remerceier mes autres collègues de l’IRISA. Je remercie
du fond du cœAxel qui m’a fait l’honneur d’emménager dans mon bureau. Merci
aussi à ceux qui était au bout du couloir, qui on bien voulu que je les force à
faire des pauses régulières Jérémy, Kilian et Rémi. Merci aussi à ceux qui m’ont
prêté leurs bureau lorsque j’en pouvais plus du mien : Théo, Thomas, Adèle
et Alberto. Merci à ceux qui m’ont accueilli quand je voulais taper l’incruste
dans les pauses cafés de leurs équipes : Katja, Salomé, Élodie, Louise, Guéno,
Thibault, Hasnaa, Valentin, Benjamin et Sony.

Je ne pourrais jamais remercier assez ma famille. Sans elle je ne serais nulle
part, et plus j’avance dans ma vie plus je me rends compte la chance que j’ai. Je
remercie mes parents évidemment, mes grands-parents, mes frères et ma soeur,
mes tantes et mon oncle, et mes cousins et cousines.

Merci à tous mes amis, que j’ai rencontré tout au long de ma vie. Je remercie
particulièrement Pierre, qui m’a offert des beaux premiers pas dans la recherche.
Je remercie aussi Jean-Baptiste qui a été cette voix qui donne les bons conseils
au bon moment.

xiii

xiv

L’accueil que j’ai reçu à Rennes a été formidable, je remercie Bertrand de
m’avoir accueilli chez lui les premiers mois. Je remercie mes amis de Borderline
Games, pour les moments de rire autour du jeu en société. Et enfin, merci à
Lucie pour les cheveux roses.

Merci à tout le monde.

Contents

1 Introduction 1
1.1 The Rise of Complexity in System Design 1
1.2 Contracts for Modular System Design 1
1.3 Contributions . 2

2 State of the art 5
2.1 Designing Cyber-physical Systems 6

2.1.1 Validation Methodology for CPSs 6
2.1.2 Industrial Tools for Modeling CPSs 7

2.2 Validation of CPS Models . 8
2.2.1 Checking Automata Models 9
2.2.2 Correct-by-construction design 10
2.2.3 Dedicated Proof-Assistant for Modeling CPS 12

2.3 The Issue of Compositionality . 13
2.3.1 Logical Contracts for Hybrid Systems 13
2.3.2 Generic Theories of Contracts 14

3 A Verified Contract Theory 17
3.1 Introduction to Coq . 18

3.1.1 Basic Syntax . 18
3.1.2 Set Library . 20
3.1.3 The Issue of Extensionality 21
3.1.4 De Morgan’s Laws . 22

3.2 Overview of the Theories of Contracts 23
3.2.1 Introduction to Component-Based Design 23
3.2.2 A/G Contracts for Component Specification 25
3.2.3 The Meta-Theory of Contracts 30
3.2.4 Specialization . 33

3.3 Mechanization of A/G Contracts in Coq 35
3.3.1 The Types for Variables 35
3.3.2 Requirements . 35
3.3.3 Objects Definitions . 36
3.3.4 Relations . 37
3.3.5 Outlook . 38

xv

xvi CONTENTS

3.4 Consistency of A/G Contracts with the Meta-Theory 39

3.5 Alphabet Equalization . 41

3.5.1 Definition of Extension 41

3.5.2 Definition of Extended Operators 43

3.6 Elimination of Variables . 44

3.6.1 Definition . 45

3.6.2 Validation of the Definition 46

3.7 Formula Interface . 46

3.7.1 Purpose of the instance 47

3.7.2 Operations Definitions . 48

3.7.3 Equivalence with A/G Contracts 48

3.8 Outlook . 49

4 Contracts for Differential Dynamic Logic 51

4.1 Introduction to Differential Dynamic Logic 53

4.1.1 Syntactic Definitions . 54

4.1.2 Visual Representation of Hybrid Programs 58

4.1.3 Formal Semantics . 61

4.2 The Water Tank example . 66

4.2.1 The Model . 66

4.2.2 Specification . 67

4.3 Instantiating Hybrid Programs 68

4.3.1 Base Types . 68

4.3.2 Instantiating the Type Class 70

4.3.3 Transforming Programs into Components 71

4.3.4 Example with the Water Tank 72

4.3.5 Limitations of the Instance 73

4.4 Refinement in Differential Dynamic Logic 73

4.4.1 Definitions of the Refinement Relations 74

4.4.2 Definition of Differential Refinement in Coq 74

4.4.3 Preliminary Lemmas . 76

4.4.4 Proof that Differential Refinement Implies Refinement . . 78

4.5 Abstract Programs . 81

4.5.1 Definition . 81

4.5.2 Satisfaction Function . 81

4.5.3 Construction Operators 82

4.5.4 Transforming to Hybrid Programs 84

4.5.5 Proving the Transformation is Sound 87

4.6 Contracts with Differential Dynamic Logic 88

4.6.1 Instantiating the Theory of Contract 88

4.6.2 Example of Contracts . 89

4.6.3 Implementation of a Contract by a Component 90

4.6.4 Composition of Contracts 91

4.7 Conclusion . 93

CONTENTS xvii

5 Conclusion 95
5.1 Overview . 95
5.2 Perspectives . 96

Chapter 1

Introduction

1.1 The Rise of Complexity in System Design

Cyber-physical systems (CPS) are assemblies of networked, heterogeneous, hard-
ware, and software components sensing, evaluating, and actuating a physical
environment. This heterogeneity and scale of CPSs induces complexity that
makes them challenging to even model correctly, let alone verifying them.

Since CPSs are often entrusted critical missions, it is however of utmost
importance to formally verify them in order to provide them with the highest
guarantees of safety. Faced with CPS complexity, model abstraction becomes
paramount to make verification attainable.

The complexity of CPS systems leaves designers no choice but to implement
a component-based approach, that is, divide and conquer: to divide the task
of modeling a system into that of multiple subtasks (components), to validate
them individually (separation of concerns), and to combine them afterward
(composition).

Tremendous efforts have been made to develop formal methods, formally
defined design methodologies, to validate large and complex systems and allow
the combined specification and validation of discrete and continuous components
of cyber-physical systems. A central difficulty of such validation frameworks, or
workflows, remains that of verifying the safety of the system from the validated
specifications of heterogeneous, individual components.

1.2 Contracts for Modular System Design

Contract theory addresses this problem. Contracts help to design and to verify
complex systems by abstracting component models, using their assumptions
and guarantees in place of their exact, internal specification. A contract being
more abstract than the internal specification of a component makes the modular
verification of large systems feasible.

1

2 CHAPTER 1. INTRODUCTION

Assume/guarantee contracts abstract component models to provide a sound,
structured, and modular verification process: an individual contract can be
validated against a component by verifying that its assumptions and guarantees
approximate the component’s semantic by the pre- and post-conditions that
would result from valid evaluations of the component model. Then, contracts of
individual components can be composed, by verifying that the assumptions of
one match the guarantees of the others.

While abstractions of models by contracts are usually proved sound with
respect to the model (semantic) of components, none of the related contract
frameworks themselves have, to the best of our knowledge, been formally proved
correct so far. In this aim, we present the formalization of a generic assume/guar-
antee contract theory in the proof assistant Coq. We identify and prove theorems
that ensure its correctness. Our theory is generic, or parametric, in that it can
be instantiated and used with any given logic, in particular hybrid logics, in
which highly complex cyber-physical systems can uniformly be described.

1.3 Contributions

This first part of this manuscript defines the algebraic formalization of as-
sume/guarantee contracts that is formally proven to validate a meta-theory of
contract. The logic is parameterised as a type class, in order to provide the
suited generality of the model.

Our model of assume/guarantee contracts is entirely implemented in the
calculus of construction of the proof assistant Coq. It comprises the algebraic
operators of composition, conjunction, implementation and refinement. The
model of assume/guarantee contracts is then validated with respect to the
meta-theory of contracts.

The mechanism to extend the alphabet on which a contract is defined is
implemented. This mechanism is also validated with respect to the meta-theory.
Then, we implement the variable elimination process, which abstract a contract
by removing one of the variable. Finally, we give an interface to facilitate the
instantiation of the theory, given a logic as parameter.

The second part of the manuscript describes a practical use case of the
definition of both the meta-theory and parametric A/G contracts models. It
consists in the instantiation of the contracts’ type class with differential dynamic
logic as a parameter. This is proven correct by considering the model of hybrid
programs and their abstraction, as two separate instances to model concrete
components and their abstraction in the logic.

The first instance considers hybrid programs to model components. It is
validated by the proof of a theorem relating the refinement relation defined
for differential dynamic logic to the refinement relation for components in the
assume/guarantee contract theory.

The second instance defines abstract programs: hybrid programs reduced to
describe pre-conditions and post-conditions. It translates into hybrid programs,
that is, the set of abstract programs is a subset of hybrid programs. We prove

1.3. CONTRIBUTIONS 3

this translation or concretization to be sound with respect to satisfiability.
Finally, we exercise the use of both instances on a typical case-study to

illustrate the power of the theory to model components and their contractual
abstractions. We define components and their specification in the assume/guar-
antee theory of contracts, and show the proof obligations needed to prove the
consistency of the resulting model.

Chapter 2

State of the art

2.1 Designing Cyber-physical Systems 6
2.1.1 Validation Methodology for CPSs 6
2.1.2 Industrial Tools for Modeling CPSs 7

2.2 Validation of CPS Models . 8
2.2.1 Checking Automata Models 9
2.2.2 Correct-by-construction design 10
2.2.3 Dedicated Proof-Assistant for Modeling CPS 12

2.3 The Issue of Compositionality . 13
2.3.1 Logical Contracts for Hybrid Systems 13
2.3.2 Generic Theories of Contracts 14

5

6 CHAPTER 2. STATE OF THE ART

In this chapter, we review works on the use of contracts and formal methods
for the verification of cyber-physical systems. Section 2.1 considers the process
of designing and validating cyber-physical systems. Section 2.2 focuses on the
different proof-assistant available, categorizing them into generic and domain-
specific ones. Finally, Section 2.3 gives an overview of methods to improve
modularity in mechanized proofs of cyber-physical systems.

2.1 Designing Cyber-physical Systems

We first highlight the numerous challenges of modeling and validating a cyber-
physical system (CPS). We point out the importance of modelling such systems
with high-fidelity and the intrinsic difficulties to do so. We explain when, in
the ”V design cycle”, this modeling effort is done, and why it is crucial to do it
precisely and exhaustively. Then, we give an overview of different logics that
were introduce to model hybrid cybernetic and physical systems.

Ubiquity We call cyber-physical systems, every system which is constituted
of a physical plant and a computerized controller [Raj+10]. If we zoom this
definition out, we easily observe instances of such systems everywhere in our
everyday life: planes, cars and trains are cyber-physical systems with a me-
chanical transport body, a pilot seat, a driving power-train and a sophisticated
computerized controller to help piloting and routing safely.

Embedded Embedded systems are closely related to cyber-physical systems,
a computer card plugged in a mechanical system constitutes such an embedded
system. When modeling a cyber-physical system, we consider both the embedded
card and its surrounding mechanical system. Whereas, to model an embedded
system, the physical world is regarded as an abstract input to the system: its
behavior is abstracted to the computational logic of the system.

Critical As cyber-physical systems encompass embedded systems, they hence
are equally often critical. This implies that some of their behaviors must
absolutely be verified. As an example, we expect a train to brake when there is
an obstacle on the track, to ensure the safety of the passengers. The properties
that must be validated to ensure the safety of the users of the system are called
safety-critical properties. Theses properties must be defined by the engineer in
charge of the specification of the system, and must be validated at each step of
the design of the system. This raises the question of the process of designing of
cyber-physical systems, and how theses properties are validated.

2.1.1 Validation Methodology for CPSs

The Cyclic V-Model The V-Model is a representation of the process of
developing systems. It gives a good but superficial summary of the different step
of a design workflow, as it yet doesn’t give the full picture of the whole design

2.1. DESIGNING CYBER-PHYSICAL SYSTEMS 7

Figure 2.1: The V model [Osb+05].

process. It is an idealized view of design, where the system is fully specified,
and modeled before being implemented. Once components are implemented,
validated and integrated, the system is fully verified. Of course, every time a
validation, integration or verification step doesn’t succeed, the process has to
backtrack to the origin of the failure to correct the problem and redo every step
to the test that failed. This backtracking after implementation and construction
of the system can be very costly. This is why modeling a project with precision
before implementing it can save funding. The model must be precisely defined
and its specifications should be as accurate and exhaustive as possible. By
modeling the system according to the specification, one can ensure that the final
system is safe, yet only up to the fidelity of that specification.

2.1.2 Industrial Tools for Modeling CPSs

We have seen that modeling is an important step in the design of CPS, now we
present tools conventionally used to model cyber-physical systems. We focus on
those that have a modular approach to parry the high-complexity of CPS.

Simulink Before introducing formal methods of modeling cyber-physical sys-
tems, we consider the subject of industrial tools to model CPS. Simulink, edited
by MathWorks, is such a software. It allows modeling and simulating complex
systems from multiple fields. Simulink has an easy-to-use graphical interface
where components can be added and connected visually. Simulink provides
built-in libraries of components simulating electrical or physical components,
but can also be extended with custom components. With Stateflow, Simulink is
extended with an automata creation tool, it is particularly useful to model the
different modes of operation of a system.

Modelica Modelica is an open-source, object-oriented language for modeling,
simulating and analyzing complex dynamic systems, particularly in the field of
cyber-physical systems [MEO98]. Modelica provides a comprehensive and flexible

8 CHAPTER 2. STATE OF THE ART

toolset for modeling different domains, including mechanical, electrical, thermal,
fluid, and control systems. The language is based on ordinary differential
equations, making it easy to describe complex physical phenomena and to
perform advanced simulations and analyses. The use of Modelica in cyber-
physical systems is beneficial as it facilitates the design and evaluation of these
systems, and helps engineers to understand the behavior and performance of
these systems under different conditions.

Scade Synchronous reactive languages are designed to model real time systems
by describing them as reacting system to a flows of inputs. They are an efficient
way to design systems that interact with the physical world. They are multiple
synchronous reactive languages such as Lustre [Hal+91] and Signal [GLB87].
Scade is an environment to develop safety critical systems based on the Lustre
synchronous language. Scade can produce C or Ada code, after the systems is
modeled. Even thought Lustre is by nature a discrete language, based on sampling
time according to a discrete clock, approximating the continuous evolution of
physical systems, it was extended to Hybrid Lustre to model continuous evolution,
by introducing continuous clocks that represent dense time [Yua+16].

Modeling Languages UML, is a general purpose modeling language, with an
emphasis on a visual representation of the model. It is geared toward software
engineering, but has a derivative that extends to CPS design: the System
modeling language (SysML) [FMS14].

The Architecture Analysis & Design Language (AADL) is a graphical (and
textual) architecture-centric description language [FGH06], specialized to the
engineering of embedded systems in avionics. It contains standardized constructs
to model the hardware and software architectures of embedded real time systems
for the ARINC-653 normative runtime system and formalized semantics. It
further contains extensions, called annexes, to model physical elements attached
to that architecture.

Interestingly, the AADL has recently been equipped with a mechanized
semantic model, Coqarina [Hug+22] and equipped with contracts [HP22] as
part of a design language called Gumbo. Similarly, AUTOSAR [Fre10] can
be perceived as a derivative of AADL specialized for the design of automotive
embedded systems using the equally standard OSEK real-time operating system
interface and has similarly been equipped with timing contracts [Yu+15].

2.2 Validation of CPS Models

Since cyber-physical systems are often critical, the use of effective and verified
tools to prove their safety properties is paramount. We first give an overview of
tools made for model checking of CPS, then we introduce correct-by-construction
design methods. Multiple approaches could be adopted: we could use a generic
proof-assistant and add libraries to model cyber-physical systems or we could
use a proof-assistant specifically designed for the verification of cyber-physical

2.2. VALIDATION OF CPS MODELS 9

systems. In this section, we try to give an overview of the existing tools and
environments to verify cyber-physical systems. For the interested reader, a recent
survey exhaustively reviews a larger spectrum of formal methods used for the
verification of cyber-physical systems [RST20].

2.2.1 Checking Automata Models

Starting from the possibly informal or ambiguous specification of a graphical
modeler, a first step to verification is to obtain a formalized and possibly abstract
model of the specification, traditionally, using automata, Petri nets or message
sequences in order to make its state transitions explicit and exhaustively explore
the space it defines using a model checker. A model checker takes such a model
and a property to be verified by the variables it manipulates during its successive
transitions: a temporal logic property.

Reaching a state where the property is not satisfied reveals of the existence
of an undesired behavior. We call it a reachable property. On the contrary, if
the property is valid in all state and transitions of the model, then it is called
an invariant.

The path to a reachable property is revealed as a witness to help modify the
model or, if the model is to abstract, refine the location of the counter-example
in the model with a more precise specification.

Using this method, one can iteratively refine an initial model of the system
to obtain one which satisfies all required invariants and whose undesired states
are unreachable.

Hybrid Automata Hybrid Automata are an extension of automata in which
a state can be associated with an ordinary differential equation (ODE) [Alu+93;
Hen00]. The automata behave according to the usual semantics, switching states
according to guards and conditions, the variables also evolve in a state according
to the ODE if the state is associated with one.

The advantage of this logic is the availability of automata theory to manipulate
the computational parts of the system, which is a well-known theory that adapts
well to describe the functional modes of a system. In particular, the product
of automata gives a natural definition to the composition of components. It is
also visual, see Figure 2.2 to facilitate the design of system with this logic. Yet,
it has the major disadvantage of incurring the combinatoric explosion of the
product automaton’s states.

Init
x = 24

State 1
ẋ = −2

State 2
ẋ = 1

x < 18

x > 27

Figure 2.2: An example of a three state hybrid automata

10 CHAPTER 2. STATE OF THE ART

TLA+ The temporal logic of actions, TLA, is a specification language for
high-level modeling of concurrent systems. It is intended for the specification of
a program that an engineer has in mind prior to its actual implementation. The
specification consists of logical propositions subject to modalities expressing the
its transitions in time: next, always, until.

TLA+ supports extensions to design cyber-physical systems [Lam93] and is
particularly well suited to design concurrent systems, as most cyber-physical
systems are. Programs are modeled as state machines that can be executed
in order to check invariant properties of the system. It is intended for model
checking, but can be used to prove safety properties with the TLA Proof System
(TLAPS) [Cou+12]. Typically, invariant properties are verified with TLA+,
which is suitable for proving the safety properties of CPS.

Signal Temporal Logic The Signal Temporal Logic (STL) is inspired by
Linear Temporal Logic and defined as a language to specify real-time systems
manipulating real values. The user creates rules in STL, that reflect the safety
property of the system. Then a simulation is run to monitor if it respects its
specified rules. [MN04].

2.2.2 Correct-by-construction design

By contrast to model checking, in correct-by-construction design, the model is
created in a way that the safety property cannot be violated. In correct-by-
construction design, the specification is formalized and the model is designed
starting from the specification and validated at each step of the design process.
The goal is to detect problem as soon as possible during the modeling process.

By formalizing the specification, one ensures that it is sufficient to validate
the safety property, and by integrating it during the modeling process, one
ensure the model satisfies it. As a result, correct-by-construction design provides
higher guarantee than model checking, while being more time consuming to
apply. Indeed, while model checking is focused on finding existing errors and
removing them, correct-by-construction design aims at proving that no error
may arise.

Unlike with model-checking , correct-by-construction design is usually not
automatic, it is said mechanical. The correct-by-construction refinement of
a formalized specification into an implementable model is performed using a
so-called proof assistant.

A proof assistant is a tool to help prove mathematical and logical properties
about programs and systems. Usually, properties will be expressed in a specific
language or algebraic model. Then, with the help of tactics, properties will be
refined until they becomes trivial and admissible. A proof-assistant usually has
a trusted core to verify the correctness of the proof : its trusted computing base.
We assume that the core of the proof assistant is correct, which implies that
the proof created by the proofs assistant are correct. In this section, we will be
interested in proof assistants which support the verification of cyber-physical
systems.

2.2. VALIDATION OF CPS MODELS 11

Coq The Coq proof-assistant [Tea18] is based on Coquant’s calculus of construc-
tions. Its dependent type system makes its constructive logic very expressive and
powerful to manipulate mathematical terms, algebras, infinite and continuous
objects. Coq can additionally be used as a verified programming environment,
as it allows the extraction of Ocaml functional programs upon successful proofs.
A more detailed introduction to Coq is given in Section 3.1.

To verify a category of simple monitors as found in automated controllers for
quadcopter drones [Ric+15; Mal+16], Veridrone developed a framework in Coq
that supports the specification of a system using Linear-Temporal Logic. The
framework is able to prove that the drone remains within a certain domain of
evolution and aims using both the reals theory and proved C semantics to produce
executable code for verified controllers. Similarly, RosCoq is a framework that
uses Coq to verify cyber-physical systems, where the systems are robots. [AK15].
The user writes verified programs for the Robot Operating System and uses
the Coq proof system to verify their specification with real analysis. Both
frameworks use the extract code mechanism to have a certified executable after
the system has been specified and implemented. As the Coq standard library
is not suitable for the real analysis needed to deal with CPS, all of the above
approaches use different libraries to compute real equations.

HCSP Hybrid Communicating Sequential Processes (HCSP) is an extension
of Communicating Sequential Processes (CSP), a logic to describe the behaviour
of multiple parallel communicating processes [CJR96]. In HCSP, components
can perform discrete operations, like in CSP, but can also evolve continuously
according to ordinary differential equation. Hybrid Hoare Logic was created
to reasons about HCSP processes, and with the overall goal to verify their
safety [Liu+10]. HHL is based on Hoare Logic, which can reason on CSP, and
augmented with Duration Calculus to deal with continuous evolution [CHR91;
ZH10].

Isabelle Isabelle (or Isabelle/HOL, its most widespread instance) is a generic
and versatile proof-assistant [NPW02]. It allows mathematical properties to
be written in its formal language, Isar, and proven using of its IDE such as
Isabelle/jEdit. It features some very powerful automation tactics compared to
Coq, and notably sledgehammer, a tool to heuristically find a path toward
the complex proof of a sophisticated properties. Hybrid Hoare Logic (HHL)
and HCSP have been encoded in Isabelle with both a deep and a shallow
embedding [WZZ15; Zou+14].

Mars Modelling Analyzing and veRifying hybrid Systems (Mars) is a tool
chain to transform Simulink models into HCSP models and specify them with
HHL [Che+17]. Thanks to the embedding of HHL and HCSP in Isabelle,
the model can then be formally verified using Isabelle powerful tactics and
automation. Simulink is a widely used environment to model systems of all sorts,
discrete or continuous. It is very modular and visual, components are like boxes

12 CHAPTER 2. STATE OF THE ART

that connects one another. Yet, the language of Simulink is not formally defined,
which makes it difficult to verify the safety of models. This is why, transforming
models from Simulink to HCSP is a step toward proving the safety of Simulink
models. Moreover, the inherent modularity of Simulink models can be used
to create a modular proof of the model. This is a important point because
cyber-physical systems are often big and complex which makes it difficult to
express their safety as one property.

UTP The Unifying Theory of Programming (UTP) is a logic meant to unify
operational semantics, denotational semantics and algebraic semantics into a
unifying framework [HJ98; WC04]. It encodes programs as the predicates, pre-
cisely, the strongest predicates describing the behavior of a program. Healthiness
properties can be added to encode a particular programming paradigm. Foster
et al. mechanized UTP in Isabelle/HOL as Isabelle/UTP [FZW15], and applied
it to describing a discrete semantics and contracts theory for reactive systems
design [FW17]. Later, Xu et al. [Xu+23] extended the UTP to define a denota-
tional semantic model of hybrid systems (HUTP) capturing earlier models of
HCSP and of Simulink/Stateflow in the Mars environment.

2.2.3 Dedicated Proof-Assistant for Modeling CPS

We observe that using generic proof assistants to design and verify cyber-physical
systems requires to address the issue of extending them with constructive models
of concurrency and functions over reals, which the Mars platform does for instance
by the introduction of a hybrid extension to Hoare logic (HHL) in the Isabelle
proof assistant. Instead, others have developed models and implementations of
specific proof assistant for modeling cyber-physical systems.

Differential Dynamic Logic Differential dynamic logic (dL), is a logic
and a proof calculus designed to model and verify cyber-physical systems. In
dL, two expressions are defined recursively : hybrid programs and hybrid
formulas [Pla08]. A hybrid program represents an abstraction of the behaviour of
a system. Hybrid programs are equipped with the usual programming operator
(e.g. sequence) to describe discrete computations. They are also equipped with
ordinal differential equations to describe the continuous evolution of physical
components. Hybrid formulas are propositional formulas that can express
conditions on hybrid programs. Hybrid formulas can express two kinds of
modality, invariance: the program must satisfy a property for all runs, or
reachability: the program accepts a run that satisfy the property. Instead
of resolving the differential equations, differential dynamic logic proposes to
compute a differential invariant which suffices to prove the desired safety property.
A differential invariant is the invariant of a differential equation: a domain that
the variables it defines cannot cross at any time. By proving that the invariant is
satisfied during the evolution of the differential equation, and by proving that it
implies the safety property, we prove that the safety property is satisfied during

2.3. THE ISSUE OF COMPOSITIONALITY 13

the evolution of the differential equation. A more exhaustive introduction to
differential dynamic logic is given in Section 4.1.

Keymaera X To prove dL properties, Platzer et al. developed a proof-
assistant, Keymaera X [PQ08; Ful+15]. Keymaera X implements a language of
tactics, like Coq or Isabelle, to direct the derivation of a proof tree of discrete
computational properties and formulas according to the proof system of its logic,
differential dynamic logic. To resolves numerical questions the tool discharges
them into SMT solvers such as Z3 [dMB08].

Rodin Event-B The B-method [Abr10] is a framework for refinement based
design of complex systems. The generic approach of Event-B is to first specify
model abstraction of a complex system by enumerating its requirements. The
design workflow of Event-B then consists in the iterative, correctness-preserving,
refinement of these requirements toward consistent and concrete implementations
in C or Ada. An important line of work in the Event-B community is its
extension to the model of cyber-physical systems [Dup+18] and [CM20] as well
as [MAL22], which also regards it from the perspective of dynamic differential
logic. Examples uses of Method B in industry-scale system design are for instance:
Meteor, the design of the automated control system for line 14 in Paris’ subway
network [Beh+99].

2.3 The Issue of Compositionality

Validation of cyber-physical systems with proof assistants is difficult due to their
complexity and heterogeneity. Methods to reduce this complexity by using ab-
straction, modularity and compositionality is an active field of research [Gra+18;
SDP12]. To this end, the notion of contracts as been introduced in order to
provide modularity to the verification of cyber-physical systems. First, we intro-
duce notions of contracts specifically designed for differential dynamic logic and
hybrid hoare logic, and then we outline a generic framework of contract theory
with the aim of unifying these different theories.

2.3.1 Logical Contracts for Hybrid Systems

Lunel’s Component Model Lunel’s work explores the idea to contain the
definition of components in differential dynamic logic to follow a certain pattern in
order to support interleaving, hence parallelism and commutative composition, by
design [Lun19; LBT17; Lun+19]. This pattern is also designed to precisely model
computer-controlled systems. A computer-controlled systems is constituted of
an analog plant and a digital computerized controller 2.3. Theses two parts are
composed to form the system, or a subsystem. Lunel shows how the contracts
of each such subsystems compose consistently with the composition of their
corresponding components.

14 CHAPTER 2. STATE OF THE ART

Plant

Computer

Figure 2.3: The schematic of a computer controlled system

Müller’s Contracts In an effort to bring modularity to differential dynamic
logic, an algebra of contracts has been defined specifically for it [Mül+18; Mül+17;
Mül+16]. In this work, the components consist of three parts: computation,
plant, and communication ports. The symbolic variables called ports are used
to communicate between the components. Components can be specified with
interfaces that describe how they interact with the environment, their assumption,
and their guarantee. In an effort to specify different aspects of the system,
different types of contracts were created. For example, some contracts specify
the extent by which a value can change. Others specify the time period over
which a change can occur.

Wang’s Contracts Wang et al. extended the hybrid Hoare logic calculus to
handle compositionality [WZG12]. Indeed, because processes can communicate
and execute in parallel, specifying the composition of processes is very challenging.
By specifying processes with an assume/guarantee pattern, HHL constructs a
calculus suitable for handling modular specifications of complex system. In this
development, the components are free to be of any form. This is in contrast to
the work of Lunel and Muller, where components were need to be structured in
a particular form.

Foster’s Contracts Foster et al. have proposed a mechanized theory of
contracts in Isabelle and the Unified Theory of Programming (UTP) using pre-,
peri- and post-conditions to model discretely timed reactive systems. [Fos+20].
This framework would be a good candidate to extend the theory of hybrid
systems in the UTP [Xu+23] with a theory of contracts.

2.3.2 Generic Theories of Contracts

Foundations of Contracts for System Design Design by contracts was
first proposed by Meyer for software programming [Mey92]. Specification by
contracts traditionally consists of pre- and post-conditions, leaving the con-
tinuous timed variables extraneous of the specification. This is not practical
when designing cyber-physical systems, where time is intrinsically linked to
the continuous behavior of the system. Contracts for cyber-physical systems
replace pre-conditions by assumptions and post-condition by guarantees, the
main difference being that the assumption and guarantee can express continuous
properties: invariants of or hypothesis on the environment’s behavior; invariants

2.3. THE ISSUE OF COMPOSITIONALITY 15

or guarantees on the component’s behavior. Two paper lay the foundations
of the theory of specifications and contracts adapted to system design [AL93;
AL95]. They address the problem of composing specifications from a generic and
semantic point of view that on the logic used to express properties. They define
the basic operations and relations of contracts such as compositions, conjunction,
refinement and saturation.

Contract from Specifications Bauer et al. build a framework to construct a
theory of contract from a specification theory [Bau+12]. A specification theory,
is constituted of a class of objects called specifications, equipped with a parallel
composition operator and a refinement relation. In this framework, contracts are
pairs of specifications, one specification for the assumption and one specification
for the guarantee.

The Meta-Theory In an effort to unify contract theories, Benveniste defined
a meta-theory of contracts [BNH14; Ben+15a; Ben+08]. It can be instantiated
as various classes of contract theories and defines an algebra component algebra.
A more detailed introduction is available in Section 3.2.

More recently, contracts have been extended to hypercontracts [Inc+22].
Hypercontracts are similar to assume/guarantee contract, but the assume/guar-
antee properties are replaced by hyperproperties which allows to specify more
systems. For example, information flow cannot be specified with properties on
traces, but could be specified with hyperproperties.

Conclusion

While slightly different from one another, all these definitions of contracts retain
the same core ideas from the seminal works of Meyer, Abadi and Lamport.
Namely, a contract abstracts the specification of a component in a logic. These
definitions also support the same usual operators on contracts such as composition
or refinement.

A meta-theory of contracts has been defined, aiming at unifying all theories of
contracts [Ben+15b]. The theory of assume/guarantee contract instantiates the
meta-theory and is generic enough to bridge the gap between related definitions
of contracts [AL93; Ben+08]. It was used, for instance, to define contracts in
heterogeneous logics and relate them together [Nuz15].

In this chapter, we gave an overview of the different works related to the proof
assisted verification of cyber-physical systems. First, we showed the different
methods to validate cyber-physical systems. Then, the different proof assistant
were described and their uses to verify cyber-physical systems were given. Finally,
we introduced the different methods of adding modularity to the methods. This
state of the art leads us to contribute a formalized contract theory and to
parameterize it by a logic, to serve as a theoretical foundation and to practical
applications by instantiating it to a particular logic: differential dynamic logic.

16 CHAPTER 2. STATE OF THE ART

The meta-theory of contracts and the theory assume/guarantee of contracts
have, to the best of our knowledge, no formalized proof of correctness. Nor
does, by extension, its possible instantiation to specific logics for hybrid and
cyber-physical systems. In the following chapters, we propose a formalization of
both of them in the proof assistant Coq with the goal to instantiate it with a
hybrid logic that could be defined using that theorem prover.

Chapter 3

A Verified Contract Theory

3.1 Introduction to Coq . 18
3.1.1 Basic Syntax . 18
3.1.2 Set Library . 20
3.1.3 The Issue of Extensionality 21
3.1.4 De Morgan’s Laws . 22

3.2 Overview of the Theories of Contracts 23
3.2.1 Introduction to Component-Based Design 23
3.2.2 A/G Contracts for Component Specification 25
3.2.3 The Meta-Theory of Contracts 30
3.2.4 Specialization . 33

3.3 Mechanization of A/G Contracts in Coq 35
3.3.1 The Types for Variables 35
3.3.2 Requirements . 35
3.3.3 Objects Definitions . 36
3.3.4 Relations . 37
3.3.5 Outlook . 38

3.4 Consistency of A/G Contracts with the Meta-Theory 39
3.5 Alphabet Equalization . 41

3.5.1 Definition of Extension 41
3.5.2 Definition of Extended Operators 43

3.6 Elimination of Variables . 44
3.6.1 Definition . 45
3.6.2 Validation of the Definition 46

3.7 Formula Interface . 46
3.7.1 Purpose of the instance 47
3.7.2 Operations Definitions . 48
3.7.3 Equivalence with A/G Contracts 48

3.8 Outlook . 49

17

18 CHAPTER 3. A VERIFIED CONTRACT THEORY

This chapter introduces our mechanized formalization of the theory of as-
sumption/guarantee contracts. First, we give an introduction to Coq, the
proof-assistant used throughout the thesis. Then, in Section 3.2 an overview
and a related to the meta-theory of contract is given. Section 3.3 presents the
mechanization of the theory of assumption/guarantee contracts. Section 3.4
proves that the theory of assumption/guarantee contracts is a specialization of
the meta-theory of contracts. Sections 3.5, 3.6 and 3.7 extend this mechanization:
Section 3.5 first presents the logical tools to deal with contracts and components
of different alphabets. Section 3.6 models the elimination of unnecessary variables
from a specification. Section 3.7, introduces an interface for the mechanization.
Section 3.8 concludes this chapter. The code presented in this section is lo-
cated in the file VCT/Contracts.v of the development available at this address:
https://gitlab.inria.fr/skastenb/differential-contracts.

3.1 Introduction to Coq

In this section, we introduce Coq, the proof-assistant we use to mechanize the
formalization of contracts. We give a very short introduction to the basic syntax
of Coq, and some key principles we use in the development. For a more in-
depth exploration of Coq, the interested reader is directed towards the multiples
introduction made for Coq [BC13].

3.1.1 Basic Syntax

Function Functions are first-class citizen, they are defined with the keyword
Definition. In the example below, double, is the name of the function, (n : nat)

is its parameter, : nat is the type of its return value, and n + n is the body of
the function. A function can have any number of parameters, including zero,
hence, non-inductive constant object or type can be defined using Definition.
Below we define set, an abstract type to encode sets in Coq. If the type of the
parameter can be deduce from the type checker it is not mandatory to write
them, we chose to write them or not for a better human-readability and to help
the type checker.

Definition double (n : nat) : nat := n + n.

Definition set (Γ : Type) : Type := Γ → Prop.

Parameters of can be of any Type, Set or Prop, and can be dependent.
Concretely this means a type or a function can be parameterized by another
value of any type, including Prop or Type. In this example we code the function
In, which takes a type Γ, a object x of type Γ, and a set of object of this type s,
and return if this object is in the set. Here, the types of s and x are dependent
of Γ.

Definition In {Γ : Type} (x: Γ) (s: set Γ) : Prop := s x.

https://gitlab.inria.fr/skastenb/differential-contracts

3.1. INTRODUCTION TO COQ 19

Theorem Properties can be stated with Lemma, Theorem or Corollary, they will
be of type Prop. They are proved by modifying the hypotheses or conclusions
until the proof becomes trivial. Tactics are the instructions which modify the
hypothesis or conclusion. In reality, Coq construct a proof term, an object that
is the proof of the statement, using the Curry-Howard equivalence. In this thesis,
we do not show the process of proving and the tactics used, hence we don’t
introduce tactics and the process of proving the properties in Coq. Indeed, most
of our challenges lie on the definition of relevant lemmas, and finding the correct
proof scheme.

Lemma double_greater (n : nat) :
double n >= n.

Induction New inductive types can be defined in Coq using the keyword
Inductive. For every type defined this way, Coq will generate useful lemmas,
such as the induction principles. In the example, we defined Tree a simple binary
tree structure. Leaf is a constructor from a natural number, Leaf 4 is a tree
with one leaf with number 4. Branch construct a tree from two other trees. Coq
produces the lemma Tree_ind to prove properties about tree inductively, it is
best used with the induction tactic.

Inductive Tree : Type :=
| Leaf : nat → Tree

| Branch : Tree → Tree → Tree.

Record We can define record types with the Record keyword, as in program-
ming languages, they aggregate data in a single entity with multiple fields.
The user must name the record type Student, define name of the constructor
MkStudent, and label the records and their types id : nat. Similarly to other Coq
definitions, the fields can be parameterized by values of any Type, particularly,
a field can be the parameter of another field.

Record Student : Type := MkStudent

{ id : nat ;
age : nat}.

Type Class Similarly, we can define type classes, with Class. Under the
hood, they are parameterized records. Type classes are used to define functions
parameterized by a group of properties. The interested reader can find the full
definition in [SO08]. In the example below, we define the type class Equivalence
with the Class keyword. Equivalence is the class of relation eq that respect the
three properties of transitivity (eq_trans), symmetry (eq_sym) and reflexivity
(eq_refl). Then we define an instance of Equivalence for natural numbers
nat_eq. We prove that the properties hold for this relation (omega is a tactic for
automatically proving arithmetic properties), and instantiate the type class with
the keyword Instance. Thanks to type class mechanism, every function defined
for Equivalence can be used with nat_Equivalence.

20 CHAPTER 3. A VERIFIED CONTRACT THEORY

Class Equivalence (A : Type) := {
eq : A → A → Prop ;
eq_trans : ∀ (a b c : A), eq a b → eq b c → eq a c ;
eq_sym : forall a b : A, eq a b → eq b a ;
eq_refl : forall a : A, eq a a ;
}.

Definition nat_eq (a b : nat) := a <= b ∧ a >= b.

Lemma nat_eq_trans (a b c : nat) : nat_eq a b → nat_eq b c → nat_eq a c.
Proof.
unfold nat_eq ; omega.

Qed.

Lemma nat_eq_sym : forall a b : nat, nat_eq a b → nat_eq b a.
Proof.
intros a b ; unfold nat_eq ; omega.

Qed.

Lemma nat_eq_refl : forall a : nat, nat_eq a a.
Proof.
intros a ; unfold nat_eq ; omega.

Qed.

Instance nat_Equivalence : Equivalence nat := {
eq := nat_eq ;
eq_trans := nat_eq_trans ;
eq_sym := nat_eq_sym ;
eq_refl := nat_eq_refl ;
}.

3.1.2 Set Library

In this section, we introduce the library we use to encode set in our development.
It will lead us to introduce the principle of extensionality and classical logic in
our library.

Set Definitions We define a set type, parameterized by a type Γ. In that way,
the type set Nat, is the type of natural set. This way, we define a set theory,
independent from the type of elements. We define three basic operations on sets,
In the belonging relation, SubsetEq the inclusion of sets and Eq the equality of
sets. We also define the union union and intersection inter relations for sets. In
this encoding of sets, an element x is in the set s if and only if s x ↔ True.

Definition set (Γ : Type) : Type := Γ → Prop.

3.1. INTRODUCTION TO COQ 21

Definition In {Γ : Type} (x: Γ) (s: set Γ) : Prop := s x.
Notation "x ∈ s" := (@In _ x s) (at level 70, no associativity).
Notation "x /∈ s" := (¬ @In _ x s) (at level 70, no associativity).

Definition SubsetEq {Γ : Type} (s1 s2: set Γ) : Prop :=
forall x: Γ , x ∈ s1 → x ∈ s2.

Notation "u ⊆ v" := (@SubsetEq _ u v) (at level 70, no associativity).

Definition Eq {Γ : Type} (s1 s2: set Γ) : Prop :=
forall x: Γ , x ∈ s1 ↔ x ∈ s2.

Notation "u == v" := (@Eq _ u v) (at level 70, no associativity).

Definition union {Γ : Type} (s1 s2: set Γ) : set Γ :=
fun x: Γ ⇒ x ∈ s1 ∨ x ∈ s2.

Notation "u ∪ v" := (@union _ u v) (at level 61, left associativity).

Definition inter {Γ : Type} (s1 s2: set Γ) : set Γ :=
fun x: Γ ⇒ x ∈ s1 ∧ x ∈ s2.

Notation "u ∩ v" := (@inter _ u v) (at level 51, left associativity).

3.1.3 The Issue of Extensionality

Since we defined an equality of set Eq that is not the default equality of Coq,
we want to prove that Eq implies the default equality, namely the theorem
Eq_extensionality. Two difficulties will come from this, one the default Coq
equality is intensional, meaning objects are equal if they are defined equaly. We
will elaborate on that point and functional extensionality in the following. Two,
we will need to prove that s1 x ↔ s2 x → s1 x = s2 x, for s1 and s2 two sets and
x an element of those sets. This is false by default in Coq, because proof of
the same properties are not necessarly equal. We need to assume propositional
extensionality, we talk about this later.

Theorem Eq_extensionality: forall {Γ : Type} (s1 s2 : set Γ),
s1 == s2 → s1 = s2.

Functional extensionality By default, Coq uses the principle of intensionality,
meaning that two terms are equal if they are equal syntactically. Extensionality,
by contrast, means that two object are the same if they have the same external
properties. In usual mathematics and notably in set theory, set is an abstract
concept which relies on the elements of each set. As such, two sets are equal
if they contain the same elements exactly. Since we uses set theory in our
development, the axiom of extensionality, which states that two sets are equal if
they have the same elements, has to be added to our context. For this reason,
we include the axiom of functional extensionality. The standard library of Coq
has a module for this: FunctionalExtensionality1.

1The documentation of the module can be found at: https://coq.inria.fr/distrib/

current/stdlib/Coq.Logic.FunctionalExtensionality.html

https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.FunctionalExtensionality.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.FunctionalExtensionality.html

22 CHAPTER 3. A VERIFIED CONTRACT THEORY

Axiom functional_extensionality_dep : ∀ {A} {B : A → Type},
∀ (f g : ∀ x : A, B x),
(∀ x, f x = g x) → f = g.

Propositional Extensionality We also need the propositional extensionality2,
it states that two properties that are equivalent in the mathematical sense are
replaceable. Indeed, in constructive logic, this is false, two proofs of the the
same statement are not equal if their proof terms are not syntactically equal.
With propositional extensionality, we consider that two equivalent statements
are equal.

Axiom propositional_extensionality :
forall (P Q : Prop), (P ↔ Q) → P = Q.

Set Extensionality With both axioms, we can prove the following extension-
ality axiom Eq_extensionality, it states that two sets with the same elements
are equal.

Theorem Eq_extensionality: forall {Γ : Type} (s1 s2 : set Γ),
s1 == s2 → s1 = s2.

Proof.
unfold set, Eq, In.
intros.
apply functional_extensionality.
intro x.
apply propositional_extensionality.
apply H.

Qed.

3.1.4 De Morgan’s Laws

For our set library we would like to prove both De Morgan’s laws (Equation 3.1
and 3.2). They are set manipulation results that we are going to need for our
development. Yet, they are not directly provable in Coq.

A ∪B = A ∩B (3.1)

A ∩B = A ∪B (3.2)

Classical Logic Indeed, we usually reason with classical logic. In classical
logic, we have an axiom call excluded middle, it states that every proposition is
either true or its negation holds. In Coq we use constructive logic, this axiom
is not admitted, thus we must always give a proof term to construct an object.
In particular to prove something exists, one must construct the object, proving

2https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.PropExtensionality.html

https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.PropExtensionality.html

3.2. OVERVIEW OF THE THEORIES OF CONTRACTS 23

that the object cannot exist is insufficient. This makes it possible for Coq to
extract executable code from the definitions.

Yet, we need classical reasoning to prove De Morgan’s laws. Indeed, equa-
tion 3.2 is only true if we accept ∀x, x ∈ A ∨ x ∈ A, a consequence of the
excluded middle. As such, we assume the classic axiom to prove De Morgan’s
laws3. In our thesis we use constructive logic, with this set library as exception.
We aim to remove the uses of the excluded middle axiom, but it is easier to
accept it for now.

Axiom classic : forall P : Prop, P ∨ ¬ P.

Lemma morgan {Γ : Type} : forall s1 s2 : set Γ , ¬s1 ∩ ¬ s2 = ¬ (s1 ∪ s2).
Lemma morgan2 {Γ : Type}: forall s1 s2 : set Γ , ¬(s1 ∩ s2) = ¬s1 ∪ ¬ s2.

3.2 Overview of the Theories of Contracts

This section gives an overview of the contracts theories used in the mechanization
of Section 3.3. We start with an intuitive introduction to component-based
design and assumption/guarantee contracts, which we progressively formalize
with mathematical definitions. We continue with an introduction to the meta-
theory of contracts. Finally, we show that the theory of assumption/guarantee
contracts is an instance or specialisation of the meta-theory of contracts.

3.2.1 Introduction to Component-Based Design

Component-based design is a paradigm of system design, where the system is
modeled as a combination of components. In this paradigm, the design process
consists of combining the right components the right way, to ensure the functional
correctness of the system and its safety.

Component Components are functionally independent parts of a system, they
can have inputs and outputs, they compute the outputs from the inputs. In
component-based design, we consider some atomic components, they are the
simplest component in the system. Two different meanings can be given to the
notion of component. In the first case, the components are blueprints of the
actual parts that will be replicated to build the system. In the second case,
components are functionally unique, they are the actual building block of the
systems. In our development, we will use the second definition. Components
are interconnected with each other, meaning that the output of one components
can be connected to the input of another component. For example, a water tank
and a valve controlling the inflow of the tank are combined into a system. This
system has two components, the valve and the tank.

3https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.Classical_Prop.html

https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.Classical_Prop.html

24 CHAPTER 3. A VERIFIED CONTRACT THEORY

a b

a⊗ b

Figure 3.1: Composition of a and b

Composition of Components Composition allows to regard two components
as one. We define a composition operator, that constructs a component from
two components. The component constructed should have the correct inputs
and outputs. For example, the input of a, is also an input of a⊗ b if it’s not an
output of b, see Figure 3.1.

Contract We also want to create specifications for those components. We
choose to specify components with contracts, because they are written in a formal
language as opposed to documentation which are informal descriptions in natural
language. Contracts are equipped with an algebra which allow us to compose
them with each other. The goal of a contract is to abstract the behaviour of the
components, and to focus on the connections it has with the other components.
We hence won’t describe how an individual contract is constructed, since it is
not defined by construction but by intent: what we can do or prove with it. For
example, the contract of a valve could express in a formal language that the
inflow is always positive (v > 0).

Composition of Contracts To construct the contract that specifies the com-
position of components we have an operator that composes contracts. Composed
components and contracts should match: composed contracts should define
assumptions and guarantees on the corresponding composition of components.
For example, if a contract is the result of the composition of the contracts of the
valve and the water tank, it should specify the system.

Conjunction Sometime a specification can target different and independent
features of a component. For example, one specification may pertain to the
correctness of an output, and the other relate to the speed at which this output
can be computed. These two specifications are independent but relate to the
same component. We can conjoin these contracts, to have a single contract
encompassing the two aspects of its specification: correctness and timing.

Refinement The specification of a component can adopt different levels of
abstraction. This induces an order relation, the refinement relation, to express
how a contract abstracts or refine another. If a contract specifies a subset of
the properties (e.g., x ∈ N) another contract specifies (e.g., x > 10), we say
that it refines it, and conversely, abstracts it. Indeed, it is sometimes easier to

3.2. OVERVIEW OF THE THEORIES OF CONTRACTS 25

manipulate an abstract contract when unnecessary details are irrelevant (e.g., to
a verification goal).

3.2.2 A/G Contracts for Component Specification

We now introduce the assumption/guarantee contracts theory and give the
mathematical definitions of the objects involved.

Variables and Alphabets We start by the definition of a variable, they are
the inputs and outputs of the components. V is the set of all variables identifier.
Each part of the system, is defined using only a subset of V, we call this set
of variables its alphabet. For simplification purpose, we first suppose that all
components and contracts are defined on the same alphabet d ⊆ V. Below, we
define operations to change the alphabet an object is defined on, by eliminating
or by adding a variable to its alphabet. The alphabet of the valve is d = {h, v}.

Behavior Variables are containers for values, for simplification purposes we
consider that all variables hold value in the same domain. In the examples we
use R as the domain of value. A behavior is a valuation of all the variables in
the alphabet, that is to say, it is a function from d to R. The behavior space
Bd = d→ R is the set of all behavior on alphabet d. For example the behavior s
is defined on d by s(h) = 1 and s(v) = 3.5. For the sake of readability we note
(h, v) the behavior that is defined by (h, v)(h) = h and (h, v)(v)(v).

Assertion An assertion is a logical statement on the variables of an alphabet
d. By using the duality of sets, it can be seen either as a collection of elements
or as the property that every element satisfies. Here, we consider an assertion to
be the set of all behaviors that satisfies the property it denotes. We define an
assertion a defined on d as a subset of the behavior space, noted a ⊆ Bd. Here is
an example of assertion: {(h, v) | v > 0 ∧ h < 20}

Definition 1 (Assertion satisfaction). For an assertion a and a behavior s, we
say s satisfies a iff s ∈ a.

Component We model a component by the assertion it guarantees on the
system’s behaviors. There is no clear differentiation between the inputs and
outputs of a component (as long as causality is not the matter); they are both
variables in d the alphabet. A component is not only viewed as a logical property
relating inputs and outputs, but as every behavior satisfying that property. This
defines a component by the set of behaviors it can follow. So the formal definition
of a component is a subset of Bd, though it is more convenient to think of it
as the logical statement relating inputs and outputs. For example a model of
the valve could be modeled as the component that exists only positive inflow:
{(h, v) | v > 0}

26 CHAPTER 3. A VERIFIED CONTRACT THEORY

Composition of Components Composing components construct a new
component. We can compose any two components together. The composition of
two components of same alphabet is simply the intersection of their assertions. If
such a composition yields the empty set (of behaviors), the component is defined
but cannot be used since it is a unimplementable component. For example, the
composition of the valve keeping the flow positive, and the water tank keeping the
water-level low is {(h, v) | v > 0} ∩ {(h, v) | h < 20} = {(h, v) | v > 0 ∧ h < 20}.
Later on, we discuss the composition of components with different alphabets.

Environment As in the assumption/guarantee contract theory, when com-
posing α ∩ β, we say that β is an environment for α (and reciprocally). When
considering a component we call the rest of the system the environment, yet
formally, the environment is just another name for a component. For example,
when considering the motor of a car, the other components interacting with
the motor form a sub-system: the environment of the motor. Conversely, when
considering the gearbox, the other components of the car, including the motor,
form its environment.

Assumption/Guarantee Contract A contract is a possibly abstract specifi-
cation of a component. In assumption/guarantee contract theory, contracts are
pairs assertions: an assumption and a guarantee. Informally, the assumption
is the property required from the environment for the component to function
and the guarantee is the property ensured by the component. The goal is to
define rules which restrain both the implementation of the component and the
environment it needs to embed. Here, the assumption is the restriction on the
environment whereas the guarantee is the restriction on the component. An
example of contract for the tank could be : ({(h, v) | v < 5}, {(h, v) | h < 20}),
meaning that, if the flow is lower than 5, the water-level is kept below 20.

Definition 2 (Assumption/guarantee contract). An assumption/guarantee con-
tract is the combination of two assertions, one for the assumption (A) one for
the guarantee (G). For a contract c = (A,G) we define projections to get the
assumption and the guarantee

A(c) = A ; G(c) = G

.

Implementation Now, we define what it means for a behavior to satisfy
a contract. We lift this definition to components that implement a contract.
Informally, a component implements a contract if it it specified by the contract.
So, for example, the tank {(h, v) | v < 5 → h = 10} is an implementation of the
contract: ({(h, v) | v < 5}, {(h, v) | h < 20}) (or a more refined contract).

Definition 3 (Satisfies). A behavior s satisfies a contract if either it’s a behavior
excluded from the contract’s assumption, or the contract’s guarantee holds for
the behavior.

s ⊢ c ≡ s ∈ A(c) ∪G(c)

3.2. OVERVIEW OF THE THEORIES OF CONTRACTS 27

Definition 4 (Implements). A component σ implements a contract if every
behavior in σ satisfies the contract.

σ ⊢ c ≡ ∀s ∈ σ, s ⊢ c

An environment e provides a contract if every behavior of e is included in
the assumption of the contract. So the component {(h, v) | v = 2} provides the
contract ({(h, v) | v < 5}, {(h, v) | h < 20}).

Definition 5 (Provides).

e ⊢P c ≡ ∀s ∈ e, s ∈ A(c)

Saturation This leads to a particular point in assumption/guarantee contracts.
With the above definition, we notice that multiple contracts can be implemented
by the same components and provided by the same environments. So we
have a class of contracts which are all equivalent, as they specify the same set
of components and environment. In order to normalize contracts, we define
saturation an idempotent operation which doesn’t change the set of components
satisfying the contract, nor the set of environment providing the contract. The
saturation operation is idempotent, namely saturate(saturate(c)) = saturate(c).
Since it doesn’t change the components which implement the contract, nor
the environment that provides it, we always use the saturated version of a
contract. In the remainder, we assume contracts to be saturated, the definitions
of conjunction, refinement and composition would be different if the contracts
were not saturated:

For example, the contract csat is the saturated version of the unsaturated c.

c = ({(h, v) | v < 5}, {(h, v) | h < 20})
csat = ({(h, v) | v < 5}, {(h, v) | v < 5 → h < 20})

Definition 6 (Saturation).

saturate(c) ≡ (A(c), A(c) ∪G(c))

Lemma 1 (Saturation soundness). Saturation doesn’t change the set of imple-
menting component, and providing environment.

σ ⊢ c ⇐⇒ σ ⊢ saturate(c)

e ⊢P c ⇐⇒ e ⊢P saturate(e)

Refinement Next, we want to define the refinement relation between two
contracts. In this definition and the two following ones (conjunction and compo-
sition), we consider contracts to be defined on the same alphabet d and to be
saturated. The most refined contract is the one which has the strongest guaran-
tee and the weakest assumption. The guarantee is stronger because refinement

28 CHAPTER 3. A VERIFIED CONTRACT THEORY

allows a more precise guarantee. The assumption is weaker because the refined
contract can accept a more abstract environments. For instance, the contract
a⪯-refines b.

a =({(h, v) | v ∈ R}, {(h, v) | v ∈ R → 0 < h < 10})
b =({(h, v) | v < 5}, {(h, v) | v < 5 → h < 20})

Definition 7 (A/G refinement).

c1 ⪯ c2 ≡ A(c1) ⊇ A(c2) ∧ G(c1) ⊆ G(c2)

Conjunction The conjunction of contracts, which constructs a contract that
combines two contracts specifying different aspects of a component, is defined
by the formula below.

Definition 8 (A/G conjunction).

c1 ⊓ c2 ≡ (A(c1) ∪A(c2), G(c1) ∩G(c2))

For instance, the conjunction of
({(x, y) | x ̸= 0}, {(x, y) | x ̸= 0 → y = x−1}) and
({(sx, sy) | sx < 2}, {(sx, sy) | sx < 2 → sy < 5}) is(
{(x, y, sx, sy) | x ̸= 0 ∨ sx < 2},

{
(x, y, sx, sy)

∣∣∣∣ (x ̸= 0 → y = x−1)
∧ (sx < 2 → sy < 5)

})
.

Composition of Contracts The guarantee of composed contracts is the
conjunction of the contracts’ guarantees, because it is provided by both of the
components it denotes. The assumption of composed contracts is the conjunction
of the contracts’ assumptions, relaxed from the guarantees. The idea, is that
the component implementing the contract resulting from the composition can
accept any behavior that is outside the scope of both guarantees. We give an
example of composition of contracts below.

({(h, v) | v < 5}, {(h, v) | v < 5 → h < 20})
⊗ ({(h, v) | v > 0}, {(h, v) | v > 0 → v < 5})
= ({(h, v) | v > 0}, {(h, v) | v > 0 → (h < 20 ∧ v < 5)})

Definition 9 (A/G composition).

c1⊗ c2 ≡ (A′, G′)

With

A′ ≡ A(c1) ∩A(c2) ∪G(c1) ∩G(c2)

G′ ≡ G(c1) ∩G(c2)

3.2. OVERVIEW OF THE THEORIES OF CONTRACTS 29

Quotient of Contracts Until recently, there was no definition of quotient in
A/G contracts, for example it was not defined in the theory defined by Benveniste
[Ben+08]. The quotient was defined for assumption/guarantee contracts, but
it is not defined in our formalization [́Inc+18]. The quotient is the inverse of
composition. It is characterized by the fact that given contracts c and c1, for
every contract c′ : c′ ⪯ c \ c1 ⇐⇒ c′ ⊗ c1 ⪯ c.

Definition 10 (A/G Quotient).

c \ c1 ≡ (A(c) ∩G(c1), A(c1) ∩G(c) ∪ ¬(A(c) ∩G(c1)))

Compatibility and Consistency We add two useful definitions to charac-
terize the non-emptiness of the assertions in contracts. Indeed, contracts with
empty guarantee or empty assumption should be treated differently as they are
not implementable by a component or providable by an environment.

Definition 11 (Compatibility). A contract c = (A,G) is compatible if A is
non-empty.

Definition 12 (Consistency). A contract c = (A,G) is consistent if A→ G is
non-empty.

Alphabet Equalization We are now interested in operations on contracts
from different alphabets. Since we have only defined the operators on contracts
with same alphabet, we want to modify the contracts so they have the same
alphabets. The meta-theory names this process ”Alphabet Equalization”. In
the following we define the tools to equalize alphabets of contracts. First, we
define two projections operators on assertion. The first is the projection of the
assertion on a smaller alphabet. The second one is the inverse projection, or
extension, of an assertion on a bigger alphabet. Thus, we can update contracts
by extending their alphabet to any larger alphabet. To equalize the alphabets
d1 and d2 of two contracts c1 and c2, we extend both contracts’ alphabets to
the alphabet d = d1 ∪ d2.

Definition 13 (Projection). For a an assertion defined on d and d1 ⊆ d.
prd1(a) is the set of all behaviors of a, restricted to d1.

As an example let us consider the assertion a = {(h, v) | h > 0 ∧ v > 0}. Its
projection on {h} is : pr{h}(a) = {h | h > 0}.

Definition 14 (Inverse Projection). For P defined on d1 and d1 ⊆ d.
pr−1

d (P) is the set of all behaviors defined on d that project in P when restricted
on d1.

For example, the inverse projection of the assertion a = {h | h > 0} on {h, v}
is {(h, v) | h > 0}.

30 CHAPTER 3. A VERIFIED CONTRACT THEORY

Contract Extension We lift the definition of inverse projection to contracts
by using the operator on both the assumption and guarantee. For contracts
and components, we call this operation ”extension”, as it is the extension of a
contract’s alphabet to a larger alphabet.

Definition 15. For c = (A,G) a contract defined on d1 with d1 ⊆ d, pr−1
d (c) =

(pr−1
d (A),pr−1

d (G)) is the extension of c to alphabet d.

Component Variable Elimination If a variable is only internal to a com-
ponent, we can choose to remove it. This allows us to abstract the component
while still retaining its external characteristics. To eliminate a variable of a
component we project its assertion to the alphabet with the variable removed.

Definition 16 (Component variable elimination). For σ a component defined
on an alphabet V and a variable a ∈ V , prV \a(σ) is the component with a
eliminated.

Contract variable elimination Similarly, we can choose to remove a variable
from a contract. This is useful if the variable is internal to the component that
is specified by the contract, and we don’t want to specify it through the contract.
In order to eliminate a variable of a contract, first we project the guarantee to
the alphabet from which the variable has been removed. Then, we project the
assumption on the same alphabet, but only keeping the behaviors in which the
variable was not relevant. Namely, we take the set of behavior, which every
value of the new variable appears in the original set. This is done to only accept
behaviors where the eliminated variable could have any value. We call this
second kind of projection a projection-∀, we give its formal definition below. The
name projection-∀ comes from an analogy we make from sets to statement. For a
set s = {(x, y) | P (x, y)} the projection-∀ is the set pr∀{x}(s) = {x | ∀y, P (x, y)}.
We also give an example in Figure 3.2.

Definition 17 (Projection ∀). For an assertion P defined on V , and V ′ ⊆ V ,
pr∀V ′(P) is the set of all behaviors whose extensions (to V) are in P.

Definition 18 (Contract variable elimination). For C = (A,G) a contract
defined on alphabet V and a variable a ∈ V , C ′ = (pr∀V \a(A),prV \a(G)) is the
contract with a eliminated.

3.2.3 The Meta-Theory of Contracts

This section introduces the meta-theory of contracts [Ben+15b] which is a more
general theory, encompassing assumption/guarantee contracts as an instance or
a specialization, but also encompassing other specializations such as the interface
theory. This implies that the definitions of this section will be similar to the
definitions above Yet, they are more abstract and typically not constructive.
The main difference is that in the meta-theory the components are an abstract
parmeter, whereas in the assumption/guarantee contracts, the components are

3.2. OVERVIEW OF THE THEORIES OF CONTRACTS 31

x

y

s

pr{x}(s)

x

y

s

pr∀{x}(s)

Figure 3.2: An example of projection on the left and projection-∀ on the right

defined as sets of behaviors. After introducing the notion of components as a
parameter in the Meta-Theory, we show how contracts and algebraic operators
are defined.

Components as Parameters of the Meta-Theory

Component In the meta-theory of contracts, there is only one parameter,
that of component. It is deeply related to component-based design, components
are combined and can be composed to create new components. Components are
kept abstract, their construction is not defined as opposed to previous definitions
in the assumption/guarantee theory of contracts. In practice, a meta-theoretic
or abstract component is meant to represent an element of a system performing
a specific task. In the remainder, such components are noted by the letter σ.

Composition of Components We note σ1 × σ2 the composition of σ1 and
σ2. We assume this operator to be total and commutative. Again, we don’t give
the definition of the composition of components as the definition of components
is abstract (a parameter).

Environment As in the assumption/guarantee contract theory, when compos-
ing σ1 × σ2, we call σ2 an environment for σ1. When considering a component
we call the rest of the system the environment, yet formally, environment is just
another name for components.

Component Specification

Contract A contract, in the meta-theory, is the specification of a part of a
system performing a certain task, similarly to the definition in component-based
design. It is also a specification of the environment required for the task to
be correctly performed. Formally, a contract is a set of components capable of

32 CHAPTER 3. A VERIFIED CONTRACT THEORY

performing the task, and the set of possible environments in which it can be
performed. This definition is a generalization of Definition 2.

Definition 19 (Contract Meta-Theory). A contract is a pair C = (E ,M) with
M a set of components and E a set of environments for every component in M.

Implements and Provides We define the relation of implementation for
the Meta-Theory. This is similar to the definitions in assumption/guarantee
contracts, Definition 4 and Definition 5. Since the theories are so close, we use
the same name for the operators, to avoid confusion we note ⊢MT (respectively
⊢P
MT) for the implements (respectively provides) relation in the meta-theory.

Definition 20 (Implements Meta-Theory). For a contract C = (E ,M) and a
component σ,

σ ⊢MT≡ σ ∈ M.

.

Definition 21 (Provides Meta-Theory). For a contract C = (E ,M) and an
environment e,

e ⊢P
MT C ≡ e ∈ E .

Refinement The goal of a specification is to be an abstraction of actual
components. Multiple contracts can be specifications of the same component on
different levels of abstraction. We introduce the refinement relation to describe
that a contract is the abstraction of another. Here C1 is the refined version
of C2. This means that any implementations of C1 can be used in place of an
implementation of C2.

Definition 22 (Refinement Meta-Theory). C1 ⪯MT C2 ≡ M1 ⊆ M2 ∧ E2 ⊆ E1

Conjunction Sometimes, multiple specifications can be applied to the same
component. For example, we want a component to be fast (efficient) and safe
(effective). These are specifications regarding the runtime speed of the component
and its functional correctness. We would like to regroup both specifications
in the same contract. Any contract which refines both contracts can be used,
though it is here more desirable to use the most abstract one. With this in mind,
we define the conjunction of contracts as the greatest lower bound of refinement.

Definition 23 (Conjunction). C1 ⊓MT C2 is the greatest lower bound C1 and
C2 regarding the refinement.

Composition For now, we only considered one component in its environment.
Yet, most of the complexity of system design comes from the composition
of multiple components. The problem can be formulated as ”If we have the
specification of two components, can we determine the specification for their
composition?”. The subtlety is that each component is part of the environment
of the other, hence the definition:

3.2. OVERVIEW OF THE THEORIES OF CONTRACTS 33

Definition 24 (Composition).

C1 ⊗MT C2 ≡ min
⪯MT

C
∣∣∣∣∣ ∀M1 ⊢MT C1 M1 ×M2 ⊢MT C

∀M2 ⊢MT C2 =⇒ E ×M2 ⊢P
MT C1

∀E ⊢P
MT C E ×M1 ⊢P

MT C2

Quotient The quotient is the inverse of the composition. C1/C2 combined
with C1 refines C2. It is a really powerful tool for system engineering.

Definition 25 (Quotient). C1/C2 is the contract such that

∀C,C ⪯MT C1 ⊗MT C2 ⇐⇒ C ⪯MT C1/C2

Compatibility and Consistency The definition of compatibility and consis-
tency is more natural in the meta-theory. A contract is consistent if a component
implements it and compatible if an environment provides it. Lifting compati-
bility and consistency on pairs of contracts gives a more intuitive vista on the
definition. We say that two contracts are compatible (respectively consistent) if
their composition is compatible (respectively consistent).

Definition 26 (Consistency). A contract C is consistent if ∃M, M ⊢MT C.

Definition 27 (Compatibility). A contract C is compatible if ∃E, E ⊢P
MT C.

3.2.4 Specialization

We now have two theories of contracts that differ in their definitions of imple-
mentation, refinement, conjunction, and composition. The meta-theory has an
intuitive definition, while the assumption/guarantee theory has more concrete
and constructive properties. In this section, we define the properties needed to
prove that assumption/guarantee contracts are an instance or a specialization of
the meta-theory of contracts. The idea is to replace the notion of implementation
in the meta-theory with the implementation defined in the assumption/guarantee
contract theory. By doing that, we can check that the characterisation of the def-
initions in the meta-theory holds for the definitions in the assumption/guarantee
contract theory.

Refinement To show that the refinement in assumption/guarantee contract is
correct, we must prove that it is an order relation regarding the implementation
(Theorem 1). Also, if two contracts refines each other by Definition 7, they
also refines each other by Definition 22, with the meta-theory implementation
relation replaced by the A/G implementation (Theorem 2).

Theorem 1 (A/G Refinement Order). ⪯ is reflexive, anti-symmetric and tran-
sitive.

let a := (c1’.A ∩ c2’.A) ∪ ¬ g in

34 CHAPTER 3. A VERIFIED CONTRACT THEORY

Theorem 2 (A/G Refinement Sound). If C1 ⪯ C2 then

∀M, M ⊢ C1 =⇒ M ⊢ C2

and

∀E, E ⊢P C2 =⇒ E ⊢P C1

Conjunction We must verify that the definition of the conjunction in the
A/G contract theory is the greatest lower bound of two contracts, as it is defined
in the Meta-Theory in Definition 23.

Theorem 3 (A/G Conjunction Correction). C1 ⊓ C2 is the greatest contract
that refines C1 and C2

Composition of Contracts To verify that the composition of contract in the
assumption/guarantee theory (Definition 9) corresponds to the definition in the
meta-theory, we must check that the constructed contract is the minimum of
the set described in Definition 24, with the implementation relation instantiated
by the implementation of assumption/guarantee contract. First, we check that
the it is in the set (Theorem 4), then that it refines every contract in the set
(Theorem 5).

Theorem 4 (A/G Composition in set).

C1 ⊗ C2 ∈

C
∣∣∣∣∣ ∀M1 ⊢ C1 M1 ×M2 ⊢ C

∀M2 ⊢ C2 =⇒ E ×M2 ⊢P C1

∀E ⊢P C E ×M1 ⊢P C2

Theorem 5 (A/G Composition minor set).

∀C ∈

C
∣∣∣∣∣ ∀M1 ⊢ C1 M1 ×M2 ⊢ C

∀M2 ⊢ C2 =⇒ E ×M2 ⊢P C1

∀E ⊢P C E ×M1 ⊢P C2

 , C1 ⊗ C2 ⪯ C

Consistency and Compatibility Verifying the definitions of consistency and
compatibility in A/G contracts consists in proving Theorem 6 and Theorem 7.

Theorem 6 (A/G Consistency Correct). For a contract C = (A,G),

∃s, s ∈ A ∪G ⇐⇒ ∃σ, σ ⊢MT C

Theorem 7 (A/G Compatibility Correct). For a contract C = (A,G),

∃s, s ∈ A ⇐⇒ ∃e, e ⊢P C

3.3. MECHANIZATION OF A/G CONTRACTS IN COQ 35

3.3 Mechanization of A/G Contracts in Coq

The meta-theory intends to provide a generic contract theory that can be
instantiated with several logics. Each logic presents some features to enable
or facilitate the verification of domain-specific properties in a system. Proving
that several logics implement the same meta-theory is a way to unify them.
Here, we formalize the assume/guarantee contract theory and prove that it
corresponds to the definitions given in the meta-theory. The code of this
section is available in the file VCT/Contracts.v of the library available at: https:
//gitlab.inria.fr/skastenb/differential-contracts.

The contract theory relies on set-theoretic definitions. At this stage, we
assume the abstract type set : Type → Type which is constructed, from any type
(T), a set type (set T : Type equipped with the usual set operators as ∪, ∩, ¬.
We also assume the relations ∈ and ⊆ as well as the set equivalence s1 == s2

which is extended to the standard equality s1 = s2 by extensionality.

3.3.1 The Types for Variables

We use two abstract types to parameterize our theory, ident and value We will
instantiate them in Chapter 4 to use the theory with differential dynamic logic.

Identifiers The ident is the identifier used for the variables. It is usually a
string of characters, but can also be a natural number, or anything else. In
Section 3.2, ident were the elements of set V.

Values The type value code the values held by variables. It typically is real,
naturals or booleans. Here, we only consider one type of value, for the sake of
simplicity in our reasoning, which is however not realistic, as a real component
may manipulate different type of variables.

3.3.2 Requirements

We have some requirements on the base types. All theses requirements are
summarized in the type class NonEmptyDecidableVariable. Indeed, we need to
be able to determine if a identifier belongs to a set. This is the in_dec_ident

function. We also need a default value any_value for the extension of alphabet
of behaviors. Both of the requirements should be computed when the theory is
instantiated.

Class NonEmptyDecidableVariable (value ident : Type) := {
any_value : value ;
in_dec_ident : ∀ (v : ident) (d : set ident), {v ∈ d} + {v /∈ d}

}.

https://gitlab.inria.fr/skastenb/differential-contracts
https://gitlab.inria.fr/skastenb/differential-contracts

36 CHAPTER 3. A VERIFIED CONTRACT THEORY

3.3.3 Objects Definitions

Alphabet We define an alphabet as a set of identifiers, as in Section 3.2.

Definition alphabet : Type := set ident.

This section considers d as the unique set of identifiers used in the system.
Most of the definitions we give below are parameterized by it. It is an implicit
parameter for every definition using d. We see in Section 3.5, how to manipulate
components who are defined on different alphabets.

Variable The type var is the type of a variable, namely an identifier with the
proof that it inhabits d. It is different of an identifier in the sense that we know
it is relevant in the context. This is a particular point in the mechanization that
doesn’t appear in mathematical definitions. The notation { x : A | P x} denote
the sigma type of an element x with property P x.

Definition var := { v : ident | v ∈ d }.

Behavior A behavior is a function that associates a value to each variable. As
in the mathematical definition, we only define the behavior on variables that
are in the alphabet. This is why we have to define the var type as it the way to
define a function on a subset of ident.

Definition behavior : Type := var → value.

Assertion We define assertions as behavior predicates using the duality of
sets, namely, s ∈ q denotes that s satisfies the assertion q. This is exactly the
same as in Section 3.2.

Definition assertion : Type := set behavior.

Components At this stage of the development, we assimilate the concept of a
component with its behavior as in the previous section. The same is true for
environments, which are another name for components. The name environment is
used to refer to components that act as the external environment of a component.

Definition component := assertion.
Definition environment := component.

Contracts Contracts are directly defined as pairs of assertions relating the
behavior expected from the environment (assumption) with the behavior of
the component (guarantee). The syntax c.A (and c.G) denotes the assumption
(respectively guarantee) of the contract c in the rest of the paper4. As in
Definition 2:

Record contract : Type := mkContract {A : assertion ; G : assertion}.

4Coq original syntax is c.(A) but we replaced it for the sake of readability.

3.3. MECHANIZATION OF A/G CONTRACTS IN COQ 37

3.3.4 Relations

Behavior satisfaction The semantics of the contract relies on the implemen-
tation of a contract by a component. In order to define it, we first introduce the
satisfiability of the contract by a single behavior and the saturation principle.

Definition satisfies (s : behavior) (c : contract) : Prop :=
s ∈ ¬ c.A ∪ c.G.

Basically, a behavior satisfies a contract either if the behavior is discarded by the
assumption then nothing is guaranteed by the contract, or the behavior satisfies
both assumption and guarantee of the contract.

Saturation In the following code, we saturate contracts when necessary: it
is easier to saturate a contract than to check if it is already saturated. By
contrast, in the mathematical definition, it is easier to consider every contract to
be saturated rather than to saturate them all the time. The saturate function
is the implementation of the Definition 6.

Definition saturate (c : contract) : contract :=
{| A := c.A ;

G := ¬ c.A ∪ c.G |}.

We verify that the contract saturation is sound, indeed the same behavior
are characterized before and after the saturation of any contract.

Theorem saturate_sound : ∀ (s : behavior) (c : contract),
satisfies s c ↔ satisfies s (saturate c).

Implementation We extend the contract satisfiability from behaviors to
components to define the implementation relation. Additionally, we also need
to characterize the relationship between contracts and environments. This
corresponds to Definitions 4 and 5.

Definition implements (σ : component) (c : contract) : Prop :=
∀ s, s ∈ σ → satisfies s c.

Notation "σ ⊢ c" := (implements σ c).
Definition provides (e : environment) (c : contract) : Prop :=

e ⊆ c.A .

Refinement Then, we define the refinement relation on contracts. Here, it is
important to note that we are implementing Definition 7 of the assume/guarantee
theory of contracts. The refinement and composition relations are defined
differently in the meta-theory and in the assume/guarantee theory. We show in
Section 3.4 that this definition is equivalent to the definition in the meta-theory.
Note that, in line with the saturation principle discussed above, we saturate the
contracts before calculating the refinement relation.

38 CHAPTER 3. A VERIFIED CONTRACT THEORY

Definition refines (c1 c2 : contract) : Prop :=
let (c1’ , c2’) := (saturate c1 , saturate c2) in
c2’. A ⊆ c1’.A ∧ c1’.G ⊆ c2’.G.

Notation "c1 ⪯ c2" := (refines c1 c2).

Conjunction The conjunction of contracts corresponds to multiple views one
can have on the same component. This is the exact translation of Definition 8.

Definition glb (c1 : contract) (c2 : contract) : contract :=
let c1’ := saturate c1 in let c2’ := saturate c2 in

{| A := (c1’. A ∪ c2’.A) ;
G := (c1’. G ∩ c2’.G) |}.

Notation "c1 ⊓ c2" := (glb c1 c2).

Composition The central operator in the contract algebra is composition.
Two contracts can be composed if they are defined on the same variables.
The composition of components aims at constructing a contract specifying the
composition of components. We implement the A/G contract definition as
in Definition 9 and then show we will that it corresponds to the meta-theory
Definition 24.

Definition compose (c1 c2 : contract) : contract :=
let c1’ := saturate c1 in

let c2’ := saturate c2 in

{| A := (c1’. A ∩ c2’.A) ∪ ¬ g ;
G := c1’. G ∩ c2’.G |}.

Notation "c1 ⊗ c2" := (compose c1 c2).

Compatibility and Consistency To verify that our contract is appropriate,
we have two tools: compatibility and consistency. Compatibility represents
the ability of the contract to be used in an environment. Whereas consistency
represents the possibility of implementing the contract by a component. We
can easily define the compatibility and the consistency as a direct translation of
Definition 12 and 11. Since Coq is based on constructive logic, the only way to
express that a set is not empty is to exhibit an element that belongs to the set.

Definition is_compatible (c : contract) : Prop := exists s : behavior, s ∈ (c.A).

Definition is_consistent (c : contract) : Prop := exists s : behavior, satisfies s c.

3.3.5 Outlook

We presented the mechanization of the A/G contract theory. We pointed out the
differences between the mathematical definitions and the Coq implementation.

3.4. CONSISTENCY OF A/G CONTRACTSWITH THEMETA-THEORY39

• In the mechanization we saturate contract when needed, whereas in the
mathematical definition we consider the contract to be saturated before-
hand.

• Variables are defined with the proof that they’re in the alphabet.

In the rest of the chapter, we present four different axes of improvement of
the mechanization:

Equivalence with the meta-theory In the next section, we show how to
prove that the above mechanization is a correct specialization of the meta-theory
of contracts. We focus on each relation and show the connection between its
definition in the mechanization and its definition in the meta-theory of contracts.

Alphabet Equalization In Section 3.5, we present how to handle the alpha-
bets, and contracts that are defined on different alphabets.

Elimination Variable In Section 3.6, we introduce the mechanisation of the
process to abstract a contract by eliminating one of the variables.

Formula interface In Section 3.7, we introduce an interface for implementing
A/G contracts more easily. Indeed, the implementation and uses of contracts
would be a bit cumbersome without the interface. The interface permits to
define and use contracts more easily at the cost of generality, namely not every
implementation of the theory can be done using the interface.

3.4 Consistency of A/G Contracts with the Meta-
Theory

In this section, we detail the structure and mechanization of the proof that
assumption/guarantee contract theory is a specialization of the meta-theory of
contracts. First, since it is necessary to prove the equality of two contracts, we
use functional extensionality to define the extensionality of contracts. Indeed,
proving that assumption/guarantee contract theory is a specialization of the
meta-theory of contracts requires proving that some contracts are equal.

Contract extensionality Adding functional extensionality makes it possible
to prove behavior extensionality and contract extensionality, i.e., to prove that the
contracts are equal. We have admitted functional and propositional extensionality
already for the library of sets in Section 3.1. This means we can prove that
when two contracts refine each other, their saturated versions are equal. In
the following, we won’t bother showing that two contracts are equal but we
merely show that they refine each other. The equality of their saturated version
follows directly, from theorem contract_extensionality. To prove the contract

40 CHAPTER 3. A VERIFIED CONTRACT THEORY

extensionality, we need to prove the extensionality on behavior first, which
directly derives from the functional extensionality.

Definition behavior_equiv (s1 : behavior) (s2 : behavior) : Prop :=
∀ x : {v : ident | v ∈ d}, s1 x = s2 x.

Theorem behavior_extensionality : ∀ (s1 s2 : behavior),
behavior_equiv s1 s2 → s1 = s2.

Definition equiv (c1 : contract) (c2 : contract) : Prop :=
refines c1 c2 ∧ refines c2 c1.

Notation "c1 ≍ c2" := (equiv c1 c2) (at level 70 , no associativity).

Theorem contract_extensionality :
∀ (c1 c2 : contract), c1 ≍ c2 → saturate c1 = saturate c2.

Refinement Since refines is an order, we prove the usual properties: reflexiv-
ity, transitivity, and anti-symmetry. We also demonstrate that the definition of
refinement for A/G contracts is equivalent to the more standard and meaningful
Definition 22 of the refinement given by the meta-theory.

Theorem refines_correct : ∀ (c1 c2 : contract),
c1 ⪯ c2 ↔
(∀ σ: component, σ ⊢ c1 → σ ⊢ c2) ∧
(∀ e: environment, provides e c2 → provides e c1).

To prove the correctness of ⪯ (namely, Theorems 1 and 2), it suffices to
see that the definitions are similar. By unfolding the definitions of refines,
implements and provides, the theorem refines_correct can be rewritten as
Equation 3.3. The lemma ”∀S, S ⊆ A =⇒ S ⊆ B ⇐⇒ A ⊆ B” finishes the
proof of refines_correct.

c2.A ⊆ c1.A∧c1.G ⊆ c2.G ⇐⇒ ∀e ⊆ c2.A→ e ⊆ c1.A ∧ ∀σ ⊆ c1.G→ σ ⊆ c2.g
(3.3)

Conjunction In the meta-theory, the conjunction is defined by the greatest
lower bound of refinement. So, we prove that our set definition is equivalent
to the meta-theoretical Definition 23 as in Theorem 3. The proof is a direct
consequence of the definition of ⊓. It suffices to unfold the definitions of refines
and ⊓ to finish the proof.

Theorem glb_correct : ∀ c1 c2 : contract,
(c1 ⊓ c2) ⪯ c1 ∧ (c1 ⊓ c2) ⪯ c2 ∧
(∀ c, c ⪯ c1 → c ⪯ c2 → c ⪯ (c1 ⊓ c2)).

3.5. ALPHABET EQUALIZATION 41

Composition Here, we give the proof that the definition of composition
corresponds to Definition 24 given in the meta-theory. Precisely compose_correct

is the mechanization of Theorem 4, and compose_lowset is Theorem 5.

Theorem compose_correct :
∀ (c1 c2 : contract) (σ1 σ2 : component) (e : environment),
σ1 ⊢ c1 → σ2 ⊢ c2 → provides e (c1 ⊗ c2) →
(σ1 ∩ σ2 ⊢ c1 ⊗ c2 ∧ provides (e ∩ σ2) c1 ∧ provides (e ∩ σ1) c2).

Theorem compose_lowest : ∀ (c1 c2 c : contract),
(∀ (σ1 σ2 : component) (e : environment),
σ1 ⊢ c1 → σ2 ⊢ c2 → provides e c →
(σ1 ∩ σ2 ⊢ c ∧ provides (e ∩ σ2) c1 ∧ provides (e ∩ σ1) c2)) →
c1 ⊗ c2 ⪯ c.

Compatibility and Consistency We verify that the definitions of compati-
bility and consistency are correct. Unfolding the definitions of consistency gives
us Equation 3.4 which is trivially true. The important point is to always define
non-emptiness as the existence of an element belonging to the set.

∃x, x ∈ A ⇐⇒ ∃E, (∃x, x ∈ E) ∧ E ⊆ A (3.4)

Theorem consistent_correct : ∀ c : contract,
is_consistent c ↔ exists σ, is_not_empty σ∧ implements σc.

Theorem compatible_correct : ∀ c : contract,
is_compatible c ↔ exists e, is_not_empty e ∧ provides e c.

3.5 Alphabet Equalization

This section considers the case when contracts or components are defined over
different alphabets of variables. This poses a problem when we need to compose
them, or do any operation on two contracts or components that are not defined
on the same variables. In that case, we need a way to extend the alphabet of
the object on the union of their variables. With both contracts or components
extended, we can use the operators defined previously.

We give a set-theoretic definition in Coq of the extension of alphabet for
components and contracts. We assume the existence of D, the set of all variables
used in the system. We also assume other alphabets d1, d2 as subsets of D.. We
also assume H1 : d1 ⊆ D and H2 : d2 ⊆ D, the proofs that d1 and d2 are a subsets
of D.

3.5.1 Definition of Extension

Changing Alphabet of Var Since our variables are typed with the alphabet
on which they are defined, we need to do some work to transform a variable defined

42 CHAPTER 3. A VERIFIED CONTRACT THEORY

on alphabet d1 into a variable defined on D. First, we define H’1 : var d1 → var D,
which takes a variable in d1 and shows that it is also a variable in D.

Definition H’1 (v1 : var d1) : var d2 := let (i,P) := v1 in exist _ i (H1 i P).

Here, we use H1 to show that the ident i in d1 is also in d2. Indeed, the
type of H1 is ∀ v : ident, v ∈ d1 → v ∈ d2. Hence, H1 i H is of type i ∈ d2, and
exist _ v (H1 i H) is of type var d2.

Projection of a Behavior We define the projection of a single behavior
defined on alphabet D on a smaller alphabet d1.

Definition project (s : behavior D) : behavior d1 :=
fun v1 ⇒ s (H’1 v1).

Projection of an Assertion We define the projections of assertions by
extending the projection behaviors. Indeed, the projection of an assertion on
alphabet d1, is the projection of every behavior in the assertion to alphabet d1.
If we consider the assertion as the property it holds on variables, projection
is similar to an existential quantification. For example, the assertion P (x, y)
projected on the variable {y} is ∃x, P (x, y).
Definition project_assertion (a : assertion D) : assertion d1 :=
fun s1 ⇒ exists s, s ∈ a ∧ project s = s1.

Extension of the Alphabet on Behavior Then, we can define the inverse
of the projection which, for a behavior, gives the set of behaviors that project to
it. Notice that the extension of a behavior gives an assertion. Indeed, multiple
behaviors defined on D have the same projection on d1.

Definition extend_behavior (s1 : behavior d1) : assertion D :=
fun s ⇒ project s = s1.

Extension of the Alphabet on Assertion As for the extension of behaviors,
extending an assertion a1 is done by taking every behavior that projects to a
behavior in a1.

Definition extend_assertion (a1 : assertion d1) : assertion D :=
fun s ⇒ project s ∈ a1.

Extension of the Alphabet on Contract The extension of the alphabet
on which a contract is defined is the extension of both the assumption and the
guarantee.

Definition extend_contract (c1 : contract d1) : contract d2 :=
let c1’ := saturate _ c1 in

{| A := (extend_assertion (c1’.A)) ;
G := (extend_assertion (c1’.G)) |}.

3.5. ALPHABET EQUALIZATION 43

3.5.2 Definition of Extended Operators

In this section, we define operators to deal with a contract defined on different
alphabets. We define the operators of the theory of contracts as in Section 3.2
and Section 3.3.

Implementation and Provides Extended In this definition, we consider
a component σ to be defined on D and a contract c1 defined on d1. We define
the implementation of the contract by the component. Similarly, we define the
extended definition of provides with an environment e defined on D.

Definition implements_ext (H1 : d1 ⊆ D) (σ : component D) (c1 : contract d1) : Prop :=
implements D σ(extend_contract H1 c1).

Definition provides_ext (H1 : d1 ⊆ D) (e : environment D) (c1 : contract d1) : Prop :=
provides _ e (extend_contract H1 c1).

We introduce notations for implements_ext and provides_ext. Since we will
need to use them to evaluate implementation and provides on contract defined
on d1 and d2, we introduce two notations for both.

Notation "σ ⊢1 c" := (implements_ext H1 σc) (at level 70, no associativity).
Notation "σ ⊢2 c" := (implements_ext H2 σc) (at level 70, no associativity).

Notation "e ⊢p1 c" := (provides_ext H1 e c) (at level 70, no associativity).
Notation "e ⊢p2 c" := (provides_ext H2 e c) (at level 70, no associativity).

Refinement of Contracts on Different Alphabet The extended refines is
defined by extending the alphabet of both contracts on D. This is useful if, for
example, one wants to show that a contract without a variable is an abstraction
of a contract with that variable. To validate that the definition corresponds
to the meta-theory of contracts, we can use the same validation theorem we
used in Section 3.5. The proof is direct by reusing proofs refines_correct on
extend_contract c1 and extend_contract c2.

Definition refines_extended (c1 : contract d1) (c2: contract d2) : Prop :=
refines _ (extend_contract H1 c1) (extend_contract H2 c2).

Notation "c1 ⪯e c2" := (@refines_ext _ _ D H1 H2 c1 c2) (at level 70, no associativity).

Theorem refines_ext_correct : forall (c1 : contract d1) (c2 : contract d2),
c1 ⪯e c2 ↔
(∀ σ: component D, σ ⊢1 c1 → σ⊢2 c2) ∧
(∀ e : environment D, e ⊢p2 c2 → e ⊢p1 c1).

Composition from different alphabet We can define the composition on
two contracts defined on different variables with the same process we use to
defined the extended refine relation. The validation is the same as for the
refinement, we use the proof of compose_correct on extend_contract c1 and
extend_contract c2.

44 CHAPTER 3. A VERIFIED CONTRACT THEORY

Definition compose_ext (H1 : d1 ⊆ D) (H2 : d2 ⊆ D)
(c1 : contract d1) (c2 : contract d2) : contract D :=
compose _ (extend_contract H1 c1) (extend_contract H2 c2).

Notation "c1 ⊗e c2" := (compose_ext H1 H2 c1 c2) (at level 61, left associativity).

Theorem compose_ext_correct : forall (c1 : contract d1) (c2 : contract d2)
(σ1 : component D) (σ2 : component D) (e : environment D),
σ1 ⊢1 c1 → σ2 ⊢2 c2 →
e ⊢p (c1 ⊗e c2) →
((σ1 ∩ σ2) ⊢(c1 ⊗e c2) ∧ (e ∩ σ2) ⊢ p1 c1 ∧ (e ∩ σ1) ⊢ p2 c2).

Conjunction extended Similarly, to prove that the conjunction extended
is correct, we prove the same properties that we proved for the conjunction in
Section 3.4.

Definition glb_ext (c1 : contract d1) (c2 : contract d2) : contract D :=
glb _ (extend_contract H1 c1) (extend_contract H2 c2).

Notation "c1 ⊓e c2" := (glb_ext H1 H2 c1 c2) (at level 61, left associativity).

Theorem glb_ext_correct : forall (c1 : contract d1) (c2 : contract d2),
(c1 ⊓e c2) ⪯(extend_contract H1 c1) ∧
(c1 ⊓e c2) ⪯(extend_contract H2 c2) ∧
(forall c : contract D,
c ⪯ (extend_contract H1 c1) →
c ⪯ (extend_contract H2 c2) →
c ⪯ (c1 ⊓e c2)).

3.6 Elimination of Variables

In certain situations, it may be useless to keep some variables specified. For
example, if a component provides the input for another component, then the
composition of their contracts may not need that variable to be specified anymore.
In that case, we want to eliminate the spurious variable from the contract. In
this section, we provide a concrete definition of elimination of variable and give
a validation of the definition.

α βx z
y

Figure 3.3: The composition of α β, the variable y can be eliminated since it is
not visible by the outside

3.6. ELIMINATION OF VARIABLES 45

Mathematical insight In [Ben+08], the elimination of variables is defined in
the following way.

Definition 28. For a contract c = (A,G), and a variable v in the contract. The
contract without v is :

[c]v ≡ (∀v A ; ∃v G)

It gives a good intuition of the elimination of variables. A and G are both
sets, the quantifier has no meaning for sets. To define this elimination of variable,
the authors consider assertions as logic formulas and bind free variables with
quantifiers. However, this shortcut cannot be taken in our mechanization of the
assumption/guarantee theory of contract, because the sets are not equals to logic
formulas. Hence, we introduce the necessary functions to define eliminations of
variable in an abstract set theoretic contract theory.

Example The contract in Equation 3.5 is an example of contract where y
could be eliminated as in Figure 3.3. To eliminate y we use the Definition 28,
this give us Equation 3.6 By simplifying we obtain Equation 3.7.

({(x, y) | y2x ≥ 0}, {(x, y) | y2x ≥ 0 → z ≥ 0 ∧ z = y2x}) (3.5)

({x | ∀y, y2x ≥ 0}, {x | ∃y, y2x ≥ 0 → z ≥ 0 ∧ z = y2x}) (3.6)

({x | x ≥ 0}, {x | x ≥ 0 → z ≥ 0}) (3.7)

3.6.1 Definition

Elimination of Variable for Components To eliminate a variable in a
component we can use the projection we defined in the previous section. This
follows the Definition 13 given in Section 3.2.

Definition project_assertion (a : assertion D) : assertion d1 :=
fun s1 ⇒ exists s, s ∈ a ∧ project s = s1.

Definition project_component (σ : component D) : component d1 :=
project_assertion σ.

Projection-∀ To define the elimination of variable from a contract, we need
to define the projection-∀ of an assertion. The projection-∀ of an assertion is
the set of behaviors whose every extensions are in the assertion. The equivalent
of the projection-∀ when viewing assertion as property is the ∀ quantifier. With
the mathematical notation: the projection-∀ of P (x, y) on {y} is ∀x, P (x, y).
We define this projection in Coq, with a set theoretic definition.

Definition project_assertion_forall (a : assertion d2) : assertion d1 :=
fun e1 ⇒ extend_behavior e1 ⊆ a.

46 CHAPTER 3. A VERIFIED CONTRACT THEORY

Elimination of Variable for Contracts We can now define the elimination
of variables in a contract. We use the projection-∀ on the assumption and the
projection of the guarantee. This is the mechanization of Definition 18 with the
assumption/guarantee contract definition of projection.

Definition project_contract (c2 : contract d2) : contract d1 :=
let c2’ := saturate _ c2 in

{| A := project_assertion_forall c2’.A ;
G := project_assertion c2’.G |}.

3.6.2 Validation of the Definition

Difficulties of Validation To the best of our knowledge, there is no clear
way to validate the definition of variable elimination, other than by showing that
the original contract is a refinement of that with an eliminated variable. We
will show some properties about the projections, in relation to the extension,
that should convince us this definition is correct. However, to fully prove the
correctness of the definition, we believe a stronger argument should be made.

Projection is Smallest Abstracting By verifying that the projected contract
is an abstraction of the initial contract, we validate that the variable elimination
doesn’t create restriction on the contract. We also show that the projection of
contract is the most refined abstraction of the original contract. Indeed, since
the projection is an abstraction, we want it to abstract as little as possible. By
checking that no contract is refined by the projection and refines the initial
contract, we ensure that the projection does not ”over-abstract” the initial
contract.

Theorem project_abstract : ∀ (c : contract D),
refines D c (extend_contract H1 (project_contract H1 c)).

Theorem project_smallest_abstract : forall (c : contract D) (c1 : contract d1),
refines D c (extend_contract H1 c1) →
refines d1 (project_contract H1 c) c1.

3.7 Formula Interface

In this section, we define an interface for assumption/guarantee contracts. This
interface is a practical tool to facilitate the process of instantiating the theory. It
expects a language to express logical properties, along with basic operators and
a satisfaction function. It provides a theory of contracts with operators defined
in the supplied logical language. The theory is parameterized by a type class
representing the logic.

3.7. FORMULA INTERFACE 47

3.7.1 Purpose of the instance

The Theory is Cumbersome to Use When instantiating the theory as
described in Section 3.3, we face a practical problem. A lot of work lies in the
definition of assertions, and Coq definitions do not make this easy to do. In the
usual instantiation of the theory, the logic has an expression language with a
deeply-embedded type, and operators to define an expression. To construct an
assertion from an expression, we must use the satisfaction function, which builds
a proposition from an expression and a state. This is usable, but when using
operators on the assertion, the operations done don’t reflect on the expression.

Factorise the Code This is why we want to factorise the code dedicated
to transform expression into assertion. The idea of the interface is to abstract
the type of expressions and the operators on it, and define a new contract
theory, where the assertions are replaced by expressions. Then, we define
the transformation of contracts with expressions into contracts with assertion
by using the satisfaction function. In this section, we call contracts defined
with expressions instead of assertions expression contracts, and contract with
assertions: assertion contracts.

Relation between sat, expressions and assertions To abstract the ex-
pressions, we use a type class. The type class is parameterized by the type of the
identifiers ident, the type of values value and the type of expressions expr. The
user must give the satisfaction function sat, and the operators on expressions
that correspond to the typical set operators e_and, e_or and e_not. They must
also give the proof that this operators corresponds to the set of operators in
regards to the satisfaction function sat_e_and, sat_e_or and sat_e_not. These
proof terms are needed to prove the correctness of the interface.

Decidability of sat The last requirement is the decidability of the satisfaction
function sat_dec. Indeed, this is needed to prove the equivalence between the
satisfaction by a behavior of an expression contract and an assertion contract.

Class AlphabetizedExpression (value ident : Type) (expr : set ident → Type) := {
e_and : ∀ d : set ident, expr d → expr d → expr d ;
e_or : ∀ d : set ident, expr d → expr d → expr d ;
e_not : ∀ d : set ident, expr d → expr d ;
sat : ∀ d : alphabet, (@behavior value ident d) → expr d → Prop ;

sat_e_not : ∀ (d : set ident) (s : behavior d) (e : expr d),
¬ sat d s e ↔ sat d s (e_not d e) ;

sat_e_and : ∀ (d : set ident) (s : behavior d) (e1 e2 : expr d),
sat d s e1 ∧ sat d s e2 ↔ sat d s (e_and d e1 e2) ;

sat_e_or : ∀ (d : set ident) (s : behavior d) (e1 e2 : expr d),
sat d s e1 ∨ sat d s e2 ↔ sat d s (e_or d e1 e2) ;

sat_dec : ∀ (d : set ident) (s : behavior d) (e : expr d),
sat d s e ∨ ¬ sat d s e ;

}.

48 CHAPTER 3. A VERIFIED CONTRACT THEORY

3.7.2 Operations Definitions

Definition of a Contract The definition of an expression contract is pretty
straightforward, we have an expression for the assumption and one expression
for the guarantee. As in Section 3.3, the expression are parameterized by the
alphabet they are defined on.

Record contractF := ContractF {A : expr d ; G : expr d}.

Saturation We define the saturation with respect to the operators of the
parameter logic. This is similar to Definition 6 and to the Coq formalization in
Section 3.3, but we use the operators of the logic instead of the usual operators.

Definition saturateF (cf1 : contractF) : contractF :=
ContractF cf1.A (e_or d cf1.G (e_not d cf1.A)).

Composition The definition of the composition supposes the contract to be
saturated, so we have to saturate them using the function we just defined. We
follow the Definition 9, and use the expression operators.

Definition composeF (cf1 cf2 : contractF) : contractF :=
let cf1’ := saturateF cf1 in

let cf2’ := saturateF cf2 in

let g := e_and d cf1’.G cf2’. G in

let a := e_or d (e_and d cf1’.A cf2’. A) (e_not d g) in
ContractF a g.

Conjunction Similarly to the composition definition, we use the saturation
operator and follow Definition 9 to define the conjunction of expression contracts.

Definition glbF (cf1 cf2 : contractF) : contractF :=
let cf1’ := saturateF cf1 in

let cf2’ := saturateF cf2 in

let a := e_or d cf1’.A cf2’. A in

let g := e_and d cf1’.G cf2’. G in

ContractF a g.

3.7.3 Equivalence with A/G Contracts

From ContractF to Contract To transform an expression contract (contractF)
into an assertion contract (contract), we need the function assertion_of. assertion_of
uses the satisfaction function to create the set of all behavior satisfying an ex-
pression. This set is, in the sense of the assume/guarantee theory of contract,
an assertion.

Definition assertion_of (formula : expr d) : assertion d :=
fun e ⇒ sat d e formula.

3.8. OUTLOOK 49

Then creating the assertion contract from the expression contract is only a
matter of creating both assertion using formula_to_assert. Notice that we use
the constructor for assertion contract mkContract and not the constructor for
expression contract ContractF.

Definition contract_of (cf : contractF d) : contract d :=
mkContract d (assertion_of cf.A) (assertion_of cf.G).

Correctness of Operators In the following, we prove that the operators we
defined for expression contracts composeF, saturateF and glbF are equivalent to
their equivalent for assertion contracts compose, saturate and glb. For example,
we want to prove that the composition operators of assertion contracts composeF

and expression contracts compose result in the same contracts. To prove that
two contracts are equal, we first prove that they are equivalent. Then, thanks to
the contract extensionality proved in section 3.4, we can conclude that they are
equal.

The proofs of correctness of saturateF, composeF and glbF, are similar. We un-
fold the definitions, and uses the equivalences sat_e_or, sat_e_and and sat_e_and

to transform the expression operators into the set operators, then the proof
becomes trivial.

Theorem saturateF_correct : ∀ (cf : contractF d) ,
(c2c (saturateF d cf)) == (saturate d (c2c cf)).

Theorem composeF_correct : ∀ (cf1 cf2 : contractF d),
c2c (composeF d cf1 cf2) == compose d (c2c cf1) (c2c cf2).

Theorem glbF_correct : ∀ (cf1 cf2 : contractF d),
c2c (glbF d cf1 cf2) == glb _ (c2c cf1) (c2c cf2).

3.8 Outlook

In this chapter, we presented our mechanization of the theory of assumption/guar-
antee contracts. We first gave an overview of the theory as it is described by
Benveniste [Ben+15b] and its relation to the meta-theory of contracts. Then, we
showed our Coq development that defined contracts, components and environ-
ments. We also showed our definition of saturation, implementation, composition.
We then used the Coq proof assistant to validate the relation between the as-
sumption/guarantee contracts and the meta-theory of contracts. By proving
this relation, we validated our definitions of the assumption/guarantee theory of
contracts. Then, we introduced extensions of the theory, with alphabet equal-
ization, elimination of variables, and an interface. Alphabet equalization is the
process used to manipulate objects defined on different alphabets, by extending
their alphabet of definition. We gave the definitions of the operators, and we
suggested a proof of their correction. We also introduced the elimination of
variables, which is used to abstract a contract by removing variables. We checked

50 CHAPTER 3. A VERIFIED CONTRACT THEORY

some properties on the elimination of variables on contract, but we are missing
an argument to fully confirm its definition. Finally, we introduced an interface
for the definition of assumption/guarantee contracts. This interface helps to
instantiate the theory with a propositional logic, with code that would need to
be rewritten for every instance.

The next step is to instantiate the assumption/guarantee contracts with a
logic, in order to practically validate the formalization. We do this in Chapter 4,
with differential dynamic logic, which is a good fit to describe cyber-physical
systems.

Chapter 4

Contracts for Differential
Dynamic Logic

4.1 Introduction to Differential Dynamic Logic 53
4.1.1 Syntactic Definitions . 54
4.1.2 Visual Representation of Hybrid Programs 58
4.1.3 Formal Semantics . 61

4.2 The Water Tank example . 66
4.2.1 The Model . 66
4.2.2 Specification . 67

4.3 Instantiating Hybrid Programs 68
4.3.1 Base Types . 68
4.3.2 Instantiating the Type Class 70
4.3.3 Transforming Programs into Components 71
4.3.4 Example with the Water Tank 72
4.3.5 Limitations of the Instance 73

4.4 Refinement in Differential Dynamic Logic 73
4.4.1 Definitions of the Refinement Relations 74
4.4.2 Definition of Differential Refinement in Coq 74
4.4.3 Preliminary Lemmas . 76
4.4.4 Proof that Differential Refinement Implies Refinement . . 78

4.5 Abstract Programs . 81
4.5.1 Definition . 81
4.5.2 Satisfaction Function . 81
4.5.3 Construction Operators 82
4.5.4 Transforming to Hybrid Programs 84
4.5.5 Proving the Transformation is Sound 87

4.6 Contracts with Differential Dynamic Logic 88
4.6.1 Instantiating the Theory of Contract 88
4.6.2 Example of Contracts . 89
4.6.3 Implementation of a Contract by a Component 90

51

52 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

4.6.4 Composition of Contracts 91
4.7 Conclusion . 93

4.1. INTRODUCTION TO DIFFERENTIAL DYNAMIC LOGIC 53

In this chapter, we give two instances of our parametric contract theory by
instantiating it with differential dynamic logic (dL), and show they can be used
together to define components and contracts to model a cyber-physical system.
The code presented in this chapter can found at the root of the library available
here : https://gitlab.inria.fr/skastenb/differential-contracts. The
first instance is in file DifferentialContracts.v, and the definition of abstract
programs is in file AbstractPrograms.v.

First, in Section 4.1, we introduce differential dynamic logic and its deep
embedding in Coq : Coq dL which we use to instantiate the theory. In Section 4.2,
we introduce the running example of this chapter, which we will use to illustrate
the instantiation of our contract theory to dL. Section 4.3 presents the first
instantiation of our generic contract theory to define concrete dL components.
Section 4.4 shows the nature of refined components that arise from this process
and the relation between that refinement relation and the differential refinement.
Section 4.5 introduces the dL notion of abstract programs as a mean to represent
(dL) contracts by instantiating our generic contract theory. Finally we instantiate
the verified contract theory with abstract contract and address the relations
between the two instances in Section 4.6.

Contract dL

Hybrid Component

Verified Contract Theory

Hybrid Programs

Abstract Programs

Figure 4.1: Architecture of the chapter

4.1 Introduction to Differential Dynamic Logic

Differential dynamic logic is a logic to model hybrid systems as well as a proof
system on the logic. The logic has two main parts, hybrid programs which are
sequences of instructions, and hybrid formulas. With hybrid programs, one can
model both the discrete, computational part of a system and its continuous
evolution. Hybrid formulas can be used as tests in hybrid programs or, with
the help of modalities, they can be used to express properties about hybrid
programs.

In this section, we introduce differential dynamic logic, its syntactic definitions
and its semantics. We also provide graphical representation, to facilitate the
understanding of hybrid programs. We base ourselves on the uniform substitution
calculus for differential dynamic logic [Pla17] for the introduction to dL, and we
also reproduce the Coq deep-embedding that has been made to verify the calculus:
Coq dL [Boh+17]. We point out the differences between the mathematical
definitions and their Coq mechanizations.

https://gitlab.inria.fr/skastenb/differential-contracts

54 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

Mechanization of the Reals The semantics of an ordinary differential
equation relies on real mathematics definition. While the standard library of
Coq has an axiomatization of reals, it is a bit cumbersome to use for complex
results. Thus Coq dL uses the library Coquelicot [BLM15], a more user-friendly
extension of Coq for reals.

4.1.1 Syntactic Definitions

We first give the syntactic definitions of terms, formulas and programs. We
introduce both the paper definition from [Pla17] and the formalization in Coq dL,
we show their relations and their differences. We also give an informal semantics
of the constructors.

Variables We define the set of variables V. For each variable x ∈ V, its
differential is also in the set: ẋ ∈ V. In the mechanization, the type of variable
symbols is KVariable, and the type of variables is KAssignable. A KAssignable

can either be non-differential with KAssignVar or the differential of a variable
with KAssignDiff.

Inductive KAssignable : Set :=
KAssignVar : KVariable → KAssignable

| KAssignDiff : KAssignable → KAssignable

Example Here we show how to define the variables h, ḣ and ḧ.

Definition h : KAssignable := KAssignVar (variable "h").
Definition h’ : KAssignable := KAssignDiff h.
Definition h’’ : KAssignable := KAssignDiff h’.

State A state is a function mapping variables from V to real R. We call S the
set of states S = V → R. Notice, that since the function is total on V , a state is
defined on all possible variables. Since the systems are defined only using a few
variables, we usually ignore the value of the variables not used. In the following,
we give the definition of states in Coq, as well as a example of a state ν that
evaluate to 1 for h and 0 for every other variable.

Definition state := KAssignable → R.
Definition nu : state :=

fun x : KAssignable ⇒ if is_equal_KAssignable x h then 1 else 0.

Definition 29 (Terms). We define terms with the following grammar, θ1 . . . θn
being terms, x a variable, r any number and f a function symbol.

θ1, . . . , θn ::= x | r | θ1 + θ2 | θ1 − θ2 | θ1 × θ2 | −θ | θ̇ | f(θ1, . . . , θn)

The definition in Coq follows the same pattern with a few differences. The
constructor KTdot is reserved for uniform substitution calculus, we won’t use it

4.1. INTRODUCTION TO DIFFERENTIAL DYNAMIC LOGIC 55

as we are not interested in the verification of the axiomatization of dL. The
constructor KTnumber takes a KTnum which can either be a real or a natural number.
The KTfuncOf takes a FunctionSymbol, a natural number n and a vector of size n.
The FunctionSymbol will be evaluated with the interpretation function I which
we will elaborate on later.

Inductive FunctionSymbol : Set := function_symbol : string → FunctionSymbol

Inductive Term : Type :=
| KTfuncOf (f : FunctionSymbol)

(n : nat)
(a : Vector.t Term n) : Term (* application of function symbol *)

| KTnumber (r : KTnum) : Term (* number constant *)

| KTread (var : KAssignable) : Term (* read variable x or diff. symbol x’ *)

| KTneg (child : Term) : Term (* negation -x *)

| KTplus (left right : Term) : Term (* addition x+y *)

| KTminus (left right : Term) : Term (* subtraction x-y *)

| KTtimes (left right : Term) : Term (* multiplication x*y *)

| KTdifferential (child : Term) : Term (* differential x’ *)

| KTdot (n : nat) : Term (* dot symbol for terms *)

.

Example of Terms As an example we give the Coq definition of a term
Hlimit = 15, the term reading variable h and the cosines function of h. Although
the cosines function is not defined here, we merely named the function, it has to
be defined in the interpretation function I to be evaluated.

Definition HLimit : Term := KTnumber (KTNreal 15).
Definition h_term : Term := KTread h.
Definition cos : FunctionSymbol := function_symbol "cos".
Definition cos_h : Term := KTfuncOf cos 1 [h_term].

Definition 30 (Hybrid Formulas). Hybrid formulas are mutually defined with
hybrid programs, we define hybrid programs below. Here φ and ψ are hybrid
formulas, α is an hybrid program, θi are terms, C is a quantifier symbol and p
is a predicate symbol.

φ,ψ ::= ⊤ | ⊥ | θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ↔ ψ |
∀x, φ | ∃x, φ | p(θ1, . . . , θn) | C(φ) | [α]φ | ⟨α⟩φ

Where the symbol ∼ can be one of the relation symbols {<,>,≤,≥,=, ̸=}.

The definition of hybrid formulas and hybrid programs is done by mutual
induction. We first introduce formulas but since they are used in hybrid programs
to express tests, both definitions must be done simultaneously. The formula ⊤
holds for every state, ⊥ holds for none. The negation ¬φ holds iff φ doesn’t
hold. We also have connectors for multiple formulas: φ ∧ ψ holds iff both φ and
ψ hold ; φ∨ψ holds iff either φ or ψ hold ; φ→ ψ holds iff either φ doesn’t hold

56 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

or ψ holds ; φ↔ ψ holds iff either both φ and ψ hold or they both doesn’t hold.
To quantify on variable x we have ∀x, φ that holds iff φ holds for any valuation
of x. We have the existential quantifier ∃x, φ that holds iff it exists a valuation
of x with which φ holds. The modality [α]φ expresses that φ holds after all runs
of α. Whereas the modality of ⟨α⟩ expresses that it exists a run of α after which
φ holds. The formula p(θ1, . . . , θn) holds iff the predicate p holds for the terms
θ1, . . . , θn. The formula C(φ) holds iff the quantifier C holds for the formula
φ. A quantifier is an arbitrary function on formulas, it is a generalization the
universal quantifier, the existential quantifier and the modalities.

Coq dL Definitions of Formulas The definition in the mechanization is
similar to the Definition 30. We use PredicateSymbol and QuantifierSymbol to
denote constant predicate and quantifiers, the symbols will be evaluated by the
interpretation function I. The constructor KFdot is used internally for uniform
substitution calculus, and is not used to construct terms.

Inductive PredicateSymbol : Set := predicate_symbol : string → PredicateSymbol

Inductive QuantifierSymbol : Set := quantifier_symbol : string → QuantifierSymbol

Inductive Formula : Type :=
| KFtrue : Formula (* true *)

| KFfalse : Formula (* false *)

| KFequal (left right : Term) : Formula (* x == y *)

| KFnotequal (left right : Term) : Formula (* x != y *)

| KFgreaterEqual(left right : Term) : Formula (* x >= y *)

| KFgreater (left right : Term) : Formula (* x > y *)

| KFlessEqual (left right : Term) : Formula (* x =< y *)

| KFless (left right : Term) : Formula (* x < y *)

| KFpredOf (f : PredicateSymbol)
(n : nat)
(a : Vector.t Term n) : Formula

(* application of predicate symbol *)

(* predicational or quantifier symbol applied to argument formula child *)

| KFquantifier (f : QuantifierSymbol) (a : Formula) : Formula
| KFnot (child : Formula) : Formula (* ¬p *)

| KFand (left right : Formula) : Formula (* p ∧ q *)

| KFor (left right : Formula) : Formula (* p ∨ q *)

| KFimply (left right : Formula) : Formula (* p → q *)

| KFequiv (left right : Formula) : Formula (* p ↔ q *)

(* quantifiers *)

| KFforallVars (vars : list KVariable) (child : Formula) : Formula (* Forall x,y,z. p *)

| KFexistsVars (vars : list KVariable) (child : Formula) : Formula (* Exists x,y,z. p *)

(* modal formulas *)

| KFbox (prog : Program) (child : Formula) : Formula (* [alpha] p *)

| KFdiamond (prog : Program) (child : Formula) : Formula (* <alpha> p *)

| KFdot : Formula (* dot symbol for formulas *)

4.1. INTRODUCTION TO DIFFERENTIAL DYNAMIC LOGIC 57

Example of Formulas Here we give the Coq definition of the formula: φ =
h < Hlimit and the formula h_even checking if h is a multiple of 2. The symbol
divides needs to be evaluated by the interpretation function. The formula
cos_le_one states that ∀h, cos(h) ≤ 1.

Definition phi : Formula := KFless (KTread h) HLimit.

Definition divides : PredicateSymbol := predicate_symbol "divides".
Definition h_even : Formula := KFpredOf divides 2 [h_term ; KTnumber (KTNnat 2)].

Definition cos_le_one : Formula :=
KFforallVars [variable "h"] (KFlessEqual cos_h (KTnumber (KTNnat 1))).

Definition 31 (Hybrid Programs). Hybrid programs are mutually defined with
hybrid formulas with the following grammar. Here α and β are hybrid programs,
φ is an hybrid formula, θ is a term and a is a program constant symbol.

α, β ::= x := θ | x := ∗ |?φ | α;β | α ∪ β | α∗ | ẋ = θ&φ | a

The assignment x := θ assigns the evaluation of the term θ to the variable
x. The undetermined assignment x := ∗ assigns to x an undetermined real
value. The test ?φ passes, meaning it doesn’t change the state, if and only if
the formula φ holds for the starting state. The composition α;β is the sequence
of α and β. The non-deterministic choice of α or β is α ∪ β. The Kleene star,
α∗ is the iteration of α an arbitrary by finite (possibly zero) number of times.
The continuous evolution is encoded with ordinary differential equations (ODE),
ẋ = θ&φ is the ODE where the state evolves satisfying the equation ẋ = θ and
satisfying the domain constraint φ. The evolution can end at any time, and
must end if the formula φ is not satisfied anymore. The symbol a is a program
constant, that will be evaluated by the interpretation function.

Coq dL Definition of Programs We now present the mechanization of hybrid
programs. Most of the constructs directly mirror the syntactical Definition 31.
The notable difference is the KPodeSystem that we elaborate on further.

with Program : Type :=
| KPassign (x : KAssignable) (e : Term) : Program (* x := e or x’ := e *)

| KPassignAny (x : KAssignable) : Program (* x := * or x’ := * *)

| KPtest (cond : Formula) : Program (* ?cond *)

| KPchoice (left : Program)(right : Program) : Program (* alpha u beta *)

| KPcompose (left : Program)(right : Program) : Program (* alpha ; beta *)

| KPloop (child : Program) : Program (* alpha* *)

| KPodeSystem (ode : ODE) (constraint : Formula) : Program
| KPconstant (name : ProgramConstName) : Program

(* program constant e.g., alpha *)

.

58 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

ODE

ODEprod : ODE → ODE → ODE ODEatomic : AtomicODE → ODE

ODEsing : KAssignable → Term → AtomicODE ODEconst : ODEConst → AtomicODE

ode constant : string → ODEConst

Figure 4.2: A summary of the types used to encode an ordinary differential
equation in Coq dL.

Ordinary Differential Equation The definition of ODE requires some in-
ductive types that we summarise on Figure 4.2. The top-level type ODE has
two constructors ODEatomic and ODEprod. While ODEatomic is used to create an
ordinary equation either from a constant ODEconst that will be evaluated by the
interpretation function or explicitly with ODEsing, ODEprod takes two ODE and
create the system with both ODE. Notice that ODEconst and ODEprod have no
equivalent in the mathematical definition of ODE in dL. Actually, ODEconst can
be defined using a program constant and ODEprod is the equivalent of making
the conjunction of two ODE with the ∧ operator.

Example of Program To illustrate the use of Coq dL, we give an example of
two hybrid programs α = (h := ∗; (?φ ∪ v := 0)). and β = (ḣ = v&φ).

Definition alpha : Program := KPcompose

(KPassignAny h)
(KPchoice
(KPtest phi)
(KPassign v (KTnumber (KTNreal 0)))).

Definition beta : Program :=
KPodeSystem

(ODEatomic (ODEsing (KAssignDiff h) (KTread v)))
phi

4.1.2 Visual Representation of Hybrid Programs

In this section, we give visual representations of the constructor of hybrid
programs in order to help the reader understanding them. For this section
η, ν1, . . . , νn and ω1, . . . , ωn are states, x and y are variables, and φ is an hybrid
formula.

Figure 4.3 is an assignment of x. The state ω is the same as ν, except for x
which is equal to 2 in ω.

4.1. INTRODUCTION TO DIFFERENTIAL DYNAMIC LOGIC 59

ν

x = 1

ω

x = 2

x := 2

Figure 4.3: Assignment

In the Figure 4.4, we represent an undetermined assignment of x. The
reachable states are all states that are equal to ν on all variables others than x,
which can hold any real value in ω.

ν

x = 1, y = 2

ω1 x = 9.2, y = 2

x
:=
∗ ω2 x = 4, y = 2

ω3 x = 0.2, y = 2

ω4 x = 5, y = 2

ω5 x = 9.4, y = 2

. . .

Figure 4.4: Assignment to any value

The only transitions accepted by tests are the ones that are from and to the
same state. The state must also to respect the condition formula. In Figure 4.5,
the state ν satisfies the formula x = 1 so the transition from ν to itself is accepted
by the test program ?x = 1.

ν

x = 1

ν

x = 1

?x = 1

Figure 4.5: Test

The Figure 4.6 represents the non-deterministic choice of two hybrid programs.
The first possibility goes from ν to ω1, the second goes from ν to ω2. Thus, the
states reachable from ν are ω1 and ω2.

60 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

ν

x = 1

ω1 x = 2

ω2 x = 3

x := 2

x := 3

x := 2 ∪ x := 3

Figure 4.6: Choice

While we can use this operator to encode the indeterminate behavior of a
system. We can also use it with the test constructor to encode an if-then-else
behavior as shown on Figure 4.7. In this example, we test to see if the variable x
is equal to 0 before dividing by it. The point is to determine the choice operator
by putting tests in each branch. By doing so we ensure that the branch from ν
to ω2 will be taken only if x ̸= 0.

ν

x = r

ω1

x = 0

ω2

x = r

µ

x = 1/r

?x = 0

?x ̸= 0
x := 1/x

?x = 0 ∪ (?x ̸= 0;x := 1/x)

Figure 4.7: If-then-else encoding in Coq dL

We represent the sequential composition in Figure 4.8. The state µ is the
intermediate state from ν to ω.

ν

x = 1

y = 1

µ

x = 2

y = 1

ω

x = 2

y = 2

x := 2 y := 2

x := 2 ; y := 2

Figure 4.8: Sequential composition

4.1. INTRODUCTION TO DIFFERENTIAL DYNAMIC LOGIC 61

Next, we represent the Kleene star iterator in Figure 4.9. Every state
ν0, ν1, . . . , νn are reachable.

ν0

x = 0

ν1

x = 1

x := x+ 1

ν2

x = 2

x := x+ 1

ν3

x = 3

x := x+ 1

. . .

x := x+ 1

νn

x := x+ 1

(x := x+ 1)∗

Figure 4.9: Kleene star iterator

We represent the continuous evolution with another kind of graphic (Fig-
ure 4.10). For an ODE: ẋ = θ1, ẏ = θ2 &φ. From the state ν the state ω
is reachable if there exists a function f : R → S such as (i) f(0) = ν and
∃k, f(k) = ω, (ii) f is a solution of ẋ = θ1 ∧ ẏ = θ2 and (iii) for all t between 0
and k, f(t) satisfies φ. We say that f is a solution of ẋ = θ1 ∧ ẏ = θ2 iff f(t).
∀t, 0 < t < k, f(t)(ẋ) = θ1 ∧ f(t)(ẏ) = θ2.

x

y

ν
t = 0 ω1.2

ω3.2

ω5.6

t = 1.2

t = 3.2

t = 5.6

φ

f

ν

t = 0

ω1.2

ẋ =
θ1
, ẏ

=
θ2
&φ

x = f(1.2)(x), y = f(1.2)(y)

ω3.2

ω5.6

. . .

Figure 4.10: Continuous Evolution of an ODE according to its solution f .

4.1.3 Formal Semantics

In this section we introduce the semantics of differential dynamic logic defined for
the uniform substitution calculus [Pla17]. We also introduce the implementation
done in Coq dL [Boh+17]

62 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

Interpretation Function The interpretation I is a function that gives a
semantic to function symbols, predicate symbols, quantifier symbols, program
constant symbols and ODE symbols. The type of the interpretation function
depends on the nature of symbol we interpret. For a function symbol f of
arity n, I(f) is a function Rn → R. For a predicate symbol p of arity n,
the interpretation is a relation I(p) ⊆ Rn. For a quantifier symbol C, the
interpretation is a function that maps any set of states M ⊆ S to a set of states
I(C)(M) ⊆ S. For a program constant symbol a, the interpretation is a set of
transitions I(a) ⊆ (S × S) , like the semantic of a program. Coq dL defines the
interpretation type, the type of the interpretation function. Notice that Coq
dL also gives an interpretation for SymbolODE that is not in the mathematical
definition.

Definition interpretation := forall f : Symbol,
match f return Type with

| SymbolFunction _ n ⇒ interpretation_function n

| SymbolDotTerm n ⇒ R

| SymbolPredicate _ n ⇒ Vector.t R n → Prop

| SymbolQuantifier _ ⇒ interpretation_quantifier

| SymbolDotForm ⇒ FormulaSem

| SymbolODE _ ⇒ interpretation_ode

| SymbolProgramConst _ ⇒ ProgramSem

end.

Semantics in dL The semantic of a term, formula or program is given by the
function J. . .K, the function will have a different type according to the nature of
the expression. Precisely, the semantic of a term is the evaluation of the term for
a state ν as a real IνJθK ∈ R, the semantic of a formula is a set of states satisfying
the formula IJφK ⊆ S, and the semantic of a program is a set of transitions that
are a possible run of the program IJαK ⊆ S × S. In Coq dL the semantics of
a term, formula or program is given by the functions dynamic_semantics_term,
dynamic_semantics_formula and dynamic_semantics_program. The semantics are
defined inductively on the constructors of terms, formula and programs. Since
both formulas and programs uses terms on their definitions, we first define the
semantic of terms, then since programs and formulas uses each other we define
their semantics mutually.

Definition 32 (Semantics of Terms). The semantic of a term θ with interpreta-
tion I and ν is its value in R and is noted IνJθK.

• IνJxK = ν(x) for variable x ∈ V

• IνJf(θ1, . . . , θn)K = I(f)(IνJθ1K), . . . , IνJθnK)

• IνJrK = r

• IνJθ1 + θ2K = IνJθ1K + IνJθ2K

• IνJθ1 − θ2K = IνJθ1K − IνJθ2K

4.1. INTRODUCTION TO DIFFERENTIAL DYNAMIC LOGIC 63

• IνJθ1 × θ2K = IνJθ1K × IνJθ2K

• IνJ−θK = −IνJθK

• IνJθ̇K =
∑

x∈V ν(ẋ)
∂IνJθK

∂x

To evaluate the semantic of a term in Coq dL we have dynamic_semantics_term.
Below, we only show an extract of the full definition. For the KTfuncOf, we see
the use of interp_fun_f and I to evaluate the symbol f.

Fixpoint dynamic_semantics_term (I : interpretation) (s : state) (t : Term)
{struct t} : R :=
match t with

| KTnumber r ⇒ KTnum2R r

| KTread x ⇒ s x

| KTplus l r ⇒
dynamic_semantics_term I s l + dynamic_semantics_term I s r

| KTneg l ⇒ − dynamic_semantics_term I s l

| KTfuncOf f n args ⇒ interp_fun_f _ I (SymbolFunction f _))
(Vector.map (dynamic_semantics_term I s) args)

| KTminus l r ⇒ . . .
| KTtimes l r ⇒ . . .
| KTdifferential theta ⇒ . . .
. . .
end.

Definition 33 (Semantics of Formulas). We define the semantic of a formula
inductively mutually with the semantics of programs.

• IJ⊤K = S

• IJ⊥K = ∅

• IJθ1 ∼ θ2K = {ν ∈ S | IνJθ1K ∼ IνJθ2K}

• IJ¬φK = IJφK

• IJφ ∧ ψK = IJφK ∩ IJψK

• IJφ ∨ ψK = IJφK ∪ IJψK

• IJφ→ ψK = IJφK ∪ IJψK

• IJφ↔ ψK = (IJφK ∩ IJψK) ∪ (IJφK ∩ IJψK)

• IJ∀x, φK = {ν ∈ S | ∀r ∈ R, νrx ∈ IJφK}

• IJ∃x, φK = {ν ∈ S | ∃r ∈ R, νrx ∈ IJφK}

• IJp(θ1, . . . , θn)K = {ν ∈ S | (IνJθ1K, . . . , IνJθnK) ∈ I(p)}

• IJC(φ)K = I(C)(IJφK)

64 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

• IJ[α]φK = {ν ∈ S | ∀ω ∈ S, (ν, ω) ∈ IJαK → ω ∈ φ}

• IJ⟨α⟩φK = {ν ∈ S | ∃ω ∈ S, (ν, ω) ∈ IJαK ∧ ω ∈ IJφK}

To get the semantics of hybrid formula, we use dynamic_semantics_formula.
As it uses the semantics of hybrid programs, it is mutually defined with
dynamic_semantics_program which we will introduce later. We only show an
extract of the definition to improve readability.

Fixpoint dynamic_semantics_formula (I : interpretation) (fi : Formula)
: FormulaSem :=

match fi with

| KFtrue ⇒ fun _ : state ⇒ True

| KFfalse ⇒ fun _ : state ⇒ False

| KFgreaterEqual l r ⇒
fun S ⇒ Rge (dynamic_semantics_term I S l) (dynamic_semantics_term I S r)

| KFgreater l r ⇒ . . .
| KFlessEqual l r ⇒ . . .
. . .
| KFpredOf f n args ⇒
fun S ⇒ I (SymbolPredicate f n) (Vector.map (dynamic_semantics_term I S) args)

| KFquantifier f a ⇒ . . .

| KFnot l ⇒
fun S ⇒ not (dynamic_semantics_formula I l S)

| KFand l r ⇒ . . .
. . .

| KFforallVars vars F ⇒
fun S ⇒ forall rs, List.length rs = List.length vars

→ dynamic_semantics_formula I F (upd_list_state S (combine vars rs))
| KFexistsVars vars F ⇒ . . .

| KFdiamond alpha F ⇒
fun S ⇒
forall w,
dynamic_semantics_program I alpha S w

→ dynamic_semantics_formula I F w

| KFbox alpha F ⇒ . . .

end.

Definition 34 (Semantics of Programs). We introduce the semantics of a
program IJαK as a set of state pairs (transitions).

• IJaK = I(a)

• IJx := θK = {(ν, ω) ∈ S × S | ω(x) = IνJθK ∧ ∀y ∈ V \ {x}, ν(y) = ω(y)}

• IJx := ∗K = {(ν, ω) ∈ S × S | ∀y ∈ V \ {x}, ν(y) = ω(y)}

4.1. INTRODUCTION TO DIFFERENTIAL DYNAMIC LOGIC 65

• IJ?φK = {(ν, ν) ∈ S × S | ν ∈ IJφK}

• IJα;βK = {(ν, ω) ∈ S × S | ∃µ ∈ S, (ν, µ) ∈ IJαK ∧ (µ, ω) ∈ IJβK}

• IJα ∪ βK = IJαK ∪ IJβK

• IJα∗K =
⋃

n∈N IJα
nK with αn+1 ≡ αn;α and α0 ≡?⊤

•

IJẋ = θ&φK = {(ν, ω) ∈ S × S | ∃r ∈ R, ∃f : [0, r] → S,
(∀y ∈ V \ {ẋ}, ν(y) = f(0)(y)) ∧ initially f is equal to ν except on ẋ

(∀y ∈ V, ω(y) = f(r)(y)) ∧ f equals ω at time r

(∀ϵ ∈ [0, r], f(ϵ)(ẋ) =
df(t)(x)

dt
(ϵ) ∧ f(ϵ) ∈ IJẋ = θ ∧ φK)} f is solution of the ODE

and f(ϵ) satisfies φ

Finally, we have the Coq function dynamic_semantics_program to evaluate
hybrid programs. We only show a portion of the definition for the sake of
readability. The function differ_state_except v w a r, used for KPassign and
KPassignAny, holds if the state w is equal to the state v on all variable except on
a, on which it must be equal to r.

with dynamic_semantics_program (I : interpretation) (p : Program)
: ProgramSem :=

match p with

| KPconstant a ⇒ I (SymbolProgramConst a)

| KPassign a theta ⇒
fun v w ⇒ differ_state_except v w a (dynamic_semantics_term I v theta)

| KPassignAny a ⇒ fun v w ⇒ exists r, differ_state_except v w a r

| KPtest fi ⇒ fun v w ⇒ v = w ∧ dynamic_semantics_formula I fi v

| KPchoice alpha beta ⇒ . . .

| KPcompose alpha beta ⇒
fun v w ⇒
exists s,
dynamic_semantics_program I alpha v s

∧ dynamic_semantics_program I beta s w

| KPloop p ⇒ . . .
| KPodeSystem ode psi ⇒ . . .
end.

66 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

h

Hmax

v

Hlimit

Figure 4.11: A water tank controlled by a valve.

4.2 The Water Tank example

4.2.1 The Model

We introduce a simple model to be used as a running example. The model consists
of a water tank whose inflow is controlled by a valve as depicted in Figure 4.11.
The water tank and valve is a classic example for this kind of demonstration,
used in many papers such as [CJR96]. Its organisation as components and the
interaction of continuous evolution and discrete computation makes it a good
candidate to express all the features of our formalism. The goal is to formalize
the specification and the behavior of the two components, and to show that this
formalization is sound. Namely, that this behavior correctly implements the
specification.

The valve can detect when the water level is above a certain limit and
modulate its flow accordingly. The variable h describes the water level in the
tank, ḣ is the differential of h, and v is the flow rate of water in the tank. The
parameter Hmax is the level that the water must not exceed, Hlimit is the level
at which we have chosen to close the inflow.

Expected Behavior We describe the valve and tank as two components of
the system using hybrid programs. The valve behavior is described by the hybrid
program α in Equation 4.1. In this program, first, the value of h is assigned
to any value. This is made to represent the change of the water level. Indeed,
since the valve doesn’t have control over h, we suppose it can take any value.

4.2. THE WATER TANK EXAMPLE 67

Then the valve has two options. If h ≥ Hlimit, the inflow must be stopped. This
behavior is guaranteed, because when ?h < Hlimit is false, the hybrid program
can be reduced to v := 0. Otherwise, the valve can remain in the previous state
or can be stopped before the water level reaches to Hlimit. The behavior is
depicted in Figure 4.12

α = (h := ∗; (?h < Hlimit ∪ v := 0)) (4.1)

ν η

ω1

ω2

h := ∗
?h <

Hmax

v := 0

Figure 4.12: The behavior of the valve as an hybrid program.

The water tank is described by the hybrid program β in Equation 4.2 and
in Figure 4.13. The water tank will progressively fill. Because the tank has no
control over v, it is assigned to a undetermined value. Then, the water level will
increase by the inflow rate v. There is no domain constraint, which means the
continuous evolution ruled by the differential equation can stop at any time. We
give an example of run in Figure 4.14.

β = (v := ∗; (ḣ = v&⊤)) (4.2)

ν η ω
v := ∗ ḣ = v

Figure 4.13: The behavior of the water level as an hybrid program.

4.2.2 Specification

Informally, we want the water tank to never overflow, regardless of how long the
system is running. This would be the guarantee of the behavior of the system.
As for the assumption, it is necessary to assume that the water tank is not
overflown initially, as we cannot guarantee anything before the execution of the
system. It is also necessary that the valve closes the inflow when the water level
is above a certain level.

Our goal is to formally express this specification and verify that our model
implements this specification. Namely, that the behavior of the hybrid program
modeling the system satisfies the specification.

Here we give a summary of the informal contracts for the water tank:

68 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

h

t

Hlimit

v

Figure 4.14: Example of a behavior of h and v

• Assume the water level start below Hmax.

• Assume the valve closes if the water level is above Hlimit.

• Guarantee the water level will always be below Hmax.

And for the valve:

• Guarantee the valve closes if the water level is above Hlimit.

In the following sections, we explore the modelling and formal specification of
the system. It is important to note that we won’t show that the hybrid programs
are the correct model of a real implementation of the water tank. We merely
show that the model is sound and implement its specification, not that it is a
realistic model.

4.3 Instantiating Hybrid Programs

In this section, we give the first instantiation of the verified contract theory.
We first explain what a behavior is, in the context of differential dynamic
logic, and how this is used to define the base types needed for the instantia-
tion. Then we give the necessary information for the instantiation of the type
class NonEmptyDecidableVariable defined in Section 3.3. Finally, we use the
instantiation to define components for the water tanks, our running example.

4.3.1 Base Types

To instantiate the theory the first step is to define what the type of a behavior is.
Concretely this means choosing the types value and ident. We first introduce
how states and transitions are defined in Coq dL, then we explain our choice for
the types value and ident.

4.3. INSTANTIATING HYBRID PROGRAMS 69

States in Coq dL In Coq dL, the state1 of a component is represented by
the valuation of every variable. Notice that variables are valued in R, which is
the set of mathematical reals R, and they are identified with KAssignable, on
which we give more explanation below.

Definition KState := KAssignable → R.

KAssignable as Identifiers In Coq dL, to define a new variable we use the
constructor KVariable, which is defined using a string as a parameter of construc-
tion. These are the non-differential variables. Yet, in differential dynamic logic,
a variable x and its differential ẋ are both considered variables. Thus we use
KAssignable to type the variables, which are KVariable and their differentials.

Inductive KVariable : Set := variable : string → KVariable

Inductive KAssignable : Set :=
| KAssignVar : KVariable → KAssignable

| KAssignDiff : KAssignable → KAssignable

Definition ident : Type := KAssignable.

Encoding Behaviors with Transitions A transition is a pair of an origin
and a target state. In Coq dL, the semantic of an hybrid program is a set
of transitions. We want to instantiate the types ident and value, to have the
behavior defined in the verified contract theory being as close as possible as
the semantic of an hybrid program. At a first glance, we would hence expect a
behavior to be a transition like below.

Definition transition := (KState ∗ KState).
Definition behavior := transition.

This definition is not compatible with the definition of behavior from the
assumption/guarantee theory of contract:

Definition behavior (d : alphabet) := {v : ident | v ∈ d} → value.

There is no satisfactory implementation of ident and value that transcribes this
formula into a transition. Thus, we define behaviors which are defined with
the formula and can be transformed into transitions. The solution is to define
behavior as evaluation of each variable in the alphabet of the component to a
couple of initial and final value. We give an example of a behavior coding a
transition in Figure 4.15.

Definition value : Type := (R ∗ R).

This is enough to have most definition in our theory, like alphabets, contracts
and components. For example we can define an alphabet d, made of four
KAssignable. And create a component as a set of behaviors, although without
any new constructors it will be cumbersome to define interesting components.

1In the Coq dL library it is defined as states but we rename it to KState to remove
ambiguity

70 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

v

h

1

25 35

s0 s1
{
v 7→ (1, 1)

h 7→ (25, 35)

}

Figure 4.15: A behavior (left) coding a transition (right)

Definition d : @alphabet KAssignable :=
add v (add h’’ (add h’ (add h (@emptyset KAssignable)))).

Definition behavior_example : behavior d := fun x : var d ⇒ (0, 0).
Definition component_example : component d :=

fun s : behavior d ⇒ s = behavior_example.

4.3.2 Instantiating the Type Class

To have the complete facts proved for our verified contract theory, we now need
to instantiate the NonEmptyDecidableVariable type class. The theory of contracts
is almost ready to be instantiated, we miss two things:

• A default value needed for the extension of assertion.

• The decidability principle of membership for KAssignable sets (alphabet).

As default value, we chose (0, 0) for no particular reasons, it could have been
any other R ∗ R value.

The ”in” decidability is admitted for now, as it is very difficult to prove with
our definition of sets. Indeed, since the set are abstract, this is nearly equivalent
to general decidability which we don’t accept. We hope to be able to remove
this axiom by changing the definition of set in the future.

Axiom in_dec_KAssignable : ∀ (x : KAssignable) (d : alphabet), {x ∈ d} + { x /∈ d}.

This finishes the instantiation of NonEmptyDecidableVariable. We use the
keyword Instance to instantiate the class NonEmptyDecidableVariable. We name
the the instance we create KAssignable_Reals to highlight the types of the
identifiers and values.

Instance KAssignable_Reals : NonEmptyDecidableVariable (R ∗ R) KAssignable := {
any_value := (0 , 0)%R ;
in_dec_ident := in_dec_KAssignable ;

}.

4.3. INSTANTIATING HYBRID PROGRAMS 71

4.3.3 Transforming Programs into Components

Since we don’t use transitions in the instantiation, the semantics of hybrid
programs and components differ. Indeed, the semantic of an hybrid program is a
set of transition Kstate → Kstate → Prop whereas the semantic of a component
is a set of behavior behavior → Prop. We show how to transform an hybrid
program into a component.

Evaluate Behavior The first building block of this transformation is to
evaluate behaviors on KAssignable. Since behavior are defined on a alphabet
d, a restriction of KAssignable, they don’t hold values for variables outside of d.
Here, we chose to resolve the problem by returning a default value any_value,
defined earlier. The function exist : forall x : A, P x → {x : A | P x}, creates the
variables with the proof they are in the alphabet. And the type behavior unfolds
to {v : KAssignable | d v} → value. So t (exist _ x x_in_d) is the evaluation of
the behavior t on variable x.

Definition eval {d : alphabet} (t : behavior d) (x : KAssignable) : value :=
match in_dec_ident x d with

| left x_in_d ⇒ t (exist _ x x_in_d)
| right _ ⇒ any_value

end.

Behavior Conversion Then we can define to_transition, which transforms
a behavior to a transition, and to_component which transforms a program to a
component. Though, we don’t want to transform a component with variables
outside of the alphabet d. Thus we ask for the predicate prog_in_alphabet d to
hold for the program, we explain below the definition of prog_in_alphabet.

Definition to_transition {d : alphabet} (t : behavior d) : KState ∗ KState:=
(fun (x : KAssignable) ⇒ fst (@eval d t x),
fun (x : KAssignable) ⇒ snd (@eval d t x)).

Program Conversion To define the to_component function, we use the func-
tion dynamic_semantics_program which holds if a transition satisfies a program.
The function dynamic_semantics_program also uses an interpretation function
for constant symbols, we abstract the interpretation by admitting we have an
unspecified interpretation function I.

Definition to_component {d : alphabet} (I : interpretation) (p : Program)
(p_in_alphabet: prog_in_alphabet d p) : component d :=
fun (t : behavior d) ⇒ let (prestate, poststate) := @to_transition d t in

dynamic_semantics_program I p prestate poststate.

Program’s Alphabet Since hybrid programs are defined on every variable,
and not a fixed alphabet, we want to create a predicate, which can be understood
as ”This hybrid program is defined on this alphabet”. In Coq dL, the function

72 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

all_vars_program returns all the free and bound variables appearing in an hybrid
program. Though, the set it returns is either finite or cofinite (namely, its
complement is finite), and is defined with type FCset, which we can not use.
With to_alphabet we transform a FCset to a set of KAssignable. Finally, with
prog_in_alphabet, we can check that a program is defined on a alphabet, by
checking that all variables used in it are in the alphabet d.

Definition to_alphabet (f : @FCset KAssignable) : (@alphabet KAssignable):=
match f with

| FCS_finite l ⇒ fun (x : KAssignable) ⇒ List.In x l

| FCS_infinite l ⇒ fun (x : KAssignable) ⇒ ¬List.In x l

end.

Definition prog_in_alphabet (d : alphabet) (p : Program) :=
to_alphabet (all_vars_program p) ⊆ d.

4.3.4 Example with the Water Tank

We can define components for the hybrid programs of our example α and β.
First we must create the alphabet of our system. Since the three variables used
in the programs are h, ḣ and v. The alphabet is defined as follows :

Definition h : KAssignable := variable "h".
Definition h’ : KAssignable := KAssignDiff h.
Definition h’’ : KAssignable := KAssignDiff h’.
Definition v : KAssignable := variable "v".
Definition d : alphabet := add v (add h’’ (add h’ (add h (@emptyset KAssignable)))).

Then, we define the components α and β according to their differential
dynamic logic definition. This is the same programs as in Section 4.2, except we
use the Coq dL notation introduced in Section 4.1.

Definition alpha : Program :=
KPcompose

(KPassignAny h)
(KPchoice

(KPtest (KFless (KTread h) Hlimit))
(KPassign v (KTnumber (KTNreal 0)))).

Definition beta : Program :=
KPcompose

(KPassignAny v)
(KPodeSystem

(ODEatomic (ODEsing (KAssignDiff h) (KTread v)))
KFtrue

).

To define the components for α and β, we use the to_component function, but
we first need to verify that all variables of α and β are in the alphabet d.

4.4. REFINEMENT IN DIFFERENTIAL DYNAMIC LOGIC 73

Lemma alpha_in_dom : prog_in_alphabet d alpha.
Lemma beta_in_dom : prog_in_alphabet d beta.

Definition alpha_component := to_component I alpha alpha_in_dom.
Definition beta_component := to_component I beta beta_in_dom.

4.3.5 Limitations of the Instance

Contracts as Hybrid Programs In the verified contract theory, components
and contracts are very similar: they are defined with assertions. In a way,
contracts are made of two components, one expressing the assumption and one
expressing the guarantee. We could follow this idea and define contracts as a pair
of hybrid programs. But this is not satisfying: it implies that the implementation
relation between components and contracts would not be expressible as an hybrid
formula. Indeed, the implementation relation is defined as follows :

α ⪯ ¬A ∨G (4.3)

With A and G being the assumption and guarantee of the contract. Yet in dL,
there is no definition of the negation of a hybrid program. This means we can’t
represent this relation in dL. Hence we won’t be able to use the proof assistant
Keymaera X to verify the implementation of a contract by a component.

Abstract Programs for Contract Our idea is to define a subset of hybrid
programs, which is as close as possible as hybrid program and close by negation.
The subset must also be closed by disjunction and conjunction. It would be
translatable into hybrid programs, since we need to write them in Keymaera X.
We call such a subset that of Abstract Programs and give its definition in the
Section 4.5.

Differential Refinement In order to write Equation 4.3 in differential dy-
namic logic, we also need a way to write refinement in dL. Luckily there is a
refinement relation defined for dL called differential refinement. In Section 4.4
we show that the refinement from the assumption/guarantee of contracts can be
expressed with differential refinement.

4.4 Refinement in Differential Dynamic Logic

In Chapter 3, we introduced the refinement relation defined in the assump-
tion/guarantee contract theory and the meta-theory [Ben+15b]. Yet, another
refinement relation has been defined for differential dynamic logic [LP16]. This
definition of refinement is directly defined in the logic and can be used in the
proof calculus to facilitate reasoning. It seems natural to investigate the link
between the two refinement definitions. In this section, we show that the refine-
ment of hybrid programs from differential dynamic logic implies the refinement
of component from the verified contract theory.

74 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

4.4.1 Definitions of the Refinement Relations

Refinement from A/G Contract Theory A refinement relation is defined
by instance of the contract theory. We gave the general definition of refinement
in Chapter 3. The instance of Section 4.3 specializes this definition for hybrid
programs which we give in Equation 4.4. We assume an interpretation function
I is defined.

a ⪯ b ≡ IJaK ⊆ IJbK (4.4)

Differential refinement A refinement relation is also defined in the reference
paper on differential refinement [LP16], see Equation 4.5 We use differential
refinement(⪯dL) to denote this relation, in order to avoid confusing it with
refinement (⪯).

a ⪯dL b ≡ ⊢ ∀x′, ⟨a⟩ x = x′ → ⟨b⟩ x = x′ (4.5)

In this formula, x is a vector containing at least every variables of a and
b. x′ is a vector of fresh variables with the same size as x. The operator is
x = x′ is the equality of vectors, in other words: x1 = x′1 ∧ . . . ∧ xn = x′n
with x = (x1, . . . , xn) and x′ = (x′1, . . . , x

′
n).

This formula can be understood as follows: for any run starting from any
initial state, if there exists a transition in a that ends with the values x′, then
one run that also ends with the same values x′ must exists in b. Indeed, since
x′ is a vector of fresh variables, its values are not modified in a nor b. And
since x contains every bound variables of a and b, knowing the values of every
variable on x is sufficient to conclude that both states at the end of a and b are
equivalent.

Alphabet In the following we assume a set d of every variable read (free
variables) and written (bound variable) in either program a or b. We assume the
set to be finite, indeed it seems reasonable to accept that a real component have
a finite number of variables. We define d the vector of variables containing once
every variable in d. We also assume a set d′ of fresh variables with the same size
as d. We define d′ the vector containing once every variable in d′.

4.4.2 Definition of Differential Refinement in Coq

Before proving that the differential refinement implies the refinement, we first
need to define the differential refinement in Coq. This definition of this formula
in Coq poses some problems: We need to define the alphabet as a finite set
and create a list containing every variable in the alphabet. Then, we need to
introduce a fresh variable d′

i for each variable in the alphabet di.

Finite Alphabet Having a finite alphabet seems to be a reasonable assumption
since real-world components cannot manipulate an infinite number of variables.
Because we miss a proper definition of finite set, we declare a Finite property

4.4. REFINEMENT IN DIFFERENTIAL DYNAMIC LOGIC 75

that denote a set as finite, an elements_of function, which returns every element
of a finite set in a list, and Enum, the correction lemma of element_of. These are
introduced as axioms.

Section Finite.
Axiom Finite : ∀ {Γ : Type} (s: set Γ), Prop.
Axiom elements_of : ∀ {Γ : Type} (s : set Γ) (fs : Finite s),
list Γ .

Axiom Enum : ∀ (Γ : Type) (s : set Γ) (fs : Finite s) (x : Γ),
x ∈ s ↔ List.In x (elements_of s fs).

End Finite.

We assume the property Finite to hold for the alphabet d. And create the
list dl which contains once every variable of d.

Variable d_finite : Finite d.

Definition dl := elements_of d d_finite.

Creation of Fresh Variables Coq dL includes a function fresh_kassignable,
which given a list of variables, returns a new fresh variable and a proof that
the fresh variable is different from every variable in the list. The notation
{x : T $ P x} for the constructor sigT which is the sigma type of an element x

with the property P x.

Definition fresh_kassignable :
∀ l : list KAssignable, {x : KAssignable $ ¬List.In x l} := . . .

The function fresh_kassignable_list n l returns a list of n KAssignable,
which are all different from every KAssignable and from each other. It works
by calling freqh_kassignable on l to have a fresh variable x then recurring and
adding x to the list of already used variables.

Fixpoint fresh_kassignable_list (n : nat) (l : list KAssignable) : list KAssignable :=
match n with

| 0 ⇒ nil

| S m ⇒ let (x, _):= (fresh_kassignable l) in
x :: (fresh_kassignable_list m (x :: l))

end.

Finally, we use this function to introduce dl’ a list with the same size as dl

filled with fresh variables.

Definition dl’ : list KAssignable :=
fresh_kassignable_list (length dl) dl.

Non-differential Variables In order to use the operator KFforallvars to
quantify over the fresh variabels dl’, we need a list of fresh KVariable. Yet, the
list dl’ is of type list KAssignable. As we introduce in Section 4.1, KVariable is
the type of non-differential variables (x, y, . . .) and KAssignable is the type of vari-
ables, differential or not (x, y, ẋ, ẍ, . . .). We use Coq dL KAssignable2variable

76 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

function that returns the variable non-differential variable from any variable.
For example, KAssignable2variable (KAssignDiff x) = x if x is non-differential.
And KAssignable2variable (KAssignVar y) = y if y is non-differential. We define
dl’_Variable a list of the KVariable with every variable in dl.

Definition dl’_Variable : list KVariable :=
map KAssignable2variable dl’.

Equality of Variables to Fresh Variables In the definition of differential
refinement, we need to express that the vector d and d′ are equal as an hybrid
formula. To do so we define KFeq_list l l’ an hybrid formula which express that
the variables in l have the same value as the variables l’ .

Fixpoint KFeq_list (la : list KAssignable) (lb : list KAssignable) : Formula :=
match (la, lb) with

| (nil, _:: _) ⇒ KFfalse

| (_:: _, nil) ⇒ KFfalse

| (nil, nil) ⇒ KFtrue

| (h1:: t1, h2:: t2) ⇒ KFand (KFequal h1 h2) (KFeq_list t1 t2)
end.

Mechanization of Differential Refinement With all this auxiliary defini-
tions we can define the differential refinement (Equation 4.5) in Coq. We use dl

as the alphabet list (equivalent of d), and dl’ the fresh variables (equivalent of
d′).

Definition KFrefine(a b : Program) : Formula :=
KFforallVars dl’_Variable

(KFimply (KFdiamond a (KFeq_list dl dl’))
(KFdiamond b (KFeq_list dl dl’))).

4.4.3 Preliminary Lemmas

We need three lemmas before proving that the differential refinement implies the
refinement relation. We will introduce the three lemmas in mathematical terms
as well as their Coq mechanization. In the following, we will use s, f to name
states, and a, b to name programs. This is different for the Section 4.1 where
we used ν, ω, α and β, indeed our goal is to have a uniform notation between
the mathematical demonstration and the mechanization. We also introduce a
notation f(x) = (f(x1, . . . , f(xn)) for x = (x1, . . . , xn), notably f(x) = f(y)
expresses that f(x1) = f(y1) ∧ . . . ∧ f(xn) = f(yn). For the sake of readability

we also introduce the notation s
a−→ f ≡ (s, f) ∈ IJaK. This notation removes

the interpretation function I, but this has no consequences on our reasoning.

Differential Refinement The differential refinement states that if we have a
transition s

a−→ f and f(d) = f(d′), then there is a state f ′ such that (s, f ′) ∈ IJbK

4.4. REFINEMENT IN DIFFERENTIAL DYNAMIC LOGIC 77

and f ′(d) = f ′(d′). It is a direct consequence of differential refinement, but is
more usable in our proof. This is summed up as Lemma 2 and Figure 4.16.

Lemma 2 (Differential Refinement). With a ⪯dL b and s, f two states,

s
a−→ f ∧ f(d) = f(d′) =⇒ ∃f ′, s a−→ f ′ ∧ f ′(d) = f ′(d′)

Lemma KFrefine_rewrite (a b : Program) (a_in_d : prog_in_d a) (b_in_d : prog_in_d b) :
∀ s f : KState,
dynamic_semantics_formula I (KFrefine a b) s →
dynamic_semantics_program I a s f →
map f (elements_of d fd) = map f (fresh_alphabet_a) →
exists f, dynamic_semantics_program I b s f ∧
map f (elements_of d fd) = map f (fresh_alphabet_a).

s

f

f ′

a
f(d) = f(d′)

b

f ′(d) = f ′(d′)

Figure 4.16: Differential Refinement

Bound Effect Lemma The second lemma we need is the bound effect lemma
on alphabet. It expresses that a program does not affect variables that are not
in its alphabet. In differential dynamic logic, by default, an hybrid program can
modify every variable, yet it only modify a finite set of variables. We call bound
variables, every variable modified by a program. The bound effect lemma [Pla17,
lemma 9] states that every variable that is not a bound variable is equal in the
initial and the final state. Since in our construction of components, a component
can only modify the variables in the alphabet, every variable that is not in
the alphabet is not a bound variable. We deduce the bound effect lemma on
alphabet: Lemma 3 and give Figure 4.17 to illustrate.

Lemma 3 (Bound Effect on Alphabet). If s
a−→ f ,

∀x /∈ d, s(x) = f(x)

Lemma bound_effect_on_d (a : Program) (a_in_d : prog_in_d a)
(s f : KState) (x : KAssignable) :
¬(x ∈ d) → dynamic_semantics_program I a s f → s x = f x.

78 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

s f
a

∀x /∈ d, s(x) = f(x)

Figure 4.17: Bound effect lemma

s

s′

f

f ′

a

a

s(d) = s′(d) f(d) = f ′(d)

Figure 4.18: Coincidence lemma on alphabet d

Coincidence Lemma The last lemma we need is the coincidence lemma
on alphabet. The coincidence lemma used for the uniform substitution calcu-
lus [Pla17, lemma 12], expresses that if a transition (s, f) satisfies a, then for
every state s′ that is equal to the initial state s on at least the free variables,
there exists a state f ′ such that (s′, f ′) satisfies a and f ′ is equal to f on those
variables. A free variable of a program is a variable that change the evaluation
of an the program. In our construction only the variables in the alphabet d
can change the behavior of a program. Which means that every free variable is
in the alphabet, thus we can deduce the coincidence lemma on alphabet. The
lemma4 is summarised on Figure 4.18

Lemma 4 (Coincidence Lemma on alphabet). For states s, f and s′ such as

s
a−→ f and s′(d) = s(d) then

∃f ′, s′ a−→ f ′ ∧ f ′(d) = f(d)

Theorem coincidence_program_on_d (P : Program) (p_in_d : prog_in_d P) (s s’ f: KState) :
(map s dl = map s’ dl) →
dynamic_semantics_program I P s f →
exists f’, dynamic_semantics_program I P s’ f’ ∧
map f dl = map f’ dl.

4.4.4 Proof that Differential Refinement Implies Refine-
ment

We now prove that the refinement defined from the refinement calculus implies
the refinement from the contract theory. We give the mathematical proof, and the
mechanized proof is available in the file DifferentialContracts.v of the library.

4.4. REFINEMENT IN DIFFERENTIAL DYNAMIC LOGIC 79

Theorem refine_KFrefine

(a b : Program) (a_in_d : prog_in_d a) (b_in_d : prog_in_d b) :
(∀ preS : KState, dynamic_semantics_formula I (KFrefine a b) preS) →
to_component I a a_in_d ⊆ to_component I b b_in_d.

Theorem 8 (Differential Refinement Implies Refinement). For a and b two
hybrid programs with variables in d, if a ⪯dL b then a ⪯ b.

Proof. We consider two programs a and b such as a ⪯dL b. We assume d ⊆ V
the set of all variables used in a or b. Since the set is finite we can create a
vector d = (d1, . . . , dn) of all variables used in a or b. We assume d′ ⊆ V a set of
fresh variables with the same size as d. Similarly, we have d′ = (d′1, . . . , d

′
n) a

vector of fresh variables.
We consider two states s, f : V → R, such as s

a−→ f . We will demonstrate

that s
b−→ f which, by definition of the refinement, will prove that a ⪯ b.

We create a new state, s′, equal to s on every variables except that ∀i ∈
[1;n], s′(d′i) = f(di), namely:

s′(d′) = f(d) (4.6)

Since s
a−→ f and s(d) = s′(d), we can use the Coincidence Lemma 4. Which

expresses that it exists a state f ′ such as s′
a−→ f ′ and

f(d) = f ′(d). (4.7)

This is illustrated in Figure 4.19.
From the bound lemma 3, we can conclude that ∀x /∈ d, s′(x) = f ′(x). On

particular, since all variables in d′ are not in d, we have ∀i ∈ [1;n], f ′(d′i) =
s′(d′i) = f(d′i). Which we can rewrite as:

f(d′) = f ′(d′) (4.8)

From equation 4.7 and 4.8, we have f ′(d) = f ′(d′). Since s′
a−→ f ′ and

f ′(d) = f ′(d′), we can now use the differential refinement lemma 2. It states

that their is a state f ′′ such that s′
b−→ f ′′ and f ′′(d) = f ′′(d′). This is summarised

in Figure 4.20.

Thanks to the Coincidence Lemma 4, we can conclude, from s′
b−→ f ′′ and

s′(d) = s(d) by definition of s′, that their is a state f ′′′ such as s
b−→ f ′′′ and

f ′′′(d) = f ′′(d). This is illustrated in Figure 4.21.
We will now prove that ∀x ∈ V, f ′′′(x) = f(x). First if x /∈ d, from the

bound effect lemma 3, f ′′′(x) = s(x) and (from the same lemma) s(x) = f(x),
hence f ′′′(x) = f(x). Then, we prove that f ′′′(d) = f(d). From the coincidence
lemma, we have f ′′′(d) = f ′′(d). We also have f ′′(d) = f ′′(d′) and from
bound effect, f ′′(d′) = s′(d′). And from Equation 4.6 s′(d) = f(d). So
f ′′′(d) = f ′′(d′) = s′(d′) = f(d) which finishes the proof.

80 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

s f

s′ f ′

a

a

s(d) = s′(d) f(d) = f ′(d)

∀x /∈ d, s(x) = f(x)

∀x /∈ d, s′(x) = f ′(x)

Figure 4.19: Definition of f ′ with coincidence lemma

s′

f ′

f ′′

a
f(d) = f ′(d′)

b

f ′′(d) = f ′′(d′)

∀x /∈ d, s′(x) = f ′′(x)

Figure 4.20: Definition of f ′′ with differential refinement lemma

s′ f ′′

s f ′′′
b

b

s′(d) = s(d) f ′′(d) = f ′′′(d)

∀x /∈ d, s(x) = f ′′′(x)

Figure 4.21: Definition of f ′′′ with coincidence lemma

4.5. ABSTRACT PROGRAMS 81

4.5 Abstract Programs

In this section, we introduce abstract programs, a subset of hybrid programs
specifically designed to define contracts. So far, we expressed three requirements
for the definition of abstract programs, they must be:

• closed by conjunction, disjunction and negation,

• writable as hybrid programs, and

• expressive enough to specify of systems.

We also want to instantiate the type class described in Section 3.7, which we
do in Section 4.6. The instantiation will give us contracts that are sufficient to
specify the examples of Section 4.2, and are compatible with the components
defined in Section 4.3.

4.5.1 Definition

Abstract programs consist in the disjunctive normal form of atoms. Atoms
are hybrid formulas which denote either a precondition or a postcondition. An
atom is made of two parts, the atom_ with the formula which can be either a
precondition or a postcondition, and atom_in_alphabet which is the proof that
the alphabet of the formula is d.

Inductive atom_ :=
| preF : Formula → atom_

| postF : Formula → atom_.

Definition atom_in_alphabet (d : alphabet) (e : atom_) : Prop :=
match e with

| preF f ⇒ formula_in_alphabet d f

| postF f ⇒ formula_in_alphabet d f

end.

Definition atom (d : alphabet) := {e | atom_in_alphabet d e}.

The type aProgram is an abstract program, coded as a list of list of atoms.
The sublists of atoms encode the conjunction of the atoms, and the global list is
the disjunction of all sublists. An example of abstract program is represented on
Figure 4.22.

Definition aProgram (d : alphabet) :=
list (list (atom d)).

4.5.2 Satisfaction Function

The satisfaction function works inductively on the structure of the abstract
programs. It returns a proposition determining if a behavior satisfies an abstract
program.

82 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

Pre : ϕ Post : ϕ2

∧

Pre : ϕ3 Pre : ϕ4

∧

Post : ϕ5

∧

∨

Figure 4.22: The structure of abstract programs

Satisfaction of Atoms The satisfaction of an atom depends on the nature of
the atom. If it is a ”Pre” atom, we check that the initial state of the behavior
satisfies the formula in differential dynamic logic. If it’s a ”Post” atom, we
check that the final state of the behavior satisfies the formula. The proj1_sig e

unwraps the atom and returns the atom_ inside it.

Definition aProgram_sat_atom (d : alphabet) (t : behavior d) (e : atom d) : Prop :=
let (prestate, poststate) := to_transition t in

match proj1_sig e with

| preF f ⇒ dynamic_semantics_formula I f prestate

| postF f ⇒ dynamic_semantics_formula I f poststate

end.

Satisfaction of Abstract Programs The satisfaction of an abstract program
is structural: the function aProgram_sat_aux takes a list of atoms and holds if the
behavior satisfies all the atoms; aProgram_sat holds if one of the lists of atoms is
satisfied by the behavior.

Fixpoint aProgram_sat_aux (d : alphabet) (t : behavior d) (sp_and : list (atom d)) : Prop :=
match sp_and with

| nil ⇒ True

| h :: q ⇒ aProgram_sat_atom d t h ∧ aProgram_sat_aux d t q

end.

Fixpoint aProgram_sat (d : alphabet) (s : behavior d) (sp : aProgram d) : Prop :=
match sp with

| nil ⇒ False

| h :: t ⇒ aProgram_sat_aux d s h ∨ aProgram_sat d s t

end.

4.5.3 Construction Operators

In this section we define the usual operators defined for expressions.

4.5. ABSTRACT PROGRAMS 83

Disjunction The disjunction operator is made by appending two aProgram as
seen on Figure 4.23

Definition aProgram_or (d : alphabet) (a b : aProgram d) : aProgram d :=
a ++ b.

∨

∧

Pre ϕ

∧

Post ψ

∨ ∨

∧

Pre θ

∧

Post η

= ∨

∧

Pre ϕ

∧

Post ψ

∧

Pre θ

∧

Post η

Figure 4.23: The ∨ operator.

Conjunction The conjunction operator needs a little more work. We first
need to define aProgram_and_aux which, for a list of atom and a program, returns
the conjunction of the lists of atoms and the program. The idea is to recursively
make the conjunction of an atom a and a list of disjunction l = h :: t with the
equality: a ∧ (h ∨ t) = (a ∧ h) ∨ (a ∧ t). Then, the ”and” operator needs to call
this function on all sub-lists of the program. We give an example in Figure 4.24.

∨

∧

Pre ϕ

∧

Post ψ

∧ ∨

∧

Pre θ

∧

Post η

= ∨

∧

Pre ϕ Pre θ

∧

Post ψ Pre θ

∧

Pre ϕ Post η

∧

Post ψ Post η

Figure 4.24: The ∧ operator

Fixpoint aProgram_and_aux (d : alphabet) (l : list (atom d)) (prog : aProgram d) : aProgram d :=
match prog with

| nil ⇒ nil

| h :: t ⇒ (l ++ h) :: aProgram_and_aux d l t

end.

84 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

Fixpoint aProgram_and (d : alphabet) (a b : aProgram d) : aProgram d :=
match a with

| nil ⇒ []
| h :: t ⇒ aProgram_or d (aProgram_and_aux d h b) (aProgram_and d t b)
end.

Negation To define the negation of an abstract program, we first define the
negation of an element aProgram_not, as shown on Figure 4.25. We define the
negation of list of atom with aProgram_not_aux. With De Morgan’s Law, the
negation of a conjunction of atoms is the disjunction of their negation. Then, we
use again the De Morgan’s law to compute the negation of the whole abstract
program with aProgram_not. An example is given in Figure 4.26.

Pre ϕ¬ Pre ¬ϕ

Figure 4.25: The negation operator of an atom

Definition aProgram_not_atom (d : alphabet) (e : atom d) : atom d :=
match e with

| exist (preF f) pf ⇒ exist _ (preF (KFnot f)) (KFnot_in_d d f pf)
| exist (postF f) pf ⇒ exist _ (postF (KFnot f)) (KFnot_in_d d f pf)
end.

Fixpoint aProgram_not_aux (d : alphabet) (l : list (atom d)) : aProgram d :=
match l with

| nil ⇒ []
| h :: t ⇒ ((aProgram_not_atom d h)::nil) :: (aProgram_not_aux d t)
end.

Fixpoint aProgram_not (d : alphabet) (sp : aProgram d) : aProgram d :=
match sp with

| nil ⇒ nil :: nil
| h :: t ⇒ aProgram_and d (aProgram_not_aux d h) (aProgram_not d t)
end.

4.5.4 Transforming to Hybrid Programs

In this section, we explain how to transform an abstract program into a hybrid
program. This is done inductively on the structure of aProgram. More precisely,
there is a function that transforms list of atoms into programs. Then, these
programs are joined with the choice operator.

Translating of an atom The translation of the two kind of atoms is described
in Figure 4.27.

4.5. ABSTRACT PROGRAMS 85

∨

∧

Pre ϕ Pre θ

∧

Post ψ

¬ = ∨

∧

Pre ¬ϕ

∧

Pre ¬θ

∧ ∨

∧

Post ¬ψ

Figure 4.26: The negation using de Morgan’s rule

Pre ϕ

Post ψ

(?ϕ ; d = ∗ ; ?⊤)

(?⊤ ; d = ∗ ; ?ψ)

Figure 4.27: Transforming a abstract atom into an hybrid program

Undeterminate Assignation of Alphabet We use d = ∗ which stands for
the indeterminate assignment of all variables in alphabet d. This implies that
the alphabet d must be finite, we use the same axioms as in Section 4.4. To
define this operator AssignAny, we define assignAny_aux which iterate over the
identifiers of the alphabet and compose hybrid programs that assign any value
to them.

Fixpoint assignAny_aux (l : list ident) : Program :=
match l with

| nil ⇒ KPtest KFtrue

| h :: t ⇒ KPcompose (KPassignAny h) (assignAny_aux t)
end.

Definition assignAny (d : alphabet) (fd : Finite d) : Program :=
assignAny_aux (elements_of d fd).

Aggregation of List of Atoms To transform a list of atoms into an hy-
brid programs, we aggregate the atoms that are precondition and the atoms
that are postconditions with flatten_pre and flatten_post. Then the function
to_program_aux creates the program with the sequence of the precondititon,
assignAny d and the postcondition. We give an example of the process in Fig-
ure fg−list−hp.

86 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

Fixpoint flatten_pre (d : alphabet) (l : list (atom d)) : Formula :=
match l with

| nil ⇒ KFtrue

| exist (preF f) _ :: t ⇒ KFand f (flatten_pre d t)
| exist (postF _) _ :: t ⇒ flatten_pre d t

end.

Fixpoint flatten_post (d : alphabet) (l : list (atom d)) : Formula :=
match l with

| nil ⇒ KFtrue

| exist (preF _) _ :: t ⇒ flatten_post d t

| exist (postF f) _ :: t ⇒ KFand f (flatten_post d t)
end.

Definition to_program_aux (d : alphabet) (fd : Finite d) (s : list (atom d)) : Program :=
KPcompose

(KPcompose
(KPtest (flatten_pre d s))
(assignAny d fd))

(KPtest (flatten_post d s))
.

∧

Pre ϕ Post ψ Pre θ

∧

Pre : ϕ ∧ θ Post ψ

∧

[?(ϕ ∧ θ) ; d := ∗ ; ?ψ]

(1) (2)

(3)

Figure 4.28: Transforming a list of abstract atom into an hybrid program

Transforming an Abstract Program To transform an abstract program
to an hybrid program, we first transform each sublists to hybrid programs
with to_program_aux. Then we join each program with the choice operator of
differential dynamic logic with to_program as shown on Figure 4.29.

4.5. ABSTRACT PROGRAMS 87

Fixpoint to_program (d : alphabet) (fd : Finite d) (s : aProgram d) : Program :=
match s with

| nil ⇒ KPtest KFfalse

| h :: t ⇒ KPchoice (to_program_aux d fd h) (to_program d fd t)
end.

∨

∧

Pre ϕ Post ψ

∧

Pre θ Post η

∨

[?phi ; d := ∗ ; ?psi] [?theta ; d := ∗ ; ?eta]

[(?ϕ ; d := ∗ ; ?ψ) ∪ (?θ ; d := ∗ ; ?η)]

Figure 4.29: Transforming an abstract program into a hybrid program

4.5.5 Proving the Transformation is Sound

We want to prove that to_program is correctly defined, to do that we prove that
a behavior t satisfying an abstract program sp aProgram_sat d t sp also satisfies
the translation of the abstract program to_program d fd sp.

Proof of Correctness We want to prove that the translation function is
correct. The proof is done by induction on the abstract program. First we prove
that to_program_aux is sound, then with induction we will prove to_program is
sound. We need to prove that every behavior on d satisfy assignAny d. This is
done by induction on the list of identifiers in the alphabet d.

88 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

Theorem sat_to_program_sound :
∀ (d : alphabet) (fd : Finite d) (sp : aProgram d) (t : behavior d),
let (preS, postS) := to_transition t in

dynamic_semantics_program I (to_program d fd sp) preS postS ↔ aProgram_sat d t sp.

Lemma sat_to_program_sound_aux :
∀ (d : alphabet) (fd : Finite d) (a : list (atom d)) (t : behavior d),
let (preS, postS) := to_transition t in

dynamic_semantics_program I (to_program_aux d fd a) preS postS ↔
aProgram_sat_aux d t a.

Lemma assignAny_dsp : ∀ (d : alphabet) (fd : Finite d) (t : behavior d),
let (preS, postS) := to_transition t in

dynamic_semantics_program I (assignAny d fd) preS postS.

4.6 Contracts with Differential Dynamic Logic

This section instantiates the assumption/guarantee theory of contracts withwith
abstract programs. We are going to instantiate the theory using the interface
we defined in Section 3.7. Then, we focus on defining contracts using abstract
programs. We show how to transform an implementation property into a hybrid
formula to prove in dL. Finally we use the composition given by the instantiation
to create a contract for the system, and use the contract as a validation of an
hybrid program modeling the system.

4.6.1 Instantiating the Theory of Contract

Using the Interface We use the interface defined in Section 3.7, it is particu-
larly fit for this purpose because abstract programs are alphabetized expressions.
To be able to use hybrid programs and abstract programs in conjunction, we
use the same types for the definition of behaviors, namely KAssignable for ident
and (R ∗ R) for value. The instantiation needs an expression type, operators,
proof of correctness of operators and decidability of satisfaction function. The
operators ”and”, ”or”, and ”not” and the satisfaction function were developed
in Section 4.5. We still need to prove their correctness and the decidability of
the satisfaction function.

Proof Operators are Correct We prove that each operator respect its
specification. For each operator, the proof is done by induction on sp1 and poses
no real challenge.

Lemma aProgram_or_correct : forall (d : alphabet) (s : behavior d) (sp1 sp2 : aProgram d),
aProgram_sat d s sp1 ∨ aProgram_sat d s sp2 ↔ aProgram_sat d s (aProgram_or d sp1 sp2).

Lemma aProgram_and_correct : forall (d : alphabet) (s : behavior d) (sp1 sp2 : aProgram d),
aProgram_sat d s sp1 ∧ aProgram_sat d s sp2 ↔ aProgram_sat d s (aProgram_and d sp1 sp2).

4.6. CONTRACTS WITH DIFFERENTIAL DYNAMIC LOGIC 89

Lemma aProgram_not_correct : forall (d : alphabet) (s : behavior d) (sp : aProgram d),
¬ aProgram_sat d s sp ↔ aProgram_sat d s (aProgram_not d sp).

Decidability We axiomatize the decidability of the satisfaction function, since
proving it is outside of our scope of work.

Axiom aProgram_sat_dec : forall (d : alphabet) (s : behavior d) (sp : aProgram d),
aProgram_sat d s sp ∨ ¬aProgram_sat d s sp.

Now, we are ready to instantiate the type class AlphabetizedExpression

Instance abstract_program : AlphabetizedExpression (R∗R) KAssignable aProgram := {
e_and := aProgram_and ;
e_or := aProgram_or ;
e_not := aProgram_not ;
sat := aProgram_sat ;
sat_e_not := aProgram_not_correct ;
sat_e_or := aProgram_or_correct ;
sat_e_and := aProgram_and_correct ;
sat_dec := aProgram_sat_dec ;

}.

Results This instantiation gives us operators to define contracts. The function
contractF constructs a contract given two abstract programs. The function
saturateF computes the saturated version of a contract. The function composeF

computes the composition of two contracts. For the example we define aSaturate

and aCompose, to facilitate the use of the operators.

Definition aSaturate := @saturateF _ _ _ (abstract_program I) d.
Definition aCompose := @composeF _ _ _ (abstract_program I) d.

4.6.2 Example of Contracts

Contract for the valve The valve has no assumption, so we say its assumption
holds for any behavior. We define aTrue as an abstract program that holds for any
behavior. The guarantee has one atom with formula h ≥ Hlimit → v = 0, which
we reproduce in atom_1_f. After having proved that this formula’s alphabet is
in d, we create the guarantee. The contract is described in Figure 4.30.

Definition ca_assume := aTrue d.

Definition atom_1_f : atom_ := postF ((KFimply
(KFgreaterEqual (KTread h) HLimit)
(KFequal v (KTnumber (KTNreal 0))))).

Lemma atom_1_in_d : atom_in_alphabet d atom_1_f. Proof. firstorder. Qed.

Definition atom_1 := exist _ atom_1_f atom_1_in_d.
Definition ca_guarantee : aProgram d := [[atom_1]].

Definition ca_contract : contractF d := ContractF d ca_assume ca_guarantee.

90 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

Assumption

Nil

∧

∨

Guarantee

Post : h ≥ Hlimit → v = 0

∧

∨

Figure 4.30: The contract of the valve α

Contract of the Water Tank We create the contract for the water tank.
The tank assumes that the level of water h starts below Hmax wich we encode in
atom_2. The assumption is the conjunction of atom_2 and atom_1 the guarante of
the valve. The water tank guarantee it doesn’t overflow, we write this assertion
as atom_3. We give Figure 4.31 a visual representation of the contract.

Definition atom_2_f := preF (KFlessEqual h HMax).
Lemma atom_2_in_d : atom_in_alphabet d atom_2_f.
Proof. firstorder. Qed.
Definition atom_2 := exist _ atom_2_f atom_2_in_d.

Definition cb_assume : aProgram d := [[atom_2 ; atom_1]].

Definition atom_3_f := postF (KFlessEqual h HMax).
Lemma atom_3_in_d : atom_in_alphabet d atom_3_f.
Proof. firstorder. Qed.
Definition atom_3 := exist _ atom_3_f atom_3_in_d.

Definition cb_guarantee : aProgram d := [[atom_3]].

Definition cb_contract := ContractF d cb_assume cb_guarantee.

4.6.3 Implementation of a Contract by a Component

Thanks to the previous definitions, we can express the implementation of a
contract by a component as a dL property. Indeed the assumption/guarantee
theory of contract we can show that for a saturated contract c = (A,G) and a
component σ

σ ⊢ c ≡ σ ⪯ G (4.9)

With the help the relation we proved in Section 4.4, we can express the refinement
as a a differential refinement which is provable as a property of differential
dynamic logic. We also need to use the translations from abstract programs to

4.6. CONTRACTS WITH DIFFERENTIAL DYNAMIC LOGIC 91

∨

∧

Pre : h ≤ Hmax Post : h ≥ Hlimit → v = 0

∨

∧

Post : h ≤ Hmax

Figure 4.31: The contract of the water tank

hybrid programs to transform the contract’s guarantee into an hybrid program.
This is proved in Theorem proof_trans.

Theorem proof_trans (d : alphabet) (fd : Finite d)
(a : Program) (a_in_d : prog_in_d d a) (c : contractF d) :
(forall preS : KState,
(dynamic_semantics_formula I

(KFrefine d fd a (to_program d fd (G d (saturateF d c)))) preS)) →
implements d (to_component I a a_in_d) (contract_of d c).

Example Here we show how we would discharge the proof that the hybrid
program modeling the valve is an implementation of the contract to a differential
dynamic logic formula with proof_trans.

Theorem ca_implements_alpha :
(forall preS, dynamic_semantics_formula I

(KFrefine d d_finite alpha

(to_program d d_finite (G d (aSaturate ca_abstract_contract))))
preS)

→ implements d alpha_component (to_contract ca_abstract_contract).
Proof.
apply (proof_trans I d fd).

Qed.

4.6.4 Composition of Contracts

Thanks to the instantiation of the theory of assumption/guarantee contracts,
the composition of contracts made with abstract program is already defined.

Example We build the contract for the system by composition of the contract
of the valve and the water tank. Since the guarantee of the valve is the same as
the assumption of the water tank, the assumption of the system reduce to a more
simple abstract program. The mechanism of reduction is not automatised in our
formalisation but we can prove this result by hand. We show in Figure 4.32 a
representation of the contract.

92 CHAPTER 4. CONTRACTS FOR DIFFERENTIAL DYNAMIC LOGIC

∨

∧

Pre : h ≤ Hmax

∨

∧

Post : h ≤ Hmax Post : h ≥ Hlimit → v = 0

Figure 4.32: The (reduced) contract of the system

Definition cg_contract : contractF d :=
aCompose ca_abstract_contract cb_contract.

Lemma cg_contract_reduction :
aSaturate cg_contract =
aSaturate (ContractF d [[atom_2]] [[atom_1 ; atom_3]]).

System’s Hybrid Program The hybrid program modeling the system was
written by hand. It is not the result of an operation between α and β. Because,
to the best of our knowledge, the parallel composition of hybrid programs is not
defined in differential dynamic logic. The proof obligation is now to verify that
γ implements the contract cg_contract. With proof_trans, we can discharge
this proof into differential dynamic logic. This make it possible to validate the
component γ as the correct composition of the valve and the water-tank.

γ = ((ḣ = v&h < Hlimit) ; (?h < Hlimit ∨ v := 0))∗ (4.10)

Definition gamma :=
KPloop

(KPcompose
(KPchoice
(KPtest (KFlessEqual (KTread h) HMax))
(KPassign v (KTnumber (KTNreal 0%R)))

)
(KPodeSystem
(ODEatomic (ODEsing (KAssignDiff h) (KTread v)))
(KFless h HMax)

)
).

4.7. CONCLUSION 93

Theorem gamma_implments_cg :
(forall preS : KState,
dynamic_semantics_formula I

(KFrefine d fd gamma (to_program d fd (G d (aSaturate cg_contract))))
preS)

→
implements d gamma_component (to_contract cg_contract).

Proof.
apply (proof_trans I d fd).

Qed.

4.7 Conclusion

In this chapter, we showed two different instantiation of the assumption/guar-
antee theory of contracts. The first instantiation used the generic interface,
simply by implementing the type class. The instantiation of the verified contract
theory gives a natural definition of the refinement relation. Yet, a refinement
relation was already defined for hybrid programs [LP16]. We proved that this
refinement implies the refinement defined in the assume/guarantee contracts,
which allow us to prove refinement relations by proving hybrid formulas using
specialized tools such as Keymaera X. To define contracts in differential dynamic
logic, we introduced abstract programs. We gave the algorithms to construct
and manipulate abstract programs, and the function to decide the satisfaction
of an abstract programs by behaviors. We also gave the translation function
from abstract programs to hybrid programs. Finally, we proved this function to
be correct, meaning a behavior satisfying the abstract programs also satisfies
the translated hybrid programs and vice versa. Next, we showed how both
instances work together. Specifically, we defined the implementation relation of
a contract by a component. The contract being written with abstract programs,
and the component being written with hybrid programs. We also gave the
water tank system as an example of an use case for components and contracts.
This example demonstrates the usefulness of modularity and abstraction in the
process of verifying systems. The water tank system being a cyber-physical
system, the example uses all the potentials of differential dynamic logic to model
ordinary differential equation. This example showed how the mechanization of
assumption/guarantee contracts can be useful to define contracts with different
logics. The aim of this mechanization is to be a common base of definition of
contracts. Since different logic have different features, their natives definition of
components and contract are different. The Verified Contract Theory shows we
can link theses definitions together.

Chapter 5

Conclusion

5.1 Overview

We presented a formalization of the set-theoretical assumption/guarantee con-
tracts in the proof assistant Coq. To the best of our knowledge, it is the first
mechanized formalization of a theory of assumption/guarantee contracts for
system design. The formalization gives us the assurance that the notion of as-
sumption/guarantee contract is a correct instance of the meta-theory of contract.
We also formalized the mechanism to extend the alphabet on which a contract is
defined, as well as the abstraction of a contract by eliminating one its variable.
Both mechanisms are validated regarding the meta-theory of contract. Finally,
we introduce an interface made to facilitate to instantiation of the theory.

In the second part of our thesis, we instantiated the theory with differential
dynamic logic. It is a practical demonstration of the use of the parametric
assumption/guarantee contract theory. Firstly, we instantiated the theory to
construct components from hybrid programs. We exhibit the relation between
the refinement of hybrid program and the refinement of component define in
the assumption/guarantee theory of contract. Secondly, we defined abstract
programs, to instantiate the theory of contract with them. Abstract programs
are a restriction of hybrid programs, though they are closed by conjunction and
negation, thus we also gave the translation function from abstract programs
to hybrid program. The instantiation of the theory of contract with abstract
programs gave us contract defined with abstract programs as assumptions and
guarantee. The contracts came with the operators defined in the theory, namely,
conjunction, refinement and composition. The implementation of a contract
component by a contract is also defined between the components defined as
hybrid programs and the contracts defined with abstract programs. Finally, we
introduced an example to apply all the definitions above, it gives a practical
usage of the theory of contract to specify a system.

95

96 CHAPTER 5. CONCLUSION

5.2 Perspectives

One of our interest would be to exhibit the links between the works done to define
contracts and components for differential dynamic logic. Lunel defines compo-
nents for differential dynamic logic with a particular form [Lun+19] whereby
components are considered as the sequences of discrete computations followed
by a continuous behaviour. This fixed form allows to define a commutative and
associative composition operator. The operator is only defined if its arguments
validate specific timing requirements. The operator defines the sequence of the
discrete computations and the parallelization of the continuous behaviour. It
would be interesting to formally establish the relation between this operator and
the operator naturally defined from our instantiation mechanism.

Müller et al. define components and contracts for differential dynamic logic
[Mül+18] in a similar manner as Lunel, yet without explicit timing constraints.
Their model uses ports to manage inputs and outputs of the contracts, and
their contracts are specifically made to specify those ports. Müller et al. also
define different kinds of contracts to specify specific aspects of a component.
The different contracts may be defined as different instances of the theory of
contracts.

Another approach would be to instantiate the verified contract theory with
another logic, for example duration calculus and hybrid Hoare logic [Liu+10;
HC97] It is expressive enough to capture cyber-physical systems, and already
has a formalisation in Isabelle [Che+17]. The formalisation in Coq has been
investigated already, without complete success to date [CPM03]. Contracts have
been defined for hybrid Hoare logic [WZG12], we are interested in the relation
between the contracts defined by Wang and the contract that are defined from
the contract theory.

We could also augment the mechanization, for example recent work have
defined a quotient for the assumption/guarantee contract [́Inc+18]. The quotient
is an important part of the meta theory of contract as it permits to exhibit the
necessary contracts needed for a system to function. Yet, the quotient has no
trivial definition, it is thus missing from our mechanization, we should add the
definition of Incer to our formalization.

Nuzzo made some very interesting developments to the assumption/guarantee
contracts [Nuz15]. In particular the heterogeneous refinement of contracts seems
quite fitted to our mechanization. We could implement it to define refinement of
contract from different instances of the theory.

We believe extending the work of our mechanization can help the community
understanding the theory of contracts and creating better processes for the
specification and validation of systems.

Bibliography

[Abr10] Jean-Raymond Abrial. Modeling in Event-B: System and Software
Engineering. Cambridge University Press, May 13, 2010. 613 pp.
isbn: 978-1-139-64397-9. Google Books: 23UgAwAAQBAJ.

[AK15] Abhishek Anand and Ross Knepper. “ROSCoq: Robots Powered
by Constructive Reals”. In: Interactive Theorem Proving. Ed. by
Christian Urban and Xingyuan Zhang. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2015, pp. 34–50.
isbn: 978-3-319-22102-1. doi: 10.1007/978-3-319-22102-1_3.

[AL93] Mart́ın Abadi and Leslie Lamport. “Composing Specifications”. In:
ACM Transactions on Programming Languages and Systems 15.1
(Jan. 1, 1993), pp. 73–132. issn: 0164-0925. doi: 10.1145/151646.
151649. url: https://doi.org/10.1145/151646.151649 (visited
on 03/17/2021).

[AL95] Mart́ın Abadi and Leslie Lamport. “Conjoining Specifications”.
In: ACM Transactions on Programming Languages and Systems
17.3 (May 1995), pp. 507–535. issn: 0164-0925, 1558-4593. doi:
10.1145/203095.201069. url: https://dl.acm.org/doi/10.
1145/203095.201069 (visited on 03/17/2021).

[Alu+93] Rajeev Alur et al. “Hybrid Automata: An Algorithmic Approach
to the Specification and Verification of Hybrid Systems”. In: Hy-
brid Systems. Ed. by Robert L. Grossman et al. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 1993, pp. 209–229.
isbn: 978-3-540-48060-0. doi: 10.1007/3-540-57318-6_30.

[Bau+12] Sebastian S. Bauer et al. “Moving from Specifications to Con-
tracts in Component-Based Design”. In: Fundamental Approaches
to Software Engineering. Ed. by Juan de Lara and Andrea Zisman.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2012, pp. 43–58. isbn: 978-3-642-28872-2. doi: 10.1007/978-3-
642-28872-2_3.

[BC13] Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development: Coq’Art: The Calculus of Inductive
Constructions. Springer Science & Business Media, Mar. 14, 2013.
492 pp. isbn: 978-3-662-07964-5. Google Books: FeklBQAAQBAJ.

97

http://books.google.com/books?id=23UgAwAAQBAJ
https://doi.org/10.1007/978-3-319-22102-1_3
https://doi.org/10.1145/151646.151649
https://doi.org/10.1145/151646.151649
https://doi.org/10.1145/151646.151649
https://doi.org/10.1145/203095.201069
https://dl.acm.org/doi/10.1145/203095.201069
https://dl.acm.org/doi/10.1145/203095.201069
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/978-3-642-28872-2_3
https://doi.org/10.1007/978-3-642-28872-2_3
http://books.google.com/books?id=FeklBQAAQBAJ

98 BIBLIOGRAPHY

[Beh+99] Patrick Behm et al. “Météor: A Successful Application of B in a
Large Project”. In: FM’99 — Formal Methods. Ed. by Jeannette M.
Wing, Jim Woodcock, and Jim Davies. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 1999, pp. 369–387. isbn: 978-
3-540-48119-5. doi: 10.1007/3-540-48119-2_22.

[Ben+08] Albert Benveniste et al. “Multiple Viewpoint Contract-Based Spec-
ification and Design”. In: Formal Methods for Components and
Objects. Ed. by Frank S. de Boer et al. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2008, pp. 200–225. isbn:
978-3-540-92188-2. doi: 10.1007/978-3-540-92188-2_9.

[Ben+15a] Albert Benveniste et al. Contracts for Systems Design: Methodology
and Application Cases. report. July 2015. url: https://hal.inria.
fr/hal-01178469 (visited on 12/02/2019).

[Ben+15b] Albert Benveniste et al. Contracts for Systems Design: Theory.
report. INRIA, July 2015. url: https://hal.inria.fr/hal-
01178467 (visited on 11/29/2019).

[BLM15] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. “Co-
quelicot: A User-Friendly Library of Real Analysis for Coq”. In:
Mathematics in Computer Science 9.1 (Mar. 1, 2015), pp. 41–
62. issn: 1661-8289. doi: 10.1007/s11786- 014- 0181- 1. url:
https://doi.org/10.1007/s11786- 014- 0181- 1 (visited on
03/03/2023).

[BNH14] Albert Benveniste, Dejan Nickovic, and Thomas Henzinger. Com-
positional Contract Abstraction for System Design. report. Jan. 29,
2014. url: https://hal.inria.fr/hal-00938854 (visited on
10/29/2019).

[Boh+17] Brandon Bohrer et al. “Formally Verified Differential Dynamic
Logic”. In: Proceedings of the 6th ACM SIGPLAN Conference on
Certified Programs and Proofs (Paris, France). CPP 2017. New
York, NY, USA: ACM, 2017, pp. 208–221. isbn: 978-1-4503-4705-1.
doi: 10.1145/3018610.3018616. url: http://doi.acm.org/10.
1145/3018610.3018616 (visited on 12/02/2019).

[Che+17] Mingshuai Chen et al. “MARS: A Toolchain for Modelling, Analysis
and Verification of Hybrid Systems”. In: Provably Correct Systems.
Ed. by Mike Hinchey, Jonathan P. Bowen, and Ernst-Rüdiger
Olderog. NASA Monographs in Systems and Software Engineering.
Cham: Springer International Publishing, 2017, pp. 39–58. isbn:
978-3-319-48628-4. url: https://doi.org/10.1007/978-3-319-
48628-4_3 (visited on 01/13/2020).

[CHR91] Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. “A Calculus of
Durations”. In: Information Processing Letters 40.5 (Dec. 13, 1991),
pp. 269–276. issn: 0020-0190. doi: 10.1016/0020-0190(91)90122-
X. url: http://www.sciencedirect.com/science/article/pii/
002001909190122X (visited on 12/23/2019).

https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/978-3-540-92188-2_9
https://hal.inria.fr/hal-01178469
https://hal.inria.fr/hal-01178469
https://hal.inria.fr/hal-01178467
https://hal.inria.fr/hal-01178467
https://doi.org/10.1007/s11786-014-0181-1
https://doi.org/10.1007/s11786-014-0181-1
https://hal.inria.fr/hal-00938854
https://doi.org/10.1145/3018610.3018616
http://doi.acm.org/10.1145/3018610.3018616
http://doi.acm.org/10.1145/3018610.3018616
https://doi.org/10.1007/978-3-319-48628-4_3
https://doi.org/10.1007/978-3-319-48628-4_3
https://doi.org/10.1016/0020-0190(91)90122-X
https://doi.org/10.1016/0020-0190(91)90122-X
http://www.sciencedirect.com/science/article/pii/002001909190122X
http://www.sciencedirect.com/science/article/pii/002001909190122X

BIBLIOGRAPHY 99

[CJR96] Zhou Chaochen, Wang Ji, and Anders P. Ravn. “A Formal Descrip-
tion of Hybrid Systems”. In: Hybrid Systems III. Ed. by Rajeev Alur,
Thomas A. Henzinger, and Eduardo D. Sontag. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 1996, pp. 511–530.
isbn: 978-3-540-68334-6. doi: 10.1007/BFb0020972.

[CM20] Zheng Cheng and Dominique Méry. A Refinement Strategy for
Hybrid System Design with Safety Constraints. Research Report.
Université de Lorraine ; INRIA ; CNRS, July 2020. url: https:
//hal.inria.fr/hal-02895528.

[Cou+12] Denis Cousineau et al. “TLA+ Proofs”. In: FM 2012: Formal
Methods. Ed. by Dimitra Giannakopoulou and Dominique Méry.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2012, pp. 147–154. isbn: 978-3-642-32759-9. doi: 10.1007/978-3-
642-32759-9_14.

[CPM03] Samuel Colin, Vincent Poirriez, and Georges Mariano. “Thoughts
about the Implementation of the Duration Calculus with Coq”. In:
Fourth Workshop on the Implementation of Logics. 2003, p. 33.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT
Solver”. In: Tools and Algorithms for the Construction and Analysis
of Systems. Ed. by C. R. Ramakrishnan and Jakob Rehof. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2008,
pp. 337–340. isbn: 978-3-540-78800-3. doi: 10.1007/978-3-540-
78800-3_24.

[Dup+18] Guillaume Dupont et al. “Proof-Based Approach to Hybrid Systems
Development: Dynamic Logic and Event-B”. In: Abstract State
Machines, Alloy, B, TLA, VDM, and Z. Ed. by Michael Butler et al.
Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2018, pp. 155–170. isbn: 978-3-319-91271-4. doi: 10.
1007/978-3-319-91271-4_11.

[FGH06] Peter H. Feiler, David P. Gluch, and John J. Hudak. The Archi-
tecture Analysis & Design Language (AADL): An Introduction.
Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst,
2006.

[FMS14] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical
Guide to SysML: The Systems Modeling Language. Morgan Kauf-
mann, Oct. 23, 2014. 631 pp. isbn: 978-0-12-800800-3. Google Books:
Ze60AwAAQBAJ.

[Fos+20] Simon Foster et al. “Unifying Theories of Reactive Design Con-
tracts”. In: Theoretical Computer Science 802 (Jan. 8, 2020), pp. 105–
140. issn: 0304-3975. doi: 10.1016/j.tcs.2019.09.017. arXiv:
1712.10233. url: https://www.sciencedirect.com/science/
article/pii/S0304397519305614 (visited on 07/02/2021).

https://doi.org/10.1007/BFb0020972
https://hal.inria.fr/hal-02895528
https://hal.inria.fr/hal-02895528
https://doi.org/10.1007/978-3-642-32759-9_14
https://doi.org/10.1007/978-3-642-32759-9_14
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-91271-4_11
https://doi.org/10.1007/978-3-319-91271-4_11
http://books.google.com/books?id=Ze60AwAAQBAJ
https://doi.org/10.1016/j.tcs.2019.09.017
https://arxiv.org/abs/1712.10233
https://www.sciencedirect.com/science/article/pii/S0304397519305614
https://www.sciencedirect.com/science/article/pii/S0304397519305614

100 BIBLIOGRAPHY

[Fre10] Patrick Christopher Frey. “A timing model for real-time control-
systems and its application on simulation and monitoring of AU-
TOSAR systems”. PhD thesis. University of Ulm, 2010. url: http:
//vts.uni-ulm.de/docs/2011/7505/vts%5C_7505%5C_10701.

pdf.

[Ful+15] Nathan Fulton et al. “KeYmaera X: An Axiomatic Tactical Theorem
Prover for Hybrid Systems”. In: Automated Deduction - CADE-
25. Ed. by Amy P. Felty and Aart Middeldorp. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2015,
pp. 527–538. isbn: 978-3-319-21401-6. doi: 10.1007/978-3-319-
21401-6_36.

[FW17] Simon Foster and Jim Woodcock. “Towards Verification of Cyber-
Physical Systems with UTP and Isabelle/HOL”. In: Concurrency,
Security, and Puzzles: Essays Dedicated to Andrew William Roscoe
on the Occasion of His 60th Birthday. Ed. by Thomas Gibson-
Robinson, Philippa Hopcroft, and Ranko Lazić. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2017,
pp. 39–64. isbn: 978-3-319-51046-0. doi: 10.1007/978-3-319-
51046-0_3. url: https://doi.org/10.1007/978-3-319-51046-
0_3 (visited on 03/30/2020).

[FZW15] Simon Foster, Frank Zeyda, and Jim Woodcock. “Isabelle/UTP:
A Mechanised Theory Engineering Framework”. In: Unifying The-
ories of Programming. Ed. by David Naumann. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2015,
pp. 21–41. isbn: 978-3-319-14806-9. doi: 10.1007/978-3-319-
14806-9_2.

[GLB87] Thierry Gautier, Paul Le Guernic, and Löıc Besnard. “SIGNAL: A
Declarative Language for Synchronous Programming of Real-Time
Systems”. In: Functional Programming Languages and Computer
Architecture. Ed. by Gilles Kahn. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 1987, pp. 257–277. isbn: 978-3-540-
47879-9. doi: 10.1007/3-540-18317-5_15.

[Gra+18] Susanne Graf et al. “Building Correct Cyber-Physical Systems:
Why We Need a Multiview Contract Theory”. In: Formal Methods
for Industrial Critical Systems. Ed. by Falk Howar and Jǐŕı Barnat.
Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2018, pp. 19–31. isbn: 978-3-030-00244-2. doi: 10.1007/
978-3-030-00244-2_2.

[Hal+91] N. Halbwachs et al. “The Synchronous Data Flow Programming
Language LUSTRE”. In: Proceedings of the IEEE 79.9 (Sept. 1991),
pp. 1305–1320. issn: 0018-9219, 1558-2256. doi: 10.1109/5.97300.

http://vts.uni-ulm.de/docs/2011/7505/vts%5C_7505%5C_10701.pdf
http://vts.uni-ulm.de/docs/2011/7505/vts%5C_7505%5C_10701.pdf
http://vts.uni-ulm.de/docs/2011/7505/vts%5C_7505%5C_10701.pdf
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-51046-0_3
https://doi.org/10.1007/978-3-319-51046-0_3
https://doi.org/10.1007/978-3-319-51046-0_3
https://doi.org/10.1007/978-3-319-51046-0_3
https://doi.org/10.1007/978-3-319-14806-9_2
https://doi.org/10.1007/978-3-319-14806-9_2
https://doi.org/10.1007/3-540-18317-5_15
https://doi.org/10.1007/978-3-030-00244-2_2
https://doi.org/10.1007/978-3-030-00244-2_2
https://doi.org/10.1109/5.97300

BIBLIOGRAPHY 101

[HC97] Michael R. Hansen and Zhou Chaochen. “Duration Calculus: Logical
Foundations”. In: Formal Aspects of Computing 9.3 (May 1, 1997),
pp. 283–330. issn: 1433-299X. doi: 10.1007/BF01211086. url:
https://doi.org/10.1007/BF01211086 (visited on 10/13/2020).

[Hen00] Thomas A. Henzinger. “The Theory of Hybrid Automata”. In:
Verification of Digital and Hybrid Systems. Ed. by M. Kemal Inan
and Robert P. Kurshan. NATO ASI Series. Berlin, Heidelberg:
Springer, 2000, pp. 265–292. isbn: 978-3-642-59615-5. doi: 10.1007/
978-3-642-59615-5_13. url: https://doi.org/10.1007/978-
3-642-59615-5_13 (visited on 12/02/2019).

[HJ98] Charles Antony Richard Hoare and He Jifeng. Unifying Theories
of Programming. Vol. 14. Prentice Hall Englewood Cliffs, 1998.

[HP22] Jérôme Hugues and Sam Procter. “Contracts in System Develop-
ment: From Multiconcern Analysis to Assurance With the Architec-
ture Analysis and Design Language”. In: IEEE Software 39.4 (July
2022), pp. 34–38. issn: 1937-4194. doi: 10.1109/MS.2022.3167533.

[Hug+22] Jérôme Hugues et al. “Mechanization of a Large DSML: An Exper-
iment with AADL and Coq”. In: 2022 20th ACM-IEEE Interna-
tional Conference on Formal Methods and Models for System Design
(MEMOCODE). 2022 20th ACM-IEEE International Conference
on Formal Methods and Models for System Design (MEMOCODE).
Oct. 2022, pp. 1–9. doi: 10.1109/MEMOCODE57689.2022.9954589.

[́Inc+18] Íñigo Íncer Romeo et al. “Quotient for Assume-Guarantee Con-
tracts”. In: 2018 16th ACM/IEEE International Conference on
Formal Methods and Models for System Design (MEMOCODE).
2018 16th ACM/IEEE International Conference on Formal Methods
and Models for System Design (MEMOCODE). Oct. 2018, pp. 1–11.
doi: 10.1109/MEMCOD.2018.8556872.

[Inc+22] Inigo Incer et al. “Hypercontracts”. In: NASA Formal Methods.
Ed. by Jyotirmoy V. Deshmukh, Klaus Havelund, and Ivan Perez.
Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2022, pp. 674–692. isbn: 978-3-031-06773-0. doi: 10.
1007/978-3-031-06773-0_36.

[Lam93] Leslie Lamport. “Hybrid Systems in TLA+”. In: Hybrid Systems.
Ed. by Robert L. Grossman et al. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 1993, pp. 77–102. isbn: 978-
3-540-48060-0. doi: 10.1007/3-540-57318-6_25.

[LBT17] Simon Lunel, Benôıt Boyer, and Jean-Pierre Talpin. “Composi-
tional Proofs in Differential Dynamic Logic dL”. In: 2017 17th
International Conference on Application of Concurrency to System
Design (ACSD). 2017 17th International Conference on Application
of Concurrency to System Design (ACSD). June 2017, pp. 19–28.
doi: 10.1109/ACSD.2017.16.

https://doi.org/10.1007/BF01211086
https://doi.org/10.1007/BF01211086
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1109/MS.2022.3167533
https://doi.org/10.1109/MEMOCODE57689.2022.9954589
https://doi.org/10.1109/MEMCOD.2018.8556872
https://doi.org/10.1007/978-3-031-06773-0_36
https://doi.org/10.1007/978-3-031-06773-0_36
https://doi.org/10.1007/3-540-57318-6_25
https://doi.org/10.1109/ACSD.2017.16

102 BIBLIOGRAPHY

[Liu+10] Jiang Liu et al. “A Calculus for Hybrid CSP”. In: Programming
Languages and Systems. Ed. by Kazunori Ueda. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 1–15.
isbn: 978-3-642-17164-2. doi: 10.1007/978-3-642-17164-2_1.

[LP16] Sarah M. Loos and André Platzer. “Differential Refinement Logic”.
In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science. LICS ’16. New York, NY, USA: Association
for Computing Machinery, July 5, 2016, pp. 505–514. isbn: 978-1-
4503-4391-6. doi: 10.1145/2933575.2934555. url: https://doi.
org/10.1145/2933575.2934555 (visited on 10/12/2020).

[Lun+19] Simon Lunel et al. “Parallel Composition and Modular Verification
of Computer Controlled Systems in Differential Dynamic Logic”.
In: Formal Methods - The Next 30 Years - Third World Congress,
FM 2019, Porto, Portugal, October 7-11, 2019, Proceedings. Ed.
by Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira.
Vol. 11800. Lecture Notes in Computer Science. Springer, 2019,
pp. 354–370. isbn: 978-3-030-30941-1. doi: 10.1007/978-3-030-
30942-8_22.

[Lun19] Simon Lunel. “Parallelism and Modular Proof in Differential Dy-
namic Logic.” PhD thesis. University of Rennes 1, France, 2019.
url: https://tel.archives-ouvertes.fr/tel-02102687.

[Mal+16] G. Malecha et al. “Towards Foundational Verification of Cyber-
Physical Systems”. In: 2016 Science of Security for Cyber-Physical
Systems Workshop (SOSCYPS). 2016 Science of Security for Cyber-
Physical Systems Workshop (SOSCYPS). Apr. 2016, pp. 1–5. doi:
10.1109/SOSCYPS.2016.7580000.

[MAL22] Amel Mammar, Meryem Afendi, and Régine Laleau. “Modeling
and proving hybrid programs with Event-B: An approach by gener-
alization and instantiation”. In: Science of Computer Programming
222 (2022), p. 102856. issn: 0167-6423. doi: https://doi.org/10.
1016/j.scico.2022.102856. url: https://www.sciencedirect.
com/science/article/pii/S0167642322000892.

[MEO98] Sven Erik Mattsson, Hilding Elmqvist, and Martin Otter. “Physical
System Modeling with Modelica”. In: Control Engineering Practice
6.4 (Apr. 1, 1998), pp. 501–510. issn: 0967-0661. doi: 10.1016/
S0967-0661(98)00047-1. url: https://www.sciencedirect.
com/science/article/pii/S0967066198000471 (visited on 02/21/2023).

[Mey92] B. Meyer. “Applying ’Design by Contract’”. In: Computer 25.10
(Oct. 1992), pp. 40–51. issn: 1558-0814. doi: 10.1109/2.161279.

[MN04] Oded Maler and Dejan Nickovic. “Monitoring Temporal Properties
of Continuous Signals”. In: Formal Techniques, Modelling and Anal-
ysis of Timed and Fault-Tolerant Systems. Ed. by Yassine Lakhnech

https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1007/978-3-030-30942-8_22
https://doi.org/10.1007/978-3-030-30942-8_22
https://tel.archives-ouvertes.fr/tel-02102687
https://doi.org/10.1109/SOSCYPS.2016.7580000
https://doi.org/https://doi.org/10.1016/j.scico.2022.102856
https://doi.org/https://doi.org/10.1016/j.scico.2022.102856
https://www.sciencedirect.com/science/article/pii/S0167642322000892
https://www.sciencedirect.com/science/article/pii/S0167642322000892
https://doi.org/10.1016/S0967-0661(98)00047-1
https://doi.org/10.1016/S0967-0661(98)00047-1
https://www.sciencedirect.com/science/article/pii/S0967066198000471
https://www.sciencedirect.com/science/article/pii/S0967066198000471
https://doi.org/10.1109/2.161279

BIBLIOGRAPHY 103

and Sergio Yovine. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2004, pp. 152–166. isbn: 978-3-540-30206-3. doi:
10.1007/978-3-540-30206-3_12.

[Mül+16] Andreas Müller et al. “A Component-Based Approach to Hybrid
Systems Safety Verification”. In: Integrated Formal Methods - 12th
International Conference, IFM 2016, Reykjavik, Iceland, June 1-5,
2016, Proceedings. Ed. by Erika Ábrahám and Marieke Huisman.
Vol. 9681. Lecture Notes in Computer Science. Springer, 2016,
pp. 441–456. isbn: 978-3-319-33692-3. doi: 10.1007/978-3-319-
33693-0_28.

[Mül+17] Andreas Müller et al. “Change and Delay Contracts for Hybrid
System Component Verification”. In: Fundamental Approaches to
Software Engineering - 20th International Conference, FASE 2017,
Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-
29, 2017, Proceedings. Ed. by Marieke Huisman and Julia Rubin.
Vol. 10202. Lecture Notes in Computer Science. Springer, 2017,
pp. 134–151. isbn: 978-3-662-54493-8. doi: 10.1007/978-3-662-
54494-5_8.

[Mül+18] Andreas Müller et al. “Tactical Contract Composition for Hybrid
System Component Verification”. In: International Journal on Soft-
ware Tools for Technology Transfer 20.6 (Nov. 1, 2018), pp. 615–
643. issn: 1433-2787. doi: 10.1007/s10009-018-0502-9. url:
https://doi.org/10.1007/s10009- 018- 0502- 9 (visited on
02/04/2020).

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL: A Proof Assistant for Higher-Order Logic. Lecture
Notes in Computer Science, Lect.Notes Computer. Tutorial. Berlin
Heidelberg: Springer-Verlag, 2002. isbn: 978-3-540-43376-7. doi:
10.1007/3-540-45949-9. url: https://www.springer.com/gp/
book/9783540433767 (visited on 07/02/2021).

[Nuz15] Pierluigi Nuzzo. “Compositional Design of Cyber-Physical Systems
Using Contracts”. UC Berkeley, 2015. url: https://escholarship.
org/uc/item/5hk5w3bg (visited on 07/21/2020).

[Osb+05] Leon F. Osborne et al. Clarus: Concept of Operations. FHWA-JPO-
05-072. Oct. 1, 2005. url: https://rosap.ntl.bts.gov/view/
dot/3710 (visited on 03/13/2023).

[Pla08] André Platzer. “Differential Dynamic Logic for Hybrid Systems”.
In: Journal of Automated Reasoning 41.2 (Aug. 1, 2008), pp. 143–
189. issn: 1573-0670. doi: 10.1007/s10817-008-9103-8. url:
https://doi.org/10.1007/s10817- 008- 9103- 8 (visited on
01/10/2020).

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-319-33693-0_28
https://doi.org/10.1007/978-3-319-33693-0_28
https://doi.org/10.1007/978-3-662-54494-5_8
https://doi.org/10.1007/978-3-662-54494-5_8
https://doi.org/10.1007/s10009-018-0502-9
https://doi.org/10.1007/s10009-018-0502-9
https://doi.org/10.1007/3-540-45949-9
https://www.springer.com/gp/book/9783540433767
https://www.springer.com/gp/book/9783540433767
https://escholarship.org/uc/item/5hk5w3bg
https://escholarship.org/uc/item/5hk5w3bg
https://rosap.ntl.bts.gov/view/dot/3710
https://rosap.ntl.bts.gov/view/dot/3710
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s10817-008-9103-8

104 BIBLIOGRAPHY

[Pla17] André Platzer. “A Complete Uniform Substitution Calculus for
Differential Dynamic Logic”. In: Journal of Automated Reasoning
59.2 (Aug. 1, 2017), pp. 219–265. issn: 1573-0670. doi: 10.1007/
s10817-016-9385-1. url: https://doi.org/10.1007/s10817-
016-9385-1 (visited on 09/17/2021).

[PQ08] André Platzer and Jan-David Quesel. “KeYmaera: A Hybrid Theo-
rem Prover for Hybrid Systems (System Description)”. In: Auto-
mated Reasoning. Ed. by Alessandro Armando, Peter Baumgartner,
and Gilles Dowek. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2008, pp. 171–178. isbn: 978-3-540-71070-7. doi:
10.1007/978-3-540-71070-7_15.

[Raj+10] Ragunathan Rajkumar et al. “Cyber-Physical Systems: The next
Computing Revolution”. In: Design Automation Conference. Design
Automation Conference. June 2010, pp. 731–736. doi: 10.1145/
1837274.1837461.

[Ric+15] Daniel Ricketts et al. “Towards Verification of Hybrid Systems in a
Foundational Proof Assistant”. In: 2015 ACM/IEEE International
Conference on Formal Methods and Models for Codesign (MEM-
OCODE). 2015 ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE). Austin, TX,
USA: IEEE, Sept. 2015, pp. 248–257. isbn: 978-1-5090-0237-5. doi:
10.1109/MEMCOD.2015.7340492. url: http://ieeexplore.ieee.
org/document/7340492/ (visited on 09/17/2021).

[RST20] Adnan Rashid, Umair Siddique, and Sofiène Tahar. “Formal Ver-
ification of Cyber-Physical Systems Using Theorem Proving”. In:
Formal Techniques for Safety-Critical Systems. Ed. by Osman Hasan
and Frédéric Mallet. Communications in Computer and Information
Science. Cham: Springer International Publishing, 2020, pp. 3–18.
isbn: 978-3-030-46902-3. doi: 10.1007/978-3-030-46902-3_1.

[SDP12] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone.
“Taming Dr. Frankenstein: Contract-Based Design for Cyber-Physical
Systems*”. In: European Journal of Control 18.3 (Jan. 1, 2012),
pp. 217–238. issn: 0947-3580. doi: 10.3166/ejc.18.217-238.
url: http://www.sciencedirect.com/science/article/pii/
S0947358012709433 (visited on 12/11/2019).

[SO08] Matthieu Sozeau and Nicolas Oury. “First-Class Type Classes”.
In: Theorem Proving in Higher Order Logics. Ed. by Otmane Ait
Mohamed, César Muñoz, and Sofiène Tahar. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2008, pp. 278–293.
isbn: 978-3-540-71067-7. doi: 10.1007/978-3-540-71067-7_23.

[Tea18] The Coq Development Team. The Coq Proof Assistant, Version
8.7.2. Zenodo, Feb. 16, 2018. doi: 10.5281/zenodo.1174360. url:
https://zenodo.org/record/1174360#.YKJOf5MzZXQ (visited
on 05/17/2021).

https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1109/MEMCOD.2015.7340492
http://ieeexplore.ieee.org/document/7340492/
http://ieeexplore.ieee.org/document/7340492/
https://doi.org/10.1007/978-3-030-46902-3_1
https://doi.org/10.3166/ejc.18.217-238
http://www.sciencedirect.com/science/article/pii/S0947358012709433
http://www.sciencedirect.com/science/article/pii/S0947358012709433
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.5281/zenodo.1174360
https://zenodo.org/record/1174360#.YKJOf5MzZXQ

BIBLIOGRAPHY 105

[WC04] Jim Woodcock and Ana Cavalcanti. “A Tutorial Introduction to De-
signs in Unifying Theories of Programming”. In: Integrated Formal
Methods. Ed. by Eerke A. Boiten, John Derrick, and Graeme Smith.
Red. by Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen.
Vol. 2999. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 40–66. isbn: 978-3-540-21377-
2. doi: 10.1007/978-3-540-24756-2_4. url: http://link.
springer.com/10.1007/978- 3- 540- 24756- 2_4 (visited on
02/21/2023).

[WZG12] Shuling Wang, Naijun Zhan, and Dimitar Guelev. “An Assume/Guar-
antee Based Compositional Calculus for Hybrid CSP”. In: The-
ory and Applications of Models of Computation. Ed. by Manindra
Agrawal, S. Barry Cooper, and Angsheng Li. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2012, pp. 72–83. isbn:
978-3-642-29952-0. doi: 10.1007/978-3-642-29952-0_13.

[WZZ15] Shuling Wang, Naijun Zhan, and Liang Zou. “An Improved HHL
Prover: An Interactive Theorem Prover for Hybrid Systems”. In:
Formal Methods and Software Engineering. Ed. by Michael Butler,
Sylvain Conchon, and Fatiha Zäıdi. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2015, pp. 382–399.
isbn: 978-3-319-25423-4. doi: 10.1007/978-3-319-25423-4_25.

[Xu+23] Xiong Xu et al. “Semantics Foundation for Cyber-physical Sys-
tems Using Higher-order UTP”. In: ACM Transactions on Software
Engineering and Methodology 32.1 (Feb. 13, 2023), 9:1–9:48. issn:
1049-331X. doi: 10.1145/3517192. url: https://doi.org/10.
1145/3517192 (visited on 02/17/2023).

[Yu+15] Huafeng Yu et al. “The challenge of interoperability: model-based
integration for automotive control software”. In: Proceedings of
the 52nd Annual Design Automation Conference, San Francisco,
CA, USA, June 7-11, 2015. ACM, 2015, 58:1–58:6. doi: 10.1145/
2744769.2747945. url: https://doi.org/10.1145/2744769.
2747945.

[Yua+16] Zhenghen Yuan et al. “Hybrid Lustre”. In: Perspectives of System
Informatics. Ed. by Manuel Mazzara and Andrei Voronkov. Lecture
Notes in Computer Science. Cham: Springer International Publish-
ing, 2016, pp. 325–340. isbn: 978-3-319-41579-6. doi: 10.1007/978-
3-319-41579-6_25.

[ZH10] Chaochen Zhou and Michael R. Hansen. Duration Calculus: A For-
mal Approach to Real-Time Systems. Softcover reprint of hardcover
1st ed. 2004 Edition. Berlin; London: Springer, Dec. 9, 2010. 260 pp.
isbn: 978-3-642-07404-2.

https://doi.org/10.1007/978-3-540-24756-2_4
http://link.springer.com/10.1007/978-3-540-24756-2_4
http://link.springer.com/10.1007/978-3-540-24756-2_4
https://doi.org/10.1007/978-3-642-29952-0_13
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1145/3517192
https://doi.org/10.1145/3517192
https://doi.org/10.1145/3517192
https://doi.org/10.1145/2744769.2747945
https://doi.org/10.1145/2744769.2747945
https://doi.org/10.1145/2744769.2747945
https://doi.org/10.1145/2744769.2747945
https://doi.org/10.1007/978-3-319-41579-6_25
https://doi.org/10.1007/978-3-319-41579-6_25

106 BIBLIOGRAPHY

[Zou+14] Liang Zou et al. “Verifying Chinese Train Control System under
a Combined Scenario by Theorem Proving”. In: Verified Software:
Theories, Tools, Experiments. Ed. by Ernie Cohen and Andrey
Rybalchenko. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer, 2014, pp. 262–280. isbn: 978-3-642-54108-7. doi:
10.1007/978-3-642-54108-7_14.

https://doi.org/10.1007/978-3-642-54108-7_14

BIBLIOGRAPHY 107

Titre : Sur la vérification mécanisée de la méta-théorie des contrats et son instanciation à la logique
dynamique différentielle

Mots clés : Méthodes formelles, conception par contrats, systèmes cyber-physiques

Résumé : L'augmentation de la complexité
et de l'hétérogénéité des systèmes critiques
pose un défi dans leur conception et leur
assurance de sécurité. Les méthodes
formelles sont utilisées pour valider les
modèles de système, mais la difficulté réside
dans la vérification de la sécurité du système
global à partir des spécifications de
composants validées. La théorie des contrats
résout ce problème en utilisant les contrats
d'assomption/garantie comme spécifications
de composants. Les contrats sont validés en
vérifiant que leurs hypothèses et garanties
sur-approximent les pré- et post-conditions
résultant des évaluations valides du modèle
de composant. Les contrats individuels
peuvent être combinés en faisant
correspondre les hypothèses et garanties de

chaque composant. Le manuscrit définit une
formalisation algébrique des contrats
d'assomption/garantie implémenté dans le
calcul de construction de l'assistant de preuve
Coq. Cette formalisation est prouvée pour
valider une méta-théorie des contrats de
Benveniste et al. pour tous les opérateurs tels
que la composition, la conjonction,
l'abstraction, le raffinement ainsi que
l'introduction et l'élimination de variables. Le
cas d'utilisation pratique du modèle de contrat
est illustré avec la logique différentielle
dynamique et deux instances du modèle de
contrats. La théorie est appliquée à une étude
de cas pour illustrer sa puissance dans la
modélisation de composants pour valider un
système cyber-physique.

Title : On the mechanized verification of the meta-theory of contracts and its instantiation
to differential dynamic logic

Keywords : Formal methods, contract-based design, cyber physical systems

Abstract : The increasing complexity and
heterogeneity of safe-critical systems present
a challenge in designing and ensuring their
safety. Formal methods are employed to
validate system models, but the difficulty lies
in verifying the safety at the global level,
starting from validated component
specifications. Contract theory addresses
this problem by using assume/guarantee
contracts as component specifications. The
theory is equipped with operators for
combining contracts and incrementally
building a verified specification from the low-
level functional requirements up to system-
level requirements. Concretely, a contracts
abstract component interfaces as pairs of
assumptions-guarantees, specifying

component-environment relations. This thesis
introduces the mechanized formalization of an
assume/guarantee contracts algebra in the
calculus of construction of the proof assistant
Coq. In the meantime, the formalization has
been proven correct against the Benveniste et
al.’s meta-theory formalized in Coq for all the
necessary operators: composition,
conjunction, abstraction, refinement, as well
as the variable introduction and elimination.
The practical use case of the contract model
is demonstrated with differential dynamic logic
and two instances of the contracts model. The
theory is exercised on a case study to
illustrate its power in modeling components
and contractual abstractions.

	Introduction
	The Rise of Complexity in System Design
	Contracts for Modular System Design
	Contributions

	State of the art
	Designing Cyber-physical Systems
	Validation Methodology for CPSs
	Industrial Tools for Modeling CPSs

	Validation of CPS Models
	Checking Automata Models
	Correct-by-construction design
	Dedicated Proof-Assistant for Modeling CPS

	The Issue of Compositionality
	Logical Contracts for Hybrid Systems
	Generic Theories of Contracts

	A Verified Contract Theory
	Introduction to Coq
	Basic Syntax
	Set Library
	The Issue of Extensionality
	De Morgan's Laws

	Overview of the Theories of Contracts
	Introduction to Component-Based Design
	A/G Contracts for Component Specification
	The Meta-Theory of Contracts
	Specialization

	Mechanization of A/G Contracts in Coq
	The Types for Variables
	Requirements
	Objects Definitions
	Relations
	Outlook

	Consistency of A/G Contracts with the Meta-Theory
	Alphabet Equalization
	Definition of Extension
	Definition of Extended Operators

	Elimination of Variables
	Definition
	Validation of the Definition

	Formula Interface
	Purpose of the instance
	Operations Definitions
	Equivalence with A/G Contracts

	Outlook

	Contracts for Differential Dynamic Logic
	Introduction to Differential Dynamic Logic
	Syntactic Definitions
	Visual Representation of Hybrid Programs
	Formal Semantics

	The Water Tank example
	The Model
	Specification

	Instantiating Hybrid Programs
	Base Types
	Instantiating the Type Class
	Transforming Programs into Components
	Example with the Water Tank
	Limitations of the Instance

	Refinement in Differential Dynamic Logic
	Definitions of the Refinement Relations
	Definition of Differential Refinement in Coq
	Preliminary Lemmas
	Proof that Differential Refinement Implies Refinement

	Abstract Programs
	Definition
	Satisfaction Function
	Construction Operators
	Transforming to Hybrid Programs
	Proving the Transformation is Sound

	Contracts with Differential Dynamic Logic
	Instantiating the Theory of Contract
	Example of Contracts
	Implementation of a Contract by a Component
	Composition of Contracts

	Conclusion

	Conclusion
	Overview
	Perspectives

