
HAL Id: tel-04593246
https://theses.hal.science/tel-04593246

Submitted on 29 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-level surgical activity recognition
Sanat Ramesh

To cite this version:
Sanat Ramesh. Multi-level surgical activity recognition. Medical Imaging. Université de Strasbourg;
Università degli studi (Vérone, Italie), 2023. English. �NNT : 2023STRAD063�. �tel-04593246�

https://theses.hal.science/tel-04593246
https://hal.archives-ouvertes.fr


 
UNIVERSITÉ DE STRASBOURG 

   
 
 

ÉCOLE DOCTORALE MATHEMATIQUES, SCIENCES DE L’INFORMATION ET DE 
L’INGENIEUR – ED269 

ICube Laboratory (UMR 7357) 

 

THÈSE   
présentée par: 

Sanat RAMESH 
 

soutenue le: 23 May 2023 
 

 

 

pour obtenir le grade de: Docteur de l’université de Strasbourg 

Discipline/ Spécialité: Image and Vision 

 

Multi-level Surgical Activity 

Recognition 
 
 

 
THÈSE dirigée par: 

Prof. Paolo FIORINI               Professor, Università di Verona 
Prof. Nicolas PADOY                       Professor, Université de Strasbourg 
 

RAPPORTEURS: 
Dr. Sandrine VOROS                       Director of Research, TIMC-IMAG 
Dr. Stamatia GIANNAROU              Senior Lecturer, Imperial College London 

 
AUTRES MEMBRES DU JURY: 

Prof. Marco CRISTANI                     Professor, Università di Verona 
Dr. Thomas LAMPERT                    Assistant Professor, Université de Strasbourg 



UNIVERSITY OF VERONA

DEPARTMENT OF

Computer Science

DOCTORAL SCHOOL

Natural Sciences and Engineering

DOCTORAL PROGRAM IN

Computer Science

Cycle XXXV, 2019

IN CO-TUTELLE DE THÉSE WITH THE UNIVERSITY OF STRASBOURG

Sanat Ramesh

Supervisor:
Prof. Paolo Fiorini
Prof. Nicolas Padoy (Co-Supervisor, UNISTRA)

PhD program chair:
Prof. Ferdinando Cicalese



This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License, Italy. To read a copy of the license, visit the web

page:
http://creativecommons.org/licenses/by-nc-nd/3.0/

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not
in any way that suggests the licensor endorses you or your use.

NonCommercial—You may not use the material for commercial purposes.

NoDerivatives— If you remix, transform, or build upon the material, you may not
distribute the modified material.

Multi-level Surgical Activity Recognition
Sanat Ramesh
Ph.D. Thesis

Verona, Italy, May 23, 2023



 Thesis presented by 

 Sanat Ramesh 
 Defended publicly on  23  rd  May 2023 

 For obtaining the degree of  Doctor of Philosophy 

 From the  University of Verona  and the  University of  Strasbourg 

 Thesis Directors 

 Prof. Paolo Fiorini                                                Prof. Nicolas Padoy 

 Professor of Computer Science,                        Professor of Computer Science, 

 University of Verona, Italy                                  University of Strasbourg, 

 IHU Strasbourg, France 

 Thesis Reviewers 

 Dr. Sandrine Voros                                              Dr. Stamatia Giannarou 

 Director of Research,                                          Senior Lecturer, 

 TIMC-IMAG, France                                             Imperial College London, UK 

 Thesis Examiners 

 Prof. Marco Cristani                                            Dr. Thomas Lampert 

 Professor of Computer Science,                        Assistant Professor, 

 University of Verona, Italy                                  University of Strasbourg, France 





�ಾçದವನು �ಾç�ಾನು
(Pronunciation: Taalidavanu baaliyaanu)
Patience is a virtue for triumphing in life

(Kannada Proverb)

Dedicated to my parents

Mr. Thunganalli Satyanarayana Rao Ramesh
&

Mrs. Sampige Anantharamaiah Pushpalatha





Abstract

The demand for therapeutic care based on Minimally Invasive Surgery (MIS) is acceler-

ating due to technological innovations that have improved patient outcomes. Although

these technological advances have enabled information systems to provide rich intra-

operative data in the Operating Room (OR), they have increased the complexity of

the surgical workflow along with surgeons’ cognitive workload. Optimizing workflow

besides reducing surgeons’ workload via intelligent systems that could provide clinical

decision support or context-aware assistance is a growing necessity. A main component

of workflow optimization is the ability to automatically recognize the current state of

the surgery. This is e↵ectively accomplished by modeling workflows as a set of activities

that could be defined at di↵erent levels of detail: procedure, phase, step, action triplet,

gesture, etc. Despite the vast literature on activity recognition in the surgical community,

a majority of research e↵orts have been on coarse-grained phase recognition. Developing

more detailed activity recognition methods is essential to better model surgical workflows

and advance the capabilities of Context-Aware Systems (CAS) in modern ORs.

This thesis aims to develop multi-level (i.e. phase and step) activity recognition

methods from endoscopic videos based on deep learning. We focus on the analysis of a

high-volume surgical procedure to treat obesity that exhibits a complex workflow, called

Laparoscopic Roux-en-Y Gastric Bypass (LRYGB). We introduce a large video dataset of

LRYGB procedures fully annotated with phase and step labels. We then target joint phase

and step recognition and develop a multi-task model based on temporal convolutional

networks. Next, to alleviate the di�culty of manually annotating large datasets with

fine-grained step labels, we propose a novel weakly-supervised learning method using

easier-to-annotate phase labels as weak signals for step recognition. Subsequently, we

investigate data augmentation for spatio-temporal activity recognition models as it is

an essential component for optimal training of deep learning models. We propose a

simplified augmentation method designed to incorporate the temporal dimension present

in the task and videos. Finally, we study the generalization of the proposed activity

recognition models on a large dataset of LRYGB procedures constructed from surgeries

performed at two medical centers.
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Sommario

La richiesta di cure terapeutiche basate sul Minimally Invasive Surgery (MIS) sta

accelerando grazie alle innovazioni tecnologiche che hanno migliorato i risultati dei pazienti.

Sebbene questi progressi tecnologici abbiano permesso ai sistemi informatici di fornire

ricchi dati intraoperatori nel Operating Room (OR), hanno aumentato la complessità del

flusso di lavoro chirurgico e il carico di lavoro cognitivo dei chirurghi. L’ottimizzazione del

flusso di lavoro, oltre alla riduzione del carico di lavoro dei chirurghi, attraverso sistemi

intelligenti in grado di fornire supporto decisionale clinico o assistenza context-aware,

è una necessità crescente. Una componente principale dell’ottimizzazione del flusso di

lavoro è la capacità di riconoscere automaticamente lo stato attuale dell’intervento. Ciò si

ottiene e�cacemente modellando i flussi di lavoro come un insieme di attività che possono

essere definite a diversi livelli di dettaglio: procedura, fase, passo, terna di azioni, gesto,

ecc. Nonostante la vasta letteratura sul riconoscimento delle attività nella comunità

chirurgica, la maggior parte degli sforzi di ricerca si è concentrata sul riconoscimento delle

fasi a grana grossa. Lo sviluppo di metodi di riconoscimento dell’attività più dettagliati

è essenziale per modellare meglio i flussi di lavoro chirurgici e far progredire le capacità

dei Context-Aware Systems (CAS) nei moderni OR.

Questa tesi mira a sviluppare metodi di riconoscimento dell’attività a più livelli (cioè

fase e passo) da video endoscopici basati sul deep learning. Ci concentriamo sull’analisi di

una procedura chirurgica ad alto volume per il trattamento dell’obesità che presenta un

flusso di lavoro complesso, chiamato Laparoscopic Roux-en-Y Gastric Bypass (LRYGB).

Introduciamo un ampio set di video di procedure LRYGB completamente annotate con

etichette di fase e passo. In seguito, ci occupiamo del riconoscimento congiunto di fase e

passo e sviluppiamo un modello multi-task basato su reti convoluzionali temporali. Per

ovviare alla di�coltà di annotare manualmente grandi insiemi di dati con etichette di fase a

grana fine, proponiamo un nuovo metodo di apprendimento debolmente supervisionato che

utilizza le etichette di fase più facili da annotare come segnali deboli per il riconoscimento

dei passi. Successivamente, analizziamo l’aumento dei dati per i modelli di riconoscimento

dell’attività spazio-temporale, in quanto è una componente essenziale per l’addestramento

ottimale dei modelli di apprendimento profondo. Proponiamo un metodo di incremento

semplificato, progettato per incorporare la dimensione temporale presente nell’attività e

v



nei video. Infine, studiamo la generalizzazione dei modelli di riconoscimento dell’attività

proposti su un ampio set di dati di procedure LRYGB costruite a partire da interventi

chirurgici eseguiti in due centri medici.
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1 Introduction

ಆćೂಗಯ್Ċೕ �ಾಗಯ್
(Pronunciation: Aarogyave bhaagya)

Health is wealth

(Kannada Proverb)

Chapter Summary

1.1 The rise of Surgical Data Science (SDS) . . . . . . . . . . . . . . . . . . . 5
1.2 Surgical Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Digital signals in the modern OR . . . . . . . . . . . . . . . . . . . 7
1.2.2 Types of activities . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2.1 Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2.2 Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2.3 Other activities . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Multi-level activity recognition dataset . . . . . . . . . . . . . . . . 11
1.3.2 Labeled data scarcity . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Optimal model training . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.4 Robustness and generalizability - multi-center validation . . . . . . 13

1.4 Contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Surgery is a specialty field of medicine that directs attention to treating pathological
conditions such as disease or injury by use of manual and instrumental operative tech-
niques on a person. Surgery can have many benefits for patients, like improved bodily
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Chapter 1. Introduction

functions, enriching physical appearance, or repairing ruptured areas. Thus, as old as
humanity, surgery has been in practice and reached a heightened level of advancement
in different ancient civilizations in China, Egypt, India, and Greece. For instance, in
the Indian subcontinent, one of the oldest known surgical texts usually placed around
1200–600 BC called Sushruta Samhita describes in detail the diagnosis and treatment for
various forms of cosmetic surgery, plastic surgery, and rhinoplasty. Similarly, ancient
Greeks also performed some surgical procedures including setting broken bones, bloodlet-
ting, draining the lungs of patients with pneumonia, and amputations. However, surgery
was not taught in many universities until the United Company of Barber Surgeons of
London was formed in 15401. This paved way for the establishment of control over the
qualifications of those who performed operations.

The term modern surgery was introduced in the 18th century to highlight the marked
progress made by surgery thanks to the introduction of experimental and empirical sci-
entific approaches. In the following centuries, the constant inventions and innovations
in various fields of science have transformed modern surgery to the present day. This
transformation in the surgery can be observed through the advancement of the modern
Operating Room (OR). A glimpse of the transition of the OR can be seen in Figure
1.1. Some of the advances in surgery are asepsis, different anesthesia techniques, antibi-
otics, hemostat for hemostasis, suturing, blood transfusions, grafts, organ transplants,
etc. Concurrently with surgical advances, the OR transformation includes many techno-
logical advances: projectional radiographs, computed tomography, fluoroscopy & C-arm,
autoclaves, blood pressure & pulse rate monitoring systems, electrocardiograms for ob-
serving heart contractions, electroencephalograms to watch brain activity, heart-lung
machines, and others. All of these advances, coupled with the availability of better and
more specialized surgical tools, have allowed for the introduction of less invasive and
more effective surgical techniques. All of this encapsulates modern surgery.

In the last few decades, developments have been focused on the shift from traditional
open surgery to Minimally Invasive Surgery (MIS). The distinct motivation for this
change is the benefits of less pain, shorter recovery time, and fewer complications which
MIS provides to the patients. Laparoscopy - surgery performed in the abdomen or pelvis
using small incisions and the aid of a camera - is one of the first types of MIS to be accom-
plished. The first laparoscopic appendectomy was performed in 1981 [Meljnikov 2009]
which encouraged the first laparoscopic cholecystectomy in 1985 [Reynolds 2001]. The
success of these surgeries led to rapid acceptance and spread of MIS to other complex
surgical procedures such as adrenalectomy (adrenal gland removal), brain surgery, colec-
tomy (colon), gastrointestinal surgery (esophagus, stomach, small intestine, large intes-
tine, rectum), heart surgery, hiatal hernia (stomach), kidney transplant, nephrectomy
(kidney removal), splenectomy (spleen removal).

The popularity of MIS has led to the innovation of Computer-Assisted Intervention
(CAI) and Robot-Assisted Surgery (RAS). CAI is the field that deals with developing
computer systems and technology to continuously support physicians in making the

1https://www.britannica.com/science/surgery-medicine#ref253436
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1.1 The rise of Surgical Data Science (SDS)

Figure 1.1: The transformation of the operating room in the last few centuries.

right decisions and executing the right actions. It includes advanced assistance via
imaging, robotics, machine learning, and augmented reality during surgery as well as
for the training of physicians and the surgical team. On the other hand, RAS employs
robots to support clinicians with precise control over the instrumentation. Although the
advances in MIS provide many benefits [Darzi 2004,Mohiuddin 2013], they introduce
new challenges such as steep learning curves for new perioperative staff members &
surgeons, restricted view of the anatomy, longer duration of some procedures compared
to open surgery, limited range of motion of the instruments, limited sensory inputs of
depth & touch, etc. Addressing these challenges is the primary goal of an emerging
scientific discipline, Surgical Data Science (SDS).

The following sections present the aim of this thesis. First, the context of this study
is introduced in Section 1.1 & 1.2. These sections also discuss some of the popular
directions of research in the community which serves as the motivation for the research
of this thesis. Next, Section 1.3 presents different challenges associated with surgical
workflow analysis. Lastly, the contribution and outline of this thesis are summarized in
Section 1.4 and 1.5, respectively.

1.1 The rise of Surgical Data Science (SDS)
The technological advances in CAI have enabled a vast array of data sources that can
be recorded effortlessly. Surgical Data Science (SDS) has emerged as a scientific field
that aims to improve the quality of capturing, organizing, analyzing, and modeling of
pre-, intra-, and post-operative data [Maier-Hein 2017]. This pertains to a broad spec-
trum of data collected concerning patients, caretakers, and technology utilized in clinical
care. The data ranging from patients’ initial presentation to long-term outcomes, infor-
mation from clinical guidelines, experiences, practices, patient preferences, and medical
devices or sensors are analyzed and contextualized as generic domain-specific knowledge.
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Chapter 1. Introduction

Figure 1.2: Overview of surgical data science (SDS) system. Image credits: [Maier-Hein 2017]

Through this knowledge, SDS targets assisting physicians in decision-making and plan-
ning execution, predicting events and clinical outcomes, specialized training of clinicians,
advancing preventive methodologies, and/or assessing the quality of care provided to the
patients. Figure 1.2 provides an overview of the SDS system.

A key clinical application of SDS is the development of Context-Aware Systems (CAS)
which aims at providing contextual support to clinicians by exploiting the various sensory
information available in the OR [Lemke 2005,Bricon-Souf 2007,Kranzfelder 2012,Maier-
Hein 2017,Vercauteren 2020]. The contextual support could range from a simple display
of relevant information effectively to aiding clinicians with suggestions on the course of
action while performing difficult surgical tasks. To design an effective CAS system,
this thesis spotlights on one of its key components, which is the automatic
analysis of a surgical workflow.

1.2 Surgical Activity Recognition
Research in advancing the modern OR has proposed to develop Context-Aware Sys-
tems (CAS) [Lemke 2005]. CAS are advanced support systems that have the ability
to draw context from the available data encompassing patients’ health record, surgery
type & its historical record, clinicians’ experience, hospital facilities, intra-operative sig-
nals in the OR, postoperative complications, etc. The context could then enable these
systems to adapt to the changing circumstances, both in and out of an OR, and act
accordingly by presenting relevant information & services to a user, executing a service,
and storing the context for effective retrieval [Bricon-Souf 2007]. Note, many surgeons
and even engineers are skeptical about realizing CAS with such a high level of situa-
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Figure 1.3: Sample images from endoscopic cameras of three different procedures.

tional awareness [Cobianchi 2023]. However, the rise of Computer-Assisted Intervention
(CAI) and Robot-Assisted Surgery (RAS) has also increased the complexity of execut-
ing surgical procedures, consequently affirming the need for CAS due to their potential
benefits. The contextual support of a CAS could contribute to simplifying surgical
workflows, improving human-machine communications, and faster execution of surgical
maneuvers; resulting in decreased surgical workload and strain, thus reducing surgical
errors, increasing patient safety, and improving overall safety, quality, and efficiency of
care [Maier-Hein 2017,Vercauteren 2020].

One of the primary functions of a CAS is the ability to automatically
analyze the surgical workflows, by means of reliable recognition of the sur-
gical activities [Kranzfelder 2012]. By examining the comprehensive online data from
the OR, if systems could recognize the current state of the procedure, then they could
also be capable of predicting the progression of the procedure. This capability could
provide active support to surgeons helping in their clinical decision-making which suc-
cessively could induce autonomy in RAS. Additionally, understanding workflows would
allow these systems to automatically generate surgical reports and annotate data appro-
priately for effortless retrospective studies. This semantic information is at the core of
the cognitive understanding of the surgery.

1.2.1 Digital signals in the modern OR

Recognition of surgical activities requires collection and analysis of the information avail-
able in the OR. Especially in the modern OR, the use of digital monitoring systems
provides many useful signals which can be easily recorded and analyzed. Initial works
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proposed the use of tool usage information collected manually [Ahmadi 2006,Padoy 2007,
Blum 2008b,Padoy 2012], using radio-frequency identification (RFID) based tool track-
ing, or additional camera-equipped trocar [Kranzfelder 2009, Toti 2014, Joerger 2017]
to recognize surgical activities. With the rise of robotic systems such as the da Vinci
surgical robot, additional system events [Malpani 2016] and dexterous human motion
signals [van Amsterdam 2021], through kinematics of tools, could also be easily collected
for supporting activity recognition. However, these signals by themselves are complex to
interpret and pose acquisition challenges as new devices or modifications to the existing
systems are required to extract data during the procedure.

The endoscopic camera is the primary source of information used by clinicians
during MIS procedures. Since it captures the detailed interaction of the surgical
instruments with the underlying anatomical structures, it is a powerful (and
readily available) source of information in the OR. A couple of images from en-
doscopic cameras of different surgeries is illustrated in Figure 1.3. Furthermore, recent
breakthroughs in computer vision driven by deep learning methods have provided strong
incentives to use visual signals. Hence, recording from camera devices has been utilized
extensively in research studies tackling the problem of surgical activity recognition [Gar-
row 2020,Demir 2022]. Note, other signals acquired in the OR could also be integrated
with endoscopic images favoring adequate interpretation of the information processed
from them.

1.2.2 Types of activities

Surgical activities that describe a surgical workflow can be defined at different levels
of granularity: procedure, phase, stage, step, action, and other low-level information
(Figure 1.4) [Katić 2015, Meireles 2021]. This hierarchical subdivision of surgical ac-
tivities has been proposed to develop a common ontology for surgical workflows which
could improve the translation of results and facilitate multi-institutional research ef-
forts [Gibaud 2018]. Additionally, it enables workflow modeling with a high degree of
detail, favoring a standardization of their execution and the definition of accurate and
easily applicable guidelines in clinical practice. The following sections detail popular
types of activities in the literature.

1.2.2.1 Phase

At a coarser level, a surgical workflow can be described by phases. Phases are a set
of fundamental surgical aims of a procedure that needs to be performed to complete
it successfully. For example, Laparoscopic Cholecystectomy (LC) has been captured
using different sets of phase or surgical aims [Garrow 2020], the most popular being
7 phases - Preparation, Calot triangle dissection, Clipping and cutting, Gallbladder
dissection, Gallbladder packaging, Cleaning and coagulation, Gallbladder retraction -
presented by [Twinanda 2017a]. The inception of phase recognition could be attributed
to [Jannin 2001] who proposed to model surgical procedures as a sequence of tasks. The
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Figure 1.4: Types of surgical activities based on level of granularity.

formalization allowed to effectively encapsulates the information in the OR based on
prior knowledge of the surgical workflow. Each phase of a surgery encapsulates informa-
tion on the current state of the procedure, the tools involved in the task, human and
technological resources required, the next task to perform, and suitable visualization
with interactive features [Jannin 2001]. The ‘Calot triangle dissection’ phase of LC, for
instance, implies that two tools (grasper and hook) are used to perform tissue dissection
on the gallbladder. Additionally, this phase could also indicate that deploying a visual-
ization of safe (“Go”) and dangerous (“No-Go”) zones during dissection [Laplante 2022]
and warning when an instrument is approaching a risk structure [Speidel 2008] is needed
to potentially reduce injuries to anatomy (bile duct). This initiated studies on phase
recognition which in the last two decades has flourished immensely and is at the forefront
of research on workflow analysis [Garrow 2020,Demir 2022].

1.2.2.2 Step

At a finer level than phases, steps represent activities that have to be carried out to
complete each phase of a surgical workflow. The earliest work on step recognition was
in 2014 for workflow analysis of cataract procedures [Quellec 2014]. A few later works
continued this direction of research and even attempted to recognize both phases and
steps of cataract surgery [Charrière 2014,Charrière 2017]. The growing interest in steps
could be due to the natural hierarchical definition of different types of activities intro-
duced in the literature from both informatics [Katić 2015, Gibaud 2018] and medical
community [Meireles 2021]. This help clinicians break down a surgical workflow and
formulate ontology with varying level of detail that facilitates the standardized execu-
tion of procedures. Since steps represent a workflow in more detail than phases, they
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could further enhance capabilities of CAS that could monitor the successful completion
of each phase or surgical aim of a procedure. The potential benefits for the surgeons are
two-fold: 1) reducing their cognitive workload by presenting the information pertinent
to the current state of the surgery, and 2) assisting in training novice surgeons on both
simulators [Agha 2015,Meling 2020] and live surgeries. Thus, this thesis focuses strongly
on step recognition alongside recognizing phases.

1.2.2.3 Other activities

Procedure. At the coarse level, above phase, procedure recognition aims at classify-
ing the type of surgery from the available signals. Information at this level enables
CAS to analyze and offer a user interface specific to the surgery. While this infor-
mation can be obtained manually, it could cause disruption in the surgical workflow.
On the other hand, the information recorded using proprietary systems is not easily
accessible. Hence, automatic recognition of procedure could be helpful in overcom-
ing the above two restrictions. Additionally, procedure recognition is valuable for
efficient database indexing and fast data retrieval from a large database of surgical
recordings [Kannan 2020].

Surgical action triplets. Formulated as a triple of the instrument, action, and tar-
get anatomy, surgical action triplets comprehensively capture the activities involved
in a workflow [Katić 2014]. The action triplets provide fine-grained information on
the instrument-tissue interactions: what instrument is being used, the action per-
formed by the instrument, and the anatomy acted upon. In a LC for example, an
automated surgical safety system would benefit from automatically detecting indi-
vidual actions, such as clipping, when performed on critical anatomies, such as a
cystic artery or other blood vessels [Mascagni 2020]. Recently, automatic recogni-
tion of action triplets has witnessed a surge of research [Nwoye 2020,Nwoye 2022b].
To foster research in this direction, two editions of the challenge on surgical action
triplet recognition [Nwoye 2022a, Nwoye 2023] have been organized as part of the
EndoVis grand challenge 2. In spite of its potential, enumerating all the possible
action triplets and annotating large datasets requires immense effort. LC alone can
have 100+ triplets that are composed from 6 instruments, 8+ actions, and 15+ tar-
gets [Nwoye 2020,Nwoye 2022b].

Gestures. Gestures are another popular type of activity that has received significant
interest from the SDS community [van Amsterdam 2021]. At the finest level, surgical
gestures capture the dexterous motion made with a specific purpose such as “G1:
Reaching for needle with right hand”, “G3: Pushing needle through tissue”, or “G13:
Making C loop around right hand” [Gao 2014, Ahmidi 2017]. Gesture recognition
is beneficial for devising objective criteria for training surgeons and qualitative eval-
uation of surgical skills [Rosen 2001, Reiley 2009, Vaughan 2016]. Furthermore, by

2https://endovis.grand-challenge.org/
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linking the gesture information back to the robot control loop, an advanced robotic
system could achieve surgical automation.

In conclusion, surgical workflow analysis, one of the most essential components for
achieving context-awareness in the Operating Room (OR), can be performed at different
levels of detail. Although tremendous research efforts can be found across different types
of activities, they are primarily carried out independently. Subsequent studies should aim
at multi-level activity recognition and capitalize on the inherent hierarchical relationship
between them.

1.3 Challenges
Despite the community’s great interest in surgical activity recognition, the objective of
most of these studies has been phase recognition. Step, and multi-level activity, recog-
nition has been limited due to challenges in the availability of data and methodology.

1.3.1 Multi-level activity recognition dataset
Recognition of phase, step, action triplet, and gesture have all been studied to some
extent. However, they have all been researched independently with very few works
attempting to recognize activities at multiple levels. Furthermore, these data-driven
research activities utilize large datasets with annotations of a specific activity. In
the surgical vision community, popular datasets include Cholec80 [Twinanda 2017a]
& M2CAI [Twinanda 2017a, Stauder 2016] with phase and tool presence annotation,
CholecT40 [Nwoye 2020] & CholecT50 [Nwoye 2022b] with surgical action triplets la-
bels, CATARACTS [Hajj 2019] & cataract-101 [Schoeffmann 2018] which contains step
and tool presence labels for cataract surgical procedure, and JIGSAWS [Gao 2014,Ah-
midi 2017] that contains gesture annotations for bench-top training exercises in robotic
surgery. This lack of datasets for multi-level activity recognition could be a consequence
of a primary bottleneck from the medical society: the lack of standard and reusable
representation of surgical knowledge, particularly of the surgical workflow. Recent ef-
forts from both the informatics and the medical community have presented hierarchical
characterization of a workflow [Katić 2015,Meireles 2021]. Yet formulation of an ontol-
ogy is surgery and activity specific which demands expert knowledge of the respective
domain. Despite these challenges, research attempt to generate datasets of different
surgical workflows with multi-level annotations is paramount for the technological ad-
vancement of CAS.

1.3.2 Labeled data scarcity
Owing to the technological transformation in the OR and the rise of MIS and CAI,
accumulating the data from the OR and constructing large video databases can be
achieved effortlessly. Unfortunately, these databases need to be extended with annota-
tions since the state-of-the-art (SOTA) methods proposed in the literature follow the

11



Chapter 1. Introduction

Machine Learning (ML) paradigm called supervised learning that requires large datasets
with supervisory signals for learning and also evaluation. Thus, large-scale datasets are
of utmost importance for the design and validation of the SOTA activity recognition mod-
els. Alongside formulating an ontology that effectively defines the surgical workflow of
interest, annotating a dataset with activity labels is a very challenging task [Ward 2021].
First and foremost the task demands annotators with experience mainly with surgery
and also video annotation. Selecting experienced surgeons as annotators is costly from
a financial standpoint and additionally from an opportunity perspective due to time
spent away from treating patients. Next, ensuring consistency of annotations across the
dataset is necessary. Although consistency can be achieved by utilizing a single expert
annotator, incorporating multiple clinical expert annotators helps in reducing the bur-
den of annotation on an individual. However, this raises the question of inter-annotator
reliability which could be impacted considerably depending on the surgical activity being
annotated. In the case of Laparoscopic Roux-en-Y Gastric Bypass (LRYGB) procedure,
the inter-annotator reliability could drop from ∼ 96% (phase) to ∼ 81% (step) when
annotating a finer activity (step) between two expert clinicians on just 10 videos [La-
vanchy 2022].

To reduce the dependency on labeled datasets, recent studies in both general com-
puter vision and surgical vision communities have proposed different methodological
approaches: weakly-, semi-, and self-supervised learning. Weakly-supervised learning
methods aim to reduce the annotation cost by utilizing other easy-to-annotate “weak”
labels such as global statistics, incomplete labels which provide access to partial knowl-
edge on each class, or noisy labels from non-expert annotators from a crowd-sourcing
platform3,4. On the other hand, semi-supervised learning combines a small amount of
labeled data with a large amount of unlabeled data to achieve performance comparable
to supervised learning methods. Self-supervised learning takes it a step further by utiliz-
ing auto-generated labels and eliminating the need for expert annotators. For instance,
using tool presence labels as “weak” signals for the task of tool segmentation or localiza-
tion & tracking [Nwoye 2019]; labeling less than 25% of the dataset with semi-supervised
learning [Yu 2019]; and auto-generating supervisory signals using inherent information
of remaining surgical duration for phase recognition [Yengera 2018]. In this regard, a
part of this thesis focuses on weakly-supervised learning for surgical activity recognition
(Chapter 5).

1.3.3 Optimal model training
Recent state-of-the-art methods addressing the problem of surgical activity recognition
from endoscopic videos are based on deep learning. These deep learning models, con-
sisting of millions of parameters, approximate the underlying function that maps input
images/videos to corresponding activity labels utilizing large datasets. Effectively train-
ing the model parameters (i.e., finding their optimal values) requires careful tuning of

3https://www.mturk.com/
4https://scalehub.com/
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various hyperparameters, such as optimizer, learning rate, data augmentation, batch
size, number of epochs, momentum, model weight initialization, and others. Popular
techniques to find optimal values of the hyperparameters are manual search, grid search,
random search, and Bayesian optimization [Bergstra 2011,Bergstra 2013].

One of the most essential hyperparameters that demand closer examination is data
augmentation [Shorten 2019, Mumuni 2022]. Data augmentation consists of an auto-
matic process to extend the datasets by applying predefined transformations. A few
popular image transformations used in the community are horizontal flip, rotation, ran-
dom cropping, translation, scale, and color jitter. Models trained on extended datasets
with variations introduced by data augmentation have been shown to impact model ro-
bustness [Lopes 2019] and performance on semi-supervised and self-supervised learning
methods [Qian 2021, Pan 2021, Shi 2021]. To design optimal augmentation policies, it
is important to incorporate prior knowledge of each domain. This calls for expertise in
both the domain and data augmentation and involves strenuous manual work. Thus,
data augmentation methods are difficult to extend to other domains and applications.
Few papers in the general computer vision community have proposed simplified meth-
ods [Cubuk 2020] and learning optimal augmentation policies on a subset of the data
on a proxy task [Cubuk 2019, Lim 2019]. Similar research attempts are required but
missing in the SDS community for the task of activity recognition.

1.3.4 Robustness and generalizability - multi-center validation
To realize the application of activity recognition in the OR via CAS, the recognition
module must possess characteristics of reliability, portability, and integrity. The three
characteristics together loosely state that the recognition module should be safe to use
and perform consistently under different working conditions for a specific period of time.
Given that the latest methods for recognition are based on deep learning [Garrow 2020],
these characteristics are studied in terms of robustness and generalizability where ro-
bustness ensures the integrity of the module while generalizability ensures reliability
and portability. One of the key challenges to developing robust and generalizable deep
learning methods is their susceptibility to overfitting and memorization because of the
complexity of the number of parameters involved [Geirhos 2018, Feng 2019]. Popular
approaches to prevent overfitting are data augmentation, feature selection, weight reg-
ularization, early stopping, adding more training data, etc. While data augmentation
enables the generation of additional training data by perturbing the input data, weight
regularization attempts to simplify the model complexity by adding a penalty term,
based on the number of parameters, to the cost function.

Adding more training data is an expensive approach to tackle overfitting. Never-
theless, it is a crucial way to add natural variations of a domain to a dataset. In
the medical and surgical domains, patients’ age, height, weight, gender, race, eth-
nicity, and many other factors contribute to the variability in the data. Addition-
ally, variances present in the surgical domain are owed to the changes in the surgi-
cal workflow across surgeons, medical centers, communities, nations, etc. Hence, an
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ideal surgical activity recognition module is required to be robust in its capability
across all these variances in both anatomy and workflow. However, most of the re-
search in the community has utilized datasets from a single center for experimenta-
tion [Twinanda 2017a,Hajj 2019,Hong 2020,Nwoye 2022b, Schoeffmann 2018]. And it
remains speculative whether these methods would generalize to other centers. Hence
multi-center validation of surgical activity recognition methods is quintessential for its
rapid adaptation in the OR.

1.4 Contribution of the thesis
The fundamental aim of this thesis is to address the problem of surgical activity recogni-
tion, at different levels of granularity, from endoscopic videos by developing recognition
models based on deep learning. Specifically, the contributions of the thesis revolve
around online recognition of phases and steps.

The first contribution presents a method consisting of spatial and temporal models
for joint phase and step recognition, differently from works in the literature that have
strongly focused on developing methods to recognize one specific level of granularity from
video data: phases [Garrow 2020,Demir 2022], steps [Quellec 2014,Charrière 2014,Char-
rière 2017], action triplets [Nwoye 2020,Nwoye 2022b], and robotic gestures [van Amster-
dam 2021]. To achieve this, we first introduce a new large-scale dataset called Bypass40
(BY40) consisting of 40 videos of complex Laparoscopic Roux-en-Y Gastric Bypass
(LRYGB) procedures fully annotated with both phase and step labels. Subsequently,
we introduce MTMS-TCN, Multi-Task Multi-Stage Temporal Convolutional Networks,
for joint recognition of phases and steps extending MS-TCNs that were proposed for
action segmentation. The motivation for this method stems from the fact that both
activities are hierarchically related and recognizing them jointly could allow the model
to implicitly learn the hierarchical relationship and benefit from it.

For the second contribution, we focus our attention on weakly supervised learning
for fine-grained activity, i.e., step recognition. Although collecting large datasets of en-
doscopic videos is automated, annotating them is a manual process that is difficult and
time-consuming as these tasks require domain-specific medical knowledge. Furthermore,
as steps define a surgical workflow at a more fine-grained level than phases, the time
required to annotate a dataset with steps is significantly higher than with phase anno-
tations. For example, in LRYGB procedures, the workflow consists of 44 steps and 11
phases (Figure 3.3) and precisely defining and annotating all the steps requires a consid-
erably longer time due to the number of steps and more importantly lower inter-class
variances between steps. To reduce this reliance on fully annotated datasets, especially
for fine-grained activities like steps, we present a weakly supervised learning method
that uses phase labels as weak signals to assist in step recognition in settings of label
scarcity.

As a third contribution, we inspect one of the most essential component of the train-
ing pipeline of the deep learning methods: Data Augmentation. Data augmentation has
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shown the potential to improve the generalization of deep learning models which has
spurred research on automated and simplified augmentation strategies for image classi-
fication and object detection on datasets of still images. Extending such augmentation
methods to videos is not straightforward, as the temporal dimension needs to be consid-
ered. Furthermore, surgical videos pose additional challenges as they are composed of
multiple, interconnected, and long-duration activities. To address this need, we intro-
duce a new simplified augmentation method, called Temporal Random Augmentations
(TRandAugment), specifically designed for training Spatio-temporal models on long sur-
gical videos. TRandAugment treats each video as an assemble of temporal segments and
applies consistent but random transformations to each segment. The validation of TRan-
dAugment on different tasks and datasets opens new avenues for research on the impact
of temporal data augmentation methods on model robustness [Lopes 2019] or weakly-
/semi-/self-supervised learning [Qian 2021, Pan 2021, Shi 2021, Yu 2019, Ramesh 2022,
Ramesh 2023b].

Our fourth and final contribution, building on previous contributions, presents a
study on the generalization of activity recognition methods on data from different medi-
cal centers. As part of this study, we introduce two new datasets, namely StrasBypass70
and BernBypass70, consisting of 70 videos of LRYGB procedures fully annotated with
phase and step labels. Subsequently, we study the performance of both fully and weakly
supervised learning methods on these datasets demonstrating to the community the
challenges and shortcomings while transitioning from research to clinical generalization.

1.5 Thesis outline
The thesis is organized into three parts:

• The first part consists of two chapters that present the clinical context and motiva-
tion in chapter 1 followed by a review of the related works existing in the literature
in chapter 2.

• The second part presents the contribution of this thesis and spans chapters 3-7.
Chapter 3 introduces the new Bypass40 (BY40) dataset of complex Laparoscopic
Roux-en-Y Gastric Bypass (LRYGB) procedures constructed with phase and step
annotations. Chapter 4 presents a fully supervised method consisting of spatial
and temporal models for joint phase and step recognition. The Bypass40 dataset
along with the method presented in chapter 4 has been published in [Ramesh 2021].
Chapter 5 presents a weakly supervised learning method for recognition of fine-
grained step recognition utilizing coarser phase labels as weak signals. Some of the
results presented in this chapter have been published in [Ramesh 2023b]. Chapter
6 presents a simple and automated data augmentation method called TRandAug-
ment for training Spatio-temporal activity recognition models, specifically improv-
ing the performance on both the phase and step recognition tasks. The method
presented in this chapter has been published in [Ramesh 2023a]. Lastly, chapter 7
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demonstrates the generalizability of the above methods by means of a cross-center
study on new datasets of LRYGB procedures from Strasbourg and Bern medi-
cal centers. Some of the results presented in this chapter have been planned for
submission to a medical journal.

• The third, and final, part of this thesis discusses the potential applications of the
proposed methods in chapter 8 and a summary of the thesis in chapter 9. chapter 9
also provides a discussion on future perspectives for advancing research in surgical
activity recognition.
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Learn from yesterday, live for today, hope for tomorrow. The important thing is not to
stop questioning.

- Albert Einstein

Chapter Summary
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Surgical activity recognition is a burgeoning research direction of SDS with earlier
works emerging from the year 2000. Initial work on this topic was established by Jannin
et al. [Jannin 2001] with the conceptualization of surgical activities. In the following
two decades, a large body of research works emerged tackling the problem of surgical
activity recognition. These works have utilized various digital signals available in the
OR: tool usage [Ahmadi 2006], system events [Malpani 2016], tool kinematics through
dexterous human signals [Lin 2006], and endoscopic videos [Klank 2008]. Out of these
signals, endoscopic videos have become the popular choice as they capture important
information about the tool-tissue interaction and are readily available in the OR without
requiring any additional modifications.
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Hence, in this chapter, we review related works on surgical activity recognition from
endoscopic videos. The review also centers heavily on works based on deep learning
covering fully-, semi-, and weakly-supervised learning paradigms. When necessary, we
also include works from the general computer vision community to present a suitable
context.

2.1 Supervised Learning
Supervised learning is a predominant paradigm of both general computer vision and SDS
communities that learn from large volumes of data with additional labels as supervisory
signals. This section presents research on surgical activity recognition utilizing large
labeled datasets at both coarse and fine levels of granularity.

2.1.1 Phase & step recognition
The prevalent objective studied in the literature is the automatic recognition of phases in
endoscopic videos [Ahmadi 2006,Blum 2010,Dergachyova 2016,Twinanda 2016,Funke 2018,
Zisimopoulos 2018]. Initial works used endoscopic videos to manually collect tool us-
age information as input for phase recognition [Ahmadi 2006,Padoy 2008,Blum 2008a,
Blum 2010, Padoy 2012, Dergachyova 2016]. For instance, [Ahmadi 2006] constructed
a series of multi-dimensional state vectors over time of 17 different laparoscopic instru-
ments used in cholecystectomy. The intuition behind this was that in minimally-invasive
surgeries the laparoscopic instruments used by the surgeon strongly correlate with the
underlying workflow. Many works using tool usage signals have proposed using Dynamic
TimeWarping (DTW) [Ahmadi 2006,Blum 2010,Padoy 2012] and Hidden Markov Model
(HMM) [Padoy 2008, Padoy 2012,Dergachyova 2016]. DTW is an algorithm proposed
by [Sakoe 1978] that calculates an optimal match between two given temporal sequences
which may vary in speed and consequently measures similarity between them. On the
other hand, a HMM [Rabiner 1989] is a statistical Markov model in which the system
being modeled is assumed to be a Markov process with unobservable (”hidden”) states.

Unlike tool signals that capture the usage of instruments, images/videos from endo-
scopic cameras are high-dimensional as an image can be treated as a collection of signals
of h×w pixels. Here, h and w stand for the height and width representing an image’s res-
olution. For instance, an image from an endoscopic camera of resolution 720×480 can be
treated as an input signal of 345,600 dimensions. Learning and organizing data in such
high-dimensional spaces is extremely challenging due to the phenomenon of the curse of
dimensionality1. Reducing the high dimensionality of images via feature extraction is a
primary focus of the computer vision community.

One of the initial works using camera features proposed a genetic algorithm that
learns the optimal feature extraction method that helps a Support Vector Machine
(SVM) to predict the surgical phases [Klank 2008]. [Padoy 2008] derived two signals
based on camera images: if the camera is inside the body and a metallic clip is visible

1https://en.wikipedia.org/wiki/Curse_of_dimensionality
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Figure 2.1: EndoNet architecture for recognizing the 7 phases of LC procedure. Image credits:
[Twinanda 2017a,Padoy 2019]

in the image. They employed image processing techniques such as color histograms, and
color & shape classification. These two signals were used along with instrument usage
signals and a HMM was trained for online recognition of surgical phases in Laparoscopic
Cholecystectomy (LC). [Blum 2010] extracted 1932 features consisting of horizontal &
vertical gradients, histograms, and pixel values of a 16x16 version of the image. These
features were further reduced to a lower dimension using canonical correlation analysis to
obtain features correlated with semantic meaningful signals. Finally, a HMM was used
for phase segmentation. A drawback of these initial methods was that they required im-
age features to be extracted using handcrafted methods which was a painstaking process.

The rise of deep learning for computer vision enabled the automatic extraction of
visual features directly from images without any human intervention [Krizhevsky 2017].
In SDS, EndoNet [Twinanda 2017a] and DeepPhase [Zisimopoulos 2018] are early works
that employed deep learning for surgical workflow analysis, particularly for phase recog-
nition. EndoNet [Twinanda 2017a], presented in Figure 2.1, was proposed to recognize
the 7 phases of LC along with instrument detection from endoscopic videos. The model
consisted of a Convolutional Neural Network (CNN) for learning visual features followed
by a hierarchical HMM for modeling temporal information. Similarly, DeepPhase [Zisi-
mopoulos 2018] proposed a CNN followed by a Recurrent Neural Network (RNN) as a
temporal model for recognizing 14 phases of cataract surgeries. These works laid the
foundation for using CNNs for automatic visual feature learning.

The following works focused on introducing different temporal models to extract
useful information from the temporal dimension available in endoscopic videos. One
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of the popular temporal model used in the literature is Long Short-Term Memory
(LSTM). EndoLSTM [Twinanda 2017b] was one the first works that evolved from En-
doNet, combining a CNN for feature extraction and an LSTM for temporal refine-
ment. SV-RCNet [Jin 2018] trained an end-to-end CNN and LSTM model utilizing
ResNet [He 2016a] as the CNN architecture. Additionally, a prior knowledge infer-
ence scheme was proposed to further improve the consistency of the model’s predictions.
MTRCNet-CL [Jin 2020] proposed a multi-task model to detect tool presence and phase
recognition. The features from the CNN were used to detect tool presence and also
served as input to an LSTM model for phase prediction. Additionally, a correlation loss
was introduced to enhance the synergy between the two tasks. In [Shi 2020], phase recog-
nition was approached in an active learning framework where only video clips that con-
tain richer information were subsampled for annotation. They proposed an NL-RCNet
model consisting of an end-to-end CNN + LSTM model with an additional non-local
block. The non-local block was used for long-range temporal dependency which provided
criteria to subsample video clips for annotation. [Jin 2021] also trained an end-to-end
CNN + LSTM model and proposed an additional memory bank for relating long-range
and multi-scale temporal patterns to augment the present features. The long-range mem-
ory bank served as a memory cell that stored the rich supportive information and the
temporal variation layer further enhanced this information using multi-scale temporal
convolutions. To effectively incorporate the supportive cues a non-local bank operator
was introduced to attentively relate the past to the present. While various methods use
LSTMs, these models retain memory for a limited sequence. Since the average duration
of a surgery can range from tens of minutes to a couple of hours, it makes it challenging
for LSTM-based models to leverage temporal information for surgical phase recognition.

Temporal Convolutional Networks (TCNs) [Lea 2016b] were introduced to hierar-
chically process videos for action segmentation. An encoder-decoder architecture could
encode both high- and low-level features in contrast to RNNs. Furthermore, dilated con-
volutions [van den Oord 2016] were utilized in TCNs for action segmentation that showed
performance improvements due to a large receptive field for higher temporal resolution.
Besides dilated convolutions that enable large receptive fields, MS-TCN [Farha 2019]
consisted of a multi-stage predictor architecture with each stage consisting of multi-
layer TCN that incrementally refined the previous stage’s prediction. Recently, TeCNO
[Czempiel 2020] adapted the MS-TCN architecture for online surgical phase prediction
by implementing causal convolutions [van den Oord 2016]. These different TCN variants
are visualized in Figure 2.2. More recent works have proposed transformer-based models
to improve the performance of phase prediction models [Czempiel 2021,Gao 2021]. [Czem-
piel 2021] presented a transformer-based model with a novel attention regularization loss
that encourages the model to focus on high-quality frames during training. The high-
quality frames for each surgical phase are identified for summarizing a surgery using the
attention weights. Parallelly, an aggregation Transformer that fuses spatial and tem-
poral embeddings was proposed in [Gao 2021]. The spatial embeddings from a ResNet
backbone and the temporal embeddings from a TeCNO model were aggregated by a
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(a) TCN (b) MS-TCN

(c) TeCNO
Figure 2.2: Different temporal convolution networks proposed in the literature. (a) The archi-
tecture of an encoder-decoder Temporal Convolutional Network (TCN) for action segmentation
proposed in [Lea 2016b]; (b) MS-TCN: a multi-stage TCN model for action segmentation that
recursively refines predictions from the previous stage [Farha 2019]. Additionally, each stage
consists of dilated residual layers to increase the receptive field; (c) TeCNO: TCN-based model
architecture for online surgical phase recognition proposed in [Czempiel 2020]. Along with di-
lated residual layers, causal convolutions were proposed to achieve online recognition.

two-layer transformer model.
Alongside this large body of work on phase recognition, few works have attempted

to recognize steps. [Charrière 2014] was the first work that aimed at real-time step
recognition from cataract surgical videos. The proposed method was a Content-Based
Video Retrieval (CBVR) system utilizing a novel pupil center and scale tracking method
as pre-processing of motion features. In [Charrière 2017], the CBVR system along with
surgical tool presence information was used as input to statistical models consisting
of Bayesian Network and HMMs for multi-level online recognition of steps and phases.
Recently, [Xia 2021] trained an end-to-end CNN + LSTM for the task of step recognition.
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Figure 2.3: Few examples of action triplets in LC surgical videos. Modified image: [Nwoye 2022b]

A step-phase branch was designed to capture both global coarse-grained features and
local fine-grained features. Furthermore, a contrastive branch was proposed to enlarge
the distances of the features from different surgical phases and steps to handle the
spatial-temporal discrepancy problem.

2.1.2 Recognition of other activities

Procedure. At the highest granularity, recognizing the type of surgical procedure has
also received attention from the community. [Twinanda 2014] proposed to classify
the type of laparoscopic surgery based on videos which could be useful for organizing
large video databases automatically. [Twinanda 2014] evaluated SVM on different
visual features - color, scale-invariant feature transform (SIFT), histogram of oriented
gradients (HOG) - and a combination of different visual features with multiple kernel
learning. Recently, [Kannan 2020] approached the problem by proposing a CNN for
learning visual features followed by an LSTM that captures temporal information.
Furthermore, the LSTM was trained in a multi-task manner to predict future visual
representations along with the surgery type to aid the model in early recognition of
the type of surgery.

Surgical action triplets. Surgical action triplets capture surgical activities as a triplet
consisting of the used instrument, the performed action, and the organ acted upon.
The surgical action triplet was formulated by [Katić 2014, Katić 2015] as it pro-
vides a deeper understanding of the image contents in videos. Recognizing activ-
ities in this detail could be crucial in automating safety warnings in CAI [Ver-
cauteren 2020]. For this reason, [Katić 2014, Katić 2015] leverage the triplet for-
mulation manually provided as input signals for recognizing surgical phases. How-
ever, since then, the research in modeling surgical activities as triplets or using
triplets for surgical workflow analysis has been hindered due to the difficulty in gen-
erating a large annotated dataset [Twinanda 2017a]. The success of phase recogni-
tion (Section 2.1.1) renewed interest in surgical action triplets in the SDS commu-
nity [Nwoye 2020,Nwoye 2022b,Nwoye 2022a,Sharma 2022,Nwoye 2023]. [Nwoye 2020]
aimed to recognize fine-grained activities as action triplets 〈instrument, verb, target〉
and introduced a new laparoscopic dataset, CholecT40, consisting of 40 videos from
the public dataset Cholec80. All the frames in the dataset have been annotated us-
ing 128 triplet classes. Examples of the triplet annotations can be seen in Figure
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2.3. This was the first work that proposed to recognize triplets directly from the
videos. The recognition model presented in [Nwoye 2020] consisted of a multitask
learning (MTL) network with three branches for the instrument, verb, and target
recognition. Additionally, a class activation guide (CAG) module that uses the weak
localization information from the instrument activation maps to guide the recogni-
tion of the verbs and targets was introduced. In the following work, [Nwoye 2022b]
presented a new model called Rendezvous (RDV) that leverages transformer atten-
tion mechanism at two different levels for triplet recognition from surgical videos.
A spatial attention module called Class Activation Guided Attention Mechanism
(CAGAM) captured individual action triplet components in a scene. While a se-
mantic attention module called Multi-Head of Mixed Attention (MHMA) solved
the association problem between instruments, verbs, and targets. Recently, Ren-
dezvous in Time (RiT) was introduced, which modified RDV to incorporate tem-
poral cues in the surgical videos [Sharma 2022]. In particular, RiT focused more
on the verbs to learn temporal attention-based features for enhanced triplet recog-
nition. Research on surgical action triplets is gaining traction thanks to the works
of [Nwoye 2020,Nwoye 2022b]. Recently, two endoscopic vision challenges have been
organized at MICCAI 2021 [Nwoye 2022a] and MICCAI 2022 [Nwoye 2023] for the
recognition of surgical action triplets in laparoscopic videos.

Gestures. With the rise of robotic systems such as da Vinci surgical robot, gesture
recognition has seen a large body of research in the last decade [van Amsterdam 2021].
This onset can be attributed to JIGSAWS [Gao 2014], the first open-source dataset
for surgical gesture recognition. Similar to phase recognition (Section 2.1.1), ini-
tial works proposed graphical models for recognizing gestures from kinematic data.
These methods proposed the use of linear discriminant analysis [Lin 2006,Reiley 2008,
Varadarajan 2009a], HMMs [Reiley 2008,Varadarajan 2009a,Tao 2012, Sefati 2015],
Naive Bayes [Lin 2006], conditional random fields [Tao 2013, Lea 2015, Lea 2016c,
Lea 2016a,Rupprecht 2016,Mavroudi 2018], and linear dynamical systems [Varadara-
jan 2011a, Varadarajan 2011b]. With the rise of deep learning, many works have
recognized gestures from raw video data captured through endoscopic cameras. 3D
CNNs [Funke 2019], RNNs [DiPietro 2016,DiPietro 2019,Gurcan 2019, van Amster-
dam 2020], TCNs [Menegozzo 2019,Wang 2020, Zhang 2020, van Amsterdam 2022],
and attention mechanism [van Amsterdam 2022] have all been explored in the last
couple of years. Gestures recognition has also been modeled as a sequential decision-
making process that can be learned with Reinforcement Learning [Liu 2018b,Gao 2020].

2.2 Semi- and Weakly-supervised Learning
Semi- and weakly-supervised learning are other ML paradigms that aim at learning from
limited labeled data to alleviate the issue of vast amounts of labeled data needed for
training. Semi-supervised learning combines a small amount of labeled data with a large
amount of unlabeled data during training. While weakly-supervised learning utilizes

23



Chapter 2. Related Works

(a) Instrument segmentation and tracking.

(b) Surgical scene segmentation.

(c) Image classification at a finer level.
Figure 2.4: A few weakly-supervised learning methods in the literature. (a) The architecture
of instrument segmentation and tracking method trained using only weak instrument presence
labels [Nwoye 2019]; (b) EasyLabels: a segmentation method that uses weak stripe annotations
to perform full surgical scene segmentation [Fuentes-Hurtado 2019]; (c) Coarse-to-fine few-shot
learning problem tackled by [Bukchin 2020] where the training classes (e.g. animals) are of much
coarser granularity than the target classes (e.g. breeds).

noisy, limited, or imprecise labels that are inexpensive to annotate large amounts of
training data for a supervised learning setting. This section reviews the literature on
these two paradigms of ML.

2.2.1 Learning in other domains

Weak supervision has seen a great interest in the medical computer vision community
to tackle the need for high-volume annotated datasets that are difficult to generate.
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Some of the interesting applications of weak supervision are seen in the detection of
the region of interest in chest X-rays and mammograms [Hwang 2016], cancerous tis-
sue segmentation [Jia 2017], gesture recognition [van Amsterdam 2019], surgical tool
localization [Vardazaryan 2018,Nwoye 2019], and surgical scene segmentation [Fuentes-
Hurtado 2019]. [Vardazaryan 2018,Nwoye 2019,Fuentes-Hurtado 2019] are particularly
interesting as these approaches are developed on surgical datasets, especially laparo-
scopic videos. Two examples of weakly supervised learning methods are illustrated in
Figure 2.4a & 2.4b. With the aim of localizing surgical instruments in laparoscopic
images, [Vardazaryan 2018] proposed utilizing instrument presence labels as weak su-
pervision. The output of a fully convolutional network was passed through a global
pooling operation that constrains the network activations to focus on the most salient
features needed to localize surgical instruments. Similarly, [Nwoye 2019] proposed using
weak instrument presence labels for spatial localization and tracking of surgical instru-
ments. In their work, a convolutional LSTM (ConvLSTM) was employed to learn the
spatio-temporal cues across the surgical video frames. The trained ConvLSTM was
successful in spatially localizing the instruments and tracking them over time. How-
ever, these methods focused specifically on instruments. Surgical scene segmentation
of laparoscopic images was tackled in [Fuentes-Hurtado 2019]. Easy labels, annotated
as stripes over different objects in the images as shown in Figure 2.4b, combined with
partial cross-entropy loss were utilized to obtain dense pixel-level segmentation.

In the computer vision community, weakly supervised coarse-to-fine methods have re-
ceived considerable interest for image classification [Taherkhani 2019,Bukchin 2020,Tou-
vron 2021, Su 2021]. For example, coarse labels such as ‘dog’ or ‘cat’ is used to learn
finer classification such as ‘beagle’, ‘pug’, ‘ragdoll cat’, ‘persian cat’, etc (Figure 2.4c).
[Taherkhani 2019] proposed an image-based weakly supervised end-to-end model for
object classification consisting of a CNN followed by two self-expressive layers. One
self-expressive layer captures the global structures through coarse labels and the other
captures the local structures for fine-grained classification. [Bukchin 2020] tackled the
problem of Coarse-to-Fine Few-Shot (C2FS) learning and proposed a novel ‘angular nor-
malization’ module that effectively combines supervised and self-supervised contrastive
pre-training for C2FS. [Touvron 2021] tackled the problem of learning finer represen-
tations from coarser labels without any fine-grained labels. Their proposed method
consists of CNN-based trunk and target networks that learn coarse representations from
labels and finer representations with a self-supervised nearest-neighbor classifier. Dur-
ing training, the trunk gradients were used to update the target network weights as a
moving average. Recently, [Su 2021] combined semi-supervised learning incorporating
hierarchical coarse labels as weak signals to improve fine-grained image classification.

2.2.2 Surgical Workflow Analysis
To reduce the number of labeled videos, most of the recent research works in phase
recognition have proposed approaches based on semi-supervised learning over weakly-
supervised learning [Bodenstedt 2017, Funke 2018, Yengera 2018, Yu 2019, Shi 2021].
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(a) Teacher-student approach for surgical phase recognition.

(b) SurgSSL for phase recognition from laparoscopic videos.
Figure 2.5: Semi-supervised learning for surgical workflow analysis. (a) The architecture of the
semi-supervised learning method proposed in [Yu 2019] based on the teacher-student approach;
(b) The architecture of the SurgSSL method proposed in [Shi 2021]. The method consists of two
stages where stage I extracts knowledge from motion in the unlabeled data and generates pseudo
labels for them while stage II retrains the model with pseudo labels previously generated and a
small set of labeled data.

These approaches follow a similar strategy of pre-training the models on different proxy
tasks of frame-sorting [Bodenstedt 2017], predicting the temporal distance between mul-
tiple frames [Funke 2018], and predicting the remaining surgery duration [Yengera 2018].
One of the works of particular interest is [Yu 2019], which proposed a teacher/student ap-
proach for phase recognition in scenarios of extreme manual annotation scarcity (≤ 25%

of the training set). As can be seen in Figure 2.5a, the teacher model (CNN+biLSTM+CRF
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trained on a small set) generated synthetic phase annotations for a large number of
videos on which the student model (CNN+LSTM) was then trained. Another semi-
supervised approach called SurgSSL [Shi 2021] presented a two-stage semi-supervised
learning method for phase recognition that leveraged unlabeled data via motion knowl-
edge excavation and pre-knowledge pseudo labeling (Figure 2.5b). In the first stage,
a novel intra-sequence Visual and Temporal Dynamic Consistency (VTDC) scheme is
proposed for mining motion knowledge. In the second stage, the pre-knowledge learned
in the first stage is used to generate pseudo labels for unlabeled data and the model
is re-trained on these pseudo labels along with the small labeled data. Recently semi-
supervised learning across multiple centers in a federated learning setting was explored
to recognize phases of LC [Kassem 2022]. Alongside learning task-specific knowledge
from the labeled data, a contrastive loss was introduced for supervised learning with
a temporal cycle consistency loss on the unlabeled data for learning temporal patterns
found in the videos. The learning pipeline was followed at each center independently
and the information was aggregated through a federated learning setup to preserve the
privacy of data from each center.

2.3 Data augmentation
Selecting adequate hyperparameters is crucial to effectively train deep learning models.
The different hyperparameters include optimizer, learning rate, number of epochs, batch
size, data augmentation, and weight decay among others. Data augmentation is one
hyperparameter that plays a critical role in model training by enabling ways to extend
datasets with variations without requiring additional labeling processes. They have
been extensively studied for improving the training of deep learning models for image
classification [Ho 2019,Cubuk 2019,Lim 2019], object detection [He 2017,Kimata 2022],
instance segmentation [He 2017, Fang 2019], etc. Data augmentations can be divided
into five categories: geometric transformation, photometric transformation, information
dropping, mix-based, and search-based [Han 2022]. The two most representative image
augmentations for each category are illustrated in Figure 2.6a.

Geometric transformation introduces variants of an image attempting to mimic the
effect of viewing a scene from different viewpoints. Popular geometric transformations
include horizontal flip, vertical flip, horizontal translation, vertical translation, rotation,
crop (zoom in), sheer (horizontal or vertical), and their combination. On the other hand,
photometric transformation adds variations in the appearance of an image. Color jitter
(achieved by changes in the brightness, contrast, saturation, and hue of an image), dis-
tortion, grayscale, gaussian blur, image invert, posterize, solarize, and equalize together
constitute a common set of photometric transformations. Information dropping, through
obscuring a portion of an image, as data augmentation has received considerable atten-
tion in the last couple of years [DeVries 2017b, Zhong 2020]. Cutout [DeVries 2017b]
proposed to simply apply a square fixed-size zero-mask to a random location of each
input image during each epoch of training. This simple augmentation was observed to
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(a) Illustrations of image augmentations used for image classification. Image credits: [Han 2022]

(b) Inducing temporal variations via augmentations for video recognition. Image credits: [Kim 2020]

(c) Learn2augment: Learning-based augmentation method. Image credits: [Gowda 2022]
Figure 2.6: A few examples of data augmentations methods proposed in the literature.

be complementary to existing forms of data augmentation and regularization achieving
state-of-the-art performance on the CIFAR10, CIFAR-100, and SVHN vision bench-
marks. Random Erasing [Zhong 2020] extended Cutout to select a rectangle mask of
random size filled with random values and applied it to a random location for each in-
put image in an epoch. Additionally, object-aware random erasing that selected erasing
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regions in the bounding box of each object was proposed to improve object detection
networks. Mix-based augmentation strategy generally corrupts an image by blending
it with another image [Zhang 2017, Yun 2019, Hendrycks 2020]. Mixup [Zhang 2017]
was the first work that proposed to construct additional data generated by convex com-
binations of pairs of examples. CutMix [Yun 2019] cut a random rectangle from one
image (inspired by Cutout [DeVries 2017b]) and pasted it on another image. Unlike pre-
vious mix-based methods, AugMix [Hendrycks 2020] generates different augmentations
of the same image and blends them to produce a high diversity of augmented images.
The different augmentations applied on the same image to produce multiple variants
for blending are stochastically sampled. These various methods, however, have been
manually designed with domain expertise.

To tackle the challenge of manually designing augmentation policies, the latest re-
search has focused on automated search-based methods [Cubuk 2019,Lim 2019,Cubuk 2020].
AutoAugment [Cubuk 2019] used reinforcement learning on proxy tasks to select an opti-
mal sequence of augmentations along with the magnitude and probability of applications.
FastAutoAugment [Lim 2019] improved upon AutoAugment by optimizing the search
strategy based on density matching. FastAutoAugment gaining speed up in search time
by orders of magnitude while achieving comparable performances on image recognition
tasks. But, these automated data augmentation methods introduce new difficulties, e.g.,
defining a proxy task and training on it or searching over 30 parameters. To address these
difficulties, a simplified and more practical method, called RandAugment [Cubuk 2020],
was recently proposed. RandAugment considerably simplified the search process to a
grid search over two interpretable hyperparameters (M,N). Although the advances in
automated data augmentation methods have been significant, these methods have been
specifically developed for still images.

Recently, a few augmentation methods specifically designed for video have been
proposed in the literature [Kim 2020, Gowda 2022, Kim 2022, Kimata 2022]. These
methods have proposed inserting temporal perturbations successionally to the video
frames [Kim 2020] or objects (obtained through instance segmentation) from one video
onto another [Kimata 2022]. A learning-based method has been proposed in [Gowda 2022]
that finds a pair of similar videos and then places objects from one video onto another
video’s background. In [Kim 2022], augmentation is applied to video frames ensuring
smooth changes in its magnitude based on Fourier sampling. Examples of augmentations
for videos are presented in Figure 2.6b & 2.6c. In the surgical vision community, the
training pipeline of the video-based surgical activity recognition methods has used man-
ually selected augmentations. Horizontal flip [Jin 2020,Ramesh 2021,Ramesh 2023b], ro-
tations [Czempiel 2020,Ramesh 2021,Ramesh 2023b], random cropping [Jin 2020], trans-
lation [Czempiel 2020], scale [Czempiel 2020], and color jitter [Gao 2021,Ramesh 2021,
Ramesh 2023b] are common augmentations used in the community.
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2.4 Thesis setting
The primary objective of this thesis is to recognize surgical activities at multiple levels
of granularity. We begin the thesis with the recognition of activities at two different
granularity: phase and step. Despite large efforts in surgical activity recognition [Gar-
row 2020,Demir 2022,Charrière 2014,van Amsterdam 2021,Nwoye 2022b], three limita-
tions that we can observe are: (1) methods recognize only one type of activity: phase,
step, gesture, or action triplets, etc, (2) large labeled video datasets that represent other
complex procedures like LRYGB is unexplored with most works analyzing LC or cataract
surgery, (3) effective methods to exploit the temporal information present in the videos
and tasks. Some effort has been made by [Charrière 2017,Czempiel 2020] to address some
of the limitations. Recognition of multiple activities, phases and steps, of cataracts surgi-
cal procedure was undertaken by [Charrière 2017] while [Czempiel 2020] proposed TCN
to exploit temporal information for the task of recognizing phases of LC workflow. To ad-
dress all three limitations we propose to jointly recognize phases and steps of the complex
workflow of LRYGB procedure. First, we introduce a novel dataset with multi-level sur-
gical activity annotations, called Bypass40. Next, we introduce Multi-Task Multi-Stage
Temporal Convolutional Networks (MTMS-TCN), extending MS-TCNs [Farha 2019], to
jointly learn the tasks of phase and step recognition. We benchmark MTMS-TCN with
other state-of-the-art deep learning models examined in Section 2.1.1 on the new By-
pass40 dataset for surgical activity recognition, demonstrating the effectiveness of the
joint modeling of phases and steps.

Besides multi-level activity recognition, we tackle fine-grained activity recognition
under limited and imprecise labels. Most of the existing works in the SDS community
have proposed semi-supervised learning to tackle limited labels (Section 2.2.2). Weakly-
supervised learning is another direction of research that tackles the problem of lim-
ited and imprecise labels (Section 2.2.1). The previous works [Taherkhani 2019, Tou-
vron 2021,Bukchin 2020] in the computer vision community propose weakly supervised
learning methods exploiting hierarchical structures. However, the focus solely lies on
object recognition in natural images containing a single object in each image. Addition-
ally, similar approaches for surgical activity recognition are missing in the literature.
Drawing inspirations from [Nwoye 2019,Fuentes-Hurtado 2019], in this thesis, we target
weakly-supervised learning from videos instead of images. We aim to recognize the fine-
grained activity, as opposed to an object, exploiting the temporal information available
in videos. In particular, we target fine-grained surgical activity recognition on videos
from endoscopic procedures.

The review in Section 2.3 shows that data augmentation is critical to improving
the robustness and generalizability of deep learning models. However, adequate aug-
mentation strategies are manually designed which requires domain expertise. Few ap-
proaches have attempted to automatically search for the optimal augmentation pol-
icy [Cubuk 2019,Lim 2019,Cubuk 2020,Gowda 2022]. For surgical activity recognition,
existing methods completely rely on manually designed policies. Furthermore, these
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specific augmentation policies have been applied at the image level to train backbone
CNNs. On the other hand, no effort has been made to propose augmentation approaches
for surgical videos. The temporal dimension in videos assumes particular importance in
activity recognition and needs to be considered, and exploited, while designing augmen-
tation policies for training spatio-temporal models. To this end, this thesis introduces a
new simplified and automated data augmentation method, called TRandAugment, that
aims to incorporate the essential temporal dimension. Inspired by work [Cubuk 2020],
the TRandAugment method proposes a compact and simple parameterization consist-
ing of only 3 parameters, where one parameter is dedicated to the temporal dimension.
TRandAugment is extensively evaluated on the task of surgical activity recognition at
two levels of granularity, i.e., phase and step.
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ಎರಡೂ ïೖ ತÕಟ್ದć ಸದುದ್
(Pronunciation: Eradu kai tattidare saddu)

To clap you need both hands

(Kannada Proverb)
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Deep learning models are function approximators that operate on historical or avail-
able observations. The number of observations required to estimate the underlying
function hinges on the complexity of the task at hand which, subsequently, influences
the depth of the deep learning models. For instance, state-of-the-art vision-based models
consist of millions of parameters to estimate a complex function for the underlying chal-
lenging domain of computer vision. Consequently, these models require large labeled
datasets to facilitate the model parameters to effectively capture valuable representa-
tions of the domain and achieve the best performance on the desired task. This effect
can be witnessed in a sizable collection of literature frequently introducing new datasets.
In the computer vision community, various large datasets have been introduced: Im-
ageNet [Deng 2009], COCO [Lin 2014], Kinetics [Kay 2017, Li 2020, Carreira 2019,
Smaira 2020], CityScapes [Cordts 2015], Berkley DeepDrive [Yu 2020], LSUN [Yu 2015],
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and others. These various datasets have been curated to tackle different tasks such as
image classification, face recognition, human pose estimation, semantic segmentation,
instance segmentation, scene understanding, object detection and tracking, etc. Similar
research directions have been pursued in the medical vision community with datasets
for Radiology, Histopathology, Microscopy, Dermatology, etc [Li 2021].

Efforts to curate large datasets have been made in the surgical vision community. Var-
ious datasets have been released covering different tasks: Cholec80 [Twinanda 2017a],
CATARACTS [Hajj 2019], & HeiSurF [Wagner 2021] for phase recognition; Cholec80,
CATARACTS, HeiSurF, & EndoVis [Allan 2019, Allan 2020] for instrument presence
detection; RMIT [Sznitman 2012], EndoVis, ROBUST-MIS2019 [Roß 2021], & Cholec-
Seg8k [Hong 2020] for instrument segmentation; CholecT50 [Nwoye 2022b] for action
triplet recognition; SARAS-MESAD [Bawa 2021] for action detection, etc. However,
datasets to study the recognition of more than one type of surgical activity are missing
in the surgical vision community. Furthermore, the public datasets cover procedures
such as Laparoscopic Cholecystectomy, Cataract, Radical Prostatectomy, Rectal Resec-
tion, Laparoscopic Hysterectomy, or Proctocolectomy which represent a small set of
high-volume surgeries. To this end, in this chapter, we present a new Bypass40 (BY40)
dataset of high-volume Laparoscopic Roux-en-Y Gastric Bypass (LRYGB) surgical pro-
cedures annotated with two types of surgical activities, phase and step.

3.1 Medical Lexicon
All the glossaries relevant to the LRYGB procedure are presented below (Figure 3.1):

Anastomosis. Anastomosis is the connection between two anatomical structures, usu-
ally between tubular structures such as blood vessels or loops of the intestine, that
is surgically created.

Alimentary limb. The alimentary limb (also jejunum) is the distal part of the small
intestine which is connected to the gastric pouch during LRYGB procedure to
create a path for transferring the incoming food to the colon (large intestine).

Biliary limb. The biliary limb (also biliopancreatic limb, duodenum) is the proximal
part of the small intestine that carries digestive juices from the “remnant” stomach,
bile, and pancreas to the alimentary limb after the LRYGB procedure.

Gastrojejunal. The gastric pouch (gastro) and the alimentary limb (jejunum) collec-
tively are referred to as the gastrojejunal.

Jejunojejunal. The distal part of the biliary limb (jejunum) and the alimentary limb
(jejunum) collectively are referred to as jejunojejunal.

Lesser and greater curvature. The inner and outer borders of the stomach are called
lesser and greater curvature, respectively (Figure 3.1c).
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(a) Abdominal organs. Image credits: Encyclopaedia Britannica1

(b) Different steps of a LRYGB procedure.

Gastric pouch

Biliary limb/
Duodenum Alimentary limb/Jejunum

Gastrojejunal anastomosis

Jejunojejunal anastomosis

Remnant stomach

Y-configuration

Esophagus

Lesser curvature

Greater curvature

Angle of his

(c) Anatomical structures of interest during a LRYGB procedure.
Figure 3.1: Illustrations of anatomy and surgical technique of Laparoscopic Roux-en-Y Gastric
Bypass (LRYGB).

Mesentery. Mesentery, similar to the omentum, is a tissue layer of visceral fat that
connects the intestine to the abdominal wall.

1https://www.britannica.com/science/abdominal-cavity#/media/1/852/68663
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Mesenteric defect. Mesenteric defect refers to the space created in the mesentery due
to the change in the anatomical structures during the surgery where the small
intestine (alimentary limb) is raised to connect it to the gastric pouch.

Omentum. Omentum (also greater omentum) is a large smooth tissue of visceral fat
that surrounds the abdominal organs. It pads and insulates the organs, helps
to hold them in place, and reduces friction between the organs by secreting a
lubricating fluid. As depicted in Figure 3.1a, the omentum has to be dissected to
gain access to the small intestine.

Petersen space. Petersen space, similar to mesenteric defect, is the defect space cre-
ated in the mesentery between the alimentary limb and the lower part of the
transverse colon after the limb is connected to the gastric pouch.

Transverse mesocolon. Transverse mesocolon refers to a fold of fat tissue that sur-
rounds the colon and connects it to the posterior abdominal wall.

Treitz angle. A sharp angle/bend in the small intestine between the duodenum and
jejunum is called the Treitz angle.

Trocars. Trocars are medical devices used to make incisions into the abdominal cavity
that are composed of an awl, a hollow tube, and a seal which essentially functions
as a portal to introduce and manipulate surgical instruments inside the abdomen.

Y-configuration. When the biliary and alimentary limbs are connected during jejuno-
jejunal anastomosis, together they form a Y shape which is referred to as the
Y-configuration (Figure 3.1c).

3.2 Gastric Bypass for Obesity
Obesity is considered to be a global health epidemic by the World Health Organiza-
tion [on Obesity 2000] due to its association with chronic diseases such as diabetes,
cardiovascular diseases, and even some cancers in middle- and low-income countries.
Around two billion people worldwide are facing obesity and these numbers are projected
to continue to increase. By 2030, it is expected that a majority of the world’s adult pop-
ulation will be either overweight or obese [Haththotuwa 2020]. According to [Ryan 2021],
over three million people die each year due to obesity surpassing the number who die
of being underweight. Furthermore, obese people are commonly more susceptible to
infections and their complications; for example, a strong correlation is observed between
obesity and increased risk of COVID-19 [Hepatology 2021]. This is a major world health
concern that requires the rapid development of advanced approaches to efficiently man-
age obesity in the coming decades.

Bariatric surgery is a type of surgery that involves altering an individual’s digestive
system to treat obesity. The surgery is performed when diet and exercise haven’t aided in
weight loss or when a person faces serious health problems due to their weight. Bariatric
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Figure 3.2: Sample images from Bypass40 dataset. Each column presents similar steps.

surgery is another high-volume procedure, like cholecystectomy, with approximately
500,000 surgeries performed laparoscopically every year worldwide [Angrisani 2015]. One
of the most performed types of bariatric surgery, and also considered as the gold stan-
dard, is the Laparoscopic Roux-en-Y Gastric Bypass (LRYGB) procedure. The LRYGB
surgical technique requires 3−5 skin incisions of 5−15 mm to be made using trocars and
involves two crucial stages. The first stage involves dividing the stomach into a small
gastric pouch along with a much larger lower remnant stomach. In the second stage, the
small intestine is divided into biliary and alimentary limbs that are then rearranged to
form a Y-configuration (Figure 3.1c). The alimentary limb facilitates the passage of food
from the gastric pouch while the biliary limb transports the stomach acids and enzymes
from the remnant stomach to the colon. A graphical representation of the surgery can
be seen in Figure 3.1b.

3.3 Dataset

With the aim to advance research on automatic workflow recognition by analyzing the
complex LRYGB surgical procedures, we introduce a new large-scale dataset, called
Bypass40 (BY40), in collaboration with Cristians Gonzalez, MD. The dataset, initially
created as part of the CONDOR project, consists of 40 endoscopic videos of LRYGB
surgeries performed by 7 expert surgeons at IHU Strasbourg, France. The recordings
have been captured with patients’ consent at 25 frames-per-second (fps) with a resolution
of 854×480 or 1920×1080 and anonymized for privacy. All 40 videos are temporally an-
notated with two types of activities: phase and step. This section presents the definition
of the activities of interest and statistics on the BY40 dataset.
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Figure 3.3: List of all the phases and steps defined in the dataset with their hierarchical rela-
tionship. The surgically critical activities are highlighted with a red box.

3.3.1 Phase and Step Definitions

As presented in Section 1.2.2, phase and step are two types of activities that represent
a surgical workflow at two different levels of granularity with steps defined at a higher
granularity than phases. The complex workflow of the LRYGB procedure followed at
our partnering hospital is described using 11 phases and 44 steps. The first phase,
plainly named ‘preparation’, captures the beginning of the procedure after the camera is
inserted into the first trocar following the placements of other trocars. Similarly, the last
phase, called ‘disassembling’, involves the removal of all the trocars and the closure of the
ports. The second phase, called ‘gastric pouch creation’, is one of the most important
parts of the procedure that accomplishes stage I showed in Figure 3.1b. The phases
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Table 3.1: Definitions of all the proposed 11 phases for the gastric bypass procedure.

Phase
ID

Phase Name Description

P1 preparation Phase of access to the abdominal cavity, installation of
the ports for the camera and surgical instruments, and
exposure of the operating field

P2 gastric pouch
creation

Phase in which the small part of the stomach that is con-
nected with the esophagus is separated from the rest to
make a smaller gastric pouch

P3 omentum divi-
sion

Vertical section of the omentum to facilitate the ascent of
the small intestine to the gastric pouch

P4 gastrojejunal
anastomosis

Connection of the distal small intestine with the gastric
pouch

P5 anastomosis
test

Verification that the gastrojejunostomy does not leak

P6 jejunal separa-
tion

Separation between the biliary and the alimentary limb

P7 closure petersen
space

Closure of the space created between the mesentery and
the mesocolon as the small intestine rises to make the
bypass

P8 jejunojejunal
anastomosis

Connection of the biliary limb with the alimentary limb

P9 closure mesen-
teric defect

Closure of the space created in the mesentery as the small
intestine rises to make the bypass

P10 cleaning coagula-
tion

Verification of the absence of bleeding, hemostasis, and
aspiration of the remaining liquid in the abdominal cavity

P11 disassembling Removal of surgical instruments and camera

from three to nine describe stage II of the procedure, i.e., division of the small intestine
and rearranging anatomy to form a Y-configuration by connecting part of the small
intestine to the newly created small stomach pouch. Regarding steps, the first step of
the procedure, and also of the first phase, begins with the exploration of the abdominal
cavity for evaluating the feasibility of the operation plan. Inherently, both these types
of activity are hierarchically related with the possibility of several steps occurring in a
given phase. For example, steps four to eleven describe all the tasks to be performed
for successfully completing the ‘gastric pouch creation’ phase. A detailed list of all the
phases is presented in Table 3.1 while steps are in Table 3.2. Additionally, a subset of
4 phases and 11 steps that are critical for a successful surgery is highlighted in the two
tables. Sample images with respective phase and step labels are shown in Figure 3.2
while the relationship between them can be seen in Figure 3.3.
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Table 3.2: Definitions of all the proposed 44 steps for the gastric bypass procedure.

Step
ID

Step Name Description

S0 null step The camera is static and no actions are performed by the
surgeon

S1 cavity explo-
ration

The entire abdominal cavity is evaluated to verify the
absence of alterations that could prevent or modify the
planned surgery and to determine the technical feasibility
of performing it

S2 trocar placement The accessory work ports (usually four) are introduced
into the abdominal cavity

S3 retractor place-
ment

Introduction of the instrument to retract the liver and
expose the esophagogastric junction

S4 crura dissec-
tion

The fatty tissue surrounding the esophagogastric junction
is dissected to clearly expose the angle of his and separate
the adhesions with the spleen

S5 his angle dis-
section

Opening of a retrogastric window at the level of the lesser
curvature of the stomach to facilitate the passage of the
stapling machine

S6 horizontal sta-
pling

Horizontal section of the stomach at the level of the lesser
curvature with the stapling machine

S7 retrogastric
dissection

Dissection of the fatty and vascular tissue in the posterior
part of the stomach

S8 vertical sta-
pling

Vertical section of the stomach with the stapling machine

S9 gastric remnant
reinforcement

Verification and reinforcement of the gastric remnant sta-
pling with suture thread

S10 gastric pouch re-
inforcement

Verification and reinforcement of the gastric pouch sta-
pling with suture thread

S11 gastric opening Opening of the hole in the gastric pouch where the con-
nection to the small intestine will be made

S12 omental lifting Clamping and lifting of the omentum
S13 omental section Full section of omentum to divide it into two parts
S14 adhesiolysis Section of the connective tissue fibers between the struc-

tures
S15 treitz angle iden-

tification
Exposure of the transverse mesocolon to visualize the tre-
itz angle

S16 biliary limb
measurement

Measurement of the level at which the connection of the
distal small intestine with the gastric reservoir will be
made to perform the gastric bypass (around 70 cm)

Continued on next page
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Table 3.2 – Continued from previous page
Step
ID

Step Name Description

S17 jejunum opening Opening of the distal small intestine where it will be con-
nected to the gastric reservoir to perform the gastric by-
pass

S18 gastrojejunal
stapling

Connection of the gastric pouch to the distal small intes-
tine (distal jejunum)

S19 gastrojejunal de-
fect closing

Suture closure of the hole left by the stapling machine
between the stomach and the jejunum

S20 mesenteric open-
ing

Opening of the mesentery on the edge of the jejunum to
facilitate the passage of the stapling machine

S21 jejunal section Clamping and section of the jejunum proximal to the gas-
trojejunostomy

S22 gastric tube
placement

Progression of the gastric tube from the stomach to the
jejunum in order to calibrate the anastomosis and then
verify that the connection does not leak

S23 clamping Clamping of the jejunum distal to the gastrojejunostomy
S24 ink injection Injection of the ink to detect any leakage
S25 visual assess-

ment
Visual inspection of the gastrojejunostomy for any leak-
ages

S26 gastrojejunal
anastomosis
reinforcement

Reinforcement and fixation of the connection between the
stomach and the jejunum

S27 petersen space ex-
posure

Traction of the mesocolon to expose the space created
when the small intestine ascends towards the gastric
pouch

S28 petersen space
closing

Closing the petersen space with suture thread

S29 biliary limb open-
ing

Opening of the hole in the proximal bowel where the con-
nection between the biliary limb with the alimentary limb
will be made

S30 alimentary
limb measure-
ment

Measurement of the level at which the connection of
the biliary limb with the alimentary limb will be made
(around 150 cm)

S31 alimentary limb
opening

Opening of the hole in the distal bowel where the connec-
tion between the biliary limb with the alimentary limb
will be made

S32 jejunojejunal
stapling

Connection of the biliary limb to the alimentary limb

Continued on next page
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Table 3.2 – Continued from previous page
Step
ID

Step Name Description

S33 jejunojejunal de-
fect closing

Suture closure of the hole left by the stapling machine
between the biliary and the alimentary limb

S34 jejunojejunal
anastomosis
reinforcement

Reinforcement and/or fixation of the jejunojejunal anas-
tomosis with a suture thread

S35 staple line rein-
forcement

Reinforcement and/or fixation of the staple line with a
suture thread

S36 mesenteric defect
exposure

Traction of the anastomosis between the alimentary loop
and the biliary loop and/or the mesentery to expose the
space created when the small intestine ascends towards
the gastric pouch

S37 mesenteric defect
closing

Closing the space with suture thread

S38 anastomosis fixa-
tion

Reinforcement and/or fixation of the anastomosis with
suture thread

S39 coagulation Introduction of a cloth and/or hemostatic tool (bipolar
grasper) and applying pressure to reduce bleeding

S40 irrigation aspira-
tion

Suction of any remaining liquid in the abdominal cavity

S41 parietal closure Closure of the abdominal port holes
S42 trocar removal Removal of all the trocars (usually four) placed during

the preparation phase under visual control
S43 calibration Re-calibration and cleaning of the camera

3.3.2 Dataset statistics
LRYGB is a challenging surgical workflow due to its complexity which is depicted using
11 phases and 44 steps. The BY40 dataset poses further challenges due to the imbalance
in the class distribution of both phases and steps, as can be seen in Figure 3.4. On
average, phases can take 3 to 26 minutes with only 3 out of 11 phases of a duration of
more than 10 minutes. A similar but stark trend is present in steps due to their higher
granularity than phases. A step can last on average between 1 to 16 minutes with only
8 steps lasting more than 5 minutes.

Additionally, a class imbalance can be witnessed in the occurrences of the steps across
the 40 surgeries. The class occurrences of phases and steps are presented in Figure 3.5.
Out of the 44 steps, 6 steps occur in less than 10 surgeries, 8 steps below 20 surgeries,
and 14 steps below 30 surgeries. These challenges need to be tackled by future works in
the SDS community.
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Figure 3.4: Average duration of phases and steps across videos in the dataset.

Figure 3.5: Total occurrences of phases and steps across videos in the dataset.
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4 Multi-Task Multi-Stage Temporal
Convolution Networks

Two heads are better than one, not because either is infallible, but because they are
unlikely to go wrong in the same direction.

- C.S. Lewis
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4.1 Research Objective
Surgical workflow can be described with activities defined at different levels of granular-
ity, such as procedure, phase, step, action, gestures, etc. Recognizing these activities is
an important research direction of the surgical vision community due to its potential in
developing advanced support technologies in CAI. Yet, only a few works have attempted
to recognize activities at multiple levels with most of the works focusing on only one level.
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This study aims to design deep learning based recognition models that jointly recognize
activities at different levels of granularity. To this end, in this chapter, we introduce
MTMS-TCN, Multi-Task Multi-Stage Temporal Convolutional Networks to jointly rec-
ognize the phase and step of another complex LRYGB procedures [Ramesh 2021].

4.2 Methodology
With the aim of joint online recognition of phases and steps, we propose an online surgical
activity recognition pipeline consisting of the following steps: 1) A multi-task ResNet-50
is employed as a visual feature extractor. 2) A multi-task multi-stage causal Temporal
Convolutional Network (TCN) model refines the extracted feature of the current frame
by encoding temporal information deduced by analyzing the history. We propose this
two-step approach so that the temporal model training is independent of the backbone
Convolutional Neural Network (CNN) feature extraction models. The overview of the
model setup is depicted in Figure 4.1.

4.2.1 Feature Extraction Architecture
ResNet-50 [He 2016b] has been successfully employed in many works for phase seg-
mentation [Yu 2019, Czempiel 2020, Jin 2018, Jin 2020]. In this work, we utilize the
same architecture as our backbone visual feature extraction model. The model maps
224×224×3 RGB images to a feature space of size Nf = 2048. The model is trained on
frames extracted from the videos, without any temporal context, in a multi-task setup to
predict both phases and steps as shown in Figure 1 (a). Since both activities are multi-
class classification problems that exhibit an imbalance in the class distribution, softmax
activations and class-weighted cross-entropy loss are utilized. The class weights for both
activities are calculated using the median frequency balancing [Eigen 2015]. The total
loss, Ltotal = Lphase +Lstep, is obtained by combining equally weighted contributions of
class-weighted cross-entropy loss for phases (Lphase) and steps (Lstep).

4.2.2 Temporal Modeling
For the joint temporal surgical activity recognition task, we propose MTMS-TCN, a
multi-task extension of a Multi-Stage Temporal Convolutional Networks (MS-TCN).
The model takes an input video consisting of x1:t, t ∈ [1, T ] frames, where T is the
total number of frames, and predicts y1:t where yt is the class label for the current
timestamp t. Following the design of MS-TCN, MTMS-TCN contains neither pooling
layers nor fully connected layers and it is only constructed with temporal convolutional
layers. Our temporal model consists of only temporal convolutional layers, in particular,
they are dilated residual layers performing dilated convolutions. Since our aim is to
segment surgical activities online, similar to TeCNO [Czempiel 2020], we perform causal
convolutions [van den Oord 2016] at each layer which depends only on n past frames
and does not rely on any future frames. The dilation factor is increased by a factor of 2
for each consecutive layer which increases exponentially the temporal receptive field of
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Figure 4.1: Overview of our model setup. The multi-task architecture of the ResNet-50 feature
extractor backbone is on the left and the multi-task setup of the TCN temporal model is on the
right.

the network without introducing any pooling layer. Additionally, the multi-stage model
recursively refines the output of the previous stage.

Similar to our setup for CNN, we train our MTMS-TCN in a multi-task fashion to
jointly predict the two activities by attaching two heads at the end of a stage. Softmax
activations with cross-entropy loss for phase and step are applied and the total loss is
similar to the loss utilized for training the backbone CNN (Eq. 4.2.1). Please note that
the cross-entropy loss is not class-weighted. This is done to allow the temporal model
to learn implicitly the duration and occurrence of each class in both phases and steps.

4.3 Experimental Setup
4.3.1 Dataset

We evaluate our method on the BY40 dataset described in Section 3. We split the 40
videos in the dataset into 4 subsets of 10 videos each to perform 4-fold cross-validation.
Each subset was used as a test set, while the other subsets were combined together
and divided into training and validation tests consisting of 24 and 6 videos respectively.
The dataset was subsampled at 1 fps, amounting to approximately 149,000 frames for
training, 41,000 for validation, and 66,000 for testing in each fold. The frames are resized
to ResNet-50’s input dimension of 224× 224× 3 and the training dataset is augmented
by applying horizontal flip, saturation, and rotation.

4.3.2 Model Training

The ResNet-50 model is initialized with weights pre-trained on ImageNet. The model
is then trained for phase and step recognition in a single-task setup called ResNet and
jointly in a multi-task setup called MT-ResNet, described in Section 4.2.1. In all the
experiments, the model is trained for 30 epochs with a learning rate of 1e-5, weight
regularization of 5e-5, and a batch size of 32. The test results presented are from the
best performing model on the validation set. The baseline TCN model is trained in
a single-task setup utilizing the features extracted from backbone ResNet (Figure 4.2).
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Figure 4.2: Overview of all the models used for evaluation. All the models trained in a single-task
setup are shown on the left, while all the models trained in a multi-task setup are shown on the
right.

This is effectively achieved by training TeCNO separately for the two activity recognition
tasks. The MTMS-TCN model is trained in a multi-task setup utilizing the backbone
MT-ResNet trained in a similar fashion. All models are trained with different TCN
stages to identify the effect of the number of stages on long temporal associations. In
all the experiments, the model is trained for 200 epochs with a learning rate of 3e-4.
The feature representations of augmented data for CNN are also utilized for training the
TCN model (Figure 4.2). Our CNN backbone was implemented in Tensorflow while the
temporal models (TCN and LSTM) were implemented in PyTorch. Our models were
trained on NVIDIA GeForce RTX 2080 Ti GPUs.

4.3.3 Evaluation Metrics

We follow the same evaluation metrics used in other related publications [Czempiel 2020,
Jin 2018, Jin 2020], where Accuracy (ACC), Precision (PR), Recall (RE), and F1-score
(F1) are used to effectively compare the results. Accuracy quantifies the total correct
classification of activity in the whole video. PR, RE, and F1 are computed class-wise,
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Table 4.1: Baseline comparison on the dataset for phase recognition. Accuracy (ACC),
Precision (PR), Recall (RE), and F1-score (F1) (%) are reported across all the 4-fold
cross-validation.

Models Phase
ACC PR RE F1

No TCN
ResNet 82.1 ± 3.3 73.9 ± 3.3 72.2 ± 3.4 72.5 ± 3.6

MT-ResNet 81.7 ± 2.7 73.1 ± 2.8 72.1 ± 2.3 72.1 ± 2.6
ResNetLSTM 89.1 ± 2.8 82.1 ± 3.6 82.3 ± 3.5 81.7 ± 3.5

MT-ResNetLSTM 88.6 ± 2.7 81.4 ± 3.9 81.1 ± 3.5 80.7 ± 3.8

Stage I TeCNO 89.8 ±3.5 85.4 ± 4.0 82.3 ± 4.5 83.0 ± 4.1
MTMS-TCN 91.2 ±2.9 86.1 ± 3.7 83.8 ± 4.0 84.4 ± 3.5

Stage II TeCNO 89.9 ± 3.3 84.4 ± 4.3 83.3 ± 3.9 83.5 ± 4.0
MTMS-TCN 90.9 ± 3.2 85.6 ± 4.5 84.0 ± 4.2 84.2 ± 4.2

Table 4.2: Baseline comparison on the dataset for step recognition. Accuracy (ACC),
Precision (PR), Recall (RE), and F1-score (F1) (%) are reported across all the 4-fold
cross-validation.

Models Step
ACC PR RE F1

No TCN
ResNet 65.5 ± 2.0 45.3 ± 3.0 43.2 ± 2.7 42.6 ± 2.3

MT-ResNet 66.6 ± 2.4 46.0 ± 3.1 44.7 ± 3.1 43.8 ± 2.9
ResNetLSTM 71.3 ± 2.3 47.8 ± 4.1 47.7 ± 2.8 45.8 ± 2.7

MT-ResNetLSTM 72.2 ± 2.0 51.0 ± 3.3 49.3 ± 1.8 47.9 ± 2.1

Stage I TeCNO 75.1 ± 2.4 54.7 ± 2.6 50.9 ± 2.4 49.9 ± 1.8
MTMS-TCN 76.1 ±2.7 56.4 ± 3.6 52.5 ± 3.3 51.9 ± 2.9

Stage II TeCNO 74.8 ± 2.5 53.2 ± 2.5 50.8 ± 3.3 49.9 ± 3.7
MTMS-TCN 75.5 ± 3.1 54.9 ± 4.4 52.6 ± 4.2 51.8 ± 4.1

defined as:
PR =

|GT ∩ P |
|P | , RE =

|GT ∩ P |
|GT | , F1 =

2
1

PR + 1
RE

,

where GT and P represent the ground truth and prediction for one class, respectively.
These values are averaged across all the classes to obtain PR, RE, and F1 for the entire
test set. We perform 4-fold cross-validation and report the results as mean and standard
deviation across all the folds.

4.3.4 Baseline Comparison

The overview of all evaluated models is depicted in Figure 4.2. MTMS-TCN is evalu-
ated against popular surgical phase recognition networks, ResNetLSTM [Jin 2018], and
TeCNO [Czempiel 2020]. Both these networks are trained in a two-step process for the
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Table 4.3: Baseline comparison on the dataset for joint phase and step recognition.
Accuracy (ACC) is reported after 4-fold cross-validation

Models Phase ACC Step ACC Phase-Step ACC

No TCN ResNet 82.1 ± 3.3 65.5 ± 2.0 54.9 ± 2.6
MT-ResNet 81.7 ± 2.7 66.6 ± 2.4 64.8 ± 2.0
ResNetLSTM 89.1 ± 2.8 71.3 ± 2.3 68.5 ± 2.3

MT-ResNetLSTM 88.6 ± 2.7 72.2 ± 2.0 70.7 ± 1.9
Stage I TeCNO 89.8 ± 3.5 75.1 ± 2.4 72.3 ± 3.0

MTMS-TCN 91.2 ± 2.9 76.1 ± 2.7 75.1 ± 2.8
Stage II TeCNO 89.9 ± 3.3 74.8 ± 2.5 71.9 ± 2.7

MTMS-TCN 90.9 ± 3.2 75.5 ± 3.1 75.1 ± 2.8

single task of phase and step separately. Furthermore, ResNetLSTM is extended to get
MT-ResNetLSTM where the ResNetLSTM model is trained in a multi-task setup. Since
causal convolutions are used in the model for online recognition of activities, for fair com-
parison unidirectional LSTM is utilized. The LSTM, with 64 hidden units, is trained
using the video features extracted from the CNN backbone with a sequence length equal
to the length of the videos for 200 epochs with a learning rate of 3e-4.

4.4 Results and Discussions
Comparison of MTMS-TCN (Stage I) with other state-of-the-art methods, utilizing both
LSTMs and TCNs, is presented in Table 4.1 and Table 4.2 on both phase and step
recognition tasks. TeCNO which utilizes TCNs outperforms both ResNetLSTM and MT-
ResNetLSTM models by 1% and 3% in terms of accuracy. MTMS-TCN outperforms
TeCNO, ResNetLSTM and MT-ResNetLSTM models for by 2% the phase recognition.

Similarly, for step recognition, TeCNO outperforms both LSTM-based models by
3-4% with respect to Accuracy, and 3-6% in terms of precision. MTMS-TCN improves
over TeCNO by 1% in accuracy and outperforms it by 2% and 1.5% in terms of precision
and recall, respectively. In turn, MTMS-TCN outperforms LSTM-based models by 4-5%
in terms of accuracy and 3-8% in terms of precision and recall.

Table 4.3 presents the performance of all the models on joint recognition of phase
and step. We present joint phase-step prediction accuracy which is computed as the
average number of instances where both the phase and step are correctly recognized
by the model. All the multi-task models outperform their single-task counterparts. In
particular, MTMS-TCN outperforms TeCNO by 3%. Moreover, the joint-recognition
accuracy of MTMS-TCN is very close to its step recognition accuracy which indicated
that the model has implicitly learned the hierarchical relationship and benefited from it.

The improvement achieved by both MTMS-TCN and TeCNO in both recognition
tasks over LSTM-based models is attributed to the higher temporal resolution and large
receptive field of the underlying TCN module. On the other hand, the improvement

52



4.4 Results and Discussions

Table 4.4: TeCNO vs MTMS-TCN: 4-fold cross-validation average precision, recall, and
F1-score (%) reported for the critical steps.

Step TeCNO MTMS-TCN
ID PR RE F1 PR RE F1
S4 84.2±5.7 90.0±3.8 85.6±4.1 86.4±10.8 88.3±3.9 86.1±6.6
S5 87.7±1.7 80.4±9.4 80.8±7.6 87.5±4.3 77.4±6.7 79.2±6.8
S6 77.4±7.8 64.7±22.3 63.0±16.3 76.4±15.8 66.9±22.5 62.5±13.6
S7 77.2±10.1 64.7±11.8 67.8±9.3 72.1±8.0 64.0±10.7 66.4±9.8
S8 78.0±8.3 77.1±10.5 72.8±4.0 75.6±7.0 77.1±9.8 72.7±3.4
S16 76.4±7.1 69.1±6.5 68.7±4.2 79.1±3.2 67.7±4.0 68.6±4.4
S18 92.4±2.3 83.1±5.3 86.6±2.3 89.8±4.9 80.5±3.1 83.4±3.6
S25 55.1±12.4 39.4±18.6 40.6±16.1 47.6±6.6 49.5±18.3 45.2±10.7
S30 62.3±4.8 62.0±13.5 57.5±10.3 65.3±6.7 71.2±5.2 64.8±5.6
S32 87.9±3.8 85.4±4.4 84.0±6.6 85.1±5.4 86.3±3.3 83.7±2.9
S39 46.2±27.1 47.8±25.4 39.0±22.2 49.6±33.9 42.9±27.2 40.6±25.5

Figure 4.3: Phase recognition on complete videos in Bypass40 for quality assessment. The top
row shows 3 videos in which our model performs best and the bottom row shows 3 videos with
the worst performance.

of MTMS-TCN over TeCNO is attributed to the multi-task setup. Additionally, MT-
ResNet, the backbone of our MTMS-TCN, achieves improved performance in steps with
a small decrease in performance for phase recognition compared to ResNet, the backbone
of TeCNO.

A set of surgically critical steps along with their average precision, recall, and F1-score
are presented in Table 4.4. MTMS-TCN performs better than TeCNO in recognizing
many of the steps. Moreover, even short-duration steps such as S25, S30, and S39
that are harder to recognize, are significantly better recognized by our MTMS-TCN
over TeCNO. All these results validate our model trained in a multi-task setup for joint
recognition of phases and steps.
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Figure 4.4: Step recognition on complete videos in Bypass40 for quality assessment. The figure
shows the best (top) and worst (bottom) performance of our model. The 44 distinct steps are
mapped to the same 20 categorical colormap.

Phase and Step Recognition Consistency Figure 4.3 visualizes a video set of 3
best and 3 worst performances of MTMS-TCN for phase recognition. The predictions of
MTMS-TCN in some cases perform better than TeCNO in recognizing smaller phases,
such as P5, P7, P9, and P10. MTMS-TCN is also able to recognize phase transitions
better than TeCNO in some instances (e.g. P3, P4, P9). Additionally, both the methods
outperform ResNet and ResNetLSTM models.

Figure 4.4 visualizes the complete video set of one best and one worst performance
of MTMS-TCN for step recognition. Since there are 44 steps, visualizing all of them is
quite challenging and clutters the plot. To effectively show the results, we look at one
video instead of 3 in each best and worst category. Furthermore, for better visualization,
we use a 20-categorical colormap and all 44 steps are mapped onto this colormap. The
results clearly show that MTMS-TCN is able to better capture smaller steps and step
transitions in comparison to TeCNO and ResNetLSTM.

4.5 Conclusion
In this study, we introduce new multi-level surgical activity annotations for the LRYGB
procedures, namely phases and steps. We proposed MTMS-TCN, a multi-task multi-
stage temporal convolutional network that was successfully deployed for joint online
phase and step recognition. The model is evaluated on a new dataset and compared to
state-of-the-art methods in both single-task and multi-task setups and demonstrates the
benefits of modeling jointly the phases and steps for surgical workflow recognition.
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5 Weakly Supervised Fine-grained
Surgical Activity Recognition

ಹÞ ಹÞ ಕೂ×ದć ಹಳಳ್ üĀ üĀ ಕೂ×ದć ಬಳಳ್
(Pronunciation: Hani hani koodidare halla, thene thene koodidare balla)

Every drop of water contributes to the formation of a pond/lake, similarly, every small
work contributes to success

(Kannada Proverb)
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Chapter 5. Weakly Supervised Fine-grained Surgical Activity Recognition

Figure 5.1: Sample images from Bypass40 and CATARACTS datasets. Each column of Bypass40
images presents similar steps.

5.4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

In this chapter, we draw attention to the importance of weak supervision of fine-
grained activity, i.e., step recognition. We present, in Section 5.2, the weakly su-
pervised learning methodology along with the end-to-end spatio-temporal model uti-
lized [Ramesh 2023b]. In Section 5.3, we present the different experiments carried out
on two datasets: Bypass40 (BY40) and CATARACTS (CA50). Finally, we discuss the
significance of the experimental results in Section 5.4, highlighting the need to reduce
the reliance on manual annotations.

5.1 Aim of the Study
Deep learning models require large labeled datasets to achieve top-class performance
on relevant tasks. Annotating large datasets is difficult, time-consuming, and requires
domain-specific medical knowledge. Moreover, the effort required to define and anno-
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5.2 Methodology

Figure 5.2: Overview of our end-to-end spatio-temporal model setup: ResNet50 + SS-TCN
(Single-Stage Temporal Convolutional Networks). When step labels are available, the model is
trained through the supervised pathway (red) and weakly supervised pathway (purple) utilizing
phase labels. The model is trained end-to-end in a single learning stage.

tate a dataset with fine-grained activity such as steps is significantly higher than with
phases. The challenges can be seen in the sample images presented in Figure 5.1. For
instance, in the Bypass40 dataset, similar actions are performed across different steps
belonging to different phases. Dissection is performed in at least 7 steps spread across
3 different phases. Similarly, Stapling is performed in 5 steps across 4 different phases.
Designing and training a deep learning model to distinguish between these similar steps
poses a great challenge. Even the state-of-the-art method, MTMS-TCN [Ramesh 2021],
trained on a fully annotated dataset achieves an accuracy of ∼76% with a precision of
∼56%, accentuating the difficulty of the problem. The class imbalance further creates
a challenge for training deep learning models that require large datasets with plenty of
samples for each class. Hence, it is crucial to reduce this dependency of deep learning
models on large labeled datasets. In this chapter, we aim to address this bottleneck for
the task of step recognition by employing phase as weak supervision.

5.2 Methodology

The overview of our proposed method is presented in Figure 5.2. In this section, we first
present our end-to-end spatio-temporal (ResNet-50 + SS-TCN) model for the task of
fine-grained activity, i.e, step, recognition. Then we introduce the phase-step dependency
loss for weak supervision of step recognition using phase annotation.
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5.2.1 Spatio-temporal Model
Our weakly supervised step recognition network consists of a ResNet-50 model for vi-
sual feature extraction followed by an SS-TCN for modeling the recognition problem
temporally. The complete model is trained in an end-to-end fashion. The overview of
the model setup is depicted in Figure 5.2.

For phase segmentation, ResNet-50 [He 2016b] has been successfully employed as the
backbone in many previous works [Yu 2019,Czempiel 2020, Jin 2018, Jin 2020]. In this
work, we utilize the same architecture for visual feature extraction. We use a Single-
Stage Temporal Convolutional Networks (SS-TCN), a single-stage variant of MS-TCN,
to learn the spatial coherence across video frames. The choice of SS-TCN was motivated
by the work of [Ramesh 2021] where MS-TCN did not provide a significant improvement
over SS-TCN for both the step and phase recognition. Following the design of MS-TCN,
the SS-TCN contains neither pooling layers nor fully connected layers and is constructed
with only temporal convolutional layers, specifically dilated residual layers performing
dilated convolutions. With the aim of online activity segmentation, we perform at each
layer causal convolutions [van den Oord 2016,Czempiel 2020,Ramesh 2021] that depend
only on the current frame and n previous frames.

The complete model takes an input video consisting of T frames x1:T . The ResNet-50
maps 224× 224× 3 RGB images to a feature space of size Nf = 2048. These frame-wise
features are collected over time and are inputs to the TCN model that predicts ŷs1:T
where ŷst is the class label for the current timestamp t, t ∈ [1, T ]. Since step recognition
is a multi-class classification problem that exhibits an imbalance in the class distribution,
softmax activation and class-weighted cross-entropy loss are utilized. Additionally, the
dependency loss used when step labels are not available also relies on softmax activation
and weighted cross-entropy loss, utilizing phase labels instead. The class weights for
both steps and phases are calculated using the median frequency balancing [Eigen 2015]
on the training set. The total loss is given by:

Ltotal = δstep · Lstep + (1− δstep) · Ldep,

where Lstep represents weighted cross-entropy loss for steps, Ldep is the step-phase
dependency loss (subsection 5.2.2), and δstep is a binary variable that indicates if the
video contains step labels.

5.2.2 Weak Supervision: Step-Phase dependency loss
Steps and phases are two types of activities describing the surgical workflow that are
defined at different levels of granularity and possess an inherent hierarchical relation-
ship [Katić 2015,Ramesh 2021]. Steps are defined at a higher level of detail compared to
phases. This brings about lower inter-class variances between steps, compared to phases,
making it a more complex task to clearly define and distinguish between them.

In the scenario presented in this study where the number of annotations is scarce,
the recognition difficulties increase drastically. To overcome some of the challenges,
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Table 5.1: Phases and steps for the cataract procedure.

Phases Idle Opening Phacoemulsification Implantation Closure

Steps
Idle Idle Idle Idle Idle

Toric Marking Nucleus Breaking Incision Suturing
Implant Ejection Phacoemulsification Viscodilatation Sealing Control

Incision Vitrectomy Preparing Implant Wound Hydration
Viscodilatation Irrigation/Aspiration Manual Aspiration
Capsulorhexis Implantation
Hydrodissection Positioning

OVD Aspiration

this chapter proposes a weakly supervised approach that utilizes labels of less granular
activities, i.e., phases. Phase information alone could help the model in two ways. Firstly,
phase information could help the model reduce errors related to recognizing similar-
looking steps, e.g., ‘S6: horizontal stapling’ and ‘S18: gastrojejunal stapling’, belonging
to two different phases. Secondly, we can gather a smaller subset of probable steps that
could occur in a given phase eliminating the rest. For example, given the phase to be
‘Phacoemulsification’ of cataract surgery, only 5 out of 19 steps are likely to occur (Table
5.1). Similarly, a phase such as ‘P5: anastomosis test’ in the Bypass40 dataset, reduces
the possible steps to 7 out of 44 (Figure 3.3). Here, the phase information provides cues
to the model to learn to distinguish between steps belonging to the subset rather than
the whole set. Thus we hypothesize that the additional available weak phase information
could be very beneficial for step recognition in the low data regime.

We propose to represent the relationship as a step-phase mapping matrix Ms→p,
where the elements mij of the matrix are binary indicator variables which are 1 if step
si occurs in phase pj . The matrix encodes the weak information about which steps can
occur in a particular phase and does not provide details of their occurrence, duration,
and/or order. To enforce this weak link between steps and phases, the step predictions
ŷst of our spatio-temporal model (as described earlier) are linearly transformed by Ms→p

into the phase space. Then a weighted cross-entropy loss (LCE) captures the similarity
between the phase labels (ypt ) and the transformed predictions (Ms→p× ŷst ) of the model.
The dependency loss (Ldep) is given by:

Ldep = LCE(y
p
t ,Ms→p × ŷst ).

5.3 Experimental Setup

In this section, we discuss the experimental setup of our method. We first present the
datasets used for evaluation. Next, we discuss the experimental study followed by the
training setup and evaluation metrics.
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5.3.1 Datasets

For completeness, we briefly present the two datasets used in this study.

5.3.1.1 Bypass40

The BY40 dataset [Ramesh 2021] consists of 40 videos of LRYGB procedures with
resolution 854 × 480 or 1920 × 1080 pixels recorded at 25 fps. Each frame is manually
assigned to one of the 11 phases and one of the 44 steps. For example, steps such as
gastric opening, gastric tube placement, horizontal stapling, and vertical stapling occur
in gastric pouch creation phase. A detailed list of phases and steps along with their
hierarchical relationship is presented in Chapter 3. We split the 40 videos into 24, 6,
and 10 videos for training, validation, and test sets, respectively, and sub-sampled them
at 1 fps. This amounts to 150k, 40k, and 65k images in each set. The images are resized
to ResNet-50’s input dimension of 224× 224, and the training dataset is augmented by
applying horizontal flip, saturation, and rotation. A few statistics of the two datasets
are presented in Table 5.2.

5.3.1.2 CATARACTS

The CATARACTS dataset, proposed in [Hajj 2019], contains 50 videos of cataract
surgery. With the recent CATARACTS2020 challenge, the dataset has been released
with step annotations. Similar to [Charrière 2017], we define a phase ontology for avail-
able step labels. Cataract surgery consists of 5 phases and 19 steps that are summarized
in Table 5.1. The dataset is extended with phase labels that are automatically generated
using the available step annotations and the ontology presented in Table 5.1. For each
frame in a video, the phase label is obtained by a simple lookup of the step label in
Table 5.1. The only constraint while generating phase labels is when there are steps
that can occur in several phases. In this case, the phase of the immediately preceding
frame is assigned to the current frame. Since the only steps that occur in more than one
phase are Idle, Incision, and Viscodilatation, and they do not occur at the beginning
or at the end of a phase, it is therefore always possible to identify the correct phase by
checking the phase of the previous step. Since very few steps occur in multiple phases,
the automatically generated phase labels by table lookup are accurate and do not require
expert knowledge or verification from a clinical expert.

We split the 50 videos (following the challenge1) into 25, 5, and 20 videos for training,
validation, and test sets, respectively. Each set consists of 66k, 3.5k, and 11.8k frames
extracted at 1 fps from the videos. The frames are resized from 1920×1080 to 224×224,
and the training set is augmented with horizontal flip, saturation, and rotation.

1https://www.synapse.org/#!Synapse:syn21680292/wiki/601563
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Table 5.2: Statistics of the two datasets considered in this chapter.

Dataset Bypass40 CATARACTS

# Phases 11 5
# Steps 44 19
# Train videos 24 25
# Test videos 10 20
# Validation videos 6 5
# Train images 150K 66K
# Test images 65K 11.8K
# Validation images 40K 3.5K

5.3.2 Study

To demonstrate the effectiveness of our approach, we train and evaluate different config-
urations of the model. Given n videos, of which k are annotated with steps and the rest
(n − k) are weakly annotated with phases, the spatio-temporal model is trained in the
proposed weakly supervised setting utilizing the dependency loss, presented as ‘DEP’. To
analyze the efficacy of ‘DEP’, we compare it against the spatio-temporal model trained
only on k videos in a fully-supervised approach for the task of step recognition, which
we refer to as ‘FSA’. Additionally, we add a state-of-the-art semi-supervised learning
method proposed by [Yu 2019] to our results. [Yu 2019], proposed a teacher/student
semi-supervised learning method where both the teacher and student models consisted
of spatial and temporal components, CNN-biLSTM-CRF and CNN-LSTM respectively.
As noted in Section 2, [Yu 2019] is a closely related work in the literature to the work pre-
sented in this paper. Hence, we have implemented and adapted the method of [Yu 2019]
for the task of step recognition. We repeat all the experiments for different values of
k ∈ {3, 6, 12, 18}.

Furthermore, to analyze the influence of the number of additional videos with phase
labels on the model performance, we conduct experiments where we fix k videos with
step annotations and vary the number of videos with phase annotations from 0 to n− k

(i.e., 3, 6, 12, etc.).

5.3.3 Training

The ResNet-50 model is initialized with weights pre-trained on ImageNet. The complete
ResNet-50 + SS-TCN model is then trained end-to-end for the task of step recognition.
Since SS-TCN models the temporal information in an online setup, features from all the
past frames in the video must be cached. To achieve this, a feature buffer is maintained
to store features from the spatial model of the past frames. The feature buffer is reset
at the end of the video. In all the experiments, the model is trained for 50 epochs with
a learning rate of 1e-5, weight regularization of 5e-4, and a batch size of 64. The test
results presented are from the best performing model on the validation set. The models
were implemented in PyTorch and trained on NVIDIA RTX 2080 Ti.
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Table 5.3: Bypass40: Effect of weak supervision on varying amount of step labeled videos.
Accuracy (ACC), Precision (PR), Recall (RE), and F1-score (F1) (%) are reported.
‘FSA’ denotes the model trained for step recognition without any phase annotations.
‘DEP’ denotes the dependency loss added for weak supervision using phase labels on the
remaining videos.

# Videos
Model Step Phase ACC PR RE F1

FSA 3 (12%) - 45.02± 9.96 26.62± 5.32 21.87± 4.70 19.44± 5.31
[Yu 2019] 3 (12%) - 43.27± 11.8 23.63± 4.41 23.91± 5.71 19.77± 4.89

DEP 3 (12%) 21 57.20 ± 8.31 33.44 ± 6.04 33.16 ± 6.37 29.38 ± 6.11

FSA 6 (25%) - 59.80± 10.17 37.19± 8.52 35.93± 7.31 32.15± 8.03
[Yu 2019] 6 (25%) - 62.55± 10.09 40.63± 7.85 43.71± 8.35 37.68± 8.54

DEP 6 (25%) 18 68.03 ± 9.04 50.05 ± 6.82 45.86 ± 6.46 42.05 ± 7.44

FSA 12 (50%) - 68.26± 8.31 47.57± 7.84 44.74± 7.59 41.30± 8.44
[Yu 2019] 12 (50%) - 67.89± 11.04 46.26± 9.97 50.11± 8.20 43.41± 10.33

DEP 12 (50%) 12 73.43 ± 8.43 53.40 ± 7.43 51.19 ± 8.20 48.34 ± 8.85

FSA 18 (75%) - 72.82± 6.76 50.60± 7.90 48.98± 8.33 46.08± 8.61
[Yu 2019] 18 (75%) - 73.33± 10.15 54.78 ± 11.05 57.21 ± 8.51 51.72 ± 10.59

DEP 18 (75%) 6 73.88 ± 8.11 54.33± 6.38 51.79± 7.10 48.62± 7.49

FSA 24 (100%) - 76.12± 7.39 54.23± 8.24 50.94± 7.53 48.17± 8.02

5.3.4 Evaluation Metrics
To effectively analyze our models, we observe the Accuracy (ACC), Precision (PR),
Recall (RE), and F1-score (F1) metrics used in related publications [Czempiel 2020,
Jin 2018,Jin 2020]. Accuracy quantifies the total correct classification of activity in the
whole video. PR, RE, and F1 are computed class-wise, defined as:

PR =
|GT ∩ P |

|P | , RE =
|GT ∩ P |
|GT | , F1 =

2
1

PR + 1
RE

,

where GT and P represent the ground truth and prediction for one class, respectively.
These values are averaged across all the classes to obtain PR, RE, and F1 for each video
in the test set. All four metrics, computed per video, are averaged across all the videos
in the test set. Furthermore, where applicable, standard deviations are also computed
across all the videos in the test set.

5.4 Results
5.4.1 Bypass40

5.4.1.1 Effect of weak supervision

To quantitatively evaluate our method, the results of step recognition on the test set
are presented in Table 5.3. The table contains the results of our model with a varying
number of videos in the training set labeled with steps (3, 6, 12, and 18) along with the
rest of the training set containing phase annotations. The introduction of dependency
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Table 5.4: Bypass40: Effect of the number of phase annotated videos for step recognition
using ‘DEP’ loss for weak supervision. Accuracy (ACC), Precision (PR), Recall (RE),
and F1-score (F1) (%) are reported for setups with 6, 12, and 24 videos fully annotated
with steps.

# Videos
Model Step Phase ACC PR RE F1

FSA 6 - 59.80 37.19 35.93 32.15
DEP 6 3 62.15 40.48 37.15 33.48
DEP 6 6 67.94 46.17 42.61 39.67
DEP 6 12 68.07 47.18 43.18 40.42
DEP 6 18 68.03 50.05 45.86 42.05

FSA 12 - 68.26 47.57 44.74 41.30
DEP 12 3 72.79 50.10 48.39 45.06
DEP 12 6 72.43 53.02 51.20 47.26
DEP 12 12 73.43 53.40 51.19 48.34

FSA 24 - 76.12 54.23 50.94 48.17

loss ‘DEP’ for weak supervision significantly improves the performance over the model
(FSA) trained only on the step labeled subset of the dataset. We notice a 10-13%
improvement of the model trained with ‘DEP’ loss containing only 3 videos annotated
with steps. Similarly, we see a 10-13% and 5-7% increase in performance in all the
metrics of the ‘DEP’ model in experiments corresponding to 6 and 12 step annotated
videos, respectively. Interestingly, our ‘DEP’ model, trained on a dataset with 50%
of step and 50% of phase annotated videos, achieves performance close to the upper
baseline ‘FSA’ model trained on the whole fully labeled dataset.

Moreover, the results of [Yu 2019] semi-supervised method are also presented in Table
5.3 for different step annotated videos (3, 6, 12, and 18) used to train both teacher and
student model. The student model’s performance increases by 3-8% over ‘FSA’ in all
the metrics for 6 videos with step annotations. Furthermore, an increase of 6% and 2%
is noticed in recall and F1-score above ‘FSA’ with 12 step annotated videos. However,
the method falls short of our proposed ‘DEP’ method. We notice a 10-15%, 2-6%, and
1-6% increase in performance in all the metrics of the ‘DEP’ model over [Yu 2019] with
3, 6, and 12 step annotated videos, respectively. Although both methods use 100%
of the training videos for the task of step recognition, [Yu 2019] aim at exploiting the
knowledge learned by an offline teacher model to generate pseudo labels for additional
videos without step annotations while ‘DEP’ aims to use weak supervision through phase
annotations. Hence, the method of [Yu 2019] is limited by the knowledge learned by
the teacher model which uses only k step annotated videos although it learns from both
current and future frames. On the other hand, the superior performance of the ‘DEP’
model indicates the additional cues present in phase annotated videos, although weak,
are advantageous and that the proposed method effectively utilizes this information in
the lower data settings.
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Table 5.5: CATARACTS: Effect of weak supervision on varying amount of step la-
beled videos. Accuracy (ACC), Precision (PR), Recall (RE), and F1-score (F1) (%) are
reported. ‘FSA’ denotes the model trained for step recognition without any phase an-
notations. ‘DEP’ denotes the dependency loss added for weak supervision using phase
labels on the remaining videos.

# Videos
Model Step Phase ACC PR RE F1

FSA 3 (12%) - 48.47± 10.62 51.32± 11.91 37.44± 9.85 37.12± 10.15
[Yu 2019] 3 (12%) - 59.61± 10.67 56.02± 14.31 61.82 ± 14.45 53.26± 13.61

DEP 3 (12%) 22 66.78 ± 12.21 64.29 ± 12.50 59.73± 11.93 58.31 ± 12.73

FSA 6 (25%) - 69.51± 11.16 71.05± 14.13 56.70± 12.67 59.28± 13.50
[Yu 2019] 6 (25%) - 74.62± 8.22 67.71± 11.48 75.93 ± 12.48 67.67± 12.46

DEP 6 (25%) 19 75.28 ± 11.50 71.84 ± 14.30 69.19± 12.72 68.09 ± 13.97

FSA 12 (50%) - 78.02± 9.05 79.02± 13.20 69.55± 12.04 71.18± 13.04
[Yu 2019] 12 (50%) - 77.84± 12.55 71.48± 13.41 79.92 ± 15.28 72.96± 14.46

DEP 12 (50%) 13 79.94 ± 9.17 80.52 ± 12.93 72.62± 11.91 73.52 ± 13.29

FSA 18 (75%) - 82.5± 8.07 82.58 ± 11.91 76.05± 11.62 77.39± 12.12
[Yu 2019] 18 (75%) - 78.59± 10.71 74.55± 14.17 78.16 ± 12.64 73.55± 13.67

DEP 18 (75%) 7 82.64 ± 9.72 82.20± 13.70 77.32± 12.70 77.67 ± 13.56

FSA 25 (100%) - 83.37± 9.50 85.29± 12.05 78.96± 11.93 80.09± 13.34

5.4.1.2 Effect of the amount of phase annotated videos

In Table 5.4, we present the results of our model with a varying number of phase an-
notated videos. Utilizing 6 videos containing step annotations, the addition of phase
labeled videos as weak supervision improves all metrics: accuracy, F1-score, precision,
and recall. With 6 videos annotated with phases, the model performance increases by
7-8% in all metrics over the baseline ‘FSA’ model. The addition of more videos does
not affect the accuracy but further improves both precision and recall by 4%. This is
due to our weakly-supervised method, which only provides supervision information if a
step can occur in the given phase. This information helps to distinguish steps belonging
to different phases, as opposed to steps belonging to the same phase. Therefore, the
precision and recall of the model improve with more phase annotated videos, and no sig-
nificant improvement in accuracy is seen. We see a similar trend when using 12 videos
annotated with steps and increasing the number of videos annotated with phase labels.
Thus, ultimately it is beneficial to train our method utilizing all additional videos in the
dataset with phase annotations for weak supervision.

5.4.2 CATARACTS

5.4.2.1 Effect of weak supervision

We quantitatively evaluate our method and present the results of step recognition in
Table 5.5. The table contains the results of our model, on a similar set of experiments as
with Bypass40, by varying the number of videos in the training set labeled with steps (3,
6, 12, and 18) along with the rest of the training set containing phase annotations. We see
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a similar trend as with bypass where the ‘DEP’ model outperforms ‘FSA’. We notice a 13-
22% improvement ‘DEP’ model considering only 3 step annotated videos. Furthermore,
we see a 6-13% and 1-3% increase in performance in all the metrics of the ‘DEP’ model in
experiments corresponding to 6 and 12 step annotated videos, respectively. We see that
our method achieves a similar performance improvement on a relatively easier surgical
workflow, such as cataracts, consistently surpassing the FSA in all labeled ratios. The
semi-supervised method of [Yu 2019] achieves performance improvement of 16%, 8%,
and 1.5% over ‘FSA’ in F1-score for experiments corresponding to 3, 6, and 12 videos,
respectively. However, as seen earlier, it falls short of ‘DEP’ by 5%, 0.5%, and 0.5%
in the F1-score for experiments corresponding to 3, 6, and 12 videos. Interestingly,
[Yu 2019] achieve high recall on both datasets (Table 5.3 & 5.5). On CATARACTS,
it even outperforms the ‘DEP’ model in recall in all the experiments but falls short
significantly in precision. This could be credited to the student model which learns
from imperfect pseudo labels generated by the teacher model. Since our proposed ‘DEP’
model learns from true phase labels on additional videos its performance increases in
both precision and recall. This validates the applicability of our approach to different
surgical workflows.

5.4.2.2 Effect of the amount of phase annotated videos

We present the results of our experiments, with a varying number of phase annotated
videos, on CATARACTS in Table 5.6. We notice that utilizing 6 step annotated videos
with additional phase labeled videos improves all the metrics by 6-13%. In particular,
with 6 videos annotated with phases, we see a performance increase of 5% in accuracy
and F1-score and 8% in recall of the ‘DEP’ model over the baseline ‘FSA’. The addition
of more videos provides a fractional improvement in accuracy but further improves both
recall and F1-score by 1-4%. We see a similar trend when using 12 videos with step
annotations reaffirming our hypothesis that it is beneficial to train our method utilizing
all additional videos in the dataset with phase annotations for weak supervision.

5.4.3 Weak supervision on step predictions

To visualize the effectiveness of our method, we visualize the step predictions of our
method on the CATARACTS dataset which contains fewer phases and steps thereby en-
abling us to render a simple and clearer graphical diagram. We compare the step predic-
tions of our ‘DEP’ model against ‘FSA’ for 2 best and 2 worst videos in CATARACTS
in Figure 5.3 for different labeled ratios (3, 6, and 12 videos with step annotations).
Along with the step predictions we present the errors in the phase predictions for both
models. The phase prediction error plot is computed as the errors in phase predictions
derived from step predictions, using the step-phase mapping matrix, against ground
truth phase predictions. Figure 5.3 clearly depicts the effectiveness of our method for
different labeled ratios. By correcting for the phase labels through dependency loss, our
‘DEP’ model is able to correct for corresponding step labels without explicit supervision
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Table 5.6: CATARACTS: Effect of the number of phase annotated videos for step recog-
nition using ‘DEP’ loss for weak supervision. Accuracy (ACC), Precision (PR), Recall
(RE), and F1-score (F1) (%) are reported for setups with 6, 12, and 25 videos fully
annotated with steps.

# Videos
Model Step Phase ACC PR RE F1

FSA 6 - 69.51 71.05 56.70 59.28
DEP 6 3 71.34 67.84 62.27 62.01
DEP 6 6 74.30 71.70 64.18 64.96
DEP 6 12 73.57 70.88 65.68 66.03
DEP 6 19 75.28 71.84 69.19 68.09

FSA 12 - 78.02 79.02 69.55 71.18
DEP 12 3 77.60 78.26 68.60 69.87
DEP 12 6 80.11 81.60 72.46 73.98
DEP 12 13 79.94 80.52 72.62 73.52

FSA 25 - 83.37 85.29 78.96 80.09

for step recognition (e.g. S10, S15, S18). The top row of Figure 5.3a shows this effect
where we see a marked improvement in recognition of steps S18 (first video) and S10
(second video) by correcting for phase errors.

5.4.4 Limitations

In some cases, for example, S16 (Figure 5.3a, 5.3b, 5.3c), correcting for phase errors
does not improve step recognition. The step is misrecognized with another step that
occurs in the same phase. This is an expected outcome due to the intrinsic limitations
of our weakly supervised method using coarser phase labels. Given the phase to be ‘P2:
gastric pouch creation’ (Figure 3.1b), it is impossible for a model to differentiate between
‘crura dissection’ and ‘his angle dissection’ or between ‘horizontal stapling’ and ‘vertical
stapling’. As can be seen in Figure 3.2, the steps are quite similar in appearance and
perform similar actions on the same anatomy (i.e., stomach or small intestine). This
makes it challenging for a model to learn even when all the annotations are available.
Furthermore, the phase information is too weak and does not provide any cues to better
distinguish between the steps because both are valid steps in the current phase. Another
limitation of our method is that adding more videos with phase annotations is not
always beneficial. This limitation also stems from weak phase signals. If the fully
supervised ‘FSA’ model learns to separate steps belonging to different phases, i.e., it has
no or few phase-step correspondence errors, then additional videos with phase labels add
no significant value as the model, during training, makes no/few errors in phase-step
correspondence that helps improve feature learning. The significant errors by the model
would be the inter-class separation of steps belonging to the same phase. Learning good
representations to reduce these errors without supervision is a challenging task that
needs to be tackled in future works.
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(a) FSA vs DEP: 3 videos with step annotations.

(b) FSA vs DEP: 6 videos with step annotations.

(c) FSA vs DEP: 12 videos with step annotations.
Figure 5.3: Step predictions on two best and two worst videos on the CATARACTS dataset
for different labeled ratios. For each video, we visualize the step prediction of ground truth,
DEP model predictions, DEP model phase prediction errors, FSA model predictions, and phase
prediction errors of the FSA model.
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Meanwhile, the effect of utilizing more phase annotated videos as weak supervision
for improving the model performance on step recognition is presented in Tables 5.6 &
5.6. As observed in Sections 5.4.1.2 & 5.4.2.2, it is beneficial to train the ‘DEP’ model
utilizing all the additional phase annotated videos in the dataset for weak supervision.
We also observe that in the lower data setting (6 videos with step annotations) model
performance improves even when the phase annotated videos are increased from 12 to
18 (19 for cataracts). However, our study doesn’t provide insights as to how many phase
annotated videos are truly required to achieve the best performance by our proposed
‘DEP’ model. This is another limitation of our study, irrespective of the complexity of the
procedure, that is hindered by the size of the available labeled datasets (24 in Bypass40
& 25 in CATARACTS). Understanding the extent of the ‘DEP’ model would require
extending these datasets which is an important direction that needs to be pursued in
future studies.

5.5 Conclusion
In this chapter, we introduce a weakly-supervised learning method for surgical step
recognition utilizing less demanding phase annotations. To model the weak supervision
between steps and phases, we introduce a step-phase dependency loss and train a ResNet-
50 + SS-TCN model end-to-end. The proposed method is extensively evaluated on a
BY40 dataset consisting of 40 LRYGB procedures and on the CATARACTS dataset
containing 50 cataract surgeries. The proposed ‘DEP’ model significantly improves
the step recognition metrics over the baseline ‘FSA’ model for all the amounts of step
annotations available. We hope that this work will inspire and foster future research in
weak supervision for surgical workflow analysis utilizing multi-level descriptions of the
workflow.
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6 TRandAugment: Temporal Ran-
dom Augmentation Strategy for
Surgical Activity Recognition

Mais pareille aux kaléidoscopes qui tournent de temps en temps, la société place
successivement de façon différente des éléments qu’on avait crus immuables et compose

une autre figure.
Like the kaleidoscopes that turn from time to time, society successively places in a

different way elements that we had thought immutable and composes a new pattern.

- Marcel Proust
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In the previous chapter, we presented a method for step recognition in a weakly
supervised learning paradigm. An important component of the method was the spatio-
temporal model. In this chapter, we investigate a key building block of similar spatio-
temporal models, i.e, Data augmentation [Ramesh 2023a].

6.1 Objective of Research
While a large body of work has proposed various deep learning model architectures, a
significant amount of research has examined the different components of these models.
One such component is Data augmentation. As discussed in Section 1.3.3, data aug-
mentation plays an important role in the optimal training of deep learning models and
improves their robustness. Designing effective augmentation policies requires expertise.
Besides, methods in the surgical vision community have utilized augmentation policies
that are designed manually. Various different augmentation methods have been explored
in the computer vision community with recent works proposing to learn augmentation
policies on a proxy task. Yet, no effort has been made to examine new data augmenta-
tion methods for surgical videos. The temporal dimension in videos assumes particular
importance in activity recognition as intraoperative surgical videos are of longer duration
compared to videos examined in the computer vision community and they capture the
complete surgical procedure composed of multiple complex activities. This temporality
present in both surgical videos and activities needs to be considered and exploited while
designing augmentation policies for training spatio-temporal models. To this end, this
chapter introduces a new simplified and automated data augmentation method, called
TRandAugment, that aims to incorporate the essential temporal dimension.

6.2 Methodology
Automated activity recognition methods aim to segment endoscopic videos into surgical
activities, i.e., phase or step. To improve the generalizability of activity recognition
methods based on deep learning, this section introduces the proposed augmentation
method, called TRandAugment, and the spatio-temporal model used to evaluate the
method.

6.2.1 TRandAugment
The goal of TRandAugment is to incorporate the temporal dimension present in surgical
videos into the data augmentation methods for improving the generalization of activity
recognition models. In pursuing this goal, we also want to propose a simplified and auto-
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Figure 6.1: Pictographical representation of TRandAugment. A video is segmented into T clips
and a random augmentation ti, sampled from a list of transforms τ , is applied to clip i. The
augmented clips are merged back to form a new video which is passed as input while training an
end-to-end CNN+TCN network that predicts phases or steps.

mated data augmentation method. Given that a recent method [Cubuk 2020] operates
only on a two-parameter space (M,N) compared to learned augmentation methods with
over 30 parameters [Cubuk 2019,Lim 2019], TRandAugment is designed to require only
3 parameters, where the first two adopt the same parameterization used in [Cubuk 2020],
while the third additional parameter T is used to characterize the temporal dimension.
Similar to previous works [Cubuk 2019, Cubuk 2020], a set τ of 10 transformations is
utilized and applied with uniform probability 1

|τ | :

• identity

• color

• brightness

• sharpness

• autoContrast

• rotate

• shear-x

• shear-y

• translate-x

• translate-y

The choice of |τ |= 10 transformations is selected based on the domain knowledge
of possible transformations that occur in endoscopic videos. Thus, we have excluded
all the augmentations that, when applied, result in drastically different looking images
that are highly unlikely to arise in surgical videos, such as posterize, solarize and equal-
ize used in [Cubuk 2020] and other novel augmentations proposed in the literature:
YOCO [Han 2022], CutOut [DeVries 2017b], MixUp [Zhong 2020], CutMix [Yun 2019]
or AugMix [Hendrycks 2020].

As schematically represented in Figure 6.1, the idea of TRandAugment is to apply
different transformations to different temporal video segments. Thus, parameter T is
introduced to control the number of temporal segments. Each video is split into a
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random T ′ ∈ [1, T ] segments and for each segment, i (i ∈ [1, T ′]), a random set of
N transformation {ti,1, ..., ti,N | ti,j ∼ τ} is applied uniformly on all the frames of that
segment. The strength of each transformation is represented by magnitude M and
linearly scaled between its minimum and maximum values mapped to an arbitrarily
chosen integer scale from 0 to 30.

To maintain a notation consistent with previous methods, in particular [Cubuk 2020],
the proposed method is parameterized as (M,N, T ), where M and N are defined as the
magnitude and number of transformations to apply per segment, and T is the maximum
number of temporal segments.

6.2.2 Spatio-temporal Model

The spatio-temporal model is comprised of a ResNet-50 backbone, for visual feature
learning, followed by a Temporal Convolutional Network (TCN), for temporal modeling.
The presented model is a powerful architecture comparable to other recent state-of-the-
art methods [Czempiel 2020,Czempiel 2021,Ramesh 2021,Gao 2021]. Furthermore, it
is modular and can easily accommodate new spatial and temporal models that could
be proposed for activity recognition. This model is used in all the experiments and is
trained end-to-end for the task of surgical activity recognition considering both phases
and steps.

ResNet-50 [He 2016b] has been a popular model of choice in many recent works on
phase/step recognition [Yu 2019, Jin 2020,Czempiel 2020,Ramesh 2021]. The model is
also employed in this work for visual feature learning. For long temporal modeling, TCNs
have been shown to outperform RNNs [Czempiel 2020, Ramesh 2021]. A single-stage
model is employed over a multi-stage. This is motivated by the work of [Ramesh 2021]
where the multi-stage did not show improvements over the single-stage for both phase
and step recognition. SS-TCN consists of only temporal convolutional layers that per-
form causal convolutions which depend only on the current and n previous frames de-
signed for online recognition.

The spatio-temporal model takes as input a video containing Υ frames x1:Υ. ResNet-
50 extracts visual features of size f = 2048 from 224 × 224 × 3 RGB images. The
frame-wise features are stacked over time for the TCN model, which outputs predictions
ŷ1:Υ, where ŷi is the class label for the current timestamp i, i ∈ [1,Υ]. Since both the
tasks at hand (phase and step) are multi-class classification problems with imbalance in
class distribution, following [Czempiel 2020,Ramesh 2021], class-weighted cross-entropy
loss is used.

6.3 Experimental Setup

6.3.1 Datasets

For simplicity we briefly reintroduce the two datasets used in the this study.
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6.3.1.1 Bypass40

The Bypass40 (BY40) dataset [Ramesh 2021], presented in Chapter 3, comprises 40
LRYGB procedures with an average video duration of 1 hour and 45 minutes. The
complex workflow of LRYGB surgeries is represented with 11 phases and 44 steps and
the dataset is fully annotated with both these types of activities defined at different
levels of granularity. All the videos have a resolution of 854× 480 or 1920× 1080 pixels
and are recorded at 25 fps. Following the same data split as Chapter 4, the dataset
has been segregated into 24, 6, and 10 videos for training, validation, and test sets,
respectively. The frames have been extracted at 1 fps and resized to ResNet-50’s input
size of 224× 224.

6.3.1.2 CATARACTS

The CATARACTS (CA50) dataset1 [Charrière 2017,Hajj 2019] consists of 50 videos of
cataract surgical procedures. The dataset is annotated per frame with only steps as
part of the CATARACTS2020 challenge. A complete list of all 19 steps is tabulated on
the challenge website2. The 50 videos are split into 25, 5, and 20 subsets for training,
validation, and test sets, respectively. Frames are extracted at 1 fps and resized from
1920× 1080 to 224× 224.

6.3.2 Training and Evaluation

6.3.2.1 Baselines

TRandAugment, or TRA, is compared against different augmentation methods as base-
lines. RandAugment [Cubuk 2020], referred to as RA, is the first comparison where the
augmentations are applied independently for each image in a video. Next, RandAug-
ment is extended to UniformRandAugment, called URA, where augmentation is applied
uniformly on all the frames in a video. TRA is a more generalized method encapsu-
lating both RA and URA, where setting T = 1 reduces TRA to URA while T = Υ

(Υ: number of frames in a video) transforms TRA to RA. Finally, all the methods are
compared against the state-of-the-art MTMS-TCN [Ramesh 2021] that used a manually
designed ‘Custom’ set of augmentations (flip, saturation, rotation) for surgical activity
recognition.

6.3.2.2 Training

In all the experiments, the ResNet-50 backbone model is initialized with ImageNet pre-
trained weights. Then the complete ResNet-50 + SS-TCN model is trained in an end-
to-end fashion for the task of phase/step recognition. To train the TCN, which requires
temporal information, features from all the past frames in the video are cached by
utilizing a feature buffer. This feature buffer is reset at the end of the video. The

1https://ieee-dataport.org/open-access/cataracts
2https://www.synapse.org/#!Synapse:syn21680292/wiki/601563
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spatio-temporal model is trained for 50 epochs with a learning rate of 1e-5 and a batch
size of 64. The proposed method and model have been implemented in PyTorch and the
experiments (∼ 3500 GPU hours) were trained on NVIDIA RTX 6000 and V100 GPUs.

6.3.2.3 Evaluation

The effectiveness of the method is measured using accuracy (ACC), precision (PR),
recall (RE), and F1-score (F1) metrics. The metrics are computed per video (averaged
across classes) and are averaged across all the videos in the given set, following the same
evaluation protocol as [Czempiel 2020,Czempiel 2021,Ramesh 2021,Shi 2021].

6.4 Results
In this section, we analyze the different components that influence the design of TRan-
dAugment. Initially, we study the importance of temporally consistent augmentations
in Section 6.4.1, then we analyze the impact of parameter M in Section 6.4.2, the num-
ber of transformations in Section 6.4.3 and impact of the parameter T in Section 6.4.4.
Finally, we present the performance of the proposed method considering the optimal pa-
rameters on both datasets (Section 6.4.5) and discuss the limitations of TRandAugment
in Section 6.4.6.

6.4.1 Do temporally consistent augmentations matter?

One of the key differences between videos and images is the additional temporal dimen-
sion. An obvious question is to study the importance of temporally consistent augmen-
tations when training models on videos. To study the effect of temporal consistency,
Table 6.1 compares the image-based augmentation method, RA, against the temporally
consistent URA method on the CATARACTS dataset. The comparison is carried out
at different settings (M = {15, 30}, N = 1, τ ′ ⊂ τ : |τ ′|= {3, 5, 9}). URA consistently
performs better than RA in all the settings. Furthermore, the mean of RA, when aver-
aged across |τ ′| at both settings of M = {15, 30}, is ∼3-7% below the best-performing
model compared to URA (∼1%). This indicates the instability of RA due to its policy
of independent frame-wise augmentation which breaks temporal visual consistency. In-
terestingly, the best RA model is obtained by utilizing a smaller set of augmentations
|τ |= 3, which indicates that the model can learn significantly better when there is less
variance in image appearance temporally. All the observations confirm that temporally
consistent augmentations are important when training spatio-temporal models.

6.4.2 Effect of magnitude (M)

To study the effect of augmentation magnitude, Table 6.2 compares model performance
over various settings of M = {5, 10, 15, 20, 30} for URA and TRA while keeping all
other parameters fixed (|τ ′|= 5, N = 1, T = 5). Both URA and TRA show higher
performance at higher magnitudes with the best results obtained at M = 30 on both
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Table 6.1: The use of temporally consistent augmentations does matter: RA vs URA.
All results are reported on the validation set on the CA50 dataset for step recognition.

M |τ ′| RA URA
ACC F1 ACC F1

15 3 74.63 58.75 76.81 63.73
15 5 70.10 54.35 75.75 64.43
15 9 73.31 61.21 76.20 62.80
15 avg 72.68 58.10 76.25 63.65

30 3 77.31 64.62 78.05 66.88
30 5 69.66 54.48 78.45 66.99
30 9 70.70 53.87 79.74 68.07
30 avg 72.55 57.66 78.75 67.31

Table 6.2: Effect of magnitude M. All results are reported on the F1-score metric.

M CA50 - step BY40 - Phase BY40 - Step
URA TRA URA TRA URA TRA

5 64.23 60.59 85.06 85.02 54.55 53.78
10 63.75 63.40 82.72 84.59 54.39 54.62
15 64.43 63.67 84.83 85.64 56.64 56.38
20 61.61 62.22 84.54 82.70 57.39 56.06
30 66.99 64.56 87.71 86.18 58.70 59.34

tasks and datasets. Irrespective of the augmentation method used, higher magnitudes
seem to have a direct effect on the performance of the model for different tasks and
datasets. However, we notice that TRA performance is below URA at M = 30. This is
not a valid comparison as the other parameters |τ ′|, N , and T are fixed and sub-optimal.
Hence we perform these experiments to solely study the effect of magnitude on URA and
TRA independently. The full comparison of TRA against other methods is discussed in
Section 6.4.5.

6.4.3 Do all augmentations help?

To study the importance of using all the augmentations, Table 6.3 lists different experi-
ments in terms of F1-score on the validation set, with N = 1 and T = 5, where subsets
of transforms (τ ′ ⊂ τ : |τ ′|= {3, 5, 9}) are randomly sampled from τ . For the task of
step recognition on both datasets, the best model performances are obtained when all
transforms are utilized. On the other hand, the model performs best at an intermediate
|τ ′|= 5 for recognizing phases for both settings of M = {15, 30}. However, at a higher
magnitude (M = 30), the model performs equally well at |τ ′|= 10 compared to |τ ′|= 5

for phase recognition. In short, TRA benefits by utilizing all the transforms τ .
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Table 6.3: Influence of the set of augmentations. All results report the F1-score metric.

|τ ′| M TRA
CA50 - Step BY40 - Phase BY40 - Step

3 15 65.92 83.21 56.36
5 15 63.67 85.64 56.38
9 15 66.81 82.99 57.65
3 30 62.93 83.27 59.85
5 30 64.56 86.18 59.34
9 30 68.66 86.10 60.92

Table 6.4: Impact of the number of temporal segments T with different augmentations
on TRA. All results are reported on the F1-score metric on the validation set.

T M F1
CA50 - Step BY40 - Phase BY40 - Step

3 15 66.11 85.53 56.94
5 15 66.81 84.98 55.69
8 15 67.10 85.49 55.66
3 30 65.21 86.16 59.05
5 30 68.66 86.22 60.47
8 30 66.74 85.92 59.13

6.4.4 Impact of parameter T on TRA

The key component of the proposed TRA method is the parameter T that captures
the variance in the appearance of the frames across a video. TRA is inspected with
different settings of parameter T = {1, 3, 5, 8} at two different magnitudes M = {15, 30}
while fixing N = 1 and |τ ′|= 10. The results in Table 6.4 show that at T = 5,M = 30

the model achieves the best performance on all the different tasks and across the two
datasets. This indicates that augmenting at the clip level benefits the training of activity
recognition models and the proposed TRA parameterization (M,N, T ) allows us to easily
find optimal parameters.

6.4.5 TRandAugment

Table 6.5 compares different augmentations methods on the test set with optimal param-
eters. As noticed earlier, temporally consistent augmentations are beneficial and hence
both URA and TRA, which enforce this consistency, outperform image-level augmenta-
tion method RA by 1-2% in F1 and ∼3% in accuracy for the task of step recognition
on CATARACTS. Additionally, URA and TRA both show improvement over the state-
of-the-art MTMS-TCN model which utilized a ‘Custom’ set of augmentations by 1-5%
across all the metrics for phase recognition on Bypass40. We can further notice a sig-
nificant improvement of 5-11% across all the metrics for recognizing steps on Bypass40.
This improvement could be attributed to the larger set of transforms |τ |= 10.
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Table 6.5: Comparison of different methods on BY40 and CA50 test sets. * denotes
models trained in a multi-task setup requiring additional phase/step labels.

Dataset Method |τ ′| M, N, T ACC PR RE F1
Task

Custom - -, -, - 81.79±12.30 77.82±13.61 82.25±14.69 78.21±14.90
CA50 RA 3 30, 1, - 80.45±10.33 76.48±13.00 81.34±13.56 76.87±14.01
Step URA (ours) 10 30, 1, - 83.24±10.64 77.04±14.20 82.33±14.68 78.02±14.98

TRA (ours) 10 30, 1, 5 83.64±10.67 78.38±14.11 84.06±14.18 79.43±15.09

Custom* - -, -, - 90.26 ± 6.44 84.74 ± 7.71 81.75 ± 9.12 81.31 ± 9.07
BY40 URA (ours) 10 30, 3, - 93.55 ± 3.24 83.25 ± 7.80 86.07 ± 7.61 83.51 ± 7.93
Phase TRA (ours) 10 30, 2, 5 93.17 ± 4.27 86.42 ± 8.50 86.70 ± 6.72 85.20 ± 8.40

Custom* - -, -, - 75.46 ± 9.34 55.58 ± 9.88 52.78 ± 9.22 50.35 ± 9.75
BY40 URA (ours) 10 30, 2, - 80.55 ± 6.61 61.32 ± 8.11 62.13 ± 7.74 58.52 ± 8.46
Step TRA (ours) 10 30, 2, 5 80.80 ± 7.90 63.66 ± 9.08 63.94 ± 8.31 60.06 ± 9.22

TRA, on the other hand, outperforms URA on both the phase and step recognition
tasks and both datasets. TRA achieves a 1-3% improvement in phase and step recog-
nition on Bypass40 and CATARACTS, respectively. Moreover, for step recognition on
Bypass40, TRA achieves a +2% and +1.5% improvement in precision and F1-score over
URA. The performance improvement of the proposed TRA method over URA could be
attributed to the temporally consistent augmentations applied at the clip level. TRA
enables the extension of video datasets with videos composed of different segments aug-
mented differently, which when used in training improves the generalization of deep
learning models. Besides, the parameterization of TRA is independent of the underly-
ing recognition task or dataset which enables the proposed method to be applicable to
other surgical procedures and tasks.

6.4.6 Limitations

The (M,N, T ) parameterization of TRandAugment simplifies the process of selecting a
good augmentation policy, for training, that induces both spatial and temporal varia-
tions in the input videos. Yet, it does not completely eliminate the search for optimal
parameters which adds computational expense. Further studies are required to better
understand if or when datasets or tasks may require a separate search to achieve op-
timal performance. Another drawback of TRandAugment is that it works only in the
input space. Few works in the literature have proposed adding variations in the model’s
feature space to improve generalizability [Liu 2018a,Chu 2020]. Unlike input space aug-
mentations, designing feature space augmentations is extremely challenging because the
domain or the noise characteristics of the feature space is not well-studied. Nevertheless,
this could be an interesting extension to our proposed method, especially for training
the temporal component of spatio-temporal models.
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6.5 Conclusion
This chapter introduced a new augmentation method called TRandAugment that sim-
plifies data augmentation pipelines. Given a video, creates pseudo videos with different
clips augmented differently. The method is parameterized with magnitude (M), the
number of augments (N), and the number of temporal augments (T). This parame-
terization provides a simple framework to search for optimal configuration and oper-
ates at a level with significantly reduced search space, in line with current research
in data augmentation. The proposed method has been validated on two large surgi-
cal video datasets, considering both the phase and step recognition tasks, obtaining a
boost in the performances thus demonstrating the impact of TRandAugment. New open
questions arise on how this method may improve model robustness [Lopes 2019], feder-
ated learning [Kassem 2022], or weakly-/semi-/self-supervised learning [Ramesh 2023b,
Pan 2021, Shi 2021,Yu 2019,Ramesh 2022]. Furthermore, the proposed method could
be applicable to other tasks, such as tool localization and tracking [Nwoye 2019], action
triplets [Nwoye 2020, Nwoye 2022b], and video semantic segmentation [Alapatt 2021].
Future work will study the value of TRandAugment in these different settings and tasks.
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7 Cross-center Generalization
Study

ಪರ್ತಯ್ಕಷ್Ŏ ಾÏ ಕಂಡರೂ ಪರ್�ಾÙë Āೂೕಡು
(Pronunciation: pratyaksa kandaruu pramanisi nodu)

Even when something is evident, examine it

(Kannada Proverb)
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Deep learning models have shown tremendous potential in recognizing surgical activ-
ities from endoscopic videos. Chapter 4, 5, & 6 studied their potential on phase and step
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Figure 7.1: Setup of cross-center study of activity recognition models.

recognition using the BY40 dataset which consists of 40 videos of LRYGB procedures
performed by expert surgeons at IHU Strasbourg, France. BY40 introduces diversity in
surgical techniques through 7 expert surgeons that help activity recognition models to
generalize. As discussed in Section 1.3.4, introducing diversity or variance in the training
data is vital to address the overfitting and memorization of deep learning models.

Although useful, the diversity introduced in BY40 is only a small fraction of diversity
existing in the domain owing to the changes in the surgical workflow across surgeons,
medical centers, communities, nations, etc. Additional variance due to patients’ age,
height, weight, gender, race, and ethnicity also occurs in the medical domain. Charac-
terizing the robustness and generalizability of deep learning models over these variations
is a precursor to integrating them into a CAS in the OR. To this end, this chapter in-
troduces two large video datasets of LRYGB procedures from two medical centers and
analyzes the performance of activity recognition models across centers.

In this chapter, we first introduce in Section 7.1 a revised workflow of the LRYGB
procedure integrating the different workflow followed at another medical center. We
follow up with the description of the new multi-center dataset comprised of 70 videos
from two different centers, called MultiBypass140, in Section 7.2. In Section 7.3, we
present the different experimental studies and discuss their results in Section 7.4. Finally,
we summarize the study of this chapter highlighting the important takeaways in Section
7.5.
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7.1 Phase and Step Definitions and Differences

Table 7.1: Definitions of all the proposed 12 phases for the gastric bypass procedure.

Phase
ID

Phase Name Description

P1 preparation Phase of access to the abdominal cavity, installation of
the ports for the camera and surgical instruments, and
exposure of the operating field

P2 gastric pouch
creation

Phase in which the small part of the stomach that is con-
nected with the esophagus is separated from the rest to
make a smaller gastric pouch

P3 omentum divi-
sion

Vertical section of the omentum to facilitate the ascent of
the small intestine to the gastric pouch

P4 gastrojejunal
anastomosis

Connection of the distal small intestine with the gastric
pouch

P5 anastomosis
test

Verification that the gastrojejunostomy does not leak

P6 jejunal separa-
tion

Separation between the biliary and the alimentary limb

P7 closure petersen
space

Closure of the space created between the mesentery and
the mesocolon as the small intestine rises to make the
bypass

P8 jejunojejunal
anastomosis

Connection of the biliary limb with the alimentary limb

P9 closure mesen-
teric defect

Closure of the space created in the mesentery as the small
intestine rises to make the bypass

P10 cleaning coagula-
tion

Verification of the absence of bleeding, hemostasis, and
aspiration of the remaining liquid in the abdominal cavity

P11 disassembling Removal of surgical instruments and camera
P12 Other interven-

tions
If additional intervention is performed (e.g. liver biopsy,
cholecystectomy)

7.1 Phase and Step Definitions and Differences
The ontology consisting of phase and step presented in Section 3.3.1 captured the
LRYGB workflow followed at IHU Strasbourg (France) and was defined by an expert
surgeon. In order to annotate video datasets from other medical centers with surgical
activities, the ontology may need to be revised to include variations in the workflow
followed at other centers. In this work, we build another large-scale video dataset of
LRYGB surgeries performed at Inselspital, Bern University Hospital, Switzerland, in
collaboration with Dr. med. Joël Lavanchy. As a prerequisite, the previously defined
ontology has been inspected by an expert surgeon from Inselspital and a few revisions
have been introduced. Table 7.1 describes all the phases of LRYGB workflow followed
at both Strasbourg and Bern centers while the steps are presented in Table 7.2. The
new phases and steps added to the two tables are highlighted in magenta.
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‘P12: Other interventions’ is a minor addition to the phases that capture other
interventions carried out alongside gastric bypass. This phase has no associated steps as
they belong to the ontology of the other interventions. In Table 3.2, two new steps - ‘S44:
drainage insertion’ and ‘S45: specimen retrieval’ - are appended to the LRYGB workflow
as these extra steps are performed as part of the workflow followed at Inselspital. With
these modifications, the resulting ontology encapsulates the workflow from both medical
centers.

Table 7.2: Definitions of all the proposed 46 steps for the gastric bypass procedure.

Step
ID

Step Name Description

S0 null step The camera is static and no actions are performed by the
surgeon

S1 cavity explo-
ration

The entire abdominal cavity is evaluated to verify the
absence of alterations that could prevent or modify the
planned surgery and determine the technical feasibility of
performing it

S2 trocar placement The accessory work ports (usually four) are introduced
into the abdominal cavity

S3 retractor place-
ment

Introduction of the instrument to retract the liver and
expose the esophagogastric junction

S4 crura dissec-
tion

The fatty tissue surrounding the esophagogastric junction
is dissected to clearly expose the angle of his and separate
the adhesions with the spleen

S5 his angle dis-
section

Opening of a retrogastric window at the level of the lesser
curvature of the stomach to facilitate the passage of the
stapling machine

S6 horizontal sta-
pling

Horizontal section of the stomach at the level of the lesser
curvature with the stapling machine

S7 retrogastric
dissection

Dissection of the fatty and vascular tissue in the posterior
part of the stomach

S8 vertical sta-
pling

Vertical section of the stomach with the stapling machine

S9 gastric remnant
reinforcement

Verification and reinforcement of the gastric remnant sta-
pling with suture thread

S10 gastric pouch re-
inforcement

Verification and reinforcement of the gastric pouch sta-
pling with suture thread

S11 gastric opening Opening of the hole in the gastric pouch where the con-
nection to the small intestine will be made

S12 omental lifting Clamping and lifting of the omentum
S13 omental section Full section of omentum to divide it into two parts

Continued on next page

82



7.1 Phase and Step Definitions and Differences

Table 7.2 – Continued from previous page
Step
ID

Step Name Description

S14 adhesiolysis Section of the connective tissue fibers between the struc-
tures

S15 treitz angle iden-
tification

Exposure of the transverse mesocolon to visualize the tre-
itz angle

S16 biliary limb
measurement

Measurement of the level at which the connection of the
distal small intestine with the gastric reservoir will be
made to perform the gastric bypass (around 70 cm)

S17 jejunum opening Opening of the distal small intestine where it will be con-
nected to the gastric reservoir to perform the gastric by-
pass

S18 gastrojejunal
stapling

Connection of the gastric pouch to the distal small intes-
tine (distal jejunum)

S19 gastrojejunal de-
fect closing

Suture closure of the hole left by the stapling machine
between the stomach and the jejunum

S20 mesenteric open-
ing

Opening of the mesentery on the edge of the jejunum to
facilitate the passage of the stapling machine

S21 jejunal section Clamping and section of the jejunum proximal to the gas-
trojejunostomy

S22 gastric tube
placement

Progression of the gastric tube from the stomach to the
jejunum in order to calibrate the anastomosis and then
verify that the connection does not leak

S23 clamping Clamping of the jejunum distal to the gastrojejunostomy
S24 ink injection Injection of the ink to detect any leakage
S25 visual assess-

ment
Visual inspection of the gastrojejunostomy for any leak-
ages

S26 gastrojejunal
anastomosis
reinforcement

Reinforcement and fixation of the connection between the
stomach and the jejunum

S27 petersen space ex-
posure

Traction of the mesocolon to expose the space created
when the small intestine ascends towards the gastric
pouch

S28 petersen space
closing

Closing the petersen space with suture thread

S29 biliary limb open-
ing

Opening of the hole in the proximal bowel where the con-
nection between the biliary limb with the alimentary limb
will be made

Continued on next page
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Table 7.2 – Continued from previous page
Step
ID

Step Name Description

S30 alimentary
limb measure-
ment

Measurement of the level at which the connection of
the biliary limb with the alimentary limb will be made
(around 150 cm)

S31 alimentary limb
opening

Opening of the hole in the distal bowel where the connec-
tion between the biliary limb with the alimentary limb
will be made

S32 jejunojejunal
stapling

Connection of the biliary limb to the alimentary limb

S33 jejunojejunal de-
fect closing

Suture closure of the hole left by the stapling machine
between the biliary and the alimentary limb

S34 jejunojejunal
anastomosis
reinforcement

Reinforcement and/or fixation of the jejunojejunal anas-
tomosis with a suture thread

S35 staple line rein-
forcement

Reinforcement and/or fixation of the staple line with a
suture thread

S36 mesenteric defect
exposure

Traction of the anastomosis between the alimentary loop
and the biliary loop and/or the mesentery to expose the
space created when the small intestine ascends towards
the gastric pouch

S37 mesenteric defect
closing

Closing the space with suture thread

S38 anastomosis fixa-
tion

Reinforcement and/or fixation of the anastomosis with
suture thread

S39 coagulation Introduction of a cloth and/or hemostatic tool (bipolar
grasper) and applying pressure to reduce bleeding

S40 irrigation aspira-
tion

Suction of any remaining liquid in the abdominal cavity

S41 parietal closure Closure of the abdominal port holes
S42 trocar removal Removal of all the trocars (usually four) placed during

the preparation phase under visual control
S43 calibration Re-calibration and cleaning of the camera
S44 drainage inser-

tion
Insertion of drainage into the abdominal cavity to drain
fluids

S45 specimen re-
trieval

Removal of any spare tissue (e.g. omentum, small bowel,
or stomach)
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(a) Total occurrence of phases in the videos from the two medical centers.
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(b) Average duration of phases across videos from the two medical centers.
Figure 7.2: BernBypass70 vs StrasBypass70: Total occurrence and average duration of phases
across videos in the datasets.

7.2 Multi-center Dataset: MultiBypass140
MultiBypass140 is a multi-center dataset constructed from 140 videos of LRYGB surg-
eries operated in two medical centers: Bern and Strasbourg. The following sections
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provide a detailed description of the dataset.

7.2.1 Bern Center

In collaboration with Dr. med. Joël Lavanchy, we present a new dataset, called BernBy-
pass70, consisting of laparoscopic videos of LRYGB surgeries performed at Inselspital,
Bern University Hospital, Switzerland. The recordings have been captured at 25 fps
with a resolution of 720× 576 or 1280× 720 and anonymized for privacy. A few interest-
ing statistics of the dataset are presented in Table 7.3. On overage, surgery at the Bern
medical center lasts for 72 minutes. The dataset is fully annotated with both phases
and steps by an expert surgeon using the ontology presented earlier. The distribution
of the phases and steps across the dataset is graphed in Figure 7.2, 7.3, & 7.4. Not all
phases and steps are carried out in each procedure. 3 out of 11 phases concerning the
LRYGB procedure are performed in less than 25 surgeries. Similarly, 20 out of 46 steps
are carried out in less than 25 surgeries.

7.2.2 Strasbourg Center

We extend the BY40 introduced in Chapter 3 with additional 30 videos and create
a new large video dataset called StrasBypass70. Out of the 70 videos, 40 videos are
annotated by a clinician at IHU Strasbourg as part of BY40 while the remaining 30
videos are annotated by a clinician from Bern University Hospital. The inter- and
intra-rater reliability between the two clinicians on the multi-center dataset from Bern
and Strasbourg has been studied in [Lavanchy 2022] showing excellent reliability in
the phase and step annotations of the two datasets (BernBypass70 and StrasBypass70).
The recordings have been captured with patients’ consent at 25 fps with a resolution of
854×480 or 1920×1080 and anonymized for privacy. The average duration of a LRYGB
procedure at IHU Strasbourg is 110 minutes. All 11 phases are routinely carried out
with only 11 out of 46 steps performed in less than 25 surgeries (Figure 7.2 & 7.3).

7.2.3 Dataset setup

In the experimental study conducted in this chapter, we split the 70 videos in BernBy-
pass70 and StrasBypass70 into 40, 10, and 20 videos for training, validation, and test
sets, respectively. Images were extracted at 1 fps. This amounts to 166,431, 46,497,
and 92,979 frames in the three sets of BernBypass70. Similarly, the total frames in
each set of StrasBypass70 amount to 252,913, 72,555, and 138,326. The frames are re-
sized to 224× 224× 3 and the training dataset is augmented by applying horizontal flip,
saturation, and rotation.

7.3 Study Design
In this chapter, we study the effectiveness of activity recognition methods on the two
datasets presented above. The overview of the study design is presented in Figure 7.1.
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Table 7.3: Statistics of the LRYGB datasets from two medical centers.

Dataset videos minimum maximum mean±std frames
duration (mins) duration (mins) duration (mins) @ 1 fps

StrasBypass70
Train 40 41 171 106 ± 32 253,913

Validation 10 78 176 121 ± 33 72,555
Test 20 63 178 115 ± 32 138,326

BernBypass70
Train 40 37 114 69± 19 166,431

Validation 10 54 116 77± 20 46,497
Test 20 52 145 77 ± 24 92,979

MultiBypass140
Train 80 37 171 88 ± 33 420,344

Validation 20 54 176 99 ± 35 119,052
Test 40 52 178 96 ± 34 231,305

We analyze MTMS-TCN for joint phase and step recognition similar to the experimental
study of Section 4. Additionally, we evaluate the weakly supervised learning method
presented in Section 5. For completeness, we briefly describe the two methods below.

7.3.1 Multi-level activity recognition
MTMS-TCN architecture consists of two stages where first a multi-task CNN, i.e.,
ResNet-50, is employed for extracting visual features from images followed by a multi-
task multi-stage causal TCN to refine the features and extracting temporal information
for joint phase and step recognition. The ResNet-50 model is initialized with pre-trained
weights on ImageNet and trained using adam optimizer for 30 epochs. While we use
MTMS-TCN with a single TCN stage as the second stage does not improve the model
performance. The temporal model was trained in a multi-task learning setup on video
features extracted from ResNet-50 for 200 epochs.

We conduct a set of seven experimental setups to analyze the performance of MTMS-
TCN on the multi-center dataset:

(a) Training and evaluation on StrasBypass70;

(b) Training and evaluation on BernBypass70;

(c) Training on StrasBypass70 and evaluation on BernBypass70;

(d) Training on BernBypass70 and evaluation on StrasBypass70;

(e) Training and evaluation on the joint MultiBypass140 dataset;

(f) Training on MultiBypass140 and evaluation on StrasBypass70;

(g) Training on MultiBypass140 and evaluated on BernBypass70;

87



Chapter 7. Cross-center Generalization Study

7.3.2 Weakly-supervised learning

As presented in Chapter 5, an end-to-end spatio-temporal model was built utilizing
ResNet-50 as the spatial model and a single-stage variant of MS-TCN as the tempo-
ral model. The model is designed for step recognition with limited step labels and a
large amount of weaker phase labels. The spatio-temporal model is trained using the
dependency loss (Section 5.2.2) for 30 epochs with a learning rate of 1e-5. We split the
dataset into 40, 10, and 20 videos for training, validation, and test sets respectively.
We study the ‘FSA’ vs ‘DEP’ performance for the different number of videos with step
labels k ∈ {3, 6, 12, 24, 30} and use all 40 videos of the training set with phase labels.

7.3.3 Metrics

The performance of the methods is evaluated using accuracy (ACC), precision (PR),
recall (RE), and F1-score (F1) metrics. The metrics are computed per video (averaged
across classes) and are averaged across all the videos in the given set, following the same
protocol as previous chapters.

7.4 Results
7.4.1 Multi-level activity recognition

7.4.1.1 Quantitative analysis

The quantitative performance of MTMS-TCN on the seven different experimental stud-
ies for phase and step recognition are presented in Table 7.4 & 7.5. The model performs
best in recognizing both types of activities when trained and evaluated on the same
dataset ((a) StrasBypass70 or (b) BernBypass70). However, the performance of the
model drops by significantly on BernBypass70 compared to StrasBypass70. Performance
of MTMS-TCN drops by ∼ 5% in accuracy and ∼ 21% in F1-score on phase recognition
while it drops by ∼ 11% in accuracy and ∼ 10% in F1-score on step recognition. Fur-
thermore, a cross-center evaluation, captured by experimental study (c) & (d), shows a
huge gap in the transferability of an activity recognition model. MTMS-TCN trained on
StrasBypass70 achieves an accuracy ∼ 71% and F1 ∼ 35% when evaluated on BernBy-
pass70 for phase recognition. While the model trained on BernBypass70 achieves ∼ 63%

accuracy and ∼ 33% F1 when evaluated on StrasBypass70. Particularly, we observe a
transferability gap of 18-22% in accuracy and 28-47% in F1 on phase recognition and
21-30% in accuracy and 26-37% in F1 on step recognition.

All the previously observed performance drops could be attributed to the various
differences between the two datasets. As seen in Figure 7.2a & 7.3, both phases and
steps occur evenly in all the 70 procedures of StrasBypass70. In contrast, only a subset
of phases and steps occur in most of the procedures in BernBypass70 with very few
procedures containing all the phases and steps. These differences in the distribution of
phases and steps between StrasBypass70 and BernBypass70 exist due to the variations
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Table 7.4: Performance of MTMS-TCN on different datasets on phase recognition.

Train Test ACC PR RE F1

StrasBypass70 StrasBypass70 90.70± 6.92 82.32± 8.69 85.86± 7.70 82.31± 8.83
BernBypass70 71.95± 13.98 38.38± 8.10 43.26± 10.44 35.69± 9.88

BernBypass70 StrasBypass70 63.63± 9.43 36.67± 5.00 38.44± 8.15 33.12± 5.52
BernBypass70 85.01± 13.22 62.79± 10.99 66.41± 12.20 61.21± 11.73

MultiBypass140
StrasBypass70 90.14± 6.80 81.68± 7.93 83.79± 7.85 81.17± 8.09
BernBypass70 85.97± 12.92 61.81± 10.92 67.04± 11.6 60.58± 11.32
MultiBypass140 88.05± 10.53 71.75± 13.78 75.41± 12.97 70.88± 14.24

Table 7.5: Performance of MTMS-TCN on different datasets on step recognition.

Train Test ACC PR RE F1

StrasBypass70 StrasBypass70 78.79± 10.28 62.12± 7.14 64.79± 8.68 60.53± 8.23
BernBypass70 49.57± 14.39 24.50± 6.57 29.50± 6.95 23.00± 6.47

BernBypass70 StrasBypass70 46.04± 11.00 30.36± 4.82 29.67± 6.19 24.69± 4.91
BernBypass70 67.61± 13.51 52.75± 9.50 55.81± 11.41 50.08± 10.67

MultiBypass140
StrasBypass70 78.16± 10.07 62.12± 6.79 63.54± 8.15 59.87± 7.71
BernBypass70 68.60± 13.35 52.38± 8.17 55.01± 9.59 49.69± 9.43
MultiBypass140 73.38± 12.75 57.25± 8.95 59.28± 9.87 54.78± 10.00

in the surgical technique and workflows followed in the two medical centers. For instance,
phase ‘P3: omentum division’ or ‘P7: closure petersen space’ routinely carried out in the
Strasbourg center is not regularly performed in the Bern center. Given the hierarchical
structure of phases and steps, with every phase missing, corresponding steps are missing
as well. On average, a procedure of BernBypass70 contains 2 phases and 6 steps less
than the average StrasBypass70 procedure. This finding is also reflected by the average
duration of a surgery which is 38 minutes shorter in BernBypass70 than in StrasBypass70.
All these natural variations in the workflows across different centers must be introduced
while training to improve the robustness and generalizability of activity recognition
models. Moreover, multi-center validation of the methods is required before a large-
scale deployment in the ORs.

Note, study (e) demonstrates that our model trained and evaluated on a MultiBy-
pass140 (71% and 55% F1-score for phases and steps, respectively) has a performance in
between the performance on the individual monocentric datasets. Interestingly, studies
(f) and (g) reveal that when the model is evaluated separately on each center, its perfor-
mance is close to monocentric training and evaluation. This illustrates that the model
trained on MultiBypass140 is capable of learning the variations in the two datasets
without compromising its efficiency on either dataset.

89



Chapter 7. Cross-center Generalization Study

Table 7.6: BernBypass70: Effect of weak supervision on varying amount of step la-
beled videos. Accuracy (ACC), Precision (PR), Recall (RE), and F1-score (F1) (%) are
reported. ‘FSA’ denotes the model trained for step recognition without any phase an-
notations. ‘DEP’ denotes the dependency loss added for weak supervision using phase
labels on the remaining videos.

# Videos
Model Step Phase ACC PR RE F1

FSA 3 (8%) - 42.38± 11.90 22.60± 5.33 24.96± 5.51 19.29± 5.33
DEP 3 (8%) 37 49.10 ± 11.25 26.21 ± 6.52 25.26 ± 6.12 22.43 ± 6.42

FSA 6 (15%) - 47.94± 12.82 32.29± 7.95 35.01± 8.05 29.39± 7.79
DEP 6 (15%) 34 52.50 ± 11.56 35.98 ± 6.96 36.18 ± 7.15 31.58 ± 7.14

FSA 12 (30%) - 59.79± 13.29 42.98± 8.48 41.84± 7.96 38.51± 8.29
DEP 12 (30%) 28 61.27 ± 13.18 46.26 ± 7.81 45.39 ± 8.19 41.95 ± 8.35

FSA 24 (60%) - 66.99± 11.82 52.51± 7.73 51.33± 7.47 48.18± 8.12
DEP 24 (60%) 16 67.92 ± 13.05 53.95 ± 7.47 53.98 ± 8.71 49.47 ± 8.94

FSA 30 (75%) - 68.53 ± 10.93 53.73 ± 7.66 53.75 ± 9.11 49.91 ± 8.54
DEP 30 (75%) 10 67.23± 10.87 49.61± 7.42 50.78± 7.64 46.47± 7.87

FSA 40 (100%) - 68.60± 13.35 52.38± 8.17 55.01± 9.59 49.69± 9.43

7.4.1.2 Qualitative analysis

Figure 7.5 & 7.6 visualizes a video set of one best and one worst performance of MTMS-
TCN for phase and step recognition on the three datasets: BernBypass70, StrasBypass70,
and MultiBypass140. Similar to the results on BY40 in Section 4.4, MTMS-TCN model
performs well in recognizing short duration phases and steps on all the three datasets.
Interestingly, the activity recognition model fails when complications arise in the pro-
cedure resulting in deviations from the expected workflow. This can be noticed in the
worst performing video on BernBypass70 in both Figure 7.5 & 7.6. An unexpectedly
long time of the surgery is spent in ‘P10: cleaning coagulation’, and its corresponding
step, followed by an unusual transition back to ‘P8’, ‘P6’, ‘P5’, and ‘P4’.

7.4.2 Weakly-supervised learning

To study the transferability of the weakly-supervised learning method presented in Chap-
ter 5, we present its results on BernBypass70 in Table 7.6. The table contains the results
of our model with a varying number of videos in the training set labeled with steps (3, 6,
12, 24, and 30) along with the rest of the training set containing phase annotations. The
‘DEP’ model improves by 3-7% over ‘FSA’ when trained with only 3 videos annotated
with steps. Similarly, we see a 2-5% and 2-4% increase in performance in all the metrics
of the ‘DEP’ model in experiments corresponding to 6 and 12 step annotated videos,
respectively. However, the performance gains of the ‘DEP’ model decrease with increas-
ing step annotated videos. Despite the differences in the workflow between Bern and
Strasbourg medical centers, exploiting the phase-step hierarchy in a weakly-supervised
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learning setup does benefit step recognition.

7.5 Conclusion
In this chapter, we introduced multi-center video datasets consisting of 140 videos from
two medical centers, called BernBypass70 and StrasBypass70. Additionally, we present
a revised ontology of LRYGB procedure combining the workflows followed in the two
centers. We study the transferability of surgical activity recognition methods on the two
datasets. This study demonstrates the need to introduce variations in surgical techniques
and workflow to deep learning models to avoid the generalization gap described in the
literature [Bar 2020,Kitaguchi 2022]. With an extensive experimental study, the origin of
the performance differences in our datasets has been investigated. It has been shown that
dataset distribution and size due to different LRYGB techniques and workflows between
centers have a major impact on model performance. This highlights the importance of
multi-centric datasets for the training and evaluation of deep learning models in surgical
video analysis.
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Figure 7.3: BernBypass70 vs StrasBypass70: Total occurrence of steps across videos.
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Figure 7.4: BernBypass70 vs StrasBypass70: Average duration of steps across videos.

93



Chapter 7. Cross-center Generalization Study

Figure 7.5: Phase predictions on one best and one worst video from the multi-center datasets.
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Figure 7.6: Step predictions on one best and one worst video from the multi-center datasets.
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8 Potential Applications

In the end we retain from our studies only that which we practically apply.

- Johann Wolfgang Von Goethe

Chapter Summary

8.1 Automatic Report Generation . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2 Surgical Skill Assessment and Training . . . . . . . . . . . . . . . . . . . . 100
8.3 Decision Support and Monitoring Systems . . . . . . . . . . . . . . . . . . 102
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8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

The capability to automatically recognize surgical activities from endoscopic videos
could empower CAS to be successfully deployed in the OR. Especially, these systems
would be effective in many pre-, intra-, and post-operative applications targeting surgi-
cal training, safety monitoring, clinical decision support, data indexing and reporting,
autonomous execution, and others. In this chapter, we present a few of the potential
applications of activity recognition in the OR. An overview of applications of CAS is
presented in Figure 8.1.

8.1 Automatic Report Generation
Documenting the complete process followed during each surgery is a fundamental part
of the workflow that captures valuable information used in scientific, administrative,
and judicial applications. The surgical reports are filed by surgeons by making use of
structured templates with predefined wording to describe operative notes. Following
this structured process for reporting empowers automated extraction of information for
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Surgical Report No. 276
P1 P2 P3 P4 P5

C r i t e r i a 1        ✅

C r i t e r i a 2        ❌

C r i t e r i a 3        ✅

Figure 8.1: An illustration of context-aware assistance that could be provided in and out of the
operating room using some of the systems developed in this thesis.

efficient storage and quick retrieval. However, generating a surgical report is a tedious job
carried out by surgeons worldwide. After completing a physically and cognitively intense
surgery that could last from a few minutes to hours, writing a detailed report, even when
structured, could feel like an arduous undertaking. Assisting in reporting or completely
auto-generating them could be achieved via the activity recognition module of CAS.
Reliably recognizing activities, both coarse and fine-grained, allows automatic recording
of all the phases and steps achieved in the surgery along with the total time spent
in each activity. Critical activities that must be carried out for ensuring safe surgery
could also be tracked and reported automatically. For instance, key activities like ‘P4:
gastrojejunal anastomosis’ or ’S6: horizontal stapling’ of the Laparoscopic Roux-en-Y
Gastric Bypass (LRYGB) procedure are necessarily required to be completed to avoid
unnecessary complications. Recording if these activities were achieved or not would be
to understand and tackle post-operative complications. [Berlet 2022] is an exemplar of
a research attempt to automatically generate surgical reports using a phase recognition
model. A sample report generated by [Berlet 2022] is shown in Figure 8.2.

8.2 Surgical Skill Assessment and Training
Automatic surgical skill assessment has been studied in the community by recogniz-
ing gestures on bench-top surgical training tasks in videos and comparing between
them [Varadarajan 2009b, Doughty 2018]. Similarly, other activities such as phases
or steps can be recognized during training with advanced surgical simulation platforms
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Figure 8.2: A sample report automatically generate for laparoscopic cholecystectomy based on
phase recognition model. Image credit: [Berlet 2022]

and evaluated to assess the skill of a trainee. The list and order of activities carried
out by a trainee alongside the time spent in completing each activity provide valuable
insights into the surgeon’s competency in performing them. By devising quantitative
metrics to measure the skills, the system should be capable to rank surgeons on their
competency and shortcomings. Besides, the training can be assisted by quickly search-
ing activity relevant video clips from large video databases. Note that the large surgical
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video databases could also be effectively indexed based on activity labels. Learners’
engagement in the training process may be further increased by using gamification tech-
niques to build training courses.

8.3 Decision Support and Monitoring Systems
Automatic recognition of phases or steps provides information on all the phases and steps
carried out prior to the current phase/step. Combining domain knowledge with such
information can be employed to guide the surgical decision-making process. Contextual
knowledge extracted from such information can suggest probable next phase/step to un-
dertake along with listing all the tools and technology required to successfully complete
it. Furthermore, context-enabled situational awareness may be useful for real-time simu-
lation of the complete surgery which could lead to early recognition of possible outcomes
or complications and assist in early decision-making on the action plan.

Safety checklists can be automatically verified by a monitoring system utilizing the
contextual information extracted through activity recognition. Critical phases, steps, or
actions could all be automatically identified and warnings could be issued if any of the
critical activities are not accomplished during the surgery. For example, in Laparoscopic
Cholecystectomy the achievement of a critical view of safety could be monitored if the
surgeon is executing the clipping and cutting phase [Mascagni 2020]. Furthermore, de-
viations from the expected surgical plan could be detected by analyzing phase or step
transitions and appropriate alerts could be sent to both hospital administration and
relevant clinicians to swiftly assess all the revisions in the surgical plan.

8.4 Autonomous Surgical Robots
The introduction and advances in MIS to minimize pain, improve recovery time, and
reduce complications continuously increase the complexity of the workflow. This has
brought about new challenges such as a steep learning curve, a restricted view of
anatomy, and/or a longer duration of a procedure compared to open surgery. Longer
duration of surgery implies longer exposure of the patient to anesthesia and longer ap-
plication of CO2 pressure in laparoscopic procedures. These have many side effects
on the patients ranging from dizziness or headaches to gas embolism or cardiac ar-
rest [Wu 2019,Dowdy 2021]. Reducing these side effects requires reducing the overall
duration of the surgery. Although decision support systems could assist towards this
aim, introducing partial or complete autonomy in performing surgeries may contribute
significantly. A straightforward benefit of surgical autonomy is the reduction in the cog-
nitive workload of the surgeons by offloading mundane or repetitive tasks. On a scale
of 0 to 5, different level or degree of autonomy has been proposed for a robotic surgical
system [Battaglia 2021]. This is illustrated in Figure 8.3. Here, 0 corresponds to no
autonomy with the surgery managed fully by clinicians and 5 to a system fully capable
of performing entire surgeries, with no human intervention. Across all these different
levels of autonomy, a CAS plays a central role by presenting contextual knowledge use-
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Figure 8.3: The six levels of autonomy in robotic surgery proposed in [Yang 2017].

ful for decision-making, intra-operative surgical planning, or monitoring the safety of
autonomous executions. Particularly, modeling and recognizing phases and steps could
enable or disable robotic platforms to execute actions autonomously. Moreover, con-
tinuous planning of the future set of surgical phases or steps to be performed can be
achieved from the current state of the surgery. Finally, the autonomous execution of
the surgery can be monitored by tracking the phases or steps and any divergence from
the expected surgical plan could send alerts requesting immediate human interventions.

8.5 Conclusion
In this chapter, we outlined a few potential applications of the research addressed in
this thesis, i.e., multi-level surgical activity recognition, covering pre-operative, intra-
operative, and post-operative parts of a surgical workflow.
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9 Conclusion and Future Perspec-
tives

Se tu segui tua stella, non puoi fallire a glorioso porto
If you follow your own star, you cannot fail to reach a glorious harbor.

- Dante Alighieri

Chapter Summary

9.1 Thesis Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.2 Perspectives on Future Research . . . . . . . . . . . . . . . . . . . . . . . 107

This chapter presents a summary of the works presented in this thesis. We tackle
different objectives related to surgical activity recognition and highlight the key take-
aways of these studies. We conclude this chapter by suggesting perspectives on future
research.

9.1 Thesis Conclusion
Safe and efficient surgery that minimizes pain, allows fast recovery, and reduces compli-
cations are the primary goal of developing next-generation surgical interventions. Ad-
vances in the last few decades have introduced high-tech surgical systems for less invasive
and more effective surgical techniques which have increased the complexity in the OR.
This demands the development of advanced systems to support clinicians across the
surgical workflow inspecting the vast array of data sources that can be recorded via the
information systems. To enable context-aware assistance in the OR, this thesis addresses
a primary research field, i.e., automatic analysis of surgical workflows by reliable recog-
nition of the surgical activities from endoscopic videos. A large body of research in the
community tackling activity recognition has strongly focused on developing methods to
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recognize activities at one specific level of granularity from video data: phases, steps,
action triplets, or robotic gestures. The principal theme of this thesis is multi-level
recognition of surgical activities.

First, we present the Bypass40 dataset, a new large-scale dataset of 40 videos cap-
turing the complex LRYGB procedures. The dataset is fully annotated with activities
at two levels of granularity - phase and step - by an expert surgeon. Subsequently, we
propose a multi-task temporal convolution network to jointly recognize phases and steps
from videos. The results demonstrated the benefits of modeling jointly the phases and
steps for surgical workflow recognition. Furthermore, designing temporal models that
extract useful temporal information is key to improving activity recognition. A limita-
tion of the proposed method is that it indirectly models the hierarchical relationship
between the two activities through multi-task learning. More explicit modeling of the
hierarchy may be required to fully exploit this property for improving the recognition of
either task. Another minor limitation of the method is that it doesn’t consider the class
imbalance existing in phases and steps. For instance, ‘S34: jejunojejunal anastomosis re-
inforcement’ or ‘S35: staple line reinforcement’ occurs in less than 5 videos in the dataset.
Although the class imbalance was incorporated using class-weighted cross-entropy loss,
it would be beneficial to tackle this challenge in the data. Nevertheless, this study sets
a foundation for research that advances deep learning models to recognize activities at
multiple levels.

The following research tackled the problem of fine-grained activity recognition with
fewer annotated videos. State-of-the-art activity recognition methods heavily rely on
large-scale labeled datasets as they are based on deep learning. Generating large la-
beled datasets is a very challenging task as it is labor-intensive, time-consuming, and
expensive. To reduce this dependency, we present a weakly-supervised learning method
that recognizes steps utilizing phase labels as weak signals. We introduced a step-phase
dependency loss that allows using phase labels as weak signals and extensively evaluated
the method on two large datasets. We demonstrated that hierarchical knowledge present
in the ontology of a surgical workflow is beneficial in fine-grained activity recognition
with fewer labeled data. As discussed in chapter 5, a major limitation of the proposed
method is that the coarser phase labels are insufficient to distinguish between steps be-
longing to the same phase. Especially, when two steps in a phase perform similar actions
on the same anatomy like ‘horizontal stapling’ and ‘vertical stapling’. Nonetheless, this
study is one of the few works that tackled activity recognition through weakly-supervised
learning. We hope that this study fosters future research in weak supervision for surgical
workflow analysis utilizing multi-level descriptions of the workflow.

Automatic recognition of surgical activities although primarily revolves around devel-
oping new deep learning models, efficient training pipeline of these models is critical for
their success. Data augmentation is one component of the training pipeline that needs a
closer examination as it has been shown to impact model robustness and generalizability.
However, devising effective augmentation policies is mostly carried out manually and
could be domain- and/or task-specific. Additionally, most of the methods have proposed
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augmentation strategies for still images and extending them to videos is not straightfor-
ward as the temporal dimension needs to be considered. We address this challenge by
introducing TRandAugment, a new simplified augmentation method specially designed
for training Spatio-temporal models on long surgical videos. TRandAugment simplifies
the search space for optimal configuration as it is parameterized with magnitude (M),
the number of augments (N), and the number of temporal augments (T). The perfor-
mance boost seen in the results on two large video datasets, and on two different tasks,
validate the impact of the proposed method. We speculate that TRandAugment could
play an impactful role in federated learning or weakly-/semi-/self-supervised learning
and on different tasks such as action triplets, video segmentation, gesture recognition,
etc.

In this thesis, we take a step forward to understand the generalization of activity
recognition methods on data from different medical centers. To this end, we build two
large video datasets, namely StrasBypass70 and BernBypass70, of 70 videos of LRYGB
procedures annotated with activities at two levels: phases and steps. Next, we study
the performance of both fully and weakly supervised learning methods on these datasets.
The results accentuate the need for a multi-centric study of deep learning models in
surgical video analysis as variations in surgical techniques and data distribution between
centers could majorly impact the model’s performance. One limitation of this study is
that datasets from only two centers were involved. Additional study centers would
have increased the variability in surgical technique and dataset distributions further
emphasizing the importance of multi-centric training and evaluation.

The problem addressed in this thesis has many potential applications both in and out
of the OR, such as skill assessment, surgical report generation, safety monitoring, and
eventually instigating autonomous surgical systems. We hope that the methods, along
with datasets of Bypass40, BernBypass70, and StrasBypass70, will influence research in
the field of SDS considerably, specifically, on activity recognition.

9.2 Perspectives on Future Research
Hierarchical Recognition of Activities. We aimed to jointly recognize activities at

two levels of granularity: phase and step. While the results are encouraging, it
could be interesting to develop specific model components that would explicitly
capture the hierarchy between the two activities. Furthermore, the hierarchy could
be further extended to include gestures, action triplets, instrument detection, etc.

Weakly-supervised Learning. We tackled the problem of fine-grained step recogni-
tion using phase labels as weak signals. Future studies could extend this by using
other weak signals such as remaining surgical duration or using phase and step
labels as weak supervision for gestures or action triplets. Furthermore, transcripts
of activities or actions could also be an interesting source of weak supervision.
Ultimately, attempts could be made to auto-generate transcripts from just the
surgical ontology and its mean distribution.
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Few-shot Learning. We studied the generalizability of deep learning models on two
large video datasets from two medical centers. While the results show that the
model is capable of learning variations in surgical workflow between the centers, it
could be impractical to create large labeled datasets to introduce all the variations
in the domain. This calls for interesting research using the few-shot learning
paradigm.

Self-supervised Learning. In this thesis, we utilize some form of supervision while
developing deep learning models. Generating large labeled datasets is an impor-
tant bottleneck that needs to be addressed in the future. Self-supervised that aims
to learn semantically meaningful representations from unlabeled data is a key en-
abler to tackle the bottleneck of label generation. The representations learned
through self-supervision may be valuable in analyzing activities at different gran-
ularity. A crucial aspect that must be taken into consideration while studying
self-supervised learning is the temporal dimension that exists both in activities
and videos. New self-supervised approaches should target deriving both spatial
and temporal representations from unlabeled data.

Multi-Centric Generalization Study. Our multi-center study delivers a strong mo-
tivation to continue efforts in this direction. However, our study is limited by
the fact that it involved datasets from only two centers. Additional study centers
would be required to capture the variability in surgical techniques and dataset
distributions. Attempts at generating even a small labeled dataset per center are
necessary as this could aid in defining a standardized ontology of a workflow to
represent surgical knowledge. This then enables labeled datasets from multiple
centers to be used in conjunction to develop robust methods for the automatic
recognition of activities.

Multi-Surgery Activity Recognition Most of the research works in the SDS commu-
nity, similar to this thesis, aim to recognize activities of a single type of surgery.
Although surgeries treat pathological conditions concerning various anatomical
structures, subsets of surgeries that operate in similar regions such as laparoscopic
surgeries can be clubbed together. Interesting research works could undertake us-
ing these subsets of surgeries constructively to learn effective surgical knowledge.
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A.1 Introduction
La chirurgie est un domaine spécialisé de la médecine qui s’attache à traiter des états
pathologiques tels que des maladies ou des blessures en utilisant des techniques opéra-
toires manuelles et instrumentales sur une personne. Au fil des siècles, les inventions
et innovations constantes dans divers domaines scientifiques ont transformé la chirurgie
jusqu’à aujourd’hui. Cette transformation de la chirurgie peut être observée à travers les
progrès de la salle d’opération moderne (OR). La Figure A.1 donne un aperçu de la tran-
sition de la salle d’opération. Au cours des dernières décennies, les développements se
sont concentrés sur le passage de la chirurgie ouverte traditionnelle à la chirurgie mini-
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Figure A.1: La transformation du bloc opératoire au cours des derniers siècles.

invasive. Ce changement est motivé par les avantages que la chirurgie mini-invasive
procure aux patients: moins de douleur, un temps de récupération plus court et moins
de complications. Malgré ces avantages, les progrès de la chirurgie mini-invasive présen-
tent de nouveaux défis, tels que des courbes d’apprentissage abruptes pour les nouveaux
membres du personnel péri-opératoire et les chirurgiens, une vue limitée de l’anatomie,
une durée plus longue de certaines procédures par rapport à la chirurgie ouverte, une
amplitude de mouvement limitée des instruments, des entrées sensorielles limitées en
termes de profondeur et de toucher, etc. Pour relever certains de ces défis, la commu-
nauté a proposé le développement de systèmes conscients du contexte (CAS) qui visent
à fournir une aide contextuelle aux cliniciens en exploitant les diverses informations sen-
sorielles disponibles dans la salle d’opération [Bricon-Souf 2007,Kranzfelder 2012,Maier-
Hein 2017,Vercauteren 2020].

L’essor de l’intervention assistée par ordinateur et de la chirurgie assistée par robot
(SAR) a également accru la complexité de l’exécution des procédures chirurgicales, ce
qui confirme la nécessité des CAS en raison de leurs avantages potentiels. L’assistance
contextuelle d’un CAS pourrait contribuer à simplifier les flux de travail chirurgicaux, à
améliorer les communications homme-machine et à accélérer l’exécution des manœuvres
chirurgicales, ce qui permettrait de réduire la charge de travail et la tension chirurgi-
cales, et donc de réduire les erreurs chirurgicales, d’accroître la sécurité des patients et
d’améliorer la sécurité, la qualité et l’efficacité globales des soins [Maier-Hein 2017,Ver-
cauteren 2020]. Pour concevoir un système CAS efficace, cette thèse met
l’accent sur l’un de ses composants clés, à savoir l’analyse automatique d’un
flux de travail chirurgical. L’analyse automatique des flux de travail chirurgicaux
est réalisée par une reconnaissance fiable des activités chirurgicales [Kranzfelder 2012].
En examinant les données en ligne complètes de la salle d’opération, si les systèmes pou-
vaient reconnaître l’état actuel de la procédure, ils pourraient également être capables
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Figure A.2: Types d’activités chirurgicales en fonction du niveau de granularité.

de prédire la progression de la procédure. Cette capacité pourrait fournir un soutien
actif aux chirurgiens en les aidant dans leur prise de décision clinique, ce qui pourrait
successivement induire une autonomie dans les SAR. En outre, la compréhension des flux
de travail permet à ces systèmes de générer automatiquement des rapports chirurgicaux
et d’annoter les données de manière appropriée pour une rétrospection sans effort. Ces
informations sémantiques sont au cœur de la compréhension cognitive de la chirurgie.

Selon le niveau de granularité, une procédure chirurgicale peut être décomposée en
activités, telles que l’ensemble de la procédure, les phases, les étapes et les actions
(Figure A.2) [Katić 2015, Meireles 2021]. La reconnaissance automatisée des phases
a reçu beaucoup d’attention et constitue un domaine de recherche très actif dans la
communauté de la vision chirurgicale [Garrow 2020, Demir 2022]. Parallèlement aux
phases, d’importantes recherches ont été menées sur des activités à grain fin telles que les
gestes robotiques [van Amsterdam 2021], les triplets d’action [Nwoye 2020,Nwoye 2022b,
Sharma 2022], et la détection et le suivi d’instruments [Hajj 2018,Nwoye 2019,Jin 2020].
Récemment, un grand nombre de travaux de recherche se sont concentrés en particulier
sur la reconnaissance des pas [Charrière 2014,Charrière 2017]. Cependant, ils ont tous
fait l’objet de recherches indépendantes et très peu de travaux tentent de reconnaître
des activités à plusieurs niveaux. Par conséquent, nous visons à reconnaître deux types
d’activités à différents niveaux de granularité, c’est-à-dire les phases et les étapes. Plus
précisément, nous nous concentrons sur la reconnaissance d’activités à plusieurs niveaux
pour analyser une autre procédure à fort volume, à savoir le bypass gastrique, qui est
assez intéressant en raison de la complexité de son flux de travail. Le bypass gastrique
est une procédure visant à traiter l’obésité, considérée comme une épidémie mondiale par
l’Organisation mondiale de la santé [on Obesity 2000], avec environ 500,000 procédures
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bariatriques laparoscopiques réalisées chaque année dans le monde [Angrisani 2015]. La
dérivation gastrique Roux-En-Y par laparoscopie (LRYGB), l’intervention de chirurgie
bariatrique la plus pratiquée et la plus courante [Angrisani 2015], consiste à réduire
l’estomac et à contourner une partie de l’intestin grêle.

Dans cette thèse, nous introduisons d’abord une représentation hiérarchique, sim-
ilaire à [Kaijser 2018], pour la procédure LRYGB contenant des phases et des étapes
représentant le workflow réalisé dans notre hôpital et visons à reconnaître ces deux types
d’activités. À cet effet, nous construisons un nouveau jeu de données à grande échelle,
appelé Bypass40, contenant 40 vidéos endoscopiques de procédures chirurgicales de by-
pass gastrique et annotons les vidéos avec la représentation hiérarchique introduite des
phases et des étapes. Ensuite, nous introduisons Multi-Task Multi-Stage Temporal Con-
volutional Networks (MTMS-TCN) pour la reconnaissance conjointe des phases et des
étapes, en étendant les MS-TCN qui ont été proposés pour la segmentation des actions.
La motivation de cette méthode vient du fait que les activités et les vidéos contien-
nent une dimension temporelle inhérente, en plus du contenu spatial, qui nécessite des
modèles temporels pour extraire des informations utiles.

Bien que le MTMS-TCN montre un grand potentiel dans la reconnaissance des
deux types d’activités, le goulot d’étranglement du MTMS-TCN, et des méthodes simi-
laires [Garrow 2020,Demir 2022], est le besoin de grands ensembles de données entière-
ment annotées pour l’entraînement des modèles d’apprentissage profond. La constitu-
tion de ces ensembles de données annotées est difficile et prend du temps, car ces tâches
nécessitent des connaissances médicales spécifiques à un domaine. Pour résoudre ce
problème, la deuxième contribution porte sur l’apprentissage faiblement supervisé pour
les activités à grain fin, c’est-à-dire la reconnaissance des pas. Nous exploitons les rela-
tions hiérarchiques étape-phase et utilisons des annotations de phase faibles plus faciles
à annoter sur des vidéos où les annotations d’étape sont manquantes. Nous introduisons
une nouvelle perte de dépendance pour renforcer la supervision faible et encoder la re-
lation hiérarchique étape-phase sous forme de matrice. En optimisant cette perte, nous
encourageons le modèle à apprendre les séquences d’étapes et les transitions possibles à
partir de vidéos contenant uniquement des annotations de phase.

Inspirés par le succès des deux méthodes précédentes, notre troisième contribution
consiste à examiner l’un des composants les plus essentiels du pipeline de formation de ces
méthodes d’apprentissage profond: L’augmentation des données. L’augmentation des
données est une méthode couramment utilisée pour générer des données supplémentaires
afin d’améliorer la formation des modèles d’apprentissage profond à forte intensité de
données pour la classification d’images [DeVries 2017a,Cubuk 2019,Lim 2019], la détec-
tion d’objets [Girshick 2018], la segmentation d’instances [Fang 2019], etc. De plus, il a
été démontré que l’augmentation a un impact sur la robustesse du modèle [Lopes 2019] et
sur les performances des méthodes d’apprentissage semi-supervisées et auto-supervisées
[Qian 2021,Pan 2021, Shi 2021]. Cependant, des politiques d’augmentation spécifiques
doivent être conçues pour capturer les connaissances préalables pour chaque domaine,
ce qui nécessite une expertise et un travail manuel, rendant les méthodes d’augmentation
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des données difficiles à étendre à d’autres domaines et applications [Cubuk 2019,Lim 2019,
Cubuk 2020]. De plus, puisque les méthodes de reconnaissance d’activité chirurgicale
travaillent avec de longues vidéos chirurgicales, les vidéos ajoutent une dimension tem-
porelle aux images qui doit être prise en compte lors de la conception des politiques
d’augmentation. Pour répondre à ce besoin, nous introduisons une nouvelle méth-
ode d’augmentation simplifiée, appelée Temporal Random Augmentations (TRandAug-
ment), spécialement conçue pour l’entraînement de modèles spatio-temporels sur de
longues vidéos chirurgicales. TRandAugment est largement évalué sur la tâche de recon-
naissance de l’activité chirurgicale à deux niveaux de granularité, à savoir la phase et le
pas.

Pour réaliser l’application de la reconnaissance d’activité dans le OR via le CAS, le
module de reconnaissance doit posséder les caractéristiques de fiabilité, de portabilité et
d’intégrité. Ces trois caractéristiques indiquent de manière générale que le module de
reconnaissance doit pouvoir être utilisé en toute sécurité et fonctionner de manière con-
stante dans différentes conditions de travail pendant une période donnée. Étant donné
que les dernières méthodes de reconnaissance sont basées sur l’apprentissage profond,
ces caractéristiques sont étudiées en termes de robustesse et de généralisation. L’un
des principaux défis pour développer des méthodes d’apprentissage profond robustes et
généralisables est leur susceptibilité à l’overfitting et à la mémorisation en raison de la
complexité du nombre de paramètres impliqués [Geirhos 2018, Feng 2019]. L’ajout de
données d’entraînement supplémentaires est une approche coûteuse pour lutter contre
l’overfitting. Néanmoins, c’est un moyen crucial d’ajouter des variations naturelles d’un
domaine à un ensemble de données. Les variations présentes dans le domaine chirurgi-
cal sont dues aux changements dans le flux de travail chirurgical entre les chirurgiens,
les centres médicaux, les communautés, les nations, etc. Par conséquent, un module
idéal de reconnaissance de l’activité chirurgicale doit être robuste et capable de faire
face à toutes ces variations de l’anatomie et du flux de travail. Dans notre quatrième
et dernière contribution, nous présentons une étude sur la généralisation des méthodes
de reconnaissance d’activité sur des données provenant de différents centres médicaux.
Dans le cadre de cette étude, nous introduisons deux nouveaux jeux de données, à savoir
StraBypass70 et BernBypass70, chacun composé de 70 vidéos de procédures LRYGB en-
tièrement annotées avec des étiquettes de phase et d’étape. Par la suite, nous étudions
la performance des méthodes d’apprentissage entièrement et faiblement supervisées sur
ces ensembles de données, démontrant à la communauté les défis et les lacunes lors de
la transition de la recherche à la traduction clinique.

A.2 Contribution
A.2.1 Bypass40 Dataset
Nous introduisons deux activités chirurgicales hiérarchiquement définies appelées phases
et étapes pour la procédure LRYGB. Ces deux éléments définissent le déroulement de
la chirurgie à deux niveaux de granularité, les phases décrivant le déroulement de la
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Figure A.3: Liste de toutes les phases et étapes définies dans l’ensemble de données avec leur
relation hiérarchique. Les activités chirurgicales critiques sont surlignées en rouge.
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Figure A.4: Exemples d’images du jeu de données Bypass40.

chirurgie à un niveau plus grossier que les étapes. Les phases décrivent un ensemble
d’objectifs chirurgicaux fondamentaux à atteindre afin de mener à bien la procédure
chirurgicale, tandis que les étapes décrivent un ensemble d’actions chirurgicales à réaliser
afin d’accomplir une phase chirurgicale. La procédure chirurgicale est segmentée en 44
étapes à grain fin, ainsi qu’en 11 phases plus grossières. Toutes les phases et étapes
sont présentées dans la Figure A.3 et quelques exemples d’images tirées de l’ensemble de
données sont présentés dans la Figure A.4. Ces deux types d’activités sont intéressants
pour leur relation hiérarchique inhérente, qui est illustrée dans la figure. En outre, la
figure met en évidence toutes les phases critiques, et les étapes critiques correspondantes,
qui sont cliniquement connues pour être importantes pour les résultats chirurgicaux
[Birkmeyer 2013].

Bypass40 est un jeu de données composé de 40 vidéos capturées par des caméras
endoscopiques pendant des procédures de dérivation gastrique. Le jeu de données est
entièrement annoté avec des étiquettes de segmentation d’activité pour les phases et
les étapes. La reconnaissance de ces deux ensembles d’activités est essentielle pour la
prise de décision et la navigation autonome des robots chirurgicaux. L’analyse du flux
de travail de cette procédure est assez difficile en raison de multiples facteurs: longue
durée des vidéos, fumée, sang et autres anomalies. En outre, les similitudes entre les
phases et les fortes similitudes entre les étapes augmentent la complexité du problème
de la reconnaissance des activités, ce qui entraîne une diminution des performances et
une généralisation limitée des méthodes existantes. Il est donc nécessaire d’élaborer de
nouvelles méthodes qui nous permettent de saisir les dépendances temporelles à long
terme et de résoudre les ambiguïtés entre les phases et les étapes.
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Figure A.5: Vue d’ensemble de la configuration de notre modèle. L’architecture multi-tâches de
l’épine dorsale de l’extracteur de caractéristiques ResNet-50 à gauche et la configuration multi-
tâches du modèle temporel TCN à droite.

Table A.1: Comparaison de base sur l’ensemble de données pour la reconnaissance con-
jointe des phases et des pas. Accuracy (ACC) est indiqué après une validation croisée 4
fois.

Models Phase ACC Step ACC Phase-Step ACC

No TCN ResNet 82.1 ± 3.3 65.5 ± 2.0 54.9 ± 2.6
MT-ResNet 81.7 ± 2.7 66.6 ± 2.4 64.8 ± 2.0
ResNetLSTM 89.1 ± 2.8 71.3 ± 2.3 68.5 ± 2.3

MT-ResNetLSTM 88.6 ± 2.7 72.2 ± 2.0 70.7 ± 1.9
Stage I TeCNO 89.8 ± 3.5 75.1 ± 2.4 72.3 ± 3.0

MTMS-TCN 91.2 ± 2.9 76.1 ± 2.7 75.1 ± 2.8
Stage II TeCNO 89.9 ± 3.3 74.8 ± 2.5 71.9 ± 2.7

MTMS-TCN 90.9 ± 3.2 75.5 ± 3.1 75.1 ± 2.8

A.2.2 Phase chirurgicale conjointe et reconnaissance des étapes
L’objectif de ce travail est la reconnaissance conjointe en ligne des phases et étapes
chirurgicales. Nous proposons un pipeline de reconnaissance en ligne de l’activité chirur-
gicale comprenant les étapes suivantes: 1) Un ResNet-50 multi-tâches est utilisé comme
extracteur de caractéristiques visuelles. 2) Un modèle de réseau convolutif temporel
multi-tâches et multi-étapes (MTMS-TCN) affine la caractéristique extraite de l’image
actuelle en encodant les informations temporelles déduites de l’analyse de l’historique.
L’aperçu de la configuration du modèle est représenté sur la Figure A.5.

Comme la durée moyenne d’une opération chirurgicale peut varier de moins d’une
demi-heure à plusieurs heures, il est difficile pour les modèles basés sur les LSTM
d’exploiter les informations temporelles pour la reconnaissance de l’activité chirurgi-
cale. Cela nous motive à explorer l’utilisation de réseaux de convolutions temporelles en
raison de leur grand champ réceptif pour une résolution temporelle plus élevée. D’autre
part, puisque la phase et l’étape capturent la même information à différents niveaux de
granularité, l’étape multi-tâche exploite l’aspect complémentaire de ces activités pour
mieux reconnaître les deux activités.
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Figure A.6: Vue d’ensemble de notre configuration de modèle spatio-temporel de bout en bout:
ResNet50 + SS-TCN (Single-Stage Temporal Convolutional Networks). Lorsque des étiquettes
de phase sont disponibles, le modèle est entraîné par la voie supervisée (rouge) et la voie faible-
ment supervisée (violet) en utilisant les étiquettes de phase. Le modèle est entraîné de bout en
bout en une seule étape d’apprentissage.

Nous évaluons efficacement notre méthode en comparant différents modèles (CNN,
CNN + LSTM, CNN + TCN) dans des configurations mono-tâche et multi-tâches. Nos
résultats (Tableau A.1) confirment notre hypothèse: 1) les TCN sont capables de cap-
turer plus d’informations temporelles par rapport aux LSTM ; 2) une configuration
multi-tâches permet de capturer des informations mutuelles et est en outre capable de
reconnaître plus précisément les phases et les étapes.

A.2.3 Reconnaissance de l’activité chirurgicale à grain fin faiblement
supervisée

Dans ce travail, nous proposons un apprentissage faiblement supervisé pour la tâche
d’activité chirurgicale à grain fin, c’est-à-dire la reconnaissance. La principale motivation
de la supervision faible est que la construction d’ensembles de données à grande échelle
avec des annotations fines est extrêmement fastidieuse et nécessite un effort important
pour valider la qualité des annotations. Nous utilisons des étiquettes de phase plus
faciles à annoter comme supervision faible pour la reconnaissance des étapes. Puisque
la phase et l’étape sont des activités définies à différents niveaux de granularité, notre
approche exploite la relation hiérarchique étape-phase pour une supervision faible avec
une fraction du jeu de données contenant des annotations d’étape. La Figure A.6 donne
un aperçu de la configuration du modèle.

Nous introduisons une perte de dépendance pour modéliser la supervision faible en
utilisant une matrice de correspondance étape-phase qui modélise la relation hiérarchique
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Table A.2: Bypass40: Effet d’une supervision faible sur une quantité variable de vidéos
étiquetées par étapes. Accuracy (ACC), Precision (PR), Recall (RE), et F1-score (F1)
(%) sont rapportés. ‘FSA’ désigne le modèle entraîné pour la reconnaissance des étapes
sans aucune annotation de phase. ‘DEP’ désigne la perte de dépendance ajoutée pour
la supervision faible en utilisant les étiquettes de phase sur les vidéos restantes.

# Videos
Model Step Phase ACC PR RE F1

FSA 3 (12%) - 45.02± 9.96 26.62± 5.32 21.87± 4.70 19.44± 5.31
[Yu 2019] 3 (12%) - 43.27± 11.8 23.63± 4.41 23.91± 5.71 19.77± 4.89

DEP 3 (12%) 21 57.20 ± 8.31 33.44 ± 6.04 33.16 ± 6.37 29.38 ± 6.11

FSA 6 (25%) - 59.80± 10.17 37.19± 8.52 35.93± 7.31 32.15± 8.03
[Yu 2019] 6 (25%) - 62.55± 10.09 40.63± 7.85 43.71± 8.35 37.68± 8.54

DEP 6 (25%) 18 68.03 ± 9.04 50.05 ± 6.82 45.86 ± 6.46 42.05 ± 7.44

FSA 12 (50%) - 68.26± 8.31 47.57± 7.84 44.74± 7.59 41.30± 8.44
[Yu 2019] 12 (50%) - 67.89± 11.04 46.26± 9.97 50.11± 8.20 43.41± 10.33

DEP 12 (50%) 12 73.43 ± 8.43 53.40 ± 7.43 51.19 ± 8.20 48.34 ± 8.85

FSA 18 (75%) - 72.82± 6.76 50.60± 7.90 48.98± 8.33 46.08± 8.61
[Yu 2019] 18 (75%) - 73.33± 10.15 54.78 ± 11.05 57.21 ± 8.51 51.72 ± 10.59

DEP 18 (75%) 6 73.88 ± 8.11 54.33± 6.38 51.79± 7.10 48.62± 7.49

FSA 24 (100%) - 76.12± 7.39 54.23± 8.24 50.94± 7.53 48.17± 8.02

Table A.3: Bypass40: Effet du nombre de vidéos annotées par phase pour la reconnais-
sance des pas en utilisant la perte ‘DEP’ pour une supervision faible. Accuracy (ACC),
Precision (PR), Recall (RE), et F1-score (F1) (%) sont rapportés pour des configurations
avec 6, 12, et 24 vidéos entièrement annotées avec des étapes.

# Videos
Model Step Phase ACC PR RE F1

FSA 6 - 59.80 37.19 35.93 32.15
DEP 6 3 62.15 40.48 37.15 33.48
DEP 6 6 67.94 46.17 42.61 39.67
DEP 6 12 68.07 47.18 43.18 40.42
DEP 6 18 68.03 50.05 45.86 42.05

FSA 12 - 68.26 47.57 44.74 41.30
DEP 12 3 72.79 50.10 48.39 45.06
DEP 12 6 72.43 53.02 51.20 47.26
DEP 12 12 73.43 53.40 51.19 48.34

FSA 24 - 76.12 54.23 50.94 48.17
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Table A.4: CATARACTS: Effet d’une supervision faible sur une quantité variable de
vidéos étiquetées par étapes. Accuracy (ACC), Precision (PR), Recall (RE), et F1-score
(F1) (%) sont rapportés. ‘FSA’ désigne le modèle entraîné pour la reconnaissance des
étapes sans aucune annotation de phase. ‘DEP’ désigne la perte de dépendance ajoutée
pour la supervision faible en utilisant les étiquettes de phase sur les vidéos restantes.

# Videos
Model Step Phase ACC PR RE F1

FSA 3 (12%) - 48.47± 10.62 51.32± 11.91 37.44± 9.85 37.12± 10.15
[Yu 2019] 3 (12%) - 59.61± 10.67 56.02± 14.31 61.82 ± 14.45 53.26± 13.61

DEP 3 (12%) 22 66.78 ± 12.21 64.29 ± 12.50 59.73± 11.93 58.31 ± 12.73

FSA 6 (25%) - 69.51± 11.16 71.05± 14.13 56.70± 12.67 59.28± 13.50
[Yu 2019] 6 (25%) - 74.62± 8.22 67.71± 11.48 75.93 ± 12.48 67.67± 12.46

DEP 6 (25%) 19 75.28 ± 11.50 71.84 ± 14.30 69.19± 12.72 68.09 ± 13.97

FSA 12 (50%) - 78.02± 9.05 79.02± 13.20 69.55± 12.04 71.18± 13.04
[Yu 2019] 12 (50%) - 77.84± 12.55 71.48± 13.41 79.92 ± 15.28 72.96± 14.46

DEP 12 (50%) 13 79.94 ± 9.17 80.52 ± 12.93 72.62± 11.91 73.52 ± 13.29

FSA 18 (75%) - 82.5± 8.07 82.58 ± 11.91 76.05± 11.62 77.39± 12.12
[Yu 2019] 18 (75%) - 78.59± 10.71 74.55± 14.17 78.16 ± 12.64 73.55± 13.67

DEP 18 (75%) 7 82.64 ± 9.72 82.20± 13.70 77.32± 12.70 77.67 ± 13.56

FSA 25 (100%) - 83.37± 9.50 85.29± 12.05 78.96± 11.93 80.09± 13.34

entre eux. Conformément à nos travaux précédents, notre modèle se compose d’un
réseau convolutif temporel à un seul étage (SS-TCN) pour la modélisation temporelle
et de ResNet-50 comme colonne vertébrale. Nous formons le modèle de bout en bout
en utilisant la perte de dépendance que nous proposons. Pour démontrer l’efficacité de
notre méthode, nous réalisons des études d’ablation avec une configuration différente
du modèle et de la formation. Avec n vidéos dans le jeu de données, dont k sont
annotées avec des étapes et n − k sont faiblement annotées avec des phases, d’abord,
nous entraînons le modèle de base sur k vidéos dans une approche entièrement supervisée
pour la tâche de reconnaissance des étapes et le comparons avec notre modèle proposé
avec la perte de dépendance. De plus, nous analysons l’influence du nombre de vidéos
supplémentaires avec des étiquettes de phase sur la performance du modèle en fixant k
vidéos avec des annotations de pas et en variant le nombre de vidéos avec des annotations
de phase de 0 à n − k. Les différentes expériences menées sur l’ensemble de données
Bypass40 sont présentées dans les Tableaux A.2 & A.3.

Nos résultats montrent une amélioration de 5 à 13% de notre méthode par rapport
à la ligne de base avec moins de 50% de l’ensemble de données annotées avec des étapes.
Il est intéressant de noter que notre méthode, entraînée sur un ensemble de données
comportant 50% de vidéos annotées de pas et 50% de vidéos annotées de phases, atteint
des performances proches de celles du modèle de base supérieur entraîné sur l’ensemble
de l’ensemble de données entièrement étiqueté avec des annotations de pas. Une ex-
périmentation supplémentaire sur l’ensemble de données CATARACTS (Tableaux A.4)
permet d’obtenir des performances similaires à celles de Bypass40, ce qui confirme notre
hypothèse.
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Figure A.7: Représentation pictographique de TRandAugment. Une vidéo est segmentée en T
clips et une augmentation aléatoire ti, échantillonnée à partir d’une liste de transformations τ ,
est appliquée au clip i. Les clips augmentés sont fusionnés pour former une nouvelle vidéo qui
est transmise comme entrée lors de l’entraînement d’un réseau CNN+TCN de bout en bout qui
prédit les phases ou les étapes.

.

A.2.4 Augmentations aléatoires temporelles pour la reconnaissance de
l’activité chirurgicale

Ce travail introduit une nouvelle méthode d’augmentation des données pour les vidéos,
appelée TRandAugment, qui est une technique simplifiée et automatisée inexplorée dans
la littérature. TRandAugment s’appuie sur la méthode précédente (RandAugment) mais
incorpore la dimension temporelle supplémentaire pour la tâche de reconnaissance de
l’activité chirurgicale à deux niveaux de granularité, c’est-à-dire la phase et l’étape. Une
représentation graphique de la méthode d’augmentation est présentée dans la Figure
A.7.

TRandAugment, est conçu avec trois paramètres (M,N, T ) incluant le paramètre
supplémentaire T pour caractériser la dimension temporelle des vidéos. Une liste de
∥τ∥= 9 transformations est utilisée et appliquée avec une probabilité uniforme de 1

∥τ∥ .
L’idée de TRandAugment est d’appliquer différentes transformations à différents seg-
ments vidéo temporels. Ainsi, le paramètre T est introduit pour contrôler le nombre
de segments temporels. Chaque vidéo est divisée en segments aléatoires T ′ ∈ [1, T ] et
pour chaque segment i (i ∈ [1, T ′]), une transformation aléatoire ti ∼ τ est appliquée
uniformément sur toutes les images de ce segment. M et N contrôlent la magnitude et
le nombre de transformations appliquées à chaque segment.

Les résultats du Tableau A.5 montrent que nous pouvons trouver une bonne stratégie
d’augmentation par une simple recherche de grille sur les paramètres de TRandAug-
ment. De plus, nous montrons que les augmentations cohérentes dans le temps sont très
bénéfiques lors de l’entraînement de modèles spatio-temporels sur de longs ensembles
de données vidéo abordés en vision artificielle chirurgicale. TRandAugment, avec les
meilleures valeurs (M,N, T ), permet d’obtenir une amélioration de 1-10% par rapport
aux méthodes existantes sur deux tâches (reconnaissance de phases et de pas) et sur
deux jeux de données (Bypass40 et CATARACTS).
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Table A.5: Comparaison de différentes méthodes sur les ensembles de données Bypass40
(BY40) et CATARACTS (CA50). * indique les modèles formés dans une configuration
multitâche nécessitant des étiquettes de phase/étape supplémentaires.

Dataset Method |τ ′| M, N, T ACC PR RE F1
Task

Custom - -, -, - 81.79±12.30 77.82±13.61 82.25±14.69 78.21±14.90
CA50 RA 3 30, 1, - 80.45±10.33 76.48±13.00 81.34±13.56 76.87±14.01
Step URA (ours) 10 30, 1, - 83.24±10.64 77.04±14.20 82.33±14.68 78.02±14.98

TRA (ours) 10 30, 1, 5 83.64±10.67 78.38±14.11 84.06±14.18 79.43±15.09

Custom* - -, -, - 90.26 ± 6.44 84.74 ± 7.71 81.75 ± 9.12 81.31 ± 9.07
BY40 URA (ours) 10 30, 3, - 93.55 ± 3.24 83.25 ± 7.80 86.07 ± 7.61 83.51 ± 7.93
Phase TRA (ours) 10 30, 2, 5 93.17 ± 4.27 86.42 ± 8.50 86.70 ± 6.72 85.20 ± 8.40

Custom* - -, -, - 75.46 ± 9.34 55.58 ± 9.88 52.78 ± 9.22 50.35 ± 9.75
BY40 URA (ours) 10 30, 2, - 80.55 ± 6.61 61.32 ± 8.11 62.13 ± 7.74 58.52 ± 8.46
Step TRA (ours) 10 30, 2, 5 80.80 ± 7.90 63.66 ± 9.08 63.94 ± 8.31 60.06 ± 9.22

Inselspital, Bern 
University Hospital

University Hospital
Strasbourg Phase

Or 
Step

Ac.vity Recogni.on 
Model

Figure A.8: Mise en place d’une étude inter-centres sur les modèles de reconnaissance de l’activité.

A.2.5 Etude de généralisation inter-centres

Pour l’objectif de cette étude, deux ensembles de données provenant de deux hôpitaux
universitaires ont été créés. 1) StraBypass70 est un jeu de données qui étend Bypass40,
composé de 70 vidéos LRYGB de l’hôpital universitaire de Strasbourg, France. 2) Bern-
Bypass70 est un jeu de données composé de 70 vidéos LRYGB réalisées à l’Inselspital,
hôpital universitaire de Berne, Suisse. d. Dans cette étude, s’ils sont utilisés en combinai-
son, les jeux de données BernBypass70 et StraBypass70 sont appelés MultiBypass140.

Un réseau convolutif temporel multi-tâches et multi-étapes (MTMS-TCN) (Section
A.2.2), un modèle d’apprentissage profond de pointe pour la reconnaissance des activ-
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Table A.6: Performance of MTMS-TCN on different datasets on phase recognition.

Train Test ACC PR RE F1

StrasBypass70 StrasBypass70 90.70± 6.92 82.32± 8.69 85.86± 7.70 82.31± 8.83
BernBypass70 71.95± 13.98 38.38± 8.10 43.26± 10.44 35.69± 9.88

BernBypass70 StrasBypass70 63.63± 9.43 36.67± 5.00 38.44± 8.15 33.12± 5.52
BernBypass70 85.01± 13.22 62.79± 10.99 66.41± 12.20 61.21± 11.73

MultiBypass140
StrasBypass70 90.14± 6.80 81.68± 7.93 83.79± 7.85 81.17± 8.09
BernBypass70 85.97± 12.92 61.81± 10.92 67.04± 11.6 60.58± 11.32
MultiBypass140 88.05± 10.53 71.75± 13.78 75.41± 12.97 70.88± 14.24

Table A.7: Performance of MTMS-TCN on different datasets on step recognition.

Train Test ACC PR RE F1

StrasBypass70 StrasBypass70 78.79± 10.28 62.12± 7.14 64.79± 8.68 60.53± 8.23
BernBypass70 49.57± 14.39 24.50± 6.57 29.50± 6.95 23.00± 6.47

BernBypass70 StrasBypass70 46.04± 11.00 30.36± 4.82 29.67± 6.19 24.69± 4.91
BernBypass70 67.61± 13.51 52.75± 9.50 55.81± 11.41 50.08± 10.67

MultiBypass140
StrasBypass70 78.16± 10.07 62.12± 6.79 63.54± 8.15 59.87± 7.71
BernBypass70 68.60± 13.35 52.38± 8.17 55.01± 9.59 49.69± 9.43
MultiBypass140 73.38± 12.75 57.25± 8.95 59.28± 9.87 54.78± 10.00

ités chirurgicales, a été utilisé pour les différentes expériences présentées dans cet article.
Sept configurations expérimentales ont été utilisées pour entraîner et évaluer le modèle
d’apprentissage profond: 1) Formation et évaluation sur StraBypass70, 2) Formation et
évaluation sur BernBypass70, 3) Formation sur StraBypass70 et évaluation sur BernBy-
pass70, 4) Formation sur BernBypass70 et évaluation sur StraBypass70, 5) Formation
et évaluation sur le jeu de données commun MultiBypass140, 6) Formation sur MultiBy-
pass140 et évaluation sur StraBypass70, 7) Formation sur MultiBypass140 et évaluation
sur BernBypass70.

Les résultats (Tableaux A.6 & A.7) démontrent la nécessité de présenter la variation
des techniques chirurgicales et du flux de travail aux modèles d’apprentissage profond
pour éviter le déficit de généralisation décrit dans la littérature. Il a été démontré que
la distribution et la taille du jeu de données dues aux différentes techniques et flux de
travail LRYGB entre les centres ont un impact majeur sur la performance du modèle. Ce
travail souligne l’importance des jeux de données multicentriques pour l’entraînement et
l’évaluation des modèles d’IA dans l’analyse de vidéos chirurgicales.
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A.3 Conclusion
A.3.1 Résumé et contribution
L’objectif fondamental de cette thèse est de développer des méthodes pour la reconnais-
sance automatique d’activités chirurgicales à plusieurs niveaux de détails. Dans cette
thèse, nous avons présenté quatre études abordant différents défis dans ce domaine: la
reconnaissance d’activités à plusieurs niveaux, la dépendance à de grands ensembles de
données étiquetées, l’entraînement optimal et la généralisation à d’autres centres. Tout
d’abord, nous avons construit un grand ensemble de données de procédures LRYGB,
appelé Bypass40, avec des étiquettes de phase et d’étape et nous avons proposé un mod-
èle temporel multi-tâches. Ensuite, nous avons présenté une méthode d’apprentissage
faiblement supervisée pour résoudre le problème de la rareté des étiquettes pour la recon-
naissance des étapes en utilisant les étiquettes de phase comme signaux faibles. Pour op-
timiser l’entraînement des modèles spatio-temporels pour la reconnaissance de l’activité
chirurgicale, nous avons proposé une méthode d’augmentation des données simplifiée
et automatisée appelée augmentations aléatoires temporelles (TRandAugment). Enfin,
nous étudions la propriété de généralisation de la méthode de reconnaissance d’activité
de l’état de l’art sur des données provenant de deux centres cliniques différents. Pour ce
faire, nous avons introduit deux ensembles de données, appelés StraBypass70 et Bern-
Bypass70, composés de 70 vidéos de procédures LRYGB provenant des centres cliniques
de Strasbourg et de Berne, qui ont été entièrement annotées avec les phases et les étapes.
La reconnaissance des activités chirurgicales à plusieurs niveaux est essentielle à la mise
en œuvre de la CAS dans OR afin d’améliorer les communications homme-machine,
d’accélérer l’exécution des manœuvres chirurgicales, de réduire la charge de travail et
la tension chirurgicales, de réduire les erreurs chirurgicales, d’augmenter le nombre de
patients et d’améliorer la qualité des soins.

A.3.2 Applications cliniques
La capacité de reconnaître automatiquement les activités chirurgicales à partir de vidéos
endoscopiques pourrait permettre de déployer avec succès les systèmes d’aide à la chirurgie
dans les salles d’opération. En particulier, ces systèmes seraient efficaces dans de nom-
breuses applications pré-, intra- et post-opératoires ciblant la formation chirurgicale, le
contrôle de la sécurité, l’aide à la décision clinique, l’indexation des données et les rap-
ports, l’exécution autonome, et d’autres. Une vue d’ensemble des applications des CAS
est présentée dans la Figure A.9.
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Surgical Report No. 276
P1 P2 P3 P4 P5

C r i t e r i a 1        ✅

C r i t e r i a 2        ❌

C r i t e r i a 3        ✅

Figure A.9: Illustration de l’assistance contextuelle qui pourrait être fournie dans la salle
d’opération et en dehors de celle-ci à l’aide de certains des systèmes développés dans le cadre de
cette thèse.
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Résumé 

Les innovations en matière de chirurgie mini-invasive ont amélioré les résultats pour les patients, mais 
ont accru la complexité des flux de travail chirurgicaux. L’optimisation du flux de travail en 
reconnaissant les activités chirurgicales est essentielle pour fournir une assistance contextuelle. Des 
recherches importantes ont été effectuées sur la reconnaissance des activités à granularité grossière 
(phases). Les méthodes de reconnaissance détaillée des activités sont essentielles pour mieux 
modéliser les flux de travail et faire progresser les capacités des systèmes contextuels. Cette thèse 
vise à développer des méthodes de reconnaissance d'activité multi-niveaux (phase et étape) à partir 
de vidéos de bypass gastrique laparoscopique Roux-en-Y (LRYGB). Tout d’abord, nous introduisons 
un vaste ensemble de données entièrement annoté avec des phases et des étapes et ciblons la 
reconnaissance conjointe. Ensuite, nous proposons une méthode d'apprentissage faiblement 
supervisé utilisant les phases comme signaux faibles pour la reconnaissance des pas. Par la suite, 
nous étudions l'augmentation des données pour un entraînement optimal de ces modèles, en 
concluant par une étude de généralisation sur un grand ensemble de données multicentriques. 

Mots clés: Reconnaissance d'activité chirurgicale, bypass gastrique, reconnaissance de 
phases et d'étapes, apprentissage faiblement supervisé, augmentation vidéo temporelle, 
ensemble de données multicentriques 

 

 

Résumé en anglais 

Innovations in Minimally Invasive Surgery have improved patient outcomes but have increased the 
complexity of surgical workflows. Optimizing workflow by recognizing surgical activities is essential to 
provide context-aware assistance. Significant research has been done on recognizing coarse grained 
activities (phases). Methods for detailed activity recognition are essential to better model workflows 
and advance the capabilities of Context-Aware Systems. This thesis aims to develop multi-level (phase 
and step) activity recognition methods from Laparoscopic Roux-en-Y Gastric Bypass (LRYGB) videos. 
First, we introduce a large dataset fully annotated with phases and steps and target joint recognition. 
Next, we propose a weakly supervised learning method using phases as weak signals for step 
recognition. Subsequently, we investigate data augmentation for optimal training of these models 
concluding with a generalization study on a large multi-centric dataset. 

Keywords: Surgical activity recognition, gastric bypass, phase and step recognition, weakly supervised 
learning, temporal video augmentation, multi-centric dataset 
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