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Extended abstract

With digitalization, the internet of things and the popularization of data-centric services,
different economy sectors have gone through significant changes in their business model. For
the automotive sector in particular, those changes relate to moving towards more service-
oriented offers. Selling a vehicle is no longer the last contact with the client, as aftermarket
services are responsible for a significant part of vehicle manufacturer’s revenue. With that in
mind, the main concern of this research project is to lay down the foundations for enabling
future services for heavy vehicles.

This work stresses the importance of maintenance optimization as well as its relationship
with vehicle usage. In the past, maintenance was limited to corrective replacements of faulty
parts resulting in long idle periods. This impacted the activity of the transporter, as well
as its repair costs. The introduction of monitoring systems along with the current commu-
nication techniques allow the development of new optimization methods in which, not only
replacement dates are determined optimally but also, vehicle usage is changed accordingly,
ensuring cost optimization, and continuously extending trucks remaining useful life. With
today’s technology, those optimization methods could be turned into services that help clients
defining replacement dates, manage logistics to minimize degradation levels of the fleet, or
even change vehicle software parameters to minimize the long-term costs.

This approach to maintenance, in which life is extend through a myriad of different ac-
tions encompassing several aspects of usage, is often referred to as prescriptive maintenance.
Although prescriptive maintenance was from the beginning an important element of the re-
search project that originated this work, its definition is rather controversial in the scientific
literature. As a consequence, a conceptual effort is done in this document in order to clarify
the scope of this kind of maintenance paradigm. With more precise definitions and a clear
scope, prescriptive maintenance is applied in the context of heavy vehicles.

Prescriptive maintenance applications for heavy vehicles can be seen as original optimiza-
tion problems in the realm of transportation science. Throughout the investigation of such
problems, significant scientific contributions were made. First and foremost, prescriptive main-
tenance requires models that can realistically connect degradation and vehicle usage. Such
models are hardly adapted for decision-making problems and require adaptation. In this
document, such models are studied in detail.

More concretely, this document is divided in two main parts. The first part contains
most of the conceptual relevant discussions around PsM and its application for vehicles. It
is concerned with defining important concepts, visiting the scientific literature and clearly
stating the class of problems that will be addressed in the second part. It contains 3 chapters,
which are now detailed.

In Chapter 1, the motivation behind this research is discussed. It comes down to recent
shifts on business models of vehicle manufacturers, which now tend to include aftermarket
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iv Abstract

services as part of their offers. However, the importance of this research goes beyond merely
creating tools for future services development. In order to justify its relevance in a more
broad sense, in Chapter 1, the social role of heavy vehicles is discussed. Furthermore, the
state of art of maintenance management and aftermarket services is presented, showcasing
possible improvement paths that may involve the concept of prescriptive maintenance. Finally,
other relevant research initiatives are visited, in order to provide what are the new challenges
addressed in this particular work.

In Chapter 2, a robust scientific treatment is given to the concept of prescriptive main-
tenance. In order to understand it in the scientific context, several important aspects of
maintenance as a whole are discussed, providing the reader with a high level view of modern
maintenance policies and strategies. Despite its recent popularity both in academia and among
industrial practitioners, prescriptive maintenance is not well defined. This claim is supported
by a review on the usage of the term in publication, highlighting common conceptual weak-
nesses. This chapter also proposes another definition of prescriptive maintenance, clarifying
potential confusion points. It ends by a presenting a development framework designed to help
the development of future solutions.

In Chapter 3, this framework is applied for this document subject of interest: heavy vehicle.
It contains a description of the particularities of those vehicles in terms of usage management,
presenting useful definitions and discussing technical limitations. Additionally, in this chapter,
a general discussion on the concrete problems that can be addressed by prescriptive mainte-
nance is held. It allows the reader to have a clear scope of relevant optimization problems,
and through a brief literature review, show possible modeling approaches. Chapter 3 closes
the first part of the document.

Chapter 4 opens part 2 by addressing solving a version of the prescriptive maintenance
problem presented in Chapter 3. This version is built around a stochastic degradation model
that can represent different vehicle components. Based on it, health management is defined
as, controlling degradation through routing and deciding replacement dates in an opportunis-
tic maintenance scenario. Chapter 4 presents a composed optimization model made from a
variation of a classical Vehicle Routing Problem (VRP) and another Integer Programming
(IP) problem representing maintenance decisions. The advantages of this model when com-
pared to classical VRPs is shown through extensive numerical experiments that cover different
hypothesis.

In Chapter 5, the focus shifts to electric vehicles. A degradation model is proposed for the
Energy Storage System (ESS) which is seen as an ensemble of batteries. This model combines
concepts used in battery degradation studies and logistical problems alike, representing a
potentially useful tool to connect battery degradation and vehicle usage realistically. More
precisely, it introduces a new state of charge model, that is better than the alternatives used
by most Electric Vehicle Routing Problems (EVRPs) in the literature, since it considers the
physics of battery cells. The advantages when compared to other models are proved through
different numerical experiments. Finally, realistic state of charge estimation allows for more
precise degradation prediction. As a consequence, the proposed model connect battery state of
health to vehicle displacements, opening the doors for new approaches to health management
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in electrical vehicles.

Chapter 6 showcases those new approaches by introducing variations of shortest paths and
routing problems accounting for degradation. Those versions are significantly harder to solve
than their original counterparts. As such, optimization algorithms are proposed based on
the particularities of the proposed optimization models. They are used to perform numerical
experiments that not only prove the benefits of considering battery degradation but also show
their viability in terms of computation time.

Through this work, insights on vehicle usage and health optimization were obtained. Sig-
nificant contributions were made on the realm of maintenance management definition and for
the transportation science. Maintenance was included in routing problems through models
that can be used to connect degradation and vehicle usage. In particular, for electric vehicles,
a realistic state of charge/state of health was proposed and included in optimization problems.
Those contributions can be used as the basis for new aftermarket services in which clients will
have access to a set of different recommendations (maintenance, but also usage and operating
modes) to keep the fleet operational to the maximum.





Resumé étendu

Avec la numérisation, l’internet des objets et la popularisation des services centrés sur les
données, différents secteurs économiques ont connu des changements importants dans leur
modèle d’entreprise. Pour le secteur automobile en particulier, ces changements concernent
l’évolution vers des offres davantage axées sur les services. La vente d’un véhicule n’est plus
le dernier contact avec le client, car les services après-vente représentent une part importante
du chiffre d’affaires des constructeurs automobiles. Dans cette optique, le principal objectif
de ce projet de recherche est de jeter les bases des futurs services pour les véhicules lourds.

Ce travail souligne l’importance de l’optimisation de la maintenance ainsi que sa rela-
tion avec l’utilisation du véhicule. Dans le passé, la maintenance se limitait à des remplace-
ments correctifs de pièces défectueuses, ce qui entraînait de longues périodes d’inactivité.
Cela avait un impact sur l’activité du transporteur, ainsi que sur ses coûts de réparation.
L’introduction de systèmes de surveillance et les techniques de communication actuelles per-
mettent de développer de nouvelles méthodes d’optimisation dans lesquelles, non seulement
les dates de remplacement sont déterminées de manière optimale, mais aussi l’utilisation du
véhicule est modifiée en conséquence, ce qui permet d’optimiser les coûts et d’allonger con-
tinuellement la durée de vie utile des camions. Grâce à la technologie actuelle, ces méthodes
d’optimisation pourraient être transformées en services qui aident les clients à définir les dates
de remplacement, à gérer la logistique pour minimiser les niveaux de dégradation de la flotte,
ou même à modifier les paramètres du logiciel du véhicule pour minimiser les coûts à long
terme.

Cette approche de la maintenance, dans laquelle la durée de vie est prolongée par une
myriade d’actions différentes englobant plusieurs aspects de l’utilisation, est souvent appelée
maintenance prescriptive. Bien que la maintenance prescriptive ait été dès le départ un élément
important du projet de recherche à l’origine de ce travail, sa définition est assez controversée
dans la littérature scientifique. Par conséquent, un effort conceptuel est fait dans ce document
afin de clarifier la portée de ce type de paradigme de maintenance. Avec des définitions plus
précises et un champ d’application clair, la maintenance prescriptive est appliquée dans le
contexte des véhicules lourds.

Les applications de la maintenance prescriptive pour les véhicules lourds peuvent être
considérées comme des problèmes d’optimisation originaux dans le domaine de la science
des transports. L’étude de ces problèmes a permis d’apporter des contributions scientifiques
significatives. Tout d’abord, la maintenance prescriptive nécessite des modèles qui peuvent
relier de manière réaliste la dégradation et l’utilisation du véhicule. De tels modèles sont
difficilement adaptés aux problèmes de prise de décision et nécessitent une adaptation. Dans
ce document, de tels modèles sont étudiés en détail.

Plus concrètement, ce document est divisé en deux parties principales. La première partie
contient la plupart des discussions conceptuelles pertinentes autour de la PSM et de son
application aux véhicules. Elle s’attache à définir les concepts importants, à consulter la
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littérature scientifique et à définir clairement la catégorie de problèmes qui seront abordés
dans la deuxième partie. Il comprend trois chapitres, qui sont maintenant détaillés.

Dans Chapitre 1, la motivation de cette recherche est discutée. Il s’agit de l’évolution
récente des modèles d’entreprise des constructeurs automobiles, qui tendent désormais à in-
clure des services après-vente dans leurs offres. Cependant, l’importance de cette recherche
va au-delà de la simple création d’outils pour le développement de services futurs. Afin de
justifier sa pertinence dans un sens plus large, le Chapitre 1 aborde le rôle social des véhicules
lourds. En outre, l’état de l’art de la gestion de la maintenance et des services après-vente
est présenté, mettant en évidence les voies d’amélioration possibles qui peuvent impliquer le
concept de maintenance prescriptive. Enfin, d’autres initiatives de recherche pertinentes sont
examinées, afin de présenter les nouveaux défis abordés dans ce travail particulier.

Dans le Chapitre 2, le concept de maintenance prescriptive fait l’objet d’un traitement
scientifique solide. Afin de le comprendre dans le contexte scientifique, plusieurs aspects im-
portants de la maintenance dans son ensemble sont examinés, offrant au lecteur une vue
d’ensemble des politiques et stratégies de maintenance modernes. Malgré sa récente popular-
ité, tant dans les milieux universitaires que parmi les praticiens industriels, la maintenance
prescriptive n’est pas bien définie. Cette affirmation est étayée par un examen de l’utilisation
du terme dans les publications, qui met en évidence les faiblesses conceptuelles communes. Ce
chapitre propose également une autre définition de la maintenance prescriptive, qui clarifie les
points de confusion potentiels. Il se termine par la présentation d’un cadre de développement
conçu pour faciliter l’élaboration de solutions futures.

Dans le Chapitre 3, ce cadre est appliqué au sujet d’intérêt du présent document: les
véhicules lourds. Il contient une description des particularités de ces véhicules en termes de
gestion de l’utilisation, en présentant des définitions utiles et en discutant des limitations
techniques. En outre, ce chapitre contient une discussion générale sur les problèmes concrets
qui peuvent être traités par la maintenance prescriptive. Il permet au lecteur d’avoir une
vision claire sur les problèmes d’optimisation pertinents et, par le biais d’une brève revue de
la littérature, de montrer quelques approches de modélisation possibles. Le Chapitre 3 clôt la
première partie du document.

Le Chapitre 4 ouvre la partie 2 en abordant la résolution d’une version du problème de
maintenance prescriptive présenté au Chapitre 3. Cette version est construite autour d’un
modèle de dégradation stochastique qui peut représenter différents composants du véhicule.
Sur la base de ce modèle, la gestion de la santé est définie comme le contrôle de la dégradation
par le biais de l’acheminement des véhicules et le choix des dates de remplacement dans
un scénario de maintenance opportuniste. Le Chapitre 4 présente un modèle d’optimisation
composé d’une variation d’un VRP classique et d’un autre ILP représentant les décisions de
maintenance. Les avantages de ce modèle par rapport aux VRP classiques sont démontrés par
des expériences numériques approfondies qui couvrent différentes hypothèses.

Le chapitre 6 présente ces nouvelles approches en introduisant des variantes des plus
courts chemins et des problèmes d’acheminement des véhicules tenant compte de la dégra-
dation. Ces versions sont nettement plus difficiles à résoudre que leurs homologues originaux.
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Ainsi, des algorithmes d’optimisation sont proposés sur la base des particularités des modèles
d’optimisation proposés. Ils sont utilisés pour réaliser des expériences numériques qui non
seulement prouvent les avantages de la prise en compte de la dégradation de la batterie, mais
démontrent également leur viabilité en termes de temps de calcul.

Ce travail a permis d’obtenir des informations sur l’utilisation des véhicules et
l’optimisation de leur santé. Des contributions significatives ont été apportées à la défini-
tion de la gestion de la maintenance et à la science des transports. La maintenance a été
incluse dans les problèmes de routage grâce à des modèles qui peuvent être utilisés pour relier
la dégradation et l’utilisation des véhicules. En particulier, pour les véhicules électriques, un
état de charge/état de santé réaliste a été proposé et inclus dans les problèmes d’optimisation.
Ces contributions peuvent servir de base à de nouveaux services après-vente dans lesquels
les clients auront accès à un ensemble de recommandations différentes (entretien, mais aussi
modes d’utilisation et de fonctionnement) pour maintenir la flotte opérationnelle au maximum.
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1.1 Context and goals

In today’s globalized world, economy has become extremely dynamic and markets are grad-
ually more interconnected. As a consequence, new recent trends such as digitalization, the
internet of things and data centricity have had a deep impact on several different sectors and
businesses across the globe. As an active and important part of the economy, the automotive
sector is not blind to those changes or to the opportunities arising because of them. As a
consequence, important shifts on the business models of this sector can already be seen. For
example, the importance of aftermarket services on vehicle manufacturer offers has grown and
is believed to continue growing in the coming years [VDB99]; [CV10].
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4 Chapter 1. Maintenance and services for heavy vehicles

The aforementioned trends affect economy in general, however, an important technological
shift has had a huge impact in the automotive sector in particular: the creation of new Electric
Vehicles (EVs). Those vehicles are becoming increasingly popular and are expected to soon
become the norm of transportation as their adoption is seen as one of the most important
measures to reduce the negative environmental impacts of road transportation.

Considering those two groundbreaking paradigm changes, the shift towards service-oriented
business models and the inclusion of EVs in the market, this research project, financed by the
Volvo Group, was born with a very concrete goal: investigate and create techniques which can
enable the development of services suitable for modern heavy vehicles owners. In particular, it
focuses on maintenance-related services since maintenance has been considered an important
factor for ensuring transport robustness and guaranteeing customer profit [HDL16]; [Hed20].

There are several challenges and opportunities when considering such services. Firstly, ef-
ficient maintenance requires a broad view, addressing and accounting for all the particularities
of each customer [Hed20]. Furthermore, with the current technology, maintenance services can
go beyond simply monitoring vehicle health indicators or recommending replacement dates.
Since, most of the vehicles are now connected to internet and regularly log different kinds
of data, it is possible, on a daily basis, to impact their Remaining Useful Life (RUL) by
optimizing usage. Such a service could encompass, for example, remotely changing software
parameters, optimizing logistics, defining recharging strategies in the case of EVs and so on.

During the development of this research, several relevant concepts related to maintenance
and usage optimization were developed. Those concepts were applied in the context of heavy
vehicles, leading to original scientific contributions on the realm of transportation science.
This thesis report documents the main aspects of this investigation, providing insights on
how to formalize and solve maintenance and usage related decision-making problems. The
techniques created have been proved useful and can be used as the basis for new services in
the automotive industry.

This first chapter provides a description of different aspects of the automotive world,
including the impacts of recent technological shifts. To understand the potential and interest
behind new maintenance and usage services, an overview on how maintenance is handled today
is given, discussing its importance and illustrating how future services can be an improvement
when compared to what heavy vehicle manufacturers offer today. A discussion on clients
expectations is also held in order to define the most important elements of such a solution
which have, in turn, guided most of this research.

1.2 Heavy vehicles: importance, trends and costs

The object of interest of this work are heavy vehicles. This term is used herein to designate
different types of vehicles such as heavy and medium duty trucks or busses. Although, at
times their importance is taken for granted, the society’s most basic functions, such as food
supply, rubbish handling and even passenger transportation, rely on heavy vehicles [Eng16].
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Figure 1.1: European modal distribution of freight transportation in 2020. [EUR22]

Heavy vehicles are also crucial for logistics since they are responsible for most of road
freight transportation. Figure 1.1 shows the European modal distribution of the total freight
transported in 2020 and Figure 1.2 shows inland freight modal distribution. As can be seen,
road transportation accounted for 24% of the total freight and 77.3% of inland freight in terms
of tonne-kilometers1 in 2020. Besides its obvious importance terms of tonne-kilometers, road
transportation has also a critical and unique role due to its flexibility [Eng16]. Roads are, in
many countries, the only way of accessing several regions, making this freight mode crucial in
terms of last mile transport [Rod20], being the basis of the logistic chain as a whole.

Heavy vehicles have also a significant impact from a sociological point of view. For example,
as shown in Figure 1.3, this transportation mode is also the most important in terms of
employments in Europe2. Furthermore, they also reduce geographical inequality. According
to the International Road Transport Union (IRU), heavy vehicles link "producers, businesses
and consumers, giving them the freedom to locate wherever they choose thanks to their

1In terms of percentages and tonne-kilometers both of those figures have been relatively steady in Europe
in the past decade [EUR22]. However, in several countries of the emergent world, road transportation is on the
rise. This is not surprising since, there is a strong correlation between GDP growth and road transportation
importance in developing economies [Age17]. In India, for example, road freight activity has increased to
around 290% in 25 years, from 0.4 trillion tonne-kilometers in 1990 to 1.4 in 2015 [Age17].

2Similar figures can be found for the United States [TS23] and the proportion grows when accounting for
warehouse-related activities.
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Figure 1.2: European modal distribution of inland freight transportation in 2020 [EUR22].

unparalleled flexibility. That freedom in turn helps to promote a fairer distribution of wealth
and jobs between urban and rural areas" [Eng16].

Lately, however, society has become sensible to the dangers of climate change. Recognizing
the urgency of the problem, reducing emissions is now a priority for several countries. Despite
its undeniable importance, from 2000 to 2015, road transportation accounted for 75% of all
freight transportation CO2 emissions and has contributed to 8% of the overall growth of
CO2 emissions form fuel combustion [Age17]. Different initiatives were taken to address this
environmental downside and, as a consequence, EVs have become a viable and important
product. The history and particularities of EVs are now presented in more depth.

1.2.1 Electric mobility

Despite the hegemony of Internal Combustion Engine (ICE) vehicles, EVs were actually the
first to be invented. They appeared in the years 1830 and by the end of the XIX century,
functional versions of EVs could already be found [Sit09]. In fact, according to the number
of vehicles registrations, by 1930, EVs outnumbered ICE vehicles in a three to one ratio
[Sit09]. They were an important transportation mean, being widely used for short distance
displacements [Sit09].
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However, in the years 1930, ICEs took over. The main reason for this change was the
fact that industrialization made vehicles available for the general public, which became more
interested in the ICE version since it was cheaper and energetically more efficient. From 1930
to 2010, road transportation remained dominated by ICE vehicles with occasional periods
when EVs gained some interest, mainly due to the political tension between western countries
and the OCEP [Sit09].

After the years 2010, with the increasing concern around climate change, EVs started to
be regarded as a way to mitigate the environmental impacts of accelerated green-house effect
and reduce petroleum dependency. As a consequence, private manufacturers and researchers
addressed important challenges for their adoption. For example, to this day, the main challenge
for EV adoption is the high purchase price when compared to ICE vehicles. This mainly comes
from the battery cost which accounts for 30% [Mis+17] to 50% [Bag+16] of EVs production
cost. However, substantial improvements in battery technologies have been made since 2013,
constantly reducing this cost, as can be seen in Figure 1.4. This has deeply contributed for
making EVs commercially viable [Mur+21].

Furthermore, several countries are creating, through legislation, conditions to popularize
EVs. For example, in its green deal announcement [Com19], the European Union presented
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Figure 1.4: Battery pack cost evolution between 2013 and 2022 estimated in the latest
Bloomberg’s annual battery price survey [Blo22].

a plan for reaching carbon neutrality by 2050. In this document, they explicitly address the
necessity of creating laws "to ensure a safe, circular and sustainable battery value chain for all
batteries, including to supply the growing market of electric vehicles", which will contribute
to the popularization of EVs. More concretely, in 2023, the European Parliament approved
a law that effectively bans the sale of ICE vehicles by the year of 2035 [Par23]. The effects
of those policies and fiscal incentives can already be seen in several countries. In [LDT17], a
comparison between Total Cost of Ownership (TCO)3 estimations of ICE vehicles and EVs is
done. It shows that the legislation already in place in countries such as Norway, makes EVs
less expensive than ICEs in the long term. This contributes to their adoption since there is a
negative correlation between EVs market share and TCO [LDT17].

For the aforementioned reasons, it is safe to say that EVs are now well established and will
soon enough become the status-quo in terms of transportation. This is confirmed by the market
share and customer adoption trends observed worldwide. Figure 1.5 shows the evolution of
EVs sales in the world. As can be seen, from 2015 onward, sells grew exponentially. Although
this growth is mainly driven by China and the US, this phenomenon will probably be seen
worldwide with estimations that, in 2030, 38% of vehicles will be EVs [IEA23].

Although EVs can indeed mitigate the consequences of global warning, they bring chal-
lenges for the transportation industry and logistic professionals alike. To quantify their future
impact, assumptions around EV adoption must be made. The International Energy Agency
(IEA) makes such estimations considering two different scenarios. The first scenario is called

3The differences between TCO and total exploitation cost, as used in this document, is that the first also
considers the cost of acquiring a vehicle while the second only involves costs related to using it.
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Figure 1.5: EVs stock evolution as estimated according to the public database [IEA23].

Stated Policies Scenario (STEPS) and it projects the future number of EVs conservatively,
accounting only for existing government incentives already in place or under development
[Age22]. The second scenario is called Announced Pledged Scenario (APS), in which EV adop-
tion is projected more aggressively, considering that all government targets will be reached
[Age22]. Figure 1.6 shows the historical and projected number of chargers, while Figure 1.7
shows historical energy consumption of EVs. In both, values for 2025 and 2030 are the pro-
jections in STEPS.

The impact in terms of chargers necessity is huge, being expected to increase in 10 times.
In the APS scenario this number is even greater, increasing 14 times [Age22]. The implication
is that, a significant infrastructural effort will be required in order to install all those stations.
Looking at energy consumption, it can be seen that 104 TWh are reached in the STEPS
scenario. The increase in even greater for APS, with EV related energy consumption reaching
880 TWh in 2030. The energy sector will be deeply impacted and, to ensure that EVs will
really mitigate global warming effects, efficient electric energy generation must be guaranteed.

From a logistical point of view, EVs also require significant adaptation. ICE long-haul
vehicles travel up to 1400 kilometers with a full tank 4 and take from 10 to 15 minutes to
refill it. On the other hand, the average electric truck range is 300 km and a full recharge
can take up to 9,5 hours in AC charging and 1,5 hours in DC charging [Truc] and recharge
stations are still scarce. Developing services that improve maintenance and vehicle usage for
EVs require that all those particularities are taken into account. Any service that addresses

4This estimation is based on the empirical fuel efficiency seen at [SM15], which observed fuel efficiencies
of 32 L/100 km considering heavy duty trucks tanks of 450 liters. However the record range for commercial
heavy duty-vehicles was established by the Mercedes Actros with impressive 12728 kilometers traveled with a
full tank on a test track [Mer].
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Figure 1.6: Number chargers evolution. The values for 2025 and 2030 are estimations made
considering the STEPS scenario [IEA23].
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Figure 1.7: EVs energy consumption evolution. The values for 2025 and 2030 are estimations
made considering the STEPS scenario [IEA23].
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usage optimization and therefore affects logistics must consider the availability of recharge
stations, energy consumption and other EVs particularities.

1.2.2 Exploitation cost and maintenance

To envision a useful service for customers, it is important to understand what composes the
overall exploitation cost of managing a heavy vehicles fleet. With ICE vehicles or EVs, freight
transportation is complex and different costs affect operation on a daily basis. Figure 1.8
shows those different types of expenses related to vehicle exploitation:

• Driver: The total cost of drivers, considering wage charges and other benefits imposed
by legislation.

• Fuel: Fuel cost before taxes, taking into account various refuelling methods and the
partial refunding of the French Energy Tax.

• Overheads: Structural costs and other indirect charges such as administrative staff
costs.

• Equipment: Costs of possession, renewal, financing and insurance costs (for the vehicle
and eventually for the payload).

• Maintenance: Maintenance and repair costs as well as tire replacement costs.

• Infrastructures: Costs of motorway tolls and the annual tax on heavy goods vehicles.

• Travel expenses: Costs of long distance missions, including meals and accommodation
based on French Labour Agreement and the travel expenses protocol.

As can be seen, maintenance costs related to periodic operations and repairs are a relevant
expense, being responsible for 8.2% of the total cost. Some of those costs are affected by
French legislation elements. Similar statistics are not available on a continental or global level.
However, it is reasonable to assume that, financially, maintenance is even more important in
other European countries, since CNR data indicates that drivers and overheads costs are on
average significantly lower in the rest of the continent when compared to France [Cnrb].

It is important to highlight though, that the financial impact of maintenance goes way
beyond its cost. Related opportunity costs are hard to estimate but can be extremely impactful
in the long-run. Maintenance operations imply vehicle immobilization and often represent a
missed opportunity to generate revenue. However, if the vehicle is not well maintained and this
leads to a breakdown, it can cause significant revenue loss. [PS23] estimate that breakdowns
cost around 700 USD per day of immobilization. This estimation is very conservative since
it does not consider repair costs and credibility losses related to potentially not making a
delivery in due time.



12 Chapter 1. Maintenance and services for heavy vehicles

25.2%

8.3%
6.9%

12.5%

27.4% 7.2%

12.5%

Fuel
Maintenance
Infrastructure
Equipment
Driver
Travel expenses
Overheads

Figure 1.8: Exploitation cost estimation for long-haul vehicles in 2022 according to France’s
National Road Commission (CNR) [Cnra]

Therefore, maintenance is of key importance in road transportation and must be planned so
that uptime is maximized without risking unplanned breakdowns while adapting to the reality
of fleet managers and fleet owners [HDL16]; [Hed20]. It is also clear that, since other sources
of expenses are relevant, health management and maintenance optimization must account for
the complete operational context. In the next section, an overview on how maintenance for
trucks works in practice is given in order to provide insights on possible improvements and
opportunities to propose new services.

1.3 Maintenance management for heavy vehicles

To understand why services combining maintenance and vehicle usage would be potentially
interesting for customers, it is necessary to understand some aspects of maintenance manage-
ment and contracts in the context of road transportation. The first important aspect is the
fact that there are several different actors involved in the process of maintaining a vehicle,
such as:
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• Vehicle owner: the person who owns the vehicle or provides the financial resources
to acquire them. When considering to buy a vehicle from a particular brand, vehicle
owners considers not only the purchase price but also the cost of maintaining it and the
services offered by the manufacturer.

• Fleet managers: responsible for managing logistics. His goal is to ensure competi-
tiveness, operational efficiency and optimize the fleet exploitation. In several cases, the
fleet manager is also responsible for taking maintenance decisions, correctly following
maintenance schedules to assure uptime.

• Driver: responsible for executing the mission plan established by the fleet manager.
The way the driver handles the vehicle has huge impact. It impacts, for example, fuel
consumption and vehicle degradation which in turn leads to the necessity of maintenance
and can cause downtime. Therefore, a careless driver, can have a negative impact on
the total exploitation cost.

• Workshop: responsible for performing maintenance operations. The workshop deals
with unplanned immobilization due to breakdowns or accidents as well as scheduled
maintenance operations such as oil changes.

• Customer Service Representative (CSR): responsible for acting as the interface
between a customer and a workshop, acting as a single point of contact for the fleet
manager, ensuring that customer expectations are managed at all times. In several cases,
the CSR is constantly in contact with the fleet manager in order to provide maintenance
insights and guarantee that all operations are carried out when necessary.

• Spare part supplier: responsible for delivering vehicle spare parts to the workshop
enabling maintenance operations. Besides the recurrent restocking, urgent deliveries can
also occur when a vehicle is subjected to unplanned stops.

• Vehicle manufacturer: responsible for selling vehicles to vehicle owners. As mentioned
before, offering services that can improve transportation purchaser’s experience is also
an important goal of modern vehicle manufacturers.

Maintenance contracts connect all of them. The manufacturer (represented by dealers)
proposes a maintenance contract as part of the offer. Fleet managers commit to respecting
maintenance intervals and instruct drivers accordingly. Workshops and spare part suppliers
organize themselves around those maintenance intervals to ensure that the required operations
take place exactly when needed.

In the Volvo Group, maintenance contracts are usually proposed when a new vehicle is
acquired. The exact terms of the contract are negotiated between manufacturers and vehicle
owners but in general, its cost is based on the expected number of maintenance operations.
This number is defined by vehicle configuration (number of axes, total weight, size, model,
etc) as well as its expected usage, which is estimated through a survey aiming to find out the
following information:
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• Transport cycle: defined as the type of application for which the vehicle will be used.
Vehicles used in construction site or long distance applications require maintenance
operation more often than those performing city distribution.

• Topography: understood by Volvo as the slope of the road in which the vehicle will
operate on average. Hillier roads imply maintenance operations to be performed more
often.

• Gross Combined Weight (GCW): defined as the combination of the vehicle weight
and its payload. Vehicles operating on average with more mass require maintenance
more often.

After this survey is completed, the information gathered is used to compute the expected
Powertrain Operating Condition (POC) of the vehicle. The POC is a quantity that is deeply
related to fuel consumption and is used by the Volvo Group to quantify the severity of vehicle
usage. Table 1.1 shows how it is estimated through this survey, where w1 and w2 are values
of GCW while the remaining symbols are acronyms.The ones used for topography stand for:

• PF: Predominantly Flat

• H: Hilly

• VH: Very Hilly

while the ones used for POC stand for:

• L: Light

• M: Medium

• H: High

• S: Severe

• VS: Very Severe

• VS+: Extreme

Table 1.1: POC estimation rules for two different transport cycles: long distance driving and
construction site.

Transport cycle Long distance driving Construction
GCW ≤ w1 ]w1, w2] ≥ w2 ≤ w1 ]w1, w2] -

Topography PF H PF H - H H VH
POC L M M H S L M H
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Table 1.2 shows how POC is used to define operation intervals. More severe POC corre-
sponds to tighter maintenance intervals. They can be defined in terms of mileage, months or
operating hours thresholds and, whichever one is reached first defines the date of the next op-
eration. For example, a vehicle with VS POC, must perform Operation 1 whenever it reaches
4000 engine hours since the last time this operation was performed. This must happen even if
the vehicle has not yet travelled 200000 kilometers or reached 12 months of operation. Notice
as well that Operation 1 is performed only once for L POC.

In reality, however, the estimated POC may not correspond to the actual one. The Volvo
Group offers services that, among other things, allow CSRs and fleet managers to monitor
the real value of POC, adapting maintenance intervals if needed. Some of those services are
presented below.

1.4 Aftermarket services at Volvo

As mentioned before, services are a crucial part of vehicle manufacturer’s offer as they are seen
as a key client retention factor. For example, findings of a 2019 survey [Pow] that inquired
heavy-duty truck owners, indicate that services are the second most important factor when
it comes down to client satisfaction. It looses only to the quality of the vehicle itself and
surpassing factors such as vehicle cost.

The Volvo Group has different services offers composed of different monitoring tools used
to visualize relevant data. The most important data types will now be reviewed, however,
since the group is composed of different brands (such as Volvo Trucks, Renault Trucks, Volvo
Busses, etc), the exact scope of each service offer can vary.

1.4.1 Maintenance-related services content

As previously stated, maintenance is a very important factor when dealing with heavy vehicles
and is seen by many researchers as an extremely important aspect to be explored in service
offers [HDL16]. The services related to maintenance offered today are mainly used to monitor
data split into three categories: usage monitoring, wear monitoring and breakdown prevention.

Usage monitoring data is related to several dimensions of vehicle usage such as yearly
mileage, yearly fuel consumption, GCW and average fuel consumption. From the point of
view of maintenance, this information is important because it allows users to obtain real POC
which, as seen in Section 1.3, impacts maintenance operation intervals. Furthermore, intervals
can be defined in terms of mileage and engine hours, which are also part of this data.

Fixed maintenance operation intervals do not account for the nuance of usage conditions.
Several components have health indicators which physically represent the necessity of perform-
ing a maintenance operation. For example, brake-pads only need to be replaced when their
thickness falls under a specific threshold. For those components, the wear monitoring data
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Figure 1.9: Health indicator visualization for a contactor. The graph shows data points
collected from the vehicle until the present date. The dashed line seen after October is the
predicted trajectory of this indicator, showing when this component is expected to reach a
critical state

allows users to see the evolution of those indicators. It also enables predicting when thresholds
will be reached. Figure 1.9 is an example of a data visualisation tool used to display wear
monitoring data.

Breakdown prevention data revolves around the fact that some vehicle failure modes are not
necessarily caused by the gradual deterioration of health indicators but can happen abruptly.
Based on data related to those failure modes, such as Diagnostic Trouble Codes (DTCs) and
variables such as mileage, health indicators and etc, detection models are created to identify
any anomaly that can lead to an unplanned stop. Alerts can then be sent to drivers and fleet
managers so that they can plan inspections and component replacements in advance, avoiding
downtime.

Those three types of data are the core of maintenance-related services offered by the
Volvo Group. They are part, for example of the "Predict" offer of Renault trucks [Trua]
and "Uptime" offer of Volvo Trucks [True]. It is important to highlight that, although those
services are offered to vehicle owners, the data is mainly displayed to CSRs, which in turn
need to reach out to clients change the maintenance schedule if needed.

1.4.2 Vehicle-usage-related services content

Aftermarket services are not limited to maintenance. There are also services related to vehicle
usage support, specially in terms of logistics. Once again, since the Volvo Group is composed
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of different brands, the exact scope of those services may vary, however, the most important
tools, from a fleet manager point of view, revolve around the following data:

• Vehicle performance data: Data related to vehicle performance such as fuel con-
sumption, number of time brakes were used and time percentage in idle. It can be
used to improve drivers performance and help fleet managers deciding to pay for driver
coaching, for example.

• Geo-mapping data: Information related to vehicle location. It provide fleet managers
with the current location of each truck as well as their travel history. It allows delivery
confirmation, for example.

• Driver legal data: Driver information such as traffic violations, time lapse of driving
sessions and so on. It is mainly used to ensure that vehicles are driven in accordance to
the legislation.

• Vehicle safety data: Events related to a vehicle safety systems, such as how often
the advanced emergency braking system is used, for example. It also helps detecting
any excessive braking or acceleration or any driving behaviour that can be considered
dangerous.

• Vehicle health data: Information related to warning alerts shown in vehicle clusters.
It allows fleet managers to be informed of potential vehicle problems. Although, this
overlaps with breakdown prevention data, it is important to highlight that data of usage-
related services is consumed by fleet managers while maintenance services have their data
used by the CSR.

This is the core of usage-related services offered by the Volvo Group and this data is
part of Volvo Truck’s Dynafleet service [Trud] and Renault trucks Opitfleet service [Trub],
for example. However, it is important to highlight that services offered nowadays work as
monitoring tools that provide insights through data visualization. All the decision-making
process related to how to exploit the vehicles, how to perform deliveries must still be done by
the fleet manager.

1.5 Prescriptive maintenance: bringing usage and maintenance
together

Analyzing the content of nowadays offers, it is possible to identify some gaps that can be the
base for future services improving the experience of vehicle owners and fleet managers alike.
The main point to be stressed out is that usage and maintenance services are not integrated.
This oversights the dual relationship between usage and maintenance. The way vehicles are
used will impact their health state and at the same time, scheduling maintenance operations
affects logistics which in turn forces adaptation on how vehicles are employed.
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Furthermore, as indicated by the aforementioned 2019 survey [Pow], the majority of satis-
fied vehicle owners mention that they see the manufacturer as a logistic partner. This indicates
that there is a desire for robust decision-making services. However, today, both maintenance
and usage services only provide insights to the fleet managers, lacking a quantitative measure
of how different choices can affect the overall exploitation cost of the fleet.

Such a solution would be extremely useful for fleet managers. They are not only interested
in breakdown predictions or alerts but would rather prefer a set of recommendations of ac-
tions to keep vehicles operational as much as possible and reducing exploitation costs. Vehicle
purchasers would be even more interested, since this service would not only contribute to per-
forming maintenance operations without impacting operational availability but also increase
productivity through usage optimization, ensuring maximum profit.

The basis of such a service would be the quantification of the relationship between usage,
system health and exploitation cost. When investigating contemporary maintenance trends,
the expression Prescriptive Maintenance (PsM) frequently appears as a new maintenance
paradigm that is capable of concealing all those different things identifying the best course
of action in terms of system exploitation 5. This thesis is then mainly dedicated to studying
and developing the techniques to create PsM solutions for heavy vehicles in order to lay solid
foundations for future service offers.

1.6 Previous research projects

This research project is not the first one conducted at Volvo’s addressing maintenance services.
Since 2010, three other PhDs were conducted within the aftermarket services area, each one
dealing with different aspects of maintenance management and optimization. The first one
was [Bou10]. It revolved around the fact that the fixed intervals defined by maintenance
contracts (Section 1.3) do not consider the evolution of health indicators. The goal was to
create a dynamic data driven maintenance plan. To do so, the proposed methodology was
based on three steps:

• Infer probability models for the failure of different critical components. By analyzing
time series of health indicators, a degradation model capable of giving a failure proba-
bility in a specific time horizon was conceived.

• Define the best replacement date for each component. This process is done for each
vehicle component individually through an optimization process.

• Use an heuristic to group the different replacement operations together as close as pos-
sible to their optimal replacement date. This leads to a maintenance plan that involves

5PsM has in the last years became a buzzword often used to describe holistic maintenance solutions. The
term got so popular that it was included in the original proposition of this research project. For those reasons,
it deserves careful attention as will be seen in Chapter 2
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less workshop visits and therefore reduces downtime. Whenever new degradation infor-
mation becomes available, this maintenance plan can be updated.

This method has improved the fixed schedule maintenance approach. By relying on data
collection, stochastic models can be employed and conditioned on health indicators measures,
which allows for the variance of failure predictions to gradually decrease. Those models also
naturally capture the uncertainty related to degradation and are useful in the decision-making
context. Furthermore, the grouping strategy allows for the maintenance schedule to be con-
densed, avoiding excessive downtime. However, this work has some shortcomings.

The first shortcoming is related to the fact that each component failure date is estimated
independently and that the operation grouping process does not account for the system func-
tionality. Components of the same subsystem should be replaced together since their impact
on the vehicle is correlated. The second one is that, the maintenance plan considers exclusively
health indicator evolution and failure probabilities. This is unpractical in real applications
since it disregards fleet managers operational constraints, maintenance plans of other vehicles
in the same fleet and so on. To address some of those issues, a second research project [Les15]
was carried out.

In this project, the operation grouping principle is improved by considering subsystems,
ensuring that components that relate to the same functionality of the vehicle are replaced
together, based on failure probabilities of the whole subsystem and not each individual com-
ponent. This work also accounted for operational constraints, defining time windows in which
maintenance operations could not occur, ensuring vehicle availability in moments when de-
mand is more intense and the fleet manager is expected to have more deliveries to plan for.
Finally, the notion of vehicle usage is introduced by considering "normal" operation and
"stressed" operation modes. In the first one, vehicle health indicators degrade slowly com-
pared to the second and vehicles are assumed to be able to change from one mode to the other
between time windows.

Both in [Bou10] and [Les15], vehicle usage was either indirectly observed through the
randomness of the degradation process considered, in the first case or just as input as in
the second one. No explicit consideration for how vehicles are used was made and usage
optimization was not included in those works. To close this gap, a third research project
[Rob19] proposed a maintenance optimization combined with delivery scheduling.

This work accounts for vehicle usage by considering the scenario where a fleet of vehicles
has a set of missions (a delivery or a set of deliveries) to perform. Each mission has a fixed
particular deadline and duration. A stochastic process is used to model vehicle degradation
and each mission can have different probabilistic parameters, contributing differently to degra-
dation evolution. Maintenance operations can be scheduled after missions are performed and
both missions and the maintenance operations are jointly scheduled. As such, this work in-
troduces vehicle usage as an output of an optimization method, stressing its importance in
terms of maintenance planning. However, improvements can still be done.

The first axis of improvement is the fact that vehicle usage was simplified and some as-
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pects of their definition of mission are not realistic, ignoring important spatial considerations.
[Rob19] considered, for example, that the order of missions did not impact the cost function
used in the optimization algorithm. However, in practical cases, this order impacts due dates,
fuel consumption and even degradation. In fact, the cost function ignored some of those impor-
tant operational expenses. Furthermore, this work does not address the differences regarding
the time scale of maintenance and mission scheduling. As the optimization criteria rely on
failure probabilities, they ignore the fact that throughout most of vehicle life, degradation
levels are so far from criticality that those probabilities are neglectable. However even at this
stage, usage-related decisions may impact the long-term outcome of failures.

Some of those improvement axes are explored in this current research project. A deeper
consideration of the particularities of vehicle usage and the importance of long-term strategies
are present in all the modeling choices made. Furthermore, with the recent interest in elec-
trical heavy vehicles, in this work the particularities of EVs are also accounted for, creating
consumption and degradation models adapted for those.

1.7 Thesis contributions

This thesis sums up the research work done in a collaboration between the Volvo Group
and the lab GIPSA-Lab, a joint research unit of the CNRS, Université Grenoble Alpes and
Grenoble INP. It aims to investigate and provide methodological contributions, as well as
practical tools to move towards maintenance services that account for and impact system
usage in the context of heavy vehicles applications.

From Volvo’s point of view, the main contributions are the development of usage and
maintenance optimization techniques and the proposition of realistic vehicle usage models.
Furthermore, particularities of EVs are considered, laying down the basis for possible services
adapted to the current technologies of the automotive sector. Scientifically speaking, the
contributions of this research project can be divided into two main categories: conceptual
contributions and practical implementations

1.7.1 Conceptual contributions: Prescriptive maintenance definition, de-
velopment framework and implementation for heavy vehicles

As stated before, the original research scope proposed by the Volvo Group was built around the
concept of PsM. Despite its relative recent popularity among researchers [AGN19]; [Nem+18]
and industrial practitioners [Tra]; [IBM] alike, PsM has, at best, an immature definition. The
first significant contribution is a scrutiny of PsM as an idea, performing a critic bibliography
review and discussing it in the context of maintenance science.

Through the insights and fragilities identified in the review process, a more robust definition
of PsM is proposed. Based on this definition, a systematic development framework for PsM
solutions is presented, in order to help researchers to conceptualize such solutions. Finally,
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this framework is applied to heavy vehicles and leading to a high level view of PsM problem
in this context. The second category of contributions arise from the scientific efforts required
to solve such problem in practice.

1.7.2 Methodological tools for practical implementation of prescritive
maintenance for heavy vehicles

When solving a PsM problem for vehicles, several challenges arise and, as a consequence, in
order to achieve the goal of reducing the exploitation cost of a fleet of heavy vehicles through
maintenance and usage optimization the following contributions were made.

1.7.2.1 Vehicle usage based degradation models

In order to develop post-prognostic decision-making methods for optimal management of ve-
hicles subjected to degradation, it is necessary to employ models capable of connecting usage
and vehicle health. This can be achieved by employing degradation models which are sen-
sible to different usage conditions, however, those models are rarely used for transportation
applications.

Furthermore, in order for those models to be useful in the context of decision-making, they
must be capable of being incorporated into optimization frameworks, correlating degradation
to decision variables. Different alternatives for creating such models are explored in this
manuscript. Concrete models are proposed for different kinds of vehicle components and the
advantage of using them when compared to more classical alternatives is illustrated through
numerical experiments.

1.7.2.2 Optimization formulation for PsM problems

Employing the aforementioned degradation models in practical decision-making context often
requires original formulations of classical problems such as shortest paths, vehicle routing and
electric vehicle routing. Non-trivial considerations must be made when formulating those PsM
optimization problems.

In this manuscript, several different original formulations of optimization problems are
proposed. Through a set of numerical experiments, it is shown that those formulations lead to
different exploitation strategies when compared to classical routing approaches. This proves
the value of combining usage and degradation optimization, and leads to valuable insights
when it comes down to fleet management.
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1.7.2.3 Optimization algorithms

PsM optimization problems can be seen as a more complex variation of classical decision-
making problems as mentioned in Section 1.7.2.2. As a consequence, finding solutions can
become computationally challenging as traditional optimization methods are not always suit-
able.

To solve those problems, new optimization algorithms are proposed. Their performance is
examined and compared to classical algorithms when this is relevant. Discussions on the prop-
erties of PsM problems are discussed and explored to justify the creation of those algorithms,
highlighting the mechanisms employed to enhance computational performance.

1.7.3 Publications

Throughout almost 4 years of work, the following articles were published:

• Dias Longhitano, P., Tidriri, K., Bérenguer, C., Echard, B. Proposition of a Generic
Decision Framework for Prescriptive Maintenance. In: Pinto, J.O.P., Kimpara, M.L.M.,
Reis, R.R., Seecharan, T., Upadhyaya, B.R., Amadi-Echendu, J. (eds) 15th WCEAM
Proceedings. WCEAM 2021.

• Pedro Dias Longhitano, Khaoula Tidriri, Christophe Bérenguer, Benjamin Echard. A
closed-loop prescriptive maintenance approach for an usage dependent deteriorating item
- Application to a critical vehicle component. ESREL 2021 - 31st European Safety and
Reliability Conference, Sep 2021, Angers, France.

• Pedro Dias Longhitano, Khaoula Tidriri, Christophe Bérenguer, Benjamin Echard. Joint
optimization of routes and driving parameters for battery degradation management in
electric vehicles. SAFEPROCESS 2022 - 11th IFAC Symposium on Fault Detection,
Supervision and Safety for Technical Processes, IFAC; University of Cyprus, Jun 2022,
Pafos, Cyprus. pp.6, 〈10.1016/j.ifacol.2022.07.187〉. 〈hal-03717814〉

• Pedro Dias Longhitano, Benjamin Echard, Khaoula Tidriri, Christophe Bérenguer. Bat-
tery degradation model for mission assignment in a fleet of electric vehicles. ENBIS
Spring Metting 2022, European Network for Business and Industrial Statistics, May
2022, Grenoble, France.

• Dias Longhitano, P., Bérenguer, C., Echard, B. Battery degradation incorporated on
fleet management optimization. Mimar 2023 - 12th IMA International Conference on
Modelling in Industrial Maintenance and Reliability, July 2023, Nottinghan, United
Kingdom.

With the last one been granted the "IMechE Safety and Reliability Group prize for Best
Contribution by Young Professional at the 12th MIMAR, June – 6 July, 2023". The following
journal article is under review:
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• Dias Longhitano, P., Bérenguer, C., Echard, B. Joint Electric Vehicle Routing and
Battery Health Management Integrating a Realistic State of Charge Model. In the
journal: Computers & Industrial Engineering.

Additionally, a patent request on the models proposed in Chapter 5 is under review.

1.8 Thesis outline

This document is divided in two main parts. Part I contains most of the conceptual relevant
discussions around PsM and its application for vehicles. Besides this first introductory chapter,
it also contains:

• Chapter 2: In this chapter, the concept of PsM is deeply investigated. In order to
understand it in the scientific context, several important aspects of maintenance as a
whole are discussed in order to provide the reader with the state of art of maintenance
policies and strategies. A critical review on the most popular attempts of defining PsM
is given, highlighting common conceptual weaknesses. A more precise definition for PsM
is given at the end of the chapter, followed by a proposition of a development framework
designed to clarify the path for building PsM solutions.

• Chapter 3: In this chapter, the development framework proposed in Chapter 2 is ap-
plied for this document subject of interest: heavy vehicle. Relevant concepts particular
to those vehicles are described and the clear scope of the developments made during
this research is presented. Useful topics, such as optimization problems related to trans-
portation science, degradation models and decision-making algorithms are reviewed.

While Part I contains most of the conceptual contributions made in this research, Part II
revolves around the results arising from applying the aforementioned concepts in practice. It
is composed of the following chapters:

• Chapter 4: In this chapter a PsM solution is proposed by considering a generic vehicle
component. It is modeled by a degradation process that can be applied for components
such as brake-pads, air filters, starter batteries and many other important components
for ICEs and EVs alike. An optimization problem related to this application is pro-
posed and solved in different contexts, displaying, through numerical experiments, that
the proposed approach for usage and maintenance optimization can lead to significant
exploitation cost reduction.

• Chapter 5: In this chapter, PsM degradation model is proposed for the Energy Stor-
age System (ESS) which is one of the most important EV components. This model
combines concepts used in battery degradation studies and logistical problems alike,
representing a potentially useful tool to connect battery degradation and vehicle usage
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realistically. Numerical experiments illustrate the potential improvement of this model
when compared to common alternatives used in transportation science.

• Chapter 6: In this chapter, the model developed in the previous chapter is employed
in the context of decision-making. It is included in several different optimization models
related to classical logistical problems such as shortest paths and vehicle routing. All
of those problems are solved through algorithms capable of dealing with the computa-
tional complexity arising from combining ESS degradation and vehicle usage. Numerical
experiments are once again presented in order to validate the proposed approach.

• Chapter 7: Finally, in this chapter, an overview of the work done is presented, dis-
cussing limitations and proposing possible improvement directions for future research.
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2.1 Introduction

This thesis is mainly dedicated to studying and developing techniques to create PsM solutions
for heavy vehicles. Since PsM it is treated as the pinnacle of maintenance by some authors
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[AGN19], it is first necessary to understand what this term really means. Despite its recent
popularity among researchers and industrial practitioners alike, some weaknesses regarding
its definition deserve to be addressed. Therefore, this chapter studies the concept of PsM
attempting to provide an useful definition that really characterizes it as a different alternative
to most classical maintenance paradigms.

To justify this conceptual effort, in this chapter, a review of the history of maintenance
is done as well as the definition of key terms for understanding maintenance as a science in
a large sense. A critical systematic review of the usage of PsM in the literature is presented,
discussing how the term is used in the scientific community and critically debating some
theoretical shortcomings.

Finally, a PsM definition is given, with an explicit list of its required features. This
definition is followed by a generic framework for PsM development, idealized in order to
guide the implementation of such solutions. It is an improved version of the one presented
in [DL+21]. The chapter ends by discussing possible limitations of the framework and the
new definition presented in order to suggest future perspectives for contributions aiming to
conceptualize maintenance solutions.

2.2 Maintenance history

According to the European standard EN-13306 [En1], maintenance can be defined as the
"combination of all technical, administrative and managerial actions during the life cycle of
an item intended to retain it in, or restore it to a state in which it can perform the required
function". Since every machine, device or tool is subjected to wear and can, therefore, enter
into a state where it no longer properly performs its functions, maintenance has always been
necessary. For example, Egyptian documents from 600 B.C mention maintenance operations
in boats [PŽB19]. The consequences of poor maintenance management are also known by
mankind for a longtime. For instance, the negative impacts of poor road maintenance in
medieval England led to critical logistical limitations with sensible social consequences in
1406 [Bla57].

Until the years 1870, maintenance was mainly reduced to replacing or repairing defective
parts after a breakdown occurred [PŽB19]. However, after the second industrial revolution,
electrification led to more complex machines which enabled the creation of large scale assembly
lines. In this scenario, unplanned downtime had severe financial consequences and was harder
to address. This led to the adoption of planned maintenance operations [PŽB19]. Those
operations consisted of repairs and replacements done preemptively before machines entered
a defective state.

The importance of breakdown prevention was not limited to assembly line machines how-
ever. As the general public gradually started to gain access to complex devices, the view of
preventive actions as necessary to ensure up-time started to spread. This can be seen, for
example, in this extract from the Ford Manual for Owners and Operators of Ford Cars of
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1915:

"Frequently inspect the running gear. See that no unnecessary play exists in either front or
rear wheels and that all bolts and nuts are tight. Make a practice of taking care of every repair
or adjustment as soon as its necessity is discovered. This attention requires but little time and
may avoid delay or possible accident on the road" [Com15].

Therefore, according to [PŽB19], from the second industrial revolution on, maintenance
actions gradually started to be scheduled based on regular intervals. However, at first, the
criteria for defining those intervals were qualitative since little was known about failure modes
[KM+08]. As a consequence, maintenance was at best sub-optimal, being possibly detrimental.
For example, in 1940, C.H Waddington noted that regular maintenance interventions carried
out carelessly led to extra breakdowns in military airships [Ign10].

A more rigorous and systematic study of maintenance cost effectiveness was only made
possible with the development of reliability engineering [KM+08]. This discipline applies "sci-
entific know-how to a component, product, plant, or process in order to ensure that it performs
its intended function" [Kir17]. According to [SM06], reliability engineering was founded by
Walter Shewhart, gained relevance during the World War II and consolidated itself as a rec-
ognized discipline in 1957 [SM06]. With the application of probability to assess equipment
survival promoted by reliability engineering, maintenance operations could be scheduled in
more systematic ways, based, for example, on mean time to failure and other statistics. That
way, quantitative parameters for establishing maintenance intervals were employed, reducing
excessive expenses and downtime.

Even when based on mathematically valid probabilistic models, scheduling operations
based on operating time has its limitations. For example, maintenance intervals are based
on probability distributions, and therefore, specific devices may fail or be replaced prema-
turely. Furthermore, with the complexification of devices, failure modes of subparts started
to superpose, leading to no dominant time-related failure modes [KM+08]. To avoid those
problems, and with the development of sensors, computers and other technological enablers,
maintenance actions can, nowadays, be carried out based on the measured health condition
of the equipment. This leads to more assertive interventions and reduces waste caused by
premature replacements.

Now, in the modern economy, maintenance occupies a critical role and is of strategi-
cal importance for most companies [Als07]. As a consequence, maintenance research works
from different areas such as history [Bla57], management [HDL16] and even sociology [JP19];
[DMP15] can be found.

2.3 Maintenance policies

To contextualize and establish what PsM is it is important to define key maintenance concepts
that are useful to understand and investigate other maintenance policies. However, before



30 Chapter 2. PsM: critical review and framework proposition

starting, some considerations are necessary. The first one is that, as stated before, different
scientific communities investigate maintenance. As a consequence, it has been studied through
different prisms and a myriad of concepts and classifications exist. In this thesis, maintenance
is mainly approached from a quantitative point of view, following the tradition of reliability
engineering and operational research which limits the discussion around its typology to this
point of view.

The second consideration is that, because research on maintenance is extremely relevant
and dynamic, several articles are published everyday. Therefore, presenting and defining all
maintenance types is impossible. In this section, the most popular maintenance policies found
in literature are analyzed as well as those relevant for discussing PsM.

As a consequence of maintenance research dynamism, a lot of concepts and definitions that
will be presented are not completely agreed upon by the whole scientific community. For that
reason, only the most general and agreed upon definitions are presented, favouring those found
in technical standards such as [En1]. Whenever necessary, discussions on the disagreements
and confusion revolving those terms will be held.

2.3.1 Actions and policies

According to [KM+08], part of the disagreement related to maintenance terminology comes
from the confusion around some key terms such as maintenance action and maintenance policy
which they define as:

• Maintenance action: Basic maintenance intervention, elementary task carried out by
a technician. [KM+08]

• Maintenance policy: Rule or set of rules describing the triggering mechanism for the
different maintenance actions. [KM+08]

Therefore, maintenance actions refer to what must be concretely done while maintenance
policies relate to the criteria used to decide when to apply those actions. Actions can be split
into two categories [KM+08]. The first one is corrective maintenance actions and the second,
precautionary maintenance actions, defined as:

• Corrective Maintenance Actions (CMA): actions aiming to restore the system to a
functional state after a breakdown occurs. For example, repairs or defective component
replacements [KM+08].

• Precautionary (or Preventive) Maintenance Actions (PMA): Any maintenance
action applied to the system when it is still in a functional state. Those actions aim
to reduce failure probability or diminish the consequences of breakdowns. For exam-
ple, preventive repairs and replacements, inspections, monitoring through sensors, etc
[KM+08].
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Figure 2.1: Maintenance according to the technical standard [En1]

Notice that, in general, due to downtime related costs, CMAs are considered more expen-
sive than PMAs however, in practice, failures can happen unpredictably and any maintenance
policy may require CMAs [KM+08].

2.3.2 Types of policies

Several maintenance policies can be found in the literature. For the sake of robustness and
clarity, definitions and terms presented in technical standards are preferred, as stated before.
Figure 2.1 shows the most common maintenance policies listed in the EN 13306 standard
[En1]. The first important typology maintenance differentiation, according to it relates to the
following two categories:

• Corrective (run-to-failure, failure based) Maintenance (CM): maintenance pol-
icy where no PMAs are taken, implying that maintenance operations are made only
reactively after a failure.

• Preventive Maintenance (PM): maintenance policy that combines PMAs and
CMAs.

Notice however that there are several different ways to decide when to apply PMAs. PM
is therefore an umbrella term that encapsulates different policies and it can also be split into
two different categories which are:

• Time-based (predetermined) maintenance (TbM): maintenance operations are
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scheduled in intervals based on the operation time.

• Condition-based Maintenance (CbM): maintenance operations are performed
based on measurements of the system which represent its operating condition.

Figure 2.2 illustrates this difference for the simplest forms of TbM and CbM. In the TbM
policy, maintenance operations occurs in regular fixed intervals. As can be seen this can lead
to premature replacements or even worst, create down time. In the CbM policy, components
can be replaced based on health indicators monitored through sensors, reducing breakdown
risk while ensuring that no unnecessary replacement will be performed.
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Figure 2.2: Illustration of the difference between the simplest forms of TbM and CbM. Dashed
lines represent maintenance operations that restore each component to a as good as new state.
Notice that in CbM each component has a different maintenance date while in TbM both are
maintained at the same moment. As a consequence, Component 1 - health state represented
by the red line - is change too late in the first maintenance interval while component 2 - health
state represented by the green line - is replaced too early in the second intervention.

In TbM, "time" may represent different quantities related to how much the system has
been used. For example, as seen in Chapter 1, for several heavy vehicle components, PMAs
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intervals are defined based on vehicle mileage. It is also important to notice that some authors
use the term Preventive Maintenance to refer to TbM. This is probably a by-product of the
fact most of PM policies adopted in the industry are still TbM. However, the distinction is
important and from an etymological point view, the PM definition provided by [En1] is more
natural.

Between CbM and TbM, there is no intrinsic hierarchy. To decide when to implement
those different policies it is necessary to consider the particularities of the system that will be
maintained [KM+08]. As CbM is usually more expensive to implement due to the necessity of
sensors, if failure modes are very "time" dependent or the system is not critical, TbM should
probably be preferred.

Despite not being included in the most recent versions of European maintenance termi-
nology standards, a very popular term used in the literature to define policies is Predictive
Maintenance (PdM). The idea behind PdM is to use data gathered from different sensors to
predict failure dates and schedule PMAs based on those predictions.

At first glace, the definitions of PdM and CbM may seen different, however, when putting
the scientific literature of CbM into a historical perspective, the differences start to fade. From
the beginning, most of the works on CbM revolved around using data and stochastic models to
perform prognostics, finding the RUL distribution which can easily be translated to a failure
prediction date. In fact, RUL distributions are more useful from a decision-making point of
view allowing for uncertainty quantification around predictions.

In fact, some consider prognostics to be a key feature of CbM as can be seen in [TL01], a
technical standard from 2001 used to guide the implementation of CbM software by the US
army. Therefore, since CbM addressed failure predictions way before the term PdM appeared
in the literature it is hard to differentiate those things and several authors treat them as
synonyms [GS04].

Finally, with the most common maintenance policies defined, it is now possible to compare
them with the definitions of PsM found in the literature. As will be seen, in most cases,
although PsM is often treated as an improvement with respect to CbM, the diffrenences are
often not well defined.

2.4 PsM in the literature: an empty jargon?

The term PsM has gained some traction in the scientific literature in recent years. Figure
2.3 shows the number of articles published per years in which the term PsM appears in the
scientific database of Scopus. As can be seen, PsM popularity is on the rise. Its occurrence
has exponentially evolved from 2016 on and has been used in 346 scientific articles so far.

In those recent appearances, the word "prescriptive" in PsM was probably borrowed from
"Prescriptive analytics" which is seen as the extension of predictive analytics [Lep+20]. While
the second uses data to predict outcomes, the first uses those predictions to provide a set of
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Figure 2.3: Occurrences of PsM in the scientific literature through time

recommend actions (prescriptions) to control an outcome, obtaining a the most desirable result
[Lep+20].

However, the natural definition of PsM as prescriptive analytics applied to maintenance
is unsatisfactory, since, by definition, maintenance always presupposes some sort of action
(Section 2.2). Using sensor data to find the best replacement opportunity is referred to as
CbM could also be seen as prescriptive analytics applied to maintenance.

In this section the bibliography of PsM is analyzed to shed some light on the maturity
of its definition and how different authors use it. The methodology used in this review is as
follows: from the 346 articles in which PsM appears, 88 in which this term appeared on the
title, abstract or keywords were selected to filter those in which authors consider PsM to be
a crucial part of their contributions. Each of those articles was analyzed and a review of the
works which presented a explicit definition of PsM was performed. In the following sections,
the most relevant ones are investigated and criticized, providing a systematic review of how
PsM is understood in the literature.

2.4.1 PsM as taking actions

The most extensive discussion around the definition of PsM is found in [AGN19] (and similar
works from the same authors such as [Nem+18] and [AGS20]). In this work, authors aim
to present a conceptual framework for developing PsM and thus discuss what are the needed
features to characterize such maintenance strategy. Their view on PsM leans on the concept of
Knowledge based Maintenance (KbM), which according to them "takes into account long-term
effects of maintenance policies and decisions on economic terms, as a non-isolated sub-domain
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of production systems, which influences on organisational value creation" [AGN19]. They
proceed to state that KbM has four stages which are:

• Descriptive maintenance: "answers the question ‘What happened?’ by providing
information about previous maintenance operations. Thus, it supports information col-
lection and analysis and increases the level of information visibility."[AGN19]

• Diagnostic maintenance "answers the question ‘Why did it happen?’ by analyzing
cause-effect relations, reasoning, and providing further technical details about former
maintenance operations. Therefore, it supports knowledge generation and increases the
level of knowledge transparency."[AGN19]

• Predictive maintenance: "answers the question ‘What will happen when?’ by learn-
ing from historical maintenance data, possibly in real-time, and predicting future events.
Thus, it supports knowledge discovery and enhances the level of (semi-) supervised
or unsupervised prognostic capabilities. Notably, this is often referred to as ‘Smart
Maintenance’,‘Data-Driven Maintenance’ and ‘Maintenance 4.0’, not only in scientific
but also in commercial contexts".[AGN19]

• Prescriptive maintenance: "answers the question ‘How can we control the occur-
rence of a specific event?’ (How should it happen?) by providing actionable recom-
mendations for decision-making and improving and/or optimising forth-coming main-
tenance processes. It also refers to the recent advances in enhancing self-organisation
and self-direction capabilities of cyber-physical production systems, which ideally aim at
machine self-diagnosis and self-scheduled maintenance. Hence, prescriptive maintenance
may reach the highest degree of maturity which involves complex methods to produce
and reinforce adaptation and optimisation capabilities." [AGN19]

Based on those concepts, they propose a general PsM model composed of four layers called
PriMa. The first layer consists of a data warehouse where all relevant data, such as system
health indicators, production plans and so on, is stored. The second layer is composed of data
analysis algorithms which will generate insights from the inputs stored in the aforementioned
data warehouse. In the third layer, the outputs of those algorithms are cleaned, treated and
fed to a set of decision making support tools that will indicate the best course of action based
on a "if and else" set of rules. Finally, the forth layer consists of a knowledge based model
that will improve the action recommendation of the third layer through time as more data is
gathered, by identifying the root cause of failures.

Although [AGN19], provides a rich discussion around PsM, their definition presents some
problems. First of all, for them, PsM is an improvement of descriptive, diagnostic and pre-
dictive maintenance. However, based on how those terms are defined, they do not respect the
definition of maintenance presented in most technical standards (Section 2.2). For example,
in their definition of PdM, they seem to assume that it is simply predicting a failure date for
a component. Since maintenance implies that concrete actions are applied to the system in
order keep it or restore it to a functional state, that would not be considered maintenance.
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Furthermore, this PdM concept makes no practical sense and could never be applied in a
concrete case. Making failure predictions would inevitably imply that actions are taken. A
factory manager, when receiving the information that a machine will fail in the coming days,
could not ignore it and would instead schedule a maintenance action.

If this interpretation of their definition of PdM is incorrect and they implicitly consider
that predictions would be somehow used to update maintenance schedules, another problem
arises. Their definition of PsM contains the notion of controlling "the occurrence of a spe-
cific event" [AGN19] (implied to be a failure) through "optimising forth-coming maintenance
processes" [AGN19] which seems to imply that, for them, prescriptive maintenance is the opti-
misation of maintenance schedule based on failure predictions. However, they do not describe
how this optimisation must take place and what criteria should be used to define optimality.
They also refer mainly to decisions related to performing replacements. Therefore, there is
no significant conceptual difference between this definition of PsM and CbM that also has
addressed maintenance interval optimisation based on data.

At the second part of their work, they propose a practical application of their model with
a concrete usecase to illustrate their understanding of PsM. The application happens in the
context of a factory. The proposed solution gathers data related to the performance and
health state of a particular type of machine in the production line and proceeds to use it to
compute numerical indicators related to production quality and degradation. Those indicators
are extrapolated in order to predict the instant when they will reach predefined thresholds
that indicate critical failure risk. This is only possible because the production plan is known in
advance and they have modelled how each operation contributes to the deterioration of health
state and quality indicators. Based on those predictions, a decision-support consisting of an
interface used by maintenance operators suggests some operations to be performed earlier
than planned.

Those suggestions seem to be limited to replacements and repairs, although they emphasise
the importance of holistic considerations about the system, there is no explicit discussion on
how the logical rules to send those alerts are defined. In fact, by holistic considerations, they
seem to refer to the fact that they account for spare part availability and for the production
plan which is an input of the prediction layer.

[Mat+17] is also a relevant work since it is one of the most cited articles used to de-
fine PsM. According to it, "Prescriptive maintenance means moving from planned preventive
maintenance to proactive and smart maintenance planning" [Mat+17]. It is hard to know if
authors consider PsM as a synonym of proactive maintenance 1 or what they mean by smart
maintenance.

In this definition, they probably use PM to refer to TbM and mean to differentiate it
from policies that account for component condition. That again makes PsM indistinguishable
from CbM. Furthermore, the notion of what kind of prescriptions should be recommended,
which criteria should be used to perform prescribed actions and other elements that could be

1Proactive maintenance usually refers to considering root cause analysis to prevent future failures due to
equipment misuse [KM+08], although some authors use it as a synonym of PM [CAC20].
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expected to define PsM are left out of the discussion.

They proceed to propose a concrete application to illustrate their understanding of PsM
which is a more detailed version of the one presented in [AGN19]. Once again, in a production
line context, machines are analyzed, production quality is measured and wear sensors are put
in place. Historical failure data is gathered to establish correlations between failure modes
and production quality issues. Based on this study, a set of if and else’s rules are established
to, based on the extrapolation of performance and quality indicators computed in real-time,
suggest maintenance replacements. They refer to "prescriptive maintenance decision module"
as the part of their application that presents those suggestions to the user, combining main-
tenance actions that would affect the same machine component. Once again, although this
solution led to significant cost reduction, it is hard to see conceptual differences from CbM.

Several other contributions refer to [Mat+17] and [AGN19] (or [AGS20] and [Nem+18]) to
discuss and define prescriptive maintenance and therefore, present the same problems [CBJ19];
[Liu+19]; [Pad+21]; [PL22]; [Tzi+23]. Although [PL22]and [Kar+16] do not refer to [AGN19]
they use similar concepts and can also be submitted to similar criticism. 2

Another limit of defining PsM by the presence of a decision-making element appears in
[Iun19]. In this work, authors recognize that decisions are taken in PdM (or CbM) strategies,
however, they mention that automated and optimal decisions would configure a PsM solution.
According to them, the previous example of a factory manager that schedules a replacement
when receiving a failure prediction would be considered PdM since there is no optimization
and no quantitative metric to justify choosing a particular date for the replacement. However,
this definition ignores the fact that optimizing maintenance interventions has been addressed
from the beginnings of reliability and is often also included in problems explored by researchers
interested in PdM [PM21].

In all the aforementioned contributions, the differences between CbM and PsM remain
unclear as both of them will lead to, in some sense, a decision-making support based on data.
Other definitions stress different aspects of the policy, mentioning more complex decision
making criteria as will be seen now.

2.4.2 PsM as different criteria for taking actions

To differentiate between PsM and CbM, authors often refer to a "holistic view of the system",
indicating that PsM would indeed be an improvement in comparison to other policies because
of a richer optimisation criteria. However, as most of those works do not discuss what holistic
means, a clear difference between PsM and CbM remains unattainable.

For example, in [MG19], it is said that "the prescriptive maintenance philosophy is a step
ahead (of PdM) providing real-time adaptive recommendations, using artificial intelligence,
about the tasks that should be done and keep updating as the operation continues. In other

2Notice that [Kar+16] uses the term "Maintenance Prescriptive analytics" which is seen as equivalent to
PsM for the authors.
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words, the prescriptive maintenance not only is based on the failures’ prediction accordingly to
the analysis of data patterns and trends, but also taking the specific company’s maintenance
process into consideration to provide detailed recommendations, and supports the solution-
finding process."

As can be seen, for them, the distinction revolves around considering the "specific com-
pany’s maintenance process". Further discussion is necessary to establish PsM. For example,
considerations about operational constraints, spare parts availability and so on have been
already extensively investigated with or without condition monitoring [WZ21]. They also at-
tempt to explicitly differentiate CbM 3 from PsM: "In terms of maintenance planning, while
the CbM approach looks to the “when” and “why” to maintain, the prescriptive maintenance
looks to the “what” and “where”, defining the place and order of the maintenance tasks to
accomplish and “who” should be engaged to execute each one." [MG19]. As it is laid out, the
distinction is problematic. Firstly, the "what to maintain" is by definition considered by CbM
as data is always acquired for a specific known component.

The remaining features are even more controversial. The "where to maintain" is hard
to interpret. In the case production lines, for example, machines remain in the same place
throughout most of their useful life and most maintenance operations happen in loco. This
spatial decision would only makes sense in very specific applications such as vehicles that can
be maintained in different workshops. Finally, without further clarification, the "who will
perform the operation" can be seen as an availability constraint similar to those studied in
maintenance problems considering operational constraints as seen in [PM21].

Another attempt of defining PsM based on what criteria is used to prescribe actions is
found in [Kou+22]. They refer to PsM as "a type of data analytics that supports making better
judgments by analyzing raw data. It takes into account information about potential conditions
or scenarios, available resources, previous and present performance, and recommends a plan of
action that optimizes equipment maintenance." [Kou+22] Once again, since constraints related
to maintenance opportunities and resources have been addressed by multiple research works in
different maintenance strategies, accounting for available resources is not a distinctive feature.
As for "potential conditions or scenarios" and "previous and present performance", those
are also accounted for in CbM which presupposes prognostics and often predicts degradation
evolution under uncertainty.

They also propose a framework for PsM development and detail what kind of prescriptions
they intend to propose. For example, in the case of a fridge that is not cold enough, a possible
prescription could be to check the compressor and clean the dust [Kou+22]. Since this could
probably be modeled as an imperfect maintenance operation or an inspection, this example
would be similar to others that have been extensively addressed in the literature [MC19].

One of the most concrete attempts to differentiate PsM from PdM in terms of criteria to
apply maintenance action is found in [MRW21]. Although they refer to [AGN19] as their main
source for defining PdM and PsM, they present very different definitions:

3Notice that they employ the terms CbM and PdM but a discussion on what is the difference is never
carried out
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Figure 2.4: Difference maintenance plans created by PdM and PsM strategies, taken from
[MRW21]

• Predictive Maintenance: "As arguably the most discussed maintenance strategy in
recent years, the focus here is on extending the knowledge about degradation mechanisms
and extending the degradation propagation into the future to project system failures.
Subsequently, this approach utilizes the knowledge discovery process and combines in-
sights into the experienced degradation in the past with anticipated operating loads in
the future in order to support a maintenance decision making process." [MRW21]

• Prescriptive Maintenance: "This approach will utilize the information about degra-
dation projections and extend the scope of the maintenance decision making process
beyond the asset itself, e.g. the aircraft. Thus, by consideration of the surrounding
ecosystem, a prescriptive maintenance strategy will allow a holistic analysis and opti-
mization of maintenance measures." [MRW21]

It is interesting to notice that, by explicitly considering that PdM supports decision-
making, they make it coherent with the technical standards definitions of maintenance [En1].
In their PsM definition they employ the term "optimization of maintenance measures" consid-
ering "the surrounding ecosystem". As seen before, this vague notion of holistic considerations
is not enough to characterize PsM, however, in this case, authors proceed to illustrate the dif-
ferences between it and PdM concretely.

To understand this distinction, more context about their contribution is required. It re-
volves around maintenance schedule optimization for a fleet of airplanes. In this application,
maintenance operations can only happen in a predefined time interval and maintenance oppor-
tunities are scarce. The problem comes down to, among the set of maintenance opportunities
(which are known in advance), choose the best one. To do so, they use a simulation based
optimization method. They solve the problem twice with different optimization criteria which
correspond, according to them, to a PdM and a PsM solution. The two maintenance schedules
can be seen in Figure 2.4.

Time instants ti represent maintenance opportunities. When using PsM, maintenance
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took place in t5 while in the PdM solution, maintenance happened at t7. The difference is
related to the optimization criteria. PdM only considered costs related to breakdowns where
the "waste-of-life cost" represents the expenses related to replacing a component too early and
"task cost" represents the expenses related to the operation itself which increases with system
degradation since, in their case, systems close to failure required more complex maintenance
operations.

On the other hand, PsM also accounts for costs such as "operational irregularity costs"
which represent the expense related to the flight delays caused by maintenance operations
therefore depending on mechanics availability and flight schedule, and "emission costs" which
are related to extra emissions caused by maintenance operations. With this practical example,
it is clear what authors mean by holistic considerations. While for them PdM is mainly
asset-centric and consider only the operational cost related to equipment unavailability, PsM
considers the full exploitation cost of the system, accounting for every cost source and leading
to better maintenance schedules.

2.4.3 PsM as extending the notion of maintenance actions

As seen in [KM+08], maintenance actions are mainly thought of as repairs, replacements and
inspections. A possible way of defining PsM would be to consider different actions as part of
the maintenance policy. For example in [Gor+20] PsM is defined as a policy that "builds upon
predictive maintenance by using predictions to recommend operating and maintenance deci-
sions to counteract future equipment degradation and failure" [Gor+20]. They consider that
PsM extends PdM by also considering operating decisions to minimize future degradation.
This implies that PsM goes beyond classical maintenance decision such as when to perform
replacements, inspections, etc. They proceed to propose a solution that simultaneously opti-
mizes the maintenance schedule and the production schedule of a factory reducing operational
costs.

Similarly, in [SEM21] authors mention that "prescriptive maintenance recommendations
allow for the power of machine learning to be applied in a more holistic way in an organization
or enterprise’s physical operations" and they proceed to compare PdM and PsM: "Where
predictive maintenance allows for delivering data regarding binary decisions, like an option
to defer or perform asset maintenance, it suggests a series of options and results from which
to choose from. For instance, a production full stop may be circumvented by running a
compressor at an inferior pressure or a plant maintains the speed of a machine below a specific
threshold, thus delaying the planned downtime for the purpose of overlapping with the delivery
of new equipment." [SEM21]

Authors reduce PdM to deferring "pre-scheduled maintenance operations" which is unrea-
sonable and there is no discussion around which kind of "series of options" could characterize
PsM. However, they provide a concrete example of prescription that goes beyond classical
maintenance decisions as they consider affecting the operation mode of machines to ensure
uptime and control degradation evolution as part of the policy. Since this is not classically con-
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sidered in most maintenance problems, it could indeed be a defining feature of a maintenance
strategy that goes beyond what most researchers refer to as PdM.

Another similar definition is found in [Fra+19] in the context of PsM for vehicles: "the
implementation of prescriptive maintenance first of all means the scheduling of an initial
optimal maintenance plan on the basis of assumptions about the operation of the target
vehicle. Those assumptions can be experiences of the operator, but also historical data, for
example from condition monitoring systems.

An essential difference to previously known strategies is then based on the interpretation
of the vehicle in operation. While only the condition of individual components is investigated
in predictive approaches, the prescriptive approach interprets the vehicle as a proactive main-
tenance control element. If the objectives of the initial maintenance planning are not met,
the system autonomously initiates corrective actions. Corrective actions may be to reduce
the average speed or to harmonize acceleration and braking operations, and technically to
manipulate the drive train."

They employ the term corrective actions in a different way than most authors but their
interpretation is clear. PsM actions can be any change in system usage to ensure that the
original maintenance plan is respected, extending the notion of action beyond replacements,
repairs and etc.

2.4.4 A systematic summary of the literature review

Since there are several research papers that somehow define PsM, reviewing all of them in
detail is unfeasible. Therefore, a more systematic review of the definitions of PsM presented
in the literature is given in Table 2.1.

Notice that column "decision-making definition" refers to those works in which PsM is
characterized by a maintenance solution in which actions are taken based on data or any
kind of information such as in [AGN19]. Column "Action criteria definition" indicates that
PsM was defined mostly based on what specific criteria must be applied to the system such
as [MRW21]. Column "type of action definition" refers to those in which the definition used
revolves mostly around actions that go beyond replacements, inspections and repairs, such
as [SEM21]. Finally, "distinguishes PsM from other policies" considers the robustness of the
definitions presented classifying them based on the capacity to distinguish PsM from other
maintenance paradigms.

Most of the works reviewed do not present a definition of PsM that clearly differentiates
it from other maintenance policies suffering from the problems mentioned before. Most either
failing to recognize that decision-making is a mandatory part of any maintenance policy, use
vague notions of "holistic considerations".
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Definition on
paper

Decision-making
definition

Action criteria
definition

Type of action
definition

Distinguishes PsM
from other policies

[AGS20] X No
[AGN19] X No
[Nem+18] X No
[Mat+17] X No
[Tzi+23] X No
[CBJ19] X No
[Liu+19] X No
[Pad+21] X No
[PL22] X No

[MRW21] X Yes
[SEM21] X Yes
[Gor+20] X Yes
[Kou+22] X No
[MG19] X No
[Iun19] X No

[Fra+19] X Yes

Table 2.1: Prescriptive maintenance literature review summary

2.5 The problem with PsM and why it matters

As discussed in previous sections, PsM has gained some popularity lately. By reviewing its
use in the literature, it can be seen that most authors use it in an ambiguous way which could
be considered extremely similar to what is understood in practice by CbM or PdM. This is a
problem when, in most of those works, PsM is treated as an improvement with respect to what
exists so far [AGN19]; [Kou+22]. Without proper definition, this use of PsM could be seen as
another instance of a hype problem [Wei17]; [Hop+20], which would be corroborated by the
insistence in using umbrella terms such as "big data", "data analytics", "machine learning"
in PsM definitions such as the one presented in [Kou+22].

This problem has also practical implications. The usage of this term leads to noise and
can hinder the development of new maintenance solutions as well as scientific communica-
tion. For example, among the different works reviewed, most of those that present practical
contributions propose policies that are conceptually indistinguishable from other consolidated
policies. Employing the term PsM in this case only causes confusion and undermines the
valuable contributions made.

However, this is not the case in all examined contributions. Some works deal with criteria
and actions which are not commonly explored in the literature and could be used as an
inspiration for establishing PsM in a clear way. For example, [SEM21]; [Gor+20]; [Fra+19]
extend the concept of maintenance and [MRW21] gave practical insights on what holistic
decision criteria should look like. Based on those, in the next section, a new PsM definition
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is proposed.

2.6 Defining PsM

To characterize PsM as a distinct maintenance policy, it is necessary to define it in a clear and
technical way. Based on the findings of the literature review, we extend the notion of PsM we
originally introduced in [DL+21] 4 and propose the following definition:

Prescriptive Maintenance: Maintenance policy based on decision making algorithms
with closed-loop structure that minimize a metric related to the overall exploitation
cost of the system through actions that affect all system functionalities.

There are three distinctive features of PsM. The most important is that prescriptions must
go beyond classical maintenance actions such as replacements, inspections or repairs. PsM
prescriptions should consider all aspects of system usage that may impact its RUL. If this is
not the case, the distinction between CbM and PsM becomes fuzzy.

As a consequence of this extended notion of maintenance action, PsM solutions account
for the whole exploitation cost of the system, which is the second defining feature of the
definition. This means that PsM requires a quantitative model for the impact of each action
both in terms of system performance and RUL. For example, in several cases, in terms of
RUL extension, the best prescription is to not use the system at all. This is unsatisfactory
from a practical point of view and the only way to ensure that such meaningless prescriptions
are avoided is to define optimization criteria and constraints considering the whole system
operation.

Finally, the last defining feature is a closed-loop structure. This is required to ensure that
those solutions are useful in practical applications. Due to the fact that PsM prescribes dif-
ferent actions that are applied in the system in very different time scales (for some systems,
maintenance happens every year while prescriptions related to system usage can happen every
second) the close-loop structure ensure that the natural randomness surrounding real appli-
cations is accounted for in the long term, correcting for any disturbance.

It is important to highlight that, although some elements of the discussion about different
actions are presented in [Fra+19], this definition of PsM is slightly different from the one
defended by them. In their case, actions are mainly applied to ensure that a pre-established
maintenance plan will be respected and in this new definition, the criteria to prescribe any
change in usage is the overall exploitation cost. Therefore, usage can be changed to respect
maintenance schedules but also to postpone operations. In some cases, it could even be
changed to accelerate degradation if that represented performance increase.

4It is important to highlight that other authors have used our original publication in their work when
defining PsM, therefore, those are not extensively explored in this review since we believe those authors share
our view on PsM [ECG+23]; [Esp23]
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2.6.1 PsM generic Structure

Based on the proposed definition, it is reasonable to assume that all PsM applications will
present some common elements. Figure 2.5 synthesises a generic PsM structure and its ele-
ments. It is composed of several sub parts which are described below.

Figure 2.5: Generic structure of PsM solutions

2.6.1.1 System

The first entity on this generic PsM solution is referred to as system. It is an abstraction of
the physical entity PsM will be applied to, which depending on the application can represent
different things.

Very important design choices revolve around how to define the system. More complex
systems, composed of several sub machines and components, will often lead to more complex
solution spaces, there is a clear trade-off between having more degrees of freedom to impact the
overall exploitation cost and being able to solve the optimization problem that represents the
PsM decision-making process. Therefore, the most important consideration when modeling a
PsM system is that it must capture the different possible actions without leading to unsolvable
optimization problems.

2.6.1.2 Reliability model

The PsM reliability model plays an important part on the PsM loop, providing a health
indicator that will be accounted for by the Prescriptive algorithm. This model must be flexible
and capable of accounting for all usage patterns that may arise from the system following
different prescriptions. It gives quantitative measures that can be used by the prescription
algorithm to understand how actions affect system health.
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It is also important to highlight that its output, the health indicator, can represent different
quantities depending on how the system was defined. It could be the RUL of the whole system,
its degradation level, a vector containing either one of those quantities for each machine in a
factory and etc.

2.6.1.3 Prescriptive algorithm

The PsM algorithm is responsible for combining the different inputs and providing prescrip-
tions to affect the system as an output. It represents an optimization model whose decision
variables translate to prescriptions and whose constraints and cost function will reflect the
different inputs and the behaviour of the reliability model chosen.

To satisfy the definition of PsM this optimization model must have a cost function that
takes into account the whole exploitation cost of the system and include the impact of each
prescription on it.

2.6.2 Prescriptions

The four different classes of actions to be prescribed, presented in Figure 2.5 are now detailed
with concrete examples. It is important to highlight though that this list is not exhaustive,
as it merely captures some of the most common types of PsM actions.

2.6.2.1 Task management

This class of actions relates to the order in which system tasks are performed. In a single
component system, for example, a machine in a production line, it comes down to the classical
single machine scheduling problem [GK87]; [SN10]. In systems such as a fleet of vehicles, it
comes down to choosing which one will perform different deliveries, in a set-up such as of a
vehicle routing problem [TV02].

This type of prescription is important in the PsM context because for most systems,
different tasks will affect degradation differently. In the example of single machine scheduling,
this could mean, for example, that very damaging tasks must be postponed when possible to
complete as much as possible before having a breakdown. In the example of a fleet of vehicles,
it could mean that more degraded vehicles should be used to perform less severe displacements.
Task management considering degradation information can be found in [Rob+19], where the
delivery plan of a fleet of trucks is decided based on the expected severity of each displacement
and the current health state of each vehicle.
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2.6.2.2 System reconfiguration

This class of actions relates to the different ways a system can perform a particular task.
For example, a machine can be reconfigured, restricting its power or, in the case of a fleet of
vehicles, speeds can be limited to reduce degradation.

System configuration can also be useful not only for minimizing degradation but also to
ensure operational improvements. If, for example a maintenance operation is already scheduled
and will soon be performed, tasks can be carried out in a more ’aggressive’ way to improve
system performance.

A concrete example of parameter reconfiguration considering degradation can be found in
[RMB21], where wind turbine control parameters are changed in order to positively impact
degradation trajectory. In this example, the wind turbine may move away from the operational
point that maximizes power generation but this is compensated by the fact that its useful life
is extended, implying that long-term considerations are important.

2.6.2.3 Maintenance related decisions

PsM solutions often also account for classical maintenance actions, such as inspections, re-
placements and repairs. The vast majority of literature on decision-making for maintenance
focuses on how to take those actions in different cases such as perfect and imperfect mainte-
nance operations [MC19], perfect and imperfect information [GYO07], etc.

In the context of PsM, maintenance decisions must be made accounting not only for health
indicators but also for the whole context of system usage. For example, periods when demands
are less urgent and downtime is not as deterring should probably be preferred.

2.6.2.4 External outputs

This class of actions encapsulates everything that will neither impact system degradation or
operation directly but is important in terms of the overall exploitation cost. A concrete exam-
ple would be inventory control, which can be seen in [WZ21] where deterioration information
and operational demand are used to decide inventory level, providing insight on the best spare
part management strategy, ensuring uptime without wasting resources.

2.6.3 Inputs

As with the prescription outputs, the three different classes of inputs listed in Figure 2.5 are
now detailed.
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2.6.3.1 Health indicator

The health indicator is the output of the PsM reliability model, which gives a measure of
the system health. This measure is used by the prescriptive algorithm to establish what is
the best course of action from that point on. As mentioned before, health indicators can be
different depending on the kind of system and reliability model choice. It can be a RUL, a
degradation level, a vector containing both, etc.

2.6.3.2 System data

This class of inputs encapsulates any system information that can be monitored and contains
information related to its health state and usage. This data will be used by the reliability
model to estimate health indicators and by the prescription algorithm so that it can have an
image of its operation such as what tasks remain to be performed, its current performance
and etc. For example, in a fleet of vehicles, it could represent the position of each vehicle, how
much fuel each one has and so on.

2.6.3.3 External inputs

This class of inputs refers to those which are not obtained directly through the system. If, for
example the system represents a vehicle, external inputs could represent the delivery addresses
it needs visit, their deadlines and so on.

The distinction between external inputs and system data depends on the design choice
of how to model the system as discussed before. In this example transport applications, if
a system was defined to be a single vehicle in a fleet, information about what deliveries still
remain to be done could be seen as external inputs. However, if the system was defined as
the whole fleet of vehicles, this information could be seen as system data since they would be
defined through task managements prescriptions.

2.7 A framework for PsM solutions development

To guide the conception of PsM solutions in the sense of the presented definition, a develop-
ment framework is presented. It is conceived to be as generic as possible, keeping the defining
features of PsM while being applicable to different systems. It is important to highlight
though, that its application to particular cases can lead to very unique scientific challenges
that must be addressed accordingly, as will be seen later when it is used in the context of heavy
vehicles. This framework is composed of four parts: system abstraction, reliability modeling,
system modeling and optimization modeling. Throughout this section, they are detailed.
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2.7.1 System abstraction

The first step, referred to as System abstraction, consists in understanding and refining the
definition of system. This implies in establishing the scope of what will be addressed by the
PsM solution and listing all possibly relevant actions to be applied as prescriptions.

As stated before, this design choice is impactful for PsM applications as it will define what
actions can be applied to the system. In the example of transport applications, as mentioned
before, considering a single vehicle as a system has practical implications as the next delivery
to be performed will be seen as an external input. In contrast, considering the whole fleet as
a system would make delivery planning part of the prescriptions.

When defining the system, there is a trade-off between the potential impact of the solution
and its complexity. A system composed of several sub components can be impacted by several
possible actions, which can deeply reduce the overall exploitation cost. However, it will also
be hard to model and may require input information that can not be monitored in reality.

Therefore, this trade-off must be addressed in the light of the available resources both in
terms of data acquisition and the computational power required to solve the resulting opti-
mization problem. In general, system definitions that lead to simpler optimization problems
are preferable. Those considerations about simplicity and performance are hard to be made at
this stage and will only become clearer throughout the next steps, therefore, this framework
must be applied through multiple iterations.

By the end of this step, the definition of system must be clear as well as what are all
the different actions that can be prescribed and the relevant system information that can be
monitored.

2.7.2 System modeling

Once the system and relevant actions are defined, it is necessary to model them explicitly.
This model needs to capture the impact of all its inputs i.e. actions that could be prescribed
on the system data i.e. the data available that contains information on usage. The exact
model choice will depend on the complexity of the system and actions. This will be illustrated
throughout this work when applying the framework to different vehicle components which led
to radically different system models.

2.7.3 Reliability modeling

In order to optimize maintenance and system usage, it is necessary to employ an explicit
reliability model. It must be built considering the outputs of the system model and the
physical mechanisms underlying the most relevant failure modes. Naturally this implies that
once again, the choice of reliability model will depend on the system definition.
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Several different classes of models can be used such as stochastic degradation models, con-
ditional reliability distributions, physics-based models and data-driven models, for example.
The choice must be guided by availability of degradation data and the understanding of degra-
dation mechanisms. The most important thing is that the reliability model connects system
degradation with the different actions to be prescribed.

2.7.4 Optimization modeling

The last step of the framework is to formalize one or more optimization models that will be
solved through the prescription algorithm. Optimization models are composed of three parts:
the cost function, the constraints and decision variables.

In a PsM application, the decision variables must be translatable to the actions listed in
the system abstraction step discussed in Section 2.7.1. Those will therefore represent the best
course of actions when the optimization model is solved.

The cost function is the metric that must be minimized in the optimization defining the best
set of prescriptions. It has to, following the PsM definition, consider the overall exploitation
cost of the system and capture all relevant trade-offs between degradation and system usage.
For example, reducing machine power can postpone maintenance operations but it can also
reduce productivity. The cost function has to be defined such that it is possible to balance
out those effects. The solution will then decide when and how to reduce machine power to
minimize exploitation cost.

The constraints of the optimization model represent conditions that must be respected
by the found solution. In the context of PsM they need to represent system and reliability
models. They must also ensure that the found solution can indeed be translated to mean-
ingful prescriptions. For example, when solving routing problems for vehicles, constraints are
employed to ensure that sub-tours are eliminated, as will be seen in Chapter 3.

After defining the optimization model, it is necessary to choose an algorithm to solve it.
Different techniques can be employed and this choice will mainly depend on complexity of the
problem and the requirements related to computation time of the PsM solution. In cases of
non-linear optimization models, or in cases of huge decision variables spaces heuristics methods
can be practically useful even if they are not guaranteed to find the best solution whereas in
cases where the problem can be solved in reasonable time, exact methods must be chosen.

2.8 Self criticism

This section is dedicated to justify some aspects of the critics to some reviewed works that,
at first glance, may seem unfair, clarifying why, even though several of them contain rich
discussions on maintenance concepts, they are indeed incapable of delimiting the perimeters
of PsM. It also acknowledges and displays possible critics to the PsM definition presented in
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this work.

It was seen that several publications define PsM by referring to a "more holistic" view
of maintenance. When that holistic aspect was vaguely defined, those were considered as
incapable of differentiating PsM from other policies. It could be argued, that in those cases,
although authors were not explicit, they could have a similar understanding of PsM than
the one presented in Section 2.6). However, very often, when those works provide examples
of practical maintenance solutions, authors present methods conceptually similar to what is
understood as PdM and CbM [Mat+17]; [Kou+22].

It is important to highlight that some of the reviewed works that were considered incapable
of defining PsM present solutions including usage optimization. However, in those cases, usage
optimization was not considered to be intrinsically part of PsM as a concept. For example, in
[Elb+22] they address production schedule combined with maintenance optimization but they
explicitly consider PsM to be limited at choosing when to replace items. Usage optimization
for them is not an integral part of PsM definition. Similarly, [AGN19] acknowledge that their
maintenance solution could generate insights on how to manage the production but do not
see that as integral part of the concept of PsM.

One could argue that the definition of PsM presented is also incapable of differentiating it
from other maintenance strategies due to the fact that joint optimization of maintenance and
usage was already investigated by authors which refer to their policies as PdM or CbM [PM21];
[LN13]. However, none of those authors seem to consider system usage optimization to be a
defining characteristic of any type of maintenance policy and do not present any conceptual
discussion regarding maintenance.

It is necessary to acknowledge, though, that the presented definition of PsM is very similar
to the concept of Prognostics and Health Management (PHM) defended by authors such as
[Ata+17], and in the end, PsM can be seen as the application of PHM to define a maintenance
policy.

2.9 Conclusion

In this chapter, our main conceptual contribution is presented as a clear definition of PsM. It
was designed to justify the use of this term as a distinct maintenance policy and was proposed
after reviewing the history of maintenance, investigating the most common policies in the
literature and reviewing different works that discuss PsM. Although this definition is inspired
by the concept of PHM, it is sufficient to differentiate PsM from other forms of CbM and can
be clearly understood by researchers.

Finally, to encourage the adoption of PsM, a step-by step conceptual development frame-
work is proposed. Although the particularities of each application may lead to original sci-
entific problems, at least this framework showcases the most important features of a PsM
solution.
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To move towards concrete implementations of those concepts, in the next chapter, the
proposed development framework is applied to the object of interest of this work: heavy
vehicles. The main challenges of this application are discussed, as well as some promising
modeling approaches and possible optimization methods for such problems. It will close Part
I, providing the reader with an overview of the scientific challenges addressed in Part II.
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3.1 Introduction

In the previous chapter the definition of PsM used through the rest of this document was
presented. As the goal of this research project is to investigate and develop methods that
can be used to create services for vehicle usage and health optimization, the PsM framework
introduced in Chapter 2 is now applied to heavy vehicles. As a result, a general PsM structure
for transportation applications is obtained.

This PsM structure is presented and its details are explored in this chapter. All actions
and inputs are detailed as well as possible choices for reliability models. The aim is to give
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the reader a general view of the PsM problem for vehicles, understanding scope limitations,
reasonable modeling assumptions and notation choices adopted throughout the rest of this
document.

At the end of this chapter, an overview of optimization models used in similar problems
is given in order to present concepts and modelling assumptions that will be used in Part
2, as well as the most common algorithms used to solve them. A final section discusses and
highlights the complexities arising from the combination of degradation and usage optimization
and the challenges that must be addressed in the rest of this document.

3.2 PsM for heavy vehicles: considerations and system abstrac-
tion

Before discussing the results of the development framework application to heavy vehicles, it
is useful to briefly recall some elements discussed in Chapter 1. Furthermore, some technical
aspects of modern vehicles must be described since they are important for understanding some
of the modeling assumptions made later. Those elements are addressed in this section.

3.2.1 Service perspective

The goal of this research project, as stated before, is to create tools that can be used as the
foundation of services that will be part of vehicle manufacturer service offers. Those services
will be used for decision-making support. Therefore, at this stage, it is useful to recall what
the fleet managers’ and vehicle owners’ needs are, since the later is responsible for service
subscription and the former will be its day to day user.

For a service to be attractive for vehicle owners, it must lead to significant cost reduction in
the long-term while respecting the particularities of their businesses. The fleet exploitation cost
is composed of the different expenses seen in Figure 1.8. Maintenance and fuel consumption
are together responsible for 33.5% of the total cost, furthermore efficient health management
leads to less downtime, guaranteeing that deliveries are performed. This importance justifies
why PsM, as previously defined, is attractive for vehicle owners and stresses the fact that
those expenses must be minimized by this potential service.

Even if the decision of subscribing to PsM services is ultimately taken by vehicle owners,
such solutions would be mainly used by fleet managers. This consideration is important when
delimiting the scope of PsM actions. As a general hypothesis, in this work, it is considered
that fleet managers work based on a list of addresses that must be visited (deliveries, garbage
collection points and etc). Those addresses are referred to, from now on, as missions. There-
fore, fleet manager’s daily decision-making mainly consists on deciding which fleet vehicle
must be used to perform a particular mission.

In that perspective, those decisions must be the base of all actions considered. For example,
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even if changing software parameters to limit acceleration reduces degradation, this limitation
must be made in a way that does not cause significant delays. This is crucial to ensure
customer satisfaction and avoid solutions that reduce the exploitation cost at the expense of
damaging the business of the user.

3.2.2 Mobile assets particularities

In Chapter 2, a class of PsM actions referred to as task management was discussed. Since those
actions encapsulate deciding the order of missions to be performed which is the most important
logistical decision as discussed in Section 3.2.1. Although task management for vehicles has
been previously addressed similarly to how task management in production lines is classically
approached [Rob+19], this ignores the spatial particularities of transportation applications.
The first problem with this approach is considering that missions effect are independent of the
order in which they are performed. This order impacts traveled distances, fuel consumption
and therefore, even degradation. Furthermore, in a dynamic mission planning problem, where
new missions can appear while others are being performed, assigning vehicles to them depends
on their current positions. Finally, in the context of maintenance, this spatial dimension is
also relevant. Vehicles perform maintenance in several different workshops, which means that
choosing a workshop can also be included in the decision-making process.

The fact vehicles are mobile units is relevant and impacts optimization model choices.
It forces PsM applications to move away from common maintenance and production line
optimization approaches and to consider models similar to those used in transportation science,
where spatial considerations are always part of problem formulations. Those models are
typically used in routing and shortest path problems as will be seen later.

3.2.3 Vehicle subsystems and components

So far, in this work, the term component has been used to designate a sub-part of a machine.
In order to better understand future modeling assumptions, it is important to, at this point,
provide a more precise definition of this term as well as discuss some relevant hardware aspects
of modern heavy vehicles.

In general, heavy vehicles are composed of sub-systems responsible for different vehicle
functions (e.g: braking system, heating system, etc). Each sub-system can in turn have its
own subsystems. Figure 3.1 illustrates this, through an exploded truck view. In the context of
vehicles, through this work, the term component is used to describe parts of those sub-systems
that can be replaced in maintenance operations, such as the brake-pad, which is part of the
braking sub-system.

As sub-systems are responsible for specific functions, each one can contain Electronic
Control Units (ECUs). They are embedded numerical controllers responsible for processing
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Figure 3.1: Exploded view of a truck highlighting some of its subsystems. Each of those
systems can have several sub-parts composed of different component and containing ECUs.

sensor data and coordinate relevant actuators. Vehicle functions are not independent1 hence,
ECUs must communicate among themselves in an efficient and robust way. The most popular
communication protocol used is called Controller Area Network (CAN) [LP01]. CAN works
based on a particular hardware configuration in which each ECU is connected to a common
BUS. ECU data is then sent through this BUS propagating to the other concerned ECUs.
Some of CAN main advantages are [LP01]:

• High robustness.

• Efficient transfer of relatively short messages.

• Known maximum latency time of messages.

• Low implementation costs.
1For example, when the braking system is used, braking lights, must also be activated
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As discussed in Section 1.4, nowadays vehicle data can already be used for several services.
This data comes from different sub-systems managed by different ECUs, however, in order
for it to be exploited outside the vehicle, it needs to go through a particular ECU that is
responsible for sending data to the cloud, in a process called vehicle connectivity. This implies
that only data passing through the CAN BUS can be used in a service. As a consequence,
data acquisition is limited to the CAN BUS frequency. Furthermore, logging data to the cloud
in real time is expensive. The most common approach in terms of storing vehicle data is to
log only the most important signals periodically with low frequencies. The exact frequency
can vary but it is reasonable to assume that degradation data can be logged at least daily.

This relatively low logging frequency limits modeling assumptions on PsM prescriptions.
For example, since parameter reconfiguration related actions also depend on vehicle connec-
tivity, real time software updates can not be included in the scope of this work as well as
dynamic mission planning based on real time vehicle usage data.

3.2.4 System abstraction for heavy vehicle applications

With all those consideration around the particularities of heavy vehicles, system abstraction,
the first step of the development framework proposed in Section 2.7, can be done. Figure 3.2
shows the arising PsM problem structure for heavy vehicles. The first important consideration
is that the PsM system represents the whole fleet of vehicles, considering the different interac-
tions between them. This choice is made since the fleet manager assigns missions to vehicles
accounting for their availability and particularities. Considering a single vehicle within the
fleet as a system has less cost reduction potential. It also requires restricting hypothesis on
how mission plans are defined, since those would be considered as external inputs. In the
following sections, all actions listed are detailed.

Figure 3.2: PsM problem structure for heavy vehicles
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3.2.5 PsM actions scope in the context of vehicles

The actions listed in Figure 3.2 are split into three categories: logistics, which revolves around
most of the decisions the fleet managers already makes today; classic maintenance actions,
related to deciding when replacing a component; and parameter reconfiguration which relates
to software updates through connectivity.

3.2.5.1 Logistics

Most of the day to day work of fleet managers revolves around logistics. It encapsulates
everything related to assigning missions to vehicles. In the context of this work, logistics is
divided into three categories that are now defined.

• Path selection: when performing a mission, there can be many different paths to arrive
at a destination. This logistical decision has a clear impact in terms of performance and
operational costs since it affects arrival time and fuel consumption. It can also impact
the degradation level of some vehicle components such as air filters [DB21] and batteries
[PA20], which makes this decision suitable from a PsM action point of view.

• Routing: the most important logistic decision is defining which vehicle will perform each
mission and in which order. In transportation science, this is referred to as routing. It
directly impacts traveled distance and, as a consequence, fuel consumption and different
components degradation.

• Charging: in the particular case of EVs, planning charges is important, since, as seen in
Chapter 1 those vehicles present limited range when compared to ICE vehicles. Deciding
when to charge and either to use fast charging or not can impact the degradation of
different components and must be included for EV PsM applications.

The combination of those three decisions composes the general logistical problem of PsM
for heavy vehicles. Figure 3.3 provides a visual representation of it. Notice, however that
not all logistical decisions affect component health in the same way. Therefore, the exact
optimization problem formulation depends on the components considered for defining vehicle
reliability.

Making logistical decisions requires the set M composed of missions mj that can be rep-
resented as:

mj =

[
aj
lj

]
(3.1)

where aj is mission mj address, composed of space coordinates [xj , yj ] and lj is its deadline.
Several different hypotheses about how M is obtained can be made. One of the most natural
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Figure 3.3: Representation of the logistics problems addressed by the fleet manager. The
decision consists in, based on a list of missions M, define how the fleet will perform them.
This means defining routes for each vehicle, planning eventual visits to recharge stations
(represented by C) and choosing, when relevant, different paths as represented between point
7 and 3.

is to consider it as static. In this case, all logistic decisions are taken at once at the beginning
of a working session that lasts until all missions are performed and vehicles return to the
headquarters. However, there are also problems in transportation science that consider that,
while vehicles perform missions, new ones can arrive, requiring dynamic re-planning such as
seen in [Rio+21].

3.2.5.2 Classic maintenance actions

classic maintenance actions encapsulate defining when to replace a component, perform an
inspection or perform a repair. As discussed in Chapter 2, there is no intrinsic hierarchy
between maintenance policies. The choice of when using PsM, CbM, TbM is a result of
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a careful cost effectiveness analyses. As such, it is reasonable to assume that less critical
components will not be covered by PsM and accounted for in the reliability model, specially
since it is expensive to collect data for all of them with vehicle connectivity.

Therefore, since not all vehicle components are considered, TbM will be, at some level,
still required. Routine visits to workshops will still happen for any maintenance operation on
components not included in the reliability model. As a consequence, maintenance actions for
heavy vehicles will be prescribed in an opportunistic maintenance set-up [TLI08]; [MRW21],
meaning that they should preferably happen in already scheduled workshop visits in order to
reduce downtime.

A direct consequence of the opportunistic set-up is that the list of predefined maintenance
operations dates must be known in advance. Several hypotheses are reasonable for defining
how this maintenance schedule is built. A valid assumption is to consider that those operations
are based on calendar time and will occur at periodic regular intervals. However, as seen in
Chapter 1, some operations can be triggered by usage intervals.

It is also important to highlight that, some vehicle components are not expected to be
replaced throughout the life of a vehicle. Nevertheless, their degradation levels can impact
vehicle performance and they are often so expensive that they define the duration of vehicle
useful life. For those components, PsM works through usage optimization to ensure total
exploitation cost reduction which, in general, leads to RUL extension.

3.2.6 Parameters reconfiguration

As previously discussed, with the current technology, several different software parameters can
be updated remotely through connectivity. As such, it is possible to affect the way vehicles
are driven and positively impact their useful life duration. For example, as will be seen in
Chapter 6, limiting maximum vehicle speed and acceleration, can be beneficial for EVs.

It is important to highlight however, that affecting those kinds of parameters can have
impacts on how missions are performed. If updates are carelessly made, deadlines may not
be respected. As such, parameter reconfiguration must always happen within the context of
missions, requiring the same inputs as logistical decisions.

3.3 A review on useful mathematical models for heavy vehicle
applications

With a general view of the decision-making problems included in PsM solutions for heavy
vehicles, it is possible to investigate modeling alternatives for reliability and optimization
models. It is important to highlight that as stated before, the reliability model has a huge
impact on how actions will affect the health of a component. Some components are sensible
to path selection while others are not. Some components are often replaced and some are not.
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The reliability model must capture those aspects and in turn affect the choice of optimization
models.

3.3.1 Reliability models for vehicles

PsM requires a model capable of quantifying how different actions will affect the health of the
system. A possible approach for vehicle applications would be to directly employ probabilistic
models for time to failure such as done in [Jbi+18]. This method is simple but not suitable for
PsM since, throughout most of the useful life of vehicles, failure probabilities are neglectable
but usage can be optimized at any time since it always has an impact on vehicle health or
degradation.

A more natural choice is to use a reliability model based on degradation. For example, a
possible approach is to use a First Hitting Time (FHT) model which considers that a quantity
W (t) representing degradation evolves through time. When W (t) reaches a threshold Lw, it
causes a breakdown. The failure time Tfail can then be defined as:

Tfail = inf{t : W (t) ≥ Lw |W (0) ≤ Lw} (3.2)

The advantage of such models is that, even when Tfail is expected to be too far in the
future, the impact of PsM actions on W (t) can be modeled and usage can be optimized at
any point of vehicle life. Furthermore, even for components which are periodically replaced
to avoid reaching a defective state, W (t) can impact vehicle performance as will be seen in
Chapter 5. Additionally, in many cases W (t) is a measurable physical quantity (i.e. brake-pad
thickness, battery capacity and etc), which leads to a very natural way of closing the PsM
loop.

Different alternatives on how to employ FHT models for vehicles exist. For example in
[Rob+19], vehicles were modeled, as a single component, with W (t) representing an abstract
health measure of the whole vehicle. In reality, heavy vehicles are extremely complex with
different failure modes and, from a PsM point of view, it is better to consider those components
individually since they can behave differently. There are several alternatives to model W (t).
The most common options are now reviewed.

3.3.1.1 Deterministic degradation models

Some approaches to model degradation rely on deterministic models which are usually based
on empirical relationships between different parameters of the system and physical degradation
quantities that can be measured. For chemical-induced or temperature sensible degradation
processes the Arrhenius model is commonly used. It is based on the empirical relationship:
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Ẇ (t) = Ae
−E
RT (3.3)

where Ẇ (t) can be seen as the degradation rate, E is the reaction energy, R the gas con-
stant, T the absolute temperature, and A is a constant that must be empirically determined.
This approach has been successfully used to model homogeneous aging processes in polymers
[Zag+20], however, this model is not valid for all temperature ranges. Some alternative rela-
tionships have been proposed to deal with this limitations such as the Eyring model, which
has been used in electronic applications [McP86].

Degradation phenomena of different nature are modeled in other ways. For example, in
the case of degradation related to crack growth, the Paris’ law model [PE63] is commonly
employed. It is based on Paris’ identity which is the following empirical relationship:

Ẇ (t) = C∆Km (3.4)

where Ẇ (t) is now seen as the crack growth ratio per fatigue cycle. ∆K is the critical
crack length and m and C are empirically determined constants. In this case, the degradation
quantity W (t) is precisely the length of the crack. This relationship holds true in specific
crack length intervals and other relationships have been proposed to describe crack growth
outside of them, such as [Bap+12].

Deterministic degradation models have also been used in vehicle applications. For exam-
ple, in the context of lithium batteries, variations of the Arrhenius model have been employed
[JKG18]. Although deterministic models are easy to interpret and implement, they fail to
capture the intrinsic uncertainty surrounding degradation. This randomness comes from the
variability among components, use modes and etc. For that reason, depending on the compo-
nent, other alternatives may be preferred.

3.3.1.2 Stochastic degradation models

To account for uncertainties, either the parameters of deterministic models can be treated as
random variables or W (t) can be modeled directly as a stochastic process [Noo09]. In this
case, the choice of which stochastic process to use depends on the underlying characteristics
of the degradation phenomena. Some of the most commons alternatives are:

• Poisson process: Often used to model degradation phenomena that can be interpreted
as a consequence of shocks. In this process, each increment of W (t) is random, considered
to be Identical and Independently Distributed (IID) and occurs following a Poisson
process, as a consequence, W (t) often resembles an irregular staircase. Variations of this
process have been used in several different applications such as structural degradation
[Wan22] and pit corrosion [Cab+15].
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• Gamma process: Often used when the physical degradation process is monotonic,
meaning that W (t) can only increase. In the gamma process, each increment of W (t) is
IID and follows a gamma distribution [Noo09]. As a consequence, the expected degrada-
tion process is linear with respect to time. Variations of gamma processes have been used,
for example, for modeling degradation in pipes [HBP22] and carbon films [WXM15].

• Wiener process: Often used when the physical degradation process is not monotonic,
i.e. W (t) can increase or decrease at any given t. In the Wiener process, each degrada-
tion increment is IID and normally distributed. Wiener processes are usually combined
with a linear component to obtain a linear expected behaviour as in the gamma pro-
cess. Variations of those models have been used, for example, in the context of battery
degradation [TYG14] and LED lamps [Wan+14].

In the context of PsM, it is important to have models that reflect the impact of different
usage conditions on degradation. In their basic form, the aforementioned stochastic processes
do not explicitly account for usage changes. However, there are alternatives that can be used
to model usage effects on the degradation. A common approach, for example, is to consider
that the parameters of the increment distributions are dynamic and depend on covariates such
as in [Wan+21] and [JZV21]. Regarding vehicle components examples, one can mention the
use of Gamma process for brake-pad degradation [Zha+21].

3.3.1.3 Black-box degradation models

Another popular approach is to derive, through machine-learning like methods, regression
models for W (t). In this case, no explicit model structure is required and data sets containing
several degradation measures are processed leading to future degradation estimations that
can be used for prognostics. Several examples for different applications can be found in
the literature. [Lu+22] employ neural networks to estimate future battery degradation and
perform RUL prediction. [Geb+04] propose a general approach to process vibration data and
apply neural networks for bearing degradation estimation.

Those models are useful in cases where little is known about the physical degradation
mechanisms of the system. However, they have the drawback of requiring large data sets.
Furthermore, those models can also be hard to interpret or explain. In the context of PsM,
this problem is even more critical since several data points would be required in different usage
conditions and gathering such data is a challenge.

3.3.2 Relevant optimization models

With the general structure of the decision-making problem of PsM applications presented in
Section 3.2.4, it is possible to investigate similar problems previously addressed in the litera-
ture. Some common optimization models for logistics, maintenance and software parameter
changes, are now reviewed.
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3.3.2.1 Shortest paths

Deciding which path to take in order to go from point A to point B is an example of a Shortest
Path Problem (SPP). Due to its universal importance and simplicity, its formal statement and
consequential mathematical development started relatively late [Sch12], with the first SPP
algorithms being developed in the years 1950. SPP can be described as an Integer Linear
Programming (ILP) problem. Considering a weighted graph G = (N,E), a target node t,
a source node s and binary decision variables xij that are equal to 1 if the edge connecting
nodes i and j is part of the shortest path, the problem can be described as finding:

P ∗
s,t = argmin

∑
i,j∈N

cijxij (3.5)

Subjected to:

∑
i∈N

xij −
∑
i∈N

xji =


1, if j = t

−1, if = s

0 otherwise

∀i, j ∈ N (3.6)

xij ∈ {0, 1} ∀i, j ∈ N (3.7)

where P ∗
s,t is the optimal path between s and t and cij represent the weight of each edge e ∈

E and are often seen as the distance between nodes i to j. Constraint 3.6 guarantees that every
path considered starts at node s and ends at node t. It also ensures path continuity. Constraint
3.7 imposes the support of variables xij . The SPP has several solutions in polynomial time.
One of the most famous algorithms is Dijkstra’s algorithm [Sni06], shown below.

Dijkstra’s algorithm is based on the principle of optimality, which in the case of the SPP
implies that, if node n

′ ∈ P ∗
s,t then P ∗

n′ ,t
⊂ P ∗

s,t. On other words, if node n
′ is in the optimal

path between s and t then the subset of this path connecting n
′ and t is the optimal path

between n
′ and t. As a consequence, it is possible to evaluate paths recursively, finding the

shortest paths to intermediate nodes, storing their optimal distances and restarting the process
from them, gradually reducing the number of paths to be considered. This is illustrated by
Figure 3.4, that shows each iteration of the algorithm for a small graph.

It is also important to highlight that several variations of the SPP exist. For example:

• K-SPP: SPP versions in which the goal is to find the k-best paths connecting source
and target node.

• Multi-objective SPP: SPP versions in which the optimization objective involves min-
imizing different cost functions simultaneously.



3.3. A review on useful mathematical models for heavy vehicle applications 65

Algorithm 1 Dijkstra’s algorithm
Initialization:
for all n ∈ N do

if n == s then
dist(n)← 0

else
dist(n)← inf

prev(n)← None

add n to N
′

end if
end for
Solving SPP:
while N

′ is not empty do
nmin ← element of N ′ with min dist(u)

for each neighbor node of nmin in N
′ do

alt← dist(u) + cuv
if alt < dist(v) then

dist(v)← alt

prev(v)← u

end if
end for
remove nmin from N

′

end while

• Stochastic SPP: SPP versions in which different characteristics of Graph G are ran-
dom. For example, each cij can be seen as a random variable of known probability
distribution with different parameters. There are also versions in which each edge cor-
responds to a probability distribution of reach a particular node. The problem then
becomes establishing a policy for choosing the next node, starting from node s to reach
node t with probability 1.

One particularly important variation for this work is the constrained SPP. In this version,
in addition to cij , scalars wij are introduced to represent resource consumption (energy in the
case of EVs or fuel in ICE vehicles, for example) between i and j and a constraint to impose
maximum resource consumption is included in the optimization model. This variation, is
NP-hard [LM13] and no polynomial time algorithm exists. Exact methods exist [PG13] but
meta-heuristics are also commonly used in this case [Kai+18].

3.3.2.2 Vehicle routing problems

The problem of choosing which vehicle must perform each mission is an example of a Vehicle
Routing Problem (VRP). VRPs are typically formulated as Multi-Integer Linear Programming
(MILP) problems, but in their simplest version, they can be described as an ILP. Considering a
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Figure 3.4: Djikstra’s algorithm to find the shortest path between A and C in a small graph.
In step one, the algorithm is initialized. the distance to each node is marked as ∞ with the
exception of source node A. After the distance for reaching each neighbor of A is computed,
it is removed from N

′ (red). The process is repeated for the node with the shortest distance,
at each iteration. The algorithm ends once every node is evaluated.

weighed graph G = (N,E), a set Z of vehicles with a node 0 which denotes the depot, where
vehicles start and to where they must return at the end of the route, and binary decision
variables xijz which are equal to 1 if the edge connecting nodes i and j is part of the route of
vehicle z and 0 otherwise, the VRP can be written as:

min
∑
z∈Z

∑
i∈C

∑
j∈C

cijxijz (3.8)

Subjected to:
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Figure 3.5: Example of solutions obtained when not including sub-tour constraints such as
Constraint 3.12 in the VRP optimization model.

∑
z∈Z

∑
j∈C

xijz = 1 ∀i ∈ N − {0} (3.9)

∑
i∈N

xijz −
∑
i∈N

xjiz = 0 ∀i ∈ N, ∀z ∈ K (3.10)∑
z∈Z

∑
j∈N

qjxijz ≤ Q ∀i ∈ N − {0} (3.11)

∑
i∈S,j /∈S

xijz ≥ 2 ∀S ∈ E | 2 ≤ |S| ≤ |N | − 2 (3.12)

xijz ∈ {0, 1} (3.13)

Where Q represents the maximum vehicle payload, assumed to be the same for the fleet
and qj is the capacity demand of node j. Constraint 3.9 ensures that every node, except 0, is
visited exactly once. Constraint 3.10 ensures flux continuity, i.e. whenever a vehicle arrives
at a node, it must leave this node in its next displacement. Constraint 3.11 ensures that the
maximum payload is never exceeded. Constraint 3.12 is responsible for eliminating sub-tour
solutions such as those shown in Figure 3.5. Constraint 3.13 determines the support of the
decision variables.

VRPs gained popularity after 1981 when the first practical exact solution algorithms were
proposed [LTV13] and have remained popular ever since, enabling substantial improvements
in logistics. Those exact algorithms are, in general, based on Branch and Bounding (BB)
approaches. BB is a search method that consists of exploring the solution space by recursively
splitting it in sub spaces (branches) and computing lower bounds (in minimization problems)
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for the cost function [Mor+16]. Whenever a branch with a lower bound bigger than previously
explored solutions is found, it can be pruned, reducing the number of required computations.
Algorithm 2 presents the generic structure for BB-like methods.

Algorithm 2 BB general structure
1: create a set L of sub-problems (branches) and initialize the best bound x∗

2: while L ̸= ∅ do
3: Select a sub-problem S from L

4: if a solution x
′∗ ∈ {x ∈ S|c(x) < c(x

′∗)} is found then
5: x∗ ← x

′∗

6: end if
7: if S cannot be pruned then
8: Partition S into regions S1,S2...Sn

9: Insert S1,S2...Sn into L

10: elseRemoveS from L

11: end if
12: end while

The performance of BB depends on the quality of lower bounds and on the branching
method used. One of the most common methods for BBs is to relax integrality constraints,
obtaining a Linear-Programming (LP) problem. This LP is then solved and its optimal cost
function value bounds the original ILP. The LP solution is rounded, leading to different
branches. The process is repeated in each one of those branches. Constraints are relaxed,
LP are solved to obtain bounds that are used to prone them if possible. Figure 3.6 illustrates
this process concretely for the following maximization problem:

max 45x1 + 48x2 + 35x3 (3.14)

Subjected to:

5x1 + 8x2 + 3x3 ≤ 10 (3.15)

x1, x3, x3 ∈ {0, 1} (3.16)

Even though exact VRP solutions can be obtained through BB, solving instances with sev-
eral nodes is a challenge. As a consequence, several heuristics were proposed for solving VRPs,
one of the most important is Clarke-Wright savings algorithm due to its simplicity, and relative
good performance [LTV13]. This algorithm can be used to enhance meta-heuristics, signif-
icantly closing the optimality gap while still ensuring reasonable computation time [PK12].
Several variations of VRPs have been studied, representing different scenarios which translate
to different constraints and cost functions. Some of the most common are:

• Capacitated VRPs: as the original VRP, this version of the problem addresses vehicle
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Figure 3.6: BB method for a simple ILP. At step 1, the original problem is relaxed and
transformed into a LP. It is then solved, obtaining an upper-bound of 92 for the original
problem. The LP solution is not made from integers, therefore, it is rounded creating two
branches. In step 2 the first branch is analyzed. Once again, constraints are relaxed and the
corresponding LP is solved. This time, the solution corresponds to integers and therefore, the
best possible solution on this branch is found. In the third step, the second branch is analyzed.
After solving the corresponding LP, it can be seen that the new upper-bound is inferior to the
previously found solution and, therefore, this branch is pruned and the algorithm ends
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capacity restriction, imposing limits to the amount of cargo that can be carried at once.
Some examples can be found in [Akh+17] and [LDAU06].

• VRP with Time Window: in this variations, constraints impose rules for when nodes
must be visited, establishing the earliest and latest acceptable instant for vehicle arrival.
In those variations, service time (the amount of time required to unload the truck and
finish the delivery) is considered, impacting deliveries and deadlines. Some examples
can be found in [BG05]; [Tan+01].

• VRP with Multi Depots: in this variations, logistics topology are complexified,
including multiple depots in which vehicle may reload throughout missions. Some ex-
amples can be found in [Ho+08]; [CCL07].

• Stochastic VRP: those variations encapsulate any version of VRPs in which parame-
ters of the problem as distributed according to probabilistic models. For example, some
stochastic VRPs consider that traveling times are random variables (in order to model
traffic effects, for example). Other variations consider that delivery points are random
and can change as vehicles move, introducing the need to dynamically adapt the mission
schedule. Some examples can be found in [YMB00]; [LLM92].

One of the most relevant variations for this work is the Electric Vehicle Routing Problem
(EVRP), in which the particularities of EVs are considered [KDC21]. Those particularities are
mainly related to limited range (when compared to diesel trucks), the necessity of charging
(which requires much more time than fueling a diesel tank), and the scarcity of charging sta-
tions (when compared to gas stations). The problem of defining what is the best moment to
charge an EV, mentioned in Section 3.2.5.1, is therefore included as part for the EVRP. Varia-
tions of EVRPs include realistic charging profiles [Mon+17], energy consumption uncertainty
[PJL19]; [BKSD21] and incorporating battery swap strategies to deal with long charging times
[ZMO22]. For more detailed reviews, readers may refer to [KDC21].

3.3.2.3 Maintenance models

Different models for classic maintenance actions optimization exist in the literature [HR09].
Each one of them is adapted to different hypotheses related to how maintenance actions
affect the system, the structure of the maintenance policy and the monitoring conditions.
One of the most well known models for maintenance optimization arises in the case where
maintenance actions are considered to take the system back to a As Good As New (AGAN)
state (i.e. identical to its initial condition). Under this hypothesis, considering degradation to
be stochastic in a TbM policy with maintenance interval T0, establishes a renewal process with
cycles determined by maintenance actions. Therefore, based on Blackwell’s theorem [Bla48],
the asymptotic maintenance cost per unit of time, CMC , can be written as:

CMC =
E[Ccycle(Tcycle)]

E[Tcycle]
=

c+ k(1−R(T0))∫ T0

0 R(t)dt
(3.17)
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Figure 3.7: Comparison of preventive and corrective costs as a function of the preventive
maintenance interval. T ∗ represents the length of the optimal interval.

where E[.] denotes the expectation operator, Ccycle(Tcycle) is the cost of a cycle, which
depends on its duration Tcycle. If it lasts less than T0, it means a breakdown has occurred
and corrective maintenance actions took place. Constants c and k are the costs of preventive
and corrective maintenance actions, respectively. R(t) is the reliability function which can be
easily computed for lifetime models or degradation processes such as those listed in Section
3.3.1.2. In this simple case, maintenance optimization comes down to finding T ∗ such that:

T ∗ = argmin
T0

CMC (3.18)

which in several cases, has analytical solutions and can be seen as finding the optimal balance
between the expected failure cost and preventive maintenance costs, as shown in Figure 3.7.

Considering operations to bring the system to AGAN is a strong hypothesis. Alternative
models consider imperfect maintenance actions. For example, [Nak79] uses a maintenance
models in which actions take the system back to an AGAN state with probability p but does
not affect degradation levels at all with probability q. Other alternatives are based on the
concept of virtual age [MC19]; [DG04] which consider that operations partially reduce the
degradation accumulated since the last repair.

In opportunistic maintenance set-ups, which is the case for heavy vehicle PsM as discussed
in Section 3.2.5.2, even with deterministic degradation models, more complex optimization
maintenance models are required. In those cases, a common approach is to formulate the
problem as an ILP, in which integer decision variables represent the choice among the possible
maintenance dates. Such approach is seen in [MRW21] and [PM21].
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3.3.2.4 Parameter reconfiguration models

Parameter reconfiguration encapsulate decisions that affect how missions are performed. With
that in mind, it is natural to consider decision making on ECU level, which consists in manag-
ing actuators outputs. This is deeply related to the discipline of control engineering, concerned
with problems such as determining the output of actuators in order to obtain a desired be-
haviour. For example, in [Kam+13], a model predictive controller is used to ensure stability
while reducing fuel consumption for vehicles is proposed. Another example, closer to PsM
since degradation is accounted for, can be found in [CZJ19], where control strategies for
power distribution on photovoltaic systems are proposed not only for energetic efficiency but
also for RUL extension.

However, due to the aforementioned discussed limits of vehicle connectivity, parameter-
reconfiguration-related decision cannot occur based on real time updates of control laws. One
example of considering degradation for parameter optimization, but not necessarily in real
time, is seen in [LGB13]; [RMB21], where the gains of a linear quadratic regulator are up-
dated periodically based on RUL estimations. Furthermore, as stressed before, parameter
reconfiguration decisions affect mission performance. Therefore, a more suitable approach
is to optimize them within the context of logistical decisions, considering that parameters
changes can impact mission deadlines. An example can be found in [Ma+21]. Authors extend
a VRP-like optimization model by including continuous decision variables representing vehicle
speeds on different road segments.

3.4 Challenges for practical implementation

Looking at the complete picture of a PsM solution for heavy vehicles and relevant aspects of
the state of the art, some practical implementation challenges become clear. Those are briefly
explored in this section. The second part of this manuscript is dedicated to addressing them,
creating tools to enable practical optimization solution.

3.4.1 Degradation and usage models

Formulating PsM optimization models as an extension of the classic optimization models seen
in 3.3.2, although natural, yields to very complex problems. For example, VRP’s are, in their
simplest form, NP-hard and including degradation models can significantly complicate them.
For instance, as will be seen in Chapter 5, deriving a PsM solution for the Energy Storage
System (ESS) requires a non-linear degradation model which translates to a non-linear cost
function which makes traditional BB methods harder to be applied.

Furthermore, some complex components are affected by different usage conditions in com-
plex ways. Usage metrics used to feed the reliability/degradation model are often described
by differential equations. Including them in the optimization problems requires numerical
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integration to evaluate possible solutions which further complexifies the problem from a com-
putational point of view. Even simpler logistical decisions described as SPP variations may
become impractical to solve since the aforementioned differential equations compromise the
principle of optimality. This is a consequence of the fact that, since the internal state of the
vehicle is dynamic, the costs related to each edge of the graph depend on the previously visited
nodes. A more in depth discussion on those complications is given in Chapter 5.

3.4.2 Decision impact in different time scales

PsM for heavy vehicles involve logistics, maintenance and parameters optimizations. However,
the nature of those decisions is extremely different from a time scale point of view. While
logistical and parameter actions are applied on a daily basis, maintenance happens only few
times through the life of the vehicle. To ensure exploitation cost minimization, it is necessary to
consider the joint effect of those actions when defining the best course of action for the system.
Implementing a PsM solution requires an ingenious formulation of optimization problems that
can account for those different time scales.

3.4.3 Long-term evaluation

Finally, PsM is a long-term cost reduction strategy by nature. In order to validate and
estimate the effectiveness of the proposed solutions, it is necessary to simulate vehicle usage
through long-time horizons. As the optimization problems arising from the PsM problem are
computationally challenging, solving several sequential instances of them to capture long-term
effects require the development of adequate computational solution methods.

3.5 Conclusion

This chapter concluded the first part of this thesis, closing the discussion on PsM and pre-
senting a general problem structure for heavy vehicles. As previously stated, the exact hy-
potheses and optimization formulation of those problems require specific choices of degrada-
tion/reliability models to represent the vehicle components considered in this solution.

The computational complications arising from accounting for degradation, applying actions
that will affect the system in different time scales and the long-term nature of the PsM solutions
create the necessity of specific algorithm design and optimization models. In the second part
of the manuscript, practical examples are given with different vehicle components that lead
to original scientific problems which are then solved.

Part II is composed of three chapters containing two complementary PsM applications.
The first one, presented in Chapter 4, is a PsM application that arises by defining vehicle
reliability with a generic degradation model. This degradation model is flexible and can
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represent several different vehicle components. However, due to its simplicity, it can not be
used to correlate vehicle health with some of the actions described in Section 3.2.5. Therefore,
this application revolves mainly around routing and maintenance.

To explore more complex components, address all possible PsM actions for heavy vehicles
and consider EVs specifics, a second PsM application is presented. It arises from defining
reliability in terms of the energy storage system (ESS). The results of this application are
split among Chapters 5 and 6. Due to the complexity of this component, the first discusses
how to model it while the second addresses optimization formulation and solution methods.
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4.1 Introduction

Although in Chapter 3 the general structure of a PsM solution for heavy vehicles was presented,
as discussed, the concrete scope of actions depends on how vehicle reliability is defined. In this
chapter, a generic PsM degradation model capable of representing different components is used.
In this second part of this manuscript, the concepts developed in Part I are used to address
concrete vehicle maintenance challenges. While Chapters 5 and 6 are concerned with an EV-
exclusive application with a complex component, this chapter introduces a generic degradation
model that can be used to represent different vehicle components. As a consequence, the scopes
of actions in those two PsM applications are different but complementary.

The trade-off for the generic degradation model flexibility is the fact that it cannot be
used to optimize some decisions such as path selection and vehicle parameters since, as will
be seen in Section 4.2, it depends only on the total traveled distance. As a consequence,

77
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Figure 4.1: PsM solution structure for the generic component application.

in this application, the scope of the PsM actions is reduced as shown in Figure 4.1. Only
classical maintenance actions and routing are considered. However, those two actions are
extremely important in terms of exploitation cost minimization. Furthermore, the problem of
jointly optimizing maintenance and missions has never been addressed in the transportation
literature through a long-term perspective.

In this chapter, this scientific problem is addressed. An original contribution for solving
a similar problem was presented in [Lon+21]. In this chapter, that work is improved with
a more general problem formulation and solution method. A new optimization model is
proposed to simultaneously account for maintenance and routing. The performance of this
model is compared to traditional approaches and the benefits of PsM are quantified in several
numerical experiments. Furthermore, algorithms are proposed to solve the PsM optimization
model efficiently, since it is an extended form of VRPs and is computationally demanding.

4.2 Generic degradation model for vehicle components

The FHT approach discussed in Section 3.3.1 is suitable for modeling most components.
A natural choice for a generic model is to use stochastic processes to describe degradation
evolution. This is a way of circumventing the necessity of detailing the physical nature of wear
mechanisms. The model randomness can be seen as a manifestation of specific component
degradation phenomena that are not explicitly modeled.

Several vehicle components such as brake-pads, air-filters and oil present degradation be-
haviours strongly correlated to the traveled distance. It is common to modeled vehicle com-
ponent degradation by either a gamma or a wiener process [Yan+22]; [Gué+10]; [Dai+22].
To be also applicable for components whose degradation process is not monotonic, the later
is preferred leading to the following degradation model:
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W (d) = W0 + λd+ σbB(d) (4.1)

where W represents the component health indicator, d is the traveled distance, W0, λ and
σb are constants and B(d) is the standard Brownian motion. Thanks to vehicle connectiv-
ity, those parameters can be estimated directly through data, using for example, maximum
likelihood techniques such as done in [TYG14]. Model parameters will be chosen so that the
component must be replaced several times through vehicles life, forcing this PsM solution to
address routing and maintenance decisions together.

4.3 The prescriptive maintenance problem

The proposed degradation model, although simple, correlates degradation to traveled distance
and therefore can be used to connect classical maintenance actions and routing. Routing and
maintenance have an interconnected nature that must be addressed. For example, sending
vehicles that are more degraded to do less severe missions - those which are less likely to cause
significant degradation increase - can postpone maintenance operations. This particular PsM
problem becomes defining mission plans and choosing maintenance dates in a way that this
relationship is exploited to reduce long-term costs. The following assumptions made are:

• Long-term optimization happens over a finite time horizon H, which is composed of
different working sessions t.

• At each working session t, a set of missions must be performed. Each mission has a known
address and deadline. All relevant addresses can be represented by a graph Gt = (Nt, Et)

with Nt = Ct ∪ 0. Ct represent mission addresses while 0 is the headquarters, where
vehicles start and to where they must return by the end of t. The edges Et represent
the shortest paths between those addresses.

• The set of mission addresses does not change during a working session.

• Each vehicle in the fleet, represented by a set Z, has constant known degradation pa-
rameters λz and σz.

• At the end of each working session t, degradation levels Wz can be measured through
connectivity and the health state of each vehicle z becomes known.

• Maintenance is treated in an opportunistic set-up. It can only take place after specific
working sessions which define a set V of maintenance opportunities with V ⊂ H.

• Each maintenance operation takes the component back to an AGAN state. If Wz crosses
a predefined critical threshold, a failure occurs.
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Figure 4.2: Visual representation of the PsM optimization problem for a generic vehicle com-
ponent. Each working session t is indexed in this Figure for the sake of clarity. At each
working session, a graph Gt is used to define routes, as explicitly shown for t1 and t5. In this
case, V = [7], meaning maintenance operations can occur between t7 and t8.

Figure 4.2 represents this decision-making problem which comes down to minimizing the
exploitation cost over H. However, every routing process must be made ensuring that opera-
tional constraints such as mission deadlines, are respected. Furthermore, it is also important
to keep failure probabilities under a maximum acceptable threshold to avoid downtime.

4.3.1 Optimization model

As in any PsM application, the cost function of this model is designed to minimize the ex-
ploitation cost, which, in the scope of this application, is equivalent to reducing maintenance
and fuel consumption costs. Considering that all missions over H are known, each graph
Gt = (Nt, Et)∀t ∈ H can be seen as an input for the optimization model. Therefore, with the
following decision variables:

xtzij =

{
1, if vehicle z goes from node i to node j with i, j ∈ Nt, z ∈ Z and t ∈ H

0 otherwise
(4.2)

mvz =

{
1, if vehicle z performs a component replacement at v with v ∈ V and z ∈ Z

0 otherwise
(4.3)
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the cost function of the optimization problem becomes:

min Cpsm =
∑
t∈H

∑
z∈Z

∑
j∈Nt

∑
i∈Nt

ckmxtzijdtij +
∑
v∈V

∑
z∈Z

cmaintmvz (4.4)

where ckm is a constant related to the fuel cost and average vehicle fuel consumption
while dtij is the distance between each node i and j ∈ Nt. cmaint is the cost of preventive
maintenance operations. In order to obtain solutions that represent valid routes, xtzij must
respect classical VRP constraints in each working session:

∑
z∈Z

∑
j∈Nt

xtzij = 1 ∀i ∈ Nt − {0}, t ∈ H (4.5)

∑
i∈N

xtzij −
∑
i∈Nt

xtzji = 0 ∀i ∈ Nt, z ∈ Z, t ∈ H (4.6)

∑
t∈H

∑
z∈Z

∑
j∈Ct

xtz0j ≤ |Z| ∀i ∈ Nt − {0}, t ∈ H (4.7)

xtijz ∈ {0, 1} (4.8)

mtz ∈ {0, 1} (4.9)

Constraint 4.5 ensures that every mission address is visited once. Constraint 4.6 ensures
flux continuity and constraint 4.7 limits the number of vehicles used to the fleet size. Con-
straints 4.8 and 4.9 determine decision variables support. However, those constraints are not
sufficient since they do not guarantee solutions without sub-tours and do not address op-
erational constraints. Both problems can be fixed by adding decision variables ytzij in the
formulation. They are continuous variables representing the arrival time of vehicle z at node
j coming from node i in a working session t. The following constraints are then required:

∑
j∈Nt

ytzij −
∑
j∈Nt

ytzji ≥ ∆ytijxtzji ∀i ∈ Nt, ∀z ∈ Z∀t ∈ H (4.10)

ytzij ≥ t0jxtz0j ∀j ∈ Nt∀z ∈ Z (4.11)

ytzij ≤ lj ∀i ∈ Nt, j ∈ Nt, z ∈ Z, t ∈ H (4.12)

ytzij ∈ [0,∞[ (4.13)

with ∆ytij representing the time necessary to go from node i to j at t ∀i, j ∈ Nt and
t ∈ H. Constraint 4.10 makes ytzij coherent with displacements duration when xtzji = 1 and
force them to 0 otherwise. It also acts as a sub-tour elimination constraint. Constraint 4.11
establishes the first arrival time of each vehicle while 4.12 ensures that mission deadlines are
respected. Constraint 4.13 defines the correct support for variables ytzij .
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PsM optimization models must account for degradation and its effects. As previously
stated, it is necessary to incorporate, for example, limitations on the acceptable failure prob-
abilities. The first step to do so is to define a failure distance Dfail as:

Dfail = inf{D : W (d) ≥ wcrit |W (0) ≤ wcrit} (4.14)

with wcrit representing a failure threshold. Since W (d) is modeled as a Wiener process
with linear drift, Dfail is a random variable following an inverse Gaussian distribution with
density:

fDfail
(d) =

wcrit −W (0)√
2πd3σ2

B

exp
−(wcrit −W (0)− λd)2

2σ2
Bd

(4.15)

Including constraints on the failure probability directly through the correspondent cu-
mulative distribution function is inconvenient. It would introduce non-linearities that would
needlessly complicate the model from a computational point of view. It is possible to limit
failure probabilities indirectly through the quantiles of Dfail. For example, imposing an ac-
ceptable failure probability q, is equivalent to limiting traveled distances to Dq

max where:

Dq
max = d : P (Dfail ≤ d) = q (4.16)

as shown in Figure 4.3.

Therefore, acceptable failure probabilities can be guaranteed by ensuring that, between
every maintenance operation, vehicle z does not travel more than Dmaxz . This is achieved by
introducing decision variables Dvz∀v ∈ V, z ∈ Z and the following constraint, referred to as
safety constraint :

Dvz +
t∑
v

∑
i∈Nt

∑
j∈Nt

xtzjidtij ≤ Dmaxz ∀v ∈ V, t > v (4.17)

In order for Constraint 4.17 to work as intended, it is necessary that Dvz = 0 if a re-
placement happens at v or that Dvz = Dv−1z +

∑t−1
v−1

∑
j∈Nt

∑
i∈Nt

xtzjidtij , otherwise. This
conditional logic is achieved through the following constraints:
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Figure 4.3: Illustration of the principle behind using quantiles to minimize failure probabilities.

Dvz ≥ Dv−1z +
v−1∑
t−1

∑
j∈Nt

∑
i∈Nt

xtzjidtij −mtz ∗K ∀v, v − 1 ∈ V z ∈ Z (4.18)

D0z = 0 ∀z ∈ Z (4.19)

Dvz ∈ [0,∞] (4.20)

Constraint 4.20 establishes the support for Dvz. Constraint 4.18 is used to establish the
conditional logic previously discussed. If constant K is large enough and a maintenance
operation is performed at t, the right hand side of the inequality becomes negative, forcing
Dvz to zero. Otherwise, Dvz becomes the accumulated distance until the last maintenance
opportunity. It is also necessary to add t = 0 to the set V so that constraint 4.18 can be
computed at the first maintenance opportunity. Additionally, it is required that D0z = 0∀z ∈
Z which is guaranteed by Constraint 4.19. Constraint 4.20 defines the range of Dtz.

This formulation leads to a method for combining maintenance and routes, reducing long
term costs. Since this MILP is linear, classical BB methods can be used to solve it. Through
a set of numerical experiments, different aspects of this formulation are shown, discussing its
characteristics and potential benefits.

4.3.2 Numerical experiments

4.3.2.1 General setup and benchmark model

To assess the performance of the proposed optimization model, it is important to have a
benchmark model representing standard fleet-managers which do not consider degradation
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when dealing with logistics. The chosen benchmark model assigns routes to vehicles, at each
working session t, according to the following VRP:

min
∑
z∈Z

∑
j∈Nt

∑
i∈Nt

ckmdtijxtzji (4.21)

Subjected to:

∑
z∈Z

∑
j∈Ct

xtzij = 1 ∀i ∈ Nt − {0} (4.22)

∑
i∈Nt

xtzij −
∑
i∈Nt

xtzji = 0 ∀j ∈ Nt, z ∈ Z (4.23)

∑
z∈Z

∑
j∈Ct

xz0j ≤ |Z| ∀i ∈ Nt − {0} (4.24)

xtijz ∈ {0, 1} (4.25)∑
j∈N

ytzij −
∑
j∈Nt

ytzji ≥ ∆ytijxtzji ∀i ∈ Nt, ∀z ∈ Z∀t ∈ H (4.26)

yt0jz ≥ t0jxtz0j ∀j ∈ Nt∀z ∈ Z (4.27)

ytijz ≤ lj ∀i ∈ Nt, j ∈ Nt, z ∈ Z, t ∈ H (4.28)

ytijz ∈ [0,∞[ (4.29)

Since maintenance decisions are not part of this model, mtz and Dtz are not included and
the fleet is always considered homogeneous. To choose maintenance opportunities, a simple
strategy emulating preventive maintenance policies is applied. For each v ∈ V , components
are replaced if a vehicle has travelled more than a predefined threshold distance Dbenchmark.
This threshold is defined in such a way that it mimics the order of magnitude of real preventive
maintenance intervals.

Once routes and maintenance dates are established they are simulated. For each simu-
lation, if, at any point Wz falls bellow wcrit, a failure is considered to happen. In the next
working session degradation returns to an AGAN state, as a consequence of a corrective main-
tenance operation. The empirical simulation cost can be expressed as:

Csimu =
∑
t∈H

∑
z∈Z

∑
j∈Nt

∑
i∈Nt

ckmxtzjidtij + cfailnfail + cmaintnmaint (4.30)

where cfail is a constant representing the monetary value of a failure, nfail is the number
of failures occurred and nmaint the number of maintenance operations performed. For all sim-
ulations, cost constants are as shown in Table 4.1. Maximum acceptable failure probabilities
qmax :
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ckm cmaint cfail
0.4 100 2000

Table 4.1: Cost constants for numerical experiments

Figure 4.4: Example of random graph sampled from a 400x400 square used to define missions
in a working session.

qmax =
cmaint

cfail
= 5% (4.31)

as a thumb rule to achieve reasonable failure costs .

4.3.2.2 Numerical experiments for model comparison

Several experiments were designed to illustrate the differences between both models. In the
first experiment, no maintenance opportunity is considered i.e. V = ∅ and H = [0, 1, ..., 19].
The fleet is composed of two vehicles whose parameters are shown in Table 4.2. Graphs Gt

were obtained by randomly sampling 10 mission addresses from an uniform distribution on
a 400x400 kilometer square and dtij were computed as the Euclidian distance between each
node in Nt. In each working session the headquarters (indicated by 0) position is the same,
with coordinates [200,200], as seen in Figure 4.4. Deadlines were set guaranteeing that, at
each working session, there was at least a feasible route.

Results are shown in Table 4.3. In this experiment, both models use exactly the same
routes. This happens because in such a short horizon H, safety constraints could be easily
respected and both models minimized the total traveled distance. As failure probabilities were
neglectable, the empirical costs obtained were also the same. As expected, like the benchmark
model, the PsM model minimizes fuel consumption costs when failure probabilities are not
significant.
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Vehicle λ σB W0 E[Dfail] Dq=5%
max

0 0.002 0.1 0 50000 33933.7
1 0.002 0.1 0 50000 33933.7

Table 4.2: Fleet parameters for experiment 1

Consumption
cost

C̄simu

PsM model 10583.5 10583.5
Benchmark model 10583.5 10583.5

Table 4.3: Simulation result of experiment 1

To address a case in which both models behave differently, a second experiment is per-
formed with H = [0, 1, ..., 35] and a fleet with parameters shown in Table 4.4. This fleet is
heterogeneous since vehicle 1 has grater σ. This corresponds to greater degradation variance,
leading to a lower Dq=5%

max . With more restrictive safety constraints and a longer horizon,
routing strategies were different in some working sessions. Figure 4.5 shows the routes used
by both models in those cases.

The routes used by the PsM model are sub-optimal from the point of view of fuel con-
sumption since they do not minimize the total travelled distance. However, those routes allow
feasible solutions in terms of safety constraints making it possible for vehicle 1 to travel less
than Dmax1 and limiting failure probabilities under 5%. As a consequence, although the
consumption cost of the solution found by the PsM is greater, the simulation cost is consid-
erably lower since failures occurred more often with the benchmark model. The results are
summarized in Table 4.5.

The two models also behave differently in terms of maintenance management. In the
following numerical experiment, the fleet used is presented in Table 4.6. It has smaller λ

values when compared to the previous fleets used. As a consequence, it allows for longer
horizons in which decision on maintenance become relevant. To illustrate that, four instances
of the problem with the same set Gt and a horizon H = [0, 1...70] are solved. In the first
instance, V = ∅ i.e. maintenance is not allowed. In the second, third and fourth instances,
maintenance opportunities occur at V = [20], V = [50], V = [68], respectively. Results are
shown in Table 4.7.

The results in instance 1 show that there is a feasible solution in which respecting safety
constraints is possible. As in previous examples, the PsM model is capable of limiting failure
probabilities by using sub optimal routes, reducing failure costs. In instance 2, a maintenance
opportunity is available at the beginning of the horizon. Since vehicles had not yet traveled
more than Dbenchmark, no maintenance is performed by the benchmark model, leading to
significant failure costs. On the other hand, the PsM model performs a maintenance operation
on vehicle 1, which allows it to take shorter routes when compared to instance 1, reducing
consumption costs. In instance 3, the benchmark model chooses maintenance operations for
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t2

t5

t12

t30

Figure 4.5: working sessions in which routes used by each model were different. Notice that
the PsM model chooses routes that allow vehicle 1 (represented in blue) to travel shorter
distances and respect its safety constraints.



88 Chapter 4. PsM for generic replaceable vehicle components

Vehicle λ σB W0 E[Dfail] Dq=5%
max

0 0.002 0.1 0 50000 33933.7
1 0.002 0.5 0 50000 7805.4

Table 4.4: Fleet parameters for experiment 2. Those parameters were chosen in order to create
an extremely heterogeneous fleet to give a clear example of problem instance in which both
models behave differently.

Dvh0
total Dvh1

total

Consumption
cost

C̄simu

PsM model 33619.5 7693.4 16525.4 16670.6
Benchmark model 22297.3 18980.4 16511.1 16788.7

Table 4.5: Simulation result of experiment 2. Columns Dvh0
total and Dvh1

total represent the total
traveled distance for vehicle 1 and 0 respectively.

both vehicles, since it makes decisions purely based on traveled distance. The PsM model
performs maintenance only for vehicle 1. As a maintenance opportunity was available in the
middle of the horizon, it was possible to take only optimal routes on this instance and both
models achieved the same consumption cost. Finally, in instance 4, maintenance opportunities
were at the end of H. The benchmark model replaced both components, however, the PsM
model did not perform a maintenance operation. Since the maintenance opportunity only
happened at the end of H, fuel consumption savings due to the possibility of choosing better
routes afterwards did not compensate the extra maintenance operation.

4.4 Heuristic pruning algorithms for faster computation

Although the proposed optimization model shows the importance of considering degradation in
long-term routing, it is very demanding from a computational point of view. In practice, using
common MILP solvers directly on the model presented in Section 4.3.1 can only solve problem
instances with small fleets, few missions per working session and short horizons. To address
this limitation, an algorithm for efficient solution space search is proposed. It is based on the
fact that the optimization problem proposed can be seen through a different prism. As shown
in Figure 4.7, solving the PsM problem is equivalent to, at each working session, choosing a
valid route configuration (i.e. a combination of variables xtzij that respects Constraints 4.5 -
4.13) and then assigning a specific route to a vehicle z, while satisfying safety constraints.

The concept of route configuration is illustrated more concretely in Figure 4.6. In terms of
notation, St is the set of route configurations st, for a particular working session t. Each route
configuration is a set of |Z| routes r (one for each vehicle), with distances rsti . Those distances
are sorted such that rsti ≤ rsti+1. Additionally, the set S∗ contains route configurations that:
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Vehicle λ σB W0 E[Dfail] Dq=5%
max

0 0.0005 0.1 0 200000 90660.2
1 0.0005 0.5 0 200000 9586.5

Table 4.6: Fleet parameters for experiment 3

Instance Psm model Benchmark model
Consumption

cost
Maintenance

cost
Failure
cost

Consumption
cost

Maintenance
cost

Failure
cost

1 35884 0 191 35498.8 0 641
2 35679 100 207 35498.8 0 652
3 35498.8 100 217 35498.8 200 241
4 35884 0 211 35498.8 200 619

Table 4.7: Simulation result of experiment 3

S∗ = {s∗t ∀t ∈ H} (4.32)

in which s∗t is the route configuration with the smallest total distance for working session
t:

s∗t = st

|Z|∑
i=1

rsti ≤
|Z|∑
i=1

r
s′t
i ∀s′t ∈ St (4.33)

S∗ can be obtained by solving a standard VRP for each graph Gt t ∈ H, separately.

The total traveled distance (and consumption cost, as a consequence) depends only on
the choice of route configurations and not on which vehicle will perform each route. This
fact is useful for pruning branches in the BB process. Once a feasible solution is found, any
other solution that is built with the same route configurations can be pruned. Additionally,
in instances with V = ∅, if there is a feasible solution made from S∗, it is optimal since it
minimizes the total traveled distance. Furthermore, if for a given problem instance:

∑
t∈H

|Z|∑
i=1

rsti ≥
∑
z∈Z

Dmaxz st ∈ S∗ (4.34)

then, it has no solution, since considering other route configurations would increase the
total traveled distance, disrespecting safety constraints even further.
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Gt st
*

r0=657.9 r1=816.9 

Alternative configuration 2Alternative configuration 1

r0=212.9 r1=1313.84 r0=657.9 r1=892.8 

Figure 4.6: Route configuration concept illustration. Gt is the graph containing the points
to be visited in working session t. s∗t is the best route configuration from a fuel cost point
of view, obtained through a classic VRP. Two alternative configurations are presented. For
every configuration, r0 and r1 are the distance of the shortest and longest route, respectively.

If S∗ does not lead to any feasible solution but condition 4.34 is not verified, other route
configurations need to be considered. However, only a small subset of route configurations is
worth exploring. Any configuration st in which:

rsti ≥ r
s∗t
i i = 1, ...|Z| (4.35)

is useless. Those configurations do not contribute to respecting safety constraints and
increase consumption costs. Such an example can be seen in Figure 4.6, by analyzing s∗t , it
becomes clear that the alternative route configuration 2 cannot be part of the solution. It
does not allow the most critical vehicle to travel shorter distances. On the other hand, route
configuration 1 is a possible candidate since its shortest route has a length inferior to the
routes in s∗t .
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Figure 4.7: Illustration of the PsM optimization problem as successive choices of route con-
figurations and vehicle assignment. In this particular example, the problem instance has n
working sessions and two vehicles. Route configurations are represented by brackets. In the
solution represented, routes from S∗ were chosen for working sessions 1 and 2 while, in working
session n, configuration s

′
n was used.

Having all those concepts in mind, the PsM problem presented in Section 4.3.1 is equivalent
to the following optimization model with decision variables1:

xstzi =

{
1, if vehicle z takes route rsti from route configuration st

0 otherwise
(4.36)

the PsM becomes:

min Cpsm =
∑
t∈H

∑
z∈Z

∑
st∈St

|Z|∑
i=1

ckmxstzir
st
i (4.37)

Subjected to:

1Maintenance will be addressed in later sections, for now, the discussion revolves mainly around deciding
routes in cases where V = ∅
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∑
st∈St

|Z|∑
i=1

xstzi = 1 ∀t ∈ H, z ∈ Z (4.38)

∑
z∈Z

xstzi ≤ 1 ∀t ∈ H, i ∈ [1, ..., |Z|] (4.39)

∑
st∈St

|Z|∑
i=1

xstzi −
∑
st∈St

|Z|∑
i=1

xstz−1i = 0 ∀t ∈ H, z − 1 ∈ Z (4.40)

∑
t∈H

∑
st∈St

|Z|∑
i=1

xstzir
st
i ≤ Dz

max ∀z ∈ Z (4.41)

xstzi ∈ {0, 1} (4.42)

Constraint 4.38 ensures that, for each working session, vehicles are assigned exactly one
route. Constraint 4.39 ensures that every route comes from the same route-configuration.
Constraint prevents vehicles from taking the same route. Constraint 4.41 is the safety con-
straint and Constraint 4.42 establishes the appropriate support of each decision variable. With
this equivalent formulation, this problem can be solved through Algorithm 3:

Algorithm 3 Faster algorithm for PsM solution based on the generic component
1: Obtain S∗ by solving classical VRPs for each Gt t ∈ H

2: if Feasible solution with S∗ exists then
3: return feasible solution
4: else if Condition 4.34 == True then
5: return instance has no solution
6: else
7: Based on S∗ create a set of useful route configurations
8: Set optimization model 4.37
9: Solve with BB

10: Prune branches of solutions built with the same route configurations of already evalu-
ated branches.

11: end if

Step 4 restricts the search on the solution space even further by accounting only for the
most promising route configurations. This step is discussed in depth in the following section.

4.4.1 Heuristics for finding useful route configurations

As discussed before, not all route configurations are useful. Excluding from evaluation con-
figurations in which all st are greater than their counterparts in s∗t drastically reduces the
number of solution evaluations needed. It is possible to restrict the number of considered
route configurations even further using a heuristic for promising route configurations genera-
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tion. This heuristic procedure is now detailed for the particular case of two vehicle fleets but
the ideas behind it can be extended to larger fleets.

If the instance was not deemed infeasible but no permutation of S∗ led to a solution, there
are two possible cases. One example of the first one is shown in Figure 4.8. It happens when
assigning the shortest routes of each session for the vehicle with the lowest Dmax is not enough
to respect its safety constraints. In this case, a feasible solution can only be found by using
route configurations st in which:

rst0 < r
s∗t
0 (4.43)

Those configurations can be obtained by successively adding, to the VRPs used to obtain
S∗, constraints such as:

∑
j∈Nt

∑
i∈Nt

xtzjidtij < r
s∗t
0 ∀z ∈ Z (4.44)

The second possible case is illustrated in Figure 4.9. It arises when assigning the shortest
routes to vehicle with the lowest critical distance satisfies its safety constraint but there is no
permutation of routes in which safety constraint of the other vehicle is respected. In this case,
it is necessary to consider route configurations in which the difference between routes lengths
is smaller. That corresponds to configurations in which:

rst0 > r
s∗t
0 (4.45)

rst1 < r
s∗t
1 (4.46)

those configurations can be obtained by adding, to the VRPs used to obtain S∗, constraints
such as:

r
s∗t
0 <

∑
j∈Nt

∑
i∈Nt

xtzjidtij < r
s∗t
1 ∀z ∈ Z (4.47)

4.4.2 Including maintenance

So far, in this alternative formulation of the problem, maintenance was not discussed. To
include maintenance, the problem is split on each session v ∈ V and Algorithm 3 is used



94 Chapter 4. PsM for generic replaceable vehicle components
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Figure 4.8: Illustration of promising route configuration search. In this instance, assigning the
shortest routes for the red vehicle would violate its safety constraints, therefore, configurations
such as s

′ must be considered.

to solve each arising sub problem as shown in Figure 4.10. It is important to highlight
that once the first sub-problem is solved, the obtained route configurations can be used for
each remaining problem, therefore, reducing the computations required. By analyzing the
optimal cost function of each sub problem, it is possible to compare the gains of performing
maintenance operations and making the decision that reduces the long-term cost.

4.4.3 Numerical experiments to quantify performance improvement

In order to quantify the performance of Algorithm 3 combined with the route configuration
exploration heuristic, a series of numerical experiments were performed. In each one of those,
the same instance of the problem was solved by Algorithm 3 and by a MILP solver2 applied
directly to the model proposed in Section 4.3.1. Results are shown in Table 4.8.

2SCIP was the chosen solver since it is one of the most competitive open-source options.
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Figure 4.9: Illustration of promising route configuration search. In this instance, assigning
the longest routes for the blue vehicle violates its safety constraints, therefore, configurations
such as s

′ must be considered.

As can be seen, the proposed algorithm reduced the computation time drastically and led,
in all cases, to the optimal solution, indicating that it is a viable tool for solving more complex
instances.

4.5 Closing the loop

4.5.1 General approach

One of the defining features of PsM is the fact that the decision-making process must be done in
closed-loop. So far, the optimization model was defined in a horizon H and decision variables
were not updated. A natural way of closing the loop and adapt to the randomness of the
degradation process is to use measures Wt, obtained through vehicle connectivity, to update
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Figure 4.10: Solution strategy to address instances including maintenance

Instance MILP Solver Algorithm

|Z| |H| |N_t| V
Computation

time (s)
Optimal

cost
Computation

time (s)
Optimal

cost
2 5 8 ∅ 2 2119 4 2119
2 10 10 ∅ 27 5596 12 5596
2 10 10 [5] 31 5561 18 5561
2 35 10 ∅ 7217 17561 50 17561
2 35 10 [10,20] 6813 16573 67 16573
2 80 10 ∅ 30127 36118 230 36118
2 80 10 [10,20] 29314 35880 284 35880

Table 4.8: Algorithms performance comparison

safety constraints. Therefore, after a working session t, the updated distribution becomes:

f t
Dfail

(d) =
wcrit −W (t)√

2πd3σ2
B

exp
−(wcrit −W (t)− λd)2

2σ2
Bd

(4.48)

As such, Dq
max is updated after every measure and routes can be then adapted if necessary.

Algorithm 3 is then applied once again, taking advantage of the fact that routes configurations
were previously computed improving routes and maintenance decisions and minimizing the
long-term exploitation cost.
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Figure 4.11: Illustration of the closed-loop approach for failure distance distribution updates.

4.5.2 Numerical experiments comparing open and closed-loop approaches

In this final numerical experiment, different instances of the problem are solved and simu-
lated. Through the simulations, the closed-loop approach is tested and the empirical costs are
compared in Table 4.9.

Notice that in both instances, failure costs were significantly lower in closed-loop. This
is a reflex of the fact that routes can be adapted whenever degradation evolves faster than
expected. Likewise, maintenance costs were also lower since in few simulations, it was not
necessary to do it in order to respect safety constraints. Consumption costs were slightly
higher in the second instance in which the open-loop solution minimized the total distance.
This happened because in some instances, to minimize failure probabilities, it was necessary
to use sub-optimal routes.

4.6 Conclusion

In this chapter, a first PsM application was developed. It was based on vehicle reliability
defined as a FHT degradation model designed to be as generic as possible and, therefore,
useful for representing different vehicle components. The trade-off for this flexibility is that
this model is not capable of representing complex nuances of the degradation process of real
components. As such, the scope of PsM actions was restricted to classical maintenance actions
and routing.

Despite its limited scope, this application led to a new optimization model capable of
addressing the intricate relationship between vehicle usage and degradation. Although its cost
function is rather simple, this model routes achieved significant lower empirical costs when
compared to a benchmark model designed to mimic a typical fleet manager. The proposed
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MILP takes the whole long-term context into account, determining routes that always limiting
failure probabilities and reducing downtime.

This new optimization model is computationally challenging and for instances with several
clients or long horizons, dedicated algorithms are needed. In this chapter, a simple algorithm
is proposed, exploiting specific properties of the problem to search the solution space more
effectively, drastically decreasing computation time and still finding the optimal solutions.

There are several promising future research ideas worth exploring. For example, even if
vehicle failure probabilities are constraint, as fleets grow the overall risk of downtime can
become non-neglectable and ideally, maximum failure probabilities should be determined sys-
tematically taking into account failure costs.

Furthermore, the hypotheses that, in a horizon H, all missions are known beforehand is
only realistic in very specific vehicle applications and should be relaxed. In future works,
for example, it would be interesting to consider a case in which decision-making is done
sequentially without fixed horizon assumption and with mission addresses that are only known
at the beginning of a working session.
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5.1 Introduction

Throughout the first part of this manuscript, the importance of considering the particulari-
ties of EVs when proposing modern services for heavy vehicles was highlighted. In the two
remaining chapters of this document, EVs become the focus of a PsM application that is de-
signed around the Energy Storage System (ESS). Due to the complexity of this component,
this chapter is dedicated exclusively to introducing a suitable PsM degradation model for it.

101
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Figure 5.1: ESS PsM solution loop.

The optimization problems that arise when accounting for ESS degradation will be detailed
in Chapter 6 and Figure 5.1 shows the structure of this ESS PsM solution.

In contrast to the generic component used in Chapter 4, the ESS has a longer useful life
and, ideally, it is not replaced. As a matter of fact, it often defines the life of the vehicle, since
replacing it is most times not economically viable and in general, it is more beneficial to buy a
new vehicle. Therefore, classical maintenance decisions are no longer included. ESS RUL will
be optimized in the context of mission performance, ensuring minimal exploitation cost. On
the other hand, as the ESS is a very complex component with several degradation mechanisms,
its health can be affected by different action. Therefore, the scope of the optimization problem
addressed in Chapter 6 involves:

• Vehicle Parameters (VPs) optimization: Limiting speeds and accelerations when possible
to reduce ESS degradation and energy consumption while ensuring that missions are still
performed without penalties.

• Shortest Paths: Finding the best path to reach any point in space in terms of degradation
and energy consumption. As will be further detailed, it is interesting to notice that
paths with similar energy consumption can have different impact in terms of ESS State
of Health (SoH).

• Vehicle Routing: Optimizing a mission plan, considering logistical constraints, charging
stations and battery degradation. Not only the order of missions is important as it can
reduce vehicle usage and therefore, ESS SoH.

To connect those different decisions to degradation, an original degradation model is re-
quired. This chapter gives the reader a clear picture of how the ESS works and what are
its main stress factors. It also introduces a realistic model that, in Chapter 6, is included
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Figure 5.2: Illustration of a Lithium-ion battery cell.

in optimization problems related to the actions listed in Figure 5.1. The different actions
considered are justified and this model is compared with similar ones used in EVRPs, showing
the importance of realistically considering battery dynamics for routing and SPPs, specially
when considering degradation.

5.2 Principles of battery usage and degradation

The ESS is responsible for providing electrical energy to EVs and can be seen as its power
source. It is composed of different sub systems, dedicated to manage charges, control tem-
perature and ensure safety. However, the most important sub component of the ESS is the
battery pack which is in turn composed of battery cells. Cells are the basic structure of any
battery and their function is to transform chemical energy into electrical energy. In most EVs,
they are arranged in series, forming the aforementioned pack. Packs can have up to 180 cells,
in order to provide the required current and voltage, which, depending on the application can
reach more than 720 V and 70 A respectively.

Cells are composed of three parts, the positive electrode which acts like a cathode in
discharge, the negative electrode which acts as an anode in discharge and the electrolyte that
allows ions exchange between both electrodes as shown in Figure 5.2. Most EVs have lithium
metal oxides positive electrodes. While recharging, chemical reactions happen in the positive
electrode, liberating positive ions that will flow through the electrolyte and will be "absorbed"
into the negative electrode by means of another chemical reaction. During discharge, lithium
ions flow from the negative electrode to the positive electrode. Figure 5.2 illustrates this
process. Those reactions are presented below for the case of a cell made of LiCoO2:

Positive electrode reaction:

LiCoO2 −−−→ Li1−xCoO2 + xLi+ + xe−

Negative electrode reaction:
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6C + xLi+ + xe− −−−→ LixC6

Total reaction:

6C + LiCoO2 −−−→ LixC6 + Li1−xCoO2

Lithium-ion have become popular because they present advantages with respect to other
materials. The most important ones are:

• High energy density: Lithium presents a small atomic number and big electrical potential
which leads to high energy densities (around 260 kWh/kg) [Wu15].

• High output voltage: Cells can provide up to 4V which is three times higher than Ni-Cd
batteries, for example [Wu15].

• Low self discharge: Less than 3% per month [Wu15].

• No memory effect : Partial discharges have no influence on subsequent discharging cycles,
which is not the case for Ni-Cd and Ni-MH batteries, for example [Wu15].

When it comes down to materials for the negative electrode, the most popular options
are variations of carbon materials such as graphite. They are often used because of their
resistance, inertness, conductivity and cost. Although the vast majority of positive electrodes
is made from lithium ions and negative electrodes from carbon, there are several different eco-
nomically viable alternatives for electrolytes, such as liquid electrolytes, all-solid electrolytes
and gel polymer electrolytes. High ionic conductivity is the most important feature among all
electrolyte types.

Throughout the useful life of a cell, the amount of lithium ions that are able to go from
electrode to electrode declines due to different physical processes. This means that the total
electricity the battery can provide in a complete discharge decreases. This phenomenon is
called capacity fade and this term is often used in the literature as a synonym of battery
degradation. For authors that treat capacity fade as battery degradation, SoH is often defined
in terms of the amount of electricity that can still be delivered in a full discharge:

SoH(t) =
Q(t)

Q0
(5.1)

where Q(t) is the battery capacity at instant t and Q0 is its initial capacity. It is important
to acknowledge that, some authors define battery SoH only in terms of impedance growth while
others consider SoH to be a combination of both impedance growth and capacity. In this work,
SoH will be defined as in Equation 5.1, accounting only for capacity fade, since it is the most
common approach in the literature. Furthermore, as capacity fade and impedance growth
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stress factors overlap, usage optimization directed at minimizing one can also be beneficial
for the other. To further justify that choice, some of those stress factors are now discussed in
detail.

5.2.1 Battery degradation mechanisms

Battery degradation is a complex combination of different phenomena and is still a very
prominent research topic. In this section, the main physical mechanisms responsible for battery
degradation are presented. As time goes by, batteries loose their ability to provide electricity.
Although this list is not complete and a deep discussion around the physical laws behind them
is outside the scope of this chapter, it allows the reader to get a feeling of what are the concrete
changes on batteries throughout their lives.

As mentioned before, capacity is a measure of the electricity a battery can provide in
discharge and is usually expressed in Ampere hours (Ah). As capacity fades through the
degradation processes cited, the SoH decreases until reaching a critical threshold after which
the battery must be replaced. This threshold varies from application to application but for
vehicles, it is usually in the range of 75% to 80%.

Several phenomena are responsible for battery degradation. The main ones take place on
the positive and negative electrode [Bar+13b]. On the negative electrode, the most important
degradation mechanism is the expansion of the Solid Electrolyte Interphase (SEI). The SEI
is a solid layer that forms between the negative electrode and the electrolyte during the
first charges of the battery [Bar+13b]. It plays an important protective role for the battery,
reducing corrosion on the negative electrode and ensuring safety through the separation of
electrode and electrolyte. However, the SEI expands throughout time, inducing loss of lithium
ions, electrolyte decomposition and loss of active surface. Other degradation mechanisms on
the negative electrode are related to interactions between the electrolyte and graphite. Even
with the SEI, those interactions can lead to graphite exfoliation and the liberation of gasses
that promote impedance growth and loss of capacity. Additionally, irreversible side reactions
happen in the negative electrode compromising the availability of lithium-ions.

Degradation phenomena also happen on the positive electrode. For example, electrode
cracks, wear of active lithium material, material dissolution on the electrolyte and oxidation
have been seen and studied by researchers [Bar+13b]. However, the positive electrode does
not show relevant morphological changes throughout its life. This indicates that the negative
electrode is more important degradation wise [Bar+13b]. All the aforementioned degrada-
tion mechanisms lead to capacity fade and impedance growth and the most important as
schematically represented in Figure 5.3.

PsM is concerned with usage optimization in a broad sense, and explicitly modeling those
phenomena to describe degradation is impractical since connecting them to logistical decisions,
maintenance or parameter reconfiguration would be impossible. A much more useful approach
in this context is to correlate them to battery usage metrics that can be included in an
optimization set-up. In the next section, those usage metrics are presented.
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Figure 5.3: Illustration of degradation mechanisms in a Lithium-ion battery cell.

5.2.2 Battery usage metrics

Battery usage impacts battery health in several ways. For example, under high temperatures
the SEI can dissolve into less permeable materials that will increase the internal impedance
of the cell. However, under very low temperatures, SEI’s ability to diffuse ions is reduced, not
only increasing impedance but also causing lithium platting which is responsible for capacity
fade [Bar+13b]. Besides temperature, another important quantity to characterize battery
usage in a quantitative way is the State of Charge (SoC). It represents the amount of electricity
remaining in the battery during a cycle of charge or discharge. It is expressed as:

SoC(t) =
Qremaining(t)

Q
(5.2)

where Qremaining(t) represents the amount of electricity remaining in the battery at instant
t. Despite the similarities in the definitions, while SoH relates to the amount of electricity
that can be stored, SoC relates to the amount of electricity stored at a given point in time.
This is represented in Figure 5.4.

Both SoC and SoH are crucial for batteries usage and health monitoring. Those quantities
can not be measured directly through sensors and therefore, several methods for estimating
them [LTW15]; [Zho+21] have been developed. To understand future modeling assumptions,
it is useful to discuss some SoC estimation methods. The most famous one is based on the
concept of Coulomb counting which relies on the following relationship:

SoC(t) = SoC(t0) +
∫ t
t0

I(t)
Q

(5.3)

where I(t) is the electrical current flowing through the battery, considered negative in
discharges. Coulomb counting consists, therefore, in monitoring I(t) through sensors, numer-
ically approximate its integral with respect to time, normalize it and subtract it from the last
estimate of SoC(t). This method has two significant problems. The first one is that due to its
recursive nature, this algorithm will accumulate measurement errors, leading to an estimation
with increasing variance. The second problem is the fact that it is necessary to know the initial
value of SoC(t) in order to apply this method. To address those issues it is possible to exploit
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Figure 5.4: Illustration of the differences between SoC and SoH. While the first is related to
the instantaneous electricity stored in the battery, the former is a measure of the maximum
amount of electricity.

the relationship between SoC and the Open Circuit Voltage (OCV) which is the voltage in
the cell terminal when there is no load connected to it. There is a direct relationship between
SoC and OCV which can be obtained empirically and depends on the cell chemistry. Figure
5.5 shows this relationship for a lithium-ion cell.

Although OCV gives a reliable SoC estimation directly, it can not be measured during
battery operation. The battery needs to be disconnected for sufficient time to stabilize its
terminal voltage so that OCV can be measured. Therefore, this method is only used to
estimate the initial SoC value and to calibrate its estimation when the battery is disconnected.

SoC trajectory, SoC(t), not only contains most of the information of battery usage but
it is also related to the most important stress factors (all but temperature) that accelerate
capacity fade. Those stress factors are:

• Mean SoC (mSoC): defined as the average value of SoC(t). Operating in high mSoc
values accelerates degradation mechanisms in the negative electrode [Bar+13b].

• Depth of Discharge (DoD): defined as the amplitude of SoC variation in a discharge
cycle. Higher DoD often lead to accelerated capacity fade [Bar+13b].

• C-rate: defined as the rate in which the battery is discharged or charged. It can be
estimated through the SoC variation rate. Operating on specific values of C-rate is
known to accelerate degradation.

Figure 5.6 illustrates the impact of those factors. Two cells are charged and discharged
repeatedly at the same temperature. One is discharged from 80% to 30% while the other is
discharged from 98% to 30%. As can be seen, even if both cells have provided the same energy



108 Chapter 5. PsM for EVs: degradation model for the ESS

0.0 0.2 0.4 0.6 0.8 1.0
SoC

3.2

3.4

3.6

3.8

4.0

OC
V 

(V
)

Figure 5.5: OCV SoC curve for a lithium-ion cell.

throughput, there is significant difference in terms of SoH. This is due to the fact that bigger
DoDs and high values of mSoC tend to accelerate degradation.

5.3 Models for degradation and SoC

A ESS PsM degradation model must capture vehicle usage impact on battery degradation.
In this section, a review on SoH models is made in order to understand the state-of-the art
and choose a modeling approach suitable for PsM. Furthermore, since SoC is a direct reflex
of usage and contains information on stress factors, SoC models used in the decision-making
literature related to transportation science are also reviewed.

5.3.1 Battery degradation models

As detailed in Section 5.2.1, battery degradation is caused by a complex combination of phe-
nomena that take place on a microscopic level. Some degradation models are directly based
on those phenomena and are usually referred to as physical-based models. However, for most
vehicle decision-making problems, they cannot be directly applied due to their complexity.
Furthermore, it is difficult to correlate those chemical reactions with vehicle usage to degrada-
tion with them [Pel+17]. Therefore, for PsM application, other alternatives mt be considered.

Black-box models (or data-driven) [Wan+21]; [Ard+20]; [Wan+23]; [Zha+23]; [JMZ13];
[Joh+20] use battery SoH (or capacity) data to train regression algorithms that predict ca-
pacity evolution or failure time. The main drawback of this approach is the fact that it relies
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Figure 5.6: Effect of battery usage on capacity fade.

on large amounts of data, which is rarely available for real vehicle applications where usage
conditions can widely vary.

The most suitable models for vehicle decision-making problems are the semi-empirical
models because they combine data and theoretical principles. They are easier to include
in EVRPs than physical-models since they do not model the chemical reactions responsible
for degradation but account for stress factors such as DoD, mSoC, C-rate and others, which
can be connected to vehicle usage [Pel+17]. Furthermore, they require less data than a
pure black-box approach. For those reasons, they have been employed in degradation-aware
decision-making problems [XWT21]; [GRD22]; [PA20]; [ZMO22]; [PJL18]. However, most of
the used degradation models present limitations. They are often too simplistic or are not able
to account for degradation caused by driving cycles (i.e. capturing the effect of accelerations
or current fluctuations caused by different traffic conditions). They are also incapable of
considering the effects of opportunistic charges (i.e. SoC that is recuperated when braking or
driving downhill) and neglect some important stress factors.

Among the semi-empirical models, one promising alternative is to use models based on
SoC cycle decomposition [Pel+17], such as [Xu+16]. They consider SoC(t) as a combination
of simpler parts, referred to as SoC cycles, obtained, for example, through the Rainflow-
Counting algorithm [DS82]. Stress factors for each cycle are computed and the total capacity
fade estimated accordingly. The main advantage of cycle decomposition models is that usage
conditions are not assumed to be static and they can be employed for charge and discharge
cycles. Even for battery types that are more sensible to degradation while charging, the cycle
decomposition is still useful because it accounts for opportunistic charging. To fully exploit
the potential of such models, however, it is necessary to realistically model SoC, as such, the
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most common approaches for SoC modeling are examined in Section 5.3.2 .

5.3.2 SoC models for driving cycles

In this section, several SoC modeling approaches used in transportation decision-making prob-
lems are reviewed. A special emphasis is put on EVRPs, however, the goal of this section
is not to extensively review the literature of EVRPs but to analyze recent contributions in
terms of models used to define vehicle range and SoC, discussing their hypothesis and possible
limitations.

SoC is not only useful for estimating degradation, but also to define vehicle range. However,
most authors define their range constraints in terms of energy consumption [Pel+17]. This
approach is less robust than using SoC, potentially leading to unfeasible routes. The main
problem comes from the fact that, power output comes from the product of battery voltage
and current. Since battery voltage depends on SoC, even for a constant required power,
SoC variation will not be constant. As a consequence, the same net energy consumption can
produce different current profiles and discharge batteries differently. This is not considered
when defining range in terms of energy.

Some authors refer to their range constraints as SoC, but treat SoC and energy variation
as synonyms [Bar+13a]; [İÇ22]. The implicit assumption is that the terminal battery voltage
is constant, neglecting the internal dynamics of the battery and considering its behaviour
to be static. This can lead to significant estimation errors even in simple cases as will be
seen in Section 5.5. Another practical limitation of this approach comes from the fact that
EVs range is also limited by battery terminal voltage. In order to avoid certain degradation
mechanisms, batteries are disconnected upon reaching a specific cut-off voltage value. Ignoring
SoC dynamics prevents researchers to add those constraints since cut-off voltage can be reached
in different SoC levels depending on current profile. This can also lead to unfeasible routes as
demonstrated by [Pel+17].

Besides this common misconception that SoC variation is equivalent to energy consump-
tion, most of the energy models used in EVRPs are oversimplified. Several authors do not
discuss how to estimate either energy or SoC variation [Kar21]; [Mon+17]; [Goe19]; [Fro+19].
In other cases [İÇ22]; [SSG14]; [Zuo+19]; [RW16]; [Ces+21], energy consumption is considered
to be directly proportional to the traveled distance. This leads to significant errors in urban
networks as seen in [Bas+19]. Another popular approach is to estimate energy assuming that
vehicles move with constant speed. Power-train efficiency is often considered constant and
acceleration effects are neglected [MCD22]; [AA20]; [Afr+14]; [FPR18]; [Ma+21].

A more realistic energy estimation model is used in [Bar+13a]. They rely on vehicle dy-
namics equations combined with prior speed profiles obtained from historical data to compute
energy consumption. This approach can lead to realistic estimates but knowledge on speed
profiles can be restrictive in most scenarios due to the lack of data. A simpler approach can
be found in [Bas+19]. A two-step EVRP is solved, in which the energy model is based on road
topography, making assumptions on driving cycles and accounting for power-train efficiency.
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Figure 5.7: Sub-parts of the ESS PsM degradation model

This model is compared with real vehicle data and presents a mean square error close to 12%.
In the associated optimization model, constraints related to vehicle range are defined in terms
of energy.

Even if good alternatives for realistic energy consumption exist, no realistic SoC model
has been included in decision-making problems related to EV exploitation. This is not only
important for describing range constraints but also for battery SoH optimization [Pel+17]. In
the next sections, a ESS PsM degradation model is proposed in order to fill some of those
scientific gaps. It is composed of a SoC model inspired by the same principles applied in
[Bas+19] and can be included in different realistic optimization set-ups as will be seen in
Chapter 6.

5.4 Prescriptive degradation model for the energy storage sys-
tem

To be included in a PsM solution, a degradation model must connect degradation to usage.
For the ESS, it means connecting battery SoH to vehicle displacements, fleet routing and VPs
such as maximum speed and maximum acceleration. Figure 5.7 illustrations how this model
works.

The model is composed of three sub-parts. The first one consists of estimating, based on
road topography information that can be easily obtained through free APIs, an acceleration
function a(t). This function is used in a dynamic battery model to obtain an estimation for
SoC(t). Finally, SoC(t) is used to feed a SoH model that estimates the degradation caused
by this particular displacement. Each sub-part is now further detailed.

5.4.1 Acceleration estimation in realistic use cases

Some of the literature on decision-making problems related to transportation applications
relies on very strong assumptions on vehicle speeds, as could be seen in Section 5.3.2. One
of the best approaches [Bar+13a] used a data set of real vehicle speed measures in order
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Figure 5.8: Example of how road links are defined. In this example, four links are shown.
Links are created to represent differences on the parameters relevant to acceleration or power
estimation. In this example, e1 and e2 are created due to a inclination differene with respect
to the previous link. e3 is defined due to a speed change and e4 is due to the presence of a
traffic light.

to estimate a(t), however, in most cases such data sets are not available. A more suitable
option is to use a method similar to the one presented in [Bas+19] in the context of energy
estimation. This method is based on road information such as maximum allowed speed, traffic
lights location, crossroads locations, inclination and road segment lengths, which are promptly
available through several APIs for several cities in the world.

The first step of this method is to use all this aforementioned road information to build
a road graph Gr = (Nr, Er). The nodes Nr are either road intersections or changes on
the parameters necessary for mechanical power estimation (see Section 5.4.2). For example,
changes in maximum allowed speed,road inclination, the presence of crossroads, traffic lights
or very steep curves (which are expected to make vehicles brake) define the nodes in Nr. The
edges Er represent directed road segments referred to as road links. A road link er:

er =


l

vmax
road

α

Stop

r

 (5.4)

is defined by a length l, an inclination α, a maximum allowed speed vmax
road, a binary variable

Stop that is equal 1 if there is a possible stop at the end of the link (crossroad and traffic
lights, for examples) and 0 otherwise. Variable r is the radius of the curve at the end of the
link. If r = 0 it indicates that there is no curve at the end of er. Figure 5.8 shows an example
of how links are defined based on road information.

The acceleration estimation method consists in making assumptions over driver behaviour
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based on er. It considers that a vehicle will accelerate constantly, with maximum vehicle ac-
celeration, until reaching a target speed vtgt as shown in Figure 5.9. Originally in [Bas+19] the
target speed was always vroadmax . Considering eventual limitation caused by VPs, vtgt becomes:

vtgt = min[vroadmax , v
vh
max] (5.5)

where vvhmax is the maximum vehicle speed, which can be optimized and will be included
the optimization models presented in Chapter 6.
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Figure 5.9: Vehicle speed starting at idle and going through a road link with a stop at the
end.

To obtain acceptable results in real world applications, it is necessary to consider corner
cases. Two such cases were considered by [Bas+19]. Figure 5.10 illustrates the first one. It
happens when the target speed of two consecutive road links is different. If the target speed in
the first one is higher, the vehicle needs to brake before entering the next link. The second case
happens when a road link is too short and vtarget can not be reached. Figure 5.11 illustrates
it. It shows the speed of a vehicle in a road link between two stopping points. The vehicle
has not enough space to reach vtarget.
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Figure 5.10: Speed with vehicle travelling through two consecutive road links.

Figure 5.11: Speed in a short link with stop point at beginning and end. The vehicle cannot
reach target speed.
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In addition to those two cases, originally addressed by [Bas+19], the effect of curves is
also considered. In [Bas+19], authors dealt with curves by considering very steep curves
as stopping points. In order to be less conservative but also consider the effect of less steep
curves on the speed, in this work, vehicles are assumed to make turns with constant centripetal
acceleration. Therefore, their speeds before the curve should be, at most:

vcurve =
√
r acentripetal (5.6)

with acentripetal being vehicle maximum centripetal acceleration. Considering all those
particular cases leads to a method capable of estimating a(t) for a particular displacement.
Once this function is known, it is possible to, considering vehicle and battery dynamics,
estimate SoC(t) by solving a system of differential equations, presented in the next section.

5.4.2 SoC estimation method for driving cycles

All realistic energy estimation methods rely on considering the usual forces applied in a vehicle,
represented in Figure 5.12, to compute the required mechanical power. To compute SoC(t)

it is also necessary to explicitly account for battery dynamics. A second-order Equivalent
Circuit Model (ECM), shown in Figure 5.13 is chosen since it is widely used in the literature
[Xia+17] and can capture opportunistic charges. Combining battery and vehicle dynamics,
the following system of algebraic and differential equations is obtained:
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Figure 5.12: Vehicle longitudinal dynamics.
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Figure 5.13: Second-order ECM for a battery.

v̇ = a(t) (5.7)

Pmec(t) =
ρairCwAv(t)3

2
+mgv(t) sinα

+ mgCrv(t) cosα+ma(t)v(t) (5.8)

Pelec(t) =
Pmec(t)

η(v(t), a(t))
(5.9)

I(t) =
1

2Ro
(VOC(SoC(t))− Vl(t)− Vs(t)−√

(VOC(SoC(t))− Vl(t)− Vs(t))2 − 4RoPelec(t)) (5.10)

V̇s = −
Vs

RsCs
+

I(t)

Cs
(5.11)

V̇l = −
Vl

RlCl
+

I(t)

Cl
(5.12)

˙SoC = −I(t)

Q0
(5.13)

Equation (5.7) relates the speed v(t) and the acceleration a(t). Equation (5.8) describes
the mechanical power based on the longitudinal dynamics of a vehicle, m is the total mass
of the vehicle, g is the gravity acceleration, α is the instantaneous road inclination, Cr is the
rolling resistance coefficient, Cw is the drag coefficient, A is the frontal area of the vehicle and
ρair is the air density. Equation 5.9 connects mechanical and electrical power through the
power-train efficiency function η(v(t), a(t)).

Equations (5.10-5.13) are derived from the second-order ECM. Vbatt(t) is the battery volt-
age, I(t) is the instantaneous current, Vs(t) and Vl(t) are electric potential differences in
each sub circuit, with R0, Rs, Rl being resistances, Cl and Cs capacitors and VOC(SoC(t))

representing the open circuit voltage which depends on SoC.
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Figure 5.14: Non-linear charging process approximated by a piece-wise linear function.

This system can be solved knowing the initial values of v, Vs, Vl, SoC(t) and a(t) that is
estimated as described in the previous section. VOC(SoC) is known for several different cell
types. It can also be determined by look-up tables usually provided by battery suppliers or
described by functions whose coefficients are fitted to data points as done in [Pel+17].

5.4.2.1 SoC estimation method for charging

The methodology described so far for estimating SoC(t) is only valid for driving. As charging
plays a very important role both in terms of degradation and logistics alike, it is necessary
to describe SoC(t) realistically at those moments. Modeling the dynamics of charges can be
achieve by solving another system of differential equations [Pel+17]. However, since charging
is subjected to less exogenous disturbances, simplified models can yield to satisfying results.
To model SoC while charging the same approach as the one used in [Mon+17] is applied. SoC
is considered to evolve according to a piece-wise linear function as shown in Figure 5.14.

With this model, SoC(t) is fully determined by the SoC level with which the vehicle has
arrived at a recharge station and the time spent charging. As discussed before, SoC(t) contains
information on different stress factors. It can therefore, be used to estimate degradation. A
SoH model is therefore necessary to quantify capacity fade caused by a particular displacement.
In the next section, the SoH model used through this work is presented.
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5.4.3 SoH model

The SoH model used is proposed in [Xu+16]. It was chosen because of its flexibility which
comes from the fact that it is based on cycle decomposition. This model is built upon the fact
that SoC contains information on several relevant stress factors. It decomposes SoC(t) into
smaller stress cycles. The amplitude (DoD, denoted by σ) and mean (mSoC, denoted by δ)
contribute for the degradation of the battery.

The cycle decomposition is done through the Rainflow-Counting algorithm. This algorithm
does not have a closed mathematical form. It is also recursive, making it hard to include in
decision-making problems. A more profound analyses of this algorithm and its consequences
to optimization problem is given in Chapter 6. This model expresses SoH as:

SoH(t) = e−fd(t) (5.14)

with a damage function fd defined as:

fd(SoC(t)) =
∑n(SoC(t)))

i=1 wi Sδi Sσi STi
(5.15)

where n(SoC(t)) is the number of SoC cycles up to time t, wi is 1 for a full cycle or 0.5

for a partial cycle, Sδi , Sσi and STi are stress coefficients related respectively to DoD, mSoC
and temperature. Those stress coefficients are determined empirically. The chosen functions,
adapted from [Xu+16], are described by:

Sσi = ekσ(σi−σref )

STi = ekT (Ti−Tref)
Tref
T

Sδi = (kδ1δ
kδ2
i + kδ3)

−1

(5.16)

The terms kσ, kT , kδ1 , kδ2 and kδ3 are constants determined empirically by experiments,
while σref and Tref are experimental reference values for mSoC and temperature, respectively.
Ti is taken as the average temperature of cycle i, which, in this work, is assumed to be normally
distributed around the temperature that should be guaranteed by the battery management
system. Notice that C-rate is not explicitly accounted for in this model. This could be done
by introducing new terms into the model.

5.5 Experimental results

Throughout most of this chapter, the proposed ESS PsM degradation model was presented.
It is more complex than most models used in transport science literature and, as a result,
including it in optimization models leads to significantly computational difficulties. This
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Quantity MSE Final error
Current (A) 0.08 .21

Terminal Voltage (V) 0.29 -0.7
SoC 0.014 -

Depletion time (h) - 1.8

Table 5.1: Summary of numerical experiment dedicated to compare the performance of the pro-
posed model with classical literature approaches. Mean Squared Error (MSE) was computed
in the horizon in which both batteries haven’t reached full depletion. Final error represents
the difference between each PsM model and the benchmark when depletion is reached. As
can be seen, the benchmark model tends to be more optimistic and fails to capture changes
on battery operation.

choice is justified by the theoretical reasons discussed in this chapter, however, in this section,
numerical experiments are performed to quantify the performance of the ESS PsM degradation
model when compared to classical options used in most EVRPs.

5.5.1 Battery dynamics effect

The first main difference between the proposed ESS PsM degradation model and most used
ones is that battery dynamics are accounted for. To quantify the consequences of such consid-
eration, PsM SoC model is compared to a SoC model based on the constant battery voltage
assumption which is a very common one in the literature. The details of this benchmark SoC
model can be found in Appendix A.1.

Figure 5.15 shows the comparison of the two models. It illustrates three relevant electrical
quantities, current, battery terminal voltage and SoC. In this experiment, a constant electrical
power is assumed. This setup represents an idealized case in which a vehicle constantly drives
with a low steady speed. The power value was chosen to represent a heavy vehicle in low
speed (approximately 10 km/h) and for both models, batteries were considered to have a 41
Ah capacity, started with full SoC and were discharged until full depletion.

The benchmark model relies on the assumption that battery voltage remains constant
around its nominal value. As a consequence, current also remains constant for a given required
power which leads to a completely linear SoC(t). The ESS PsM model, in contrast, considers
battery dynamics, as such, even with a constant power, both battery terminal voltage and
current change through time which also affects SoC trajectory. As a consequence, battery
depletion is considered to be reached approximately 1.8 hours later than in reality by the
benchmark model. This difference is already relevant in long-haul applications and can be even
more relevant for different power inputs. Furthermore, as previously discussed, the benchmark
approach is incapable of incorporating range constraints related to reaching cut-off voltage.
The summary of the experiment can be found in Table 5.1.
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Figure 5.15: Modeling assumption effects on electrical quantities.
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5.5.2 Acceleration model effect

As seen in the previous section, by simply considering battery dynamics, a relevant difference
is already visible. However, in the previous experiment, both models were discharged with
the same constant electrical power. In practice, power is not constant. It is in fact estimated
as part of the ESS PsM model. This aspect of the model is compared to another bench-
mark model, detailed in Appendix A.2, that works based on constant speed assumption, as
commonly done in the literature.

Numerical experiments were made emulating realistic displacements in urban areas. Vehi-
cles perform the same displacement, passing through different road links, that contain different
speeds, lengths, etc. The differences between the proposed approach and the benchmark one
are illustrated in Figure 5.16. As can be seen, speeds are significantly different for both mod-
els. In some cases, links are not long enough to reach target speed and acceleration and brakes
have non neglectable effects on speed. As a consequence, the duration of the displacement
tdisplacement is different according to both models. This can have serious consequences when
dealing with optimization models whose constraints are based on mission deadlines.

Furthermore, the benchmark model not only considers different speeds but also does not
accounts for acceleration when estimating power. This causes SoC estimations to be sensibly
different. Even for a relatively small displacement of 25 km, the difference in SoC is already
2%. Once again, for longer displacements, this can lead to optimization solutions which are
not feasible, since the benchmark model tends to be more optimistic.

5.5.3 Overall impact on degradation estimation

By comparing the proposed approach with benchmarks, it is possible to see significant improve-
ments in terms of SoC estimation, which translates to avoiding unfeasible routes. However,
PsM is also concerned with degradation prediction. In this section, the same SoH model
presented in Section 5.4.3 is used to estimate battery end of life. In the first cases, it will
be used with SoC profiles obtained through the PsM model and in the second case, with the
benchmark approaches previously described. SoC(t) will be obtained, in both cases for the
displacement shown in Figure 5.16. Figure 5.17 shows the resulting SoH comparison.

The error introduced by SoC estimation gives a significant SoH difference in the long-term.
If each cycle is equivalent to a working-session, the estimation difference is approximately six
months. That difference can be even bigger if vehicles perform longer displacements per
session.

5.5.4 Traffic conditions impact on degradation estimation

In the previous experiments, vehicles were always alone, performing displacements in free-
flow. To estimate the robustness of the proposed model in terms of traffic conditions, SUMO
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models
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Figure 5.17: Comparison of end of life estimation: PsM SoC model vs benchmark model.

[Lop+18] was used. SUMO is an open source, microscopic, multi-modal traffic simulator,
with which it is possible to quantify how the randomness of a more realistic environment can
affect degradation estimation based on routes. In SUMO, different vehicles interact with each
other, which causes unpredictable stops and deceleration, impacting the quality of the SoC
profile estimation. Figure 5.18 shows the comparison between speed and SoC profile, both in
a simulation in free flow and in a simulation with other vehicles, randomly moving through
space.

In the free flow simulation, the vehicle can freely accelerate until reaching road nominal
speed, at which it remains having to break only once due to a curve. The simulation with more
vehicles starts similarly but while in road nominal speed, the vehicle reaches a point of the
route where it interacts with other vehicles, having to brake and keeping a speed inferior to the
nominal one, until being able to accelerate once again. It can also be seen that the presence of
other vehicles affected SoC. In free flow, due to the bigger average speed, charge was consumed
faster in steady speed. Because charge is intensively consumed while accelerating the total
SoC variation was similar in both cases, however, as seen in Figure 6.2, in some cases that
does not corresponds to similar degradation.

To quantify how traffic randomness affects cycle degradation estimation, Monte Carlo
simulations were carried out. In all simulations a random number of vehicles make random
displacements. A chosen vehicle makes the same displacement in every simulation. The PsM
ESS model is applied to this displacement, estimating SoH variation. This estimation is
compared to the real variation obtained. The results can be seen in Table 5.2 in terms of the
damage function fd.

As can be seen, the error for free flow scenarios is around 6%, which reflects the difference
between speed and acceleration profiles predicted through Figure 5.18 and the ones obtained
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Figure 5.18: Comparison between simulations in free flow and with other vehicles

with SUMO simulations. Error value remains constant for scenarios with few vehicles. With
more than 100 random vehicles, their interactions start reducing the accuracy of the fd esti-
mation.

5.6 Conclusions

In this chapter, a PsM degradation model that can be used to define EV reliability in terms
of ESS SoH was presented. To connect degradation to different usage conditions and PsM
actions, this model relies on SoC decomposition, which requires accounting battery dynamics
and road topology, in order to obtain realistic SoH estimations. Although this PsM model is
more complex than common alternatives used in transportation science, its advantages were
shown through a set of numerical experiments that illustrate the fact simpler models tend to
be more optimistic and can lead to unfeasible optimization solution in reality.

In the next chapter, this model is included in several different PsM optimization problems
in order to consolidate the solution presented in Figure 5.1. The computational difficulties
introduced by it will be discussed and addressed in details. Numerical experiments are then



5.6. Conclusions 125

Number of vehicles Normalized fd error
0 .062
10 .062
50 .064
100 .087
200 .093
400 .128

Table 5.2: Effect of random traffic on the fd estimation. The fd function is directly responsible
for SoH computation as seen in equation 5.14

performed to validate our optimization model proposes.
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6.1 Introduction

With the PsM degradation model for the ESS presented in Chapter 5, it is possible to define
PsM optimization models to prescribe actions that minimize the overall exploitation cost and
optimize vehicle usage in terms of logistics and VPs, as shown in Figure 5.1. In this chapter,
different optimization models are presented, corresponding to the different outputs of the PsM
ESS application. As such, those optimization models correspond to:

• An original SPP formulation that can account for battery degradation as well as for
energy consumption, presented originally in [Lon+22].

127
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• An original EVRP capable that considers energy consumption, time windows and real-
istic charging profiles, described in [LBE23].

• An extension of this original EVRP in which VPs are also included as decision variables.

Since those original optimization models are based on the ESS degradation model pre-
sented in Chapter 5, they become computationally demanding. The exact causes of this
computational complexity are discussed in detail in Section 6.2, in order to justify the choices
of algorithms and some of the modeling assumptions made.

It is also important to notice that, in the proposed approach, SPPs and EVRPs are solved
separately. However, they are connected as the first is used to define paths between missions
addresses that become the edges on the graph of the second. Furthermore, since in this
original SPP, the cost function depends on the initial SoC and mass of a vehicle, as will be
seen in Section 6.3, a series of numerical experiments are necessary to justify solving them
independently. Those experiments are presented in Section 6.3.3.2.

6.2 Practical challenges for ESS degradation inclusion on opti-
mization problems

Including the PsM ESS degradation model (Section 6.4) in any optimization problem is non-
trivial. The first obvious difficulty arises from the non-linearity of its SoH part. However, two
other sources of difficulty deserve special attention. The first one is related to the fact that
the SoH model used (Section 5.4.3) relies on SoC cycle decomposition. The second one comes
from the fact that the SoC model 5.4.2 used relies on differential equations.

6.2.1 Cycle decomposition and Rainflow counting

SoH estimation depends on breaking SoC in simpler parts refereed to as cycles, as seen in
Section 5.4.3. Each cycle contributes to degradation based on its amplitude (DoD), mean
value (mSoC) and average temperature. This approach for SoH estimation is useful due to its
flexibility and its ability to account for opportunistic recharge. However, cycle decomposition
is a non-trivial task. The most used method for that is the Rainflow Counting algorithm.
Proposed in 1968 [ME68], in the context of fatigue analyses, it has been used for different
application domains [CLS22]; [Mar+16]. Figure 6.1, provides a concrete example of Rainflow
decomposition and this algorithm can be informally described as done is [LT12] by:

• Rotate the loading history 90° such that the time axis is vertically downward and the
load time history resembles a pagoda roof.

• Imagine a flow of rain starting at each successive extremum point.



6.2. Practical optimization challenges 129

t

S
o
C

3
2

4

1

t

S
o
C

Figure 6.1: Rainflow-Counting applied to a simple SoC(t).

• Define a loading reversal (half-cycle) by allowing each rainflow to continue to drip down
these roofs until either:

– it falls opposite a larger maximum (or smaller minimum) point.

– it meets a previous flow falling from above.

– it falls below the roof.

• Identify each hysteresis loop (cycle) by pairing up the same counted reversals.

Its most popular computational implementation is shown in Algorithm 4 [DS82]:

Incorporating this algorithm in a PsM optimization model to characterize degradation is
a challenge. The main complication comes from its recursive nature, i.e. cycles can only
be completely determined by analyzing SoC(t) from beginning to end. For example, if in
Figure 6.1 the SoC shown continues to go up, eventually cycle 2 and 4 would be combined,
leading to a completely different decomposition. This has significant consequences in terms
of optimization models. For instance, as seen in Chapter 3, Dijkstra’s algorithm relies on
the fact that each edge cost cij is constant and independent of each other. Using Rainflow
Counting to define degradation costs breaks this assumption and paths must be evaluated on
their entirety.

Furthermore, this cycle decomposition method is non-linear [Shi+18]. However, there have
been optimization applications considering Rainflow Counting that circumvented this problem
by exploiting the fact using cycle parameters (such as amplitude and average) as inputs for
convex functions, does not affect their convexity, as proven by [Shi+18]. Therefore, including
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Algorithm 4 One Pass Rainflow Algorithm [DS82]
Step 1: Read the next peak or valley (if out of data, go to Step 6)
Step 2: Form ranges X and Y (if the vector contains less than 2 points past the starting
point, go to Step I)
Step 3: Compare ranges X and Y
if X<Y then

go to step 1
end if
if X = Y and Y contains S then

go to Step 1
end if
if X> Y and Y contains S then

go to Step 4
end if
if X ≥ Y and Y does not contain S then

go to Step 5
end if
Step 4: Move S to the next point in the vector Go to Step 1
Step 5: Count range Y Discard the peak and valley of Y Go to Step 2
Step 6: Read the next peak or valley from the beginning of the vector E(n) (if the starting
point, S, has already been reread, STOP)
Step 7: - Form ranges X and Y (if the vector contains less than 2 points past the starting
point, go to Step 6)
Step 8: Compare ranges X and Y
if X<Y then

go to Step 6
end if
if X≥Y then

go to Step 9
end if
Count range Y Discard the peak and valley of Y
Go to Step 7



6.3. Shortest paths problem accounting for battery degradation 131

Rainflow Counting leads to non-linear optimization models that are at least convex, and, as
such, more manageable from a computational point of view.

6.2.2 Battery dynamics as differential equations

As seen in Section 5.5, considering battery dynamics is useful for having better estimates
of SoC(t), which leads to more realistic evaluations of vehicle maximum range and battery
degradation. However, as seen previously, this requires solving a system of differential equa-
tions. Albeit the existence of several efficient numerical integration methods, exact VRP
optimization requires evaluating a large number of possible candidates, which in practice can
be limiting.

Furthermore, since SoC evolution in each road link depends on the values of the dynamic
variables presented in Section 5.4.2, SoC variation will depend on previously visited edges
of the graph. This makes classical formulations of constraint SPPs and EVRPs, hard to
mimic, since resource consumption cannot be seen as constant and independent of previous
displacements.

Possible approaches for circumventing the use of differential equations are discussed in
[Pel+17]. They propose either simplifying battery dynamics by considering constant OCV
and discretizing the differential equations describing SoC. However, it is possible to find an
optimal path or route that would be unfeasible in reality, since battery dynamics could be over
simplified. To avoid this issue, in this work, candidate solutions of the optimization problems
will always be evaluated by considering battery dynamics as described in Section 5.4.2. In
future works, though, the simplifications proposed by [Pel+17] could be used for deriving
surrogate models and reduce computation time.

6.3 Shortest paths problem accounting for battery degradation

6.3.1 Motivation and problem formulation

In most SPPs for EVs, cost functions are defined in terms of energy consumption and travel
time [Bau+20]; [Tu+20]; [Sto12]. However, when analyzing the SoH model presented in Sec-
tion 5.3.1, it is possible to see how including degradation may affect a SPP. For example,
Figure 6.2 shows an example of two SoC(t) obtained with paths P 1

st and P 2
st. As can be

seen, net SoC variation is the same, which means that energy consumption is also probably
similar, however, SoC1(t) present more opportunistic recharges, which create small SoC cycles
and cause more degradation. In classical SPPs, both paths would be considered equivalent,
justifying the inclusion of battery degradation in addition to energy consumption in a SPP, in
order to achieve RUL extension in realistic scenarios. A discussion on the impact of degrada-
tion on path selection can also be found in [PA20], even though authors have employed over
simplified degradation models.
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Figure 6.2: SoC(t) for paths considered equivalent in classical SPPs

To define a SPP optimization model capable of including degradation, it is necessary to
define a graph Gr = (Nr, Er) that represents the real road network with Er being road links,
defined in Section 5.4.1, and Nr representing road links intersections. Then, by defining Pst as
a path connecting source and target nodes s and t ∈ Nr and the following decision variables
xij :

xij =

{
1, if the road link between i and j is part ofPst

0, otherwise
(6.1)

two costs can be considered. The first one represents energy consumption costs. It is
commonly included in SPP problems for EVs and can be expressed as:

cspenergy = ce
∑

i∈Nr

∑
j∈Nr

eijxij (6.2)

where ce is a constant that describes the energy price and eij is the total energy consumed
while going from node i to node j, calculated by integrating the electrical power (Equation
5.9). The second one represents degradation and is designed specially for PsM applications.
It can be expressed as:

cspdeg = cbat(SoH(X)− SoH0) (6.3)
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Figure 6.3: Gr construction. This graph is generated based on the concept of road link,
discussed in Section 5.4.1. In this example, Gr is built upon a very simple Manhattan and
therefore. Links are only defined by crossroads and steep curves, therefore, Nr corresponds to
the intersections of the grid, as can be seen.
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where X = {xij : xij = 1}. Constant cbat is proportional to a new battery cost. SoH0 is the
initial SoH at source node s. SoH(X) is the SoH after traveling through the path, estimated
with the PsM model presented in Section 5.4. It requires using X and the corresponding
visited edges Er to estimate a(t) on the path, solving the differential equations that define
SoC(t) and applying the cycle decomposition SoH model. The complete SPP-PsM model can
then be expressed as:

min cspenergy + cspdeg (6.4)

Subjected to:

∑
i∈Nr

xij −
∑
j∈Nr

xji =


1, if j = t

−1, if i = s

0 otherwise

∀i, j ∈ Nr (6.5)

SoC(t,X) ≥ SoCcrit ∀z ∈ Z,∀t (6.6)

xij ∈ {0, 1}∀i, j ∈ Nr (6.7)

where SoC(t,X) is the SoC(t) obtained through numerical integration as discussed in
Section 5.4.2. Constraint 6.5 ensures that the solutions correspond to path starting at s and
ending in t with all nodes in between connected. Constraint 6.6 guarantees feasible paths
in terms of vehicle range. Constraint 6.7 defines the appropriate range of decision variables.
Additionally, the following hypothesis are made:

• All information necessary to characterize each road link in Er is known in advance,
which includes maximal allowed speed, road inclination, presence of crossroads, traffic
lights, etc.

• All relevant variables to solve the dynamic system defining SoC are known, such as
resistances and capacitors values, initial SoC, etc.

6.3.2 Optimization algorithm

As previously discussed, since the cost function depends on the ESS PsM model, using classical
optimization algorithms is unpractical due to the presence of differential equations and the
recursiveness of cycle decomposition. Therefore, meta-heuristic techniques called Genetic
Algorithm (GA) [KCK21] were used. GA is a technique for solution space search that is
based on evolution theory. This technique revolves around creating an initial set of solution
candidates (chromosomes), evaluating each of them, and combining the best ones (crossover),
obtaining a new set of solution candidates. This process is repeated until a stopping condition
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Algorithm 5 Classical GA structure [KCK21]
1: Generate an initial population of candidate solutions
2: Set Stop = False
3: while Stop == False do
4: Compute the fitness of each chromosome
5: Select pairs of chromosomes based on fitness
6: Apply crossover operations on selected pairs to obtain a new population
7: Apply mutation operators on the new population
8: Evaluate stop condition
9: end while

10: Return best chromosome found

is triggered and the best chromosome found is used and an approximation of the optimal
solution [KCK21]. In its classical formulation, it can be described by Algorithm 5.

There are several ways of generating the initial population. The most common approach
is to initialize it at random. At each step of the process, the population fitness (usually the in-
verse of the cost function) is computed and chromosomes are selected to go through crossover
which is the process of mixing chromosomes to efficiently search the solution space. Finally,
the population of new candidate solutions goes through mutation, which is an operation that
introduces random changes on chromosomes in order to avoid local minima. This process is re-
peated until a stop condition is met. In most cases, this condition relates to maximum number
of iterations. For this SPP variation, the chromosome representation, crossover mechanism
and mutations were the same as proposed in [GCW97]. To account for the SoC Constraint
6.6, the chosen approach is to penalize infeasible solutions through their fitness metric, which,
for this algorithm, is:

fit =
e−ζ

cspenergy + cspdeg
(6.8)

with

ζ = α max[SoClimit − SoCmin(r, vmax, amax), 0] (6.9)

where α is a positive constant. This approach penalizes solutions that do not respect
the constraint over SoC, making them unlikely to be selected as optimal, but also allows the
algorithm to explore those solutions through generations, potentially avoiding local minima.
The selection of parents for crossover is done by tournament selection, i.e. pairs of possible
chromosomes are randomly selected and their fitness function is compared. The one with the
higher fit is selected to go through crossover.
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6.3.3 Numerical experiments

6.3.3.1 Benefits of considering degradation on path selection

To asses the benefits of the proposed approach when compared to classical SPPs, a first set of
simulations was performed. They were based in the Manhattan-like grid map shown in Figure
6.3, in which nominal speeds were different for each segment. As a benchmark solution, a
typical SPP, based on travel time minimization, was used. The cost constants used were
cbat = 5000 and ce = 0.1($/kWh). To asses long-term impacts of the PsM SPP, the routes
found by each model, to go from A0 → F5, were repeated several times in order to estimate
the effects on SoH as seen in Figure 6.4. In this example, linearly extrapolating SoH in both
cases, for an end of life threshold of 75%, a vehicle repeating the PsM SPP would be able to
perform this displacement approximately 7.2% more times than in the benchmark path.

0 200 400 600 800 1000
Displacement repetitions

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

So
H

SoH evolution using benchmark path
SoH evolution using PsM path

Figure 6.4: Long term comparison between the two vehicles, following the different paths
found, in terms of SoH

It is also important to highlight that this experiment was conducted in an extremely simple
map in which there were not several different path possibilities to go from source to target.
In more complex maps, it is safe to suppose that the effects could be even more significant.

6.3.3.2 Paths and routing independency

SPPs are important to VRPs, since they are used to build the edges on the VRP graph.
In most cases, SPPs can be solved separately to VRPs, since the length of the path does
not depend on the order missions are performed. However, as discussed before, this is not
the case when considering the PsM degradation model. To justify solving EVRPs and SPPs
independently, it is necessary to study the impact that variables such as SoC and vehicle mass,
that change during vehicle displacements, have on the paths found. A second set of numerical
experiments was performed with that purpose and the results are shown in Table 6.1.
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As expected, the costs of each path are affected by the initial conditions. Heavier masses
require more energy, which is expected to generate SoC cycles with larger amplitude, causing
more degradation. Those differences, however, were not extremely significant, and, as can
be seen, the shortest path never changed for different initial conditions. This indicates that
addressing SPPs and EVRPs independently is reasonable in this PsM application. Similar
conclusions were found in [Bas+19], for more complex maps in the context of energy esti-
mation. Knowing the path selection is robust to initial conditions, this SPP can be used to
set-up an EVRP that accounts for battery degradation. This original EVRP formulation is
presented in the following section.

6.4 Vehicle routing accounting for battery degradation

6.4.1 Problem formulation

A second optimization model is proposed to address routing. It considers a new graph Gevrp =

(Nevrp, Eevrp). With Nevrp = C ∪ S ∪ 0 where C is the set of nodes representing mission
addresses, S is the set of charging stations and 0 represents the headquarters, where vehicles
start and to where they must come back at the end of their missions. The set Eevrp represents
the paths connecting those each node. Therefore, the graph Gevrp can be built from Gr by
solving the PsM SPP for each node pair in Nevrp as discussed and illustrated by Figure 6.5.
Additionally, a set Z representing the fleet of vehicles is considered together with the following
decision variables:

xijz =

{
1, if vehicle z drives from node i to node j

0, otherwise
(6.10)

and

• pijz, the payload of vehicle z while going from i to j

• yijz, the arrival time of vehicle z at node j from node i

• fjz, the time spent by vehicle z on recharge station i

Notice that, in contrast to the PsM routing model presented in Chapter 4, pijz is also
considered since vehicle mass impacts power and, as a consequence, SoC. Therefore, those de-
cision variables define all relevant aspects of a route, both in terms of logistics and degradation.
Analogously to the SPP presented in Section 6.3, a set Xz is considered:

Xz = {xijz = 1∀i, j ∈ Nevrp, z ∈ Z} (6.11)
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Figure 6.5: Gevrp construction. It is build from Gr, considering only the headquarter and
nodes where deliveries and charges can occur. The nodes of Gevrp correspond to the shortest
paths between its nodes.
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defining the routes of vehicle z. In order to establish all constraints of this EVRP, it is
useful to define the following variables:

• P , the maximum vehicle payload.

• tij , the time necessary to go from i to j

• SoC(t,Xz) which indicates SoC at instant t for a vehicle following a mission plan Xz

• eijz which is the energy consumed by vehicle z to go from node i to node j.

• lj which is the deadline of point j.

• pi which is the total mass variation of a vehicle after performing a delivery in node i.

The cost function used for describing this EVRP is composed of three terms:

Cevrp = cevrpdeg + cevrpenergy + cevrpdelay (6.12)

• The degradation cost cevrpdeg is proportional to the amount of SoH lost in a particular
mission plan and can be expressed as:

cevrpdeg = cbatt
∑
z∈Z

(SoH0z − SoH(Xz)) (6.13)

where SoH0z is the initial SoH of vehicle z and SoH(Xz) is the expected SoH after
following a mission plan z.

• The energy cost cevrpenergy is directly proportional to the consumed energy and is described
by:

cevrpenergy = ce
∑
z∈Z

∑
i∈Nevrp

∑
j∈Nevrp

eijzxijz (6.14)

• The delay cost cevrpdelay is considered to be proportional to delays and can be expressed as:

cevrpdelay = cd
∑
z∈Z

∑
i∈Nevrp

∑
j∈C

xijz max[yijz − lj , 0] (6.15)

The final optimization problem can then be described as:

min Cevrp (6.16)
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Subjected to:

∑
z∈Z

∑
j∈C

xijz = 1 ∀i ∈ Nevrp (6.17)

∑
j∈Nevrp

x0jz = 1 ∀z ∈ Z (6.18)

∑
j∈S

xijz ≤ 1 ∀i ∈ Nevrp,∀z ∈ Z (6.19)

∑
j∈Nevrp

xijz −
∑

j∈Nevrp

xjiz = 0 ∀i ∈ Nevrp,∀z ∈ Z (6.20)

∑
z∈Z

∑
j∈Nevrp

pijz −
∑
z∈Z

∑
j∈Nevrp

pjiz = pi ∀i ∈ Nevrp (6.21)

pjxijz ≤ pijz ≤ (P − pi)xijz ∀i ∈ Nevrp,∀z ∈ Z (6.22)

y0jz ≥ t0jx0jz ∀j ∈ C ∪ S,∀z ∈ Z (6.23)∑
z∈Z

∑
j∈Nevrp

yijz −
∑
z∈Z

∑
j∈Nevrp

yjiz ≥ tijxijz ∀i ∈ C (6.24)

∑
z∈Z

∑
j∈Nevrp

yijz −
∑
z∈Z

∑
j∈Nevrp

yjiz ≥ tijxij + fiz ∀i ∈ S (6.25)

SoC(t,Xz) ≥ SoCcrit ∀z ∈ Z,∀t (6.26)

xijz ∈ {0, 1} (6.27)

xijz ∈ {0, 1} (6.28)

pijz ≥ 0 (6.29)

yijz ≥ 0 (6.30)

Inequality (6.17) ensures that every client is visited once. Constraint (6.18) guarantees
that the number of vehicles used does not exceed the fleet size |Z|. Constraint (6.19) limits the
number of visits to recharge stations. To allow multiple visits to the same station, copies of
that station must be added to the set S. Constraint (6.20) ensures that there is one outgoing
arc to each incoming arc. Constraint (6.21) guarantees that, at each delivery, the payload is
reduced accordingly since pi = 0 ∀i ∈ S ∪ 0, while (6.22) ensures that the maximum payload
P is respected. It also forces pijz = 0 when xijz = 0. Constraints (6.23) through (6.25)
describe arrival time evolution, ensuring that the displacements and charging duration are
respected. Constraint (6.26) imposes range limitations through SoC, which model is obtained
through the PsM degradation model. Finally, Constraints (6.27) through (6.30) define the
acceptable range of each decision variable.

Notice that, in contrast to the VRP proposed in Chapter 4, there are no constraints related
to arrival times. This choice is made since GAs are used for this PsM application. From the
point of view of a GA, adding constraints and penalizing solutions through cost increase is
equivalent. By explicitly introducing cevrpdelay instead of a constraint, this penalization can be
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done in a less aggressive way. This is useful to ensure chromosome variability through the
generations, specially when considering VP optimization, that, as will be seen, has a direct
impact on arrival times.

6.4.2 Including parameter reconfiguration into routing

As discussed in Chapter 3, due to the nature of heavy vehicle applications, it is necessary to
consider parameter reconfiguration within the context of logistics. This is specially true for
the ESS, since the Vehicle Parameters (VPs) considered, are related to speed and acceleration
limitations and will impact deadlines. To add this PsM action in the routing process, besides
the decision variables listed in Section 6.4 the following are also included:

• avhmaxz
which is the maximum acceleration of vehicle z.

• vvhmaxz
which is the maximum speed of vehicle z.

Furthermore, since several variables are affected by avhmaxz
and vvhmaxz

, notation must change,
which leads to the following terms:

• tij(v
vh
maxz

, avhmaxz
), the time necessary to go from i to j for a vehicle with maximum

acceleration avhmaxz
and maximum speed vvhmaxz

.

• SoC(t,Xz, vvhmaxz
, avhmaxz

) which indicates SoC at instant t for a vehicle with maximum
acceleration avhmaxz

and maximum speed vvhmaxz
following a mission plan defined by Xz.

• eijz(v
vh
maxz

, avhmaxz
) which is the energy consumed by vehicle z to go from node i to node

j for a vehicle with maximum acceleration avhmaxz
and maximum speed vvhmaxz

.

The cost function considering VPs is then:

Cevrp−vp = cevrp−vp
deg + cevrp−vp

energy + cevrp−vp
delay (6.31)

where degradation cost cevrp−vp
deg is:

cevrp−vp
deg = cbatt

∑
z∈Z

(SoH0 − SoH(Xz, v
vh
maxz

, avhmaxz
)) (6.32)

with SoH(Xz, vvhmaxz
, avhmaxz

) depending on vvhmaxz
and avhmaxz

. The energy cost cevrp−vp
energy

becomes:

cevrp−vp
energy = ce

∑
z∈Z

∑
i∈Nevrp

∑
j∈Nevrp

eijz(vmaxz , amaxz)xijz (6.33)
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where now, the consumed energy eijz(vmaxz , amaxz)xijz depends on vmaxz and amaxz . The
delay cost cevrp−vp

delay remains the same as the one in Section 6.4, since the effect of VPs on yzij

is captured by tij(v
vh
maxz

, avhmaxz
). The final optimization problem is then:

min Cevrp−vp (6.34)

Subjected to:

∑
z∈Z

∑
j∈C

xijz = 1 ∀i ∈ Nevrp (6.35)

∑
j∈Nevrp

x0jz = 1 ∀z ∈ Z (6.36)

∑
j∈S

xijz ≤ 1 ∀i ∈ Nevrp, ∀z ∈ Z (6.37)

∑
j∈Nevrp

xijz −
∑

j∈Nevrp

xjiz = 0 ∀i ∈ Nevrp, ∀z ∈ Z (6.38)

∑
z∈Z

∑
j∈Nevrp

pijz −
∑
z∈Z

∑
j∈Nevrp

pjiz = hi ∀i ∈ Nevrp (6.39)

pjxijz ≤ pijz ≤ (P − pi)xijz ∀i ∈ Nevrp, ∀z ∈ Z (6.40)

y0jz ≥ t0j(vmaxz , amaxz)x0jz ∀j ∈ C ∪ S, ∀z ∈ Z (6.41)∑
z∈Z

∑
j∈Nevrp

yijz −
∑
z∈Z

∑
j∈Nevrp

yjiz ≥ tij(v
vh
maxz

, avhmaxz
)xijz ∀i ∈ C (6.42)

∑
z∈Z

∑
j∈Nevrp

yijz −
∑
z∈Z

∑
j∈Nevrp

yjiz ≥ tij(v
vh
maxz

, avhmaxz
)xij + fiz ∀i ∈ S (6.43)

min SoC(t,Xz, vmaxz , amaxz) ≥ SoCcrit ∀z ∈ Z,∀t (6.44)

xijz ∈ {0, 1} (6.45)

pijz ≥ 0 (6.46)

yijz ≥ 0 (6.47)

vmaxz ∈ [v−max, v
+
max] (6.48)

amaxz ∈ [a−max, a
+
max] (6.49)

Constraints 6.35 to 6.47 are equivalent to the ones presented in Section 6.4 while 6.48 and
6.49 determine the range of vmaxz and amaxz respectively.

6.4.3 Optimization algorithm

As with the SPP, this optimization problem is solved with GAs. Since the representation
of chromosomes in this case is original, it will be detailed in this section. In this EVRP,
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chromosomes consist of four parts: a mission plan π, a set of maximum speeds vmaxz , a set of
maximum accelerations amaxz and a set of recharge times fiz. Figure 6.6 shows an example
of a chromosome. It encodes a solution for a two vehicle fleet. Vehicle 1 goes from node A0
to B3, then to E4 and so on. Its speed is limited to 60 km/h and its acceleration to 1 m/s2.
Similarly, Vehicle 2 goes from A0 to C5 and so on, with a speed limited to 80 km/h and a
maximum acceleration of 0.5 m/s2. Both of them will recharge their batteries for 1800 seconds
in recharge station E4.

[A0,B3,E4,A0]       60   1

[A0,C5,E4,D4,A0]  80   0.5   ( (
Vmax amax

E4:1800

E4:1800

f

Figure 6.6: Solution representation.

To initiate the algorithm, random solutions are created. The mission plan is created by
first choosing a permutation of the client nodes C. Recharge stations are randomly chosen
from nodes S and can be placed between each mission with probability 0.5 and finally, the
headquarters is assigned at the beginning and end of the mission plan. This ensures that no
client is visited more than once, and that all vehicles return to the headquarters. To generate
the VPs, vmaxz and amaxz are sampled from a uniform distribution on the respective ranges
of those variables.

Chromosome fitness is computed analogously to the SPP case. The best solution candidate
go through crossover. The first step of the crossover operation is illustrated in Figure 6.7. It
starts by splitting a candidate solution into two different parts, the first of which contains
the set of missions, in the order they were assigned to each vehicle. The second one contains
VPs and recharge times. The set of missions is then split once again into a part containing
missions and the other, recharge points alongside with zeros. Notice that, in this process, the
headquarters is ignored. The mission part will undergo order cross over, while the recharge
parts undergo a one-point crossover, with the constraint that off-springs must contain the same
number of zeros (representing the clients) as the parents. Finally, the remaining crossover
mechanism for the scalar part (VPs and recharging times) is simply the average of speeds and
acceleration of each vehicle and recharging time in case both candidate solutions share the
same recharging station. After this process, the clients and recharge parts are recombined and
split into the fleet. This split process is performed keeping the number of missions per truck
as close as possible to that of the parents. An additional correction is made to ensure that no
consecutive points in the solution form 6.6 are the same.

The proposed mutation operator splits the candidate solutions in missions, VPs and
recharge times once again. In the mission part, random swaps can happen as shown in Figure
6.8. The scalar quantities of the solution are perturbed by random noise.
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E4:1800

E4:1800

[A0,B3,E4,A0]       60   1

[A0,C5,E4,D4,A0]  80   0.5   (

B3,C5,E4,E4,D4          

B3,C5,D4          0,0,E4,E4,0          
60   1

80   0.5
Client Part Recharge Part Scalar part

(E4:1800

E4:1800

Figure 6.7: First step on the crossover operation.

B3,C5,E4,E4,D4          B3,E4,E4,C5,D4          

Figure 6.8: Mutation operation for the mission part

6.4.4 Numerical experiments

6.4.4.1 Results on a synthetic network

This first set of experiments was conducted in the same Manhattan-like map used for the SPPs.
Different instances of the problem were created by randomly selecting the nodes to define
Gevrp. They were solved with different cost parameters to investigate how taking degradation
into account impacts routes. Solving an instance considering cbatt = 0 is equivalent to a classic
EVRP. When ce = 0 routes minimize only degradation, ignoring energy consumption. Finally
having cbatt ̸= 0 and ce ̸= 0 the problem becomes the discussed PsM version of the EVRP.
The vehicle and battery parameters used are shown in Table 6.2.

The results are reported in Table 6.3. It is possible to see that accounting for degrada-
tion (cbatt ̸= 0) impacts the mission plan. Plans that account for degradation either have

Parameter Value
m 10700 (kg)

SoC0 1
Cs 1498.26 (F)
Rs 0.01902(Ω)
Cl 120 (F)
Rl 0.02221 (Ω)
R0 0.03417(Ω)
C0 65453.28 (F)

Table 6.2: Simulation parameters
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Instance cbatt cd ce Mission plan Cevrp−vp

1 10000 1 0.18 A0, E0, E1∗, E3, D5, A4, A2, A0 8.60
1 0 1 0.18 A0, E0, E3, D5, A4, A2, A0 8.63
1 10000 1 0 A0, E0, E1∗, E3, D4∗, D5,A4, A2, A0 8.62
2 10000 1 0.18 A0, E0, E1∗, E3, E5, A4, A2, A0 9.55
2 0 1 0.18 A0, E0, E3, E5, A4, A2, A0 9.60
2 10000 1 0 A0, E0, E1∗, E3, E5, D4∗, A4, A2, A0 9.57
3 10000 1 0.18 A0, B1, C5, F5, F2, D2∗, A2, A0 9.56
3 0 1 0.18 A0, B1, C5, F5, F2, A2, A0 10.52
3 10000 1 0 A0, B1, C5, F5, F2, D2∗, A2, A1∗, A0 9.58
4 10000 1 0.18 A0, B1, B3, D3∗, F3, C0, A0 7.65
4 0 1 0.18 A0, B1, B3, F3, C0, A0 7.73
4 10000 1 0 A0, B1, B3, D3∗, F3, C1∗, C0, A0 7.68

Table 6.3: EVRP result when considering different costs for 4 instances. Recharge stations are
indicated with a ∗ and A0 is the headquarters in all instances. Each instance is solved three
times with different cbatt, ce. These solutions are then evaluated with cbatt = 10000, cd = 1

and ce = 0.18 to compare the advantages of considering degradation in EVRPs

extra recharges or make charges at different moments. Most of these charges are not strictly
necessary from the point of view of respecting SoC constraints. They are included to reduce
degradation by introducing less damaging cycles, with a lower DoD. This is seen in Figure
6.9, which shows SoC for the different routes obtained in the same instance, accounting for
both degradation and energy (cbatt ̸= 0 and ce ̸= 0), only for energy (cbatt = 0) and only for
degradation (ce = 0). Figure 6.10 shows the routes obtained in each case for instance 1.

Notice that, when only energy is considered, no charge is planned. This solution reduces
the energy cost by minimizing displacements and stops. However, it generates cycles that
are more damaging. When only degradation is considered, two charges take place, inducing
smaller cycles and causing less degradation. Since vehicles need to stop at charging stations
to recharge, extra charging sessions result in higher energy consumption, making this solution
sub-optimal from the energy point of view when compared to the case ce ̸= 0. Finally, by
jointly taking into account costs of degradation and energy (i.e. cbatt ̸= 0 and ce ̸= 0), a
third solution is obtained. Only one charge is planned, finding a balance between extra energy
consumption and degradation reduction. Figure 6.10 shows these three different solutions on
the map. In instance 3, considering degradation led to a 10% improvement in costs when
comparing with the solution that accounted only for energy consumption. Even for instances
where the improvement was more modest, because SoH evolves slowly through time, a small
degradation reduction can lead to significant battery life duration increase.

Therefore, considering degradation can impact routing and improve the performance of the
fleet in the long run, but some considerations must be made. Adding extra charges to reduce
degradation is only beneficial when the energy consumed due to this extra stop is not significant
when compared to the degradation cost. Therefore, charging station availability plays an
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Figure 6.9: Comparison of SoC for optimal mission plan for different optimization cases: Case
A accounts for both degradation and energy (cbatt ̸= 0 and ce ̸= 0), case B only for energy
(cbatt = 0) and case C only for degradation (ce = 0).

10km

A B C D E F

1

2

3

4

5

0

Figure 6.10: Different routes for instance 1. Power plugs represent charges. The solutions
for the case where only degradation is considered is represented in blue, in green the solution
accounting only for energy consumption and in red the complete solution. The arrow indicates
the sense the vehicles travelled.
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Clients Charging stations Improvement
# # ratio
5 1 0.05
5 10 0.8
5 20 1
10 1 0.1
10 10 0.85
10 20 1

Table 6.4: Proportion of instances in which accounting for degradation yielded a better solution
than only considering energy for different numbers of clients and charging stations.

Clients Charging stations Cevrp−vp Cevrp−vp

# # (not acting on VPs) (acting on VPs)
5 7 6.90 6.39
5 8 7.20 6.74
10 10 11.3 10.6
5 10 6.83 6.27
3 7 4.83 4.36

Table 6.5: Comparison of the impact of including Vehicle Parameters (VPs) on the average
cost Cevrp−vp

important role on degradation minimization. To quantify this phenomenon, random instances
of the problem were once again generated. Each instance is solved twice, once considering
only energy (cdeg = 0) and a second time considering both degradation and energy. The
proportion of instances in which considering degradation improved the solution is registered
in Table 6.4. The column Improvement ratio indicates the ratio between instances in which
considering degradation yielded to a better solution and those for which minimizing energy
and degradation was equivalent.

As expected, the availability of charging stations plays an important role in degradation
minimization. Another important consideration is that the optimal plan also depends on the
battery dynamics and the parameters of the degradation model. Therefore, different types of
batteries can result in different mission plans that will be more or less impacted by degradation.

A second set of experiments is performed to determine the importance of limiting speeds
and accelerations. In these experiments, different instances are randomly generated and solved
with the optimization model including VPs and the version without them. The cost parameters
are once again cd = 1, ce = 0.18, cbatt = 10000.

As it can be seen in Table 6.5, limiting speeds and accelerations reduces the total cost of a
mission plan. The decrease comes mainly from the energy cost, which is a direct consequence
of equation (5.9), but also from the degradation cost, since stress cycles presented a smaller
DoD (which can be seen in Figure 6.11).
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Figure 6.11: Comparison of SoC for optimal mission plan. Case A: acting on driving parame-
ters, Case B: not acting on driving parameters. Notice that in Case B, the mission plan ends
earlier because of different driving parameters (higher speed and acceleration)

In the case where speeds and accelerations are limited (Case A in Figure 6.11), the SoC
decrease more slowly as a reflex of smaller energy consumption. Charges happened with SoC
at 86% and 94% . In case Case B, where VPs are not affected, charges happened at 82% and
93%, leading to more damaging cycles. Affecting VPs can thus improve the overall efficiency
of a vehicle, reducing both degradation and energy costs.

6.4.4.2 Results on a realistic map

To assess the impact of incorporating degradation in more realistic scenarios, different in-
stances of the routing problem were generated in the map of Luxembourg, shown in Figure
6.12. Instances were created choosing a specific number of random points in the map that
are either charging stations or clients. As before, they are solved once considering cbat to be
zero and once with cbat ̸= 0. Table 6.6 shows the comparison between the results obtained
with or without accounting for battery degradation. Like in the previous map, accounting
for degradation led to better solutions. This is related to the fact that charges are planned
optimally, leading to stress cycles that are less damaging. As it can be seen, the benefits are
related to the number of charging stations, since charging to reduce degradation may lead to
bigger energy consumption and will only occur if displacements to arrive at charging stations
are relatively small.

To assess the impact of maximum speed and acceleration in realistic cases, another set of
experiments is made. Instances are generated and solved with and without maximum speed
and accelerations as decision variables. The results are shown in Table 6.7. As it can be seen,
limiting speed and acceleration is beneficial in terms of cost. This is related to the fact that it
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Figure 6.12: Luxembourg map used for the realistic use-case.

Clients
#

Charging
stations

#

Cess of solutions
obtained through
classic EVRPs

Cess of solutions
obtained

with PsM
10 2 2.25 2.20
10 5 2.16 2.08
20 5 3.73 3.67
20 10 3.82 3.64
30 10 5.01 4.73
30 15 4.95 4.67

Table 6.6: Comparison between average cost of solutions found considering degradation and
solutions without accounting for degradation.

reduces energy consumption which in turn is also beneficial from a degradation point of view.

6.5 Conclusion

In this chapter, the different optimization models of the ESS PsM solution were explored. The
SPPs and EVRPs were described as original optimization problems that extended their clas-
sical formulations. They were built upon the PsM ESS degradation model, which makes them
non-linear. Furthermore, all cost functions rely on solving a system of differential equations
and cycle decomposition. Those two facts combined made the optimization computationally
challenging. Since classical optimization methods will not be practically useful to solve those
original optimization problems, GAs were used.
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Clients
#

Charging
stations

#

Average cost
not affecting

vehicle parameters

Average cost
affecting

vehicle parameters
10 2 2.32 2.16
10 5 2.26 2.12
20 5 3.68 3.47
20 10 3.64 3.42
30 10 4.97 4.81
30 15 4.92 4.79

Table 6.7: Comparison between average cost of solutions found affecting driving parameters
and solutions without affecting driving parameters

Through a series of numerical experiments, the advantages of formulating those optimiza-
tion problems to account for degradation were shown. Battery useful life was extended both
by path optimization and routing. There are, however, several possible improvements to be
done in future research. For example, GAs could be improved through solving surrogate op-
timization models for creating the initial population. It would also be interesting to perform
sensitivity analyses in order to see what are the impacts of battery and vehicle parameters
on the solutions found. Finally, addressing the randomness related to traffic conditions and
other external factors could be valuable.
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7.1 Thesis overview

This document sums up the works of a three year research project dedicated to investigate the
connections between heavy vehicle maintenance and usage in order to create insights that could
be used as basis for future services. Exploiting the fact that contemporary technologies, such
as vehicle connectivity, data collection, and vehicle electrification, allows for an expanded view
of maintenance actions that encompass software parameters changes, logistical optimization
and so on. This approach to maintenance is often referred to as PsM. Since this term is vaguely
defined from a scientific point of view, several pages of this manuscript were dedicated to a
deep inquiry on the definition of different maintenance policies, in order to define PsM in a
robust and distinct way.

Based on this definition, a development framework for PsM solutions was proposed. It was
then applied to heavy vehicle fleets, delimiting the scope of the concrete scientific problems
addressed through part two. The general form of the PsM application for heavy vehicles is
seen in Figure 7.1. Solving a PsM problem in this context corresponds therefore to optimize
logistical decisions such as path selection, routing and charging, changing software parameters
when necessary and determining the best maintenance opportunities to make replacements.

To formalize an optimization model capable of representing such problem, some consid-
erations must be made. The main one is that, the choice of how to define vehicle reliability
is crucial to establish the scope of the actions considered. To illustrate that, two concrete
applications are developed. In the first one, presented in Chapter 4, a simple and generic
stochastic degradation model was used to define reliability. As a consequence, optimization
included only maintenance and routing. The optimization model was formalized as a MILP
and could be seen as a long-term VRP variation constraining failure probabilities. Several
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simulations were carried out to assess the benefits of PsM when compared to traditional ap-
proaches for routing and maintenance decision-making. Although this optimization model
reduces exploitation costs, it is computationally demanding, therefore dedicated algorithms
were developed in order to make this PsM application practical.

In Chapters 5 and 6, another way of defining vehicle reliability was explored. Instead
of choosing a generic degradation model, a critical EV component, the ESS, is considered.
Chapter 5 presents basic concepts of batteries, and battery degradation. It also provides a
brief review of degradation and usage models commonly used on transportation applications.
A PsM degradation model is then introduced to address the main short comes of those afore-
mentioned models. Despite its complexity, through a series of numerical experiments, the
benefits and constraints with simpler models commonly used in the literature are shown.

Finally, in Chapter 6, this model is included in different optimization problems. Cost
functions evaluation require solving differential equations and applying a non-linear cycle
decomposition algorithm. Therefore, traditional optimization methods cannot be applied and
a meta-heuristic genetic algorithm is used to solve all of them. Several different instances of
those problems are solved and compared to more traditional versions of EVRPs and SPPs,
showing the benefits of considering battery degradation when exploiting fleets of EVs.

Figure 7.1: General PsM loop for heavy vehicles

7.2 Short-term perspectives

This work addressed some aspects of PsM for heavy vehicle applications. There are, how-
ever, several interesting possibilities for extending this research and improving the solutions
proposed. For example, in the contribution made in Chapter 4, related to long-term routing
and maintenance, maximum allowed failure probabilities were computed in an over simplified
manner, considering only the ratio of failure and preventive maintenance costs.
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In large fleets, the overall risk of downtime can become non-neglectable even if failure
probabilities are limited on a vehicle level. Ideally, maximum failure probabilities must be
determined systematically on a fleet level. Furthermore, since fleets are heterogeneous, each
vehicle can have different maximum failure probabilities, depending on their degradation pa-
rameters.

Additionally, considering all missions over the horizon H to be known beforehand is a
strong hypothesis that should be relaxed. In future works, for example, it would be inter-
esting to consider a case in which decision-making is done sequentially without fixed horizon
assumption and with mission addresses that are only known at the beginning of a working
session.

The ESS application, presented in Chapters 5 and 6, could also be improved. In terms
of solution methods, GAs could be made more efficient by initiating chromosome population
based on surrogate optimization models solution. It would also be interesting to perform
sensitivity analyses in order to see what are the impacts of battery and vehicle parameters on
the routes and paths.

It would also be interesting to model additional pertinent decisions related to using fast
or normal charging, for example, considering more complex logistical contexts with multiple
depots or battery swapping, for example. Finally, addressing the randomness related to traffic
conditions and other external factors could be valuable.

7.3 Long-term perspectives

This thesis was born with the intent of enabling future service development for exploitation
cost reduction. Although important steps were taken in this direction, several challenging
implementation difficulties must be overcome to create such services.

For example, in future research projects, it would be important to extend the concepts
developed in this work to a multi-component set-up. As heavy vehicle have several sub-
systems, it is important to address their intricate and complex relationships.

Another important milestone on implementing PsM solutions in real life would be to
validate the proposed optimization models with real fleet managers. With a pilot project in
collaboration with Volvo’s clients, it would be possible to validate some of the assumptions
made, identify and correct weaknesses and quantify the gains of the proposed methods.

Finally, another important trend that was oversight in this work is circularity. More and
more components are reused, either by other vehicles or in completely different applications.
Decision-making must account for that and consider the impacts on both the first and second
life of components.





Appendix A

Benchmark Models

A.1 Benchmark SoC model

The benchmark model used in Section 5.5.1 is based on the very common assumption, in EV
decision-making problems, that battery terminal voltage remains constant and equals to its
nominal value. As a consequence, the equations that define SoC are:

I(t) =
Pelec(t)

V nominal
batt

(A.1)

˙SoC = −I(t)

Q0
(A.2)

where V nominal
batt is the battery nominal value. As can be seen, when comparing this model

to the one presented in Section 5.4.2, the dynamics of the battery are immediately disregarded
once battery voltage is assumed to be constant.

A.2 Benchmark acceleration model

The benchmark model used in Section 5.5.2 is based on a traditional assumption that vehicles
assume road nominal speed instantaneously, neglecting acceleration effects. This approach
can be found in [GS15]. The resulting equations describing vehicle dynamics are:

v(t) = vnominal (A.3)

Pmec(t) =
ρairCwAv(t)3

2
+mgv(t) sinα+mgCrv(t) cosα (A.4)

Pelec(t) =
Pmec(t)

η
(A.5)

where vnominal is the nominal speed on the edge the vehicle is currently at.
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Résumé — Avec la numérisation, l’internet des objets et la popularisation des services
centrés sur les données, différents secteurs économiques ont connu des changements importants
dans leur modèle d’entreprise. Pour le secteur automobile en particulier, ces changements
concernent l’évolution vers des offres davantage axées sur les services. La vente d’un véhicule
n’est plus le dernier contact avec le client, car les services après-vente représentent une part
importante du chiffre d’affaires des constructeurs automobiles. Dans cette optique, le principal
objectif de ce projet de recherche est de jeter les bases des futurs services pour les véhicules
lourds.

Ce travail souligne l’importance de l’optimisation de la maintenance ainsi que sa rela-
tion avec l’utilisation du véhicule. Dans le passé, la maintenance se limitait à des remplace-
ments correctifs de pièces défectueuses, ce qui entraînait de longues périodes d’inactivité.
Cela avait un impact sur l’activité du transporteur, ainsi que sur ses coûts de réparation.
L’introduction de systèmes de surveillance et les techniques de communication actuelles per-
mettent de développer de nouvelles méthodes d’optimisation dans lesquelles, non seulement
les dates de remplacement sont déterminées de manière optimale, mais aussi l’utilisation du
véhicule est modifiée en conséquence, ce qui permet d’optimiser les coûts et d’allonger con-
tinuellement la durée de vie utile des camions. Grâce à la technologie actuelle, ces méthodes
d’optimisation pourraient être transformées en services qui aident les clients à définir les dates
de remplacement, à gérer la logistique pour minimiser les niveaux de dégradation de la flotte,
ou même à modifier les paramètres du logiciel du véhicule pour minimiser les coûts à long
terme.

Cette approche pour la maintenance, dans laquelle la durée de vie est prolongée par une
myriade d’actions différentes englobant plusieurs aspects de l’utilisation du véhicule, est sou-
vent appelée maintenance prescriptive. Bien que la maintenance prescriptive ait été dès le
départ un élément important de ce travail, sa définition est assez controversée dans la littéra-
ture. Par conséquent, un effort conceptuel est fait dans ce document afin de clarifier la portée
de ce type de paradigme de maintenance. Avec des définitions plus précises et un champ
d’application clair, la maintenance prescriptive est appliquée dans le contexte des véhicules
lourds.

Les applications de maintenance prescriptive pour les véhicules lourds peuvent être con-
sidérées comme des problèmes d’optimisation originaux dans le domaine de la science des
transports. Tout au long de l’étude de ces méthodes, des contributions scientifiques significa-
tives ont été apportées. Tout d’abord, la maintenance prescriptive nécessite des modèles qui
peuvent relier de manière réaliste la dégradation et l’utilisation du véhicule. De tels modèles
sont difficilement adaptés aux problèmes de prise de décision et nécessitent une adaptation.
Dans ce document, ces modèles sont étudiés en détail. Par exemple, au chapitre 5, un nou-
veau modèle d’état de charge/état de santé est proposé pour quantifier l’impact de certaines
stratégies de routage sur la durée de vie utile des camions électriques.
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En outre, ces modèles de dégradation permettent de mettre en place des configurations
d’optimisation dans lesquelles différentes actions qui sont rarement envisagées dans le do-
maine des transports sont prises en compte. Par exemple, au chapitre 6, l’itinéraire classique
d’un véhicule électrique est étendu afin de prendre en compte la dégradation. En outre,
l’application de limitations aux vitesses et aux accélérations des véhicules est incluse dans le
champ d’optimisation. Par conséquent, grâce à des expériences numériques, il a été possible
de quantifier les impacts d’une telle restriction non seulement en termes de consommation
d’énergie, mais aussi en termes de prolongation de la durée de vie utile. Même les actions qui
ont des effets sur des échelles de temps très différentes sont prises en compte. Au chapitre
4, la maintenance et le routage sont combinés, et leur effet conjoint a pu être observé à long
terme. L’optimisation de la logistique en tenant compte des calendriers de maintenance et
de la dégradation a conduit à une réduction significative des coûts par rapport aux stratégies
d’optimisation classiques.

La résolution des problèmes d’optimisation susmentionnés est une tâche non triviale.
Toutes les formulations susmentionnées nécessitent un effort de calcul important pour être
résolues avec exactitude. Ainsi, une autre dimension de la contribution de ce travail est le
développement d’algorithmes adaptés à la résolution de ces problèmes. Les méthodes clas-
siques sont adaptées en tirant parti des propriétés particulières des modèles utilisés et des
heuristiques capables de combler l’écart d’optimisation en un temps raisonnable sont dévelop-
pées.

Grâce aux outils capables de trouver des solutions à ces problèmes de prise de décision en
matière de maintenance normative, on obtient des informations sur l’exploitation des véhicules.
Des mesures quantitatives peuvent enfin être calculées, ce qui permet de comparer systéma-
tiquement la qualité de la gestion logistique et de l’utilisation en général. Cela peut servir de
base à de nouveaux services après-vente dans lesquels les clients auront accès à un ensemble de
recommandations différentes (maintenance, mais aussi modes d’utilisation et d’exploitation)
pour maintenir la flotte opérationnelle au maximum tout en minimisant tous les coûts perti-
nents.

Mots clés: Maintenance prescriptive, modélisation de la degradation, prise de decision,
optimisation, vehicules électriques.

Abstract — With digitalization, the internet of things and the popularization of data-
centric services, different economy sectors have gone through significant changes in their busi-
ness model. For the automotive sector in particular, those changes relate to moving towards
more service-oriented offers. Selling a vehicle is no longer the last contact with the client, as
aftermarket services are responsible for a significant part of vehicle manufacturer’s revenue.
With that in mind, the main concern of this research project is to lay down the foundations
for enabling future services for heavy vehicles.
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This work stresses the importance of maintenance optimization as well as its relationship
with vehicle usage. In the past, maintenance was limited to corrective replacements of faulty
parts resulting in long idle periods. This impacted the activity of the transporter, as well
as its repair costs. The introduction of monitoring systems along with the current commu-
nication techniques allow the development of new optimization methods in which, not only
replacement dates are determined optimally but also, vehicle usage is changed accordingly,
ensuring cost optimization, and continuously extending trucks remaining useful life. With
today’s technology, those optimization methods could be turned into services that help clients
defining replacement dates, manage logistics to minimize degradation levels of the fleet, or
even change vehicle software parameters to minimize the long-term costs.

This approach to maintenance, in which life is extend through a myriad of different actions
encompassing several aspects of vehicle usage, is often referred to as prescriptive maintenance.
Although prescriptive maintenance was from the beginning an important element of this work,
its definition is rather controversial in the literature. As a consequence, a conceptual effort
is done in this document in order to clarify the scope of this kind of maintenance paradigm.
With more precise definitions and a clear scope, prescriptive maintenance is applied in the
context of heavy vehicles.

Prescriptive maintenance applications for heavy vehicles can be seen as original optimiza-
tion problems in the realm of transportation science. Throughout the investigation of such
methods, significant scientific contributions were made. First and foremost, prescriptive main-
tenance requires models that can realistically connect degradation and vehicle usage. Such
models are hardly adapted for decision-making problems and require adaptation. In this
document, such models are studied in detail. For example, in Chapter 5 a new State of
Charge/State of Health model is proposed to quantify the impact of certain routing strategies
on the useful life of electric trucks.

Additionally, these degradation models enable optimization set-ups in which different ac-
tions that are hardly thought of in transportation are considered. For example, in Chapter 6
the classical electrical vehicle routing is extended in order to consider degradation. Further-
more, applying limitations to vehicle speeds and accelerations is included in the optimization
scope. As a result, through numerical experiments, it was possible to quantify the impacts of
such restriction not only in terms of energy consumption but in terms of useful life extension as
well. Even actions which have effects in very different time scales are considered. In Chapter
4, maintenance and routing are combined, and their joint effect could be seen in the long-term.
Optimizing logistics considering maintenance schedules and degradation led to significant cost
reduction when compared to classical optimization strategies.

Solving those aforementioned optimization problems is a non-trivial task. All of the afore-
mentioned formulations required significant computational effort to be solved exactly. As
such, another dimension of this work contribution is the development of algorithms suitable
for solving them. Classical methods are adapted taking advantage of particular properties of
the models used and heuristics capable of closing the optimization gap in a reasonable time
are developed.
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With the tools capable of finding the solutions for those prescriptive maintenance
decision-making problems, insights on vehicle exploitation are obtained. Quantitative metrics
can finally be computed, leading to a systematic way of comparing the quality of logistics
management and usage in general. This can be used as the basis for new aftermarket services
in which clients will have access to a set of different recommendations (maintenance, but also
usage and operating modes) to keep the fleet operational to the maximum while minimizing
all relevant costs.

Keywords: Prescriptive maintenance, degradation modeling, heavy vehicles, decision-
making, optimization, electric vehicles.
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