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�Weren't there times when everybody, or at least a few people, just panicked?

No, when bad things happened, we just calmly laid out all the options, and
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Résumé de Thèse

Contextualisation du Projet

Le développement des technologies sophistiquées de missiles et de munitions d'artillerie a
toujours été synonyme de puissance, depuis leurs conceptions balistiques initiales non guidées.
L'avènement des technologies de guidage avancées a encore renforcé leur utilisation en tant
qu'armes conventionnelles, grâce à une précision accrue sur la cible. Les premières stratégies
de guidage utilisaient des mesures radar ou optiques depuis le site de lancement, avec des
commandes de contrôle radio ou laser transmises par un opérateur au sol. L'amélioration de
la précision du guidage, notamment par l'utilisation de caméras de télévision et de faisceaux
laser pour l'interception de la cible, a suscité un intérêt croissant pour le développement de
munitions guidées. La conception des armes guidées repose sur trois fonctionnalités principales
: le Guidage, la Navigation et le Contrôle (GNC). L'implémentation standard à double boucle
GNC comprend une boucle interne rapide, qui met à jour les commandes de contrôle du pilote
automatique en fonction des informations de navigation, et une boucle externe plus lente, qui
ajuste les signaux de référence pour répondre aux exigences de la mission.

La dérivation d'une loi de contrôle e�cace repose fortement sur l'exactitude du mod-
èle choisi pour représenter la dynamique du système. La modélisation et la conception de
contrôle ont toujours représenté des processus fastidieux à accomplir en raison de la grande
non-linéarité caractérisant la dynamique de vol des missiles/projectiles et de la grande variété
des paramètres opérationnels. Néanmoins, la complexité du modèle a�ecte la sélection de
l'approche de contrôle la plus appropriée et éventuellement la charge numérique de la mise
en ÷uvre du contrôleur. Dans ce contexte, une stratégie bien établie consiste à décomposer
la tâche de contrôle globale en la conception de contrôleurs LTI locaux à chaque linéarisa-
tion locale de la dynamique non linéaire d'origine. L'ensemble résultant de contrôleurs LTI
locaux peut être facilement mis en ÷uvre grâce à la dé�nition d'une stratégie de plani�cation
dédiée, qui permet de sélectionner le contrôleur le plus approprié dans toutes les conditions de
fonctionnement. La stratégie de plani�cation la plus traditionnelle repose sur l'interpolation

Boucle
Rapide

du Système

Dynamique
Guidage

Navigation

Boucle
Lente

Commandes

Mesures

Mission

Contrôle

Figure 1 : Double boucle du système de guidage, navigation et contrôle (GNC).
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linéaire des gains statiques des contrôleurs locaux, appelée plani�cation de gain. Malgré une
large gamme d'applications réussies, la conception de la plani�cation de gain s'est avérée
présenter des limitations de précision et de stabilité théoriques et pratiques pertinentes.

Ces dernières décennies, le cadre linéaire à paramètres variables (LPV) a émergé comme
une alternative intéressante en modélisation et contrôle pour diverses applications aérospa-
tiales. Contrairement à l'approche de linéarisation, la conception LPV vise directement la
synthèse globale du contrôleur, assurant des propriétés de stabilité en boucle fermée à l'échelle
globale. Les modèles LPV/quasi-LPV prennent en compte les variations temporelles d'un
ensemble de paramètres sélectionnés, permettant une meilleure capture de la dynamique non
linéaire du système. La synthèse du contrôleur LPV repose sur la formulation d'un problème
d'optimisation dédié, réalisable soit en exploitant les caractéristiques des systèmes à a�nité de
paramètres, soit par une discrétisation de l'espace des paramètres à l'aide d'un processus de
maillage. La première approche (polytopique) garantit une stabilité quadratique plus élevée,
mais avec des performances plus conservatrices, tandis que la seconde (basée sur le maillage)
o�re des performances signi�catives avec une complexité de mise en ÷uvre plus élevée et des
propriétés de stabilité globale réduites.

Dans ce contexte, le projet présenté propose l'analyse de la modélisation et de la concep-
tion de contrôle d'un nouveau concept de projectile guidé à longue portée (LRGP) étudié à
l'Institut franco-allemand de recherche de Saint-Louis (ISL). Basé sur une architecture sta-
bilisée par ailettes non rotatives de 155 mm, le projectile comprend quatre ailettes arrière
axiales symétriques et deux canards avant pour les man÷uvres de contrôle, con�gurés en 'X'
comme illustré dans la Figure 2. L'objectif est d'améliorer la portée des obusiers standard
sans recourir à des propulseurs supplémentaires ou des modi�cations du système de tir. La
modélisation et la conception de contrôle sont étudiées dans le cadre LPV en raison de ses
avantages et des applications limitées dans la littérature sur les technologies de munitions
guidées.

3
B

2
B

1
B

(a)

1
B

1
B

(b)

Figure 2 : Concept LRGP : (a) con�guration ailerons-canards en "X" ; (b) con�gu-
ration du projectile balistique (en haut) et du projectile planeur (en bas).
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Chapitre 1 : Développement du Modèle de Projectile

Le processus de modélisation de la dynamique du système est crucial avant la conception du
contrôleur. Une identi�cation précise du comportement du système améliore la �abilité du
modèle mathématique et l'e�cacité du contrôleur. Habituellement, des dynamiques de modèle
simpli�ées sont dérivées pour la conception du contrôleur, ne capturant que les caractéristiques
les plus pertinentes pour les performances du contrôleur. Ensuite, un modèle détaillé est utilisé
pour tester la conception du contrôleur dans un scénario de simulation plus réaliste. Pour le
concept LRGP, la modélisation repose sur la formulation standard des équations di�érentielles
non linéaires décrivant la dynamique inertielle du projectile. Des simulations de dynamique
des �uides numériques (CFD) ont été réalisées pour caractériser l'aérodynamique du concept
LRGP, ciblant les deux principales contributions aérodynamiques du projectile. Une première
campagne a examiné les coe�cients aérodynamiques générés par les contributions statiques
de portance et de traînée du projectile, incluant l'e�et des surfaces de contrôle à dé�ection
locale nulle. Le deuxième ensemble de données a étudié les contributions aérodynamiques
supplémentaires générées par la dé�ection locale des surfaces de contrôle.

A�n de fournir un modèle continu décrivant l'aérodynamique du projectile dans toutes les
conditions de vol, les données CFD ont été traitées par le biais d'une analyse de régression pré-
cise. Un modèle polynomial à variable unique (PR) et un modèle multivariable (MR) ont été
obtenus à partir de la régression des coe�cients statiques. Le modèle PR est basé sur un en-
semble réduit de données CFD, ciblant certaines con�gurations spéci�ques et conditions de vol
de l'aérodynamique du projectile. Le modèle MR, quant à lui, repose sur l'ensemble complet
des données CFD acquises, fournissant une description aérodynamique globale qui couvre une
gamme plus étendue de conditions de vol. Une régression polynomiale a également été réalisée
sur l'ensemble de données CFD des surfaces de contrôle. Dans un souci de modélisation, les
contributions aérodynamiques individuelles des surfaces de contrôle ont été formulées comme
des e�ets globaux sur le taux de rotation du corps, in�uençant l'orientation du projectile. La
formulation du contrôle reposait sur des hypothèses de superposition linéaire concernant la
réponse aérodynamique du projectile. L'intervalle de con�ance du modèle aérodynamique a
été estimé pour une déviation totale : δ ∈ [−20, 20] deg.

À partir des résultats de modélisation, plusieurs modèles ont été élaborés pour représenter
di�érentes caractéristiques de la dynamique du projectile. En fonction du niveau de précision
et de complexité, chacun de ces modèles peut être utilisé à di�érentes étapes de la conception
et de la validation de l'autopilote. Le premier modèle visait à représenter la dynamique de
tangage du projectile, en incluant la dynamique de l'angle d'attaque (AoA), α̇, du taux de
tangage, q̇, le modèle aérodynamique statique PR, ainsi que les contributions aérodynamiques
des surfaces de contrôle. Ce modèle a été utilisé ultérieurement pour la modélisation LPV et la
conception de l'autopilote dédié au tangage. Le deuxième modèle reposait sur une description
non linéaire 6-DoF de la dynamique translationnelle et d'attitude du projectile, en incluant
le modèle aérodynamique MR complet ainsi que les contributions de contrôle aérodynamique
correspondantes. Ce modèle a été implémenté dans un environnement de simulateur non
linéaire 6-DoF pour évaluer les performances des contrôleurs.



x Résumé de Thèse

Chapitre 2 : Dérivation du Modèle LPV

La modélisation orientée vers le contrôle consiste en une étape intermédiaire qui permet
l'application de plusieurs approches de conception de contrôle aux dynamiques non linéaires
générales d'un système. Le cadre linéaire à paramètres variables (LPV) permet une représen-
tation plus générale et complète des dynamiques temporelles du système, exploitée à travers
la sélection d'un ensemble de paramètres variables, ρ. Plusieurs applications aérospatiales
réussies ont été proposées ces dernières années, reformulant les dynamiques non linéaires stan-
dard du véhicule en un modèle LPV/quasi-LPV précis. La conversion peut être réalisée par
l'emploi de di�érentes approches LPV telles que la substitution de fonctions, les techniques
basées sur la vitesse et la transformation d'état.

La méthode de transformation d'état a été privilégiée pour développer un modèle LPV
précis de la dynamique de tangage du projectile, o�rant une transformation exacte entre
le système non linéaire d'origine et le modèle LPV résultant. Ainsi, aucune approximation
n'a été nécessaire dans la conception, ce qui a renforcé la capacité du modèle à représenter
la dynamique d'origine. Le vecteur de paramètres variables choisi est ρ = [α, V, h], où V

représente la vitesse de l'air du projectile et h l'altitude. Pour appliquer le processus de
transformation, une approximation aérodynamique spéci�que a été développée, exprimant le
coe�cient de contrôle aérodynamique comme une fonction linéaire de la dé�ection des canards,
répondant ainsi aux exigences de l'approche de transformation d'état. De plus, la dynamique
de l'intégrateur a été ajoutée à l'entrée du système pour compenser la con�guration dépendante
des paramètres d'entrée.

Le modèle quasi-LPV augmenté d'intégrateur de la dynamique de tangage du projec-
tile, désigné par ΣGR, a été utilisé pour la conception du contrôleur basé sur la grille LPV.
Dans l'équation de sortie, les mesures du facteur de charge hors équilibre, ηz,dev, ont rem-
placé la dé�ection de tangage des canards, δq. La matrice d'avance, D, a été supposée nulle.
L'exactitude du modèle quasi-LPV a été con�rmée par simulation sur une plage de variation
incluant α ∈ [0, 16] degrés, V ∈ [160, 280] m/s, h ∈ [1, 15] km.

Dans le but d'utiliser le modèle quasi-LPV pour la conception d'un contrôleur polytopique
basé sur le LPV, une étape de modélisation supplémentaire a été nécessaire. En e�et, le modèle
quasi-LPV obtenu ne respectait pas la relation a�ne entre le modèle et les paramètres im-
posée par la formulation polytopique. Ainsi, une procédure d'approximation du modèle a été
développée dans le but de reformuler le modèle quasi-LPV du projectile en un système poly-
topique. L'approximation reposait sur l'identi�cation d'un nouvel ensemble de fonctions de
plani�cation, ρ̂, a�nes par rapport à la dynamique du système. Le processus d'approximation
a abouti à la reformulation polytopique de la dynamique de tangage quasi-LPV du projectile,
ΣPY. Concernant l'équation de sortie, la matrice de sortie, C, est constituée de la matrice iden-
tité, I ∈ R3×3, en supposant une architecture de rétroaction d'état. La matrice d'avance, D,
est supposée nulle. Après avoir évalué l'exactitude du processus d'approximation, le domaine
d'application original du modèle quasi-LPV a été cartographié dans le nouveau polytope con-
vexe, Θ̂, dé�ni par les fonctions de plani�cation : ρ̂1(V, h) ∈ [0.4, 2.9]×104, ρ̂2(α, V, h) ∈ [0.05,
0.55], et ρ̂3(α, V, h) ∈ [−1, 4.1].
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Chapitre 3 : Conception de l'Autopilote LPV de Tangage

La synthèse des contrôleurs LPV repose sur la résolution de problèmes d'optimisation convexes
formulés sous forme d'inégalités matricielles linéaires (LMIs). En imposant une relation a�ne
entre le modèle et les paramètres, l'optimisation peut être résolue dans un sous-espace convexe
(polytope) dé�ni par les plages de variation du paramètre. En exploitant la variation linéaire
du paramètre, la conception garantit des garanties de stabilité dans tout le polytope. Une
autre approche consiste à discrétiser l'espace de variation des paramètres en un ensemble �ni
de conditions de conception (gridding), tout en tenant compte du taux de variation de chaque
paramètre pour améliorer les performances du contrôleur. Ces approches ont été utilisées pour
synthétiser un pilote automatique LPV pour la dynamique de tangage du projectile.

En ce qui concerne l'approche polytopique, les conditions du problème d'optimisation LMIs
doivent être satisfaites uniquement aux sommets de l'espace convexe dé�ni par les plages de
variation des fonctions de plani�cation. Les principaux avantages de cette approche reposent
sur le nombre réduit de conditions à satisfaire simultanément et sur les garanties accrues
de stabilité quadratique dans tout le domaine couvert par le polytope convexe. Le principal
inconvénient réside dans le conservatisme qui a�ecte le processus d'optimisation, car la solution
est basée sur une fonction de Lyapunov indépendante des paramètres. A�n d'améliorer les
performances de l'optimisation, une analyse dédiée est développée pour optimiser la dimension
du polytope, en négligeant toutes les conditions opérationnelles qui n'appartiennent pas à
l'enveloppe de vol du projectile. L'analyse a permis de dé�nir un polytope de dimensions
réduites, Θ̂R, en ajustant les plages de variation des fonctions de plani�cation comme suit :
ρ̂1 ∈ [0.4, 2]× 104, ρ̂2 ∈ [0.05, 0.35], et ρ̂3 ∈ [−1, 2].

La conception du contrôleur polytopique résultant était basée sur le schéma de la Figure
3, en supposant le critère d'optimisation H∞. La conception vise à améliorer la robustesse du
contrôleur, en tenant compte d'un ensemble de sources internes et externes de perturbation
(di, do), et de la capacité à suivre un signal de guidage de référence, r, en imposant un modèle
de référence, fref, et un ensemble de �ltres de pondération de performance, (Wr, We, Wu,
Wdi, Wdo). La dynamique des actionneurs, Tact, est également incluse dans la conception du
contrôleur.

We Wu

α

e δ̇q,cmd

z1 z2

r

+
-

+

di

Wdi

+

qdev
δq,dev

Wdo

+do

Wr

z3

+

fref
+
-

α

er

Tact

ΣPY(ρ̂)

KPY(ρ̂)

Figure 3 : Architecture du schéma de conception polytopique.
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La deuxième approche repose sur la discrétisation (gridding) de l'espace de variation des
variables de plani�cation en une grille �nie de conditions de vol. L'optimisation LMI dé�nis-
sant la synthèse du contrôleur est calculée à chacun des points de conception sélectionnés. En
conséquence, la complexité computationnelle a�ectant l'optimisation dépend fortement de la
dé�nition de la grille. Cependant, la solution du problème LMI est basée sur des fonctions de
Lyapunov dépendantes des paramètres, ce qui o�re de meilleures performances d'optimisation.
Pour limiter la complexité computationnelle, une analyse exhaustive de l'enveloppe de vol
discrétisée a ciblé les propriétés de stabilité du système et les performances de trajectoire
souhaitées. L'analyse visait à trouver une dimension de grille optimale en équilibrant la com-
plexité computationnelle et les garanties de stabilité. De plus, la paramétrisation des fonctions
de Lyapunov a été étudiée pour modéliser la dépendance des fonctions sur chaque variable de
plani�cation. Les résultats de l'analyse fournissent les plages de variations discrétisées suiv-
antes : αgrid = [1, 5, 8, 13] degrés, V grid = [180, 200, 240, 270] m/s, et hgrid = [3, 6, 9, 12, 14.5]

km, tandis que les fonctions de Lyapunov ont été formulées comme suit :

X(ρ) = Y (ρ) = X0 +Xα,1 sinα+Xα,2 cosα+XV V +Xhh.

La conception du contrôleur LPV/H∞ a été basée sur le schéma de la Figure 4 et a été
calculée sur l'espace de grille résultant, Ξ, composé de ng = 80 points de vol. Les taux de
variation de chaque variable de plani�cation ont été dé�nis comme suit : α̇grid ∈ [−30, 30]

deg/s, V̇grid = [−50, 50] m/s2, et ḣgrid = [−100, 100] m/s.

La conception polytopique est basée sur une approximation supplémentaire de modélisa-
tion, introduisant des sources indésirables d'incertitudes. Cependant, l'approche polytopique
garantit des propriétés de stabilité robustes supérieures dans tout l'espace convexe. En ce qui
concerne la conception basée sur la grille, des garanties de stabilité robustes ne sont fournies
qu'à proximité des points de conception. D'autre part, les performances d'optimisation atten-
dues étaient con�rmées à la fois par les résultats de γ∞ inférieurs et par l'e�ort de commande
réduit requis pour les actionneurs. Du point de vue de la complexité, la synthèse du con-
trôleur était basée sur la sélection de plusieurs paramètres de réglage (ng, fB), nécessitant
le développement d'une analyse dédiée chronophage. En�n, la mise en ÷uvre du contrôleur
basé sur la grille, KGR, repose sur l'interpolation de 80 réalisations locales LTI, comparé aux
8 réalisations locales LTI requises par le contrôleur polytopique, KPY.

We Wu
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Figure 4 : Architecture du schéma de conception basé sur la grille.
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Chapitre 4 : Évaluation des Performances

Les procédures standards de conception de contrôle visent la stabilité nominale (NS) et les per-
formances (NP) du système en boucle fermée. Toutefois, les perturbations possibles peuvent
dévier la dynamique du système de ses conditions nominales. La performance des contrôleurs
polytopique, KPY, et basé sur la grille, KGR, a été examinée face à diverses perturbations et
incertitudes du modèle. Une première analyse de robustesse a évalué les marges de stabilité
des fonctions de transfert entrée/sortie pour chaque système.Comme les modèles quasi-LPV
et polytopiques sont des systèmes à entrée unique et à sortie multiple, le calcul des marges
de disque est préféré aux dé�nitions standard des marges de gain et de phase. Les résultats
montrent de larges marges de sortie pour la dynamique des première et troisième voies (α̇ et
δ̇q,dev), mais des faiblesses potentielles sont apparues pour la deuxième voie (q̇).

Les marges de stabilité fournissent des conditions nécessaires mais pas su�santes pour
évaluer la robustesse du système et peuvent conduire à une analyse très conservatrice. Ainsi,
les performances des contrôleurs ont été testées plus avant à travers une analyse de sensibilité
µ, visant la robustesse par rapport aux incertitudes paramétriques structurées du système.
Un ensemble de paramètres a été sélectionné en fonction de l'e�et de leur variation sur la
stabilité de la dynamique du système. L'ensemble d'incertitudes comprend une sélection de
paramètres aérodynamiques, chacun associé à une plage de tolérance estimée (exprimée en
pourcentage d'incertitude). Cependant, en raison de la complexité excessive de la formulation
numérique, les incertitudes paramétriques individuelles ont été modélisées comme des pertur-
bations globales a�ectant chaque entrée de la représentation de l'espace d'état du système.
L'analyse µ réalisée sur l'ensemble dédié d'incertitudes a révélé des propriétés de stabilité ro-
buste et de performance robuste satisfaisantes des systèmes en boucle fermée polytopique et
basé sur la grille par rapport aux incertitudes paramétriques. Le pourcentage d'incertitude du
système que le contrôleur polytopique peut gérer est plus élevé par rapport au contrôleur basé
sur la grille, en cohérence avec les garanties théoriques de stabilité fournies par la synthèse
polytopique.

Figure 5: Comparaison des simulations : performances de la trajectoire.
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(c) (d)

(e) (f)

Figure 6: Trajectoires nominales et perturbées respectivement liées aux : (a)-(b)
contrôleur polytopique ; (c)-(d) contrôleur basé sur la grille.

En�n, les performances des contrôleurs ont été testées par rapport à l'e�et des perturba-
tions variant dans le temps. Une première série de simulations de suivi de trajectoire nominale
a été réalisée en mettant en ÷uvre les contrôleurs dans un environnement de simulateur non
linéaire 6-DoF. Les simulations ont permis d'identi�er la vitesse de tir et l'angle d'élévation
optimaux (939 m/s, 60 deg). Dans un deuxième temps, des perturbations dues au vent ont
été incluses dans les scénarios de simulation sous forme de turbulences continues et de pro-
�ls de vitesse de rafales de vent discrètes. La comparaison des trajectoires dans la Figure 5
montre comment les perturbations dues au vent a�ectent la capacité de portée du projectile
en réduisant légèrement la distance maximale atteignable. De plus, les résultats de la Figure
6 con�rment la robustesse des contrôleurs polytopique et basé sur la grille dans la gestion des
oscillations de signaux importantes générées par la turbulence du vent. Malgré les oscillations,
les systèmes parviennent à suivre avec succès le signal de AoA de guidage de référence sur
toute la trajectoire. En ce qui concerne le contrôleur polytopique, les trajectoires des fonctions
de plani�cation perturbées se situent dans l'espace convexe utilisé lors de la synthèse du con-
trôleur, assurant ainsi la stabilité du système en boucle fermée même en présence de signaux
de perturbation importants. Le contrôleur basé sur la grille a également réussi à préserver
la stabilité du projectile sur toute la trajectoire, même si les paramètres de vol obtenus sont
généralement a�ectés par des oscillations plus importantes autour de leurs valeurs nominales.
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Conclusions et Perspectives

Cette thèse a étudié l'utilisation des techniques à paramètres linéaires variant (LPV) pour la
modélisation et la conception de contrôle d'un nouveau concept de projectile guidé à longue
portée (LRGP). Le développement d'une munition à portée étendue vise à combler l'écart
technologique entre les projectiles balistiques/guidés lancés par canon standard et les appli-
cations de missiles à propulsion par fusée plus sophistiquées. Une contribution importante
réside dans la caractérisation de la dynamique de vol/aérodynamique du nouveau concept de
projectile et dans la proposition d'une procédure complète dédiée à la reformulation du modèle
LPV. De plus, l'utilisation réussie de di�érentes approches de conception de contrôle basées
sur LPV (polytopique, basée sur grille) a con�rmé les avantages fournis par le cadre LPV
pour ces technologies spéci�ques, malgré la quantité limitée d'applications proposées dans la
littérature.

Les résultats obtenus à travers les processus de modélisation LPV et de conception de
contrôle suggèrent également plusieurs points d'amélioration possibles :

❖ Régression Aérodynamique : Le modèle aérodynamique pourrait être davantage
développé en exploitant la dépendance des coe�cients aérodynamiques par rapport à la
variation de Mach.

❖ Variables de Référence : Le choix de l'angle d'attaque aérodynamique (AoA) comme
variable de plani�cation représente un choix assez inhabituel car des mesures précises
nécessitent une instrumentation dédiée. La reformulation du modèle de vol du projectile
en termes de dynamique d'accélération pourrait simpli�er le processus de mise en ÷uvre.

❖ Approche de Modélisation LPV : Des techniques de modélisation alternatives pour-
raient être envisagées pour assouplir les contraintes imposées par l'approche de trans-
formation d'état.

❖ Dé�nition du Polytope : Une reformulation de la forme du polytope pourrait améliorer
les performances de la conception du contrôle. Cela pourrait être réalisé en changeant
de variables, en dé�nissant le polytope autour de la trajectoire prévue du projectile.

❖ Sélection de la Grille : L'utilisation des fonctions MATLAB LPVTools pour la con-
ception impose la dé�nition d'une grille rectangulaire/cubique, ce qui peut entraîner
l'inclusion de conditions de vol indésirables. Une reformulation appropriée du problème
d'optimisation des LMI pourrait permettre de relâcher les contraintes de forme imposées
par LPVTools.

❖ Contrôleur Latéral : La modélisation LPV et la conception de contrôle pourraient
être étendues pour tenir compte de la dynamique de roulis et de lacet du projectile,
permettant la mise en ÷uvre d'une stratégie de vol complète de virage sur l'aile.
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Introduction

Contextualization

The Advent of Guided Missiles Technologies

The development of sophisticated missiles (ballistic and cruise) and artillery munitions tech-
nologies has represented a statement of power since their early design. Ballistic missiles are
generally rocket-propelled only in the initial ascending phase of their trajectory (boost), be-
tween the launch to the apogee stage. They can be considered a range and power extensions of
standard cannon-launch artillery munitions in reason of the larger dimensions and the capabil-
ity to deliver di�erent payload (explosive, nuclear, chemical, and biological warhead). Cruise
missiles are powered by air-breathing jet engines along the entire �ight, and are characterized
by a lower regime (subsonic or transonic) atmospheric �ight, relying on aerodynamic lift for
trajectory �ight control.

With the beginning of World War II, a signi�cant e�ort has been dedicated to the en-
hancement of missiles' accuracy and range performance. The �rst employment of jet-propelled
missiles, such as the German Vergeltungswa�en-1 (V-1 cruise missile) ([Gil44]; [Zal11]) and
Vergeltungswa�en-2 (V-2 ballistic missile) ([Dor63]; [Zal13]) in 1944�1945, with an operat-
ing range of about 300 km, initiated a new rush for the technological supremacy among the
most in�uential nations, leading to the development of the Sovietic R-1 SS-1 Scunner (300
km range) in 1958, and the �rst multistage intercontinental ballistic missile (ICBM) R-7 Se-

myorka (8000 km range) in 1957 ([Afa98]). As a response, between 1959 and 1965, the US
short-range ballistic missile (SRBM) MGM-52 Lance ([Gro17]), the medium-range ballistic
missile (MRBM) PGM-19 Jupiter, and the intermediate-range ballistic missile (IRBM) PGM-
17 Thor ([CA91]) became operational, followed by the series of ICBM missiles SM-65 Atlas

D-E and F (12000 km range) ([Sor60]; [Genb]; [Gena]), and the SM-68 Titan I-II (10000 km
range) ([Stu00]). Meanwhile, similar short-range weapons were tested in France (AMX 30
Pluton missile ([Gal76])), in the Soviet Union (SS-21 Scarab [PS90]), and China (SRBM SS-2,
MRBM CSS-1, IRBM CSS-2, and ICBM CSS-4 Dong Feng series ([Pra89])).

During the Cold War, range capability represented a core deterrent of power balance,
resulting in the design of increasingly sophisticated weapons, such as the series of ICBM
LGM-30 Minuteman I, II, III between 1962-1975 ([MC65]; [Hee12]), providing a maximum
operating range of 13000 km, and equipped with an inertial navigation system (INS). The
limited accuracy of early guidance technologies was soon balanced through the deployment
of large-scale warheads (weapons of mass destruction (WMD)), ensuring the accomplishment
of extremely long-range missions. The intensi�cation of global tension around WMD employ-
ment lead to the establishment in 1987 of the Missile Technology Control Regime (MTCR)
([Ozg94]), with the core intention of limiting the proliferation of missile technologies, espe-
cially towards nuclear weapons development. The negotiations between the US and the Soviet
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Union, o�cially referred to as the Strategic Arms Limitation Talks (SALT I-II) ([Sma70])
held between 1969-1979, culminated in the Intermediate-Range Nuclear Forces Treaty (INF)
of 1987 ([Kno93]), with the intent to limit the employment of nuclear warheads. Between
1991-1997 the Strategic Arms Reduction Treaty START I-II-III ([OPB96]) began the process
of nuclear demilitarization, �nalized with the Strategic O�ensive Reductions Treaty (SORT)
of 2002 ([WFAT03]). These international agreements have been later renovated in 2010 with
the New Strategic Arms Reduction Treaty (New START), stipulated between the Russian
Federation and the US. However, the interest of the most in�uential nations to maintain a
dominant role in geopolitical warfare often resulted in the refusal of treaties concerning the
limitation of weapons range and power capability. Recently in 2023, with the begin of the war
between Russia and Ukraine, Russia declared the suspension of its participation in the New
START ([Bug23]).

The limitation imposed by the international treaties encouraged focusing the attention
on the development of shorter-range tactical missile programs. Additionally, the accuracy
and precision enhancements guarantee higher on-target e�ectiveness in military o�ensive and
interception missions, and consequentially signi�cantly lower operating costs. The advent of
more advanced guidance technologies boosted the employment of ballistic missiles and cannon-
launched artillery munitions as conventional weapons. Early trajectory-tracking guidance
strategies were accomplished through radar or optical measurements from the launch site,
while radio or laser control commands were transmitted by a ground operator. Guidance
accuracy improved through the employment of television cameras and laser beams for target
interception. In the 1950s, INSs began to be installed on long-range ballistic missiles, and
later on tactical artillery-guided munitions in the 1970s, through the development of more
advanced and cheaper electronic components.

Inertial navigation relies on the employment of accurate gyroscope and accelerometer mea-
surements to estimate the position, heading, and velocity of missiles along their trajectory.
The absence of electronic emissions in INSs represented a core advantage compared to alter-
native technologies, being more di�cult to be identi�ed. In 1986 the Minuteman IIIs were
replaced by the more advanced US MX Peacekeeper missile ([Mac87]), equipped with INSs
and an exterior celestial navigation system that used the stars or satellites as a reference
to estimate the missile's position. The TERrain COntour Matching navigation technique
(TERCOM) ([Gol80]) was later employed on the submarine-launched cruise missile (SLCM)
Tomahawk and on its ground-launched versions (GLCM), the BGM-109G Gryphon ([Kop05]),
where trajectory corrections were evaluated by means of digitalized contour maps obtained
from radar measurements. Modern navigation systems incorporate advanced Global Naviga-
tion Satellite Systems (GNSSs) tracking technologies as the Global Positioning System (GPS),
or the Global Navigation Satellite Systems (GLONASS), to complement the performance of
standard INSs. Infrared seekers, radar, and optical gyroscopes generally provide more precise
information during on-target fast-homing maneuvers.



Introduction 3

The Development of Precision Guided Munition

The �rst examples of precision guided munition (PGM) or `smart munition' can be traced
during World War II in the German radio-controlled gliding bomb Ruhrstahl SD1400X (Fritz
X ) ([PP97]), employed in parallel with the V-1 and V-2 missiles by the Luftwa�e to hit en-
emy battleships. The proven e�ectiveness in the battle�eld, in contrast with the standard
unguided weapons, encouraged the broadening of PGMs to more versatile ground launchers
as tank, mortar, and howitzer (such as the U.S. M109A6/A7 Paladin and the French Camion
Équipé d'un Système d'Artillerie (CAESAR)). In addition, the constraints imposed in the
1970s with the SALT I, and advances in microprocessors and microelectronics development
increased the interest in cannon-launched ammunition characterized by appealing lower pro-
duction costs and increasingly higher performance in terms of accuracy and operating range.
Di�erently from most of the long-range ballistic missiles, guided munition trajectories lie in
the lower atmosphere and rely on aerodynamic lift-based corrections imposed through the
employment of aerodynamic surfaces (tail-�ns/rudders, nose-mounted canards, wings-�aps,
and elevators) ([CA00]; [DM08]; [SC10]; [Fre11]; [CFC12]). This solution provides with higher
control authority for the autopilot design, as well as a continuous-time trajectory correction
[Wr98] compared to more complicated systems relying on thrust vectoring ([JC01]; [GC02];
[BPC02]; [CWB11]), or inertial e�ectors ([Mur78]; [HJ89]; [FC06]; [RC08]).

The airframe stability of aerodynamic-controlled ballistic munitions is generally addressed
at the design stage by selecting among two main approaches: spin-stabilization or �n-stabilization.
The former architecture takes advantage of the aerodynamic forces and moments generated
by the high spin rate characterizing the body roll axis, which is transmitted to the projec-
tile at the �ring stage. A relevant advantage of spin-stabilized technologies relies on the
possibility of retro�tting existing unguided munitions with course-corrected fuzes (CCFs) to
implement guidance and control strategies. Successful applications correspond to the U.S.
ATK's M1156 Precision Guidance Kit (PGK) ([PBC07]; [Sto08]), the French Système à Pré-
cision Améliorée par CInémomètre DOppler (SPACIDO) ([Cam07]), the U.K. Smart Trajec-
tory Artillery Round (STAR) ([GL08]; [GL09]), and the European Correction Fuze (ECF)
([Per11]). In the last decades, relevant research contributions have been carried out also at
the French-German Research Institute of Saint-Louis (ISL) through the studies of Course
Correction Fuze (CCFus project) projectile systems ([TW11]; [TMW11]; [TSW15]; [Sev+17];
[Tha+19]; [Tip+20]; [Pin+22]). Nevertheless, the spin-stabilized architecture presents signif-
icant drawbacks deriving from the high spin rate characterizing the projectile. Indeed, the
spin generates undesired nonlinear couplings between the normal and the lateral axes dy-
namics ([LB79]), which can represent a non trivial challenge to face during the �ight control
design. Additionally, spin-stabilized projectiles generally su�er from a limited operating range,
depending on the capability of the �ring gun and the �ring conditions.

The aerodynamics of �n-stabilized munitions is closer to standard ballistic missiles, where
the employment of a non-spinning concept reduces the highly nonlinear dynamics generated by
the aerodynamic coupling terms, simplifying the general �ight dynamics modeling stage. How-
ever, it requires speci�c tail-�ns con�gurations for stability augmentation, which can increase
the design and development expenses. Several applications have been already proposed by
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di�erent countries, such as the U.S. laser-guided artillery round M712 Copperhead ([MA77];
[NPM79]), the more recent 155 mm GPS-guided munition M982 Excalibur ([Wel00]), the
XM395 Precision Guided Mortar Munition (PGMM) ([Mal+08]), the Italo-German long-range
GPS/IR guided munitions Vulcano (B-C), the French semi-active laser guidance kit under the
Metric Precision artillery Ammunition demonstrator (MPM) program, and the Russians 120
mm guided mortar weapon system KM-8 GRAN and laser-guided projectile 30F39 Krasnopol
([Gra05]). The autopilot design of �n-stabilized munitions can be generally performed sepa-
rately for each single axis ([Bla91]), and the projectile aerodynamics is generally less a�ected
by large and rapid variations of the �ight parameters.

The continuous development in guided munitions technologies observed in the past decades
has been boosting the research competition between the most in�uential countries worldwide.
The further enhancement of the range and accuracy performance, under the minimization of
the development design costs (e.g. the avoidance of any modi�cations of the existing �ring
guns), implies the investigation of innovative aerodynamic con�gurations and �ight control
strategies. A promising solution could be identi�ed in a novel �n-stabilized architecture with a
reduced number of control actuators, investigated at ISL, aiming to ameliorate the range capa-
bility through a gliding steered �ight. Early studies have revealed the advantages provided by
�n-stabilized design compared to spin-stabilized systems ([Cha+17]), suggesting the employ-
ment of glider-like projectile con�gurations in combination with Bank-To-Turn (BTT) �ight
strategies. Interesting properties of the analyzed concept derive from selecting a reduced set of
control actuators, leading to an asymmetric canards/�ns con�guration ([Fre11]; [CFC12]) and
a predominant statically unstable behavior. Additionally, recent research on long-range guided
projectiles ([Vas+20]) underlined the impact of the canards/�ns con�guration, aerodynamics
modeling, and guidance development on the overall range capability.

Guided Munitions Design

The Guidance, Navigation & Control Design Loop

The design of guided weapons consists of the de�nitions and cooperation of three di�erent
functionality: Guidance, Navigation & Control (GNC). The standard GNC double-loop im-
plementation is represented in Figure 1. A faster inner loop updates the control commands
evaluated by the autopilot based on the information provided by the navigation algorithm,
while a slower outer loop updates the reference signals generated by the guidance law to
accomplish the requirements of the mission.

Guidance. Consists of optimization algorithms that determine the reference signals that
have to be followed by the vehicle to accomplish a prede�ned objective, depending on the
selected mission. The guidance law relies on the information provided by the navigation sys-
tem in terms of available measurements or estimated parameters, determining the current
state of the vehicle. Guidance systems di�er generally by the technology they rely on and
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the type of target they aim to. Classical approaches implement onboard guidance computers
(called `homing' guidance) to hit moving targets through proportional navigation principles
([Gue71]; [KPT13]), or active/passive homing systems employing radar and infrared seekers
([Wal02]; [VM82]). When aiming at a �xed target, no trackers are generally required and the
information on the target positions is known a priori. In this scenario, navigational guidance
systems provide a continuous self-evaluation and correction of the vehicle trajectory based on
the known location of the target. Typical examples are the aforementioned inertial guidance
(employing gyroscopes and accelerometers) ([Bra+13]), astro-inertial guidance (based on ce-
lestial navigation [AZF06]), and terrestrial guidance (as the TERCOM [Gol80]). Additionally,
guidance laws can be categorized w.r.t. the speci�c phase of the trajectory they are engaged
for (mid-course guidance, terminal guidance), characterized by di�erent objectives (e.g. range
optimization, target interception) and reference signals (e.g. accelerations, body rates).

Navigation. Implements sophisticated algorithms for an accurate estimation of the current
state of the vehicle in time (in terms of position, heading, velocity). Navigation systems rely
on the available sensors' measurements relative to �xed/relative reference targets or track the
relative position from a priori known point. Additionally, advanced algorithms are generally
developed to estimate unmeasured information, based on sensor data fusion (as in Kalman
�lters [Her17]). A typical technology embedded in ballistic missiles consists of inertial mea-
surement units (IMUs) allowing for inertial dead-reckoning navigation strategies, where the
position is estimated through inertial acceleration measurements ([OFS98]; [Tit+04]). More
advanced navigation systems employ GNSS, radar, and infrared measurements, depending on
the operational requirements of the vehicle ([Ohl+97]; [Qua+15]). Sensor data fusion algo-
rithms represent a common strategy often used also to correct individual measurements from
external noise sources.

Control. The control design accounts for the current state information provided by the
navigation systems to determine the optimal control actions to be set on the available actuators
thus to implement the desired guidance strategy. In early guided systems, the control actions
were performed by ground operators at the launch site, and transmitted to the vehicle by means

Fast
Loop

Dynamics

System
Guidance

Navigation

Slow
Loop

Commands

Measurements

Mission
Objectives

Control

Figure 1: Guidance, Navigation, and Control (GNC) double-loop design.
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of radar or laser signals. With the advent of electronic embedded systems, onboard autopilots
have been designed to implement completely autonomous or semi-autonomous guided vehicles.
The autopilot design relies on the development of dedicated control-oriented models of the
system dynamics, characterizing the stability and performance of the system. The amount
and the type of actuators installed on the system, determine the allocation strategy (static
or dynamic) selected to implement the control command. This aspect strongly a�ects the
capability of the system to perform certain maneuvers (control authority), and consequently
the overall optimal control law design.

Autopilot Design Approaches: the Gain-Scheduling Control Strategy

Concerning aerospace applications, modeling and control design has always represented a
tedious process to be accomplished. The high non-linearity characterizing vehicles' �ight
dynamics and the large variety of operational parameters to account for increase signi�cantly
the complexity of the design. Thus, an exhaustive analysis of the behavior of the system under
investigation is required. Indeed, the derivation of an e�ective control law strongly relies on the
accuracy of the model selected to represent the system dynamics. Nonetheless, the complexity
of the control-oriented model a�ects the selection of the most appropriate control approach
and eventually the numerical burden of the controller implementation. Thus, a proper trade-
o� between complexity and accuracy needs to be achieved. Furthermore, dealing with missile
and projectile technologies implies a generally limited availability of control e�ectors (and
related authority), combined with a larger variation of the �ight parameters characterizing
the typical ballistic trajectory, exploding the complexity of the overall design process.

Aiming to withstand a wide set of �ight conditions, the operating domain of ballistic
missiles and projectiles is composed of a selected set of parameters such as Mach number,
M, altitude, h, and angle-of-attack (AoA), among others. The resulting subspace of the �ight
envelope is represented as a grid of targeted operating points, as shown in Figure 2(a). Several
control design approaches can be employed for autopilot synthesis at the targeted conditions.
Nonlinear techniques based on feedback linearization gained popularity in the last decades
in reason of the possibility to directly account for the nonlinearities of the system dynamics.
Nonlinear dynamic inversion (NDI) methods have been successfully used on a wide range
of missile and projectile applications ([Tip+20]; [Pin+22]; [Pin+23]; [P�12]) in combination
with adaptive and robust approaches, depending on the addressed scenario. However, the
linear time-invariant (LTI) framework still provides a broader range of design techniques and
analysis tools, thanks to the intrinsic properties characterizing linear system theory. In order
to exploit these properties, the nonlinear dynamics of �ying vehicles is commonly linearized
at targeted �ight conditions (series expansion linearization), resulting in a collection of local
linear representations of the original model. This method allows for employing linear control
design techniques for autopilot synthesis.

In this context, a well-established strategy consists of decomposing the overall control task
into the design of local LTI controllers at each local linearization of the original nonlinear
dynamics. The resulting set of local LTI controllers can be easily implemented through the
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Figure 2: Gain-scheduling: (a) �ight envelope parametrization; (b) controller, K,
linear interpolation.

de�nition of a dedicated scheduling strategy, which allows selecting the most appropriate con-
troller at any operating condition. The most traditional scheduling strategy relies on the linear
interpolation of the local controllers' static gains, referred to as the gain-scheduling approach.
As shown in Figure 2(b), depending on the �ight parameters designated as scheduling vari-
ables, a controller, K, is obtained at any �ight conditions in the operating envelope as the
linear interpolation between the designed set of local LTI controllers ([HG93]; [NRR93]). A
relevant advantage related to this strategy consists of the possibility of employing any control
technique for the design of the local controllers. First developed in the 1960s the gain-scheduled
control became a popular strategy in the 1990s ([SA90]; [Rug90]; [LL00]; [RS00]), leading to
successful applications in the aerospace environment. Concerning the military sector, early
examples of gain-scheduling design can be traced in the Nike Ajax missile, where the gain of
the �n control system and roll autopilot were scheduled via dynamic pressure measurements,
or the Talos missile ([Pad82]), implementing an altitude-based gain-scheduling system.

In the last decades, several missile/projectile technologies have relied on the gain-scheduling
strategy, in reason of its high versatility to be complemented with advanced design approaches
and implementation ease. InterestingH∞-based applications can be found in [LSZ14]; [LSZ16],
and in [BGL22]; [GB22]; [GA13] where alternative tuning approaches are proposed to opti-
mize the control design process. Signi�cant contributions have been investigated also at ISL
through the development of gain-scheduled strategies for robust H∞ autopilot design ([TD09];
[TSW15]; [TP21]; [Str+18]; [ST19]), loop-shaping techniques ([Sèv+14]; [Sè+17]), and anti-
windup strategies ([Tha+20]; [Tha+23]).
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Thesis Motivations

Despite a broad range of successful applications, gain-scheduling design has been proven to
present important theoretical and practical limitations, which are discussed in the following:

I. Accuracy. From the modeling perspective, standard linearization-based gain-scheduling
design is performed on a collection of LTI local linearizations of the original nonlinear
system dynamics, at selected operating conditions (equilibrium points or trajectories).
As a consequence, the linearized models provide only locally reliable representations of
the nonlinear system, leading to the possible loss of important information regarding
the system's transient behavior. Alternative approaches, implementing a velocity-based
linearization, attempted to partially preserve the dynamic properties of the nonlinear
system ([LL98]).

II. Stability. Concerning the control design, several approaches can be employed for the
synthesis of local controllers based on the set of LTI linearizations of the system dynam-
ics. However, in reason of the local validity of the LTI models, the obtained controllers
ensure only local closed-loop stability guarantees in the vicinity of the selected �ight
points. Thus, no a priori guarantees about the stability and the performance of the
local controllers' interpolation are provided at generic �ight conditions across the enve-
lope. Typical solutions to this problem rely on frozen-time theory, where the variation
of the scheduling parameters across the equilibrium points is assumed `slow enough'
such that local stability properties are preserved ([KK91]; [LR90]). However, the slow-
variation assumption can be extremely conservative for many application scenarios, since
the guaranteed stability properties correspond to the worst-case robustness of the overall
collection of LTI local systems ([SA90]; [SA92]).

In the aerospace sector, a widespread design solution consists of extending the linearization
on a dense grid of conditions, and a posteriori, testing the controller robustness on a much
denser grid. Nevertheless, this process requires time and high computational power since it
generates a large number of local controllers to be implemented for the interpolation.

In the last decades, the linear parameter-varying (LPV) framework has attracted increasing
interest in the modeling and control of a wide range of aerospace applications. Early studies
in the 1990s proposed the LPV modeling approach as a perfect match for the gain-scheduling
control design technique, leading to relevant contributions concerning missile ([SC93]; [CS96];
[PPV01]; [TPB00]) and aircraft ([Bal+97]; [YWA13]; [HSB14]) applications. Di�erently from
linearization-based approaches, the LPV gain-scheduling design directly targets the synthesis
of the overall controller, providing closed-loop stability properties in a global sense. Fur-
thermore, LPV/quasi-LPV models can account for the time variations of a selected set of
parameters, which results into a higher capability in capturing the nonlinear system dynamics
([MB04]; [PH11]; [PVR12]). The LPV controller synthesis is achieved through the resolution
of an optimization problem formulated as a set of linear matrix inequalities (LMIs). The
problem formulation can be accomplished either by exploiting the features of parameter-a�ne
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systems, or by discretizing the parameters space by means of a gridding process. The for-
mer solution (polytopic) provides higher guarantee of quadratic stability of the closed-loop
system, at the expenses of more conservative performance ([ABG95]; [AGB95]). The latter
(grid-based) stands as a natural extension of the standard gain-scheduling design to the LPV
framework, providing signi�cant performance together with higher implementation complexity
and lower global stability properties ([WPB95]; [Wu+96]).

Several studies have also focused on the investigation of guided projectile technologies.
LPV modeling has been coupled with H∞ robust control design for spin-stabilized ([Sèv+14];
[The+13]; [TSW15]; [The+10]), and �n-stabilized ([Str+18]; [ST19]) projectiles' architectures.
However, the LPV models were generally obtained as a family of local linearizations of the
original nonlinear dynamics, while the control strategy relied on standard gain-scheduling
autopilot interpolations. Only recently, an LPV approach has been developed in the frame-
work of model predictive control (MPC) ([BG22]). The proven advantages characterizing the
LPV class of systems, in contrast with the still limited amount of applications concerning
guided munitions design, open several opportunities for further investigations. Additionally,
the development of more sophisticated algorithms and more powerful tools for the resolution
of complex LMIs optimization problems allows the design of controllers of increasing perfor-
mance.

The above introduction consists of a non-exhaustive overview of the state-of-the-art con-
cerning aerospace control technologies and LPV design applications. A dedicated discussion
is provided in the introduction of each chapter of the manuscript.

LRGP Project and Thesis Objectives

The proposed thesis is part of the Long Range Guided Projectile (LRGP) contract de subven-
tion (CS) begun in 2018 as a collaboration between the Direction Générale de l'Armement
(DGA) and the French-German Research Institute of Saint-Louis ([Mar+18]; [Lib+19]; [Lib+20];
[Lib+21]). The core intent of the LRGP project relies on the range enhancement of standard
low-cost 155 mm artillery projectiles, accounting for the minimization of the necessary time
of �ight. In this context, the thesis focuses on the projectile �ight dynamics modeling and the
LPV-based autopilot design, employed during the guided phase of the projectile trajectory to
track a range extension guidance law. The main objectives of the thesis can be summarized
as follows:

❖ Flight dynamics modeling of the new LRGP concept, including a complete aerodynamic
characterization of the projectile.

❖ Development of a 6-DoF nonlinear simulator environment to test the performance of the
projectile in multiple operating �ight scenarios.

❖ Derivation of the LPV-based control-oriented model design of the projectile nonlinear
dynamics without employing local linearization-based techniques.
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❖ Investigation of di�erent LPV-based robust controller design approaches for the de-
velopment of a gliding phase autopilot, providing stronger guarantees of stability and
performance compared to standard LTI gain-scheduling techniques.

❖ Implementation of a range extension guidance law based on a BTT �ight strategy to
improve the operating performance of the projectile.

❖ Assessment of the performance and the robustness of the designed autopilot in the
nonlinear simulator through realistic operating scenarios.

Thesis Contributions

The project investigates the complete characterization of a new concept of guided projectiles
studied at the Institute of Saint-Louis, addressing both the modeling and the control design
stages. Particular focus is dedicated in the linking process among the two design stages, where
the requirements of various autopilot design approaches are targeted from the system modeling
perspective. The main contributions achieved during the development of the project can be
summarized in the following categories:

LPV-based Flight Dynamics Modeling Contribution

I. LRGP �ight dynamics and aerodynamics modeling. The �ight dynamics model
of a new concept of long range guided projectile was derived starting from the stan-
dard aerospace theoretical formulation, and implemented in a complete simulator en-
vironment. In particular, the full characterization of the projectile's aerodynamics has
resulted in the proposition of a novel ad-hoc designed aerodynamic model which accu-
rately represents the projectile's behavior across a large envelope of �ight conditions.

The complete formulation of the projectile nonlinear dynamics, including a dedicated
section concerning the aerodynamics analysis and modeling process, is presented in
Chapter 1.

II. LPV modeling process of nonlinear �ight dynamics. A relevant aspect exhaus-
tively discussed during the project consists of the non-trivial process of reformulation of
the highly nonlinear projectile dynamics model as an accurate LPV system. Depending
on the selected approach, multiple LPV models can be obtained from the same nonlinear
system, exploiting di�erent properties and features. Thus, a careful selection of the most
appropriate varying parameters to be accounted for requires an accurate analysis of the
system's behavior combined with the prior de�nition of the control design objectives.

The LPV modeling design of the projectile nonlinear dynamics is discussed in Chapter
2, where the employment of the state transformation approach allows deriving a reliable
LPV model of the projectile pitch channel dynamics.
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LPV-based Flight Control Design Contribution

III. Polytopic LPV H∞ control design for guided projectiles. The polytopic approach
represents a well established LPV control design technique that has been employed for
various applications to overcome the limitations of the standard LTI gain-scheduling
design strategy. In the aerospace environment it has shown successful results in the
autopilot synthesis for several applications. However, few investigations have dealt so
far with trajectory tracking scenario of guided projectiles, covering a large range of
�ight conditions. Indeed, the conservativeness characterizing the polytopic formulation
requires an accurate modeling and control design to ensure stability and satisfactory
performance across the entire �ight envelope targeted in the polytope de�nition.

The polytopic model analysis and formulation is presented in details in Chapter 2,
while Chapter 3 discusses the corresponding autopilot design and robustness properties.
Additionally, a robustness analysis and trajectory tracking simulations are proposed
in Chapter 4 to assess the performance of the controller in the nonlinear simulator
environment.

IV. Uneven grid-based LPV H∞ control design for guided projectiles. LPV grid-
based design consists of a more recent alternative solution for controller synthesis. It
allows relaxing the conservativeness a�ecting the standard polytopic approach by grid-
ding the parameter space. In particular, it ensures stability properties through the iden-
ti�cation of a set of parameter-dependent Lyapunov functions. However, the dimensions
of the grid represent a critical aspect concerning the computational complexity of the
controller synthesis. Thus, an accurate analysis of the �ight envelope is required to
properly select the operating conditions to be accounted for during the control design.

In Chapter 3, a modeling procedure is developed to analyze the properties of the pro-
jectile dynamics across the gridded parameters space to reduce the complexity of the
autopilot synthesis. The assessment of the controller robustness and performance is pre-
sented in Chapter 4, through the implementation of multiple simulation scenarios in the
nonlinear simulator environment.
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Manuscript Outline

The proposed manuscript is organized into two core parts:

❖ Part I: is dedicated to the complete modeling procedure of the projectile dynamics, from
the nonlinear �ight dynamics derivation to the control-oriented LPV model design.

➢ Chapter 1: concerns the formulation of the nonlinear dynamics of a new class
of guided projectiles (LRGP). A detailed aerodynamic characterization allows the
derivation of a dedicated aerodynamic model for the new projectile concept. The
modeling procedure is �nalized through the development of a complete simulator
environment.

➢ Chapter 2: provides a general introduction to the LPV class of systems, including
a brief overview related to the LPV modeling approaches. The nonlinear dynamics
of the projectile is then converted into an accurate LPV system. The �nal control-
oriented modeling step consists of the reformulation of the projectile LPV model
as a polytopic parameter dependent system.

❖ Part II: deals with the LPV-based autopilot design of the guided projectile, through the
comparison of two main approaches, and their �nal performance validation.

➢ Chapter 3: details the control design based on two distinct LPV-based techniques:
polytopic and grid-based. A general overview recalls the fundamental concepts
concerning the LPV controller synthesis processes through the formulation of LMIs
based optimization problems. For each design approach, the controller synthesis
performance are improved by means of dedicated analyses that target the optimiza-
tion of the related computational complexity.

➢ Chapter 4: is dedicated to the main simulation results, consisting of realistic tra-
jectory tracking scenarios. The performances of the designed LPV controllers are
evaluated in the complete simulator environment addressing various sources wind
disturbances. Additionally, stability margins and µ-sensitivity analyses provide a
preliminary evaluation of the controllers robustness properties.

A �nal chapter is dedicated to the concluding remarks on the achieved results, and the propo-
sition of possible future developments.
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Chapter 1

Flight Dynamics Modeling
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1.1 Introduction

The modeling process of system dynamics represents the most crucial stage prior to the con-
troller design. Indeed, a proper identi�cation and description of the system behavior improves
the reliability of the mathematical model and enhances the e�ectiveness of the controller.
However, an excessively detailed model would explode the complexity of the controller design
with the risk of diminishing the achievable performance or making it unfeasible for any prac-
tical implementation. As a consequence, a compromise between accuracy and complexity is
generally required. A common practice consists of the derivation of simpli�ed model dynamics
dedicated to the controller design, capturing only the most relevant features that a�ect the
targeted controller performance. A detailed and exhaustive model of the system dynamics is
eventually employed to test the controller design in a more realistic simulation scenario.
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This chapter provides an overview of the complete derivation of the model dynamics for
the new class of Long Range Guided Projectiles (LRGP) investigated at the Institute of Saint-
Louis (ISL) ([Mar+18]; [Lib+19]; [Lib+20]; [Lib+21]). The model includes a combination of
measured physical properties (such as concept dimensions, shapes, mass, and inertia) and
estimated parameters (aerodynamic coe�cients). The �rst part of the chapter is dedicated to
the general formulation of the projectile �ight mechanics ([Zip14]), later applied to the LRGP
concept. An overview of the LRGP project highlights the main objectives to be targeted
and achieved through the system modeling and the following controller design. The second
part of the chapter concerns the aerodynamic characterization of the projectile's concept. An
exhaustive dataset of Computational Fluid Dynamic (CFD) simulations is acquired and then
analyzed by employing selected regression models. The results are used to characterize the
aerodynamic terms in the general �ight mechanics model of the projectile. The �nal nonlinear
model is implemented in a simulator environment meant to test the performance of the �nal
controller design.

The chapter is structured in the following sections:

S1.2: concerns the derivation of the projectile translational and attitude dynamics and kine-
matics, �rst expressed in the more general tensor formulation and then projected in the
proper coordinate systems. A detailed introduction to the LRGP concept highlights the
most relevant physical properties accounted for in the modeling process.

S1.3: discusses the complementary aerodynamic characterization through the results of an
exhaustive CFD analysis, leading to the derivation of two complete aerodynamic models
of increasing complexity and accuracy. The results presented in this section have been
published in [Vinb].

S1.4: presents the design of the simulator environment later employed for simulation purposes,
which additionally targets the dynamics of the air variables characterizing the surround-
ing atmosphere and a�ecting the projectile �ight performance. The results presented in
this section have been published in [Vinb].
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1.2 Flight Mechanics

This section is dedicated to the derivation of the nonlinear �ight mechanic model charac-
terizing the projectile dynamics. Section 1.2.1 �rst recalls the fundamental principles of the
tensor algebra employed for the formulation of the projectile equations of motion. The main
reference frames and their associated coordinate systems are presented in Section 1.2.2, while
Section 1.2.3 discusses the general derivation of the projectile nonlinear model dynamics. Fi-
nally, Section 1.2.4 introduces the fundamental features of the LRGP concept and how they
characterize the general nonlinear model dynamics.

1.2.1 Tensor Algebra

The dynamics of any physical phenomena is intrinsically independent from the metric system
employed to observe them. Accordingly, the derivation of the dynamic equations governing
the behavior of a �ying vehicle has to be expressed in a coordinate invariant form that can be
adapted to any suitable metrics. This concept is formalized in the following distinction:

De�nition 1.1 (Frame)
Physical entity constituted by a continuous set of a minimum of three noncollinear points

having mutually time invariant distances in the 3D Euclidean space. The location and the

orientation of a reference frames are de�ned by a base point, A, and a triad of orthonormal

base vectors:

a1,a2,a3 with aTi aj =

{
0 for i ̸= j

1 for i = j
; i, j = 1, 2, 3.

De�nition 1.2 (Coordinate System)
Ordered set of numbers (scalar coordinates, ]A) that associates a speci�c vector with the 3D

Euclidean space, based on a orthogonal triple of directions (1A, 2A, 3A). Speci�cally, a Carte-

sian coordinate system, is a a set of coordinates that satis�es the �nite di�erences Cartesian

metric:

∆s2 =
3∑

i=1

∆x2i

where ∆s represents a �nite distance in the 3D Euclidean space and ∆x2i are mutually orthog-

onal elements.

Since a coordinate system does not refer to a speci�c physical quantity, several coordinate
systems can be associated to the same frame. In particular, for each frame a preferred system
of coordinates can be identi�ed, whose directions are aligned with the base vectors of the
frame, such that:

[a1]
A =

[
1 0 0

]
; [a2]

A =
[
0 1 0

]
; [a3]

A =
[
0 0 1

]
.
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The space-time invariance characterizing di�erent frames and their interaction can be ex-
ploited by employing the mathematical tensors notation. Indeed, tensors are algebraic objects
used to describe physical entities whose content is intrinsically independent from the coordi-
nate system from which they are observed, as well as coordinate transformations invariant.

De�nition 1.3 (Cartesian Tensors)
A ordered set of triples, x, is a Cartesian vector (�rst-order tensor) if for any pair of allowable

Cartesian coordinate systems, ]A, ]B, the following transformation holds:

[x]B = [T ]BA [x]A. (1.1)

A ordered set of 9-tuples, X, is a Cartesian tensor (second-order tensor) if for any pair of

allowable Cartesian coordinate systems, ]A, ]B, the following transformation holds:

[X]B = [T ]BA [X]A [T ]BA,T (1.2)

where [T ]BA is the associated Coordinate Transformation Matrix which maps the coordinates

of a tensor from system ]A to system ]B.

The relative location and orientation between any pair of di�erent frames, A and B, are
de�ned respectively as a displacement vector, sBA, between the base points of the two frames,
and as a rotation tensor, RBA.

De�nition 1.4 (Rotation Tensor)
Given two frames, A and B, with triad of basis vectors, (a1, a2, a3) and (b1, b2, b3) respec-

tively, the mutual orientation of frame B w.r.t frame A is de�ned by the rotation tensor RBA

through the transformation:

bi = RBAai; i = 1, 2, 3. (1.3)

In particular, when coordinated in the preferred coordinate systems, ]A and ]B respectively, the

following property holds: [
RBA

]A
=
[
rBA

]B
= [R]BA,T.

The expression of the relative linear and angular motions between di�erent frames implies
addressing the time dependence of the displacement vector, sBA(t), and the rotation tensor,
RBA(t), respectively. Furthermore, the time rate of change of these two quantities de�nes
the corresponding relative linear and angular velocity, vA

B and ωBA respectively. Under the
conditions of invariant coordinate transformation expressed in Equations (1.1)-(1.2), the linear
and the angular velocities inherit the properties of Cartesian tensors. Concerning the angular
velocity, these conditions implies the de�nition of the rotational time derivative operator.

De�nition 1.5 (Rotational Time Derivative)
Given a �rst-order tensor, x, the rotational time derivative, DAx, w.r.t. any arbitrary frame,

A, and expressed in any allowable coordinate system, ]B, corresponds to:

[
DAx

]B
=

[
dx
dt

]B
+ [T ]BA

[
dT
dt

]BA,T

[x]B. (1.4)
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Equivalently, given a second-order tensor, X, the rotational time derivative, DAX, w.r.t. any

arbitrary frame, A, and expressed in any allowable coordinate system, ]B, corresponds to:[
DAX

]B
=

[
dX
dt

]B
+ [T ]BA

[
dT
dt

]BA,T

[X]B + [X]B
[
dT
dt

]BA

[T ]BA,T. (1.5)

In reason of the coordinate invariant transformations in Equations (1.4)-(1.5), DAx and DAX

are also tensors of �rst and second-order, respectively.

Based on the above de�nitions, the linear velocity and linear acceleration tensors of any
point B w.r.t. any point belonging to a frame A can be obtained respectively as the �rst and
the second-order rotational time derivative of the corresponding displacement vector:

vA
B = DAsBA; aA

B = DADAsBA = DAvA
B. (1.6)

Equivalently, the relative rotation of a vector b(t) in frame B w.r.t. its initial position at t0 in
frame A is expressed by the rotation tensor RBA as in Equation (1.3). According to Equation
(1.6), the tangential velocity of the rotating vector is de�ned by the �rst-order rotational time
derivative:

vA
B = DAb(t)

= DARBAb(t0)

= DARBARBA,Tb(t)

= ΩBAb(t)

where, the angular velocity tensor of frame B w.r.t. frame A corresponds to:

ΩBA = DARBARBA,T.

In particular, the angular velocity tensor, ΩBA, is skew symmetric, thus for any coordinates
systems, ]C , the following vector equivalence holds:

[
ΩBA

]C
=

 0 −z y

z 0 −x
−y x 0

 ⇐⇒
[
ωBA

]C
=

xy
z

.
The coordinate invariant formulation of the rotational time derivative is always expressed

w.r.t. a selected reference frame. Thus, the last fundamental concept to be recalled concern
the possibility to change the reference frame through the tensor formulation of the standard
Euler transformation.

Theorem 1.1 (Generalized Euler Transformation)
Assuming any pair of arbitrary reference frames, A and B, and the corresponding angular

velocity tensor, ΩBA, then the following rotational time derivative transformation holds for

any vector x:

DAx = DBx+ΩBAx.

More detailed information concerning the properties and the proofs of the aforementioned
De�nitions 1.1-1.5 and Theorem 1.1 are provided in [Zip14].
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1.2.2 Reference Frames and Coordinate Systems

Reference frames as in De�nition 1.1 allow defying the position and the motion of a vehicle
independently from a reference observer's point of view. By selecting a coordinate system
to which refer all the physical measures, the previuos invariant tensor expressions can be
numerically evaluated, thus enabling the implementation of software simulations. The most
relevant reference frames and associated coordinate systems are presented hereafter.

Earth Frame (E). In classical physics, the position and motion of any physical object imply
the designation of a common inertial reference frame. Depending on the speci�c application,
three di�erent inertial frames are commonly considered in the aerospace framework: Heliocen-
tric frame (for planetary space travel), Geocentric-inertial and Earth frames (for Earth-orbiting
satellites). The base points of the Geocentric-inertial and Earth frames are both located at
the center of the Earth (E). However, the Geocentric-inertial frame assumes the Earth to
have a �xed orientation on the ecliptic plane, while the Earth frame's base vectors (e1, e2,
e3) follow the characteristic motion of rotation. As shown in Figure 1.1(a), e1 is directed to
the intersection between the Greenwich meridian and the equator, while e3 is aligned with the
Earth's axis of rotation, pointing to the North Pole. Despite being subjected to accelerations,
the Earth frame is generally assumed inertial for any lower atmosphere �ights, in reason of
the negligible e�ect generated by the rotation (Assumption 1.1).

Body Frame (B). Under the Rigid Body Assumption 1.4, the investigated �ying vehicle is
commonly designated as a reference frame itself. This allows expressing its relative position
and motion w.r.t. the selected inertial frame. In the body frame, the base point (B) corre-
sponds to the vehicle's center of mass (CM), whereas the base vectors (b1, b2, b3) are aligned
with the principal axes of the vehicle's inertia tensor, as shown in Figure 1.1(b): b1 generally
points towards the nose of the vehicle along its longitudinal axis (rotational symmetry), b2 is
parallel to the second principal moment of inertia axis, while b3 is directed downwards.

1
E

2
E

e1 e2

E

e3
2
L

1
L

3
L

3
E

(a)

1
B

2
B

3
B

B
b1

b3

b2

(b)

Figure 1.1: Main reference frames and coordinate systems: (a) Earth frame, E, and
Earth and local-level coordinates; (b) body frame, B, and body coordinates.
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Air Frame (A). Assuming the air mass to behave as a compact body1, the air itself can
be considered as a physical frame. The main base vector, a1, follows the direction of the
relative wind vector, vA

B, which describes the relative motion of the vehicle's CM w.r.t. the
air frame. As later discussed, the air mass can be considered in motion w.r.t. the Earth frame
or assumed at rest, vA

E = 0 (Zero Wind Assumption 1.3).

As previously mentioned, for atmospheric Earth-orbiting �ying vehicles below the super-
sonic regime, the e�ects of the Earth's accelerations can be neglected, thus assuming the Earth
as the inertial reference frame. As a consequence, the coordinate system associated with the
Heliocentric frame as well as the related coordinate transformations are not considered for the
purpose of this work.

Earth and Geographic Coordinate System. The preferred coordinate system associated
with the Earth's frame has the three axes (1E , 2E , 3E) aligned with the base vectors (e1, e2,
e3), respectively, as shown in Figure 1.1(a). By subdividing the Earth's surface on a grid of
vertical lines connecting the Poles (meridians) and lines parallel to the equator and concentric
to the Poles (parallels), any location can be uniquely identi�ed through the de�nition of its
longitude, l, and latitude, λ, measures. The longitude is expressed as the angle (±180 deg)
from the Greenwich meridian in an easterly direction, while the latitude is the angle from the
equator to the north (90 deg) or to the south (−90 deg). The geographic coordinate system,
]G, is associated with any speci�c pair (l, λ) and consists of an axis pointing to the north (1G),
an axis pointing to the center of the Earth (3G), and a third axis which points east (2G).

Local-level Coordinate System. The notion of geographic coordinates can be further
generalized whenever the exact location (l, λ) of the vehicle on the Earth's surface does
not relevantly a�ect the trajectory evaluation. This simpli�cation implies the Flat Earth
Assumption 1.2 since a geographic location is characterized by a speci�c surface curvature.
Under this condition, any local plane tangent to the Earth's surface can be employed as a
geographic coordinate system and is referred to as a local-level coordinate system, ]L. This
system is generally associated with the launch point of the vehicle to properly express the
vehicle's trajectory. Following the standard north-east-down (NED) convention, axes 1L and
2L lie in the tangent plane, respectively pointing north and east, while axis 3L points downward
to the center of the Earth, as shown in Figure 1.1(a).

Body Coordinate System. The body coordinate system, ]B, corresponds to the preferred
system associated with the body frame, having the axes (1B, 2B, 3B) respectively aligned with
the base vectors (b1, b2, b3). The relative transformation between the body and the local-
level coordinates allows de�ning the orientation of the vehicle across the trajectory through the
Euler angles (ϕ, θ, ψ). The overall coordinate transformation is obtained through a sequential
set of rotations complying with the standard aircraft intermediate coordinate systems, ]X and
]Y . A �rst yaw angle rotation, ψ, about the vertical axis (3L) de�nes the intermediate system

1No relative motion among the air particles.
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Figure 1.2: Wind coordinate systems: (a) Cartesian incidence angles convention; (b)
polar aeroballistic angles convention.

]X , while a second pitch angle rotation, θ, about the lateral axis (2X) leads to the intermediate
system, ]Y . The �nal roll rotation, ϕ, about the longitudinal axis (1Y ) completes the sequence.

[T ]BY =

1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ

; [T ]Y X =

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

; [T ]XL =

 cosψ sinψ 0

− sinψ cosψ 0

0 0 1

.
By multiplying the set of sequential transformations in the proper order, the complete body
to local-level coordinate transformation is expressed as:

[T ]BL = [T ]BY [T ]Y X [T ]XL

=

 cosψ cos θ sinψ cos θ − sin θ

cosψ sin θ sinϕ− sinψ cosϕ sinψ sin θ sinϕ+ cosψ cosϕ cos θ sinϕ

cosψ sin θ cosϕ+ sinψ sinϕ sinψ sin θ cosϕ− cosψ sinϕ cos θ cosϕ

.

Wind Coordinate System. The last relevant coordinate system to be de�ned is associated
with the air frame. The axis 1W is aligned with the relative velocity direction vAB, while the
other two axes are de�ned based on the selected convention:

❖ Cartesian Incidence Angles. The body to wind coordinate transformation of any
vehicle characterized by a planar symmetry relies on the de�nition of an intermediate
stability coordinate system, ]S , as shown in Figure 1.2(a). The �rst axis, 1S , corresponds
to the projection of vA

B in the plane (1B, 3B), identifying the angle-of-attack (AoA), α,
as the positive rotation angle from 1S to 1B. Similarly, the lateral angle-of-sideslip
(AoS), β, is de�ned as the positive rotation angle from 1S to 1W . The body to wind
transformation matrix is expressed as follows:

[T ]WB =

 cosα cosβ sinβ sinα cosβ

− cosα sinβ cosβ − sinα sinβ

− sinα 0 cosα

. (1.7)
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❖ Polar Aeroballistic Angles. Concerning rotational symmetric vehicles, a di�erent
intermediate aeroballistic coordinate system, ]R, is de�ned. This coordinate system is
aligned with the load factor plane of the vehicle, where the main aerodynamic inter-
actions are generated (Drag and Lift forces). The axis 1R coincides with 1B and lies
in the load factor plane together with 3R. A �rst aerodynamic roll angle rotation, ϕ′,
about the axis 1R de�nes the aeroballistic to body coordinate transformation. The �nal
aeroballistic wind coordinate system, ]A, is reached through the total angle-of-attack
rotation, α′, about the 2A axis, de�ned positive from 1B to 1A (equal to 1W and aligned
with vA

B). The axis 3
A lies in the load factor plane, as shown in Figure 1.2(b).

[T ]AB =

 cosα′ sinα′ sinϕ′ sinα cosβ

− cosα sinβ cosβ − sinα sinβ

− sinα 0 cosα

. (1.8)

1.2.3 6-DoF Projectile Equations of Motion

The formulation of the projectile nonlinear dynamics relies on the standard �ight mechanics
theory, complying with the notation proposed in [Zip14]; [Zip19]. The equations of motion
describing the translational and attitude dynamics are �rst derived in an invariant tensor form
and then projected w.r.t. the most appropriate system of coordinates, allowing for numerical
computation. The derivation is based on the following modeling assumptions:

Assumption 1.1

The Earth is assumed as the inertial reference frame (E) since the centrifugal and Coriolis

accelerations are negligible when dealing with subsonic atmospheric vehicle's trajectories.

Assumption 1.2 (Flat Earth)
The Earth's surface is assumed �at, neglecting the local eccentricity of the speci�c geographic

location where the trajectory occurs.

Assumption 1.3 (Zero Wind)
The air mass is assumed at rest (no relative motion between frames A and E, vA

E = 0).

Assumption 1.4 (Rigid Body)
The projectile is considered a rigid body with constant and uniform mass distribution.

The translational and attitude dynamics express the relative linear and angular motions
between frames B and E. The equations are derived from Newton's and Euler's laws, assuming
the aerodynamic forces, fa, and the gravitational acceleration, g, to be the only external e�ects
contributing to the projectile dynamics. In particular, the gravity acceleration is applied on
the projectile's center of mass (CM), while the aerodynamic forces are applied on the center
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of pressure (CP), generating relevant moment contributions, mB, w.r.t. the CM:

mDEvE
B = fa +mg,

DElBE
B = mB.

(1.9)

where m is the constant mass of the projectile, vE
B represents the relative velocity of the CM

w.r.t. the Earth reference frame, and lBE
B is the angular momentum between the body and

the Earth frames, expressed again w.r.t. the CM.

Since the translational and attitude dynamics have to be expressed in the body coordinates,
the rotational time derivative operator w.r.t. the Earth frame, DE , is shifted to the body frame
through the Euler transformation discussed in Theorem 1.1. By expanding lBE

B = IB
BωBE ,

where IB
B is the moment of inertia (MoI) of the body referred to the CM, and ωBE represents

the relative angular velocity between the body and the Earth frames, the tensor Equation
(1.9) become:

mDBvE
B +mΩBEvE

B = fa +mg,

IB
BDBωBE +ΩBEIB

BωBE = mB.
(1.10)

In order to enable numerical calculations, Equation (1.10) is projected in the body coor-
dinates. The gravity contribution, simpli�ed to a constant quantity pointing to the center of

the Earth, is more appropriately expressed in the local-level coordinates as [g]L =
[
0 0 g

]T
and then coherently transformed to the body coordinate system:

m

[
dvE

B

dt

]B
+m

[
ΩBE

]B [
vE
B

]B
= m [T ]BL [g]L+ [fa]

B,

[I]BB

[
dωBE

dt

]B
+
[
ΩBE

]B
[I]BB

[
ωBE

]B
= [mB]

B.

The resulting set of state variables for the translational dynamics consists of the projectile's
linear velocity projections along the body coordinate (u, v, w), while the attitude dynamics
is expressed in terms of the projectile's body rates, namely the roll rate, p, the pitch rate, q,
and the yaw rate, r, as shown in Figure 1.3:

[
vE
B

]B
=

uv
w

; [
ωBE

]B
=

pq
r

.
Moreover, the skew-symmetric form of the angular velocity tensor, ωBE , and the MoI, are

expressed respectively as:

[
ΩBE

]B
=

 0 −r q

r 0 −p
−q p 0

; [
IB
B

]B
=

I1 0 0

0 I2 0

0 0 I3

. (1.11)
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In particular, the content of the MoI depends on the characteristic symmetry of the investi-
gated vehicle. Rotational symmetric bodies like projectiles are generally characterized by a
diagonal MoI since the product of inertia (I12, I13, I23) are negligible ([Zip76]).

The translational dynamics can be �nally expressed explicitly in the body coordinates as:

du
dt

= rv − qw +
fa1
m

− g sin θ,

dv
dt

= pw − ru+
fa2
m

+ g cos θ sinϕ,

dw
dt

= qu− pv +
fa3
m

+ g cos θ cosϕ,

(1.12)

while the attitude dynamics takes the form:

dp
dt

= I−1
1 [(I2 − I3) qr +mB1 ],

dq
dt

= I−1
2 [(I3 − I1) pr +mB2 ],

dr
dt

= I−1
3 [(I1 − I2) pq +mB3 ].

(1.13)

The expressions of the aerodynamic forces (fai), and moments (mBi), with i = 1, 2, 3, are
coherently projected in the body coordinates. The complete characterization of the projectile's
aerodynamic model is detailed later in Section 1.3.

Concerning the kinematics computation, the projectile's position, sBE , is expressed w.r.t.
the local-level coordinates (NED). The linear velocity, vE

B , obtained through the translational
dynamics in Equation (1.12) in the body coordinates, is �rst converted to the local coordinates:

[
vE
B

]L
= [T ]BL,T [vE

B

]B
=

uLvL
wL

 (1.14)
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Figure 1.3: Projectile's linear and angular velocities components projected w.r.t. the
body coordinates.
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and then, the projectile's local position can be obtained through time integration:[
dsBE

dt

]L
=
[
vE
B

]L
. (1.15)

In order to determine the projectile's orientation, the rotation tensor approach is pre-
ferred2. It is based on the formulation of the rotational time derivative of the Direction
Cosine Matrix (DCM), [T ]BL as:[

dT
dt

]BL

=
[
ΩBE

]B,T
[T ]BL. (1.16)

The resolution of the set of di�erential Equation (1.16) leads to the evaluation of the Euler
angles (ϕ, θ, ψ), as it follows:

ϕ = arccos

(
cos θ cosϕ

cos θ

)
sign (cos θ sinϕ),

θ = arcsin (sin θ),

ψ = arccos

(
cosψ cos θ

cos θ

)
sign (sinψ cos θ).

(1.17)

The last fundamental relationship to be exploited associates the aerodynamic angles (α,
β, α′, ϕ′) to the body linear velocities (u, v, w). Indeed, the alternative formulation of the
projectile's translational dynamics in terms of the aerodynamic angles is a common modeling
approach for control-oriented design. Due to the Zero Wind Assumption 1.3, the simpli�cation
vE
B = vA

B+vA
E = vA

B holds, thus the relative linear velocity of the body w.r.t. the air frame can

be expressed in the body coordinates as
[
vA
B

]B
=
[
u v w

]T
. Since in the Cartesian wind

coordinates the same linear velocity is projected as
[
vA
B

]W
=
[
V 0 0

]T
, where V represents

the airspeed, the following relation also holds:V0
0

 =

 cosα cosβ sinβ sinα cosβ

− cosα sinβ cosβ − sinα sinβ

− sinα 0 cosα

uv
w

; with V =
√
u2 + v2 + w2. (1.18)

The expressions of the aerodynamic angles w.r.t the linear velocity projections in the body
coordinates can be derived from Equation (1.18) as:

α = arctan
(w
u

)
; β = arcsin

( v
V

)
. (1.19)

The same reasoning can be applied to evaluate the polar wind coordinates, leading to the
following:

α′ = arccos
( u
V

)
; ϕ′ = arctan

( v
w

)
.

2Singularities occur in the calculation when θ = ±π/2.
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By inverting the relation, the linear velocities can be equivalently expressed w.r.t the aerody-
namic angles as:

u = V cosα cosβ; v = V sinβ; w = V sinα cosβ. (1.20)

The derivatives of Equations (1.18)-(1.19) allow de�ning the desired dynamics of the air vari-
ables:

dV
dt

=
uu̇+ vv̇ + wẇ

V
;

dα
dt

=
uẇ + wu̇

u2 + w2
;

dβ
dt

=
−uvu̇+ (u2 + w2)v̇ − vwẇ

V 2
√
u2 + w2

.

Finally, by substituting Equation (1.12) and Equation (1.20) in the previous expressions, the
translational dynamics formulated in the aerodynamic variables is obtained:

dV
dt

=
1

m
(fa1 cosα cosβ + fa2 sinβ + fa3 sinα cosβ)

+ g (− sin θ cosα cosβ + cos θ sinϕ sinβ + cos θ cosϕ sinα cosβ),

dα
dt

=
1

mV cosβ
(−fa1 sinα+ fa3 cosα) + q

− (p cosα+ r sinα) tanβ +
g

V cosβ
(sin θ sinα+ cos θ cosϕ cosα),

dβ
dt

=
1

mV
(−fa1 cosα sinβ + fa2 cosβ − fa3 sinα sinβ) + p sinα− r cosα

+
g

V
(sin θ cosα sinβ + cos θ sinϕ cosβ − cos θ cosϕ sinα sinβ).

(1.21)

1.2.4 The LRGP Concept

The model consists of a new concept of long range guided projectile (LRGP) investigated at
the French-German Research Institute of Saint-Louis (ISL) ([Mar+18]; [Lib+19]; [Lib+20];
[Lib+21]). The interest motivating the project relies on the enhancement of the operating
range capability of standard howitzer ammunition, avoiding the employment of any additional
thruster propulsion or modi�cations of the �ring system.

The projectile's design is based on a Secant Ogive Cylinder Boat Tail (SOCBT) geometry,
with a full-scale 155 mm caliber and a non-rotating �n-stabilized architecture, including a set
of four axial symmetrical tail-�ns, and a reduced set of two front canards for control maneuvers
([Fre11]; [CFC12]). The employment of a non-spinning concept reduces the highly nonlinear
dynamics generated by the aerodynamic coupling terms. Furthermore, the control canards
are installed in a non-co-planar con�guration (`X' con�guration), as shown in Figure 1.4(a),
aiming to reduce the overall canard-�n aerodynamic interaction, as well as the destabilizing
e�ect generated by the canards aerodynamics.
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Figure 1.4: LRGP concept: (a) `X' �ns-canards con�guration; (b) ballistic (top) and
glider (bottom) projectile's con�guration.

The proposed �ight strategy consists of an initial phase of ballistic trajectory, as in Figure
1.5, where the tail-�ns are unfolded from the main sabot immediately after the �ring occurs,
while the canards remain folded to reduce the initial aerodynamic Drag. Once the apogee of the
trajectory is reached, the canards are deployed, and the guided gliding phase begins. During
this phase, the optimization of the projectile's range performance relies on the engagement of
an ad-hoc designed range-extension guidance law. Additionally, the employment of Bank-To-
Turn (BTT) maneuvers is expected to smoothen the gliding trajectory, minimizing the lateral
aerodynamic e�ects and optimizing the Lift contributions. In opposition to conventional Skid-
To-Turn maneuvers, the BTT strategy aims to align the vertical plane of the projectile with
the plane of maximum generated aerodynamic Lift through two consecutive maneuvers:

1. A banking motion about the airspeed vector that aligns the vertical plane to the plane
of maximum aerodynamic Lift, minimizing the lateral displacement (ideally β = 0 deg).

2. An AoA correction to optimize the generated Lift-to-Drag Ratio (LDR).

Ballistic
Phase Gliding

Phase

Terminal
Guidance

Firing

Apogee

Target

Downrange Crossrange

Altitude

Point

Figure 1.5: LRGP �ight strategy: range-enhancement gliding trajectory.
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By accounting for the speci�c con�guration of the projectile and the �ight strategy selected
for the range improvement, the following assumptions can be de�ned to simplify the modeling
and control design process:

Assumption 1.5 (Dynamic Decoupling)
The pitch and the roll-yaw channels of the projectile dynamics are assumed decoupled in reason

of the limited lateral and roll e�ects generated by the BTT �ight strategy.

Assumption 1.6 (Inertial Decoupling)
The non-co-planar con�guration of the canards induces a slight geometrical asymmetry result-

ing in an overall second-order rotational symmetry. In this case, the inertia tensor expressed

in Equation (1.11) is characterized by the relationship: I1 << I2 < I3.

Based on the above considerations, for control-oriented modeling, the pitch and the roll-
yaw channels can be designed separately ([Bla91]). During the control design stage, discussed
in the next chapters, particular attention is dedicated to the pitch channel dynamics, being
the main target of the range optimization process.

1.2.4.1 Pitch Channel Dynamics

The pitch channel dynamics is obtained by constraining the projectile's trajectory in the verti-
cal (pitch) plane. In this context, the translational dynamics expressed w.r.t. the aerodynamic
variables provides a more convenient model formulation in view of the control design. Thus,
the AoA dynamics (short-period mode) in Equation (1.21) is coupled with the pitch rate dy-
namics (long-period mode) in Equation (1.13), neglecting the lateral contributions (β ≈ 0

deg), and the roll-yaw coupling terms (p, r ≈ 0 deg/s):

dα
dt

=
1

mV
(−fa1 sinα+ fa3 cosα) + q +

g

V
(sin θ sinα+ cos θ cosϕ cosα),

dq
dt

=
mB2

I2
.

(1.22)

By including the airspeed dynamics, V̇ , in the model above, the complete formulation of the
projectile longitudinal dynamics could be employed for the control design (also addressing the
phugoid oscillation). However, the absence of any direct control authority on the longitudinal
motion and the targeted control design approach makes this formulation unfeasible for the
purposes of this study, as it will be explained in the next chapter. As a �nal remark, load
factor measurements (LF), ηz, can be employed at the control design stage. They are generally
modeled as:

ηz =
fa3
mg

. (1.23)
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1.3 Projectile Aerodynamic Characterization

The complete derivation of the projectile �ight dynamics implies an appropriate aerodynamic
characterization. The mutual interaction between the projectile and the air�ow is a�ected by
several factors, such as the �ow regime (Mach number, Reynolds number), the �ight trajectory
(incidence angles, body rates), the control actions (control surface de�ections), and the pro-
jectile's geometry. The interaction generates a set of aerodynamic forces and corresponding
moments (fa, mB), applied in the center of pressure (CP) of the body. Whenever a projec-
tile is characterized by a CP located ahead of the CM, the contributions of the aerodynamic
moments result in a destabilizing e�ect, deviating the system away from the desired trajec-
tory. Nevertheless, unstable systems are also characterized by a more reactive aerodynamic
response, providing generally higher maneuverability ([CFC12]). Thus, at the design stage, a
compromise has to be reached between the required stability and performance properties.

1.3.1 Aerodynamics Formulation

The fundamental aerodynamic forces are generated in the load factor plane of any �ying
vehicle by the interaction with the air�ow, in terms of Drag, D, and Lift, L, contributions
([McC99]). As shown in Equations (1.12)-(1.13), the aerodynamic forces and moments derived
from the projections of Drag and Lift in the projectile's body coordinates are expressed as:

[fa]
B =

fa1fa2
fa3

 = q̄S

CX

CY

CZ

; [mB]
B =

mB1

mB2

mB3

 = q̄Sd

 Cl

Cm

Cn

. (1.24)

Speci�cally, S represents the body reference surface, d is the caliber, q̄ = 1
2ρV

2 is the dynamic
pressure, and M = V

a is the Mach number. These quantities are de�ned as functions of the
airspeed, V , and of the altitude-dependent air density, ρ(h), and speed of sound, a(h).

The projectile's aerodynamic characterization process relies on the derivation of the aero-
dynamic coe�cients, Ci, with i = X,Y, Z, l,m, n. These non-dimensional coe�cients are ob-
tained either from real wind tunnel aerodynamic measurements, normalized by the vehicle's
dimensions, or from sophisticated Computational Fluid Dynamic (CFD) software simulations.
Due to the high technical costs implied by the development of real wind tunnel tests, CFD
simulations are generally preferred for early modeling stages of the design optimization pro-
cess, especially if several �ight regimes are investigated (subsonic, and transonic �ow). Each
of the coe�cients depends on a large number of �ight parameters, as M, the incidence angles,
α and β (or α′ and ϕ′), the body rates, p, q, and r, and the control de�ections, accounted for
in the measurements procedure.

Concerning the control de�ections, the LRGP concept is equipped with two front canards
(right and left), providing two independent local control de�ections (δr, δl), as shown in Figure
1.6. However, for control-oriented modeling, the control actions are conventionally expressed in
terms of roll, pitch, and yaw contributions (δp, δq, δr), respectively. This virtual set of control
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Figure 1.6: Canards local control de�ection.

de�ections is implemented through the selection of a dedicated control allocation logic. The
availability of two horizontal front canards, aligned with the intent of improving the range
capability of the projectile, suggested the employment of a BTT control strategy, leading to
the de�nition of the static allocation matrix, TCA:δpδq

δr

 =

−1
2 +1

2

+1
2 +1

2

0 0

[δr
δl

]
= [TCA]

[
δr
δl

]
. (1.25)

1.3.2 Computational Fluid Dynamics Data

The design of the LRGP concept is based on a multi-objective aerodynamic optimization
targeting both the range capability and the required time of �ight to reach the target. The
complete analysis is detailed in [BLM22]. The optimization aims to de�ne fundamental geo-
metrical features of the concept (�ns and canards airfoil pro�le, canards sweep angle), having
a relevant impact on the aerodynamic performance. Operational parameters such as the ini-
tial �ring elevation angle of the gun, θe, the operating AoA range, and Mach regime are also
considered. In reason of the extremely large computational complexity and the related pro-
cessing time required to compute the aerodynamic optimization, a superposition hypothesis
is proposed ([BLM22]).

Assumption 1.7 (Aerodynamic Superposition)
The aerodynamic control contributions, Cδ, provided by the local de�ections of the control

surfaces, δ, can be superposed to the general static e�ect, CS, generated by the variation of the

AoA on the overall projectile's body (including the control surfaces).

C = CS

∣∣∣∣
δ=0

(α,M) + Cδ

∣∣∣∣
α=0

(δ,M). (1.26)

The aerodynamic coe�cients are then parameterized through the superposition of several
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mutually independent contributions as it follows:

CX(M, α, β, δe�) = CXS
(M, α, β) + CXδe�

(M, δe�),

CY (M, α, β) = CYS(M, α, β) +

(
d

2V

)
CYr(M) r,

CZ(M, α, β, δq) = CZS(M, α, β) +

(
d

2V

)
CZq(M) q + CZδq

(M, δq),

Cl(M, α, β, δp) = ClS(M, α, β) +

(
d

2V

)
Clp(M) p+ Clδp

(M, δp),

Cm(M, α, β, δq) = CmS
(M, α, β) +

(
d

2V

)
Cmq(M) q + Cmδq

(M, δq),

Cn(M, α, β) = CnS(M, α, β) +

(
d

2V

)
Cnr(M) r,

(1.27)

where CiS represent the static aerodynamic contributions related to the projectile's body
interaction with the air�ow, Cij correspond to the dynamic damping e�ects, and Ciδj

are
the additional aerodynamic contributions provided by the control surfaces de�ections, with
i = X,Y, Z, l,m, n and j = p, q, r. In particular, the longitudinal control de�ection is expressed

as the combined nonlinear contributions of roll and pitch, δe� =
√
δ2p + δ2q .

As stated in Assumption 1.7, the superposition hypothesis relies on the idea that in the
linear region of the canards' response (away from stall conditions), the aerodynamic contri-
butions generated by the local control de�ections (δr, δl) can be independently estimated and
a posteriori added to the overall body contributions, which depend on the incidence angles
(α′, ϕ′, α, β). This allows for signi�cantly reducing the computational complexity of the
aerodynamic optimization by performing two independent campaigns of CFD simulations to
characterize the projectile aerodynamics and de�ne the geometrical properties of the concept.

1.3.2.1 Static Coe�cients: (CXS
, CYS

, CZS
, ClS, CmS, CnS)

The �rst CFD simulation campaign targets the static aerodynamic characterization of the full
projectile's body by estimating the aerodynamic forces and moments coe�cients: CXS

, CYS ,
CZS , ClS , CmS

, CnS . Two di�erent datasets were acquired, one characterizing the ballistic
con�guration employed during the ascending phase of the trajectory, and one concerning the
gliding con�guration, including the static e�ect of the control surfaces at zero local de�ections
(δr, δl = 0 deg). Both the con�gurations are shown in Figure 1.4(b).

M α′ (deg) ϕ′ (deg) δr, δl (deg)

min 0.3 0 0 0

max 1 16 90 0

Table 1.1: Static coe�cients CFD acquisition ranges.



1.3. Projectile Aerodynamic Characterization 35

(a) (b) (c)

(d) (e)

Figure 1.7: CFD static lateral coe�cient dataset, CYS : (a) ϕ
′ = 0 deg; (b) ϕ′ = 15

deg; (c) ϕ′ = 30 deg; (d) ϕ′ = 45 deg; (e) ϕ′ = 90 deg.

The data were acquired as a function of M in the subsonic/transonic regime, and of
the polar angles α′ and ϕ′, more suitable for the CFD software environment, assuming the
variation ranges in Table 1.1.

Thus, for any pair (M, ϕ′), the coe�cients were investigated across the variation of α′. A
sample of the acquisition results is presented in Figure 1.7, concerning the lateral coe�cient
CYS in the gliding con�guration.3 The complete dataset of aerodynamic measurements is
provided in Appendix A.1. For modeling coherence, the coe�cients have been converted a
posteriori as a function of the Cartesian incidence angles (α, β) based on the transformations:

α = arctan
(
tanα′ cosϕ′

)
; β = arcsin

(
sinα′ sinϕ′

)
. (1.28)

At higher values of ϕ′ correspond an increasing dependence of the coe�cients w.r.t. β and
vice versa, de�ning the following limit aerodynamic con�gurations:

Conf1: for ϕ′ = 0◦ → α′ = α, the aerodynamic coe�cients depend only on α.

Conf2: for ϕ′ = 90◦ → α′ = β, the aerodynamic coe�cients depend only on β.

3The coe�cients' values have been normalized in reason of con�dentiality.
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1.3.2.2 Stability and Control Considerations

The aerodynamic stability of any vehicle is a fundamental aspect to be extensively investigated
from the design stage. Indeed, a higher instability increases the complexity of the autopilot
design. On the other hand, highly unstable vehicles are characterized by a responsive dy-
namics, capable to perform sharper and more aggressive maneuvers. Concerning the LRGP
concept, an exhaustive aerodynamics analysis has been developed to �nd a proper compromise
between stability and operating range performance.

The former property is generally analyzed through the variation of the relative position
between the CP and the CM, XCP,CM, or equivalently through the value of the pitching
moment coe�cient, CmS

. Indeed, negative XCP,CM values correspond to the generation of
a negative stabilizing CmS

, which tends to maintain the direction of the projectile aligned
with the relative velocity vA

B, minimizing the AoA. The canards installed in the front part
of the projectile produce an aerodynamic Lift contribution that moves the overall CP of the
projectile ahead. Thus, a design compromise has to be achieved between the improvement in
the range performance and the unwanted destabilizing e�ect generated by the canards. The
results presented in Figure 1.8 show the variation of the coe�cient CmS

as a function of the
AoA and the Mach number.4 The LRGP concept is characterized by a predominantly unstable
behavior, since the coe�cient CmS

is positive across most of the �ight domain.

(a) (b) (c)

(d) (e)

Figure 1.8: CFD static pitching moment coe�cient dataset, CmS
: (a) ϕ′ = 0 deg;

(b) ϕ′ = 15 deg; (c) ϕ′ = 30 deg; (d) ϕ′ = 45 deg; (e) ϕ′ = 90 deg.

4The coe�cients' values have been normalized in reason of con�dentiality.
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(a) (b) (c)

(d) (e)

Figure 1.9: CFD Lift-to-Drag Ratio dataset, LDR: (a) ϕ′ = 0 deg; (b) ϕ′ = 15 deg;
(c) ϕ′ = 30 deg; (d) ϕ′ = 45 deg; (e) ϕ′ = 90 deg.

The aerodynamic stability tends to improve at higher values of AoA (> 10 deg), and
towards the transonic regime (M ≈ 1). Additionally, the pitching moment contribution de-
creases signi�cantly as the aerodynamic roll angle increases. The range e�ciency is estimated
through the variation of the Lift-to-Drag Ratio index, LDR = CL/CD. At the concept design
stage, this index suggests the optimal aerodynamic con�guration to be selected in terms of
canards/�ns sweep angles, cant angles, and geometrical dimensions.

The variation of the LDR w.r.t. the aerodynamic variables, such as AoA, AoS, roll angle,
and Mach, is also employed during the de�nition of the guidance law to �nd the �ight con-
ditions that optimize the projectile performance. The results of the analysis shown in Figure
1.9, reveal an optimal LDR index for a total AoA ∈ [5, 10] deg, with a peak around 8 deg.
The LDR decreases dramatically during the transition from subsonic to transonic regime, in
reason of the lower Lift contribution generated by the turbulent air�ow.

1.3.2.3 Control Coe�cients (CXδeff
, CZδq

, Clδp
, Cmδq

)

The second CFD simulation campaign focused on the analysis of the aerodynamic control
coe�cients (CXδe�

, CZδq
, Clδp

, Cmδq
) generated by the canards' local de�ections, δr and δl.

The data were acquired only w.r.t. the local right canard de�ection, δr, assuming the variation
ranges in Table 1.2. The aerodynamic coe�cients related to the left canard de�ection, δl, can
be easily obtained by means of symmetrical considerations.
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M α′ (deg) ϕ′ (deg) δr, δl (deg)

min 0.3 0 0 0

max 1 0 0 36

Table 1.2: Control coe�cients CFD acquisition ranges.

During the acquisition, the angles ϕ′ and α′ were set to zero, and the residual static
contributions generated by the projectile's body were subtracted in post-processing as:


CXδr

CZδr

Clδr

Cmδr

 =


CXδr

CZδr

Clδr

Cmδr

 (δr,M)−


CXδr

CZδr

Clδr

Cmδr

 (δr = 0,M).

The results of the acquisitions for each control coe�cient are presented in Figure 1.10.5 The
speci�c canards con�guration does not provide any control authority on the yaw plane, thus
the lateral contributions CYδr

and Cnδr
are not considered. The modeling procedure employed

to convert the measured coe�cients, (CXδr
, CZδr

, Clδr
, Cmδr

), into the corresponding virtual
counterparts, (CXδe�

, CZδq
, Clδp

, Cmδq
), is discussed in detail in Section 1.3.3.4.

(a) (b)

(c) (d)

Figure 1.10: CFD control coe�cient dataset: (a) longitudinal force, CXδr
; (b) vertical

force, CZδr
; (c) rolling moment, Clδr

; (d) pitching moment, Cmδr
.

5The coe�cients' values have been normalized to a range [0,1] in reason of con�dentiality.
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1.3.3 Aerodynamics Modeling

The results of the CFD acquisitions can be implemented in simulation either by direct inter-
polation of the obtained tables of measurements or through Taylor expansion by decomposing
each coe�cient in a set of derivative components ([Zip14]; [McC99]). The former approach
is preferred during the initial ballistic ascending phase of the projectile's trajectory, while for
control-oriented modeling, a continuous regression model is generally derived to characterize
the aerodynamics of the guided phase.

In reason of the Aerodynamic Superposition Assumption 1.7, the static and control CFD
datasets are analyzed separately:

❖ Static: two di�erent regression models are proposed. A �rst model accounts only for the
decoupled dynamics (pitch - roll/yaw), where the aerodynamics is either dependent on
the variation of α (Conf1) or β (Conf2). This formulation is coherent with the dynamics
developed for control design purposes in Equations (1.22)-(1.23). The second model
accounts for the simultaneous variation of α and β induced by ϕ′ ∈ (0, 90) deg. The
regression is based on a multivariable approach and the resulting model is employed in
the 6-DoF simulator environment to validate the controller design. The two regression
analyses are discussed in Sections 1.3.3.1 and 1.3.3.2, respectively.

❖ Control: the CFD data acquired in terms of individual local canard variations (δr) are
�rst modeled through a single variable regression analysis. Complying with the general
aerodynamic parametrization in Equation (1.27), the resulting regression models are re-
formulated w.r.t. the virtual de�ections set (δe�, δp, δq). The overall control modeling
procedure is presented in Section 1.3.3.4.

1.3.3.1 Polynomial Regression (Static) Model

The �rst regression analysis relies on a reduced set of the static aerodynamic CFD coe�cients,
corresponding to the data related to the extreme con�gurations: Conf1 and Conf2. In the
former scenario, the aerodynamic coe�cients are measured across the variation of α, ideally
without any contribution deriving from β. The latter con�guration addresses the opposite
scenario, since the aerodynamics of the projectile strictly depends on the variation of β. The
dependence of the coe�cients on the M variation is not explicitly modeled by the regression
analysis. Thus, the regression is performed for all the considered Mach conditions, and the
results are tabulated for directed online interpolation during the simulations.

These assumptions allow the employment of a polynomial regression approach based on
least-squares optimization ([Ost12]). Several polynomial models of increasing order have been
investigated for each of the aerodynamic coe�cients, aiming to �nd the best compromise be-
tween regression accuracy and model complexity. In particular, for the pitch plane coe�cients
(CZS , CmS

), only the α dependence is investigated in reason of the dynamics decoupling. Sim-
ilarly, for the yaw plane coe�cients (CYS , CnS), only the β dependence is considered. The only
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exceptions occur for the longitudinal coe�cient, CXS
, since the variations of α and β generate

the same contribution due to the projectile's axial symmetry, and for the roll coe�cient, ClS ,
which is negligible in reason of the �n-stabilized con�guration of the projectile. The regression
models are parameterized as follows:

CXS
(M, α) = CXα0(M) +

N∑
i=2

CXαi(M) siniα,

CYS(M, β) =

M∑
j=1

CYβj
(M) sinjβ,

CZS(M, α) =
M∑
j=1

CZαj (M) sinjα,

CmS
(M, α) =

M∑
j=1

Cmαj (M) sinjα,

CnS(M, β) =
M∑
j=1

Cnβj
(M) sinjβ.

(1.29)

where i = 2, 4, . . . , N is an even polynomial order sequence, while j = 1, 3, . . . ,M is an odd
polynomial order sequence.

The accuracy of the data regressions is assessed at each M condition by evaluating the
statistical indexes: Root Mean Square Error (RMSE) and Coe�cient of Determination (R2).
In particular, the RMSE values have been normalized by the di�erence between the maximum
and the minimum values of the CFD data (Min-Max), providing an estimation of the relative
regression error (NRMSE). The R2 and NRMSE results obtained during the regression of
the relevant α coe�cient derivatives are displayed in Figure 1.11, while the β coe�cient
derivatives are presented in Figure 1.12. The model selection criteria consist of a correlation
index R2 > 0.9 and a relative regression error NRMSE< 10%.

Based on the statistical results, the following Polynomial Regression (PR) aerodynamic
model was selected as a compromise between accuracy and model complexity:

CXS
(M, α) = CXα0(M) + CXα2(M) sin2α+ CXα4(M) sin4α,

CYS(M, β) = CYβ1
(M) sinβ,

CZS(M, α) = CZα1(M) sinα,

CmS
(M, α) = Cmα1(M) sinα+ Cmα3(M) sin3α+ Cmα5(M) sin5α,

CnS(M, β) = Cnβ1
(M) sinβ.

(1.30)

The main justi�cation behind the choice of sinusoidal regression polynomials relies on the
complexity of modeling the projectile aerodynamics across the transonic regime (M > 0.7),
characterized by a highly nonlinear variation.
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(a) (b) (c)

(d) (e) (f)

Figure 1.11: R2 and NRMSE regression results: (a)-(d) longitudinal force coe�cient,
CXS

; (b)-(e) vertical force coe�cient, CZS ; (c)-(f) pitching moment coe�cient, CmS
.

(a) (b)

(c) (d)

Figure 1.12: R2 and NRMSE regression results: (a)-(c) lateral force coe�cient, CYS ;
(b)-(d) yawing moment coe�cient, CnS .
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1.3.3.2 Multivariable Regression (Static) Model

The second regression analysis relies on the entire available CFD static aerodynamic dataset,
also addressing the coupling e�ects generated by the simultaneous variation of the incidence
angles, α and β (equivalently, ϕ′ ∈ [0, 90] deg). Since the analysis involves several variables,
di�erent sets of multivariable models have been selected for the data regression. As assumed
in the previous analysis, the dependence on M is not exploited in the model to avoid an
excessively complicated formulation. Each of the coe�cients has been investigated considering
several models. However, only the most relevant ones are discussed hereafter.

Model1: this model is obtained from the theoretical �ight mechanics and aerodynamics
formulation proposed in [McC99]. The aerodynamic forces and moments are expressed in the
tensor form in terms of Drag and Lift contributions, generated in the projectile's load factor
plane, and then projected in the aeroballistic wind coordinate system. By employing the
coordinate transformation in Equation (1.7), the resulting forces and moments are expressed
w.r.t. the body coordinates as a function of the Cartesian incidence angles (α, β). These �nal
Cartesian projections are employed as regression models. The full derivation of these models
is detailed in Appendix A.2. As a result, the �rst multivariable regression model corresponds
to the following:

CXS
(M, α, β) = CX0(M) + CX2(M) cosα cosβ + CX4(M) cos2α cos2β,

CYS(M, α, β) = CY1(M) sinβ + CY3(M) cosα sinβ cosβ,

CZS(M, α, β) = CZ2(M) sinα cosβ,

CmS
(M, α, β) = Cm2(M) sinα cosβ + Cm4(M) sinα cosα cos2β,

CnS(M, α, β) = Cn1(M) sinβ + Cn3(M) cosα sinβ cosβ.

(1.31)

Model2: it models the relevance of the mutually independent variation of each incidence angle
by means of uncorrelated regression coe�cients, corresponding to either α or β coe�cient
derivatives. Thus, no bilinear terms are included in the model in comparison to Model1. The
order of the selected multivariable polynomial regression models is consistent with (or lower
than) the corresponding Model1 counterparts:

CXS
(M, α, β) = CXα0(M) + CXα2(M) sin2α

+ CXβ2
(M) sin2β + CXα4(M) sin4α+ CXβ4

(M) sin4β,

CYS(M, α, β) = CYα1(M) sinα+ CYβ1
(M) sinβ,

CZS(M, α, β) = CZα1(M) sinα+ CZβ1
(M) sinβ,

CmS
(M, α, β) = Cmα1(M) sinα+ Cmβ1

(M) sinβ + Cmα3(M) sin3α

+ Cmβ3
(M) sin3β + Cmα5(M) sin5α+ Cmβ5

(M) sin5β,

CnS(M, α, β) = Cnα1(M) sinα+ Cnβ1
(M) sinβ.

(1.32)
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(a) (b) (c)

(d) (e) (f)

Figure 1.13: R2 and NRMSE regression results: (a)-(d) longitudinal force coe�cient,
CXS

; (b)-(e) lateral force coe�cient, CYS ; (c)-(f) vertical force coe�cient, CZS .

(a) (b)

(c) (d)

Figure 1.14: R2 and NRMSE regression results: (a)-(c) pitching moment coe�cient,
CmS

; (b)-(d) yawing moment coe�cient, CnS .
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As for the Polynomial Regression, the accuracy of the investigated models is assessed
through the statistical indexes (NRMSE, R2). The results in Figures 1.13-1.14 show how the
Model1 regression provides a more generally accurate description of the projectile aerodynam-
ics w.r.t. the full CFD dataset. Additionally, in the limit con�gurations (Conf1, Conf2) the
Model1 better approximates the results obtained with the dedicated PR model. In particu-
lar, in the Conf1 scenario (β = 0) the lateral coe�cients (CYS ,CnS) should have ideally zero
impact on the projectile aerodynamics because of the Dynamic Decoupling Assumption 1.5.
Similarly, Conf2 (α = 0) implies ideally zero pitch contributions (CZS ,CmS

).

These conditions are clearly respected by the multivariable model Model1, while a para-
sitic contribution would appear in simulation if the Model2 model were to be employed. As
a consequence the Model1 in Equation (1.31) is selected and referred to as Multivariable Re-

gression model (MR) for the rest of the dissertation. As a general consideration, the pitching
moment, CmS

, turned out to be the toughest coe�cient to be properly modeled because of
the highly nonlinear in�uence deriving from both the α and the β variations. Once again, the
rolling moment coe�cient, ClS , has not been included in the model in reason of the negligible
magnitude observed in the acquired data.

1.3.3.3 Regression Approaches Comparison

The previous sections have dealt with the derivation of the aerodynamic regression models
(PR and MR) selected to �t the CFD dataset describing the projectile aerodynamics. The
Polynomial Regression model in Equation (1.30) relies only on a reduced set of the available
data, corresponding to the limit con�gurations, Conf1 and Conf2. Despite the lack of accu-
racy guarantees at more general �ight conditions, this model complies with the Decoupling
Assumptions 1.5-1.6. Thus, it will be employed at the control design stage for the decou-
pled channels autopilot. Di�erently, the Multivariable Regression model in Equation (1.31)
accounts for all the acquired CFD data, providing a more global description of the projectile
aerodynamics across a wider �ight envelope. As a consequence, this model is more suitable
for simulation purposes and will be implemented in the complete simulator environment.

Since the PR and MRmodels were derived from di�erent CFD datasets, their accuracy can-
not be directly compared at di�erent �ight conditions through the statistical results obtained
in Section 1.3.3.1 and Section 1.3.3.2. To deal with this issue, a dedicated accuracy analysis
has been developed between the two models, targeting the full range of M, ϕ′, and α′ inves-
tigated during the CFD campaigns. The value of each aerodynamic coe�cient is interpolated
�rst directly on the CFD surfaces as a ground truth reference. Then, the same interpolation
is performed on the modeled surfaces obtained through the two regression approaches (PR,
MR). The interpolation error corresponds to the RMSE of the di�erence between the results
provided by the CFD coe�cient interpolations, Cj,CFD, and the selected model ones, Cj,PR

or Cj,PR, for j = X,Y, Z, l,m, n. The RMSE is evaluated along the α′ variation by selecting
iteratively a speci�c pair of (M, ϕ′). These settings allow observing the accuracy of the mod-
els as a function of the increasing roll con�guration and consequently of the di�erent (α, β)

combinations, as well as of M.
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The complete analysis algorithm is presented hereafter.

Algorithm 1 Interpolation Accuracy Analysis
For any j = X,Y, Z, l,m, n:

For any (M, ϕ′, α′) combination:

1. Select the �ight condition: (M, ϕ′, α′).

2. Convert the incidence angles, based on Equation (1.28):

(α, β) = f(ϕ′, α′).

3. Interpolate on the CFD surfaces:

Cj,CFD = interp(M, ϕ′, α′).

3. Interpolate on the PR and MR models:

Cj,PR = interp(M, α, β); Cj,MR = interp(M, α, β).

4. Evaluate the interpolation NRMSE of the PR model as:

NRMSEj,PR

(
M, ϕ′

)
=

RMSEj,PR(M, ϕ′)

Cj,CFD,Min-Max(M, ϕ′)
,

with

RMSEj,PR

(
M, ϕ′

)
=

√∑n
i=1 (Cj,PR(M, αi, βi)− Cj,CFD(M, ϕ′, α′

i))
2

n
,

Cj,CFD,Min-Max

(
M, ϕ′

)
= max

α′

(
Cj,CFD

(
M, ϕ′, α′))−min

α′

(
Cj,CFD

(
M, ϕ′, α′)) ,

where n is the dimension of the investigated α′ range.

5. Repeat (4.) to evaluate the NRMSE of the MR model.

end.

end.

Samples of the results obtained from the analysis are displayed in Figure 1.15 and Figure
1.16, concerning the interpolation error of the vertical and lateral force coe�cients, respec-
tively, as a function of the roll con�guration. As expected, at the limit con�gurations, Conf1
(ϕ′ = 0 deg) and Conf2 (ϕ′ = 90 deg), the PR model better approximates the aerodynamics of
the projectile, as shown in Figure 1.15(a) (Conf1) and Figure 1.16(c) (Conf2). Nevertheless,
as soon as the aerodynamic roll is increased, the PR model does not compare any longer with
the global MR. Indeed, the e�ect provided by mutual α−β variations is not addressed by the
PR model. The complete set of interpolation errors is provided in Appendix A.3.

The results of the analysis con�rm the reliability of the two aerodynamic models when
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(a) (b) (c)

Figure 1.15: CZS interpolation NRMSE comparison at di�erent �ight conditions: (a)
ϕ′ = 0 deg; (b) ϕ′ = 30 deg; (c) ϕ′ = 45 deg.

(a) (b) (c)

Figure 1.16: CYS interpolation NRMSE comparison at di�erent �ight conditions: (a)
ϕ′ = 15 deg; (b) ϕ′ = 45 deg; (c) ϕ′ = 90 deg.

employed in di�erent con�guration scenarios. Even in the worst-case interpolation scenarios
for both models, the regression error is always maintained < 20%. In particular, the uncer-
tainties deriving from the limited regression accuracy of PR will be taken into account at the
control design stage to ensure the robustness and reliability of the design. Coherently, the
uncertainties a�ecting the MR model, employed in the simulator environment, will serve to
test the capability of the controller to handle any source of uncertainties or disturbances.

1.3.3.4 Canards Aerodynamic (Control) Model

The second campaign of CFD simulations discussed in Section 1.3.2.3 was dedicated to the
aerodynamic characterization of the right canard local de�ection, δr. The corresponding left
canards coe�cients were inferred from the symmetrical properties of the projectile's concept.
A polynomial regression approach is employed in the data �tting analysis for the coe�cients
CXδr

, CZδr
, Clδr

and Cmδr
. The same regression model parameterization presented in Equa-

tion (1.29) is considered (increasing polynomial orders), accounting for the δr variation. The
accuracy of the regression analysis is assessed through the standard statistical indexes. The
overall results are presented in Figure 1.17 and Figure 1.18, in terms of R2 and NRMSE.
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(a) (b)

(c) (d)

Figure 1.17: R2 and NRMSE regression results: (a)-(c) longitudinal force control
coe�cient, CXδr

; (b)-(d) vertical force control coe�cient, CZδr
.

(a) (b)

(c) (d)

Figure 1.18: R2 and NRMSE regression results: (a)-(c) rolling moment control coef-
�cient, Clδr

; (b)-(d) pitching moment control coe�cient, Cmδr
.
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CZδl
(δl)

CZδr
(δr)

B

Clδp
(δp)

(a)

CZδl
(δl) CZδr

(δr)

Cmδq
(δq)

B

CZδq
(δq)

(b)

Figure 1.19: Virtual control de�ections: (a) roll coe�cients; (b) pitch coe�cients.

Based on the regression results, the following model is selected to express the right (and
left) canard control aerodynamic coe�cients:

CXδr
(M, δr) = CXδr0

(M) + CXδr2
(M) sin2 δr,

CZδr
(M, δr) = CZδr1

(M) sin δr + CZδr3
(M) sin3 δr,

Clδr
(M, δr) = Clδr1

(M) sin δr + Clδr3
(M) sin3 δr,

Cmδr
(M, δr) = Cmδr1

(M) sin δr + Cmδr3
(M) sin3 δr.

(1.33)

The overall control contributions generated by the canard de�ections can be computed by
superposition, assuming the aerodynamic response of the canards to be in a linear domain:

CXδ
(M, δ) = CXδr

(M, δr) + CXδl
(M, δl),

CZδ
(M, δ) = CZδr

(M, δr) + CZδl
(M, δl),

Clδ(M, δ) = Clδr
(M, δr) + Clδl

(M, δl), (1.34)

Cmδ
(M, δ) = Cmδr

(M, δr) + Cmδl
(M, δl).

The control allocator in Equation (1.25) converts the individual de�ections of the canards
into a combined set of virtual contributions, δp and δq, which is more convenient for control
design. Coherently, the aerodynamic model has to address the virtual set of coe�cients,
(CXδe�

, CZδq
, Clδp

, Cmδq
) in Figure 1.19, instead of the global contributions in Equation

(1.34). Since no CFD measurements of the virtual de�ections are available, and according to
the superposition hypothesis, the aerodynamic virtual coe�cients can be approximated as the
direct interpolation of the virtual de�ections (δp, δq) on the available regression surfaces in
Equation (1.33). The approximated interpolation is expressed as follows:

CZδq
(M, δq) ≃ CZδr

(
M,

δr + δl
2

)
≃
CZδr

(M, δr) + CZδl
(M, δl)

2
,

Clδp
(M, δp) ≃ Clδr

(
M,

δl − δr
2

)
≃
Clδl

(M, δl)− Clδr
(M, δr)

2
, (1.35)

Cmδq
(M, δq) ≃ Cmδr

(
M,

δr + δl
2

)
≃
Cmδr

(M, δr) + Cmδl
(M, δl)

2
.
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Concerning the longitudinal control coe�cient, the highly nonlinear behavior characteriz-
ing the CFD acquisitions in Figure 1.10(a) at lower de�ection angles implies the de�nition of

a nonlinear interpolation, based on the roll and pitch contribution, δe� =
√
δ2p + δ2q :

CXδe�
(M, δe�) ≃ CXδr

(
M,

√
δ2p + δ2q

)
≃

CXδr
(M, δr) + CXδl

(M, δl)

2
. (1.36)

The approximations accuracy relies on the assumption of a linear aerodynamic response
of the canards. To analyze the range of validity of Equations (1.35)-(1.36), an interpolation
analysis targets the entire de�ection ranges, δr, δl ∈ [−36, 36] deg, and Mach values investigated
during the CFD simulations. The analysis is based on the Algorithm 2, where a linearity error,
eN, is evaluated at each �ight condition as the di�erence between the global coe�cients in
Equation (1.34), interpolated on the CFD surfaces, and the approximated virtual ones in
Equations (1.35)-(1.36), interpolated on the regression models. The results are normalized by
the corresponding average value of the CFD surface interpolated at the same Mach conditions.

The results in Figures 1.20-1.23 show the in�uence of the Mach variation on the linearity
error of the coe�cients CXδe�

, CZδq
, Clδp

, Cmδq
, respectively. The error is represented in terms

of level contours of increasing values. As expected, the de�ection range corresponding to a
linearity error el ≤ 10% is generally wider at a lower Mach value, M < 0.7, while it tends
to increase when approaching the transonic �ight regime. The only exception is represented
by the longitudinal coe�cient in Figure 1.20, which shows low error at any conditions due
to the nonlinear nature of the interpolation selected in Equation (1.36). Finally, the order of
complexity of the polynomial regression models in Equation (1.33) also a�ects the accuracy of
the interpolation since the regression process is an additional source of model uncertainties.
Higher-order models would provide lower interpolation error, but they would explode the
complexity at the control design stage.

As a global result, the linear approximations formulated in Equations (1.35)-(1.36) provide
reliable modeling properties for canard de�ections |δr|, |δl| < 20 deg, preventing possible stall
conditions characterizing the CFD curves in Figure 1.10.

(a) (b) (c)

Figure 1.20: CXδe�
coe�cient linearity error surfaces at di�erent �ight

regimes: (a) M = 0.3; (b) M = 0.7; (c) M = 1.
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(a) (b) (c)

Figure 1.21: CZδq
coe�cient linearity error surfaces at di�erent �ight

regimes: (a) M = 0.3; (b) M = 0.7; (c) M = 1.

(a) (b) (c)

Figure 1.22: Clδp
coe�cient linearity error surfaces at di�erent �ight

regimes: (a) M = 0.3; (b) M = 0.7; (c) M = 1.

(a) (b) (c)

Figure 1.23: Cmδq
coe�cient linearity error surfaces at di�erent �ight

regimes: (a) M = 0.3; (b) M = 0.7; (c) M = 1.
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Algorithm 2 Linearity Error Analysis
For any j = X,Z, l,m:

For any M:

For any (δr, δl) combination:

1. Select the �ight condition: (M, δr, δl).

2. Convert the de�ection angles, based on the allocation logic in Equation (1.25):

(δe�, δq, δq) = f(δr, δl).

3. Interpolate δr and δl on the CFD surfaces:

Cjδr ,CFD
= interp(M, δr); Cjδl ,CFD

= interp(M, δl),

and evaluated the global coe�cients as in Equation (1.34):

Cjδ,CFD(M, δr, δl) = Cjδl ,CFD
+ Cjδr ,CFD

; if j = X,Z,m.

Cjδ,CFD(M, δr, δl) = Cjδl ,CFD
− Cjδr ,CFD

; if j = l.

4. Interpolate δe�, δq or δp on the regression models in Equation (1.33):

Cjδe�
= interp(M, δe�); if j = X.

Cjδq
= interp(M, δq); if j = Z,m.

Cjδp
= interp(M, δp); if j = l.

5. Evaluate the normalized linearity error as:

ej,N (M, δr, δl) =
ej (M, δr, δl)

C̄j,CFD(M)
,

with

ej (M, δr, δl) = Cjδh
(M, δi)− Cjδ,CFD(M, δr, δl); for h = e�, q, p.

C̄j,CFD(M) =

∑n
i=1

∑n
k=1Cj,CFD(M, δr,i, δl,k)

n2
,

where n is the dimension of the investigated δr, δl range.

end.

end.

end.
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1.4 6-DoF Simulator Environment

The results obtained in the previous sections are implemented in a complete nonlinear �ight
simulator environment, meant to be later employed in the validation phase of the autopilot
design. The simulator is designed in the MATLAB/Simulink environment, by means of the
dedicated System Modeling Ammunition Research Toolbox (SMART) library developed at
ISL and presented in Section 1.4.1. The complete architecture of the simulator is discussed in
Section 1.4.2, while ballistic simulations are employed in Section 1.4.3 to validate the overall
environment design.

1.4.1 The SMART Toolbox

The System Modeling Ammunition Research Toolbox (SMART) Simulink library consists of
a project proposed and developed in the past �fteen years at the French-German Research
Institute of Saint-Louis. The core idea was to provide a standardized and common software
environment to perform the guidance, navigation, and control design of several models of
aircraft, missiles, and projectiles. The �rst version of the environment was initially coded in
FORTRAN and consisted of an exterior ballistic 6-DoF simulator, which did not include any
control design features. Later in 2004, the Computer Aided Design of Aerospace Concepts
(CADAC) presented in [Zip14] was employed as a reference model for the development of the
Simulink environment, extending the modeling features to the rolling and the non-spinning
dynamic frames of the vehicle's airframe ([Wer07]). In 2013 a complete version of the sim-
ulation environment allowed selecting among several projectile/missile dynamic models and
integrating guidance, navigation, and control features in the same simulation. The library
consists of generalized Simulink blocks whose parameters can be tuned to implement both
vehicle dynamics and atmosphere models, as well as di�erent control architectures, guidance
strategies, and navigation algorithms ([GWT13]). The library �nally addressed as SMART,
has been further developed in the last few years by including spinning projectile models.

1.4.2 Nonlinear Simulator

The nonlinear simulator intends to provide an accurate representation of the �ight conditions
in which the controller is supposed to operate. Thus, it targets the �ight dynamics of the
projectile, as well as the dynamics of the environment including the atmosphere properties,
unwanted wind disturbances, and the gravitational e�ect. The scheme in Figure 1.24 exhibits
the complete architecture of the simulation environment developed in Simulink, addressing
each aspect of the standard GNC loop.

Guidance. The guidance Simulink block allows implementing di�erent �ight strategies de-
pending on the objectives that are selected for a speci�c simulation. As introduced in Section
1.2.4, the LRGP project aims to improve the operating range of standard guided ammunition.
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Actuator

Dynamics

Sensor

Dynamics

Airframe

Projectile
Guidance Control

Mechanical Model

Navigation
Output

Deviation

Figure 1.24: Nonlinear simulator: complete software environment.

Coherently with the purposes of the project, the guidance block implements online the LDR
optimization law proposed in [KCL82]. The algorithm provides a trade-o� between highly
complicated head-on approaches and sub-optimal architectures based on a set of open-loop
o�ine evaluations of a standard pitch-attitude dynamics. Assuming quasi-steady state glide
equilibrium conditions with approximately constant dynamic pressure for the 2-DoF pitch-
attitude dynamics, and assuming that an optimal Lift-to-Drag Ratio, LDRmax, exists at each
�ight condition, the corresponding equilibrium �ight-path angle, γeq, can be expressed as:

γeq = − 1

LDRmax|1 + βatm(
V 2

2g )|
(1.37)

where βatm = 1.389 · 10−4 1/m represents the exponent of the atmosphere density, modeled
as ρatm = ρatm,0e

−βatmh with ρatm,0 = 1.227 kg/m3. A reference AoA command, αref, can be
derived from the combination:

αref = αLDR,max + kγ(γeq − γ) (1.38)

where αLDR,max consists of the optimal AoA, obtained by trimming the pitch-attitude dy-
namics at each LDRmax condition, and γ is the actual �ight-path angle measured along the
trajectory. The coe�cient kγ allows adjusting the relevance of the �ight-path angle correc-
tion with respect to the trimmed αLDR,max, aiming to �nd an optimal trad-o� and to avoid
excessively sharp variations of the resulting reference signal. For the present study, kγ = 0.35

has been selected, and a dataset of (LDRmax, αLDR,max) has been provided through dedicated
CFD campaigns on the complete projectile dynamics to increase the accuracy.

Navigation. The navigation block allows the implementation of any kind of estimation
algorithm or measurement processing to determine the current state of the system. During
the controller design, perfect navigation conditions (accurate and undelayed) are assumed.
However, at the validation stage, sensor noise (measurement noise) should be taken into
account for a more realistic simulation scenario.

Control. The control block includes the designed autopilot to be tested in simulation. This
represents the core objective of the present work, and it will be treated in detail in Chapter 3
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and Chapter 4, where di�erent LPV-based controller design approaches and architectures will
be proposed and eventually compared.

Actuator and Sensor Dynamics. The impact of the actuators and the sensor dynamics
is also accounted for, aiming to improve the accuracy of the simulator. In particular, the
actuators are modeled as second-order systems characterized by the following transfer function:

Tact =
ωδ

s2 + 2ωδξδs+ ω2
δ

(1.39)

where ωδ = 150 rad/s is the actuator bandwidth, and ξδ = 0.707 represents the damping ratio.
Additionally, angular position and angular rate saturation are also addressed, respectively as
the ranges [−40, 40] deg, and [−100, 100] deg/s.

Projectile Airframe. The airframe block contains a complete description of the �ight me-
chanics, the environment, and the generation of the aerodynamic contributions, as presented
in Figure 1.25. In particular, the Environment Model provides a general representation of the
atmosphere following the International Standard Atmosphere (ISA) 1975, ISO 2533 ([Atm]).
In addition, it includes continuous and discrete models of the wind contributions (turbulence,
gusts), employed as sources of disturbance to assess the robustness of the controller in more
realistic scenarios. Further details will be provided in Chapter 4.

Concerning the Aerodynamic Model, the Multivariable Regression static model (Model1 in
Equation (1.31)), and the control contributions described in Equations (1.33)-(1.36) are em-
ployed in the simulator environment. Based on a signi�cant CFD dataset, this model allows
accounting for all the possible �ight con�gurations that the projectile might experience during
the trajectory. The Flight Mechanics block implements the 6-DoF model of the projectile, in-
cluding the dynamic and kinematic equations of motion discussed in Equations (1.12)-(1.13),
and Equations (1.14)-(1.17) respectively. Finally, the control allocator converts the individual
right and left canards' de�ections into combined pitch and roll contributions, as previously
expressed in Equation (1.25).

Mechanics

FlightAerodynamic

Model

Control

Allocator

Environment

Model

Figure 1.25: Nonlinear simulator: projectile airframe architecture.
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1.4.3 Model Validating Simulations

The validation of the nonlinear simulator environment relies on open-loop ballistic simulations,
targeting each phase of the projectile trajectory:

I. Ballistic ascending phase (from the �ring point to the apogee).

II. Ballistic gliding phase (from the apogee to the target).

In particular, during phase I, the projectile is in the ballistic con�guration shown in Figure
1.4(b), having the control surfaces folded inside the sabot. Thus, the projectile aerodynamics
is based on the online interpolation of the static coe�cient surfaces acquired through the �rst
CFD campaign. The �ring stage consists of an initial elevation angle θe = 60 deg at zone 6,
equivalent to an initial longitudinal velocity of approximately u0 = 939 m/s. The projectile is
supposed to be ideally �red with almost no spin, in reason of the �n-stabilized architecture.
Any residual spinning motion is expected to be damped during the ascending phase by the
opposing Drag generated by the �ns.

Concerning the ballistic gliding phase II, Figure 1.26 highlights the comparison between a
gliding phase characterized by a ballistic con�guration where the canards are not deployed at
the apogee of the trajectory (dashed blue), and a gliding phase assuming a glider con�gura-
tion in Figure 1.4(b) with the canards fully deployed and maintained at zero local de�ection
angles, δr,δl = 0 deg (solid red). The former trajectory depends on the aerodynamic CFD
dataset interpolation employed for the ballistic ascending phase. Di�erently, the glider-based
trajectory relies on the Multivariable Regression model described in the Projectile Airframe

paragraph. Since no guidance references are provided and zero control actions are applied on
the projectile across the trajectory, the terminal guidance phase is not considered for the sim-
ulation. Similarly, the lateral dynamics of the projectile is also neglected due to the absence
of lateral steering maneuvers and wind contributions.

Figure 1.26: Ballistic simulations: trajectory performance comparison.
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The trajectory results in Figure 1.26 show the range enhancement provided by the ad-
ditional lifting contribution of the control surfaces, even in the absence of direct control
commands. However, the canard contributions generate a relevant destabilizing e�ect on
the projectile aerodynamics, since the overall CP, where the aerodynamic forces are ideally
applied, is pushed ahead of the projectile CM. This destabilizing e�ect is consistent with
the CFD data acquired during the aerodynamic characterization of the projectile, and it is
highlighted by the oscillation a�ecting the results in Figures 1.27(a)(c)(d)(e).

(a) (b)

(c) (d)

(e)

Figure 1.27: Ballistic simulations: (a) AoA trajectories; (b) Mach trajectories; (c)
pitch angle trajectories; (d) pitch rate trajectories; (e) pitching moment trajectories.
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In particular, the aerodynamic instability is numerically quanti�ed by the positive values
of the pitching moment in Figure 1.27(e), which induce a divergent increase of the projectile's
AoA, until a new equilibrium condition is found across the trajectory (t = 90 s). These
observation are coherent with the aerodynamic analysis previously discussed in Section 1.3.2.2.
These preliminary open-loop results serve as validation, not only for the accuracy of the
aerodynamic model developed through the regression analysis, but for the overall simulator
environment architecture. Indeed, the simulator will be later employed for the assessment of
the autopilot design performance.

1.5 Concluding Remarks

In this chapter, the nonlinear �ight dynamics model of a new class of long-range guided
projectiles (LRGP) has been derived. The modeling process relies on the standard formulation
of the nonlinear di�erential equations describing the projectile inertial dynamics. An overview
of the fundamental reference frames and coordinate systems was provided at the beginning of
the chapter. The core part was dedicated to an exhaustive analysis developed to characterize
the aerodynamics of the LRGP concept. The de�nition of a dedicated acquisition framework
allowed reducing the computational complexity related to the estimation of a large set of CFD
data. The CFD analysis targeted the two main aerodynamic contributions of the projectile. A
�rst acquisition campaign analyzed the aerodynamic coe�cients generated by the static Lift
and Drag contributions of the projectile's body, including the e�ect of the control surfaces at
zero local de�ection. The second acquisition dataset investigated the additional aerodynamic
contributions generated by the local de�ection of the control surfaces.

In order to provide a continuous model that describes the projectile aerodynamics at any
�ight conditions, the CFD data have been processed through an accurate regression analysis.
A polynomial single variable model (PR), and a multivariable model (MR) were obtained
from the regression of the static coe�cients. The former PR model is based on a reduced
set of CFD data, targeting the most critical conditions of the projectile aerodynamics. The
latter MR model relies on the entire CFD acquisition dataset, providing a global aerodynamic
description that targets a wider range of �ight conditions. A polynomial regression has been
performed also on the control surfaces CFD dataset. For control-oriented modeling purposes,
the individual aerodynamic contributions of the control surfaces are formulated as global body
rate e�ects that in�uence the projectile's orientation. The overall control formulation relies on
linear superposition assumptions concerning the aerodynamic response of the projectile. The
range of con�dence of the aerodynamic model was estimated around a total de�ection equal
to δ ∈ [−20, 20] deg.

Based on the results of the �ight dynamics and aerodynamics modeling processes, dif-
ferent models have been developed to represents speci�c features of the projectile dynamics.
Depending on the level of accuracy and complexity, each model can be employed in di�erent
stages of the autopilot design and validation.
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Projectile Pitch Channel Nonlinear Model. The �rst model targets the projectile pitch
channel dynamics de�ned in Equations (1.22)-(1.23), including the dynamics of the AoA and
the pitch rate, the PR static aerodynamic model in Equation (1.30), and the aerodynamic
contributions of the control surfaces derived in Equations (1.33)-(1.36), as:

dα
dt

=
q̄S

mV

[
−
(
CXS

+ CXδe�

)
sinα+

(
CZS +

(
d

2V

)
CZqq + CZδq

)
cosα

]
+ q +

g

V
(sin θ sinα+ cos θ cosϕ cosα),

dq
dt

=
q̄Sd

I2

(
CmS

+

(
d

2V

)
Cmqq + Cmδq

)
,

ηz =
q̄S

mg

(
CZS +

(
d

2V

)
CZqq + CZδq

)
,

(1.40)

where the PR static aerodynamic model is expressed as:

CXS
= CXα0(M) + CXα2(M) sin2α+ CXα4(M) sin4α,

CZS = CZα1(M) sinα,

CmS
= Cmα1(M) sinα+ Cmα3(M) sin3α+ Cmα5(M) sin5α,

(1.41)

and the control contributions are formulated as:

CXδe�
= CXδe�0

(M) + CXδe�2
(M) sin2 δe�,

CZδq
= CZδq1

(M) sin δq + CZδq3
(M) sin3 δq,

Cmδq
= Cmδq1

(M) sin δq + Cmδq3
(M) sin3 δq.

(1.42)

This model will be employed for the LPV modeling and control design of a dedicated pitch
autopilot, respectively in Chapter 2 and Chapter 3.

Projectile 6-DoF Nonlinear Model. A full nonlinear description of the projectile dy-
namics and aerodynamics is derived through the employment of the translational and attitude
dynamics in Equation (1.12) and Equation (1.13) respectively, the complete MR aerodynamic
model in Equation (1.31), and the corresponding aerodynamic control contributions, formu-
lated as:

du
dt

= rv − qw +
q̄S

m

(
CXS

+ CXδe�

)
− g sin θ,

dv
dt

= pw − ru+
q̄S

m

(
CYS +

(
d

2V

)
CYrr

)
+ g cos θ sinϕ,

dw
dt

= qu− pv +
q̄S

m

(
CZS +

(
d

2V

)
CZqq + CZδq

)
+ g cos θ cosϕ,

(1.43)
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and:

dp
dt

= I−1
1

[
(I2 − I3) qr + q̄Sd

((
d

2V

)
Clpp+ Clδp

)]
,

dq
dt

= I−1
2

[
(I3 − I1) pr + q̄Sd

(
CmS

+

(
d

2V

)
Cmqq + Cmδq

)]
,

dr
dt

= I−1
3

[
(I1 − I2) pq + q̄Sd

(
CnS +

(
d

2V

)
Cnrr

)]
,

(1.44)

where the MR static aerodynamic model is expressed as:

CXS
= CX0(M) + CX2(M) cosα cosβ + CX4(M) cos2α cos2β,

CYS = CY1(M) sinβ + CY3(M) sinβ cosβ cosα,

CZS = CZ2(M) sinα cosβ,

CmS
= Cm2(M) sinα cosβ + Cm4(M) sinα cosα cos2β,

CnS = Cn1(M) sinβ + Cn3(M) sinβ cosβ cosα.

(1.45)

while the control contributions are:

CXδe�
= CXδe�0

(M) + CXδe�2
(M) sin2 δe�,

CZδq
= CZδq1

(M) sin δq + CZδq3
(M) sin3 δq,

Clδp
= Clδp1

(M) sin δp + Clδp3
(M) sin3 δp,

Cmδq
= Cmδq1

(M) sin δq + Cmδq3
(M) sin3 δq.

(1.46)

This model will be implemented in the nonlinear simulator environment in Chapter 4 to test
the performance of the designed controllers in realistic trajectory-tracking simulation scenarios.

In the last section, the complete nonlinear �ight dynamics model of the LRGP concept
has been tested in simulation to assess the coherency with the aerodynamic dataset and
the preliminary open-loop properties of the system dynamics. A �rst open-loop simulations
comparison shows already the advantages provided by the deployment of the control surfaces,
in terms of operating range capability. However, the improved range performance comes at the
price of a higher unstable behavior. The simulations are performed in a nonlinear simulator,
fully developed through a proprietary MATLAB/Simulink environment (SMART toolbox). A
core aspect of the nonlinear simulator consists of the ease of integrating any guidance and
navigation functionality to assess the performance of the later-designed autopilot.
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LPV Control-Oriented Modeling
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2.1 Introduction

Control-oriented modeling consists of the intermediate step which allows the application of
several control design approaches to the general nonlinear dynamics of a system. In the
aerospace environment, a standard technique corresponds to the trimming and linearization
process of a system �ight envelope. The nonlinear dynamics of the vehicle is trimmed at
selected �ight conditions, aiming to identify the control input required to maintain the system
at each desired steady-state point. The nonlinear dynamics is then linearized at the same
�ight points, assuming the identi�ed trimming conditions. As a result, a collection of local
linearizations of the system nonlinear dynamics is obtained and employed for the application
of linear control design techniques ([The+10], [PPV01]). Despite its feasibility, the main
drawbacks of this method consist of the inability to fully capture the system dynamics away
from the design points. As a consequence, important nonlinearities and coupling terms that
can a�ect the system behavior might be potentially neglected.

The linear parameter-varying (LPV) framework represents an interesting modeling alter-
native. Indeed, it allows for a more general and complete time-dependent representation of

61
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the system dynamics. Several successful aerospace applications have been proposed in the last
years, relying on di�erent LPV approaches such as function substitution ([P�12]; [MB04]),
velocity-based techniques ([LL98]), and state transformation ([SC93]; [CS96]). In this chap-
ter, the state transformation method is investigated to develop an accurate LPV model of the
projectile pitch channel dynamics. The state transformation provides an exact transformation
between the original nonlinear system and the obtained LPV model. Thus, no approximations
are involved in the design, increasing the model capability to represent the original dynamics.
The performance of the obtained LPV model is validated in simulation and compared with
the original nonlinear dynamics. Finally, the LPV modeling process is completed through the
control-oriented reformulation of the LPV system in a polytopic form, characterized by an
a�ne model-parameter relation. The general LPV and the polytopic representations of the
system dynamics are employed later, in the second part of the manuscript, for the correspond-
ing control design approaches.

The chapter is structured in the following sections:

S2.2: provides a general introduction to the LPV class of systems, recalling the fundamen-
tal concepts related to the systems classi�cation and the main parameter-varying for-
mulations. An overview is dedicated to the di�erent modeling approaches that allow
reformulating the nonlinear dynamics of a system as an LPV model.

S2.3: presents the state transformation approach employed for the LPV modeling of the guided
projectile nonlinear dynamics. The accuracy of the modeling process is veri�ed in sim-
ulation, highlighting the advantages and drawbacks of the approach. Some relevant
remarks are discussed in view of the later control design. The results presented in this
section have been published in [Vina].

S2.4: discusses the modeling procedure developed to formulate the obtained LPV model of
the projectile dynamics as a polytopic system. The procedure relies on a model approx-
imation aimed at identifying a new set of scheduling functions, that respect the a�ne
conditions required by the polytopic formulation. The ultimate objective consists of the
identi�cation of the convex space of model validity, de�ned by the new set of scheduling
functions. The results presented in this section have been published in [Vina].
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2.2 LPV Framework

Linear Parameter-Varying (LPV) refers to a class of systems whose state space representation
is de�ned as a continuous function of a time-varying vector of scheduling parameters, denoted
as ρ(t)1. In particular, the scheduling parameters are assumed to be measurable in real-time.
A more detailed de�nition is provided in [SGB13] and [MS12].

In the following sections, some relevant de�nitions concerning the LPV class of systems
are recalled together with an overview of the di�erent LPV model formulations and the re-
lated properties. Particular attention is dedicated to the modeling approaches that allow the
reformulation of the general nonlinear dynamics of a system into an accurate LPV model.
Indeed, depending on the selected method, multiple LPV models can be derived from the
same nonlinear dynamics, requiring a careful and detailed analysis.

2.2.1 LPV/quasi-LPV Systems

In this section, some key de�nitions concerning the mathematical representation of dynamical
systems are recalled to introduce the LPV/quasi-LPV formulations. As summarized in Fig-
ure 2.1, LPV systems are a subclass of the more general nonlinear systems (NL). The time
dependence characterizing the dynamics of LPV systems is expressed through the variation of
a set of selected scheduling parameters. Furthermore, the linear time-invariant (LTI) class of
systems can be interpreted as a local realization of LPV systems, evaluated at `frozen' values
of the scheduling parameters.

Figure 2.1: Classi�cation diagram of dynamical systems.

De�nition 2.1 (Nonlinear Systems (NL))
Given the set of nonlinear ordinary di�erential equations (ODEs), f(x(t),u(t)) ∈ Rnx , and

g(x(t),u(t)) ∈ Rny , the nonlinear dynamics of a system, ΣNL, can be expressed as:

ΣNL :

{
ẋ(t) = f(x(t),u(t))

y(t) = g(x(t),u(t))
(2.1)

1The scheduling vector ρ(t) used in this chapter is di�erent from the air density, ρ(h), previously de�ned.
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where x ∈ Rnx represents the state vector of the system, u ∈ Rnu corresponds to the vector of

exogenous input, and y ∈ Rny is the measured output vector of the system.

De�nition 2.2 (Linear Parameter-Varying (LPV)/quasi-LPV Systems)
Given the vector of time-varying parameters, ρ(t) ∈ Rnρ , and the set of parameter-varying

matrices A (ρ(t)) ∈ Rnx×nx , B (ρ(t)) ∈ Rnx×nu, C (ρ(t)) ∈ Rny×nx , and D (ρ(t)) ∈ Rny×nu ,

the linear parameter-varying system, ΣLPV, can be expressed as:

ΣLPV :

{
ẋ(t) = A(ρ(t))x(t) + B(ρ(t))u(t)
y(t) = C(ρ(t))x(t) +D(ρ(t))u(t)

(2.2)

where x ∈ Rnx represents the state vector of the system, u ∈ Rnu corresponds to the vector of

exogenous input, and y ∈ Rny is the measured output vector of the system.

In particular, when the vector of scheduling parameters, ρ(t), includes part or the full state

vector, x (t), the system is de�ned as quasi-LPV. In this case, the state vector of the system

can be partitioned in a scheduling part, z ∈ Rnz , and a non-scheduling part, w ∈ Rnw :

Σq-LPV :


ż(t) = A11(ρ(t))z(t) +A12(ρ(t))w(t) + B1(ρ(t))u(t)

ẇ(t) = A21(ρ(t))z(t) +A22(ρ(t))w(t) + B2(ρ(t))u(t)

y(t) = C1(ρ(t))z(t) + C2(ρ(t))w(t) +D(ρ(t))u(t)

(2.3)

The vector of scheduling parameters is coherently divided in an endogenous subset, z(t), and

in an exogenous subset, Ω(t) ∈ RnΩ, as: ρ(t) = [z(t) ,Ω(t)]T.

De�nition 2.3 (Linear Time-Invariant (LTI) Systems)
Given the set of time-invariant matrices A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , and D ∈
Rny×nu , the linear time-invariant system, ΣLTI, can be expressed as:

ΣLTI :

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) +Du(t)

where x ∈ Rnx represents the state vector of the system, u ∈ Rnu corresponds to the vector of

exogenous input, and y ∈ Rny is the measured output vector of the system.

Depending on the speci�c dependence of the model on the varying parameters vector, LPV
systems can be classi�ed in three fundamental frameworks:

I. Polytopic systems: characterized by an a�ne model-parameter relation. This formu-
lation provides higher stability guarantees due to the convexity of the parameters space.
However, it can result conservative and restrictive for highly nonlinear system dynamics.

II. Parameter-dependent systems: based on a more general model-parameter relation,
suitable for a larger class of nonlinear systems.
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III. Linear Fractional Transformation (LFT) systems: allows splitting the constant
part (`nominal') of the system dynamics, from the parameter-varying one, modeled as
the uncertain system dynamics. The interest relies on the possibility of individually
modeling and analyzing the two contributions ([Pac+91]; [CL08]; [PH11]; [PVR12];
[Mar+15]).

In the following, the LPV formulations I and II are employed for the modeling and control
design of the guided projectile.

2.2.1.1 Polytopic Formulation

The polytopic formulation is restricted to a class of LPV systems characterized by an a�ne
dependence on the selected set of time-varying scheduling variables, ρ(t), ([AGB95]; [AG95];
[MS12]). As seen later for control-oriented modeling, the system must be input and output
parameter-independent. The latter restriction can be generally relaxed by pre-�ltering the
input and the output at the modeling stage, as discussed in [AGB95].

De�nition 2.4 (A�ne LPV Systems)
The LPV model in Equation (2.2) represents an a�ne system in the set of scheduling pa-

rameters, ρ (t), if the matrices of the system, A(ρ), B(ρ), C(ρ), and D(ρ), comply with the

following parameterization:[
A(ρ) B(ρ)
C(ρ) D(ρ)

]
=

[
A0 B0

C0 D0

]
+

nρ∑
j=1

ρj

[
Aj Bj

Cj Dj

]

where A0, Aj, B0, Bj, C0, Cj, D0, Dj are constant LTI matrices.

The LPV model in Equation (2.2), can be formulated as a polytopic system if the a�ne
condition in De�nition 2.4 is respected, and if the time-varying parameters in the scheduling
set are bounded and measurable in real-time ([AGB95]).

Assumption 2.1

Given a set of time-varying parameters, ρ(t) ∈ Rnρ , each element of the set, ρj, is measurable

in real-time and bounded between a maximum and a minimum value:

ρj ≤ ρj ≤ ρj

where j ∈ [1, nρ], and ρj, ρj indicate the upper and lower bound, respectively, of the jth

scheduling variable.

Therefore, the variation of the scheduling vector, ρ(t), lies in a polytope, Θ, de�ned by the
convex hull of nΘ vertices, θi, as shown in Figure 2.2. The vertices of the polytope correspond
to the overall set of possible combinations of the scheduling variables' boundary values:

Θ := Co
{
θ1,θ2, . . . ,θnΘ

}
.
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Figure 2.2: 2D polytope representation.

Then, each vertex is expressed as θi =
[
νi,1, . . . , νi,nρ

]
, where νi,j is the jth scheduling variable

that equals either ρj or ρj . The LPV system is obtained as the convex interpolation, µθ, of
the corresponding set of LTI system realizations, evaluated at each vertex of the polytope:[

A(ρ) B(ρ)
C(ρ) D(ρ)

]
=

nΘ∑
i=1

µθi(ρ)

[
A(θi) B(θi)

C(θi) D(θi)

]
; with: ρ =

nΘ∑
i=1

µθiθi. (2.4)

By de�ning the polytope as a general cuboid of nΘ = 2nρ vertices as in [Dub18]2, the inter-
polation function, µθ, evolves across the unitary polytope:

Γ :=

{
col
i
(µθi(ρ)) :

2nρ∑
i=1

µθi(ρ) = 1, µθi(ρ) ≥ 0

}
and is computed in real-time at each vertex as a function of the parameters vector as follows:

µθi(ρ) =

nρ∏
j=1

|ρj − Cc (θi)j |

nρ∏
j=1

(
ρj − ρj

) > 0 ; Cc (θi)j =

{
ρj if θi = ρj

ρj otherwise
(2.5)

where Cc (θi)j indicates the j
th element of the vector Cc(θi).

2.2.1.2 Parameter-Dependent Formulation

The parameter-dependent LPV formulation does not impose any speci�c model-parameter
relation, thus it can be applied to any kind of system. However, di�erently from the polytopic
formulation, the space of variation of the scheduling parameters is not guaranteed to be convex.

2Alternative de�nitions of the convex subset are investigated in [Jin+18]; [Kap+22]; [ZZW14]; [Cor+20];

[PDP05]; [Pan+21]; [HW15]; [KW08], aiming to reduced the polytope's dimensions and the resulting conser-

vativeness a�ecting the control design.
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De�nition 2.5 (Parameter-Dependent Systems)
An LPV model as in Equation 2.2, whose generic model-parameter relation is expressed through

a set of scalar di�erentiable basis functions {aj : Rnρ → R}Nj=1, can be parameterized as the

following parameter-dependent system:

[
A(ρ) B(ρ)
C(ρ) D(ρ)

]
=

[
A0 B0

C0 D0

]
+

N∑
j=1

aj(ρ)

[
Aj Bj

Cj Dj

]

where A0, Aj, B0, Bj, C0, Cj, D0, Dj are constant LTI matrices.

The formulation presented in De�nition 2.5 consists of a generalization of the a�ne pa-
rameterization introduced in De�nition 2.4. Indeed, the model formulated in De�nition 2.5
is a�ne in any function, aj(ρ), of the scheduling vector, ρ(t). Thus, a generalized polytopic
model could be also derived by exploiting the a�ne model dependence on aj(ρ).

2.2.2 LPV Modeling of Nonlinear Systems

The LPV formulation of general nonlinear system dynamics is a nontrivial and tedious pro-
cess. Depending on the selected approach and the considered vector of scheduling variables,
di�erent LPV/quasi-LPV models can be derived from the same nonlinear system. Thus, in
most of the scenarios, ad-hoc modeling procedures have to be developed depending on the
system under analysis, without clear guidelines on the optimal approach to employ, if any.
Early LPV modeling approaches consisted of an extension of the standard LTI gain-scheduling
framework. Linearization-based LPV techniques approximate the nonlinear dynamics through
the derivation of a family of local linearization of the system, at selected operating points. In
the last decades, several methods have been investigated, trying to propose a generalized pro-
cedure to convert the nonlinear dynamics of a system into an accurate LPV model, exploiting
the dynamic dependence on the scheduling variables. A brief non-exhaustive overview of the
most relevant approaches is provided in the following.

2.2.2.1 Linearization-Based Techniques

As aforementioned, linearization-based approaches have been early developed to couple LPV
control design with standard gain-scheduling strategies. Since the equilibrium points employed
for the local linearization of the nonlinear dynamics can result in stable or unstable conditions,
the approach is coherently developed as equilibrium-based or o�-equilibrium-based.

Equilibrium-Based. The modeling process involves a standard �rst-order Jacobian lin-
earization of the nonlinear dynamics across a set of j = 1, . . . , N equilibrium (trim) points.
Assuming the nonlinear dynamics in De�nition 2.1, the set of local linearizations is expressed
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at each equilibrium condition, (x̄, ū), at `frozen' parameter values, ρ̄, as:

Aj =
∂f

∂x

∣∣∣∣
ρ̄j

(x̄j , ūj); Bj =
∂f

∂u

∣∣∣∣
ρ̄j

(x̄j , ūj); Cj =
∂g

∂x

∣∣∣∣
ρ̄j

(x̄j , ūj); Dj =
∂g

∂u

∣∣∣∣
ρ̄j

(x̄j , ūj).

The corresponding �rst-order Taylor series expansion allows approximating the input/output
nonlinear dynamics around each equilibrium point. The overall linearization-based LPV model
relies on the interpolation of the obtained local LTI realization of the nonlinear dynamics. Sev-
eral applications of this method have been proposed in the aerospace environment ([The+10];
[PH10]; [Sèv+14]; [Str+15]; [Tha+20]). However, the linearization process often generates a
loss of transient properties of the modeled system. A slow variation of the scheduling param-
eters often must be assumed to increase the accuracy of the LPV model. Additionally, an
explicit solution of the equilibrium conditions is not always feasible.

O�-Equilibrium-Based. The derivation of linearization-based o�-equilibrium LPV mod-
els relies on the same approach described in the previous section. When a nonequilibrium
point is selected for the linearization, additional terms appear in the partial derivatives of the
linearized matrices. These terms are generally neglected and addressed as disturbances to be
compensated during the control design. Even though the o�-equilibrium dynamics preserves
more information concerning the transient properties of the nonlinear system, this approach
is a�ected by the same issues discussed previously.

2.2.2.2 Substitution-Based Techniques

This class of modeling approaches relies on the reformulation of the system nonlinear dynam-
ics in De�nition 2.1, without employing any linearization process. The substitution process
can target both the state and the input variables of the nonlinear system, generating di�er-
ent techniques. A detailed classi�cation can be found in [Tót10]. The state transformation
approach is discussed in the next section.

Linear Di�erential Inclusion. The LPV model is obtained by means of mathematical
manipulations, which aim at embedding the nonlinearities of the system as new scheduling
parameters of the corresponding LPV model. The approach is based on the Di�erential
Inclusion theorem, stating that given the nonlinear dynamics in Equation (2.1), if for each
state, x(t), and input u(t), there exists a matrix, F(x(t),u(t)) ∈ R(nx+ny)×(nx+nu), such that:[

f(x(t),u(t))

g(x(t),u(t))

]
= F(x(t),u(t))

[
x(t)

u(t)

]
, (2.6)

the solution of the nonlinear system in De�nition 2.1 are also solution of the system in Equation
(2.6) ([Boy+94]). The selection of the `virtual' scheduling parameters relies on an ad-hoc
analysis of the system under investigation. Thus, several di�erent LPV/quasi-LPV models
can be derived from a common nonlinear system. Additionally, the selection of a virtual set
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of scheduling variables often results in the loss of physical intuition in the system dynamics.
Thus, the solution of the obtained LPV system might diverge from the desired one at certain
operating conditions, depending on the scheduling variables de�nition.

Velocity-Based Techniques. This approach aims to generalize the local domain of validity
of standard linearization-based models to the entire subspace of admissible solutions of the
nonlinear system ([LL98]). By di�erentiating the nonlinear dynamics in De�nition 2.1, the
nonlinear system can be reformulated as:

ẋ(t)= ξ

ξ̇(t) = ∂f(x,u)
∂x ξ + ∂f(x,u)

∂u u̇

ẏ(t) = ∂g(x,u)
∂x ξ + ∂g(x,u)

∂u u̇

(2.7)

The corresponding quasi-LPV model can be obtained by simply de�ning the scheduling signal,
ρ = Col(x,u), and by substituting:

x̃ = ẋ; ũ = u̇; ỹ = ẏ.

In particular, for a set of appropriate initial conditions, the solutions of the nonlinear dy-
namics in De�nition 2.1, and the velocity-based quasi-LPV representation in Equation (2.7)
are equivalent. However, the employment of di�erentiated expressions as scheduling variables
might alter the behavior of the LPV model. From the implementation perspective, measure-
ments in terms of u̇ and ẏ are not always available.

Function Substitution. Restricted to the output nonlinear system parameterization, later
detailed in De�nition 2.6, this modeling approach relies on the reformulation of the state,
(z(t),w(t)), and input, u(t), vectors of the nonlinear system around a selected equilibrium
point, (z̄, w̄, ū), as:

z̃ = z − z̄; w̃ = w − w̄; ũ = u− ū.

The resulting nonlinear model is expressed w.r.t. the new set of variables by collecting the
nonlinearities in the function f(z), as:[

˙̃z
˙̃w

]
= A(z)

[
z̃

w̃

]
+ B(z)ũ+ f(z); with: f̃(z) = A(z)

[
z̄

w̄

]
+ B(z)ū+ f(z).

The objective is to �nd a matrix Γ(ρ), with ρ(t) = z(t), shuch that the nonlinear function
f̃(z) can be properly approximated for every trajectory of z(t) as:

f̃(z) ≈ Γ(ρ)z̃ (2.8)

The estimation of Γ(ρ) relies on the resolution of an optimization problem based on linear
programming that aims at minimizing the approximation error in Equation (2.8) ([TPB00];
[SBK02]; [MB04]; [P�12]). The main drawback of this approach consists of the strong depen-
dence on the selected equilibrium conditions.
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2.3 The State Transformation Approach

The state transformation approach consists of the reformulation of a plant nonlinear dynamics
through an alternative selection of the state variables. The new set of parameters, de�ned
through the change of variables, is supposed to hide the nonlinear terms a�ecting the plant
dynamics. Di�erent from standard linearization-based gain-scheduling techniques ([The+10];
[PPV01]), the transformation does not rely on a local linearization process. Thus, the validity
of the obtained LPV model is not limited to the selection of a set of design points. This
approach was �rst introduced in the 1990s ([SA92]; [LL00]; [RS00]) as an alternative technique
to generate families of LTI models of a general nonlinear system. The �rst examples of
successful applications employed the state transformation for standard gain-scheduling control
design of guided missiles ([SC93]; [CS96]). Later, the state transformation has been extended
also to aircraft modeling applications ([MB04]).

2.3.1 General Formulation

The state transformation modeling approach is suitable for a restricted class of systems, de�ned
as Output Nonlinear or Output Dependent.

De�nition 2.6 (Output Nonlinear Systems)
The nonlinear system in Equation (2.1) is called output nonlinear (or output dependent) if

the nonlinear terms depend only on the scheduling part of the state vector, z(t) ∈ Rnz . As in

the quasi-LPV system de�nition in Equation (2.3), the state vector, x(t) ∈ Rnx , is partitioned

in a scheduling vector, z(t), assumed known in real-time, and in a non-scheduling vector,

w(t) ∈ Rnw . Thus, the nonlinear system can be reformulated as follows:

[
ż

ẇ

]
=

[
f1(z)

f2(z)

]
+

[
A11(z) A12(z)

A21(z) A22(z)

] [
z

w

]
+

[
B1(z)

B2(z)

]
u,

y = z, (2.9)

where the functions f1(z) and f2(z) include all the nonlinearities of the system that depend

on the scheduling state.

The formulation in Equation (2.9) can be generalized by accounting for additional exogenous

scheduling parameters, Ω(t) ∈ RnΩ, as:

[
ż

ẇ

]
=

[
f1(ρ)

f2(ρ)

]
+

[
A11(ρ) A12(ρ)

A21(ρ) A22(ρ)

] [
z

w

]
+

[
B1(ρ)

B2(ρ)

]
u,

y = z, (2.10)

where the generalized scheduling vector, ρ(t) = [z(t) ,Ω(t)]T, includes both the endogenous

and the exogenous parameters.
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Additionally, to reformulate the generalized output nonlinear model in Equation (2.10) as
a quasi-LPV system through the state transformation approach, the following conditions have
to be satis�ed.

Assumption 2.2

The non-scheduling state variables and the control inputs of the output nonlinear model in

Equation (2.10) have to be linear w.r.t. the system. Nonlinearities w.r.t. the scheduling state

variables, z(t), are allowed and collected in the functions f1(ρ) and f2(ρ).

Assumption 2.3

The dimension of the scheduling state vector, z(t), matches the dimension of the control input

vector, u(t):

nz = nu

Assumption 2.4

For all values of the scheduling parameters, ρ(t) ∈ Rnρ , there exists a set of continuously

di�erentiable functions, (weq(ρ),ueq(ρ)), such that the output nonlinear system in Equation

(2.10) is in steady-state conditions:[
0

0

]
=

[
f1(ρ)

f2(ρ)

]
+

[
A11(ρ) A12(ρ)

A21(ρ) A22(ρ)

] [
z

weq(ρ)

]
+

[
B1(ρ)

B2(ρ)

]
ueq(ρ). (2.11)

Remark 2.1

Since no a priori guarantees are provided concerning the existence of the trimming functions,

an analysis of the feasible trim map is required before developing the state transformation.

The state transformation is achieved by de�ning the trimming functions (weq(ρ), ueq(ρ)),
as in Equation (2.11), across the feasible trim map. Then, by subtracting the steady-state
dynamics in Equation (2.11) from the nonlinear system in Equation (2.10), the following
expression is obtained: [

ż

ẇ

]
=

[
0 A12(ρ)

0 A22(ρ)

] [
z

wdev

]
+

[
B1(ρ)

B2(ρ)

]
udev (2.12)

where the new o�-equilibrium values of the non-scheduling state, wdev, and input, udev, are
de�ned by the transformation as:

wdev = w −weq(ρ); udev = u− ueq(ρ). (2.13)

In order to account for the dynamics of the o�-equilibrium non-scheduling state, the partial
derivatives of the corresponding trimming function, weq(ρ), are performed w.r.t. the schedul-
ing variables (endogenous and exogenous):

ẇdev := ẇ − ẇeq(ρ) (2.14)
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with:

ẇeq =
dweq

dt

=
∂weq

∂z
ż +

∂weq

∂Ω
Ω̇. (2.15)

By substituting the scheduling state dynamics, ż, of Equation (2.12) into the equilibrium
dynamics expressed in Equation (2.15), the o�-equilibrium state dynamics in Equation (2.14)
becomes:

ẇdev = (A22 −
∂weq

∂z
A12)wdev + (B2 −

∂weq

∂z
B1)udev −

∂weq

∂Ω
Ω̇. (2.16)

The resulting quasi-LPV formulation of the output nonlinear system in Equation (2.10) cor-
responds to: [

ż

ẇdev

]
=

[
0 A12(ρ)

0 Ã22(ρ)

] [
z

wdev

]
+

[
B1(ρ)

B̃2(ρ)

]
udev +

[
0

E(ρ)

]
Ω̇ (2.17)

where:

Ã22(ρ) := A22(ρ)−
∂weq

∂z
A12(ρ),

B̃2(ρ) := B2(ρ)−
∂weq

∂z
B1(ρ),

E(ρ) := −∂weq

∂Ω
.

(2.18)

The additional input, Ω̇, accounts for the dynamics of the exogenous scheduling variables.
These perturbation terms can be assumed arbitrarily small through Taylor expansion theory,
providing that the magnitude of wdev and udev is su�ciently contained ([Bal02]; [LL00]).
They are generally neglected and treated as external disturbances to be compensated through
the design of a controller with reliable disturbance rejection properties.

A �nal observation concerns the o�-equilibrium input, udev. The reformulated input of the
quasi-LPV system in Equations (2.17)-(2.18) strictly depends on the equilibrium conditions,
continuously updated online. The resulting inner feedback loop that updates ueq, can a�ect
the robustness of the outer closed-loop, destabilizing the system. A straightforward solution
consists of restricting the feasible trim map to those �ight points with zero trimmed input,
ueq = 0. However, this approach would impose strong limitations on the domain of validity
of the model. For control-oriented modeling, when the controller output is the only input to
the system and the controller to be designed includes integral action, the integrator dynamics
can be formally augmented at the input of the system ([SC93]; [CS96]), by de�ning:

u =

∫
σ.
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In this way, the new input is uniformly zero at every equilibrium point, and the feedback loop
does not a�ect the system anymore. Additionally, the integration rede�nes the input matrix,
B, of the quasi-LPV system in a parameter-independent form expressed by the identity matrix,
I ∈ Rnu . The latter observation represents a fundamental requirement for the employment of
certain LPV control design techniques, as later detailed.

By applying the same algebraic manipulations in Equations (2.14)-(2.16) to the o�-equilibrium
input, udev, the �nal integrator-augmented quasi-LPV is expressed as:

 ż

ẇdev

u̇dev

 =

0 A12(ρ) B1(ρ)

0 Ã22(ρ) B̃2(ρ)

0 Ã32(ρ) B̃3(ρ)

 z

wdev

udev

+

00
I

σ,

with:

Ã32(ρ) := −∂ueq

∂z
A12(ρ); B̃3(ρ) := −∂ueq

∂z
B1(ρ).

As previously claimed, the state transformation approach corresponds to an exact trans-
formation between the original nonlinear system and the obtained quasi-LPV model, avoiding
any forms of approximation. Additionally, due to the integration of the control input, the ac-
curacy of the quasi-LPV model does not depend on the speci�c operating point, and the terms
ẇeq =

∂weq

∂z ż and u̇eq =
∂ueq
∂z ż, allow accounting for any o�-equilibrium operating conditions.

2.3.2 The quasi-LPV Projectile Pitch Channel Modeling

Despite the restrictions discussed in the previous section, the state transformation is generally
suitable for aerospace applications. Indeed, �ight dynamics models often can be formulated
in the output nonlinear fashion displayed in Equation (2.10), by accounting for mild simpli-
�cations. In this section, the state transformation is employed to formulate the projectile
nonlinear pitch channel dynamics in Equations (1.40)-(1.42), at the end of Chapter 2, as an
accurate quasi-LPV system. However, the pitch channel dynamics does not respect the criteria
imposed by Assumption 2.2 for the output linear reformulation. Indeed, the aerodynamic lon-
gitudinal and vertical forces, (fa1 and fa3 , respectively), and the pitching moment coe�cient,
(mB2), are non-a�ne in the virtual control inputs, δe� and δq, as shown below.

dα
dt

=
1

mV
(−fa1 sinα+ fa3 cosα) + q +

g

V
(sin θ sinα+ cos θ cosϕ cosα),

dq
dt

=
mB2

I2
,

(2.19)
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where:

fa1 = q̄S

(
CXα0(M) + CXα2(M) sin2α+ CXα4(M) sin4α

+ CXδe�0
(M) + CXδe�2

(M) sin2 δe�

)
,

fa3 = q̄S

(
CZα1(M) sinα+

(
d

2V

)
CZq(M) + CZδq1

(M) sin δq + CZδq3
(M) sin3 δq

)
,

mB2 = q̄Sd

(
Cmα1(M) sinα+ Cmα3(M) sin3α+ Cmα5(M) sin5α+

(
d

2V

)
Cmq(M)

+ Cmδq1
(M) sin δq + Cmδq3

(M) sin3 δq

)
.

(2.20)

As a consequence, prior to the output nonlinear model reformulation, the aerodynamic
control contributions have to be adjusted to respect the conditions in Assumption 2.2.

2.3.2.1 Aerodynamic Approximation

The regression models of the aerodynamic control coe�cients, CXδe�
, CZδq

, and Cmδq
have

been derived in Section 1.3.3.4, as a function of the Mach number, and respectively, of the
longitudinal de�ection, δe�, and the virtual pitch de�ection, δq. These models correspond to
the following polynomial expressions, up to the second and third order:

CXδe�
(M, δe�) = CXδe�0

(M) + CXδe�2
(M) sin2 δe�,

CZδq
(M, δq) = CZδq1

(M) sin δq + CZδq3
(M) sin3 δq,

Cmδq
(M, δq) = Cmδq1

(M) sin δq + Cmδq3
(M) sin3 δq.

(2.21)

For control-oriented modeling, the longitudinal control contribution is neglected in reason
of the limited e�ect generated on the projectile dynamics. Indeed, the values of the regression
coe�cients, CXδe�,0

(M) and CXδe�,2
(M), are one order of magnitude smaller than the rest of

the control coe�cients. The longitudinal e�ect consists of the additional drag contribution
generated by the increasing de�ection angle of the canards. Since, it does not provide a direct
degree of control on the projectile dynamics, CXδe�

= 0 is assumed.

The vertical force and pitching moment control contributions have been investigated more
in detail. The CFD acquisition curves in Figure 1.10 of Section 1.3.2.3 show an approximately
linear behavior across a canards' local de�ection range equal to δr, δl ∈ [−20, 20] deg, at any
Mach conditions. The transition from linear to full stall regime occurs for δr, δl ∈ (20, 30] deg
(the same behavior was observed for negative de�ection angles). In order to obtain a linear
model of the aerodynamic control contributions, two di�erent approaches are investigated.
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❖ Taylor Approximation (TA): it relies on a standard �rst-order Taylor series ap-
proximation of the polynomial models in Equation (2.21), assuming the small angle
approximation. The resulting linearized regression models are the following:

C̃Zδq
(M, δq) = CZδq1

(M) δq; C̃mδq
(M, δq) = Cmδq1

(M) δq. (2.22)

❖ Linear Regression (LR): a new linear regression analysis is performed, only account-
ing for the CFD data that belong to the range of linear response of the canards. Thus,
assuming the quasi-linear canard de�ections range δr, δl ≈ δq ∈ [−20, 20], and the ap-
proximated interpolation in Equation (1.35), the following linear regression models are
selected:

C̃Zδq
(M, δq) = CZδqA

(M) δq; C̃mδq
(M, δq) = CmδqA

(M) δq.

The accuracy of the two approaches is compared through the evaluation of the approximation
error, �rst w.r.t. the nonlinear regression models in Equation (2.21), and then w.r.t. the orig-
inal CFD data. In the former scenario, the error, ePR, is evaluated as the di�erence between
each model (TA, LR) and the polynomial regression models at any Mach conditions. The
error is normalized by the mean value of the nonlinear regression models across the variation
of the canards' pitch de�ection, as below:

ek,PR(δq,M) =

∣∣∣∣ C̃kδq
(δq,M)− Ckδq

(δq,M)

C̄kδq
(M)

∣∣∣∣; C̄kδq
(M) =

∑nδq

i=1Ckδqi
(δq,M)

nδq
;

with: k = [Z,m]; M ∈ [0.3, 1]; δq ∈ [0, 20]deg.

(2.23)

The same evaluation is performed for the approximation error related to the CFD data,
eCFD, by simply substituting the polynomial regression coe�cients in Equation (2.23) with
the corresponding CFD data.

The results related to the vertical force control coe�cients are shown in Figure 2.3. In
particular, Figures 2.3(a)-(b) compare the approximation error, ePR, respectively obtained
employing the TA and the LR approaches. Similarly, Figures 2.3(c)-(d) provide the same
information in terms of eCFD. In both cases, the approximation error a�ecting the TA approach
tends to increase nonlinearly w.r.t. δq, while the corresponding LR errors show peaks of
amplitude at half of the range, δq ≈ 10 deg. Even though the TA approach presents higher
peak error values compared to the LR ones, it is still more suitable for the aerodynamic
approximation. Indeed, the TA errors, ePR and eCFD, never exceed the 5% and the 10%,
respectively, for pitch de�ections |δq| < 10 deg. Di�erently, the LR approach is a�ected by
10%, and 20% of corresponding error values, in the same de�ection range.

Remark 2.2

As discussed in Section 1.3.3.4, the canards control contributions modeling relies on the aero-

dynamic superposition Assumption 1.7, and the approximated interpolation in Equation (1.35).
The former assumes the linear superposition between the static and the control aerodynamic

contributions, individually estimated as a function of the projectile AoA, the former, and the



76 Chapter 2. LPV Control-Oriented Modeling

canards' local de�ections, the latter. On the other side, the approximated interpolation analysis

identi�ed the linear range of canard response limited to |δr|, |δl| < 20 deg. Thus, by combining

these results, the aerodynamic superposition assumption is reliable in a limited range of total

canard de�ections, |αCAN| = |α+ δr,l| ≈ |α+ δq| < 20 deg.

The considerations expressed in Remark 2.2 suggest that the canards' local de�ections
values, (δr, δl), and consequently their virtual combinations, (δp, δq), must always remain far
below the boundaries of the linear range, [−20, 20] deg. Indeed, the amplitude of the AoA
during a gliding trajectory is never null. Thus, the most signi�cant de�ection range concern-
ing the accuracy of the aerodynamic approximations results to be δq ∈ [−10, 10] deg, rather
than at higher values. The approximation errors related to the pitching moment coe�cient
in Figure 2.4 present the same trend as the vertical force ones. As a consequence, the Taylor
approximation models in Equation (2.22) are selected as the most accurate linearization ap-
proach for the aerodynamic control contributions. The approximated control coe�cients are
�nally linear w.r.t. the pitch channel dynamics in Equations (2.19)-(2.20), allowing the em-
ployment of the state transformation approach. The discussed aerodynamic approximations
are accounted for as sources of uncertainties to be handled at the control design stage.

(a) (b)

(c) (d)

Figure 2.3: CZδq
approximation errors: (a) ePR related to the TA approach; (b) ePR

related to the LR approach; (c) eCFD related to the TA approach; (d) eCFD related
to the LR approach.
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(a) (b)

(c) (d)

Figure 2.4: Cmδq
approximation errors: (a) ePR related to the TA approach; (b) ePR

related to the LR approach; (c) eCFD related to the TA approach; (d) eCFD related
to the LR approach.

2.3.2.2 Integrator-Augmented Model

The aerodynamic approximations in Equation (2.22) allow reformulating the nonlinear pitch
channel dynamics in Equations (2.19)-(2.20) as the output nonlinear system in Equation (2.10).
The vector of scheduling variables, ρ(t), selected to accomplish the state transformation,
includes the endogenous variable, z = α(t), and the exogenous variables, Ω = [V (t), h(t)]T.

ρ(t) = [z,Ω]T = [α(t), V (t), h(t)]T

The scheduling variables have been selected in reason of their relevant impact on the dynamics
and the stability of the projectile. The nonlinear terms a�ecting the pitch channel dynamics
are all functions of α. Thus, it has to be addressed as an endogenous parameter. Additionally,
to account for the large variation of V , and h, during the standard ballistic trajectory of the
projectile, these parameters must be considered in the LPV modeling process.

Assumption 2.5

As already mentioned in Assumption 2.1, the vector of scheduling variables, ρ(t), is as-

sumed to be known and available in real-time. Thus, the selected scheduling �ight parameters

(α(t), V (t), h(t)) are assumed to be either measured or estimated online, by means of navigation

algorithms.
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Remark 2.3

The airspeed dynamics, V̇ , could have been included in the pitch channel model, addressing

the long-period longitudinal dynamics (phugoid) of the projectile. However, the requirements

imposed by Assumption 2.3, prevent the selection of V as an endogenous scheduling variable.

Indeed, since the set of available control inputs is limited to the virtual pitch de�ection, δq,

the scheduling state vector can include only one parameter, thus z(t) = α(t). This aspect is

coherent with the absence of relevant control authority on the projectile longitudinal velocity,

since no thruster vectoring is employed for control purposes.

As a �nal comment, the pitch and the roll angles, θ and ϕ, respectively, represent the
only parameters not accounted for in the scheduling vector. Due to the Dynamic Decoupling
Assumption 1.5, the variation of the roll angle does not provide a signi�cant contribution
to the pitch channel dynamics. Thus, a nominal value, ϕ̄ = 0 deg, is assumed for the roll
angle. The variation of the pitch angle has an impact on the projectile dynamics. However,
the inclusion of an additional scheduling variable might over-complicate the synthesis of the
controller, which could become unfeasible. Additionally, the dynamics of the AoA partially
accounts for the attitude of the projectile. Thus, a nominal value is also selected for θ. The
selection has been performed iteratively. An initial value, θ̄ = 0 deg, was selected for simplicity
during the �rst control design stage. The resulting closed-loop trajectory simulations showed
how the pitch angle tends to stabilize around a nominal value, θ̄ = −2 deg, during the gliding
phase. As a consequence, the new value has been updated to improve the accuracy of the
LPV model and the performance of the control design.

According to these last observations, the projectile nonlinear pitch channel dynamics in
Equations (2.19)-(2.20) can be �nally expressed as the following output nonlinear system:

[
α̇

q̇

]
=

[
f1(ρ)

f2(ρ)

]
+

[
0 A12(ρ)

0 A22(ρ)

] [
α

q

]
+

[
B1(ρ)

B2(ρ)

]
δq; ρ (t) = [α(t), V (t), h(t)] (2.24)

where:

A12(ρ) = 1 +
q̄S cosα

mV

(
d

2V

)
CZq ; B1(ρ) =

q̄S cosα

mV
CZδq1

;

A22(ρ) =
q̄Sd

I2

(
d

2V

)
Cmq ; B2(ρ) =

q̄Sd

I2
Cmδq1

;

(2.25)

and:

f1(ρ) = − q̄S sinα

mV

(
CXα0(M) + CXα2(M) sin2α+ CXα4(M) sin4α

)
+
q̄S sinα cosα

mV
CZα1(M) +

g

V

(
sinα sin θ̄ + cosα cos θ̄

)
;

f2(ρ) =
q̄Sd

I2

(
Cmα1(M) sinα+ Cmα3(M) sin3α+ Cmα5(M) sin5α

)
.

(2.26)
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After satisfying Assumptions 2.2-2.3, the state transformation approach implies verifying
the existence of the trim functions, (qeq, δq,eq), as well as the feasible trim map, as discussed in
Assumption 2.4 and Remark 2.1, respectively. By zeroing the dynamics in Equations (2.24)-
(2.26), the trimming functions can be evaluated w.r.t. the variation of ρ(t), as it follows:{

f1(ρ) +A12(ρ)qeq + B1(ρ)δq,eq = 0

f2(ρ) +A22(ρ)qeq + B2(ρ)δq,eq = 0
(2.27)

The resolution of the above system of equations leads to the de�nition of trimming functions,
parameterized as:

qeq(ρ) =
B1(ρ)f2(ρ)− B2(ρ)f1(ρ)

A12(ρ)B2(ρ)−A22(ρ)B1(ρ)
; δq,eq(ρ) = − A12(ρ)f2(ρ)−A22(ρ)f1(ρ)

A12(ρ)B2(ρ)−A22(ρ)B1(ρ)
.

(2.28)

As a �rst step, the existence of the trimming functions is investigated across the entire
parameters range of variation. The existence conditions analysis is detailed in the Appendix B,
while a graphical representation of the functions continuity is shown in Figure 2.5 and Figure
2.6. The curves in Figure 2.5 represent the continuous variation of the trimming functions
evaluated across the ranges of (α,M), that are selected consistently with the domain of validity
of the aerodynamic coe�cients. The Mach number is used here as a reference parameter
instead of the airspeed, for a direct interpretation of the �ight regime under analysis. Similarly,

(a) (b) (c)

(d) (e) (f)

Figure 2.5: Trimming functions analysis: (a)-(b)-(c) pitch rate curves at h = [1, 7, 15]

km, respectively; (d)-(e)-(f) pitch de�ection curves at h = [1, 7, 15] km, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 2.6: Trimming functions partial derivatives analysis: (a)-(b)-(c) pitch rate
curves at h = [1, 7, 15] km, respectively; (d)-(e)-(f) pitch de�ection curves at h =

[1, 7, 15] km, respectively.

the analyzed altitude range targets the gliding phase of the projectile trajectory, equal to
h ∈ [1, 15] km. The existence and the continuity of the partial derivatives, (∂qeq(ρ)∂α , ∂δq,eq(ρ)

∂α ),
are assessed across the same ρ(t) domain through the curves in Figure 2.6. As a consequence,
Assumption 2.4 is satis�ed.

The last step consists of the identi�cation of the feasible trim map, where the trimming
functions assume reasonable values. Indeed, at highly unstable conditions, the control e�ort
required to trim the projectile dynamics might exceed the linear range of de�ection of the
control canards. As shown in the results of Figures 2.5(d)-(e)-(f), the trimmed input curves,
δq,eq, lie in the identi�ed canards linear de�ection range, δq ∈ [−20, 20] deg, at any (α, M,
h) conditions. In particular, the trimming functions are highly a�ected by the variations of α
and M, while the in�uence of h on δq,eq, and

∂δq,eq
∂α results to be negligible. A sudden increase

in the values of the trimmed input is observed during the transient regime, at M > 0.9, in
reason of the higher instability of the projectile. The analysis of the feasible trim map satis�es
the requirements raised in Remark 2.1.

According to the previous results, the projectile output nonlinear pitch channel dynamics
in Equations (2.24)-(2.26) can be �nally converted into a quasi-LPV model. However, the
state transformation relies on the reformulation of the non-scheduling state and input as
o�-equilibrium variables, qdev and δq,dev, respectively. As previously discussed, the resulting
critical dependence of the o�-equilibrium input to the trimming condition, δq,eq, can be avoided
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either by restricting the trim map to the �ight conditions where δq,eq = 0 deg, or by augmenting
integrator dynamics at the input of the system. As shown in Figure 2.5, the �ight points that
respect the trimming condition belong to a very limited envelope, unfeasible for control design
purposes. Thus, integrator dynamics is augmented to the projectile output nonlinear model,
de�ning the new input, σ, as:

δq =

∫
σ.

The resulting integrator-augmented quasi-LPV model, describing the projectile pitch chan-
nel dynamics, is expressed as: α̇

q̇dev
δ̇q,dev

 =

0 A12(ρ) B1(ρ)

0 Ã22(ρ) B̃2(ρ)

0 Ã32(ρ) B̃3(ρ)

 α

qdev
δq,dev

+

00
1

σ (2.29)

with:

Ã22(ρ) := A22(ρ)−
∂qeq
∂α

A12(ρ); B̃2(ρ) := B2(ρ)−
∂qeq
∂α

B1(ρ);

Ã32(ρ) := −∂δq,eq
∂α

A12(ρ); B̃3(ρ) := −∂δq,eq
∂α

B1(ρ).

(2.30)

The new state vector includes the AoA, and the o�-equilibrium values of the pitch rate, qdev,
and the virtual pitch de�ection, δq,dev.

Concerning the output measurements, a dynamic output feedback control approach will
be employed, assuming to have full access to the state vector of the system (state feedback).
In this scenario, the output matrix, C, corresponds to the identity I ∈ R3×3. Alternatively, the
vertical load factor measurements (LF), ηz, expressed in Equation (1.23), can substitute the
virtual pitch de�ection ones, leading to a standard dynamic output feedback con�guration. In
order to comply with the formulation of the quasi-LPV model, the o�-equilibrium expression
of the vertical LF is computed as:

ηz,dev = ηz − ηz,eq(ρ)

=
q̄S

mg

[(
d

2V

)
CZqqdev + CZδq1

δq,dev

] (2.31)

where the trimmed load factor, ηz,eq, is simply obtained by substituting qeq and δq,eq in the
general formulation in Equation (1.23), as:

ηz,eq(ρ) =
Z (qeq, δq,eq)

mg

=
q̄S

mg

[
CZS(M, α) +

(
d

2V

)
CZq(M) qeq + CZδq1

(M, δq) δq,eq

]
.

(2.32)
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As a consequence, the output equations in the output feedback con�guration are expressed
as:  α

qdev
ηz,dev

 =

1 0 0

0 1 0

0 C̃32(ρ) C̃33(ρ)

 α

qdev
δq,dev

 (2.33)

where:

C̃32(ρ) =
q̄S

mg

(
d

2V

)
CZq ; C̃33(ρ) =

q̄S

mg
CZδq1

. (2.34)

For both the state and the output feedback con�gurations, the input feedforward matrix, D,
is assumed zero.

2.3.3 Model Matching Simulations

The accuracy of the obtained quasi-LPV model is assessed through a set of open-loop simula-
tions. In reason of the instability characterizing the projectile dynamics, the simulations are
performed across a reduced stable domain of the �ight envelope. Step de�ection commands,
δq, are employed to perturb the quasi-LPV model from a selected steady-state equilibrium
condition. The performance of the quasi-LPV model (q-LPV), which accounts for the aero-
dynamic approximation in Equation (2.22), is compared with the full nonlinear pitch channel
dynamics (NL) in Equations (2.19)-(2.20). The simulator scheme is shown in Figure 2.7. An
integrator is added at the input of the nonlinear system to compensate for the dynamics aug-
mentation introduced in the quasi-LPV model during the state transformation. Additionally,
the o�-equilibrium state, qdev(t), and input, δq,dev(t), of the nonlinear model are obtained in
post-processing by applying the transformation in Equation (2.13) to the evaluated state, q(t),
and input, δq(t). This process is performed in the Output Deviation block of the scheme in
Figure 2.7, allowing for a better comparison of the systems' responses.

The scheduling parameters considered during the simulations are ρsim = [α, V ], while
the altitude, h, is assumed as constant. Indeed, the trim map analysis in Figure 2.5 did
not show a signi�cant dependence of the trimming functions on the altitude conditions. At

α

AeroCoeff.

δ̇q δq

qdev

α

δq,devOutput

Deviation

Nonlinear

Dynamics

qdev

α

δq,dev

quasi-LPV
Augmented

q

α

δq

Figure 2.7: Simulation scheme: quasi-LPV model assessment.
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each selected initial �ight point, ρsim, the corresponding trimming functions, qeq(ρsim) and
δq,eq(ρsim), de�ne the equilibrium conditions of the projectile. The selection criteria for the
initial ρsim rely on the minimization of the trimmed input de�ection. Indeed, the requirement
of a limited equilibrium de�ection, δq,eq, allows the employment of a larger step perturbation
command, without exceeding the validity range of the aerodynamic model de�ned in Remark
2.2. The results observed through the trim map of Figure 2.5 suggest the selection of the
initial conditions in Table 2.1, corresponding to a gliding phase �ight point at M = 0.7.

Table 2.1: Trim point conditions.

α(deg) V (m/s) h(km) qeq(deg/s) δq,eq(deg)

13 220 7 0.47 -0.08

The simulations are performed assuming a set of sequential commands corresponding to a
�rst pitch de�ection, δq1 = 5 deg at t1 = 5 s, and a second de�ection of δq2 = −3 deg at t2 =

30 s. Since the input de�ections are integrated for both the quasi-LPV and the nonlinear
model, two pulses are actually implemented as perturbations, simulating the corresponding
canards de�ection rates (δ̇q1 , δ̇q2). Once integrated, the pulses provide the desired control

(a) (b)

(c) (d)

Figure 2.8: Simulation curves comparison: (a) input perturbations; (b) angle-of-
attack; (c) o�-equilibrium pitch rate; (d) o�-equilibrium pitch de�ections.
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(a) (b)

(c)

Figure 2.9: Simulation curves comparison: (a) equilibrium pitch rate; (b) equilibrium
pitch de�ection; (c) total canards de�ection.

de�ection steps (δq1 , δq2), as shown in Figure 2.8(a). Aiming for a more realistic simula-
tion scenario, the AoA and the aerodynamic coe�cients generated by the nonlinear system
are assumed to be measured and fed as scheduling variables to the quasi-LPV model. This
con�guration is coherent with the real-time availability of the scheduling variables imposed
by the general de�nition of LPV systems, and stated in Assumption 2.5. In particular, the
aerodynamic coe�cients are interpolated online at each (α, M) conditions, based on the
approximated linear regression models.

The results in Figures 2.8(b)-(c)-(d) show the comparison between the open-loop time
responses of the two systems, related to the state variables, α(t) and qdev(t), and to the input,
δq,dev(t), respectively. The curves describing the quasi-LPV (q-LPV) and the nonlinear model
(NL) are almost perfectly overlapped, con�rming the accuracy of the state transformation
modeling process. At higher AoA, a slight mismatch is observed between the o�-equilibrium
input curves in Figure 2.8(d), which attenuates a lower AoA. Consistently, the AoA results
in Figure 2.8(b) are more accurate at lower steady-state values. The reason behind this
behavior can be found in Figure 2.9(c), where the total canard de�ection, αCAN = α + δq,
is presented. When the �rst de�ection step is commanded, the projectile AoA surpasses the
linear de�ection range assumed through the aerodynamic approximations, and represented
by the de�ection threshold, δTH. At those conditions, the reliability of both the quasi-LPV
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model, and aerodynamic superposition assumption begins to decrease. As soon as the second
de�ection command reduces the projectile AoA, the model matching is reestablished.

The curves in Figures 2.9(a)-(b) show the accuracy of the trimming functions, qeq(t) and
δq,eq(t), respectively in compensating for the corresponding signals. The initial large oscillation
and the slow damping of the system responses are caused by the limited stability of the
projectile dynamics.

The results in Table 2.2 consist of the standard RMSE, evaluated as the di�erence between
the value of each state variable obtained through the NL model and through the quasi-LPV
model, and normalized by the Min-Max range of the same variable generated by the NL
model. The Min-Max range has been preferred to the standard mean value since both the o�-
equilibrium pitch rate and pitch de�ection converge to zero. The NRMSE results con�rm the
high capability of the quasi-LPV model to represent the nonlinear dynamics of the projectile.

Table 2.2: Model matching NRMSE evaluation.

α(deg) qdev(deg/s) δq,dev(deg)

NRMSE 0.008 0.001 0.017

2.4 Polytopic Modeling Process

The state transformation process developed in the previous section allowed converting the
projectile nonlinear pitch channel dynamics into the integrator-augmented quasi-LPV system
in Equations (2.29)-(2.30). The quasi-LPV model is based on the general parameter-dependent
formulation discussed in Section 2.2.1.2 since the scheduling variables, ρ(t) = [α(t), V (t), h(t)],
enter nonlinearly the model dynamics. Indeed, the entries of the state matrix, A, in Equation
(2.25) show an explicit nonlinear dependence on α(t) and V (t), and an implicit nonlinear
dependence on h(t), through the de�nition of the dynamic pressure, q̄(h). As a consequence,
the quasi-LPV model in Equations (2.29)-(2.30) is not suitable for a polytopic control-oriented
modeling formulation.

As will be detailed in the following chapter, the LPV polytopic design provides higher
theoretical guarantees of dynamics stability, compared to alternative controller synthesis, at
the expense of more conservative performance. In order to assess the advantages of this de-
sign method, the state matrix of the projectile quasi-LPV model has to be reformulated in
a way to satisfy the a�ne model-parameter relation expressed in De�nition 2.4. Concerning
the controller design, input/output parameter independence represents an additional require-
ment to ensure the a�ne formulation. This aspect is clari�ed through the resolution of the
polytopic controller synthesis problem, detailed in the next chapter. As discussed in Sec-
tion 2.3.1, the input matrix has been rede�ned as a constant parameter-independent matrix,
B = [0, 0, 1]T ∈ R3×1, through the inclusion of an integrator during the state transformation
process. Furthermore, by assuming the state feedback control architecture introduced at the
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end of Section 2.3.2.2, the output matrix, C = I ∈ R3×3, becomes also constant parameter-
independent. Thus, the polytopic input/output parameter-independence requirement have
been already satis�ed.

In the following section, a polytopic model approximation procedure is developed to re-
formulate the state matrix of the projectile quasi-LPV model, A, into a polytopic form, Ã.
The procedure relies on the identi�cation of a new set of scheduling functions, ρ̂(t), such that
the resulting state matrix, Ã, is a�ne in ρ̂(t) as in De�nition 2.4. The procedure is presented
through the scheme in Figure 2.10, and consists of the following sequential steps:

I. Parameters Identi�cation: identify a new set ρ̂(t) characterized by the least neces-
sary number of scheduling functions, nρ̂. Indeed, the computational complexity of the
later controller synthesis tends to rapidly increase with nρ̂, as O(2nρ̂). The selection of
the new set of scheduling functions relies on an extensive model-parameter dependence
analysis.

II. Polytope Mapping: map the convex space described by the variation ranges of the
original scheduling vector, ρ(t), into a new space de�ned by the set ρ̂(t), identi�ed in
step I. The intention is to rede�ne the domain of validity of the approximated polytopic
model across the variation of the new scheduling functions, ρ̂(t).

Parameter

Identification

Polytope

Mapping

Selection

Analysis

Verification

Selection

Map

(Accurate?)

Yes

No

Figure 2.10: Polytopic model approximation scheme.



2.4. Polytopic Modeling Process 87

2.4.1 Parameter Identi�cation

The state matrix, A, is �rst parameterized in the least possible number of scheduling functions,
ρ̃(t), selected based on the following criteria:

❖ Favor the selection of nonlinear terms that appear repeatedly in the state matrix.

❖ The functions must be a�ne with the system to comply with the polytopic formulation.

❖ Neglect the e�ect of the parameters with limited relevance on the system dynamics.

Then, the identi�ed scheduling functions are extensively studied to assess their relevance in the
characterization of the system dynamics. Based on the results, each function is either included
in the �nal scheduling vector, ρ̂(t), or neglected. The resulting approximated polytopic model,
Ã(ρ̂), is compared to the original one, A(ρ), to assess the accuracy of the analysis. In the
following, the procedure is subdivided into three main phases: Selection, Analysis, and
Veri�cation.

2.4.1.1 Selection

The nonlinear terms characterizing the state matrix of the projectile quasi-LPV model in
Equations (2.29)-(2.30) are selected in accordance with the above criteria, and accounted for
as possible candidates for the new scheduling vector, ρ̃(t):

ρ̃1 :=
q̄S cosα

mV

(
d

2V

)
CZq ; ρ̃3 :=

∂qeq
∂α

; ρ̃5 :=
q̄Sd

I2

(
d

2V

)
Cmq ;

ρ̃2 :=
q̄S cosα

mV
CZδq1

; ρ̃4 :=
∂δq,eq
∂α

; ρ̃6 :=
q̄Sd

I2
Cmδq1

.

(2.35)

As a consequence, the state matrix can be expressed as a function of the new set, ρ̃(t), as:

A(ρ̃) =

0 (1 + ρ̃1) ρ̃2
0 ρ̃5 − ρ̃3(1 + ρ̃1) ρ̃6 − ρ̃3ρ̃2
0 −ρ̃4(1 + ρ̃1) −ρ̃4ρ̃2

. (2.36)

The reformulated state matrix, A(ρ̃), is still non-a�ne in the original set of scheduling vari-
ables, ρ(t), but it is a�ne in the new set, ρ̃(t), as desired. However, this formulation relies
on a large set of scheduling functions, nρ̃ = 6, unfeasible for controller design purposes. Thus,
the next phase aims to analyze and neglect the scheduling functions that do not signi�cantly
a�ect the dynamics of the system.

Remark 2.4

The selection of a di�erent parameterization of the state matrix, A, would result in a di�erent

set of scheduling functions. The Selection phase requires extensive insight and knowledge of

the system dynamics under investigation.
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2.4.1.2 Analysis

In order to reduce the dimension of the new scheduling vector, nρ̃, the variation of each
identi�ed scheduling function is analyzed w.r.t. the original set of parameters, ρ(t). Indeed,
ρ(t) represents the envelope of all the �ight conditions characterizing the projectile's trajectory
as a convex subspace (polytope). Any trial scheduling function in ρ̃(t), which is highly varying
inside the original polytope, must be maintained, while the functions with limited e�ect on
the system dynamics might be approximated or completely neglected.

The evaluation is based on the �ight envelope de�ned by: α ∈ [0, 16] deg, V ∈ [160,
280] m/s, and h ∈ [1, 15] km. Since the design aims at improving the range capability of
the projectile, only positive values of AoA are considered. Similarly, h = 15 km corresponds
to the maximum apogee conditions estimated for the range optimization, while h = 1 km
is assumed as the altitude level where the transition from the gliding phase to the terminal
guidance occurs. Finally, the airspeed range covers the most relevant corresponding �ight
regime, M ∈ [0.3, 1].

Function: ρ̃1. The scheduling function ρ̃1 is the �rst investigated. The results in Figure
2.11 show the variation of ρ̃1 as a function of the airspeed and the altitude in the selected
ranges. In particular, the variation of ρ̃1 is computed at increasing values of altitude with an
increment of ∆h = 1 km (blue curves). In reason of the low order of magnitude, the variation
of ρ̃1 has a negligible impact on the system dynamics at any (V , h) �ight conditions. The
results concerning the variation of ρ̃1 as a function α provide the same conclusion, thus only
two �ight scenarios are proposed, one targeting an unstable �ight condition, α = 4 deg in
Figure 2.11(a), and one related to a stable condition, α = 12 deg in Figure 2.11(b). As a
consequence, the following approximation holds:

ρ̃1 ≈ 0 | A12(ρ̃) = (1 + ρ̃1) ≈ 1.

(a) (b)

Figure 2.11: Approximation analysis: (a) ρ̃1 at α = 4 deg; (b) ρ̃1 at α = 12 deg.
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Functions: ρ̃2, ρ̃5, and ρ̃6. As observed in Equation (2.35), the functions ρ̃2, ρ̃5, and ρ̃6
have a common a�ne dependence on the dynamic pressure value, q̄. The formulation of q̄
itself includes the variations of two of the original scheduling variables: V and h. Thus, the
three scheduling functions can be approximated uniquely as a linear function of the dynamic
pressure. All the remaining parameters a�ecting ρ̃2, ρ̃5, and ρ̃6 are frozen to a nominal av-
erage value, (V̄ , C̄Zδq1

, C̄mq , C̄mδq1
), in their range of variations, leading to the approximations:

ρ̄2(q̄) =
q̄S

mV̄
C̄Zδq1

≈ ρ̃2; ρ̄5(q̄) =
q̄Sd

I2

(
d

2V̄

)
C̄mq ≈ ρ̃5; ρ̄6(q̄) =

q̄Sd

I2
C̄mδq1

≈ ρ̃6.

(2.37)

Concerning the approximations, the aerodynamic coe�cients have been acquired as a
function of the Mach value, hence of V and h, but their variations are very limited, thus
negligible. Similarly, the impact of the AoA variation on ρ̃2 is assumed negligible for the
present analysis. The nominal value selected for the airspeed corresponds to V̄ = 220 m/s,
representing the average airspeed condition experienced by the projectile during the gliding
phase of the trajectory.

The accuracy of these approximations is veri�ed at each �ight condition (V , h) as the
RMSE between the original and the approximated function, evaluated in the full range of

(a) (b)

(c)

Figure 2.12: Approximation analysis: (a) NRMSE of ρ̃2; (b) NRMSE of ρ̃5; (c)
NRMSE of ρ̃6.
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α = [0, . . . , 16] ∈ RN , and normalized by the mean value of the original scheduling function
at the same �ight point:

NRMSEj(V, h) :=

√∑N
i=1(ρ̃j(αi,V,h)−ρ̄j(αi,V,h))2

N∑N
i=1ρ̃j(αi,V,h)

N

; j ∈ [2, 5, 6].

The results related to the function ρ̃2 are shown in Figure 2.12(a). The approximation
error is minimal at the airspeed conditions around the selected nominal value, V̄ . However,
it does not exceed 15% in the main range of variation occurring during the gliding phase,
regardless of the (α, h) values. Similarly, the accuracy of ρ̃5 is lower at lower airspeed values
(≤ 15%) and improves at higher conditions (≤ 10%). Indeed, conditions of V ≥ 240 m/s

never occur at low altitude levels, during the characteristic gliding trajectory of the projectile.
Thus, the upper curves on the right half of Figure 2.12(b) are not relevant to the analysis.

Finally, the approximation of ρ̃6 provides extremely accurate results, as observed in Figure
2.12(c). Indeed, this function is not dependent on the inverse of V as the previous, but only
on the dynamic pressure. All the previous results are summarized in Table 2.3.

Table 2.3: NRMSE of the functions approximation.

Functions NRMSE max NRMSE min ref. error %

ρ̃2 0.25 0.01 15
ρ̃5 0.25 0 10
ρ̃6 0.11 0 5

Based on the analysis, the approximations in Equation (2.37) hold, and the variation of
three scheduling functions, (ρ̃2, ρ̃5, ρ̃6), can be represented in terms of the dynamic pres-
sure variation only. By including q̄ instead of (ρ̃2, ρ̃5, ρ̃6) in the new scheduling vector, the
corresponding dimension, nρ̃, reduces signi�cantly.

Functions: ρ̃3, and ρ̃4. Concerning the remaining functions, ρ̃3 and ρ̃4, the curves in
Figures 2.13(a)-(b) and Figures 2.13(c)-(d), respectively, reveal the highly nonlinear behavior
characterizing the derivatives of the equilibrium functions, ∂qeq

∂α and ∂δq,eq
∂α . Additionally, their

complex symbolic expressions prevent any possible parameterization as linear functions of the
dynamic pressure, or of any of the original set of scheduling variables.

As a consequence, they are directly assumed as new scheduling functions leading to the
de�nition of the �nal scheduling vector, ρ̂ = [ρ̂1, ρ̂2, ρ̂3], with:

ρ̂1 := q̄; ρ̂2 :=
∂qeq
∂α

; ρ̂3 :=
∂δq,eq
∂α

. (2.38)
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(a) (b)

(c) (d)

Figure 2.13: Approximation analysis: (a)-(b) ρ̃3 variation at α = 4 deg, and α = 12

deg, respectively; (c)-(d) ρ̃4 variation at α = 4 deg, and α = 12 deg, respectively.

Consistently, the state matrix in Equation (2.36) can be reformulated in a parameter-a�ne
form as:

Ã(ρ̂) =

0 1 Ā13(ρ̂1)

0 Ā22(ρ̂1)− ρ̂2 Ā23(ρ̂1)

0 −ρ̂3 −ρ̂3Ā13(ρ̂1)

, (2.39)

where Ā13 = ρ̄2, and Ā22 = ρ̄5 are the approximated forms of ρ̃2, and ρ̃5, respectively dis-
cussed in Equation (2.37), accounting for the selected parameters' nominal values. The �nal
approximation targets the matrix entry Ā23. Since the approximated product, ρ̂2Ā13, results
in some order of magnitude lower than the nominal entry ρ̂6, Ā23 can be approximated as:

Ā23 := ρ̄6 − ρ̂2Ā13

≈ ρ̄6 =
q̄Sd

I2
C̄mδq1

.

2.4.1.3 Veri�cation

In order to assess the accuracy of the overall approximation procedure, Figures 2.14(a)-(b)
show a comparison between the dynamics of the original model (Full) in Equation (2.36), and
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Figure 2.14: Pole-zero maps: (a) (V , h) variation at α = 12 deg; (b) stable/unstable
α conditions.

the approximated model (Aprx.) in Equation (2.39). Speci�cally, Figure 2.14(a) corresponds
to the pole-zero maps of the two models, evaluated at stable �ight conditions, assuming α = 12

deg, and increasing values of V and h. Similarly, Figure 2.14(b) compares the pole-zero maps
at a stable, α = 10 deg, and at an unstable, α = 7 deg, con�guration, for increasing values of
V , and at a constant altitude level, h = 7 km. Di�erent axes scales are selected to improve
the readability of the presented results.

A slight di�erence between the original and the approximated poles is observed, especially
for higher values of V and lower values of h. However, the e�ects of the approximations do
not generate relevant modi�cations in the system dynamics, con�rming the accuracy of the
modeling procedure. These new sources of uncertainties will be taken into account at the
control design stage, which is discussed in the next chapter.

2.4.2 Polytope Mapping

The second step of the polytopic model approximation procedure in Figure 2.10 focuses on
the identi�cation of the convex polytope, Θ̂, de�ned by the new set of scheduling functions,
ρ̂ = [ρ̂1(V, h), ρ̂2(α, V, h), ρ̂3(α, V, h)]. The identi�cation relies on a precise conversion process,
where the original �ight envelope described by the scheduling variable ranges: α ∈ [0, 16] deg,
V ∈ [160, 280] m/s, and h ∈ [1, 15] km, is mapped into the corresponding convex domain
de�ned by the new set of scheduling functions ranges:

ρ̂j ∈
[
ρ̂j , ρ̂j

]
; j = 1, 2, 3.

where ρ̂j , ρ̂j are the upper and lower bounds of each scheduling function, respectively, de�ning
the vertices of the new polytope. The following procedure allows estimating the range of
variation of each new scheduling function, ρ̂j , across the entire set of �ight conditions described
by α, V , and h. It consists of two sequential phases: Selection, and Map.
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2.4.2.1 Selection

Since the scheduling functions in ρ̂ are highly nonlinear w.r.t. the original scheduling variables,
(α, V , h), the �ight envelope is sampled into a �ne 3D grid of �ight points. However, the
scheduling functions are evaluated only on a subset of the overall grid. The selection criteria
rely on the identi�cation of those �ight points that respect the physical constraints a�ecting
the variables across a standard projectile gliding phase trajectory. In particular, Figure 2.15(a)
shows the speci�c relation characterizing the variables h/V during a gliding trajectory scenario.
The trajectory has been obtained by performing closed-loop guidance simulations based on a
simpli�ed planar point-mass model of the projectile dynamics, and assuming the Lift-to-Drag
Ratio optimization guidance law discussed in Section 1.4.2 of Chapter 1.

The �gure shows how certain (h, V ) conditions are inconsistent with the targeted pro-
jectile trajectory, thus they must be neglected in the mapping process. As a �rst polytope
identi�cation step, a cluster of nc �ight conditions (red points) is selected only around the
reference gliding trajectory. The selection of the nc points relies on an iterative process where
a progressively �ner grid of conditions, (α, V , h), has been employed for a more accurate es-
timation of the boundaries of each new scheduling function, (ρ̂1, ρ̂2, ρ̂3), during the following
Map phase. The �nal 3D design grid additionally accounts for the variation of the AoA, as
shown in Figure 2.15(b).

Remark 2.5

The polytope identi�cation process intrinsically depends on the selection of the investigated

�ight envelope. Since the later polytopic controller synthesis is generally a�ected by computa-

tion conservatism, the optimization of the polytope's dimension represents a crucial aspect of

the design. Depending on the objectives of the control design, di�erent ad-hoc selection criteria

can be employed. In the presented scenario, the aim is to enhance the range capability of the

projectile, thus a nominal gliding trajectory has been assumed as reference criteria.

(a) (b)

Figure 2.15: Flight points selection: (a) V − h trajectory constraints; (b) (α, V , h)
3D subspace.
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2.4.2.2 Map

The scheduling functions in the new set, ρ̂, are evaluated across the selected nc �ight points,
generating a new 3D convex subspace, Θ̂, as presented in Figure 2.16(d). The vertices of the
new polytope, θ̂i ∈ Θ̂ with i = 1, . . . , 8, are de�ned by the boundary values of each scheduling
function, represented in Figures 2.16(a)-(c) as: ρ̂1 ∈ [0.4, 2.9] × 104, ρ̂2 ∈ [0.05, 0.55], and
ρ̂3 ∈ [−1, 4.1].

The new polytope is still a�ected by a certain level of conservatism since the selection of the
grid points was based on an approximated reference trajectory. As discussed in Remark 2.5,
the minimization of the modeling conservatism is a fundamental requirement at the control
design stage. Thus, in Chapter 3, the polytope's dimension will be further investigated and
optimized, based on the additional knowledge acquired progressively during the controller
synthesis.

(a) (b)

(c) (d)

Figure 2.16: Polytope identi�cation: (a) ρ̂1-ρ̂2 subspace; (b) ρ̂1-ρ̂3 subspace; (c) ρ̂2-
ρ̂3 subspace; (d) (ρ̂1, ρ̂2, ρ̂3) 3D polytope.
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2.5 Concluding Remarks

In this chapter, the projectile nonlinear pitch channel dynamics has been modeled as an ac-
curate quasi-LPV model. The conversion relies on the state transformation approach that
allows the formulation of the quasi-LPV model as an exact transformation of the original non-
linear dynamics. The state transformation is restricted to a limited class of output nonlinear
systems, characterized by a linear model-input relation. In order to apply the transformation
process to the projectile pitch channel dynamics, a dedicated aerodynamic approximation has
been developed. The approximation aims at expressing the aerodynamic control coe�cients as
a linear function of the canards de�ection input, thus satisfying the requirements of the state
transformation approach. Additionally, integrator dynamics has been augmented at the input
of the system, δq =

∫
σ, to compensate for the input-parameter dependence con�guration.

Projectile Pitch Channel quasi-LPVModel. The resulting integrator-augmented quasi-
LPV model of the projectile pitch channel dynamics in Equations (2.29)-(2.30) and Equations
(2.33)-(2.34) is expressed w.r.t. the o�-equilibrium state vector, (α, qdev, δq,dev). Since it will
be employed for the LPV grid-based controller design, from now it will be referred to as ΣGR:

ΣGR :

 α̇

q̇dev
δ̇q,dev

 =

0 A12(ρ) B1(ρ)

0 Ã22(ρ) B̃2(ρ)

0 Ã32(ρ) B̃3(ρ)

 α

qdev
δq,dev

+

00
1

σ; ρ (t) = [α(t), V (t), h(t)].

(2.40)

with:

A12(ρ) = 1 +
q̄S cosα

mV

(
d

2V

)
CZq ; B1(ρ) =

q̄S cosα

mV
CZδq1

;

A22(ρ) =
q̄Sd

I2

(
d

2V

)
Cmq ; B2(ρ) =

q̄Sd

I2
Cmδq1

;

Ã22(ρ) := A22(ρ)−
∂qeq
∂α

A12(ρ); B̃2(ρ) := B2(ρ)−
∂qeq
∂α

B1(ρ);

Ã32(ρ) := −∂δq,eq
∂α

A12(ρ); B̃3(ρ) := −∂δq,eq
∂α

B1(ρ).

Concerning the output equation, o�-equilibrium LF measurements, ηz,dev, are employed to
substitute the canards pitch de�ection, assuming the following dynamic output feedback con-
�guration, as:  α

qdev
ηz,dev

 =

1 0 0

0 1 0

0 C̃32(ρ) C̃33(ρ)

 α

qdev
δq,dev

 (2.41)

where:

C̃32(ρ) =
q̄S

mg

(
d

2V

)
CZq ; C̃33(ρ) =

q̄S

mg
CZδq1

.

The feedforward matrix, D, is assumed zero.
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The accuracy of the quasi-LPV model has been validated in simulation across a �ight
envelope described by the variation ranges: α ∈ [0, 16] deg, V ∈ [160, 280] m/s, h ∈ [1, 15] km.

Aiming to employ the quasi-LPV model for the design of an LPV-based polytopic con-
troller, a further modeling step has been necessary. Indeed, the obtained quasi-LPV model
does not respect the a�ne model-parameter relation imposed by the polytopic formulation.
Thus, a model approximation procedure has been developed, with the purpose to reformu-
late the projectile quasi-LPV model into a polytopic system. The approximation relies on
the identi�cation of a new set of scheduling functions, ρ̂ in Equation (2.38), a�ne w.r.t. the
system dynamics.

Projectile Pitch Channel quasi-LPV/Polytopic Model. The approximation process
results in the polytopic reformulation of the projectile quasi-LPV pitch channel dynamics,
ΣPY, de�ned in Equation (2.39) as follows:

ΣPY :

 α̇

q̇dev
δ̇q,dev

 =

0 1 Ā13(ρ̂1)

0 Ā22(ρ̂1)− ρ̂2 Ā23(ρ̂1)

0 −ρ̂3 −ρ̂3Ā13(ρ̂1)

 α

qdev
δq,dev

+

00
1

σ (2.42)

where:

ρ̂1 := q̄; ρ̂2 :=
∂qeq
∂α

; ρ̂3 :=
∂δq,eq
∂α

and:

Ā13(ρ̂1) =
q̄S

mV̄
C̄Zδq1

; Ā22(ρ̂1) =
q̄Sd

I2

(
d

2V̄

)
C̄mq ; Ā23(ρ̂1) =

q̄Sd

I2
C̄mδq1

.

Concerning the output equation, the output matrix, C, consists of the identity matrix, I ∈
R3×3, assuming a state feedback architecture. The feedforward matrix, D, is assumed zero.

After assessing the accuracy of the approximation process, the original domain of va-
lidity of the quasi-LPV model has been mapped into the new convex polytope, Θ̂, de�ned
by the scheduling functions: ρ̂1(V, h) ∈ [0.4, 2.9] × 104, ρ̂2(α, V, h) ∈ [0.05, 0.55], and
ρ̂3(α, V, h) ∈ [−1, 4.1]. In the next chapter, the projectile quasi-LPV model, and the cor-
responding polytopic approximation, will be used respectively for the design of grid-based
and polytopic LPV autopilot. The performance of the two design approaches will be deeply
investigated and compared.
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LPV Controller Design
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3.1 Introduction

The synthesis of LPV controllers relies on the resolution of convex optimization problems,
formulated as linear matrix inequalities (LMIs). Di�erent from standard LTI gain-scheduling
strategies, the design guarantees relevant stability properties not only in the vicinity of a
selected set of operating conditions but also across the transient phase. Indeed, the gain-
scheduling design is often based on the online interpolation of a set of independently designed
LTI local controllers. As a consequence, no guarantees are provided concerning the perfor-
mance of the interpolated controller, especially in the case of sharp variations in the operating
conditions. By limiting the admissible variation range of each operating parameter (`slow
variation' assumption as discussed in [SA92]), stability performance can be recovered in the
transition between two steady-state conditions, at the expense of signi�cant restrictions on
the range of applications ([RS00]).
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In the LPV framework, higher stability guarantees and performance can be obtained de-
pending on the formulation of the LMIs optimization problem. Due to the continuous variation
of the parameters, the optimization problem results in an unfeasible in�nite number of con-
ditions. Through the imposition of an a�ne model-parameter relation, the optimization can
be solved across a convex (polytope) subspace de�ned by the ranges of variation of the pa-
rameters. By exploiting the linear variation of the parameters, the design ensures stability
guarantees across the polytope. Alternatively, the continuous space of variation of the pa-
rameters can be discretized into a �nite set of design conditions (gridding). By additionally
accounting for the rate of variation of each parameter, the optimization problem can be further
constrained, improving the performance of the resulting controller.

In this chapter, the aforementioned approaches are employed for the synthesis of a robust
LPV autopilot for the projectile pitch channel dynamics, based on the H∞ criterion. The
former polytopic approach ensures broader stability guarantees at the expense of a more con-
servative optimization performance ([AGB95]; [SGC97]). The conservatism of the approach
is targeted through the optimization of the polytope's dimensions and the consistency of the
operating conditions belonging to the convex subset ([Jin+18]; [Kap+22]; [ZZW14]; [Cor+20];
[PDP05]; [Pan+21]; [HW15]; [KW08]). Conversely, the grid-based formulation, improves the
optimization performance of the controller synthesis, even though the stability guarantees in
the transient between di�erent design points are weaker than the polytopic case ([WPB95];
[Wu+96]). However, by simultaneously satisfying the LMIs at all the grid conditions through
a parameter-dependent solution, the likelihood of reliable performance related to the controller
interpolation is much higher than in the standard LTI gain-scheduling approach.

The chapter is structured in the following sections:

S3.2: recalls the fundamental concepts related to the stability properties of di�erent classes of
LPV systems. The LPV-based controller synthesis is formulated as an LMIs optimization
problem that aims at minimizing the induced L2-norm of the system. The conditions
related to the resolution of the LMIs optimization through the polytopic and grid-based
approaches are �nally detailed.

S3.3: focuses on the design of an LPV autopilot for the projectile pitch channel dynamics,
based on the polytopic approach. The control scheme is �rst introduced by addressing
the core objectives of the design. The conservatism a�ecting the controller synthesis
is addressed by analyzing the variation of the scheduling functions across the selected
convex space. The results of the design are �nally investigated in the frequency domain.
The results presented in this section have been published in [Vin+23a]; [Vin+23b].

S3.4: discusses the resolution of the LPV controller synthesis, by gridding the scheduling
variables space. An output feedback con�guration is employed for the design of the
grid-based autopilot for the projectile pitch channel dynamics. The gridding process is
extensively investigated in order to optimize the performance of the controller synthesis.
As for the polytopic case, the results of the design are analyzed in the frequency domain.
The results presented in this section have been published in [Vin+23c].
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3.2 Fundamentals on LPV Control Design

This section provides a brief and non-exhaustive overview concerning the di�erent notions of
stability properties for LPV systems and the conditions that have been developed to assess the
degree of stability of a generic LPV system. Finally, the synthesis of LPV-based controllers is
formulated in terms of feasible optimization problems. Further information can be found in
[Boy+94]; [Bri14]; [MS12]; [SGB13].

3.2.1 Linear Matrix Inequalities

The resolution of linear matrix inequalities (LMIs) systems represents a fundamental tool in
the formulation of convex optimization problems, such as the synthesis of LPV controllers.

De�nition 3.1 (Linear Matrix Inequalities (LMIs))
A linear matrix inequality consists of a compact formulation to express an algebraic convex

constraint on a generic vector x ∈ RN , as:

L(x) := L0 +
N∑
i=1

Lixi ⪰ 0 (3.1)

where L0 = LT
0 , and Li = LT

i ∈ RN×N are known matrices. The constraint can impose a

symmetric and positive semi-de�nite matrix condition, L ⪰ 0, or a positive de�nite matrix

condition, L ≻ 0. In the latter case, it is referred to as `strict' LMI.

The solution of an LMIs problem consists of �nding a convex set, L, de�ned by all the possible

vectors, x, that satisfy the constraint in Equation (3.1):

L = {x ∈ RN |L(x) ⪰ 0 (or ≻ 0)}.

In control applications, LMIs as in De�nition 3.1 are employed to target the location of
the eigenvalues of L, imposing either positive L ≻ 0, or negative values, L ≺ 0. In particular,
multiple LMIs constraints can be formulated as a single condition, as follows:

L(x) =


L1(x) 0 · · · 0

0 L2(x) · · · 0
...

...
. . .

...
0 0 . . . Lk(x)

 (3.2)

The solution of the system in Equation (3.2) is given by the union of the eigenvalues of the
individual matrices, Lj(x) with j = 1, . . . , k. Since it consists of the intersection of multiple
convex sets, the solution of the system in Equation (3.2) de�nes also a convex set.

Systems of inequalities de�ned as in Equation (3.2) represent a standard formulation for
convex control design optimization problems. Depending on the constraints imposed through
the de�nition of the LMIs, optimization problems can be classi�ed as in the following.
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De�nition 3.2 (Semi-De�nite Programming LMIs Problem (SDP))
A semi-de�nite LMIs optimization programming problem is formally de�ned as:

min cTx

s.t. x ∈ RN

L(x) ≻ 0

where c ∈ RN .

De�nition 3.3 (Semi-In�nite LMIs Problem)
A semi-in�nite LMIs optimization problem is formally de�ned as:

min cTx

s.t. x ∈ RN

L(x,ρ) := L0(ρ) +

N∑
i=1

Li(ρ)xi ⪰ 0; with ρ ∈ Uρ

where c ∈ RN , and Uρ ∈ Rnρ is a compact set.

De�nition 3.4 (In�nite-Dimensional LMIs Problem)
An in�nite-dimensional LMIs optimization problem is formally de�ned as:

min cTx(ρ)

s.t. x : Uρ → RN

L(x(ρ),ρ) := L0(ρ) +
N∑
i=1

Li(ρ)xi(ρ) ⪰ 0; with ρ ∈ Uρ

where c ∈ RN , Uρ ∈ Rnρ is a compact set, and x : Uρ → RN is a parameter-dependent

function.

Several optimization tools have been developed in the past years to solve SDP LMIs
problems in De�nition 3.2, such as Yalmip ([Lof04]) and CVX ([GB08]), equipped with so-
phisticated solver algorithms (e.g. SDPT3, Mosek, and SeDuMi). Di�erently, in semi-in�nite
and in�nite-dimensional LMIs problems, the constraints are parameter-dependent, meaning
that the corresponding LMIs have to be satis�ed for an in�nite number of conditions, de�ned
by the continuous variation of the parameters, ρ ∈ Uρ. As detailed in the next section, semi-
in�nite LMIs optimization problems can be converted into solvable SDP problems by means
of standard matrix relaxation techniques. Instead, the solution of an in�nite-dimensional
LMIs problem requires a �rst reformulation as a semi-in�nite problem by converting the in-
�nite parameter-dependent decision variables, x(ρ), into a �nite set. Then, the resulting
semi-in�nite problem is addressed through relaxation techniques, as previously mentioned.
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3.2.2 Stability of LPV Systems

This section recalls the basic concepts concerning the stability conditions of di�erent classes
of LPV systems. The stability of LPV systems is achieved through the imposition of a set of
constraints on the eigenvalues of the system state matrix, in the form of LMIs conditions. In
particular, it relies on the extension to the LPV framework of the well-established Lyapunov
de�nition of system equilibrium properties, and the corresponding Lyapunov's Stability The-
orem of dynamical systems, discussed in [Lya92]; [Kha02].

Lyapunov Stability. Without loss of generality, from the general formulation in Equation
(2.2) assume the autonomous LPV continuous dynamics, given by:

ẋ(t) = A(ρ(t))x(t); with: x(t) ∈ Rnx ; ρ(t) ∈ Rnρ ; t ≥ 0

x(0) = x0.
(3.3)

From Lyapunov theory, the stability of the parameter-varying system in Equation (3.3) relies
on the identi�cation of a Lyapunov function:

V (x) := xTPx; with: P ∈ Rnx×nx ≻ 0

such that the derivative, V̇ (x,ρ), satis�es the following Lyapunov condition:

V̇ (x,ρ) := x(t)T
(
A(ρ)TP + PA(ρ)

)
x(t) ≺ 0 (3.4)

for all the parameters' trajectories, ρ ∈ Rnρ .

In particular, depending on the parameterization of the selected Lyapunov function, the
conditions expressed in Equation (3.4) can be reformulated providing di�erent guarantees of
stability ([Bri14]).

De�nition 3.5 (Quadratic Stability)
The system in Equation (3.3) is said to be quadratically stable if there exists a parameter-

independent Lyapunov function, V (x) = xTPx ≻ 0 for every x ̸= 0, and V (0) = 0, that

satis�es the Lyapunov condition in Equation (3.4), reformulated as:

A(ρ)TP + PA(ρ) ≺ 0

for every x ̸= 0, and such that V̇ (0,ρ) = 0 for every ρ ∈ Rnρ .

De�nition 3.6 (Robust Stability)
The system in Equation (3.3) is said to be robustly stable if there exists a parameter-dependent

Lyapunov function, V (x,ρ) = xTP (ρ)x ≻ 0 for every x ̸= 0, and V (0) = 0, that satis�es the

Lyapunov condition in Equation (3.4), reformulated as:

A(ρ)TP (ρ) + P (ρ)A(ρ) +

nρ∑
i=1

ρ̇i
∂P (ρ)

∂ρi
≺ 0

for every x ̸= 0, and such that V̇ (0,ρ) = 0 for every ρ ∈ Rnρ .
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Remark 3.1

The de�nition of quadratic stability does not account for bounded rates of variation of the

parameters, ρ̇, possibly resulting in a very conservative condition to be satis�ed. Indeed, it

represents a su�cient but not necessary condition for asymptotic stability ([Bri14]). Di�er-

ently, robust stability distinguishes between slow and fast-varying parameters, providing less

conservatism in the formulation of the constraints, but also lower global guarantees of stability.

In reason of these de�nitions, quadratic stability implies robust stability, but not vice versa.

Indeed, the derivative of the Lyapunov function is not guaranteed to be negative de�nite for

all (ρ, ρ̇) conditions because of the additional terms:

nρ∑
i=1

ρ̇i
∂P (ρ)

∂ρi
.

The assessment of quadratic and robust stability of LPV systems relies on the formulation
of the semi-in�nite and in�nite-dimensional LMIs problems, introduced in De�nition 3.3 and
De�nition 3.4, respectively. In the following, the robust stability of a generic LPV system is
addressed through the projection of the in�nite-dimensional LMIs decision variables into a set
of �nite-dimensional basis functions. The resulting semi-in�nite problem is solved through the
relaxation of the LMIs conditions by gridding the parameters' space. Concerning the feasibility
of the quadratic stability conditions, the reformulation of the LPV system in Equation (3.3) as
a polytopic model allows exploiting the advantages of the a�ne-parameter dependence in the
resolution of convex optimization problems. The alternative gridding approach is not detailed
in the presence work for brevity.

3.2.2.1 Robust Stability via Gridding Approach

The resolution of the in�nite-dimensional LMIs problem that guarantees robust stability in
the sense of De�nition 3.6 can be achieved through the projection of the parameter-dependent
matrix, P (ρ) = P (ρ)T ≻ 0, on a set of scalar basis functions, fi(ρ) with i = 1, . . . , nB. Based
on the selection of fi(ρ), the parameter-dependent matrix can be parameterized as:

P (ρ) =

nB∑
i=1

Pifi(ρ)

where the new set of decision variables, corresponding to the matrices Pi = PT
i , has a �nite

dimension. As a consequence, the robust stability condition in De�nition 3.6 can be expressed
as in the following theorem.

Theorem 3.1

The LPV system formulated in Equation (3.3) is robustly stable if there exist matrices Pi = PT
i



3.2. Fundamentals on LPV Control Design 105

such that the following LMIs:

A(ρ)T

(
nB∑
i=1

Pifi(ρ)

)
+

(
nB∑
i=1

Pifi(ρ)

)
A(ρ) +

nρ∑
i=1

νi

(
nB∑
i=1

Pi
∂fi(ρ)

∂ρi

)
≺ 0

nB∑
i=1

Pifi(ρ) ≻ 0

hold for all ρ ∈ Uρ, where Uρ ∈ Rnρ is a compact set, and all the vertices of the polytope,

ν =
nρ

col
i=1

(νi), where the parameters' derivative, ρ̇, evolves.

Remark 3.2

The selection of the set of basis functions, fi(ρ), is not restricted to any speci�c parameter

dependence. Thus, the projection approach can be applied to all classes of LPV systems. How-

ever, the higher the number of selected functions, nB, the higher the computational complexity

a�ecting the resolution of the LMIs problem. Additionally, no standard criteria are provided

for the selection of the basis functions. Generally, it relies on the mimic principle, where the

functions are chosen in a way to replicate the same model-parameter dependence presented by

the LPV system ([AA98]).

Through the reformulation discussed in Theorem 3.1, the in�nite-dimensional robust sta-
bility LMIs problem has been converted into a semi-in�nite problem. The last conversion step
consists of the relaxation of the in�nite number of parameter-varying LMIs to be solved. A
standard solution relies on the discretization of the continuous space of variation of the param-
eters into a �nite grid of ng selected values, ρ ∈ Ūρ := {ρ1, . . . ,ρng}. Thus, the semi-in�nite
LMIs condition in Theorem 3.1 can be reformulated as:

Proposition 3.1

The LPV system in Equation (3.3) is robustly stable if there exists matrices Pi = PT
i such

that the LMIs:

A(ρ)T

(
nB∑
i=1

Pifi(ρ)

)
+

(
nB∑
i=1

Pifi(ρ)

)
A(ρ) +

nρ∑
i=1

νi

(
nB∑
i=1

Pi
∂fi(ρ)

∂ρi

)
≺ 0

nB∑
i=1

Pifi(ρ) ≻ 0

hold for all the ng values of ρ ∈ Ūρ, where Ūρ := {ρ1, . . . ,ρng}, and all the vertices of the

polytope, ν =
nρ

col
i=1

(νi), where the parameters' derivative, ρ̇, evolves.

Remark 3.3

The resolution of the LMIs optimization through grid-based relaxation consists of an approxi-

mation of the LMIs problem in Theorem 3.1. A major drawback related to this technique relies

on the lack of guidelines for the optimal selection of the grid points during the discretization.

Indeed, the selection of an optimal grid that ensures capturing the most signi�cant and criti-
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cal parameters' values, implies the prior knowledge of the feasible/unfeasible conditions of the

optimization problem itself, generating a paradox.

A relevant consequence inferred from Remark 3.3 concerns the lack of guarantees about the
system dynamics variation between the grid points. The selection of a denser and unevenly dis-
cretized grid can increase the likelihood of imposing stable conditions in the transient dynamics
between known points. However, the computational complexity related to the resolution of the
LMIs problem tends to increase with the number of grid points as O(ng

nρ). Thus, depending
on the application, ad-hoc solutions might be necessary for an accurate identi�cation of the
critical areas of the parameters' space.

3.2.2.2 Quadratic Stability via Polytopic Formulation

An alternative solution for the conversion of a semi-in�nite LMIs problem into a solvable SDP
one consists of the reformulation of the LPV system as a polytopic model.

The polytopic formulation presented in Section 2.2.1.1 relies on the a�ne model-parameter
dependence assumption expressed in De�nition 2.4. Without loss of generality, assume the
LPV autonomous system in Equation (3.3), expressed in the polytopic formulation presented
in Equation (2.4), and accounting for nΘ = 2nρ , as:

ẋ(t) =

2nρ∑
i=1

µθi(t)Aix(t); with: ρ =

2nρ∑
i=1

µθiθi

x(0) = x0

(3.5)

where the scheduling parameters, ρ(t) ∈ Rnρ , belong to the polytope, Θ, de�ned by the convex
hull of the �nite set of vertices, V = [θi, . . . ,θ2nρ ]. The interpolation variables, µθi , de�ne the
corresponding unitary polytope:

Γ :=

{
col
i
(µθi(t)) :

2nρ∑
i=1

µθi(t) = 1, µθi(t) ≥ 0

}

Based on this assumption, the convexity of the polytope can be exploited by observing
that, if the LMIs condition in Equation (3.4) holds for all of the vertices, θi ∈ V, such that:

AT
i P + PAi ≺ 0

the corresponding sum of negative-de�nite matrices:

2nρ∑
i=1

µθi
[
AT

i P + PAi

]
is also negative-de�nite for all µθi ∈ Γ. Then, the quadratic stability condition presented in
De�nition 3.5 can be equivalently formulated as in the following.
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Theorem 3.2

The LPV polytopic system in Equation (3.5) is quadratically stable in the sense of De�nition

3.5, if and only if there exists a matrix P = PT ≻ 0 such that the LMI:

AT
i P + PAi ≺ 0

holds for all i = 1, . . . , 2nρ .

The polytopic formulation allows converting the semi-in�nite LMIs problem in De�nition
3.5 into the equivalent �nite number of 2nρ conditions in Theorem 3.2, feasible for semi-de�nite
programming computation.

Remark 3.4

Despite the feasibility of Theorem 3.2, the number of LMI conditions to be satis�ed grows

exponentially w.r.t. the number of scheduling variables, as O(2nρ). Thus, the higher the

dimension of ρ(t), the higher the computational complexity related to the stability assessment.

As mentioned in Remark 3.4, quadratic stability tends to result in a generally conservative
condition. Indeed, a common constant Lyapunov matrix, P , has to satisfy contemporary the
LMIs at each vertex of the convex space of the parameters' variations. Additionally, the rates
of variation of the scheduling parameters are not accounted for in the formulation. The robust
stability condition introduced in Theorem 3.1 relies on parameter-varying Lyapunov matrices
that can more optimally target the stability of the system at each parameter condition. The
de�nition of robust stability for polytopic systems is not immediate since it requires the
additional de�nition of the convex set of variation of the parameters' derivative, ρ̇. A standard
solution, which is not detailed here, is based on the employment of slack-variables, introduced
in [DOBG99]; [DOGH99] for discrete-time systems and then extended to the continuous case,
as in [ATB01].

3.2.3 LPV Control Synthesis Problem

The criteria de�ned in the previous section, in the form of LMIs optimization problems,
can be used to formulate the synthesis of a controller that guarantees certain stability and
performance properties of the resulting closed-loop system. In particular, control systems can
be classi�ed based on the purpose they are designed to achieve, as:

❖ Regulator: targets the attenuation of external and internal disturbance signals that
may a�ect the input or the output of the system.

❖ Servo: aims to follow a selected external reference signal, which guarantees the accom-
plishments of speci�c objectives.

For control-oriented purposes, the LPV state space representation introduced in De�nition 2.2
of the previous chapter can be generalized, thus emphasizing the objectives targeted through
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the control design, and distinguishing between the di�erent inputs the model is subjected to.
Indeed, the dynamics of any closed-loop system is generally a�ected by additional sources of
internal and external disturbances, that can signi�cantly deteriorate the performance of the
controller, if not properly compensated. Model uncertainties, deriving from approximation
processes or an inaccurate estimation of speci�c parameters, are typical examples of internal
sources of disturbance. Instead, external disturbances are generally associated with the op-
erating conditions of the system. In terms of aerospace applications, launch conditions and
undesired wind contributions are generally accounted for as major sources of external distur-
bances. As a consequence, a more detailed state space representation of a general LPV model
is employed for the formulation of the control synthesis problem.

De�nition 3.7 (Generalized LPV System)
Given the vector of time-varying parameters, ρ(t) ∈ Uρ, where Uρ ∈ Rnρ is a compact

set, and |ρ̇(t)| < {νi}
nρ

i=1 evolves in a convex polytope of bounded ranges, and given the

set of parameter-varying matrices A(ρ) ∈ RnxP
×nxP , B1(ρ) ∈ RnxP

×nw , B2(ρ) ∈ RnxP
×nu ,

C1(ρ) ∈ Rnz×nxP , C2(ρ) ∈ Rny×nxP , D11(ρ) ∈ Rnz×nw , D12(ρ) ∈ Rnz×nu , D21(ρ) ∈ Rny×nw ,

and D22(ρ) ∈ Rny×nu, the generalized LPV system, ΣP, is formulated as:

ΣP :

ẋP(t)z(t)

y(t)

 =

 A(ρ) B1(ρ) B2(ρ)

C1(ρ) D11(ρ) D12(ρ)

C2(ρ) D21(ρ) D22(ρ)

xP(t)w(t)

u(t)


where xP(t) ∈ RnxP represents the state vector of the system, w(t) ∈ Rnw corresponds to the

vector of exogenous inputs, u(t) ∈ Rnu stands for the vector of control inputs, z(t) ∈ Rnz

includes the controlled outputs signals, targeting the design objectives, and y(t) ∈ Rny is the

vector of measured outputs.

Remark 3.5

The de�nition of the exogenous input vector, w(t), and of the controlled output vector, z(t), is

not related to the state vector partition in the scheduling and non-scheduling subsets introduced

in the quasi-LPV system De�nition 2.2 of Chapter 2. Coherently, the partitions of the matrices

A, B, C, and D are not the same as the ones in De�nition 2.2.

The employment of design methods in the robust control framework guarantees the ca-
pability (`robustness') of the resulting closed-loop system to handle any deviations from its
ideal nominal operating conditions. The stability and performance objectives of the control
design are distinguished into nominal, NS/NP (not accounting for disturbances), and robust,
RS/RP (accounting for a certain level of disturbances). In this framework, a standard design
approach consists of the H∞ synthesis.

3.2.3.1 H∞ Design Criterion

The e�ect of the input disturbances on the system dynamics can be quanti�ed in terms of the
ampli�cation observed in the output signal energy, induced by the energy associated with the
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disturbance signal. This ampli�cation is de�ned through the evaluation of the system induced
L2-norm ([BP94]).

De�nition 3.8 (Induced L2-norm ([Boy+94]))
Given the generalized system, ΣP, in De�nition 3.7, the corresponding induced L2-norm is

evaluated as:

sup
∥w∥2 ̸=0

∥z∥2
∥w∥2

where the L2-norm, ∥z∥22 =
∫∞
0 (zTz)dt and ∥w∥22 =

∫∞
0 (wTw)dt represents the energy

associated with the controlled output and exogenous input signals, respectively.

Remark 3.6

The concept of H∞-norm is de�ned only when dealing with LTI systems, while the L2-norm

is generally employed in the case of LPV systems. However, for LTI systems, the L2 gain

equals the H∞-norm. Since LTI systems can be interpreted as `frozen' realizations of a generic

LPV system, the H∞ criterion can be imposed through the minimization of the L2-norm of

the closed-loop system.

The control design based on the H∞ criterion in De�nition 3.8 aims at �nding a controller
that stabilizes the system by minimizing the sensitivity to any source of input disturbances,
w. In particular, the design targets the nominal stability and the nominal performance of the
closed-loop system, ΣCL, consisting of the interconnection between the generalized plant, ΣP,
and the LPV controller, K(ρ). The properties of ΣCL are shaped in the frequency domain
through a set of weighting �lters. By imposing conditions on the operating bandwidth and
responsiveness of the system, it is possible to enhance the robustness of ΣCL w.r.t. certain
types of disturbances.

De�nition 3.9 (Induced L2-norm (H∞) Control Problem)
Given an LPV closed-loop system, ΣCL, resulting from the interconnection between a general-

ized LPV system, ΣP, as in De�nition 3.7, and an LPV controller, K(ρ), as:

ΣCL :

{
ẋCL(t) = ACL(ρ(t))xCL(t) + BCL(ρ(t))w(t)

z(t) = CCL(ρ(t))xCL(t) +DCL(ρ(t))w(t)
(3.6)

where xCL =
[
xTP,x

T
K

]T
is the state vector of the closed-loop system, which includes both the

generalized LPV system and the controller state variables, xP and xK , respectively.

An H∞ control problem consists of �nding a controller, K(ρ), that guarantees the LPV

closed-loop system in Equation (3.6) to be robustly (or quadratically) stable, by minimizing the

closed-loop system induced L2-norm, computed as is De�nition 3.8, as:

min
k(ρ),γ∞

s.t.
∥z∥2
∥w∥2

≤ γ∞
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3.2.3.2 Grid-based Control Problem Formulation

Without loss of generality, consider a simpli�ed parameterization of the generalized LPV plant
described in De�nition 3.7:

ΣP :


ẋP(t)[
z1(t)

z2(t)

]
y(t)

 =


A(ρ)

[
B11(ρ) B12(ρ)

]
B2(ρ)[

C11(ρ)
C12(ρ)

] [
0 0

0 0

] [
0

Inw2

]
C2(ρ)

[
0 Inz2

]
0




xP(t)[
w1(t)

w2(t)

]
u(t)

 (3.7)

where the partitions z(t) = [z1(t), z2(t)]
T ∈ Rnz , w(t) = [w1(t),w2(t)]

T ∈ Rnw , B1(ρ) =

[B11(ρ), B12(ρ)] ∈ RnxP
×nw , and C1(ρ) = [C11(ρ), C12(ρ)]

T ∈ Rnz×nxP hold, and assume
D11(ρ) = 0nz×nw , D22(ρ) = 0ny×nu , D12(ρ) ∈ Rnz×nu is full column rank, and D21(ρ) ∈
Rny×nw is full row rank for all ρ(t) ∈ Uρ.

The following theorem provides the conditions to ensure the generalized LPV system in
Equation (3.7) to be robustly stable in the sense of De�nition 3.6, guaranteeing the induced
L2-norm performance of the resulting closed-loop system, through the resolution of the opti-
mization problem in De�nition 3.9.

Theorem 3.3 ([Wu+96])
Given a compact set Uρ ⊂ Rnρ , non-negative numbers {νi}

nρ

i=1, performance level γ, and

the open-loop LPV system in Equation (3.7), the LPV synthesis γ-performance/ν-variation

problem is solvable if and only if there exist continuously di�erentialble functions X : Rnρ →
RnxP

×nxP and Y : Rnρ → RnxP
×nxP , such that for all ρ ∈ Uρ, X(ρ), Y (ρ) > 0, and:

Y (ρ)ÂT(ρ) + Â(ρ)Y (ρ)−
nρ∑
i=1

±
(
νi
∂Y (ρ)

∂ρi

)
− γB2(ρ)BT

2 (ρ) (⋆)T (⋆)T

C11(ρ)Y (ρ) −γInz1 0

BT
1 (ρ) 0 −γInw

 ≺ 0


ÃT(ρ)X(ρ) +X(ρ)Ã(ρ)−

nρ∑
i=1

±
(
νi
∂X(ρ)

∂ρi

)
− γC2(ρ)CT2 (ρ) (⋆)T (⋆)T

BT
11(ρ)X(ρ) −γInw1 0

CT1 (ρ) 0 −γInz

 ≺ 0

 X(ρ) Inx

Inx Y (ρ)

 ⪰ 0

where:

Â(ρ) := A(ρ)− B2(ρ)C12(ρ); Ã(ρ) := A(ρ)− B12(ρ)C2(ρ).

The conditions in Theorem 3.3 de�ne a standard in�nite-dimensional LMIs problem. As
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discussed in Section 3.2.2.1, the problem can be converted to a solvable �nite-dimensional
optimization by projecting the parameter-dependent Lyapunov functions, X(ρ) and Y (ρ), on
a �nite set of nB basis functions, as in Theorem 3.1, and by dicretizing the continuous space
of variation of the parameters into a �nite grid of ng values of ρ ∈ Ūρ, as in Proposition
3.1. Thus, by parametrizing the Lyapunov functions through sets of scalar di�erentiable basis
functions, {fi : Rnp → R}nBi=1 and {gi : Rnp → R}nBi=1, as:

X(ρ) = X0 +

nB∑
i=1

fi(ρ)Xi; Y (ρ) = Y0 +

nB∑
i=1

gi(ρ)Yi (3.8)

where X0, Xi ∈ RnxP
×nxP and Y0, Yi ∈ RnxP

×nxP , the resulting �nite-dimensional control
synthesis problem can be formulated as it follows.

Proposition 3.2 (H∞ Dynamic Output-Feedback Control Problem)
Given the LPV closed-loop system, ΣCL, in Equation (3.6), a dynamic output-feedback control

problem consists of �nding a controller, K(ρ), that solves the H∞ control problem in De�ni-

tion 3.9 (guaranteeing robust stability), by satisfying the LMIs conditions derived in Theorem

3.3. According to the formulation in Theorem 3.3, the LPV controller is parameterized as:

K(ρ) :

[
ẋK(t)

u(t)

]
=

[
AK(ρ) BK(ρ)

CK(ρ) DK(ρ)

] [
xK(t)

y(t)

]
(3.9)

where:

AK(ρ, ρ̇) :=
[
A(ρ) + γ−1[Q−1(ρ)X(ρ)L(ρ)BT

12 + B1(ρ)BT
1 (ρ)]Y

−1(ρ)

+B2(ρ)F (ρ) +Q−1(ρ)X(ρ)L(ρ)C2(ρ)−Q−1(ρ)H(ρ, ρ̇)
]
,

BK(ρ) :=−
[
Q−1(ρ)X(ρ)L(ρ)

]
,

CK(ρ) := F (ρ),

and:

Q(ρ) :=
[
X(ρ)− Y (ρ)−1

]
,

F (ρ) :=−
[
γBT

2 (ρ)Y
−1(ρ) + C12(ρ)

]
,

L(ρ) :=−
[
γX−1CT2 (ρ) + B12(ρ)

]
,

H(ρ, ρ̇) :=−

[
AT

F (ρ)Y
−1 + Y −1AF (ρ) +

∑
i

(
ρ̇
∂Y −1

∂ρ

)
+γ−1CTF (ρ)CF (ρ) + γ−1Y −1(ρ)B1(ρ)BT

1 (ρ)Y
−1(ρ)

]
,

with:

AF (ρ) := A(ρ) + B2(ρ)F (ρ); CTF (ρ) :=
[
CT11(ρ) CT12(ρ) + FT(ρ)

]
.

The solution to the problem consists of a set of ng LTI realizations of the LPV controller
in Equation (3.9), evaluated at each selected grid point for frozen values of ρ ∈ Ūρ. The
implementation of the LPV controller for any intermediate scheduling variables' values relies
on the linear interpolation between the LTI set.
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3.2.3.3 Polytopic Control Problem Formulation

As previously mentioned in Chapter 2, the control-oriented formulation of an LPV polytopic
system is based on an a�ne model-parameters relation, as in De�nition 2.4. In order to
respect the a�ne condition through the formulation of the LMIs controller synthesis problem,
the following assumptions have to be imposed.

Assumption 3.1 ((A1) in [AGB95])
The generalized LPV plant must be strictly proper, hence D22(ρ) = 0.

Assumption 3.2 ((A2) in [AGB95])
The input/output matrices, B2(ρ), C2(ρ), D12(ρ), D21(ρ), must be parameter-independent.

Based on Assumptions 3.1-3.2, the generalized LPV plant described in De�nition 3.7, has
to be reformulated as:

ΣP :

ẋP(t)z(t)

y(t)

 =

 A(ρ) B1(ρ) B2

C1(ρ) D11(ρ) D12

C2 D21 0

xP(t)w(t)

u(t)

 (3.10)

The following propositions provide the su�cient conditions to ensure the generalized LPV
system in Equation (3.10) is quadratically stable in the sense of De�nition 3.5. The formulation
guarantees the induced L2-norm performance of the resulting closed-loop system, through the
resolution of the optimization problem in De�nition 3.9, by employing a polytopic approach.
The LMIs conditions have been derived in [SGC97] and reformulated as in [PV08], where
additional details and related proofs of the propositions are discussed.

Proposition 3.3 (Feasibility - H∞ Polytopic Control Problem)
Consider the LPV closed-loop system, ΣCL, in Equation (3.6), where the generalized open-loop

system, ΣP, in Equation (3.10), is formulated as the LPV polytopic system in Equation (2.4).
There exists a full-order dynamic output feedback controller, K(ρ), that solves the H∞ control

problem in De�nition 3.9 (guaranteeing quadratic stability), if there exist symmetric matri-

ces, X,Y ∈ RnxP
×nxP , and matrices Ã(θi) ∈ RnxP

×nxP , B̃(θi) ∈ RnxP
×ny , C̃(θi) ∈ Rnu×nxP ,

D̃(θi) ∈ Rnu×ny , and a performance level γ > 0 ∈ R, such that:



M11 (⋆)T (⋆)T (⋆)T

M21 M22 (⋆)T (⋆)T

M31 M32 −γInw (⋆)T

M41 M42 M43 −γInz


≺ 0

 X InxP

InxP
Y

 ≻ 0

(3.11)
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where:

M11 := A(θi)X +XAT(θi) + B2C̃(θi) + C̃T(θi)BT
2

M21 := Ã(θi) +AT(θi) + CT2 D̃T(θi)BT
2

M22 := YA(θi) +AT(θi)Y + B̃(θi)C2 + CT2 B̃T(θi)

M31 := BT
1 (θi) +DT

21D̃T(θi)BT
2

M32 := BT
1 (θi)Y +DT

21B̃T(θi)

M41 := C1(θi)X +D12C̃(θi)

M42 := C1(θi) +D12D̃(θi)C2

M43 := D11(θi) +D12D̃(θi)D21

hold at each vertex, θi = [νi,1, . . . , νi,nρ ], of the polytope, where νi,j is the jth scheduling

variables that equals either the upper or the lower bounds, ρj and ρj, respectively.

Proposition 3.4 (Reconstruction - H∞ Polytopic Control Problem)
If the conditions in Proposition 3.3 are ful�lled, then the controller, K(ρ) exitsts and can be

expressed as:

K(ρ) :

[
ẋK(t)

u(t)

]
=

[
AK(ρ) BK(ρ)

CK(ρ) DK(ρ)

] [
xK(t)

y(t)

]
(3.12)

The controller reconstruction is obtained by solving the following system of equations at

each vertex, θi = [νi,1, . . . , νi,nρ ], of the polytope, where νi,j is the j
th scheduling variables that

equals either the upper or the lower bounds, ρj and ρj, respectively:

DK(θi) := D̃(θi)

CK(θi) :=
(
C̃(θi)−DK(θi)C2X

)
M -T

BK(θi) := N−1
(
B̃(θi))− Y B2DK(θi)

)
AK(θi) := N−1

(
Ã(θi)− YA(θi)X − Y B2DK(θi)C2X

−NBK(θi)C2X − Y B2CK(θi)M
T
)
M -T

where M and N are de�ned such that MNT = InxP
− XY , which are chosen by applying a

Singular Value Decomposition (SVD) and a Cholesky factorization.

The solution of the control problem in Proposition 3.4 consists of a set of LTI realizations of
the LPV controller in Equation (3.12), evaluated at each vertex of the polytope, θi ∈ Θ. Since
the controllers share the same constant Lyapunov functions, X and Y , quadratic stability
properties are ensured across the entire convex subspace described by the polytope. As a
drawback, the controller relies on a sub-optimal solution of the LMIs optimization problem
in Equation (3.11), solved at each vertex of the polytope, introducing a certain degree of
conservatism in the controller synthesis performance.
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3.3 Polytopic Controller Design

In this section, the synthesis of the LPV polytopic controller, KPY, is presented. The con-
troller synthesis is based on the approximated LPV polytopic model of the projectile pitch
channel dynamics derived in Chapter 2, Section 2.4. The generalized plant architecture is �rst
introduced, defying the core objectives of the design. The controller synthesis addresses the
�ight envelope represented by the variation of the original scheduling variables: α ∈ [0, 16] deg,
V ∈ [160, 280] m/s, and h ∈ [1, 15] km. However, the actual design polytope, Θ̂, is de�ned
through the corresponding ranges of variation of the identi�ed set of scheduling functions (ρ̂1,
ρ̂2, ρ̂3), obtained in Section 2.4, as a result of the approximation process.

Prior to the controller synthesis, the dimensions of the polytope are analyzed in detail
and iteratively optimized, in order to minimize the conservatism a�ecting the optimization
problem. Indeed, the polytope mapping process developed in Section 2.4.2 resulted in the
identi�cation of a convex space that is larger than the original �ight envelope. The iterative
computation of the controller design, and the analysis of the resulting performance in time
simulations, allows for progressively adjusting the ranges of variation of ρ̂1, ρ̂2, and ρ̂3 that
de�ne the polytope, Θ̂. The �nal results of the design process are investigated in the frequency
domain to assess the properties of the closed-loop system in terms of reference tracking and
disturbance rejection capabilities.

3.3.1 Polytopic Design Scheme

The design architecture employed for the controller synthesis is presented in Figure 3.1 and
complies with the generalized system formulation expressed in Equation (3.10). The second-
order actuator model, Tact, presented in Equation (1.39) of Chapter 1, is included in the
de�nition of the generalized plant to account for the actuator dynamics, together with the
projectile polytopic quasi-LPV model, ΣPY, summarized in Equation (2.42), in the conclu-
sions of Chapter 2. A set of �rst-order weighting functions, We and Wu, imposes the desired
closed-loop tracking capability and control e�ort performances in the frequency domain, by
targeting the corresponding tracking error, e = r−α, and the derivative of the control de�ec-
tion input, δ̇q,cmd. The reference signal, r, consists of an AoA trajectory de�ned through an
LDR optimization law ([Phi08]; [KCL82]). The weighting functions are parametrized as:

We(s) =
s/Me + ωe

s+ ωeϵe
; Wu(s) =

s+ ωu/Mu

ϵus+ ωu

where the high-frequency gain, Me = 2, the low-frequency gain, ϵe = 0.01, and the crossover
frequency, ωe = 1 rad/s, are selected respectively to guarantee 6 dB of module margin for
robustness purposes, -40 dB of disturbance attenuation, and a steady-state tracking error≤ 1%

at low frequency. Similarly, Mu = 5.5, ϵu = 0.01, and ωu = 100 rad/s provide respectively a
maximum 15 dB low-frequency gain, -40 dB of noise attenuation, and an input bandwidth that
complies with the actuator operating limitations, aiming to prevent stall regime occurrence.
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We Wu

α

e δ̇q,cmd

z1 z2

r

+
-

+

di

Wdi

+

qdev
δq,dev

Wdo

+do

Wr

z3

+

fref
+
-

α

er

Tact

ΣPY(ρ̂)

KPY(ρ̂)

Figure 3.1: Polytopic design scheme architecture.

Since tracking capability and disturbance rejection are demanding properties, the imposi-
tion of a single �lter cannot simultaneously optimize both. The bandwidth of We is dedicated
to ensuring a reliable output disturbance rejection to the system, while an additional �rst-
order weighting function, Wr, imposes larger bandwidth requirements to improve the tracking
response. The weighting function is applied to the response error, er = fref − α, evaluated
as the di�erence between the tracking response of a desired reference model, fref, and the
tracking response of the projectile dynamics.

A core objective of the reference model selection relies on minimizing the overshoot a�ect-
ing the system response. Indeed, in a gliding �ight scenario, the guidance reference signal is
generally engaged at the apogee of the projectile's trajectory, generating sudden and sharp vari-
ations in the projectile's attitude. A large overshoot on the AoA might lead to the saturation
of the aerodynamic control surfaces, critical for control purposes. As a consequence, the �rst-
order reference model, and the related tracking response weighting function are parametrized
respectively as:

fref(s) =
ωf

s+ ωf
; Wr(s) =

s/Mr + ωr

s+ ωrϵr
;

where the ωf = 10 rad/s, Mr = 2, ϵr = 0.001, and ωr = 10 rad/s, coherently.

Constant weights, Wdi = 0.6 and Wdo = 0.2, are also applied to the input and output
disturbance signals, di and do respectively, aiming to properly scale the disturbance e�ects on
the model dynamics.

ΣP(ρ̂)

u

w z

y

KPY(ρ̂)

Figure 3.2: General polytopic control scheme con�guration.



116 Chapter 3. LPV Controller Design

Remark 3.7

The weighting functions are designed independently of the scheduling functions in ρ̂(t), meaning

that the same performances are imposed at each vertex condition of the polytope, leading to

possible conservativeness in the synthesis results.

The control scheme in Figure 3.1 is then generalized as in Figure 3.2, where the LPV plant,
ΣP(ρ̂), includes the dynamics of the actuator, the projectile polytopic model, the reference
model, and the weighting functions. Thus, according to the generalized polytopic plant for-
mulation in Equation (3.10), the overall generalized state vector is de�ned as: xP = [xT, xTact,
xfref , xWe , xWu , xWr ]

T ∈ R9, with x = [α, qdev, δq,dev]T ∈ R3. The generalized exogenous
input vector, w = [r, di, do]T ∈ R3, accounts for the reference guidance signal and the input
and output disturbances, while the generated control input, u ∈ R, corresponds to the com-
manded virtual pitch de�ection rate, δ̇q,cmd, imposed on the canards. Indeed, the inclusion of
the integrator dynamics during the state transformation process resulted in the rede�nition
of the quasi-LPV model input, σ, as the derivative of δq. Finally, the generalized controlled
output vector, z = [z1, z2, z3]T ∈ R3, includes the control optimization objectives, while the
set of available measurements, y = [e, qdev, δq,dev]T ∈ R3, is the controller input.

The generalized plant is then evaluated at each vertex of the polytope, θ̂i ∈ Θ̂ with i =
1, . . . , 8, by substituting the corresponding values of the scheduling functions. The resulting
LTI system realizations are employed in the resolution of the set of LMIs that de�nes the
polytopic controller synthesis problem, formulated in Propositions 3.3-3.4.

3.3.2 Polytope Reduction Analysis

The mapping process developed in Chapter 2, Section 2.4.2 allowed de�ning the polytope's
dimensions through the identi�cation of the scheduling functions' variation ranges: ρ̂1 ∈ [0.4,
2.9]× 104, ρ̂2 ∈ [0.05, 0.55], and ρ̂3 ∈ [−1, 4.1]. As mentioned at the end of Section 2.4.2, the
polytope de�nition is a�ected by a certain level of conservatism due to the limited accuracy of
the �ight conditions selection criteria. Consequently, the controller synthesis might account
for areas of the �ight envelope that are unfeasible for the speci�c gliding-phase trajectory
targeted by the design, over-constraining the optimization problem. In order to optimize
the dimensions of the polytope, the variation of each scheduling function, (ρ̂1, ρ̂2, ρ̂3), is
investigated across the original projectile's �ight envelope: α ∈ [0, 16] deg, V ∈ [160, 280]
m/s, and h ∈ [1, 15] km. The analysis aims to identify any unfeasible operating conditions,
(α, V , h), generated by the polytope mapping process. Additionally, by iteratively performing
the controller synthesis on a progressively optimized convex space, the polytope's dimensions
can be properly adjusted to comply with the desired gliding-phase trajectory of the projectile.

Aiming for a clearer understanding of the relation between the original and the newly
identi�ed convex spaces, the variation of the scheduling functions is evaluated across the �ight
domain of each scheduling variable (α, V , h). The results in Figure 3.3 show the mutual
dependence of the scheduling functions on the altitude variation. In particular, both ρ̂1 and
ρ̂2 present higher values at lower altitude levels, and vice versa, as observed in Figure 3.3(a).



3.3. Polytopic Controller Design 117

(a) (b)

(c) (d)

Figure 3.3: Dependence on the altitude: (a) ρ̂1-ρ̂2; (b) ρ̂1-ρ̂3; (c) ρ̂2-ρ̂3; (d) 3D space.

Di�erently, Figures 3.3(b)-(c) reveal the nearly independent relation of ρ̂3 to the altitude level.
In the following, in order to simplify the analysis of the remaining scheduling variables, α and
V , only a subspace of the �ight envelope is investigated, belonging to a �xed altitude level:
h = 7 km. Indeed, the results obtained across the full envelope con�rmed that the dependence
on the scheduling functions on α and V is not a�ected by the altitude level.

(a) (b)

Figure 3.4: Polytope's 3D dimensions dependence: (a) airspeed; (b) AoA.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Polytope's dimensions dependence on the airspeed and AoA variations:
(a)-(b) ρ̂1-ρ̂2, respectively; (c)-(d) ρ̂1-ρ̂3, respectively; (e)-(f) ρ̂2-ρ̂3, respectively.

The results in Figure 3.4 and Figure 3.5 provide a comparison between the mutual de-
pendence of the scheduling functions to the scheduling variables, α and V . As expected, ρ̂1
presents an evident dependence on the airspeed, while it results completely independent of
the AoA. Indeed, through the polytopic modeling procedure developed in Chapter 2, ρ̂1 has
been de�ned as the dynamic pressure. On the other hand, the complex parameterizations of
the remaining scheduling functions, ρ̂2 and ρ̂3, prevent a straightforward intuition about their
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variations across the �ight envelope. The analyses in Figures 3.5(d)(f) reveal a relevant depen-
dence of ρ̂3 to the AoA variation, while the e�ect of the airspeed conditions in Figures 3.5(c)(e)
appears to be almost negligible. Conversely, the variation of ρ̂2 is characterized by a strong
dependence on the airspeed conditions, as in Figures 3.5(a)(e), and a negligible dependence
on AoA values. Indeed, the apparent relation shown in Figures 3.5(b)(f) is clari�ed by the
3D representation in Figure 3.4(b), where the higher values of ρ̂2 only occur for corresponding
higher values of ρ̂3 (highly dependent on the AoA).

The observations provided by the di�erent analyses highlighted potential areas of the
polytope characterized by unfeasible �ight conditions. Indeed, at low altitude levels, h ≤ 3 km,
high values of airspeed are very unlikely to occur, and vice versa, combinations of h ≥ 10 km
and low airspeed regime are not feasible for the projectile's gliding trajectory. The re�nement
of the variation ranges of ρ̂1, ρ̂2, and ρ̂3, is based on the knowledge acquired through the
polytope analyses, and the iterative performance of trajectory simulations of progressively
more accurate LPV controllers. As will be shown in the simulation results presented in Chapter
4, the actual area covered by the scheduling functions' trajectories belongs to a bounded
subspace of the polytope, Θ̂, identi�ed in Chapter 2. In particular, the limitations imposed
on the control e�ort through the controller design, preventing possible canards saturation,
drastically reduced the available AoA variation range and consequently the ρ̂3 boundaries.

(a) (b)

(c) (d)

Figure 3.6: Reduced polytope Θ̂R: (a) ρ̂1-ρ̂2; (b) ρ̂1-ρ̂3; (c) ρ̂2-ρ̂3; (d) 3D space.
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By accounting for a certain degree of robustness to handle possible model uncertainties and
external disturbances, the reduced dimension polytope, Θ̂R, is de�ned by the ranges: ρ̂1 ∈ [0.4,
2]× 104, ρ̂2 ∈ [0.05, 0.35], and ρ̂3 ∈ [−1, 2], as in Figure 3.6.

3.3.3 Controller Synthesis Results

The polytopic controller synthesis is formulated as the solution of the optimization problem
in Propositions 3.3-3.4, by imposing the closed-loop performances de�ned in Section 3.3.1 at
each vertex of the polytope. The polytope is de�ned through the reduced scheduling functions'
ranges of variation, identi�ed in Section 3.3.2. The control design results, discussed in this
section, correspond to the �nal step of the iterative design process that allowed optimizing
the dimensions of the polytope.

Remark 3.8 (Numerical Conditioning)
As discussed in [PV+11], the Feasibility LMIs conditions in Equation (3.11) are solved to

�nd an optimal performance level, γ∗. In order to improve the numerical conditioning of the

optimization, the conditions in Equation (3.11) are recomputed a second time, by imposing:

γ = γ∗ (1 + ζ/100) ; and

[
X εInxP

εInxP
Y

]
≻ 0

where ζ > 0 is a tolerance percentage.

Thus, the recomputed optimization relies on the maximization of ε > 0. In this way, the

minimal eigenvalues of XY are maximized, avoiding bad conditioning related to the inversion

of M and N during the controller Reconstruction in Proposition 3.4.

The LPV/H∞ polytopic design, performed by selecting ζ = 5 and imposing a 5% tolerance
level, provides an H∞ performance level, γ∞ = 5.8. The results are investigated in the fre-
quency domain and are shown in Figures 3.7-3.8. Each �gure represents a speci�c closed-loop

(a) (b)

Figure 3.7: Polytopic design results: (a) Sensitivity functions; (b) Complementary
Sensitivity functions.
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(a) (b)

Figure 3.8: Polytopic design results: (a) Plant Sensitivity functions; (b) Controller
Sensitivity functions.

property of the system, evaluated at each of the eight vertex conditions of the polytope (blue
lines). As a �rst observation, Figure 3.7(a) shows how the peaks of the output Sensitivity
functions, Sy = e

r , remain ≤ 6 dB for each curve, ensuring reliable robustness margins at
the vertices of the polytope. The transient dynamics of the system tends to be slightly less
responsive due to the LMIs optimization that satis�es simultaneously the frequency require-
ments at each �ight condition. However, the employment of the pair of weighting functions,
(We, Wr), successfully imposes a reasonable bandwidth to the output Sensitivity functions
and considerably improves the low-frequency disturbance rejection capability of the system,
as shown through the Plant Sensitive functions, SyG = e

di
, in Figure 3.8(a). The latter

property is fundamental to guaranteeing the controller can handle not only the uncertain-
ties introduced during the modeling and approximation procedures, but especially external
disturbances a�ecting the operating conditions of the projectile (e.g. wind contributions).

Similarly, the polytopic design provides reliable high-frequency noise attenuation to han-
dle possible distortions a�ecting the measurements, as shown in Figure 3.7(b). Indeed, the
peaks of the Complementary Sensitivity functions are maintained at ≤ 1 dB. Concerning the
performances imposed on the control e�ort by the weighting function, Wu, the Controller

Sensitivity functions, KSy =
δ̇q,cmd

r , respect the limitations at all the �ight conditions, both in
terms of the operating bandwidth and in terms of the low-frequency steady-state amplitude,
as shown in Figure 3.8(b). The presence of the reference model increases the e�ort required by
the actuators to provide the desired performance, but the limitations guarantee considerable
margins from saturation occurrences.

As discussed in Section 3.2.3.3, the solution of the design corresponds to a set of LTI
controllers, Kθ̂i

, with i = 1, · · · , 8. In terms of implementation, for any combinations of the
scheduling functions' values belonging to the polytope, the LPV polytopic controller, KPY(ρ̂),
is obtained through the convex interpolation, µθ̂i , of the set of LTI vertices controllers as:

KPY(ρ̂) =

8∑
i=1

µθ̂i(ρ̂)Kθ̂i
with:

8∑
i=1

µθ̂i(ρ̂) = 1.
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3.4 Grid-Based Controller Design

This section is dedicated to the synthesis of the grid-based LPV controller, KGR, based on the
projectile pitch channel quasi-LPV model derived in Section 2.3.2 of Chapter 2. The design
objectives are presented �rst to derive the generalized scheme employed in the controller syn-
thesis. The synthesis directly addresses the �ight envelope de�ned by the scheduling variables'
ranges of variation: α ∈ [0, 16] deg, V ∈ [160, 280] m/s, and h ∈ [1, 15] km.

The grid-based design relies on the resolution of the LMIs optimization, formulated in
Theorem 3.3, at each �ight point belonging to the selected design grid. The computational
complexity a�ecting the optimization performance tends to exponentially increase with the
number of the grid points, ng, and the number of scheduling variables, nρ, as O(n

nρ
g ), as

discussed in Section 3.2.2.1. Furthermore, no clear guidelines are provided in the selection of
the grid points and the density level of the grid to ensure stability in the transient between
two �ight conditions, as explained in Remark 3.3. As a consequence, the projectile �ight enve-
lope is extensively investigated, aiming to identify the most critical �ight conditions a�ecting
the stability of the projectile dynamics. The core idea is to reduce the complexity of the
optimization problem by restricting the grid points selection to the critical areas of the �ight
envelope. Additionally, the selection of the basis functions employed in the de�nition of the
LMIs problem is analyzed, trying to accurately characterize the dependence of the projectile
stability on each scheduling variable. Indeed, no general criteria are provided either for this
latter aspect, as mentioned in Remark 3.2.

Finally, the results of the controller synthesis provide an overview of the corresponding
closed-loop frequency properties.

3.4.1 Grid-Based Design Scheme

The overall design scheme is shown in Figure 3.9. Complying with the formulation in Equation
(3.7), the generalized plant, ΣP, includes the projectile pitch channel quasi-LPV model, ΣGR,
summarized in Equations (2.40)-(2.41) of Chapter 2, and accounting for load factor measure-
ments. Additionally, ΣP includes the second-order actuator model in Equation (1.39), and
a set of weighing functions that shapes the H∞ frequency properties of the desired closed-
loop system. The �rst-order weighting functions, We and Wu, target respectively the system
tracking capability and the control e�ort performances. As for the polytopic case, the core
objective consists of the minimization of the tracking error, e = r−α, where the reference sig-
nal, r, is de�ned as an optimal AoA trajectory for LDR optimization purposes. The weighting
functions are parameterized as follows:

We(s) =
s/Me + ωe

s+ ωeϵe
; Wu(s) =

s+ ωu/Mu

ϵus+ ωu

where the high-frequency gain, Me = 2, the low-frequency gain, ϵe = 0.01, and the crossover
frequency, ωe = 1 rad/s, guarantee 6 dB of module margin, improving the robustness of the
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Figure 3.9: Grid-based design scheme architecture.

system, -40 dB of disturbance signals attenuation, and a steady-state tracking error ≤ 1%

at low frequency, respectively. Concerning the control signal, ϵu = 0.01 and ωu = 100 rad/s
provide an additional -40 dB of high-frequency noise attenuation, and an input bandwidth
that complies with the actuator operating limitations. Finally, a low-frequency gain, Mu = 3,
is imposed on the control signal amplitude.

Di�erently from the polytopic approach, the grid-based design relies on a parameter-
dependent solution of the control problem in Proposition 3.2. At the expense of robust stability
guarantees only around the design points instead of broader quadratic stability properties, the
optimization can more optimally target each speci�c �ight condition, providing higher com-
putation performance. In this context, the tracking capability and the disturbance rejection
of the system can be mutually handled by the single weighting function, We, avoiding the em-
ployment of an additional reference model/�lter. However, the enhancement of the tracking
capability may increase the sensitivity of the system to disturbance signals, thus a reliable
trade-o� has to be achieved avoiding the imposition of an excessive control e�ort and the
consequent occurrence of possible canards stall regime.

Finally, constant weights, Wdi = 0.6 and Wdo = 0.2, are imposed on the input and output
disturbance signals, di and do, respectively, to improve the controller disturbance rejection,
and to satisfy the controller synthesis orthogonality conditions ([Wu95]). The observations
discussed in Remark 3.7, concerning the limited performance related to the employment of
parameter-independent weighting functions, apply also to the grid-based design.

ΣP(ρ)

u

w z

y

KGR(ρ)

Figure 3.10: General grid-based control scheme con�guration.
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The generalized control architecture is presented in Figure 3.10, where the generalized
state vector, xP = [xT, xTact, xWe , xWu ]

T ∈ R9, of the open-loop plant, ΣP(ρ), de�ned in
Equation (3.7), accounts for the projectile quasi-LPV model, x = [α, qdev, δq,dev]T ∈ R3, the
actuator dynamics, and the weighting functions. The generalized controlled output, z = [z1,
z2]

T ∈ R2, includes the design objectives, while tracking error, o�-equilibrium pitch rate, and
o�-equilibrium load factor, de�ne the available measurements set, y = [e, qdev, ηz,dev]T ∈ R3.
Finally, the control input, u ∈ R, is the derivative of the commanded local pitch de�ection,
δ̇q,cmd, while the vector of exogenous input, w = [r, di, do]T ∈ R3, includes the reference
guidance AoA trajectory, and the input/output disturbance signals.

The generalized plant is evaluated at each grid point condition. The obtained set of ng
LTI systems is employed for the controller synthesis in the resolution of the LMIs problem
formulated in Theorem 3.3.

3.4.2 Grid Design Analysis

The investigated grid-based control design relies on the conversion of an in�nite-dimensional
LMIs problem into a solvable SDP optimization. As discussed in Section 3.2.2.1, the conversion
is based on two relaxation steps:

I. Projection of the in�nite-dimensional decision variables into a �nite set of basis func-
tions, as in Theorem 3.1.

II. Discretization (gridding) of the scheduling variables space into a �nite set of condi-
tions, as in Proposition 3.1.

As a consequence, the proper formulation of the controller synthesis in Theorem 3.3 is based on
the accurate selections of both the set of basis functions and the set of discretized conditions.
However, as stated in Remarks 3.2-3.3, no precise general guidelines are provided for any of
the selections, requiring the employment of more case-dependent approaches. Additionally,
the computational complexity a�ecting the performance of the optimization tends to increase
with the number of grid points, as O(n

nρ
g ). Since the design guarantees robust stability only

around the selected grid points, a compromise has to be reached between a reliable dimension
of the grid, and the resulting complexity of the overall computation.

In order to improve the performance of the controller synthesis, an exhaustive analysis is
developed, investigating the following aspects:

A. Flight Envelope: analyze the scheduling variables space to identify the most critical
�ight conditions a�ecting the stability properties of the projectile quasi-LPV pitch chan-
nel dynamics. The objective is to restrict the area of selection of the design grid points
to those characterized by critical stability conditions. Additional considerations about
the projectile optimal desired trajectory allow for a more accurate selection.
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B. Optimization Performance: estimate the e�ect of the number of grid points, ng, and
basis functions selections on the computational complexity and on the performance of
the controller synthesis optimization.

3.4.2.1 A. Flight Envelope Analysis

The identi�cation of the critical areas of the �ight envelope relies on the analysis of the
pole-zero map of the projectile quasi-LPV model in Equations (2.40)-(2.41). The analysis
targets the full ranges of variation of the scheduling variables: α ∈ [0, 16] deg, V ∈ [160,

(a)

160 200 240 280, (m/s)

(b)

(c)

160 200 240 280, (m/s)

(d)

(e)

160 200 240 280, (m/s)

(f)

Figure 3.11: Dynamics dependence on the airspeed and altitude variations at: (a)-(b)
α = 5 deg, respectively; (c)-(d) α = 9, respectively; (e)-(f) α = 13 deg, respectively.
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280] m/s, and h ∈ [1, 15] km, assuming the corresponding discretization steps: ∆α = 1 deg,
∆V = 5 m/s, and ∆h = 500 m, for a total of ng = 12750 grid points. The results in Figure
3.11 provide samples of the complete analysis at selected �ight conditions. In particular,
Figures 3.11(a)(c)(e) show how the system dynamics varies at certain altitude levels and as a
continuous function of the airspeed, respectively, at α = 5 deg, at α = 9 deg, and α = 13 deg.
The same results are provided also in Figures 3.11(b)(d)(f), where the attention is focused on
the stability dependence on the continuous altitude variation.

The results are employed to derive a 3D stability envelope in the discretized space of the
scheduling variables, as shown in Figure 3.12. The stability map targets only a subset of the
AoA range, α ∈ [5, 10] deg, characterized by the transition from unstable to stable dynamics.
Indeed, for α ≥ 10 deg, the system is stable at any (V , h) conditions, while for α ≤ 5 deg,
the system is always unstable. As a general result, the system dynamics tends toward a
progressively more unstable behavior for decreasing values of the airspeed and altitude levels.
As expected, the AoA variation has the most relevant e�ect on the system stability.

Remark 3.9

The pole-zero stability evaluation relies on the quasi-LPV model of the projectile pitch channel

dynamics. Thus, the accuracy of the results in representing the dynamics of the original

nonlinear system is limited to the domain of reliability of the quasi-LPV model. However, the

dynamics stability transition shown in Figure 3.12 is coherent with the stability considerations

discussed in Section 1.3.2.2 of Chapter 1 through the analysis of the aerodynamic pitching

moment CFD data.

Figure 3.12: 3D discretized system's stability envelope.
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Figure 3.13: Reduced stability envelope based on trajectory considerations.

In order to further restrict the area of selection of the design points, trajectory performance
restrictions can be employed. In the polytope mapping procedure developed in Section 2.4.2 of
Chapter 2, the Selection step consisted of the de�nition of speci�c trajectory criteria for the
identi�cation of the new convex space. The objective was to restrict the investigated �ight
envelope to those areas that respect the physical constraints characterizing the scheduling
variables across a desired projectile gliding trajectory. By applying the same criteria to the
obtained stability results, the critical �ight envelope can be reduced, as in Figure 3.13.

3.4.2.2 B. Optimization Performance Analysis

The second part of the analysis aims to estimate the impact of the number of selected grid
points, ng, on the optimization performance and on the computational time, teval. Addi-
tionally, the analysis investigates the relevance of the basis functions, fi(ρ) and gi(ρ) with
i = [1, . . . , nB], selected for each scheduling variable to de�ne the Lyapunov functions, X(ρ)

and Y (ρ), parameterized as in Equation (3.8).

Assumption 3.3

In order to simplify the computation, the same set of basis functions is employed to characterize

both X(ρ) and Y (ρ) parameterizations, thus: fi(ρ) = gi(ρ) with i = [1, . . . , nB].

The analysis consists of the resolution of the LPV H∞ controller synthesis problem in
Proposition 3.2, assuming the generalized design scheme de�ned in Section 3.4.1. The opti-
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mization problem is formulated by accounting for one single parameter variation at a time,
imposing frozen values for the remaining ones. Thus, three individual analyses are performed,
as summarized in Table 3.1.

Table 3.1: Optimization analyses conditions.

Analyzed Variable α (deg) V (m/s) h (km)

α ∈ [0, 16] 230 7

V 9 ∈ [160, 280] 7

h 9 230 ∈ [1, 15]

For each analyzed variable, the H∞ optimization is evaluated by progressively increasing
the number of grid points that discretize the corresponding variation range in Table 3.1. At
each increment of ng, the discretized set of grid points is augmented by randomly selecting a
new point in the range of variation. The resulting performance level, γ∞, is employed as a
comparison index to estimate the impact of the ng increment on the quality of the optimization
solution. The computation is repeated several times, nexp, for statistical relevance, accounting
for di�erent permutations of the same set of grid points. The average value of each full
repetitions set is shown as a global result.

In order to account for the relevance of the basis functions, the full procedure is repeated
by employing di�erent sets, fB, for each scheduling variable, selected based on the mimic
principle. The evaluation of the computational time at each iteration of the process provides
an index of the optimization complexity increment generated by the grid points and basis
functions' selections. The overall procedure is detailed in Algorithm 3.

Algorithm 3 Optimization Performance Analysis
For any ρ ∈ [α, V, h]:

Select the initial analysis range: Rρ = [ρmin, ρmax].

Select constant values for the remaining variables.

For j = [1, . . . , nexp]:

For ng = [3, . . . , 13]:

Select a new random grid point: rand(ρi) ∈ [ρmin, ρmax].

Rede�ne Rρ = [Rρ, rand(ρi)].

For any set fB:

[teval, γ∞] = f [Controller Synthesis](Rρ,fB), as in Theorem 3.3.

end.
end.

Reset the initial range: Rρ = [ρmin, ρmax].

end.

end.
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The sets of basis functions investigated for each scheduling variable are listed respectively
in Tables 3.2-3.3-3.4.

Table 3.2: Basis functions sets: AoA.

Basis Set (α) f1 f2 f3
fB1 1 α −
fB2 1 α sinα

fB3 1 α cosα

fB4 1 sinα cosα

Table 3.3: Basis functions sets: airspeed.

Basis Set (V ) f1 f2 f3
fB1 1 V −
fB2 1 V 1/V

fB3 1 V V 2

Table 3.4: Basis functions sets: altitude.

Basis Set (h) f1 f2 f3
fB1 1 h −
fB2 1 h 1/h

fB3 1 h h2

The results of the analyses are presented in Figure 3.14. In particular, Figures 3.14(a)(c)(e)
show the average γ∞ performance level obtained across nexp = 100 di�erent optimizations on
each basis functions set, fBi , respectively performed on the α, V , and h variation ranges. The
corresponding average computational time curves are shown in Figures 3.14(b)(d)(f). As a
�rst general observation, teval tends to linearly grow with increasing values of ng in all the
optimization scenarios. However, the number, nB, and the complexity of the basis functions
set also play a relevant role in terms of performance, since they can easily double the time
required to achieve an optimal solution.

AoA Analysis. Concerning the performance level, the employment of the basis functions
sets, fB3 and fB4 in Table 3.2, provides nearly the same results, as shown in Figure 3.14(a).
The γ∞ values increase when the least complex basis set, fB1 , is considered, while the best
optimization results rely on fB2 . Coherently with the expectations, fB3 and fB4 show a
linear increase of the γ∞ index w.r.t. ng, since it directly a�ects the number of LMIs to be
solved by the optimization. However, due to the highly nonlinear parameterization, the same
dependence is not clearly highlighted by the curves related to fB1 and fB2 . Thus, a global
intuition on the relevance of ng to the optimization problem is not reachable. In terms of
computational complexity, the teval related to fB2 in Figure 3.14(b) is coherently more than
twice larger than the simplest set fB1 , while fB3 and fB4 seem to o�er a preferable trade-o�
between performance and computational time.

Airspeed Analysis. The curves in Figure 3.14(c) and Figure 3.14(d) highlight a similar
behavior for γ∞ and teval compared to the AoA case. Indeed, the simplest set, fB1 in Table 3.3,
is characterized by a linear γ∞/ng relation, and a lower computational complexity, respectively.
The higher nonlinear parameterization selected for the basis functions sets, fB2 and fB3 , results
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in increasingly higher but less predictable performance levels. Accordingly, the computational
time necessary to perform the optimization is twice as large as the linear case. As a general
observation, γ∞ achieves the desired objective, 0 < γ∞ < 1, at almost all the conditions.

(a) (b)

(c) (d)

(e) (f)

Figure 3.14: Performance level and computational time dependence on the grid
points and basis functions selections: (a)-(b) AoA analysis, respectively; (c)-(d)
airspeed analysis, respectively; (e)-(f) altitude analysis, respectively.
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Altitude Analysis. The altitude analysis results in Figure 3.14(e) provide the highest opti-
mization performance, ensuring γ∞ < 0 for all the sets of basis functions. As for the airspeed
case, fB1 is the only set characterized by a linear performance dependence on the ng increment.
Coherently, the computational complexity is minimized only in the linear case.

3.4.3 Controller Synthesis

The grid analysis provides a clearer understanding of the system properties and the relevance of
each scheduling variable on the overall controller optimization. The results allow for reducing
the computational complexity of the process and improving the performance by focusing the
design on a critical subset of the �ight envelope.

Considering both the γ∞ and teval performances in Figure 3.14, the ranges of each schedul-
ing variable are discretized into following �nite sets of �ight conditions: αgrid = [1, 5, 8, 13] deg,
Vgrid = [180, 200, 240, 270] m/s, and hgrid = [3, 6, 9, 12, 14.5] km. Additionally, the grid-based
design accounts for the variation rates of the scheduling variables, as mentioned in Remark
3.1. The stricter the conditions imposed to variation rates, the higher the performance of the
optimization1. The estimation of the scheduling variables max/min variation rates relies on
reference gliding phase trajectory simulations: α̇grid ∈ [−30, 30] deg/s, V̇grid ∈ [−50, 50] m/s2,
and ḣgrid ∈ [−100, 100] m/s.

The controller synthesis is performed using the LPVTools MATLAB Toolbox ([HSP15]),
employing the LMI-Lab optimization solver ([Gah+94]).

Remark 3.10

A relevant functionality limitation of LPVTools concerns the possibility of de�ning only rectan-

gular grids of discretized scheduling variables. Thus, given two scheduling variables' discretized

sets, a = [a1, . . . , aN ] and b = [b1, . . . , bM ], the corresponding grid is generated as the Carte-

sian product, a × b = {(ai, bj) | ai ∈ a and bj ∈ b}. As a consequence, the selection and

the number of �ight conditions are partially limited by the de�nition of the grid, introducing a

certain level of conservatism and unwanted complexity in the controller synthesis.

Based on the results of the grid analyses and accounting for the limitation discussed in
Remark 3.10, the Cartesian product between the discretized scheduling variables sets generates
a design grid, Ξ = αgrid × Vgrid × hgrid, of ng = 80 �ight points, unevenly distributed across
the 3D �ight domain. The employment of unevenly distributed grid points, targeting the most
critical areas of the operating domain, is expected to improve the stability guarantees of the
controller synthesis. Concerning the selection of the basis functions, the compromise between
performance and complexity leads to the following de�nition of the parameterized Lyapunov
functions in Equation (3.8), accounting for the simpli�cation in Assumption 3.3:

X(ρ) = Y (ρ) = X0 +Xα,1 sinα+Xα,2 cosα+XV V +Xhh.

1The polytopic design allows for an in�nite variation of each scheduling variables since no limitations are

imposed in the LMIs formulation, providing more conservative results but higher stability guarantees.



132 Chapter 3. LPV Controller Design

The selection favored the basis functions' sets that provide a more linear and predictable γ∞
and teval dependence w.r.t. the ng increment.

The LPV/H∞ grid-based controller optimization provides an overall performance level of
γ∞ = 1.4, computed in teval ≈ 15 min. The results in the frequency domain are presented in
Figure 3.15. Each �gure provides a frequency property of the closed-loop system, evaluated
at each of the selected ng grid points. The output Sensitivity functions, Sy = e

r , in Figure
3.15(a), show reliable tracking performance and robustness margins since the maximum gain
of the functions remains always < 6 dB, as desired.

However, the employment of an individual �lter, We, generates undesired low-frequency
peaks > 0 dB of the closed-loop system disturbance rejection properties, as shown in Figure
3.15(c) through the computation of the Plant Sensitivity functions, SyG = e

di
. The higher

responsiveness of the system generates a larger sensitivity to external disturbances and possible
overshoots in the system response during time domain simulations. Since the �delity of the
projectile quasi-LPV model is limited to speci�c ranges of the scheduling variables, an excessive
overshoot in the response might bring the system outside the domain of �delity. In order to

(a) (b)

(c) (d)

Figure 3.15: Grid-based design results: (a) Sensitivity functions; (b) Complemen-
tary Sensitivity functions; (c) Plant Sensitivity functions; (d) Controller Sensitivity
functions.
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minimize this e�ect, the responsiveness of the controller has to be limited. The Controller

Sensitivity functions, KSy =
δ̇q,cmd

r , in Figure 3.15(d) are coherently bounded, both in terms
of operating bandwidth and low-frequency gain.

Remark 3.11

The formulation of the grid-based control synthesis in Theorem 3.3 accounts for both scheduling

variables' ranges and rates of variation, improving the optimization performance. Thus, the

resulting controller in Proposition 3.2 also depends on the variables' rates of variation, ρ̇. As

a consequence, the LPV controller is evaluated not only across the discretized set of scheduling

variables but also across the speci�ed range of variables' variation rates, signi�cantly increasing

the resulting number of LTI local controllers to be implemented.

In order to minimize the implementation complexity, a possible solution to Remark 3.11
consists of interpolating the obtained LPV controller across the discretized space of variation
of the scheduling variables rate, ρ̇. The interpolation on a single grid point (generally the
origin, ρ̇ = 0) eliminates the dependence of the controller formulation on the scheduling
variables rates. As a drawback, the stability and performance improvements related to the
discretization of ρ̇ are neglected. The resulting LPV controller, computed as in Proposition
3.2, is evaluated at each of the ng scheduling variables' conditions, generating a corresponding
set of LTI local realizations to be interpolated online.

3.5 Concluding Remarks

In this chapter, di�erent formulations have been discussed concerning the design of LPV-based
controllers for the projectile pitch channel dynamics. The LPV polytopic approach exploits
the advantages of the a�ne model-parameters relation characterizing the system. The con-
troller synthesis is formulated as an LMIs optimization problem where the conditions have
to be satis�ed only at the vertices of the convex space de�ned by the ranges of variation of
the scheduling functions. The main advantages of the approach rely on the reduced num-
ber of conditions to be simultaneously satis�ed and on the higher guarantees of quadratic
stability across the entire domain covered by the convex polytope. The main drawback is
represented by the conservatism that a�ects the optimization process since the solution is
based on a parameter-independent Lyapunov function. In order to improve the optimization
performance, a dedicated analysis is developed to optimize the dimensions of the polytope,
neglecting any operating conditions that do not belong to the projectile �ight envelope. The
analysis allowed de�ning a reduced polytope, Θ̂R, by adjusting the ranges of variation of the
scheduling functions as: ρ̂1 ∈ [0.4, 2]× 104, ρ̂2 ∈ [0.05, 0.35], and ρ̂3 ∈ [−1, 2]. The resulting
polytopic controller design is based on the H∞ approach, aiming to enhance the robustness
of the system to internal and external sources of disturbance.

The second approach relies on the discretization (gridding) of the space of variation of the
scheduling variables into a �nite grid of �ight conditions. The LMIs optimization de�ning the
controller synthesis is computed at each of the selected design points. As a consequence, the
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computational complexity a�ecting the optimization is highly dependent on the grid de�ni-
tion. However, the solution of the LMIs problem is based on parameter-dependent Lyapunov
functions, providing a higher optimization performance. Additionally, the formulation ac-
counts for the variation rate of each scheduling variable, reducing the conservatism a�ecting
the optimization. In order to limit the computational complexity, an exhaustive analysis on
the discretized �ight envelope targets the stability properties of the system and the desired
trajectory performance. The analysis aims at �nding an optimal grid dimension as a trade-o�
between computational complexity and stability guarantees. Additionally, the parameteri-
zation of the Lyapunov functions is investigated to properly model the dependence of the
functions on each scheduling variable. The results of the analysis provide the following dis-
cretized ranges of variations: αgrid = [1, 5, 8, 13] deg, Vgrid = [180, 200, 240, 270] m/s, and
hgrid = [3, 6, 9, 12, 14.5] km, while the Lyapunov functions have been formulated as:

X(ρ) = Y (ρ) = X0 +Xα,1 sinα+Xα,2 cosα+XV V +Xhh.

The controller LPV/ H∞ design has been computed on the resulting gridded space, Ξ, con-
sisting of ng = 80 �ight points. Additionally, the rates of variation of each scheduling variable
have been de�ned as: α̇grid ∈ [−30, 30] deg/s, V̇grid = [−50, 50] m/s2, and ḣgrid = [−100, 100]

m/s.

As a �rst form of comparison, both the approaches required the development of dedicated
processes, aiming to improve the optimization performance. The polytopic design was based
on an additional modeling approximation that allowed converting the quasi-LPV projectile
pitch channel dynamics into a polytopic model, possibly introducing unwanted sources of
uncertainties. However, the polytopic approach guarantees higher robust stability properties
across the entire convex space de�ned by the parameter ranges of variation. Concerning the
grid-based design, robust stability guarantees are provided only in the vicinity of the design
points. On the other side, the expected higher optimization performances are con�rmed
both through the γ∞ results, and by the reduced control e�ort required to the actuators.
From the complexity perspective, the controller synthesis is based on the selection of several
tuning parameters (ng, fB), requiring the development of a dedicated time-consuming analysis.
Finally, the implementation of the grid-based controller, KGR, relies on the interpolation of
80 LTI local realizations, compared to the reduced 8 LTI local realizations required by the
polytopic controller, KPY.

The performance and robustness properties of the two controllers will be tested through
time domain simulations in the next chapter, accounting for di�erent sources of external
disturbances.
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4.1 Introduction

Standard control design procedures target the nominal stability (NS) and performance (NP)
properties of the closed-loop system, ΣCL, generated by the interconnection between the plant
dynamics and the designed controller. However, several sources of disturbance can deviate the
dynamics of the system from its nominal conditions, degrading the capability of the controller
to stabilize the resulting perturbed system. Design approaches in the framework of robust
control tend to enhance the robustness of the controller in handling disturbance e�ects up to
a certain level. The H∞ design presented in Chapter 3 targets this objective by shaping the
closed-loop properties of the system. A �rst qualitative analysis concerning the robustness of
the LPV control design has been provided in Sections 3.3.3-3.4.3, respectively for the polytopic
and the grid-based controller, through the computation of the sensitivity functions.
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The assessment of the system robust stability (RS) and performance (RP), represents a
fundamental design step, generally performed a posteriori to validate the controller synthesis.
A standard approach relies on the computation of the stability margins related to the nominal
loop transfer functions, L(s). The stability margins measure to which extent the gain (GM),
and phase (PM) of L(s) can be deviated by input/output perturbation signals, preserving the
closed-loop stability. Disk margins analysis (DKM) can additionally account for simultaneous
gain/phase perturbations, while multi-loop disk margins consider the simultaneous perturba-
tions a�ecting the di�erent channels dynamics, when dealing with MIMO systems ([SPG20]).
Nevertheless, the stability margins provide only global necessary but not su�cient conditions
to assess the robustness of the closed-loop system dynamics, and might fail in the identi�cation
of the worst-case operating conditions. System perturbations can be addressed by augmenting
the nominal model with structured or unstructured uncertainty dynamics ([SP05]). When the
uncertainty ranges associated with speci�c parameters are known, the µ-sensitivity analysis
can be employed to estimate the level of uncertainties the close-loop system can tolerate for
each investigated parameter. Di�erently, unmodeled dynamics fall into the unstructured type
of uncertainty, and they are generally clustered into a common uncertain model. The results
are generally more conservative compared to the structured case.

This chapter investigates the robust stability (RS) and performance (RP) of the LPV
polytopic and grid-based controllers of the projectile pitch channel dynamics. First, a global
estimation is provided through a standard stability margins analysis. Then, the design of
the uncertain system accounts for the perturbation of a subset of the plant parameters. A µ-
sensitivity analysis identi�es the relative tolerance of the system to each parameter uncertainty
range. Finally, the performances of the controller are tested in trajectory tracking simulation
scenarios, where the e�ects of wind disturbance signals are considered.

The chapter is structured in the following sections:

S4.2: presents a global stability margins analysis targeting the �ight conditions at the vertices
of the polytope and across the design grid, respectively concerning the polytopic and the
grid-based controller. Disk margins and multi-loop analysis are employed to account for
both simultaneous GM/PM variations across the di�erent channels dynamics.

S4.3: discusses the robustness properties of the polytopic and the grid-based controller by
accounting for structured uncertainties related to selected parameters of the model. A
µ-sensitivity analysis is performed to estimate the percentage of uncertainty the closed-
loop can tolerate for each parameter before becoming unstable.

S4.4: assesses the performance of the polytopic and the grid-based controller through a set
of trajectory tracking simulation scenarios. First, nominal conditions are assumed to
verify the NP of the controllers and to estimate the optimal launch conditions. Later,
external sources of disturbance are introduced in the simulations in the form of sudden
wind contributions (gusts and turbulence). The results presented in this section have
been published in [Vin+23b]; [Vin+23c].
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4.2 Background on Robustness Analysis

The robustness of a control system is associated with the capability to handle possible devi-
ations from its nominal conditions. As discussed at the beginning of Chapter 1, the model
employed for the control design generally consists of an approximation of the real nonlin-
ear system. Thus, multiple sources of uncertainty related to unmodeled dynamics, limited
parameters identi�cation accuracy, or perturbations of the operating conditions, may a�ect
the performance of the control system. According to [SP05], the robust stability (RS) of a
control system de�nes the level of uncertainty the system can tolerate ensuring closed-loop
stability, while the robust performance (RP) is associated with the performance speci�cations
the system can satisfy in the presence of uncertainties or external disturbance signals.

In the robust control framework, the robustness speci�cations (RS and RP) are intended
to be addressed directly at the design stage. The dynamics of the designed plant is described
as the uncertain set, Π, of possible realizations of the perturbed system, Σ∆ ∈ Π, de�ned as
the superposition of the nominal (unperturbed) plant, Σ ∈ Rn×n, and a perturbation term,
∆ ∈ Rn∆×n∆ (or ∆ ∈ Cn∆×n∆). Robust control approaches, such as the H∞ criterion, aim at
satisfying the design speci�cations for the worst-case realization of the uncertain plant. How-
ever, the design results might consist of a non-optimal solution associated to the optimization
problem, often over-constraining the performance of the controller. Many applications resolve
the control design on the nominal system by enhancing its rejection properties to handle dis-
turbance sources. Then, the robustness assessment is performed a posteriori by introducing a
selected level of uncertainty in the designed closed-loop system.

Both the design strategies rely on an a prior accurate selection of the system nominal model,
and on the determination of the uncertainties level. The nominal model can be a simpli�ed
representation of the original nonlinear dynamics, where the identi�ed nominal parameters
are associated with a certain range of inaccuracy. As later discussed, the uncertainties are
generally classi�ed as structured or unstructured, depending on their source and the available
information. Based on the selected model and class of perturbations, di�erent approaches
can be employed to assess the RS and RP of the system. In the following sections, stability
margins analyses and parametric µ-sensitivity analyses are proposed as indexes to verify the
robustness of the system respectively to unstructured and structured uncertainties.

4.2.1 Model Uncertainty De�nition

The nominal model selected for the control design can be a�ected by several sources of un-
certainty. Inaccurate parameters identi�cation, where the uncertainty can be associated with
a range of tolerance, generally falls in the class of parametric (structured) uncertainty. Dif-
ferently, unmodeled or neglected system dynamics, which are more complicated to quantify,
belong to the dynamic (unstructured) uncertainty class. Additionally, lumped uncertainties
can represent the combined e�ect of multiple structured and unstructured perturbations.
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4.2.1.1 Dynamic (Unstructured) Uncertainty

Since they are not associated with a speci�c range of tolerance, dynamic uncertainties are
de�ned as a stable global full-block perturbation matrix, ∆ ∈ Cn∆×n∆ , represented in the
frequency domain and scaled by means of weighting functions, W (s), s.t. ∥∆(s)∥∞ ≤ 1.
Several sources of perturbation can be modeled as a complex unstructured uncertainty such as
unmodeled/neglected dynamics (�exible modes), high-frequency modeling inaccuracy, model
delays, and system order reduction (approximation).

The perturbations can a�ect either the input or the output of the nominal model, in
di�erent ways. The schemes in Figure 4.1(a) and Figure 4.1(b) show two common unstruc-
tured uncertainty explicit representations, namely additive (A) and output multiplicative (O)
([BP02]). The former uncertainty representations can be expressed respectively as follows:

ΠA : Σ∆(s) = Σ(s) +WA(s)∆A(s); with: ∥∆A(jω)∥∞ ≤ 1 ∀ω

ΠO : Σ∆(s) = (I +WO(s)∆O(s)) Σ(s); with: ∥∆O(jω)∥∞ ≤ 1 ∀ω

where ∆A and ∆O are respectively the additive and the output multiplicative perturbations,
while WA(s) and WO(s) de�ne the corresponding weighting functions.

The weighting functions target the desired perturbation bandwidth and are normally se-
lected as stable minimum-phase scalar-valued transfer functions, or diagonal transfer function
matrices when dealing with MIMO systems. In the Nyquist domain, the perturbations can be
interpreted as frequency-dependent disc-shaped uncertainty regions of radius |W (jω)|. Thus,
the weighting functions are selected to include all the possible perturbed systems, Σ∆ ∈ Π, s.t.
|W (jω)| ≥ l(ω) ∀ω, where the minimum radius, l(ω), is de�ned according to the investigated
type of uncertainty as:

lA(ω) = max
Σ∆∈Π

σ̄ (Σ∆(jω)− Σ(jω)) ; with: |WA(jω)| ≥ lA(ω) ∀ω

lO(ω) = max
Σ∆∈Π

σ̄
(
(Σ∆(jω)− Σ(jω)) Σ−1(jω)

)
; with: |WO(jω)| ≥ lO(ω) ∀ω

respectively, for the additive and the output multiplicative case.
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Figure 4.1: Uncertainty representations: (a) additive; (b) output multiplicative.
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4.2.1.2 Parametric (Structured) Uncertainty

The uncertainty associated with the limited accuracy of certain model parameters, pδ ∈ R,
can be described by bounding each parameter variation across a selected range of tolerance,
pδ ∈ [pmin, pmax], as:

pδ = p̄ (1 + rδδ) ; with: rδ =
pmax − pmin
pmax + pmin

(4.1)

where p̄ ∈ R represents the nominal parameter mean value, rδ ∈ R is the level of relative
uncertainty associated with the parameter, and δ ∈ R is any real scalar s.t. |δ| ≤ 1.

Remark 4.1

When assessing the robustness of MIMO systems, the parametric uncertainty allows accounting

for independent perturbations a�ecting the transfer functions of di�erent channel dynamics.

The employment of global unstructured uncertainties might introduce unrealistic couplings be-

tween the channels, resulting in an excessively conservative analysis.

Multiple sources of perturbations can be structured as a single perturbation matrix:

∆(s) := diag(∆1(s), . . . ,∆q(s), δ1Ir1 , . . . , δrIrr , ϵ1Ic1 , . . . , ϵcIcc) (4.2)

including q full block complex transfer matrices, ∆i(s) ∈ Cn∆,i×n∆,i , r real diagonal blocks
consisting of real parametric uncertainties, δi ∈ R, repeated ri times, and c complex parametric
uncertainties, ϵi, repeated ci times. The uncertainties must be normalized s.t. ∥∆i∥∞ ≤ 1,
|δi| ≤ 1. As a result, the uncertain model is expressed as the compact upper Linear Fractional
Transformation (LFT) form shown in Figure 4.2. The generalized plant, ΣP∆

accounts for the
generalized nominal plant, ΣP, de�ned in Chapter 3 during the controller synthesis, augmented
with the interconnections with the perturbation matrix.

Remark 4.2

Depending on the number of occurrences (ri, ci) of each perturbation in the system (δi, ϵi), the

dimension of the resulting perturbation matrix in the LFT formulation might lead to unfeasible

computational complexity and excessively conservative results. The amount of each parameter

occurrence is strictly related to the model formulation.

∆

ΣP∆
y

u∆ y∆

u

Figure 4.2: LFT uncertain plant representations.
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4.2.2 Stability Margins

This section recalls the standard de�nitions of the stability margins as preliminary necessary
but not su�cient conditions to assess the robust stability of a control system. The disk mar-
gins formulation is then introduced to compensate for the limitations related to the standard
margins, that only account for individual gain or phase perturbations on SISO systems dy-
namics. Indeed, the disk margins provide more insight into the e�ect of simultaneous gain
and phase perturbations on SISO systems (or MIMO through loop-at-a-time analysis), and of
individual gain or phase perturbations across multiple channel dynamics (multi-loop analysis).

4.2.2.1 Standard Margins

In classical SISO systems analysis, the stability margins provide global indexes of robustness
to gain and phase perturbations. The computation relies on the frequency properties of the
loop transfer function, L(jω), obtained by breaking the close-loop system in Figure 4.3(a),
where Σ represents the investigated plant dynamics, and K is the designed controller. The
robustness can be referred to input or to output disturbance rejection if the closed-loop system
is opened in point A or in point B of the scheme in Figure 4.3(a), respectively. For MIMO
systems, the input loop transfer function is computed as Lu = KΣ, while in the output case
it corresponds to Ly = ΣK. The two computations are equivalent referring to SISO systems.

De�nition 4.1 (Gain Margin)
The gain margin, GM, quanti�es the range of gain perturbation a nominal closed-loop system

can withstand, guaranteeing stability conditions. In the frequency domain, it is de�ned as the

gain values (in dB) of the open-loop function, L(jω), corresponding to:

GM = −20log|L(jω180)|

where ω180 is referred to as the phase crossover frequency at which ∠L(jω180) = −180 deg.
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Figure 4.3: Stability margins analysis: (a) nominal open-loop transfer function; (b)
Nyquist domain interpretation.



4.2. Background on Robustness Analysis 141

De�nition 4.2 (Phase Margin)
The phase margin, PM, quanti�es the range of phase perturbation a nominal closed-loop system

can withstand, guaranteeing stability conditions. In the frequency domain, it is de�ned as the

phase values (in deg) of the open-loop transfer function, L(jω), corresponding to:

PM = 180 + ∠L(jω0)

where ω0 is referred to as the gain crossover frequency at which |L(jω0)| = 0 dB.

A more intuitive representation can be provided in the Nyquist domain, through the de�-
nition of the system modulus margin.

De�nition 4.3 (Modulus Margin)
The modulus margin, MM , consists of the minimum distance between the nominal system

open-loop transfer function, L(jω), and the critical point (−1, 0j) in the frequency domain

([Fal+15]), evaluated as:

MM = min
ω

|1 + L(jω)|

for each frequency ω ∈ C.

The de�nition of modulus margin is strictly related to the closed-loop sensitivity properties
discussed in Chapter 3. Indeed, by recalling the de�nition of the Sensitivity function, S(jω),
the following relation holds:

MM = 1/MS ; with: MS = max
ω

|S(jω)| = ∥S∥∞

where MS corresponds to the peak value of the Sensitivity function. A graphical overview of
the standard stability margins is shown in Figure 4.3(b).

Remark 4.3 ([SPG20])
The formulation of the standard stability margins is based on the assumption of individual gain

or phase perturbations on single-channel dynamics (SISO systems). Simultaneous variations of

gain and phase margins can destabilize the system even when large GM and PM are guaranteed.

Similarly, simultaneous perturbations a�ecting multiple MIMO systems channel dynamics can

be critical for closed-loop stability.

4.2.2.2 Disk Margins

A more complete assessment of the closed-loop system robustness to perturbation sources is
provided through the evaluation of the disk margin (DKM) index. The disk margin relies on
the identi�cation of the minimal complex multiplicative uncertainty, fmin, that destabilizes
the system within a collection of simultaneous gain and phase variations. The collection of
perturbations is parameterized in the complex plane as a disk, D(ξ, σ) ∈ C, of size ξ and skew σ.
In particular, the parameter ξ quanti�es the amount of simultaneous gain and phase variations
generated by a gain-bounded dynamic uncertainty, δ, while σ consists of a balancing coe�cient
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representing the relative gain increase/decrease caused by the perturbations. Balanced disk
margins are computed for σ = 0, meaning that the gain increases and decreases symmetrically.

De�nition 4.4 (Disk Margin)
Given a collection of simultaneous gain and phase perturbations, f ∈ D(ξ, σ), such that:

D(ξ, σ) =

{
1 +

(
1−σ
2

)
δ

1−
(
1+σ
2

)
δ
: δ ∈ C with |δ| < ξ

}

the disk margin for a �xed skew value, σ, is de�ned as the largest disk size, ξmax, such that

the closed-loop system is stable for all perturbation f ∈ D(ξmax, σ).

Theorem 4.1 ([SPG20])
Given a skew parameter, σ, de�ning the disk margin, and assuming a stable closed-loop system

described by the nominal SISO loop transfer function, L(jω), the disk margin is computed as:

ξmax =
1

∥S + σ−1
2 ∥∞

where S(jω) = (I + L(jω))−1 represents the closed-loop Sensitivity function.

When balanced conditions σ = 0 are assumed, the expression in Theorem 4.1, can be
simpli�ed as the symmetric S − T disk margin ([BP02]):

ξmax =
1

∥S−T
2 ∥∞

. (4.3)

The notation of the disk margin in De�nition 4.4 can be associated with the standard gain
and phase margins in De�nition 4.1 and De�ntion 4.2, respectively. As discussed in [SPG20],
by geometrical considerations, and assuming the balanced conditions, σ = 0, the following
disk gain and phase margin expressions can be recovered:

±DGM =
2± ξmax
2∓ ξmax

; DPM = arccos

(
1 + (−DGM)(+DGM)

(−DGM) + (+DGM)

)
. (4.4)

The above expressions provide a robustness index for gain-only or phase-only system perturba-
tions at speci�c σ conditions. However, the same geometrical considerations allow quantifying
the e�ect of combined gain and phase variations which can be represented as a stable region
of mutual perturbations.

In order to extend the margins analysis to a broader class of MIMO systems, the compu-
tation can involve individual channels of the system at a time (`loop-at-a-time margins') or
the simultaneous perturbations a�ecting the di�erent channels (`multi-loop margins').

Loop-at-a-time margins. The computation consists of applying a complex perturbation,
f ∈ D(ξ, σ), to a selected channel dynamics, while keeping the remaining ones at nominal
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conditions. Assuming to analyze the system robustness to input disturbances (as explained
in Figure 4.3(a)), the loop is opened only along the investigated channel, as shown in Figure
4.4. The perturbation is then applied to the resulting SISO open-loop transfer function. This
procedure can be repeated for each channel and allows the computation of the di�erent disk
stability margins in the sense of De�nitions 4.1-4.3.

Multi-loop margins. Account for the simultaneous perturbation of multiple channel dy-
namics, providing a more global and reliable estimation of MIMO systems robustness prop-
erties. The multi-loop disk margin, ξMM, consists of the largest disk that includes all the
perturbations applied on the di�erent channels. This approach can be employed to investi-
gate the robustness of both input and output perturbations, such as multi-loop input disk
margin, multi-loop output disk margin, or global multi-loop input/output disk margin.

The computation of the MIMO system multi-loop disk margin relies on the de�nition of
the structured singular value function, µ : Cn∆×n∆ → [0,∞), �rst proposed in [Saf82]. As
detailed later in Section 4.2.3.2, the structured singular value was contemporarily introduced in
[Doy82] as a more general tool for the assessment of MIMO system RS and RP, accounting for
structured uncertainty. Assume a set of n∆ ∈ R complex perturbations, f1, . . . , fn∆ ∈ D(ξ, σ),
structured as the diagonal perturbation matrix, ∆, in Equation (4.2), for a given skew value, σ,
s.t. ∥∆∥ := max

i=1,...,n∆

|δi| < ξ. Since the RS condition for the closed-loop system is equivalently

formulated through the stability of the standard M∆ structure, shown in Figure 4.5(c), the
MIMO system multi-loop disk margin, ξMM, can be computed as follows.

Theorem 4.2 ([SPG20])
Given a skew parameter σ de�ning the disk margin, and assuming a stable closed-loop M∆

representation, the multi-loop disk margin is computed as:

ξMM =

∥∥∥∥µ(S +
σ − 1

2In∆

)∥∥∥∥
∞

:= max
ω∈R∪{+∞}

µ(M(jω)).

A proper formulation of the structured singular value function, µ, is provided in De�nition
4.5. The DGM and DPM associated with the computed `multi-loop' disk margin can be
evaluated through the expression de�ned in Equation (4.4).

er

+
-

y

z1 u1L

Figure 4.4: Loop-at-a-time disk margins computation scheme.
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4.2.3 Robust Stability and Performance

The formulation of the robustness analysis problem relies on the generalized control con�gu-
ration scheme presented in Figure 4.5(a), where K is the nominal controller, ∆ is the diagonal
perturbation matrix (structured or unstructured), and ΣP∆

is the generalized plant introduced
in Figure 4.2. In particular, by de�ning the nominal closed-loop system, N , generated by the
lower LFT of the generalized plant w.r.t. the designed controller, as:

N := Fl (ΣP∆
,K) =

[
N11 N12

N21 N22

]
the system RS and RP conditions can be equivalently formulated w.r.t. the standard N∆

structure, as shown in Figure 4.5(b).

The corresponding uncertain closed-loop transfer function from the exogenous input vector,
w, to the controlled output, z, is obtained as the upper LFT of N w.r.t. ∆, as it follows:

Fu (N,∆) := N22 +N21∆(I −N11∆)−1N12. (4.5)

In order to analyze the system robust stability properties, the N∆ structure is further
rearranged as the M∆ formulation presented in Figure 4.5(c), where M = N11. Indeed, by
assuming the stability of both the nominal closed-loop, N , and the perturbation matrix, ∆,
instability of the closed-loop in Equation (4.5) may arise only through the term (I −N11∆).

If the robustness analysis accounts for unstructured uncertainties, ∆ is modeled as a full
complex perturbation matrix, s.t. ∥∆∥∞ ≤ 1, as discussed in Section 4.2.1.1. The analysis
provides only a global su�cient condition through the computation of the maximal admissible
norm for ∆. Di�erently, when the perturbation matrix is structured as in Equation (4.2),
the analysis is performed for each block diagonal element of ∆, by means of the structured
singular value computation.
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Figure 4.5: Robustness analysis schemes: (a) generalized uncertain control con�gu-
ration; (b) standard N∆ structure; (b) standard M∆ closed-loop structure.
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4.2.3.1 Unstructured Uncertainty: RS and RP

The robust stability conditions of the M∆ closed-loop system in Figure 4.5(c), when ∆ is
de�ned as a full unstructured perturbation matrix, can be derived through the application of
the Small Gain Theorem, as it follows.

Theorem 4.3 (Small Gain Theorem)
Given a stable system, M(jω), the closed-loopM∆ structure is well-posed and internally stable

for all stable perturbations, ∆(jω), s.t.:

∥∆(jω)∥∞ ≤ 1, ∀ω ∈ R ⇐⇒ ∥M(jω)∥∞ ≤ 1, ∀ω ∈ R. (4.6)

The same results can be obtained through the Determinant Stability Condition Theorem
de�ned in [SP05], as an extension of the generalized Nyquist Theorem. Indeed, when robust
stability is investigated for SISO systems, the analysis can be simply assessed by verifying
that the loop transfer function of the M∆ structure does not encircle the critical point, (−1,
0j), in the Nyquist plot, for any stable matrix ∆(jω).

The de�nition of the robust performance conditions can be derived by applying the Small
Gain Theorem on the augmented N∆̂ closed-loop structure presented in Figure 4.6. The
additional perturbation term, ∆f , consists of a �ctitious full matrix that represents the H∞
performance imposed through the robustness analysis.

Theorem 4.4 (Robust Performance)
Given a stable nominal closed-loop system, N , the robust performance of the related N∆̂

structure is guaranteed if and only if:

∥Fu (N,∆) ∥∞ < 1, ∀ ∥∆∥∞ ≤ 1. (4.7)

Remark 4.4

The performance selected to assess the robustness of a control system is generally more relaxed

compared to the criteria imposed during the nominal control design through the weighting

functions, as discussed in Chapter 3.
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Figure 4.6: Augmented N∆̂ structure for RP assessment.
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4.2.3.2 Structured Uncertainty: RS and RP

When the perturbation respects the block diagonal structure in Equation (4.2), the RS condi-
tion de�ned in Theorem 4.3 becomes only su�cient but not necessary, as for the unstructured
case. In order to exploit the advantages provided by the structured formulation, the RS
problem relies on the identi�cation of the smallest structured perturbation, ∆(s) ∈ ∆(s), s.t.
det(I −M∆) = 0, where ∆(s) ∈ Cn∆×n∆ refers to the common block diagonal structure in
Equation (4.2).

De�nition 4.5 (Structured Singular Value)
Given a complex matrix, M(s) ∈ Cm×m, and a set of complex structured matrices, ∆(s) ∈ ∆,

the structured singular value, µ(M), is the real non-negative function de�ned as:

µ(M) :=
1

min{σ̄(∆) : ∆ ∈ ∆ | det(I −M∆) = 0}

Theorem 4.5 (Structured Small Gain Theorem)
Given a MIMO LTI stable system, M(jω), and a stable perturbation matrix, ∆(jω), the

resulting M∆ structure is stable for all ∆ ∈ ∆, with σ̄(∆) ≤ 1, if and only if:

µ(M(jω)) < 1, ∀ω ∈ R; with : M(jω) := N11(jω)

The structured singular value in De�nition 4.5 can be also employed for the assessment of
the system RP. Indeed, the condition imposed in Theorem 4.4 can be equivalently expressed
through the computation of µ on the augmented N∆̂ structure in Figure 4.6.

Proposition 4.1 (Robust Performance)
Given a stable nominal closed-loop system, N , the robust performance of the related N∆̂

structure is guaranteed if and only if:

µ∆̂(N(jω)) < 1, ∀ω ∈ R; with : ∆̂ =

[
∆f 0

0 ∆

]

where the full complex perturbation, ∆f , has the dimensions of Fu (N,∆)T.

The complexity associated with the evaluation of µ is characterized by a non-polynomial
hard growth w.r.t. the dimension and the type of perturbations investigated, possibly result-
ing in an unfeasible computation ([TO95]). A standard approach relies on the computation
of an upper and lower bound of µ. In particular, the upper bound provides a su�cient stabil-
ity/performance condition w.r.t. the selected perturbations, while the lower bound provides
a su�cient condition for the system instability. A tight evaluation of upper and lower bounds
allows for minimizing the conservatism introduced by the computation process. Depending
on the selected perturbations, several e�cient algorithms have been proposed to provide a
reliable estimation of µ.
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4.3 Controllers Robustness Analysis

This section provides a preliminary and non-exhaustive robustness analysis performed on the
LPV polytopic and grid-based controllers, (KPY and KGR), designed in Chapter 3. The anal-
ysis is based on a �rst global evaluation of the controllers RS through the computation of the
disk margins across the polytope vertices, for the polytopic controller, and at the design points,
concerning the grid-based controller. Later, a more precise RS and RP estimation is performed
through the de�nition of a structured set of uncertain parameters (parametric uncertainty),
and the computation of the corresponding structured singular values (µ-analysis).

Remark 4.5 (Analysis Limitations)
It is important to emphasize that the robustness analysis applies standard LTI approaches to

LPV control systems. Indeed, LPV control design techniques provide higher theoretical guaran-

tees of stability across the designed operating envelope, compared to classical LTI approaches,

as discussed in Chapter 3. On the other side, standard LTI control design targets a single or

a set of operating conditions individually, resulting in higher optimization performances com-

pared to the LPV design approaches. Hence, higher robustness properties can be imposed at

the design stage in terms of disturbance rejection and noise attenuation. Finally, a complete

robustness analysis should account for several forms of uncertainties, including time-varying

perturbations applied to the scheduling variables, which is not the purpose of the present work.

4.3.1 Stability Margins Computation

The robust stability of the LPV controllers is investigated in the frequency domain through
the computation of the stability margins. The analysis is performed at each vertex of the
reduced polytope, Θ̂R, and at each grid point of the grid, Ξ, selected in Chapter 3, through
the computation of the DKM associated with both input and output disturbance. Since the
quasi-LPV projectile pitch channel model, ΣGR, in Equations (2.40)-(2.41) and the polytopic
model, ΣPY, in Equation (2.42) consist of SIMO systems, the computation of `loop-at-a-time'
DKM and `multi-loop' DKM are preferred. As discussed in Section 4.2.2.2, the `loop-at-a-
time' DKM accounts for simultaneous variations of GM and PM on a single channel, while
`multi-loop' DKM investigates individual GM or PM perturbations on multiple channels.
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Figure 4.7: Analysis schemes: (a) input disturbance; (b) output disturbance.
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The input and output DKM computation schemes related to the polytopic controller are
shown in Figures 4.7(a)-(b), respectively. The same schemes are employed for the grid-based
controller analysis. In particular, the input loop transfer, Lu shown in Figure 4.7(a), consists
of a SISO system that can be directly analyzed through the DKM computation introduced in
Equation (4.3), assuming the balanced case (σ = 0). Di�erently, `loop-at-a-time' output DKM
are computed for each channel dynamics through the output loop transfer, Ly, as shown in
Figure 4.7(b). The evaluation of the `multi-loop' output DKM provides an additional global
insight into the robustness of the controllers. All the margins are computed through the
MATLAB diskmargin function.

A graphical interpretation of the results is provided through the representation of the worst-
case Nyquist exclusion region across all the vertices of the polytope, and all the grid-points
of the design grid. The Nyquist exclusion region consists of the area of the complex plane
around the critical point, (−1, 0j), never crossed by the loop transfer function. The intercepts
of the exclusion region with the real axis correspond to the DGM of the system, subjected
to gain-only perturbations, while the intercepts with the unit circle de�ne the DPM of the
system, subjected to phase-only perturbations, computed as in Equation (4.4). Additionally,

(a) (b)

(c) (d)

Figure 4.8: Input DKM: (a)-(c) polytopic/ grid-based Nyquist exclusion region, re-
spectively; (b)-(d) polytopic/grid-based mutual GM/PM variation, respectively.
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the corresponding worst-case DGM and DPM mutual variation are evaluated to account for
the e�ect of simultaneous gain and phase perturbations.

Concerning the input DKM analysis, the worst-case Nyquist exclusion regions related to
the polytopic and the grid-based controller are represented in Figure 4.8(a) and Figure 4.8(c),
respectively, while Figure 4.8(b) and Figure 4.8(d) show the corresponding worst-case DGM
and DPM mutual variations. The results reveal limited margins for input gain and phase
variations, especially concerning the grid-based controller. The limited input disturbance
rejection properties of the controllers could depend on the performance requirements imposed
at the control design stage. Indeed, a simple scaling factor was imposed to model the input
disturbance e�ect on the system. The imposition of a higher-order weighting function might
enhance the rejection performance of the controller, at the expense of possibly lower tracking
capability and maneuverability. The results are summarized in Table 4.1.

The same approach is employed to represent the `loop-at-a-time' output DKM. The worst-
case Nyquist exclusion regions related to the polytopic output channels, (α, qdev, δq,dev),
are presented in Figures 4.9(a)(c)(e), respectively. The corresponding worst-case DGM and
DPM mutual variations are proposed in Figures 4.9(b)(d)(f). The results related to the
grid-based output channels, (α, qdev, ηz,dev), are equivalently presented in Figure 4.10. The
results concerning the α and the δq,dev (or ηz,dev) channels reveal relevant margins, both
in terms of gain/phase-only perturbations (DGM and DPM), and when mutual gain/phase
variations are considered. However, weaker margins characterize the qdev channel of both
the polytopic and grid-based systems. As pointed out during the input DKM analysis, the
limited performance of the qdev channel could be caused by the absence of strict disturbance
rejection requirements imposed at the control design stage. Indeed, as shown by the control
con�guration schemes in Figure 3.1 and Figure 3.9, weighting functions were imposed only to
shape the disturbance rejection/tracking performance of the controlled output (α). Further
development of the design schemes, accounting for all the output channels, might provide
more balanced performance, especially for the grid-based controller case where the margins
related to the ηz,dev channel are much larger compared to the remaining ones. The results of
the `loop-at-a-time' output DKM are summarized in Table 4.3.

Table 4.1: Input DKM results.

Input

DGM DPM ξmax

PY 3.7 dB 24 deg 0.4

GR 2.7 dB 17 deg 0.3

Table 4.2: `Multi-loop' output DKM results.

Multi-loop Output

DGM DPM ξMM

PY 2 dB 12 deg 0.2

GR 2.3 dB 14 deg 0.2

Table 4.3: `Loop-at-a-time' output DKM results.

Output: α Output: qdev Output: δq,dev/ηz,dev

DGM DPM ξmax DGM DPM ξmax DGM DPM ξmax

PY 7.1 dB 42 deg 0.8 2.9 dB 19 deg 0.3 6.2 dB 38 deg 0.7

GR 7.7 dB 45 deg 0.8 2.5 dB 17 deg 0.3 25 dB 80 deg 1.8
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Finally, a global evaluation of the output DKM is computed through the `multi-loop'
approach, de�ned in Theorem 4.2. The worst-case results related to the polytopic and the
grid-based controller are presented in Table 4.2. As expected, the DKM results are in�uenced

(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Polytopic output DKM Nyquist exclusion region and mutual GM/PM
variation related to the: (a)-(b) α channel, respectively; (c)-(d) qdev channel, respec-
tively; (e)-(f) δq,dev channel, respectively.
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by the limited performance observed on the qdev output channel. Additionally, the evaluation
of the `multi-loop' DKM can be a�ected by a relevant level of conservatism. An accurate model
of the system uncertainty might provide a more reliable estimation of the system robustness.

(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Grid-based output DKM Nyquist exclusion region and mutual GM/PM
variation related to the: (a)-(b) α channel, respectively; (c)-(d) qdev channel, respec-
tively; (e)-(f) ηz,dev channel, respectively.
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4.3.2 µ-Analysis: Robust Stability and Performance

A further assessment of the RS and RP related to the polytopic and the grid-based controllers
relies on the µ-analysis described in Section 4.2.3.2. The analysis targets the robustness of the
closed-loop systems to the e�ect of real parametric uncertainties, structured as the diagonal
matrix, ∆, de�ned in Equation (4.2). As for the stability margins analysis, the µ-analysis is
computed across all the vertices of the reduced polytope, Θ̂R, and all the grid points of the
design grid, Ξ. The scheme shown in Figure 4.11 represents theM∆ structure employed for the
robust stability assessment, related to the polytopic closed-loop. In particular, ΣPY∆

includes
the nominal LPV polytopic model, ΣPY, in Equation (2.42), employed during the control
design stage, and the interconnection with the perturbation matrix. The same scheme is also
used during the grid-based RS analysis by imposing the dedicated nominal model, ΣGR∆

,
and nominal controller, KGR. Concerning the RP, the related N∆̂ structure is obtained by
including the set of exogenous signals, w, the controlled output, z, and the weighting functions
imposed at the control design stage, in the M∆ scheme in Figure 4.11.

The analysis intends to target the uncertainty associated with a set of selected parameters:
the dynamic pressure, q̄, the aerodynamic pitching coe�cient, CmS

, and the aerodynamic vir-
tual pitch force and pitching moment control coe�cients, CZδq

and Cmδq
, respectively. The

dynamic pressure has a strong impact on the projectile dynamics since it models both the
e�ect of altitude and airspeed variations. Additionally, it represents one of the scheduling
functions, ρ̂1, de�ning the polytopic model. The aerodynamic pitching moment coe�cient is
strictly related to the static stability conditions of the projectile dynamics, as discussed in
Section 1.3.2.2. Finally, the control coe�cients have been �rst modeled through the regres-
sion on the CFD acquisition presented in Section 1.3.3.4, and then approximated during the
quasi-LPV modeling process developed in Section 2.3.2.1. Thus, they could be a�ected by a
relevant uncertainty level. However, due to the complex formulation of the projectile quasi-
LPV and polytopic models, an excessively large number of occurrences characterizes most of
the parameters, leading to an unfeasible computational complexity, as mentioned in Remark
4.2. A straightforward solution consists of the representation of the parametric uncertainties
as a set of global real uncertainties, directly a�ecting the entries of the LPV state space mod-
els, ΣPY and ΣGR. The uncertain matrix entries are modeled as in Equation 4.1, where the

qdev
δq,dev

α

r

+
-

KPY(ρ̂) Tact

∆

ΣPY∆
(ρ̂)

M

Figure 4.11: Polytopic closed-loop M∆ structure.
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Figure 4.12: Polytopic system RS analysis results.

nominal values are associated with a selected interval of tolerance, de�ned through a level of
relative uncertainty, rδ (as a percentage), and a real scalar, δ ∈ [−1, 1]. The selection of the
level of relative uncertainty for each matrix entry depends on the number of occurrences of
each original uncertain parameter. The selected set of percentages is provided in Table 4.4.

Table 4.4: Sets of relative uncertainty levels.

A12 A13 A22 A23 A32 A33 C32 C33
PY 20% 30% 30% 30% 30% 30% − −
GR 20% 20% 20% 30% 30% 30% 20% 20%

The results of the RS and RP analyses are computed through the MATLAB robstab and
robgain functions, and provided in the form of upper and lower bounds of the structured
singular value, de�ned respectively as µ and µ. The curves in Figure 4.12 and Figure 4.13,
show the µ-analysis RS results related to the polytopic and the grid-based systems, respec-

Figure 4.13: Grid-based system RS analysis results.
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Figure 4.14: Polytopic system RP analysis results.

tively. The upper and lower bounds are tight at higher frequencies, con�rming the accuracy
of the evaluation, while a certain level of conservatism might a�ect the computation at lower
frequency. However, in both analyses, the µ peak corresponding to the worst-case RS condi-
tions, remains far below the critical level 1, as imposed by Theorem 4.5. In particular, a peak
of µ = 0.79 provides a 160% tolerance of the polytopic closed-loop system to the modeled
uncertainty. Similarly, a peak of µ = 0.83 con�rms the robust stability of the grid-based
closed-loop system, with a tolerance of 130% to the modeled uncertainty.

The results related to the RP analyses on the polytopic and grid-based systems are pre-
sented in Figure 4.14 and Figure 4.15, respectively. As mentioned in Remark 4.4, the RP
imposed by the analysis is generally more relaxed compared to the nominal case. Thus, a
relaxation coe�cient, rγ , is applied to the H∞ performance level, γ∞, obtained during the
controller design. The polytopic closed-loop RP is achieved, as in Proposition 4.1, by relaxing
the design performance, γ∞ = 5.8, with a ratio rγ = 2.5. Similarly, the RP of the grid-based
system is guaranteed by imposing a rγ = 4 relaxation to the design performance γ∞ = 1.4.

Figure 4.15: Grid-based system RP analysis results.
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4.4 Tracking Performance Simulations

This section investigates the trajectory tracking performance of the polytopic and the grid-
based controllers (KPY and KGR) in the nonlinear 6-DoF simulator introduced at the end
of Chapter 1. The equivalent controllers implementation scheme is proposed in Figure 4.16,
where the Projectile Airframe block includes the projectile 6-DoF nonlinear dynamics in Equa-
tions (1.43)-(1.46), while Tact consists of the actuator dynamics de�ned in Equation (1.39). To
comply with the LPV controller formulations, the Output Deviation block includes the com-
putation of the o�-equilibrium state variables, qdev and δq,dev, and output variable, ηz,dev, as
de�ned in Equation 2.13. The computation implies the online evaluation of the correspond-
ing equilibrium functions, formulated in Equation (2.28) and Equation (2.32), respectively.
Additionally, the Output Deviation block addresses the online computation of the scheduling
functions, (ρ̂1, ρ̂2, ρ̂3), de�ned through the development of the polytopic model in Section 2.4.

The simulations consist of trajectory tracking scenarios, where the reference signal corre-
sponds to an optimal AoA trajectory. The reference trajectory is generated online through
the Lift-to-Drag Ratio (LDR) optimization guidance law described in Equations (1.37)-(1.38).
The core objective relies on the maximization of the projectile operating range capability. A
�rst set of baseline simulations is performed to assess the range performance of the polytopic
and the grid-based controllers at nominal �ight conditions. The simulations are repeated by
varying the �ring parameters in order to �nd the optimal conditions for the range enhance-
ment. These conditions are later employed for a comparison between the performance of each
controller at nominal conditions and when wind disturbance signals are considered.

4.4.1 Controllers Implementation

As discussed in Sections 3.3.3-3.4.3, the designed LPV controllers are evaluated, respectively,
at each scheduling functions condition, (ρ̂1, ρ̂2, ρ̂3), corresponding to a vertex of the polytope,
Θ̂R, and at each scheduling variables combination, (α, V , h), belonging to a point of the
design grid, Ξ. As a result, a set of 8 local LTI realizations of KPY, and a set of 80 local LTI
realizations of KGR are stored for the implementation of the online controller interpolation.

Guidance
Airframe

Mechanical Model

Deviation

Output

Tact

KPY(ρ̂)

KGR(ρ)

Projectileδ̇q,cmd δq,cmd δr

δl
TT
CA

Controller

Figure 4.16: Nonlinear simulation implementation scheme.
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Since the polytope has been de�ned as a 3D cuboid, the interpolation of KPY can be
achieved through the online implementation of the interpolation function, µθ̂, de�ned as in
Equation (2.5). As discussed in [Dub18], the interpolation relies on a binary representation of
the polytope vertices, thus improving the computation e�ciency. The interpolation of KGR is
implemented through a dedicated function, LPVBlock, provided by the LPVTools MATLAB
Toolbox ([HSP15]). As mentioned in Remark 3.11, before the online implementation, a �rst
interpolation has been performed to eliminate the dependence of the controller KGR to the
parameter variation rates. This operation halves the number of LTI local controllers obtained
during the synthesis process from 160 to 80, simplifying the implementation.

Finally, at the output of each controller in the 6-DoF simulator of Figure 4.16, an integrator
is imposed to convert the generated controller command, δ̇q,cmd, into the corresponding pitch
de�ection, δq,cmd. Indeed, due to the input integration included during the LPV modeling
process in Section 2.3.2.2, the input of the quasi-LPV/polytopic projectile models employed
during the control design depends on the pitch de�ection rate. The obtained pitch de�ection
command is then converted into a set of real canard de�ections, (δr, δl), to be performed by
the actuators, through the allocator function de�ned as the transpose of the transformation
matrix, TCA, in Equation (1.25).

4.4.2 Baseline Simulations

The �rst set of simulations aims to test the range performance of the controllers at di�erent
�ring conditions. A �xed initial �ring velocity of u0 = 939 m/s (zone 6) is assumed across
all the simulations to maximize the projectile range capability. The e�ect of the variation of
the initial elevation angle, θe, is investigated according to the set of values listed in Table 4.5.
The analysis allows for identifying the set of optimal �ring conditions, (u0,opt, θe,opt), that
maximize the trajectory range of the projectile.

Table 4.5: Set of initial elevation angles.

Test 1 Test 2 Test 3 Test 4

θe 50 deg 55 deg 60 deg 65 deg

The trajectory results presented in Figure 4.17 show the range performance of the pro-
jectile related to the set of increasing initial �ring angles in Table 4.5. The same trajectories
are obtained when KPY or KGR are implemented. As highlighted by the results, the range
capability tends to increase with the �ring angle up to θe = 60 deg. The reasons behind this
behavior rely mainly on two consequential considerations. First, as shown in Figure 4.17, at
larger �ring angles the apogee point tends to occur at higher altitude levels. Since the air
density diminishes with the altitude increment, the Lift force generated by the interaction
between the projectile and the air mass reduces accordingly. As a consequence, the projectile
performs a sharp fall in the �rst part of the gliding trajectory before the increment in the
air density provides enough Lift. Thus, after a certain level, the projectile cannot exploit the
altitude increment at the apogee.
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Figure 4.17: KPY andKGR baseline simulations: trajectory performance comparison.

A direct consequence of the altitude increment is additionally highlighted in Figures
4.18(a)-(b), concerning the V -h trajectory relation obtained through the employment of KPY

and KGR, respectively. Indeed, the relation between the airspeed and the altitude trajectories
reveals how increasing �ring angle values push the apogee point towards higher altitude and
lower airspeed conditions. The lower airspeed experienced by the projectile at higher alti-
tude levels further reduces the generated Lift force. The results suggest how the apogee V -h
conditions achieved with a θe = 60 deg angle provide the best compromise in terms of range
performance.

The AoA trajectories are presented in Figures 4.18(c)-(d), respectively for KPY and KGR.
The results show how the peak of the AoA increases with the value of the �ring angle. In
particular, for θe > 60 deg the AoA peak increases over the range covered by the CFD
data acquisitions (α ∈ [0, 16] deg), reducing the reliability of the projectile dynamics model.
Additionally, the AoA trajectories in Figure 4.18(b), associated with lower θe values, are
a�ected by a larger initial oscillation immediately after the apogee. Indeed, when the apogee
is reached and the guidance law is engaged, the initialization value of the reference trajectory
is di�erent from the AoA value of the projectile. The mismatch between the two values tends
to increase for lower values of θe, generating a sharp AoA variation rate. While the polytopic
control design accounts for worst-case in�nite variations of the scheduling variables, the grid-
based design allows for specifying the expected variation rate range for each variable. Since a
range of α̇ ∈ [−30, 30] deg/s has been selected in Section 3.4.3, the sharp variation experienced
at the engagement of the guidance low might a�ect the performance of the controller.

Similar observations can be made concerning the canards total pitch de�ection trajectories,
aCAN, in Figures 4.18(e)-(f). The total pitch de�ection corresponds to the overall de�ection
angle perceived by the canards, expressed as the linear superposition between the local pitch
de�ection commanded by the controller, and the AoA characterizing the trajectory of the
projectile, as aCAN = α + δq. Higher values of the �ring angle generate higher peaks of
canard de�ection, possibly leading to stall regime. In particular, for θe > 60 deg, the aCAN
peak exceeds the canard de�ection range characterized by a linear aerodynamic response,
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δr, δl ∈ [−20, 20] deg, identi�ed during the modeling process in Section 1.3.3.4. As for the
AoA, de�ection values that exceed the range of modeling �delity might reduce the accuracy
of the projectile model. Indeed, the linearity conditions imposed through the Aerodynamic
Superposition Assumption 1.7 are not satis�ed.

Additional results are provided in Figure 4.19 concerning the trajectories of the scheduling

(a) (b)

(c) (d)

(e) (f)

Figure 4.18: KPY and KGR baseline simulations: (a)-(b) V -h relation trajectories,
respectively; (c)-(d) AoA trajectories, respectively; (e)-(f) canards total pitch de�ec-
tion trajectories, respectively.
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functions, (ρ̂1, ρ̂2, ρ̂3), employed in the design of KPY. Increasing values of the �ring angle
tend to push the scheduling functions trajectories at the borders of the designed polytope.
However, even at θe > 65 deg, where the trajectories partially cross the polytope borders, the
controller succeeds in stabilizing the system, proving reliable robustness properties to possible
variations of the �ight conditions. The overall evolution of the scheduling functions is provided
in Figure 4.19(d), where the relative variations of ρ̂1, ρ̂2, and ρ̂3 are represented in the 3D
space de�ned by the reduced polytope, Θ̂R.

Finally, Figure 4.20 shows the evolution of the original scheduling variables, (α, V , h),
across the design point selected for the synthesis of the KGR, in the parameterized 3D �ight
envelope, Ξ. The projection of the trajectories on the di�erent planes recovers the results
discussed above in terms of the V -h relation. In particular, assuming θe = 65 deg as �ring
angle, the trajectory leaves the cluster of grid points where the set of local controllers is de�ned,
leading to a possibly less e�cient controller interpolation. Nevertheless, the interpolation
guarantees the stability of the closed-loop at any �ight conditions, con�rming the robustness
of the design.

A more exhaustive overview concerning the results of the simulations is provided in the next

(a) (b)

(c) (d)

Figure 4.19: KPY baseline simulations: (a) ρ̂1 trajectories; (b) ρ̂2 trajectories; (c) ρ̂3
trajectories; (d) 3D scheduling functions trajectories.
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Figure 4.20: KGR baseline simulations: 3D scheduling variables trajectories.

section through a comparison between the performance of KPY and KGR at nominal �ight
conditions and when wind contributions are considered. In particular, the e�ects of wind
turbulence and sudden wind gusts will be investigated. The results of the above simulations
at multiple �ring conditions suggest the selection of an initial elevation angle, θe = 60 deg, for
range optimization purposes. As a consequence, this optimal �ring angle will be employed in
the next round of simulations to further assess the performance of the controllers.

4.4.3 Wind-based Disturbance Simulations

In order to further assess the tracking and stabilization performance of the LPV polytopic
and grid-based controllers, an additional round of simulations addresses the e�ects of external
time-varying disturbances. The disturbance signals correspond to wind contributions in the
form of turbulence and sudden gusts, a�ecting the vertical and longitudinal components of
the relative wind velocity, vA

E . As discussed in Chapter 1 through the Zero Wind Assumption
1.3, the nominal modeling conditions account for zero relative motion between the air frame,
A, and the Earth frame, E. The wind disturbances are simulated during the gliding phase of
the trajectory after the apogee is reached and the canards are deployed.

A realization of the longitudinal and the vertical wind pro�les is presented in Figures
4.21(a)-(b), respectively. The pro�le is obtained as the superposition between a continuous
turbulence perturbation and a discrete wind gust. The band-limited white noise turbulence
signal relies on the Von Kármán spectral representation implemented in the dedicated MAT-
LAB/Simulink Aerospace Blockset ([MF97]; [Gag03]), imposing the parameters listed in
Table 4.6. In particular, vlow de�nes the wind speed at low altitude, nT, stands for the noise
sample time, Lhigh sets the scale length that determines the power spectral density asymptote
and gust load, and [uT, vT, wT, pT] is the vector of noise seeds used to generate the random
signals. Since the simulation targets the pitch channel of the projectile dynamics, the lateral
and the roll signals, vT and pT, are set to zero.
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(a) (b)

Figure 4.21: Wind velocity pro�le: (a) longitudinal; (b) vertical.

Similarly, a standard `1-cosine' shape wind gust is obtained through the discrete model
provided in the Aerospace Blockset ([MF80]). A set of sequential ascending and descending
gusts (GustA and GustD) models the sudden variation of the wind pro�le as a global gust
occurring during the gliding phase of the trajectory, in the time interval, tG ∈ [200, 220] s.
The parameters selected to de�ne the gust shapes are presented in Table 4.7. The gust length
coe�cients, dxG and dzG , de�ne the extension of the gusts along the longitudinal and vertical
axes, respectively, while the amplitude coe�cients, uG and wG, set the magnitude of the
corresponding wind velocity signals along each axis.

Table 4.6: Wind turbulence parameters.

vlow (m/s) Lhigh (m) nT (s) uT (−) wT (−)

5 200 0.1 1000 1000

Table 4.7: Wind gusts parameters.

dxG (km) dzG (km) uG (m/s) wG (m/s) tG (s)

GustA 2 2 +15 +15 200

GustD 2 2 −15 −15 220

The performance related to the polytopic and the grid-based controllers, investigated at
both nominal and wind-perturbed �ight conditions, are individually compared in the following
dedicated sections.

4.4.3.1 Polytopic Controller Simulations

The performances of the polytopic controller are compared through the same trajectory track-
ing scenario simulated both at nominal conditions and in the presence of wind contributions,
modeled as the velocity pro�les in Figures 4.21(a)-(b). The optimal �ring conditions identi�ed
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in Section 4.4.2 are assumed in both scenarios. The trajectories in Figure 4.22 show the e�ect
of the wind disturbance on the projectile operating range capability. The curves are perfectly
superposed until the occurrence of the wind gust, suggesting how the controller manages to
stabilize the system and limit the oscillation generated by the continuous turbulence signal.
Even though the large amplitude imposed on the wind gust does not destabilize the projectile
dynamics, the longitudinal contribution of the gust signal reduces the range capability.

These considerations are con�rmed by the AoA trajectory in Figure 4.23(b) where the
turbulence generates a very contained oscillation of the AoA signal around the nominal curve
shown in Figure 4.23(a). The occurrence of the wind gusts on the vertical axis results in a
mild peak of AoA, which is recovered immediately after the gusts contributions have vanished.
As an important remark, the reference AoA trajectory does not aim at maintaining a constant
value but rather at �nding the optimal condition that maximizes the Lift-to-Drag Ratio at
each �ight point. Thus, if the inclusion of a wind contribution increases the AoA of the
projectile, the guidance algorithm eventuates the new optimal AoA reference based on the
current conditions. Concerning the pitch rate trajectory, the large oscillation observed in
Figure 4.23(d) derives only from the turbulence e�ect since no contributions are generated
through the application of the gusts.

The curves in Figures 4.23(e)-(f) and Figures 4.24(a)-(b) represent respectively the results
related to the pitch angle and Mach number trajectories. In both cases, a very contained
oscillation is observed in the interval of occurrence of the wind gusts. The e�ect related to the
turbulence signal seems almost negligible. Concerning the V -h trajectories relation in Figures
4.24(c)-(d), the signal oscillates around the reference nominal trajectory and rapidly recovers
from the perturbation generated by the wind gusts that mainly reduces the projectile airspeed.
A fundamental con�rmation regarding the performance of the polytopic controller relies on
the canards' total de�ection angle trajectories in Figures 4.24(e)-(f). Indeed, despite the large
amplitude of the gust perturbation a�ecting the trajectory, the canards de�ection remains
in the safe range of linear aerodynamic response assumed for the CFD data acquisition and
regression procedure. Additionally, the de�ection angle peak value is maintained far below the

Figure 4.22: Polytopic simulations: trajectory performance.
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limit of saturation of the canards. As observed for the AoA trajectory, the turbulence signal
generates a contained oscillation around the nominal curve shown in Figure 4.24(e).

The results presented in Figure 4.25 show the e�ect of the wind disturbance on the set
of scheduling functions (ρ̂1, ρ̂2, ρ̂3). Despite the introduction of the turbulence and the wind
gusts, all the scheduling functions vary inside the convex subspace (blue box) de�ned by

(a) (b)

(c) (d)

(e) (f)

Figure 4.23: Polytopic simulations: (a)-(b) AoA nominal and perturbed trajectories,
respectively; (c)-(d) pitch rate nominal and perturbed trajectories, respectively; (e)-
(f) pitch angle nominal and perturbed trajectories, respectively.
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the polytope, Θ̂R, as observed in Figures 4.26(a)-(b). The comparison between the nominal
curves and the trajectories a�ected by the wind disturbance reveals once again a contained
oscillation and a limited peak in response to the gust contributions. A direct consequence
related to the oscillation of the scheduling functions can be observed in Figures 4.27(a)-(b)
through the interpolation trajectories associated with each of the LTI local controllers designed

(a) (b)

(c) (d)

(e) (f)

Figure 4.24: Polytopic simulations: (a)-(b) Mach nominal and perturbed trajectories,
respectively; (c)-(d) V -h relation nominal and perturbed trajectories, respectively;
(e)-(f) canards total pitch de�ection nominal and perturbed trajectories, respectively.
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at the vertices of the polytope. The nominal case dataset in Table 4.8 provides an overview
of the relevance of each local controller (at the θ̂i vertex, with i = 1, · · · , 8) on the overall
interpolation process, across the entire trajectory of the projectile. As expected, Kθ̂1

and Kθ̂3
show a prevalent percentage in the controller interpolation at the beginning of the simulation,
while the in�uence of Kθ̂6

and Kθ̂8
increases along with the trajectory and provides on average

(a) (b)

(c) (d)

(e) (f)

Figure 4.25: Polytopic simulations: (a)-(b) ρ̂1 nominal and perturbed trajectories,
respectively; (c)-(d) ρ̂2 nominal and perturbed trajectories, respectively; (e)-(f) ρ̂3
nominal and perturbed trajectories, respectively.
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(a) (b)

Figure 4.26: Polytopic simulations: (a) 3D nominal scheduling functions trajectories;
(b) 3D perturbed scheduling functions trajectories.

Table 4.8: Controller interpolation functions analysis.

Interp. Controllers ρ̂1 ρ̂2 ρ̂3 max % min % Average %
µθ̂1 Kθ̂1

0.4 · 104 0.05 -1 68 0.4 13
µθ̂2 Kθ̂2

2 · 104 0.05 -1 9 5 7
µθ̂3 Kθ̂3

0.4 · 104 0.05 2 41 0.1 9
µθ̂4 Kθ̂4

2 · 104 0.05 2 17 2 6
µθ̂5 Kθ̂5

0.4 · 104 0.35 -1 17 0.5 11
µθ̂6 Kθ̂6

2 · 104 0.35 -1 63 0.1 28
µθ̂7 Kθ̂7

0.4 · 104 0.35 2 20 1 9
µθ̂8 Kθ̂8

2 · 104 0.35 2 22 0.1 16

the most relevant contributions. Despite the fact that the 3D trajectory of the scheduling
functions in Figure 4.26(a) seems to be quite independent of the local controllers Kθ̂4

, Kθ̂5
,

(a) (b)

Figure 4.27: Polytopic simulations: (a) 3D nominal interpolation functions trajecto-
ries; (b) 3D perturbed interpolation functions trajectories.
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and Kθ̂7
, the results in Table 4.8 show their non-negligible role in the interpolation. On

the contrary, the last controller, Kθ̂2
, appears to be generally of marginal importance. The

restricted subspace covered by the 3D trajectory in Figure 4.26(a) suggests how a rede�nition
of the polytope's shape might further improve the optimization of the controller design. The
presence of the wind contributions in Figure 4.27(b) generates an evident oscillation of the
interpolation functions around their nominal values. Nevertheless, the interpolation conditions
expressed in Equation (2.5) are satis�ed at each �ight point across the trajectory.

4.4.3.2 Grid-Based Controller Simulations

The same simulations comparison is proposed to assess the performance of the grid-based
controller when the nominal conditions are a�ected by the wind velocity pro�les in Figures
4.21(a)-(b). As in the polytopic case, the operating range performance shown by the trajec-
tories in Figure 4.28 is slightly reduced by the e�ect of the longitudinal wind gusts, while the
turbulence signal does not seem to have an impact on the trajectory. However, the controller
successfully preserves the projectile dynamics stability at any �ight conditions.

The impact of the disturbance signal is more evident through the AoA and pitch rate
trajectories comparison presented in Figures 4.29(a)-(b) and Figures 4.29(c)-(d), respectively.
Indeed, signal oscillations larger than in the polytopic case characterize the curves of the
perturbed simulations. However, even when wind gusts occur, the stability of the closed-loop
dynamics is guaranteed. The expected larger oscillations are coherent with the lower stability
guarantees provided by the grid-based design compared to the polytopic one. Additionally,
the lower initial oscillation observed in the nominal AoA trajectory in Figure 4.29(a) depends
on the smaller gap between the AoA curve and the reference signal. The improvement is
obtained by selecting θe = 60 deg as the initial �ring angle. Similar results can be observed
also in the pitch angle trajectories in Figures 4.29(e)-(f). The wind disturbance deviates the
curve from its nominal value before properly re-converging at the impact point.

Figure 4.28: Grid-based simulations: trajectory performance.
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While a mild oscillation a�ects the Mach trajectories in Figures 4.30(a)-(b), the impact of
the wind gusts modi�es the V -h relation which converges to the reference nominal value once
the gusts vanish, as in Figures 4.30(c)-(d). A relevant oscillation characterizes also the canards
total pitch de�ection trajectories. As presented in Figures 4.30(e)-(f) the occurrence of the
gusts combined with the continuous turbulence disturbance pushes the canards' de�ection

(a) (b)

(c) (d)

(e) (f)

Figure 4.29: Grid-based simulations: (a)-(b) AoA nominal and perturbed trajecto-
ries, respectively; (c)-(d) pitch rate nominal and perturbed trajectories, respectively;
(e)-(f) pitch angle nominal and perturbed trajectories, respectively.
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close to the identi�ed limits of linear aerodynamic response. However, large margins are
maintained from any stall regime conditions.

As discussed in Section 3.4, the grid-based control design approach allows for the de�nition
of the speci�c rate of variation range of each of the investigated scheduling variables. At the

(a) (b)

(c) (d)

(e) (f)

Figure 4.30: Grid-based simulations: (a)-(b) Mach nominal and perturbed trajecto-
ries, respectively; (c)-(d) V -h relation nominal and perturbed trajectories, respec-
tively; (e)-(f) canards total pitch de�ection nominal and perturbed trajectories, re-
spectively.
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design stage, the following ranges have been selected: α̇grid ∈ [−30, 30] deg/s, V̇grid = [−50, 50]

m/s2, and ḣgrid = [−100, 100] m/s. In order to guarantee that the closed-loop stability prop-
erties are preserved, the scheduling variables rates should remain within the limits imposed by
the design ranges across the entire trajectory. As shown in Figures 4.31(a)(c)(e), the schedul-
ing variables rates largely respect the boundaries imposed during the control design. The only

(a) (b)

(c) (d)

(e) (f)

Figure 4.31: Grid-based simulations: (a)-(b) AoA variation rate nominal and per-
turbed trajectories, respectively; (c)-(d) airspeed variation rate nominal and per-
turbed trajectories, respectively; (e)-(f) altitude variation rate nominal and per-
turbed trajectories, respectively.
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Figure 4.32: Grid-based nominal simulation: 3D scheduling variables trajectory.

exception consists of the altitude trajectory in Figure 4.31(e), where the peak value reaches
the lower bound of the rate of variation range. However, the results of the nominal simulation
con�rm the capability of the controller to stabilize the system across the entire trajectory.
Concerning the e�ect of the wind disturbance, the curves in Figures 4.31(b)(d) are a�ected
by a large oscillation mainly generated by the high-frequency turbulence signal. The AoA
variation rate peak reaches the upper bound of the design range without exceeding it, while
the airspeed rate trajectory crosses several times both the upper and the lower variation rate
boundaries. Nevertheless, the controller manages to stabilize the projectile dynamics even in
the extreme case of scheduling variables sudden variations.

Finally, a global overview regarding the evolution of the scheduling variables trajectory
across the design grid-points is provided in Figure 4.32, relative to the nominal conditions,
and in Figure 4.33, accounting for the e�ects of the wind disturbance.

Figure 4.33: Grid-based perturbed simulation: 3D scheduling variables trajectory.
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4.5 Concluding Remarks

In this chapter, the performances of the polytopic and the grid-based controllers have been
investigated w.r.t. several forms of system disturbance. A �rst robustness analysis relies on
the evaluation of the stability margins of the input/output loop transfer functions related to
each system. Since both the quasi-LPV and the polytopic models consist of SIMO systems,
the computation of the disk margins is preferred to the standard de�nitions of SISO gain
and phase margins. The results obtained through the analysis of both systems reveal large
output disk margins relative to the �rst and the third channel dynamics. Nevertheless, possible
robustness weaknesses are highlighted through the evaluation of the input disk margin and
the output disk margins related to the second channel dynamics.

The stability margins provide only necessary but not su�cient conditions to assess the
system robust stability and might result in a very conservative investigation. Thus, the per-
formances of the controllers have been further tested through a µ-sensitivity analysis, targeting
the robustness w.r.t. structured system parametric uncertainties. A set of parameters was
selected based on the e�ect of their variation on the system dynamics stability. The uncer-
tain set includes the parameters: q̄, CZδq

, Cmδq
, and CmS

, each associated with an estimated
range of tolerance (expressed as a percentage of uncertainty). However, due to the excessive
complexity of the numerical formulation, the individual parametric uncertainties are modeled
as global perturbation a�ecting each entry of the systems' state space representation. The
µ-analysis performed on the dedicated set of uncertainties reveals satisfactory robust stabil-
ity and robust performance properties of both the polytopic and the grid-based closed-loop
systems to parametric uncertainties. In particular, the percentage of system uncertainty the
polytopic controller can handle is higher compared to the corresponding grid-based perfor-
mance. These results are coherent with the stronger stability theoretical guarantees provided
by the polytopic controller synthesis.

Finally, the performances of the controllers have been tested w.r.t. the e�ect of time-
varying disturbance signals. A �rst set of nominal trajectory tracking simulations is performed
by implementing the controllers in the 6-DoF nonlinear simulator environment. The simu-
lations allow identifying the optimal �ring velocity and elevation angle (939 m/s, 60 deg).
In the second stage, wind disturbances are included in the simulation scenarios in the form
of continuous turbulence and discrete wind gusts velocity pro�les. The results con�rm the
robustness of the polytopic controller in handling the large signal oscillations generated by the
wind contributions. Indeed, the perturbed scheduling functions' trajectories lie in the convex
space employed during the controller synthesis, thus ensuring the stability of the closed-loop
system even in the presence of large disturbance signals. The grid-based controller also suc-
ceeded in preserving the stability of the projectile across the entire trajectory, even though
the obtained �ight parameters are generally a�ected by much larger oscillations around their
nominal values, compared to their polytopic counterpart.
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General Conclusions

The purpose of the thesis consists of the investigation of linear parameter-varying (LPV) tech-
niques for the modeling and control design of a new concept of Long-Range Guided Projectile
(LRGP). The development of a range-extended munition aims to target the technological
gap between standard gun-launched ballistic/guided projectiles and the more sophisticated
rocket-propelled missile applications. The LPV framework represents a relevant novelty in
the design of projectile applications, o�ering several advantages in terms of model �delity and
control guarantees compared to standard approaches. However, the lack of a rich literature
background poses several open challenges:

I: The highly nonlinear �ight dynamics/aerodynamics governing the projectile behavior
increases signi�cantly the complexity of the LPV modeling process. The process has to
account for a large number of varying parameters with a non-negligible impact on the
system stability and performance.

II: The case-dependent nature of the LPV model formulation, based on the projectile non-
linear dynamics, requires an exhaustive investigation of the dynamics of the system.
Depending on the objectives of the design, several control-oriented modeling approaches
can be employed to obtain an accurate LPV model.

III: The projectile ballistic trajectory covers a signi�cant envelope of �ight conditions. The
LPV-based control design targets the synthesis of a controller (or a set of controllers)
able to guarantee stability at any operating conditions. The formulation of the controller
synthesis relies on an LMIs-based optimization problem whose numerical complexity is
strictly dependent on the number of conditions accounted for in the design.

Chapter 1: A major contribution presented in this work consists of the proposition of a com-
plete modeling and control design process of the projectile concept. Indeed, Chapter 1 has
been dedicated to the development of a reliable 6-DoF �ight dynamics model of the projectile,
based on standard �ight mechanics considerations and on an ad-hoc designed aerodynamic
model. The modeling challenge relies on the need to �nd an accurate aerodynamic regression
model that properly �ts a large set of CFD data and is suitable for the subsequent LPV
control-oriented reformulation. To this end, two regression models have been proposed. A
�rst control-oriented polynomial model was derived on a limited set of CFD data, accounting
for the dynamic decoupling between the pitch and the roll-yaw channels. A second multivari-
able regression was performed on the entire CFD dataset obtaining a general aerodynamic
model to be employed in the validating simulations. The models' domain of �delity is strictly
related to the speci�c framework developed for the CFD data acquisition. The assumption
of multiple aerodynamic contributions superposition holds only under limited conditions that

173
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have to be accounted for at both the LPV modeling and control design stages. The full model
characterization has been validated in a dedicated nonlinear simulator environment through
preliminary ballistic trajectory simulations.

Chapter 2: The control-oriented LPV modeling relies on the accurate selection of the varying
parameters. Since the projectile dynamics depends on several �ight parameters, the selection
implies an exhaustive analysis of the performance of the systems, with special attention ded-
icated to the stability conditions. The reformulation of nonlinear system dynamics into an
LPV model represents a delicate process, which strongly depends on the investigated appli-
cation. Few approaches have been proposed in the literature as a general solution to this
task, yet accounting for relevant assumptions and limitations. The employment of the state
transformation technique is restricted to a certain class of nonlinear systems, namely output
nonlinear (or output dependent). Despite the fact that the projectile dynamics falls into this
category, ad-hoc adjustments were necessary to fully comply with the formulation require-
ments. The presentation of the complete modeling process from the nonlinear to the LVP
formulation, including all the considerations related to the conversion, provides an interesting
study case, often not detailed in many standard applications. Furthermore, the reformulation
of the projectile quasi-LPV model as a polytopic system added a layer of complexity through
the approximation analysis. The identi�cation of a new set of scheduling functions relied on
an accurate mapping process, aiming to minimize the conservatism introduced by the formu-
lation. The de�nition of a 3D convex space poses a signi�cant design challenge in reason of
the consequent complexity.

Chapter 3: The complexity concerning the synthesis of an LPV autopilot for guided muni-
tions consists of the large variation characterizing most of the �ight parameters during the
trajectory. Indeed, the controller optimization has to satisfy the constraints imposed at sev-
eral �ight conditions, often resulting in very conservative solutions. The polytopic design
ensures stronger stability guarantees at the expense of more conservative optimization results.
The formulation requires a dedicated modeling process which adds a layer of complexity and
approximation to the resulting design accuracy. The polytope dimension optimization allows
for reducing the conservativeness a�ecting the design by neglecting areas of the convex space
never covered by the projectile trajectory. The reduction consists of an intrinsically case-
dependent approach that targets a speci�c projectile optimal trajectory. However, due to the
model convexity requirements, unfeasible �ight conditions were still included in the de�nition
of the polytope. A further improvement would require the employment of a more sophisti-
cated interpolation approach, allowing for more complicated polytope shapes that better �t
the actual trajectories of the scheduling variables.

Regarding the grid-based design, the complexity consists of the lack of general guidelines
in the selection of the operating grid points and in the de�nition of the parameter-dependent
Lyapunov functions. The higher optimization performances are associated with lower stability
guarantees at the controller interpolation stage, highlighting the relevance of the grid-points
selection. In the presented study, a dedicated analysis targets these aspects through the identi-
�cation of the most critical areas of the projectile �ight envelope. An interesting contribution
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relies on the challenge posed by the selection of a 3D grid of conditions, which increases ex-
ponentially the numerical complexity of both the controller synthesis and the implementation
burden. Further considerations concerning the computational times and the model-parameters
dependence allow for the de�nition of an appropriate trade-o� between design complexity and
controller performance. However, only partial guarantees of stability are provided, requiring
a proper stability assessment through dedicated simulations.

Chapter 4: The polytopic design proved relevant advantages through the simulation per-
formance and robustness analysis, both in terms of system stabilization and implementation
ease. Indeed, the stronger stability guarantees implied by the polytopic controller synthesis
were con�rmed w.r.t. structured uncertainties through the µ-sensitivity analysis, and to time-
varying wind disturbance in the trajectory tracking scenario. Additionally, the complexity
of the modeling design process is compensated by the implementation ease, represented by
a limited amount of controllers to be interpolated online. Possible design weaknesses were
highlighted by the stability margins related to input/output disturbance, suggesting the need
for stricter design requirements. On the other side, even though the grid-based controller
succeeded in stabilizing the projectile dynamics across the entire �ight trajectory, larger sensi-
tivity to wind disturbance has been observed through the simulations. The controller synthesis
guarantees higher local performance and robustness properties, as shown by the analysis. Nev-
ertheless, the milder certainties provided at the controller interpolation stage suggest the need
for a denser set of design points around the desired projectile trajectory. A reformulation of
the LMIs optimization problem could allow for precisely targeting the critical areas of the
�ight envelope, limiting the increment of computational and implementation complexity.

Future Perspectives

The limitations observed during the nonlinear and the LPV modeling processes have raised
several points of improvement:

❖ Aerodynamic Regression: The aerodynamic model could be further developed by
exploiting the dependence of the aerodynamic coe�cients w.r.t. the Mach variation.
Despite the unavoidable increase in the formulation complexity, this solution could im-
prove the accuracy of the resulting projectile LPV model.

❖ Reference Variables: The selection of the aerodynamic angle-of-attack (AoA) as a
scheduling and reference tracking variable represents a quite unusual choice. Indeed,
accurate AoA measurements require dedicated instrumentation, often not provided on
munition technologies. Additionally, both direct measurements and parameter estima-
tions are particularly sensitive to wind disturbance. The reformulation of the projectile
�ight model in terms of the acceleration dynamics could simplify the implementation
process. Accordingly, acceleration reference trajectories are generally employed in the
mid-course guidance phase, due to the measurements availability.
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❖ LPV Modeling Approach: Alternative modeling techniques could be considered to
relax the constraints imposed by the state transformation approach. Recent studies
investigate the LPV system formulation as the superposition of a structured model,
based on standard inertial mechanics considerations, and a parameter-varying correction
term. The latter can be directly �tted from real measurements by means of sophisticated
identi�cation techniques (such as neural networks).

The results obtained through the LPV-based control design approaches suggested possible
improvements according to the following aspects:

❖ Polytope De�nition: The polytopic design provides appealing advantages in terms
of theoretical guaranteed properties and implementation ease. However, the resolution
of the corresponding optimization problem is generally a�ected by a signi�cant level of
conservativeness. In the presented study, the simulated scheduling functions trajecto-
ries reveal areas of the designed polytope that are never covered, possibly representing
unfeasible �ight conditions. A reformulation of the polytope shape, and the employ-
ment of more sophisticated controller interpolation functions, might further improve the
performance of the control design. The reformulation could be achieved by means of a
change of variables, de�ning the polytope around the trajectory that the projectile is
expected to perform. This solution would allow for a more optimal case-dependent for-
mulation of the controller synthesis, signi�cantly reducing the conservativeness a�ecting
the computation, and preserving the guarantees provided by the polytopic design.

❖ Grid Selection: A fundamental aspect of the grid-based design concerns the identi-
�cation of the necessary �ight points to guarantee projectile stability across the entire
trajectory. The employment of the LPVTools MATLAB functions imposes the de�ni-
tion of a rectangular/cubic grid, based on each scheduling variable range of variation.
As a consequence, several unwanted �ight conditions are targeted by the design, in-
creasing both the conservativeness of the results and the numerical complexity of the
computation. A proper reformulation of the LMIs optimization problem might allow for
relaxing the shape constraints imposed by LPVTools. Since the robust stability prop-
erties guaranteed by the grid-based design do not account for any convexity limitations
in the de�nition of the design grid, the grid points could be clustered around the de-
sired projectile trajectory, optimizing the number of controllers to be implemented and
interpolated online. Additionally, by minimizing the number of LTI controllers, the inter-
polation could be extended to include the controllers obtained by gridding the subspace
of the scheduling variables rates of variations, improving the overall performance.

❖ Lateral Controller: The LPV modeling a control design could be extended to account
for the roll-yaw channel dynamics of the projectile. A preliminary study suggested
how through the decoupling between pitch and roll-yaw dynamics, and employing mild
approximations, a reliable roll-yaw dynamics quasi-LPV model can be easily derived.
Polytopic and grid-based design techniques would allow the design of an LPV controller
that implements a full Bank-To-Turn �ight strategy in combination with the already
presented pitch channel autopilot.



Appendix A

Aerodynamic Analysis

This appendix provides complementary information concerning the aerodynamic modeling
process discussed in Chapter 1. In particular, Section A.1 presents the complete set of Com-
putational Fluid Dynamics (CFD) acquisitions related to the static aerodynamic coe�cients.
The full derivation of the multivariable aerodynamic regression model is detailed in Section
A.2, concerning both the formulation of the aerodynamic static forces and moments coe�-
cients (Section A.2.1-A.2.2). Finally, Section A.2.1 provides the complete set of regression
model comparison results based on the accuracy analysis explained in Section 1.3.3.3.

A.1 Static Coe�cients CFD Acquisitions

The full set of aerodynamic coe�cients introduced in Section 1.3.2.1 is presented hereafter.

(a) (b) (c)

(d) (e)

Figure A.1: CFD static longitudinal coe�cient dataset, CXS
: (a) ϕ′ = 0 deg; (b)

ϕ′ = 15 deg; (c) ϕ′ = 30 deg; (d) ϕ′ = 45 deg; (e) ϕ′ = 90 deg.
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(a) (b) (c)

(d) (e)

Figure A.2: CFD static lateral coe�cient dataset, CYS : (a) ϕ
′ = 0 deg; (b) ϕ′ = 15

deg; (c) ϕ′ = 30 deg; (d) ϕ′ = 45 deg; (e) ϕ′ = 90 deg.

(a) (b) (c)

(d) (e)

Figure A.3: CFD static vertical coe�cient dataset, CZS : (a) ϕ
′ = 0 deg; (b) ϕ′ = 15

deg; (c) ϕ′ = 30 deg; (d) ϕ′ = 45 deg; (e) ϕ′ = 90 deg.
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(a) (b) (c)

(d) (e)

Figure A.4: CFD static rolling coe�cient dataset, ClS : (a) ϕ
′ = 0 deg; (b) ϕ′ = 15

deg; (c) ϕ′ = 30 deg; (d) ϕ′ = 45 deg; (e) ϕ′ = 90 deg.

(a) (b) (c)

(d) (e)

Figure A.5: CFD static pitching coe�cient dataset, CmS
: (a) ϕ′ = 0 deg; (b) ϕ′ = 15

deg; (c) ϕ′ = 30 deg; (d) ϕ′ = 45 deg; (e) ϕ′ = 90 deg.
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(a) (b) (c)

(d) (e)

Figure A.6: CFD static yawing coe�cient dataset, CnS : (a) ϕ
′ = 0 deg; (b) ϕ′ = 15

deg; (c) ϕ′ = 30 deg; (d) ϕ′ = 45 deg; (e) ϕ′ = 90 deg.

A.2 Multivariable Regression Model Derivation

The expressions of the static aerodynamic forces and moments employed for the multivariable
regression analysis described in Section 1.3.3.2 rely on the formulation provided in [McC99].
The aerodynamic forces expressed in the body coordinates, ]B, are derived as projections of the
aerodynamic Drag and Lift contributions, D and L, respectively. Similarly, the aerodynamic
moments are generated by the normal component of the obtained aerodynamic forces. The
expressions are �rst formulated in tensor notation and then projected w.r.t. the appropriate
coordinate systems.

A.2.1 Regression Models: Force Coe�cients

According to the air frame (A) and body frame (B) de�nitions, provided in Section 1.2.2 of
Chapter 1, the Drag and Lift aerodynamic forces can be expressed in their tensor forms as
follows:

DB = −q̄SCDa1; LB = q̄SCLα [a1 × (b1 × a1)] (A.1)

where q̄ represents the dynamic pressure, S is the projectile reference surface, CD and CLα

stand for the Drag and Lift aerodynamic coe�cients, respectively, whereas a1 and b1 cor-
respond to the longitudinal base vectors de�ning the air (A) and the body (B) frames, re-
spectively. In particular, a1 is aligned with the relative wind direction, vA

B, while b1 points
towards the nose of the projectile, as detailed in Section 1.2.2.
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The aerodynamic forces expressions in Equation (A.1) can be projected along the corre-
sponding preferred wind coordinate system, assuming the polar aeroballistic angles notation,
]A. Indeed, the aeroballistic coordinate system is aligned with the projectile load factor plane
(LF), where the Drag and Lift forces are generated. The resulting projections are formulated
as:

[DB]
A = −q̄SCD

10
0

; [LB]
A = q̄SCLα

 0

0

− sinα′

 (A.2)

where α′ corresponds to the aerodynamic total angle-of-attack.

Applying the wind-to-body coordinates transformation matrix de�ned in Equation (1.8),
the Drag and Lift force projections in Equation (A.2) can be expressed w.r.t. the body
coordinates, complying with the general aerodynamic model formulation proposed in Section
1.3. The resulting Drag and Lift force projections in the body coordinate system are expressed
as follows:

[DB]
B = −q̄SCD

 cosα′

sinα′ sinϕ′

sinα′ cosϕ′

; [LB]
B = q̄SCLα

 sin2 α′

− cosα′ sinα′ sinϕ′

cosα′ sinα′ cosϕ′

 (A.3)

where ϕ′ represents the aerodynamic roll angle.

Finally, through the relations formulated in Equation (1.28), the aerodynamic Drag and
Lift forces in Equation (A.3) projected in the body frame, can be expressed as a function of
the Cartesian aerodynamic AoA and AoS, α and β, respectively as:

[DB]
B = −q̄SCD

cosα cosβ

sinβ

sinα cosβ

; [LB]
B = q̄SCLα

sin2 α+ cos2 α sin2 β

− cosα sinβ cosβ

− sinα cosα cos2 β

. (A.4)

The superposition of the Drag and Lift force projections in Equation (A.4) generates
the static contributions of the projectile aerodynamics forces, (fa1,s, fa2,s, fa3,s), expressed
w.r.t. the body coordinate system, as introduced in Equation (1.24). These contributions are
parameterized as a function of the Drag and Lift aerodynamic force coe�cients, and of the
aerodynamic AoA and AoS, as:

[fa,s]
B =

fa1,sfa2,s
fa3,s

 = q̄S

CXS

CYS

CZS


= q̄S

−CD cosα cosβ + CLα

(
sin2 α+ cos2 α sin2 β

)
−CD sinβ − CLα cosα sinβ cosβ

−CD sinα cosβ − CLα sinα cosα cos2 β

.
(A.5)

According to the general aerodynamic coe�cients formulation, imposed through the CFD
data acquisition and de�ned in Equation (1.27), CXS

, CYS , and CZS correspond to the static
components of the aerodynamic coe�cients along the body coordinate system.
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Thus, by addressing the Drag and Lift coe�cients, CD and CLα as regression parameters,
the expressions in Equation (A.5) can be employed as �tting models during the multivariable
regression analysis on the Computational Fluid Dynamics (CFD) acquisitions performed in
Section 1.3.3.2:

CXS
= CX2 cosα cosβ + CX3

(
sin2 α+ cos2 α sin2 β

)
,

CYS = CY1 sinβ + CY3 cosα sinβ cosβ,

CZS = CZ2 sinα cosβ + CZ3 sinα cosα cos2 β.

(A.6)

Accounting for simple trigonometric manipulations, the coe�cient derivative CX3 can be
equivalently split into a static derivative, CX0 , and a higher-order derivative, CX4 . Addition-
ally, the higher-order derivative, CZ3 , is not considered in the regression model in reason of
the already high accuracy provided by the �rst-order derivative. The employment of these
considerations on the parameterized model in Equation (A.6) leads to the �nal expressions of
the aerodynamic coe�cients multivariable regression model presented in Equation (1.31):

CXS
(M, α, β) = CX0(M) + CX2(M) cosα cosβ + CX4(M) cos2 α cos2 β,

CYS(M, α, β) = CY1(M) sinβ + CY3(M) cosα sinβ cosβ,

CZS(M, α, β) = CZ2(M) sinα cosβ.

Since the CFD data have been acquired at di�erent �ight regimes, the regression models
intrinsically depend on the Mach number variation, M. The regression analysis is performed
by iteratively selecting a speci�c Mach value. Each set of identi�ed regression coe�cients is
stored in dedicated lookup tables and interpolated online during the simulations.

A.2.2 Regression Models: Moment Coe�cients

The static (pitching) component of the aerodynamic moments can be derived from the Drag
and Lift forces projection, as done for the aerodynamic forces in Section A.2.1. In particular,
the static aerodynamic moments are generated by the normal force, NB, expressed in tensor
form as detailed in [McC99]:

NB = q̄SCNα [b1 × (b1 × a1)] (A.7)

where CNα represents the normal force coe�cient derivative, de�ned as:

CNα = CD + CLα cosα cosβ.

By projecting the tensor expression in Equation (A.7) in the wind aeroballistic coordinates
and applying the transformations from the polar aeroballistic to the body coordinate system,
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the resulting normal force corresponds to the superposition of Drag and Lift forces along the
2B and the 3B coordinate axes, expressed in Equation (A.5):

[NB]
B = q̄SCNα

 0

− sinβ

− sinα cosβ

 = q̄S

 0

−CD sinβ − CLα cosα sinβ cosβ

−CD sinα cosβ − CLα sinα cosα cos2 β

. (A.8)

The corresponding aerodynamic static (pitching) moments, generated by the normal force,
are expressed in tensor form as follows:

mB,S = sCM-CP ×NB; with: sCM-CP = dCM-CPb1 (A.9)

where dCM-CP represents the distance between the center of mass (CM) and the center of
pressure (CP) of the projectile.

The projections of the aerodynamic moments in Equation (A.9) w.r.t. the body coordinates
can be inferred from the normal force expression in Equation (A.8) as:

[mB,S]
B =

mB1,S

mB2,S

mB3,S

 = q̄Sd

 0

CmS

CnS

 = q̄SdCmα

 0

sinα cosβ

− sinβ


= q̄Sd

 0

−CD sinα cosβ − CLα sinα cosα cos2 β

−CD sinβ − CLα cosα sinβ cosβ


(A.10)

where Cmα =
(
dCM-CP

d

)
CNα corresponds to the pitching moment coe�cient derivative, while

d is the projectile reference caliber.

Assuming the Drag and Lift force coe�cients, CD and CLα , as the regression parameters
to be identi�ed through regression analysis on the CFD data, the formulations in Equation
(A.10) can be employed as �tting models. The aerodynamic static moments model presented
in Equation (1.31) are then recovered, including the implicit dependence on the Mach regime:

CmS
(M, α, β) = Cm2(M) sinα cosβ + Cm4(M) sinα cosα cos2β,

CnS(M, α, β) = Cn1(M) sinβ + Cn3(M) cosα sinβ cosβ.

A.3 Regression Models: Accuracy Comparison Results

This section presents the complete set of results related to the accuracy comparison between
the Polynomial Regression andMultivariable Regression models, PR and MR respectively. The
analysis is based on the Algorithm 1 introduced in Section 1.3.3.3. The results are provided
in terms of the root mean square error (RMSE) of the di�erence between each regression
model and the corresponding CFD data. The error is then normalized (NRMSE) through the
Min-Max values of the CFD acquisitions at each investigated �ight condition.
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(a) (b) (c)

(d) (e)

Figure A.7: CXS
interpolation NRMSE comparison at di�erent �ight conditions: (a)

ϕ′ = 0 deg; (b) ϕ′ = 15 deg; (c) ϕ′ = 30 deg; (d) ϕ′ = 45 deg; (e) ϕ′ = 90 deg.

(a) (b)

(c) (d)

Figure A.8: CYS interpolation NRMSE comparison at di�erent �ight conditions: (a)
ϕ′ = 15 deg; (b) ϕ′ = 30 deg; (c) ϕ′ = 45 deg; (d) ϕ′ = 90 deg.
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(a) (b)

(c) (d)

Figure A.9: CZS interpolation NRMSE comparison at di�erent �ight conditions: (a)
ϕ′ = 0 deg; (b) ϕ′ = 15 deg; (c) ϕ′ = 30 deg; (d) ϕ′ = 45 deg.

(a) (b)

(c) (d)

Figure A.10: CmS
interpolation NRMSE comparison at di�erent �ight conditions:

(a) ϕ′ = 0 deg; (b) ϕ′ = 15 deg; (c) ϕ′ = 30 deg; (d) ϕ′ = 45 deg.
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(a) (b)

(c) (d)

Figure A.11: CnS interpolation NRMSE comparison at di�erent �ight conditions:
(a) ϕ′ = 15 deg; (b) ϕ′ = 30 deg; (c) ϕ′ = 45 deg; (d) ϕ′ = 90 deg.

In particular, the results in Figure A.9 and Figure A.10, related to the vertical force and
pitching moment aerodynamic coe�cients, do not account for the comparison at ϕ′ = 90 deg.
As detailed in Section 1.3.2.1, at those �ight conditions the aerodynamic contributions depend
exclusively on the angle-of-sideslip (AoS). Since the vertical force and pitching moment are
generated by the angle-of-attack (AoA) variation, the CFD data acquired at ϕ′ = 90 deg
consist mainly of noise signals related to the limited numerical precision. For the same reason,
the results in Figure A.8 and Figure A.11, related to the lateral force and the yawing moment
aerodynamic coe�cients, do not include the comparison at ϕ′ = 0 deg where the aerodynamic
contributions depend exclusively on the AoA.
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State Transformation Conditions

The existence of the equilibrium functions expressed in Equation (2.28) at any �ight conditions
relies on the conditions imposed by the resolution of the system in Equation (2.27). The
conditions are expressed as follows:

2Cmδq
V 2m+ q̄Sd(Cmδq

CZq − CmqCZδq
) cosα ̸= 0 (a)

2V 2m+ q̄SdCZq cosα ̸= 0 (b)

S ̸= 0 (c)

d ̸= 0 (d)

q̄ ̸= 0 (e)

(B.1)

By de�nition, the reference surface, S, the reference caliber, d, the projectile mass, m, and
the dynamic pressure, q̄, are always positive values. Hence, conditions (c)-(d)-(e) are satis�ed
at any �ight conditions. In particular, the dynamic pressure is de�ned as a function of the
airspeed, V , and the altitude-dependent air density, ρ, as q̄ = ρ(h)V 2/2. As a consequence,
the only exception to condition (e) occurs at the projectile impact point, where V = 0 m/s.

The conditions (a)-(b) in Equation (B.1) can be reformulated in terms of the dynamic
pressure, respectively as: q̄ ̸=

2Cmδq
V 2m

Sd(CmqCZδq
−Cmδq

CZq ) cosα
(a)

q̄ ̸= − 2V 2m
SdCZq cosα (b)

(B.2)

In particular, the aerodynamic control and damping vertical coe�cients, CZδq
and CZq , assume

always negative values, while the corresponding aerodynamic control and damping pitching
moment coe�cients, Cmδq

and Cmq , are de�ned positive at any �ight conditions. Additionally,
since the inequality CmqCZδq

> Cmδq
CZq has been veri�ed across the entire projectile �ight

envelope1, the right-hand side terms of conditions (a)-(b) in Equation (B.2) represent always
positive quantities, coherently with the de�nition of q̄.

However, a mismatch of several orders of magnitude has been observed between the ad-
missible range of dynamic pressure variation, q̄ ∈ [0, 30000] kg/(ms2), and the values imposed
by the right-hand side terms of conditions (a)-(b) in Equation (B.2). As a consequence, the
full set of conditions in Equation (B.1) is satis�ed, proving the existence of the equilibrium
functions at any �ight conditions.

1The coe�cients' values cannot be disclosed in reason of con�dentiality.
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Résumé � L'avènement de technologies de guidage avancées au cours des dernières décen-
nies a ravivé l'intérêt pour l'emploi de munitions d'artillerie guidées lancées par canon dans les
opérations stratégiques. L'amélioration de la portée des munitions, tout en évitant de mod-
i�er le canon, implique l'étude de con�gurations aérodynamiques innovantes. Une solution
prometteuse pourrait être identi�ée dans une nouvelle architecture stabilisée par des ailerons,
visant à améliorer la capacité de portée par un vol plané dirigé. L'utilisation d'un concept non
gyrostabilisé réduit la dynamique hautement non linéaire générée par les termes de couplage
aérodynamique. La conception axée sur la commande des applications aérospatiales repose
généralement sur des techniques standard de séquencement de gains basées sur la linéarisa-
tion, où des approximations locales de la dynamique non linéaire permettent de concevoir un
ensemble de contrôleurs linéaires à temps invariants (LTI) à des points de vol sélectionnés. Les
contrôleurs sont ensuite interpolés en ligne pour couvrir toutes les conditions appartenant à
l'enveloppe de vol du système. Malgré un large éventail d'applications réussies, séquencement
de gains s'est avéré présenter d'importantes limitations théoriques et pratiques, à la fois en ter-
mes de précision de la modélisation et de stabilité garantie de l'interpolation des contrôleurs.
Récemment, les techniques linéaires à paramètres variables (LPV) ont suscité une attention
croissante dans la modélisation et la commande d'un large éventail d'applications de missiles
et d'aéronefs. En particulier, les modèles LPV/quasi-LPV peuvent prendre en compte les vari-
ations temporelles d'un ensemble sélectionné de paramètres, ce qui permet de mieux saisir la
dynamique non linéaire complexe qui caractérise les systèmes aérospatiaux. En conséquence,
la conception vise la synthèse d'un contrôleur qui fournit des propriétés de stabilité globale
sur l'ensemble de l'enveloppe décrite par la variation des paramètres. Dans ce contexte, le
projet vise à étudier la modélisation et la conception du la commande d'une nouvelle classe de
projectiles guidés stabilisés par des ailerons dans le cadre du LPV. Une analyse de régression
sur des données issues de simulations numériques de dynamique des �uides permet de carac-
tériser l'aérodynamique du projectile et de dé�nir le modèle de dynamique de vol non linéaire
correspondant. La dynamique non linéaire est ensuite formulée comme un modèle quasi-LPV
pour une conception axée sur la commande grâce à une sélection précise des paramètres vari-
ables étudiés. La synthèse de l'autopilote est réalisée par l'utilisation d'approches LPV/H∞
standard : polytopique et basée sur une grille. L'objectif principal consiste à suivre un signal
de guidage de référence augmentant la portée, tout en assurant la stabilité du projectile sur
l'ensemble de la trajectoire de vol plané. L'approche polytopique repose sur la dé�nition d'un
espace convexe de variation linéaire des paramètres, o�rant des garanties de stabilité plus
solides. L'approche basée sur une grille e�ectue la conception du contrôleur à travers une
grille de conditions de vol sélectionnées, assurant une meilleure optimisation de la synthèse
du contrôleur. La robustesse et les performances de suivi des contrôleurs sont testées dans un
environnement de simulateur non linéaire, en tenant compte des sources externes de pertur-
bation telles que le vent et des incertitudes paramétriques possibles du modèle.

Mots clés : Systèmes Linéaires à Paramètres Variables (LPV), Commande de vol, Com-
mande Robuste, Dynamique de vol, Commande H∞.
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Abstract � The advent of advanced guidance technologies in the last decades has renewed
the interest in the employment of gun-launched artillery-guided munitions in strategic opera-
tions. The enhancement of munitions range performance, under the avoidance of any modi�-
cations to the �ring gun, implies the investigation of innovative aerodynamic con�gurations.
A promising solution could be identi�ed in a novel �n-stabilized architecture, aiming to im-
prove the range capability through a gliding steered �ight. The employment of a non-spinning
concept reduces the highly nonlinear dynamics generated by the aerodynamic coupling terms.
The control design of aerospace applications generally relies on standard linearization-based
gain-scheduling techniques, where local approximations of the nonlinear dynamics allows for
the design of a set of Linear-Time Invariant controllers (LTI) at selected �ight points. The
controllers are then interpolated online to cover all the conditions belonging to the system
�ight envelope. Despite a broad range of successful applications, gain-scheduling design has
been proven to present important theoretical and practical limitations, both in terms of mod-
eling accuracy and guaranteed stability of the controller interpolation. Recently, the Linear
Parameter-Varying (LPV) framework has attracted increasing attention in the modeling and
control of a wide range of missile and aircraft applications. In particular, LPV/quasi-LPV
models can account for the time variation of a selected set of parameters, which results in
a higher capability in capturing the complex nonlinear dynamics characterizing aerospace
systems. Accordingly, the design targets the synthesis of a controller that provides global
stability properties across the entire envelope described by the variation of the parameters. In
this context, the project aims to investigate the modeling and control design of a new class of
�n-stabilized guided projectiles in the LPV framework. An exhaustive regression analysis on
Computational Fluid Dynamics (CFD) simulation results allows for characterizing the aero-
dynamics of the projectile and de�ning the corresponding nonlinear �ight dynamics model.
The nonlinear dynamics is then formulated as a quasi-LPV model for control design purposes
through an accurate selection of the investigated varying parameters. The synthesis of the
autopilot is achieved through standard LPV/H∞ approaches: polytopic and grid-based. The
core objective consists of the tracking of a reference range-enhancement guidance signal while
ensuring the stability of the projectile across the entire gliding trajectory. The polytopic ap-
proach relies on the de�nition of a convex space of linear variation of the parameters, providing
stronger stability guarantees. The grid-based approach performs the design of the controller
across a grid of selected �ight conditions, ensuring higher controller synthesis optimization.
The robustness and the tracking performance of the controllers are tested in a nonlinear
simulator environment, addressing external sources of disturbance such as wind gusts, and
accounting for possible model parametric uncertainties.

Keywords: Linear Parameter-Varying (LPV), Flight Control, Robust Control, Flight Dy-
namics, H∞ Control.
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