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Résumé : Le lentillage gravitationnelle, qui gé-

nère un effet de déformation des images de ga-

laxies lointaines à travers l’influence de densités de

matières massives dans la ligne de visée, est très

prometteur pour répondre aux questions relatives

à la matière noire et à l’énergie sombre. Cet effet

permet de sonder directement la distribution de

matière noire dans l’Univers, qui est invisible au-

trement. Dans le régime où ces déformations sont

faibles, il est possible de cartographier la distribu-

tion de matières projetées dans la ligne de visée,

appelée carte de masse, à partir de la mesure de

la déformation d’un grand nombre de galaxies. Ce-

pendant, la reconstruction de ces cartes de masse

est un problème inverse qui est mal posé, à cause

de données manquantes et de bruits dans le signal

mesuré, et nécessite donc de l’information à priori

pour être résolu.

L’objectif principal de cette thèse est d’utili-

ser les récentes avancées sur les modèles généra-

tifs qui permettent de modéliser des distributions

complexes dans des espaces de très haute dimen-

sion. Nous proposons en particulier une nouvelle

méthode pour résoudre les problèmes inverses de

haute dimension et mal posés en en caractérisant

la distribution a posteriori complète. En apprenant

la distribution a priori à partir de simulations cos-

mologiques, nous pouvons reconstruire des cartes

de masse de très hautes résolutions, y compris aux

petites échelles, tout en en quantifiant les incerti-

tudes associées. De plus, nous présentons une nou-

velle méthode de mesure du cisaillement gravita-

tionnel en créant un modèle décrivant les données

observées au niveau des pixels. Contrairement aux

méthodes standards, cette méthode ne repose pas

sur la mesure d’ellipticité des galaxies et introduit

donc un nouveau paradigme pour la mesure du ci-

saillement gravitationnel. Nous proposons en par-

ticulier un modèle hiérarchique Bayésien, avec des

composantes génératives apprises et des compo-

santes analytiques physiques. Nous montrons que

cela permet de résoudre le biais de modèles dans

l’estimation du cisaillement gravitationnel.
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Abstract : Gravitational lensing, which is the ef-

fect of the distortion of distant galaxy images

through the influence of massive matter densities

in the line of sight, holds significant promise in

addressing questions about dark matter and dark

energy. It reflects the distribution of total matter

of the Universe and is therefore a promising probe

for cosmological models. In the case where these

distortions are small, we call it the weak gravitatio-

nal lensing regime and a straightforward mapping

exists between the matter distribution projected in

the line of sight, called mass-map, and the mea-

sured lensing effect. However, when attempting to

reconstruct matter mass-maps under conditions in-

volving missing data and high noise corruption, this

linear inverse problem becomes ill-posed and may

lack a meaningful solution without additional prior

knowledge.

The main objective of this thesis is to employ

recent breakthroughs in the generative modeling

literature that enable the modeling of complex dis-

tribution in high-dimensional spaces. We propose

in particular a novel methodology to solve high-

dimensional ill-posed inverse problems, characteri-

zing the full posterior distribution of the problem.

By learning the high dimensional prior from cos-

mological simulations, we demonstrate that we are

able to reconstruct high-resolution 2D mass-maps

alongside uncertainty quantification. Additionally,

we present a new method for cosmic shear estima-

tion based on forward modeling of the observation

at the pixel level. This represents a new paradigm

for weak lensing measurement as it does not rely

on galaxy ellipticities anymore. In particular, we

propose to build a hybrid generative and physical

hierarchical Bayesian model and demonstrate that

we can remove the source of model bias in the

estimation of the cosmic shear.
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Chapter �

Introduction

The recent space-based mission Planck has significantly advanced our understanding
of the cosmological model that describes our Universe. Through precise measurements
of the Cosmic Microwave Background, this mission has firmly established the standard
ΛCDM model. According to this model, 5% of the total energy density consists
of baryonic matter, while substantial 27% is attributed to dark matter, with an
overwhelming 68% assigned to dark energy. The standard model is now well established
with its parameters measured to a remarkable level of accuracy. Nevertheless, numerous
fundamental questions persist, particularly concerning the nature of dark matter and
dark energy and therefore about our comprehension of the Universe. Upcoming stage
IV wide-field optical galaxy surveys, including the ESA Euclid mission, the Vera C.
Rubin Observatory Legacy Survey of Space and Time and the Roman Space Telescope
are designed to push further this investigation, by probing the large-scale structure of
the Universe.

Gravitational lensing, which is the e�ect of the distortion of distant galaxy images
through the influence of massive matter densities in the line of sight, holds significant
promise in addressing questions about dark matter and dark energy. It reflects the
distribution of total matter of the Universe and is therefore a promising probe for
cosmological models. In the case where these distortions are small, we call it the
weak gravitational lensing regime and a straightforward mapping exists between
the projected matter distribution, called mass-map, and the measured lensing e�ect.
However, when attempting to reconstruct matter mass-maps under conditions involving
missing data and high noise corruption, this linear inverse problem becomes ill-posed
and may lack a meaningful solution without additional prior knowledge.

The signal processing literature has already extensively addressed ill-posed inverse
problems, for mass-mapping and beyond astrophysics such as medical imaging or
geophysics. These methods, which operate under the assumption that the signal
to recover exhibits sparsity in its representation, have been demonstrated to be
successful in reconstructing highly resolved mass-maps. However, to this date, these
methods have fallen short in terms of quantifying the uncertainty associated with the
reconstruction. From a Bayesian perspective, recovering the full posterior distribution
of a high-dimensional inverse problem remains an unresolved challenge.

The e�ect of lensing can be measured through a field called the cosmic shear, which
itself presents many challenges as well. One of the significant challenges in cosmic
shear analysis from upcoming surveys requires exceedingly accurate measurements of
galaxy shapes. These shape measurements, in turn, depend on exquisite control of
the instrument’s Point Spread Function and can be impacted by the details of galaxy
morphologies, which can induce biases in the cosmic shear measurement. Consequently,

�



� CHAPTER �. INTRODUCTION

it is imperative to develop methods that can e�ectively address all potential sources of
bias and account for the propagation of errors throughout the measurement pipeline
up to the parameters of interest.

The main objective of this thesis is to employ recent breakthroughs in the gener-
ative modeling literature that enable the modeling of complex distribution in high-
dimensional spaces. This will be applied to develop cutting-edge methods for mass-
mapping tools and cosmic shear measurement for next-generation surveys. Ultimately,
these advancements will enhance our ability to constrain cosmological parameters,
while ensuring accurate estimation of their uncertainties.

The first part of the thesis aims to introduce the background tools and the concepts
necessary to understand the motivation of this thesis. In particular, chapter � minimally
introduces the basic equations of General Relativity and provides an overview of the
dynamical evolution of the Universe. We also present the ΛCDM model and how the
large-scale structures form. We then present the weak lensing formalism, introducing
the shear and convergence fields. chapter � outlines the formation of galaxy images
from background galaxies to the CCD and the state-of-the-art shape measurement
and bias calibration methods.

The second part is dedicated to the presentation of the generative modeling
framework and Bayesian modeling. In chapter �, we provide a general introduction to
Bayesian modeling and e�cient inference methods based on sampling with Markov
chain Monte Carlo and optimization with variational inference. We then present the
generative modeling techniques in chapter � enabling us to learn arbitrary distribution,
starting with a general introduction to deep learning, and the state-of-the-art methods
such as normalizing flows and di�usion models. We finally present our contribution
enabling inference in high dimensional spaces.

In the third part, I address the reconstruction of mass-maps from weak lensing
measurements. The chapter � starts by giving an overview of the problem and a
literature review on the methods addressing it. I then develop a novel methodology
to solve high-dimensional ill-posed inverse problem, characterizing the full posterior
distribution of the problem. Finally, I demonstrate this method on real data, recon-
structing the highest resolved �D mass-map of the HST/ACS COSMOS field along
uncertainty quantification. Finally, in chapter �, I present a new method for cosmic
shear estimation based on forward modeling of the observation at the pixel level. This
represents a new paradigm for weak lensing measurement as it does not rely on galaxy
ellipticities anymore. As demonstrated on galaxy postage stamps from the HST/ACS
COSMOS survey, inferring the cosmic shear from a hybrid generative and physical
hierarchical Bayesian model enables us to remove the source of model bias in the
estimation. This o�ers a promising path towards unbiased and accurate cosmic shear
estimation under the probabilistic modeling framework.
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T
his chapter serves as an introduction to the fundamental mathematical description
of our Universe. The purpose is to provide a contextual motivation for the physical

quantities we will study and extract from data. We first introduce the main equations
of cosmology describing the evolution of the Universe and its components. We then
provide an overview of the standard ΛCDM model, which we will assume throughout
this thesis. We then delve into the concept of weak gravitational lensing, which is
the cosmological probe we will study and one of the primary motivations for the
next generation of surveys Euclid, the Vera C. Observatory, and the Roman Space
Telescope. We finally provide a concise description of the matter power spectrum
which is a statistical quantity that can be derived from cosmological models and that
we will use in the development of our methods.

�.� Toolkit for modern cosmology

This section discusses the principal equations of Cosmology and notably introduces
the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, the comoving distance
and Friedman equations. This discussion will help to draw the context of our studies
and provide the necessary information about the physical quantities involved.

�
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�.�.� General Relativity and the FLRW metric

The current framework for describing the Universe and the dynamics of the objects
we can observe is Einstein’s theory of General Relativity. This theory provides the
mathematical foundation for describing how the curvature of the four-dimensional
space-time influences the dynamics of matter and radiation and conversely, how these
entities a�ect the curvature itself. Riemannian geometry is the natural framework for
articulating this geometrical description and allows us to relate the space-time metric
to the components of the Universe. The principal equation of General Relativity is

Rµ‹ ≠ 1

2
gµ‹R + Λgµ‹ =

8fiG

c4
Tµ‹ (�.�)

which involves the metric tensor gµ‹ which describes the space-time geometry, or the
infinitesimal distances of a trajectory in a curved space-time, i.e.

ds2 =
3ÿ

µ,‹=0

gµ‹dxµdx‹ . (�.�)

Additionally, Rµ,‹ is the Ricci curvature tensor, function of the metric tensor and its
derivatives. R is the Ricci scalar, contraction of the Ricci tensor (R = gµ‹Rµ‹). Tµ‹

is the energy-momentum tensor.

Our current description of the Universe is built from the cosmological principle,
i.e. assuming that the Universe is homogeneous and isotropic at large scales. An
homogeneous Universe refers to the fact that at large scales, the matter distribution
is equally distributed, or that the Universe appears the same from any location.
An isotropic Universe refers to the fact that looking at any direction, the Universe
appears the same as well. The first implies translational invariance and the second
rotational invariance of space-time, which can be described with the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric

ds2 = c2dt2 ≠ a2(t)
!
d‰2 + fK(‰)

!
d◊2 + sin2 ◊dÂ2

""
, (�.�)

expressed in spherical coordinates (‰, ◊, „), suitable for isotropic descriptions, where ‰

denotes the time-independent comoving radial distance, fK(‰) the comoving angular
distance, and a(t) the scale factor, evolving as a function of time and describing how
distances vary as the Universe contracts or expands. The comoving angular distance
has three distinct forms depending on the curvature K:

fK(‰) =

Y

_]

_[

K≠1/2 sin
!
K1/2‰

"
for K > 0 (spherical)

‰ for K = 0 (flat)
(≠K)≠1/2sinh

#
(≠K)1/2‰

$
for K < 0 (hyperbolic).

(�.�)

The latest cosmological results from the Planck mission [Agh+��], analyzing the
Cosmic Microwave Background (Cosmic Microwave Background (CMB)), are in favor
of a flat universe, implying a comoving angular distance of the form fK(‰) = ‰.

�.�.� Dynamical evolution of the Universe

To describe the dynamical evolution of the Universe, we can derive the Friedmann
equations [Fri��] equations resulting from zeroth component of equation Equation �.�
using the FLRW metric and T 00 = fl the energy density assuming the Universe is a
perfect fluid.
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3
ȧ

a

4

+
K

a2
=

8fiGfl

3
. (�.�)

This is the first Friedmann equation, which introduces the Hubble parameter

H(t) =
ȧ(t)

a(t)
, (�.�)

and states that the evolution of the scale factor a depends only on the energy
density and the curvature of the Universe. This also allows us to introduce the
Hubble constant H0 corresponding to the Hubble parameter at the present day, i.e.
H0 = ȧ(t0)/a(t0) = ȧ(t0), given that a(t0) = 1 by convention. This equation however
does not provide information about the expansion. We need to derive the other
components of Equation �.� leading to the second Friedmann equation

ä

a
= ≠4fiG

3
(fl + 3p) = ≠4fiG

3
fl(1 + 3w), (�.�)

where the acceleration of the scale factor is related to the energy density fl, the
pressure of the perfect fluid p, or alternatively to the parameter w = p/fl representing
the equation of state. An accelerated or decelerated universe would respectively
correspond to ä > 0 and ä < 0 and would provide information about the relative
dominance of its components as it implies w < ≠1/3 or w > ≠1/3.

The Friedman equations relate the scale factor to the energy of a photon and
hence to its wavelength as ⁄ Ã a(t). Therefore we can relate the wavelength ⁄e of a
photon emitted at time te to the wavelength ⁄obs of the same photon at the time of
observation tobs through the following ratio equality

⁄e

⁄obs
=

a(te)

a(tobs)
. (�.�)

In an expanding universe, the scale factor is larger at time of observation compared
to its value at time of emission, i.e. a(tobs) > a(te) and therefore the observed
wavelength is also greater at time of observation compared to time of emission, i.e.
⁄(tobs) > ⁄(te). This translates to a shift towards the larger wavelengths, so in the
visible spectrum towards the red, hence the denomination of redshift, which is defined
as

z =
⁄obs ≠ ⁄e

⁄e
. (�.�)

This also enables us to express time of emission in terms of redshift through the
following relation between the scale factor at emission time and the observed redshift
(considering that a(tobs) = 1)

a(te) =
1

1 + z
. (�.��)

This is particularly useful as the measurement of redshift can be directly linked to
the comoving distance of objects through the Hubble law. The comoving distance ‰ is
the radial physical distance rescaled by the scale factor, i.e. d‰ = cdt/a such that two
particles initially motionless stay equidistant in terms of this distance as the FLRW
metric evolves. It is therefore possible to rewrite this distance in terms of the scale
factor only through the Hubble law:
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‰(a) =

⁄ 1

a

cdaÕ

aÕ2H(aÕ)
, (�.��)

or with respect to the redshift using Equation �.��

‰(z) =

⁄ z

0

cdzÕ

H(zÕ)
. (�.��)

Figure �.�: Patch from theJames Webb Space Telescope (James Webb Space Telescope
(JWST)) Near-Infrared Camera. One can observe observe many objects in this image
such as galaxies and stars and the galaxy cluster SMACS ����. This picture also
illustrates the e�ect of strong graviational lensing of distant galaxies appearing as
arcs due to the presence of massive objects in the line of sight. Credit: National
Aeronautics and Space Administration (NASA) and European Space Agency (ESA).

�.�.� ΛCDM, dark matter and dark energy

Numerous cosmological models are aiming to describe our Universe, but the most
successful one to date is the Λ Cold Dark Matter (ΛCDM) model. This model
compresses all the observations into � parameters as presented in Table �.�. The
ΛCDM model primarily relies on two components: a non-vanishing cosmological
constant Λ and Cold Dark Matter (CDM), hence its name. The model is founded
on the mathematical framework detailed in the previous section, parametrized by
General Relativity and the FLRW metric. The evolution of the Universe is driven by
various fluids that compose it, which we discuss in the following. Ordinary matter
such as baryons, lepton photons, or neutrinos, actually represent only a minority of the
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total energy density of the Universe. Cold dark matter exhibits gravitational behavior
similarly to ordinary matter, but without electromagnetic interactions which makes
it invisible. Furthermore, the accelerated expansion of the Universe is driven by a
fluid referred as dark energy, exercising a negative pressure. In the ΛCDM model,
this energy manifests as a constant vacuum energy density and is represented by the
cosmological constant Λ in Einstein’s equations (e.g. Equation �.�). At our present
epoch, the Universe is dominated at roughly 68% by dark energy. Additionally, cold
dark matter is the second largest contributor to the total energy density by 26.2%,
while ordinary matter represents only 4.8% (see respectively the dark energy, cold
dark matter, and baryonic matter densities ΩΛ, Ωc and Ωb in Table �.�).

Parameter Symbol Value

Baryon density Ωbh2 0.02212 ± 0.00022
Dark matter density Ωch2 0.1206 ± 0.0021
Angular size of the sound horizon at recomb 100◊MC 1.04077 ± 0.00047
Reionisation optical depth · 0.0522 ± 0.0080
Power law amplitude ln

!
1010As

"
3.040 ± 0.016

Spectral index ns 0.9626 ± 0.0057
Hubble constant H0 66.88 ± 0.92
Dark energy density ΩΛ 0.679 ± 0.013
Total matter density Ωm 0.321 ± 0.013
Power spectrum normalization ‡8 0.8118 ± 0.0089

Table �.�: Cosmological parameters table from Aghanim et al. [Agh+��, Planck ����

results. VI. Cosmological parameters]. The first six parameters are the one inferred
with Markov Chain Monte Carlo from Planck CMB Power spectra TT, TE, EE +
lowE, combined with CMB lensing and Baryon Acoustic Oscillations (BAO), and the
remaining parameters are derived from them.

�.� Large scale structure

�.�.� Matter density contrast

We have so far described the Universe under the assumptions of homogeneity and
isotropy. However, we can observe that there are indeed structures around us, such
as galaxies, galaxy clusters, and even larger scale structures such as the cosmic web
(see Figure �.�). These ones can be understood as emergent structures from a small
deviation to the FLRW metric which propagates to the matter density field. The
matter density field is then expressed as a deviation from a mean background density

”(r, a) =
”flm(r, a)

fl̄m(a)
=

flm(r, a) ≠ fl̄m(a)

fl̄m(a)
, (�.��)

where ”(r, a) is called the matter density contrast, flm(r, a) the matter density
field and fl̄m(a) the background mean density field at instant t corresponding to
the scale factor a(t). The evolution of the density field fl can be derived through
the Vlasov-Poisson [Pee��] system of equations which yield the following dynamical
evolution of the density contrast ” assuming a linear regime [Dod��]:

”̈ + 2H ”̇ = 4fiGfl̄m”. (�.��)
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The solution of this second-order di�erential equation is the sum of two modes
where the spatial and temporal coordinates are decoupled:

”(r, a) = D+(a)”+(r) + D≠(a)”≠(r), (�.��)

where D+ and D≠ are called the growing and decaying modes. The decaying mode
will eventually vanish and therefore will not a�ect the structure formation, so only
the first term remains

D+(a) =
5ΩmH(a)

2H0

⁄ a

0

daÕ

aÕ

3
H0

H(aÕ)

43

. (�.��)

For convenience, we normalize the growing mode by its value at a = 1

D(a) =
D+(a)

D+(a = 1)
, (�.��)

so that the growing mode equals one at present epoch, i.e. D+(a = 1) = D+(z =
0) = 1, and so that the density contrast at location r and redshift z be ”(r, z) =
D(z)”(r).

�.�.� Matter power spectrum

A statistic which can be analytically derived from the density contrast is its two-point
correlation function of the matter density field, which is given by

È”(rÕ)”(r + r
Õ)Í

rÕ =

⁄

R3

”(r + r
Õ)”(rÕ)drÕ (�.��)

and its corresponding Fourier representation, known as the �D matter power
spectrum P”(k) expressed in terms of Fourier mode k, can be obtained through the
�D Fourier transform of the density field ”̃(k) = 1

(2fi)

s
e≠ik·r”(r)d3r:

+
”̃(k)”̃ú(k)

,
= (2fi)3P”(k)”

(3)
D (k ≠ k

Õ), (�.��)

where ”̃ú is the complex conjugate of ”̃ and ”
(3)
D is the Dirac delta distribution in

�D space. As we assume isotropy, we can rewrite Equation �.�� in terms of a scalar
mode k = |k| such that

+
”̃(k)”̃ú(k)

,
= (2fi)3P”(k)”D(k ≠ kÕ). This is the function

we will refer to later in the text as the matter power spectrum. The matter power
spectrum can be related to the primordial power spectrum Pp(k) through a transfer
function

T (k) =
”̃(k, a = 1)”̃(k = 0, a = 0)

”̃(k, a = 0)”̃(k = 0, a = 1)
, (�.��)

modulating each Fourier mode between the end of inflation a = 0, epoch where
the primordial power spectrum stands, and the present epoch a = 1, when the density
contrast can be described by the matter power spectrum. The relation is given by

P”(k) = T 2(k)Pp(k), (�.��)

and where the transfer function T (k) is usually computed from Boltzmann codes
such as Cosmic Linear Anisotropy Solving System (CLASS) [Les��] or Code for An-
isotropies in the Microwave Background (CAMB) [LCL��]. While running these
codes provides very accurate results, they may be computationally expensive and not
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di�erentiable. There exist however analytical fitting formulae which provide approx-
imate solutions such as the one from Eisenstein et al. [EH��]. The expression of the
primordial power spectrum Pp(k) comes from inflation models. Initially homogenous,
quantum fluctuations present in the very early Universe are transformed to macroscopic
perturbation by the inflation mechanism, corresponding to an exponential expansion
in a very short period [Gut��; Lin��]. Therefore, the primordial power spectrum is
given by the following power law

Pp(k) = As

3
k

kp

4ns≠1

, (�.��)

where kp is a given pivot scale, ns called the spectral index and As is the amplitude
of the power spectrum.

Figure �.�: Comparison between the matter power spectrum given by Eisenstein et al.
[EH��] and the Halofit model from Takahashi et al. [Tak+��]. Credit Virginia
Ajani.

�.� Weak gravitational lensing

This subsection is mainly based on the review on cosmic shear from Kilbinger [Kil��].
We describe here the main equations of the weak gravitational lensing probe, leading
to the convergence and shear fields that we will aim to reconstruct from observations
in this thesis.

�.�.� Gravitational potential and the lens equation

Gravitational lensing refers to the e�ect of the inhomogeneous Universe causing a
deflection of light paths. As seen in the previous section, the Universe contains
fluctuations of the matter density which, for an ideal fluid of zero pressure, is related
to the Newtonian gravitational potential Φ through the Poisson equation
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Ò2
Φ = 4fiGa2fl̄”. (�.��)

The solution of this di�erential equation is given by Equation �.��. We will study
cases where the e�ect of lensing is very small, i.e. Φ π c2, which is the case for most
mass distribution in the Universe, especially the large scale structures (Large Scale
Structure (LSS)) which consist of a network of voids, filaments, and halos. One way
to derive the equations of weak gravitational lensing is to consider null geodesics on
which photons propagate. However, we first need to introduce the Newtonian potential
Φ in the FLRW metric which does not represent a homogeneous universe anymore:

ds2 =

3

1 +
2Ψ

c2

4

c2dt2 ≠ a2(t)

3

1 ≠ 2Φ

c2

4

dl2, (�.��)

where we contracted the notation dl2 =
!
d‰2 + fK(‰)

!
d◊2 + sin2 ◊dÂ2

""
and

introduced the other Bardeen gravitational potential Ψ along Φ, being equals in the
absence of anisotropic stress, which is the case on large scales, hence Ψ = Φ. It is
obvious to see that in absence of perturbation and consequently of these potentials,
Equation �.�� reduces to Equation �.�. According to this metric, the travel time for
a photon in proper coordinates dr describing the line path is given by the integration
of the line element ds, which gives

t =
1

c

⁄ 3

1 ≠ 2Φ

c2
dr

4

. (�.��)

One can recognize in Equation �.��, the geometrical optics equation expressing
the time travel of a photon going through a medium with variable refractive index
n = 1≠2Φ/c2 and changing its direction accordingly. Gravitational lensing is therefore
named after this analogy, the gravitational potential acting as a medium or a lens.
In geometrical optics, it is usual to apply Fermat’s principle, also known as the
principle of least time, to derive the deflection angle. Similarly, by applying ”t = 0
and integrating the resulting Euler-Lagrange from Equation �.�� along the line path,
we get the following deflection angle α̂, i.e. di�erence between the angle of emission
after emission and the angle as perceived by the observer:

α̂ = ≠ 2

c2

⁄

Ò‹Φdr, (�.��)

where we consider the gradient projected on the orthogonal direction to the light
path, i.e. Ò‹ = ÒΦ ≠ e(e · ÒΦ) where e is a unit vector which is tangent to the light
path.

We are interested in studying the deflection of light at cosmological scales, so we
will now describe these phenomena in terms of comoving distance from the observer ‰.
Let us consider two light rays emitted by a distance source that are separated with a
transverse comoving separation x0. In absence of density perturbations, these two rays
would be seen by the observer as separated by an angle θ as illustrated in Figure �.�.
Therefore, we can related the comoving separation x0 in terms of comoving angular
distance fK and angle θ:

x0(‰) = fK(‰)θ. (�.��)

However in the presence of lensing, a light ray emitted by the source gets deflected
by the gravitational potential Φ. Rewriting Equation �.�� in terms of comoving
distance we get
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Figure �.�: Illustration of the lensing of two light rays emitted by a distant source.
The two sources have an original transverse comoving separation of x(‰). The two rays
are observed with an angular separation θ, while the true angular separation between
the two sources is β. This is due to the e�ect of gravitational lensing, deflecting the
emitted ray by an angle α.

dα̂ = ≠ 2

c2
Ò‹Φ(x, ‰Õ)d‰Õ. (�.��)

This allows us to quantify the change in transverse comoving distance as dx =
fK(‰ ≠ ‰Õ)dα̂. To obtain the total change in transverse comoving separation, we need
to integrate over the line of sight along ‰Õ. Considering the deflection of the two light
rays, the observed transverse comoving separation is therefore

x(‰) = fK(‰)θ ≠ 2

c2

⁄ ‰

0

fK(‰ ≠ ‰Õ)
Ë

Ò‹Φ(x(‰Õ), ‰Õ) ≠ Ò‹Φ
(0)(0, ‰Õ)

È

d‰Õ, (�.��)

where Φ
(0) denotes the potential along the path of the second photon.

The lens equation can then be derived by computing the di�erence between the
unlensed coordinates β and observed image coordinates θ. The unlensed coordinates
is naturally defined by β = x(‰)/fK(‰) and the lens equation is

β = θ ≠ α (�.��)

where we introduced the deflection angle α as

α =
2

c2

⁄ ‰

0

fK(‰ ≠ ‰Õ)
Ë

Ò‹Φ(x(‰Õ), ‰Õ) ≠ Ò‹Φ
(0)(0, ‰Õ)

È

d‰Õ. (�.��)

To make Equation �.�� only dependent on the observed angle θ and comoving
radial distance ‰, we can substitute the separation vector x by its 0th-order solution
x0 defined in Equation �.��. The potential is therefore considered the same being
integrated along the lensed or unlensed path. This substitution is called the Born
approximation.
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�.�.� Shear and convergence fields

The linear mapping between the lensed coordinates θ to the unlensed coordinates β

is described by the Jacobian A = ˆβ/ˆθ, also called the amplification matrix. By
writing the amplification matrix in terms of deflection angle α, we get

Aij =
ˆ—i

ˆ◊j
= ”ij ≠ ˆ–i

ˆ◊j
(�.��)

= ”ij ≠ 2

c2

⁄ ‰

0

d‰Õ fK (‰ ≠ ‰Õ) fK (‰Õ)

fK (‰)

ˆ2

ˆ◊iˆ◊j
Φ (fK(‰Õ)θ, ‰Õ) . (�.��)

Inverting the derivative and the integral, we can write the amplification matrix
coe�cient in terms of a new �-dimensional potential Â called the lensing potential

Aij = ”ij ≠ ˆiˆjÂ, (�.��)

where

Â(θ, ‰) =
2

c2

⁄ ‰

0

d‰Õ fK (‰ ≠ ‰Õ) fK (‰Õ)

fK (‰)
Φ (fK(‰Õ)θ, ‰Õ) . (�.��)

By separating the amplification matrix can be reparametrized as

A =

3
1 ≠ Ÿ 0

0 1 ≠ Ÿ

4

+

3
≠“1 ≠“2

≠“2 “1

4

(�.��)

where we introduced a scalar field Ÿ called the convergence and the �-spin fields “1

and “2 called the cosmic shear. It is clear by identification to Equation �.�� that the
expression of these fields with respect to the lensing potential is

Ÿ =
1

2
(ˆ1ˆ1 + ˆ2ˆ2)Â =

1

2
Ò2Â, (�.��)

“1 =
1

2
(ˆ1ˆ1 ≠ ˆ2ˆ2)Â, (�.��)

“2 = ˆ1ˆ2Â, (�.��)

It is much more convenient to work with the Fourier space representation of the
convergence and shear fields as the partial derivations of the lensing potential transform
to multiplications

Ÿ̃ =
1

2
(k2

1 + k2
2)Ẫ (�.��)

“̃1 =
1

2
(k2

1 ≠ k2
2)Ẫ, (�.��)

“̃2 = k1k2Ẫ, (�.��)

And therefore deriving a linear mapping between the shear and convergence in
Fourier space, which is the base of the Kaiser-Squires transformation presented in
Kaiser et al. [KS��] and further studied in chapter �

“̃1 + i“̃2 =

3
k2

1 ≠ k2
2

k2
+ i

2k1k2

k2

4

Ÿ̃, (�.��)
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where k2 = k2
1 + k2

2. Note that the solution is not defined for k = �, which means
that the mean of the convergence field cannot be directly constrained from shear,
which is usually known as the mass-sheet degeneracy.

It is important to notice that in practice, we cannot distinguish between the
convergence field, which applies a magnification, and the cosmic shear, which applies
a distortion to background objects. The amplification matrix can be factorized by the
1 ≠ Ÿ term to give

A = (1 ≠ Ÿ)

3

I2 ≠
3

g1 g2

g2 ≠g1

44

, (�.��)

where I2 is the identity matrix and where we introduced the reduced shear g =
“

1 ≠ Ÿ
, which also has a spin-two properties similarly to the shear. However, in the

weak lensing regime, the convergence Ÿ is very small, i.e. Ÿ π 1, which translates into
a well motivated approximation of the shear “ to the measured reduced shear g (i.e.
“ ¥ g).

Additionally, the convergence can be interpreted as the �-dimensional projection
of the �-dimensional matter density field over the line of sight. Indeed, by combining
the lensing potential definition in Equation �.��, and its second-order derivative to
defining the convergence in Equation �.��, we get

Ÿ(θ, ‰) =
1

2
Ò2

Ψ (�.��)

=
1

c2

⁄ ‰

0

d‰Õ fK (‰ ≠ ‰Õ) fK (‰Õ)

fK (‰)
Ò2

Φ (fK(‰Õ)θ, ‰Õ) . (�.��)

In the latest equation, the laplacian Ò2 is taken with respect to the angular
coordinates, and ca be transformed to a �D Laplacian in comoving coordinates. The
transformation generates an additional term which is a second-order derivative along
the comoving coordinate ˆ2/ˆ‰2, which vanishes by integration along the line of sight
by assuming that the sum of positive and negative contributions of the potential gives
zero. Using the Poisson equation (Equation �.��), we can express the Laplacian of
the gravitational potential in terms of density contrast

Ÿ(θ, ‰) =
3H2

0 Ωm

2c2

⁄ ‰

0

d‰Õ

a(‰Õ)

fK (‰ ≠ ‰Õ) fK (‰Õ)

fK (‰)
” (fK(‰Õ)θ, ‰Õ) , (�.��)

assuming that fl̄ Ã a≠3. Considering a population of sources of density n(‰), the mean
convergence can be computed by weighting the latest equation such that

Ÿ(θ) =

⁄ ‰lim

0

d‰n(‰)Ÿ(θ, ‰). (�.��)

This gives the following expression for the convergence map

Ÿ(θ) =
3H2

0 Ωm

2c2

⁄ ‰lim

0

d‰Õ

a(‰Õ)
q(‰)fK (‰Õ) ” (fK(‰Õ)θ, ‰Õ) , (�.��)

where we define the lensing e�ciency q such that

q(‰) =

⁄ ‰lim

‰

d‰Õn(‰Õ)
fK (‰ ≠ ‰Õ)

fK (‰)
. (�.��)
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In this chapter, we have therefore presented the cosmological background that is
useful for the understanding of this thesis. A primary aspect for the analysis the weak
gravitational lensing probe is the measurement of the cosmic shear. The next chapter
is therefore dedicated to the presentation of standard methods for these measurement
from galaxy optical images.
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This chapter covers a project presented at a conference:

Vitorelli, A. Z., Remy, B., Guinot, A., Lanusse, F., Martins, T., ‘AutoMetaCal:
self-calibration of shear biases with automatic di�erentiation’. In: Rencontres de
Moriond, proceedings (����)

T
his chapter introduces the physical forward model generating observed optical
images of galaxies and state-of-the-art methods to extract cosmic shear information.

We start by discussing all the physical processes involved in the journey of a photon
from its emission from a distant galaxy to the Charge-Coupled Device (CCD) of
our instrument. This allows us to understand how the original image of a galaxy is

��
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transformed and how to estimate cosmic shear by shape measurement with the least
bias possible. We also introduce PSF correction and calibration methods to mitigates
remaining biases in shear estimation.

�.� Weak lensing galaxy images

In the following subsections, we describe how the continuous galaxy image generated
by a distant galaxy is first sheared, then convolved by the instrument Point Spread
Function (PSF), discretized on the CCD, and corrupted by noise Figure �.�.

Figure �.�: Journey of a photon from galaxy emission through the LSS of the Universe
and the optical instrument ending up on the CCD. Credit: Figure from Mandelbaum
et al. [Man+��b], adapted from Kitching et al. [KHM��].

�.�.� Galaxy morphologies

We have seen in the previous chapter that the LSS of the Universe acts as a weak
gravitational lens. More specifically, we have seen that in this regime the lensed
coordinates of an object are related to its true coordinates by a linear mapping
involving the shear and convergence fields and that cosmological information can be
extracted from them. However, to measure these fields, we need to analyze their
e�ect on background objects and especially on galaxy shapes. As we will see in this
chapter, the e�ect of cosmic shear on galaxy shapes can be seen as an alteration of
their ellipticities. Therefore, we need to have a good knowledge of galaxy images before
their light goes through the LSS of the Universe. It is often assumed in this context
that a galaxy can be classified as elliptical or spheroid (bulge) plus disk systems [VB��].
Many analytical profiles are well suited to fit such galaxy morphologies, such as the
de Vaucouleurs [de ��], or Sersic profiles [Ser��], even though they cannot necessarily
describe them in detail [VB��; Mel+��]. Mandelbaum et al. [Man+��a] identified
that this task can be exceedingly challenging for modern surveys, mentioning that
for instance, only 20% of galaxies observed by the HST can be perfectly fit by such
models, while other 50% can be well modeled by them even though not capturing the
fine details, and the remaining 30% are completely irregular and cannot be fit by such
models. Figure �.� illustrates this challenge with real galaxy images from the HST
observed by the Advanced Camera for Surveys (ACS) in the COSMOS survey. This
issue is particularly prevalent in space-based surveys like HST, Euclid, and the Roman
space telescope. These surveys will uncover the intricate substructure of galaxies.
Meanwhile, ground-based surveys like Large Synoptic Survey Telescope (LSST) will
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Figure �.�: Illustration of three di�erent types of real galaxies from HST observed
by the Advanced Camera for Surveys (ACS) in the COSMOS survey. The top left
image shows a galaxy which corresponds almost perfectly to a simple parametric
profile. The bottom left image shows a galaxy which can also be fit by a parametric
profile, but missing the finer details of its substructure. The image on the right,
however, is irregular and cannot be fit by a simple parametric model. The presence of
these irregular galaxy morphologies makes the measurement of cosmic shear highly
challenging. Credit Mandelbaum et al. [Man+��a].

observe fainter galaxies that appear as elliptical objects, which our parametric models
can adequately characterize.

�.�.� Shearing transform

The light emitted by a distant galaxy is lensed by the LSS of the Universe, which
results in a distorted version of the original image. According to Equation �.��, we
can define the shearing operator sg1,g2

[·] of reduced shear components g1 and g2 as a
linear mapping between the coordinates of the original image I and the lensed image
as

s(g1,g2) [I(x)] = I(T (g1, g2)x), (�.�)

where x are the image coordinates and T (g1, g2) is the shearing matrix defined as

T (g1, g2) =
1



1 ≠ g2
1 ≠ g2

2

3
1 + g1 g2

g2 1 ≠ g1

4

, (�.�)

which we normalized with the term


1 ≠ g2
1 ≠ g2

2 so that it conserves the total
area of the image. Similarly, we can define the shearing transform in Fourier space:

s(g1,g2)

#
Ĩ(k)

$
= Ĩ(T (g1, g2)k). (�.�)

The shearing of an image is a distortion of the grid G, on which is sampled the
image. This therefore requires to sample the image on a new coordinate grid given
by the transformation. The new coordinate grid {T (g1, g1)x}xœG does not necessarily



�� CHAPTER �. COSMIC SHEAR MEASUREMENT METHODS

necessarily coincide with the former {x}xœG and the values of the new image need to
be interpolated. The interpolation of an image I1 of size N ◊ N with an interpolation
kernel K is defined as:

I2(x, y) =

N/2≠1
ÿ

i,j=≠N/2

I1(i, j)K(x ≠ i, y ≠ j). (�.�)

Bernstein et al. [BG��] presents multiple interpolation kernels and their relative
e�ciency both in real and Fourier space

• Linear interpolation kernel

K(x) =

I

1 ≠ |x| |x| Æ 1

0 otherwise
(�.�)

• Cubic interpolation kernel

K(x) =

Y

_]

_[

3
2 |x3| ≠ 5

2 x2 + 1 |x| Æ 1

≠ 1
2 |x3| + 5

2 x2 ≠ 4|x| + 2 1 Æ |x| Æ 2

0 |x| Ø 2

(�.�)

• Quintic interpolation kernel

K(x) =

Y

___]

___[

1 + x3

12 (≠95 + 138x ≠ 55x2) |x| Æ 1
(x≠1)(x≠2)

24 (≠138 + 348x ≠ 249x2 + 55x3) 1 Æ |x| Æ 2
(x≠2)(x≠3)2

24 (≠54 + 50x ≠ 11x2) 2 Æ |x| Æ 3

0 |x| Ø 3

(�.�)

• Lanczos interpolation kernel at order m

K(x) = sinc(x)sinc(x/m)Π(x/2m), (�.�)

where

Π(x) =

Y

_]

_[

1 |x| < 0.5

0.5 |x| = 0.5

0 |x| > 0.5

(�.�)

The final recommendation of Bernstein et al. [BG��] is to perform the shearing
and convolution with the PSF in Fourier space after zero padding and discrete Fourier
transform. Zero padding seems to be mandatory to prevent ghost appearance, resulting
from the folding of periodical repetition of the discrete Fourier transform, which biases
the quadrupole computation for shape measurement.

�.�.� Point spread function

The Point Spread Function (PSF) definition. This e�ect can be mathematically
described as a pixel-wise deconvolution between the galaxy image and the PSF image,
called kernel. As this kernel varies spatially, temporally, and potentially spectrally, we
refer as the PSF field. Several sources can generate a PSF e�ect on the image when



�.�. WEAK LENSING GALAXY IMAGES ��

Figure �.�: The figure shows di�erent representations of a space-like PSF at a single
position in the field of view estimated from a star. (a) Noisy polychromatic PSF
at observation resolution, (b) Noiseless polychromatic observation at observation
resolution, (c) High-resolution noiseless polychromatic observation, (d) Wavefront
error map representing the aberrations in the optical system. Units are in µm, (e)
High-resolution chromatic variations of the PSF at equally spaced wavelengths in the
passband [���, ���]nm. Credit: Credit: Liaudat et al. [Lia+��]

imaging the sky. For space-based telescopes, the optical system has many contributions
to the PSF. First, the lens and aperture introduce a di�raction of the light coming
from every direction of the sky and mostly dictate the width of the PSF. As the
e�ect of the PSF is a convolution of the galaxy image, the width of the PSF will
dictate the maximal resolution available from the survey. Then, there are several
other contributions at the optic level such as optical aberrations, polishing e�ects
(smoothness of the mirrors), external sources of obscurations, scattering light, ice
contamination, light polarization, or thermal variation. Additionally, some optical
components may induce a chromatic variation of the PSF, e.g. the dichroic filter
initially designed to reflect some wavelengths and to be transparent for others used
in the Euclid’s VIS Instrument (VIS) and Near Ifrared Spectro Photometer (NISP)
instruments of the Euclid survey. For ground-based surveys, the atmosphere has an
enormous contribution to the PSF field. As the atmosphere varies with time, this
generates a temporal variation in addition to the spatial variation of the PSF field. In
this thesis, we will focus on space-based optical measurement so we can neglect the
temporal variation of the PSF.

Because the e�ect of the PSF on the galaxy image is non-negligible and a�ects
its shape, it is crucial to have a good model. To model the PSF field, we use
the fact that the light profile of stars can be considered as spatial impulse, i.e.
Istar = ”(x, y, ⁄) = f(x,y)(⁄). The variation with respect to the wavelength can be
neglected if the instrument does not generate chromatic dependence, e.g. for the
COSMOS survey considered later in this thesis. For a survey like Euclid, we would
need complementary observation informing about the spectral energy distributions
of both stars and galaxies. The convolution of the PSF with such spacial impulses
therefore provides the exact PSF image at the star positions. This results as a PSF field
evaluated at all star positions, which can then be interpolated at galaxy positions for
a full PSF field. For a comprehensive study on how to model the PSF for space-based
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and ground-based survey, we refer the read to Liaudat [Lia��].

�.�.� Image pixelization

The light emitted by galaxies going through the LSS of the universe and the optical
instrument can be considered as a continuous electromagnetic wave. For optical survey,
the light finally encounters the CCD, discretizing the galaxy image. This discretization
of the continuous galaxy image is the result of the integration of multiple photons
falling into the same pixel. Therefore, the final observed image is not a sampling of the
continuous image at the pixel coordinate, but the integration of all the photons in the
pixel area. This can be seen as a convolution between the sampling of the center pixel
coordinate and the area of the pixel, also known as the pixel response. It also happens
that the pixel grid does not respect the Nyquist-Shannon theorem. Indeed, the optics
of the telescope, and especially the diameter of the aperture, dictates the maximum
frequency that we could possibly measure with our detector. However, when the pixel
size, dictating the maximum wavelength measurable by the detector does not verify
the Nyquist-Shannon theorem, then the image is undersampled. It is particularly the
case for the Euclid survey.

�.�.� Noise corruption sources

The image taken by the CCD is corrupted by various sources of noise, which appear
as random fluctuation in the final image. The level of noise is roughly the same for
the pointing directions of the survey, therefore the galaxy magnitude will set the
Signal-to-Noise Ratio (Signal-to-Noise Ratio (SNR)) . The CCD receives light not
only from the object of interest like stars and galaxies, but also from every direction
of the sky and non-resolved objects. This is called photon noise or shot noise and is
primary in the image noise contamination. The Poisson law is often associated to this
noise source as it measures the probability of photons arriving to the CCD in a fixed
interval of time. Non-astrophysical sources of noise also a�ect the CCD. Indeed, the
thermal variation of the CCD structure generates electrons, independently from any
signal received, and would be observable in complete darkness. This source of noise is
therefore called thermal noise [Nyq��] or Dark-current shot noise [Bae��]. Lastly, the
physics involved in the CCD electronics, such as the analog-to-digital conversion, and
amplification, may generate noise in the produced image called read noise [BTM��].

�.�.� From patch to postage stamps (detection and blending)

Weak lensing surveys are very wide and require the procedure of source detection to
be automated. Sextractor [BA��] was proposed for this purpose and has been
widely used for the detection of stars and galaxies. It is today the software of reference
for detecting sources and is for instance used in the Shapepipe [Gui+��; Far+��].
After an estimation of the sky background, sources are detected using a thresholding
algorithm. As opposed to stars, galaxies are extended objects, which require a small
threshold for detection. This task is agnostic to the type of object detected, so is
followed by a star-galaxy separation algorithm. On the one hand, it is essential to have
a pure sample of stars for the estimation of a precise PSF model. On the other hand,
the galaxy sample also needs to be pure otherwise the shape measurement estimator
will be biased as it would measure the shape of non-elliptical objects. To that end,
a classifier is usually used and neural networks are the state-of-the-art algorithm for
classification tasks.
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Figure �.�: Di�erent survey observing the same region of the sky. From left to right
the Sloan Digital Sky Survey (Sloan Digital Sky Survey (SDSS), �.��� arcsec pixel
scale), the DECam Legacy Survey (DECaLS, �.��� arcsec pixel scale), he Hyper
Suprime-Cam Subaru Strategic Program (Hyper Suprime-Cam (HSC) SPP, �.���

arcsec) and the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey
(Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS))
programme with the Hubble Space Telescope (HST, �.�� arcsec pixel scale). This
illustrates how increasing the resolution of a survey with the same depth helps to
distinguishing objects. Credit Melchior et al. [Mel+��].

An additional source of bias in galaxy survey is the blending of sources. It occurs
when multiple objects overlap in the same region of the sky. Such blend systems can
be observed in Figure �.�. A classical detection algorithm would be likely to detect
only one instead of two isolated sources and this error can propagate bias to the shape
measurement and then to the cosmological analysis. Melchior et al. [Mel+��] reviews
the di�erent challenges and potential solutions to this issue. Modern surveys like the
Dark Energy Survey, LSST, or Euclid are designed to maximize the number of detected
galaxies, with a deep observation strategy, which therefore increases the probability
of observing overlapping objects. Dawson et al. [Daw+��] estimates that about 14%
of the population of detected galaxies for the LSST survey will be blended, resulting
in a significant systematic bias for shear estimation. In fact, this figure is way below
the current estimates. HSC for instance sees about 60% of blended objects Bosch
et al. [Bos+��]. Several solutions exist to tackle the blending bias. Firstly, blended
sources can be discarded from the sample at the cost of reducing the statistical power
of the analysis. Secondly, a deblending e�ort can result in multiple images of isolated
sources. This is a very hard challenge as retrieving images of the isolated objects is an
ill-posed inverse problem, meaning several solutions can fit the observations. There
are several attempts to tackle this problem, for instance, the Scarlet algorithm
proposed in Melchior et al. [Mel+��] estimates the maximum a posteriori solution
under non-negative matrix factorization constraints. Liu et al. [LMR��] and Hansen
et al. [Han+��] with the BLISS method propose to model the full probabilistic catalog
of objects using generative models and variational inference techniques.

�.� Shape measurement methods

Classical methods for cosmic shear estimation are based on the measurement of galaxy
shapes, or ellipticities as they serve as a proxy for the shear. Indeed, we have seen in
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subsection �.�.� that the shear applies a linear transformation to the coordinate grid
of galaxy images. This results in an observed galaxy image whose ellipticity eobs is
the sum of the ellipticity of the original galaxy image eorig and of the cosmic shear “,
i.e. eobs = eorig + “. In the following, we present how to measure galaxy shapes by
computing the moments of images or by using model-fitting methods.

�.�.� (Weigthed-) Moments

Weighted moments of an image of intensity I are given by the following equations:

F =
ÿ

w(x, y)I(x, y) (�.��)

x0 =
ÿ

w(x, y)xI(x, y) (�.��)

‡2 =
ÿ

w(x, y)2‡2(I(x, y)) (�.��)

T =
ÿ

w(x, y)I(x, y)(x2 + y2) (�.��)

M1 =
ÿ

w(x, y)I(x, y)(x2 ≠ y2) (�.��)

M2 =
ÿ

w(x, y)I(x, y)2xy (�.��)

e1 = M1/T (�.��)

e2 = M2/T (�.��)

S/N = F/‡(F ), (�.��)

where w : X æ R is a window function. It is simpler to compute the moments of
an image without applying the weights as it does not require choosing an adapted
window function, but it is much more sensitive to the image noise [KSB��, KSB]. We
often use a Gaussian kernel for the window function w. Not only do these moments
capture summaries of a given image, but they are also related to typical characteristics
of the galaxy within. We detail below the physical understanding of galaxy image
moments.

Flux Integrating all pixel intensity of an image gives the flux F of this image.

Size T can be seen as an estimate of this object size. However, we rarely rely on
galaxy size in our analysis, but rather on the ratio between galaxy and PSF size, often
referred as T/TPSF.

Ellipticity The ellipticity components e1 and e2 of a galaxy are of particular interest
for cosmological analysis as they serve as an estimator for the cosmic shear. We also
often refer to this summary as the galaxy shape. Assuming that the galaxy has an
elliptical profile, meaning that lines of constant galaxy profile intensity (isophotes), i.e.
{(x, y)} s.t. I(x, y) = constant follows the equation of an ellipse:

x2

a2
+

y2

b2
= constant, (�.��)

where 0 Æ b, 0 Æ a. Assuming b Æ a, a and b are called the major and minor axis
of the ellipse. It is not necessarily the case for an arbitrary choice of coordinate, but
it does not matter as we will work with absolute di�erences in the following. As the
galaxy will likely not be exactly aligned with the coordinates grid, we need to introduce
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Figure �.�: The shear contributes to an anisotropic stretch of the source, transforming
a circle to an ellipse, while the convergence Ÿ contributes to an isotropic deformation
(or magnification). Credit: Martin Kilbinger.

its orientation — and begin the angle between the major axis and the coordinates grid
x-axis. See Figure �.� for an illustration. There are multiple definitions of the galaxy
shape. In this thesis, we will only refer to the ellipticity (or distortion) e as:

e = |e|e2i— with |e| =
|a2 ≠ b2|

a2 + b2
, (�.��)

or its reduced version

g = |g|e2i— with |g| =
|a ≠ b|

a + b
. (�.��)

Note the factor 2 in the phases of those complex values. It is due to the fact that
rotating an ellipse by ��� degrees yields the same ellipse, e = |e|e2i— = |e|e2i(—+fi).

We can therefore relate the ellipticity to the shapes measured by the weighted
moment as

e1 = |e| cos(2—), (�.��)

e2 = |e| sin(2—). (�.��)

The ellipticity can be also defined in terms of tangential components and cross-
component with respect to a given angle „:

“t = Re
!
“e≠2i„

"
(�.��)

“◊ = Im
!
“e≠2i„

"
(�.��)

This terminology is particularly useful when working on galaxy lensing, i.e. when
we study the correlation between the galaxy shapes and the position of a particular
object, such as galaxy positions at lower redshifts (galaxy-galaxy lensing).

Signal-to-Noise ratio (SNR) The SNR quantifies how much of a galaxy light
profile’s signal is perceived in the image compared to the background noise. In
Equation �.��, it is defined as the ratio between the galaxy flux and the noise standard
deviation, but there exist several other definitions in the literature.
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Figure �.�: Galaxy ellipticities can be estimated by fitting a parametric model, here
a Gaussian light profile. The covariance matrix contains information on the major-
to-minor axis ratio and galaxy orientation. It is therefore possible to extract the
information of the galaxy shape and to draw the associated ellipse (here in dotted
black).

�.�.� Model fitting

Another way of extracting physical quantities from a galaxy image is to fit a parametric
model to the light profile. In this section, we discuss how model fitting techniques work
and how to extract elliptical components from fitted profiles. We first introduce models
which present isotropic light profiles (Exponential, Gaussian, and Sersic models). These
models will be able to fit the size and the flux of the profile. The generated image is
then sheared to model the orientation and elongation of the profile. Note that some
models can directly incorporate the ellipticity in their parametrization, such as the
Gaussian model with its covariance matrix. The latter will be particularly useful for
characterizing the ellipticity of galaxies and PSF in the later subsections. Anisotropic
models are parametrized with the two-dimensional vector x = [x, y] and for isotropic
models, we will distance modulus to the center r =



x2 + y2.
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Exponential profile

I(r) Ã e
≠

r

r0 , (�.��)

where r0 is called the scale radius.

Isotropic Gaussian profile The �-dimensional isotropic Gaussian profile is given
by this equation:

I(r) = F ◊ 1

2fi‡2
e

≠
r2

2‡2 , (�.��)

where ‡ is the Gaussian standard deviation of the light profile and F is the total
flux.

Anisotropic Gaussian profile Another way to parametrize a Gaussian light profile
and directly modeling the galaxy ellipticity is to take into account the full covariance
matrix.

I(x, y) = F ◊ 1

2fi|Σ|
1
2

e≠(x≠x0)T
Σ(x≠x0), (�.��)

where x = [x, y] is the coordinate grid, x0 = [x0, y0] is the galaxy center o�set
and F is the total flux. This way we directly model the anisotropy of the profile
through the covariance matrix Σ. The ellipticity parameters can be extracted from
the eigenvalues of the covariance matrix:

Sersic profile

I(r) = F ◊ I0 exp

A

≠bn

C3
r

rhlr

4 1
n

≠ 1

DB

, (�.��)

where n is called the Sersic index and drives how much picky is the profile. For instance,
with n = 0.5, we recover the Gaussian profile, with n = 1 the exponential profile. In
Figure �.�, we illustrate that the higher n is, the more the intensity is concentrated in
the center of the profile. rhlr is the half-light-radius, I0 is a normalization factor such
that the integration of I over all the space is F , which corresponds to the flux of the
galaxy. Finally, bn is a dimensionless constant depending on n. Ciotti et al. [CB��]
shows by integrating the luminosity inside a given radius that this parameter is the
solution to the equation:

“(2n, bn) = Γ(2n)/2, (�.��)

where “(–, x) =
s x

0
e≠tt–≠1dt is the (left) incomplete gamma function and Γ(–) =

“(–, +Œ) is the complete gamma function. This equation cannot be solved analytically
with a closed-form expression and therefore requires numerical approximation. One
simple way to approximate bn is to rely on the asymptotic expansion computed in
Ciotti et al. [CB��].

bn ¥ 2n ≠ 1

3
+

4

405n
+

46

25515n2
+

131

1148175n3
+ O(n≠4). (�.��)

This method remains limited by the maximum polynomial order, here n≠4. Another
way is to reformulate Equation �.�� as a root-finding problem (see subsection �.�.�),
and use a quasi-Newton method to find a solution. When targeting the root of this
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problem, we used the Broyden method [Bro��] which approximates e�ciently the
Jacobian and its inverse.

Note that if we want to perform gradient-based inference with such a model, the
computation of the model gradient with respect to the Sersic index n will be spatially
computationally expensive because it will require computing gradient through all of
the iterations necessary to solve Equation �.��. In our inference pipelines, we used a
machine learning trick based on implicit optimization enabling us to store the gradient
with the space complexity of only one iteration. See subsection �.�.� for more details.

The choice of parametric light profile is often motivated by prior knowledge of the
galaxy population of study. As illustrated in Figure �.� a Sersic model can capture
both exponential and Gaussian profiles, but is much more computationally expensive
to compute due to the Sersic index normalization factor. A motivated choice to work
with exponential or Gaussian profile would therefore make the fitting much quicker.

0 r

I(r) n = 0.5 (Gaussian)

n = 1 (Exponential)

n > 1

Figure �.�: Illustration of one-dimensional projection of the Sersic light profile for
di�erent values of Sersic indices n. The higher n, the more the brightness is concen-
trated in the center of the galaxy profile.

Then, to take into account the ellipticity of the galaxy profile, the image is sheared
as discussed in subsection �.�.�, conserving the area of the profile. The additional
parameters are then the minor-to-major axis ratio q and the position angle —.

‰2 minimization This constitutes a model for galaxy light profile fmodel which
depends on a set of parameters (–1, . . . , –n), such as the radius r0, the sersic index n,
shear parameters q and —, etc.. This model can then be fitted to an observed image
X by ‰2 minimization:

‰2 =

Nxÿ

x=1

Nyÿ

y=1

(X(x, y) ≠ fmodel(x, y|–1, . . . , –n))2

‡(x, y)2
, (�.��)

where X is of size (Nx, Ny) and ‡(x, y) is a noise image. This is the purpose of
the Galfit software� [Pen+��; Pen+��], where the ‰2 objective in Equation �.�� is
minimized using the e�cient Levenberg-Marquardt algorithm [Mar��].

�https://users.obs.carnegiescience.edu/peng/work/galfit/galfit.html
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�.� PSF correction methods

The point spread function (PSF) isotropy is a major source of shear measurement
bias, especially for methods where shapes are estimated from the observed image, i.e.
when the galaxy image is convolved with the PSF image. The weak lensing literature
contains several attempts to correct the weighted moments of galaxy images taking
into account the bias due to the PSF ellipticity. As in this manuscript, we will only
compare our contributions to the state-of-the-art PSF correction method Hirata Seljak
and Mandelbaum (HSM), we only briefly describe the first method proposed for this
task Kaiser-Squires-Broadhurst (KSB) [KSB��].

�.�.� KSB

The KSB (named after the authors Kaiser et al. [KSB��]) and its improvements [LK��;
Hoe+��, KSB+] are based on the assumption that the contribution of the PSF is
highly anisotropic but small distortion convolved with a large circularly symmetric
window, then corrected galaxy ellipticity can be expressed as

ecor = eobs ≠ P sm
–— p— , (�.��)

where p is a vector measuring the PSF anisotropy and P sm is the smear polarisability
tensor given in Hoekstra et al. [Hoe+��]. These two terms are actually computed is
several di�erent ways in the literature, depending on their physical interpretation. We
refer the reader to Heymans et al. [Hey+��] for more description on the method and
its various versions.

�.�.� BJ�� and re-Gaussianization

HSM (named after C. Hirata, U. Seljak and R. Mandelbaum, authors of Hirata et al.
[HS��] and Mandelbaum et al. [Man+��]) is a well established method used for shear
estimation in several surveys [Man+��; Man+��]. To measure the cosmic shear HSM
first measures the weighted moments of postage stamps in order to estimate the galaxy
shapes e1 and e1 and then apply a shape correction in order to account for the error
due to PSF intrinsic ellipticity.

[HS��] consider alternative definitions of an object shape in an image I as

e
(I)
+ = (Mxx ≠ Myy)/T (I) (�.��)

e
(I)
◊ = (2Mxy)/T (I) (�.��)

T (I) = (Mxx + Myy), (�.��)

where Mi,j =
q

uiujw(x, y)I(x, y) and u = [x, y]. The shape of the PSF can be
measured in the exact same way, i.e. computing the weighted moments of the PSF
image, which we refer to g. The same window function is used to computed the
weighted moments of the observed image and of the PSF image. The principal idea of
[HS��] is that perform a first correction under the assumption that the profile of the
PSF is Gaussian, and then perform a second correction to the non-Gaussianity of the
PSF. Assuming that the PSF image g is Gaussian, we can describe the PSF image
similarly to Equation �.��, as:

“(x, y) ¥ G(x, y) =
1

2fi(|ΣG|)
1
2

e
≠

1

2
uT (Σ

(f))≠1u
, (�.��)
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where again u = [x, y] and ‡G is the covariance matrix of the Gaussian PSF.

[HS��, (HS��)] showed that for a Gaussian PSF, we can apply to prescription
from [BJ��] to correct from the ellipticity of the PSF. The ellipticity of the processing
galaxy f can be obtained from the measurement of the ellipticity of the galaxy image
I after correction of the Gaussian PSF such as, assuming circular Gaussian:

e(f) = e(I)/R, (�.��)

R = 1 ≠ Tg(1 ≠ —
(g)
22 )(1 + —

(I)
22 )

TI(1 + —
(g)
22 )(1 ≠ —

(I)
22 )

, (�.��)

where —22 is a ratio of Laguerre inverse transform coe�cient —22 = b22/b00 and

b(I)
pq =

⁄

R2

Âú
pq(x, y; Σ

(I))I(x)dxdy, (�.��)

Σ
(I) being the covariance matrix of the Gaussian profile fitted to the object in image I

and Â(x, y; Σ) the Laguerre basis functions. This correction proposed by Bernstein and
Jarvis ���� (BJ��) is perfect for Gaussian PSF, however as demonstrated in HS��,
this correction can lead to significant errors in the measurement of the processing
ellipticity for non-Gaussian PSF. HS�� proposed therefore to transform the image
to remove the e�ect of the non-Gaussianity of the PSF, hence the re-Gaussianization
method, and then apply Equation �.�� to the transformed image.

In order to Gaussianize the PSF image let us first define the residual image to a
the Gaussian profile in Equation �.�� as ‘(x, y) = g(x, y) ≠ G(x, y). This way, the
observed image is the convolution of the preseeing image f with the two-component
of the PSF, i.e. I = (G + ‘) ¢ f , which leads to the regaussianiezed image

Ĩ = G ¢ f = I ≠ ‘f (�.��)

. In this equation, both I and ‘ are known, but not f as it is still the image of interest.
However as noted by HS��, because the residual image ‘ is very small, this equation
would still stand if we use a Gaussian approximation to f . Therefore, similarly to the
PSF, the pressing image can be approximated with a Gaussian profile such that:

f(x, y) ¥ 1

2fi(|Σ(f)|)
1
2

e
≠

1

2
uT (Σ

(f))≠1u
(�.��)

This way, in order to accurately compute the shape of the galaxy e(f) in an image I,
one can first re-Gaussianize the image according to Equation �.��, then computing the
weighted moment on the resulting image Ĩ, and applying the correction to a Gaussian
PSF prescribed by BJ�� in Equation �.��.

Since this method was established in [HS��], it has been tested and used on real
data. It was first used in [Man+��] to generate an accurate shape catalog and perform
galaxy-galaxy lensing cosmological analysis and later in [Man+��] to perform weak
lensing shear calibration for the HSC survey.

Finally, once the adapted corrections have been made to provide galaxy shape
catalog, the cosmic shear “̂ can be estimated as the average of these shapes and one
estimate of the error bars through the standard deviation of the measured shapes,
divided by the square root of the number of galaxies.
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“̂HSM =
1

N

Nÿ

i=1

e (�.��)

‡(“̂HSM)2 =
1

N

Nÿ

i=1

(“̂HSM ≠ e)2 (�.��)

Later in this manuscript, we perform cosmic shear measurements on simulated HST
images, and we refer to this method as HSM [HS��; Man+��, (for Hirata, Seljak
and Mandelbaum)] and Equation �.�� and Equation �.�� are used to provide the
estimations along their uncertainties.

�.� Calibration methods

To quantify the error of the measurement method, we can relate the observed shear ĝ
to the ground truth shear g with a first-order Taylor expansion [Hey+��; Hut+��;
Mas+��b].

ĝi ≠ gi = migi + ci, (�.��)

where i œ {1, 2} denotes the shear component and mi and ci are respectively called
the multiplicative and additive biases. Very often, we consider that the additive bias
is due to the PSF ellipticity and is therefore handled by the correction described in
the former section. However, there almost always remains a multiplicative bias m
after correction because real galaxies cannot be perfectly described with elliptical
profiles. The multiplicative bias can be computed by simulating the observations with
a given shear. As we have access to the ground truth shear and galaxy shapes in the
simulations, it is straightforward to compute the di�erence between the expectation
and the estimation from our shape measurement algorithm. This however requires
very precise simulations of the sky which is an arduous task to perform for modern
surveys. For instance, such multiplicative bias calibration was used in [Man+��] to
calibrate the weak lensing measurements for the HSC survey.

[HM��; SH��] proposed to perform this calibration directly from data, characterizing
how the shape measurement method respond to the addition of a very small shear.
Indeed, assuming that the additive bias has been corrected, we can write the estimated
shape of a galaxy a Taylor expansion around the true shape such as:

e = e|“=0 +
ˆe

ˆ“

-
-
-
“=0

“ + o(“) (�.��)

Assuming that there is no preferential orientation of the galaxies in the sky, this
translates into a zero average if the true galaxy shapes, i.e. < e > |“=0 = 0. Therefore,
Equation �.�� is particularly useful because we can recover Equation �.�� by averaging
the measured shapes e and identify the multiplicative bias m to the response matrix

R =
ˆe

ˆ“

-
-
-
“=0

.

�.�.� Response to shear

Estimating the multiplicative bias therefore only necessitates computing the response
matrix. This task is however challenging as this requires simulating a very small shear
to the pre-seeing galaxy image in order to compute the derivative. In [HM��; SH��],
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one can find an extensive description of the processing of the galaxy images to simulate
observations with such a small shearing transform. The response matrix can finally be
computed for each image using finite di�erences:

Rij =
e+

i ≠ e+
i

∆“j
, (�.��)

where ∆“j = “+
j ≠ “≠

j , with “≠
j = ≠“+

j , e+
i is the measured shape component i on

the image were we simulated a positive shear “+
j , and respectively e≠

i a negative shear.

In order to measure e+ and e≠, we need to simulate a small shear in the observed
galaxies. As the shear is a transformation applied on the pre-seeing galaxy image,
and not on the convolved observed image, we need to be careful in the processing of
these images. [HM��] refer to the image processed by the metacalibration pipeline as
counterfactual images. An image with a small shear “ is built as follows:

I Õ
“ = Γ ~

#
S(“)

!
(Π≠1 ~ I)

"$
, (�.��)

where S(“) is the shearing operator, Π the PSF image, Γ another PSF that we
will discuss below, and I the observed image. The observed postage stamps are first
deconvolved with all the observational responses (such as the PSF, pixel response,
etc.), then a small shear is applied to the deconvolved image and the resulting image
is convolved again with a PSF Γ. As the convolution of images is computationally
expensive, we perform this operation in Fourier space instead, resulting in elementwise
multiplications:

I Õ = Π̃ · S(“)
!
Ĩ/Π̃

"
(�.��)

There is no need for the reconvolution PSF Γ to be the same as the PSF of the
instrument Π, but there are some constraints. First, deconvolving the observed image
by the PSF is performed in Fourier space, which involves dividing the image spectrum
by the PSF image spectrum. At high frequencies, the PSF spectrum is very small
or zero which leads to a deconvolved image with very high or infinite power due to
the high-frequency noise amplification. We therefore need to choose a PSF Γ which
will cancel this noise amplification. [HM��] proposed to use a dilated version of the
instrument PSF:

Γ(x) = Π((1 + 2|“|)x), (�.��)

for ÎΠ̃(k)Î monotonically decreasing with k. Once the counterfactual images are
built, one can use the shape measurement algorithms to compute e+ and e≠. Note
that to mitigate the bias due to the ellipticity shape, we could also use an isotropic
PSF for reconvolution. One choice would be to sum the four 90 deg rotations of the
PSF Π together. For image deconvolution, however, it is mandatory to have a good
model for Π.

�.�.� Selection response

We have so far defined the response matrix for an individual galaxy, but the computa-
tion of the response matrix is too noisy to be applied to individual shape measurement.
The final shear is estimated by averaging individual shape measurement, so in a similar
spirit, we can average the quantities of Equation �.��:
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ÈeÍ = Èe|“=0Í +

=
ˆe

ˆ“

-
-
-
“=0

“

>

+ O(“2) (�.��)

¥ 0 +

=
ˆe

ˆ“

-
-
-
“=0

>

È“Í + O(“2) (�.��)

where È.Í refers to the averaging of quantities over a selected catalog of galaxies.
This leads to the new estimator for the cosmic shear

È“Í =
+
R≠1

,
ÈeÍ , (�.��)

where
+
R≠1

,
is the averaging of all the response matrices computed on individual

galaxy images.
In addition to the response of the shape measurement algorithm responsivity to

the shear, Sheldon et al. [SH��] noted that the detection of sources also responds to
the shear and as a consequence the catalog on which is performed as the average in
Equation �.��. Figure �.� illustrates that due to PSF convolution, two close sources
can be detected as a single source by a detection algorithm based on surface brightness
thresholding. However, if shear is applied before the convolution with the PSF, as it
is in the observed sky, the detection algorithm can identify the two distinct sources.
In order to mitigate the detection bias, Sheldon et al. [SH��] proposed to invert the
averaging and the derivative of the response matrix:

ÈRÍ =
ˆ ÈeÍ
ˆ“

-
-
-
“=0

; ÈRijÍ =

+
e+

i

,
≠

+
e≠

i

,

∆“j
. (�.��)

This metacalibration method handling the detection bias was dubbed metacade-
tection. It is intended to be used for estimating galaxy shape catalog for the Vera C.
Rubin Observatory LSST observations, as tested on simulations in [She+��].

Figure �.�: Illustration of shear-dependent object detection in the presence of a PSF.
In this example, two sources are present and convolved with a PSF. Contours represent
constant brightness. In the left panel, no shear is added and a detection algorithm
finds only one source as highlighted by the single contour. A shear is added before
convolution by the PSF in the right panel and the detection algorithm finds now two
sources as highlighted by the discontinuous iso-contour. This e�ect is mainly due to
the PSF convolution as compared with the middle panel where a shear is applied after
the PSF convolution and the detection algorithm finds again a single source. Figure
from Sheldon et al. [SH��].
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�.�.� Metadetection with automatic differentiation

While metadection has proven to be very e�cient on simulations, reducing the multi-
plicative bias under stage IV surveys requirements, it is still subject to approximation
errors and limited to the first-order Taylor expansion. In [Vit+��] we propose to solve
for the approximation error due to the finite di�erence approximation of the response
matrix in Equation �.�� by using automatic di�erentiation. As it will be explained in
subsection �.�.�, automatic di�erentiation allows us to compute exact derivatives by
computing the chain rule of a di�erentiable program.

Figure �.�: Relative di�erence between response matrix coe�cients Rij computed
by automatic di�erentiation and finite di�erences. We represent the median, 68%
and 95% of the responses computed on individual galaxies. As the usual step size for
finite di�erences is 10≠2 (e.g. used in ngmix by default), we indicate this choice by a
vertical line in both panels.

The averaging in Equation �.�� can be rewritten in terms of weighted average of
galaxy ellipticities

ÈeÍ =
1

N

Nÿ

j=0

wj(x, t)ei,j , (�.��)

where the weights w are function of an object characteristic x and a threshold t.
The selection is often performed on the size ratio between the galaxy and the PSF
T/TP SF or the SNR of the galaxy. Usually, a hard threshold is performed to compute
the weights w such that

w(x, t) =

I

1 if x Æ t

0 otherwise.
(�.��)

However, such selection function cannot be used with automatic di�erentiation
since the derivate of this function is zero everywhere but at x = t, where it is not
defined. This is why we proposed to use a smooth monotonically increasing function
instead:

w(x, t, ‡) =
1

2

3

1 + erf
3

log(x) ≠ log(t)

‡

44

, (�.��)

with erf(x) =
2

fi

s x

0
e≠t2

dt and where ‡ drives the smoothness of the function. The

smaller ‡, the sharper is the weight function, until looking like hard thresholding for
‡ = 0.
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Figure �.��: Plot of the selection function w(x, t, ‡) in Equation �.�� for di�erent
smoothing factors. The x-axis is arbitrary and here the threshold is t = 5. The left
panel shows the smooth selection function and the right panel shows their derivative.

�.� Conclusion

In this chapter, we have seen how galaxy images are formed and how to extract cosmic
shear information. We have covered the state-of-the-art methods for PSF ellipticity
correction and calibration to recover unbiased shear estimation.
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T
his chapter introduces the di�erent concepts of Bayesian modeling. We aim to
reconstruct a signal from measurement or to infer model parameters from obser-

vations. We therefore need e�cient methods enabling us to handle high-dimensional
parameter space and to quantify the uncertainty inherent to the problem. We start this
chapter by identifying the key ingredients of Bayesian modeling, and the Bayes’s identity
which is at the core of the probabilistic framework. We then present sampling al-
gorithms, based on Markov Chain Monte Carlo (Markov Chain Monte Carlo (MCMC))
enabling us to model exactly posterior distributions, and our contribution to make
them completely score-based. We finally present variational inference (Variational
Inference (VI)) algorithms which rely on optimization and as a consequence, are much
faster than MCMCs but approximate.

�.� Introduction to Bayesian modeling

Bayesian modeling is a handy tool for quantifying the uncertainty of the solutions to
a problem where the observations are corrupted or may have been generated from a
non-unique set of parameters. In this section, we address the following questions:

• How to model uncertainties of the reconstruction of a signal which generates
observations?

��
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• How to sample a distribution from which only the evaluation of its log probability
density function is possible?

• How to learn the probability density of a distribution from which we only have
access to samples?

• How can we perform this in the most computationally efficient way?

• How to fit a family of functions to a distribution, when only either samples are
available or probability density evaluation?

We describe in this section notations and important theorem of Bayesian statistics

�.�.� General introduction of Bayesian modeling

Let us introduce a random variable, denoted as X and its associated probability
density function (p.d.f.) X ≥ pX(x). Throughout this thesis, we will interchangeably
refer to the random variable X to its realization x ≥ X. Similarly, we will use the
shorthand p(x) to refer to the density function pX(x).

Let us consider another random variable y which is observed and has been generated
by another random variable x according to a forward model. If the process that maps
the random variable x to y is not deterministic –for instance, involving stochastic
processes or simply not invertible (e.g. in cases of underdetermined systems where
there are more unknowns than equations)– then the inverse mapping from y to x is
not unique and can be expressed under a conditional probability distribution p(x|y)
called the posterior distribution. This conditional distribution is most often not known
and we need to rely on the Bayes’ identity to characterize it

p(x|y) =
p(x, y)

p(y)
=

p(y|x)p(x)

p(y)
(�.�)

This identity involves several distributions that we describe below

Posterior distribution p(x|y) The posterior distribution plays a central role in
Bayesian modeling as it characterizes the possible solutions conditioned on observed
data. This p.d.f. is often unknown analytically and therefore requires the Bayes’
identity to be characterized.

Likelihood distribution p(y|x) The likelihood distribution quantifies the probability
of observing data y conditioned on an original signal x. It is most often given by the
forward model mapping x to y.

Prior p(x) The prior distribution encapsulates all the prior information we have
about the signal x we intend to reconstruct. It reflects our knowledge about the
possible values of x before considering any observation.

Joint distribution p(x, y) In many cases, we have access to expressions for both
the likelihood and the prior distributions. We are therefore able to evaluate the joint
distribution. It is crucial to notice that the joint distribution is proportional to the
posterior distribution when only x varies (i.e. p(x|y) Ã p(x, y) w.r.t. x).
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Bayesian evidence p(y) It is the marginal density of the observations. The evidence
is a constant if we assume a given model. This term is usually intractable as computing
it requires to marginalize over all possible signal x. While not necessarily useful for
parameter inference as we only require evaluating the joint distribution, proportional
to the posterior. However, when working with Bayesian modeling, we may also be
interested in model comparison. Bayesian evidence is therefore essential for such tests
as it will be discussed later.

�.�.� Bayesian modeling in Cosmology

Notations in the cosmological literature will often di�er from the ones of signal pro-
cessing and machine learning. In cosmology, one is particularly interested in recovering
the uncertainties of cosmological model parameters, denoted ◊, from observations
denoted d. The posterior distribution would then be denoted p(◊|d), which can be
confusing if compared to the notation we use in this manuscript. Because in this case,
the unknown are both the cosmological parameters and the right model, we condition
the distribution by the choice of model, denoted M. The Bayes’ identity is therefore
expressed as

p(◊|d, M) =
p(d|◊, M)p(◊, bM)

p(d|M)
. (�.�)

In some context, the evidence p(d|M) can become the distribution of interest. It
is still not important for parameter inference, but is the key distribution to determine
what is the best model given the observations. When comparing two models M0 and
M1 under observations d, we can determine which one is most likely condition to the
observations by computing the evidence ratio K:

K =
p(M1, |d)

p(M0|d)
=

p(d|M1)

p(d|M0)

p(M1)

p(M0)
. (�.�)

Under the assumption that the two models are of equal probability, i.e. p(M1) =
p(M0), the evidence ratio becomes

K =
p(d|M1)

p(d|M0)
=

p(M1, |d)

p(M0|d)
. (�.�)

Computing this ratio therefore enables to discriminate between the two models
under observing conditions d.

In practice, computing Bayesian evidence is intractable to compute as it requires
to marginalise over all possible parameters p(d|M) =

s

Θ
(d|◊, M)p(◊, M)d◊. This

intractability can be mitigated with an amortized neural network, as done in Je�rey
et al. [JW��].

�.� Markov Chain Monte Carlo sampling

In this section, we will use the signal processing notations x and y because of the
historicity of the discussed methods, which have been mostly developed by this
community. The way of modeling a posterior distribution can di�er on whether we
have access to the likelihood or not. In some cases, one can evaluate the likelihood
p.d.f., for instance when the likelihood results from an analytical forward model, but
cannot draw samples as easily. The cosmological community usually faces this problem
for cosmological inference. In other cases, we can acquire samples from cosmological
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simulations, without being able to formulate a probability density function of the
underlying implicit distribution. In this section, we will discuss how to sample from a
distribution when only density evaluation is possible. Let us denote by p(x) the target
distribution from which we aim to sample from. And, by fi(x) another distribution
proportional to p(x).

�.�.� Metropolis-Hastings

We need an algorithm to sample from a distribution fi(x) Ã p(x), while only being able
to evaluate probability densities. This can be performed using a class of algorithms
called Markov Chain Monte Carlo (MCMC). MCMC generates a suite of point
{xi} where each element is sampled from a distribution (hence Monte Carlo), only
conditioned on the previous element (hence the Markov Chain). For this reason, we
often say that Markov chains are processes without memory.

One key ingredient of MCMC algorithms is the choice of a proposal distribution q,
such that the element xt is drawn from this distribution, conditionally to the previous
element xt≠1. This can be denoted as xt ≥ q(·|xt≠1). Once the proposal is drawn, an
accepet-reject criteria is performed ensuring that the proposal is indeed sampled from
the target distribution. The acceptance threshold is defined as

a(xÕ, xt) = min

3

1,
fi(xÕ)

fi(xt)

q(xt|x
Õ)

q(xÕ|xt)

4

. (�.�)

Sampling from a uniform random variable u ≥ U [0, 1], the propsoal is accepted if
u < a(xÕ, xt). In order to maximize the number of accepted sampled, we therfore
need to design a proposal distribution that maximizes the acceptance ratio a. When
using a centered Gaussian distribution of fixed variance for the proposal distribution,
the MCMC algorithm is called the Random Walk Metropolis Hastings and is further
described in Algorithm �.

Algorithm � Metropolis-Hastings

Require: target distribution fi Ã p, initialization sample x0, proposal distribution q,
t = 0, size of chain N

�: while t < N do

�: xÕ ≥ q(·|xt) Û Draw from proposal distribution

�: a(xÕ, xt) = min
1

1, fi(xÕ)
fi(xt)

q(xt|xÕ)
q(xÕ|xt)

2

Û Compute acceptance probability

�: u ≥ U [0, 1] Û Sample a uniform random variable
�: if u < a(xÕ, xt)

�: xt+1 Ω xÕ Û Add proposal to chain
�: t Ω t + 1

�: else

�: end if

��: end while

While this method asymptotically ensures convergence of the Markov chain, it
might take infinite time to reach full coverage of the target distribution. Therefore,
most of the improvements for making MCMC algorithms more e�cient were based
on designing a more e�cient proposal distribution q in Equation �.�. One venue for
such improvement is to leverage the first-order derivative of the log probability density
function. We will discuss some of these techniques in the next paragraphs.
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�.�.� Langevin dynamics

In this section, we will introduce the Langevin dynamics. Let Òx log fi(x) = Òx log p(x)
denotes the gradient of our target distribution. The random walk discussed in the
former paragraph can be seen in a continuous process described by the stochastic
di�erential equation dX = dW , where W is a standard Brownian motion and is called
the diffusion term of the process, and X a continuous random variable. Langevin
dynamics adds a drift term to the process as

dX = Òx log fi(X)dt +
Ô

2dW. (�.�)

In practice, we need to discretize this stochastic di�erential equation (SDE) in
order to generate a discrete Markov process. There are several methods to discretize
di�erential equations (Euler, �th order Runge-Kutta, etc.), we use here the Euler-
Maruyama discretization method:

xt+1 = xt + ·Òx log fi(xt) +
Ô

2·‘t, (�.�)

where · is a small step size and ‘ is sampled from a centered reduced normal
distribution, i.e. ‘ ≥ N (0, Id) This generate a new proposal distribution q(·|xt) =
N (xt + ·Òx log fi(xt)|2·).

The drift term in Equation �.� makes the sampling more e�cient thanks to the drift
term that pushes back the proposal towards the distribution manifold. Discretization
of the Langevin process can lead to numerical approximation error, this is where
calibrating the process with the accept-reject Metropolis-Hastings (MH) step will
ensure sampling ergodicity. This sampling method is named Metropolis adjusted
Langevin algorithm and is presented in Algorithm �.

Algorithm � Metropolis Ajusted Langevin Algorithm (Metropolis Adjusted Langevin
Algorithm (MALA))

Require: target distribution fi Ã p, initialization sample x0, t = 0, size of chain N ,
step size ·

while t < N do

q(·|xt) = N (xt + ·Òx log fi(xt)|2·) Û Langevin proposal (Equation �.�)
xÕ ≥ N (xt + ·Òx log fi(xt)|2·) Û Draw from proposal distribution

a(xÕ, xt) = min
1

1, fi(xÕ)
fi(xt)

q(xt|xÕ)
q(xÕ|xt)

2

Û Compute acceptance probability

u ≥ U [0, 1] Û Sample a uniform random variable
if u < a(xÕ, xt)

xt+1 Ω xÕ Û Add proposal to chain
t Ω t + 1

end if

end while

�.�.� Hamiltonian Monte Carlo

Similarly to Langevin dynamics, Hamiltonian Monte Carlo (Hamiltonian Monte Carlo
(HMC)) proposes to design a way to explore e�ciently parameters space leveraging the
gradients of the log p.d.f.(also known as the score function) using Hamiltonian dynamics
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[Nea��; Bet��]. Seen from an energy-based model perspective, the distribution fi(x)
can be written as

fi(x) =
1

Z
e≠E(x), (�.�)

where Z is a normalizing constant so that fi integrates to 1 over the parameter
space, and E is an energy function. In practice, we may not have access to the
normalized density function because the normalization factor Z is often intractable to
compute, but rather to a function ≠E proportional to fi with respect to x

log fi(x) Ã ≠E(x). (�.�)

In the HMC algorithm, the idea is to augment the energy function E(x) with
momentum parameters m:

H(x, m) = E(x) + K(x, m)
= ≠ log fi(x) + log fi(m|x),

(�.��)

where H is called the Hamiltonian. The dynamic of the parameters x and mo-
mentum m is then described by the Hamiltonian equations:

dx

dt
= +

ˆH

ˆm
=

ˆK

ˆm

dm

dt
= ≠ˆH

ˆx
= ≠ˆK

ˆx
≠ ˆE

ˆx

(�.��)

These are continuous equations and can be discretized with a leapfrog integrator
such as

mt+ α
2

= mt +
–

2
Ò log p(xt)

xt+– = xt + –M
≠1mt+ α

2

mt+– = mt+ α
2

+
–

2
Ò log p(xt+–)

(�.��)

where – is the step size, m is the auxiliary momentum and M is a preconditioning
matrix that could take into account the space metric, but in our case the identity
matrix.

Following this procedure, HMC is supposed to sample from p(x), but as explained
in [Bet��], the discretization induces a small error that will bias the resulting transition
and requires a correction. In order to correct this bias, every sample is considered as
a Metropolis-Hastings (MH) [Met+��; Has��] proposal and is accepted or rejected
according to an acceptance probability. This acceptance probability is designed from
the Hamiltonian transition and is also only score-dependent as we explain below.

The discretized implementation of the Hamiltonian Mote Carlo algorithm requires
correcting for the discretization error. The chain update computed with Equation �.��
is a proposal which is accepted with a probability of the form

– = min{1, p(xú)q(xn|xú)/p(xn)q(xú|xn)}, (�.��)

where xn is the last sample of the chain, xú is the HMC proposal, p is the
target density and q is a proposal distribution from a random walk, i.e. q(xn|xú) =
N (xn|xú, M) with M the HMC preconditionig matrix. In our approach, we do not
directly have access to the distribution p, but to its score function Ò log p. However, we
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can still approximate the log ratio needed to compute the MH acceptance probability
from the scores using the path integral:

log p(xú) ≠ log p(xn) =

⁄ 1

0

Òx log p(t ú (xú ≠ xn) + xn) · (xú ≠ xn)dt, (�.��)

which we evaluate in practice with a simple 4 points Simpson integration rule.
This integral could be approximated to any precision at the cost of additional score
evaluations.

Banana density Random Walk MH

MALA HMC

Figure �.�: Comparison between the samplers on the banana distribution (top left).
On the top right is the Random Walk Metropolis Hastings, on the bottom left the
Metropolis Adjusted Langevin Algorithm and on the bottom right the Hamiltonian
Monte Carlo.

Thus, with Equation �.�� at hand, we are able to implement a large class of MCMC
algorithms such as HMC or Metropolis Adjusted Langevin Algorithm, using the score
function only.

�.� Variational inference

Sampling distributions can take a very long time, even for e�cient gradient-based
samplers like HMC. Complementary to MCMC sampling algorithm, the field of
statistics brought another class of inference algorithms, called Variational inference
(VI). This class of method di�ers from MCMC in many senses. The aim of VI is to fit
a family of parametric distributions to the distribution of interest. Therefore, if there
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Algorithm � Hamiltonian Monte Carlo algorithm [Bet��]

Require: target distribution fi Ã p, initialization sample x0, t = 0, size of chain N ,
step size –, leapfrog steps T

�: while t < N do

�: m0 ≥ N (0, Id) Û Draw random momentum
�: x Ω xt

�: for 0 Æ n Æ ÂT/–Ê do Û Leapfrog integration

�: m Ω m +
–

2
Ò log p(x)

�: x Ω x + –M
≠1m

�: m Ω m +
–

2
Ò log p(x)

�: end for

�: a(x, xt) = min (1, exp(H(mt, xt) ≠ H(m, x))) Û Acceptance probability
��: u ≥ U [0, 1] Û Sample a uniform random variable
��: if u < a(xÕ, xt)

��: xt+1 Ω x Û Add proposal to chain
��: t Ω t + 1

��: end if

��: end while

Algorithm � Hamiltonian Monte Carlo algorithm [Bet��], score-only version
[Rem+��; Ram+��]

Require: score of the target distribution Ò log p(x), initialization sample x0, t = 0,
size of chain N , step size –, leapfrog steps T

�: while t < N do

�: m0 ≥ N (0, Id) Û Draw random momentum
�: x Ω xt

�: for 0 Æ n Æ ÂT/–Ê do Û Leapfrog integration

�: m Ω m +
–

2
Ò log p(x)

�: x Ω x + –M
≠1m

�: m Ω m +
–

2
Ò log p(x)

�: end for

�: a(x, xt) = min (1, exp(log p(xt) ≠ log p(x))) Û Acceptance probability
according to Equation �.��

��: u ≥ U [0, 1] Û Sample a uniform random variable
��: if u < a(xÕ, xt)

��: xt+1 Ω x Û Add proposal to chain
��: t Ω t + 1

��: end if

��: end while



�.�. VARIATIONAL INFERENCE ��

is no guarantee that the distribution of interest is in the family, the inference will be
subject to approximation error. In addition, this method does not rely anymore on
sampling Markov chains, but rather on optimization algorithms. It can therefore also
be subject to optimization error. Finally, as we are aiming to build an estimator of
the target distribution, it can also be subject to statistical error due to statistical bias
of the estimator. We will use the notation F to denote families of distributions, i.e. a
given set of distributions, often sharing the same parametrization. Di�erent families of
distributions exist in the literature, these include the mixture of Gaussians, which are
characterized by means, variances, and relative weights of the Gaussians; exponential
families; and neural-based families such as normalizing flows, which are parametrized
by neural network weights. VI is therefore the task of optimizing the parameters in
order to find the closest distribution within the family to the target distribution. We
will review here the objects necessary to the understanding of the three next chapters
of this thesis. For a more in-depth review, we refer the reader to Blei et al. [BKM��]
from which this section is widely inspired.

�.�.� Forward and reverse KL divergences

In the following, we will call q the surrogate distribution and p the target distribution
we aim to approximate. In order to compare distributions, we cannot define a proper
distance as we can naturally do with vectors for instance. However, we can rely on
divergences which quite similarly quantifies how far a distribution is from another
one, but as opposed to distances, divergences are not symmetric. The most widely
used divergence in the VI literature is the Kullback-Leibler divergence [KL��], or
Kullback–Leibler (KL)-divergence for short. As we will use the KL divergence to
quantify how close our surrogate distribution is from the target, we distinguish between
the forward or the reverse KL-divergences, whether we measure the divergence between
p and q or the reverse.

Forward KL-divergence The Forward KL-divergence is defined as the expectancy
of the ratio between the log probability density functions p and q, with respect to a
random variable x sampled from p.

DKL(p||q) = E
x≥p

5
log p(x)

log q(x)

6

. (�.��)

In order to evaluate the forward KL-divergence, we not only need to be able to
evaluate the log p.d.f. of the target distribution but also to sample (or have access to
samples) from it. We usually build a surrogate distribution q which for which it is
easy to evaluate its log-probabiliy.

Reverse KL-divergence The reverse KL-divergence is defined as the expectancy
of the ratio between the log probability density functions q and p, with respect to a
random variable x sampled from q.

DKL(q||p) = E
x≥q

5
log q(x)

log p(x)

6

(�.��)

In order to evaluate the reverse KL-divergence, we only need to be able to evaluate
the p.d.f. of the target distribution. We therefore need to build a surrogate distribution
from which it is easy to both evaluate the log-probability and to sample from it.

As the KL-divergence is not symmetric, the behavior of the surrogate distribution
is not the same when it is optimized to minimize the forward or the reverse KL.
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We illustrate in Figure �.� that a distribution q optimized so that the forward KL-
divergence is minimal, results in a wider distribution that matches the entire support of
the target distribution. Minimizing the reverse KL however, the surrogate distribution
will try to match the target, while ensuring to be zero where the target is zero which
may lead to missing modes.

Forward KL Reverse KL

Figure �.�: Comparison of the di�erent behaviors between the minimization of the
forward and the reverse KL divergences.

�.�.� Evidence lower bound (ELBO)

In the context of Bayesian inference, our goal is to fit the surrogate distribution q to a
posterior distribution p(x|y), where y corresponds to the observations. As we have
seen before, evaluating p(x|y) is often not possible, but we can rely on the likelihood
and prior through the Bayes’ identity as follows

qú = arg min
qœF

DKL(q||p(x|y)) (�.��)

= arg min
qœF

E
x≥q

[log q(x) ≠ log p(x|y)] (�.��)

= arg min
qœF

E
x≥q

[log q(x) ≠ log p(x, y) + log p(y)] . (�.��)

Evaluating the reverse KL-divergence requires therefore to evaluate the Bayesian
evidence as rewritten in Equation �.��, which is often intractable to compute. However,
as the expectancy is taken over the random variable x drawn from the surrogate
distribution, the evidence p(y) can be seen as a constant of the optimization problem.
Therefore, when minimizing the reverse KL, we can drop the evidence from the
expression to minimize a new loss, i.e.

qú = arg min
qœF

E
x≥q

[log q(x) ≠ log p(x, y)] . (�.��)

This loss is commonly known in the VI literature as the negative evidence lower
bound. Indeed, by inverting the terms of Equation �.��, we can rewrite the Bayesian
evidence p(y) as
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p(y) = E
x≥q

[log p(x, y) ≠ log q(x)]

¸ ˚˙ ˝

ELBO(y)

+ DKL(q||p(x|y))
¸ ˚˙ ˝

Ø0

. (�.��)

The KL term is necessarily positive by definition, therefore the second term
constitutes a lower bound of the Bayesian evidence. The algorithm approximating the
posterior distribution by minimizing the ELBO is called the Stochastic Variational
Inference and is described in �.

Algorithm � Stochastic Variational Inference algorithm

Require: joint distribution p(x, y), observations y, variational distribution qÏ, step
size –

�: while ELBO has not converged do

�: L(Ï) = E
x≥qϕ

[log p(x, y) ≠ log qÏ(x)] Û Compute the ELBO

�: Ï Ω Ï ≠ –
ˆL

ˆÏ
Û compute gradient descent according to subsection �.�.�

�: end while

] ] ]

] ]

]
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T
his chapter introduces the tools for modeling arbitrary distributions using deep
learning. The first part of this chapter is dedicated to the introduction of the

building blocks of deep neural networks and various algorithms to optimize them. In
particular, we focus on linear and convolutional layers, explicit and implicit automatic
di�erentiation for their optimization. We then present various architectures useful for
tackling our challenges. In the second part of this chapter, we present state-of-the-art
generative models, which aim to model our distributions of interest. Among them,
we will cover normalizing flows, latent variable models, score-based di�usion models,
and finally discuss the annealed HMC sampler that we first proposed in Remy et al.
[Rem+��] and Ramzi et al. [Ram+��].

�.� Introduction to deep learning

For a comprehensive introduction to machine learning and deep learning, we refer the
reader to the amazing books Probabilistic Machine Learning from Kevin P. Murphy
[Mur��], reviewing machine learning under the lens of probabilistic modeling and the
Deep learning textbook from I. Goodfellow, Y. Bengio and A. Courville [GBC��].

Neural networks are designed to approximate arbitrary functions fú mapping an
ensemble X called the input space, to another ensemble Y called the output space. In
the following, we will assume that these ensembles are Euclidian spaces, composed
of vectors (or tensors), and we will denote X = R

d and Y = R
p. The fundamental

characteristic of neural networks is that they are parametric functions, whose parameter
◊ are to be optimized to fit the desired function fú. In this manuscript, we consider
only feedfoward networks which are suites of non-linear functions fi mapping the input
x to the output y. In that respect, there is no back feedback of information along the
program. These intermediate functions fi are called the layers of the network, and
the more layers there are, the more f is able to model complex functions. The layers
in a feedforward neural network are composed as follows

f = f1 ¶ f2 ¶ · · · ¶ fN . (�.�)

A neural network is therefore a function of input x and parameters ◊ and output
y, i.e. f(x; ◊) = y, which we will also denote as f◊(x) = y. The task we aim to solve
is so challenging that we need to involve a large number of layers, making the neural
network deep, hence their denomination deep neural networks. In the following, we
will review the most widely used types of layers and neural network architectures that
we used to design our algorithms. We will then present the optimization programs to
find the optimal parameters and fit a desired arbitrary function. We will finally cover
various architectures, explaining how they were especially useful for our goals.

�.�.� Multi Layer Perceptron

The Multilayer Perceptron (MLP) is the most simple neural network architecture,
as its layers are composed of linear functions composed with non-linear activation
functions as follows

yÕ = Wx + b (�.�)

y = a(yÕ), (�.�)
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where we called a the non-linear activation function, W a matrix of dimension
R

p◊d called the weight matrix and b œ R
p called the bias paramters. In this case the

neural network parameters are the ensemble ◊ = {Wi, bi}iœ[[1,N ]] if there are N layers.

Activation functions Activation functions are essential to neural network layers as
they contribute to their non-linearity. The activation function in Equation �.� is an
element-wise function, which means that it applied independently on each element of

the input vector, i.e. a

Q

c
c
c
a

S

W
W
W
U

x1

x2

...
xd

T

X
X
X
V

R

d
d
d
b

=

S

W
W
W
U

a(x1)
a(x2)

...
a(xd)

T

X
X
X
V

.

We list below several of these non-linear functions and illustrate them in Figure �.�.

• Rectified Linear Unit (Rectified Linear Unit (ReLU))

f(x) = max(0, x) (�.�)

• Sigmoid

f(x) =
1

1 + e≠x
(�.�)

• Hyperbolic tangent
f(x) = tanh(x) (�.�)

• Sinus. Even though the sinus activation function is rarely used in neural network
designs, it has the particularity to be infinitely di�erentiable, with analytical
derivatives.

f(x) = sin(x) (�.�)

−4 −2 0 2 4

x

−1

0

1

2

3

4

ReLU(x)

sigmoid(x)

tanh(x)

sin(x)

Figure �.�: Illustration of various activation functions. All these functions have support
on R, and are non-linear and di�erentiable.
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�.�.� Optimizing neural networks

Now that we have designed a feedforward neural network parameterized by their
weights ◊, we need to optimize them to fit the function of interest. We first need
to specify a loss function L which will be the criteria quantifying how close our
function is to the target. The optimization problem is thus a loss minimization
problem, minimization because the goal is to reduce the di�erences between the target
distribution and the approximated one. All neural network optimization algorithms
are based on gradient descent iterations. The loss function L is a landscape in the
space of parameters ◊ and to find the minimum of this landscape we iteratively move
a set of parameters towards the direction of the inverse gradients of the loss. Given a
training dataset of pairs of input and output Dtrain = {(x, y)}xœX ,yœY the gradient
descent iteration is given by

◊t+1 = ◊t ≠ –t

|Dtrain|

ÿ

(x,y)œDtrain

ˆL(◊t, x, y)

ˆ◊
, (�.�)

where –t is a small step size, ◊t are the neural network weights to update, t the
curret time step of the optimization, and |Dtrain| being the cardinal (size) of the
dataset. In this update, the direction of the update is computed over the entire
training set Dtrain which is intractable in practice due to the immense amount of data
we need. Equation �.� can be approximated using small subsets of the training set,
called mini-batches, assymptotically leading the the same results.

Stochastic Gradient Descent Working with mini-batch instead of evaluating the
loss gradient over the entire training set makes the optimization much more tractable.
With uniform sampling of examples {(xi, yi)}i=1...N , stochastic gradients are equal in
expectancy to the full gradients, i.e. stochastic gradients are an unbiased estimator of
the full gradient, i.e.

E
(x,y)≥Dtrain

5
L(◊, x, y)

ˆ◊

6

=
1

|Dtrain|

ÿ

(x,y)œDtrain

ˆL(◊t, x, u)

ˆ◊
, (�.�)

but introduces variance in the gradient evaluation and therefore stochasticity in
the optimization process. The update equation becomes:

◊t+1 = ◊t ≠ –t

N

Nÿ

i=1

ˆL(◊t, xi, yi)

ˆ◊
, (�.��)

where N is the size of the mini-batch.

Momentum & Adam Adaptation of the step size along the optimization process.
Momentum uses information from previous gradient evaluations to compute a more
e�cient direction for the current update. For simplicity, we will note ÒL(◊) the
gradient evaluation of the loss function, with respect to parameters ◊, evaluated with
mini-batches.

mt+1 = —mt + ÒL(◊)
◊t+1 = ◊t ≠ –tmt+1.

(�.��)

— is a scalar parameter, often chosen to — = 0.99. One can notice that taking
— = 0, we recover Equation �.�. mt is the momentum parameter at step t.
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Slightly more advanced, Kingma et al. [KB��] propose the Adam optimizer. This
one is the most widely used in the machine learning community. It has the advantage
of adapting the direction of the optimization step with momentum and also of adapting
the learning rate along the training.

mt =
1

1 ≠ —t
1

1

—mt≠1 + (1 ≠ —1)ÒL(◊t)
2

gt =
1

1 ≠ —2

1

—2gt≠1 + (1 ≠ —2)ÒL(◊t)
2
2

◊t+1 = ◊t ≠ ÷Ô
gt + ‘

mt.

(�.��)

mt is a moving average of the gradients, like in Equation �.�� and gt is a moving
average of the squared gradients. —1 and —2 are scalar parameters (often chosen as
—1 = 0.9 and —2 = 0.999), and ‘ is a very small scalar to avoid numerical problems
(e.g. ‘ = 10≠8).

�.�.� Automatic differentiation

All of the precedent methods for training a neural network require evaluating gradients
of a loss function with respect to the neural network weights. Because neural networks
might be deep and have complex architecture, we do not want to derive analytically its
gradient. We therefore rely on automatic differentiation. Assessing the loss function
involves assessing multiple subfunctions that can be di�erentiated individually. By
applying the chain rule, it is possible to calculate the gradient of the loss function by
utilizing the intermediate functions’ gradients. For instance, evaluating the derivative
of function h = f ¶ g at x0 is given by the equation:

ˆh

ˆx
(x0) =

ˆ(f ¶ g)

ˆx
(x0) =

ˆg

ˆx
(x0)

3
ˆf

ˆg
¶ g

4

(x0). (�.��)

With this equation, we can compute exactly the gradient of the loss function.
Estimating this gradient could be done using numerical (or finite) differences, but
would su�er from approximation error. A neural network is a composition of many
functions and evaluating the chain rule can be quite costly. There are di�erent
ways of evaluating Equation �.��, the forward mode and backward mode automatic
di�erentiation. We will not detail the process of these modes in this text, but we
refer to the reader to Roger Grosse’s lecture notes on backpropagation and automatic
di�erentiation�. Using the forward or backward mode for automatic di�erentiation
will depend on the relative dimensionality of the input and output spaces.

Forward mode Most e�cient when d π p, i.e. low dimensional input, high
dimensional output.

Backward mode Most e�cient when p π d, i.e. low dimensional output, high
dimensional input. This is typically the case when optimizing a neural network. Indeed,
the loss output is a scalar, i.e. of dimension 1 and we aim to di�erentiate with respect
to a high number of parameters, e.g. hundreds of thousands, millions, or even more.

�https://www.cs.toronto.edu/∼rgrosse/courses/csc���_����/
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�.�.� Differentiating implicit functions

Computing the derivative of a function with automatic di�erentiation will scale not
only in time, with respect to the computational graph size, but also spatially (in
memory size). For a deep computational graph, one will need to compute and keep
in memory all the intermediate gradient evaluations necessary to evaluate the chain
rule. There are however special cases where there are better methods for gradient
computation than standard forward or backward automatic di�erentiation. It is the
case of computing derivative of implicit functions.

Implicit funcitons An implicit function f can be defined by its fixed point equation:

z = f(a, z), (�.��)

where z œ R
d are the parameters with respect to which we aim to compute the

derivative, and a œ R
p are auxiliary parameters. The gradients of this function defined

implicitly are well-defined and can be derived according to the implicit function
theorem.

Let us consider f : Rd ◊ R
n æ R

n, a0 œ R
p and z0 œ R

n such that f(a0, z0) = 0
and f is continuously di�erentiable with non-singular Jacobian ˆf

ˆa (a0, z0) œ R
n◊n.

Then, there exist open sets Sa0 µ R
p and Sz0 µ R

n repsectively containing a0 and
z0, and a unique continuous function zú : Sa0 æ Sz0 such that

• z0 = zú(a0)

• f(a, zú(a)) = 0, ’a œ Sa0

• zú is di�erentiable on Sz0
.

For an intuitive understanding of this theorem will illustrative implementations,
we refer the reader to the implicit-layers website�.

The solution of an implicit function can either be seen fixed point equation solution
or as the root of another function, and both approaches are equivalent. Let us write
the derivative computation of an implicit function defined by root finding. Let ap

be the input of the algorithm and z(a) its output. We aim to compute both zú(a)
solution of

f(a, zú(a)) = 0, (�.��)

where f is a function defining implicitly the solution zú, and the derivative ˆz
ˆa (a0)

for arbitrary a0 œ Sa0
. Di�erentiating Equation �.�� with respect to a yields:

ˆf

ˆa
(a0, z0) +

ˆf

ˆz
(a0, z0)

ˆzú

ˆa
= 0. (�.��)

Inverting this equation, we get:

ˆzú

ˆa
= ≠

5
ˆf

ˆz
(a0, z0)

6≠1
ˆf

ˆa
(a0, z0) (�.��)

This last equation defines how to implicitly compute the derivative of the optimal
solution zú to the problem formulated in Equation �.��, from the derivative of the
function f .

�https://implicit-layers-tutorial.org/implicit_functions
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Implicit inverse function In [Zeg+��], we designed a bijective function f with
expressive high order derivatives. The optimization procedure of this project required
multiple gradient computations of the neural network architecture. Using standard
normalizing flows architecture (see section �.�) such as RealNVP [DSB��] normalizing
flow with a�ne coupling layers. It is clear that di�erenting an a�ne function more
gives a function which will return only zeros. We therefore designed a non-decreasing
and infinitely di�erentiable function as

Y

_________]

_________[

fÏ
y (x) =

‡(x) ≠ ‡(x0)

‡(x1) ≠ ‡(x0)
(1 ≠ cÏ(y)) + cÏ(y)x

‡(x) = cÏ(y)x +
1 ≠ cÏ(y)

1 + e≠fl(x)

fl(x) = aÏ(y)

3

log

3
x

1 ≠ x

4

+ bÏ(y)

4

, (�.��)

where aÏ(y), bÏ(y) and cÏ(y) are estimated from a neural network of parameters
Ï.

While being non-decreasing on a compact support, therefore invertible, there is
no analytical expression of the inverse of function fl. However, in order to optimize
and perform inference with a normalizing flow, one is required to evaluate bijective
functions in both directions. We relied on the implicit function theorem to evaluate
the inverse function and compute its gradients. Indeed one can define implicitly the
inverse of function fl through a root finding problem as

fl(x) ≠ y = 0, (�.��)

where y is known and we aim to find the corresponding x. More details on
normalizing flows and RealNVP can be found in section �.�.

�.�.� Architectures

Convolutional layers

Convolutional layers have been developed for neural networks dealing with images as
inputs. Instead of a weight matrix mapping between the input and the output of the
layer, the convolutional layers involve a convolutional kernel W n◊n◊c, where n is the
width and height of the kernel and c a channel dimension. The convolutional layer is
defined as

y = W ¢ x + b. (�.��)

It is particularly suited to image-processing tasks because of its translational
equivariance property. Indeed, if the input x is spacially translated, the output y
follows the same translation, i.e. S(y) = f(S(x)) if S is a translation operator and f
the convolutional layer defined in Equation �.��. To understand why this property is
useful, let us take the example of a classification task. If we were to classify images
of cats and dogs with a deep learning model, the activation of the neural network
weights should not change whether the cat or the dog is positioned on the top left or
bottom right of the image, and most importantly the final answer should be the same.
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Residual layers

The deeper the neural network, the harder it is to train. In the same time, it is known
that complex tasks require very deep neural networks to have good performance. He
et al. [He+��] proposed to use residual connection between neural network layers to
ease the optimization. A classical layer, e.g. linear as in Equation �.� or convolutional
as in Equation �.�� can be expressed as a function f parametrized by weights ◊ taking
an input tensor x and outputing a tensor y, i.e.

y = f◊(x). (�.��)

Such layer needs to learn the full mapping between x œ R
d and y œ R

p. In deep
neural networks, many of these functions are stacked and each one needs to learn a
complete representation. Residual connections enable to give a reference to the layer,
so that it only needs to learn the residual information between the previous layer and
the output, i.e.

y = f◊(x) + x. (�.��)

Often, dimensions p and d are di�erent, and one can perform a simple linear
mapping to match the dimensions

y = f◊(x) + Wx, (�.��)

where W œ R
p◊d is a weight matrix whose parameters are optimized jointly with

the one of f◊.

�.�.� Normalization

Batch normalization Training deep neural networks can be fastidious. As discussed
in subsection �.�.�, data need to be preprocessed to be standardized and make the
training more stable. However, it is not only the statistics of the neural network input
which are likely to change over the training process. Indeed, after each optimization
step, neural network weights are updated, and therefore the statistics of each layer
output as well. Io�e et al. [IS��] refer to this phenomenon as internal covariate shift
and propose to add batch normalization layers to regularize the amplitude of neural
network hidden layers. A batch normalization layer is placed after the activation
function of the previous layer and evaluated over the current mini-batch x

„BN(x) =

A

“


std(x)

B

(x ≠ x̄) + —, (�.��)

where x̄ and std(x) refer to the mean and standard deviation computed over
the batch dimension of x. “ and — are parameters learned over the neural network
optimization process. They are also often referred as state parameters in neural
network libraries such as JAX, to distinguish them from neural network weights which
we refer as params variables.

This way the input of each layer following a batch normalization layer is recentered
and rescaled to variance equals one, which makes the training more stable and often
faster.
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(without Spectral Normalization (SN)) (with SN)

Figure �.�: Comparison of the score function learning with and without spectral
normalization. In blue is the density of the Swiss roll distribution and the black vector
field is the learned score function evaluated on a grid.

Spectral normalization It is also possible to perform normalization at the layer
level, this is called layer normalization. This type of normalization will enforce
constraints on the regularity of the network. One example is enforcing the lipschitzness
of a neural network with spectral normalization (SN).

A function f : Rd æ R
d is k-Lipschitz continuous if

’(x, y) œ R
d ◊ R

d, Îf(x) ≠ f(y)Î2
2 Æ kÎx ≠ yÎ2

2. (�.��)

The lipschitzness of a function also accepts a more general form of definitions, with
various distances in the input and output space, but Equation �.�� is su�cient for
our description.

Spectral Normalization on the network regularity in those regions. Indeed, as it can
be seen in figure Figure �.�, spectral normalization smooths the learned gradient map
far from the high densities. Regularizing the spectral normal of a network lowers its
Lipschitz constant, which prevents high variation between close points, thus aligning
unconstrained gradients. Controlling the exact Lipschitz constant of a neural network
cannot be done directly, but we can control the Lipschitzness of the network layer
by layer. One way to do it is to use spectral normalization. It can indeed be shown
that for linear and convolutional layers, the Lipschitz constant is given by the spectral
norm of the neural network weights. Let us make the derivation for a linear layer.
A similar demonstration can be done for other kinds of layers such as convolutional,
pooling, attention and can be found in [Gou+��]. A linear layer can be expressed with
a weight matrix W œ R

d◊p and bias vector b œ R
p, therefore the Lipschitz continuity

of a linear layer can be characterized by finding an upper bound of the ratio, for
(x, y) œ R

d ◊ R
d and x ”= y,

ÎWx + b ≠ Wy ≠ bÎ2
2

Îx ≠ yÎ2
2

=
ÎW (x ≠ y)Î2

2

Îx ≠ yÎ2
2

Æ ‡(W ), (�.��)

where ‡(W ) =̂ sup
a”=0

ÎWaÎ2
2

ÎaÎ2
2

is the spectral norm of the weight matrix W . Because

we chose to use the ¸2 norm in Equation �.��, the spectral norm is given by the
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Figure �.�: Illustration of the di�erent normalization strategies. N corresponds to
the batch size, C is the number of channels, H and W are respectively the height and
width of the spatial axis. Credit: Wu et al. [WH��]

first singular value of the matrix W . Therefore, it is clear that if we control ‡ in
Equation �.��, we control an upper bound to the Lipschitz constant of the layer.

As a neural network can be seen as a composition of many functions „i, such that
f(x) = („1 ¶ „2 ¶ · · · ¶ „N )(x), we can compute the upper bound of the Lipschitz
constant of the neural network as the product of Lipschitz constant of each subfunction,
i.e. L(f) Æ

rN
i=0 L(„i). As the Lipschitz constant of standard activation function,

such as Rectified Linear Unit or the sigmoid function, is 1, the upper bound is given
by the product of the spectral norm of weigh matrices of the network.

In practice, weight matrices’ spectral norm can be normalized by dividing their
highest spectral value, which can be estimated using the Power iteration algorithm
proposed in Gouk et al. [Gou+��] and describe in Algorithm �.

Algorithm � Power iteration method [Gou+��], returning the highest singular value
of a matrix W

�: for i = 0 to n do

�: xi Ω W T Wxi≠1

�: end for

�: ‡max(W ) Ω ÎWxnÎ2
2

ÎxnÎ2
2

This operation can be done after each layer evaluation of the network, or at once
over the whole tree of parameters of a neural network�

�.� Normalizing Flows

Modeling complex probability densities is a task the machine learning community
has been trying to address for years. Most known examples are Mixture of analytic
distributions such as mixture of Gaussians or Kernel Density Estimators. However, even
though the literature contains a lot of mathematical derivations and interpretations
of these models, they lack a lot of flexibility and require prior knowledge about the
distribution (number of modes in the distribution of interest for instance).

Recently, Rezende et al. [RM��] proposed a class of model much more flexible,
called normalizing flows (Normalizing Flow (NF)). A normalizing flow is a composition

�Neural network libraries such as DeepMind’s Haiku propose layer-wise and tree-wise implement-
ation of spectral normalization
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z ≥ pz(z) x ≥ px(x)

f
≠≠≠≠≠æ

Ω≠≠≠≠≠
f≠1

Figure �.�: Flow f mapping a two-dimensional multivariate Gaussian on the left to
a two-moons distribution on the right. This mapping is bijective, for each sample
from the two moons distribution corresponds a unique sample from the multivariate
Gaussian through f≠1.

of continuous and di�erentiable functions f , also called diffeomorfisms, mapping a
random variable z with associated p.d.f p(z) to another random variable x with
associated p.d.f. px(x). In other words, every samples z ≥ pz(z) will have one and
only one corresponding x such that x = f(z). Inversely, for all x ≥ px(x) there exist
a unique z ≥ p(z) such that z = f≠1(x). Sampling a very complex distribution can
therefore become an easy task if one knows the di�eomorphism that maps it to a
distribution from which it is easy to sample, such as a normal distribution. With such
mapping, it is not only straightforward to sample complex distribution, but also to
evaluate its probability density thanks to the change of variable theorem:

The probability density of px(x) can also be evaluated from the probability of the
corresponding sample z under the change of variable theorem:

px(x) = pz(z)

-
-
-
-
det

3
ˆf

ˆx
(z)

4-
-
-
-

≠1

, (�.��)

where x ≥ px(x), z ≥ pz(z) are such that x = f(z), and ˆf
ˆx (z) denotes the Jacobian

matrix of f evaluated at z.

Indeed, we can substitute z by f≠1(x) in Equation �.�� which gives

px(x) = pz(f≠1(x))

-
-
-
-
det

3
ˆf

ˆx
(f≠1(x))

4-
-
-
-

≠1

(�.��)

= pz(f≠1(x))

-
-
-
-
det

3
ˆf≠1

ˆx
(x)

4-
-
-
-
, (�.��)

where ˆf≠1

ˆx (x) denotes the Jacobian of the inverse transformation f≠1 evaluated
at x.

As one can see in Equation �.��, in order the evaluate log probability densities
using a normalizing flow, we need to compute the determinant of the Jacobian of
the bijective transformation. This step can be very computationally expensive and
is the bottleneck of normalizing flows. To minimize the computational cost of this
evaluation, e�cient flows [DSB��; PPM��; Kin+��; KD��; Dur+��] are built such
that the Jacobian of the transformations is represented as a triangular matrix, i.e.
such that the determinant becomes the multiplication of all the diagonal elements of
the Jacobian matrix.
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In addition, parts of the mapping function f are modeled with neural networks,
which is why they are called neural density estimators in the astrophysics literature.
We review below di�erent architectures of normalizing flows and in particular the ones
used in our contributions discussed in chapter �.

�.�.� Bijections

Normalizing flows are based on the design of bijective functions, with the constraint to
have a tractable Jacobian determinant computation. In the experiments discussed in
this manuscript, we used two flexible bijectors, one proposed by Dinh et al. [DSB��],
called the coupling flow, and the other proposed by Papamakarios et al. [PPM��]
called masked autoregressive flow. We present a few details of how these to build these
bijectors in the following.

Coupling Flows In coupling flows [DSB��], the total dimension of the vector space
is split into two parts or dimensions d and D ≠ d. The bijector applied to the first part
is the identity function. For the second part, a function composing z1:d and zd+1:D as
follows

x1:d = z1:d

xd+1:D = g(zd+1:D, h(z1:d)).
(�.��)

The choice of the functions g and h is free, as long as they remain bijective functions.
One choice for these functions has been proposed in the same paper, called Real NVP.

Real NVP The coupling equations for Real NVP are as follows

x1:d = z1:d (�.��)

xd+1:D = zd+1:D § exp(s(z1:d)) + t(z1:d), (�.��)

The Jacobian of the transformation given by Equation �.�� is

ˆf

ˆx
(x) =

5
Id 0
C D

6

, (�.��)

where

• C =
ˆf

ˆz[1:d]
(x[d + 1 : D]) is the Jacobian of the function f with respect to

parameters z[1,d] and evaluated at x[d+1:D].

• D = diag(exp
!
s(z[1:d])

"
) is the diagonal matrix where the diagonal elements are

the parameters of exp
!
s(z[1:d])

"
.

This way, the full Jacobian ˆf/ˆx is lower triangular and the determinant term in
Equation �.�� is:

det

3
ˆf

ˆx

4

= exp

Q

a
ÿ

j

s(z1:d)j

R

b , (�.��)

which is much less costly computationally to compute than the determinant of a full
matrix. Moreover, it is worth noticing that ˆf/ˆx only depends on the evaluation of
the function s but not on the Jacobians of s ot t. This means that these two functions
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can be parametrized by very flexible models that have fast-forward evaluation but
arbitrary complex Jacobians, which is the case of neural networks.

Finally, computing the reverse transformation f≠1 has the same characteristic as
the forward transformation f . The inverse transformation equation is:

z1:d = x1:d, (�.��)

zd+1,D = (xd+1:D ≠ t(x1:d)) · (≠s(x1:d)). (�.��)

Masked Autoregressive Flow Papamakarios et al. [PPM��] proposed to factorize
the distribution of a variable x in an autoregressive manner, i.e. as:

p(x) =
dŸ

i=1

p(xi|x1:i≠1), (�.��)

where p(xi|x1:i≠1) is a one dimensional distribution over xi, the i-th element of
the random variable x, condition on the previous elements [1 : i ≠ 1]. The conditional
distribution is parametrized by a Gaussian distribution whose mean and variance are
conditioned on previous variables:

p(xi|x1:i≠1) = N (xi | µi, ‡i) , (�.��)

xi = ui‡i + µi, with µi = fµi
(x1:i≠1)

‡i = f‡i
(x1:i≠1)

(�.��)

The inverse transformation

ui = (xi ≠ µi)‡
≠1
i , with µi = fµi

(x1:i≠1)
‡i = f‡i

(x1:i≠1)
(�.��)

The Jacobian determinant
-
-
-
-
det

3
ˆf≠1

ˆx

4-
-
-
-

=
Ÿ

i

‡≠1
i , with ‡i = f‡i

(x1:i≠1) (�.��)

�.�.� Optimizing a normalizing flow

Bijective transformations of a normalizing flow are parametrized by neural networks of
weights Ï. We denote as qÏ its probability density function. When using a normalizing
flow to fit a distribution p, we need to optimize parameters Ï such that qÏ becomes
very close to p. This closeness can be measured with either the forward or reverse
KL-divergences as presented in Equation �.�� and Equation �.��.

Maximizing the ELBO To fit a normalizing flow to a distribution from which
we are only able to evaluate the probability density, we need to minimize the reverse
KL-divergence. The optimization objective becomes:

Ïú = arg min
Ï

DKL(qÏ||p) (�.��)

= arg min
Ï

E
x≥qϕ

[log qÏ(x)] ≠ E
x≥qϕ

[log p(x)] (�.��)

= arg min
Ï

≠ ELBO(qÏ) (�.��)
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Therefore, fitting a normalizing flow to a target distribution minimizing the reverse
KL-divergence is equivalent to minimizing the evidence lower bound of the data under
the surrogate model.

Minimizing the negative log likelihood When having access to samples x ≥ p of
the distribution we aim to fit, one can use the forward KL-divergence. The optimization
objective for the normalizing flow is, therefore:

Ïú = arg min
Ï

DKL(p||qÏ) (�.��)

= arg min
Ï

Ex≥p [log p(x)] ≠ Ex≥p [log qÏ(x)] (�.��)

= arg min
Ï

≠Ex≥p [log qÏ(x)]
¸ ˚˙ ˝

NLL

(�.��)

The first term of Equation �.�� is removed as it does not depend on parameters Ï.
This objective function is called the negative log-likelihood (Negative Log Likelihood
(NLL)). The log qÏ term can be evaluated thanks to the change of variable formula in
Equation �.�� and the expectancy is taken with respect to samples from the target
distribution p. This loss function is in particular used in subsection �.�.�

�.�.� Conditional normalizing flows

As discussed in the previous subsection, a normalizing flow enables us to model the
density distribution of a random variable x. Noticing that all the presented bijections
are formulated as conditional distribution, it is natural to extend the conditioning
with another random variable y to model conditional probabilities p(x|y). It is indeed
straightforward to model the distribution of a random variable x conditioned on the
observation of another random variable y by stacking the conditions. For example the
autoregressive factorization in Equation �.�� can be extended in a conditional manner
as:

p(x|y) =

dŸ

i=1

p(xi|x1:i≠1, y), (�.��)

which can be implemented feeding y to every function fµi
and f‡i

. This also
applies to RealNVPs as they can be seen as a special case of MAFs.

Training a conditional normalizing flow is almost exactly similar to training an
unconditional one, except we need to consider the conditional variable in the loss
function. Later in this manuscript, we will describe the generative model for galaxy
morphologies, in which we used a conditional normalizing flow to model the latent
space distribution. As we aimed to train the NF from samples of the latent space
distribution, with the corresponding conditional variable, we could use the negative
log-likelihood loss as described above. In the case of a conditional NF, the loss is
also an NLL, but where the expectancy is taken with respect to the joint distribution
p(x, y). Indeed, starting from minimizing the KL-divergence between the posterior
p(x|y) and the surrogate model qÏ(x|y) for all condition y we get:
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Ïú = arg min
Ï

Ey≥p(y) [DKL(p(x|y)||qÏ(x|y))] (�.��)

= arg min
Ï

E
y≥p(y)

5

E
x≥p(x|y)

[log p(x|y)] ≠ E
x≥p(x|y)

[log qÏ(x|y)]

6

(�.��)

= arg min
Ï

≠ E
y≥p(y)

5

E
x≥p(x|y)

[log qÏ(x|y)]

6

(�.��)

= arg min
Ï

≠ E
x,y≥p(x,y)

[log qÏ(x|y)] . (�.��)

�.� Score-based diffusion models

In this section, we present another class of generative models, called score-based or
diffusion models. This kind of generative model was first introduced by Sohl-Dickstein
et al. [Soh+��] and later pushed to the state of the art in image generation tasks
by Song et al. [SE��] and Ho et al. [HJA��]. Score-based and di�usion model di�er
slightly, notably in their training objective. However, they share the same fundamental
idea of learning a revert corruption process, which leads to the mapping of a target
distribution to a well-characterized distribution such as a multivariate Gaussian. In
this section, we will only cover score-based generative model as presented in Song et al.
[SE��; Son+��b] as it is the specific class we used to develop our methods.

�.�.� Stochastic differential equations

Di�usion models share a similar spirit with normalizing flows in the sense that they
map an arbitrary distribution to a well-known distribution such as a multivariate
Gaussian. Di�usion models work by randomly corrupting data with noise, up to
having a purely well-characterized noise and learning the reverse process. The forward
process can be expressed as a Stochastic Di�erential Equation (Stochastic Di�erential
Equation (SDE))

dx = f(x, t)dt + g(t)dW, (�.��)

where x is the variable of interest, evolving with time t, such that x(0) corresponds
to the data point of the distribution of interest p0, and x(T ) ≥ pT the end of the forward
process. W is a stochastic process, often chosen to be the Wiener process, describing
Brownian motion. f(·, t) : X æ X is called the drift function and g(t) : R æ R is
called the diffusion function. When discretized, this can also be seen as a Markov
process, where each iteration x(t) is sampled from a distribution conditioned on the
previous time step t ≠ 1, i.e. x(t) ≥ q(·|x(t ≠ 1)).

The core principle of di�usion models is to learn how to invert this forward process
in order to map data randomly sample from the distribution that follows x(T ) in
order to get new samples from the target distribution x(0). As there are several ways
to formulate the forward process, reversing the process involves di�erent tasks and
objects to be modeled. Considering the SDE formulation in Equation �.��, Anderson
[And��] showed that the reverse process also follows an SDE of form:

dx =
#
f(x, t) ≠ g(t)2Òx log pt(x)

$
dt + g(t)dW̄ , (�.��)

where W̄ is also a stochastic process with time going from T to �, and dt a
infinitesimal negative time step. This reverse SDE involves the same term as the
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forward, but also the score function Òx log pt(x). Learning the score function and
running an SDE to sample new data points is called score-based generative model.

In our work [Rem+��; Ram+��; Rem+��], we opted to utilize the score-based
model paradigm due to its ability to evaluate the exact likelihood and score functions.
This feature makes it well-suited for integration with other likelihoods that incorporate
analytical physical knowledge and to be used as part of MCMC algorithms.

�.�.� Denoising score matching

The aim of this section is to describe how one can learn the score function Òx log p(x).
Approximating the score can be done either directly with a function s◊(x) or ap-
proximating the score of an approximate probability density function Òx log p◊(x)
(= s◊(x)).

L(◊) Ã E
x≥pdata

Ë-
-
-
-Òx log pdata(x) ≠ s◊(x)

-
-
-
-
2
È

= DF (pdataÎp◊). (�.��)

This expression is also known as the Fisher divergence DF . This loss function
necessitates evaluating Òx log pdata(x), which is currently unknown. The only available
information we have are samples x, implicitly drawn from pdata from which we aim to
learn to score.

Hyvärinen [Hyv��] proposed to reformulate this loss function, depending only on
the approximated score s◊ and samples x ≥ pdata. By performing an integration by
part, one can get the following loss function:

L(◊) Ã E
x≥pdata

Ë

tr
!
Òxs◊(x)

"
≠

-
-
-
-s◊(x)

-
-
-
-
2
È

. (�.��)

One can, in principle, learn the score function of any arbitrary distribution with
this loss function. However, this requires evaluating the trace of the score Jacobian
which in practice is heavily computationally demanding with respect to the dimension
of the data. This term can at best be computed with a number of backpropagation
proportional to the dimension of the data O(d) [MSS��].

To solve this complexity issue, Song et al. [Son+��a] proposed to approximate the
Jacobian trace using random projection of the score, by introducing the sliced score
matching loss:

L(◊) Ã E
v≥pv

x≥pdata

Ë

vT
!
Òxs◊(x)

"
v ≠ 1

2
(vT s◊(x))2

È

. (�.��)

pv can be a arbitrary distribution with the conditions Epv
[vvT ] positive defin-

ite and Epv
[ÎvÎ2

2] < +Œ. Multivariate standard normal (N (0, Id)), a multivariate
Rademacher distributions (the uniform distribution over {±1}d) are such distributions.
Equation �.�� is also called the sliced Fisher divergence.

In the next section, we will show that for e�cient sampling of the data distribution
it is much more convenient to evaluate the score of the distribution which has been
convolved with a Gaussian kernel.

In order to learn directly the score of the convolved distribution, Vincent [Vin��]
and Alain et al. [AB��] demonstrated that one can change the training objectives from
fitting the scores to denoising data at di�erent amount of noise corruption levels. Let
r(x) : X æ X denote a Gaussian denoiser, and ‘ be a random variable sampled from
a multivariate Gassian N (0, ‡2 · Id).

If the denoiser r◊ is trained under the L2 (or mean-squared-error loss):
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LDAE(◊) = E
x≥pdata

‘≥N (0,‡2·Id)

Ë

Îr(x + ‘) ≠ xÎ2
È

(�.��)

then, we can relate the optimal denoiser r◊ú to the score function Òx log p(x) and
the noise standard deviation ‡ with the following expression:

r◊ú(x) = x + ‡2Òx log p‡(x) + O(‡2), (�.��)

as ‡ æ 0. As it is formulated, the learned score model in practice may not be
optimal for all noise level. Lim et al. [Lim+��] identified several sources of error and
proposed to reformulate Equation �.�� to mitigate them.

�.� Annealed sampling

Figure �.�: Example of annealing on the two moons distribution. The distribution is
convolved with a multivariate Gaussian of variance ‡. This variance decreases over
the sampling procedure so that the MCMC is always over high-density regions, i.e.
‡4 > ‡3 > ‡2 > ‡1. The chain is initialized from a wide multivariate Gaussian, as
on the top left panel, and converges to the data distribution, as on the bottom right
panel. In blue is the density of the convolved distribution and the arrows represent its
score function.

Following our preliminary work [Rem+��], we adopt in Remy et al. [Rem+��]
a two-step sampling procedure. The first step is based on an annealed version the
Hamiltonian Monte Carlo (HMC) [Nea��; Bet��], similar to the annealed Langevin
Dynamics proposed by [SE��]. The second step corresponds to a projection of the
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target distribution using an Ordinary Di�erential Equation (ODE) to reach zero
temperature.

Sampling with annealed HMC In this step, we initialize a chain using white
Gaussian noise with a high temperature ‡2

T . Leveraging the conditional noise property
of the score function described in section subsection �.�.� we have direct access to the
score function of the convolved distribution Ò log p‡2

T
, which we can use in a score-based

HMC. We then let the chain evolve under Hamiltonian dynamics, and progressively
lower the temperature ‡2 of the conditional score with a geometric schedule of common
ratio equal to 0.98. 0.98. Each time the temperature ‡2 is decreased, the MCMC chain
thermalizes to the new temperature in a few HMC steps. As described in Song et al.
[SE��], small enough steps are important to ensure non-zero transition probabilities
between adjacent temperature values. Once the chain has reached su�ciently low
temperature (ideally ‡2 = 0) we stop the chain and only retrieve the last sample.
Multiple independent samples are obtained by running multiple independent annealed
HMC chains in parallel. One must not think that having one chain per sample makes
the process much longer than having multiple samples per chain. It is indeed much
more e�cient because in practice it is very long to ensure sample independence within
the same chain.

Projection to zero temperature In practice, however, it has proven to be di�cult
to anneal chains all the way to zero temperature. We find that at low temperatures,
the chains do not properly thermalize at each step and residual noise remains in our
samples. This was also observed by other authors using annealed Langevin Dynamics
instead of HMC [Jol+��; SE��]. In the application to mass-mapping presented in
chapter �, we can reach ‡ = 10≠3 by fine-tuning our annealing scheme.

Therefore, in the second step of our sampling procedure, we propose a strategy to
transport the annealed HMC samples obtained in step 1 at finite temperature all the
way to ‡2 = 0. To achieve this, we use remarkable results from Song et al. [Son+��b]
which establishes a parallel between denoising di�usion models (generative models
based on random walks) and Stochastic Di�erential Equations. We refer the interested
reader to [Son+��b] for more mathematical details and derivations, but the main
result that we use from this paper is the following Ordinary Di�erential Equation:

dx = ≠1

2

Ú

d

dt

1

‡2(t)
2

Òx log pt(x)dt , (�.��)

where ‡2(t) is the increasing variance schedule of the Gaussian distribution we convolve
the data distribution with. In our particular implementation, we used a linear schedule
t ‘æ ‡2(t) = t. This ODE describes a deterministic process {x(t)}T

t=0 indexed by a
continuous time variable t œ [0, T ], such that x(0) ≥ p0 and x(T ) ≥ pT , where p0

denotes the data distribution and pT the convolution between the data distribution
and a multivariate Gaussian of variance T . This ODE can be solved by any black-box
ODE solver provided that the convolved score is available. In particular, it means
that if we start the ODE at a point in pt, where t is the intermediate temperature
at which we have stopped our HMC chains, we can transport that point to p0. This
procedure very e�ectively removes residual noise while making sure we reach a point
in the target distribution at zero temperature.

] ] ]

] ]

]
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Figure �.�: Bayesian posterior sampling for Magnetic Resonance Imaging (MRI)
reconstruction. The top leftmost image is the ground truth image. The top second to
the left image is the zero-filled retrospectively under-sampled image. The top third
to the left image is the reconstruction of the under-sampled image by the UPDNet
architecture. All the other images are denoised samples from the estimated posterior
distribution obtained by a tempered HMC. The zero-filling achieves a Peak Signal-to-
Noise Ratio (PSNR) of ��.�� dB, each sample ��.�� dB on average, the mean of the
samples ��.�� dB, and the neural network ��.�� dB. A zoom of the region in the red
square is provided in Appendix A.�.
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The work presented in this chapter was previously presented in a peer-reviewed
conference workshop:

Remy, B., Lanusse, F., Ramzi, Z., Liu, J., Je�rey, N., Starck, J.-L., ‘Probabilistic
Mapping of Dark Matter by Neural Score Matching’. In: �rd Machine Learning
and the Physical Science workshop at NeurIPS (����)

Ramzi, Z., Remy, B., Lanusse, F., Starck, J.-L., Ciuciu, P., ‘Denoising score-
matching for uncertainty quantification in inverse problems’. In: Deep inverse
workshop at NeurIPS (����)

T
his chapter introduces our novel method for reconstructing dark matter mass-maps.
We begin by framing mass-mapping as an ill-posed inverse problem, highlighting

the linear relationship between convergence and shear fields with masked data and
shape noise corruption. We then reframe this problem within a Bayesian framework,
focusing on the posterior distribution of the convergence, conditioned on shear field
measurements. To achieve this, we must select an informative prior distribution for the
convergence, and the following section delves into a literature-based discussion of these
priors. While classical methods o�er point estimates to solve the problem, our approach
is to infer the complete posterior distribution, thereby capturing the reconstruction’s
uncertainty. Inference for such a high-dimensional posterior distribution is very
challenging. Therefore, we present how annealed Hamiltonian Monte Carlo can be
employed to address this inference problem. Lastly, we demonstrate our method by
applying it to reconstruct the highest-resolution mass-map of the HST/ACS COSMOS
field, complete with uncertainty quantification

�.� Weak lensing Mass-Mapping

�.�.� Shear and convergence

Galaxy surveys like Euclid, the Vera C. Rubin Observatory LSST, or the Roman
Space Telescope, will measure billions of galaxy shapes. This measure will serve as
an estimate of the cosmic shear field “. The cosmic shear field is a tracer of the
large-scale-structures of the Universe and can be linearly related to the projected
matter density field Ÿ, called the convergence field through the equation

“̃1 + i“̃2 =

3
k2

1 ≠ k2
2

k2
+ i

2k1k2

k2

4

(Ÿ̃E + iŸ̃B), (�.�)

or in a vectorized form
3

“̃1

“̃2

4

=
1

k2

3
k2

1 ≠ k2
2 ≠2k1k2

2k1k2 k2
1 ≠ k2

2

4

¸ ˚˙ ˝

P

3
Ÿ̃1

Ÿ̃2

4

(�.�)

where ŸE and ŸB are respectively the E- and B- mode of the convergence field, “1

and “2 the two components of the shear field adopting the complex representation.
We also recall that the operator P is unitary, i.e. P

ú
P = Id. In the following, we will

refer to P as the forward operator.

In the following paragraphs, we shed light on the various challenges the process of
reconstructing the underlying convergence field from the observed weak gravitational
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lensing shear field arises. Furthermore, we present our novel approach, which addresses
and resolves these inherent issues, leading to a more accurate and physically motivated
mass-map reconstruction.

Survey mask All surveys have a delimited sky area for their measurements. For
instance, the HST/ACS COSMOS field that we study in this chapter has a sky area
of �.� deg2. To this date, the mass-map covering the largest sky fraction, about ����

deg2 is reconstructed from the Dark Energy Survey third year (Y�) weak lensing
data [Jef+��]. When solving the inverse problem, we therefore need to take into
consideration the fact that the survey area is limited, with potentially an irregular
contour. Moreover, some of the inner sections of the survey area are not usable due
to very bright stars saturating the CCDs or image artifacts preventing the reliable
measurement of galaxy shapes in some regions of the survey.

Vanishing B mode. It is physically motivated to assume that there is no leakage
between the E- and B- modes and that there is no contribution to the convergence
B-mode component. Nevertheless, intrinsic alignment can contribute to non-zero
B-mode [Bla+��; Sam+��], but is neglected in this work.

Uncertainty quantification Mass-map reconstruction is an ill-posed inverse prob-
lem, meaning that multiple convergence maps can fit to a given shear map measurement.
This is primarily due to the fact that the presence of the survey mask induces missing
data, therefore there are regions of the sky where there is no data to drive the recon-
struction. Additionally, the shear measurements rely on galaxy shapes average making
the measurements subject to significant shape noise which introduces substantial uncer-
tainties in the reconstruction. State-of-the-art mass mapping algorithms are designed
to provide the maximum a posteriori solution, so maximizing the probability of the
solution given measurements. However, they do not provide uncertainty quantification
associated to the solution. There is, therefore, a need for a method which is able to
not only recover a precise convergence map but also able to quantify the uncertainty
of the reconstruction. From a Bayesian perspective, this would mean being able to
estimate the full posterior distribution of the mass-mapping inverse problem.

Full cosmological prior There is no full analytical description of convergence
maps. As we will see in section �.�, we can build informative prior from the expected
knowledge of the 2pt statistics of the field but only model the Gaussian linear structures
of the field. To model the non-linear gravitational collapse of the matter density field,
we can however rely on N-body simulations which can be seen as samples draw from
an implicit underlying prior distribution.

�.�.� Mass-mapping inverse problem in a Bayesian framework

The ill-posed mass-mapping inverse problem can be reformulated as a probabilistic
inference problem from a Bayesian perspective as explained in section �.�:

p(Ÿ|“) =
p(“|Ÿ)p(Ÿ)

p(“)
, (�.�)

We detail each term of this equation according to the mass-mapping inverse
problem.
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Posterior p(Ÿ|“) It models the probability of a convergence map Ÿ conditioned
on the measured shear field “. This is the distribution of interest as it models the
uncertainties of the inverse problem solutions.

Likelihood p(“|Ÿ) It encodes the forward model from the convergence to the shear
in equation Equation �.�. In our work, the forward process returns a binned shear
map “, where each pixel corresponds to the shear field averaged over the pixel area
and takes as input a pixelized convergence map Ÿ. Working with real data, it is
assumed that the measurement for each pixel is degraded by shape noise ns due to
the finite average of galaxy intrinsic ellipticities in the bin. This noise is assumed
to be white Gaussian, i.e. ns ≥ N (0, Σn), where Σn is the noise covariance matrix
of the shear map. Moreover, regions of the map containing missing data need to be
taken into account in the likelihood. One obvious way of incorporating a mask within
the likelihood is to multiply the data and the forward operator by a binary matrix
M composed of ones and zeros whether the pixel does or does not have data. In
this case, the likelihood operator is no longer unitary and loses nice mathematical
properties needed for our annealed derivations in section �.�. The other way to
incorporate a mask in the likelihood is to consider infinite variance for pixels with
missing data. In practice, we set a very high variance, such as 1010, for these pixels
in the covariance matrix Σn. More specific information on the strategy we follow to
emulate the COSMOS shape catalog can be found in section �.�.

Thus, the log-likelihood takes the following form:

log p(“|Ÿ) = ≠1

2
(“ ≠ F

ú
PFŸ)†

Σ
≠1
n (“ ≠ F

ú
PFŸ) + constant, (�.�)

where F and F
ú are respectively direct and inverse Fourier transform. Because the

Fourier operator F is unitary, i.e. F
ú
F = Id, it is equivalent to refer to the likelihood

in real or in Fourier space:

log p(“|Ÿ) Ã ≠1

2
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ú
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= ≠1

2
F(“ ≠ F

ú
PŸ̃)†(Fú

ΣnF)≠1
F(“ ≠ F

ú
PŸ̃) (�.�)

= ≠1

2
(“̃ ≠ PŸ̃)†

Σ̃
≠1
n (“̃ ≠ PŸ̃), (�.�)

where Σ̃n is no longer diagonal in Fourier space.

Prior p(Ÿ) It encodes the knowledge about the convergence Ÿ. There is no full
analytical description of the convergence map prior. We will discuss various choices of
priors in the next section.

Bayesian evidence p(“) It is the marginal density of the observations. The
evidence is a constant if we assume a given model, and will be ignored in the rest
of this work as we do not consider Bayesian model comparison. In this work, we
assume p(“) = p(“|M), where M is ΛCMD with Planck parameters described in
subsection �.�.�.

All existing mass-mapping techniques can be understood under the lens of this
Bayesian formulation and will mostly di�er in their choice of prior, and in the specific
algorithm used to recover a point estimate of the convergence map. As in practice,
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this problem is ill-posed due to noise corruption and missing data in Equation �.�, the
posterior p(Ÿ|“) can be both wide and heavily prior dependent, which explains why
all these di�erent techniques yield di�erent answers.

�.� COSMOS dark matter mass-map reconstruction

In this chapter, we will demonstrate our mass-mapping algorithm and compare it to
existing methods in the literature on the reconstruction of the HST/ACS COSMOS
field. In the following, we discuss various information about this field such as the choice
of the shear catalog, survey mask, and the field resolution. To validate our methods,
we will also mock the COSMOS field with hydrodynamical N-body simulations.

Figure �.�: COSMOS HST/ACS field [Sco+��c]. This mosaic, representing the
combination of all the ACS pointings, is taken from [Koe+��].

�.�.� COSMOS survey

The Cosmic Evolution Survey (COSMOS) [Sco+��c] covers a field measuring �.��

square degrees and has been imaged using the Advanced Camera for Surveys (ACS)
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aboard the Hubble Space Telescope (HST). The ACS has captured a high-resolution
image of this field, which can be observed in Figure �.�. Since the release of this field,
numerous shape measurement methods discussed in section �.� have been employed,
resulting in the creation of catalogs galaxy galaxy shapes [e.g. Mas+��c]. In our study,
we used the shape catalog obtained in Schrabback et al. [Sch+��] (Schrabback ����

catalog (S��)), using the KSB+ method [KSB��; Hoe+��; Sch+��]. The spatially and
temporally varying PSF of the ACS camera was modeled using principal component
analysis interpolation. A step of multiplicative bias calibration (see section �.�) was
performed employing a power law with respect to the SNR fitted on simulations.

The catalog from [Sch+��] is divided into a bright i+ Æ 25 (Subaru SExtractor

MAG_AUTO magnitude) and a faint i+ Æ 25 galaxy sample. To estimate galaxy
redshifts for the bright sample, individual high-quality photometric redshifts are
available by cross-matching against the COSMOS-�� catalog [Ilb+��]. For the faint
catalog, Schrabback et al. [Sch+��] proposed a functional form for the overall n(z)
distribution, based on an extrapolation to fainter magnitudes of the i814-redshift
relation observed in the 23 Æ i814 Æ 25 range. In our analysis, we combine both bright
and faint galaxy samples into a single-shape catalog. The redshift distribution of
the bright, faint, and combined samples are illustrated in Figure �.�. The only cut
we applied was rejecting galaxies in the bright sample with zphot< 0.6 and i+ > 24.
The photometric redshift cut is motivated by S�� finding indications that many of
these galaxies are truly at high redshifts. Thus, their inclusion would imply that the
used estimate of the redshift distribution is inaccurate. This yields a total of ������

galaxies. This redshift distribution is particularly useful to create mocks of lensing
catalogs from dark matter simulations (see subsection �.�.�).
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Figure �.�: Redshift distribution of the COSMOS catalog from Schrabback et al.
[Sch+��]. The redshifts for bright galaxies (i+ < 25) are derived from the COSMOS-
�� catalog [Ilb+��], while the n(z) distribution for faint galaxies (i+ > 25) is based
on an extrapolation to fainter magnitudes as described in Schrabback et al. [Sch+��].

To match the resolution of the ŸTNG convergence maps simulations discussed
in the next section, we binned the catalog into pixels of resolution �.�� arcmin per
pixel, which translates into ��.� galaxies per arcmin2 on average. Due to insu�cient
resolution caused by factors such as very bright stars saturating the CCDs or image
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artifacts that prevent the reliable measurement of galaxy shapes in some regions of
the survey, we defined a binary mask capturing the limits of the survey as well as the
missing data. One can see the catalog mask in Figure �.�� (bottom left), used in the
mock and COSMOS S�� analyses. This binning also yields a shape noise variance
map. The variance of each pixel can be defined from the overall variance of shapes in
the catalog ‡e, rescaled by the number of galaxies per pixel Ni. For empty pixels, we
assumed a very large variance to express the lack of data to constrain the likelihood.
This gives:

Σn = diag(‡2
1 , . . . , ‡2

d), where ‡2
i =

Y

__]

__[

‡2
e

Ni
if Ni > 0

1010 otherwise

(�.�)

Figure �.�: Mask from S�� catalog of the HST/ACS COSMOS field.

�.�.� Simulating COSMOS lensing catalog from ŸTNG suite of
simulations

We present in this section the ŸTNG simulations we used to learn a mass-map prior
and to create mock data for validation of the method. The ŸTNG suite of ray-traced
weak lensing mocks maps generated from the IllustrisTNG (TNG) hydrodynamical sim-
ulations [Nel+��; Pil+��; Nel+��; Spr+��; Nai+��; Mar+��]. The TNG simulations
are a set of cosmological, large-scale gravity and magneto-hydrodynamical simulations,
where baryonic processes such as stellar evolution, chemical enrichment, gas cooling,
supernovae, and black hole feedback are incorporated as subgrid models. Therefore,
These simulations go beyond Gaussian Random Fields by accurately resolving the
small-scale, nonlinear gravitational evolution of the matter density field, providing a
wealth of additional information.

ŸTNG maps are generated through ray tracing of the trajectories of light-rays
from redshift z = 0 to the target source redshift. A large number of realizations
are generated by randomly translating and rotating the snapshots. Eventually, the
full set includes 10, 000 realizations of 5 ◊ 5 deg2 convergence maps for 40 source
redshift up to zs = 2.6, at a �.�� arcmin pixel resolution. We combined these source
planes to match the COSMOS redshift distribution in Figure �.�. All of the source
redshifts higher than zs = 2.6 were recycled to the last source plane z = 2.6 with
the appropriate weight designed to match the expected lensing kernel. This recycling
procedure is described in Figure �.�. All of TNG snapshots and ŸTNG convergence
maps were generated assuming a flat Λ-cold dark matter cosmological model at the
Planck ���� [Ade+��] cosmology, i.e. with Hubble constant H0 = 67.73 km s≠1

Mpc≠1 baryonic density Ωb = 0.0486, matter density Ωb = 0.3089, spectral index
of scalar perturbations ns = 0.9667, and amplitude of matter fluctuations at 8 h≠1

Mpc ‡8 = 0.8159, assuming massless neutrinos, with an e�ective number of neutrino
species Neff = 3.046. Because ŸTNG maps are computed by ray-tracing through the
IllustrisTNG hydrodynamic simulations, there is no need for post-Born correction.
Though the current ŸTNG do not incorporate intrinsic alignment, we can address the
e�ect using halo or galaxy shape [Shi+��; Kur+��].

According to this procedure, we built a dataset of convergence maps to train
our score network, and we also built mocked lensing catalog for validation study
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Figure �.�: This figures how the convergence maps above redshift zs = 2.6 are
recycled to match the expected lensing kernel assuming the full redshift distribution.
The original redshift distribution n(z) is shown in black and the recycled redshift
distributions in dashed lines. The redshift density at z = 2.6 where scaled by a factor
A, and the corresponding lensing kernels w(z) are plotted in plain lines. From this
study A = 1.2 is the best scaling factor fitting the expected lensing kernel.

before applying our method on the S�� catalog. We first applied the Kaiser-Squires
transformation to transform the convergence maps to shear maps and then corrupted
the field with artificial shape noise adding Gaussian noise to each pixel bin according
to Equation �.�.

�.� Literature review on priors

In the peculiar case of dark matter convergence maps, there is no analytical formulation
for the prior. Indeed, generating accurate convergence maps requires to solve N-body
simulations such as Liu et al. [Liu+��, MassiveNuS] or Osato et al. [OLH��, ŸTNG]�

and then to use ray-tracing to project the �D matter density field in a 2D convergence
map. The purpose of this section is therefore to discuss various prior assumptions in
the literature such as flat (Kaiser-Squires), Gaussian Random Field (Wiener filter),
sparse (MCA-lens, GLIMPSE) or learned from N-body simulations with deep learning
methods (Deep-mass or our contribution based on neural score-matching).

�.�.� Flat prior: Kaiser-Squires Reconstruction

The Kaiser-Squires method [KS��] can be seen as a simple maximum likelihood
estimate (Maximum Likelihood Estimate (MLE)) of the convergence map, typically

�http://columbialensing.org/
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followed by a certain amount of Gaussian smoothing.

Ÿ̌ks = arg min
Ÿ

Î “ ≠ F
ú
PFŸ Î2

2= (Fú
PF)†“ (�.�)

Ÿks = s ú Ÿ̌ks (�.��)

where s is a Gaussian smoothing kernel of a given scale, and (Fú
PF)† is a pseudo-

inverse of the operator F
ú
PF. While this method is the fastest, it does not take into

account masks and leads to leakage between E and B modes of the convergence field.
Applying the pseudo inverse operator to the shear map yields a noisy convergence map,
this is why we apply a smoothing kernel. For Kaiser-Squires, the heteroscedasticity
does not impact the solution, whereas it can for certain extensions such as the
Generalized Kaiser-Squires method [Sta+��, Appendix B.�], in which an iterative
approach with little regularization that takes the mask and noise heteroscedasticity
into account. This approach remains very limited to reconstruct a precise convergence
map because the likelihood is highly dominated by the noise. This motivates the use
of a physically motivated prior, which would help in reconstructing the features hidden
by the likelihood noise.

�.�.� Gaussian Random Field: Wiener Filter

The Wiener filter [Wie��] solution to the mass-mapping inverse problem assumes a
Gaussian Random Field prior on Ÿ and takes advantage of the fact that the power
spectrum of the convergence can be analytically predicted from cosmological models,
and accurately describes the field on large scales. This prior on the convergence can
be expressed as a Gaussian distribution with a diagonal covariance matrix S in Fourier
space:

pGRF(Ÿ) =
1Ô

det 2fiS
exp

3

≠1

2
Ÿ̃†

S
≠1Ÿ̃

4

, (�.��)

where S is the convergence power spectrum, and GRF stands for Gaussian Random
Field.

The solution of the inverse problem can be formulated as:

Ÿ̂wiener = arg min
Ÿ

Î Σ
≠1/2
n (“ ≠ F

ú
PFŸ) Î2

2 ≠ log pGRF(Ÿ) . (�.��)

This Wiener solution corresponds to the maximum a posteriori (Maximum a Posteriori
(MAP)) solution under this Gaussian prior, and also matches the mean of the Gaussian
posterior. An appealing property of this estimator is that the solution can be easily
recovered analytically in the case where the noise is homoscedastic, as both signal
and noise covariance matrices become diagonal in Fourier space. The Wiener Filter
reconstruction [Lah+��; Zar+��] is given in Fourier space by:

Ÿ̃ = SP
†

Ë

PSP
† + Σ̃n

È≠1

“̃, (�.��)

where S and Σ̃n are respectively the signal and noise covariance matrix in Fourier
space.

In more complex cases, where the noise covariance is not diagonal in Fourier space
(for instance because of a mask in pixel space), the solution can still be recovered e�-
ciently using optimization algorithms, e.g. with proximal methods [Bob+��; Sta+��],
or by means of a messenger field [EW��]. One can also draw samples from the Wiener
posterior with the messenger field algorithm [Jef+��].
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�.�.� Sparse priors

Convergence maps contain non-Gaussian features, that are not well recovered with
the methods described above. Several mass-mapping algorithms have been proposed,
relying on a wavelet sparsity prior [SPR��; LDS��; Lan+��; Pri+��; Sta+��], which
can be formulated as:

log p(x) =Î Φ
tx Îp (�.��)

with p < 2, and where Φ is a wavelet dictionary and Î . Îp is a sparsity promoting ¸p

norm.

The convergence map is the solution of the following sparse recovery optimization
problem:

Ÿ̂ = arg min
Ÿ

Î Σ
≠1/2(“ ≠ F

ú
PFŸ) Î2

2 +⁄ Î Φ
tŸ Îp, (�.��)

where ⁄ is the regularisation parameter, weighting the sparse regularisation constraint.
The GLIMPSE method [Lan+��], allows in addition to take into account masks,
non-uniform noise, flexion data if they are available, and also does not require to
transform the shear catalog on pixelized map. For further details on the design of
sparse prior for weak lensing mass-mapping, we refer the reader to François Lanusse’s
thesis [Lan��].

�.�.� Deep implicit prior

While all the priors described above have closed-form expressions, it is also possible
to design a mass-mapping method where the prior is defined implicitly. The first
dark matter map reconstruction from weak lensing observational data using deep
learning was shown in [Jef+��a]. The method, called DeepMass, is a Convolutional
Neural Network (Convolutional Neural Network (CNN)) trained on pairs of simulated
pixelized shear and convergence maps. One can show that under some assumptions,
a deep learning model can estimate the mean of the posterior distribution. In a
nutshell, the network needs to be trained to minimize the mean squared error (Mean
Squared Error (MSE)) of the output convergence Ÿ and the training convergence and
shear maps must be drawn respectively from the prior p(Ÿ) and likelihood distribution
p(“|Ÿ). We make the derivation of this result later in subsection �.�.�.

While the Wiener Filter assumes a Gaussian prior over the convergence, simulated
training data for DeepMass are drawn from the full non-Gaussian prior p(Ÿ) and thus
improve the accuracy of the reconstruction. DeepMass is therefore able to recover the
non-linear structures of the convergence better than the Wiener filter and to reduce
the MSE of the reconstruction.

Even if DeepMass reconstructs high quality convergence maps, DeepMass alone
only provides the mean posterior and cannot quantify the uncertainties of the recon-
struction. Furthermore, as any direct inversion method based on neural networks,
the likelihood Equation �.� is learned implicitly by the model and does not explicitly
constrain the solution at inference time. Meaning that although we have not found
in our experiments obvious failures, the CNN may in theory fails in ways that would
lead to a map not consistent with observations, for instance, creating spurious arti-
facts, or missing structures present in the true map. Another side e�ect of implicitly
learning the likelihood during training is that the model is trained for a specific survey
configuration, and retraining the network is required if either the survey mask or the
noise covariance matrix is di�erent.



�.�. LITERATURE REVIEW ON PRIORS ��

In this work, we propose a new approach which estimates the full posterior
distribution p(Ÿ|“), being able to not only recover the posterior mean, but also to
quantify the uncertainties of the reconstruction. In addition, in our method the
likelihood is explicit, meaning that it does not require a retraining for a new survey
configuration.

�.�.� Score-matching prior

Hybrid denoiser As explained in subsection �.�.�, it is possible to learn the score
of the underlying distribution of dark matter mass maps from cosmological simulations.
In theory, this prior can be arbitrarily complex and the denoising score matching
method should be able to model it. In practice, we are limited by the constraining
power of the architecture and the neural network can have di�culties to learn the
prior in all of its complexity. We propose therefore to use the physically motivated
GRF prior as a first guess and let the neural network learn the residual model. As the
GRF prior is supposed to be accurate at large scales and capturing the �pt statistics
of the field, the residual prior should then focus all of its modeling power to capture
the non-linear scales of the field.

As we aim to learn the residual score with denoising score matching, we need to
learn a residual denoiser where the first guess would be performed by the Gaussian
Random Field (GRF) prior. To this end, we need to feed the neural network the GRF
prior score ÒŸ log pGRF(Ÿ̃) along with the noisy Ÿ̃ and train it the the denoising score
matching loss in Equation �.��. We call this loss Residual Denoising Score-Matching
(Residual Denoising Score-Matching (RDSM))

LRDSM(◊) = E
u≥N (0,Id)
‡≥N (0,s)

Îu + ‡r◊(Ÿ + ‡u, ÒŸ log pGRF(Ÿ + ‡u))Î2
2 (�.��)

In addition, it is interesting to see how the GRF prior acts as a denoiser. We
can define a Gaussian denoiser from the GRF prior defined in Equation �.�� and the
relation between scores and denoisers in Equation �.��.

rGRF(Ÿ, ‡) = Ÿ + ‡2ÒŸ log pGRF,‡(Ÿ), (�.��)

where rGRF(Ÿ̃, ‡) denotes de GRF denoiser with input Ÿ̃ with the knowledge of the
noise level ‡ and log pGRF,‡(Ÿ̃) =

s
pGRF(Ÿ)q‡(Ÿ̃|Ÿ)dŸ, q‡(Ÿ̃|Ÿ) being a multivariate

Gaussian distribution of variance ‡2 and Ÿ̃ = Ÿ + ‡‘ with ‘ ≥ N (0, Id).

Figure �.� is an illustration of the comparison between the GRF prior and hybrid
prior on denoising tasks. We can observe that the GRF denoiser performs well at
removing the noise but is only able to reconstruct the large scales of the map. This
behavior is expected since this prior is completely analytical and encoded by the power
spectrum of the map which does not capture the statistics of the non-linear scales.

Training details The general approach to training score models with Denoising
Score Matching was described in subsection �.�.�. We describe in this paragraph the
actual implementation details which enable us to learn the parametric denoiser r◊. We
used a �-scale U-net architecture inspired from [RFB��], which broadly speaking is an
autoencoding neural network with skip connections as schemed in Figure �.�. It is
composed of Resnet [He+��] blocks of � convolutional layers, each block being followed
by batch normalization layers. The downsampling is performed by average pooling
and upsampling by interpolation using nearest neighbor. The sequence of channels of
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Figure �.�: Comparison between (a) ground truth convergence maps Ÿ, (b) noisy
convergence map Ÿ̃ = Ÿ + ‡u, (c) GRF denoiser estimation rGRF(Ÿ̃, ‡) and the hybrid
denoiser.

the the di�erent scales of the Unet was [3, 32, 64, 128, 128], where � corresponds to the
input of the network. As we are learning a score model, there are many regions in the
high-dimensional space R

d where there is no training data, but where we will be likely
to explore during the sampling procedure. This is why we used tree-based spectral
normalization (SN) as described in subsection �.�.� to enforce the lipschitzness of
the network and therefore constrain the estimation in empty regions to align with
well-constrained scores towards regions of high densities of the target distribution.

Our architecture takes multiple input images of size 360 ◊ 360 which are stacked
into channels. First the noisy convergence map Ÿ̃ 360 ◊ 360 pixels2 corresponds to
1.64 deg2, which means a resolution of 0.29 arcmin/pixel. Second, the noise level of
the map ‡ multiplied elementwise to a 360 ◊ 360 array of ones. It is important to
notice here that the nature of the noise is isotropic Gaussian and can be summarized
in its standard deviation which we inform the neural network. Astrophysical noise like
shape noise is involved in the likelihood covariance matrix, not in the prior. Third, the
GRF prior score estimate from computed from Equation �.�� ÒŸ log pGRF,‡(Ÿ̃). As
advised in [SE��], we divided the output of the network by the the noise level ‡. This
is because it is observed that the norm of the score function is inversely proportional,
which the network su�ers to rescale automatically and is necessary when dealing with
large orders of magnitude of noise during the annealing.

Regarding the optimization procedure, we used the Adam optimizer [KB��] with a
ramp learning schedule, starting from 10≠4 and decreasing up to 10≠7. The loss was
minimized using mini-batch of size �� for 4 ◊ 105 optimization steps.

�.� High-dimensional posterior sampling

In this section, we describe the algorithm to sample the mass-mapping posterior
distribution. As we aim to perform sampling in a very high dimensional space, we
propose to use a state-of-the-art sampling scheme inspired by di�usion-based image
generation models. We first show that while these methods are very e�cient at
sampling from prior distributions, they fail at sampling posteriors when we consider
an analytical likelihood distribution, even in very simplistic cases. We then describe
how to transform the likelihood distribution by annealing to perform annealed HMC
and solving the high-dimensional mass-mapping posterior inference.
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Figure �.�: Scheme of the U-net architecture. Credit: Ronneberger et al. [RFB��].

�.�.� The posterior annealing problem

It is natural to decompose the score of the posterior as the sum of the likelihood and
prior score according to Bayes’ rule:

Òx log p(x|y) = Òx log p(y|x) + Òx log p(x). (�.��)

It is however much less trivial to define the annealed posterior score for arbitrary
temperature t such that

Òx(t) log p(x(t)|y) = Òx(t) log p(y|x(t)) + Òx(t) log p(x(t)). (�.��)

Indeed using the reverse-SDE formulation in Equation �.�� requires particular
properties of the distribution p(x(t)|y). Assuming a Gaussian di�usion process, we
need to verify that p(x(t)|y) =

s
p(x|y)p(x|x(t))dx, where p(x|x(t)) is a Gaussian

distribution. However, we only have access to the analytical likelihood p(y|x) and to
the annealed prior score Òx(t) log p(x(t)). One trivial operation would be to anneal the
likelihood with the same kernel as for the prior, i.e. p(y|x(t)) =

s
p(y|x)p(x|x(t))dx,

but this has the major issue of leading to the annealed posterior with a Gaussian
kernel.

This phenomenon appears for any type of likelihood and prior even when they
are Gaussian, because the convolution of a product of distribution densities is not
the product of the convolution of the densities, i.e. for an arbitrary distributions
p(x) = p1(x)p2(x), and g:

(p ú g)(x) ”= (p1 ¢ g)(x)(p2 ¢ g)(x) (�.��)

or in score terms

Òx log(p ¢ g)(x) ”= Òx log(p1 ¢ g)(x) + Òx log(p2 ¢ g)(x). (�.��)

As a consequence, we cannot use the annealed posterior score Òx(t) log p(x(t)|y)
as defined in Equation �.�� in the reverse SDE or ODE presented in subsection �.�.�
to sample the posterior distribution. We show in Figure �.� that running an ODE
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with the annealed score leads to a wrong estimation of a 1-dimensional posterior
distribution, and it also fails to estimate the correct posterior of mass-maps assuming
a GRF prior in subsection �.�.�.

Figure �.�: Annealing jointly the likelihood and the prior is not equivalent to annealing
the posterior distribution. In this example, the prior distribution p(x) is in green
and the likelihood p(y|x) in grey. Sampling with the reverse-SDE (Equation �.��) by
annealing both the likelihood and the prior yields the distribution in blue, while a
correct annealing of the posterior should yield the the distribution in red.

�.�.� Mass-maps posterior sampling

According to the previous section, to perform annealed HMC on the posterior dis-
tribution, we need to anneal both the likelihood and the prior. The denoising score
matching prior allows to have access to the score of the annealed prior by construction.
It therefore remains to anneal the likelihood with a Gaussian kernel, i.e. such that
p(y|x(t)) =

s
p(y|x)p(x|x(t))dx, where p(y|x) is defined in Equation �.�. As both the

likelihood and the convolutional kernel are Gaussians, the convolved density is also
Gaussian. The presence of the operator F

ú
PF makes it a bit more subtle, but we can

show the following proposition:

Proposition: let x œ R
d, y œ R

d, p‡1
(y|x) , N (y | Px, ‡2

1Id) being the likelihood
and p‡2

(x) , N (x | 0, ‡2
2Id) a centered multivariate Gaussian distribution. Let us

assume that the operator P is unitary, i.e. verifies P
†
P = Id.

Then, the convolution of the likelihood with the centered Gaussian is:

p‡1
¢ p‡2

(y|x) = N (y | Px, (‡2
1 + ‡2

2)Id). (�.��)

Proof : According to the definition of p‡1
and p‡2

, we have:

p‡1
¢ p‡2

(y|x) =
s

p‡1
(y|x ≠ t)p‡2

(t)dt

=
1

(2fi‡2
1‡2

2)d

⁄

exp

3

≠ 1

2‡2
1

!
(y ≠ P(x ≠ t))†(y ≠ P(x ≠ t))

"
4

◊ exp

3
t†t

2‡2
2

4

dt,
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=
1

(2fi‡2
1‡2

2)d

⁄

exp

A

≠ 1

2‡2
1

3

Îy ≠ PxÎ2
2 + 2y†

Pt

≠ 2x†
P

†
Pt + t†

P
†
Pt

4B

exp

3
t†t

2‡2
2

4

dt

=
1

(2fi‡2
1‡2

2)d

⁄

exp

A

≠ 1

2‡2
1

3

Îy ≠ PxÎ2
2 + 2y†u

≠ 2x†
P

†u + u†u

4B

exp

3
t†t

2‡2
2

4

dt.

We can use the change of variable u = Pt, and notice that du = | det P|dt = dt
and u†u = t†

P
†
Pt = t†t, since P is unitary, so that:

=
1

(2fi‡2
1‡2

2)d

⁄

exp

A

≠ 1

2‡2
1

!
Îy ≠ PxÎ2

2 + 2u†(y ≠ Px) + u†u
"

B

◊ exp

A

u†u

2‡2
2

B

du

=
1

(2fi‡2
1‡2

2)d
exp

A

≠ Îy ≠ PxÎ2
2

2‡2
1

B

◊
⁄

exp

A

≠ u†(y ≠ Px)

‡2
1

≠ u†u

3
1

2‡2
1

+
1

2‡2
2

4 B

du

=
1

(2fi‡2
1‡2

2)d
exp

A

≠ Îy ≠ PxÎ2
2

2‡2
1

B

◊

⁄

exp

A

≠ 1

2

3
1

2‡2
1

+
1

2‡2
2

4 C

2u†(y ≠ Px)

2‡2
1

3
1

2‡2
1

+
1

2‡2
2

4≠1

+ u†u

DB

du

= exp

A

≠ Îy ≠ PxÎ2
2

2‡2
1

B

exp

A

Îy ≠ PxÎ2
2

2‡4
1

3
1

‡2
1

+
1

‡2
2

4≠1
B

¸ ˚˙ ˝

(*)

◊

⁄

exp

A

≠ 1

2

3
1

2‡2
1

+
1

2‡2
2

4 C

u +
y ≠ Px

2‡1

A 3
1

2‡2
1

+
1

2‡2
2

4≠1

¸ ˚˙ ˝

,µ

D2B

du

¸ ˚˙ ˝

(**)



�� CHAPTER �. WEAK LENSING MASS-MAPPING

=
(2fi)d/2

1
1

‡2
1

+ 1
‡2

2

2d/2

(2fi‡2
1‡2

2)d
exp

3

≠ Îy ≠ PxÎ2
2

2(‡2
1 + ‡2

2)

4

= (2fi)≠d/2(‡2
1 + ‡2

2)≠d/2 exp

3

≠ Îy ≠ PxÎ2
2

2(‡2
1 + ‡2

2)

4

= (2fi)≠d/2(‡2
1 + ‡2

2)≠d/2 exp

3

≠ Îy ≠ PxÎ2
2

2(‡2
1 + ‡2

2)

4

= N (y | Px, (‡2
1 + ‡2

2)Id)

⇤

(*) = exp

A

≠ Îy ≠ PxÎ2
2

2

A

1

‡2
1

≠ 1

‡4
1

A

1

‡2
1

+
1

‡2
2

BBB

= exp

A

≠ Îy ≠ PxÎ2
2

2(‡2
1 + ‡2

2)

B

.

(**) = (2fi)d/2

3
1

‡2
1

+
1

‡2
2

4d/2

◊

1

(2fi)d/2
1

1
‡2

1
+ 1

‡2
2

2d/2

⁄

exp

3

≠1

2

3
1

‡2
1

+
1

‡2
2

4

[u + µ]

4

du

¸ ˚˙ ˝
=1

.

�.� Posterior moments validation

In the following, we used the Halofit matter power spectrum from jax-cosmo�,
using Ade et al. [Ade+��] (Table � final column) results, to build the Gaussian prior
covariance matrix. In the following, we also refer to it as the fiducial power spectrum.

�.�.� Gaussian posterior

To validate our posterior sampling algorithm we show that we can recover the Wiener
Filter by averaging the posterior samples. Indeed, the Wiener Filter is the Maximum
A Posteriori (MAP) solution assuming a Gaussian Random Field prior. The likelihood
of the problem being Gaussian as well, the posterior is in this case also Gaussian,
and therefore, the MAP matches the Posterior mean. There are several methods to
recover the Wiener Filter solution to the mass-mapping inverse problem. In Figure �.�,
we compare three of these methods. First, we compute using the messenger field

�https://github.com/DifferentiableUniverseInitiative/jax_cosmo
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Figure �.�: MCMC chains start from a wide Gaussian distribution and converge to
the target multimodal distribution while we anneal the temperature of the convolved
Gaussian distribution. This enables the chains to always remain in high-density regions
of the distribution. This has two benefits, first, all the final samples from the target
distribution are independent of each other due to the independent initial sampling.
Second, all the modes of the target distribution are cached, without the classical need
to jump from one to the other with traditional samplers. The left panel shows the
final sample of an annealed HMC chain and the right panel shows a one-dimensional
analogy of our sampling scheme.

algorithm from Elsner et al. [EW��] and use it as a reference to validate the two
others. Second, we run a gradient descent optimization (see subsection �.�.�) method
on the posterior distribution to recover the MAP. Finally, we sample the posterior
using the annealed HMC algorithm and average them to recover the posterior mean.
To validate that all of these maps match, we compare them both in terms of Root
Mean Square Error (RMSE) and it terms of power spectrum.

In this setting, we have access to analytical descriptions of the likelihood, prior,
and posterior distributions so we are able to check if a posterior sampling algorithm
is able or not to recover expected statistics of the field. For example, running the
backward SDE fails to sample correctly the posterior distribution in this setting. This
is due to the posterior annealing problem discussed in subsection �.�.�. We illustrate
in subsection �.�.� that while running an SDE enables to recover a mass-map with
the correct power spectrum, averaging the SDE samples does not lead to the expected
posterior mean mass-map. We can observe visually that the SDE-mean share similar
features with the correct result, but does not have zero signal outside of the survey
mask, where only the prior should drive the result.

�.�.� Full posterior moments against moments network

While our approach allows us to get a point estimate of the posterior through the
samples by computing averages or higher moments, it is also possible to use amortized
methods and train a neural network as a direct estimator of these moments. It is
always what is done when training a neural network on a regression task. Indeed let
us take the example of training a neural network under the minimization of an ¸2 loss
to show how to build an estimator of the posterior mean.
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Figure �.�: Comparison of three di�erent methods to recover the MAP assuming a
GRF prior. The messenger field algorithm solution is shown on the top left and the
average of our posterior samples (top right). The bottom left panel shows the absolute
di�erence between the messenger field reconstruction and our posterior mean. The
bottom right panel shows the ratio shows the power spectrum relative error of our
posterior mean and MAP using gradient-based optimization against the messenger
field algorithm solution. This shows that all of these three methods are in agreement.
We also show the power spectrum relative error between our posterior samples and
the fiducial power spectrum used to build the GRF prior.
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Let x œ R
d be the unknown signal we aim to reconstruct and y œ R

d the observation.
Let us introduce a neural network f◊, where ◊ are the neural network weights to
optimize.

This amortized approach was formalized for inverse problem-solving in [JW��],
under the name of moments network. This result comes from a known probability
theory theorem which can also be found in Adler et al. [AÖ��].

Proposition: if

◊ú = arg min
◊

E
(x,y)≥p(x,y)

Îx ≠ f◊(y)Î2
2, (�.��)

then the neural network is an estimator of the posterior mean

x̂ = f◊ú(y) =

⁄

xp(x|y)dx. (�.��)

Proof : we derive the proof for measurable Euclidian spaces R
d.

Let us denote E [x|y] =
s

xp(x|y)dx. As training samples are drawn from the joint
distribution, i.e. (x, y) ≥ p(x, y), the optimization objective is written as

min
◊

L(◊) = min
◊

E
(x,y)≥p(x,y)

Îx ≠ f◊(y)Î2
2 (�.��)

The minimum is found at Ò◊L = 0, i.e.

Ò◊L = 0 … Ò◊

⁄

Îx ≠ f◊(y)Î2
2p(x, y)dxdy = 0 (�.��)

…
⁄

Q

c
a

⁄

Ò◊Îx ≠ f◊(y)Î2
2

¸ ˚˙ ˝

ÒθfθÒfθ
Îx≠fθ(y)Î2

2

p(x|y)dx

R

d
b p(y)dy = 0 (�.��)

… Ò◊f◊
¸ ˚˙ ˝

(1)

Òfθ

⁄ 3⁄

Îx ≠ f◊(y)Î2
2p(x|y)dx

4

p(y)dy

¸ ˚˙ ˝

(2)

= 0 (�.��)

Either (�) or (�) or both are zero. (�) is likely not zero for all architecture so (�) is
zero. Moreover f ‘æ

s !s
Îx ≠ fÎ2

2p(x|y)dx
"

p(y)dy is a convex function in f , so has a
unique minimum. Let us show that this minimum is the posterior mean.

(2) = Òfθ

⁄ 3⁄

Îx ≠ f◊(y)Î2
2p(x|y)dx

4

p(y)dy (�.��)

=

⁄ 3⁄

(≠2x + 2f)p(x|y)dx

4

p(y)dy (�.��)

=

⁄ 3

≠
⁄

2xp(x|y)dx + 2f

4

p(y)dy (�.��)

(f = E [x|y]) = 0 (�.��)

Therefore, the posterior mean is the unique minimizer of the mean square error
loss function.
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�.�.� Point estimates validations

In this section, we compare the accuracy of di�erent point estimates compared to a
mocked density field mimicking COSMOS. The di�erent approaches of dark matter
mass-map reconstruction were described in section �.� and are summarized in the
following list:

• Kaiser-Squires reconstruction [KS��]

• Wiener Filter [wiener] [EW��; JHF��], maximum/mean a posteriori assuming
a Gaussian Random Field prior

• GLIMPSE (�) [Lan+��], MAP assuming a sparse prior

• MCAlens (�) [Sta+��], MAP assuming a sparse prior

• Deepmass Je�rey et al. [Jef+��b], posterior mean fully amortized method

• Score-based posterior mean [Rem+��]

Table �.� shows a quantitative comparison of the Kaiser-Squires, the Wiener Filter,
MCALens, GLIMPSE, DeepMass and our mass-mapping method, based on two
metrics:

• The root mean square error (RMSE) is defined as:

RMSE
!
Ÿ̂, Ÿgt

"
=

ˆ
ı
ı
Ù

1

n

nÿ

i=1

!
Ÿ̂i ≠ Ÿ

gt
i

"2
, (�.��)

where i is the pixel index, Ÿ̂ the mean-subtracted estimated convergence map,
Ÿgt the mean-subtracted ground truth convergence map we aim to recover. Note
that we use here the mean-subtracted convergence map. This is motivated by
the mass-sheet degeneracy, which does not constrain the mean of the convergence
map.

• The Pearson correlation coe�cient r defined as:

r
!
Ÿ̂, Ÿgt

"
=

Cov (Ÿ̂, Ÿgt)

‡Ÿ̂‡Ÿgt

, (�.��)

where Cov is the covariance and ‡Ÿ is the standard deviation of the convergence
map Ÿ.

It turns out that MCAlens, DeepMass and our posterior mean both reach
the lowest RMSEs and highest Pearson correlations. These results can be expected
since both DeepMass and DLPosterior mean are data-driven. DeepMass is
explicitly trained to minimize the pixel reconstruction error leading to an estimate of
the posterior mean, which our method is also targeting. This result shows that our
method reaches the state-of-the-art reconstruction of convergence maps.

The fact that MCAlens leads to metrics similar to DeepMass and DLPosterior

mean could be explained by the fact that MCAlens modeling, (the convergence map
being modeled as the sum of a Gaussian Random Field and a non-Gaussian one being
sparse in the wavelet domain) is able to capture well enough the main properties of
the convergence map.
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Method RMSE ¿ r ø
KS (σsmooth=� arcmin) 2.40 ◊ 10≠2 �.��

Wiener filter 2.31 ◊ 10≠2 �.��

GLIMPSE (�) 2.84 ◊ 10≠2 �.��

MCAlens (�) 2.19 ◊ 10≠2 �.��

DeepMass 2.18 × 10
−2

0.68

std=�.��e-�� DLPosterior mean 2.16 × 10
−2

0.68

Table �.�: Metrics comparison between di�erent mass mapping methods. RMSE (the
lower the better) is computed according to eq. �.�� and the Pearson Correlation
coe�cient r (the higher the better) according to eq. �.��. For a fair comparison to
Kaiser-Squires, we kept the smoothing coe�cient that minimized the RMSE.
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Figure �.��: Comparison of deep learning-based mass-mapping methods on one mocked
COSMOS field. First row: the ground truth ŸTNG convergence map, the mean of
our posterior samples (over ��� samples), DeepMass and the standard deviation of
our posterior samples. All the maps use the same colorbar, except for the standard
deviation, which is displayed in the range [0, 0.035]. Second row: samples from the
posterior distribution, using the hybrid Gaussian-neural score prior. The mask contours
corresponds to the COSMOS survey boundary mask.

�.� Reconstruction of the COSMOS field

�.�.� HSC/ACS COSMOS posterior mass maps

In this section, we now apply our full methodology to the reconstruction of the
COSMOS field, using the catalog described in section �.�. The likelihood covariance
and the simulation-based prior remain the same as in the validation section.

As a baseline, we show the Kaiser-Squires reconstruction of the COSMOS conver-
gence field in the top-left panel of Figure �.��. We applied a Gaussian-smoothing with
a variance ‡smooth = 1 arcmin, chosen such that the RMSE is minimized and Pearson
correlation coe�cient is maximized on simulated data. Although large scale and small
scale structures can already be observed on this map, its power spectrum does not
correspond to the fiducial matter power spectrum and no feature at scales smaller
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than 1 arcmin can be observed. Moreover, there is not any uncertainty quantification
on the reconstruction.

In Figure �.�� we also present our reconstruction of the COSMOS convergence
field, alongside uncertainty quantification. The top-right panel shows a posterior
sample that looks very similar to a posterior sample from simulated input from
ŸTNG simulations. Notice that although there is only input shear within the white
contours, i.e. in the survey footprint, a complete convergence map is sampled from
the posterior distribution. We furthermore validate, in Figure �.��, the quality of
COSMOS posterior samples reconstruction by showing that their power spectra are
in good agreement with those of ŸTNG convergence maps.

As proposed in subsection �.�.� we choose the posterior mean as our estimate
for the convergence reconstruction. The Bottom-left panel of Figure �.�� shows the
average of ��� samples making the DLPosterior mean of the COSMOS field. One
can visually observe the similar LSS of the field between the Kaiser-Squires and the
DLPosterior mean, while the latter contains much more resolved features, especially
concerning the cluster’s shape.

�.�.� Cluster detection with posterior samples

Another way to examine our COSMOS convergence map is to compare to another probe
for cluster mass detection. So in the bottom-left and top-right panels of Figure �.��,
we overlay a subset of X-ray clusters from the Finoguenov et al. [Fin+��] catalog.
Most of the X-ray clusters match to a resolved peak in the convergence field, which is
in a way expected since we selected the most massive X-ray clusters.

Alongside the DLPosterior mean, we also provide the DLPosterior standard
deviation, in the bottom-right panel of Figure �.��. One can observe again that the
variance is the highest outside the survey contours since there is no data. Another
interesting behavior of the posterior is that the location where the uncertainty is also
high is where the signal is the most intense.

The former mass-map of the COSMOS field was published in Massey et al.
[Mas+��a], using a generalized version of the Kaiser-Squires method. When comparing
the two maps, although we do not share the same shape catalog or redshift distribution,
they share similar mass distributions. However, the COSMOS-DLPosterior mean is
much more resolved. In particular, we can identify several clusters in what looks like
one coarse cluster in the Massey et al. [Mas+��a] mass-map at coordinates RA=���.�,
DEC=�.�.

For this detection experiment, we added an NFW profile to the input shear map.
We then ran our cluster detection procedure on the associated DLPosterior samples.
Figure �.�� shows cutouts of those samples around the cluster location. The upper
plot shows the samples that were selected with a 3‡ threshold and the bottom plot
the ones that were not selected. We can recognize the shape of a cluster among the
samples with positive detection, i.e. with maximum coe�cient above 3‡.

�.�.� Going further

Having presented the method and results, we propose in this section a discussion
on some important points including scientifically relevant use cases, limitations, and
possible extensions.

As mentioned earlier in this chapter, taking the average over posterior samples
should reduce to the DeepMass results. One may wonder about the tradeo� between
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the two approaches if the results should be the same. We would argue that the two
methods are complementary. DeepMass is much faster in producing a convergence
map as it only requires a forward pass of the U-net. However, DeepMass remains an
amortized solution, with no strong guarantees on the solution it recovers in practice,
due to not having an explicit likelihood. This also means that the entire model needs
to be retrained for any change in the lensing catalog (to account for variations in the
mask or noise).

We expect that the method presented in this chapter will find its most compelling
applications in the study of localized structures through the weak lensing e�ect, where
the benefits of a full pixel-level posterior are the strongest. As a particularly relevant
example, we will mention the discussion surrounding the potential detection in the
Abell ��� (A���) cluster of a dark clump [Jee+��; Clo+��], a localized peak visible
in mass-maps but with no optical counterpart. Quantifying the significativity of
such a structure using non-linear mass-mapping algorithms targeting a Maximum A
Posterior solution (for instance based on sparse regularization) is a di�cult task. It
was attempted for this particular field using di�erent techniques in Peel et al. [PLS��]
and Price et al. [Pri+��], but without strong quantitative statements. The method
developed in this chapter however would be able to access the full posterior of the
problem.

For cosmological applications, it is however likely that the use cases of the method
presented in this work will remain limited. Indeed, for Higher Order Statistics relying
on simulations to evaluate their likelihood, the particular mass-mapping technique
used is not critical as any systematics due to reconstruction errors induced by the
algorithm are calibrated on simulations. A simple Kaiser-Squires inversion should
in principle su�ce in most cases of interest. From an information-theoretic point of
view, the information is preserved by a Kaiser-Squires inversion (in the presence of
masks, keeping both E- and B- modes) while any posterior summary may discard some
cosmological information. Nevertheless, the ability to sample constrained realizations
may find very useful applications such as inpainting masked regions to facilitate the
computation of �pt functions, or void detection algorithms.

We also want to highlight that the method presented in this chapter can be extended
in multiple directions. In this configuration, we would be limited to analyzing small-
volume surveys. However, we could train a prior on spherical maps, having a spherical
likelihood and run analysis and then run large-volume surveys analyses. We are
considering here a prior at a fixed cosmology, primarily due to the high computational
cost of high-resolution hydrodynamical simulations at di�erent points in cosmological
parameter space. Concretely, this means that our solution is heavily biased towards
the fiducial cosmology on scales poorly constrained by the data. Note however that the
hybrid deep learning + physical Gaussian prior we have introduced in this work provides
a natural framework for extending our method to include cosmological dependence. On
large scales, the prior is mostly driven by the analytic power spectrum and thus easy
on condition on cosmology, while on small scales, only the non-Gaussian residuals are
captured by the neural network. This implies that the cosmology-dependent part of the
model that needs to be learned on simulations is mostly on small scales. This makes
it very likely that in the near future, one could develop such a cosmology-dependent
residual prior from suites of numerical simulations of smaller cosmological volume,
but spanning a range of cosmological models. The recent multifield Cosmology and
Astrophysics with MachinE Learning Simulations (CAMELS) simulations [Vil+��]
would be an ideal dataset for this purpose. Another avenue for future work would
be extending the method to the sphere, which is simply a matter of defining a U-net
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for instance using a DeepSphere [Per+��] approach for convolutions on a spherical
domain.

] ] ]

] ]
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Figure �.��: Mass-mapping methods comparison. Ground truth corresponds to the
convergence map Ÿ that we aim to recover, taken from Osato et al. [OLH��], DLPos-

terior mean and DLPosterior sample are the results discussed in section �.�,
DeepMass is from Je�rey et al. [Jef+��b], MCALens with ⁄ = 4 is from Starck
et al. [Sta+��], GLIMPSE method with ⁄ = 3 is from Lanusse et al. [Lan+��], Survey
Mask is the COSMOS catalog binary mask, Kaiser-Squires with Gaussian smoothing
(‡smooth = 1 arcmin) is from Kaiser et al. [KSB��] and the Wiener Filter is from
Elsner et al. [EW��] and Je�rey et al. [JHF��].
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Figure �.��: HST/ACS COSMOS field reconstructions along known X-ray clusters
from the XMM-Newton survey. Top-left: Kaiser-Squires (with a Gaussian smoothing
of ‡ = 1 arcmin), top-right: sample from the posterior distribution, bottom-left:
mean of the posterior distribution, bottom-right: standard deviation of the posterior
distribution (over ��� samples, shown in the clipped range [�, �.���]).
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Figure �.��: Power spectra comparison between the COSMOS field reconstruction and
simulations. We compare the power spectra of posterior samples for the COSMOS
field in blue and for a simulated field in red. We also display the power spectrum of
samples from the training set in orange to show the matching.
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Detection

No detection

Figure �.��: This figure shows filtered maps of the convergence posterior samples
estimated by our method. Every cutout corresponds to the same region of the map.
In the upper panel, a cluster was added in the input shear, while not below. The
above cutouts of the filtered maps show the recovered cluster shape in the center of
the map, while the below cutouts show coe�cient from structure nearby. Selection
was done with a �‡ threshold. The axes indicate pixel numbers.
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The work presented in this chapter was previously presented in a peer-reviewed
conference workshop:

Remy, B., Lanusse, F., Starck, J.-L., ‘Towards solving model bias in cosmic shear
forward modeling’. In: �th Machine Learning and the Physical Science workshop
at NeurIPS (����)

T
his chapter presents our contribution to a novel shear estimation method from
isolated galaxy images, without relying on shape measurement. Classical shear

measurement methods su�er from the fact that the ellipticity is not a well-defined
quantity for arbitrary galaxy, especially for irregular morphologies, and therefore
subject to a source of error named model bias. We propose to build a forward model
of the sky at the pixel level, restricting ourselves to postage stamps of isolated and
centered galaxies for a simple proof of concept. We use a latent variable model able
to generate arbitrary galaxy light profile corresponding to the survey of interest and
a physical pipeline motivated by our understanding of the processes involved in the

���
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generation of galaxy images discussed in chapter �. This forward model is built under
the lens of probabilistic modeling, defining a Hierarchical Bayesian Model (HBM),
and consequently a likelihood distribution of the observations under the condition
of latent parameters, including the cosmic shear and galaxy morphologies latent
variables. We show that by performing the joint inference of the cosmic shear and
galaxy morphologies with an accurate light profile model, we are able to recover an
unbiased estimate of the cosmic shear a�ecting the observed galaxy images, when
parametric light profile or shape measurement methods fail.

We have seen in chapter � how images of distant galaxies are formed and all the
di�erent physical processes involved. First, photons are emitted by a background
galaxy, generating a light profile image which we consider to be the original image.
Then they travel through the LSS of the Universe, bending their trajectory. The LSS
acts as a lens and a�ects the original image, shearing it to a distorted observed image.
Our goal is therefore to recover this shear field. Classical methods such as Kaiser
et al. [KSB��], Hirata et al. [HS��] and Mandelbaum et al. [Man+��] are based on
measuring the correlation between galaxy shapes, to recover the contribution of the
hidden cosmic shear field. Indeed, as we can assume that there is no preferential
intrinsic galaxy orientation, galaxy shape should average to zero, i.e. ÈegalaxyÍ = 0.
However, the cosmic shear contributes to the observed galaxy ellipticity linearly as
eobs = egalaxy + “. Averaging over the observed ellipticities should therefore yield an
estimation of the cosmic shear ÈeobsÍ = “̂. This estimator is very sensitive to the shape
measurement method and to systematic error due the the PSF shape and requires
calibrations as presented in chapter �. One major source of bias of this estimator
has been identified by Voigt et al. [VB��] and Melchior et al. [Mel+��] when galaxy
shapes are measured with simple parametric light profiles such as the de Vaucouleur
or the Sérsic models that do not capture all galaxy morphological properties. As a
consequence, this is a source of bias in the cosmic shear estimation method, when
based on fitting such models. As this bias is due to the lack of e�ciency of the light
profile model, it is called model bias. It is exactly the source of bias we demonstrate
to solve in this chapter and that we first proposed in Remy et al. [RLS��].

�.� Pixel-level weak lensing Hierarchical Bayesian Model

In the following, we propose a new paradigm for cosmic shear estimation where we
no longer rely on measuring galaxy shapes (or ellipticities) anymore. We propose to
forward model the observations at the pixel level through a Hierarchical Bayesian
Model (HBM) where all the physical processes involved in the generation of the
observations are expressed explicitly and conditionally related under the framework or
probabilistic modeling. Such approaches have already been addressed by Schneider
et al. [Sch+��]. However in this paper, the author used parametric light profiles
to model galaxy morphologies and are therefore subject to model bias, similarly to
classical shape measurement methods. Additionally, it is not clear how to perform shear
calibration from simulations, or self-calibration such as the metacalibration method,
to mitigate this bias in the context of Bayesian forward modeling. Alternatively, we
propose to model galaxy light profile with a Latent Variable Model (Latent Variable
Model (LVM)) able to generate light profile images of arbitrary morphologies. This
LVM is a neural network variational autoencoder whose parameters are optimized to
fit the distribution of the observed galaxy of a survey of interest (we will detail in
subsection �.�.� how to build such model and their performance on mocking real galaxy
images). The unprecedented approach proposed by Lanusse et al. [Lan+��] allows us to
train a generative model of galaxy light profile directly from the observations, without
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relying on galaxy image simulations. This way, our model of galaxy morphologies does
not consider intrinsic ellipticity anymore which di�ers from Schneider et al. [Sch+��].
According to the weak lensing galaxy image generation pipeline presented in section �.�,
the generated light profile image is then slightly sheared, convolved with the PSF
image and corrupted by Gaussian noise. Cosmic shear, noise, and galaxy morphologies
have their own latent variables following known or learned distributions, which dictates
a probabilistic model structured hierarchicaly. This hierachical probabilistic model
presented more in depth in subsection �.�.�. We finally infer these variables jointly
from observations and demonstrate that we are able to recover an unbiased estimate
of the marginal cosmic shear posterior distribution in section �.�.

�.�.� HST/ACS COSMOS postage stamps

Real galaxy image Real PSF image

Figure �.�: On the left is a postage stamp from the Real Galaxy Dataset Leauthaud
et al. [Lea+��] and Mandelbaum et al. [Man+��a] as observed by the ACS from
the COSMOS survey and on the right is the associated PSF image, in log scale,
interpolated at the galaxy position. One can see that the noise of the observed image
is correlated, which is due to the co-addition of multiple images. Moreover, one can
see that the PSF image is not perfectly isotropic, which can lead to bias in the final
shape measurement which requires to be calibrated.

To demonstrate our cosmic shear estimation method, we used the galaxy images
taken by the Advanced Camera for Surveys (ACS) for the Cosmic Evolution Survey
(COSMOS) [Sco+��c] already presented in section �.�. A complete description of
the galaxy images we used for this work can be found in Leauthaud et al. [Lea+��].
In brief, final postage stamps result from a co-addition of dithered images, ensuring
that every area is covered by at least � exposures, with a pixel scale of 0.03 arcmin
per pixel. While co-addition has the advantage of facilitating the removal of cosmic
rays and filling gaps between chips, it implies more strongly correlated pixel noise in
the final image. Sources are detected using the SExtractor photometry package
Bertin et al. [BA��]. A dataset of deblended postage stamps was therefore compiled
for Mandelbaum et al. [Man+��a] where one can find further details on the dataset,
such as the magnitude or photometric cuts in the Real Galaxy Dataset appendix.
Along with galaxy images, this dataset provides the associate PSF image at the galaxy
position. The Tiny Tim PSF modeling software was used to create gris of undistorted
stars, minimizing aliasing and accounting for temporal instability over the time scale of
the COSMOS observation. More details on the PSF modeling can be found in Rhodes
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et al. [Rho+��]. In Figure �.� we display a real galaxy image from the COSMOS
survey and the associated PSF image.

�.�.� Galaxy Latent Variable model

Figure �.�: Variational Autoencoder with an additional PSF forward model layer.
The observed galaxy image x is fed to the inference network, yielding distribution
parameters of the surrogate posterior qÏ(z|x). A latent variable z is sampled from
this posterior distribution, and fed to the generator network generating a light profile
image g◊(z). The generated image is then convolved with the associated PSF Π, which
allows us to define the data likelihood p◊(x|z, Π, Σ).

In this work, we used the Latent Variable Model (LVM) presented in Lanusse
et al. [Lan+��]. This model was developed to simulate galaxy postage stamps of the
HST/ACS Cosmos survey but could be trained again to mock postage stamps from
any survey in principle. The principle virtue of this work was to develop a generative
model. As largely explained in the deep generative model chapter (chapter �), a
generative model can generate any data from a learned distribution, given a latent
vector randomly sampled from a well-known distribution, say a multivariate Gaussian.
The main problem of learning a generative model of galaxy light profiles is that we do
not have direct access to datasets to train the models. Indeed, we only have access to
corrupted versions of these images, as we observe the galaxy light profile convolved
with the PSF of the instrument and with additive noise. However, with the knowledge
of a well-calibrated PSF and type of noise, Lanusse et al. [Lan+��] demonstrated that
it is possible to train a generative model from corrupted data.

The PSF of the ACS camera is well known and calibrated as explained in Rhodes
et al. [Rho+��]. Moreover, we can assume the noise corruption of the postage stamps
to be Gaussian, potentially with a known correlation.

By denoting the COSMOS postage stamps as a random variable x, we build the
LVM to learn the distribution of the distribution p(x) of the COSMOS catalog. As
we are particularly interested in learning the galaxy light profile, we make explicit the
knowledge of the corruption process, involving the convolution with the PSF Πi and
noise realisation ni on the light profile image Ii for the observed pixelized image xi

such that:
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xi = Πi ¢ Ii + ni. (�.�)

This way, we can introduce the LVM mapping a latent random variable zi to the
light profile image Ii in the observed image description such that:

xi = Πi ¢ g◊(zi) + ni, (�.�)

where g◊ is the LVM parameterized by ◊. In the following, g is called a generator
and ◊ are neural network weights. Note that in Equation �.�, all the variables xi, zi,
Pi, and ni are specific to a given galaxy i, while the LVM generator parameters remain
the same for all galaxies. This equation defines the data likelihood p◊(xi|zi, Πi, ni).
For the COSMOS postage stamps, we assume the noise to be Gaussian correlated
with a known covariance matrix per galaxy Σi. This gives the following expression for
the log-likelihood of the data:

log p◊(xi|zi, Πi, Σi) = ≠1

2
F

†(xi ≠ Πi ¢ g◊(zi))
†
Σ

≠1
i F(xi ≠ Πi ¢ g◊(zi)) + cst. (�.�)

The normalization constant does not depend on the LVM weight ◊ so will not
be involved in the optimization process. One can note the presence of the Fourier
operator F which is used in order to represent the data in a space such that the noise
covariance matrix Σi is diagonal, and therefore evaluating the likelihood much faster.

We now have a surrogate model for the marginal likelihood of the COSMOS data
p(x) that we call p◊(x) as it is parameterized by the LVM weights ◊:

p◊(x) =

⁄

p◊(x|z)p(z)dz (�.�)

The goal to train the LVM would be to maximize this marginal likelihood p◊,
but this would require to marginalize over all latent variables z, which is intractable.
Alternatively, the work of Lanusse et al. [Lan+��] relied on a Variation AutoEncoder
(Variational Autoencoder (VAE)) proposed in Kingma et al. [KW��]. The idea of the
VAE, originally known as AutoEncoding Variational Bayes, is to build a generative
model with random latent variables z ≥ p(z) generating the observed variables x under
the likelihood p◊(x|z). Similarly to our problem, the VAE requires to maximize the
marginal likelihood

s
p◊(x|z)p(z) with respect to the weights ◊ to be trained, which

is intractable. Kingma et al. [KW��] therefore proposed an alternative approach,
introducing a parametric distribution qÏ(z|x), modeling the posterior distribution of
the latent variable z for each observed image x. This distribution is parametrized by
another neural network of weights Ï. Typically, the posterior qÏ(z|x) can be described
by a parametric distribution such as a Gaussian, whose mean µ and variance ‡2 are
predicted by neural networks, i.e. such that

qÏ(z|x) = N (µÏ(x), ‡2
Ï(x)). (�.�)

It appears that the definition of this surrogate posterior distribution qÏ creates a
proxy to the maximization of the marginal likelihood and computing its KL divergence
with respect to the true posterior distribution p(z|x):

DKL(qÏ(z|x)|p(z|x)) = Eqϕ
[log qÏ(z|x) ≠ log p(z|x)] (�.�)

(Bayes’ theorem) = Eqϕ
[log qÏ(z|x) ≠ log p(z) ≠ log p(x|z)] + log p(x) (�.�)

(Introducing p◊(x|z)) = Eqϕ
[log qÏ(z|x) ≠ log p(z) ≠ log p◊(x|z)] + log p(x)(�.�)

= DKL(qÏ(z|x)||p(z)) + log p(x) ≠ Eqϕ
[log p◊(x|z)] . (�.�)
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Thus, we can reorder Equation �.� to define a lower bound the the marginal
likelihood:

log p(x) = Eqϕ
[log p◊(x|z)] ≠ DKL(qÏ(z|x)||p(z))

¸ ˚˙ ˝

ELBO

+ DKL(qÏ(z|x)||p(z|x))
¸ ˚˙ ˝

Ø0

. (�.��)

The last term DKL(qÏ(z|x)||p(z|x)) is always positive, by definition of the KL
divergence, and one can recognize the ELBO defined in subsection �.�.�. The ELBO
becomes therefore the objective function to optimize as all of the terms involved are
tractable as opposed to the marginal likelihood. We illustrate the VAE in Figure �.�.
In this figure, one can observe that the observed image is fed to an inference network,
that we call an encoder, yielding the mean µÏ(x) and variance ‡2

Ï(x) of the surrogate
posterior qÏ(z|x). A latent variable z is then sampled from this posterior distribution
and fed to a generator network g◊(z) yielding the generated light profile image. The
generated image is then convolved by the PSF Π associated to the input galaxy image,
to match the image, hence the auto-encoder denomination of the network.

So far we have defined how to train the auto-encoder with the variational Bayes
approach. This model is already a generative model as we can sample from the
latent space prior p(z) and generate images going through the decoder. However,
the two-fold loss makes it hard for the optimization task to perform well on both
tasks: maximizing the likelihood and minimizing the KL divergence between the data
posterior and latent space prior. The maximum likelihood term forces the high quality
of the reconstructed images, the better optimized, the more reconstructed images are
similar to the data. The KL term ensures that the data posterior distribution qÏ(z|x)
matches a pre-defined prior distribution p(z). This term is essential for the generative
aspect of the network because we aim at sampling latent space variables from a simple
distribution, e.g. a multivariate Gaussian distribution to generate random images.
However, the data posterior is usually much more complicated than a simple Gaussian,
and therefore, enforcing this KL divergence to be small can result in a very poor image
quality generation.

To alleviate this issue, Lanusse et al. [Lan+��] proposed to train the VAE in a
two-step manner. First training the VAE as discussed above, but with free-bits of
information, and then training a second generative model over the latent space prior.
The free-bits approach strengthens the importance of the quality of the generated
images by penalizing the KL divergence up to some degree of information ⁄. The loss
function is therefore:

L⁄ = Eqϕ
[log p◊(x|z)] ≠ max (⁄, DKL(qÏ(z|x)||p(z))) . (�.��)

Because the KL divergence is much less regularized, the generator network is much
more able to generate high-quality images, but the data posterior much less constrained
and had so much freedom during the optimization that it does not have any similarity
with the latent prior. To alleviate this issue, Engel et al. [EHR��] proposed to train a
second generative model to learn the latent data posterior distribution. In their work
Lanusse et al. [Lan+��] proposed to use a Normalizing Flow (see section �.�) to learn
a generative model of the latent space distribution. This kind of model has in principle
the ability to learn arbitrary distributions by learning a bijective matching between a
target distribution, here the latent posterior pÏ(z|x) and a well-behaved distribution,
easy to evaluate its probability density and to sample from, e.g. a multivariate
Gaussian distribution. In practice normalizing flows are only very accurate in small
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dimension spaces, but the VAE approach has the virtue of reducing the dimension of
the data space into a small dimensional latent space, where the flow operates.

�.�.� Forward modeling galaxy images

galaxies i = 1 . . . N

di γ

σpix

αi

Πi

galaxies i = 1 . . . N

di γ

σpix

zi

θ

Πi

(a) PGM with parametric model (b) PGM with LVM

Figure �.�: Probabilistic Graphical Model (PGM). (a) PGM involving a parametric
model for galaxy light profiles with parameters –. (b) PGM involving a latent variable
model for galaxy light profiles, where z are parameters of the generative model latent
space, and ◊ are the decoder parameters, such that D◊(z) is a galaxy image. Πi

corresponds to the PSF image, assumed to be known, ‡pix the noise standard deviation
of the postage stamp noise, and “ the cosmic shear shared by all the images. Shaded
circles correspond to observed random variables, white circles correspond to the random
variable we aim to infer and dots correspond to fixed variables.

From a Bayesian perspective, making the joint inference of cosmic shear and
galaxy morphologies means estimating the joint posterior distribution p(G, “|D),
where G = {zi}i=1...N is the set of morphology parameters, D = {di}i=1...N is the set
of observed galaxy postage stamps and “ the cosmic shear. Hereafter, we will mention
the parameters of the light profile mode, parametric or of an LVM, either as light
profile parameters or morphology parameters. The Bayes identity tells us that:

p(G, “|D) Ã p(D|G, “)p(G, “), (�.��)

where p(D|G, “) is the data likelihood given by the forward model that we described
below. Since the intrinsic morphology of galaxies are independent of the cosmic
shear, we can factorize the joint prior as the product of independent priors, i.e.
p(G, “) = p(G)p(“), where p(G) and p(“) are respectively the prior distributions of
the morphological parameters and of the cosmic shear. The joint distribution has
therefore the following factorization:

p(G, “|D) Ã p(D|G, “)p(G)p(“), (�.��)

where we dropped the proportional normalization constant factor p(D) which is
not involved during the inference.

The probabilistic graphical model defining the likelihood is illustrated in Figure �.�.
In these diagrams, the nodes denote random variables, and arrows conditional relation
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between them. White nodes correspond to the random variables on which we do the
inference, conditioned on the shaded nodes corresponding to observed variables. Dot
nodes correspond to fixed variables, e.g. neural network weights ◊ trained a priori or
known physical quantities such as the PSF Π. In this work, we compare two forward
models. The first one (a) using Sérsic law and the second one (b) using the LVM
model described above, both for generating galaxy light profiles. Once the galaxy light
profiles are drawn, we shear images with a constant value “ shared by all the galaxies.
Each sheared galaxy i is then convolved by its associated Point Spread Function (PSF)
Πi. Assuming Gaussian noise corruption, the resulting image is therefore evaluated by
a Gaussian likelihood of variance ‡2

pix.

Sérsic model The light profile of the Sérsic model is given by the following para-
metrization:

I(r) = F ◊ I0 exp

A

≠bn

C3
r

rhlr

4 1
n

≠ 1

DB

, (�.��)

where rhlr is the half-light-radius, I0 is a normalization factor such that the integration
of I over all the space is F , which corresponds to the flux of the galaxy. n is called
the Sérsic index and bn is a dimensionless constant depending on n. The galaxy
is then sheared with parameters e = (e1, e2) corresponding to its ellipticity (see,
subsection �.�.� for further explanation on how to compute these di�erent parameters).
Finally, since the real galaxy may not be perfectly centered in the postage stamp, we
add two shift parameters sx and sy. Therefore, each galaxy i has a set of parameter
zi = {n, rhlr, F, e1, e2, sx, sy}i. Prior distributions and parameters follow empirical
distributions of the COSMOS shape catalog and are described in Table �.�.

Sérsic parameter Prior distribution

log10 rhlr N (≠0.68, 0.30)
log10 n N (0.1, 0.39)
log10 F N (≠1.97, 0.53)
e1/2 N (0, 0.28)
“1/2 N (0, 0.09)
sx/y N (0, 1)

Table �.�: COSMOS sercic parameters prior. These distributions were fitted from the
COSMOS shape catalog of [Lea+��; Man+��].

LVM model This VAE-based model, was proposed in [Lan+��], generating complex
galaxy light profiles. In this model, the observations are generated following a random
process mapping a latent space representation zi œ R

16 to the observed image di

following the probabilistic model illustrated in Figure �.�. The neural network weights
◊ of the VAE are trained maximizing the Evidence Lower Bound (ELBO) of the data.
Moreover, another generative model was trained on top of the VAE to learn latent
space distribution using Masked Auto Regressive Flows [PPM��]. This model was
trained on the HST/ACS COSMOS survey postage stamps.

In the weak lensing regime, the shear is very small, therefore we can assume that it
does not change the morphological statistics of the training sample. Thus, the model
can be trained once, a priori, over a large catalog of galaxies and be used to perform
the joint inference of the latent variables and the cosmic shear. For both light profile
models, we denote the generated image I0.
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Cosmic shear In this model every galaxy image is sheared by a constant value
“ = “1 + i“2 shared by all the galaxies. The image shearing transform, denoted I0 ¢ “,
is given by the following pixel coordinate change:

3
xÕ

yÕ

4

= S(“)

3
x
y

4

, (�.��)

such that

S(“) =
1



1 ≠ |“|2

3
1 + “1 “2

“2 1 ≠ “1

4

(�.��)

.

Convolution with the PSF The Point Spread Function (PSF) model is assumed
to be known and exact for each galaxy. We draw the PSF evaluated at the galaxy i
position, denoted by Πi, in Fourier space and then multiply it by the Fourier image of
the light profile before returning in the real space, resulting in an image I, such that
Ĩ = (Ĩ0 ¢ “) · Π̃.

Noise corruption We assume a known fixed Gaussian noise identical for all the
galaxies. For simplicity, all of the galaxies in our observations are corrupted by a
constant Gaussian noise of variance ‡2

pix, as well as for our forward model. In a
more realistic scenario where we would have information about the noise correlation
properties for each postage stamp, one could consider a noise model per galaxy. The
likelihood is therefore given by

p(D|G, “) Ã
Ÿ

i=1,...,N

N
1

di

-
-
-F

†
#!

Ĩ0,i ¢ “
"

· Π̃i

$
, ‡2

2

, (�.��)

where F is the inverse Fourier operator

�.� Solving the model bias with LVMs

In this section, we investigate and validate our novel shear measurement against a
well-established method developed by Hirata et al. [HS��] and Mandelbaum et al.
[Man+��], HSM for short. We compare the di�erent methods of HST/ACS COSMOS
postage stamps. To build our simulations, we applied a constant shear on all of the
unconvolved galaxy images and reconvolved with the COSMOS PSF. In this setting,
we assume that there is no selection bias and that the postage stamps contain only a
single and centered galaxy.

We designed a toy model where galaxies are assumed to be already detected,
deblended, and centered in postage stamps so that we only need to simulate the light
profile, shearing transform, and convolution with the PSF. To demonstrate the model
bias, we distinguish two sets of observations. (�) generated with parametric galaxy
light profiles using a Sérsic model and (�) using realistic galaxies based on the galaxy
postage stamps from the COSMOS HST Advanced Camera for Surveys (ACS) field
[Koe+��; Sco+��b; Sco+��a]. We used the postage stamps from [Lea+��] and Sérsic
fit parameters compiled in [Man+��]. Because the unconvolved galaxies are very noisy,
we used the Auto-Encoder from [Lan+��] to get a denoised version of unconvolved
galaxies, therefore this is not a demonstration on real galaxies yet. However, the
purpose of this work is to demonstrate the model bias, so we find that realistic galaxy
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Figure �.�: Maximum a posteriori fits comparison between a Sérsic light profile and
the Latent Variable Model. The first row represents the observed postage stamps
by the ACS camera of the HST Cosmos survey. The second row is the Maximum a
Posteriori (MAP) fit of the Figure �.� (a) model, i.e. assuming a Sérsic light profile,
and the third raw the MAP fit assuming the Figure �.� (b) model, i.e. using the
learned LVM. The last two rows represent the di�erence between the observation and
the respective two fits. To highlight the error between the di�erent models, all of the
images are visually rescaled with arcsinh(s · x)/s (with s = 50) to saturate the color
scale.

morphologies that cannot be captured by analytic profiles are su�cient to illustrate
the argument.

In Figure �.�, we reconstruct the MAP solution using the two PGM defined
in subsection �.�.�. The MAP is obtained running the Adam algorithm presented
in subsection �.�.� to minimize the negative log joint posterior distribution, i.e.
≠ log p(“, G|D). One can observe in this figure that the Sérsic parametric light profiles
can fit the overall shape of the COSMOS galaxies, but not their finer substructre.
However, the LVM model is able to fit the full light profile of the COSMOS galaxies
as we can seen in the redisual images which have no longer residual patterns.

�.�.� Sampling with Hamiltonian Monte Carlo

Each set of observations is a field of ��� galaxies, generated from the COSMOS
catalog, with the following cuts: n > 0.4, rhlr > 0.2 and 23.5 < i+ < 25.2 so rather
faint galaxies. That way the entire galaxy in the postage stamp is not too peaky and is
not too resolved to be close to a Sérsic model. Every postage stamp was corrupted by
a Gaussian noise of standard deviation ‡pix = 0.01. To simulate shearing, we removed
any shear present in the selected sample from the COSMOS catalog, by adopting the
same strategy as in the Third Gravitational Lensing Accuracy Testing (GREAT�)
Challenge [Man+��a], i.e. doubling each galaxy, and rotating the doubled galaxies by
��°, as well as their PSF, to cancel the overall sample shear and then apply the same
constant shear to every galaxy “ = (≠0.03, 0.03).
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In Figure �.� we perform the inference by sampling with the HMC sampler the
joint distribution p(“, G|D) Ã p(D|G, “)p(G)p(“), where the likelihood is defined in
Equation �.�, the prior over the galaxy morphological parameters is learned with a
normalizing flow as described in subsection �.�.� and the prior for the cosmic shear
is given in Table �.�. We then marginalize over the latent parameters of galaxy
morphologies in order to get the shear posterior conditioned on the observations.
This shows that using the latent variable model to model the galaxy light profile and
with our hybrid generative and physical HBM, we can recover an unbiased marginal
posterior distribution on the cosmic shear.

Figure �.�: Joint inference using Hamiltonian Monte Carlo for galaxy morphologies
and cosmic shear using the hybrid generative and physical HMB described in subsec-
tion �.�.� on COSMOS galaxies.

�.�.� Mean-field Variational inference

(a) Gaussian galaxies (b) COSMOS galaxies

Figure �.�: Joint inference using mean field Variational Inference for galaxy morpholo-
gies and cosmic shear applied to (a) Gaussian galaxies and (b) COSMOS galaxies.
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While sampling with HMC enables us to get an accurate marginal posterior on the
shear, the inference takes a long time before the chains converge. In order to have an
inference method that scales with the number of galaxy observed, we propose therefore
to use variational inference. In order to estimate the posterior distribution p(G, “|D),
we propose to rely on approximate inference using mean-field Variational Inference
(VI), where we approximate the posterior distribution using a parametric distribution

q„(G, “) = q„γ
(“)

Ÿ

i

Ÿ

j

q„i,j
(zi,j), (�.��)

parameterized by „ = {„“ , „i,j}, and all the parameters are conditionally independent
from each other. We used Normal distributions q„i,j

to approximate the posterior
of parameters i of the jth galaxy, so the parameters „i,j = (µi,j , ‡i,j) correspond to
means and standard deviations. Similarly, q„γ

is a �d-diagonal multivariate Gaussian.
The parameters „i,j and „“ are then optimized maximizing the ELBO:

„ú = arg max
„

E
(G,“)≥qφ

[log p(G, “|D) ≠ log q„(G, “)] . (�.��)

This remains a very simplistic approach, which does not assume any correlation
between variables. A more accurate model would condition the morphological para-
meters on the shear. In principle, the most accurate method would be to run a Markov
Chain Monte Carlo, but several experiments showed that sampling-based methods are
too computationally expensive for such high-dimensional problem.

We ran three sets of experiments to demonstrate the model bias. First fitting
the fully parametric model to the parametric observations. Then fitting the same
parametric model to the realistic galaxies and then fitting the hybrid model to the
realistic galaxies. We used a Sérsic law as light profile as proposed in [Sch+��]. One
could argue that there exist more complex parametric profiles such as the bulge+disk
model which could reduce the aforementioned bias, but we propose here a model that
does not rely on ellipticities and in principle can capture any complexity of galaxy
morphologies.

First, as illustrated in Figure �.� (a) shows that the parametric model induces a bias
in the shear estimation when the galaxy morphologies are no longer elliptical. Besides,
one can observe the non-zero residuals in the Figure �.� fit to real galaxies, illustrating
the model discrepancy when applied to complex morphologies. Additionally, Figure �.�
(b) shows that when we substitute the parametric light profile model with the LVM
model, the shear estimation becomes unbiased. One can notice that the uncertainties
using the generative model are smaller than for the Sérsic model, but these contours
are not representative of the error bars due to the mean-field approximation.

�.� Going further

�.�.� Identifying the model bias with HSM

In this section, we study how a state-of-the-art shear measurement method performs
on our dataset. HSM is a well-established method used for shear estimation in several
surveys. To measure the cosmic shear HSM first measures the weighted-moments of
postage stamps to estimate the galaxy shapes e1 and e1 and then applies a shape
correction to account for the error due to PSF intrinsic ellipticity. The fact that HSM
is based on measuring galaxy ellipticities implies that for complex galaxy morphologies,
this method is likely to yield a biased estimation of the shear because galaxy shapes are
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not necessarily well described by ellipticities. This source of cosmic shear estimation
bias is called model bias.

In Figure �.�, we illustrate where such a bias can be identified for a large number
of galaxies. We iteratively increase the number of galaxies on which we apply HSM to
estimate the shear. The method is applied on the same dataset studied throughout
this section, i.e. HST/ACS Cosmos postage stamps on which we simulated a constant
shear of value “ = (+0.03, ≠0.03). The HSM method output for each postage stamp
the ellipticity (e1, e2) of the galaxy. We then estimate the shear “̂ as the average of
these galaxy ellipticites and can provide error bars through the standard deviation of
the measured shapes, divided by the square root of the number of galaxies.

“̂HSM =
1

N

Nÿ

i=1

e (�.��)

‡(“̂HSM)2 =
1

N

Nÿ

i=1

(“̂HSM ≠ e)2 (�.��)

Figure �.�: HSM applied to COSMOS galaxies & COSMOS PSF. One can observe that
the shear estimation is unbiased when applying HSM on Gaussian galaxies. However,
when estimating from more than 4 ◊ 105 COSMOS images, the expected shear in
the simulations are outside of the 2‡ error bars of the HSM estimation and therefore
considered biased.

�.�.� Accurate Variational inference with Normalizing Flows

In subsection �.�.� we have identified the presence of bias in the marginal shear
posterior estimation when using a parametric light profile on the HST/ACS COSMOS
postage stamps. We have also shown that we can mitigate this bias by using a Latent
Variable Model trained directly from the observation. However, due to the mean-field
approximation, i.e. assuming that each parameter is conditionally independent from
each other p(“, G|D) = p(“)

r

i,j p(zi,j |D), the posterior distribution may not quantify
accurately the correct uncertainties.
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One venue for quantifying the full uncertainty of the cosmic shear under the
observations, would be to have a surrogate posterior distribution taking into account
the potential conditionality between the parameters. We could in principle decompose
our surrogate posterior as follows

q„(G, “) = q(“|G)p(G) (�.��)

= q„γ
(“|G)

Ÿ

i

Ÿ

j

q„i,j
(zi,j). (�.��)

This way, q„γ
(“|G) could be a conditional normalizing flow parameters by the

weights „“ and q„i,j
could a normalizing flow per galaxy of „i,j (see section �.�).

�.�.� Combining posterior distributions

The analysis of cosmic shear field for a wide and deep survey will involve billions of
galaxies (IveziÊ et al. [Ive+��] indicates that the Vera C. Rubin Observatory LSST
will observe 20 billions of galaxies after 10 years of observation). Therefore, it seems
intractable to perform the hierarchical inference on all the observed galaxies at once.
However, we propose here to split the observations into patches and to combine the
shear posterior from each patch to get the overall posterior distribution. Assuming a
constant shear on all the sky, we can compute the full posterior distribution P (“|D)
from independent posterior distributions inferred from di�erent patches dn such that
finpatches

n=1 dn = D with the following expression:

p(“|D) =
1

p(“)npatches≠1

npatchesŸ

n=1

⁄

den p(“, en|dn) (�.��)

Equation �.�� can be derived by noticing that:

�. The total likelihood is separable since realization of patches are independent
from each other. Additionally, the likelihood of a set of the observed postage
stamps in conditionally dependent only on the parameters of the objects within,
meaning mathematically

p(d|e, “) =

npatchesŸ

n=1

p(dn|e, “) =

npatchesŸ

n=1

p(dn|en, “) (�.��)

�. According to Equation �.��, the total posterior distribution can also be factorized
as:

p(“|D) =

⁄

de
p(D|e, “)p(e)p(“)

p(D)
(�.��)

(�.��)

=

npatchesŸ

n=1

5⁄

den
p(dn|en, “)p(en)

p(dn)

6

p(“), (�.��)

because p(D) =
rnpatches

n=1 p(dn) and p(e) =
rnpatches

n=1 p(en). Therefore, factorizing
again by p(“),
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p(“|D) =

npatchesŸ

n=1

5⁄

den
p(dn|en, “)p(en)p(“)

p(dn)

6

p(“)≠npatchesp(“) (�.��)

(�.��)

=

npatchesŸ

n=1

5⁄

den p(“, en|D)

6

p(“)≠npatches+1, (�.��)

which gives Equation �.��.

�.� Conclusion

We have presented in this work the necessity of an accurate light profile model for
forward modeling of the cosmic shear. We have shown that a hybrid physical and deep
learning HBM has the potential to solve the model bias, being able to capture the
complex morphology of galaxies and simulating physical processes such as shearing
transform and convolution by the PSF. We identify many directions of research
towards a real cosmological analysis by forward modeling. On the one hand, many
assumptions could be relaxed by building a more complex hierarchical model, e.g.
parametrizing the PSF model and jointly inferring it along with the shear. Concerning
the detection and deblending of galaxies, similar work have already been proposed,
e.g. Bayesian Light Source Separator (BLISS) [Han+��]. On the other hand, accurate
uncertainty quantification could be enabled by scaling MCMCs for HBMs or using
neural density estimator to capture the shape of the joint posterior distribution.
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Conclusion

The main goal of this thesis has been the investigation and development of probabilistic
methods for ill-posed inverse problems with a particular focus on weak lensing mass-
map reconstruction and unbiased cosmic shear measurement.

The first part of the thesis introduced the basic concepts of weak gravitational
lensing and classical methods for cosmic shear measurement. As the estimation of
cosmic shear relies on the measurement of galaxy shapes, which is not a well-defined
quantity for arbitrary galaxy profiles, I presented the correction and calibration
methods proposed in the literature to mitigate this issue. I also presented our
contribution to leverage automatic di�erentiation techniques and improve calibration
e�ciency.

The second part of this thesis focused on the generative modeling and Bayesian
modeling framework. In particular, I introduced di�erent neural-based architectures
enabling us to learn very complex distributions in high-dimensional spaces. I eventually
presented a di�usion-based sampler, the annealed HMC, enabling us to sample high-
dimensional distribution from the knowledge of the score of its density function.

Then I presented a unified view of mass-map reconstruction as a Bayesian posterior
estimation problem. Up to the present time, existing methods either relied on simple
prior, such as assuming a Gaussian Random Field or only returning a point estimate
of the posterior distribution. Instead, I have proposed a framework which allows us to
use numerical simulations to provide a full non-Gaussian prior on the convergence field
and to sample from the full high-dimensional posterior of the mass-mapping problem.

Finally, in the last chapter, I presented the issues of classical shape measurement
methods introducing a bias due to the assumption of elliptical shape of galaxy light
profiles. Next-generation surveys will photograph the sky with an unprecedented
resolution and we will observe much more galaxies with an irregular morphology. I
therefore introduced a new paradigm for cosmic shear measurement, no longer relying
on galaxy shape. To overcome the model bias and provide uncertainty quantification,
I developed a hierarchical Bayesian model where galaxy morphologies are modeled
with deep generative techniques, and the physical processes involved in the generation
of galaxy images are modeled analytically. As demonstrated on isolated HST/ACS
COSMOS galaxy postage stamps, this new method is not only capable of recovering
an unbiased estimate of the cosmic shear but also of quantifying the uncertainty of
the estimate through its posterior distribution. This o�ers a promising path toward
fully unbiased cosmic shear estimation under the probabilistic modeling framework.
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CHAPTER �. HIERARCHICAL BAYESIAN MODELING OF COSMIC SHEAR
AND GALAXY MORPHOLOGIES

Outlook

Solving arbitrary inverse problems with diffusion samplers Solving arbitrary
inverse problems with di�usion samplers In this thesis, we have demonstrated how to
e�ciently sample form a high-dimensional posterior distribution with an annealing
strategy. However, we have restricted our assumption on the annealing of a likelihood
involving a linear forward model. Further study is therefore necessary to extend
this method to arbitrary inverse problems. To this end, Adam et al. [Ada+��] has
already extended the annealing to a non-linear forward model for galaxy source
reconstruction from strong-lens systems. However, this paper presents the same
assumption concerning the convolution of the posterior, which is not the convolution
of both the likelihood and the prior. We therefore need to figure out a correct way
to anneal the posterior distribution to be able to use SDE or ODE sampler properly.
Another possibility is to rely on the fully amortized posterior distribution as in Legin
et al. [Leg+��] where they directly learn the score of the full posterior distribution
instead of the prior only. This way, the posterior is correctly annealed and one can
apply any SDE or ODE sampler without concern. This however has the drawbacks of
losing the analytical likelihood and fully relying on the accuracy of the simulations.

Hierarchical Bayesian Model for Euclid Weak lensing measurements with
upcoming space-based surveys such as Euclid and Roman will be very sensitive to their
PSF measurement errors. In particular, their PSF is not only varying spatially but
also chromatically. Thus, PSF models will require precise measurement of the galaxies
Spectral Energy Distribution (Spectral Energy Distribution (SED)) of the galaxies. We
know that especially for Euclid, which has a wide photometric passband, information
about galaxy SEDs will be very heterogeneous, coming from many di�erent sources like
ground-based surveys. It is not clear today how the error on galaxy SED measurements
propagates to the PSF error and to cosmic shear measurement uncertainties and bias. I
therefore propose to extend the Hierarchical Bayesian Model I am currently working on,
taking into account a galaxy SED model. There already exist a di�erentiable physical
model of galaxy SED, such as Di�erentiable Stellar Population Synthesis (DSPS)
[Hea+��, diffstar], and of the PSF [Lia+��, wavediff]. Such a hierarchical model
would perfectly handle the heterogeneous sources of SED measurements, and enable
us to infer galaxy properties such as the metallicity, mass, etc., useful to condition
the galaxy morphological model. I have already demonstrated that shear model bias
can be solved with the correct galaxy morphological model [RLS��]. This study will
enlighten us about the impact of SEDs and PSF measurement errors on weak lensing
measurements. Again, inference on such a complex HBM is known to be very di�cult,
and it is precisely where the community would benefit from the e�cient sampler.
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Appendix A

Résumé en français

Reconstruction de carte de masse avec prior appris sur des

simulations

De nombreux problèmes inverses en astrophysique sont mal posés en raison de données
manquantes et de mesures dominées par le bruit. C’est le cas de la reconstruction de
cartes de masse par lentille gravitationnelle faible, où l’on cherche à reconstruire le
champ de densité de matière à partir de catalogues de mesures de formes de galaxies.
Dans Remy et al. [Rem+��], j’ai proposé de reformuler cette classe de problèmes
inverses dans une perspective bayésienne, où la distribution de vraisemblance est
décrite par un modèle direct physique et d’apprendre ensuite une distribution a priori
apprise sur des simulations, contenant des informations sur le champ de densité de
matière, agissant comme un régularisateur.

Il n’existe pas de modèle analytique qui capture la nature non-gaussienne du champ
de densité de matière de l’Univers tardif. Néanmoins, les simulations hydrodynamiques
à N-corps permettent d’échantillonner des cartes à partir d’un prior implicite complet,
prenant en compte l’e�ondrement gravitationnel non-linéaire et les e�ets baryoniques.
J’ai donc proposé un modèle de prior hybride combinant un Champ Gaussien Aléatoire
avec un modèle d’apprentissage profond émulant les échelles non-gaussiennes du prior.
Le réseau de neurones a été entraîné avec un objectif de score-matching afin d’obtenir
les gradients de la distribution a priori, nécessaires pour des méthodes d’échantillonage
e�caces MCMC basées sur les gradients. Cette méthode d’inférence fait partie des
récemment introduit modèles de diffusion, devenue l’état de l’art en modélisation
générative.

Dans Remy et al. [Rem+��], j’ai finalement appliqué cette méthode à la recon-
struction des cartes de masse les plus résolues du champ COSMOS HST/ACS à ce
jour (voir Figure A.�), avec une quantification robuste des incertitudes.

Inférence en grande dimension pour les problèmes inverses

Les méthodes de Monte Carlo par Chaînes de Markov (MCMC) sont largement
utilisées dans la communauté cosmologique pour échantillonner les distributions a
posteriori. Cependant, lorsque la dimension de l’espace des paramètres devient trop
élevée (dimension d > 105 pour une carte de masse de 360 ◊ 360 pixel2), le coût de
calcul pour les MCMC standards sont gigantesque à cause de la malédiction de la
dimension (curse of dimensionality en anglais), le coût croissant exponensiellement
avec la dimension. Cette di�culté peut être levée si l’on a accès aux gradients
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Figure A.�: Reconstruction du champs HST/ACS COSMOS. À gauche se trouve la
reconstruction présentée dans Massey et al. [Mas+��a] utilisant une variante de Kaiser
et al. [KSB��]. À droite se trouve la moyenne de la distribution posterior calculée
avec notre méthode, utilisant un prior appris sur la suite de simulation ŸTNG.

de la distribution a posteriori, qui peuvent être utilisés pour faire des propositions
plus e�caces, comme dans l’algorithme de Hamiltonian Monte Carlo (HMC). J’ai
démontré l’e�cacité des MCMC basés sur les gradients lorsqu’ils sont combinés avec
une stratégie de recuit pour la cosmologie dans Remy et al. [Rem+��; Rem+��] et
pour la reconstruction d’images médicales dans [Ram+��]. Avec ces projets, j’ai été
un pionnier dans l’utilisation du HMC avec recuit pour les problèmes inverses en
astrophysique. Contrairement aux méthodes d’échantillonnage standards, l’HMC avec
recuit garantit d’obtenir des échantillons de la distribution a posteriori indépendants,
car seul le dernier échantillon des chaînes initialisées aléatoirement est considéré. De
plus, la stratégie de recuit permet de capturer tous les modes de la distribution a
posteriori car elle est initialisée par une distribution unimodale large, et converge
aléatoirement vers un mode du posterior.

Mesure de cisaillement gravitationnel probabiliste et modèle

génératif profond de morphologies de galaxy

L’analyse du cisaillement cosmique, au cœur de la mission Euclid de l’ESA, de
l’Observatoire Vera C. Rubin Legacy Survey of Space and Time, et du télescope
spatial Nancy Grace Roman, nécessite des mesures de formes de galaxies extrêmement
précises. Les mesures de formes dépendent à leur tour d’un contrôle précis de la
Fonction d’Étalement du Point (PSF) de l’instrument, et sont également impactées
par les détails des morphologies des galaxies qui peuvent induire des biais dans la
mesure du cisaillement gravitationnel.

Dans ce projet, j’ai développé un modèle bayésien hiérarchique (HBM) d’images
observées de galaxies, où la plupart du modèle est physiquement motivé, comme la
prescription de la PSF et l’application du cisaillement gravitationnel, mais d’autres
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composantes telles que le modèle de morphologie des galaxies est modélisé par un
modèle génératif à variables latentes, basé sur des réseaux de neurones profonds.
Les profils de lumière paramétriques (par exemple gaussien, Sersic ou bulbe+disque)
génèrent un biais de modèle dans le processus de mesure de cisaillement car ils ne
peuvent pas capturer tous les détails de morphologie des galaxies ou les corrélations
entre la morphologie et d’autres paramètres tels que la magnitude et le décalage vers
le rouge. L’ajustement de ce modèle direct aux observations signifie inférer une grande
quantité de paramètres, ce qui est intractable pour les échantillonneurs standards. J’ai
donc dévelopé un modèle des images de galaxies observées incluant la préscription
de la PSF, et du cisaillement gravitationnel, ainsi qu’un modèle génératif pour les
profils de lumières des galaxies dans [RLS��]. Les méthodes standards d’estimation
du cisaillement basées sur les mesures de forme nécessitent de nombreuses études de
l’impact des erreurs des moments d’ordre supérieur de la PSF, ce qui est un e�et
non-négligeable pour les relevés à venir telles que LSST ou Euclid. Avec la méthode
proposée, le cisaillement gravitationnel est non seulement estimé avec précision, mais
la quantification des incertitudes est permise en estimant la distribution a posteriori
(voir Figure A.�).
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(a)

(b) Gaussian galaxies (c) COSMOS galaxies

Figure A.�: (a) Reconstruction du MAP utilisant un profile de Sérsic ou un modèle
génératif à variable latente. La première ligne représente les galaxies observées par la
caméra ACS du relevé HST COSMOS. La deuxième ligne représente la reconstruction
MAP utilisant un profile de lumière Sérsic, et la troisième ligne utilisant un modèle
génératif à variable latente. Les deux dernières lignes représentent la di�érence entre
les observations et les reconstructions. (b) et (c) comparent les contours du cisaillement
gravitationnel inférés jointement avec la morphologies des galaxies présentées dans (a).
(b) présente un bias car un profile de Sérsic est utilisé, tandis que (c) est non-biasé
grâce à l’utilisation d’un modèle génératif à variables latentes capturant parfaitement
la forme des galaxies.
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