
HAL Id: tel-04594042
https://theses.hal.science/tel-04594042

Submitted on 30 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploration recommendations for the investigation of
security incidents

Romain Brisse

To cite this version:
Romain Brisse. Exploration recommendations for the investigation of security incidents. Computer
Science [cs]. CentraleSupélec, 2024. English. �NNT : 2024CSUP0001�. �tel-04594042�

https://theses.hal.science/tel-04594042
https://hal.archives-ouvertes.fr

·
·

· ·

·

·

·

·
·

·

·

·

·

·
·

·

·

·

·
·

·

·

·

·

·

·

·

·
·

·

· ·

·
·

·

·

··

·

··

·

· ·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

··
·

·

·
·

·

··

· ·

·
·

·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·
·

·

·

·

·

·
· ··

·
·

·

·

·

·

·
·

·

·

··

·

·

·
·

··

·

·

·

·

·

·

·
·

·

·

·
·

·

· · ··

·

·

· ·

·

·

·
·

·

·

·

·

· ··

·

·

·

·

·

·

·
·

·

· ·

·

·

·

·

· · ·

·

·

·

·
· ·

·

·

·

·

·

·

· ·

·

·

·

·

·

·
·

·

·

·

·

·

·
·

·
·

·

· ·

· ·

·

·
·

·

·

·

·

·

·

· ·

·

·

·
··

·

·

·

·
· ·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

·
·

·

·

·

·

·

·

·

········

·

·

·

·

·

·

·

·

·
· ·

·

·
·

·

·

·

·
·

·
·

·

·

·

·

··

·

·

·

··

·

·

·

··

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

·

·

··

· ·

·

·

·

·

·

·

· · ·

·

·

·

·

·
·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

·

·
·

·

·

·

·

·
·

·

·

· ·

·

·

·

·

·

·

·

· ··

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

··

·
·

·

·

·
·

··
·

·

·

·

··

·
·

· ·

·

·

·
· ·

·

·

··

·

·

·

·

·

· ·

·

··

·
·

·

·

·

·

·

·

· ·

··

THÈSE DE DOCTORAT

CENTRALESUPÉLEC

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : Informatique

Par

Romain BRISSE
Recommandations d’exploration pour l’investigation d’incidents
de sécurité

Exploration recommendations for the investigation of security incidents

Thèse présentée et soutenue à Rennes, le 15th February 2024
Unité de recherche : IRISA

Rapporteurs avant soutenance :

Maciej KORCZYNSKI Associate Professor HDR, Grenoble Alpes University
Günther PERNUL Professor, Regensbugimprg University

Composition du Jury :
Président : Alexandre TERMIER Professeur des Universités, Université de Rennes
Examinateurs : Maciej KORCZYNSKI Associate Professor HDR, Grenoble Alpes University

Günther PERNUL Professor, Regensubrg University
Laetitia LEICHTNAM PhD, Engineer, Deveryware
Frederic MAJORCZYK PhD, Expert technique, DGA
Vincent NICOMETTE Professeur de Universités, INSA Toulouse

Invité : Simon BOCHE Engineer, Malizen
Dir. de thèse : Jean-Francois LALANDE Professeur des Universités, CentraleSupélec

ACKNOWLEDGEMENT

Je tiens tout d’abord à exprimer ma gratitude envers toutes les personnes qui ont
contribué à la réalisation de ce travail. Je débute par les membres du jury de ma thèse,
présents lors de ma soutenance. Leur patience à m’écouter attentivement et leurs questions
pertinentes m’ont permis d’examiner mon travail avec un regard critique. Leur bienveil-
lance durant cet exercice parfois anxiogène pour le candidat mérite également mes remer-
ciements. Parmi eux, je voudrais adresser des remerciements particuliers à mes encadrants
et à mon directeur de thèse. À Simon, un grand merci pour son minutieux examen, sa
capacité à rendre mes hypothèses exhaustives, ses discussions sur mes blocages, et son
insistance à éviter les références en avant. À Frédéric, merci pour sa réceptivité à mes
idées les plus folles, ses solutions ingénieuses à mes problèmes, et pour avoir toujours créé
un environnement confortable, souvent à travers ses hoodies Opeth. À Jean-François, mes
remerciements pour sa franchise précieuse, ses questions difficiles mais nécessaires, et ses
relectures incessantes, même s’il me qualifie parfois de "pauvre flou". Un merci également
à Christopher qui était toujours prêt à courir lorsque les solutions semblaient lointaines.

Je souhaite maintenant remercier ceux qui m’ont soutenu tout au long de ma thèse :
CentraleSupelec, Malizen, ainsi que la DGA et l’AID. Leur soutien continu, leur confi-
ance et leur contribution à la transformation de ce projet en recherche industrialisée sont
précieux. Je remercie également mes collègues chez Malizen et chez CIDRE. Je tiens à
exprimer ma gratitude envers les participants à mes évaluations, sans lesquels mon travail
perdrait de sa valeur, ainsi qu’à mes collègues de l’équipe CERBERE.

Il reste cependant des remerciements à adresser à ceux qui, parfois dans l’ombre,
m’ont soutenu et ont rendu la réalisation de ce travail possible. Tout d’abord, merci à
Matthieu, car partager l’expérience de la thèse et les moments pour s’en détacher n’est
pas donné à tout le monde. Merci également à Samantha pour son soutien indéfectible
et son écoute attentive lorsque les choses semblaient difficiles. Cette dernière année fut la
plus éprouvante, mais tu l’as rendue plus douce. Bien sûr, un immense merci à ma famille,
toujours présente à mes côtés. Enfin, merci à Alexis, Gabriel, Anastasia et Tuong Vi, car
une promesse est une promesse.

Un dernier remerciement spécial à Yotam Ottolenghi, dont les recettes m’ont nourri,
pendant trois ans, et j’espère, pour de nombreuses années à venir.

3

RÉSUMÉ SUBSTANCIEL EN FRANÇAIS

Au cours des dernières décennies, nous avons constaté que les technologies de l’infor-
mation ont envahi tous les aspects de notre vie : la montée en puissance de la technologie
a conduit à la délocalisation de toutes les formes de travail et de communication vers
Internet. Les individus utilisent leurs informations et leur argent en ligne, exposant ainsi
ces activités à des cyberattaques [81]. Depuis les premières cyberattaques enregistrées,
les attaquants ont évolué, élargissant le panorama de la cybersécurité. Depuis le début
du millénaire, les attaquants deviennent de plus en plus professionnels et organisés. Par
conséquent, la nécessité de renforcer la sécurité de nos vies est plus grande que jamais.

La cybersécurité englobe de nombreux domaines, parmi lesquels les méthodes de pro-
tection les plus courantes sont les pare-feu, les systèmes de détection d’intrusion (IDS), la
sensibilisation des utilisateurs, et bien d’autres. Cependant, des attaques réussissent par-
fois, entraînant la fuite de données, le vol d’argent et des préjudices à la réputation. Tout
comme la police enquête sur les crimes, les équipes de cybersécurité disposent d’analystes
spécialisés dans la réponse aux incidents. Comprendre, atténuer et remédier aux incidents
de cybersécurité constitue un enjeu majeur à résoudre. Au cours de la réponse aux inci-
dents, les analystes effectuent des investigations pour comprendre et agir. Une enquête en
cybersécurité consiste à examiner les attaques et les comportements anormaux dans les
données collectées à partir de n’importe quel appareil. Ces enquêtes sont précieuses, mais
difficiles et chronophages, surtout parce que les analystes commencent dans l’obscurité
totale, réagissant aux événements au lieu de pouvoir être proactifs.

Cette thèse se concentre sur la recherche de méthodes visant à aider les analystes à me-
ner des investigations en cybersécurité plus rapidement et plus efficacement. Aujourd’hui,
les analystes travaillent dans diverses structures telles que les Centres Opérationnels de
Sécurité (SOC), les Équipes d’Intervention en Cas d’Urgence Informatique (CERT), les
Équipes d’Intervention en Cas d’Incident de Sécurité Informatique (CSIRT) ou la Foren-
sique Numérique et l’Intervention en Cas d’Incident (DFIR). Les outils de surveillance
ont été les premiers à apparaître, conçus pour observer l’activité des processus et corriger
d’éventuels problèmes, puis ils sont devenus un moyen de surveiller les appareils à la re-
cherche d’une activité anormale. La détection d’intrusion a fait ses premiers pas ensuite,
d’abord basée sur des signatures, puis sur le comportement, et de nos jours, l’appren-

5

tissage automatique accomplit un travail impressionnant pour détecter, voire atténuer et
remédier automatiquement, les attaques. Cependant, les analystes sont toujours débor-
dés, en raison de la croissance du volume, de l’hétérogénéité et de la dimensionnalité des
données au cours des dernières années, et de la diversification des attaquants, de script
kiddies à des menaces nationales réelles, avec des objectifs et des méthodes différents.
Ces mêmes attaquants deviennent experts pour exploiter le faible niveau de cybersécurité
dans le monde actuel. Même lorsque les attaques sont détectées, elles ne peuvent parfois
pas être arrêtées. C’est pourquoi des équipes d’analystes, enquêtent constamment sur le
système d’information de leur entreprise pour découvrir des comportements anormaux et
des attaques.

Les analystes sont confrontés à de nombreux défis liés à divers aspects de leur travail :
le traitement complexe des données pour les investigations, la difficulté des enquêtes et
l’inadaptation des outils à leurs besoins. Conscients de cela, nous avons identifié la néces-
sité de trouver une autre solution. Nous avons cherché un moyen d’aider les analystes à
prendre de meilleures décisions, à détecter plus rapidement les attaques et à les caractéri-
ser rapidement. En conséquence, pour cette thèse, nous avons décidé de nous concentrer
sur une approche particulière des problèmes des analystes : l’utilisation de systèmes de
recommandation. Un système de recommandation est un logiciel visant à suggérer des ac-
tions à un utilisateur pour l’aider à prendre de meilleures décisions concernant une tâche
spécifique.

En collaboration avec Malizen, notre recherche vise à améliorer la rapidité et l’efficacité
des analystes lors de leurs investigations, grâce à leur plateforme facilitant les enquêtes sur
les journaux d’événements. Inspirés par le succès des systèmes de recommandation dans
des domaines également submergés en données comme le commerce électronique, nous
proposons d’utiliser des systèmes de recommandation dans le contexte de la cybersécu-
rité. Ces systèmes utilisent des algorithmes pour fournir des suggestions personnalisées
basées sur des connaissances, les préférences des utilisateurs, leur comportement ou leurs
interactions historiques.

Questions de recherche et contributions

À la suite de nos observations, une question de recherche émerge, que nous diviserons
en plusieurs hypothèses et auxquelles nous répondrons dans ce manuscrit : pouvons-nous
utiliser des systèmes de recommandation pour aider les analystes lors de leurs investiga-
tions en cybersécurité ?

6

Afin de répondre à la question de recherche précédente, nous proposons trois contri-
butions :

1. KRAKEN, présenté à SECITC 2021 [13]

2. MIMIR, présenté à IFIP WG 11.9 ICDF 2024 [14]

3. CERBERE, présenté à CyberHunt 2023 [11]

Le reste de ce manuscrit est organisé en deux parties distinctes, de manière à présenter
le contexte et la littérature concernant nos questions de recherches, puis nos contributions.
Dans le cas où une contribution nécessiterait de plonger dans de la littérature addition-
nelle, on pourra la trouver dans le chapitre de contribution correspondant.

Le chapitre 1 détaille le contexte de cette thèse et définit de nombreux termes que nous
utiliserons tout au long du document. Ce chapitre détaille toutes les notions nécessaires
à la bonne compréhension de ce manuscrit et donne une idée de l’environnement dans
lequel la thèse a été réalisée. En effet, il décrit notamment le métier d’analyste et ses
problématiques ainsi que les investigations, activité principale des analystes. Une section
détaille également les différentes natures possibles des journaux d’événements ainsi que
les challenges qui leur sont associés. On détaille finalement la plateforme d’investigation
de journaux d’événements développée par Malizen à l’attention des analystes. Cette pla-
teforme a d’ailleurs vu le jour suite à des travaux de thèse [35, 36]. Ce premier chapitre
nous permet de dégager nos questions de recherche :

1. Pouvons-nous améliorer la compréhension d’un analyste pendant une investiga-
tion ? (Section 1.1)

2. Pouvons-nous tirer parti des connaissances d’experts pendant une investigation ?
(Section 1.2)

3. Pouvons-nous obtenir des journaux (logs) où les attaques sont identifiées afin d’éva-
luer les investigations ? (Section 1.3)

Le chapitre 2 présente la littérature sur nos principaux sujets, à savoir les systèmes de
recommandation et plus particulièrement l’utilisation des systèmes de recommandation
en cybersécurité. Après y avoir exploré la littérature nous permettant de définir et typer
les différents systèmes de recommandation, nous nous intéressons aux challenges qu’ils
peuvent rencontrer dans leurs implémentations. Nous détaillons ensuite de nombreux sys-
tèmes de recommandation développés pour résoudre des tâches en cybersécurité. Tout
au long du chapitre, nous essaierons de mettre en évidence les zones du domaine où des
contributions sont pertinentes. Nous identifions notamment deux choses : la connaissance

7

experte en cybersécurité, aujourd’hui beaucoup utilisée dans des projets d’ontologie n’est
que peu exploitée dans des systèmes de recommandation, et les utilisateurs et leurs be-
soins ne sont pas mis au centre du développement de ces systèmes. Finalement nous nous
intéressons à deux sujets annexes aux systèmes de recommandation, mais néanmoins très
liés à nos travaux : l’évaluation des systèmes de recommandation et la visualisation appli-
quée à la recommandation. Ce chapitre nous permet de préciser nos questions de recherche
initiales :

R1 : Pouvons-nous tirer parti des connaissances d’experts pendant une investigation
en utilisant des systèmes de recommandation basés sur la connaissance ?

R2 : Pouvons-nous améliorer la compréhension d’un analyste pendant une investiga-
tion en comprenant leurs intentions et en les utilisant pour formuler des recom-
mandations ?

R3 : Pouvons-nous obtenir des journaux d’événements où les attaques sont identifiées
afin d’évaluer l’utilisation des systèmes de recommandation pendant les investiga-
tions ?

Avec ces nouvelles perspectives de recherche, nous entamons la deuxième partie du
manuscrit. Le chapitre 3 présente notre première contribution, KRAKEN, un système de
recommandation qui s’appuie sur de la connaissance experte pour guider les analystes
en leur proposant des chemins d’exploration pertinents pendant leurs investigations, sous
la forme de champs à explorer (e.g. destination.ip). La base de connaissances de KRA-
KEN est construite à partir des projets Mitre ATT&CK et Elastic Common Schema,
permettant de lier les comportements d’attaques décrits par l’un avec les descriptions de
journaux d’événements de l’autre. Ainsi, lors d’une investigation réelle, KRAKEN peut
recommander des journaux d’événements pertinents à explorer. Nous évaluons KRAKEN
au cours d’une expérience impliquant 7 experts en cybersécurité, démontrant la qualité de
ses recommandations. Cependant, cette première expérience met en lumière la complexité
de reconnaître et comprendre les comportements des analystes pendant une investigation.

Notre seconde contribution, exposée dans le chapitre 4, se concentre spécifiquement
sur la compréhension des intentions des utilisateurs pendant leurs investigations. MIMIR
est un système de recommandation qui se base sur les traces des investigations passées
des analystes pour identifier les groupes d’actions récurrents et les intentions qui y sont
associées. Nous modélisons le lien entre les groupes d’actions récurrents, les intentions
utilisateur et l’enchaînement de ces intentions à l’aide d’une chaîne de Markov. MIMIR
offre des recommandations d’actions correspondant aux intentions les plus probables de

8

l’analyste au cours de son investigation. La chaîne de Markov est évaluée de deux façons
différentes pour tester à quel point nous avons pu capturer le comportement d’un analyste
dans le modèle. Dans un second temps, nous testons le système de recommandation au
cours d’une expérience avec 9 participants, constatant à nouveau que les recommandations
sont largement suivies par les utilisateurs, un résultat prometteur.

La dernière expérience faite pour évaluer MIMIR fait partie d’une expérience plus
vaste, constituant notre troisième contribution : CERBERE. Cet exercice implique à la
fois des attaquants et des défenseurs, offrant différents niveaux de difficulté. Le scénario
et l’architecture de CERBERE sont fournis et peuvent être modifiés pour créer un nouvel
environnement de jeu. Trois types de journaux d’événements peuvent être extraits auto-
matiquement d’un exercice joué, ce qui est particulièrement utile pour évaluer la détection
d’intrusions. Outre l’exercice lui-même et son utilité pour l’évaluation de nos systèmes de
recommandations, nous fournissons le jeu de données résultant de la première édition de
l’exercice. Ce jeu de données contient les journaux d’événements des 13 membres de la red
team pour les trois types de journaux d’événements capturés. De plus, nous avons étiqueté
le jeu de données à la suite l’exercice afin d’en extraire la vérité terrain, en particulier les
événements représentant des attaques réussies, rendant le jeu de données aussi utilisable
que possible pour les futures recherches, quelle que soit l’application.

Nous concluons cette thèse en récapitulant nos hypothèses de recherche et nos contri-
butions, puis nous suggérons de nouvelles perspectives de travail. Après avoir examiné
des améliorations potentielles pour chacune de nos trois contributions, nous proposons des
pistes d’amélioration. L’une de ces propositions consiste à explorer la possibilité d’hybrider
les systèmes de recommandation KRAKEN et MIMIR, combinant ainsi leurs spécificités
pour créer un nouvel outil plus performant. Nous suggérons également d’explorer les as-
pects temporels des investigations, en envisageant des recommandations liées à l’ordre des
étapes effectuées par un attaquant. Enfin, une dernière perspective envisagée consiste à
élargir le champ de nos recommandations pour inclure la possibilité d’offrir des conseils
de remédiation et de mitigation d’attaques.

9

ABSTRACT

The landscape of cybersecurity has expanded significantly. In the new millennium, at-
tackers have evolved into highly skilled and organized professionals. Consequently, there is
an increasing need to enhance the security measures in our daily lives. Companies notably
live and breathe thanks to their information systems, and a breach of those could have dev-
astating impacts. In order to counter as many attackers as possible, some solutions have
been installed. The ones we focus on are the incident response teams that can be found
in Security Operation Centers (SOC), Computer Emergency Response Teams (CERT) or
Computer Security Incident Response Team (CSIRT). Within these teams, the role we
focus on in this work is the one of analyst. An analyst is a professional responsible for
monitoring, analysing, and interpreting security-related data to identify potential threats,
vulnerabilities, and security incidents within an organization’s information systems.

In the cybersecurity domain, a shortage of analysts persists, primarily attributed to
challenges in handling the escalating volume of threats. Despite utilizing diverse tools,
technologies, and methodologies to identify and counter security breaches, assess incident
impact, and fortify security postures, analysts encounter difficulties due to the tools’ lack
of alignment with their specific tasks. Many existing tools are not purpose-built for the
intricacies of analysts’ responsibilities, impeding ease of use and familiarity. This research
aims to address these challenges by proposing complementary tools designed to augment
analysts’ capabilities during incident response, offering enhanced support in their data
investigation for threat detection.

In collaboration with Malizen, a platform facilitating log investigations for analysts,
our research aims to enhance the speed and efficiency of analysts during their investigative
processes. Inspired by the success of recommender systems in data-intensive domains like
e-commerce, we propose employing recommender systems in the cybersecurity context.
These systems leverage algorithms to deliver personalized suggestions based on knowledge,
user preferences, behaviour, or historical interactions.

This thesis outlines two distinct recommender systems introduced as contributions.
One relies on domain-specific cybersecurity knowledge, while the other utilizes analysts’
past interactions with the investigation platform to make recommendations. Despite their
different approaches, both systems share a common objective: providing analysts with

10

pertinent exploration paths throughout their investigations. The thesis also delves into
the general evaluation of recommender systems as well as cybersecurity data generation,
constituting our third and final contribution.

11

TABLE OF CONTENTS

I Context 16

Introduction 17

1 Background 21
1.1 Analysts . 21

1.1.1 Analyst types & expertise . 22
1.1.2 Analyst experience . 24

1.2 Incident response . 24
1.2.1 Incident reporting registration and triage 26
1.2.2 Incident resolving & Investigation 26
1.2.3 Incident closing and capitalization 30

1.3 Logs . 30
1.3.1 Types of logs . 31
1.3.2 Usability difficulties . 32

1.4 Investigations at Malizen . 34
1.4.1 Ingestion . 35
1.4.2 Analysis . 36
1.4.3 Reporting . 36

1.5 Conclusion . 37

2 Related work 41
2.1 Recommender systems . 41

2.1.1 Recommender system types . 42
2.1.2 Recommender system challenges . 48

2.2 Recommender systems in cybersecurity . 51
2.2.1 Recommender systems types in cybersecurity 52
2.2.2 Constraints brought by using recommender systems in cyber 57
2.2.3 Cyberattacks on recommender systems 58

2.3 Evaluating recommender systems . 59

12

TABLE OF CONTENTS

2.3.1 Evaluation approaches for recommender systems 60
2.3.2 Evaluation of recommender systems in cybersecurity 61

2.4 Recommender systems and visualization 61
2.4.1 Visualization . 62
2.4.2 Visualization recommendation . 62
2.4.3 Visualization in cybersecurity . 63

2.5 Chapter conclusion . 64

II Contributions 65

3 Helping users find the right exploration paths using expert knowledge 67
3.1 Introduction . 68
3.2 The KRAKEN recommender system . 69

3.2.1 Overview of KRAKEN . 69
3.2.2 Context associated with a recommendation trigger 70
3.2.3 Structuring ECS and ATT&CK into a knowledge base 71
3.2.4 Decision-making in KRAKEN . 74

3.3 Evaluation of KRAKEN . 81
3.3.1 Datasets used . 81
3.3.2 Experimental setup . 82
3.3.3 Qualitative results . 83
3.3.4 Quantitative results . 84
3.3.5 Providing assistance to investigations 85

3.4 Improving the recommender system . 85
3.5 Conclusion . 87

4 Gaining a better understanding of analyst intentions to make recom-
mendations 89
4.1 Introduction . 89
4.2 Use case: understanding a user’s intentions 91
4.3 Related Works about user intentions . 92
4.4 Overview of MIMIR . 95

4.4.1 Design phase . 95
4.4.2 Runtime phase . 96

13

TABLE OF CONTENTS

4.5 Intentions, patterns and actions inside MIMIR 97
4.5.1 Collecting intentions . 97
4.5.2 Collecting actions and pattern creation 98
4.5.3 Linking patterns to user intentions 100

4.6 MIMIR’s recommendation engine . 101
4.6.1 Using a Markov chain to link intentions 101
4.6.2 Triggering recommendations . 102
4.6.3 Presenting recommendations . 103

4.7 Evaluation of MIMIR . 103
4.7.1 Quality of the Markov chain . 103
4.7.2 Prototype and recommendations evaluation 106

4.8 Conclusion . 109

5 Data: the issue of obtaining it and using it for evaluation 113
5.1 Introduction . 113
5.2 Cybersecurity data generation in the literature 115
5.3 The CERBERE Project . 117

5.3.1 Overview . 117
5.3.2 The attack scenario . 119
5.3.3 The architecture . 119
5.3.4 Variations in the attack scenario . 119
5.3.5 Example of solution for red teamers 120
5.3.6 Exercise monitoring at multi-level 121

5.4 Experiments with CERBERE . 122
5.4.1 Red team experiment . 122
5.4.2 Blue team experiment . 123
5.4.3 Data quality . 123

5.5 Results of the CERBERE experiment . 125
5.5.1 Red team feedback . 125
5.5.2 Blue team feedback . 126
5.5.3 Quantitative feedback . 127
5.5.4 Qualitative feedback . 128

5.6 CERBERE Dataset . 128
5.6.1 System logs labelling . 129

14

TABLE OF CONTENTS

5.6.2 Network logs labelling . 130
5.6.3 Browser logs labelling . 131

5.7 Conclusion . 132

Conclusion 135

Bibliography 139

15

Part I

Context

16

INTRODUCTION

The difference between screwing around and science is writing it
down.

— Adam Savage

During the past few decades we have seen information technology take over every
aspect of our lives: the rise of technology has led to the relocation of every and any form
of work and communication to the internet. People use their information and money online
and cyberattacks targeting them are committed. Since the first recorded cyberattacks [81],
attackers have evolved and now the panorama of cybersecurity is wider than ever. Since
the beginning of the millennia, attackers are becoming more and more professional, they
have become organized. As a consequence, the need to update the security level of our
lives is greater than ever.

There are numerous fields in cybersecurity, among the most common methods of pro-
tection are firewalls, Intrusion Detection Systems (IDS), sensitization of users and many
others. However, attacks still get through sometimes and data gets leaked, money is stolen,
reputations are harmed. Just as the police investigates crimes, cybersecurity teams have
analysts devoted to incident response. Understanding, mitigating and remediating cyber-
security incidents is among the important problematics to solve in cybersecurity. During
incident response, in order to understand and then act, analysts perform investigations. A
cybersecurity investigation is the process of researching attacks and abnormal behaviours
within data collected from any device. They are a coveted resource because their work is
hard and time-consuming and yet, time critical. Investigations are also even more difficult
since analysts start them completely in the dark, making the analyst react to events,
instead of being able to be proactive.

The work of this thesis focuses on finding methods to help analysts conduct cybersecu-
rity investigations faster and more efficiently. Nowadays, analysts are employed in various
structures such as Security Operations Centers (SOC), Computer Emergency Response
Team (CERT), Computer Security Incident Response Team (CSIRT) or Digital Forensics
and Incident Response (DFIR). Information about these structures show us how neces-
sary it is to address the issue of making the job of analyst easier, and faster. Monitoring

17

Introduction

tools were the first to appear. They were design to observe the activity of processes and
correct any issues, then moved on to being a way to monitor devices in search of abnormal
activity. Intrusion detection took its first steps next, first signature based, then behaviour
based and nowadays, machine-learning based. They do an impressive job of automatically
detecting attacks, and even mitigating and remediating to said attacks. However, analysts
are still overwhelmed. First because the volume, heterogeneity and dimensionality of data
has grown during the last few years. Then because attackers have diversified themselves
endlessly and have access to more and more resources since cybersecurity became popular.
They range from script kiddies to actual nation state threats and have different goals and
methods. These same attackers are becoming experts at taking advantage of the low level
of cybersecurity in the world right now. Even when the attacks are detected, sometimes
they simply cannot be stopped. That is why teams of analysts, called threat hunters, are
constantly investigating their company’s information system in order to discover abnormal
behaviours and attacks.

Analysts are faced with many challenges regarding various aspects of their work: data
is complex to process for investigations, investigations are difficult to conduct, and the
tools at the analysts’ disposal are not adapted to their need. Knowing this, we found
there was a need to come up with another solution. We went in search of a way to help
analysts make better decisions and detect attacks faster and characterize them readily. As
a result, for this thesis, we have decided to focus on a particular approach to the analysts’
problems: the use of recommender systems. A recommender system is a piece of software
aiming to suggest actions to a user to help him make better decisions regarding a specific
task.

Research question & contributions

Following our observations a research question emerges, which we will split into several
hypotheses, and answer in this manuscript: can we use recommender systems to help
analysts during their cybersecurity investigations?

In order to provide an answer to the previous research question we propose three
contributions:

1. A recommender system based on expert knowledge in cybersecurity. This tool
called KRAKEN [13] aims to use cybersecurity knowledge to identify relevant ex-
ploration paths for analysts to take during their investigations. It helps to test

18

Introduction

hypotheses easily during investigations.

2. A second recommender system, called MIMIR, this time based on the recognition
of user intentions during investigations. If we can recognize what tasks users are
trying to accomplish, we can advise them the best ways to execute them, and in
doing so making their investigations faster and more efficient.

3. A framework for building a blue and red team cybersecurity exercise: CERBERE.
It had two aims: obtaining data usable to further our research, and evaluate our
recommender systems.

Publications

Each of these contributions is associated to a publication:

1. KRAKEN, presented at SECITC in November 2021 [13]

2. MIMIR, Presented at IFIP WG 11.9 ICDF in Januanry 2024 [14]

3. CERBERE, presented at CyberHunt in December 2023 [11]

The rest of this manuscript is organized in the following way. Chapter 1 details some
background about this thesis and defines many terms we will use throughout the docu-
ment. Then, Chapter 2 presents the literature about our main topics, namely recommender
systems and more specifically the use of recommender systems in cybersecurity. In the sec-
ond part of this manuscript, we present the two recommender systems we contributed in
Chapters 3 and 4, followed by our third contribution in Chapter 5. We will then conclude
on this thesis in an ultimate chapter.

19

Chapter 1

BACKGROUND

A common mistake that people make when trying to design
something completely foolproof is to underestimate the ingenuity of
complete fools.

— Douglas Adams, Mostly Harmless

In order to be able to work with recommender systems, we need to explain some core
concepts of the parts of cybersecurity on which we focus. Our main point of interest is
to offer help to analysts. Analysts perform investigations and report on it. However, they
face numerous issues in their investigations. First, the quantity of data to investigate is
often humongous. Indeed, even small companies use many devices that log information
about their use, and the attacks can come from any one device, causing the quantity of
data to be analysed to grow a lot. Then, each different devices that records logs will do
so in its own manner, according to its own constraints and so, often, the logs obtained
from various sources are extremely heterogeneous, adding to the problem of quantity the
difficulty of finding where to look for attacks. Finally, to perform these investigations,
analysts need tools. These tools must be able to obtain and process the data in order
to present it in an investigable manner to the analyst. The variety of tools available, to
aggregate the data, reduce redundancy in it, uniformize its shape or even simply present
it properly to analysts is huge.

All these aspects make the work of analysts difficult. In the next sections we will
present in more detail these difficulties. Because we intend to make recommendations to
analysts, we will also present investigations, their main activity and the nature of the data
they explore: logs. Finally, we present the specificities of the Malizen platform.

1.1 Analysts

The human component is at the center of this work. We need to understand analysts
as well as possible if we are to find a way to help them without replacing them. Indeed, it

21

Background

is with analysts that the expertise resides and empowering them would help in tasks such
as threat hunting. We also believe that offering “human-in-the-loop” solutions approaches
problems like attack detection, mitigation and remediation that have hit walls in efficiency
these last few years, differently [87]. Our focus is to provide decision-making help to
analysts and not to detect or mitigate discovered attack in their place. That is because
we believe in their expertise and in the fact that if we facilitate their tasks they can focus on
making good security decisions without relying on automatic tools whose methods are not
always understood. In the following sections we will first detail the types of cybersecurity
jobs there are and where to find analysts there. Then we will discuss the two standpoints
of trying to automate their tasks versus trying to help them perform them more efficiently.

1.1.1 Analyst types & expertise

According to the structure they are a part of, analysts have different missions. Here-
after we describe some structures where analysts are commonly employed.

First, is the most well-known: the Security Operations Center (SOC) [94]. A SOC
is a centralized facility or team within an organization or externalized, staffed with cy-
bersecurity analysts, responsible for monitoring, detecting, analysing, and responding to
security incidents and threats in real-time. The primary goal of a SOC is to protect an
organization’s information systems, networks, and data from various cyber threats, such
as malware, unauthorized access, data breaches, and other security vulnerabilities. Their
daily missions include monitoring security events and analysing alerts raised. When an
alert is raised either they are a trivial threat and often, the response process is automated
in playbooks, but most of the time they require deeper analysis and call for an inves-
tigation. The SOC plays a critical role in maintaining the security and integrity of an
organization’s digital assets.

A Computer Security Incident Response Team (CSIRT) is a dedicated group or orga-
nization within an institution, company, or government agency composed of cybersecurity
experts, including analysts, responsible for managing and responding to cybersecurity in-
cidents. CSIRTs are composed of experts and professionals in the field of cybersecurity and
incident response, including analysts. Their primary role is to react to detected threats,
investigate, mitigate, and recover from them. Their role is more reactive compared to
SOC which are more proactive and preventive, even though the missions overlap. CSIRT
analysts play a key role in assessing and understanding security incidents, identifying
vulnerabilities, and recommending countermeasures. They play a crucial role in mini-

22

Background

mizing the impact of security breaches and ensuring the continuity of digital operations.
CSIRTs typically have established procedures and workflows for incident response, main-
tain communication with various stakeholders, and collaborate with other security teams
to address and resolve security issues effectively.

Another example of a team where analysts are employed is a Computer Emergency
Response Team (CERT). A CERT is a specialized group or organization, responsible for
monitoring and responding to cybersecurity incidents, vulnerabilities, and emergencies
within an organization, industry sector, or even at a national level. CERTs are dedicated
to maintaining the security and resilience of digital systems and networks. These teams,
including cybersecurity analysts, are focused on identifying, analysing, and mitigating se-
curity threats, vulnerabilities, and incidents. CERT analysts play a pivotal role in incident
investigation, and recommending remediation actions to protect against cyberattacks and
vulnerabilities. They work collaboratively to ensure the timely response to cybersecurity
emergencies, enhance cybersecurity awareness, and provide guidance and support to pre-
vent future incidents. CERTs typically follow established procedures and protocols for
incident response and often engage in information sharing and collaboration with other
CERTs, security teams, and stakeholders to address and manage cybersecurity challenges
effectively.

There are also teams tasked with one specific mission, such as threat hunting. A threat
hunting team is a group of cybersecurity professionals, with specialized expertise in proac-
tively seeking out and identifying potential security threats and vulnerabilities within an
organization’s digital infrastructure. This team’s primary mission is to actively search
for signs of malicious activities, advanced persistent threats, and cybersecurity risks that
may have evaded traditional security measures. Threat hunting analysts leverage a com-
bination of tools, techniques, and their cybersecurity knowledge to continuously monitor
networks, systems, and data for suspicious activities or indicators of compromise. When
potential threats are identified, these analysts explore data during in-depth investigations
to understand the nature of the threat, its scope, and the potential impact. They also
recommend and implement mitigation strategies to prevent security incidents and data
breaches. Threat hunting teams play a crucial role in enhancing an organization’s cyber-
security posture by detecting and neutralizing threats before they can cause significant
damage. Their work contributes to a more proactive and resilient security strategy.

Finally, sometimes, a cybersecurity analyst can be specialized in a specific task. For
example, audit and risk assessment plays a pivotal role in identifying and mitigating secu-

23

Background

rity risks within an organization’s digital landscape. Analysts specialized in such matters
have responsibilities that include conducting security audits to ensure compliance with
regulations, assessing vulnerabilities, analysing risk factors, monitoring and enforcing com-
pliance, simulating real-world attacks, generating detailed reports with mitigation recom-
mendations, shaping security policies, preparing for incident responses, fostering security
awareness, and maintaining continuous surveillance of the threat landscape. These efforts
collectively bolster an organization’s security posture, facilitate regulatory compliance,
and proactively manage cybersecurity risks.

Analysts can be found at different posts and have different goals but as described
in this section some common ground is always found. Apart from the last few profiles
described, their main goal is always to uncover attacks, analyse and report on them,
through investigations.

1.1.2 Analyst experience

The important thing to discuss here is the fact that nowadays, cybersecurity is part
of everyone’s daily life. Even if we focus only on companies, some bigger ones or the ones
better sensibilized to the topic will maybe have people dedicated to maintaining security
levels and protecting the infrastructure and its users. However, in many other companies,
often smaller structures and older ones, someone from IT is assigned this job and has to
perform outside his area of expertise.

So far, my experience in the domain shows that tools at the disposal of analysts are
over-specialized and as a result cannot be used properly. Even worse, they can be so
complicated to handle that they provoke mistakes and create more attack surface.

However, we are still able to face the challenges of cybersecurity because of too few
experienced cybersecurity experts. So, we have decided to focus on working with solutions
that help analysts make the best out of their own expertise or to rely on the expertise
of others, without trying to replace them, because in the last twenty years, cybersecurity
has not found a magic detection, mitigation and remediation solution to every attack.

1.2 Incident response

Incident response refers to a systematic approach taken by organizations to manage
and mitigate security incidents, such as data breaches, cyberattacks, malware infections,

24

Background

Figure 1.1 – The incident response workflow from ENISA [57]

and other cybersecurity threats. The primary objectives of incident response are to identify
and assess security incidents, contain the damage, eradicate the threat, and recover normal
operations. Figure 1.1 shows a workflow offered by the ENISA to map the process and
different steps of incident response.

This process typically involves the coordination of various teams, the collection of
evidence, communication with decision-makers at all levels, and the implementation of
predefined procedures and security controls to address the incident effectively. Handling
properly the management of incidents is a critical component of an organization’s overall
cybersecurity strategy. In the following sections we will go into more detail about incident
reporting, registration and, triage. Then, we will discuss incident resolving where our
focus is on the highlighted part in Figure 1.1: incident resolution, and more specifically
the investigation. Finally, we will briefly develop the closing of an incident.

25

Background

1.2.1 Incident reporting registration and triage

In order to reach the steps of incident reporting, registration or triage, incidents must
first be detected. However, once alerts are raised by the detection system, the trivial ones
can be treated automatically, but most cannot. At this point, an analyst takes over and
decides what must be done regarding the alert.

Reporting and registration are fairly straightforward tasks. When reporting and reg-
istering an incident, the analyst answers some questions such as:

— What alert (or group of alerts) qualifies as an incident?
— How to register it? (What process should it go through?)
— What data is important to collect so that incidents are documented well enough?

These steps are not usually the one where decision-making is made, therefore, recom-
mender systems are not needed at this point. Independently of the method used to report,
may it be an email or a complex ticketing platform, an incident is registered and assigned
to an analyst.

This leads us to the triage phase, where the fun begins. Triage involves classifying
incidents into different categories, such as high, medium, or low severity, and then pri-
oritizing the response efforts accordingly. This classification problem is well known by
the community [93, 21]. Having an efficient way to triage the incidents is crucial because
resolving an incident necessitates the right analyst with the right expertise.

1.2.2 Incident resolving & Investigation

Incident resolution is very context-dependant. Every team has its own set of tools,
its own environments and processes to eradicate threats. That is due to various reasons,
historical, analyst preferences, company policy etc. However, some common ground can be
found in every team: incident resolution consists in multiple iterations of data analysis in
order to find, comprehend, mitigate and then remediate an attack. The multiple iterations
can be for different reasons such as the apparition of new data to analyse or the mitigation
not working. Depending on the incident, handling it can be automated. Instances where an
incident is often resolved automatically are DDoS attacks (Distributed Denial of Service)
because detection tools nowadays have become very efficient at recognizing them early on,
sometimes even earlier than analysts like in this example of a DDoS attack first mainly

26

Background

blocked automatically 1 2. However, when it became clear the automated response was not
sufficient, analysts started to investigate.

To summarize, a cybersecurity investigation is a comprehensive and methodical pro-
cess undertaken to uncover, analyse, and respond to security incidents, breaches, or suspi-
cious activities within an organization’s digital infrastructure. This investigative procedure
consists in the exploration of data by cybersecurity professionals, often known as (foren-
sic) analysts or investigators, who possess specialized skills in collecting, preserving, and
analysing digital evidence. Investigations differ a lot based on what data is available, how
and when it was collected, the nature of the data, and of course the quantity. Nonetheless,
the primary steps of a cybersecurity investigation are:

— Identification: This can include unauthorized access, data breaches, malware in-
fections, insider threats, or any activity that raises suspicion.

— Analysis: Once evidence is identified, analysts analyse it to determine the nature
and scope of the incident. This may involve examining logs, network traffic, system
configurations, and artefacts left by attackers.

— Attribution: In some cases, analysts attempt to identify the source or the indi-
viduals behind the incident. Attribution is often challenging but can be essential
for law enforcement or legal actions.

— Mitigation: During the analysis (and after) of the incident, analysts recommend
and implement measures to contain and mitigate the security threat. This can
include isolating compromised systems, removing malware, and patching vulnera-
bilities.

— Documentation: Throughout the investigation, meticulous documentation of all
findings and actions taken is crucial for both legal and internal purposes.

— Communication: Investigators maintain clear communication with relevant stake-
holders, including management, IT teams, legal counsel, and law enforcement if
necessary.

— Remediation: Once the investigation is complete, recommendations for remedia-
tion are provided to prevent a recurrence of the incident. This can involve enhancing
security controls and procedures.

— Reporting: A report is often generated, summarizing the investigation’s findings,
including the incident’s cause, impact, and recommendations for future security

1. https://blog.cloudflare.com/zero-day-rapid-reset-http2-record-breaking-ddos-attack/
2. https://blog.cloudflare.com/technical-breakdown-http2-rapid-reset-ddos-attack/

27

https://blog.cloudflare.com/zero-day-rapid-reset-http2-record-breaking-ddos-attack/
https://blog.cloudflare.com/technical-breakdown-http2-rapid-reset-ddos-attack/

Background

improvements.

1.2.2.1 MITRE

In order to easily identify attacks discovered, classify them and find mitigations and
remediation, analysts often use knowledge they can share between them. At this point we
find it worth mentioning the MITRE® corporation. Specifically we wish to introduce two
projects from this company: ATT&CK and D3FEND.

ATT&CK The MITRE ATT&CK (Adversarial Tactics, Techniques, and Common Knowl-
edge) project is a comprehensive framework that aims to provide a detailed and structured
understanding of the tactics, techniques, and procedures (TTPs) employed by cyber adver-
saries during different stages of a cyberattack. The project’s primary goals are enhancing
cybersecurity awareness, improving threat detection and response, and facilitating collab-
oration within the cybersecurity community. Other projects such as SIGMA 3, Osquery-
ATT&CK 4 or RE&CT 5 perform similar joins between projects for other cybersecurity
tasks than investigation, showing how widespread and used by all the ATT&CK project
has become over the years. Some information about ATT&CK is given hereafter:

Tactics represent high-level objectives or goals that adversaries aim to achieve during
an attack. They are categorized into several areas, each reflecting a different aspect of the
attack lifecycle. The tactics in ATT&CK are as follows:

1. Reconnaissance: The adversary is trying to gather information they can use to plan
future operations.

2. Resource Development: The adversary is trying to establish resources they can use
to support operations.

3. Initial Access: The adversary is trying to get into your network.

4. Execution: The adversary is trying to run malicious code.

5. Persistence: The adversary is trying to maintain their foothold.

6. Privilege Escalation: The adversary is trying to gain higher-level permissions.

7. Defence Evasion: The adversary is trying to avoid being detected.

8. Credential Access: The adversary is trying to steal account names and passwords.

3. https://github.com/SigmaHQ/sigma
4. https://github.com/teoseller/osquery-attck
5. https://github.com/atc-project/atc-react

28

https://github.com/SigmaHQ/sigma
https://github.com/teoseller/osquery-attck
https://github.com/atc-project/atc-react

Background

9. Discovery: The adversary is trying to figure out your environment.

10. Lateral Movement: The adversary is trying to move through your environment.

11. Collection: The adversary is trying to gather data of interest to their goal.

12. Command and Control: The adversary is trying to communicate with compromised
systems to control them.

13. Exfiltration: The adversary is trying to steal data.

14. Impact: The adversary is trying to manipulate, interrupt, or destroy your systems
and data.

Techniques are specific methods or procedures used by adversaries to achieve the
objectives defined in the tactics. They provide more granular details about the steps
attackers take. Techniques are organized under each tactic. There are many techniques
and sub-techniques, but here are some examples:

1. Exploit public-facing application: an internet facing application is an attacker’s
playground. They will poke at them until they find an exploitable vulnerability. It
is often the technique used in the initial access step.

2. Ingress tool transfer: an attacker is trying to transfer a tool or a piece of malicious
code (e.g. a malware) through a channel in order to continue his attack or launch
new ones. It is associated to a command and control tactic.

Understanding these tactics and techniques helps security professionals and organiza-
tions enhance their threat intelligence, detection, and response capabilities by mapping
observed behaviours to the ATT&CK matrix. It provides a common language and frame-
work for discussing and analysing cyber threats. Using this ontology it becomes much
easier to classify the actual attacks, called procedures.

D3FEND D3FEND was introduced later by Kaloroumakis et al. [41]. In this paper,
the authors discuss their efforts to create a comprehensive knowledge graph of cyber-
security countermeasures, aiming for precision and clarity in identifying and specifying
the components and capabilities of such countermeasures. Their work, called D3FEND,
involves encoding a knowledge base into a knowledge graph with well-defined concepts
and relations, grounded in cybersecurity literature references. The graph enables inquiries
that link cybersecurity countermeasures to offensive tactics, techniques, and procedures
(TTPs) from the ATT&CK matrix. The authors also outline plans to expand D3FEND by
incorporating research literature and utilizing machine learning for ongoing maintenance.

29

Background

Through these projects, MITRE provides analysts with a common base of expert
knowledge in cybersecurity that can help them in various aspect of their work. ATT&CK
can be used to better identify and classify threats during investigations while D3FEND
could be used to offer mitigation and remediation options after an investigation has un-
covered attacks.

1.2.3 Incident closing and capitalization

The most important thing that can be done when an investigation is complete is
not to lose the intelligence gained. Multiple actions can be conducted such as: writing a
report, generating CTI, or building new rules for a SIEM (Security Information and Event
Management), IDS [24, 70, 63], or XDR (eXtended Detection and Response) for example.
A written report is almost equally important to actually conducting the investigation since
someone (a technical expert or not) will want to understand the situation at one point.
This corresponds to the last two steps of an investigation, as presented in Section 1.2.2.

1.3 Logs

During their investigations, analysts explore various data sources, the main type
of source being logs. A log is the recording of an event that happened on a device.
These records typically include detailed information about specific actions, errors, secu-
rity events, or system performance metrics. They are identified by the action they record,
the timestamp of the moment the action was performed, and some context associated to
the action. Logs can be recorded at almost any scale, from the small module of a software
to operating system-wide (e.g. a machine, server, IoT, probe). Logs are essential for trou-
bleshooting, monitoring, auditing, and security analysis [25], as they provide a historical
record of what has occurred within a digital environment. They are often stored in files
and are regularly reviewed by system administrators, analysts, and security experts to
ensure the integrity, security, and efficient operation of computer systems and networks.
As a result, logs are of varying natures, present many challenges and, since they are the
staple of investigations, will be discussed in more detail in the following sections.

30

Background

1.3.1 Types of logs

Logs often come from one of two types or source: system or network. System logs are
specific to individual devices and provide information about those devices, while network
logs focus on network-wide traffic and security, helping to monitor and protect the entire
network infrastructure. Both types of logs play vital roles in maintaining the integrity and
security of computer systems and networks. Along with logs come metrics, closely linked
to them, yet very different in nature (e.g. CPU load).

1.3.1.1 System

System logs, also known as server logs or host logs, are logs generated by a computer
system, server, or individual device. These logs document events and activities that occur
on the specific device where they are generated. System logs include information related to
the operating system, hardware, and software running on the device. They track activities
such as system startups and shutdowns, software installations and updates, hardware
failures, and security-related events like login attempts and specific file accesses. A lot
of things are “non human-readable” within those logs and often need enrichments so
that the data is usable (e.g. identifiers, log levels, protocol numbers, specific codes in
equipments). System logs are primarily used for monitoring and troubleshooting the health
and performance of individual devices, as well as for identifying and responding to security
incidents that may occur on the device itself.

The important specificity of system logs, is the monitoring of system calls. Having this
kind of events granularity can be essential during investigations, however there are many
pitfalls in using them. Indeed, tools that perform system monitoring are often difficult
to configure because of side effects, such as mixing system calls logs with process logs,
or the low-level nature of system calls. Most times, logs simply monitor a few syscalls,
knowing which of them are the most commonly used during attacks (e.g. write, mprotect).
Regardless, system logs give information such as the machine capabilities, memory state,
the entire filesystem and, users and privileges. Such information is often crucial for a
security investigation, so we need to make sure it is available.

1.3.1.2 Network

Network logs are logs generated by network devices, such as routers, firewalls, switches,
and intrusion detection systems. These logs record network-related activities and commu-

31

Background

nications generally called flows. They typically contain information about network traffic,
such as source and destination IP addresses, port numbers, protocol types, and traffic pat-
terns. They also log events related to network security, like intrusion attempts, firewall
rule violations, and network anomalies. Network logs are complex to handle for multiple
reasons. First, they generally are TCP and UDP connections. This means that logging
each step of a flow (e.g. the three or four steps of a handshake) is probably counterpro-
ductive. All the while, monitoring flows to log more significant steps of the flow can lead
to missing information and metadata. Second, the representation of network logs is an
ongoing topic in research [48].

Network logs are essential for monitoring and securing a network. Installing a network
probe is easier than configuring every machine, and allows tracking devices coming from
outside the company. However, network logs have higher granularity than system logs,
making both of them essential to investigations. Additionally, with the rise of remote
working, network logs are more difficult to capture.

1.3.1.3 Metrics

Metrics are an entirely different breed of information. They are not logs per se but are
often analysed alongside them 6. In the context of information systems and cybersecurity,
metrics refer to quantifiable measures and indicators that are used to assess, evaluate, and
track various aspects of an organization’s cybersecurity posture and the performance of
its information systems. These metrics are crucial for understanding the effectiveness of
security measures, identifying vulnerabilities, and making informed decisions to enhance
overall cybersecurity. Common cybersecurity metrics include CPU load and network traffic
volume, but also metrics used as Key Performance Indicators (KPI) such as the number of
security incidents, the time to detect and respond to incidents, the percentage of patched
vulnerabilities, or even user awareness training completion rates, all in order to apprehend
easily the security level of a company. There are also some metrics about resource usage
or flow size for example that can directly help during investigations.

1.3.2 Usability difficulties

Logs also present some significant challenges in order to be usable during cybersecurity
investigations.

6. https://www.splunk.com/en_us/blog/learn/logs-vs-metrics.html

32

https://www.splunk.com/en_us/blog/learn/logs-vs-metrics.html

Background

1.3.2.1 Heterogeneity

The problem of heterogeneity in logs refers to the complications that arise when deal-
ing with logs from different sources, systems, or applications that have diverse formats,
structures, and content. There is no actual standard that everybody could use. This is
not even for lack of trying but because depending on the use of logs intended by the
standard, the model can vary a lot. One specific project called IDMEF (The Intrusion
Detection Message Exchange Format) for a standard in intrusion detection messages was
even offered in a request for comments 7 but was never really adopted by the community.
Depending on their intended use, logs should not be represented the same way. Here are
a few common reasons for log heterogeneity that impact security investigations:

— Diverse Formats: Logs may be generated by various devices and systems, each with
its own format, making manipulation challenging.

— Inconsistent Content: Log information can differ significantly between different
sources, complicating analysis.

— Volume and Velocity: Vast amounts of log data are generated, with varying vol-
umes and velocities, requiring efficient storage and processing to avoid errors and
confusing analysts when sources have very different velocities.

To address the problem of heterogeneity in logs, organizations often employ log man-
agement and SIEM solutions 8 9 that include tools for log normalization, parsing, and
aggregation. These solutions can help standardize log data and facilitate centralized anal-
ysis and reporting.

Additionally, the use of common log formats, such as the Common Event Format
(CEF) or Log Event Extended Format (LEEF), can aid in log consistency and integration.
Overall, managing log heterogeneity is essential for effective cybersecurity and incident
response.

1.3.2.2 Multidimensionality

Logs often consist of data points that capture various attributes, characteristics, or
context related to an event or activity. This complexity can create challenges in log analysis
and interpretation. One log line can reasonably contain up to 30 different fields, with
different values, some being very redundant (e.g. process.name and command.name are

7. https://www.rfc-editor.org/rfc/rfc4765
8. https://docs.splunk.com/Documentation/CIM/5.2.0/User/Overview
9. https://www.elastic.co/security/siem

33

https://www.rfc-editor.org/rfc/rfc4765
https://docs.splunk.com/Documentation/CIM/5.2.0/User/Overview
https://www.elastic.co/security/siem

Background

often one and the same, but again, sometimes not at all) other helping identify context
but in an obfuscated way (e.g. ID, PID, PPID, GPID, GPPID. . .), and other being highly
relevant only when shared between log sources. Here are some of the challenges coming
from multidimensionality within logs:

— Data Volume: Multidimensional logs often result in larger volumes of data due to
additional attributes, requiring resource-intensive management and analysis.

— Complex Analysis: Analysing multidimensional logs is complex, as security ana-
lysts need to consider multiple dimensions simultaneously to detect anomalies and
identify patterns.

— Correlation and Visualization: Effective correlation and visualization tools and
techniques are needed to handle multidimensional log data.

1.3.2.3 Completeness

Finally, sometimes log do not contain all the information. In a number of cases, en-
richments must be performed so that the logs are usable directly during investigations.
Sometimes that is because of storage issues; in order to reduce the volume of data recorded,
some context can be overlooked. In many companies, storing logs comes with rules like
saving the complete event during 30 days and when the deadline expires, only keep mini-
mal information or nothing at all. Most of the time, logs are stored for fixed time periods.
Some solutions have been put in place to save space and effort, such as aggregating and
sampling. While those are smart methods to save space they are not helping the eventual
analyst trying to understand the patterns of normal traffic during an investigation for
example.

1.4 Investigations at Malizen

Malizen addresses cybersecurity data investigation with a collaborative log analysis
and incident response tool for the analysis, understanding, and efficient sorting of all
cybersecurity events. An analyst can explore logs through interactive and reactive data
visualization. This platform notably aims to solve some challenges brought by logs de-
scribed in the previous section. Malizen’s goals are:

It is within this platform that we wish to contribute multiple recommender systems
that help analyst make better decisions during their investigations. But first, let us de-
scribe the functionalities of the platform.

34

Background

Figure 1.2 – A screenshot of the ingestion part of the log investigation platform

1.4.1 Ingestion

The Malizen platform allows an analyst to push logs from any relatively common
source into it. The platform will consider each line of log as a set of fields and aggregate
all values among identical fields. Fields are identified using the Elastic Common Schema
(ECS) 10. That way, during investigations, analysts can visualize the values contained in
the logs using the ECS fields. ECS is an open standard for structuring and organizing data
consistently within the context of log and event data in IT environments. ECS is designed
to enhance the analysis, visualization, and correlation of log data from various sources
by providing a common set of field names and definitions. This standardization simplifies
data integration and interoperability between different tools and systems. By providing a
shared vocabulary and structure, ECS streamlines data analysis, visualization, and corre-
lation across different sources, enhancing operational insights and security investigations.

10. https://www.elastic.co/guide/en/ecs/current/index.html

35

https://www.elastic.co/guide/en/ecs/current/index.html

Background

Malizen already used ECS as a way of describing the data to investigate: keeping it as our
way of describing logs was only natural. An interesting example is to take the user fields
and see what they contain. The way ECS is built shows us that the logged information
concerns a user, and after the dot is the nature of the recorded data: user.name is trivial,
but then user.id informs rapidly as to how to categorize this identifier. All of ECS’s fields
are built like so and make it a very easy to use ontology.

Figure 1.2 shows the ingestion part in the platform. In the particular image we show an
analyst that has ingested different files from different sources of data in order to investigate
them later. These different files are all investigable together and the information they
contain is all normalized according to the ECS format. Additionally, all log lines from
all the ingested files are aggregated by fields (e.g.: file.target_path) in order to make the
volume of data more bearable to explore later on. In this part of the platform an analyst
can address some data related issues we have mentioned before, through different ways of
processing his data before investigating it.

1.4.2 Analysis

The platform mainly provides a graphical interface to perform investigations as shown
in Figure 1.3. An analyst can easily investigate the logs by dragging and dropping fields
from A to the board, creating visualizations as shown in C and D from Figure 1.3. These
visualizations present the aggregation of values for a data field. For example, visualization
window C shows a visualization called Top10 for the field file.name. Multiple visualiza-
tions can be observed in concurrence and filtered by value, range of values, and time
can be applied and will dynamically influence the other visualization windows. Part B of
Figure 4.2 shows a timeline of the logs and allows analysts to focus on a particular time
interval.

1.4.3 Reporting

Finally, as discussed in Section 1.2, it is essential that analysts have methods to report
on their investigations. The platform provides a case management interface designed to
do so, as well as a flag action in order to save interesting log values. Figure 1.4 shows this
part of the platform. Even though it is out of the scope of our work it is important to show
the effort made by the platform to reduce context switching for analysts. The platform
provides analysts with a tool where they can conduct an investigation from start to finish:

36

Background

from handling the data to investigate, to building a report on their findings. It backs the
ideas we want to push forward for the whole cybersecurity community: understanding
user needs and reducing their workload, so they can focus on their expertise as much as
possible.

1.5 Conclusion

Now that we are familiar with the context in which cybersecurity analysts work in
we can confidently say that while the cybersecurity field is improving day by day, some
problematics still need to be addressed, regarding data and incident response mainly. An-
alysts are overloaded with difficult investigations. That can be explained by the complex
handling of data, essential to start investigations, but also on the difficulty of actually
investigating without the proper tools, whether in terms of knowledge or in understanding
of their work. Our focus being the investigative part of incident response, we believe we
can improve different aspects of investigations. We choose to focus on helping analysts be
faster and more efficient during investigations. The new research question that emerges
is: how can we understand analysts better in order to gain efficiency cybersecurity investi-
gations and reduce the time needed to perform them. We will particularly focus on three
issues identified within the field:

1. Can we improve the comprehension of an analyst during an investigation? (Sec-
tion 1.1)

2. Can we benefit from expert knowledge during an investigation? (Section 1.2)

3. Can we obtain logs where attacks are identified in order to evaluate investigations?
(Section 1.3)

In the following chapter we will discuss related work. In order to answer those questions, we
oriented ourselves towards the field of recommendation. We will first study recommender
systems, their use in cybersecurity, and how we can use them to specify and answer our
research questions.

37

Figure 1.3 – A screenshot of the analysis part of the log investigation platform

Figure 1.4 – A screenshot of the case management part of the log investigation platform

Chapter 2

RELATED WORK

The archives are comprehensive and totally secure, my young Jedi.
One thing you may be absolutely sure of: if an item does not
appear in our records, it does not exist!

— Star Wars II: Attack of the clones, Jocasta Nu

I have introduced the concepts of investigations and analysts previously, to show in
which context we will use recommender systems (RS). In this chapter I will try to give
an overview of the nature and current use of recommender systems, specifically in the
cybersecurity field.

Recommender systems have been widely used for the first time in e-commerce websites.
The internet has seen the exponential growth of information available, the heterogene-
ity of objects and the difficulty of presenting relevant items to users happen in other
areas, namely e-commerce. These platforms have begun using decision-helpers called rec-
ommender systems long ago and are very successful in doing so. We believe we can apply
recommender systems to the challenges of cybersecurity.

This chapter will be structured around recommender systems and cybersecurity. After
defining recommender systems I will present the different types they can take and the
benefits and challenges that come with them. Afterwards I will focus on the cybersecurity
uses of recommender systems in the literature. Finally, I will discuss the methods of
evaluation of those recommender systems.

2.1 Recommender systems

Recommender systems are typically used when a user faces an overwhelming amount
of possibilities to choose from and would benefit from suggestions of relevant items. As a
consequence, recommender systems are widely used in fields such as e-commerce platforms
or on-demand video content, since the number of possibilities is almost endless. Most
recommender systems aim to provide relevant recommendations, but said relevance can

41

Partie I, Chapter 2 – Related work

vary according to the situation. Recommendations need to fit the needs of users, such as
discovering new items instead of similar ones, maintaining privacy, or even focusing on fast
recommendations instead of accurate ones. The parameters and relevance criteria of a task
to be solved by using a recommender system must be well framed before implementing
the recommendation process.

A recommender system is a piece of software that aims to help a user making decisions
regarding a task [69, 3]. Recommender Systems can be of different natures, but they all
share some core features. First, a recommender system has some source of input data
whose nature will often decide its type. Candidates for the recommendation are selected
from this input data; a candidate is a selected item presented to the user. Then, all
recommender systems also rank their candidates using various methods, such as similarity
measures [29]. Triggering and presenting recommendations to the user are also ongoing
issues in the literature. Some work presents recommenders as being explicit or implicit
recommenders in the sense where the user has to ask for the recommendation himself.
Presenting recommendations is however very rarely approached in the academic field,
except when working in visualization, where it is very relevant.

2.1.1 Recommender system types

Historically, recommender systems mainly fit in one of three categories: collaborative-
filtering, content-based and knowledge-based. These three categories are heavily reliant
on the type of data used as input for the recommender system. These three types are de-
scribed at length in the literature [40], but I summarize them in the following paragraphs.
Recommendations techniques, benefits as well as disadvantages for each type described
can be found in Tables 2.1 and 2.2, an extract of the one you can find in the work of
Burke [15].

Technique Input Process

Collaborative-filtering Ratings of items by users Identify similar users and recommend
well rated items

Content-based Ratings & properties of items Recommend similar and/or well-rated
items

Knowledge-based An expert description of user needs
and interests

Recommend an inference between a
user and a knowledge item

Table 2.1 – Recommender systems types

42

2.1. Recommender systems

Technique Benefits Disadvantages

Collaborative-
filtering

— Can identify cross-genre niches
— Quality improves over time
— Implicit feedback is sufficient
— Domain knowledge is not

needed

— Suffers from cold-start
— Suffers from grey sheep prob-

lem
— Quality dependent on dataset

size
— weak sensitivity to preference

changes

Content-based
— Quality improves over time
— Implicit feedback is sufficient
— Domain knowledge is not

needed

— Suffers from cold-start
— Quality dependent on dataset

size
— weak sensitivity to preference

changes

Knowledge-
based

— No cold-start problem
— Sensitive to preference changes
— Can include non-product fea-

tures
— Can map user needs to prod-

ucts

— Does not learn
— Expert knowledge required

Table 2.2 – Recommender systems benefits and disadvantages

2.1.1.1 Collaborative-filtering

The hypothesis of Collaborative-filtering recommender systems (CF) is that users often
have common interests. By modelling a user profile, it is possible when trying to make a
decision to find similar and/or dissimilar users in order to find out which items will be
relevant to recommend.

Computing the similarity between users can be done using different properties. The
main sources of user information are either given directly by the user himself, or by using
the history of the user (e.g. E-commerce platforms use a user’s purchase history to find
out which items to recommend that he buys next).

Collaborative-filtering recommender systems are widely used and pretty refined nowa-
days; competitions on optimization of such recommender systems have been held [8]. They
present interesting properties such as the capacity to identify cross-genre niches, meaning
that by identifying similar users, they will be able to link some topics of interests other

43

Partie I, Chapter 2 – Related work

recommender systems would not have been able to. Collaborative-filtering recommenders
also have feedback loops, giving them the ability to improve the quality of recommenda-
tions over time. On the other hand the fact that no domain knowledge is needed for the
recommender system to work implies that the recommender system is vulnerable to the
cold-start problem [50, 6, 7], defined later in Section 2.1.2.

Collaborative-filtering recommender systems are often used jointly with content-based
recommender system because their data inputs are similar, allowing for an easy hybridiza-
tion.

2.1.1.2 Content-based

Content-based recommender systems (CB) allow users to deal with enormous amounts
of information. They use item properties to filter all the available possibilities into more
or less specific categories according to the user’s need. The more properties are available
for the items being recommended the more efficient will the content-based recommender
be. However, to be able to make recommendations, content-based recommender systems
also need user profiles filled with their preferences, in order to be able to match them to
the most relevant items.

Content-based recommender systems also make use of similarity methods in order to
match users and items. The challenges of this type of recommender comes more often from
the capacity and efficiency to get the needed information as well as data scarcity. This
particular problem is discussed in Section 2.1.2. The interesting property of content-based
recommender systems is the fact that while they also suffer from the cold-start problem,
new items are less impacted by it than new users like in collaborative-filtering recom-
mender system. Indeed, since items come with content associated to them, we can achieve
a satisfying level of accuracy without first training the recommender system, whereas the
collaborative-filtering type does. However, where the collaborative-filtering recommender
system did not need to know anything about the items to make recommendations, the
content-based one will need content for every item in order to be able to make a single
relevant recommendation.

2.1.1.3 Knowledge-based

Knowledge-based recommender systems (KB) have very different properties compared
to the previous ones. The idea of a knowledge-based recommender system is to model the
expert knowledge about the topic on which we wish to make recommendations, and use

44

2.1. Recommender systems

it to select and rank candidates. This type of recommender system is able to map user
queries and needs to the recommendable items. Additionally, since expert knowledge is
used for the recommendations, the confidence in those recommendations is much higher
and can be explained.

Knowledge-based recommender systems were first designed for cases where it was very
unlikely that users could make relevant decisions by themselves, or in cases where other
types of recommender systems could not be used. This type of recommender system is also
sometimes associated with a recommender system named constraint-based. It is a subtype
of knowledge-based recommender system where recommendations are based on predefined
constraints or rules. In his work, Burke [17] shows how knowledge-based recommender
systems can be tailored to user constraints and queries. For example, when a knowledge
base is available, various methods to retrieve the information can be implemented and will
yield different results. Indeed, since the knowledge is fixed, it is possible to very closely
match the retrieval query with the recommendation query, instead of relying on similarity
methods like in the previous recommendation methods. Burke notably shows how each
method can be tweaked to maximize the accuracy and speed of recommendations.

The properties of the knowledge based recommender system make it insensitive to
the cold-start problem, an important feature for industries (like cybersecurity) where
errors may cost millions instead of in the e-commerce context, where recommending an
item a user does not care for has little impact. However, the drawback of knowledge-
based recommender systems is that the domain knowledge used to make recommendations
must be maintained, a difficult task. Indeed, in cybersecurity, knowledge evolves rapidly,
attacks are never reproduced twice in the exact same way and attackers find new ways of
concealing their actions every day.

Fortunately, it is often possible to hybridize knowledge-based recommender systems
to mitigate their drawbacks. Hybrid recommender systems are often possible and help
compensate for many issues, while keeping the benefits of the more classical types of
recommender.

45

Partie I, Chapter 2 – Related work

The scientific community is divided on the question of the classifica-
tion of recommender systems. Most researchers agree recommender
systems should be classified using the nature of their input data, but
some other types appear in the literature, such as context-based [2],
session-based [54], or the elusive demographic recommender sys-
tem. All these types are either particular variations of the three
categories described thereafter or not very represented in the lit-
erature. Most importantly, the different works of Robin Burke [17,
15, 16] offer, in my opinion, a clear view of the different types of
recommender systems.

Recommender classification problem

2.1.1.4 Hybrids

Hybrid recommender can refer to two systems: those described by Burke in his work [15,
16] and those not fitting in the previous category and mostly based on machine learning
techniques (thereafter called new generation recommender systems). A hybrid recom-
mender system combines two or more recommendation techniques in order to leverage
the benefit of each technique and build an overall better recommender system.

Collaborative-filtering and content-based hybrids are the most common types of rec-
ommender systems hybridized. They somewhat compensate for each other’s shortcomings,
and both their inputs of data are often present; if there are users there are items and vice
versa. However, both types suffer from the cold-start problem, which in some situations
is not acceptable. For example situations where following a wrong recommendation could
have a significant impact on the service in which the recommender system is integrated.

Table 2.3 shows commonly used hybridization methods. The weighted, switching and
mixed methods are quite common even in other fields than recommender systems in
order to gain some accuracy or broaden the scope of results. Some other methods like
feature combination or meta-level hybridization are very specific to recommender systems,
however they are often difficult to achieve [15]. Lastly, methods like cascade or feature-
augmentation are used more and more because they offer more possibilities than the
simple ones and are less complex to implement than the others.

It is to be noted than every classic type of recommender system cannot be hybridized

46

2.1. Recommender systems

using every method; some combinations are impossible. For example, feature combination
cannot be used between collaborative-filtering and knowledge-based or content-based and
knowledge-based (in that order). A knowledge-based recommender system’s knowledge
base may take into account any kind of data, while a feature combination hybrid aims to
reduce the sensitivity of the system to the number of ratings for example. If a knowledge-
based recommender system considers the features of a content based recommender system
has before him, the feature combination does not work. Some other combinations are
also redundant, such as weighted hybridization between content-based and collaborative-
filtering, since their recommendations, despite being from different recommendation types
have the same benefits and disadvantages and so rely on the same assumptions most of
the time. Although the redundancy can sometimes be useful when users or items are often
incomplete, the recommendations can be refined using the other method.

Some hybridization methods have been favoured by researchers over the years. Among
them cascade and feature hybridization are at the top [15, 16], because they have fewer
constraints to be applied and because they offer better confidence in producing good
results than most other methods. It is due to the fact that these methods of hybridization
use can be computed separately and then hybridized without having to mix the different
processes.

Hybridization
method Description

Weighted The scores (or votes) of several recommendation techniques
are combined to produce a single recommendation.

Switching The system switches between recommendation techniques
depending on the current situation.

Mixed Recommendations from several recommenders are
presented at the same time

Feature
combination

Features from different recommendation data sources are
thrown together into a single recommendation algorithm.

Cascade One recommender refines the recommendations given by
another.

Feature
augmentation

Output from one technique is used as an input feature to
another.

Meta-level The model learned by one recommender is used as input to
another.

Table 2.3 – Hybridization methods from the work of Burke [15]

47

Partie I, Chapter 2 – Related work

2.1.2 Recommender system challenges

Recommender systems help users make better and faster decisions, and they make
relevant data more accessible. However, recommender systems also face significant chal-
lenges they need to overcome [27, 15]. Some of them have been mentioned in the previous
sections, but I develop their associated challenges further in this section.

Table 2.2 mentions some of these issues as well. Some issues are more impacting than
others and the most important among them often create the need for hybrids in order to
compensate those weaknesses. In this section I will discuss the following:

— Data scarcity
— Privacy
— Scalability
— Cold-start
— Grey sheep problem

2.1.2.1 Data scarcity

In order to obtain good accuracy and stay relevant, recommender systems need data.
Lack of information is fatal for recommender systems, especially for collaborative-filtering
recommender systems and content-based recommender systems since they are heavily
dependent on the quantity of information in order to obtain recommendations of good
quality. Data scarcity refers to the challenge or limitation posed by an insufficient amount
of relevant and diverse data for effectively training and improving the performance of the
recommendation algorithms. However, data scarcity can also come from a lack of expertise
used to maintain a knowledge-base in the case of a knowledge-based recommender system
for example.

The data needed to make relevant recommendations is not any kind of data as well.
Therefore, data scarcity is linked to the serendipity of recommendations. Serendipity
corresponds to the apparition of good recommendations the user would not have thought
of himself. These can only appear if enough data from various source is available to
build recommendations. Indeed, trivial recommendations are rarely useful, especially in
the case of recommender systems being applied to expert systems. Choosing the input of
a recommender system is not an easy task. Knowledge-based recommender systems are
particularly affected by that issue.

48

2.1. Recommender systems

2.1.2.2 Privacy

Even if we manage to obtain compelling and comprehensive data to feed into a rec-
ommendation engine, user privacy can still pose a significant barrier. When it comes to
collaborative-filtering recommender system, certain identifiable or nearly identifiable at-
tributes, which could be valuable for recommendations, cannot be incorporated. In the
realm of cybersecurity, most recommendation systems are purposefully developed to ei-
ther avoid using sensitive information or to anonymize it before utilization. However, it’s
important to note that anonymized data, while privacy-preserving, can be less interesting
and less effective for generating recommendations. Striking a balance between protecting
user privacy and providing genuinely useful recommendations is a key challenge in the
design of recommender systems.

2.1.2.3 Scalability

The developers of a recommender system should make sure it will scale up if needed.
Nowadays, platforms such as Amazon or Netflix have thousands of new users and items
every day, making it really hard for the recommender system to keep up with the load.
Some work has started to tackle this issue by studying the difference between items and
users instead of their similarity [18]. In general, many more differences can be found than
similarities between users and items. By having more attributes to compare users and
items, more links can be made in the recommender system. Consider a scenario where
two users, User 1 and User 2, share a lack of interest in items categorized under ‘A.’
However, User 1 has a preference for items in category ‘C,’ while User 2 leans towards
category ‘B.’ In this case, a recommendation system might suggest items from category
‘C’ to User 2 and items from category ‘B’ to User 1, using the premise that their lack of
interest in ‘A’ makes them likely to like the same things.

2.1.2.4 Cold-start

The cold-start problem is a common challenge in recommender systems. This problem
occurs when the system encounters a new user, a new item, or both, and it has insufficient
historical data or information about these new entities to make accurate recommenda-
tions [50, 6, 7].

There are two types of cold-start problem:

49

Partie I, Chapter 2 – Related work

— User cold-start: it occurs when a new user or a user that has not provided any
preferences is in need of a recommendation.

— Item cold-start: this refers to the situation where a new item is introduced to the
system, and there is limited, or no user interaction data associated with that item.

In both cases, the situation makes relevant and/or personalized recommendations chal-
lenging.

2.1.2.5 Grey sheep problem

Sometimes a user with particularly eclectic tastes or an item that belongs to too few
or too many topics will generate a grey-sheep problem. It is when a user or an item
is not similar to anything and so cannot be recommended accurately. Various works on
clustering in recommender systems has well-identified the issue and tried to solve it using
diverse methods [5].

It is to be noted that the grey sheep problem can be generated by a malicious user
that wishes to harm the recommender’s performances.

In this chapter, we explore recommender systems as decision helper
tools for analysts. Given our goal of aiding analysts in faster investi-
gations without replacing their expertise, we believe recommender
systems are a suitable method. We do not advocate for full task
automation, as cybersecurity demands the nuanced judgment of
analysts. However, when implementing recommender systems in cy-
bersecurity, careful consideration is needed for the type of system,
given data sensitivity. Additionally, challenges such as the cold-start
problem should be addressed cautiously, as they can hinder the ef-
fectiveness of recommender systems in cybersecurity.

Discussion

Now that I have properly defined recommender systems I will focus on recommender
systems applied to cybersecurity for the rest of this chapter. Section 2.2 will detail how
recommender system have been used to solve cybersecurity tasks.

50

2.2. Recommender systems in cybersecurity

2.2 Recommender systems in cybersecurity

The cybersecurity field faces issues similar to e-commerce, such as the amount of
data and the need to browse rapidly and find relevant items. So, it has started making
use of recommender systems as well. In this section, I detail various works done with
recommender systems in the field [62, 38, 27]. Questions that will be addressed in this
section are:

1. What data can be used to build recommendation engines in the cybersecurity field?

2. Which tasks are recommender systems accomplishing in cybersecurity?

I will also address how the different benefits and disadvantages of recommender systems
and cybersecurity interact and complete each other. Table 2.4 describes the recommender
systems used in cybersecurity and their characteristics. In the table, they are presented by
some of their most defining attributes: the nature of their input data, the recommendation
technique, the cybersecurity task addressed, and the evaluation type.

Recommender
system

Input data RS
type

Task solved Evaluation

Polatidis et
al. [66]

System topology CF Attack prediction Online

Polatidis et
al. [65]

CVEs & CWEs CF Attack prediction Offline

Soldo et al. [78] Logs (malicious) CF Attack prediction Offline
Franco et al. [31] Services descrip-

tions
CB Protection service

recommendation
Online

Esposte et al. [23] Alerts & User
preferences

CB / CF Alert triage Online

Sayan et al. [74] Alerts KB Attack prediction ∅
Ayala et al. [6, 7] OWASP,

NIST. . . & User
ratings

KB / CF Attack mitigation User study

Huff et al. [34] CPE CB Vulnerability
patching

Offline

Husak et al. [37] Network monitor-
ing data

CB Potentially in-
fected machines

∅

51

Partie I, Chapter 2 – Related work

Karlsson et
al. [42]

Vulnerabilities KB / CB vulnerability
score

Offline

Sworna et al. [82] IoC, Network
monitoring data

CB Cybersecurity
tool decision

Offline

Nembhard et
al. [56]

Insecure code,
NVD, CWEs

Hybrid Coding vulnera-
bilities fixes

Online

McDonnell et
al. [54]

Malware datasets Session -
based

predict malware
classification

Offline

Hussein et al. [1] S&P attributes Hybrid Minimize cloud
vulnerabilities

Online

Nunnally et
al. [58]

Past interactions
between user
and visualization
platform

Hybrid Facilitate investi-
gations

Online

Table 2.4 – Recommender systems in Cybersecurity

2.2.1 Recommender systems types in cybersecurity

Researchers have also been using cybersecurity data to build recommender systems
for some time. In this section I will describe various recommender systems developed to
complete cybersecurity tasks, organized according to the types described Section 2.2.

2.2.1.1 Collaborative-filtering

In cybersecurity, comparing users is often a sensitive task, so most work in the area
makes use of variants of the classic collaborative-filtering method in order to avoid needing
a lot of information about their users. Such methods are notably described in the work
of Pawlicka et al. [62].

Polatidis et al. [66, 65] design a collaborative-filtering recommender system that uses
data from CVEs and CWEs 1 to predict future attacks. Their goal is to be able to identify
precise attack paths and classify them for later use in risk management. The recom-
mender system first identifies attack paths inside an information system and then uses a
parametrized version of multi-level collaborative-filtering from previous work [64] in order

1. https://cwe.mitre.org/

52

https://cwe.mitre.org/

2.2. Recommender systems in cybersecurity

to match the resulting killchains with vulnerabilities. Vulnerabilities are first rated by
users in terms of gravity, and the Pearson correlation coefficient between a user’s rating
and the average rating allows in a specific situation to predict the probability of an attack
taking place. This permits for the risk-assessement of an infrastructure.

Soldo et al. [78] try to predict which IP addresses will be malicious in the future. It is a
highly relevant issue to tackle in cybersecurity due to considerations like the attributions
of public IP addresses or the fact that legitimate IP addresses can one day be used
for malicious purposes. Their method is based on the use of past malicious logs that
allow to model the behaviour of certain IP addresses. The prediction is made using a
behaviour recognition model; some context, as well as victim information is also added to
the prediction in order to compute its probability. The recommendation system compares
past victims through the behaviour recognition model in order to find new potential
victims in an already seen situation. This tool is used for attack prediction, but this time
its recommendations could be used directly to update rules in a SIEM.

2.2.1.2 Content-based

Cybersecurity is also a field where the community shares a lot of knowledge. May it be
from sources of intelligence like vulnerability databases, ontologies for cybersecurity data,
or more rarely directly from information systems’ topology, there is enough material to
build content based recommender systems, if chosen carefully.

In their work, Franco et al. [31] propose MENTOR, a recommender system that rec-
ommends the right protection services to address a cybersecurity situation. The idea is
to constitute a database of possible software to recommend to the user, that solves a
particular request they have. The candidate selection is made using the requirements of
the user and then the scoring is based on a similarity method called the squared pair-wise
distance applied to each requirement. The particularity of this work is that the scoring is
based not only on cybersecurity features but also considers the recommendation from an
economical viewpoint. Unfortunately, no weighting of these completely different attributes
is done, so, without a proper evaluation we cannot be sure that the recommender system
is not biased.

A recommender with similar input data was designed by Huff et al. [34], but with a
slightly different goal. Their content-based recommender system aims to discover which
vulnerabilities a company should be concerned with. To do so, they use Common software
Product Enumerators (CPEs) to obtain an item database and perform fuzzy matching

53

Partie I, Chapter 2 – Related work

with vulnerabilities in order to recommend which vulnerabilities a software is likely af-
fected by. Since software are not described in a rigid way, they use NLP and cosine simi-
larity between software and vulnerability descriptions to build their recommendations.

Some other work decides to focus on using directly the topology of a network as input
data for recommendation [37]. In this case the goal of the recommender is to help an
administrator quickly discover which machines are likely infected after a malware attack.
The recommendation system is based on similarity measures between candidate nodes
and the nodes known to be infected. The higher the similarity is between two nodes with
one being infected and the closer they are in the network, the more likely it is that the
other one is infected.

More recently, Sworna et al. present the framework APIRO [82]. APIRO includes a
content-based recommender system that uses network monitoring data along with Indi-
cators of Compromission (IoCs) in order to recommend the right tool to its user during
incident response. The interesting feature this tool contributes is a unified interface for
security analysts to browse and select the adapted tools during security investigations.

2.2.1.3 Knowledge-based

Knowledge-based recommender systems are rarer in the cybersecurity field due to the
difficulty of gathering true cybersecurity knowledge and maintain it sufficiently for it to
stay relevant for extended periods of time. When knowledge-based recommender systems
are used, they often come with a way to update the knowledge base.

Sayan et al. [74] propose a cybersecurity assistant in their work. In terms of recommen-
dations, its goal is to detect attacks using network traffic data coming from monitoring
tools in order to recommend defence solutions. The tool design considers the recommen-
dation problem as a classification issue and uses an anomaly-based intrusion detection
machine learning method. This data is then processed by applying feature engineering to
it to transform it into a usable knowledge base. The resulting knowledge-based recom-
mender system is an interesting approach, but probably very hard to maintain up-to-date
since there is a lot of data pre-processing. It is however, not possible to know whether it
works or not since no evaluation is provided.

2.2.1.4 Hybrids

The most famous type of recommender system in other fields [8] is a hybrid between
collaborative filtering and content based types. However, user profiles and ratings make

54

2.2. Recommender systems in cybersecurity

less sense in the cybersecurity field. Esposte et al. [23] found a specific task where this
kind of hybrid is relevant: alert triage. For their collaborative-filtering recommendation
engine, they use analyst preferences and their previous ratings to match them to alerts
and dispatch new incoming alerts to the right person. This engine is backed up by a
content-based engine based on the properties of the alerts. The resulting recommender
system is a mixed hybrid, following Table 2.3. This is promising work in solving the
bottleneck of triage, however the evaluation of the recommender system is done by using
machine learning methods, which does not give a clear view of the performance of the
recommender system. For example, there is no feedback from users, so it is impossible to
know if the recommendations were actually useful.

While the most widely used hybrids are between the collaborative filtering and content-
based types, other types also exist. In cybersecurity, the cold-start problem (detailed in
Section 2.1.2) is critical to overcome since there is no room for bad recommendations
while the system ramps-up. Ayala et al. [6, 7] contribute an interesting hybrid recom-
mender system using the feature augmentation technique between a knowledge-based and
a collaborative-filtering recommender system. In doing so they benefit from the collab-
orative filtering method to leverage knowledge from their users, while also avoiding the
cold-start problem by using a knowledge based recommender system as well. Their goal
is to detect and recommend anomalies to their users, so they can prioritize the most
important ones during their investigations.

The question of privacy is also an important one in cybersecurity; when the input data
is domain-related knowledge, it is not always possible to use the data any way wanted.
Karlsson et al. [42] design a recommender system that takes these problems into account.
They implement a weighted hybrid recommender system between a knowledge-based and
a content based recommender system, and they append to that recommender a feedback
loop to maintain recommendations up to date. The recommendations are trying to score
vulnerabilities using their properties and user feedback about them. They address the cold-
start problem by using a knowledge-based recommender system and the privacy problem
by not using a collaborative-filtering recommender system, but instead a feedback loop
using only a user’s own actions. This method is likely costly in terms of performance, but
it ensures some data privacy.

55

Partie I, Chapter 2 – Related work

2.2.1.5 Other types of recommenders

Recommender systems also do not always fit in a category. Some work such as the
recommender system offered by Nembhard et al. [56] use methods such as text min-
ing in order to find recommendation candidates within insecure code using vulnerability
databases such as the National Vulnerability Database (NVD) or CWEs. A recommen-
dation is then made by using a fixed pipeline of actions allowing the tool to find fixes for
the detected vulnerabilities and propose them to the user. The fixes are ranked using a
similarity scoring method among different possibilities. The fastest one to give a relevant
result is selected.

Nembhard et al.’s recommender system and other like it are a little different because
they do not fit in the categories I described. More often, instead of using classical rec-
ommendation methods, they will use machine learning. In this case the recommendation
problem is approached as a classification problem. With this kind of approach, the rec-
ommendation system often benefits in terms of accuracy but loses a lot of transparency
and explainability.

With the field of computer science constantly evolving, some entirely new types of
recommender systems are even appearing. For example McDonnell et al. [54] offer a
session-based recommender system. A session-based recommender system has the goal
of predicting the next few user actions during short online sessions, and without any in-
formation about the past of the user. Their tool, CyberBERT has the goal of predicting
the user’s malware classification.

Another example is the work of Abuhussein et al. [1]. They develop a recommender
system for cloud services named Cloud Services Security Recommender (CSSR). The idea
of this recommender system is to identify the attack surface of a cloud environment and
to recommend security and privacy attributes to minimize the cloud’s vulnerabilities. The
input data as well as the recommendations for this system come from a cyberattack tax-
onomy: AVOIDIT [77]. By using a taxonomy as the base for making recommendations,
they effectively bring to light yet again a new type of recommender system. This recom-
mender system has the particularity of also considering stakeholder requirements, as well
as cybersecurity needs. Their qualitative evaluation with graduate students (specialized
in the field) gives good feedback about their tool.

Finally, some work like NAVSEC [58] tries to solve a cybersecurity issue by using in-
put data that is not directly cybersecurity data, namely the facilitation of cybersecurity
investigations. In this case, they use sets of interactions an expert user has had with a

56

2.2. Recommender systems in cybersecurity

visualization platform that led to significant discoveries. A nearest-neighbour approach
is applied to ongoing investigations and when the recommender finds a similar situation
to one encountered in the past and deemed relevant, it is recommended. Moreover, Nun-
nally et al. add some important features to their tool. First, they enhance its flexibility
because the system incorporates various machine learning techniques as modules, allow-
ing developers to extend it with custom modules to meet specific requirements. Second,
the tool adapts to different user communities, including those with limited resources or
inexperienced personnel, making it user-oriented and accessible. Third, they stress the
fact that their user interface was designed to be unobtrusive. This work addresses some
of the challenges we wish to contribute on regarding easing investigations. However, their
approach is from a visualization standpoint; we wish to provide a recommender system
that helps analysts during investigations through cybersecurity expertise. Additionally,
because of their use of the nearest neighbour approach, the core concept of NAVSEC is
to mimic past situations and get as close to them as possible, not understand the current
situation.

2.2.2 Constraints brought by using recommender systems in cy-
ber

In Section 2.1.2 I discussed the hurdles faced by recommender systems. Some become
essential to address in order for the recommender system to have value for their users.

Transparency and explainability become essential in cybersecurity. Analysts face vast
amounts of false positives when sorting through alerts searching for real threats. When
qualifying said threats they also need to report on them precisely and rapidly. That is
why, when using a decision-helper, analysts need justification in order to work properly.
Recommender systems using the more classical recommendation methods may it be in
terms of ranking method or hybridization method can be explained more easily than the
recent ones using machine learning for example. As a consequence, we decided not to use
machine learning solutions.

Previously, I mentioned that considering the type of data recommender systems use
as input, privacy could be an issue. In cybersecurity, this problem is amplified because
not only the user’s data is still sensitive, but item data and knowledge bases can also
contain sensitive information. For example, a recommender system that would maintain a
knowledge base with experiences encountered by experts would risk showing exactly what

57

Partie I, Chapter 2 – Related work

threats the company faces by recording more details for certain attacks than for others.
It would allow anyone that can use the recommender system to have a rough idea of the
attack surface of this company. With this in mind we will avoid collaborative-filtering and
content-based recommendation techniques, except if we can find safe input data.

2.2.3 Cyberattacks on recommender systems

Recommender systems are also vulnerable to cyberattacks. In particular, they are
vulnerable to attacks that come through their input data, such as grey sheep, shilling or
data poisoning. [27]

A shilling attack consists in the attacker feeding fake ratings to the recommender
system in order to exploit the variation in item ranks induced. A poison attack is similar
but has the goal of confusing the recommender system in order to make it give out false
recommendations. [43]

Recommender systems are widely used in cybersecurity nowadays. From using the
more classical types of recommender systems, research now tends to focus more and more
on machine learning solutions either to feed or replace recommender systems. This is done
in order to avoid certain issues inherent to recommender systems, but it also has the effect
of losing transparency and explainability as well as trusting users with the final decisions
more and more.

58

2.3. Evaluating recommender systems

Recommender systems are increasingly utilized in cybersecurity to
address various challenges. Despite this trend, literature reviews,
such as those in [38, 62], reveal ongoing gaps in the field. Projects
like MITRE ATT&CK gain popularity, and we believe developing
recommender systems based on expert knowledge can contribute to
addressing issues like the cold-start problem and recognizing attacks
during investigations. Notably, existing approaches often focus on
enhancing cybersecurity tasks for analysts without placing analysts
themselves at the core of recommender systems. These perspectives
will be further explored in the second part of this manuscript, align-
ing with the research questions outlined in Section 2.5. However, to
advance our understanding, proper evaluation methods for recom-
mender systems must be established, a topic we aim to tackle.

Discussion

2.3 Evaluating recommender systems

Recommender systems experts rarely agree about how to evaluate the entirety of a
recommender system. Some people even argue that recommender systems have too many
goals and uses to be evaluated in a standardized way. Historically, most people evaluated
recommender systems using metrics such as accuracy, prediction error, etc. [40]

During this thesis I have noticed that the evaluation of recommender systems is often
disregarded or incomplete. In this section I wish to discuss what efforts have been made
in the community to provide recommender systems with, standard methods of evaluation.
Such ways of evaluating are essential when comparing different work, may it be in terms
of relevance, performance, or even, user satisfaction. Something else that is rarely present
in research papers is the visual shape of recommendations. A recommendation can only
be relevant if it is presented to the user at the right time and under the right shape. Most
of the literature about recommender systems does not give all of this information easily.

59

Partie I, Chapter 2 – Related work

2.3.1 Evaluation approaches for recommender systems

The evaluation of recommender systems is an ongoing topic as there are multiple facets
of recommender systems that can be evaluated [68]. Studying recommender systems, I
came across three main methods of evaluation. I will name those methods according to
the work of Karlsson et al. [42].

First, the original way of evaluating recommender systems was the offline method. It
consists in using a set of historical data in order to produce various metrics about the
evaluated recommender system. It has the benefit of making a recommender system easily
comparable to others that have been evaluated using the same method. This method is
also applicable without requiring user interactions with the system. However, since the
nature of recommender systems is to be decision helpers for users, not having said users
participate in the evaluation makes it seem like some part of the recommender system is
left untested.

User studies are a way to fill that gap. In user studies, feedback is collected from users
before, during and after the testing of the evaluated recommender system. The interesting
part about said studies is the fact that they highlight the differences in use and in efficiency
for users induced directly by the recommender system since it is the only variable. The
issue with user studies lies in the difficulty of gathering a statistically relevant number of
experts of the field in which the recommender system operates.

The last method is the online study. Online studies consist in collecting data from a
running recommender system at the disposal of participants. The data can then be lever-
aged in different ways. A common use is a qualitative feedback survey after a participant
is finished using the recommender system. One constraint is to minimize the number of
participants needed while maximizing the diversity of the data collected. Some online
studies even do not even need users. Online studies also often try to gather better fitting
data about recommender systems instead of general metrics, for example:

— Number of followed recommendations compared to number of given recommenda-
tions;

— Relevance of recommendations both in qualitative and quantitative terms;
— Estimation of the efficiency gained with the use of the recommender system.

60

2.4. Recommender systems and visualization

2.3.2 Evaluation of recommender systems in cybersecurity

Table 2.4 shows what type of evaluation is performed for each recommender system
used in cybersecurity and cited in Section 2.2.1.

The first interesting thing to be noted is that there are some works where evaluation
is absent altogether [74, 37]. This can sometimes be due to the fact that the work only
presents the concept of a recommender system, but more often, the researchers have
not found a good way of evaluating. This could be improved by a standard method of
evaluation for recommender systems.

Next, among all the different works presented, only one of them is evaluated with a
user study [6, 7]. This is mainly due to the fact that it is extremely difficult to gather a
relevant sample of cybersecurity experts in order to test out recommender systems. Most
of the other evaluations that make use of participants consists in an online study and
shows that often, participants are other researchers and/or students in the field.

Then, most of the evaluation methods employed are either offline or online evaluations
(see Table 2.4). They are easier to organize, the results are simpler to present and speak
to the scientific community in ways where even non field experts can gauge the quality of
results. However, the consequence is less interest given to the human part of recommender
systems in the literature.

To evaluate properly a recommender system it is necessary to know, the type, the
input data and the task to solve. Once it is defined it is much easier to find out what
should be measured, how to select your participants, and what feedback is needed from
them. In the next part of this manuscript we will detail the evaluations that come with
our contributions, where we focus on evaluating multiple aspects of our works:

— The data used (volume and quality among others.),
— Quantitative feedback (i.e. metrics, performance indicators etc.),
— Qualitative feedback (i.e. user surveys).

2.4 Recommender systems and visualization

To help analysts during security investigations, many visualization tools have been pro-
posed by the research community to analyse various event data such as network logs [85,
20], DNS logs [71], system logs [36, 35] or file system metadata [9]. These methods allow
a faster and easier investigation giving the analyst the possibility to query and visualize
large amount of complex data. They however require significant expertise in both security

61

Partie I, Chapter 2 – Related work

and visualization techniques. Recommender systems are starting to be used to tackle that
issue.

2.4.1 Visualization

Data visualization is the graphical representation of information and data. It uses vi-
sual elements such as charts, graphs, and maps to help people understand the significance
of data by presenting it in a visual context [89]. Building on statistics, these tools provide
an accessible way to see and understand trends, outliers, and patterns in data. A single
dataset can be represented in multiple different ways, focusing on subsets, transforming
data and through different visual configurations. Each approach provides a different point
of view and allows different insights about the information. In cybersecurity, data visual-
ization provides an easier way to view data from different sources. Using charts, graphs,
and real-time dashboards, IT teams and security professionals can reduce clutter and
make it simple to spot anomalies that may indicate threat activity.

Visualization tools [30, 83, 28, 20, 85, 9] have been developed to identify attacks in the
data. Among those tools, some have focused on log visualization [36, 35]. Because of the
complexity of monitored systems, the quantity of events logged and their complexity, the
necessary time to investigate is too long [21]. Visualization systems also require extensive
field knowledge to be used efficiently [10]; as a consequence, users have to learn their
usage. Recommender systems are very often integrated to a visualization interface once
they go beyond the step of proof of concept. It seemed natural that we worked on the
visualization part as well.

2.4.2 Visualization recommendation

Recommender systems have been proposed as a complementary approach to visual-
ization tools to address these issues. They are mostly designed to help the user choose a
better representation of the data [53, 86, 91, 90, 33]. These approaches are not specific to
security investigations and require advanced knowledge and practice in terms of visual-
ization. However, these solutions have their shortcomings such as the lack of reliable data
to make recommendations, the heterogeneity and quantity of data to explore.

Outside cybersecurity, previous work combines recommendations with visualization [91,
90, 22, 86, 33]. When a recommender system is used with a visualization system, the rec-
ommendations are mainly used to offer to the analyst the more useful representations.

62

2.4. Recommender systems and visualization

This can be seen as an extension of work about automatic representation [52, 53]. The
recommendations can be computed using statistical and perceptual measures [91, 90] or
using machine learning [33]. As a consequence multiple visualization options are offered
to a user, which has to decide which one is the best suitable to her needs. We believe that
the required level of expertise is too high to be usable in real use cases.

2.4.3 Visualization in cybersecurity

Visualization recommendation has also been studied for security purposes. Only few
works are related to the visualization of security data enhanced by a recommender sys-
tem [58, 92]. Some work such as the research of Zhong et al. [92] present their work on
a visual interface. Their primary objective is to develop an efficient and effective system
for data triage and retrieval in the field of cybersecurity. The authors address the growing
challenges of managing and extracting meaningful insights from vast amounts of security-
related data. They focus only slightly on the visualization part when tackling the question
of the user interface associated with the tool. The authors emphasize the importance of
user-friendliness. The system’s interface is designed to be intuitive and user-friendly, fa-
cilitating ease of use for security professionals of varying technical backgrounds. However,
all of these work make use of complex visualization techniques such as Sankey and Chord
diagrams [49] or even spatial visualizations [58]. This forces the users, most likely cyber-
security experts, to also be visualization experts in order to be able to interpret and work
with these visualizations properly.

Li et al. focus on security risk analysis and offer defensive measures recommenda-
tions [49]. They employ visualization methods to enhance the understanding and inter-
pretation of data protection recommendations and planning support. The primary focus
of this study is to develop a system that aids security analysts in identifying which data
assets require priority protection measures.

The closest work to ours is NAVSEC [58], a recommender system integrated with
a 3D visualization tool [59] for network data. During the investigation, NAVSEC will
regularly offer to the security analyst a set of interactions with the 3D visualization tool
to discover a possible intrusion. The best interactions are selected by a nearest-neighbor
approach based on a database of previous investigations conducted by an expert security
analyst. This input data for the recommender system could also inadvertently leak some
data about the company’s security if not handled properly. NAVSEC is a collaborative
recommender system; it does not consider the user’s need or query in the recommendations

63

Partie I, Chapter 2 – Related work

and does not benefit from the accumulated knowledge on attacks, but only work using
the visualization information.

All of these works present the same shortcomings in terms of recommendation: the
cold start problem [61], unacceptable in cybersecurity. For example, the nearest-neighbor
approach presented in NAVSEC relies on data from past investigations, making the sys-
tem inaccurate and unreliable if no previous investigation’s data is available when trying
to make recommendations. After studying the possibility of designing a recommender
system that would help choose visualizations we decided against for the various reasons
explained. We also put pure visualization aspects out of our scope for this thesis. Nonethe-
less, learning about the topic has significantly helped us in framing our research.

2.5 Chapter conclusion

In this chapter we have built upon our hypotheses from the introductory and back-
ground chapters and presented in more detail recommender systems and their different
facets. We have then studied the literature in order to classify recommender systems into
types and understand how they work, first in general then in the context of cybersecurity.
We have also introduced two topics, that are often considered when discussing recom-
mender systems: the question of evaluating recommender systems and their closeness to
the visualization field. Some issues and challenges emerging from data and recommender
system have been partly addressed, but we see multiple areas still lacking. We updated
our research questions in agreement with our observations to formulate three new ones:

R1: Can we benefit from expert knowledge during an investigation by using knowledge-
based recommender systems?

R2: Can we improve the comprehension of an analyst during an investigation by
understanding their intentions and using them to make recommendations?

R3: Can we obtain logs where attacks are identified in order to evaluate the use of
recommender systems during investigations?

Our discussions about recommender systems reached a point where we are able to make
our own contributions to the field. We are also able to evaluate our future recommender
systems since we have studied the strong and weak points of methods of evaluation in the
literature. The next part of this manuscript is dedicated to the contributions we made
during this thesis, addressing our three research questions.

64

Part II

Contributions

65

Chapter 3

HELPING USERS FIND THE RIGHT

EXPLORATION PATHS USING EXPERT

KNOWLEDGE

Overconfidence is a slow and insidious killer.
— Darkest Dungeon, The Ancestor

This chapter is about combining expert knowledge coming from
the cybersecurity community and visualized logs. Our hypothesis
is that during computer security investigations, analysts are the
most reliable source of knowledge and, our role is to provide them
with the right tools. Our contribution aims to put relevant rec-
ommendations at the disposal of analysts during their investiga-
tions. This recommendation system links knowledge coming from
advanced attack descriptions to a visual analysis tool in order to
suggest exploration paths: a Knowledge-based Recommender sys-
tem for Analysts to Kick Exploration up a Notch (KRAKEN). To
evaluate KRAKEN we conducted a user study with seven security
analysts. Using our system, they investigated a dataset from the
DARPA containing different Advanced Persistent Threat attacks.
The results and comments of the security analysts show the usabil-
ity and usefulness of the recommender system.

KRAKEN

67

Partie II, Chapter 3 – Helping users find the right exploration paths using expert knowledge

3.1 Introduction

During our study of the literature, we have identified various areas where we could
contribute a recommender system. In this work we first address the idea of making bet-
ter use of expert cybersecurity knowledge during investigations (R1). The cybersecurity
landscape now includes multiple projects that gather intelligence and allow experts to
have relevant and complete knowledge about most attacks. However, we have not found
in the literature any recommender system that leverages this knowledge as an input for
recommendations. MITRE ATT&CK is one of those projects; it is often used during in-
vestigations but rarely directly integrated to them. We feel it would be a shame not to
benefit from it during an investigation.

Our focus in this chapter will be to answer two questions using a recommender system:
— Can we use a cybersecurity knowledge base in order to make relevant recommen-

dations?
— Can abstract knowledge be linked to logs in order to make it usable during inves-

tigations?
We will try to answer those questions without using visualization within the recommender
system because we believe we can better help analysts by helping them leverage knowledge
about which they have an expertise already. Then, our second research question implies
the need to link an abstract knowledge base to real attack traces left by an attacker,
which will present a significant challenge. Finally, we believe cybersecurity gains a lot by
being transparent and explicable so, we decided not to use any machine learning solutions
whatsoever, as they are often less easily explainable.

We intend that our recommender system helps the analyst by suggesting exploration
options, either to test a hypothesis on the incident, or to analyse another part of the logs
that has not been explored yet. It will exploit a knowledge base of adversary tactics and
techniques extracted from real-world observations: the MITRE ATT&CK matrix 1 (see
Section 1.2.2.1).

The rest of the chapter is organized as follows. First, we discuss the design of KRAKEN,
a knowledge-based recommender system in Section 3.2. Section 3.3 details our evalua-
tion of the recommender system. This evaluation was conducted on the first version of
KRAKEN. Towards the end of the chapter we find Section 3.4 where we detail improve-
ments we have made to KRAKEN after receiving various feedback during the evaluation.

1. https://attack.mitre.org/

68

https://attack.mitre.org/
https://attack.mitre.org/

3.2. The KRAKEN recommender system

Eventually, we conclude on this work in Section 3.5.

3.2 The KRAKEN recommender system

We built KRAKEN, a knowledge-base recommender system [17] that avoids the cold
start problem and makes transparent and explainable recommendations, two essential
properties in cybersecurity. In cybersecurity, we believe in avoiding having a ramp-up of
recommendations because it could lead to errors early-on. We also need to be able to justify
our recommendations because as described in Section 1.2.3, reporting on investigations
is also an important part of the process. Then we want to leverage expert knowledge
to make recommendations, because we believe that carefully chosen expert knowledge is
safer, and leads to better recommendations. Our end goal is to see analysts discover more
attacks during investigations. Our evaluation will show that depending on the experience
of users, KRAKEN achieves its goals.

3.2.1 Overview of KRAKEN

Figure 3.1 shows the overview of KRAKEN. We first describe step 1 from the figure.
After converting the logs to the ECS format and ingesting them in the platform, an
analyst starts investigating. The recommendation system is triggered when an analyst
flags a field’s value (see Section 1.4), declaring that it is relevant to his investigation.

In order to be able to make recommendations, KRAKEN will query knowledge from
a knowledge base described in Section 3.2.3. Depending on the recommendation context
and the decision-making process used (two possibilities), the knowledge queried will vary.
This knowledge is used to select the candidates to be ranked in order to create a recom-
mendation for the user. This is step 2.

Regarding decision-making in step 3, there are two possible situations. In both cases,
the end recommendation will be possible fields to explore, but they will be selected differ-
ently. Either we consider that the state of the investigation is known by the analyst and
that his goal is clear, or the analyst is unsure of the attack he has found and requires the
recommendation to also help him understand the situation. The full process is described
later in Section 3.2.4.

Finally, this process generate fields potentially relevant to explore as recommendations
(step 4). More precisely, the three best ranked candidates are displayed to the analyst.

69

Partie II, Chapter 3 – Helping users find the right exploration paths using expert knowledge

Figure 3.1 – The recommendation process of KRAKEN

Each one of them can be followed individually. Additionally, some essential features have
been added to the process. The most important one is the explanation of recommenda-
tions. Should the analyst ask for it, some information about the data that motivated the
recommendation is available.

The following sections go into further detail regarding the different steps of our recom-
mendation technique. We will start by explaining what we associate with context for the
recommendation. Then, we will describe the knowledge-base, followed by the two scoring
methods implemented for KRAKEN.

3.2.2 Context associated with a recommendation trigger

We call the “context” some important information associated to the flag action. At
the time of a flag, an analyst associates it with a field as well as the severity associated
with it. This context will influence the recommendation.

This context notably contains information about log sources and severity. Log sources
correspond to the data sources where a field can originate from. For example an IP address

70

3.2. The KRAKEN recommender system

will be found in a source such as firewall logs but probably not in system process logs.
The most important piece of context is the severity associated with a flag. This severity
corresponds to the relevance of the value to the investigation; if it is not associated to an
attack, possibly or partly or if it identifies an attack. It is recorded and given as context
to KRAKEN when a recommendation is triggered, along with other information.

Context = (field, severity, datasources)

With severity ∈ {suspect, danger, safe} and data sources the sources of log where
the field is observable.

All this information is given to the recommender system to generate a recommenda-
tion. The severity is studied in order to select how the recommendation should proceed:

1. The analyst has flagged with the suspect severity: the analyst needs more in-
formation before deciding whether the value is linked to a malicious activity or
not.

2. The analyst has flagged with the danger severity: a threat artefact has been found
and, as such, ends this part of the investigation. The analyst wants to direct his
attention somewhere else.

3. The analyst has flagged with the safe severity: a threat has not been found yet, or
that there is none. The analyst wants to take a look at the situation from another
angle.

3.2.3 Structuring ECS and ATT&CK into a knowledge base

As previously described, in Section 1.2.2.1, the ATT&CK project offers us the nec-
essary cybersecurity knowledge for our recommendation goals. The project regroups as
exhaustively as possible all possible attacker behaviours, their properties and which log
sources to use to observe them. On the other side, ECS (see Section 1.4.1) allows us to
take logs from any source and represent them using their ontology. In order to be able to
link tangible fields from an investigation to cybersecurity knowledge, we linked these two
projects.

71

Partie II, Chapter 3 – Helping users find the right exploration paths using expert knowledge

3.2.3.1 Building the knowledge base

We felt ATT&CK was the right choice to use as a knowledge base for this contribution
for multiple reasons. First, the project is continuously maintained and, the knowledge is
often updated. Second, the way it is built makes it resistant to tool changes from attackers.
And finally, the knowledge described covers every area of cybersecurity and every step of
a possible attack, making it one of the most exhaustive projects.

We mapped the data sources associated with every ATT&CK technique to a set of
fields defined by ECS, thus building a knowledge base. For us this meant carefully re-
viewing every possible source of logs, and finding all the potential data types that could
be observed through them using logs at our disposal (e.g.: IP addresses can be observed
in network sources of logs but also in some types of system processes.). The knowledge
base we obtain enables us to quickly compile a list of fields that are valuable for observing
attacks in logs. Conversely, it also allows us to identify the attacks that can be observed
through a specific field.

Figure 3.2 shows an extract of the knowledge base. We can see how tactics and tech-
niques from ATT&CK were linked through their data sources to ECS fields (see dashed
arrows on the figure). We bring to your attention that every edge of the graph can be
browsed in any direction, allowing ATT&CK knowledge to be queried from ECS and
inversely.

This knowledge base is accessed using GraphQL 2 as it allows us to have as much
liberty when we need to describe and query our very heterogeneous objects, but also
because it renders querying knowledge is possible in any way, from any node in the graph.
The recommender system is being federated through GraphQL to others services of the
Malizen platform. The result is a deeply integrated RS with the flexibility to change and
iterate rapidly during the experiment phase

3.2.3.2 Recognizing an attack using the knowledge base: an example

To illustrate the use of the knowledge base as a way of understanding how to observe
an attack, we show in Figure 3.2 an extract of the knowledge base that corresponds to
a use case. During an investigation, an analyst is exploring the logs from a router. He
observes many connections to the TCP port 6667. That port is related to IRC, which is
not a commonly used protocol in an enterprise environment. Those connections are thus

2. https://graphql.org/

72

https://graphql.org/

3.2. The KRAKEN recommender system

Figure 3.2 – Extract from the knowledge base

suspicious and the analyst flags this value as suspect. He needs now to confirm that the
activity related to this destination port is linked to an attack or not. At that point of the
investigation, there are still thousands of events related to that destination port and the
whole process can take hours.

Here is how our knowledge base would select knowledge to observe this attack easily:
Figure 3.2 shows that the port field that was studied is associated with the “Packet
Capture” source, in turn associated with the technique “non-application layer protocol”.
From there, we can select all the data sources linked to this technique, i.e. “Network
Intrusion Detection System” in the example, and all fields linked to them: “Severity” and
“Category”. In this instance, pivoting on the technique is what we call a recommendation
path: the analyst was analysing suspect traffic coming from IRC, and upon flagging the

73

Partie II, Chapter 3 – Helping users find the right exploration paths using expert knowledge

Algorithm 1 Our recommendation algorithm
1: procedure Recommendation(dt0, severity) ▷ With dt0: flagged field
2: ▷ dtx = field
3: ▷ Dtx = vector of fields
4: ▷ Dsx = vector of log sources
5: ▷ Tx = vector of techniques
6: Ds0 ← AllDataSourcesLinkedTo(dt0)
7: Tall ← AllTechniquesLinkedTo(Ds0)
8: if severity is suspect then
9: for all techniques in Tall do

10: Tscored ←MADM(Tall) ▷ We score each technique using MADM
11: Tbest ← Tscored[0 : 2] ▷ The three best scored techniques
12: Ds0 ← Ds0 + AllDataSourcesLinkedTo(Tbest)
13: Dtall ← AllDataTypesLinkedTo(Ds0)
14: Dtfiltered ← FilterIrrelevantDataTypes(Dtall)
15: for all fields in Dtfiltered do
16: Dtscored ← Similarity(Dtfiltered) ▷ We score each field using Similarity
17: Dtbest ← Dtscored[0 : 2] ▷ The three best scored fields
18: return Dtbest

port as suspect, he is given the recommendation containing the “Severity” and “Category”
fields. By following this path within his investigation, the analyst finds alerts raised by
the NIDS about attempted information leaks and corporate policy violations.

However, Figure 3.2 only shows an extract of the knowledge base, meaning that if
we were to try this in an actual investigation, the number of techniques resulting from
our request of all techniques observable in the log source “Packet Capture” will be much
higher, as well as the number of fields present in “Network Intrusion Detection System”
logs. This means we have to find a way to select the most relevant techniques and fields
at these steps.

3.2.4 Decision-making in KRAKEN

To compute the recommendations, we implemented a decision-making algorithm that
uses the knowledge base presented in the previous section and the severity of the flag. In
the case of a safe or danger flag, we only used a Similarity scoring method, whereas for
a suspect flag we implemented Multi-Attribute Decision-Making (MADM), on top of the
Similarity scoring.

74

3.2. The KRAKEN recommender system

Algorithm 1 shows how recommendations are generated. First, using the information
given by the field flagged by the analyst (dt0), lines 6 and 7 show that we select all
sources of logs where that field can be recorded and then all ATT&CK techniques that
can be observed by an analyst exploring the selected log sources. Then, as explained in
Section 3.2.2, if the severity associated with the flagged field is suspect (line 8) then we
will first use MADM to select the most likely observed technique (line 10). Once the most
relevant techniques are chosen, we select all possible data sources where this technique
can be observed in line 12 and select all fields present in the investigation linked to these
data sources (line 13). This part of the algorithm is what we called recommendation path
in the previous example. We rank them using our similarity method (line 16), and provide
a recommendation. If the severity associated with the recommendation is not suspect (line
8), we will skip the MADM scoring and go directly to line 15 for Similarity scoring. For
techniques as well as fields, once scored, we select the three best scored and use them as
input for the next step of recommendation. Both the MADM and Similarity methods are
developped in the sections hereafter. We can see how the knowledge base is used in this
algorithm by following the dotted line titled recommendation path from Figure 3.2. The
MADM scoring is used when we reach the techniques and the Similarity scoring when we
reach the fields.

All functions that appear in this algorithm represent queries to the knowledge base, and
they request all possible objects linked to its argument. For example: AllDataTypesLinkedTo()
will return all ECS fields linked to a specific log source or technique if the given argument
is a log source or a technique respectively. Fields categorized as irrelevant in function
FilterIrrelevantDataTypes() are those that are not present in the investigation, those
who only have one value through the dataset and the flagged field itself that we deem
would make irrelevant recommendations and so, are filtered out.

Techniques can’t be ordered totally, the number and the type of their attributes mak-
ing it impossible. MADM uses partial orders to compute a weight for each attribute giving
the ability to score techniques. ECS fields are scored using our Similarity scoring method.
Simple similarity scoring methods focus on assessing similarity or distance between al-
ternatives based on a limited set of attributes and are more appropriate for less complex
decision contexts, and such is the case for fields.

75

Partie II, Chapter 3 – Helping users find the right exploration paths using expert knowledge

3.2.4.1 Scoring techniques using multi-attribute decision-making

Multi-attribute decision-making (MADM) is a systematic approach used to evaluate
and compare multiple alternatives based on multiple criteria or attributes. It involves
assessing and ranking alternatives in order to make informed decisions when faced with
complex and multifaceted choices. MADM methods aim to provide a structured framework
for considering the diverse factors that contribute to a decision and determining the most
suitable course of action. In this case, we use MADM in order to be able to rank ATT&CK
techniques (line 10 of Algorithm 1). Due to their complex attributes, technique objects
from ATT&CK are difficult to rank. We choose to implement a specific method of MADM:
an additive Analytical Hierarchy Process (AHP) [39]. The Analytic Hierarchy process is a
sophisticated decision-making method that takes into account the hierarchical structure
of criteria, pairwise comparisons of preferences, and the synthesis of these preferences
to arrive at an informed decision. The exact method we use is called Simple Additive
Weighting (SAW) [4].

We use the attributes associated to a technique as a list of criteria. Some criteria are
non-numerical, so we converted them manually into numerical values in order to be able to
apply MADM (e.g. Permissions are each given a numerical value, the higher the privilege
level the higher the value.). The following list shows the attributes of a technique, used
as criteria in the MADM:

— Platforms (vector of names): on which the technique can be executed
— Permissions (vector of roles): needed to perform the technique
— Network requirements (numerical): needed to be able to do the exploit
— Frequency (numerical): at which this technique has been seen in real life scenarios
— Mitigation (numerical): a number of ways this technique can be mitigated.

The process is divided into two phases: the creation of a consistent Pairwise Compar-
ison Matrix (PCM) [45] and the computation of candidate scores, which is executed each
time a recommendation is needed. The goal of a PCM is to systematically evaluate and
compare the relative importance or preference of different criteria within a set. To ensure
the reliability of the comparisons, the matrix can be checked for consistency. Inconsistent
judgments may lead to unreliable results. Various methods, such as the eigenvalue method
used here, can be applied to assess consistency. After verifying that it is indeed consistent,
this matrix is used to compute an overall weight for each criterion. From there we can
score candidate techniques. Each of these steps are described in more detail hereafter.

76

3.2. The KRAKEN recommender system

Technique
attributes Platforms Permissions Network Requirements Frequency

Platforms 1 1 0.25 0.5
Permissions 1 1 0.33 0.5

Network
Requirements 4 3 1 3

Frequency 2 2 0.33 1

Table 3.1 – The best PCM for KRAKEN with a 0.015 consistency. e.g. In this PCM the
bold value 4: on a scale of 1 to 5, the Network requirements for a technique are a lot more
important (4 out of 5) than the platforms on which a technique can be executed.

Designing the Pairwise Comparison Matrix While PCM are an effective and
widely used solution, they have to respect a rule of consistency, depending on the scale
used: ratio scales, geometric scales and logarithmic scale. The simplicity of the ratio scales
method presented by Saaty et al. [73] makes the ratio scale a good fit for our decision-
making process. Two guidelines are proposed by Saaty et al. to build a PCM with a high
level of consistency:

— Using an adapted scale for the evaluation of the relative importance (in our case,
1-5) depending on the number of criteria to clearly differentiate answers. These
values are defined and calculated by Saaty [73].

— Keeping pairwise consistency, meaning the comparison c of criteria A and B should
respect: cAB = 1/cBA is a necessary but not sufficient condition. Although Saaty
et al. specify that “improving consistency does not mean getting an answer closer
the real life solution”, a balance is to be found between perfect mathematical
consistency and reality for the scoring to be relevant.

Following this method, we designed 4 PCMs by asking two different security experts
to evaluate the relative importance of a technique’s attributes pairwise. For each PCM
they designed, they had to evaluate the importance of a criterion compared to another
according to a specific security goal: first detection difficulty and then accessibility.

Checking a PCM’s Consistency Before using it, the consistency of a PCM must be
checked. The process is the following, as explained in [4]:

1. Find all eigenvectors and eigenvalues for the matrix.

2. Find the maximum inconsistency λm by taking the maximum possible eigenvalue.

77

Partie II, Chapter 3 – Helping users find the right exploration paths using expert knowledge

3. Calculate the consistency index:

CI = (λm − n)/(n− 1)

where n is the matrix size.

4. Finally, compute the Consistency Rate (CR):

CR = CI/RI

with RI the Random Index for consistency, or, in other words, the average consis-
tency obtained when filling the PCM at random, also defined by Saaty [73].
If CR is inferior or equal to 0.1, then the matrix is considered consistent.
This threshold is somewhat arbitrary but is commonly used as a practical guideline
in the literature. This operation is only necessary once. From the moment a PCM
is determined to be consistent, it can be used in the decision-making process.

Among all the PCM we built, we will now use only one: Table 3.1 shows the best
resulting consistent matrix we built. The consistencies found for all matrices ranged be-
tween 0.025 and 0.015, we selected the lowest consistency rate to work with. In AHP,
if the CR exceeds 0.1, it suggests that the judgments may lack sufficient consistency,
and the decision-maker may need to review and revise their judgments to improve the
reliability of the decision-making process. On the contrary, a low CR indicates that the
decision-maker’s pairwise comparisons are relatively consistent and adhere to the princi-
ple of transitivity, making the results of the decision-making process more reliable and
meaningful.

Computing the weight of each criterion Using the PCM, we compute normalized
weights to obtain values bounded between 0 and 1. Let A be the pairwise comparison
matrix with elements aij, where i, j = 1, 2, . . . , n with i, j is the number of rows and
columns respectively, n is the number of criteria, and K is the total sum of the PCM, or
normalization factor. The weighted sum for each criterion is:

wi = 1
K

n∑
j=1

aij

Following the PCM given in Table 3.1, the resulting weights for the criteria are shown

78

3.2. The KRAKEN recommender system

Criteria Platforms Permissions Network
Requirements Frequency

Weight 0.125 0.129 0.502 0.244

Table 3.2 – The weights of a technique’s attributes computed using MADM

in Table 3.2.

Compute scores Reaching this step, a score S is computed for every technique each
time a recommendation is requested, using the weights of the criteria. The score of a given
attribute corresponds to the value of said attribute. For a given technique we compute
the score like so:

Let n be the number of criteria, si be the score for criterion i, and wi be the weight
for criterion i. The final score (S) for an object is calculated as follows:

S =
n∑

i=1
si · wi

Using this method, when we have a group of candidate techniques, we are now able
to score them and select the best ones among the candidates (line 10 from Algorithm 1).
However, even with only the best techniques the number of fields we could recommend is
high, and so we need to score fields associated with the best technique as well.

3.2.4.2 Comparing fields using similarity

This section describes the Similarity scoring we use regardless of the recommendation
path we choose, it corresponds to line 16 in Algorithm 1. We use this similarity method
to rank ECS fields between them. The different attributes of a field can have different
natures. We will use a dedicated method for each field nature to compare them before
computing a final score using a weighted sum. To score a field we score separately each
of his attributes.

In Table 3.3, different scoring methods are proposed according to an attribute’s nature.
The boolean scoring method is straightforward, we use the truth value 0 or 1 as a score.
For attributes that are sets we have chosen to use the Jaccard similarity to compare
them. That is so because the attributes were compatible with the requirements of the
Jaccard similarity but also because this method is straightforward: it does not favour any
component of the comparison. Since the Jaccard similarity is applied to attributes of the

79

Partie II, Chapter 3 – Helping users find the right exploration paths using expert knowledge

Attribute Attribute
nature Description Scoring

method Weight

Presence Boolean Availability in investigation Boolean 20%

Prefixes Set Possible qualifiers for a field (e.g.
destination for ip)

Jaccard
Similarity 10%

Sources Set Log sources where field can be
found

Jaccard
Similarity 25%

Pivot field Boolean Present in multiple sources
investigated Boolean 25%

Interest-
ingness Ratio Average presence in logs Normal-

ized ratio 20%

Table 3.3 – Attributes of a field and how to score them

objects we compare and not the objects themselves, and the resulting similarity scores of
the attributes used in a weighted sum, we wished for the similarity computation to be as
straightforward as possible. The Jaccard similarity between sets A and B is given by:

J(A, B) = |A ∩B|
|A ∪B|

For “interestingness”, we use a normalized ratio. It measures how often this particular
attribute appears in comparison to all the possible occurrences of this attribute across
various data sources. Now, when we talk about “interestingness”, we are looking at a
broad perspective. It is a ratio that considers the availability of this field in different data
sources compared to its potential existence in all conceivable data sources. In simpler
terms, it’s a way of looking at how rare or common this attribute’s value is across all
possible data sources, providing an insight into its uniqueness. Finally, we highlight that
the attributes prefixes and sources are compared with those of the reference field during
the scoring (i.e. The flagged field, line 1 in Algorithm 1).

Every attribute was also given a weight during the implementation of the recommender
system. The relative importance between the attribute scores was determined by us em-
pirically. Having manipulated these fields a lot during investigations we know which of
their components are the most used to make discoveries in investigations. For example,
a field that is a pivot is very often present in important discoveries and as such receives
a higher weight. The score of a candidate field is computed by doing a weighted sum of
the scores of its attributes. Let the score Sdt of a field be the sum of the scores of each
attribute oi multiplied by the weight of the attribute pi.

80

3.3. Evaluation of KRAKEN

Sdt =
5∑

i=1
oi · pi

This particular scoring method is used directly in the case of a safe or danger recom-
mendation (see Figure 3.1).

3.2.4.3 Conclusion on KRAKEN’s recommendation technique

In the end, KRAKEN is able to recommend exploration paths in two different ways.
On the one hand, in the case where an analyst knows what to do and only needs the right
field recommended to him, we only use the similarity process comparing the different
fields present in the investigation. On the other hand, if the analyst does not know where
his investigation is leading him and need a recommendation for a relevant path to explore
within the available data, we will use the MADM as well. That way, the recommendation
also uses more abstract knowledge that helps frame the situation being observed by the
analyst.

3.3 Evaluation of KRAKEN

As discussed in Chapter 2, evaluating recommender systems is a complex task. Metrics
on the actual use of a tool using the recommender system by real analysts, investigating
real-life incidents are difficult to obtain. In our case we had access to 7 cybersecurity
experts, with varying degrees of experience in incident response. The data to analyse
came from cybersecurity exercises.

Taking into account all our hypotheses described in Section 3.2, we designed an eval-
uation both quantitative and qualitative. That way we were able to assess both the rec-
ommendation system in itself and how it is perceived by its users.

3.3.1 Datasets used

For the evaluation we use a subset of the tc3 (Transparent Computing exercise 3)
dataset 3. tc3 has been released by the DARPA as part of their "Transparent Computing"
program. The subset of tc3 that we used was captured in identical conditions, but at a
much smaller scale in order to limit the number of threats to find during the evaluation.

3. https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md

81

https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md

Partie II, Chapter 3 – Helping users find the right exploration paths using expert knowledge

APT Attack step
flags

to
discover

Discovery
threshold

Investigation
ratio

APT 1 Firefox ad 2 1 10%
Firefox extension 2 1 10%

ssh 2 2 20%
Wget 2 1 20%

APT 2 Pine 3 2 20%
Tcexec Malware 1 1 20%

Table 3.4 – APT present in the TC3 dataset

This subset contains 19.5 million system call events, from one machine, targeted by the
APT. The fields that can be found in this subset are grouped in different object types: file,
memory, network, unnamed pipes, and sinks. The subset contains two APT summarized
in Table 3.4. The APTs are composed of different steps linked to different ATT&CK
techniques or tactics. For example, the two Firefox exploits aim to gain access to the
machine and are linked to the ATT&CK tactic “Initial Access” and technique “Exploit
public-facing application”. SSH is used for network discovery by searching all machines
through a discovery of open ports 22, and Wget to exfiltrate data. Pine is an old text-
based email client here used to provide a backdoor into the machine and spread a malware:
tcexec.

3.3.2 Experimental setup

After a short presentation of our work on recommender systems, we asked the partic-
ipants about their experience in cybersecurity. We also asked if they had some previous
experience in SOC or with a SIEM, in order to classify them in three categories: low,
medium and high experienced analysts. Then, we did a rapid presentation of the subset of
tc3 used for the investigation. Next, we demonstrated the key features of the platform.
After their investigations, we collected their feedback through a qualitative interview.

3.3.2.1 Qualitative interview

The discussion was informal, yet we guided the participants to obtain answers to spe-
cific questions, each trying to assess a different aspect of KRAKEN. They are enumerated
thereafter:

82

3.3. Evaluation of KRAKEN

Figure 3.3 – Qualitative evaluation of participants

Q1. Usefulness: were the recommendations useful to your investigation?

Q2. Efficiency: did KRAKEN help you gain efficiency in your search?

Q3. Relevance: did KRAKEN offer you relevant recommendations?

Q4. Tool future: in the future would you use KRAKEN during investigations?

Q5. Clarity: did you find the recommendations clear and easy to grasp?

3.3.2.2 Quantitative measures

During all the investigations, we collected traces of user actions. The main variables
we recorded and used to analyse the investigations are: number of used flags, recommen-
dations generated, followed recommendations and the proportion of threats discovered
during the 25-minutes investigation. Each APT contains multiple steps that require flags
to be found by the analyst. If we find one of its flags, it counts as discovered, and the
threat coverage is computed from the number of attack steps found by each participant.
These measures help us quantify the usefulness of the recommendations. Table 3.4 shows
the statistical importance (see the “investigation ratio” column) we gave to each attack
step in regard to the overall threat coverage.

3.3.3 Qualitative results

Figure 3.3 shows the answers of the participants to the questionnaire from Section 3.3.2.1.
The white dot shows a positive answer, the black a negative one and the black and white
a mixed answer.

83

Partie II, Chapter 3 – Helping users find the right exploration paths using expert knowledge

The majority of participants affirms that KRAKEN was useful to them and accelerated
them during this investigation. They found the recommendations useful as they helped
them progress in their investigations. In terms of efficiency, their feedback is consistent
with the fact that they were all able to find parts or all of the APT in only 25 minutes.
The answers given by P7 can be explained by his low experience as an analyst. During
his investigation, he had little idea of how to proceed, so he could not make use of the
tool properly.

The results show that all the participants were enthusiast about the future of the tool.
They all saw the benefits in terms of efficiency during an investigation that this research
suggests. They agreed to say that this tool helped them get better coverage of the dataset
and guided them in the right direction.

The sore spot of the evaluation was the clarity of recommendations. All users felt
that they were not highlighted enough in the interface. However, once familiar with the
investigation interface, they were all able to use KRAKEN properly and confirmed it did
not cause unwanted distractions during their work.

3.3.4 Quantitative results

Table 3.5 shows measures about recommendations aggregated by the severity of the
flag: the total number of recommendations made during all investigations, the number of
distinct fields concerned by those recommendations, the ratios of relevant recommenda-
tions and the ratios of recommendations followed by the analyst over the total number. A
relevant recommendation is manually computed by going back on the state of the inves-
tigation at the time of the recommendation, with extensive knowledge about the dataset
and verifying if following the recommendation would effectively have led to an interesting
exploration path.

All recommendations triggered by a suspect flag were relevant. The results for the
danger and safe severity are less categorical. The recommendations triggered by a safe flag
seems to have mostly provided the participants with relevant recommendation according
to our hypotheses. On the other hand, the recommendations triggered by a danger flag
were less relevant.

Most suspect flag recommendations were followed, showing that not only we were able
to provide relevant recommendations, we were also able to convey them to the analyst
properly. Safe flag recommendations were also followed 60% of the time, meaning that
we have mostly well interpreted the analyst’s intent for it. However, the danger flag

84

3.4. Improving the recommender system

Flag Severity Recommendations Distinct fields Relevant Followed
Safe 5 2 80% 60%
Suspect 13 5 100% 84.6%
Danger 8 3 50% 12.5%

Table 3.5 – Recommendation relevance according to its associated severity

recommendations are only followed 12.5% of the time. We noticed that analysts would
often flag as danger and then start back from that point to find other threats, possibly
linked to the one already found.

As a conclusion, we find that using only severity to determine the goal of an analyst is
not enough. This means that creating two possible recommendation paths may not have
been the right solution. In further work with KRAKEN we have used the recommendation
path of a suspect flag for any type of severity.

3.3.5 Providing assistance to investigations

Figure 3.4 is a scatter plot of the overall threat coverage in function of the proportion
of recommendations followed for each analyst. The analyst’s experience is also represented
by a colour.

Figure 3.4 shows that P7, who had little to no experience found few attacks in the
dataset and did not use the recommendation, as discussed previously. However, the right-
most point shows that by selecting a majority of recommendations, the experienced ana-
lyst achieved very satisfying results.

Figure 3.4 also shows that, in the case of mid-level experts, the recommendations do
not help the analysts discover more than 50% of the threats. While 50% of threat coverage
is a good result in 25 minutes, even if our prototype offers relevant recommendations,
interpreting them still requires expert skill.

3.4 Improving the recommender system

After the first implementation of the recommender system and its evaluation, we had
gathered extensive feedback about KRAKEN. We then decided to improve the recom-
mender system. The evaluation in Section 3.3 was done on the first prototype of KRAKEN
which has since been improved by features we mentioned such as a learning feature using

85

Partie II, Chapter 3 – Helping users find the right exploration paths using expert knowledge

Figure 3.4 – Overall threat coverage discovered by each analyst correlated with the pro-
portion of followed recommendations

feedback on the recommendations, more explainability and transparency, and a redesign
of the way recommendations are given to the user. We present briefly these aspects below.

The first and most important feedback we had was the need for feedback on recom-
mendations in order to refine them. Every time a recommendation is followed by a user,
the data that motivated the recommendation sees the frequency attribute of the associ-
ated ATT&CK technique incremented in order to record its finding in an investigation
and, to reflect that it has been useful to an analyst and should be considered in future
recommendations.

Second, some smaller improvements were made, to enhance user experience. A feature
allowing to click on a recommendation in order to follow it instead of having to search for
the field manually was made available. We also added a history of recommendations and

86

3.5. Conclusion

explanations for a recommendation presenting as the potential ATT&CK techniques being
observed and motivating the recommendation. These two smaller improvements were
greatly appreciated as they bring a lot of transparency and explainability to KRAKEN.

A third improvement is the recommendation process. At the time of the first im-
plementation in Malizen’s platform, three possible severities could be associated with a
flagged value: safe, suspect, and danger. These levels of security are later replaced by the
more commonly known CVSS v3.0 ratings 4. Following the use of KRAKEN by analysts,
we later on made the decision of not using different recommendation paths according to
severity. It changed slightly the way we trigger recommendations as we now trigger ev-
ery time the more complex recommendation path using both MADM and the Similarity
scoring, independently of the associated severity. We plan on reintegrating severity into
the recommendation process, but as an attribute of the scoring. We have not done so yet
because of hybridization considerations we shall discuss in this manuscript’s conclusion.

3.5 Conclusion

During the last few years, new tools have been designed to help security analysts
in their investigations using visualizations recommendation. However, analysing security
incidents is still a challenging task. Indeed, visualization allows analysts to go explore the
data faster, but our experience shows that it is not enough. Another issue is the quantity
of expert knowledge needed for analyst to conduct investigations properly. During our
study of the literature we had seen that expert knowledge is available and waiting to be
exploited (R1).

In response to this problematic, we presented a recommender system aiming to help
the security analyst in her investigation. KRAKEN suggests new paths to explore within
log data. It is composed of a knowledge base linking techniques, tactics, data sources
and fields, two scoring processes and several recommendation triggers. The knowledge is
coming from the MITRE ATT&CK project and is linked to real log data using the ECS
project. For us, it was also a way to show that we could use standards from the domain
in order to solve our problematics.

We also evaluated KRAKEN with seven cybersecurity experts, whose experience as
analysts were various. Our evaluation shows that recommendations are relevant most of
the time, and when followed help security analysts during incident response. Participants

4. https://nvd.nist.gov/vuln-metrics/cvss

87

Partie II, Chapter 3 – Helping users find the right exploration paths using expert knowledge

to the evaluation also noted that the recommender system did not distract them during
their investigations while providing insight.

Following the feedback from the evaluation, we implemented some features enhancing
recommendations and user experience. We also did a second iteration of implementation in
order to add some new features asked for during the evaluation. This laid the groundwork
for another evaluation on a larger scale that we leave as future work. Yet, the results help
us reach a better understanding of all possible use cases for KRAKEN as well as evaluate
our new features like the feedback loop.

These results show promises for our next topic: user intentions. Since we saw that the
user intent associated with a severity is more complex than we thought, a larger pool of
participants could better frame user intents. However, understanding users as well as we
can and making a recommender system that helps them be efficient is one of the bigger
part of our research, so we decided to devote a full contribution to this topic. In the next
chapter we will focus on R2, our second research question.

88

Chapter 4

GAINING A BETTER UNDERSTANDING OF

ANALYST INTENTIONS TO MAKE

RECOMMENDATIONS

Not all those who wander are lost.
— The riddle of Strider, J.R.R. Tolkien

This chapter is about gaining a better understanding of analysts
during cybersecurity investigations. We believe that by modelling
intentions that analysts might have while exploring data we can
help them find attacks faster. We offer to design a Recommender
System for incident response. By recognizing 7 relevant user in-
tentions throughout the investigation process, we propose MIMIR,
that provides relevant recommendations for the analyst’s next ac-
tions based on their most probable objectives. We evaluate MIMIR
in different ways, using 4 experiments and 5 datasets. The results
show the validity of the model as well as the relevance of recom-
mendations, which is a first step towards recommendations based
on user intention recognition in the field of incident response.

MIMIR

4.1 Introduction

In Chapter 3 we confirmed that recommender systems can be an interesting solution
to help analysts during their investigations, but we also showed how difficult it can be to
make recommendations at the right time. Indeed, the investigation goals of an analyst can

89

Partie II, Chapter 4 – Gaining a better understanding of analyst intentions to make
recommendations

change rapidly while they investigate. What led to this second contribution began with
research on how to trigger recommendations at the right time, but we rapidly realized
the topic could be exploited for a new contribution. In Chapter 2, the literature shows
that recommender systems for cybersecurity almost always rely on technical data to make
recommendations. We wish to see if we can obtain interesting results by using empirical
behaviour data produced by analysts, during investigations, rather than expert knowledge.
Throughout this chapter we show how understanding and modelling user intentions has
proven to be an interesting problematic.

Within incident response, investigations are conducted by analysts. During investi-
gations, analysts rely on their knowledge, experience and instincts to detect suspicious
behaviours, find the path followed by the attacker and understand the impact of the
actions that the attacker carried out. We believe that it is possible to model the way
analysts interact with data during investigations and, afterwards, to use this model to
provide recommendations during future investigations. We believe this recommender sys-
tem would help reduce the total time needed for incident handling and limit the impact
of the incident. However, it requires us to find a way to successfully model user intentions
from their actions, and inversely, to be able to recommend actions that carry out specific
intentions within an investigation (R2).

Doing so will be challenging because, in order to keep the recommender system from
being extremely intrusive during investigations and directly ask analysts their intentions,
we are going to need to infer them from their behaviour and the actions they do during
said investigations. There we face some data challenges we have described in Chapter 1,
namely data scarcity and completeness. Indeed, we will be doing this work in Malizen’s
platform, a controlled environment, which is good since we know exactly what actions an
analyst can execute and can attach to them as much context as we need. On the other
hand, we are limited by the platform as we can only use the investigation actions available
to us to understand analysts and make recommendations.

In this chapter we present MIMIR: a recommender system that recognizes analyst
intentions during log exploration. MIMIR records and analyses actions taken by analysts
and then offers exploration paths. The idea is to contribute a decision-helper tool that
integrates well within an analyst’s workflow and allows testing out exploration paths
corresponding to one’s intentions rapidly and efficiently. MIMIR is based on the concept
of intentions. Intentions are an abstraction of what analysts want to do with log data,
such as deepening his search: the intention of focusing on a specific value of part of the

90

4.2. Use case: understanding a user’s intentions

data during an investigation.
To design this new recommender system, we create an experimental methodology that

relies on the observation of investigations and the processing of their user actions, to
extract a model of their intentions. This analyst intentions model can be reused to speed
up other analysts during future investigations. From this model, we are able to build a
Markov chain representing the next most probable intentions of an analyst. It allows us
to recommend actions to execute that match with that intention.

We developed a prototype of MIMIR integrated in the visualization platform used for
performing investigations. We evaluated this approach by analysing the relevance of the
produced Markov chains with 80 investigations over 5 different log datasets and through 4
experiments. Some data for this evaluation notably comes from the CERBERE exercise,
our third contribution presented in Chapter 5.

This chapter is organized as follows. Section 4.2 presents a use case where we show a
relevant use for MIMIR. Some additional literature about user intentions and UEBA (User
and Entity Behaviour Analytics) are presented in Section 4.3. We present an overview of
the complete recommender system in Section 4.4. Section 4.5 presents the model we have
designed for the recommendation engine. Section 4.6 then presents how this model is
designed and implemented. A description of the datasets used as well as an account of
the evaluations we conducted are related in Section 4.7. In Section 4.8 we conclude and
discuss future work.

4.2 Use case: understanding a user’s intentions

In this section we describe a situation encountered during a threat hunting investi-
gation where our recommender system would be relevant. The goal of our recommender
system is to understand the intentions of an analyst during an investigation and offer him
relevant actions that help to reach his goal.

In this scenario, an attacker has already infiltrated the network and exploited some
client machines. An analyst has found these attacks and has found connection attempts
from the attacker towards the machine hosting the Active Directory (AD) and some logs
showing the AD being compromised. However, the analyst is interested in how the attacker
worked his way into the Active Directory. He will try to find more information and context
about the situation in order to formally identify the techniques used by the attacker.

The analyst searches for available data that he can correlate with the information he

91

Partie II, Chapter 4 – Gaining a better understanding of analyst intentions to make
recommendations

already has. He knows the attacker already has access to the machine, so he will check
what processes are running at that point and who is running them with which privileges.
In the interface, the analyst now observes the new visualizations and notices two strings
from the logs: powershell.exe and administrator. Knowing this, the analyst is able to find
out that the attacker gained access to the Active Directory using a Zerologon attack 1.
The attacker used Powershell, and an administrator account without a password [32].

In this example, we demonstrate the intention of broadening one’s research in order
to gain information about a security situation. This will be a user intention we later call
broadening. Many other user intentions can appear during an investigation and recognizing
them well and associating them with corresponding user actions will be the core of this
work. By detecting the user intention, we can find out the next most probable intention
the user might have and recommend some related actions to undertake. In doing so, we
allow analysts to focus on their expertise during investigations instead of the platform
they are using to investigate. Our goal is for the recommended actions to be the most
relevant for analysts.

Going back to the example, the analyst knows how the infected client machine was
able to escalate its privileges and become an administrator on the AD. Now that he has
all the context he needs, found through a broadening of his search, the analyst might
have the intention of finding out the exact log that identifies this attack by deepening his
search. The recommendation, understanding this transition in intentions would offer him
to filter the data on the value proving the use of the Zerologon attack in order to only see
information related to it, and then filter again using the hostname of the machine he is
studying instead of the user account like before, because this way he can uniquely identify
a log line.

4.3 Related Works about user intentions

Recommender systems often aim to refine recommendations by considering the context
in which they are provided. However, not many studies have focused on using user inten-
tions for improving recommendations. This is mainly because inferring precise intentions
solely from user actions and platform usage, without directly asking users, is challenging.
Additionally, it often requires access to potentially sensitive information.

Despite these challenges, some research shows promise in understanding and utilizing

1. https://nvd.nist.gov/vuln/detail/CVE-2020-1472

92

https://nvd.nist.gov/vuln/detail/CVE-2020-1472

4.3. Related Works about user intentions

user intentions for recommendations. A common approach in this area is known as User
and Entity Behaviour Analytics (UEBA). UEBA was originally developed to enhance
behaviour categorization in cybersecurity, specifically to detect advanced attacks. Various
studies have proposed different methods for understanding user and entity behaviours, as
detailed in the work by Khalik et al. [44]

The interesting point to remember from Khalik et al. [44]’s work is that UEBA is
presented as a new approach to detect user activities and insider attacks. UEBA employs
predefined rules, anomaly detection, and machine learning techniques to analyse data from
various sources such as system logs, application logs, and network traffic. The paper argues
that UEBA can effectively identify anomalous user activities, assign risk scores, and detect
compromised users. However, UEBA models are known to have difficulties in interpreting
behavioural changes, notably because of the volume of data to interpret, its variety and
the contextual information of various natures. Since we work in a controlled environment,
and have at our disposal an investigation platform where possible user actions are known,
their metadata as precise as we need, and that we work on one investigation at a time we
do not face these problems. We believe that by focusing on our much smaller scope, we
can obtain good results.

One of the works present in the literature is some research conducted by Philip A Legg
et al., on Corporate Insider Threat Detection [47]. Their study introduced a method to
detect insider attacks in organizations by creating user activity profiles based on roles. The
system generated profiles using user activity and their associated roles. The research used
ten datasets from CMU-CERT, each representing different types of activities such as file
access, web usage, email. . . Data was parsed to extract Activity Name, User ID, Device ID,
and Time Stamps. Modules processed this data, appending it to daily user profiles, while a
content parser extracted data from various sources and computed Linguistic Inquiry Word
Count 2. The profiles were assessed to generate three levels of alerts: policy violations and
pre-recognized attacks, threshold anomalies, and deviation-based anomalies. Synthetic
data was used for testing, with 365 days of activity, 15 days for training and the rest for
testing. The best results across 10 test scenarios showed a precision of 42% and a recall
of 100%. However, while the system aims to alleviate the efforts required of analysts,
the practical implications and user experiences of analysts utilizing the system are not
explicitly elaborated. Another concern we have is the acknowledgment of organizational-
dependent characteristics that can impact the effectiveness of the system.

2. https://www.liwc.app/

93

https://www.liwc.app/

Partie II, Chapter 4 – Gaining a better understanding of analyst intentions to make
recommendations

Focusing on understanding user behaviour, Moskal and Yang [55] developed a new
method by using a machine learning model whose goal is to translate alert descriptions
into a more interpretable state. They call it the action, intent, stages model. The idea
is to combine expert knowledge databases such as MITRE ATT&CK, CVEs, well-known
IDS signature bases etc. in order to refine the meaning of alerts which is often compli-
cated to understand at first glance. Then, they recommend these improved descriptions
to their users. While this type of recommender system helps in understanding attacker
intentions and helps their users, it does not make use of the actions directly but rather
work with established knowledge. This work proposes a new approach to deal with the
increasing complexity of intrusion alerts. It helps security analysts understand these alerts
better by translating them into an easily comprehensible format. This approach, called
Pseudo-Active Transfer Learning (PATRL), combines language models, active learning,
and pseudo labels. PATRL achieves high prediction accuracy (85% for top-1 label and
99% for top-3 labels) on new, previously unseen data. It also provides security analysts
with extra metrics like Monte-Carlo Dropout Uncertainty and Pseudo-Label Convergence
Score for each alert prediction, boosting their confidence in the results. This method is
unique as it effectively addresses the challenge of having limited labelled data by leverag-
ing transfer learning, active learning, and pseudo labels. It significantly enhances security
analysts’ ability to interpret complex intrusion alerts by capturing attacker intentions
through the Action-Intent-Stages approach. Despite the fact that making alerts more
accessible to users, this work does not consider the exploration part of investigations.

Zhong et al. [92] improves the performance of data triage and especially helps less
experienced users in making the right decisions. They use the recorded triage actions
of senior analysts during the analytic process of intrusion detection and compare the
similarity of the recorded situation with the new contexts encountered by the junior
analysts. By associating the resolved incidents with ongoing ones, they are able to make
triage a lot more efficient. The work is driven by attempts to understand the user better,
on how to help him gain better cybersecurity situational awareness. They also advocate for
human-in-the-loop processes, particularly in cybersecurity where humans are way better
than machines at interpreting data. Nevertheless, their work is only applicable to the data
triage part, and we want to address the investigative part of incident response.

In this work we have decided to focus on inferring user intention from data. However,
instead of using cybersecurity knowledge databases or directly matching previously en-
countered situations to answer specific tasks, we take a different approach. Our idea is to

94

4.4. Overview of MIMIR

Figure 4.1 – Overview of the design and runtime of the MIMIR recommender system

consider the incident resolving step as a whole and to focus on the analysts performing
it. To the best of our knowledge, there is no existing work trying to model cybersecu-
rity analyst intentions during investigations to make recommendations, however some of
the work we presented can guide us in the right direction. While all these papers try to
understand the behaviour of attackers, some things might be analogue to understanding
analysts. Notably we will draw inspiration from Moskal and Yang’s work [55] to try and
translate actions into interpretable intentions by modelling them in groups associated
with an intention. We will also take a page from Zhong et al.’s [92] book by using past
actions to try and predict the actions to take in new situations.

4.4 Overview of MIMIR

The recommender system MIMIR is composed of two phases: a design phase, and a
runtime phase. The design phase aims to provide us with the necessary input for the
recommender engine that operates during the runtime phase. We present in this section
the details of the two phases, summarized in Figure 4.1. It should be noted that Malizen’s
investigation platform (see Section 1.4) is used to host MIMIR.

4.4.1 Design phase

The goal of the design phase is to observe security investigations and extract the
parameters of two components needed to build the recommendation engine: patterns and
intentions. Thus, we gathered participants and let them conduct investigations through

95

Partie II, Chapter 4 – Gaining a better understanding of analyst intentions to make
recommendations

our log investigation platform.
During investigations conducted by analysts which we observed, we were able to in-

teract with analysts to understand their way of thinking and how they work during an
investigation. From our observations we were able to infer various goals analysts can have
when investigating; we call those goals intentions (arrows A in Figure 4.1). We imple-
mented a logging mechanism inside the investigation platform (arrow B). This allowed us
to capture all the actions performed by analysts during their investigations. From the user
actions captured we were able to extract meaningful groups of actions; they are extracted
in a specific way described in Section 4.5.2. Our goal is then to match the meaningful
groups of actions with the previously identified user intentions (arrow C). The match-
ing operation we do between groups of actions and user intentions allows us to create
the model that will feed our recommender system. The idea is to be able to materialize
intentions through concrete actions.

As an example, during investigations, an analyst will often find a field value somewhat
suspicious but not definitely. In need of confirmation, analysts will deepen their search.
This intention can be realized by filtering the data according to the suspicious value found,
as well as filtering the timeline in order to focus on the particular event that led to the
logging of the suspicious value. The precise methodology on how to link an intention with
a group of actions will be presented in Section 4.5.

4.4.2 Runtime phase

In the runtime phase we focus on how we managed to use the resulting model in
order to provide recommendations. In C (see Figure 4.1), we can see that the previously
obtained data is used to build a Markov chain. Markov chains are a commonly used tool
in decision-making and was the perfect way to model the probability of an analyst going
from one intention to another during an investigation, because they model very well the
statistical transition of states we wish to represent with analyst intentions. Integrated
to a recommendation engine, the Markov chain is now able to recommend a pattern of
actions associated with the next most probable intention of an analyst. It is described in
Section 4.5.

Our recommender system is then used during the runtime phase shown in D. During
an investigation the recommender system will trigger a recommendation when a pattern
of actions is recognized. The associated intention will be given to the recommender system
that will then decide on the most probable intention the user can have and recommend

96

4.5. Intentions, patterns and actions inside MIMIR

associated patterns of actions.
Malizen’s platform presents the recommendations in the shape of a notification show-

ing the actions recommended along with a button to execute them automatically. The
idea is to integrate said recommendations as well as possible within the workflow of the
analyst.

4.5 Intentions, patterns and actions inside MIMIR

Within MIMIR, the actions analysts do during an investigation, the patterns of actions
reoccurring during said investigations and analyst intentions are intricately linked. In this
section we will detail how we link them in MIMIR.

4.5.1 Collecting intentions

We gathered five cybersecurity students, and presented them with two unknown datasets
containing attacks to explore. The first dataset is the VAST 2012 3 dataset and the second
one is the TC3 4 dataset. This corresponds to XP1 in Figure 4.1. We briefly presented the
two datasets to participants to help them start their investigations. After a presentation
of how to use the investigation platform and the goal of the experiment, we gave them 30
minutes to explore the VAST 2012 dataset and 45 minutes to explore the TC3 dataset.
During both explorations we waited for them to express the intentions they had, and we
then observed the actions they did in the platform to carry out said intentions. We had
10 resulting investigations. From the oral discussions during the investigations we were
able to infer seven different exploration intents:

— Startup / Discovery (S): corresponds to the user wanting to find an entry point
into the investigation.

— Broaden search (B): adding new information to the current state of the investi-
gation to contextualize it better.

— Deepen search (D): deepening the search which corresponds to a need for re-
ducing the amount of data investigated; a way to deep dive into the data.

— Report findings (R): showing the intention of saving his work from the analysis:
an important step in an investigation.

3. http://www.vacommunity.org/VAST+Challenge+2012
4. https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md

97

http://www.vacommunity.org/VAST+Challenge+2012
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md

Partie II, Chapter 4 – Gaining a better understanding of analyst intentions to make
recommendations

— Backtrack (X): returning to a previous state in the investigation by backtracking
the last few actions made.

— Searching for a new lead (L): shows that even going back to a previous state
of investigation would not help, and that analysts need an entirely new path.

— Guided by recommendation (M): this intention is a rare case designed to show
a user guided by a recommendation.

4.5.2 Collecting actions and pattern creation

We have at our disposal the actions performed by the participants using the platform
described in Section 1.4.2. This platform allows users to perform multiple actions, and we
wish to discover groups of actions that carry user intentions.

4.5.2.1 Research & experiments on user actions

To extract meaningful patterns from user actions in the context of a cybersecurity
investigation, we focused on two key variables: the actions themselves as elements of the
pattern and the size of the pattern. These variables directly influence the frequency of
pattern occurrences in investigations and their ability to capture user intentions.

To narrow down the relevant actions for cybersecurity investigations, we filtered all
possible actions into four categories, resulting in a curated list (AL) displayed in Figure 4.2.
The list includes more complex actions:

— flag for saving values with platform states and comments
— change visualization for switching visualizations
— navigate on platform for changing pages within the platform
Choosing the pattern size was a critical decision, balancing the need for patterns fre-

quent enough to reveal recurring patterns in investigations and rare enough to attribute
them to specific user intentions. In our manual exploration, we found that patterns com-
posed of only 2 actions were the most insightful. Patterns of sizes 4 and 5 occurred too
infrequently, and considering the limited number of actions selected, lots of patterns of
this size were very similar because they contained permutations of actions that could be
executed in no particular order. As a consequence, working with groups of actions of this
size would have made us consider user preference and habits in our patterns. Surprisingly,
patterns of size 3 exhibited less clear intentions than those of size 2. That could also
be explained by the fact that considering the limited number of actions available, most

98

4.5. Intentions, patterns and actions inside MIMIR

Figure 4.2 – List of actions selected as carrying semantic intent

intentions seemed executed over less than 3 actions. Additionally, further attempts to
extract patterns from all available actions in Malizen’s platform, both with and without
our category-based abstraction (see Figure 4.2), were inaccurate.

We also tried to implement some automation in order to extract and select relevant
groups of actions. Various theories were tested using different investigation traces, extract-
ing patterns of sizes 2 to 5. Our goal was to see if we could identify interesting patterns
without manual review. Our initial attempts were to eliminate outliers by setting thresh-
olds at extreme frequencies, but after examining the outlier manually, this method showed
to be ineffective. We also tried exploring alternative methods, such as using the mean fre-
quency and standard deviation in order to select patterns according to their frequency,
but they also fell short. The issue with trying to select patterns in this way is that the
notion of intention is psychological and difficult to formalize so depending on the analyst
the patterns used, and their frequency may vary. We believe that we have avoided as
much sample bias as possible by finding our patterns by using ten different investigations
coming from five different analysts, but unfortunately we do not have a sufficient amount
of data to obtain some kind of statistical confidence. Ultimately, due to the complexity
and nuance of identifying interesting patterns automatically, we opted to manually select
patterns based on their perceived significance.

4.5.2.2 Formal definition of patterns

As patterns will be the atom of our model we need a formal definition of them. A
pattern is a pair of user actions and their associated context. Each of these actions is
captured as a single log line containing the action performed by the user and all the

99

Partie II, Chapter 4 – Gaining a better understanding of analyst intentions to make
recommendations

context associated to it. We define it like so because the context associated with an action
can sometimes change the meaning of the action entirely.

An example of an action’s meaning changed by its context would be the filter value
action. In this case, the context of the action would the state of the filter: enabled or
disabled. If the filter is being disabled, it shows that the analyst is trying to expand the
scope of his research whereas if the filter is being enabled he is restricting his scope of
research: two very distinct intentions. Let us formally define what constitutes a pattern.
Let AL be the Action List. A pattern for two actions i and i′ in contexts k and k′ is
defined by:

P i′k′

ik = ((actioni, contextk), (actioni′ , contextk′))

with : (i, i′) ∈ |AL|, (k, k′) ∈ |{contexts}|

Let us illustrate two different groups of actions using the actions follow-recommendation
and filter-value. In this example the follow recommendation action corresponds to a rec-
ommendation made by the platform and followed by the user. The two following groups
of actions with their associated context are associated with two different intentions: ((fol-
low recommendation, ∅), (filter-value, disable)) shows the user broadening his scope of
investigation by removing a filter after an exploration recommendation, while ((follow rec-
ommendation, ∅), (filter-value, enable)) shows the user restricting, and so deepening, his
scope of investigation to look at a smaller part of the dataset after getting an exploration
recommendation.

As a result, with all possible actions and possible contexts combined, we end up with
16 unique actions and context pairs, and we obtain 120 possible patterns.

4.5.3 Linking patterns to user intentions

With each of the ten resulting investigations from XP1, we had the necessary material
to extract patterns from the investigations traces at our disposal and see if they matched
specific intentions. We manually match each pattern to one intention. In very few cases,
a pattern can be representative of two different intentions, in which case we arbitrarily
decided on only one of them for the purpose of transparency and traceability. In order to
check our matching, we also consulted two cybersecurity experts, knowledgeable about
the investigation platform and asked them to list a maximum of patterns they would use
to achieve each intent. The final list of patterns we use in the rest of this work are the

100

4.6. MIMIR’s recommendation engine

ones located in the intersection of both sets. This gives us a list of 39 relevant patterns
associated with the seven user intentions. The exact list of patterns can be found in
Listing 1. The resulting model links concrete actions within the investigation platform
with user intentions. We can now build a recommendation engine based on this model.

4.6 MIMIR’s recommendation engine

This section describes the Markov chain used to implement the model. Its goal is to
detect actions during the use of the log investigation platform, understand the intention
behind it, and use the Markov chain to infer the most probable next intention of the
analyst and recommend the next actions to do, in agreement with the inferred intention.

4.6.1 Using a Markov chain to link intentions

In order to make recommendations we need to be able to link intentions together.
Indeed, our recommender system will suggest the next intention when detecting an inten-
tion. Nevertheless, our observations and the data at our disposal showed that in a given
situation analysts do not all follow the same intention, meaning there was a probability
attached to going from one intention to another. Because of this, Markov chains seemed
to be a natural representation to model this behaviour. Additionally, we did not need
the model to have any memory other than the present state, so Markov chains imposed
themselves. Thus, we implemented a Discrete Time Markov chain [67] and, in the rest of
this chapter we work with the Markov chains transition matrices. A state is defined by a
unique intention, meaning we have seven possible states in the chain. Each state has its
set of associated patterns, that allows a user to perform the intention.

From the experiment data previously obtained, we converted every investigation we
had from actions to patterns, and matched them to intentions. From the sequences of
intentions we found out how often one intention led to another one and were able to
build a transition matrix, defining the Markov chain. Figure 4.3 shows this transition
matrix. We can easily identify which recommendation we can make, given any intention.
For example when the Backtrack (X) intention occurs, 59% of the time an analyst then
performs actions that correspond to the intention of Broadening (B), which is the best
recommendation to offer.

101

Partie II, Chapter 4 – Gaining a better understanding of analyst intentions to make
recommendations

Figure 4.3 – The transition matrix for the Markov chain with the intentions from Sec-
tion 4.5.1, built from the 10 investigations of XP1.

4.6.2 Triggering recommendations

Our goal with the pattern detection was to find out the best trigger for our recom-
mendations. Our previous work described in Chapter 3 had informed us that triggering
recommendations at a specific point was interesting because it allowed to trigger a rec-
ommendation whenever wanted. However, we wanted recommendations to integrate more
with the investigation flow of an analyst. By interviewing analysts, we found out that
analysts will prefer a well-timed recommendation they do not have to ask for rather than
a recommendation they have to request.

We realized that by capturing analyst intentions we had created the perfect environ-
ment to trigger a recommendation at any moment in the investigation, should a pattern
be detected. To do so, we implemented a detection module that records the last user
action made and, when a new one is caught, finds out if they constitute a pattern known
to be associated with a specific user intention. If the pattern exists, we trigger the rec-

102

4.7. Evaluation of MIMIR

ommendation of the next possible intentions with the highest probability, otherwise we
switch the last known action with the new one and wait for an action to be done by the
user again.

4.6.3 Presenting recommendations

For the instantiation of recommendations we focused on recommending actions to be
performed in the investigation using the actions of Figure 4.2. The recommendation is the
most probable next intention the user might have according to the matrix in Figure 4.3.
Recommendations are then presented to the user by showing them the intention we predict
as well as the actions that can be performed to realize that intention.

4.7 Evaluation of MIMIR

The evaluation of this work was complex for two reasons. First, evaluating recom-
mender systems is not standardized, and no good method stands out, as discussed in
Section 2.3. Secondly, evaluating a recommender system can be complex because since we
evaluate them based on their users, the evaluation itself becomes subjective. For example,
an analyst could see a recommendation, find it relevant but decide to follow-up on it
at a further time, marking it as not followed in the data despite it being an interesting
recommendation. To make up for that we evaluated different aspects of the recommender
system.

The following sections present two different evaluations of the MIMIR recommender
system. First, we evaluate the quality of the Markov chain model by comparing Markov
chains built with different datasets as well as randomly built ones. The second one is an
evaluation of the efficiency of recommendations using the prototype. For this evaluation we
use results from the exercise that constitutes our third contribution, described in Chapter
5, and the experiment XP2 from Figure 4.1. Each evaluation starts with a description
of the data we used during the experiment. For better readability, throughout the whole
evaluation section, we refer to Markov chains by using their transition matrices.

4.7.1 Quality of the Markov chain

This first evaluation has the goal of testing the model we built. User intentions are
notoriously difficult to capture, and we wish to verify that our model has indeed captured

103

Partie II, Chapter 4 – Gaining a better understanding of analyst intentions to make
recommendations

some analyst intentions, and if so, how much.

4.7.1.1 Datasets

In this section we describe sets of user investigations. An investigation is composed
of a sequence of user actions. An investigation is performed on a dataset as represented
in the design phase of Figure 4.1. All datasets used during this preliminary evaluation
are described in Table 4.1. The VAST2012, TC3, and BotsV1 logs are available to the
public. All combined, more than 85 people participated in the creation of these datasets,
over 4 different occasions, with various goals and timeframes for investigations. We group
investigations into sets, according to the dataset used:

1. Reference Traces (from datasets VAST 2012 and TC3): this set is constituted of
10 investigations, 5 on the VAST 2012 dataset and 5 on the TC3 dataset, conducted
by 5 students, during an experiment that aimed to build the Markov chain in
Figure 4.3.

2. SUPSEC Traces: This set is composed of 32 investigations. Each investigation
was conducted by an analyst of variable experience during a blue team exercise.
Each participant was given two hours to investigate the SUPSEC Dataset. They
did not benefit from any exterior help besides a basic contextualization of the
dataset at the beginning of the exercise.

3. BotsV1 Traces: This set was built at the occasion of a capture the flag event
in 2023. It is composed of 48 investigations conducted by capture the flag teams.
These teams were composed of cybersecurity amateurs as well as professionals.
There were more than 60 teams in this exercise but only the investigations of
the teams that seriously tried doing the challenge were selected, whether they
succeeded or not.

4.7.1.2 Validity of the Markov chain

For this evaluation our goal was to confirm that our approach is valid. We need to
show that the Markov chain’s probability of transition between user intentions make sense
from a security standpoint. We perform an experiment to show that the Markov chain
makes more sense than one built randomly.

For the first experiment, we used a Reference Matrix, computed from all the investiga-
tions in the Reference Traces set, as well as the transition matrix of each investigation

104

4.7. Evaluation of MIMIR

Dataset VAST
2012 TC3 SUPSEC

Dataset BotsV1

Size (# events) 23.7M 19.5M 125.9k 33.4M

Nature Network
(N)

System
(S) N & S N & S

Investigations 5 5 32 48
Investigation

time 2.5h 3.75h 64h 32h

Transition
Matrices 10 32 48

Table 4.1 – Dataset information

from the sets SUPSEC Traces and BotsV1 Traces. These investigations were all con-
ducted by participants that were not guided by us; it is the same method used to build the
reference matrix. We also generated a set of 100 random matrices to use as a comparison
point.

For each resulting transition matrix in the SUPSEC dataset, the BotsV1 dataset and
the set of random matrices, we calculated their distance to the Reference Matrix. The
distance between two matrices of size (n, n) was calculated using the following formula:

d(A, B) =
n∑

i=1

n∑
j=1
|aij − bij|

Results are reported in Figure 4.4. We can see that the distribution of matrices built
randomly has a mean around 7.2. We find the respective mean distances to the Reference
Matrix of the SUPSEC Traces and BotsV1 Traces sets to be around 6 and 6.4. This
shows that our Markov chain’s recommendations are better than the random one.

4.7.1.3 Relevance of the Markov chain

For the second experiment, we wanted to confirm that we had not biased our users
when we built the Reference Matrix. We want to compare transition matrices with a set
of traces and see if their investigations could have been generated by it. To do so we are
going to use the log-likelihood method.

Results are presented in Table 4.2. For each investigation present in a trace of inves-
tigations (a column in Table 4.2), we compute the log-likelihood with the matrices that
we can extract from all three sets of investigations, and an additional random matrix
(duplicated 100 times). These results should be read in column since the number of in-

105

Partie II, Chapter 4 – Gaining a better understanding of analyst intentions to make
recommendations

4 5 6 7 8 9 10
Distance to the Reference Matrix

0

2

4

6

8

10

12

14

16

Nu
m
be

r o
f m

at
ric

es

Random Matrices
SUPSEC Traces
BotsV1 Traces

Figure 4.4 – Representation of the distribution of the distance of multiple sets of investi-
gation traces to a reference matrix

vestigations is not the same for every experiment and therefore makes the likelihoods not
comparable. The log-likelihood L of a sequence I to have been generated by the matrix
M is for (Ai, Bi) the intention transition at the i position in the sequence I :

L = |
n∑

i=1
ln(TransitionM(Ai, Bi))|

The diagonal gives us a local maximum as we compare the matrix built from a set
of investigations with that same set of investigations. The interesting result is that the
likelihood of other matrices are close to the maximum value, except for the 100 random
matrices that have a significantly lower average value. We conclude that we successfully
framed the intentions of analysts during investigations.

4.7.2 Prototype and recommendations evaluation

The last experiment we conducted was part of a larger security exercise organized as a
red and blue team capture the flag. We only discuss briefly the details of the experiment

106

4.7. Evaluation of MIMIR

Matrix/Sequences Reference Traces SUPSEC
Traces

BotsV1
Traces

Reference Matrix 21.556 19.573 26.951
SUPSEC Matrix 20.317 20.378 26.736
BotsV1 Matrix 19.076 18.445 27.956

mean(Random Matrices) 10.131 9.676 14.414

Table 4.2 – Mean log-likelihood of sequences being generated by a specific Markov chain

as it will be fully described later in Chapter 5, and focus on the obtained datasets. This
corresponds to XP2 in Figure 4.1.

4.7.2.1 Datasets

The red team event took place on variations of the same attack scenario, resulting in
13 different datasets to investigate. We selected the 5 most complete among them to be
investigated. Each dataset investigated contained various attacks, network and system logs
for a total number of events ranging from 1000 to 8000. The sources of data were an Auditd
service on each machine in the infrastructure and a Suricata listening to the whole network.
The blue team part of the exercise had 9 participants. During their investigations, the
participants were using a version of the log investigation platform that integrates MIMIR.
For this experiment MIMIR used a slightly less refined matrix than the Reference Matrix
described in Section 4.7.1.2 as an input to the recommendation system due to time and
implementation constraints.

4.7.2.2 Recommendations evaluation

The goal is to see whether the recommendations were followed by the user. When a
recommendation is triggered we recommend the most probable transition (the highest
probability of a line in Figure 4.3). Over 7 possible resulting transitions, only 5 were
triggered during the experiment. That is not abnormal because the last 2 are rarer cases.

During the experiment, we recorded every recommendation. We considered a recom-
mendation as followed if at least one of the actions were done in the next 2-3 actions
following a recommendation. We consider only the case where the recommendation is
followed directly or in the next 2 or 3 actions because more than that would result in too
much imprecision.

Figure 4.5 shows that for every transition considered, recommendations were followed a

107

Partie II, Chapter 4 – Gaining a better understanding of analyst intentions to make
recommendations

Figure 4.5 – A representation of how much the recommendations were followed compared
to the Markov chain transition probability

lot more than the theoretical value of the transition matrix anticipated. In some instances
they were even always followed. There is only the case of the next action after a RR
transition (see Section 4.5.1) where we find that user never follows the recommendation
directly. That can be explained by the fact that framing the reporting intention on an
investigation can mean any number of things. It ranges from saving a simple reminder
during the investigation to completing the investigation and leaving the platform, making
it more complex to predict the next intention of the user.

We believe these results are promising. It shows that the behaviour we captured
through our model and which we recommend is a behaviour that analysts tend to fol-
low easily when recommended.

108

4.8. Conclusion

For the entirety of this work, we focused on how the users reacted to
recommendations, how they were perceived, whether they were fol-
lowed and considered useful and, how we could improve them. Dur-
ing experiments, we gathered feedback and turned it into multiple
improvements to implement into MIMIR. Users mostly welcomed
the idea of recommendations. The idea of capturing user intentions
in order to predict the next most probable one and to recommend
actions to perform as a follow-up was appreciated. These discussions
allowed us to design three working axes for future recommender
systems. First, the need to refine the trigger for a recommendation.
Every recommendation does not have the same value to a user. For
example a recommendation to do something when nothing is going
on is less interesting than some actions to undertake when in the
middle of researching a promising lead. This means adding rules to
adapt and refine the frequency of recommendations as well as the
way they are offered to the user. Second, the need to be able to test
out the recommendations more easily. This means we need to offer
the possibility of substantiating recommendations more easily dur-
ing their investigations. Lastly, the transparency and explainability
of recommendations came up a lot. In the cybersecurity field espe-
cially, knowing the reasons behind decisions is crucial and should
be shown through recommendations. We have already designed the
first and third improvements of this list and are in the process of
integrating them to the prototype.

Discussion

4.8 Conclusion

In this chapter we have presented MIMIR: a recommender system that recommends
exploration paths to analysts during incident response. Its engine is based on the detection
of relevant user actions and their associated user intentions. With this, we built a Markov
chain to help us find out the most probable intention an analyst wants to perform. We then

109

Partie II, Chapter 4 – Gaining a better understanding of analyst intentions to make
recommendations

evaluated our prototype extensively, using 5 different datasets, and through 4 different
experiments. We obtained promising results, showing that our approach captures the
meaning behind user intentions well and recommends actions that users tend to follow.

With this second contribution, we tried to address various problematics identified ei-
ther in the literature and during the development of our first contribution. The first and
most important question was to find out if understanding users during their investigations
gave us a possibility to enhance security analysts (R2). We found out that modelling ab-
stract user intentions and linking them with actions during investigations was complex,
even in a controlled environment such as ours. Indeed, without directly asking their in-
tentions to users, a lot a metadata is needed to describe refined intentions. Inversely, even
considering intentions, recommending concrete ways of realizing them is equally challeng-
ing.

We are currently working on improving MIMIR. In the near future we are considering
working on further substantiating the recommendations by hybridizing this recommender
system with KRAKEN, and we wish to implement a learning component to the engine so
that the Markov chain can self-actualise as investigations are conducted on the platform.
The idea behind this hybridization is that while KRAKEN provides very rigid recom-
mendations, they are precise and concrete, so they can be executed easily by an analyst.
MIMIR on the other hand is better at understanding when to make a recommendation and
towards which investigative goal. We would like to test different hybridization methods
to see if we can combine both their strong points.

Finally, during this chapter we have discussed an experiment conducted that gave
us the necessary data to evaluate our recommender system. This experiment was also
designed and conducted by us during this thesis along with co-workers from our research
team. In the next chapter we will delve into more detail about the data problematic that
followed us during this PhD.

110

Listing 1 The 39 resulting patterns linked to user intentions
[

Startup / Discovery (S), Broaden search (B), Deepen search (D)
Report findings (R), Backtrack (X), Searching for a new lead (L)
Guided by recommendation (M)
(("filter-value", "include"), ("filter-value", "disable"), "D"),
(("filter-value", "disable"), ("drag-drop-card", ""), "B"),
(("classification-recommendation", ""), ("flag", ""), "R"),
(("change-chart", ""), ("drag-drop-card", ""), "B"),
(("filter-value", "disable"), ("filter-value", "include"), "B"),
(("recommendation-chosen", ""), ("filter-value", "include"), "D"),
(("flag", ""), ("navigation", "/leads"), "R"),
(("drag-drop-card", ""), ("remove-card", ""), "X"),
(("drag-drop-card", ""), ("change-chart", ""), "B"),
(("change-chart", ""), ("filter-timeline", ""), "B"),
(("filter-value", "include"), ("drag-drop-card", ""), "B"),
(("filter-timeline", ""), ("filter-value", "include"), "D"),
(("drag-drop-card", ""), ("filter-value", "include"), "D"),
(("voluntary-recommendation", ""), ("recommendation-chosen", ""), "B"),
(("filter-value", "include"), ("flag", ""), "R"),
(("navigation", "/leads"), ("navigation", "/"), "L"),
(("filter-value", "include"), ("change-chart", ""), "D"),
(("change-chart", ""), ("remove-card", ""), "X"),
(("drag-drop-card", ""), ("filter-timeline", ""), "D"),
(("filter-value", "include"), ("filter-value", "include"), "D"),
(("drag-drop-card", ""), ("voluntary-recommendation", ""), "B"),
(("recommendation-chosen", ""), ("remove-card", ""), "X"),
(("change-chart", ""), ("filter-value", "include"), "B"),
(("flag", ""), ("recommendation-chosen", ""), "M"),
(("drag-drop-card", ""), ("drag-drop-card", ""), "S"),
(("change-chart", ""), ("change-chart", ""), "B"),
(("filter-value", "disable"), ("remove-card", ""), "X"),
(("filter-value", "include"), ("navigation", "/leads"), "L"),
(("filter-value", "include"), ("filter-timeline", ""), "D"),
(("filter-value", "disable"), ("filter-value", "disable"), "B"),
(("remove-card", ""), ("remove-card", ""), "X"),
(("flag", ""), ("flag", ""), "R"),
(("filter-timeline", ""), ("change-chart", ""), "D"),
(("recommendation-chosen", ""), ("recommendation-chosen", ""), "B"),
(("filter-value", "include"), ("remove-card", ""), "X"),
(("remove-card", ""), ("drag-drop-card", ""), "B"),
(("filter-timeline", ""), ("drag-drop-card", ""), "B"),
(("navigation", "/ingest"), ("navigation", "/"), "S"),
(("filter-timeline", ""), ("filter-timeline", ""), "S")

]

Chapter 5

DATA: THE ISSUE OF OBTAINING IT AND

USING IT FOR EVALUATION

It is a capital mistake to theorize before one has data.
— Arthur Conan Doyle, Sherlock Holmes in “A study in

Scarlet”

Experimenting in cybersecurity requires manipulating reliable and
realistic data. In particular, data from the observation of a com-
plete campaign is rarely available, due to its high sensitivity and
the difficulty of accurately labelling datasets. This situation harms
the reproducibility of research results and therefore their impact. In
this chapter, we present the CERBERE project that proposes a re-
producible attack-defense exercise that generated a labelled dataset
usable for research purposes. The attack-defense exercise is first
composed of an exercise for red teamers automatically deployed
with variable attack scenarios. Second, an investigation exercise for
blue teamers operated through a log investigation platform using
the system and network logs generated during the attack phase.
Obtaining such data helps us evaluate our prototypes from Chap-
ters 3 and 4, while addressing an important issue in the field of
cybersecurity.

CERBERE

5.1 Introduction

This last contribution chapter tackles an entirely different topic than recommender
systems, yet it seemed essential for us to address it during this thesis as it has greatly

113

Partie II, Chapter 5 – Data: the issue of obtaining it and using it for evaluation

helped us for the two other contribution chapters. One of the main academic issues is the
lack of data [76]. Cybersecurity suffers from data scarcity for good reasons such as the
sensitivity of security data, the high cost and low reliability of data anonymization, the
difficulty of capturing, storing and releasing data to the public [46]. Additionally, even in
the case where a dataset is released, complete ground truths, i.e. documentation about
the attacks and traces of the attackers in a dataset, are rarely provided. We also need
such datasets to evaluate our work.

For this thesis, in Chapter 3 we were able to evaluate KRAKEN using only one dataset
because at the time we only had two available: one to implement and test the prototype
and one to evaluate it. Fortunately, we were able to create two more to evaluate MIMIR
in Chapter 5, but with a lot of efforts. Our situation is common and can be explained in a
number of ways, but mostly, the reason is that in a three year time-frame, creating a new
dataset is enough work to become another whole thesis. Fortunately, during this thesis,
we had the opportunity to join hands with other PhD candidates and generate our own
data.

CERBERE comprises two main parts: an initial Capture-the-Flag (CTF) exercise
where players attack a uniquely generated infrastructure and a subsequent investigation
phase. In the exercise, player actions undergo monitoring from three perspectives: pentest-
ing activities in their web browser, network activity, and host operating system activity.
This collected data is investigated in the second phase, where players reconstruct an at-
tack scenario by exploring the logs. Our aim with this contribution is to initiate a novel
approach to data generation, catering primarily to our project’s requirements and those of
our collaborators. This way, by controlling the scenario, architecture, and monitoring, we
believe we can conduct evaluations with less bias and focus more on the aspects we intend
to evaluate. For instance, in the context of a recommender system, understanding the sce-
nario and attack procedures allows us to precisely understand how they appear in logs.
This understanding enables an efficient evaluation of the usefulness of a recommendation.

Additionally, this contribution is completed by the CERBERE dataset containing all
the logs produced during the CERBERE exercise, thus addressing our third research
question: R3. The dataset has been generated with the participation of 22 players: 13
red players and 9 blue players with three levels of difficulty. We explain how this dataset
was labelled, enabling us to reconstruct the evolution of the players. Several outputs are
distributed with this publication 1:

1. https://gitlab.inria.fr/cidre-public/cerbere-dataset/

114

https://gitlab.inria.fr/cidre-public/cerbere-dataset/

5.2. Cybersecurity data generation in the literature

— The software for generating the infrastructure and executing these instances on a
regular Linux operating system.

— The raw dataset of the logs of each red team player.
— The enriched dataset containing labels for the logs to highlight the evidences of

intrusion.
Unfortunately, the blue team logs cannot be shared as they can contain sensitive infor-
mation; in any case they are very specific to the Malizen platform, making it difficult to
reuse them. Nonetheless, they are used in the evaluation of MIMIR (see Chapter 4).

In the following sections, we go into further details regarding CERBERE. Section 5.2
discusses three different works we have found that tackle the same issue as we do. Sec-
tion 5.3 presents the methodology employed to build our red/blue team exercise. In par-
ticular, we give details about the pentesting scenario and the information collected during
a pentest. Section 5.4 presents how we conducted red team and blue team experiments
with the players. We will also discuss how CERBERE has helped us to evaluate our rec-
ommendation algorithms. Finally, Section 5.6 details the labelling of the logs to form the
CERBERE dataset. Section 5.7 concludes the chapter.

5.2 Cybersecurity data generation in the literature

Different initiatives have been taken to produce log data containing attacks. Whether
it is needed to evaluate some work or simply to simulate a real situation, this problem
has been approached before, and we can wonder what makes it so challenging; researchers
from the Canadian Institute for Cybersecurity [19] produced a dataset generated through
a testbed and containing multiple known network attacks: CICIDS2017 [76]. This dataset
was initially designed to evaluate the efficiency of IDSs. However, researchers have studied
in detail this dataset and have found multiple issues:

— Panigrahi et al. first present how this dataset contains many labelling issues [60].
— Joosen et al. presents a new version of the dataset after they found that some

attacks within the dataset did not work as intended [26].
— The same team presented a second paper where they detail all their findings after

a careful inspection of the packet captures of the dataset [51].
— The most recent paper gives new corrections for some attacks, labels some unla-

belled attacks and deletes some redundant packets within the dataset [46].
We can make multiple hypotheses to explain why this dataset contains so many errors,

115

Partie II, Chapter 5 – Data: the issue of obtaining it and using it for evaluation

but mainly, it seems these errors are caused by a dataset too big in volume, over too
many source files, trying to represent too many attacks. Additionally, it seems that the
biggest issue with the dataset is the labelling. Using a dataset that is not verified carefully
for errors can introduce a lot of bias, and that is why some researchers have started
implementing their own methods to generate data.

SOCBED [84], addresses this issue by proposing a testbed, designed to generate re-
producible, adaptable, and realistic log datasets for cybersecurity experiments. The paper
includes a survey of log data generation in cybersecurity experiments, and design goals
for sound experiments. The introduction of SOCBED as an open-source cyberattack ex-
perimentation testbed, and a practical attack detection experiment demonstrates the re-
producibility and adaptability of log data generation. SOCBED is freely available and
allows researchers to build on existing scenarios, improving the comparability of results
in cybersecurity research.

However, despite the merits of all these approaches from the literature, they present
important flaws [26] due to the complexity of the task. First, the presented architectures
are rigid and difficult to change. Then, the management of the attack surface is complex,
and must be handled with care because of potential side effects. Indeed, implementing a
vulnerability often implies installing older package versions or modifying rights, creating
a significant probability to open more than one way for attackers to get inside the system.
Finally, the limitations of large, complex datasets, such as labelling errors and biases,
highlight the necessity for a more controlled and adaptable approach.

In this context, we aim to develop our own solution by leveraging the insights gained
from previous endeavours like SOCBED. While SOCBED addresses the reproducibility
and adaptability of log data generation, it is essential to acknowledge its limitations, as
noted in the literature. Existing architectures are often rigid and challenging to modify,
and the management of the attack surface requires careful consideration due to poten-
tial side effects. Moreover, the data produced by these architectures tends to favour the
attackers’ perspective, neglecting the defenders.

We then turned to projects closer to the industry, in hope of finding usable tools.
SecGen [75] is a project available on GitHub and its main goal is to provide cybersecu-
rity students with a way to learn penetration testing with more diverse methods than
the too well-known ones, such as Metasploit. SecGen generates randomized vulnerable
systems. It creates virtual machines based on scenario specifications, detailing constraints
and properties, such as specific vulnerabilities, services, networks, users, or content. The

116

5.3. The CERBERE Project

scenarios can be broad, requiring attackers to exploit randomly selected vulnerabilities,
or more specific, targeting certain services or exact vulnerabilities (by CVE). SecGen
leverages an XML configuration language, reads its configuration, applies logic for ran-
domizing scenarios, and utilizes Puppet and Vagrant to provision the required VMs. This
dynamic approach aims to provide ongoing challenges for students, avoiding the static
nature of traditional hacking challenges. However, while this approach is very interesting,
it does not include itself within realistic situations. It offers the possibility to do penetra-
tion testing, not to actively execute a full killchain on an information system. However,
SecGen provides a solution for a very specific use case, does not scale up when a bigger
architecture is needed and makes it difficult to provide a real and complete scenario.

Our objective is to overcome these shortcomings and develop a solution that not only
ensures reproducibility and adaptability but also addresses the limitations identified in
previous approaches. We envision a solution that provides more flexibility in architecture,
simplifies the management of the attack surface, and offers a balanced perspective by
promoting both the attackers’ and defenders’ standpoint in the generated data. Through
this, we aim to contribute to the improvement of log data generation for cybersecurity
experiments.

5.3 The CERBERE Project

CERBERE is designed as a cybersecurity exercise in two parts: pentesting a group
of vulnerable infrastructures using a similar attack scenario but with variations in the
implementation of the scenario, and investigating the logs of said pentest.

5.3.1 Overview

Figure 5.1 summarizes the global architecture of the project. The first phase of the
CERBERE exercise is the attack phase. Each player (represented in red) obtains his own
target instance: a virtual infrastructure hosting the 3 machines to be attacked. All the
instances are automatically deployed starting from a generic description of the attack
scenario and closely monitored in order to gather data. Each instance deploys a variation
of the generic scenario: instances differ from each other by the involved operating systems,
installed software and their vulnerabilities. Each instance in the CERBERE exercise was
unique to each participant allowing him to discover its own way of performing the attack

117

Partie II, Chapter 5 – Data: the issue of obtaining it and using it for evaluation

Figure 5.1 – Overview of CERBERE architecture

campaign. These aspects are presented in more details in Section 5.3.2. To these instances,
two more machines implementing the GHOSTS framework 2 were deployed in order to
generate fake life on the infrastructure. However, we do not represent them for more
clarity as they are not relevant to the attack scenario.

In the second phase of the CERBERE exercise, new players (the blue team) receives
the logs associated to a pentest session of the first phase, except browser logs that would
not be available during a real investigation. The logs have been acquired from several
monitors, as described later in Section 5.3.6. Some post-processing actions described in
Section 5.6 in order to detect and label the log lines which identify the attacks are also
performed. Blue teamers investigate the logs with Malizen and are expected to flag assets
corresponding to attacker actions.

118

5.3. The CERBERE Project

Figure 5.2 – CERBERE scenario

5.3.2 The attack scenario

This experiment was designed to be played by a group of participants with heteroge-
neous attacker skill levels and in a short period of time (two hours). In order to make it
possible for every participant to make some progress while maintaining some depth for
the more skilled participants we chose to make CERBERE a network of a few hosts with
varied challenges, as opposed to a single but more resilient host.

5.3.3 The architecture

Each instance is generated from a template scenario. For this experiment, the CER-
BERE template scenario consists of three hosts named zagreus, hades and melinoe inside a
local network. This scenario is meant to be played linearly: information stored on zagreus
is required to progress to hades for instance. Zagreus and hades are both vulnerable to
procedures linked to misconfigured websites, while melinoe hosts a PostgreSQL database.
The goal of the attacker is to reach this database, which hosts a flag.

5.3.4 Variations in the attack scenario

A graphical representation of the overall scenario is available in the Figure 5.2. At-
tacker positions are represented as tuples of (host, user), and transitions are labelled with
the required MITRE ATT&CK technique. As previously mentioned, instances of this
scenario will differ on a procedural level. Furthermore, in order to increase the range of
difficulty offered by CERBERE, instances of the scenario will differ from each others. In-
deed, each procedure may have several variations of different difficulties. For instance, in
order to perform privilege escalation on a host, one instance might present a vulnerability

2. https://github.com/cmu-sei/GHOSTS

119

https://github.com/cmu-sei/GHOSTS

Partie II, Chapter 5 – Data: the issue of obtaining it and using it for evaluation

Table 5.1 – List of procedures available for each technique in CERBERE.

Technique Procedures Detection rules

τ0,3 =
T1190

π1: Website with command
injection (easy)

Access to Alice’s home
repository

π2: Website with command
injection (medium)

Chmod in images directory,
commands executing .jpg files

π3: Django directory traversal
rewarding ssh key

Not detectable through system
logs

τ1=
T1068

π4: Vulnerable sudo version
(CVE-2019-14287) Command containing "-u#-1"

π5: Vulnerable pkexec process Command executing the pkexec
process directly

τ2,6 =
T1552

π6: Passwords in .bash_history Command accessing the
.bash_history file

π7: Password in .txt file Command accessing the
important.txt file

τ4,6 =
T1021

π9: SSH Access from key SSHD user_login

π10: SQL server rewarding a flag Command related to the psql
executable

in its sudo package [79], while the other is vulnerable to the pwnkit exploit [80]. It is to
be noted however that the overall path of attackers, i.e. which sessions they log in and
how they progress through the network, remains consistent throughout all instances. An
additional benefit is that participants cannot easily copycat actions of others. To imple-
ment these variations, we used the URSID automatic vulnerable architecture generation
tool [12], which aims to convert high-level scenario descriptions into low level virtual host
configuration files. Table 5.1 details available procedures for each technique. All creden-
tials were also randomized for each instance. The second part of the table, detection rules,
will be detailed later in Section 5.5.

Finally, we required a combination of network and system activities in order to get
valuable logs for the blue team. This remark led to the design of an attack scenario where
attackers gain shell accesses by exploiting website vulnerabilities but also use system
vulnerabilities to get new credentials or roles.

5.3.5 Example of solution for red teamers

We describe globally the expected solution of this scenario: The red player should:
— Exploit the website hosted on zagreus by performing a command injection in a

poorly configured search bar. Two levels of difficulty are available: some instances

120

5.3. The CERBERE Project

limit how many characters could be inputted in the search bar, leading to attackers
having to use the upload function of the website to execute their script instead of
typing it directly. This exploit leads them to obtain a shell as user Alice.

— Perform a privilege escalation by exploiting one of the two vulnerabilities [79, 80]
(randomly selected).

— Harvest credentials present in the superuser directory (which requires root access).
Those credentials hint that they are linked to the host hades.

— Use those credentials to log as an admin on a Django website hosted on hades.
Once this is achieved, acquire an SSH key stored in the /notes directory of the
website, which hints that this key is linked to a user named superuser.

— Use this key to log in through SSH as superuser. The IP could be found by installing
network scanning tools on the host zagreus using sudo privileges.

— Harvest credentials again, which hints that they are linked to the host melinoe.
— Use those credentials to access the PostgreSQL instance on melinoe and recover

the flag, thus ending the scenario.

5.3.6 Exercise monitoring at multi-level

During the CERBERE exercise, the activities of the red teamers are monitored at
different levels. First, all their actions at the browser level are recorded such as filling and
sending forms, clicking buttons, checking cookies values. Second, we monitor their actions
at operating system level, especially actions occurring in a shell session. Finally, network
traffic is recorded in the virtual environment. Similarly, the actions of blue teamers are
also recorded.

For this thesis, our focus is on two of those data sources. First, the network and
system logs where we can find the attacks performed by the red teamers, constituting
the CERBERE dataset. The network data was captured using Suricata while the system
data was captured using Linux’s auditd. With this, we can trust the data we give to
blue teamers for investigation. Second, the investigation traces are our main focus since
they will help us evaluate our recommendations as well as provide us with more data to
evaluate MIMIR’s Markov chain (see Chapter 4).

121

Partie II, Chapter 5 – Data: the issue of obtaining it and using it for evaluation

5.4 Experiments with CERBERE

This experiment was conducted at the EUR cyberschool 3 during their spring school,
in April 2023. The experiment took place in two phases, each during roughly 2 hours. Our
participants were of diverse profiles: graduate and post-graduate students as well as some
researchers.

For the first phase of the exercise, there were 13 participants. They were given roughly
one hour to succeed in executing as many exploits as possible due to logistics constraints.
Each participant was given one instance to work on and instances were hosted on a single
server of 36 cores and 80 GB of RAM. Each instance had five hosts in total: zagreus,
hades, melinoe, the gateway host and the Suricata host.

It is interesting to note that red team exercise being more common than blue team
exercises, we can observe more appeal for the first phase. For the blue team phase, 9
participants investigated the logs for one hour each as well.

5.4.1 Red team experiment

Since participants required remote access to the instances as they were all working on
their personal computers, all hosts were made available through the Internet. Their entry
point was however only accessible through specific URLs with custom port, in order to
avoid the instances being compromised by attackers outside the experiment connecting
to the port 80. This was achieved by carefully configuring network rules, a custom DNS
server and a gateway host used by participants to be connected to the Internet.

The first phase of the exercise was the red team exercise. We requested that the
participants come with Docker installed on their computer so that we can record actions
coming from the Chrome web browser. Then each participant was given a URL pointing
to a specific instance to attack. This way, the attacks performed by one participant could
not disturb others. Participants started the exercise with very limited knowledge of the
architecture they were attacking.

Participants were told that three hosts are involved in total. We gave them two URLs:
one pointing to the website hosted by their specific zagreus host, and one for hades. They
were instructed to first start with zagreus, and only move on to hades when they find
direct clues about how to attack it. This was done due to our short time constraints for
the experiment (2 hours), in order to avoid participants spending too much time trying

3. https://cyberschool.univ-rennes.fr/en/

122

https://cyberschool.univ-rennes.fr/en/

5.4. Experiments with CERBERE

to brute-force hades. Hints were occasionally provided to struggling participants in order
to improve their learning experience.

5.4.2 Blue team experiment

Following the first phase of the exercise, we organized a second phase consisting of a
blue team exercise. The participants gathered for this part of CERBERE did not partic-
ipate in the red team experiment and have no knowledge of it. Each participant had the
Malizen tool to investigate the logs generated by a participant of the red team exercise.
Once the platform as well as the context of the exercise were presented to the participants,
they were each given one hour to investigate and find as many steps of the scenario as
possible.

The result of these investigations are stored under the shape of user action and asso-
ciated context. Because this data is very specific to the graphical tool, it would be useless
to publish the raw data associated to user’s actions. Nine investigations were conducted,
for a total of 2706 user actions recorded, allowing us to map exactly the progress of every
analyst during the blue team part of the exercise. This exercise helps to evaluate the
quality of the data recorded from a security standpoint.

While this second part of the experiment allowed us to introduce investigations to a
cybersecurity exercise a component rarely included in this kind of work, it also served
another purpose: evaluating the recommender systems from chapters 3 and 4. Contrary
to the evaluations presented in the last chapters, this exercise aimed to another problem
we have mentioned but not addressed: how can we integrate recommender systems into
the investigative process of an analyst? The idea is to provide meaningful recommenda-
tions to analysts during their investigations without hindering them. To do so we have
studied recommendation triggers as described in previous chapters, but recommendation
frequency, presentation and wording as well. This falls more in the topic of user interfaces
and experience, but is nonetheless important because however good a recommendation is,
if it is presented at the wrong time and in the wrong form it becomes irrelevant.

5.4.3 Data quality

We manually investigated the data collected during the two exercises for all partici-
pants. The size of the red team data is approximatively 900Mo, or 69Mo per participant
divided between the Suricata and auditd monitoring sources. Although, auditd logs rep-

123

Partie II, Chapter 5 – Data: the issue of obtaining it and using it for evaluation

Table 5.2 – Successful attacks (red team) and discoveries (blue team)

Red team
exploitation

Blue team
discovery

Total nb players 13 7

Scenario
step

Mitre
ATT&CK
Technique

T 0 T1190 7 5
T 1 T1068 7 5
T 2 T1155 7 3
T 3 T1190 4 2
T 4 T1021 3 2
T 5 T1552 3 2
T 6 T1021 3 0

resent a majority of the data. Our goal is to be able to post-process the logs to quantify,
how many steps of attacks have been achieved by a red teamer and how many steps of
attacks have been correctly investigated by blue teamers. It is interesting to note that the
investigations led by the blue teamers weigh only 1.1Mo in comparison.

When building our post-processing program, we observed the following points about
the data. The nature of the log is heterogeneous and contains format variations. Despite
monitoring systems or networks with only one probe each, we gather data that is very dif-
ferent and difficult to mix. The system data coming from auditd was notably complicated
to explore and reuse as is due to a lack of standardization in the data. Some log lines were
recorded over multiple lines, some not. Sometimes certain fields seemed to contain one
nature of data but depending on the captured log line, this nature could change. However,
all the important information to detect and understand the attack is present, it is even
redundant and can be followed through the flow of the attack. In the future, we plan on
using a different monitoring architecture, allowing us to produce our logs directly in a
JSON format, offering the possibility of parsing them automatically more easily.

124

5.5. Results of the CERBERE experiment

Figure 5.3 – Attack path through instance 6. Red transitions were detected using Zircolite
rules. Transition 3 for attacker position (hades, bob) is not detectable through auditd logs,
but the linear structure of the scenario ensures that it was compromised as well.

5.5 Results of the CERBERE experiment

5.5.1 Red team feedback

The first two columns of Table 5.2 shows which step and technique is related to the
scenario for further technical references. The third column shows how many red teamers
have managed to successfully conduct each step of the scenario. The fourth column shows
how many blue teamers uncovered this step of the attack during the investigation.

Regarding the red teamers, it appears that the first exploit (finding a command injec-
tion within a website in order to create a reverse shell) was a roadblock for almost half of
the participants. This does track with the expected difficulty of the scenario, as this web-
site had a decent amount of functionalities and pages not relevant for the intended exploit,
which could act as diversions for the participants. Once the attackers found the location
of the command injection, they still had to properly initiate a reverse shell. Depending
on the scenario variation, the difficulty of this step may vary because some variations re-
quired to upload and update the execution permission for their payload. The combination
of (relative) difficulty and multistep nature of the exploit may thus explain this result,
and it appears that attackers who managed to pass this step had no issues exploring the
rest of the zagreus host.

The next roadblock appears to be accessing the second host, hades. Logging as supe-
ruser is not trivial because it required several steps. First attackers had to properly reuse
the credentials acquired in zagreus on the website hosted on hades, successfully find an
SSH key hidden in one of the pages, format it properly, then use it from their reverse
shell acquired in the host zagreus. Time constraints also started ticking at this step for

125

Partie II, Chapter 5 – Data: the issue of obtaining it and using it for evaluation

participants who spent a long time on the first host. In particular, we observed in the
logs that the volatile and primitive nature of the shell acquired on zagreus (through the
combination of a reverse shell + exploit) meant attackers sometime accidentally closed it
and had to redo the previous steps. Finally, attackers who managed this step appeared
to have no trouble with the last step, as it simply required to gather credentials similarly
to previous steps and to connect to a PostgreSQL service, whose IP is found by scanning
the network.

We manually analysed the logs to understand the reasons behind each undetected step
of an attack. 2 transitions (both for the initial website exploitation τ0) were undetected
as the attackers used unorthodox methods. For instance for procedure π2, we expected
attackers to upload a reverse-shell script using the website image upload function and
execute it. However, one of the participants instead recognized that the host naturally
had python installed and used that to directly download and execute a script instead. In
these two cases the red teamer found an alternative method to the one we prepared for
in order to exploit the vulnerability. If we refer to Table 5.1, it means the detection rules
corresponding to these exploits were not triggered and the attackers evaded our monitor-
ing. A most interesting result concerning the management of attack surface during the
exercise. Nonetheless, in these cases, we assumed that the attacker achieved initial access
anyway when the next steps were found in the logs: for instance acquiring credentials as
(zagreus, superuser) requires the attacker to have accessed machine zagreus in the first
place. The Figure 5.3 showcases one of those results for the instance number 6. Complete
results for all participants are available in the dataset, as presented later in Section 5.6.

5.5.2 Blue team feedback

Regarding the blue teamers, the first thing we noted during the analysis of the data is
that not all blue teamers reported on their results as was advised during the presentation
of the tool. Unfortunately, two out of the nine participants did not register any findings
and thus could not be included in these results. However, we get very interesting feedbacks
from the seven remaining participants. First, we note that the web part of the scenario is
the most commonly discovered step of the scenario. This can be explained because such
attacks produce a lot more noise in the logs and because analysts are used to search for
attackers coming from the Internet and are likely to search that part of the dataset first.
Another interesting observation we made is that the participants discover groups of steps
rather than a single one. Almost all the participants that have made a first discovery

126

5.5. Results of the CERBERE experiment

Investigations 9
Recorded user actions 2706

Recommendations 729
Followed recommendations 607

Table 5.3 – Metrics about the blue team experiment

were able to discover directly related steps. Directly related steps are the main parts
of the scenario: τ0, τ1, τ2, τ3, and τ4, τ5, τ6. The difficulty lied in jumping from phase to
phase since hopping from one host to another was not directly linked in the scenario. A
final remark is that no participant was able to find the last exploit: the database access.
This can be explained by the fact that it was done legitimately since the attackers had
legitimate credentials at that point. Indeed, the last access to the database on the third
machine (τ6) is done using legitimate credentials found during the previous step. Added
to the time constraint we put on the exercise, no participant reached this last discovery.
This illustrates well the difficulty of the investigation job. When starting an investigation,
even if there is knowledge of an attack, it is difficult to put the pieces together.

In terms of recommendations, the primary aim of this exercise, detailed in Section 4.7.2,
was to gather data for evaluating MIMIR. Concurrently, we seized the opportunity to
gather feedback from participants regarding the recommendations. Notably, participants
generally welcomed recommendations, with KRAKEN receiving less discussion compared
to MIMIR. This discrepancy might be attributed to KRAKEN’s maturity as a recom-
mender system and its seamless integration with Malizen.

5.5.3 Quantitative feedback

This section gives a few metrics regarding the blue team experiment in order to give an
idea of the volumetry of the exercise, even though the recommendations’ evaluation was
not its main goal. The metrics are presented in Table 5.3. The most interesting number
to note was the important number of recommendations compared to the number of user
actions. Additionally, the percentage of followed recommendations is around 83%, showing
a big interest to recommendations from the users: a promising result. We also gathered
some qualitative feedback, hoping to explain these results further.

127

Partie II, Chapter 5 – Data: the issue of obtaining it and using it for evaluation

5.5.4 Qualitative feedback

The predominant feedback centered on the frequency of recommendations and, con-
sequently, the triggers for recommendations. Our second hypothesis for recommendation
triggers, implemented in MIMIR, involves making a recommendation only when a need is
detected. Participants appreciated this approach; however, the higher frequency of recom-
mendations in MIMIR compared to KRAKEN raised concerns. Unlike KRAKEN, where
recommendations are solicited or triggered only when flagging occurs, MIMIR’s approach
resulted in more frequent recommendations. In future iterations, we need to devise a
mechanism to control recommendation frequency without impeding the system’s ability
to provide timely recommendations when needed.

We also gathered feedback from the participants to the exercise and here are some in-
formation we have gathered. Timed notifications to present recommendations were greatly
appreciated as analysts can choose to read and follow them at their will, while a change
in screen or an unavoidable pop-up would have disrupted them. The availability of a
history of recommendations as well as some explanations giving reasons why they were
made was found to be an important feature as well as it allowed analysts to come back to
recommendations and reconstruct their findings easily. On the other hand the frequency
at which recommendations should appear is still unclear in the feedback. Depending on
the contents of the recommendation and the moment at which it is given, and even on the
analyst himself, recommendation frequency was judged differently. Finally, the wording of
recommendations appeared to significantly change the confidence analysts have in them.
Some recommendations were less easy to comprehend than others, namely the recom-
mendations coming from MIMIR, and as a result we had to answer more questions about
them than the KRAKEN recommendations. The wording is also a direct consequence of
the level of abstraction of recommendations. It comforts us in our idea to hybridize the
two recommender systems in the future.

5.6 CERBERE Dataset

With this contribution, we also provide the CERBERE dataset 4. The dataset contains
the raw logs from red teamers and the ground truth about these logs: we automatically
labelled the logs to spot the lines that are related to successful attacks of the red teamers.

4. https://gitlab.inria.fr/cidre-public/cerbere-dataset/

128

https://gitlab.inria.fr/cidre-public/cerbere-dataset/

5.6. CERBERE Dataset

Our goal is to make available a dataset that can be reused in new works related to attack
detection. Additionally, the CERBERE dataset also contains the scenario for ensuring
the reproducibility of the exercise using the URSID generation tool [12]. The monitoring
configuration is also available, enabling future work to extract logs similarly to what has
been done during our experiments. As presented in Table 5.1, we designed detection rules
to decide if a procedure was successfully employed by an attacker. Depending on the
procedure, a detection rule may be implemented at different log levels: system, network,
browser. This section discusses the design of these rules to obtain ground truth labels.

5.6.1 System logs labelling

System logs created by auditd were extracted from every instance at the end of the
exercise. Detection rules have been designed using Zircolite [88], a python SIGMA-based
detection tool. These rules were manually crafted based on our personal experience and log
results from playing the scenario and overall rely on the detection of specific commands or
access to files corresponding to the evolution of the attacker in the scenario. For instance,
exploiting CVE-2019-14287 [79] requires the attacker to use the command sudo with either
the flags -u#-1 or -u#4294967295. Since our auditd was configured to register this kind
of command executed by users, we can detect the exploitation of this specific CVE with
the following rule :

SELECT * FROM logs WHERE ((type = 'EXECVE')) AND (a1 LIKE '-u#-1%' OR a1 LIKE '-u#4294967295')

This rule is similar to the ones present in professional security projects such as SIGMA [72].
Every possible procedure -except for the ones associated to τ4 as it was not detectable
through system logs.

These rules were then used on all extracted system logs and correlated with the de-
scription of each scenario in order to evaluate the participant’s path through each of them.
In total, out of the 15 instances planned for this exercise, 7 show at least a sign of com-
promise and 3 were entirely played out, meaning that the attacker reached the last host.
Among these instances, a total of 28 transitions were detected using our rules, out of the
30 we expected to recognize based on attacker performance at the end of the exercise.
The 2 missing were due to unexpected attacker actions as discussed before in Section 5.5.

129

Partie II, Chapter 5 – Data: the issue of obtaining it and using it for evaluation

Figure 5.4 – Wireshark screenshot of melinoe pcap (left: baseline, right: instance 7) In
instance 7: IP 10.35.56.13 is melinoe, IP 10.35.56.12 is Hades. In baseline: IP 192.168.56.4
is melinoe, IP 192.168.56.3 is Hades.

Figure 5.5 – Attack path extract from instance 7.

5.6.2 Network logs labelling

Network traffic recorded by Suricata was extracted in pcap and netflow format to give
two detailed traffic levels. The pcap format provides a complete version of the traffic within
packets. In contrast, the netflow structure offers a condensed version of traffic gathered
in communications. These communications contain only meta-data information (without
the payload). This format is studied in the intrusion detection field as it can reduce the
quantity of data and eliminate the payload, which could be nonsensical (if encrypted, for
example).

We provide ground-truth labels for each packet/communication. Each packet/communication
that belongs to a successful attack is labelled as an attack, with the corresponding MITRE
ATT&CK techniques (Table 5.1). The other packets/communications that do not partic-
ipate in a successful attack in a scenario are considered as attempts. For each instance,
the packets/communications of a successful attack are identified with the attack path’s
timestamps and a baseline. The timestamp comes from the previous labelling process of
system logs (Section 5.6.1) and indicates where to look in the network logs. The baseline

130

5.6. CERBERE Dataset

is a pcap/netflow file that recorded a perfect player playing the instance, thus generating
the minimal number of network lines for completing the scenario. The baseline helps us
to review manually and decide if the found network logs should be labelled or not.

For example, let us focus on instance 7 and machine melinoe. We want to identify
the access to the SQL server of the procedure T1021. The technique for procedure T1021
occurs at τ6=15:45:03 for the baseline. For instance 7, as seen in Figure 5.5, we deduce from
the previous analysis of system logs that it happened at 17:33:36. With these timestamps,
we compare the two lines for pcap files as represented in Figure 5.4. We also can compare
netflows as represented in Listing 2 and Listing 3. The attack label is finally manually
added in the netflow of Figure 5.4 because ports and protocols obviously match, IP source
and destination are the same and the length of the flow is comparable.

Listing 2 Example of netflow from baseline
{
"StartTime": "15:45:03.794101",
"Dur": 0.009609,
"Proto": "tcp",
"SrcAddr": "192.168.56.3",
"Sport": 39486,
"Dir": "->",
"DstAddr": "192.168.56.4",
"Dport": 5432,
"State": "RST",
"sTos": 0,
"dTos": 0,
"TotPkts": 30,
"TotBytes": 4014,
"SrcBytes": 1651,

}

5.6.3 Browser logs labelling

Attacker’s actions were recorded by the browser monitoring tool into a Mongo database.
We recorded the actions performed in the web browser by players and the visited web
pages. Nevertheless, the labelling uses only the recorded actions. In this labelling process,
some attack steps can be labelled and others cannot. Indeed, if the attacker setups a
reverse shell, the new established connection is external to the web browser. As a conse-
quence, only the actual command injection of step τ0 can be labellised.

Similarly to network logs, we consider malicious the succeeding actions that lead to
the exploitation of the command injection. The other lines of the logs were labelled as
attempts because it corresponds to research of vulnerabilities, attempts of attacks or

131

Partie II, Chapter 5 – Data: the issue of obtaining it and using it for evaluation

Listing 3 Example of netflow for the instance 7
{
"StartTime": "17:33:36.832586",
"Dur": 0.02053,
"Proto": "tcp",
"SrcAddr": "10.35.56.12",
"Sport": 55976,
"Dir": "->",
"DstAddr": "10.35.56.13",
"Dport": 5432,
"State": "RST",
"sTos": 0,
"dTos": 0,
"TotPkts": 27,
"TotBytes": 4239,
"SrcBytes": 1875,
"Label": "Attack",
"Label description": "T1021"

}

documentation. Depending on the scenario, the command injection was either directly
exploitable or needed to be prepared by uploading a binary and executing it. As a conse-
quence, depending on the variation of scenario, one or two lines are labelled as a successful
attack.

A labelled action is a JSON object that contains the type of action, the argument of
the action and our label. For example in Listing 4, the JSON object shows the executing
of an injection command using a call to the python interpreter. We can observe the script
used by the attacker in the argument of the command.

5.7 Conclusion

Throughout this chapter we have presented the CERBERE cybersecurity exercise and
its resulting dataset. CERBERE has the particularity of offering both a red team and a
blue team exercise with a variety of difficulty levels. The scenario and architecture of this
exercise are given and can be modified for generating a new playground. Three types of
logs can be automatically extracted from a played exercise which is particularly interesting
for intrusion detection evaluations.

Along with the exercise itself, we provide the dataset resulting from the first edition
of the exercise. This dataset contains the logs of the 13 red teamers for the three types of
captured logs. Additionally, we labelled the dataset after the exercise in order to spot the
ground truth about line logs that are successful attacks and make it as usable as possible
for future research, regardless of the application.

132

5.7. Conclusion

Listing 4 Example of web action for a command injection
{
"at_time_stamp": "1681310750.539",
"by_user": "649984c67f6052c4c05c9486",
"from_page": "649984c07f6052c4c05c9484",
"type": "SendHTTPForm",
"args": [
{
"name": "inputs",
"value": {

"q": "hop | python3 -c \"import socket,os,pty;
s=socket.socket(socket.AF_INET,socket.
SOCK_STREAM);s.connect((\\\"7.tcp.eu.
ngrok.io\\\",11162));os.dup2(s.fileno(),0);
os.dup2(s.fileno(),1);os.dup2(s.fileno(),2);
pty.spawn(\\\"/bin/sh\\\")\""

}
},
{
"name": "xpath",
"value": "/html/body/main/div/div/div[2]/div[1]

/div[2]/form"
}
],
"Label": "Attack"
}

This contribution, despite being less related to the topic of this thesis compared to
the previous two chapters, was essential to the evaluation of MIMIR and to show how
evaluations can be improved when enough data is available (R3). But most importantly,
it is a contribution about a matter we think is essential for all areas of cybersecurity
whether in research or in the industry: in order to build efficient and accurate tools, we
need reliable data. We hope that CERBERE was the first iteration of a future platform
where any kind of data can be generated for our research. Additionally, we were still able
to gather some qualitative feedback about recommendations, that will help us improve
both recommender systems when we prepare the next experiment.

In the introduction we discussed how we would not be able to address all the challenges
brought by this problematic, and the one we wish to address next is the question of
fake life. In order for the dataset to, not only represent realistic attacks but also be
representative of what the logs of a real information system is, we need to implement
normal behaviours. It will be our next challenge!

133

CONCLUSION

Never confuse education with intelligence, you can have a PhD
and still be an idiot.

— Richard P. Feynman

The introductory chapters of the thesis highlighted challenges in the cybersecurity
domain, specifically those faced by analysts. After presenting contextual elements such as
analyst types, explored data, and the incident response process, we focused on the inves-
tigative phase, particularly exploring data with potential threats and attacks to discover.
This contextualization revealed challenges stemming from the increasing volume of logs,
inadequate helper tools, and a shortage of analysts due to the demanding nature of the
work. Consequently, we delved into the literature to explore how the research community
addresses these challenges.

We focused on recommender systems and their applications in cybersecurity, aiming to
enhance analysts’ efficiency by providing exploration recommendations. In our literature
review, we identified a gap: while expert cybersecurity knowledge is utilized for techni-
cal tasks in various papers, it’s not employed to complement analysts’ expertise during
investigations. As a response, we designed KRAKEN, a recommender system leveraging
expert knowledge for recommendations. This initial system deepened our understanding
of analysts’ needs during investigations, leading to the design of MIMIR. This second
recommender system captures user actions, detects intentions, infers the next probable
intention, and suggests follow-up actions. Finally, our exploration of the literature high-
lighted a data problem, both in terms of availability and usefulness for evaluation. To
address this, we introduced CERBERE, a red and blue team cybersecurity exercise, en-
abling us to generate data for evaluating and feeding our recommender systems.

Contribution made during this thesis

Our initial contribution, KRAKEN, is a knowledge-based recommender system that
leverages the Mitre ATT&CK project and the Elastic Common Schema to associate attack

135

techniques with relevant log fields. It employs two scoring methods for recommendations.
The first, Multi-Attribute Decision-Making (MADM), ranks techniques by conducting
pairwise comparisons of attributes, computing global weights, and scoring techniques.
The second method, Similarity scoring, capitalizes on the fixed nature of fields defined by
ECS, calculating distances between fields to identify similar ones for exploration as recom-
mendations. Evaluation results demonstrated relevant recommendations and introduced
a novel approach for analysts to acquire knowledge for their investigations. However,
challenges emerged in triggering recommendations at the appropriate time and for the
right reasons, prompting an investigation into the diverse goals of analysts during their
investigative processes.

Our second contribution, MIMIR, is a recommender system that utilizes past investi-
gation traces to model analyst intentions, associating actions with specific intentions and
identifying typical sequences of analyst actions using a Markov chain. During live inves-
tigations, MIMIR tracks analyst actions in real-time, detects intentions, infers the next
most probable intention, and recommends relevant actions accordingly. We conducted the-
oretical experiments to assess the coverage of analyst behaviour captured in the Markov
chain and a user evaluation to gauge the effectiveness of MIMIR’s recommendations in
real investigations. While the results of the user evaluation are promising, they highlight
the need to refine the translation of recommendations into actionable steps for faster
analyst adoption during investigations.

Our final contribution, CERBERE, addressed the challenge of evaluating recommender
systems in the cybersecurity domain, which often faces issues related to data sensitivity
and confidentiality. Given these challenges, we designed a red and blue team exercise
played by 22 participants, that allows for the generation of adaptable and controlled
datasets. CERBERE serves as a unique and modifiable blue and red team exercise, of-
fering a scenario and architecture tailored to our evaluation requirements. The inclusion
of a defensive component, the blue team phase, is unconventional and aims to encour-
age similar initiatives in the future. The first edition of the exercise was a success and
allowed us, and three other PhD candidates from our team to gain data to work and
further evaluate their prototypes. CERBERE also helped us quantitatively evaluate our
recommender system MIMIR and get qualitative feedback about recommendations from
both recommender systems contributed.

136

Perspectives & Future works

Even though three years of PhD feels like a long time when it starts, there is never
enough time to try out all of our ideas. We have two kinds of perspectives for the work
we have presented in this manuscript: direct improvements of our contributions and com-
plementary contributions.

Our first recommendation for KRAKEN involves expanding its knowledge sources to
include Cyber Threat Intelligence (CTI), which has witnessed significant growth in recent
years. The structured nature of projects like STIX v2 5 in structuring CTI knowledge bases
makes it a valuable input for KRAKEN’s recommendations. CTI reports, often referencing
ATT&CK, provide detailed insights into attacks and attackers compared to the ATT&CK
matrix. However, implementing CTI comes with challenges related to accessibility and
logistics. Many companies producing CTI reports do not disclose them, and the available
free feeds are often outdated and in less exploitable formats (STIX v1).

Secondly, addressing one of the limitations discussed in Chapter 4 for MIMIR, our
focus should be on automating the pattern selection and detection process. A thorough
exploration of different pattern mining algorithms would be beneficial. This improvement
has the potential to reduce the cost of rebuilding the Markov chain and enhance the
system’s generalization by making the pattern mining method data-agnostic. However,
recognizing relevant patterns poses a significant challenge, since the relevance of a pattern
is established using cybersecurity knowledge.

Thirdly, for CERBERE, our key focus is on data-related enhancements. Increasing
data collection can be achieved by conducting the exercise in new instances and improved
scenarios, with the first one planned for 2024. Alternative approaches involve presenting
the red team part as a honeypot. Additionally, we aim to structure the collected data more
effectively for easier exploitation. Ongoing efforts include implementing a more structured
monitoring system into the architecture and adopting user-friendly data formats in order
for the resulting data to be as usable as possible for the research community.

A more significant prospect involves the development of a hybrid recommender system,
combining features of both KRAKEN and MIMIR. KRAKEN, while not susceptible to the
cold-start problem, struggles to adapt to new situations without regular maintenance of its
knowledge base. Conversely, MIMIR exhibits flexibility by utilizing user actions for recom-
mendations but is hindered by its abstract recommendations. A hybridized approach could

5. https://oasis-open.github.io/cti-documentation/stix/intro.html

137

https://oasis-open.github.io/cti-documentation/stix/intro.html

mitigate these challenges. Our proposed solution involves integrating commonly executed
user actions during investigations into KRAKEN’s knowledge base, providing a founda-
tional recommendation that remains available. This approach also allows for refinement
through various methods such as direct feedback, Cyber Threat Intelligence (CTI), and
discovery methods based on user actions. Furthermore, the hybridization method could
enable us to prioritize either recommendation technique to better cater to the analyst’s
needs. For instance, a novice analyst might derive more benefit from a recommendation
grounded in the behaviour and investigative methods of an experienced analyst. In con-
trast, a seasoned analyst could benefit more from a knowledge-based recommendation
that validates their instincts.

Following this thesis, several underexplored topics emerge, promising significant con-
tributions to the field. Firstly, time emerges as a crucial component in investigations,
encompassing both the duration of an analyst’s inquiry and the temporal framework rep-
resented in the logs. An intriguing prospect lies in the linkage of timestamps within the
logs with killchain steps, allowing for the identification of attack campaigns and paving the
way for new recommendations. This approach could involve suggesting previous or subse-
quent steps in the killchain, unveiling the progression of a user’s intentions in alignment
with the discovered killchain steps. Such a contribution holds the potential to substantially
aid analysts in reconstructing attackers’ pathways during investigations.

Furthermore, while this thesis concentrates on the investigative facet of incident re-
sponse, we acknowledge that incident reporting and triage are well-explored domains, as
discussed in Chapters 1 and 2. Yet, the topics of refined remediation and mitigation solu-
tions remains a challenge. Exploring solutions like Mitre D3FEND (refer to Section 1.2.2.1)
to establish connections between investigation findings and utilizing them for recommend-
ing mitigations and remediation represents a promising trajectory for advancement in this
area.

138

BIBLIOGRAPHY

[1] Abdullah Abuhussein, Sajjan Shiva, and Frederick T Sheldon, « CSSR: cloud ser-
vices security recommender », in: 2016 IEEE world congress on services (SER-
VICES), IEEE, 2016, pp. 48–55, doi: https://doi.org/10.1109/services.
2016.13.

[2] Gediminas Adomavicius and Alexander Tuzhilin, « Context-aware recommender
systems », in: Recommender systems handbook, Springer, 2010, pp. 217–253, doi:
https://doi.org/10.1007/978-1-4899-7637-6_6.

[3] Gediminas Adomavicius and Alexander Tuzhilin, « Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions »,
in: IEEE transactions on knowledge and data engineering 17.6 (2005), pp. 734–749,
doi: 10.1109/TKDE.2005.99.

[4] Alireza Afshari, Majid Mojahed, and Rosnah Mohd Yusuff, « Simple additive weight-
ing approach to personnel selection problem », in: International journal of innova-
tion, management and technology 1.5 (2010), p. 511.

[5] Rabaa Alabdulrahman and Herna Viktor, « Catering for unique tastes: Targeting
grey-sheep users recommender systems through one-class machine learning », in:
Expert Systems with Applications 166 (2021), p. 114061, doi: https://doi.org/
10.1016/j.eswa.2020.114061.

[6] Carlos Ayala et al., « A Hybrid Recommender for Cybersecurity Based on Rating
Approach », in: Advances in Cybersecurity Management, Springer, 2021, pp. 445–
462, doi: https://doi.org/10.1007/978-3-030-71381-2_20.

[7] Carlos Ayala et al., « A hybrid recommender system for cybersecurity based on
a rating approach », in: Advances in Security, Networks, and Internet of Things:
Proceedings from SAM’20, ICWN’20, ICOMP’20, and ESCS’20, Springer, 2021,
pp. 397–409, doi: https://doi.org/10.1007/978-3-030-71017-0_28.

[8] James Bennett, Stan Lanning, et al., « The netflix prize », in: Proceedings of KDD
cup and workshop, vol. 2007, New York, 2007, p. 35.

139

https://doi.org/https://doi.org/10.1109/services.2016.13
https://doi.org/https://doi.org/10.1109/services.2016.13
https://doi.org/https://doi.org/10.1007/978-1-4899-7637-6_6
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/https://doi.org/10.1016/j.eswa.2020.114061
https://doi.org/https://doi.org/10.1016/j.eswa.2020.114061
https://doi.org/https://doi.org/10.1007/978-3-030-71381-2_20
https://doi.org/https://doi.org/10.1007/978-3-030-71017-0_28

[9] Michal Beran et al., « Exploratory Analysis of File System Metadata for Rapid
Investigation of Security Incidents », in: 2020 IEEE Symposium on Visualization
for Cyber Security (VizSec) (2020), pp. 11–20, doi: 10.1109/VizSec51108.2020.
00008.

[10] Jacques Bertin and Marc Barbut, Semiology of Graphics: Diagrams, Networks,
Maps, Paris: Ed. de l’EHESS, 2005, isbn: 978-2-7132-2027-2.

[11] Pierre-Victor Besson et al., « CERBERE: Cybersecurity Exercise for Red and Blue
team Entertainment, REproducibility », in: CyberHunt 2023-6th Annual Workshop
on Cyber Threat Intelligence and Hunting, IEEE Computer Society, 2023.

[12] Pierre-Victor Besson et al., URSID: Using formalism to Refine attack Scenarios for
vulnerable Infrastructure Deployment, 2023, arXiv: 2303.17373 [cs.CR].

[13] Romain Brisse et al., « KRAKEN: a knowledge-based recommender system for ana-
lysts, to kick exploration up a notch », in: International Conference on Information
Technology and Communications Security, Springer, 2021, pp. 1–17, doi: https:
//doi.org/10.1007/978-3-031-17510-7_1.

[14] Romain Brisse et al., « MIMIR: Modelling user Intentions with Markov chains for
Intention Recommendations », in: International Conference on Digital Forensics,
Springer, 2024.

[15] Robin Burke, « Hybrid recommender systems: Survey and experiments », in: User
modeling and user-adapted interaction 12 (2002), pp. 331–370.

[16] Robin Burke, « Hybrid web recommender systems », in: The adaptive web: methods
and strategies of web personalization (2007), pp. 377–408.

[17] Robin Burke, « Knowledge-based recommender systems », in: Encyclopedia of li-
brary and information systems 69.Supplement 32 (2000), pp. 175–186.

[18] Fidel Cacheda et al., « Comparison of collaborative filtering algorithms: Limitations
of current techniques and proposals for scalable, high-performance recommender
systems », in: ACM Transactions on the Web (TWEB) 5.1 (2011), pp. 1–33, doi:
https://doi.org/10.1145/1921591.1921593.

[19] Canadian Institute for Cybersecurity, Canadian Institute for Cybersecurity datasets,
2023, url: https://www.unb.ca/cic/datasets/index.html.

140

https://doi.org/10.1109/VizSec51108.2020.00008
https://doi.org/10.1109/VizSec51108.2020.00008
https://arxiv.org/abs/2303.17373
https://doi.org/https://doi.org/10.1007/978-3-031-17510-7_1
https://doi.org/https://doi.org/10.1007/978-3-031-17510-7_1
https://doi.org/https://doi.org/10.1145/1921591.1921593
https://www.unb.ca/cic/datasets/index.html

[20] Bram CM Cappers and Jarke J van Wijk, « SNAPS: Semantic network traffic anal-
ysis through projection and selection », in: 2015 IEEE Symposium on Visualization
for Cyber Security (VizSec), IEEE, 2015, pp. 1–8, doi: 10.1109/VIZSEC.2015.
7312768.

[21] Damien Cremilleux et al., « VEGAS: Visualizing, exploring and grouping alerts »,
in: NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Sympo-
sium, NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Sym-
posium, IEEE, 2016, pp. 1097–1100, isbn: 978-1-5090-0223-8, doi: 10.1109/NOMS.
2016.7502968, (visited on 03/03/2020).

[22] Zhe Cui et al., « DataSite: Proactive visual data exploration with computation
of insight-based recommendations », in: Information Visualization 18.2 (2019),
pp. 251–267, doi: 10.1177/1473871618806555.

[23] Arthur de Moura Del Esposte et al., « A Collaboration Model to Recommend Net-
work Security Alerts Based on the Mixed Hybrid Approach », in: ().

[24] Dorothy E. Denning, « An Intrusion-Detection Model », in: IEEE Transactions on
Software Engineering SE-13 (1987), pp. 222–232, doi: 10.1109/TSE.1987.232894.

[25] Alexandre Dey, « Datascience in support of cybersecurity operations: Adaptable,
robust and explainable anomaly detection for security analysts », PhD thesis, Ecole
nationale supérieure Mines-Télécom Atlantique, 2022.

[26] Gints Engelen, Vera Rimmer, and Wouter Joosen, « Troubleshooting an Intrusion
Detection Dataset: the CICIDS2017 Case Study », in: SPW, 2021, pp. 7–12, doi:
10.1109/SPW53761.2021.00009.

[27] Leonardo Ferreira, Daniel Castro Silva, and Mikel Uriarte Itzazelaia, « Recom-
mender Systems in Cybersecurity », in: Knowledge and Information Systems (2023),
pp. 1–37, doi: https://doi.org/10.1007/s10115-023-01906-6.

[28] Fabian Fischer and Daniel A. Keim, « NStreamAware: real-time visual analytics for
data streams to enhance situational awareness », in: Proceedings of the Eleventh
Workshop on Visualization for Cyber Security, ACM, 2014, pp. 65–72, isbn: 978-1-
4503-2826-5, doi: 10.1145/2671491.2671495.

141

https://doi.org/10.1109/VIZSEC.2015.7312768
https://doi.org/10.1109/VIZSEC.2015.7312768
https://doi.org/10.1109/NOMS.2016.7502968
https://doi.org/10.1109/NOMS.2016.7502968
https://doi.org/10.1177/1473871618806555
https://doi.org/10.1109/TSE.1987.232894
https://doi.org/10.1109/SPW53761.2021.00009
https://doi.org/https://doi.org/10.1007/s10115-023-01906-6
https://doi.org/10.1145/2671491.2671495

[29] Fethi Fkih, « Similarity measures for Collaborative Filtering-based Recommender
Systems: Review and experimental comparison », in: Journal of King Saud University-
Computer and Information Sciences 34.9 (2022), pp. 7645–7669, doi: https://
doi.org/10.1016/j.jksuci.2021.09.014.

[30] Stefano Foresti and James Agutter, « Visalert: From idea to product », in: Springer,
2008, pp. 159–174, doi: https://doi.org/10.1007/978-3-540-78243-8_11.

[31] Muriel Figueredo Franco, Bruno Rodrigues, and Burkhard Stiller, « MENTOR: the
design and evaluation of a protection services recommender system », in: 2019 15th
international conference on network and service management (CNSM), IEEE, 2019,
pp. 1–7, doi: https://doi.org/10.23919/cnsm46954.2019.9012686.

[32] Guido Grillenmeier, « Protecting Active Directory against modern threats », in:
Network Security 2021.11 (2021), pp. 15–17, doi: https://doi.org/10.1016/
s1353-4858(21)00132-x.

[33] Kevin Hu et al., « VizML: A Machine Learning Approach to Visualization Recom-
mendation », in: Proceedings of the 2019 Conference on Human Factors in Com-
puting Systems (CHI), ACM, 2019, doi: 10.1145/3290605.3300358.

[34] Philip Huff et al., « A recommender system for tracking vulnerabilities », in: Pro-
ceedings of the 16th International Conference on Availability, Reliability and Secu-
rity, 2021, pp. 1–7, doi: https://doi.org/10.1145/3465481.3470039.

[35] Christopher Humphries et al., « CORGI: Combination, Organization and Recon-
struction through Graphical Interactions », in: 2014 IEEE Symposium on Visual-
ization for Cyber Security (VizSec), 2014 IEEE Symposium on Visualization for
Cyber Security (VizSec), IEEE, 2014, pp. 57–64, doi: 10.1145/2671491.2671494,
(visited on 03/03/2020).

[36] Christopher Humphries et al., « ELVIS: Extensible Log VISualization », in: Pro-
ceedings of the Tenth Workshop on Visualization for Cyber Security, VizSec 2013,
Association for Computing Machinery, 2013, pp. 9–16, isbn: 9781450321730, doi:
10.1145/2517957.2517959.

[37] Martin Husák, « Towards a Data-Driven Recommender System for Handling Ran-
somware and Similar Incidents », in: 2021 IEEE International Conference on In-
telligence and Security Informatics (ISI), IEEE, 2021, pp. 1–6, doi: https://doi.
org/10.1109/isi53945.2021.9624774.

142

https://doi.org/https://doi.org/10.1016/j.jksuci.2021.09.014
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.09.014
https://doi.org/https://doi.org/10.1007/978-3-540-78243-8_11
https://doi.org/https://doi.org/10.23919/cnsm46954.2019.9012686
https://doi.org/https://doi.org/10.1016/s1353-4858(21)00132-x
https://doi.org/https://doi.org/10.1016/s1353-4858(21)00132-x
https://doi.org/10.1145/3290605.3300358
https://doi.org/https://doi.org/10.1145/3465481.3470039
https://doi.org/10.1145/2671491.2671494
https://doi.org/10.1145/2517957.2517959
https://doi.org/https://doi.org/10.1109/isi53945.2021.9624774
https://doi.org/https://doi.org/10.1109/isi53945.2021.9624774

[38] Martin Husák and Milan Čermák, « SoK: applications and challenges of using recom-
mender systems in cybersecurity incident handling and response », in: Proceedings
of the 17th International Conference on Availability, Reliability and Security, 2022,
pp. 1–10, doi: https://doi.org/10.1145/3538969.3538981.

[39] A Ishizaka, D Balkenborg, and T Kaplan, « Influence of aggregation and measure-
ment scale on ranking a compromise alternative in AHP », in: Journal of the Op-
erational Research Society 62.4 (2011), pp. 700–710, doi: 10.1057/jors.2010.23.

[40] Dietmar Jannach et al., « Recommender Systems: An Introduction », in: Recom-
mender Systems: An Introduction (Jan. 1, 2010), doi: 10.1017/CBO9780511763113.

[41] Peter E Kaloroumakis and Michael J Smith, « Toward a knowledge graph of cyber-
security countermeasures », in: The MITRE Corporation 11 (2021).

[42] Linus Karlsson, Pegah Nikbakht Bideh, and Martin Hell, « A Recommender System
for User-specific Vulnerability Scoring (full version) », in: (2019), doi: https://
doi.org/10.1007/978-3-030-41568-6_23.

[43] Parneet Kaur and Shivani Goel, « Shilling attack models in recommender system »,
in: 2016 International conference on inventive computation technologies (ICICT),
vol. 2, IEEE, 2016, pp. 1–5, doi: https://doi.org/10.1109/inventive.2016.
7824865.

[44] Salman Khaliq, Zain Ul Abideen Tariq, and Ammar Masood, « Role of user and
entity behavior analytics in detecting insider attacks », in: 2020 International Con-
ference on Cyber Warfare and Security (ICCWS), IEEE, 2020, pp. 1–6, doi: https:
//doi.org/10.1109/iccws48432.2020.9292394.

[45] Gang Kou et al., « Pairwise comparison matrix in multiple criteria decision mak-
ing », in: Technological and economic development of economy 22.5 (2016), pp. 738–
765, doi: 10.3846/20294913.2016.1210694.

[46] Maxime Lanvin et al., « Errors in the CICIDS2017 Dataset and the Significant
Differences in Detection Performances It Makes », in: Risks and Security of Internet
and Systems, ed. by Slim Kallel et al., Cham: Springer Nature Switzerland, 2023,
pp. 18–33, isbn: 978-3-031-31108-6, doi: https://doi.org/10.1007/978-3-031-
31108-6_2.

143

https://doi.org/https://doi.org/10.1145/3538969.3538981
https://doi.org/10.1057/jors.2010.23
https://doi.org/10.1017/CBO9780511763113
https://doi.org/https://doi.org/10.1007/978-3-030-41568-6_23
https://doi.org/https://doi.org/10.1007/978-3-030-41568-6_23
https://doi.org/https://doi.org/10.1109/inventive.2016.7824865
https://doi.org/https://doi.org/10.1109/inventive.2016.7824865
https://doi.org/https://doi.org/10.1109/iccws48432.2020.9292394
https://doi.org/https://doi.org/10.1109/iccws48432.2020.9292394
https://doi.org/10.3846/20294913.2016.1210694
https://doi.org/https://doi.org/10.1007/978-3-031-31108-6_2
https://doi.org/https://doi.org/10.1007/978-3-031-31108-6_2

[47] Philip A Legg et al., « Automated insider threat detection system using user and
role-based profile assessment », in: IEEE Systems Journal 11.2 (2015), pp. 503–512,
doi: https://doi.org/10.1109/jsyst.2015.2438442.

[48] Laetitia Leichtnam, « Detecting and visualizing anomalies in heterogeneous network
events: Modeling events as graph structures and detecting communities and novelties
with machine learning », PhD thesis, CentraleSupélec, 2020.

[49] Tianyi Li et al., « What data should I protect?: recommender and planning support
for data security analysts », in: Proceedings of the 24th International Conference
on Intelligent User Interfaces, IUI ’19: 24th International Conference on Intelligent
User Interfaces, ACM, 2019, pp. 286–297, doi: 10.1145/3301275.3302294.

[50] Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades, « Facing the cold
start problem in recommender systems », in: Expert systems with applications 41.4
(2014), pp. 2065–2073, doi: https://doi.org/10.1016/j.eswa.2013.09.005.

[51] Lisa Liu et al., « Error Prevalence in NIDS datasets: A Case Study on CIC-IDS-
2017 and CSE-CIC-IDS-2018 », in: 2022 IEEE Conference on Communications and
Network Security (CNS), IEEE, 2022, pp. 254–262, doi: https://doi.org/10.
1109/cns56114.2022.9947235.

[52] Jock Mackinlay, « Automating the design of graphical presentations of relational
information », in: ACM Transactions On Graphics (Tog) 5.2 (1986), pp. 110–141,
doi: 10.1145/22949.22950.

[53] Jock Mackinlay, Pat Hanrahan, and Chris Stolte, « Show Me: Automatic Presenta-
tion for Visual Analysis », in: IEEE Transactions on Visualization and Computer
Graphics 13.6 (2007), pp. 1137–1144, doi: 10.1109/TVCG.2007.70594.

[54] Serena McDonnell et al., « CyberBERT: a deep dynamic-state session-based recom-
mender system for cyber threat recognition », in: 2021 IEEE aerospace conference
(50100), IEEE, 2021, pp. 1–12, doi: https://doi.org/10.1109/aero50100.2021.
9438286.

[55] Stephen Moskal and Shanchieh Jay Yang, « Translating intrusion alerts to cyber-
attack stages using pseudo-active transfer learning (PATRL) », in: 2021 IEEE con-
ference on communications and network security (CNS), IEEE, 2021, pp. 110–118,
doi: https://doi.org/10.1109/cns53000.2021.9705037.

144

https://doi.org/https://doi.org/10.1109/jsyst.2015.2438442
https://doi.org/10.1145/3301275.3302294
https://doi.org/https://doi.org/10.1016/j.eswa.2013.09.005
https://doi.org/https://doi.org/10.1109/cns56114.2022.9947235
https://doi.org/https://doi.org/10.1109/cns56114.2022.9947235
https://doi.org/10.1145/22949.22950
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/https://doi.org/10.1109/aero50100.2021.9438286
https://doi.org/https://doi.org/10.1109/aero50100.2021.9438286
https://doi.org/https://doi.org/10.1109/cns53000.2021.9705037

[56] Fitzroy D Nembhard, Marco M Carvalho, and Thomas C Eskridge, « Towards the
application of recommender systems to secure coding », in: EURASIP Journal on
Information Security 2019.1 (2019), p. 9, doi: https://doi.org/10.1186/s13635-
019-0092-4.

[57] European Network and Information Security Agency - ENISA, Good Practice Guide
for Incident Management, ENISA, 2010, url: https://www.enisa.europa.eu/
publications/good- practice- guide- for- incident- management (visited on
05/10/2023).

[58] Troy Nunnally et al., « NAVSEC : a recommender system for 3D network security
visualizations », in: Proceedings of the Tenth Workshop on Visualization for Cyber
Security - 2013 IEEE Symposium on Visualization for Cyber Security (VizSec),
ACM Press, 2013, isbn: 978-1-4503-2173-0, doi: 10.1145/2517957.2517963.

[59] Troy Nunnally et al., « P3D: A parallel 3D coordinate visualization for advanced net-
work scans », in: 2013 IEEE International Conference on Communications (ICC),
2013, pp. 2052–2057, doi: 10.1109/ICC.2013.6654828.

[60] Ranjit Panigrahi and Samarjeet Borah, « A detailed analysis of CICIDS2017 dataset
for designing Intrusion Detection Systems », in: International Journal of Engineer-
ing & Technology 7.3.24 (2018), pp. 479–482.

[61] Seung-Taek Park and Wei Chu, « Pairwise preference regression for cold-start recom-
mendation », in: Proceedings of the third ACM conference on Recommender systems
- RecSys ’09, the third ACM conference, ACM, 2009, p. 21, isbn: 978-1-60558-435-5,
doi: 10.1145/1639714.1639720.

[62] Aleksandra Pawlicka et al., « A systematic review of recommender systems and
their applications in cybersecurity », in: Sensors 21.15 (2021), p. 5248, doi: 10.
3390/s21155248.

[63] Vern Paxson, Scott Campbell, Jason Lee, et al., Bro intrusion detection system,
tech. rep., Lawrence Berkeley National Laboratory, 2006.

[64] Nikolaos Polatidis and Christos K Georgiadis, « A dynamic multi-level collaborative
filtering method for improved recommendations », in: Computer Standards & Inter-
faces 51 (2017), pp. 14–21, doi: https://doi.org/10.1016/j.csi.2016.10.014.

145

https://doi.org/https://doi.org/10.1186/s13635-019-0092-4
https://doi.org/https://doi.org/10.1186/s13635-019-0092-4
https://www.enisa.europa.eu/publications/good-practice-guide-for-incident-management
https://www.enisa.europa.eu/publications/good-practice-guide-for-incident-management
https://doi.org/10.1145/2517957.2517963
https://doi.org/10.1109/ICC.2013.6654828
https://doi.org/10.1145/1639714.1639720
https://doi.org/10.3390/s21155248
https://doi.org/10.3390/s21155248
https://doi.org/https://doi.org/10.1016/j.csi.2016.10.014

[65] Nikolaos Polatidis et al., « From product recommendation to cyber-attack predic-
tion: Generating attack graphs and predicting future attacks », in: Evolving Systems
11 (2020), pp. 479–490, doi: https://doi.org/10.1007/s12530-018-9234-z.

[66] Nikolaos Polatidis et al., « Recommender systems meeting security: From product
recommendation to cyber-attack prediction », in: Engineering Applications of Neu-
ral Networks: 18th International Conference, EANN 2017, Athens, Greece, August
25–27, 2017, Proceedings, Springer, 2017, pp. 508–519, doi: https://doi.org/10.
1007/978-3-319-65172-9_43.

[67] Nicolas Privault, Understanding Markov chains: examples and applications, Springer,
2018, doi: https://doi.org/10.1007/978-981-13-0659-4.

[68] Pearl Pu, Li Chen, and Rong Hu, « Evaluating recommender systems from the user’s
perspective: survey of the state of the art », in: User Modeling and User-Adapted
Interaction 22 (2012), pp. 317–355, doi: https://doi.org/10.1007/s11257-011-
9115-7.

[69] Francesco Ricci, Lior Rokach, and Bracha Shapira, « Introduction to recommender
systems handbook », in: Recommender systems handbook, Springer, 2010, pp. 1–35,
doi: https://doi.org/10.1007/978-0-387-85820-3_1.

[70] Martin Roesch et al., « Snort: Lightweight intrusion detection for networks. », in:
Lisa, vol. 99, 1, 1999, pp. 229–238.

[71] Rosa Romero-Gomez, Yacin Nadji, and Manos Antonakakis, « Towards designing
effective visualizations for DNS-based network threat analysis », in: 2017 IEEE
Symposium on Visualization for Cyber Security (VizSec), 2017 IEEE Symposium
on Visualization for Cyber Security (VizSec), IEEE, 2017, pp. 1–8, isbn: 978-1-
5386-2693-1, doi: 10.1109/VIZSEC.2017.8062201.

[72] Florian Roth, Sudo Privilege Escalation CVE-2019-14287, 2019, url: https://
github.com/SigmaHQ/sigma/blob/master/rules/linux/process_creation/
proc_creation_lnx_sudo_cve_2019_14287.yml (visited on 09/25/2023).

[73] Thomas L Saaty, « A scaling method for priorities in hierarchical structures », in:
Journal of mathematical psychology 15.3 (1977), pp. 234–281, doi: 10.1016/0022-
2496(77)90033-5.

146

https://doi.org/https://doi.org/10.1007/s12530-018-9234-z
https://doi.org/https://doi.org/10.1007/978-3-319-65172-9_43
https://doi.org/https://doi.org/10.1007/978-3-319-65172-9_43
https://doi.org/https://doi.org/10.1007/978-981-13-0659-4
https://doi.org/https://doi.org/10.1007/s11257-011-9115-7
https://doi.org/https://doi.org/10.1007/s11257-011-9115-7
https://doi.org/https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1109/VIZSEC.2017.8062201
https://github.com/SigmaHQ/sigma/blob/master/rules/linux/process_creation/proc_creation_lnx_sudo_cve_2019_14287.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/linux/process_creation/proc_creation_lnx_sudo_cve_2019_14287.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/linux/process_creation/proc_creation_lnx_sudo_cve_2019_14287.yml
https://doi.org/10.1016/0022-2496(77)90033-5
https://doi.org/10.1016/0022-2496(77)90033-5

[74] Carla Sayan, Salim Hariri, and George Ball, « Cyber security assistant: Design
overview », in: 2017 IEEE 2nd International Workshops on Foundations and Appli-
cations of Self* Systems (FAS* W), IEEE, 2017, pp. 313–317, doi: https://doi.
org/10.1109/fas-w.2017.165.

[75] Z. Cliffe Schreuders et al., « Security Scenario Generator (SecGen): A Framework
for Generating Randomly Vulnerable Rich-scenario VMs for Learning Computer
Security and Hosting CTF Events », in: 2017 USENIX Workshop on Advances in
Security Education (ASE 17), Vancouver, BC: USENIX Association, Aug. 2017,
url: https : / / www . usenix . org / conference / ase17 / workshop - program /
presentation/schreuders.

[76] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, « Toward Gener-
ating a New Intrusion Detection Dataset and Intrusion Traffic Characterization »,
in: ICISSP, 2018, doi: https://doi.org/10.5220/0006639801080116.

[77] Chris Simmons et al., « AVOIDIT: A cyber attack taxonomy », in: University of
Memphis, Technical Report CS-09-003 (2009).

[78] Fabio Soldo, Anh Le, and Athina Markopoulou, « Predictive blacklisting as an
implicit recommendation system », in: 2010 Proceedings IEEE INFOCOM, IEEE,
2010, pp. 1–9, doi: https://doi.org/10.1109/infcom.2010.5461982.

[79] National Institute of Standards and Technology, CVE-2019-14287, 2019, url: https:
//nvd.nist.gov/vuln/detail/CVE-2019-14287 (visited on 09/13/2023).

[80] National Institute of Standards and Technology, CVE-2021-4034, 2021, url: https:
//nvd.nist.gov/vuln/detail/cve-2021-4034 (visited on 09/13/2023).

[81] Cliff Stoll, The cuckoo’s egg: tracking a spy through the maze of computer espionage,
Simon and Schuster, 2005.

[82] Zarrin Tasnim Sworna, Chadni Islam, and Muhammad Ali Babar, « Apiro: A frame-
work for automated security tools api recommendation », in: ACM Transactions on
Software Engineering and Methodology 32.1 (2023), pp. 1–42, doi: https://doi.
org/10.1145/3512768.

[83] Roberto Theron et al., « Network-wide intrusion detection supported by multivari-
ate analysis and interactive visualization », in: 2017 IEEE Symposium on Visual-
ization for Cyber Security (VizSec), IEEE, 2017, pp. 1–8, isbn: 978-1-5386-2693-1,
doi: 10.1109/VIZSEC.2017.8062198.

147

https://doi.org/https://doi.org/10.1109/fas-w.2017.165
https://doi.org/https://doi.org/10.1109/fas-w.2017.165
https://www.usenix.org/conference/ase17/workshop-program/presentation/schreuders
https://www.usenix.org/conference/ase17/workshop-program/presentation/schreuders
https://doi.org/https://doi.org/10.5220/0006639801080116
https://doi.org/https://doi.org/10.1109/infcom.2010.5461982
https://nvd.nist.gov/vuln/detail/CVE-2019-14287
https://nvd.nist.gov/vuln/detail/CVE-2019-14287
https://nvd.nist.gov/vuln/detail/cve-2021-4034
https://nvd.nist.gov/vuln/detail/cve-2021-4034
https://doi.org/https://doi.org/10.1145/3512768
https://doi.org/https://doi.org/10.1145/3512768
https://doi.org/10.1109/VIZSEC.2017.8062198

[84] Rafael Uetz et al., « Reproducible and adaptable log data generation for sound cy-
bersecurity experiments », in: Annual Computer Security Applications Conference,
2021, pp. 690–705, doi: https://doi.org/10.1145/3485832.3488020.

[85] Alex Ulmer, David Sessler, and Jörn Kohlhammer, « NetCapVis: Web-based Pro-
gressive Visual Analytics for Network Packet Captures », in: 2019 IEEE Sympo-
sium on Visualization for Cyber Security (VizSec), 2019, pp. 1–10, doi: 10.1109/
VizSec48167.2019.9161633.

[86] Manasi Vartak et al., « SEEDB: automatically generating query visualizations »,
in: Proceedings of the VLDB Endowment 7 (2014), pp. 1581–1584, doi: 10.14778/
2733004.2733035.

[87] Alex Vieane et al., « Addressing human factors gaps in cyber defense », in: Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 60,
1, SAGE Publications Sage CA: Los Angeles, CA, 2016, pp. 770–773, doi: https:
//doi.org/10.1177/1541931213601176.

[88] wagga40, Zircolite, 2021, url: https://github.com/wagga40/Zircolite (visited
on 09/15/2023).

[89] Leland Wilkinson, The grammar of graphics, Springer, 2012.

[90] Kanit Wongsuphasawat et al., « Voyager 2: Augmenting Visual Analysis with Partial
View Specifications », in: Proceedings of the 2017 CHI Conference on Human Fac-
tors in Computing Systems, Association for Computing Machinery, 2017, pp. 2648–
2659, isbn: 9781450346559, doi: 10.1145/3025453.3025768.

[91] Kanit Wongsuphasawat et al., « Voyager: Exploratory Analysis via Faceted Brows-
ing of Visualization Recommendations », in: IEEE Transactions on Visualization
and Computer Graphics 22.1 (2016), pp. 649–658, doi: 10 . 1109 / TVCG . 2015 .
2467191.

[92] Chen Zhong et al., « A cyber security data triage operation retrieval system », in:
Computers & Security 76 (2018), pp. 12–31, doi: https://doi.org/10.1016/j.
cose.2018.02.011.

[93] Chen Zhong et al., « Studying Analysts’ Data Triage Operations in Cyber Defense
Situational Analysis », in: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Jour-
nal Abbreviation: Lecture Notes in Computer Science (including subseries Lecture

148

https://doi.org/https://doi.org/10.1145/3485832.3488020
https://doi.org/10.1109/VizSec48167.2019.9161633
https://doi.org/10.1109/VizSec48167.2019.9161633
https://doi.org/10.14778/2733004.2733035
https://doi.org/10.14778/2733004.2733035
https://doi.org/https://doi.org/10.1177/1541931213601176
https://doi.org/https://doi.org/10.1177/1541931213601176
https://github.com/wagga40/Zircolite
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/https://doi.org/10.1016/j.cose.2018.02.011
https://doi.org/https://doi.org/10.1016/j.cose.2018.02.011

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), July 7, 2017,
pp. 128–169, isbn: 978-3-319-61151-8, doi: 10.1007/978-3-319-61152-5_6.

[94] Carson Zimmerman, The strategies of a world-class cybersecurity operations center,
The MITRE Corporation, 2014.

149

https://doi.org/10.1007/978-3-319-61152-5_6

LIST OF FIGURES

1.1 The incident response workflow from ENISA [57] 25
1.2 A screenshot of the ingestion part of the log investigation platform 35
1.3 A screenshot of the analysis part of the log investigation platform 38
1.4 A screenshot of the case management part of the log investigation platform 39

3.1 The recommendation process of KRAKEN 70
3.2 Extract from the knowledge base . 73
3.3 Qualitative evaluation of participants . 83
3.4 Overall threat coverage discovered by each analyst correlated with the pro-

portion of followed recommendations . 86

4.1 Overview of the design and runtime of the MIMIR recommender system . . 95
4.2 List of actions selected as carrying semantic intent 99
4.3 The transition matrix for the Markov chain with the intentions from Sec-

tion 4.5.1, built from the 10 investigations of XP1. 102
4.4 Representation of the distribution of the distance of multiple sets of inves-

tigation traces to a reference matrix . 106
4.5 A representation of how much the recommendations were followed com-

pared to the Markov chain transition probability 108

5.1 Overview of CERBERE architecture . 118
5.2 CERBERE scenario . 119
5.3 Attack path through instance 6. Red transitions were detected using Zirco-

lite rules. Transition 3 for attacker position (hades, bob) is not detectable
through auditd logs, but the linear structure of the scenario ensures that
it was compromised as well. 125

5.4 Wireshark screenshot of melinoe pcap (left: baseline, right: instance 7) In
instance 7: IP 10.35.56.13 is melinoe, IP 10.35.56.12 is Hades. In baseline:
IP 192.168.56.4 is melinoe, IP 192.168.56.3 is Hades. 130

5.5 Attack path extract from instance 7. 130

150

LIST OF TABLES

2.1 Recommender systems types . 42
2.2 Recommender systems benefits and disadvantages 43
2.3 Hybridization methods from the work of Burke [15] 47
2.4 Recommender systems in Cybersecurity . 52

3.1 The best PCM for KRAKEN with a 0.015 consistency. e.g. In this PCM
the bold value 4: on a scale of 1 to 5, the Network requirements for a
technique are a lot more important (4 out of 5) than the platforms on
which a technique can be executed. 77

3.2 The weights of a technique’s attributes computed using MADM 79
3.3 Attributes of a field and how to score them 80
3.4 APT present in the TC3 dataset . 82
3.5 Recommendation relevance according to its associated severity 85

4.1 Dataset information . 105
4.2 Mean log-likelihood of sequences being generated by a specific Markov chain107

5.1 List of procedures available for each technique in CERBERE. 120
5.2 Successful attacks (red team) and discoveries (blue team) 124
5.3 Metrics about the blue team experiment 127

151

Titre : Recommandations d’exploration pour l’investigation d’incidents de sécurité

Mot clés : cybersécurité, investigation, systèmes de recommandation, réponse à incident

Résumé : Ces dernières années, les ana-
lystes en cybersécurité doivent faire face à
des obstacles grandissants dans leur activ-
ité. Non seulement les données à investiguer
sont hétérogènes, contiennent trop de dimen-
sions, ou sont simplement incomplètes, mais
aussi les attaques et attaquants se multiplient,
créant une pénurie d’experts du domaine. De
nombreux outils visent à soulager leur charge
de travail, notamment pendant la réponse à in-
cident, mais ce n’est pas suffisant.

Les travaux de la thèse réalisée par
Romain Brisse consistent à trouver des
méthodes pour faciliter la phase investiga-
tive de la réponse à incident. Ils se fo-
calisent notamment sur l’utilisation de sys-
tèmes de recommandation proposant des
chemins d’exploration dans les journaux
d’événements à investiguer. Les contributions
de la thèse comportent deux systèmes de
recommandation. Le premier, KRAKEN, re-

pose sur l’utilisation de connaissances ex-
pertes de la communauté cyber, permettant
de reconnaître l’attaque observée dans les
données et de recommander les champs les
plus pertinents à explorer. La seconde con-
tribution s’inscrit dans une certaine continuité
avec la première, car ayant remarqué la dif-
ficulté pour un système de recommandation à
comprendre l’intention d’un analyste, un deux-
ième système de recommandation (MIMIR) se
base sur une modélisation de ces intentions
pendant une investigation afin de recomman-
der la marche à suivre dans la suite de celle-
ci. Finalement, s’intéressant aux probléma-
tiques d’évaluation et de manque de données
cyber, une dernière contribution est faite sous
la forme d’un exercice (CERBERE) pendant
lequel des données permettant non seule-
ment l’évaluation mais aussi l’amélioration des
systèmes de recommandation sont générées
et investiguées par les participants.

Title: Exploration recommendations for the investigation of security incidents

Keywords: cybersecurity, investigation, recommender systems, incident response

Abstract: In recent years, cybersecurity ana-
lysts have encountered growing challenges in
their field. Not only are the data they investi-
gate heterogeneous, multidimensional or sim-
ply incomplete, but also the number of attacks
and attackers is increasing, leading to a short-
age of experts in the domain. While numerous
tools aim to alleviate their workload, particu-
larly during incident response, they fall short.

Romain Brisse’s thesis work focuses on
developing methods to facilitate the investiga-

tive phase of incident response, specifically
leveraging recommendation systems that pro-
pose exploration paths in event logs. The the-
sis contributions include two recommendation
systems. The first, KRAKEN, relies on expert
knowledge from the cyber community to rec-
ognize attacks in data and recommend the
most relevant fields to explore in order to iden-
tify them. The second contribution aligns with
the first, as it addresses the challenge of rec-
ommendation systems understanding an an-

alyst’s intent. The second system, MIMIR, is
based on modelling these intentions during
an investigation to suggest the subsequent in-
vestigation steps. Finally, addressing evalua-
tion challenges and the lack of cyber data in

the field, a final contribution takes the form
of an exercise (CERBERE) during which data
for the evaluation and improvement of recom-
mendation systems are generated and inves-
tigated by participants.

155

	I Context
	Introduction
	Background
	Analysts
	Analyst types & expertise
	Analyst experience

	Incident response
	Incident reporting registration and triage
	Incident resolving & Investigation
	Incident closing and capitalization

	Logs
	Types of logs
	Usability difficulties

	Investigations at Malizen
	Ingestion
	Analysis
	Reporting

	Conclusion

	Related work
	Recommender systems
	Recommender system types
	Recommender system challenges

	Recommender systems in cybersecurity
	Recommender systems types in cybersecurity
	Constraints brought by using recommender systems in cyber
	Cyberattacks on recommender systems

	Evaluating recommender systems
	Evaluation approaches for recommender systems
	Evaluation of recommender systems in cybersecurity

	Recommender systems and visualization
	Visualization
	Visualization recommendation
	Visualization in cybersecurity

	Chapter conclusion

	II Contributions
	Helping users find the right exploration paths using expert knowledge
	Introduction
	The KRAKEN recommender system
	Overview of KRAKEN
	Context associated with a recommendation trigger
	Structuring ECS and ATT&CK into a knowledge base
	Decision-making in KRAKEN

	Evaluation of KRAKEN
	Datasets used
	Experimental setup
	Qualitative results
	Quantitative results
	Providing assistance to investigations

	Improving the recommender system
	Conclusion

	Gaining a better understanding of analyst intentions to make recommendations
	Introduction
	Use case: understanding a user's intentions
	Related Works about user intentions
	Overview of MIMIR
	Design phase
	Runtime phase

	Intentions, patterns and actions inside MIMIR
	Collecting intentions
	Collecting actions and pattern creation
	Linking patterns to user intentions

	MIMIR's recommendation engine
	Using a Markov chain to link intentions
	Triggering recommendations
	Presenting recommendations

	Evaluation of MIMIR
	Quality of the Markov chain
	Prototype and recommendations evaluation

	Conclusion

	Data: the issue of obtaining it and using it for evaluation
	Introduction
	Cybersecurity data generation in the literature
	The CERBERE Project
	Overview
	The attack scenario
	The architecture
	Variations in the attack scenario
	Example of solution for red teamers
	Exercise monitoring at multi-level

	Experiments with CERBERE
	Red team experiment
	Blue team experiment
	Data quality

	Results of the CERBERE experiment
	Red team feedback
	Blue team feedback
	Quantitative feedback
	Qualitative feedback

	CERBERE Dataset
	System logs labelling
	Network logs labelling
	Browser logs labelling

	Conclusion

	Conclusion
	Bibliography

