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Résumé long

Méthodes d’échantillonnage pour l’inférence statistique de problèmes inverses
non linéaires : distribution spatiale des propriétés physico-chimiques du milieu

interstellaire

Cette thèse est une collaboration entre statisticiens et astrophysiciens. L’objectif est de déve-
lopper des outils statistiques pour l’étude de la physique du milieu interstellaire (MIS). Le milieu
interstellaire est un milieu très diffus qui remplit l’immense volume entre les objets célestes tels
que les étoiles et les trous noirs au sein d’une galaxie. Il rassemble une grande variété d’environ-
nements. La plupart du volume du MIS est chaude, ionisée et diffuse. À l’inverse, la plupart de la
masse du MIS est froide, neutre et suffisamment dense pour que l’hydrogène – qui représente 90%
du MIS – soit sous forme moléculaire. Ces derniers environnements forment des régions appelées
nuages moléculaires.

Pourquoi étudier le milieu interstellaire ? – L’étude du MIS soulève des questions fonda-
mentales comme la formation d’étoiles et le développement de la complexité moléculaire menant
aux molécules pré-biotiques. Cette thèse se concentre sur le processus de formation d’étoiles, en
particulier sur les effets de rétroaction d’une étoile sur les nuages moléculaires. Les étoiles naissent
de l’effondrement gravitationnel de parties de nuages moléculaires. Une nouvelle étoile influence
son nuage parent via son champ radiatif ultraviolet (UV) et via des vents solaires. Une étoile
massive mourante influence également son nuage moléculaire parent à travers une explosion en
supernova. L’impact global de ces effets de rétroaction sur ce qu’il reste du nuage parent est
partiellement compris à ce jour. Ces effets pourraient dissiper le nuage, ce qui diminuerait sa
capacité à former de nouvelles étoiles. Ils pourraient également comprimer localement les régions
du nuage qui lui sont proches, et donc favoriser l’apparition de nouvelles étoiles.

Dans cette thèse, l’attention est portée aux nuages moléculaires illuminés et chauffés par des
étoiles massives voisines émettant des photons UV. La couche de surface de tels nuages, où le
champ radiatif UV chauffe et dissocie le gaz moléculaire, est appelée région de photodissociation
(PDR). L’étude des conditions physiques dans une PDR permet de mieux comprendre l’effet de
rétroaction radiative d’une étoile massive sur son nuage parent. Les ions, atomes et molécules
présents dans une PDR se refroidissent en partie via des émissions de photons observables, à des
fréquences correspondant à des transitions quantiques.

Des observations à l’estimation des paramètres physiques – Cette thèse analyse des
cartes hyperspectrales de PDRs dans les domaines infrarouge lointain et radio, obtenues par des
télescopes spatiaux ou terrestres. Ces cartes hyperspectrales sont réduites à des cartes multis-
pectrales que l’on note Y = (yn) ∈ RN×L, où chaque pixel yn contient l’intensité intégrée de
L ∼ 5 − 30 raies d’émission. Les cartes multispectrales considérées dans cette thèse contiennent
de N = 1 à N = 10 000 pixels. Ce type de carte est voué à devenir de plus en plus commun dans
les années à venir, grâce à l’arrivée de nouveaux instruments comme le télescope spatial James
Webb (JWST).

Ces cartes d’intensités Y peuvent être comparées avec les prédictions d’un modèle numérique
du MIS. De nombreux modèles existent, pour les PDRs et pour d’autres types d’environnements.
Dans cette thèse, nous utilisons le code PDR de Meudon (Le Petit et al., 2006), que l’on note
f et qui est état de l’art. Ce code modélise le nuage comme un bloc de gaz plan-parallèle à
l’état stationnaire, et y résout les équations du transfert radiatif, de la chimie et de l’équilibre

iii



thermique. Un modèle numérique de ce type peut calculer des cartes d’intensité intégrée de raies
à partir de cartes de paramètres physiques. Nous notons ces cartes de paramètres physiques
Θ = (θn) ∈ RN×D, où chaque vecteur θn contient D ≲ 10 paramètres comme la densité du
gaz, la pression thermique, l’intensité du champ radiatif incident ou l’épaisseur totale du nuage
le long de la ligne de visée. Les paramètres Θ vivent donc en haute dimension, mais présentent
une structure simple en pixels. Cette thèse vise à estimer des cartes de paramètres physiques Θ
à partir d’une carte d’observation Y et du code PDR de Meudon f .

Modèle statistique – Ce problème est une instance d’une classe générale de problèmes
statistiques, appelés problèmes inverses. Avec une approche bayésienne, poser un tel problème
nécessite de définir deux distributions : une vraisemblance et une distribution a priori.

La vraisemblance encode un modèle d’observation, qui combine un modèle direct et un mo-
dèle de bruit. Une évaluation du code PDR de Meudon dure de 6 heures à quelques jours, ce
qui empêche son utilisation directe pour de l’inférence. Une procédure générale est proposée pour
construire une approximation de modèles numériques. Elle exploite un réseau de neurones spéci-
fique et surpasse les méthodes d’interpolation – communes dans les études du MIS – en termes
de précision, de poids mémoire et de temps d’évaluation. Elle est appliquée au code PDR de
Meudon pour 5 375 raies ioniques, atomiques et moléculaires. Le réseau de neurones obtenu est
donc utilisable dans une procédure d’inférence quelle que soit la combinaison de raies observée.

Le modèle de bruit tient compte d’autant de sources d’incertitudes que possible. Il fait inter-
venir un bruit multiplicatif lognormal et un bruit additif gaussien. Le bruit multiplicatif encode une
erreur de calibration et une incertitude sur la validité du code PDR de Meudon. Le bruit additif
inclut du bruit thermique ou une erreur sur le comptage de photons, selon la gamme de fréquences.
La vraisemblance associée à ce mélange de bruit n’a pas de forme simple. Nous en proposons une
approximation avec contrôle de l’erreur. Le problème inverse défini avec la vraisemblance seule
est mal posé : plusieurs solutions sont compatibles avec les observations.

La distribution a priori mélange deux termes afin de lever partiellement ces dégénérescences
sur les solutions. Des intervalles de validité sont considérés sur chaque paramètre physique. Une
régularisation spatiale améliore les estimations en favorisant des cartes plus lisses. Cette régularisa-
tion intervient principalement dans les régions à faibles rapport signal sur bruit, qui correspondent
à du gaz diffus où les paramètres évoluent lentement sur une carte. De fait, ces régions sont les
plus affectées par le caractère mal posé du problème inverse. Dans les régions à haut rapport
signal sur bruit, cette régularisation spatiale sera dominée par la vraisemblance et y jouera donc
un rôle moindre.

La distribution a posteriori combine vraisemblance et distribution a priori. C’est la distribu-
tion exploitée pour inférer les paramètres physiques. Cette distribution présente trois difficultés
principales. Elle est non log-concave et potentiellement multimodale, puisque le code PDR de
Meudon est non linéaire. Explorer cette distribution requiert donc une capacité d’échapper à un
mode local mais non global. Le log-posterior est non gradient Lipschitz, puisque le code PDR de
Meudon couvre de nombreux ordres de grandeur. Cette condition de régularité est requise pour
beaucoup d’algorithmes classiques. Enfin, les paramètres physiques Θ vivent en haute dimension.
Exploiter cette distribution requiert donc des algorithmes pouvant passer à l’échelle. Peu de cas
dans la littérature présentent ces trois difficultés simultanément. Le problème inverse considéré
est donc général et difficile.

Inférence bayésienne – Une nouvelle méthode d’inférence traitant ces trois difficultés est
proposée. Elle s’appuie sur une approche par échantillonnage pour fournir des quantifications d’in-
certitudes en plus d’estimateurs ponctuels de cartes de paramètres physiques. Cette quantification
d’incertitude est critique afin de compenser l’absence de vérité terrain, inhérente à l’astrophysique.

L’algorithme proposé de Monte Carlo par chaîne de Markov (MCMC) (Robert et Casella, 2004,
chapitres 6 et 7) combine deux noyaux d’échantillonnage. Le premier noyau identifie les minima
locaux dans l’espace des paramètres. Il combine un algorithme dit “Metropolis à essais multiples”
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(MTM) (Martino, 2018) et un algorithme de “Gibbs chromatique” (Gonzalez et al., 2011), qui
exploite la structure de Θ. Le second noyau explore efficacement les minima locaux en exploitant
des informations sur leur géométrie locale. Il étend l’algorithme de Langevin avec ajustement de
Metropolis (MALA) (Roberts et Stramer, 2002) avec l’utilisation d’un préconditionneur (Girolami
et Calderhead, 2011). Le préconditionneur adopté est RMSProp (Tieleman et Hinton, 2012), très
utilisé pour l’entraînement de réseaux de neurones. Chaque noyau est efficace en grande dimension
grâce à l’exploitation de la structure de Θ et au préconditionnement.

Le processus d’inférence proposé se base sur l’hypothèse de validité du modèle. Cette hypo-
thèse est testée pour s’assurer de la pertinence des résultats. Nous avons étendu un test bayésien
par valeur-p. Ce test porte sur la capacité du modèle d’observation considéré à reproduire les
observations Y.

Applications à des données synthétiques – La méthode proposée est validée à l’aide de
trois jeux de données synthétiques. Un mélange de gaussiennes en deux dimensions illustre les
propriétés des deux noyaux proposés. Les gaussiennes étant isolées, cette distribution est difficile à
explorer pour un algorithme MCMC classique. L’algorithme proposé parvient à visiter correctement
chaque mode.

Le problème de localisation de détecteurs (Ihler et al., 2005) montre la capacité de l’algorithme
à exploiter efficacement la structure des paramètres Θ. Ce problème à 16 dimensions est lui
aussi multimodal. L’algorithme proposé identifie tous les modes de la distribution. Il se compare
favorablement à d’autres algorithmes état de l’art dédiés aux distributions multimodales.

Une carte multispectrale synthétique mais réaliste démontre la capacité de l’algorithme à ré-
soudre des problèmes inverses sur de grandes cartes. Un nuage fictif est défini pour couvrir plusieurs
types d’environnements physiques. Ce nuage correspond à une carte de paramètres théoriques Θ∗

de N = 4096 pixels et D = 4 paramètres. Les observations sont générées à partir de cette
carte théorique, du code PDR de Meudon et de réalisations du modèle de bruit. Elles contiennent
L = 10 raies de 12CO. L’échantillonneur proposé mène à des estimations Θ̂ très proches des
valeurs théoriques, avec une quantification des incertitudes associées. La cohérence physique des
résultats est vérifiée.

Applications à des données réelles – Trois applications à des observations réelles de
nuages moléculaires sont présentées. Les résultats de l’inférence sont analysés pour fournir des
interprétations astrophysiques.

L’observation de NGC 7023 (Joblin et al., 2018) contient N = 1 pixel et L = 17 raies, dont
des raies de 12CO (de J = 11 → 10 à J = 19 → 18), de H2 (de S(0) à S(5)) et de CH+ (de
J = 1 → 0 à J = 3 → 2). Le test du modèle montre que le code PDR de Meudon parvient
à reproduire simultanément toutes les raies observées. L’extinction visuelle n’est pas contrainte
puisque les raies observées sont principalement émises depuis la surface du nuage, et n’en sondent
donc pas la profondeur. A l’inverse, la pression thermique et l’intensité du champ radiatif sont
bien contraints et les valeurs obtenues sont cohérentes avec des estimations précédentes.

L’observation de la nébuleuse de la Carène (Wu et al., 2018) contient N = 176 pixels et
L = 12 raies, dont des raies de 12CO (de J = 4 → 3 à J = 13 → 12) et de C. Pour chaque
pixel, le code PDR de Meudon reproduit simultanément toutes les raies observées. Dans Wu et al.
(2018), les cartes de paramètres physiques estimées présentaient des variations spatiales brutales.
Grâce à la régularisation spatiale et à l’approche par échantillonnage, nos reconstructions sont
plus cohérentes physiquement. Les 3 régions présentes sur la carte y sont identifiables. Les valeurs
estimées de pression de Wu et al. (2018) sont compatibles avec les incertitudes obtenues. En
revanche, les intensités du champ radiatif obtenues avec notre approche sont plus faibles d’un
facteur 4. Cette différence est justifiée par un changement de version du code PDR de Meudon
et donc de la microphysique considérée.

Enfin, l’observation d’OMC-1 (Goicoechea et al., 2019) contient N = 2 475 pixels et L = 4
raies, dont deux de 12CO, une de CH+ et une de HCO+. Ce jeu de données n’avait jusqu’à présent
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jamais été étudié dans une procédure d’estimation, contrairement aux deux précédents. Cette carte
inclut de nombreux environnements : plusieurs PDRs dont la barre d’Orion, un filament, Orion S,
et une région Hii. L’ensemble de la carte est illuminé par le cluster d’étoiles du Trapèze, qui émet
un très fort rayonnement UV. Le test du modèle montre que le code PDR de Meudon parvient à
reproduire simultanément toutes les raies observées pour tous les pixels, sauf quelques pixels isolés
aux bords de la carte. Ces pixels mal reproduits correspondent à des régions de gaz diffus, et sont
donc non essentiels pour l’analyse de l’effet de rétroaction radiative sur le gaz moléculaire. Les
estimations obtenues sont lisses et permettent d’identifier les différentes régions. Les incertitudes
obtenues sont restreintes, ce qui permet de tirer des conclusions sur les environnements observés.
En particulier, nos inversions montrent pour la première fois que les pressions thermiques élevées,
connues pour la barre d’Orion, se retrouvent dans les autres PDRs d’OMC-1.

Dans les applications présentées, au sein d’un même pixel, les incertitudes sur la pression et sur
l’intensité du champ radiatif incident présentent une anti-corrélation. À l’inverse, entre différents
pixels, la pression et l’intensité du champ radiatif incident estimés présentent une corrélation
positive. Cette corrélation positive a déjà été décrite dans la littérature (Joblin et al., 2018 ; Wu
et al., 2018). Elle semble indiquer que la rétroaction d’une étoile massive favorise l’apparition de
nouvelles étoiles à partir du nuage parent. L’anti-corrélation dans les incertitudes démontre que
cette corrélation positive entre différentes sources n’est pas un artefact, et a probablement une
origine physique.
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Notation

Θ = (θn)N
n=1 ∈ RN×D set of N physical parameter vectors θn. This is the parameter to be

inferred in an inverse problem. When N = 1, this set is a vector and the notation is
simplified to θ ∈ RD. When N = D = 1, this set is a scalar and the notation is simplified
to θ ∈ R. When computing gradients with respect to Θ, it is handled as a vector with
conversion in lexicographic order, such that Θ ∈ RND.

θ ∈ RD physical parameter vector. A physical parameter θd ∈ R can be for instance a thermal
pressure, a visual extinction, or the intensity of a radiative field.

Θ̂ = (θn)N
n=1 ∈ RN×D generic notation for an estimator of Θ. When N = 1, this set is a vector

and the notation is simplified to θ̂ ∈ RD. When N = D = 1, this set is a scalar and the
notation is simplified to θ̂ ∈ R.

Y = (yn)N
n=1 ∈ RN×L set of N individual observation vectors yn, from which Θ is inferred.

When N = 1, this set is a vector and the notation is simplified to y ∈ RL. When
N = L = 1, this set is a scalar and the notation is simplified to y ∈ R.

y ∈ RL individual observation vector. An observation element yℓ ∈ R can be e.g., the integrated
intensity of an ionic, atomic or molecular emission line.

Ỹ = (ỹn)N
n=1 ∈ RN×L set of N individual reproduced observation vectors ỹn. This reproduced

observation follows the posterior predictive distribution Eq. 2.46, and is used for posterior
predictive assessment. Introduced in Chapter 2 (Section 2.3.2). Uses in interstellar medium
studies are reviewed in Chapter 3 (Section 3.3.2). Our approach is presented in Chapter 5
(Section 5.3). When N = 1, this set is a vector and the notation is simplified to ỹ ∈ RL.
When N = L = 1, this set is a scalar and the notation is simplified to ỹ ∈ R.

D dimension of an individual physical parameter vector θ.
L dimension of an individual observation vector y.
N number of individual observations yn in the full observation set Y. Also number of individual

physical parameter vector θn in the full parameter set Θ.
ln x natural logarithm of a scalar x ∈ R, i.e., ln x = loge x. This notation is preferred to the

usual log to avoid any confusion between logarithms in base e and 10.
π(·) probability density function (pdf). The distribution associated to a pdf is indicated by the

variables in the parentheses. In this thesis, we use an abuse of notation to draw samples
from a distribution: for instance, Θ(1) ∼ π(Θ) corresponds to a parameter Θ(1) drawn
from the prior distribution.

π(Y|Θ) likelihood function. The likelihood function is defined from an observation model M. It
is sometimes written π(Y|Θ, M) to highlight this dependence. In this thesis, the negative
log-likelihood is assumed to be twice differentiable, i.e., Θ 7→ − ln π(Y|Θ) ∈ C 2.

π(Θ) pdf of the prior distribution. In this thesis, the negative log-prior is assumed to be twice
differentiable, i.e., Θ 7→ − ln π(Θ) ∈ C 2.

π(Θ|Y) pdf of the posterior distribution, defined in Eq. 2.1. Like the likelihood function, the
posterior is defined from an observation model M. It is sometimes written π(Θ|Y, M) to
highlight this dependence. In this thesis, the negative log-posterior is assumed to be twice
differentiable, i.e., Θ 7→ − ln π(Θ|Y) ∈ C 2.

−∇ ln π(Θ|Y) ∈ RND gradient of the negative log-pdf of the posterior distribution with respect
to Θ.
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NOTATION

−∇2 ln π(Θ|Y) ∈ RND×ND Hessian matrix of the negative log-pdf of the posterior distribution
with respect to Θ.

L generic loss function, to be minimized. In inverse problems, it is often defined as the nega-
tive log-likelihood or the negative log-pdf of the posterior distribution. For minimization
algorithms, see Chapter 2 (Section 2.2.1). For possible definitions in machine learning, see
Chapter 4. In this thesis, this function is assumed to be twice differentiable, i.e., L ∈ C 2.

M observation model. Includes both the forward model f and the noise model A.
f true forward model. It is a vector function f : θ ∈ RD 7→ f(θ) = (fℓ(θ))L

ℓ=1 ∈ RL. In this
thesis, this function is assumed to be twice differentiable, i.e., f ∈ C 2.

f̃ approximation of the true forward model, also called emulator. Like the true forward model
f , this function is assumed to be twice differentiable, i.e., f̃ ∈ C 2. Using an emulator
is common when the evaluation time of the true forward model is long. For a review of
emulators in interstellar medium and cosmology, see Chapter 3 (Section 3.1.1). Defining
this emulator is the core of Chapter 4.

ψ parameters of the approximation of the forward model.
A general noise model. See Chapter 3 (Section 3.1.2) for a review of noise models in interstellar

medium studies. Chapter 3 (Section 3.4) introduces the noise model considered in the class
of inverse problems addressed in this thesis.

ε(m) = (ε(m)
nℓ ) ∈ RN×L multiplicative noise.

ε(a) = (ε(a)
nℓ ) ∈ RN×L additive noise.

Σ(m) ∈ RNL×NL covariance matrix of multiplicative noise.
Σ(a) ∈ RNL×NL covariance matrix additive noise.
ωnℓ ∈ R censorship lower bound on observations ynℓ.
C ⊊ RD validity set for the physical parameter vector θ. It is usually defined as a product of

validity intervals for each component θd. This set is used to define the uniform prior from
Chapter 5 (Section 5.1.2).

τ ∈ RD regularization weight for the spatial prior defined in Chapter 5 (Section 5.1.2).
η > 0 step size, used in gradient descent algorithms, e.g., in Eq. 2.14, or Langevin sampling

algorithms, e.g., in Eq. 2.36.
G ∈ RND×ND preconditioning matrix, also called preconditioner. This matrix is usually a pos-

itive definite approximation of the Hessian matrix. Defined in Eq. 2.17. Our choice of
preconditioner is presented in Chapter 5 (Section 5.2.1).

q proposal distribution in sampling algorithms.
ρ ∈ [0, 1] acceptance probability of Metropolis-Hastings algorithm. Defined in Eq. 2.34.
ρ̃ ∈ [0, 1] generalized acceptance probability of multiple-try Metropolis algorithm. Defined in Eq. 2.44.
Pth ≥ 0 thermal pressure, expressed in K cm−3.
G0 ≥ 0 intensity of a UV radiative field. In this thesis, its is expressed in reference to the Habing

field (Habing, 1968).
Atot

V ≥ 0 visual extinction, expressed in magnitudes (mag).
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Introduction

“Every adventure requires a first step.”

Cheshire Cat in Lewis Carroll’s “Alice’s
Adventures in Wonderland”

Contents
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Structure of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Scientific context
This PhD project is a collaboration between statisticians and astrophysicists. It was co-

supervised by Pierre Chainais, researcher in signal processing in the Centre de Recherche en
Informatique, Signal et Automatique de Lille (CRIStAL), and Franck Le Petit, astronomer in the
Observatory of Paris. It was also co-advised by Pierre-Antoine Thouvenin, researcher in signal
processing in CRIStAL, and Emeric Bron, assistant astronomer at the Observatory of Paris. This
project was funded by the Mission pour les Initiatives Transverses et Interdisciplinaires (MITI) of
the Centre National de la Recherche Scientifique (CNRS), within the 80|Prime fund OrionStat.

At a larger scale, this project is part of the ORION-B consortium, led by Jérôme Pety and
Maryvonne Gérin and founded in 2015. This consortium gathers experts in signal processing,
machine learning, and astrophysics, both on the theoretical side and the observational side. Its
members meet weekly for updates in ongoing research projects and twice a year for strategic and
in-depth discussions on current and future projects. In particular, this consortium analyzes the
observations of the IRAM-30m Large Program “Orion B”, described in Pety et al. (2017). The
observation program covered about 5 square degrees of the celestial sphere to map the Orion
B giant molecular cloud (GMC). It produced a hyper-spectral image with 1 million pixels and
200 000 spectral channels in the radio frequency domain, allowing to map the emission of dozens
of molecules over the whole cloud.

Figure 1 shows the resulting Orion B map in radio wavelengths along with an observation of
the same region in the visible domain. Multiple statistical analyses were then led from this rich
dataset, e.g., principal component analysis (PCA) on integrated line intensities (Gratier et al.,
2017) and clustering of the intensities to segment the map (Bron et al., 2018b).
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(a) In the visible domain. The molecular
cloud is mostly not visible except for the
Horsehead nebula (bottom right) in ab-
sorption.

(b) Emission of the cloud in radio domain,
for the J = 1−0 transition of CO isotopo-
logues. Blue: 12CO, Green: 13CO, Red:
C18O.

Figure 1 – Orion B giant molecular cloud. On each image, the moon is shown for scale.

PhD project summary

This PhD project aims at developing statistical tools to study the physics of the interstellar
medium (ISM). The ISM is a very diffuse medium that fills the extraordinarily large volume in
a galaxy between celestial objects such as stars and black holes. It comprises a wide variety of
environments. Most of the ISM volume is hot, ionized, and diffuse. Conversely, most of its mass is
cold, neutral and dense enough for hydrogen to be in its molecular form, and constitutes relatively
small regions called molecular clouds.

The study of the ISM carries fundamental questions such as star formation or the devel-
opment of molecular complexity possibly leading to the formation of prebiotic molecules. This
thesis focuses on star formation and their feedback on molecular clouds. Stars are born from the
gravitational collapse of a part of these clouds. Newborn stars impact their parent cloud with their
ultraviolet (UV) irradiation and stellar winds, as well as through supernovae explosions at the end
of their lives (for the most massive ones). The overall impact of these feedback processes on the
remains of the parent cloud is to this day only partially understood. The feedback of newborn stars
might dissipate their parent cloud, which would prevent the formation of other stars. It might
as well locally compress parts of the surrounding cloud, and thus favor the formation of other stars.

Observations and physical parameters – The observations considered in this work are
hyperspectral maps of molecular clouds in the far infrared and millimeter wavelength domains.
We focus on clouds that are illuminated and heated by nearby massive stars emitting UV photons.
The surface layer of such clouds, where the UV irradiation heats and dissociates the molecular
gas, is called a photodissociation region (PDR). The ions, atoms and molecules present in the
cloud cool mostly through observable radiative emission associated with quantum transitions.
These hyperspectral maps are reduced to multispectral maps that we denote Y = (yn) ∈ RN×L,
where each pixel yn contains the integrated intensities of L ∼ 5 − 30 emission lines. We work
on observation maps that contain from N = 1 to N = O(104) pixels. These maps are therefore
much smaller than that of the Orion B cloud which contains other types of environments than
PDRs such as dense cores.

These multispectral maps Y can be compared with predictions of a numerical model of the
ISM such as the Meudon PDR code (Le Petit et al., 2006), that we denote f . Such models can
produce predictions of the line intensity maps for any provided map of the local physical param-
eters, denoted Θ = (θn) ∈ RN×D, where each vector θn contains D ≲ 10 physical parameters
such as the gas density, the thermal pressure, and the total thickness of the cloud along the
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line of sight. The parameters Θ thus live in high dimension, but show a simple pixel structure.
Estimating a map of physical parameters Θ from an observation map Y and the Meudon PDR
code f is an instance of a general class of problems called inverse problems. Figure 2 illustrates
the principle of an inference procedure.

Physical parameter

Model predictions Observation

1. predict

3. adjust

2. compare

Figure 2 – General principle of an inference procedure, repeated until a stopping criterion is
satisfied.

Optimization-based inference and existence of multiple solutions – In astrophysics,
the inverse problem is often formulated as an optimization problem with a loss function L, which
measures the difference between the model prediction f(Θ) and the observation Y. The estimated
physical parameter Θ̂ is then the minimum of a loss function,

Θ̂ ∈ arg min
Θ

L (Θ; Y) , (1)

where arg min is the set of values of Θ that minimize the loss function. For instance, the squared
loss

L (Θ; Y) = ∥f(Θ) − Y∥2
2 (2)

is a widespread loss function. It turns out that this inverse problem combines many challenges.
One example of difficulty is the potential existence of multiple solutions.

Figure 3 shows two cases where multiple solutions reconstruct equally well the observations,
i.e., where the loss function has multiple local minima. The signal-to-noise ratio (SNR) can cover
multiple decades in ISM observations. In low SNR regions, multiple physical parameter values Θ
fit the observations equally well. Figure 3a shows that such solution degeneracy is problematic
for an optimization problem, as all the values in the wide valley are equally valid. Returning
only one value hides this degeneracy. In high intensity regions, the SNR may be high enough
for accurate estimations. However, ISM numerical models yield non-linear relations between the
physical parameters and the observables so that the cost function is generally non-convex and
may thus contain multiple local minima. Figure 3b shows a cost function with two equivalent
local minima. Returning only one value hides the existence of the other local minimum.

Uncertainty quantification with Bayesian sampling-based inference – A Bayesian sam-
pling approach quantifies the uncertainty associated with an inference, and can identify these two
cases – degeneracy and multiple local minima. In such an approach, the unique estimator Θ̂
in the optimization problem from Eq. 1 is replaced by a random variable Θ. The cost function
L(Θ; Y) is then replaced by a probability distribution π(Θ|Y), called the posterior distribution.

Figure 4 shows the two cost functions of Figure 3 replaced by posterior probability distributions.
The posterior distribution contains the information on the physical parameters Θ provided an
observation Y. In particular, it gives access to estimators, to high probability regions and credibility
intervals, and permits to identify local minima, all at once.
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Θ

L(Θ; Y)

Θ̂
(1)

Θ̂
(2)

(a) Degeneracy of solutions.

Θ

L(Θ; Y)

Θ̂
(1)

Θ̂
(2)

(b) Multiple local minima, here all global
minima of the loss function.

Figure 3 – Illustration of two types of solution multiplicity in an optimization problem. In both
cases, an optimization procedure would return either Θ̂(1) or Θ̂(2), but would not detect the
existence of the other.

Θ

π(Θ|Y)

E[Θ|Y]

(a) Unimodal distribution.

Θ

π(Θ|Y)

E[Θ|Y]

(b) Multimodal distribution.

Figure 4 – Replacing a loss function by a posterior distribution. The gray areas represent high
probability regions that define credibility intervals. They can be obtained with a Bayesian sampling
approach.
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Extracting information from the posterior distribution often involves integrals over the physical
parameters Θ, e.g., for the posterior expectation

E[Θ|Y] =
∫

Θ π(Θ|Y) dΘ. (3)

In general, such integrals are intractable and require numerical evaluation. Using Riemannian
integration is possible when the dimension of Θ is low, i.e., when ND ≲ 10. However, this method
does not scale well to high dimensions as the number of necessary points grows exponentially
with ND. In the considered astrophysical inverse problems, the number of pixels N ranges from
O(1) to O(104), and the number of parameters per pixel ranges from 1 to 10. Integrals are
thus approximated using Monte Carlo estimators (Robert and Casella, 2004, chapter 3), with
TMC samples of the distribution Θ(t) ∼ π(Θ|Y). For instance, the expectation of the posterior
distribution in Eq. 3, can be estimated with the empirical mean of samples, also called minimum
mean square error (MMSE),

Θ̂MMSE = 1
TMC

TMC∑
t=1

Θ(t) ≃ E[Θ|Y]. (4)

A general algorithm that efficiently draws independent and identically distributed (i.i.d.) samples
from any probability distribution does not exist. For a large set of distributions, Markov chain
Monte Carlo (MCMC) algorithms (Robert and Casella, 2004, chapters 6 and 7) generate corre-
lated chains of samples Θ(t). Such algorithms are often called samplers.

Tasks addressed in this thesis – The aforementioned inverse problem is addressed within a
Bayesian framework to address the absence of ground truth inherent to astrophysics. Uncertainty
quantification, e.g., with credibility intervals, is derived along with point estimates. Solving this
inverse problem involved a few main tasks. In each task, the uncertainty associated with proposed
approximations is controlled.

— The Meudon PDR code requires a few hours per evaluation, which is prohibitively slow
for inference that relies on many evaluations of the likelihood function. It is assumed to
be a non-linear and twice differentiable function. Besides, it is a strictly positive function
that covers multiple decades, which makes it non gradient Lipschitz continuous or with an
extremely large Lipschitz constant. It will be approximated by a light, fast and accurate
neural network-based emulator in Chapter 4.

— The full observation model described in Chapter 3 is complex as it involves two sources of
noise – one additive and Gaussian, the other multiplicative and lognormal –, and censor-
ship. Without neglecting any source, it leads to a likelihood function whose expression is
challenging to address as is. The likelihood function will be approximated with a small and
controlled error in Chapter 5.

— The signal-to-noise ratio (SNR) in observation maps greatly varies across lines and pixels.
When the SNR is low, the physical parameters usually are poorly constrained. A spatial
regularization prior will be included to improve the quality of estimations in these regions.
It will enable low SNR pixels to access the information contained in the neighboring pixels.

— The resulting posterior distribution is difficult to sample from. In particular, it is non-log-
concave and potentially multimodal because of the non-linearity of the forward PDR model.
Besides, the log-posterior is twice differentiable but non gradient Lipschitz continuous. A
dedicated MCMC algorithm will be proposed in Chapter 5 as a combination of two sampling
kernels: one will efficiently explore the posterior distribution locally, the other will allow
escaping from local minima.

— Due to the complexity of the ISM, the Meudon PDR code includes multiple microphysical
processes and relies on simplifying assumptions. Its compatibility with the observation will
be assessed thanks to a Bayesian hypothesis testing approach presented in Chapter 5.

5



Introduction

— The resulting overall method will be applied to synthetic observations in Chapter 5 and to
multiple real observations in Chapter 6.

An additional task was also addressed, that is the determination of the best emission lines to
observe to obtain low uncertainties on physical parameter estimates. However, this work is still
in progress. We currently work on it in collaboration with other members of the ORION-B con-
sortium. Preliminary results are presented in Appendix A.

Addressing these tasks led to contributions in both the statistical and ISM communities.

Structure of the manuscript and reader’s guide

This manuscript targets both the signal processing and astrophysics communities. Though
the backgrounds of these two communities share some common references, they strongly differ
in mindset and vocabulary. Key notions of both statistics and astrophysics are thus re-introduced
and discussed. The “Notation” section gathers the main mathematical objects used throughout
this thesis, along with the main hypotheses and properties. Along the manuscript, some boxes
separated from the main text target one specific community to provide examples or a detailed
explanation. In addition, sections whose title begins with “Illustration: . . . ” provide illustrative
examples. These examples are detailed walkthroughs, applications on simplified cases or effect
illustrations, but do not contain essential content. The reader may very well choose not to read
these sections. Finally, this thesis is structured such that it can be read in two ways.

Option 1: full reading with the default structure – This manuscript is divided into six
chapters and one appendix.

Chapter 1 provides some background on the ISM and the associated scientific questions. Then,
it focuses on photodissociation regions (PDRs), a particular type of ISM environment. The model
used throughout this work to simulate these regions, the Meudon PDR code, is also presented.

Chapter 2 provides some background in statistics. Necessary notions for modeling are introduced.
Inference methods from optimization and Bayesian approaches, as well as existing alternatives,
are then reviewed. Some Markov chain Monte Carlo (MCMC) algorithms that are necessary to
introduce the proposed sampler of Chapter 5 are described.

Chapter 3 is a state-of-the-art that reviews applications of statistical models and inference algo-
rithms to ISM studies.

Chapter 4 describes a model reduction step that is necessary for the proposed sampler of Chap-
ter 5. An artificial neural network (ANN) is proposed to emulate the Meudon PDR code. Some
specificities of the Meudon PDR code make traditional off-the-shelf ANN tools inefficient. We
design and train ANNs that address these specificities. The corresponding paper, Palud et al.
(2023c), was published in the international journal Astronomy & Astrophysics (A&A).

Chapter 5 details the statistical methods we developed to address the inverse problem and eval-
uate the results. The proposed model and sampler are described. This sampler was presented in
a journal article published in the international journal Transactions on Signal Processing (TSP),
Palud et al. (2023b). It was also described in two conference papers, one at the French Gretsi na-
tional conference (Palud et al., 2022a) and one at the international EUSIPCO conference (Palud
et al., 2022b). A proposed model checking strategy enables validating the results of an inver-
sion. This model checking approach is discussed in a conference Gretsi paper, Palud et al. (2023a).
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In Chapter 6, the MCMC algorithm presented in Chapter 5 and the reduced model of Chapter 4
are applied to real observations. Inversion results are presented and analyzed. A journal article is
currently in preparation, Palud et al. (in prep[a]).

Appendix A proposes a general method to determine which lines are most informative for infer-
ence using the differential entropy of a probability distribution. This method paves the way for a
new variable selection method. An associated article is currently in preparation, Palud et al. (in
prep[b]).

Option 2: reading according to topics – A second possibility is to read this document by
topic. Table 1 lists the sections associated with each topic.

Table 1 – Reading options per topic. “full” means that a given topic is covered in the whole
chapter.

Topic Ch. 1
ISM

Ch. 2
statistics

Ch. 3
interface
ISM and
statistics

Ch. 4
ANNs

Ch. 5
MCMC

algorithm

Ch. 6
real
data

App. A
line

selection

ISM full – full – 5.4.2 full full
Statistical model – 2.1 3.1, 3.4 full 5.1 full full

forward model 1.2, 1.3 – 3.1.1 full – full full
noise model – – 3.1.2, 3.4 – – full full

prior – – 3.1.3 – 5.1.2 – –
Inference – 2.2, 2.A 3.2 – 5.2 full full

local exploration – 2.2, 3.2 – 5.2.1 – –
escaping local modes – 2.2, 2.A 3.2 – 5.2.2 – –

Model relevance – 2.3 3.3 – 5.3 full –
model selection – 2.3.1 3.3.1 – – – –
model checking – 2.3.2 3.3.2 – 5.3 full –
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The package associated with the neural network approximation presented in Chapter 4 is
called nnbma (for Neural Network-Based Model Approximation). The code can be found at
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Part I

Backgrounds: interstellar medium,
statistical inference and interactions
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Chapter 1

Background on the interstellar medium
(ISM)

“ The Milky Way is largely empty. Stars
are separated by some 2 pc in the solar
neighborhood. [...] If we take our Solar
System as a measure, with a heliosphere
radius of ≃235 AU, stars and their
associated planetary systems fill about
3 × 10−8 % of the available space. This
[work] deals with what is in between these
stars: the interstellar medium (ISM). ”

Tielens (2005, introduction of chapter 1)

Contents
1.1 The interstellar medium (ISM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 A short overview of the ISM . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.2 Star formation, stellar feedback and photodissociation regions (PDRs) . . 15
1.1.3 Chemical complexity and planet formation . . . . . . . . . . . . . . . . . 17
1.1.4 PDRs: structure and physical parameters . . . . . . . . . . . . . . . . . 18

1.2 Linking physical conditions and observations: astrophysical numerical models . . 20
1.2.1 Radiative transfer models . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2 Astrochemical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.3 Dust models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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1.3.2 Input parameters and considered environments . . . . . . . . . . . . . . 25
1.3.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

This chapter provides a general overview of the ISM and of the associated scientific questions.
It briefly introduces the physics of the ISM and the current state-of-the-art numerical models.
The elements and notions covered in this chapter will be used throughout this thesis. Two funda-
mental notions necessary for the non astrophysicist are first introduced: distance units and scales.
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Distance units – The solar system that we live in hosts one of the ∼ 1011 stars contained in
our Galaxy, the Milky Way (MW). Then again, the Milky Way is one of the ∼ 1011 galaxies of
the observable Universe. The study of the Universe at its largest scales falls into the domain of
cosmology. In this work, we consider “smaller” astrophysical scales, between the scales of stars
and of galaxies. Dedicated distance units are necessary to describe such scales. Three distance
units are commonly used in astrophysics:

— The astronomical unit (au): 1 au corresponds to the distance between the Sun and the
Earth, i.e., 1.5 × 106 km.

— The light-year (ly): 1 ly corresponds to the distance traveled in one year at the speed of
light, i.e., 9.5 × 1012 km.

— The parsec (pc): 1 pc is defined as 648 000
π au, i.e., about 3.26 ly. Figure 1.1 illustrates

its definition. One parsec corresponds to the order of magnitude of the average distance
between a star and the closest other star.

Sun

1 AU

Earth

1 pc

1''
Legend

Figure 1.1 – Illustration of the parsec (pc) definition. Distances are not at scale.

Scales – Figure 1.2 lists some typical astrophysical distances with the corresponding values in
the three aforementioned units. It covers more than 16 decades. This work focuses on molecular
clouds such as Orion-B. Molecular clouds correspond to one type of environment of the so-called
ISM, which by definition lies between stars. They are extremely large: their sizes range from a
few parsecs to a hundred parsecs. For instance, Orion-B is a “neighbor” molecular cloud, about
400 pc away from us. It is 10 pc large, which is about 1010 times larger than the diameter of the
Earth. This size ratio corresponds to that of a person and a hydrogen atom.

In this chapter, we provide a general description of the ISM. Section 1.1 provides an overview
of the ISM, of the associated physics and scientific questions. Section 1.2 describes how models
of the ISM and observations can improve our understanding of star formation. We also list some
existing ISM models. Finally, Section 1.3 focuses on the Meudon PDR code, which is used in the
remainder of this work.
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Figure 1.2 – Scales in astrophysics. α-Centauri is the closest star to the Sun. The Andromeda
galaxy is the closest galaxy to the Milky Way. Orion B is a giant molecular cloud (GMC) of the
Milky Way.

1.1 The interstellar medium (ISM)

In the Milky Way, stars and other celestial bodies such as black holes, planets, and comets
represent about 90 % of the total baryonic mass, i.e., disregarding dark matter and dark energy.
The remaining 10 % correspond to the extremely diffuse medium that lies in the volume between
stars: the ISM. The study of the ISM addresses fundamental questions on the Universe including
the formation of stars and planets, and the development of molecular complexity possibly leading
to the formation of prebiotic molecules. In this section, we provide a general overview of the ISM
with its composition, structure, and role in the cycle of matter in a galaxy. We also detail the
aforementioned fundamental questions.

1.1.1 A short overview of the ISM

Composition – Hydrogen remaining from the Big Bang represents 90% in mass of the ISM.
Helium corresponds to most of the remaining 10%. It comes in part from the Big Bang and in part
from nuclear reactions inside stars. Other elements, from carbon to uranium, are also produced
by nuclear reactions inside stars, and by supernovae for the most massive elements. They account
for less than 1% of the total mass. These other elements, in particular carbon C and oxygen
O, play a key role in the ISM physics and observations. The concentration of elements heavier
than helium is called the metallicity. Table 1.1 lists estimated abundances of the most common
elements in the ISM relatively to hydrogen in the solar neighborhood. These elements can exist
in ionic, atomic, or molecular form, depending on the environment conditions.

In addition to the gas, the ISM contains small dust grains whose size typically ranges from 1
to 100 nm, and larger in the ISM densest regions and in protoplanetary disks. It is estimated that
these dust grains represent about 1% of the ISM mass. They play a key role in the physics and
chemistry of the ISM. They extinguish UV radiation and thus shield the gas from its ionizing and
dissociating effects. Dust grains also convert a small fraction of the absorbed UV energy into gas
heating through the photoelectric effect, which is one of the dominant heating processes in the
ISM. Some species exist in both gas and dust phase, and are thus depleted in the gas phase – a
phenomenon called the interstellar depletion (Draine, 2011, chapter 9). Heavy elements such as
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(a) 2014 Hubble observation, in visible light. (b) 2022 JWST observation, in NIR. Credits:
NASA, ESA, CSA, STScI; Joseph DePasquale
(STScI), Anton M. Koekemoer (STScI), Alyssa
Pagan (STScI).

Figure 1.3 – observation of the pillars of creation, in the Eagle Nebula, by the Hubble telescope
and the James Webb spatial telescope (JWST). Unlike the observation in the visible light, the
near infrared (NIR) observation shows the stars inside and behind the pillars.

silicon Si and iron Fe are extremely depleted, as their gas phase abundances correspond to only a
few percent of the total expected abundance. These elements, along with lighter elements such
as carbon C and oxygen O, are part of the components of the solid cores of grains. In addition, in
the dense cold regions, water and CO molecules from the gas phase freeze out on the dust surface
to form ice mantles. The depletion of C and O and other thus increases strongly in the dense
cold regions where ice mantles can form. Many chemical reactions then occur at the surface of
grains and within ice mantles.

Table 1.1 – Solar abundance of elements in the gas phase of the interstellar medium relative to
hydrogen. Adapted from Draine (2011, table 1.4).

Element Abundance (relative to H)
He 9.55 × 10−2 ±2.3 %
C 2.95 × 10−4 ±12.2 %
N 7.41 × 10−5 ±12.2 %
O 5.37 × 10−4 ±12.2 %
Si 3.55 × 10−5 ±9.6 %
S 1.45 × 10−5 ±7.2 %
Fe 3.47 × 10−5 ±9.6 %

Phases in the ISM – The ISM is a very inhomogeneous medium. It goes from very diffuse
hot ionized environments with a density of about 3 × 10−3 particles cm−3 that represent most of
the volume of the ISM, to dense molecular clouds with 106 particles cm−3 that represent most
of its mass. For comparison, at a standard pressure, the Earth atmosphere contains about 1019

particles cm−3 and the vacuum at the surface of the Moon about 105 particles cm−3 (Öpik, 1962).
Table 1.2, adapted from Galliano (2022), lists the main phases of the ISM along with their

respective volume densities, average temperature and volume filling factor. The main distinctions
between these phases are the state of hydrogen – ionized H+, atomic H or molecular H2 –, their
temperature and their volume density, i.e., the average number of particles per cubic centime-
ter. The hot ionized medium (HIM), warm ionized medium (WIM), and Hii regions correspond
to hot plasmas. In particular, Hii regions are located around a massive star where the gas is
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ionized by the extreme ultraviolet (EUV) photons of the star. The EUV field contains photons
with wavelengths smaller than 91.2 nm, i.e., 13.6 eV, the hydrogen ionization potential. This
thesis focuses on the remaining four phases, where hydrogen is mostly neutral and where stars are
formed. Hydrogen is mostly in its atomic form in warm neutral medium (WNM) and cold neutral
medium (CNM), and in its molecular form in diffuse H2 and dense H2 regions. These regions form
molecular clouds such as Orion-B, shown in Figure 1, or the pillars of creation, shown in Figure 1.3.

Table 1.2 – Comparison of the main phases of the ISM. The sum of volume filling factors exceeds
100% because the associated uncertainties are large. Adapted from Galliano (2022).

Hydrogen state Phase Volume density n Temperature Volume filling factor
(in cm−3) (in K) (in %)

ionized
HIM ≃ 3 × 10−3 ≃ 106 ≃ 50
WIM ≃ 0.1 ≃ 104 ≃ 25

Hii regions ≃ 1 − 105 ≃ 104 ≲ 1

atomic WNM ≃ 0.3 ≃ 104 ≃ 30
CNM ≃ 30 ≃ 100 ≃ 1

molecular Diffuse H2 ≃ 100 ≃ 50 ≃ 0.1
Dense H2 ≃ 103 − 106 ≃ 10 ≃ 0.01

The cycle of matter in a galaxy – The ISM plays a key role in the evolution of matter in
a galaxy. Figure 1.4 shows the cycle of baryonic matter. The ISM provides the building material
for star formation. In average in the Milky Way, about 1.3 M⊙ yr−1 of the ISM is converted into
stars, with 1M⊙ = 2 × 1030 kg corresponding to one solar mass. This process is detailed in the
next section. This figure also shows that matter can go back from stars to the ISM in diverse
ways, closing the cycle of matter in a galaxy. For instance, during its life, a star emits stellar
winds that continuously feed the ISM in matter and in mechanical energy. Some stars also affect
the ISM with violent deaths such as supernovae, feeding it both in energy and in elements heavier
than helium.

Figure 1.4 – Observed flow of baryons in the Milky Way. Adapted from Draine (2011, chapter 1).

1.1.2 Star formation, stellar feedback and photodissociation regions (PDRs)

Star formation starts with the gravitational collapse of a cold and dense region of a molecular
cloud. When this region collapses, the associated gas and dust form an infalling envelope and
a rotating disk. Planetary systems form from this gas and dust. Figure 1.5 illustrates the star
formation process. The first three steps typically last a few million years. During this dramatic
compression process, the gas collapses from scales of ∼ 1 pc to ∼ 10−7 pc, which corresponds to
a density increase of a factor ∼ 1021 (Draine, 2011, chapter 41).
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Figure 1.5 – Key steps of the star formation process. Artist impression from Bill Saxton
(NRAO/AUI/NSF), taken from Dishoeck and Bergin (2021).

The gravitational collapse starts when the self-gravity of a region of the cloud exceeds a cer-
tain threshold. Different definitions of this threshold such as the Jeans instability rely on different
assumptions and geometries (Draine, 2011, chapter 41). Multiple physical phenomena resist the
cloud self gravity such as the internal thermal pressure, the magnetic pressure, turbulence at the
lowest scales, and the region angular moment. In this adversarial context, two main mechanisms
contribute to attain the density threshold that triggers the collapse. First, large scale turbulence
or other compressive events, such as Supernovae shock waves, or Hii region expansion, can locally
compress the cloud. Second, atomic and molecular radiative emission evacuates energy, and thus
cools the cloud and helps reduce the thermal pressure of the cloud, allowing self-gravity to take
over.

Despite good observational evidence and advanced models, the star formation process is to
this day only partially understood. Observations lead to a star formation rate (SFR) averaged
over the past 3 Myr in the Milky Way of about 1.3 M⊙ yr−1 – as shown in Figure 1.4. A simple
theoretical estimate based on free-falling gas and using typical values of the Milky Way – total
molecular gas ∼ 109 M⊙ with density ∼ 50 cm−3 – leads to a maximum SFR of about 200 M⊙
yr−1, i.e., two orders of magnitude larger than the measured value (Draine, 2011, chapter 42).
Therefore, the star formation process is highly inefficient.

A first explanation of this inefficiency is that only the densest regions of the ISM are expected
to actually collapse. This hypothesis is confirmed by the Kennicutt-Schmidt empirical law, which
relates the SFR to the surface density of gas with a power law with exponent around 1.4 (Draine,
2011, chapter 42). The exponent of this power law is yet to be physically explained.

A second reason for this inefficiency is the stellar feedback that disrupts the parent cloud
and thus decreases its star forming capability. We call stellar feedback all the processes by which
a star injects energy into its parent cloud. It includes mechanical energy, such as stellar winds
and supernovae, and radiative energy emitted in the UV domain. However, to this day, it is
unclear whether stellar feedback favors or impedes star formation. Overall, stellar feedback tends
to dissipate the parent cloud. For instance, the expansion of the Hii bubble ionized by massive
stars tends to disperse the surrounding molecular cloud. However, this expansion also causes the
apparition of a compressed layer at the frontier between the molecular parent cloud and the Hii
region. This compressed layer at the edge of the molecular cloud and of the Hii region is called
a photodissociation region (PDR). This local compression of the gas might favor the formation
of additional stars. Overall, the global parent cloud disruption and the local compression at the
PDR are competing effects. Understanding the influence of stellar feedback requires studying the
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structure of PDRs and the local physical conditions such as the thermal pressure, the volume
density, and the cloud depth along the line of sight.

1.1.3 Chemical complexity and planet formation

In 2018, over 200 molecules had been detected in the ISM (McGuire, 2018), organic or not,
including simple diatomic molecules such as H2 and CO, more complex molecules such as water
H2O and methanol CH3OH, and complex ions such as H3O+ and HCO+. Molecules from the
ISM can be observed in the optical/UV domain for electronic transitions, in the IR domain for
vibrational transitions, and in the millimeter domain for rotational transitions. Dust grains play a
key role in the formation of some complex molecules, acting as a catalyst. For instance, methanol
mainly forms on the surface of grains in CO-rich ice. Water is more complex. It is the product of
a variety of reactions, some occurring in the gas phase and some taking place on the surface of
dust grains, like H2 + O. It can freeze onto the grain, forming water ice mantles. This process
occurs in the deep, cold, and dense regions of a molecular cloud. These ice mantles can serve
as reservoirs for water and other simple molecules and allow for a rich chemistry that would be
extremely slow in the gas phase in dense and cold conditions.

As already mentioned, stars and the associated planets form from the molecular gas and dust
that gravitationally collapses. A significant part of the chemical composition of the planet-building
material appears to be set in the cold pre- and protostellar stages and preserved to planet and
comet construction sites. In the early phases of a star formation, the gas and dust spirals in a
protoplanetary disk. Figure 1.6 shows two spatially well resolved protoplanetary disks observed by
the ALMA telescope in the FIR and millimeter domains.

(a) Dust continuum observation at 1.3 mm of
the disk surrounding the star HL Tau. Adapted
from ALMA Partnership et al. (2015).

(b) Observations of the 870 µm continuum
emission from the TW Hya disk. Taken
from Andrews et al. (2016)

Figure 1.6 – ALMA observations of two protoplanetary disks.

Protoplanetary disks models study stellar system formation from the initial molecular cloud
collapse. Planets form with the aggregation of gas and dust grains. One of the key questions such
models try to address is the origin of the chemical composition of planets, in particular for the
necessary bricks for the apparition of life, such as water, simple sugars and peptide bonds. This
composition might be inherited from the parent molecular cloud and the original dust grains and
ice mantles, or might be reset with additional chemistry in the disk, either fully or partially. The
study of comets and meteorites in the solar system indicates both a full reset of the chemistry
and inheritance from the ISM (Dishoeck and Bergin, 2021). Therefore, a significant fraction of
the water on Earth might come from the ISM.
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1.1.4 PDRs: structure and physical parameters
Modeling and observing molecular clouds permits to understand the mechanisms of star for-

mation and its feedback, and, within protoplanetary disks, of the formation of complex molecules.
In this thesis, we focus on the process of star formation feedback in molecular clouds. More
precisely, we focus on the surface layer of molecular clouds irradiated by stellar UV photons, i.e.
photodissociation regions (PDRs). This section introduces the key parameters that describe the
physical conditions of PDRs and thus quantify the impact of stellar feedback.

Figure 1.7 illustrates the structure of a plane-parallel PDR along with the associated main
physical parameters. It also shows a PDR in the observation of the Carina nebula from the JWST.
The gas around the star is impacted by its UV radiation. The ISM close to the star is ionized by
the EUV part of the spectrum of a star. Such regions are called Hii regions (in blue in the JWST
observation). Once the ionizing photons are absorbed, the hydrogen can exist in neutral atomic
form. Deeper in the cloud, hydrogen forms molecules. A PDR corresponds to the region with
neutral hydrogen (red regions in the JWST observation, and shaded regions in the diagram). The
physics and chemistry of a PDR are controlled by far ultraviolet (FUV) dissociating photons –
with energy lower than the ionization potential of H, 13.6 eV, i.e., with wavelengths greater than
91.2 nm.

Figure 1.7 – Structure of a PDR region. The image on top is extracted from the JWST Carina
nebula observation. Credits to NASA, ESA, CSA, and STScI.

Temperature, volume density and thermal pressure – The physical state of the gas at
any point in a PDR is usually described by its temperature Tgas, expressed in K, and its pro-
ton volume density nH = n(H) + 2n(H2) + n(H+), expressed in protons cm−3. Note that
the proton volume density is not equal to the volume density of particles in the gas, which is
ntot = n(H) + n(H2) + n(H+) + n(C) + n(O) + n(CO) + . . ., expressed in particle cm−3. The
gas temperature greatly varies in a PDR. In particular, it drops at the photodissociation front
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from ∼ 102 − 103 K to ∼ 10 K. The proton volume density typically ranges from 102 to 108

cm−3. The particle volume density and the temperature determine the thermal pressure of the
gas Pth = ntot × Tgas, expressed in K cm−3. In a PDR, the thermal pressure ranges from 105 to
109 K cm−3.

Amount of matter: optical depth, total visual extinction and column density – As-
trophysical observations are based on emission or absorption of photons in specific directions.
However, one cannot locate photon sources along the line of sight. A natural quantity to describe
the ISM – including PDRs – is thus the amount of matter along the line of sight.

Details for statisticians 1.1: The radiative transfer equation and optical depth

The radiative transfer equation relies on the specific intensity Iν(x, k, t), expressed in
erg cm−2s−1Hz−1sr−1. Iν(x, k, t) quantifies the intensity of a radiation field at frequency
ν, for a position x, a direction of propagation k and an instant t. Light and matter
can interact in three ways: a photon can either be absorbed, scattered, or emitted. The
radiative energy absorbed and scattered at position x are quantified by an absorption
coefficient κν and a scattering coefficient sν , respectively, both expressed in cm−1. The
energy emitted along the direction k is quantified by an emissivity term ϵν(k). The energy
scattered from any direction k′ back to k within a solid angle dΩ is quantified with a term
s̃ν(x, k′, k). Neglecting time dependency terms, the radiative transfer equation reads

∂Iν

∂x
(x, k) = −Iν(x, k) [κν(x) + sν(x)] + ϵν(x, k) + 1

4π

∫
Iν(x, k′)s̃ν(x, k′, k)dΩ. (1.1)

To simplify Eq. 1.1, the variable change dτν = (κν + sν)dx is usually performed, where τν

is called the optical depth. Neglecting the integral term, Eq. 1.1 then becomes :

dIν

dτν
= −Iν + Sν , (1.2)

with Sν = ϵν/(κν + sν) the source function. For some initial position x0 – usually the
back of the cloud – it reads (Draine, 2011, Eq. 7.14)

τν(x) =
∫ x

x0
dτν(x′) dx′ =

∫ x

x0

[
κν(x′) + sν(x′)

]
dx′. (1.3)

The amount of matter along the line of sight can be quantified through radiative transfer
and extinction. The optical depth quantifies the attenuation of the radiative field at frequency
ν after passing through a cloud. It is positive except in case of optical pumping and MASER
effect. When τν ≳ 1, the cloud is said to be optically thick. A photon emitted inside the cloud
is very likely to be re-absorbed – a phenomenon called radiative trapping (Draine, 2011, chapter
19). Therefore, an observer only detects photons emitted by the border of the cloud. Conversely,
when τν ≪ 1, the cloud is said to be optically thin, and a photon is very likely to escape. In
this case, an observer detects photons emitted in the entire cloud. The V (“visual”) band is a
reference frequency band that corresponds to a filter with a 551 nm effective wavelength and an
88 nm full width at half maximum. One then commonly uses the optical depth in the V band
τV to measure the interstellar reddening, i.e., the extinction of visible light by interstellar dust.
As astronomers commonly express intensities as magnitudes – which correspond to the decimal
logarithm of physical fluxes – the extinction is defined in terms of a visual extinction

AV = [2.5 × log10 e] τV ≃ 1.086 τV . (1.4)

Clouds with AV < 1 are not deep enough to form molecules, as they get dissociated by the UV
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photons. Dense cores can reach values of AV of the order 102.
The proton column density, denoted NH and expressed in cm−2, counts the protons along the

line of sight. For a cloud of depth xtot (in cm),

NH =
∫ xtot

0
nH dx. (1.5)

In a cloud with constant volume density nH , NH = xtot × nH . As dust is the dominant source
of extinction in the V band and as one commonly assumes that dust is uniformly mixed with the
gas, the column density is proportional to the visual extinction

NH = RV

CD
AV ≃ 1.086RV

CD
τV , (1.6)

where CD = 5.8 × 1021 cm−2 (Bohlin et al., 1978), and RV is the so called total-to-selective
extinction ratio and represents the slope of the extinction curve in the visible range. Typically,
RV = 3.1 in local diffuse clouds (Fitzpatrick and Massa, 1990).

Radiative field and G0 – As already stated, PDRs are generally illuminated by a massive
star or a cluster of stars. The shape and intensity of the UV radiative field reaching the surface
of the PDR depends on the properties of the star and on the distance between the PDR and
the star. The G0 parameter quantifies the intensity of the FUV radiative field regardless of its
shape. It is defined as the ratio between the integral of the spectrum of the radiative field over a
selected wavelength range and of the same integral computed for a reference interstellar radiation
field (ISRF). For instance, prescriptions of ISRF can be found in Habing (1968), Draine (1978),
and Mathis et al. (1983). Conversions of G0 exist between the different ISRF prescriptions. In
this thesis, we measure G0 in reference to the Habing field. Far from any star in our Galaxy,
G0 ≃ 1. In a moderately illuminated cloud such as the Horsehead nebula, G0 ≃ 102. In a highly
illuminated cloud such as the Orion bar, G0 ≃ 104.

1.2 Linking physical conditions and observations: astrophysical nu-
merical models

Astrophysical codes for ISM environments can model observed regions and link numerous
observables such as line intensities to physical conditions such as the thermal pressure or the
total visual extinction. There exist two main categories of codes: 3D (magneto)hydrodynamics
simulations that model the dynamics at large scales, and detailed models of the local physico-
chemistry of the gas and dust and of their interaction with the radiation field. In this thesis, we
consider the latter category because they solve the microphysics of the cloud, compute chemical
abundances and line intensities that can be compared to observations. In this section, we list
different types of such numerical models of the ISM.

1.2.1 Radiative transfer models

FUV photons heat the gas by photoelectric effect on grains and excite atoms and molecules
in electronic states. Molecules cascade in part in their rovibrational levels by emitting photons
in FIR and radio domains. Radiative transfer thus carries two fundamental questions regarding
radiative feedback in PDRs:

— What fraction of the stellar UV photons reaches a given position inside the cloud?
— What fraction of the photons emitted at a given position of the cloud escape and contribute

to the observable emission and cooling, both for the dust continuum and in ionic, atomic,
and molecular lines?
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Answering these two questions requires accounting for absorption, scattering, and emission pro-
cesses for the dust and the gas at each point of the cloud. Taking into account all these processes
is challenging. First, the radiative transfer is coupled with quantum level populations of the
emitting species for lines, and with the dust temperature for the continuum. Besides, the contin-
uum and the lines are not independent. For instance, the dust continuum can pump the water
molecules. Approximations are thus often used in radiative transfer models. A few remarkable
models include RADEX, MOLPOP-CEP and Monte Carlo simulators.

RADEX 1 (van der Tak et al., 2007) is a simple code that considers the cloud as spatially
uniform in terms of density, temperature, chemical abundances and level populations, and is thus
called a 0D code. This code solves the populations in quantum states in non local thermal
equilibrium (non-LTE). It takes into account collisional and radiative transitions, but neglects
interspecies interactions or pumping by any other line or by the dust continuum. As it models
the cloud as completely uniform, it has to rely on a simple approximation for radiative trapping:
a photon emitted within the cloud either escapes from the cloud or is absorbed on-the-spot.
The code proposes different escape probability approximations. As this code is easy to use, it is
widespread in the ISM community despite the coarse approximations it relies on.

MOLPOP-CEP (Asensio Ramos and Elitzur, 2018) is a 1D code that smartly formulates
the problem only in terms of level populations. This reformulation allows it to solve the problem
of radiative transfer in the lines exactly, although neglecting overlaps between lines and pumping
by the dust continuum.

Finally, Monte Carlo simulators approach the radiative transfer differently. Instead of solving
approximately the radiative transfer equation, they simulate the stochastic propagation of many
individual photons in the cloud, and compute statistics. Such codes include RATRAN 2 (Hoger-
heijde and van der Tak, 2000), LIME (Brinch and Hogerheijde, 2010), MCFOST (Pinte et al.,
2022), or RADMC-3D (Dullemond et al., 2012). As they address more complex geometries,
they usually simplify the physical processes solved at each point.

1.2.2 Astrochemical models

Astrochemistry codes are time-dependent 0D simulators that compute the evolution of the
chemical abundance of up to hundreds of species accounting for thousands of reactions. A
chemical network groups the list of photo-ionization, photodissociation, two-body or more rarely
three-body reactions 3, either in gas phase or surface phase, i.e., on the surface of dust grains. The
evolution of the volume density nX of a species X is then controlled by a differential equation:

dnX

dt
= FX − DX (1.7)

where FX and DX are formation rate and destruction rates, respectively, i.e., they sum the
rates of all reactions in the network that contribute to the formation or destruction of species X.
Combined with initial conditions, this set of equations permits to compute the volume density of
all the species at any time t. The stationary state can be obtained by solving FX = DX .

Solving such a system of equations is numerically simple. The complexity lies in building
the chemical network and modeling the reactions in ice and surface phases with the associated
kinetic constants. Databases such as the KIDA database 4 (Wakelam et al., 2012) and the UMIST
database 5 (McElroy et al., 2013) gather the kinetic constants of large chemical networks.

There exist many astrochemical codes based on these databases. Nahoon is associated with
the KIDA database and solves networks for the gas phase. This model is not suited to dense

1. https://home.strw.leidenuniv.nl/~moldata/radex.html
2. https://home.strw.leidenuniv.nl/~michiel/ratran/
3. Three-body reactions are rare in the gas phase of the ISM, as it is not dense enough.
4. https://kida.astrochem-tools.org/
5. http://udfa.ajmarkwick.net/
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molecular regions, which require more processes involving dust grains. More advanced models
such as AstroChem (Maret and Bergin, 2015) and UCLCHEM (Holdship et al., 2017) include
e.g., freeze-out of species onto dust grains or non-thermal desorption of species from dust grains
due to UV photons and cosmic rays. These two models can be used to model a wide variety of
environments, including molecular gas and dense cores. More recent and sophisticated models
include Nautilus 6 (Ruaud et al., 2016). The results of such time-dependent astrochemical
models highly depend on the initial conditions that are poorly known. These codes can yield
unexpected results such as oscillations, as demonstrated with the Chimes 7 code (Roueff and
Le Bourlot, 2020).

The main limitation of such codes is their 0D geometry. This is problematic for photo-reactions
as they do not solve radiative transfer. These models are suited to deep, cold and dark clouds
that are protected from UV radiation. In such environments, the chemistry is driven by cosmic
rays. The associated characteristic times are hundreds of million of years (Indriolo et al., 2007).
Therefore, such environments cannot be considered in a stationary state.

1.2.3 Dust models

Dust grains play three central roles in the physics and chemistry of the PDRs: they absorb
UV radiations and thus protect from photoionization and photodissociation, they heat the gas
through the photoelectric effect, and they permit the formation of complex molecules on their
surface. They also emit a continuum in the FIR domain. An observation of these emissions is
called a spectral energy density (SED).

Understanding the many properties of dust grains is an active area of research. There exist
different grain population models. Widespread models such as Themis 8 (Jones et al., 2013)
or the Astrodust+PAH model (Hensley and Draine, 2023) involve grains mostly made of silicon,
carbon, or a mixture. Their structure is either amorphous, crystalline, porous, or aggregated.
Finally, the grain size is usually described with a distribution, either a power law, a lognormal
distribution or a mixture thereof.

From a grain population model, dust emission models can compute the extinction and emissiv-
ity of grains and predict their SED. The most widespread dust emission model is DustEM 9 (Com-
piègne et al., 2011). Figure 1.8 shows a comparison of an observed SED (in gray) in the diffuse
high galactic latitude medium with predictions from DustEM. The contribution to the predicted
SED from different types of grain is represented, including polycyclic aromatic hydrocarbonss,
small amorphous carbon grains, large amorphous carbon grains, and amorphous silicates.

1.2.4 Holistic models

The aforementioned numerical models focus on a specific subpart of the physics and chemistry
of the ISM. Some other models adopt a more holistic approach and account for many physical
phenomena at once as well as their couplings. For instance, Cloudy 10 (Ferland et al., 2017)
simulates Hii regions. The Paris-Durham code 11 (Godard et al., 2019) and the MAPPINGS
code 12 (Sutherland et al., 2018) simulate shock-dominated regions, i.e., regions crossed by a
shock wave caused e.g., by protostellar outflows, cloud collisions, supernovae, or galactic outflows.
ProDimo 13 (Woitke et al., 2009) simulates protoplanetary disks. The Meudon PDR code (Le
Petit et al., 2006) and KOSMA-τ 14 (Röllig and Ossenkopf-Okada, 2022) describe UV-irradiated

6. https://kida.astrochem-tools.org/codes.html
7. https://ism.obspm.fr/chimes.html
8. https://www.ias.u-psud.fr/themis/THEMIS_model.html
9. https://www.ias.u-psud.fr/DUSTEM/index.html

10. https://trac.nublado.org/
11. https://ism.obspm.fr/shock.html
12. https://mappings.anu.edu.au/code/index.html
13. https://prodimo.iwf.oeaw.ac.at/
14. https://astro.uni-koeln.de/riechers/research/kosma-tau
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Figure 1.8 – Illustration of a spectral energy density for dust. The contributions of dust grain
subpopulations are represented, such as polycyclic aromatic hydrocarbonss (PAHs), small amor-
phous carbon grains (SamC), large amorphous carbon grains (LamC), and amorphous silicates
(aSi). Taken from Compiègne et al. (2011).

medium at the edge of molecular clouds in star forming regions or diffuse gas, i.e., PDRs.
All these models compute the chemical and physical structure resulting from a coupled treat-

ment of chemistry, radiative transfer, and thermal processes. To account for all these phenomena
and their coupling while maintaining reasonable evaluation times, these models rely on approxi-
mations such as the stationary state or a 1D geometry – except for ProDimo that handles a 2D
geometry, but resorts to other approximations. Despite these approximations, these models are
usually slower and more computationally expensive than the aforementioned codes that address
only a specific subpart of the physics and chemistry.

1.3 The Meudon PDR code

In this section, we give a short overview of the Meudon PDR code 15 (Le Petit et al., 2006).
It is considered state-of-the-art PDR model as it includes many physical phenomena, which also
causes each evaluation to last a few hours. This code is used in the remainder of this thesis
to model each pixel individually in map inversion procedures. It can simulate a large variety of
physical environments, such as diffuse clouds, dense PDRs, diffuse gas in the galactic center,
nearby galaxies, damped Lyman alpha systems, circumstellar disks, etc. Indeed, part of the
observable emissions of each of these environments comes from molecular gas irradiated by UV
photons. In particular, this code permits to study effects such as the radiative feedback of a
newborn star on its parent molecular cloud.

1.3.1 Physics and chemistry taken into account
The Meudon PDR code simulates the physics and chemistry of neutral interstellar gas illu-

minated with a FUV radiation field and computes its stationary state. The cloud is assumed
to be a plane-parallel slab of neutral gas and dust with finite thickness, and is thus modeled
with a one-dimensional geometry – the Meudon PDR code is called a 1D code. From a set of

15. https://ism.obspm.fr
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physical conditions of the cloud, the code iteratively solves large systems of coupled equations
to compute the gas temperature, the chemical abundances and the excitation of species at each
point of an adaptive grid. These equations include radiative transfer, thermal balance and chem-
istry. These intermediate and local results permit for example to compute integrated intensities
comparable with observations. A full evaluation is computationally intensive and typically lasts
a few hours. Figure 1.9 lists some physical phenomena taken into account for each physical aspect.

Radiative transfer
line and continuum
transfer, from the UV to
the microwave domain

Thermal balance

Chemistry
Ion-neutral reactions,
radiative association,
dissociative recombination,
neutral-neutral reactions,
photo-reactions,
dust surface chemistry

Heating
photo-ionization,
cosmic Ray heating,
molecular hydrogen,
etc.

Cooling
free-bound cooling,
free-free cooling,
line emission cooling

Grains
photo electric (heating),
catalysst (chemistry),
absorption and emission
(radiative transfer)

Quantum level
populations

Figure 1.9 – Summary of Meudon PDR code modeling components.

Radiative transfer equations are solved at each position on an adaptive spatial grid in a fully
wavelength-dependent approach. In addition, the angular dependence is handled using a Legendre
polynomial decomposition. Multiple phenomena are accounted for such as the redistribution across
angles by dust scattering and the continuum absorption by dust and gas, including absorption in
UV lines of H and H2. For emission lines, the escape probability approximation of de Jong et al.
(1980) is used. An emitted photon is therefore either absorbed on the spot or leaves the cloud.

The temperature of the gas at each position is solved at thermal balance,

Γ(T ) = Λ(T ), (1.8)

where Γ(T ) and Λ(T ) are the heating rates of all heating and cooling processes, respectively. This
equation is solved at each position of the grid to compute the gas temperatures from the specific
intensity of the obtained radiation field. The heating rate Γ(T ) includes a large range of processes
such as photoelectric heating, collisional de-excitation of UV-pumped H2, photoionization and
photodissociation heating, cosmic ray heating, and exothermic chemical reactions. The cooling
rate Λ(T ) is estimated from the non local thermal equilibrium (non-LTE) excitation in the quantum
levels of the main species by considering radiative and collisional processes as well as chemical
formation and destruction. In total, the rovibrational states are considered for a few tens of
species, and electronic states for some species such as H2. Additional processes can either heat
or cool the gas, such as H2 heating or gas-grain collisions.

Finally, the chemical composition of the gas is computed at each position by solving for the
chemical stationary state of a network of 200 species and 3 000 reactions. In the gas phase, the
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code accounts for two body reactions, photo-reactions – with primary and secondary photons –,
reactions induced by cosmic rays, and some three body reactions. On the surface of dust grains,
adsorption and thermal and non-thermal desorption are included. Finally, in ices, the code includes
two body reactions due to thermal agitation and tunnel effect diffusions. The chemical reaction
network was built combining different sources including data from the KIDA database and the
UMIST database as well as data from articles. For key photo-reactions, cross-sections are taken
from Ewine van Dishoeck’s photodissociation and photoionization database 16 (Heays et al., 2017).

The successive resolution of these three highly coupled aspects – radiative transfer, thermal
balance, and chemistry equations – is iterated until a global stationary state is reached. After
a run, the code provides density profiles of the chemical species and the temperature profiles of
both the grains and the gas. It also outputs the line intensities emerging from the cloud that can
be compared to observations. As of version 7, yet to be released, a total of 5 409 line intensities
are predicted from 40 species such as H2, HD, C+, C, CO, 13CO, C18O, 13C18O, SO, HCO+,
HCN, HNC, CH+, CN or CS.

1.3.2 Input parameters and considered environments

For an input set of physical parameters, the Meudon PDR code computes the structure of the
cloud, emitted line integrated intensities, and the dust continuum intensities. The predicted and
observable intensities can be compared with actual observations to constrain the input physical
parameters. The physical parameters to be estimated in this thesis characterize the radiative
feedback. These parameters are the thermal pressure that describes local conditions, the visual
extinction that quantifies the total amount of matter along the line of sight, and the intensity of
the incident UV radiative field illuminating the surface of the PDR. Parameters associated with
cosmic rays and dust grains are set to default values. Table 1.3 lists these default values.

Table 1.3 – Secondary input parameters in the Meudon PDR code and their default values.

Parameter Value Unit Note

cosmic rays ionization rate 10−16 s−1 Le Petit et al. (2004),
Indriolo et al. (2007)

Dust extinction curve Galaxy – Fitzpatrick and Massa (1990)
RV 3.1 – Fitzpatrick and Massa (1990)
CD = NH/E(B − V ) 5.8 × 1021 cm−2 Bohlin et al. (1978)
Mass grain/Mass gas 0.01 – –
Distribution on grain size a ∝ a−3.5 – Mathis et al. (1977)
Min grain radius amin 10−7 cm –
Max grain radius amax 3 × 10−5 cm –
Turbulent velocity 2.0 km s−1 –

Constant density and constant pressure models – The Meudon PDR code handles con-
stant density and constant pressure models. Constant density models result in large pressure
gradients in the cloud, as the temperature strongly drops in the H / H2 transition region. They
are therefore not very consistent with the stationarity hypothesis. However, they are quite com-
mon in astrophysics as they are easier to interpret. Constant pressure models are more consistent
with the stationarity hypothesis and generally considered more realistic (Marconi et al., 1998;
Lemaire et al., 1999; Allers et al., 2005; Goicoechea et al., 2016; Joblin et al., 2018; Wu et al.,
2018). We restrict ourselves to constant pressure models. However, the thermal pressure is harder
to physically interpret than volume density, which plays a role both in chemistry and radiative

16. https://home.strw.leidenuniv.nl/~ewine/photo/index.html
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transfer – for instance with critical densities.

Total visual extinction – As already mentioned, the Meudon PDR code relies on an adaptive
one-dimensional grid of a plane-parallel slab of gas. The grid of the Meudon PDR is a grid on the
visual extinction AV , which quantifies the amount of matter along the line of sight. The total
depth of the cloud is thus defined with a total visual extinction Atot

V .

Radiation field – The Meudon PDR code permits the use of any incident radiation field,
including a stellar radiation field. For simplicity, in this thesis, we consider the radiation field to
be the Mathis ISRF Mathis et al. (1983) scaled at the front of the cloud by one scalar parameter
denoted radm. The conversion of radm to G0 is done with

G0 = 1.2786
2 radm, (1.9)

where the 1.2786 factor comes from the conversion from the Mathis to Habing ISRF, and the 1
2

factor from the fact that the front face of the cloud is illuminated from the outside of the cloud,
and not from the inside.

1.3.3 Limitations
The geometry simplification can affect integrated intensities and the effective depth of pene-

tration of UV photons. For instance, under an isotropic external radiation field, UV photons should
penetrate deeper in a spherical cloud than in a plane-parallel cloud. Other PDR codes assume
different cloud geometries, e.g., the KOSMA-τ numerical code (Röllig and Ossenkopf-Okada,
2022) assumes a 1D spherical geometry.

The stationarity assumption neglects gas dynamics and non-equilibrium effects. In other words,
the timescales of all physical and chemical processes taken into account must be smaller than
that of the changes in the external conditions, and of the gas dynamics. In a PDR, the physical
processes are dominated by the photodissociation of H2 by UV photons. The H2 photodissociation
rate at the surface of a cloud is 2.9 × 10−11G0 s−1. For G0 = 104, the characteristic time of
H2 photodissociations is about 40 days. As this duration is very short compared to gas dynamics
timescales, the stationarity hypothesis is realistic. However, the UV photons do not penetrate
much beyond the photodissociation front. In deeper clouds, the H2 dissociation is dominated by
cosmic rays. As indicated in Table 1.3, the cosmic ray ionization rate is ≃ 10−16 s−1 (Indriolo
et al., 2007). The corresponding characteristic time is about 300 Myr. Therefore, such clouds
require time-dependent chemistry models.

Finally, the neutral gas assumption means that in the modeled region, hydrogen is either in
its atomic form (H) or its molecular form (H2) but never in its ionized form (H+), even in the
atomic layer, close to the ionization front. Other PDR codes that relax these hypotheses exist.
For instance, the Hydra PDR code (Bron et al., 2018a) relaxes the stationarity and neutrality
assumptions by including gas hydrodynamics and photo-evaporation. However, this code simplifies
the modeling of other phenomena compared to the Meudon PDR code in order to maintain
reasonable computational durations, i.e., a few hours per evaluation.

1.4 Conclusion
The ISM is a complex and inhomogeneous medium that fills the unimaginably large volume

that lies between stars. It is made mostly of hydrogen and helium. It also contains traces of other
elements and small dust grains that play a key role in its chemistry and physics. In this thesis,
we focus on one particular type of environment called photodissociation region (PDR) that lies
at the border between a massive star or cluster of stars and a molecular cloud. Studying PDRs
permits to understand better the impact of radiative feedback from newborn stars on their parent
cloud and its star forming capability.
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Observations with high spatial resolution such as the Orion B map described in Pety et al.
(2017), the OMC-1 map described in Goicoechea et al. (2019), and future observations from
ALMA or the JWST contain much physical information regarding the radiative feedback. In this
thesis, our goal is to extract this information. Our aim is to infer maps of the key physical param-
eters from such large multiline PDR observations. We model PDRs with the Meudon PDR code.
As it iteratively solves large, coupled, and complex non-linear sets of equations, each evaluation of
the Meudon PDR code requires from a few hours to a few days. In Chapter 4, we derive a fast and
accurate neural-network based approximation of the Meudon PDR code to perform fast inference
on large observation maps. In Chapter 5, we propose a new statistical inference algorithm that
exploits this Meudon PDR code approximation, and validate it on synthetic data. In Chapter 6,
this statistical inference algorithm is applied to multiple real observations.
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Chapter 2

Background on Bayesian statistical mod-
eling and inference

“ The theory of probabilities is at bottom
nothing but common sense reduced to
calculus; it enables us to appreciate with
exactness that which accurate minds feel
with a sort of instinct for which of times
they are unable to account. ”

Pierre-Simon Laplace, in Théorie
Analytique Des Probabilités, 1814
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In Chapter 1, we described the interstellar medium (ISM) and some numerical models that can
be used to infer physical parameters from observations. This chapter describes notions and tools
necessary to formulate and solve the inverse problem considered in this thesis – see Chapter 5.
Some of these methods are already popular in ISM studies, as we will show in Chapter 3.

Section 2.1 describes the general Bayesian statistical modeling approach, the associated ran-
dom variables, probability distributions and estimators. Section 2.2 presents two common ap-
proaches for estimator derivation, namely optimization methods and sampling methods. In par-
ticular, methods based on first and second order derivatives are covered to exploit the twice
differentiable log-posterior and address its absence of gradient Lipschitz continuity. Block coor-
dinate algorithms are also described to exploit the natural structure of the parameter Θ. The
sampler proposed in Chapter 5 (Section 5.2) builds on the methods presented in this section.
Finally, Section 2.3 depicts two methods that assess the compatibility of the model with the
observations, namely model selection and model checking.

2.1 Bayesian statistical modeling

This section covers fundamental notions of Bayesian statistical modeling. First, the main
variables and probability distributions involved in statistical modeling are reviewed, including the
likelihood function and posterior distribution. Then, the main estimators are described.

2.1.1 Main random variables and probability distributions

The Bayesian framework is a statistical approach that encodes and describes uncertainty
using random variables and probability distributions. In this context, a probability distribution
indicates a of belief and not a limit of frequencies as in frequentist statistics. Bayesian statistics
exploits random variables to model uncertainty in any quantity of interest such as observations,
physical parameters, or model hyperparameters. For a review on random variables and probability
distributions, see Le Gall (2022).

There are two main random variables of interest in Bayesian statistics: the physical parameters
to infer Θ ∈ RN×D and the observation Y ∈ RN×L. Assuming an observation model M, the
Bayes theorem states that the conditional probability density functions (pdfs) of these variables
verify

π (Θ|Y, M) = π (Y|Θ, M) π (Θ)
π (Y|M) , (2.1)

where π(Y|Θ, M) is the likelihood function, π(Θ) is the pdf of the prior distribution, π(Θ|Y, M)
is the pdf of the posterior distribution, and π(Y|M) is the Bayesian evidence.

The likelihood function π(Y|Θ, M) evaluates how well the parameter Θ and the model M
reconstruct the observations Y. It is the pdf of a distribution on the observation Y given a fixed
value for the physical parameters Θ. In inference, the observation Y is fixed and the free variable
is Θ. The denomination “likelihood function” emphasizes that Θ 7→ π(Y|Θ, M) is not a pdf.
The likelihood function is derived from an observation model M = (f , A) that groups a forward
model f , generally a numerical simulator in astrophysics, and a model noise A such that

Y = A (f(Θ)) . (2.2)
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Details for astrophysicists 2.1: Example: Gaussian additive and uncorrelated noise

For a Gaussian additive and uncorrelated noise, the observation model in Eq. 2.2 reads

∀n ∈ [[1, N ]], ℓ ∈ [[1, L]], ynℓ = fℓ(θn) + ε
(a)
nℓ , ε

(a)
nℓ ∼ N (0, σ2

nℓ). (2.3)

Using the pdf of a Gaussian distribution, this observation model translates to the likelihood
function

π(Y|Θ, M) ∝
N∏

n=1

L∏
ℓ=1

exp
[
− 1

2σ2
nℓ

(fℓ(θn) − ynℓ)2
]

, (2.4)

and to the negative log-likelihood function

− ln π(Y|Θ, M) =
N∑

n=1

L∑
ℓ=1

1
2σ2

nℓ

(fℓ(θn) − ynℓ)2 , (2.5)

up to an additive constant. The χ2 loss function, widespread in ISM studies, is equivalent
to the negative log-likelihood function in Eq. 2.5 for this specific case of Gaussian additive
and uncorrelated noise. The negative log transform turns the product to a sum and
removes the exponential, which makes derivative computations easier.

Note that in this thesis, the natural logarithm of x ∈ R is denoted ln x. This notation is
preferred to the usual log to avoid any confusion between logarithms in base e and 10.

In this thesis, the forward model f is set to the Meudon PDR code, introduced in Chap-
ter 1 (Section 1.3). This forward model maps physical parameter vectors θ ∈ RD to observables
fℓ(θ) ∈ RL. Therefore, evaluating the Meudon PDR code for a map Θ = (θn)N

n=1 requires N
evaluations: f(Θ) = (f(θn))N

n=1. To accelerate the inference procedure, we proposed an approxi-
mation of the Meudon PDR code based on an artificial neural network with controlled error. The
derivation of this approximation is the core of Chapter 4. For a review of how numerical models
are handled in inference procedures in ISM studies, see Chapter 3 (Section 3.1.1). Similarly,
Section 3.4 introduces the noise model considered in this thesis. For a review on noise models
used in astrophysics, see Section 3.1.2.

The prior distribution π (Θ) encodes prior information on the physical parameters of interest
Θ. It may be non-informative, such as a uniform distribution on a set of parameters, or more
informative, e.g., to include the results of other trusted studies or to constrain acceptable solutions
to be physically meaningful. Similarly to the likelihood function, using the negative log-prior
− ln π(Θ) simplifies computations. In the optimization framework, − ln π(Θ) is often called a
regularization function.

Chapter 3 (Section 3.1.3) reviews prior distributions used in ISM studies. Chapter 5 (Sec-
tion 5.1.2) describes the prior distribution considered in this thesis.

The posterior distribution π (Θ|Y, M) combines the likelihood function and the prior dis-
tribution. Like the prior distribution, it is a distribution on Θ. The posterior describes the
parameters of interest knowing the observations. It is the distribution from which estimators of
the physical parameters Θ are extracted, as well as the associated uncertainty. The posterior dis-
tribution associated with the inverse problem considered in this thesis is introduced in Chapter 5
(Section 5.1.3).

In some simple cases, the likelihood function and prior distribution enjoy a conjugacy rela-
tion (Robert and Casella, 2004, chapter 1). The posterior distribution is then an element of a
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parametric family of distributions with closed-form formulae for its parameters. However, these
simple cases are very limited and do not occur in astrophysical inference problems. For instance,
there exists no conjugacy relation when the forward model is non-linear.

The Bayesian evidence π (Y|M) is a normalization constant that does not depend on the
physical parameter Θ and that is generally challenging to evaluate. It is also called marginal
likelihood, as it marginalizes over the physical parameter Θ

π (Y|M) =
∫

π (Y|Θ, M) π (Θ) dΘ. (2.6)

Many approaches that solve inverse problems require the assumption of a model M = (f , A) 1.
The Bayesian evidence permits to assess the consistency of the model with the observations. It is
a crucial quantity for Bayesian model selection, as we will discuss in Section 2.3.1. However, it is
not always necessary for statistical inference. In inference, Eq. 2.1 is therefore often simplified to

π (Θ|Y, M) ∝ π (Y|Θ, M) π (Θ) , (2.7)

where ∝ means “proportional to”, i.e., equal up to a multiplicative constant independent of Θ.
The model M remains unchanged during statistical inference. Writing explicitly the dependence
to the model M is useful when evaluating its relevance or comparing multiple models. Otherwise,
this dependence is not explicitly written to avoid heavy notations. Therefore, Eq. 2.7 will often
be simplified to

π (Θ|Y) ∝ π (Y|Θ) π (Θ) . (2.8)

Hyperparameters can have a dramatic impact on the shape of the posterior distribution.
They can appear in both the prior distribution and the likelihood function. For instance, a
Gaussian prior on Θ would be defined with a mean vector and a covariance matrix. Similarly,
the likelihood function obtained with a Gaussian additive noise model is defined with a noise
covariance matrix. These hyperparameters greatly influence the shape of the posterior distribution.
Hierarchical models (Gelman et al., 2015, chapter 5) enable inferring simultaneously both Θ and
hyperparameters from the observations Y. For now, we assume hyperparameters set to constant
values, and restrict ourselves to non-hierarchical models.

2.1.2 Estimators
Two main types of estimators can be defined from the likelihood function and the posterior

distribution: some are solutions of an optimization problem, while others are defined as an integral.

Estimators solutions of an optimization problem – The point that maximizes the likelihood
function is by definition the point that best reproduces observations. It is called the maximum
likelihood estimator (MLE), and denoted Θ̂MLE. It is a natural estimator with good theoretical
properties (Robert and Casella, 2004, chapter 1). Similarly, the posterior mode is the point
that best balances observation reproduction and consistency with prior knowledge. It is called
the maximum a posteriori (MAP), and denoted Θ̂MAP. The MLE and the MAP are defined as
solutions of a maximization problem, often converted to a minimization problem in log-scale:

Θ̂MLE ∈ arg max
Θ∈RN×D

π (Y|Θ) = arg min
Θ∈RN×D

− ln π (Y|Θ) , (2.9)

and

Θ̂MAP ∈ arg max
Θ∈RN×D

π (Θ|Y) = arg min
Θ∈RN×D

− ln π (Θ|Y) . (2.10)

1. An example of approach that does not rely on the assumption of a model resorts to end-to-end neural networks
– see e.g., conditional invertible neural networks (Ardizzone et al., 2019).
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Details for astrophysicists 2.2: Well-posed and ill-posed inverse problems

Inverse problems are usually divided in two classes: well-posed problems and ill-posed
problems.

In well-posed problems, the observations alone are sufficiently informative to yield physical
parameter accurate estimations. In astrophysics, these problems are said to be well
constrained. The MLE is very useful in such problems.

Conversely, in ill-posed problems, the observations may come in low SNR regime, or the
observables may not be good tracers of the physical parameter of interest. In astrophysics,
such problems are called not constrained or badly constrained. In such cases, the MLE
leads to unstable results. By exploiting regularizing prior knowledge, the MAP can be more
robust to noise and to non-linearities.

Estimators defined as an integral – Many estimators are defined as an integral, including
the posterior mean and covariance. The posterior mean E[Θ|Y, M] is the point estimate that
minimizes the mean squared error E[∥Θ − Θ̂∥2

2 | Y, M], i.e., the average squared distance with
other points Θ drawn from the posterior. This estimator is therefore usually called the minimum
mean square error (MMSE), and denoted Θ̂MMSE. The posterior covariance Cov(Θ|Y, M) per-
mits the detection of degeneracies between physical parameters 2. In general, multiple estimators
can be written as the integral of a function g on Θ with respect to the posterior,

E [g(Θ)|Y] =
∫

g(Θ) π(Θ|Y) dΘ. (2.11)

For instance, the posterior mean E [Θ|Y] corresponds to g : Θ 7→ Θ, i.e., the identity function.
Similarly, the posterior covariance matrix corresponds to g : Θ 7→ (Θ−E [Θ|Y])(Θ−E [Θ|Y])T .

A more accurate uncertainty quantification on physical parameters than the posterior covari-
ance can be obtained with a credible region (Pereyra, 2017). A credible region Cα with confidence
level 1 − α verifies

P [Θ ∈ Cα] =
∫

1Cα(Θ) π(Θ|Y)dΘ = 1 − α. (2.12)

A posterior distribution admits infinitely many credible regions Cα. The highest posterior density
region C∗

α is the credible region with minimum volume. It is defined as

C∗
α = {Θ | − ln π(Θ|Y) ≤ cα} (2.13)

where cα ∈ R is set so that Eq. 2.12 is verified with C∗
α.

For one parameter θnd, a credibility interval either corresponds to the highest posterior density
region π(θnd|Y) – with all other parameters being marginalized – or to an interval defined from
percentiles. In this work, the 1 − α credibility interval is defined with the α/2 and 1 − α/2
percentiles to simplify the presentation of results. These percentiles can be obtained with the
inverse cumulative density function (cdf) of π(θnd|Y). Note that when the marginalized posterior
π(θnd|Y) is unimodal and symmetric, both definitions coincide.

2.2 Statistical inference
This section covers fundamental methods of statistical inference that numerically compute

the aforementioned estimators. Estimators defined as a minimum of a loss function are evaluated
2. A degeneracy between physical parameters corresponds to an ill-conditioned Hessian matrix. The notion of

condition number of a matrix will be introduced in Section 2.2.1.2.
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through optimization methods. Estimators defined with potentially high dimensional integrals
are approximated with Monte Carlo (MC) estimators, which requires sampling from the posterior
distribution. Unlike the optimization approach, this sampling approach thus permits the use of
one algorithm to evaluate multiple estimators. It can therefore extract more information from the
posterior distribution, in particular regarding uncertainty. In this thesis, due to the absence of
ground truth in ISM studies, we address inverse problems with a sampling approach.

The optimization approach, that we do not use for inference, is presented for three reasons.
First, it is more intuitive than the sampling approach, and many links can be made between their
respective methods. We believe that knowing optimization methods simplifies the understanding
of sampling methods for the unfamiliar reader. Second, some proposed sampling methods are
inspired from optimization methods that thus need to be introduced. Finally, as we will show in
Chapter 3 (Section 3.2.1), optimization methods are widely exploited in ISM studies.

This section only covers methods that are used to derive the inference algorithm proposed
in Chapter 5. In particular, variational Bayes inference and proximal methods are not reviewed.
Variational Bayes inference is an intermediate approach between optimization and sampling. It
consists in projecting the true posterior onto a class of simple distributions. This target class is
generally chosen so that it is easy to extract information. For instance, for a Gaussian approxima-
tion, the mean vector and covariance matrix are adjusted to approximate the posterior distribution.
Other insights such as credibility intervals are then very simple to derive from the approximating
distribution. See e.g., Pereyra et al. (2016) for a review. These methods require prior knowledge
of the shape of the posterior distribution to select a relevant class of approximating distribution.
Because of the non-linear and non gradient Lipschitz continuous forward model, and of the com-
plex noise model, we do not have such prior knowledge. Besides, the quality of the approximation
greatly impacts the relevance of the provided uncertainty quantification. Therefore, we decided
not to consider these methods, and do not introduce them formally in this thesis.

Proximal gradient descent and proximal sampling algorithms (Pereyra et al., 2016) are now
widespread methods that permit to address cases where the posterior distribution is not differen-
tiable. In the inverse problem considered in this thesis, the log-posterior is twice differentiable.
Algorithms based on the proximal operator are therefore not covered in this thesis.

2.2.1 Evaluating estimators defined as solutions of optimization problems

Some estimators Θ̂ are defined as the minimum of a loss function, denoted L, as described in
the previous section. For instance, this loss function L corresponds to the negative log-likelihood
for the MLE and to the negative log-posterior for the MAP. In most cases, such estimators
cannot be written in closed-form. They are therefore numerically approximated. The most naive
method is to look for the precomputed model that leads to the lowest loss value among a set
of precomputed models. This method is usually called a grid search. It scales very poorly as
the number of required precomputed models increases exponentially with the dimension. A wide
variety of methods permit better and cheaper evaluation of these two point estimations. In the
following, we describe the main alternative method, the gradient descent (GD) algorithm, and its
preconditioned and block coordinate variants.

2.2.1.1 Gradient descent (GD) algorithm

In its simplest version, the gradient descent (GD) algorithm starts at some state Θ(0), and
updates it with

Θ(t) = Θ(t−1) − η∇L
(
Θ(t−1)

)
, (2.14)

with η > 0 a step size hyperparameter.
The matrices Θ ∈ RN×D are converted to vectors of RND in lexicographic order to evaluate

the gradient. In the remainder of this thesis, this vector form of the physical parameter Θ is
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considered whenever a first or second order derivative is used. Iterations of the GD algorithm are
repeated until some stopping criterion is satisfied. This stopping criterion typically corresponds to
a maximum number T of iterations or to a lower threshold on the gradient norm ∥∇L

(
Θ(t)

)
∥

or, equivalently, on the distance of two successive iterates ∥Θ(t) − Θ(t−1)∥. Algorithm 2.1 sum-
marizes the GD algorithm.

Algorithm 2.1: Gradient descent (GD) algorithm
Input: Starting point Θ(0), step size η > 0.

1 t = 0
2 while Stopping criterion not satisfied do
3 Update Θ(t) with Θ(t−1) and ∇L // using Eq. 2.14, Eq. 2.17 or Eq. 2.22
4 t = t + 1

Output: Last iterate Θ(t)

The gradient descent (GD) algorithm (Shalev-Shwartz and Ben-David, 2014, chapter 14) is
generally preferred to grid search, as it generally yields better estimates Θ̂, i.e., estimates with
lower loss value L

(
Θ̂
)
, with less function evaluations. This advantageous comparison is due to

two strengths of the GD algorithm. First, it exploits more information from the loss function
L, with its first and potentially second order derivative information. Second, its iterative nature
exploits past evaluations of the loss functions to progressively converge to a critical point, poten-
tially a local or global minimum.

Convergence properties – GD algorithms converge to critical points, i.e., points Θ such
that ∇L (Θ) = 0, under different sets of assumptions. Theoretical guarantee of convergence can
be obtained for a loss function whose gradient ∇L is a Lipschitz continuous function, i.e., if there
exists a constant β > 0 such that

∀Θ1, Θ2, ∥∇L (Θ1) − ∇L (Θ2) ∥ ≤ β∥Θ1 − Θ2∥. (2.15)

Such loss functions L are called gradient Lipschitz continuous, with Lipschitz constant β.

Details for astrophysicists 2.3: Two examples for gradient Lipschitz continuity

Example 1: gradient Lipschitz continuous – The gradient of the x ∈ R 7→ x2 is
x 7→ 2x, which admits 2 as a Lipschitz constant. The function x ∈ R 7→ x2 is therefore
gradient Lipschitz continuous with constant β = 2.

Example 2: non gradient Lipschitz continuous – The gradient of x ∈ R 7→ exp(x2)
is x 7→ 2x exp(x2), which does not admit a Lipschitz constant. This second function is
therefore not gradient Lipschitz continuous.

For non-convex and gradient Lipschitz continuous loss functions, convergence to a critical
point is guaranteed when the step size η satisfies η < 2/β (Beck, 2017, Theorem 10.15) 3.
Smaller step sizes lead to slower convergence, and the GD algorithm does not converge for
values larger than the 2/β limit. In many imaging inverse problems, the log-posterior is gradient
Lipschitz continuous with a known Lipschitz constant. In general, however, the log-likelihood and

3. This theorem holds for proximal gradient descent. As the gradient descent algorithm is a special case of
proximal gradient descent, the result also holds for gradient descent.
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log-posterior are not gradient Lipschitz continuous, or the constant is either hard to compute or
too large to be of any practical use.

2.2.1.2 Preconditioned variants

The update step from Eq. 2.14 can be prohibitively slow to converge, especially when Θ ∈
RN×D lives in high dimension or when the dynamics of its components θnd – n ∈ [[1, N ]],
d ∈ [[1, D]] – are very different. In this section, we introduce the condition number, that in-
dicates how slowly the standard GD will converge. Then, we describe preconditioning techniques
that accelerate convergence by locally reshaping the loss function.

Condition number and preconditioning – The condition number κ of the Hessian matrix
∇2L (Θ) quantifies the difference in dynamic ranges between components θnd or their combina-
tions. It is defined as

κ
(
∇2L (Θ)

)
= σmax

(
∇2L (Θ)

)
σmin (∇2L (Θ)) ≥ 1, (2.16)

where σmax and σmin denote the maximal and minimal singular values of a matrix, respectively.
These singular values are the absolute value of the eigenvalues. When κ ≃ 1, the Hessian matrix
is said to be well-conditioned. It equals one, e.g., for the identity matrix. Conversely, when κ ≫ 1,
the Hessian matrix is said to be ill-conditioned.

Figure 2.1 shows two ellipses, each corresponding to a contour level of a quadratic function,
i.e., with constant Hessian matrices. In Figure 2.1a, the condition number is close to 1. There is
a slight anisotropy, but the dynamic ranges are roughly the same for both variables. Conversely,
in Figure 2.1b, the condition number is 8. There is a strong anisotropy, and the dynamic ranges
are not the same for the two variables. The GD algorithm performs best in the first case, and
converges slowly in the second case – see e.g., Nocedal and Wright (2006, theorem 3.4).

(a) Low condition number (1.2). (b) High condition number (8).

Figure 2.1 – Illustration of the condition number of the Hessian matrix for two two-dimensional
quadratic functions. The ellipse corresponds to a contour line of the quadratic function.

The goal of preconditioning is to transform Figure 2.1b into Figure 2.1a. To do so, a precon-
ditioning matrix G(t−1) = G(Θ(t−1)) ∈ RND×ND added to Eq. 2.14

Θ(t) = Θ(t−1) − η G(t−1)∇L
(
Θ(t−1)

)
. (2.17)

In presence of a preconditioning matrix G(t−1), the condition number is measured on the new
Hessian G(t−1)∇2L

(
Θ(t−1)

)
. The goal when resorting to a preconditioner is thus to decrease

as much as possible the condition number. In Guggenheimer et al. (1995), the authors provide
a general upper bound on the condition number of an invertible matrix. They also include an
analysis of situations where their bound is tight.
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The inverse Hessian matrix G(t−1) =
[
∇2L

(
Θ(t−1)

)]−1
is the natural choice of precon-

ditioner. It yields the Newton algorithm (Nocedal and Wright, 2006, chapter 10) applied to ∇L.
By definition the Newton algorithm looks for zeros of a function. Applying it on ∇L boils down
to finding critical points of the loss function L. With this preconditioner, the condition num-
ber equals exactly 1. The modified Hessian matrix is thus perfectly conditioned. However, this
preconditioner suffers from three main drawbacks. First, it can only be used when the Hessian
matrix is invertible. Second, the Newton algorithm requires evaluating and inverting the full Hes-
sian matrix, and then applying a matrix-vector product with the gradient. These three steps are
very expensive, especially in high dimensions. A faster and more stable implementation directly
evaluates the vector θ(t) − θ(t−1) by considering it as the solution of a linear system:[

∇2L
(
Θ(t−1)

)] (
θ(t) − θ(t−1)

)
= −∇L

(
Θ(t−1)

)
, (2.18)

but remains expensive in high dimensions. Lastly, it can suffer from instabilities for loss functions
that are not gradient Lipschitz continuous.

The Gauss-Newton and Levenberg-Marquardt algorithms (Nocedal and Wright, 2006,
chapter 10) are preconditioned GD algorithms. As we will show in Chapter 3, Levenberg-
Marquardt is quite common in ISM studies. These two algorithms resort to a cheaper and
invertible approximation of the inverse Hessian that does not require the evaluation of second
order derivatives. They enjoy similar convergence results and convergence rate as the Newton al-
gorithm. However, they are specialized to non-linear least squares problems, i.e., to loss functions
L of the form

L : Θ ∈ RND 7→
N∑

n=1

L∑
ℓ=1

1
2σ2

nℓ

(fℓ(θn) − ynℓ)2 (2.19)

The Gauss-Newton algorithm uses G(t−1) =
[
∇L (Θ) ∇L (Θ)T

]−1
to approximate the Hessian

matrix. This approximation is symmetric by construction, and positive definite as long as the ma-
trix ∇L (Θ) ∇L (Θ)T ∈ RND×ND is full rank. This condition requires L ≥ D, i.e., the number
L of observables per pixel needs to be greater or equal to the dimension D of the parameter θ per
pixel. Though this condition is usually verified in inverse problems, it is not sufficient to guarantee
this matrix is invertible. In some cases, the Gauss-Newton algorithm thus suffers from numerical
instabilities, especially far from a local minimum. The Levenberg-Marquardt algorithm “damps”
this approximation of the Hessian matrix: G(t−1) =

[
∇L (Θ) ∇L (Θ)T + ϵIND

]−1
, with IND

the ND × ND identity matrix and ϵ ≥ 0 a damping parameter. Using large enough values of
ϵ ensures better numerical stability than Gauss-Newton. For large ϵ values, this preconditioner
boils down to the identity matrix, which is equivalent to the standard GD in Eq. 2.14. For low
values, one recovers the Gauss-Newton preconditioner. In practice, the damping parameter ϵ is
often adjusted during the optimization procedure to benefit from the gradient descent stability in
the first iterations and from the Gauss-Newton algorithm speed in the last iterations. Similarly to
the Newton algorithm, the Gaussian-Newton and Levenberg-Marquardt algorithms involve either
the inversion of a dense matrix and matrix-vector products or solving a linear system, which are
both expensive in high dimensions.

Quasi-Newton optimization algorithms such as BFGS or limited memory BFGS (L-BFGS),
propose efficient approximations of the inverse Hessian matrix for more general loss functions (No-
cedal and Wright, 2006, chapter 6). In particular, the limited memory BFGS preconditioner does
not require any matrix inversion and rely on vector-vector products only. Therefore, it can be
used even in high dimensional settings.

Diagonal preconditioners for neural network training – Finally, neural networks training
involves multiple dedicated diagonal preconditioners – see Chapter 4 for more details on neural
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networks. In the deep learning community, these preconditioners are known as “adaptive learning
rates”. They are dedicated to non-convex optimization in extremely high dimensions, i.e., O(106)
and higher. Such preconditioners include the adaptive gradient algorithm (AdaGrad) (Duchi et al.,
2011)

G(t−1) = diag
( 1

ϵ +
√

v(t−1)

)
, with v(t−1) =

t−1∑
τ=1

[
∇L

(
Θ(τ)

)]2
, (2.20)

and the root mean squared propagation (RMSProp) (Tieleman and Hinton, 2012)

G(t−1) = diag
( 1

ϵ +
√

v(t−1)

)
, with v(t−1) = av(t−2) + (1 − a)

[
∇L

(
Θ(t−1)

)]2
, (2.21)

where all exponentiations are taken element-wise, a ∈]0, 1[ is an exponential decay rate, and
ϵ > 0 is a damping factor that prevents divisions by zero – typically, ϵ = 10−5. The AdaGrad
preconditioner accumulates the squared gradients, causing the components of v to diverge. Con-
versely, RMSProp progressively forgets past gradients with exponential decay rate ϵ. As these two
preconditioners are diagonal, they are simple to invert and only involve vector-vector products.
In Dauphin et al. (2015), the authors propose another diagonal preconditioner that considerably
decreases the upper bound on the condition number from Guggenheimer et al. (1995). They also
show that RMSProp is very similar to their preconditioner, which partially explains the perfor-
mance of RMSProp observed in practice.

As the inverse problem we consider in this thesis is high dimensional, the full rank precon-
ditioners from the Newton, Gauss-Newton and Levenberg-Marquardt algorithms are too compu-
tationally expensive to be considered. L-BFGS and RMSProp scale better while enforcing low
condition numbers. Section 2.2.2.5 describes how these two preconditioners can be exploited in
sampling algorithms.

2.2.1.3 Block coordinate variant

In high dimensional settings, evaluating the full gradient at once may be quite costly, both
in time and memory. In such cases, one can adopt a divide-and-conquer strategy by dividing the
large physical parameter Θ into J smaller blocks, e.g., Θ = (Θj)J

j=1 (Pereyra et al., 2016). This
division replaces the computation of the full gradient vector ∇L by the smaller gradient vector
∇jL with respect to part Θj . At step t, instead of being performed at once, the updated of
iterate Θ(t−1) is divided into a succession of J updates of its parts, with

Θ(t)
j = Θ(t−1)

j − η∇jL
(
Θ(t)

1 , Θ(t)
2 , . . . , Θ(t)

j−1, Θ(t−1)
j , . . . , Θ(t−1)

J

)
. (2.22)

Considering these faster and lighter individual and alternating updates typically speeds up in-
dividual updates and can lighten memory requirements. The updates for each part j can be
combined with preconditioning for faster convergence. The update order of the blocks j can
be defined either deterministically or stochastically. Besides, a random activation of blocks at
each step can lead to a stochastic estimate of the full gradient, yielding a stochastic gradient
descent algorithm (Pereyra et al., 2016). Such division of the parameter space typically comes at
the price of slower convergence to a critical point in terms of number of iterations, especially in
case of degeneracy between components Θj . See for instance Chouzenoux et al. (2016) for an
application.

Limitations of optimization-based inference

Convergence to the global minimum for non-convex loss function – Until now, we have
described the GD algorithm, its preconditioned variant and its block coordinate variant. At best,
these algorithms are guaranteed to converge to a critical point – see e.g., Theorem 10.15 from Beck
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(2017). However, the MLE and MAP are defined as global minima of their twice differentiable
loss functions L. When L is in addition convex, any critical point is a global minimum. However,
the loss functions considered in this thesis are non-convex. Such functions have potentially many
saddle points and local minima with higher loss values than the global minimum. In practice,
some non-convex preconditioned variants such as RMSProp escape quickly from the neighborhood
of saddle points and reach a local minimum (Dauphin et al., 2015). However, the reached local
minimum may have a high loss value. GD algorithms usually fail to escape from such local minima.

A first solution to compensate for this effect is to launch the chosen minimization algorithm
many times with different initial states. For high dimensional Θ, this solution requires numerous
and potentially costly runs. This is also true in low dimensions when the loss function contains
many local minima. Meta-heuristics form an alternative class of algorithms that addresses this
multimodality issue. By proposing random candidates, they can escape from local minima with
high loss value. In general, they converge to a local minimum with a loss value close to that of
the global minimum. See Section 2.A.1 for more details on these methods.

Lack of uncertainty quantification – Estimators defined as solutions of an optimization
problem do not naturally come with an uncertainty description. Some dedicated methods such
as the Cramér-Rao bound propose approximate uncertainty quantification from a point estimate,
but rely on strong hypotheses on the posterior, namely unimodality or Gaussianity.

With a point estimate Θ̂, one can derive uncertainties on predictions of reproduced observa-
tions Ỹ|Θ̂. These uncertainties can be defined using the noise model from the likelihood in inverse
problems. In machine learning, these uncertainties can also be defined without assuming any noise
model e.g., with quantile regression (Koenker, 2005) or conformal prediction (Angelopoulos and
Bates, 2022). We do not cover these distribution-free uncertainty quantification approaches in
this thesis, as our goal is to provide uncertainties on the physical parameters Θ.

2.2.2 Approximating integrals with Monte Carlo estimators

As we showed in Section 2.1.2, some estimators can accurately quantify the uncertainty
on physical parameters Θ. These estimators are defined as an integral of a function g on Θ
over the posterior distribution. In this section, we first introduce Monte Carlo (MC) estimators
that approximate the integral using samples of the posterior distribution. Then, we present
Markov chain Monte Carlo (MCMC) algorithms, including the widespread Metropolis-Hastings
(MH) algorithm and Metropolis adjusted Langevin algorithm (MALA). Preconditioned and block
coordinate variants are also presented. Finally, the multiple-try Metropolis (MTM), which extends
the MH algorithm by generating multiple candidates at each iteration instead of one, is presented.

The sampler proposed in Chapter 5 (Section 5.2) builds on the algorithms presented in this
section. It combines two sampling kernels. The first addresses the log-posterior gradient Lipschitz
regularity issue. It builds on preconditioning to explore the parameter space more efficiently. The
second addresses the posterior multimodality difficulty. It performs block coordinate updates and
generates multiple candidates for each block to improve mixing properties.

Additional sampling algorithms dedicated to multimodal distributions are presented in Ap-
pendix 2.A. Three classes of algorithms are considered: adaptations of meta-heuristics to MCMC
algorithms, exploitation of prior knowledge of the modes localization, and nested sampling. We do
not use these algorithms to derive the proposed sampler. However, they are popular in interstellar
medium studies, as we will show in Chapter 3 (Section 3.2.2). Besides, we will compare these
algorithms to the proposed sampler in Chapter 5 (Section 5.4).
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2.2.2.1 Monte Carlo (MC) estimators

In case of no conjugacy relation, two main approaches permit to numerically evaluate the
integral in Eq. 2.11, reminded here,

E [g(Θ)|Y] =
∫

g(Θ) π(Θ|Y) dΘ. (2.23)

The first approach relies on a deterministic quadrature of the parameter space, i.e., on a finite
set of points with deterministic positions. The posterior pdf is then evaluated on each point.
The integration is performed using Riemannian integration, or more accurate methods such as
the trapezoidal rule or Simpson’s rule. This approach is efficient in low dimensions (Robert and
Casella, 2004, chapter 1). However, the number of points in the quadrature increases exponen-
tially with the dimension. This method has already been applied in ISM studies, as detailed in
Chapter 3 (Section 3.2.2).

The second approach relies on a stochastic quadrature of the parameter space. It first gen-
erates samples Θ(t) from the posterior distribution. Estimators are then evaluated as empirical
means of the g

(
Θ(t)

)
:

E [g(Θ)|Y] ≃ 1
TMC

TMC∑
t=1

g
(
Θ(t)

)
, Θ(t) ∼ π (Θ|Y) , t = 1, . . . , TMC. (2.24)

Such estimators are called Monte Carlo (MC) estimators (Robert and Casella, 2004, chapter 3)
– hence the notation “MC” for TMC.

For independent and identically distributed (i.i.d.) samples drawn from the posterior, the law
of large numbers guarantees that

lim
TMC→∞

1
TMC

TMC∑
t=1

g
(
Θ(t)

)
= E [g(Θ)|Y] , (2.25)

and the central limit theorem (CLT) describes the distribution on the error of this empirical mean
compared to the true one 1

TMC

TMC∑
t=1

g
(
Θ(t)

)
− E[g(Θ)|Y]

 D−−−−−−→
TMC→+∞

N
(

0,
1

TMC
Cov [g(Θ)|Y]

)
, (2.26)

where the convergence is in distribution and Cov [g(Θ)|Y] is a fixed covariance matrix, generally
unknown. Essentially, the CLT shows that an MC estimator built with i.i.d. samples converges
with speed 1/

√
TMC. The variances in Cov [g(Θ)|Y] scale polynomially with the dimension of

the parameter space. The sampling approach therefore scales much better than deterministic
integration, at the condition of efficient sampling of the posterior distribution.

2.2.2.2 From Monte Carlo to Markov chain Monte Carlo (MCMC) methods

There exists no efficient algorithm that draws independent samples from an arbitrary posterior
distribution. Rejection sampling (Robert and Casella, 2004, chapter 2) can in principle draw
independent samples from any posterior distribution. It generates candidates according to a
proposal distribution and accepts or rejects them with a certain acceptance probability. In practice,
the acceptance probabilities are prohibitively small in high dimensional settings with a complex
model.

Some alternative methods generate correlated samples from which MC estimators can be
evaluated. Despite the correlation between samples, MC estimators built from Markov chains enjoy
similar convergence results as MC estimators built from independent samples. Such algorithms
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include nested sampling, sequential MC (SMC) and Markov chain Monte Carlo (MCMC) methods.
Nested sampling and SMC are widespread in astrophysics, but are not used directly in this thesis.
They are presented in Appendix 2.A. They both build on or rely on MCMC methods.

An MCMC algorithm (Robert and Casella, 2004, chapters 6 and 7) generates a Markov chain
whose stationary distribution is the posterior distribution. The goal is to generate a correlated set
of samples from the posterior distribution to evaluate MC estimators (Eq. 2.24). To do so, each
MCMC algorithm relies on a different transition kernel K : RN×D × RN×D → R+. The MCMC
class gathers a wide variety of algorithms that can tackle problems with diverse sets of properties.

Burn-in phase – A Markov chain generated with an MCMC algorithm contains two regimes.
The chain is initialized with a starting point Θ(0). At first, it is in a transient regime, usually
called the burn-in phase, where iterates are close to Θ(0) and evolve towards high probability
regions. When it reaches a high probability region, the Markov chain enters a stationary regime,
in which the elements Θ(t) of the chain can be considered as samples of the posterior. In partic-
ular, these samples are considered independent of Θ(0). The MC estimators are evaluated with
these samples. The first TBI ≥ 1 iterates associated with the burn-in phase are removed to avoid
biasing estimators. A good transition kernel K thus reaches quickly the posterior high probability
region and explores it efficiently.

Convergence properties 4 – The convergence of the Markov chain to the posterior distri-
bution and of the associated MC estimators to the true values are difficult to establish. Three
properties are central. First, a Markov chain admits an invariant distribution. An invariant distri-
bution π verifies {

Θ(1) ∼ π

Θ(2) ∼ K(Θ(1), ·)
=⇒ Θ(2) ∼ π. (2.27)

The detailed balance is a sufficient condition to establish that the posterior distribution is the
invariant distribution of a Markov chain. A transition kernel K verifies the detailed balance
property with the posterior if and only if

∀Θ(1), Θ(2) ∈ RN×D, K
(
Θ(1), Θ(2)

)
π(Θ(1)|Y) = K

(
Θ(2), Θ(1)

)
π(Θ(2)|Y) (2.28)

A Markov chain with such a transition kernel is reversible and admits the posterior as invariant
density (Robert and Casella, 2004, Theorem 6.46).

Second, the ergodicity of a Markov chain guarantees the asymptotic convergence of the
Markov chain to its invariant with respect to a distance on probability distributions, the total
variation. In particular, this result holds for any starting point Θ(0). It also guarantees that
MC estimators asymptotically converge to their true values, i.e., that the law of large num-
bers (Eq. 2.25) applies. The ergodicity theorem (Robert and Casella, 2004, Theorem 6.63) states
that a sufficient condition for ergodicity is for the chain to be Harris recurrent. We now provide
an intuition of the definition of Harris recurrence – see Robert and Casella (2004, Definition 6.32)
for the exact definition. The irreducibility of a Markov chain means that its transition kernel K
allows for a transition from any Θ(1) ∈ RN×D to any Θ(2) ∈ RN×D, potentially with multiple
steps. Besides, for any subset of RN×D of non-zero measure, if the transition kernel K permits to
remain in the subset with non-zero probability, the chain is said to be aperiodic. The recurrence
of a Markov chain means that the expected number of visits of any subset of RN×D of non-zero
measure is infinite. From Robert and Casella (2004, Theorem 6.30), an irreducible chain is either
recurrent or transient. The Harris recurrence is a stronger recurrence property for an irreducible
chain in which the probability of visiting any subset of RN×D of non-zero measure an infinite
number of times is exactly 1.

4. This paragraph contains mathematical details that are not mandatory for the remainder of the thesis.
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Third, the speed of convergence of a Markov chain to its invariant distribution permits the
derivation of stopping rules for required precision levels. There are two main characterizations
of the speed of convergence for Markov chains. The first is geometric ergodicity (Robert and
Casella, 2004, Definition 6.54). In essence, it ensures that an extended total variation distance
between the Markov chain and its invariant distribution decreases at least geometrically. The sec-
ond, uniform ergodicity (Robert and Casella, 2004, Definition 6.58), enforces a stronger condition
on the rate of geometric convergence. Both conditions can be associated with a CLT (Eq. 2.26)
- see Robert and Casella (2004, Theorems 6.67 and 6.77). A third condition permits to derive
a CLT requires the Markov chain to be aperiodic, irreducible and reversible with the posterior as
invariant distribution.

CLT and effective sample size (ESS) – In the context of Markov chains, the three previous
CLTs yield, for a scalar component i of function g, 1

TMC

TMC∑
t=1

gi

(
Θ(t)

)
− E[gi(Θ)|Y]

 → N
(

0,
γ2

gi

TMC

)
, (2.29)

with

γ2
gi

TMC
= 1

TMC

(
Var [gi(Θ)|Y] + 2

∞∑
τ=1

Cov
[
gi(Θ(t)), gi(Θ(t+τ))|Y

])
. (2.30)

The first element in the definition of γ2
gi

corresponds to the variance in the CLT for i.i.d. sam-
ples (Eq. 2.26). The second term sums the autocovariances in the Markov chain with lag τ ≥ 1.
These autocovariances can be converted into more interpretable autocorrelations,

γ2
gi

TMC
= 1

TMC
Var [gi(Θ)|Y]

(
1 + 2

∞∑
τ=1

r
(τ)
i

)
, (2.31)

where r
(τ)
i is the autocorrelation of the chain with time lag τ ≥ 0 for gi(Θ). Finally, one can

rewrite Eq. 2.31

γ2
gi

TMC
= Var [gi(Θ)|Y]

ESS(TMC) , (2.32)

where the ESS stands for the effective sample size (ESS) (Robert and Casella, 2004, Section
12.3.5). It permits to rewrite the CLT in Eq. 2.26 in the context of Markov with a size ESS(TMC),
instead of TMC. Therefore, the ESS measures the number of independent samples with the same
estimation power as a correlated chain. Ideally, the correlation between iterates Θ(t) should be as
small as possible. In the extreme case where the correlation in the chain is negligible, ESS(TMC) ≃
TMC, i.e., the Markov chain can be considered as a set of independent samples. Conversely, highly
correlated chains typically “mix” poorly, as they need a large amount of iterations to explore the
posterior.

In the general definition above, the ESS depends on the function g. In practice, for simplicity,
it is often reduced to the case g : Θ 7→ Θ, i.e.,

ESS(TMC)
nd = TMC

1 + 2
∑∞

τ=1 r
(τ)
nd

, (2.33)

with r
(τ)
nd the autocorrelation of the chain with time lag τ ≥ 0 for the parameter θnd. As the

above ESS is defined for a scalar parameter, for a ND-dimensional parameter space, one obtains
ND estimations of the ESS. In this thesis, we implement the ESS estimation presented in Gelman
et al. (2015). This definition accounts for results of potentially M ≥ 1 Markov chains. It can
therefore be used when an MCMC algorithm is run M times.
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2.2.2.3 Metropolis-Hastings (MH) algorithm

The Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) is histori-
cally the first proposed MCMC algorithm, and remains arguably the most famous and widespread
to this day. It is very general and versatile, and enjoys strong theoretical properties. The two
kernels proposed in Chapter 5 (Section 5.2) build on this algorithm.

The algorithm – The MH algorithm can start from any point Θ(0). Then, at each step t, a
candidate Θ(t)

c is sampled from a proposal distribution q(Θc|Θ(t−1)). Unlike rejection sampling,
the proposal distribution can depend on the current iterate Θ(t−1). This candidate is accepted
with probability

ρ(t) = min

1,
π
(
Θ(t)

c |Y
)

π
(
Θ(t−1)|Y

) q
(
Θ(t−1)|Θ(t)

c

)
q
(
Θ(t)

c |Θ(t−1)
)
 . (2.34)

When the candidate is not accepted, the new iterate Θ(t) is set to Θ(t−1). Therefore, the
transition kernel K of the MH algorithm is defined as a combination of the proposal q and the
accept-reject step. Algorithm 2.2 summarizes the MH algorithm.

Algorithm 2.2: Metropolis-Hastings (MH) algorithm
Input: Starting point Θ(0), proposal q, numbers of samples TBI and TMC

1 for t = 1, . . . , TMC do
2 Θ(t)

c ∼ q(Θc|Θ(t−1)) // generate candidate
3 ρ(t) // compute acceptance probability using Eq. 2.34
4 ζ ∼ Unif (0, 1) // update iterate
5 Θ(t) = Θ(t)

c if ζ ≤ ρ(t) else Θ(t−1)

Output: Chain of samples {Θ(t)}TMC
t=TBI+1 // The first TBI are rejected

Theoretical convergence properties – The theoretical convergence properties of the MH
algorithm are simple. The following is a short summary of Robert and Casella (2004, Sections
7.3.1 and 7.3.2). First, the accept-reject step allows Θ(t) = Θ(t−1). This condition is sufficient
for the Markov chain to be aperiodic. Then, the main (sufficient) condition for convergence relies
on the positivity of the proposal q on RN×D, i.e.,

∀Θc, Θ(t−1) ∈ RN×D, q(Θc|Θ(t−1)) > 0. (2.35)

This condition is verified e.g., for a Gaussian proposal with any mean vector and covariance ma-
trix. When it is verified, the transition kernel satisfies the detailed balance property (Eq. 2.28).
Therefore, the Markov chain generated by the MH algorithm admits the posterior distribution as
an invariant probability distribution (Robert and Casella, 2004, Theorem 7.2). Besides, it is also
a sufficient condition for the chain (Θ(t)) to be irreducible. Therefore, with such a proposal q,
the law of large numbers (Eq. 2.25) applies to the MH Markov chain (Robert and Casella, 2004,
Theorem 7.4). Note that this condition is only sufficient. Similar results hold for less restrictive
conditions (Robert and Casella, 2004, Corollary 7.7).

Common proposal distributions q – As the theoretical results show, the choice of the
proposal distribution q is crucial to efficiently explore the posterior distribution.

Choosing a proposal q that is independent of current iterate Θ(t−1), i.e., q(·|Θ(t−1)) = q(·),
seems a simple and natural choice. Such a proposal yields the so-called independent Metropolis-
Hastings (I-MH). As stated in Robert and Casella (2004, Theorem 7.8), this algorithm produces
a uniformly ergodic chain if there exists a constant M ≥ 1 such that Mq(Θ) ≥ π(Θ|Y) for all
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Θ ∈ RN×D. In this case, the expected probability acceptance is at least 1/M when the chain is
stationary. As for rejection sampling, expected probability acceptance may thus be extremely low
in practice for posteriors whose high probability region are concentrated in a region with much
smaller volume than that of the proposal. This is typically the case in high dimensions, due to
the curse of dimensionality.

Random walk Metropolis-Hastings (RWMH) is another very simple proposal that is more
widely spread. It generates candidates Θ(t)

c = Θ(t−1) + Z(t), with generally Z(t) ∼ N (0, Σ) for a
covariance matrix Σ. In this case, q(·|Θ(t−1)) = N (Θ(t−1), Σ). As this proposal q is symmetric,
i.e., q(Θ(t)

c |Θ(t−1)) = q(Θ(t−1)|Θ(t)
c ), the acceptance probability in Eq. 2.34 simplifies to the ratio

of posterior pdfs of the candidate and of the current iterate. RWMH is never uniformly ergodic. It
can be shown to be geometrically ergodic for log-concave distributions (Robert and Casella, 2004,
Theorem 7.15). However, as the Markov chain is reversible, the CLT still applies. In practice,
the covariance matrix Σ plays a crucial role in RWMH: a matrix Σ closer to the covariance of
the posterior will lead to larger steps with higher acceptance probabilities. However, even with an
adapted covariance matrix, RWMH does not scale up well due to its blind nature (Pereyra et al.,
2016).

As RWMH performs local steps, its optimal expected acceptance probability is not 1. Indeed, a
covariance matrix Σ with small variances will generate candidates very close to the current iterate.
In case of smooth log-posterior, these candidates will have an expected acceptance probability
close to 1, but will lead to slow exploration of the parameter space. Conversely, if the variances
are large, the candidates may fall far from the current iterate, potentially out of the posterior high
probability region. In high dimensions, such candidates have an expected acceptance probability
close to 0. However, each accepted candidate corresponds to a potentially large step, which
improves the exploration. In general, the optimal mixing for RWMH is achieved with a trade-off
between large steps and large acceptance probability. Optimal mixing for RWMH is achieved with
an expected acceptance probability of 20% - 25% (Pereyra et al., 2016).

2.2.2.4 Using the gradient with Metropolis adjusted Langevin algorithm (MALA)

Metropolis adjusted Langevin algorithm (MALA) (Roberts and Stramer, 2002) and Hamilto-
nian Monte Carlo (HMC) (Neal, 2011) are both MH algorithms that exploit gradient information
in the mean of the proposal q. Thanks to the gradient information, they both scale better than
RWMH (Pereyra et al., 2016).

HMC relies on the introduction of a momentum auxiliary variable and exploits Hamiltonian dy-
namics to explore the posterior. MALA is similar to a gradient descent algorithm on the negative
log-posterior. HMC generally mixes better than MALA for a fixed number of samples. However,
HMC requires tuning more parameters and has a higher computational cost per iteration. Besides,
MALA can be easily associated with advanced optimization methods (Pereyra et al., 2016). It is
therefore simpler to transfer advanced optimization techniques to MALA than to HMC. For these
reasons, we favor MALA over HMC in this thesis.

MALA can be defined from a particular Langevin diffusion process. This continuous diffusion
process admits the posterior as an invariant distribution and is geometrically ergodic. First,
the diffusion process is discretized, usually following the Euler-Maruyama scheme. The resulting
random process is called unadjusted Langevin algorithm (ULA), and reads

Θ(t)
c = Θ(t−1) + η∇ ln π

(
Θ(t−1)|Y

)
+
√

2η Z(t), Z(t) ∼ N (0ND, IND) . (2.36)

ULA is a GD algorithm perturbed with an additive Gaussian noise. It therefore enjoys some
similar theoretical properties. The discretization of the diffusion process introduces an error in
ULA. Due to this error causes, the posterior is generally not the invariant distribution of ULA. In
Durmus and Moulines (2017), the authors propose three upper bounds on the distance between
an ULA Markov chain and the posterior distribution. Each upper bound is associated with a
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class of posterior distribution: super-exponential outside a ball around the mode – i.e., posteriors
with heavy tails –, log-concave, and strongly log-concave. In all three cases, the log-posterior is
assumed to be gradient Lipschitz continuous with Lipschitz constant β. The three upper bounds
depend on the Lipschitz constant β, either directly or indirectly through the step size η ∈]0, 1/β[.
Similarly to GD in optimization, step sizes close to 1/β lead to faster convergence to the invariant
distribution.

MALA corrects the discretization error in ULA thanks to an accept-reject step. This accept-
reject steps makes MALA an MH algorithm. Its proposal distribution can thus be written

q(·|Θ(t−1)) = N
(
Θ(t−1) + η∇ ln π

(
Θ(t−1)|Y

)
, 2η IND

)
, (2.37)

which is an equivalent form of Eq. 2.36. Similarly to the covariance matrix in RWMH, the step
size η defines a trade-off between large steps and high expected acceptance probability. As it
exploits gradient information, MALA produces better candidates than RWMH. In case of a gra-
dient Lipschitz continuous log-posterior of Lipschitz constant β, a step size η close to 1/β leads
to good mixing properties. Overall, the MALA optimal expected acceptance probability is 50% -
60% (Pereyra et al., 2016), i.e., two to three times larger than RWMH.

Discretization error – As already mentioned, the Euler-Maruyama scheme introduces a dis-
cretization error. In MALA, this error is corrected with the accept-reject step. However, in case
of no discretization error, all candidates would be accepted, which would accelerate the poste-
rior exploration. Therefore, a lower discretization error leads to more relevant candidates. For
instance, in Durmus et al. (2017), the authors exploit an Ozaki discretization scheme, which is
more accurate than the usual Euler-Maruyama. They obtain considerable improvement of the mix-
ing performance of MALA, and derive an optimal expected acceptance probability around 70%.
In general, using a better discretization scheme reduces this discretization error and therefore
generates better candidates.

2.2.2.5 Preconditioning with MALA to improve mixing properties

As stated in Section 2.2.1 for optimization methods, preconditioning permits to reduce the
condition number of the Hessian matrix. This reduction permits a more efficient exploration of
the parameter space. As ULA is defined as a GD algorithm perturbed with Gaussian noise, it
seems natural to extend it with preconditioning.

Preconditioning and Riemannian manifold – In Girolami and Calderhead (2011), the au-
thors associate preconditioning with sampling on a Riemannian manifold. The preconditioner is
then closely related to the metric of the manifold. The authors extended MALA and HMC to
Riemannian manifolds, yielding the Manifold Metropolis adjusted Langevin algorithm (MMALA)
and Riemannian manifold HMC (RMHMC) algorithms. In Xifara et al. (2014), a minor correc-
tion was applied to MMALA, leading to a renamed preconditioned Metropolis adjusted Langevin
algorithm (PMALA). We use PMALA to derive one of the two sampling kernels of the MCMC
algorithm proposed in Chapter 5 (Section 5.2). The associated proposal distribution q reads

q
(
Θc|Θ(t−1)

)
= N

(
Θc|µ(t), Λ(t)

)
(2.38)

with µ(t) = Θ(t−1) − ηG(t−1)∇L
(
Θ(t−1)

)
+ 2η γ(t−1),

Λ(t) = 2η G(t−1),
(2.39)

where η is a step size and γ(t−1) is the additional drift term due to the position-dependent
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preconditioner (Xifara et al., 2014). In full generality, for all i ∈ [[1, ND]],

γ
(t−1)
i = 1

2

ND∑
j=1

∂G
(t−1)
ij

∂θ
(t−1)
j

. (2.40)

Depending on the complexity of the preconditioner G, this additional drift term can be quite
complicated to evaluate. For instance, for a G defined with second order derivative information,
evaluating this additional drift term will require accessing third order derivatives.

Stochastic gradient MCMC (SG-MCMC) and preconditioner choice – SG-MCMC (Welling
and Teh, 2011) is a special class of MCMC algorithms that makes an extensive use of precondi-
tioning and of the results from Girolami and Calderhead (2011). They extend MALA and HMC
for stochastic estimates of the gradient. As in optimization, the stochasticity is generally included
to avoid a costly evaluation of the full gradient. A first example of SGD algorithm was presented
in Section 2.2.1.3. A second example of application for these methods is to sample a posterior
distribution on the parameters of a neural network – see Chapter 4 for more details on neural
networks. Such posterior distributions are generally not log-concave and very high-dimensional -
O(106). Like in optimization methods for neural network training, preconditioning is necessary in
this context.

We consider three main preconditioners proposed in SG-MCMC for a stochastic gradient
MALA: the expected Fisher information matrix (Patterson and Teh, 2013), L-BFGS (Simsekli
et al., 2016) and RMSProp (Li et al., 2016).

Using the full expected Fisher information matrix leads in general to a dense covariance matrix,
i.e., with mostly non-zero terms. In high dimensions such as O(103) or O(104), inverting such a
matrix is prohibitively expensive.

The L-BFGS preconditioner and its inverse are defined with sequences of vectors and inner
products. They actually never require to compute a matrix or a matrix-vector product. This pre-
conditioner thus scales very well. In addition, in Simsekli et al. (2016), the authors slightly modify
the definition of L-BFGS to ensure γ(t−1) = 0 for all t ≥ 1. However, this preconditioner was
designed for log-concave posterior distribution. A positive regularization parameter is proposed to
ensure positive definiteness of the preconditioner, but this parameter can become extremely large
for highly non log-concave distributions. In the limit case of a very high regularization parame-
ter, the preconditioner boils down to the identity matrix. Therefore, although this preconditioner
is able to capture correlations between parameters, it is not applicable in the inverse problem
considered in this thesis.

Finally, RMSProp is a diagonal preconditioner and thus is trivial to invert. As we mentioned
in Section 2.2.1.2, this preconditioner shows good performance in practice. This performance in
practice was partially explained in Dauphin et al. (2015). For this reason, in Chapter 5 (Sec-
tion 5.2.1), we propose a PMALA sampling kernel equipped with the RMSProp preconditioner.
Note that RMSProp being diagonal, it is not efficient in case of degeneracies, i.e., of high cor-
relation between two parameters. Other preconditioners with particular structure such as a band
matrix or block diagonal may still be used to address a limited number of degeneracies. However,
as we will show in Chapter 5, RMSProp yields a drift term γ that can be evaluated with limited
additional cost.

2.2.2.6 Gibbs sampling: a block coordinate MH variant

One of the current main challenges in MCMC is sampling from high dimensional posterior
distributions, e.g., distributions on images. In Section 2.2.1.3, we showed that block coordinate
optimization divides a high dimensional problem into smaller ones. In images, each block j can
correspond to one pixel or to a group of pixels. Similarly, Gibbs sampling (Geman and Geman,
1984) is an MCMC algorithm that performs component-wise updates.
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Gibbs and Metropolis-within-Gibbs algorithms – In Gibbs sampling, at each step t, the
components j = 1, . . . , J are updated sequentially. Each component j is updated by sampling
from the conditional posterior

Θ(t)
j ∼ π

(
Θj |Y, Θ(t−1+ j−1

J )
\j

)
, (2.41)

with Θ(t−1+ j−1
J )

\j =
(
Θ(t)

1 , . . . , Θ(t)
j−1, Θ(t−1)

j+1 , . . . , Θ(t−1)
J

)
. The Θ\j notation corresponds to Θ

with the jth block removed. As shown in Geman and Geman (1984), the Gibbs sampler leads to
ergodic Markov chains for mild assumptions on the conditional posterior.

As we already discussed, sampling directly from the conditional posterior may be out of reach.
The so-called Metropolis-within-Gibbs algorithm (Gelman et al., 2015, chapter 11) resorts to MH
steps for each of the J components, i.e., using proposals qj and performing an accept-reject
step. Algorithm 2.3 summarizes the Metropolis-within-Gibbs algorithm. Both Gibbs sampling
and Metropolis-within-Gibbs can produce geometric and uniform ergodic chains (Johnson et al.,
2013). At each step t, Gibbs sampling and Metropolis-within-Gibbs generate J samples from
conditional posterior distributions with lower dimension, instead of generating one sample from
the full posterior distribution. Such a divide-and-conquer approach can be very useful for distri-
butions that show a particular structure, such as images or time series.

Algorithm 2.3: Metropolis-within-Gibbs sampling
Input: Starting point Θ(0), number of samples TMC

1 for t = 1, . . . , TMC do
2 for j = 1, . . . , J do

3 Θ(c)
j ∼ qj

(
Θj |Y, Θ(t−1+ j

J )
\n

)
// Generate candidate for component j

4 ρ
(t)
j // Compute acceptance probability using Eq. 2.34

5 ζj ∼ Unif (0, 1) // update iterate

6 Θ(t)
j = Θ(c)

j if ζj ≤ ρ
(t)
j else Θ(t−1)

j

Output: Chain of samples {Θ(t)}TMC
t=1

Chromatic Gibbs sampling – One constraint of the Gibbs and Metropolis-within-Gibbs
algorithms is the sequential sampling of each component n. This sequential sampling is necessary
to take into account the latest value of components n0 and n1 to update some other n2 ̸= n1.
However, in case of conditional independence between θn1 and θn2 when θn0 is given, then θn1

and θn2 can be sampled in parallel. In general, the set of conditional dependencies between
individual components θn is represented as a graph. This graph can be colored such that two
neighbor nodes never share the same color. Each color then corresponds to a set of components n
that can be sampled in parallel using the chromatic Gibbs algorithm (Gonzalez et al., 2011). This
parallelization, combined with vectorized computations, can considerably accelerate the sampling.
Besides, this algorithm also produces ergodic Markov chains.

Figure 2.2 shows two examples of graphs of conditional dependence. The graph on the left
shows the extreme case of a fully connected graph. Such a graph requires one color per node. In
general, finding the minimum number of colors for a given graph is a NP-hard problem. However,
in many practical use cases, one can easily find the smallest number of colors. The graph on
the right shows a graph of pixels in an image. In this graph, a pixel only interacts with its
direct neighbors. In this case, it is easy to see that the graph can be partitioned into two colors.
Therefore, in this case, at each step t, only two steps are required, whatever the size of the image.
In Chapter 5 (Section 5.1.2), we set a spatial regularization prior on maps of physical parameters
that yields this exact graph. The sampling kernel that we propose in Chapter 5 (Section 5.2.2)
thus exploits chromatic Gibbs sampling.
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(a) Fully connected case: one color per node (b) An image as a Markov random field: two
colors

Figure 2.2 – Graphs of conditional dependence and associated optimal coloring.

2.2.2.7 Generating multiple candidates

As mentioned in Sections 2.2.2.3 and 2.2.2.4, the acceptance rate that leads to the best mix-
ing is roughly 20%-25% for RWMH and 50%-60% for MALA. A proposal distribution that both
achieves such acceptance rates and takes relatively large steps can be out of reach, especially
in high dimensions. In such cases, very long chains are necessary to fully explore the posterior.
An alternative to taking long chains is to generate multiple candidates at each step, which leads
to an increase of the acceptance probability. This idea is at the core of multiple-try Metropolis
(MTM) algorithms (Liu et al., 2000).

At each step t, MTM algorithms first generate K ≥ 1 candidates Θ(k)
c instead of 1 in MH

algorithms. Then, using an importance weight function

w
(
Θ(k)

c

)
=

π
(
Θ(k)

c |Y, Θ(t−1))
q
(
Θ(k)

c |Θ(t−1)) , (2.42)

one candidate i is selected according to the set of selection probabilities (wk)K
k=1 with a multino-

mial distribution

wk =
w
(
Θ(k)

c

)∑K
j=1 w

(
Θ(j)

c

) . (2.43)

The accept-reject step is then performed with the selected candidate i and the generalized ac-
ceptance probability (Liu et al., 2021; Martino, 2018)

ρ̃(t) = min
(

1,
w
(
Θ(i)

c

)
+
∑K

j=1,j ̸=i w
(
Θ(j)

c

)
w
(
Θ(t−1))+

∑K
j=1,j ̸=i w

(
Θ(j)

c

)) . (2.44)

Algorithm 2.4 summarizes the MTM sampler. Note that for K = 1, MTM becomes equivalent
to MH. Like MH, MTM verifies the detailed balance property and thus admits the posterior as
invariant distribution. In addition, like MH, MTM produces ergodic Markov chains. Finally, like
I-MH, proposal distributions q that are independent of the current iterate Θ(t−1) – independent
multiple-try Metropolis (I-MTM) – leads to uniformly ergodic Markov chains if there exists a finite
constant M such that Mq(Θ) ≥ π(Θ|Y) for all Θ. In particular, such proposal distributions do
not get trapped in local modes. See Martino (2018) for a review on MTM algorithms.
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Algorithm 2.4: Multiple-Try Metropolis (MTM) algorithm
Input: Starting point Θ(0), proposal q, number of candidates K, number of samples

TMC
1 for t = 1, . . . , TMC do

// Propose K candidates, select one
2 Θ(k)

c ∼ q(Θ|Θ(t−1)) for k = 1, . . . , K

3 w(Θ(k)
c ) for k = 1, . . . , K // using Eq. 2.42

4 wk for k = 1, . . . , K // using Eq. 2.43
5 i // select one candidate following probabilities wk

// Accept or reject
6 ρ̃(t) // using Eq. 2.44
7 Draw ζ ∼ Unif (0, 1)
8 Θ(t) = Θ(i)

c if ζ ≤ ρ̃(t) else Θ(t−1)

Output: Chain of samples {Θ(t)}TMC
t=TBI+1

Advantages of MTM compared to MH – Using the MTM algorithm instead of MH might
not seem advantageous at first, as it requires more computations per iteration. It may also seem
that one step of MTM would be equivalent to K steps of MH, but with loss of the intermediate
iterates. However, MTM is roughly to MH what chromatic Gibbs is to Gibbs sampling. The
generation of the K candidates and the evaluation of their posterior pdf can be vectorized or
performed in parallel. One step of MTM is therefore much faster than K iterations of MH, and
about as fast as 1.

Besides, resorting to an MTM sampling kernel shortens the burn-in phase. In Chapter 5
(Section 5.2), we propose an MCMC algorithm that combines two kernels. Having at least one
of the kernels based on the MTM algorithm permits to reach the posterior high probability region
with few iterations. The other proposed kernel is based on RMSProp preconditioning (Eq. 2.21),
which keeps in memory the history of the log-posterior gradient. Reaching the high probability
region faster enables this second kernel to focus on gradient properties within the high probability
region.

2.3 Comparing and checking observation models
As stated in Gelman et al. (2015, chapter 6): “Once we have accomplished the first two steps

of a Bayesian analysis — constructing a probability model and computing the posterior distribution
of all [physical parameters] — we should not ignore the relatively easy step of assessing the fit of
the model to the data and to our substantive knowledge.”

Solving an inverse problem relies on the assumption that “the forward model accurately simu-
lates the observed phenomena and that the uncertainty model accurately describes the uncertainty
sources that affect observations”. For the inverse problem considered in this thesis, one might
question the relevance of the Meudon PDR code to model a given region, the validity of the
values of the secondary parameters listed in Table 1.3, or the chosen uncertainty model. These
choices for the observation model have a great impact on the estimates. Unrealistic choices can
greatly impact the estimation relevance for an end user. One thus needs to check whether the
aforementioned hypothesis is satisfied or not, or compare models to select the one that is most
compatible with the observations.

In this section, after briefly mentioning model selection and evaluation, we describe a well
established Bayesian model assessment approach. Applications of both model evaluation and
assessment in the ISM are described in Chapter 3 (Section 3.3). In this thesis, as considering
more than one model is expensive, we focus on model assessment. The associated Bayesian
hypothesis testing method is extended to be more robust in Chapter 5 (Section 5.3).
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2.3.1 Model selection and evaluation
As already stated in Section 2.1, we group the forward model f and the noise model A in

a single observation model M. Model selection consists in comparing the results obtained with
different models Mi and choosing the best one with respect to a quantitative criterion. There
are two dominant approaches in Bayesian statistics. The first relies on the Bayesian evidence
π (Y|Mi) (Eq. 2.1), the second on the expected log-predictive density (elpd) and information
criteria. We succinctly describe the two approaches.

Bayesian evidence approach – Having access to the evidence, also called marginal likelihood,
for each considered model Mi permits to perform Bayesian model selection. Indeed, in the case
of two competing models M1 and M2, the Bayes theorem yields the relative model posterior
probability

π (M1|Y)
π (M2|Y) = π (Y|M1)

π (Y|M2)
π (M1)
π (M2) , (2.45)

where π (M1) and π (M2) encode prior model preferences and sum to 1.
Computing the evidence is generally hard. Some methods exploit samples from the posterior

– see e.g., McEwen et al. (2022), or Chib and Jeliazkov (2001) for MH samplers. Nested sam-
pling (Skilling, 2004; Skilling, 2006) focuses on computing the evidence. Sequential MC (Del
Moral et al., 2006), computes it as a byproduct. Nested sampling and SMC are described in
Appendix 2.A. For a review on evidence estimation, see e.g., Friel and Wyse (2012).

Information criteria approach – A second option is to measure its so-called predictive
accuracy, which relies on predicted observations Ỹ. The predicted observations, also called
reproduced observations, are distributed according to the posterior predictive distribution, given
by

π
(
Ỹ|Y, M

)
=
∫

π
(
Ỹ|Θ, M

)
π (Θ|Y, M) dΘ. (2.46)

In the context of atomic or molecular emission line observations, these predicted observations
Ỹ can correspond to lines not used during the inversion. They can also simply correspond to
synthetic reproduced observations of the same environment, i.e., with the same underlying physical
conditions Θ, but with different noise realizations. In the following, we consider the latter case.

The predictive accuracy is usually measured with the expected log-predictive density (elpd) (Gel-
man et al., 2015, chapter 7),

elpd =
N∑

n=1

L∑
ℓ=1

∫
ln π (ỹnℓ|Y, M) πt(ỹnℓ) dỹnℓ (2.47)

=
N∑

n=1

L∑
ℓ=1

∫
ln
[∫

π (ỹnℓ|Θ, M) π (Θ|Y, M) dΘ
]

πt(ỹnℓ) dỹnℓ, (2.48)

with πt(ỹnℓ) the pdf of the true generating process of new observations ỹnℓ, which is unknown.
The elpd therefore cannot be evaluated directly, but can be approximated with cross-validation
or information criteria. Cross-validation is computationally demanding, as it requires solving
multiple inverse problems instead of one, but is accurate. Information criteria do not require
solving additional inverse problems and are quite cheap to evaluate. They rely on a simplified
estimator of the elpd, the log-predictive density (lpd)

lpd =
N∑

n=1

L∑
ℓ=1

ln π(ynℓ|Y, M) (2.49)

=
N∑

n=1

L∑
ℓ=1

ln
[∫

π (ynℓ|Θ, M) π (Θ|YM)
]

dΘ, (2.50)
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which exploits observations Y used in the inversion to define the posterior distribution. Using
TMC samples Θ(t) of the posterior distribution, e.g., obtained with an MCMC algorithm, the lpd
can be estimated with

l̂pd =
N∑

n=1

L∑
ℓ=1

ln

 1
TMC

TMC∑
t=1

π
(
ynℓ|Θ(t), M

) . (2.51)

The lpd uses the observations Y in both the posterior distribution π(Θ|Y) and in the predictive
distribution π(ynℓ|Θ(t), M). Therefore, the lpd introduces an optimistic bias in the accuracy
measure. In particular, the lpd might be largely overestimated in case of overfitting.

In the information criterion approach, this optimistic bias in the lpd is compensated with a
positive correction term that is subtracted from the lpd. For any information criterion IC, the
elpd thus is estimated with

êlpdIC = l̂pd − p̂IC (2.52)

where p̂IC is called an effective number of parameters. Its definition depends on the choice of
the information criterion. For instance, the deviance information criterion (DIC) (Spiegelhal-
ter et al., 2002), the widely applicable information criterion (WAIC) (Watanabe, 2010), or the
WBIC (Watanabe, 2012) rely on different definitions of this effective number of parameters. We
now present two examples of common information criteria and the associated effective number of
parameters.

Example 1: Akaike information criterion (AIC) – Although we favor probabilistic ap-
proaches in this thesis, the information criterion approach can be used with a point estimate
Θ̂, such as the maximum likelihood estimator or the maximum a posteriori. The posterior
π (Θ|Y, M) is then replaced by a Dirac mass located at the estimate Θ̂. The posterior predictive
distribution then simplifies to the likelihood function, and the lpd to ln π(Y|Θ̂, M). Besides,
directly using the number of inferred parameters – in this thesis the dimension of Θ, ND – is the
simplest possible definition for the effective number of parameters. By combining a point esti-
mate and this definition for the effective number of parameters, one obtains the classical Akaike
information criterion (AIC) (Gelman et al., 2015, chapter 7)

êlpdAIC = l̂pd − p̂AIC = ln π
(
Y|Θ̂, M

)
− ND (2.53)

which is usually defined with a factor −2, such that

AIC = −2 ln π
(
Y|Θ̂, M

)
+ 2ND (2.54)

Example 2: the Bayesian information criterion (BIC) – Limited to the maximum like-
lihood estimator Θ̂MLE, the BIC (Schwarz, 1978) uses p̂BIC = ND ln(NL)/2. The BIC is not
exactly a Bayesian information criterion in the sense that it considers a point estimate Θ̂MLE
and not a posterior distribution π(Θ|Y, M). Its name “Bayesian” comes from the fact that it is
an approximation of the log-evidence based on Laplace’s method (Konishi and Kitagawa, 2008,
chapter 9).

For more information on elpd, cross validation and information criteria based on the posterior
predictive distribution, see e.g., Gelman et al. (2015, chapter 7) or Vehtari et al. (2017). For a
general review on information criteria, see, e.g., Konishi and Kitagawa (2008).

In general, an isolated value of Bayesian evidence lacks interpretability. This quantity is thus
mostly used relatively, to compare multiple models. This is also true for information criteria.
In particular, there exists no simple and general rule to decide whether a model M accurately
reproduces observations.
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2.3.2 Model checking using Bayesian hypothesis testing
When only one model M is considered, one might want to check whether it accurately repro-

duces the observations Y, using hypothesis testing. One key advantage of this hypothesis testing
compared to model selection or evaluation is that its metric, the p-value, is easily interpretable. In
Bayesian statistics, such a hypothesis test is called posterior predictive assessment, or checking.

This subsection introduces posterior predictive assessment key notions, such as the underlying
null hypothesis, the associated p-value, its Monte Carlo estimator, and the discrepancy measure
T . Chapter 3 (Section 3.3.2) details three applications in interstellar medium studies. In Chap-
ter 5 (Section 5.3), we extend the test to make it more robust to wrong decisions due to the
Monte Carlo estimator error.

Posterior predictive checking was introduced in Guttman (1967) and Rubin (1984). Gelman
et al. (1996) extended the definition to discrepancy measures T , more general than test statistics.
It is based on the following null hypothesis: “The observation model M can reproduce the
observations Y”. Like model evaluation methods based on information criteria, this test relies
on reproduced observations Ỹ and on the posterior predictive distribution π(Ỹ|Y). The goal is
to compare predicted observations Ỹ and the true observations Y with respect to a discrepancy
measure T : (Y, Θ) 7→ T (Y, Θ) ∈ R. If the null hypothesis is true, then predictions Ỹ should be
as likely as the true observations Y with respect to the measure T . Common discrepancy measures
include T (ỹ, Θ) = ỹ for scalar observations (Gelman et al., 2015), the negative log-likelihood,
and the L2-norm

T (Ỹ, Θ) =
N∑

n=1

L∑
ℓ=1

(ỹnℓ − fℓ(θn))2

σnℓ2
, (2.55)

that is also called χ2 loss in astrophysics articles.
The Bayesian p-value associated with this test corresponds to the probability of obtaining

values T (Ỹ, Θ) at least as unlikely as T (Y, Θ) under the null hypothesis.

p = P(Ỹ,Θ
) [T (Ỹ, Θ

)
≥ T (Y, Θ)

∣∣∣Y, M
]

. (2.56)

Equivalently, it is the measure of the set I = {(Ỹ, Θ) | T (Ỹ, Θ) ≥ T (Y, Θ)} when using the
model M

p =
∫

1I

(
Ỹ, Θ

)
π
(
Ỹ|Θ, M

)
π (Θ|Y, M) dΘdỸ. (2.57)

For classical choices of T , if the p-value is below a threshold α chosen prior to the analysis
(typically 0.05 or 0.01), then the null hypothesis can be rejected with confidence 1 − α. For some
other choices of T (as in Gelman et al. (2015, chapter 6)), the null hypothesis can be rejected
when the p-value is below α/2 or above (1 − α)/2.

Analytical computation of the Bayesian p-value can be performed in some simple cases (Meng,
1994). For instance, for a point estimate Θ̂, i.e., a posterior distribution reduced to a Dirac on
Θ̂, the statistic in Eq. 2.55 follows a χ2

NL distribution. The associated p-value,

p = P
T (Ỹ,Θ̂)∼χ2

NL

[
T (Ỹ, Θ̂) ≥ T (Y, Θ̂)|Y, M

]
, (2.58)

can thus be easily computed with the cdf of the χ2 distribution.

Evaluation of the p-value – Figure 2.3 illustrates the presented p-value on two examples
with a scalar observation Y = y ∈ R. In both cases, the statistic T is set to the negative log-
likelihood. A point estimate Θ̂ is considered for simplicity and visualization. The first row shows
a Gaussian additive noise model. The test statistic thus boils down to the χ2 statistic (Eq. 2.55).
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The second row corresponds to a more complicated fictitious observation model, defined as a
Gaussian mixture model (GMM) with 3 components. The left column shows for both cases the
likelihood distribution pdf on y with the parameter Θ fixed to the estimator Θ̂. The black dashed
line shows the attained likelihood pdf value for y, π(y|Θ̂). The blue area corresponds to the area
to be integrated for the p-value computation (Eq. 2.57), i.e., the area for reproduced observations
ỹ such that T (ỹ, Θ) ≥ T (y, Θ). The right column shows the pdf on the test statistic T . In
Figure 2.3b, as T ∼ χ2

1, the cdf can be evaluated efficiently. In Figure 2.3d, the considered test
statistic T does not follow a simple distribution. Evaluating the cdf on the test statistic T exactly
requires integrating with respect to ỹ. When the posterior distribution Θ is not reduced to a
dirac, on and , which is unrealistic in high dimensions.

(a) Gaussian noise model (b) The p-value can be evaluated efficiently

(c) Non-Gaussian noise model (d) The p-value can not be evaluated effi-
ciently

Figure 2.3 – Application of the Bayesian p-value (Eq. 2.57) for a point estimate Θ̂.

For these general cases, the p-value is approximated with a Monte Carlo estimator (Gelman et
al., 1996). As in model selection methods based on information criteria, this Monte Carlo estimator
exploits TMC samples Θ(t) from the posterior, typically obtained with an MCMC algorithm. In
addition, it requires sampling observation reproductions Ỹ(t) from the observation model M and
the sample Θ(t). The p-value counts the number of iterations t where T (Ỹ(t), Θ(t)) ≥ T (Y, Θ(t)),
i.e., it is an empirical frequency

p̂ = 1
TMC

TMC∑
t=1

1I

(
Ỹ(t), Θ(t)

)
, Θ(t) ∼ π (Θ|Y, M) , Ỹ(t) ∼ π

(
Ỹ|Θ(t), M

)
, (2.59)

where Θ(t) ∼ π(Θ|Y) indicates that Θ(t) is drawn from the distribution of pdf π(Θ|Y). In an
MCMC algorithm, the iterates from burn-in phase should be disregarded for the p-value evalu-
ation, as they are not considered to be samples from the posterior distribution. However, their
influence on the estimated p-value decreases as the size of the Markov chain increases. Note that
unlike model selection methods based on information criteria or the three-case χ2 rule widespread
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in astrophysics, this hypothesis testing framework does not penalize the number of free parame-
ters. Overfitting cases thus cannot be detected, regardless of the test statistic T (Y, Θ). Indeed,
in such a case, by definition of overfitting, the null hypothesis is verified.

Marginal predictive checks – As mentioned in Gelman et al. (2015, chapter 6), a more
informative hypothesis testing approach can be applied on individual observations ỹn instead
of the full observation set Ỹ = (ỹn)N

n=1. Such tests are called marginal predictive checks as
they focus on the marginal predictive distribution π(ỹn|Y, M) instead of the joint predictive
distribution π(Ỹ|Y, M). These tests can be used e.g., to find outliers among the observations
yn or to simplify the identification of issues in a problematic model M.

Interpretability discussion – One interpretability limitation of this Bayesian p-value is that
its null distribution, i.e., the distribution of p (Eq. 2.57) when the null hypothesis is true, is not
uniform on [0, 1] Bayarri and Berger (2000) and makes rejection rarer. This statistical behavior is
illustrated in two examples in Gelman (2013) along with a discussion on the impact for the practi-
cal interest of the described p-value. Some alternative predictive posterior checks were calibrated
to admit the uniform distribution asymptotically (Robins et al., 2000). These alternative checks
are generally expensive to compute, while computing the presented p-value is very cheap. In Gel-
man et al. (2015, chapter 6), the authors emphasize that the described p-value is by construction
a valid probability and should be used as such. In the following, we still use the presented p-value
while acknowledging this limitation for interpretation.

In Chapter 3 (Section 3.3.2), we show applications of this model assessment approach in
interstellar medium studies. Though the estimator p̂ (Eq. 2.59) converges to the theoretical p-
value (Eq. 2.57) with the law of large numbers, using an approximation instead of the theoretical
value introduces an error. In Chapter 5 (Section 5.3), we extend the test by taking this error into
account. The test is therefore made more robust to wrong decisions.

2.4 Conclusion

In this chapter, we covered the three main steps involved in solving an inverse problem: sta-
tistical modeling, statistical inference and model assessment.

Bayesian statistical modeling consists in setting the inverse problem to solve. The distribu-
tion of interest is called the posterior distribution. It is defined with the Bayes’ theorem and
proportional to the product of the likelihood function and the pdf of the prior distribution. The
normalization constant, called the Bayesian evidence, is not considered in this thesis. The like-
lihood function encodes the observation model, which includes the forward model and the noise
model. The prior distribution encodes prior knowledge on the physical parameters to infer.

In Chapter 3 (Section 3.1), we review statistical modeling in interstellar medium studies. In
Chapter 5 (Sections 5.1.1, 5.1.2, 5.1.3), we set the likelihood, prior and posterior of the general
inverse problem addressed in this thesis, respectively.

For statistical inference, we described the two main approaches: optimization-based and
sampling-based. In both cases, the most common methods were recalled. The optimization-based
approach only provides point estimates. Conversely, the sampling-based approach, e.g., MCMC
algorithms, naturally yields uncertainty quantification on the physical parameters Θ. Due to the
absence of ground truth in ISM studies, we favor sampling methods to solve the inverse problem
considered in this thesis. Some advanced MCMC methods such as preconditioned Metropolis ad-
justed Langevin algorithm (PMALA), Gibbs sampling, and multiple-try Metropolis (MTM) were
covered.

Chapter 3 (Section 3.2) reviews applications of statistical inference in ISM studies. The sam-
pler proposed in Chapter 5, combines a PMALA kernel that performs efficient local explorations
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and a second kernel that combines chromatic Gibbs and MTM. By exploiting the natural structure
of the parameter space, this second kernel can escape from local modes.

For model assessment, we covered Bayesian model selection and Bayesian model checking.
The two main approaches of model selection, based on Bayesian evidence and information criteria,
were explained. For model checking, we presented the Bayesian p-value from Gelman et al. (1996).
Applications of both approaches in ISM studies are reviewed in Chapter 3 (Section 3.3). In ISM
studies, often only one model is available, as generating forward models is expensive. In Chapter 5
(Section 5.3), we extend the model checking strategy by including uncertainties on the associated
p-value.
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Appendix 2.A Samplers widespread in astrophysics dedicated to
multimodal distributions

In astrophysics, the considered forward models are almost exclusively non-linear, even in very
simple cases – see, e.g., applications in Chapter 3. This non-linearity causes the negative log-
posterior to be non-convex with possibly multiple modes. Multimodal distributions are known to
be difficult to sample, especially when modes are isolated, i.e., when they are separated by large
low-probability regions. In practice, samplers such as MH, MALA, or HMC fail to explore the full
distribution. Indeed, these samplers tend to get stuck in one local minimum, and would require
an unrealistically large amount of samples to visit all modes.

This appendix presents some existing sampling algorithms dedicated to multimodal distribu-
tions. Some of these algorithms are already popular in the ISM community, as we outline in
Chapter 3 (Section 3.2.2). We do not use the algorithms listed in this appendix to solve the
considered inverse problem. In Chapter 5 (Section 5.2.2), we propose a sampling kernel that
addresses multimodality with a combination of chromatic Gibbs and MTM. However, we will
compare them with the proposed sampler in Chapter 5 (Section 5.4).

2.A.1 Adapting meta-heuristics to MCMC
In optimization, meta-heuristics are common methods to address multimodality. After in-

troducing meta-heuristics and particularly tempering and population methods, we present some
samplers adapt these methods to the MCMC context. In particular, sequential MC (SMC) and
the so-called affine invariant sampler, two popular methods in ISM studies – se Chapter 3 –, are
presented.

Meta-heuristics algorithms were initially designed for discrete non-convex optimization prob-
lems such as the traveling salesman problem. They are stochastic in two ways: at each step t, they
randomly generate candidates Θc, and then keep them with a certain probability that depends on
the loss value L (Θc). The most popular meta-heuristics are simulated annealing (van Laarhoven
and Aarts, 1987), genetic algorithms (Chelouah and Siarry, 2000), particle swarm (Eberhart and
Kennedy, 1995; Kennedy and Eberhart, 1995), and some combinations of these algorithms (Kao
and Zahara, 2008).

Genetic algorithm and particle swarm are both population algorithms. They first initialize a
population of points, and then make the population evolve towards local minima with low loss
values by combining current points or applying random mutations.

Simulated annealing resorts to tempering. Tempering relies on an inverse temperature pa-
rameter ϕ(t) ∈ [0, 1]. It first flattens the loss function by considering a tempered loss function
Θ 7→ ϕ(t)L (Θ), with ϕ(t) close to 0. This allows simple transitions between modes and per-
mits to consider points with high loss to escape from local minima. During the optimization
procedure, the inverse temperature ϕ(t) progressively increases to 1 and transitions become more
conservative. Simulated annealing enjoys some strong theoretical properties, though only valid for
extremely slow temperature evolutions. For a complete introduction to meta-heuristics for both
discrete and continuous optimization problems, see e.g., Dreo et al. (2006).

Tempering-based samplers without population – The equi-energy sampler (Kou et al.,
2006) and the adaptive parallel tempering algorithm (Miasojedow et al., 2013) exploit tempering,
as simulated annealing. These two algorithms run parallel interacting Markov chains at different
temperatures. High temperature chains can navigate between modes and only one chain at low
temperature is actually used for estimations.

Population-based samplers without tempering – Some other samplers adapt evolutionary
methods such as the genetic algorithms to the MCMC context. For instance, Evolutionary MC
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(EMC) (Liang and Wong, 2000), distributed genetic MC (DGMC) (Hu and Tsui, 2010) do not
include any tempering, but run parallel interacting chains to generate relevant candidates. Besides,
the so-called affine-invariant MCMC sampler (Goodman and Weare, 2010) is a special case of
EMC that only applies the snooker crossover (Liang and Wong, 2001). To the best of our
knowledge, this link between EMC and the affine-invariant sampler was never identified before.

The affine-invariant sampler runs K > 1 interacting Markov chains in parallel. At each step
t, it updates an iterate Θ(k,t−1) by making it interact with another iterate Θ(j,t−1) with j ̸= k.
First, it draws a scaling from the distribution of pdf

π(z) ∝ 1√
z
1[ 1

2 ,2](z).. (2.60)

Second, it proposes a candidate Θ(k,t)
c using an affine combination of Θ(k,t−1) and Θ(j,t−1)

Θ(k,t)
c = Θ(j,t−1) + z

(
Θ(k,t−1) − Θ(j,t−1)

)
. (2.61)

The candidate is then accepted with probability

ρ(t)
emcee = min

(
1, zND−1 π(Θ(k,t)

c |Y)
π(Θ(k,t−1)|Y)

)
. (2.62)

Algorithm 2.5 summarizes the affine-invariant sampler.

Algorithm 2.5: Affine-invariant sampler
Input: Number of parallel chains K, starting points (Θ(k,0))K

k=1, number of iterations
TBI et TMC

1 for t = 1, . . . , TMC do
2 for k = 1, . . . , K do

// generate candidate
3 j ∼ Unif({1, . . . , k − 1, k + 1, . . . , K})
4 z ∼ π(z) // using Eq. 2.60

5 Θ(k,t)
c = Θ(j,t−1) + z

(
Θ(k,t−1) − Θ(j,t−1)

)
// snooker

crossover (Eq. 2.61)
// Accept-reject step

6 ρ
(t)
emcee // using Eq. 2.62

7 ζ ∼ Unif (0, 1)
8 Θ(k,t) = Θ(k,t)

c if ζ ≤ ρ
(t)
emcee else Θ(k,t−1)

Output: Set of samples {Θ(k,t), t = TBI + 1, . . . , TMC, k = 1, . . . , K}

This affine-invariant MCMC sampler – and the associated emcee package (Foreman-Mackey
et al., 2013) – is a common sampler in astrophysics, as we state in Chapter 3 (Section 3.2.2).
In principle, the snooker crossover enables to jump between modes. In Foreman-Mackey et al.
(2013), the authors state the affine-invariant sampler is in practice not suited to multimodal cases.
They recommend initializing the chains in a small ball centered around a point expected to be
close to the MAP to avoid getting trapped in a low probability local mode.

Sequential MC (SMC): combining tempering and population methods – SMC (Del
Moral et al., 2006) combines tempering with a population approach. It was originally defined
as a generalization of Kalman filters to non-linear or non-Gaussian state spaces. In this context,
SMC, also known as Particle filter (Del Moral, 2004), draws samples from a succession of distri-
butions. It was adapted to multimodal sampling by defining a succession of K tempered posterior
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distributions

πk(Θ|Y) ∝ [π(Y|Θ)]k/K π(Θ). (2.63)

It first generates TMC samples from the prior distribution. These samples are then modified as the
likelihood is progressively included in the tempered posterior by increasing an inverse temperature
parameter k/K ∈ [0, 1] 5. Other sequences of inverse temperature can also be used.

At each step k, in a first correction step, the weights w(k,t) of the TMC samples Θ(k−1,t)

are evaluated. Then, in a selection step, the population is resampled according to the weights
{w(k,t)}TMC

t=1 . Finally, in a mutation step, each member of the resampled population goes through
a few steps of the MH algorithm with a kernel Kk that admits the tempered posterior πk(·|Y) as
invariant distribution. This last step can be performed in parallel. Algorithm 2.6 summarizes the
SMC algorithm. As a by-product, SMC can also yield the Bayesian evidence, which is useful for
model selection – see Section 2.3.

Algorithm 2.6: Sequential Monte Carlo (SMC)
Input: number of intermediate steps K, number of samples TMC, number of MH steps

NMH, transition kernels Kk

1 Initialization: Starting points Θ(0,t) ∼ π(Θ) for t = 1, . . . , TMC

2 for k = 1, . . . , K do
// Correction: compute weights

3 w̃(k,t) = πk(Y|Θ(k−1,t))
πk−1(Y|Θ(k−1,t)) for t = 1, . . . , TMC

4 w(k,t) = w̃(k,t)∑TMC
t=1 w̃(k,t) for t = 1, . . . , TMC // normalize the weights

5
// Selection: resample the population

6 sample Θ̃(k,t) from {Θ(k−1,t)}TMC
t=1 with selection probabilities {w(k,t)}TMC

t=1

// Mutation: apply NMH steps of MH

7 Θ(k,t) ∼ KNMH
k

(
Θ̃(k−1,t)

, ·
)

for t = 1, . . . , TMC

Output: Set of samples {Θ(K,t)}TMC
t=1

2.A.2 Prior or parallel identification of the modes
Some methods resort to an augmented distribution with a latent mode index. The posterior

distribution is approximated by a mixture model on Θ, where each model corresponds to a
mode. Such methods sample from the posterior using two kernels: a local kernel that explores
around a mode, and a jump kernel that permits jumps between already identified modes. Such
methods include darting MC (DMC) (Andricioaei et al., 2001), jumping adaptative multimodal
sampler (JAMS) (Pompe et al., 2020), regeneration darting MC (RDMC) (Ahn et al., 2013) and
wormhole Hamiltonian Monte Carlo (WHMC) (Lan et al., 2014). WHMC is a particular case
of the Riemannian manifold HMC algorithm introduced in Section 2.2.2.5. The metric of the
corresponding manifold combines the standard Euclidean distance and a wormhole metric that
shortens the distances between already identified modes, which simplifies transitions from one to
another.

DMC and JAMS require a prior identification of the distribution modes by some optimization
methods. RDMC and WHMC allow running optimization methods in parallel to the sampler and

5. The presented tempering approach is called likelihood tempering. Other types of tempering exist, such as
data tempering or model tempering (Mlikota and Schorfheide, 2022).
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update the distribution and the sampler parameters at so-called random regeneration times (Gilks
et al., 1998). However, in high-dimensional settings and with a non-linear forward model, the
posterior has potentially many modes with only a few of significant weight in the mixture. The
identification of the relevant modes with standard optimization methods remains difficult in this
context.

2.A.3 Nested sampling
Nested sampling (Skilling, 2004; Skilling, 2006) is a class of algorithms whose primary goal is

to compute the Bayesian evidence and that produces posterior samples as a by-product. Nested
sampling is therefore not an MCMC algorithm. To evaluate the evidence π(Y|M), here noted
Z, it considers the prior mass associated with a likelihood value greater than v ≥ 0

x(v) =
∫

π(Y|Θ)>v
π(Θ) dΘ. (2.64)

By construction, the function x decreases on [0, π(Y|Θ̂MLE)]. It verifies x(0) = 1 and x(π(Y|Θ̂MLE)) =
0. Besides, a range [x, x + dx] corresponds to the prior weight associated with likelihood values
in [v, v + dv]. The evidence Z can then be rewritten as the uni-dimensional integral

Z =
∫ 1

0
v(x)dx, (2.65)

where v : x 7→ v(x) is the inverse function of x : v 7→ x(v). As x is decreasing on [0, π(Y|Θ̂MLE)],
so is v on [0, 1].

In its first version Skilling (2004); Skilling (2006), nested sampling considers a population of K
points Θ(k,t). At each iteration t, the point Θ(i,t−1) with lowest likelihood vt is exploited to update
the Bayesian evidence estimator Ẑ(t). This estimator implements the rectangle approximation of
an integral:

Ẑ(t) =
t∑

τ=1
vτ

[
exp

(
−τ − 1

TMC

)
− exp

(
− τ

TMC

)]
(2.66)

= Ẑ(t−1) + vt

[
exp

(
− t − 1

TMC

)
− exp

(
− t

TMC

)]
.

Then, the point Θ(i,t−1) is updated to Θ(i,t) with MCMC steps. The other points in the population
are passed as is to the next iteration, i.e., Θ(k,t) = Θ(k,t−1), for all k ̸= i. In these steps, the
transition kernel K samples from the prior distribution with the constraint on the likelihood value
π(Y|Θ(k)) > vt. Therefore, in nested sampling, the main difficulty lies in sampling from the
prior with a hard lower-level constraint on the likelihood values. Algorithm 2.7 summarizes the
procedure of nested sampling. Figure 2.4 illustrates the principle of this original version of nested
sampling in a two-dimensional case. In particular, note that higher population sizes K lead to
horizontally finer rectangles, and that higher number of iterations TMC permit to explore high
likelihood regions.

In more recent papers, better sampling strategies were proposed including ellipsoidal rejection
sampling (Feroz and Hobson, 2008) - and the associated code MultiNest (Feroz et al., 2009),
diffusive sampling (Brewer et al., 2011) and slice sampling (Handley et al., 2015) - and the
associated code Polychord. For a general review on nested sampling, see e.g., Buchner (2023).

Nested sampling is applicable for distributions with dimension up to O(103) for the latest
methods. One proximal nested sampling algorithm was proposed in Cai et al. (2022) to be
applied to distributions on very high dimensional spaces – up to O(106) dimensions. However,
this algorithm was built for imaging analysis and thus is only valid for log-concave posterior
distributions. This property is seldom verified in astrophysical studies, due to the non-linearity of
the forward model.
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Figure 2.4 – Illustration of nested sampling principle in a 2-dimensional parameter space with
TMC = 4 steps and a population of size K = 2. (Left) Parameter space with a population of
K = 2 points θ(k,t) ∈ R2. The gray lines space represent the associated likelihood isocontours
in the parameter space, with darker lines corresponding to higher likelihood. At each step t, one
of the two points is selected to update the evidence estimator Ẑ(t). The selected point is then
updated: the dashed arrows show their trajectories. (Right) illustration of the integral in Eq. 2.65,
with xt the prior mass associated with a likelihood greater than vt, as defined in Eq. 2.64. The
true evidence is the area under the dashed curve. The evidence estimator Ẑ(t) from Eq. 2.66 is
the grayed area.

Algorithm 2.7: Nested sampling
Input: population size K, number of iterations TMC, sampling kernel K, number of

MCMC iterations NMCMC
1 Initialization: Sample K points from the prior Θ(k,0) ∼ π(Θ), set of samples S(0) = ∅,

Bayesian evidence estimator Ẑ(0) = 0
2 for t = 1, . . . , TMC do
3 i = arg mink π(Y|Θ(k,t−1)) // select lowest likelihood
4 vt = π(Y|Θ(i,t−1))
5 xt = exp(−t/TMC)
6 wt = xt−1 − xt // weight of sample Θ(k) in the set of samples
7 Ẑ(t) = Ẑ(t−1) + vtwt // update evidence estimator (Eq. 2.66)
8 S(t) = S(t−1) ∪ {(Θ(i,t−1), wt)} // update set of samples
9 Θ(i,t) ∼ KNMCMC(Θ(i,t−1), ·) // update Θ(k) to increase its likelihood

10 Θ(k,t) = Θ(k,t−1) for all k ̸= i // the other points are not updated

Output: Bayesian evidence estimator Ẑ(TMC), set of samples S(TMC)
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Chapter 3

Review of statistical inference in ISM
studies and position of our problem

“No computer is ever going to ask a new,
reasonable question. It takes trained
people to do that.”

Grace Hopper
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In Chapter 2, we described some statistical modeling and inference methods, including model
selection and model assessment. This chapter reviews the main statistical approaches adopted in
ISM studies. As we will show, ISM studies involving integrated intensities of atomic or molecular
emission lines are mostly based on grid search. Few sampling-based studies have been proposed,
limited to low-dimensional settings. Conversely, cosmology was among the first astrophysics fields
to widely adopt sampling methods and to use advanced models. For instance, many works pub-
lished in the early 2 000’s infer cosmological parameters from observations of the cosmological
microwave background, sometimes combined with other observations. Therefore, we expand the
review to stellar physics and cosmology, where the degree of adoption of Bayesian statistical mod-
eling and inference is higher.

The goal of this chapter is to detail existing applications in ISM studies at each step of the
modeling or inference to be able to motivate our contributions. It isolates the different steps
and components of the Bayesian methodology. Section 3.1 describes the statistical modeling
tendencies, including how numerical forward models are handled and the choice of noise model and
of prior distribution. Section 3.2 lists popular methods for both optimization-based and sampling-
based inference. Section 3.3 reviews applications of model selection and model checking. Finally,
Section 3.6, briefly compares our contributions with the literature.

3.1 Statistical modeling
As presented in Chapter 2 (Section 2.1), statistical modeling aims at defining a posterior

distribution π(Θ|Y). The posterior involves a prior distribution π(Θ) and a likelihood function
π(Y|Θ). In turn, the likelihood function is defined from a forward model – usually a numerical
model in astrophysics – and a noise model. In this section, we discuss choices and standards in
the ISM community and some related communities on the forward model, the noise model and
the prior distribution.

3.1.1 Forward model: handling a numerical model

For any numerical model, small changes in the physical parameters can lead to very different
predicted observables. Adopting a realistic forward model f that predicts observables from physical
parameters is critical for inference. Codes that model the observed environment more realistically
lead to more meaningful estimations. However, the complexity of the physics considered in a code
directly impacts its evaluation time and hence its usability. This is especially true for inference,
which requires many evaluations of the forward model.

3.1.1.1 Direct evaluations or using precomputed models

There are two main approaches to handle a numerical forward model in inference, depending
on their speed. The first approach consists in running the code during the inversion procedure.
This is only possible for fast numerical codes. The second approach targets slower codes. It
consists in generating a grid of precomputed models prior to running the inference procedure.

Running the code during the inversion – On the one hand, the lighter codes can run in
a few seconds and are often used directly in optimization or Bayesian inference. In ISM studies,
many inverse problems rely on a fast model, such as those listed in Chapter 1 (Section 1.2).
Combinations of these codes can also be used. For instance, Behrens et al. (2022) and Keil et al.
(2022) rely on a combination of RADEX and ULCCHEM – see Chapter 1 (Sections 1.2.1
and 1.2.2). Even for the fastest codes, the evaluation of the numerical code is usually the slowest
step in the inversion procedure. In astrochemistry, many efforts were spent on reducing the execu-
tion time. Some large chemical networks were simplified to smaller ones (Holdship et al., 2018).
Alternatively, the original numerical model is used directly in the inversion, but the number of
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evaluations is limited by progressively reusing past evaluations (Keil et al., 2022).

Generating a dataset of precomputed models prior to the analysis – On the other hand,
a more comprehensive model such as the Meudon PDR code Le Petit et al. (2006) – introduced in
Chapter 1 – that handles multiple physical processes on a 1D spatial grid typically requires several
hours of computations. These durations are prohibitively long for inferring physical parameters on
large observation maps. These heavier numerical codes are frequently evaluated on a grid {θi}
on the parameter space prior to any analysis. Following the ISM community standard, we call
precomputed model one evaluation f(θi) of a numerical model f prior to any analysis. Besides,
we call a set of (θ, f(θ)) pairs a dataset of precomputed models or grid of precomputed models
interchangeably, whether the dataset has a regular grid structure or not.

Datasets of precomputed models can be used for grid search in optimization approach or to
approximate integrals with Bayesian-like approaches – see Section 3.2. They can also be used to
derive faster emulators of the numerical model.

We now discuss the choice of the structure of the dataset, which can impact both uses, and
strategies to derive emulators.

3.1.1.2 Datasets structure

A dataset of precomputed models can either be built at once, prior to any analysis, or iter-
atively until an accuracy criterion is satisfied. In Chapter 4 (Section 4.3), we resort to the first
option. We build a dataset of precomputed models at once using a lattice structure.

Generation of the dataset prior to any analysis – The first approach is widespread in ISM
studies. Most datasets of precomputed models are structured as lattices, i.e., as uniform regular
grids, or as near-uniform grids with few and light differences in spacings. For instance, Sheffer
et al. (2011) resorts to a lattice structure to perform a grid search in an optimization approach.
Similarly, Pérez-Montero (2014) and Blanc et al. (2015) use this structure to approximate integrals
in a Bayesian approach. Finally, Ramambason et al. (2022) and Smirnov-Pinchukov et al. (2022)
exploit this structure to train emulators of their numerical models based on a nearest-neighbor
interpolation and a k-nearest-neighbor regression, respectively.

Although very common, uniform or near-uniform grids are not systematically used. For in-
stance, to derive an emulator of the Meudon PDR code, Wu et al. (2018) resorts to a non-
uniform grid of models with more points in the region of interest in the parameter space. This
non-uniformity ensures good accuracy of the emulator in this region. Besides, Bron et al. (2021)
generates two datasets using independent and identically distributed (i.i.d.) draws from the uni-
form distribution on a cube defined with lower and upper values in the physical parameter space.

In cosmology, datasets are often generated using the latin hypercube sampling (LHS) algorithm
– to be introduced in Chapter 4. For instance, see Spurio Mancini et al. (2022); Mootoovaloo
et al. (2022); Agarwal et al. (2012). Some of its variants are also popular Heitmann et al. (2009);
Ramachandra et al. (2021).

Iterative construction of the dataset – There are only two cases in ISM studies, to the
best of our knowledge:

— In Vale Asari et al. (2016), the authors start from a coarse lattice for a first approximation,
and refine it with an octree. An octree is a tree structure that represents the first grid as its
first “layer”. Regions of the parameter space in which the emulator is not accurate enough
are divided into smaller regions and explored with finer grids. See Saftly et al. (2013) for
an introduction to octrees with an application in a Monte Carlo radiative transfer model.

— In Galliano (2018), the authors start from a coarse grid and progressively refine it using a
mid-point strategy until they satisfy an accuracy criterion.
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For a given size of the dataset, the iterative approach usually takes much more time compared
to the first approach, but can lead to better performance by focusing on challenging regions of
the parameter space. In other words, a non-iterative approach can lead to oversampled parame-
ter spaces, i.e., to more evaluations than needed to obtain a good approximation of the original
model. For large grids, this oversampling can result in high storage and computational costs. In
particular, the grid might be too large to be loaded in memory.

Our proposal – In Chapter 4 (Section 4.3), we present the results obtained with a lattice
structured dataset of precomputed models of the Meudon PDR code. This dataset was generated
to derive an emulator of the Meudon PDR code.

3.1.1.3 Learning an emulator

When the numerical model is too slow to be used directly in an inversion procedure, it is
common to derive faster emulators. In this thesis, an emulator of a numerical code is an ap-
proximation of the relation between its inputs θ and its outputs f(θ), derived from a dataset of
precomputed models. Emulating the numerical model, e.g., with interpolation methods, permits
to predict observables for new points θ with lower evaluation time. In particular, an emulator
does not perform the same intermediate computations as the original code.

Emulating the full likelihood function, which includes both the numerical model and the obser-
vation uncertainty model, is possible but quite rare. Indeed, it requires specifying a noise model,
and is therefore either observation-specific or very generic. For instance, the SkyNet artificial
neural network (ANN) (Graff et al., 2014) emulates the full likelihood function by approximating
a numerical model and by assuming a noise model. The noise model is considered Gaussian and
uncorrelated with fixed variance for continuous variable inference. The likelihood function is set
to the cross-entropy (Bishop, 2006, chapter 4) for classification tasks. For a short introduction
to ANNs, see Chapter 4 (Section 4.2.1). In this thesis, we focus on numerical model emulation
to handle separately the forward model and the noise model.

In ISM studies, many numerical model emulations have already been proposed, with different
choices of class of functions to define the emulator:

— Interpolation methods are well spread in the ISM community. For instance, linear interpo-
lation was used in Galliano (2018) to emulate a combination of simple dust codes. Linear
interpolation was also used in Ramambason et al. (2022), combined with nearest-neighbor
interpolation to emulate Cloudy, a Hii region model. Similarly, radial basis function
interpolation are used in Wu et al. (2018) to emulate the Meudon PDR code. Spline inter-
polation methods are sometimes used to compute integrals in Bayesian approaches (Blanc
et al., 2015), but not to emulate numerical models in the ISM community. However, they
are used for emulator derivation in other communities. For instance, Bailer-Jones (2011)
emulates a simulator using a thin-plate spline to infer a set of stellar parameters.

— Classic machine learning regression approaches are punctually used. For instance, in Smirnov-
Pinchukov et al. (2022), a k-nearest-neighbor regression emulates a protoplanetary disks
model. In Bron et al. (2021), a random forest emulates a chemistry model.

— ANNs form a versatile class of functions that is often preferred to address the complexity
of comprehensive ISM models. For instance, ANN emulators of astrochemical models are
derived in de Mijolla et al. (2019); Holdship et al. (2021); Grassi et al. (2022). In addition,
in Grassi et al. (2011), the authors derive a new simulation code and an associated ANN
emulator.

In cosmology, deriving emulators of numerical codes such as Camb that compute power
spectra has received a lot of attention. Polynomial regression was used at first (Jimenez et al.,
2004; Fendt and Wandelt, 2007). Since 2007, Gaussian process regression and ANNs are the
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two main approaches. Gaussian processes are used, e.g., in Heitmann et al. (2009); Ramachan-
dra et al. (2021); Mootoovaloo et al. (2022), and ANNs e.g., in Auld et al. (2007); Agarwal
et al. (2012); Manrique-Yus and Sellentin (2019). The current state-of-the-art emulators, Cos-
moPower (Spurio Mancini et al., 2022), are fast ANNs that achieve an estimated mean error of
0.4% on power spectra. These state-of-the-art emulators were derived to be used as fast surrogate
models in MCMC algorithms for Bayesian parameter inference.

Our proposal – We resort to ANNs to approximate the Meudon PDR code. We chose this
family of functions as 1) it enjoys strong theoretical properties, 2) it proved state-of-the-art in
a variety of regression problems, including in ISM studies, and 3) it allows to easily compute
first and second order derivatives using auto-differentiation. Chapter 4 (Section 4.6) presents
the design and training strategies we proposed to address specificities of complex ISM numerical
models.

3.1.2 Noise model and forward model misspecification
Once the forward model is selected, an uncertainty model on the observations needs to be

specified. Indeed, it is highly unlikely for a forward model to reproduce exactly the observations,
unless over-parameterized. The noise model defines the likelihood function, which quantifies how
distant a prediction f(θ) is from the corresponding observation y. In this subsection, we describe
existing noise models used in ISM studies.

The noise model of the inverse problem considered in this thesis will be fully introduced in
Section 3.4. It involves an additive thermal Gaussian noise and a multiplicative lognormal noise.
The multiplicative uncertainty source encodes both calibration errors and forward model mis-
specification. In addition to noise, observations may contain censored observations due to the
sensitivity limits of the telescopes.

3.1.2.1 Notation

For this subsection on noise models, we extend the notation, in particular Y and Θ. In this
subsection, the L observables are not restricted to the integrated intensity of emission lines, and
may correspond to the flux in spectral channels. Similarly, the N components are not restricted
to pixels of a map, but correspond to the more general notion of observation beams, which does
not assume a map structure. Maps of N pixels and with integrated intensities of L ionic, atomic
or molecular emission lines are thus a special case of this extended notation. In general, the
observation model can be written

∀n ∈ [[1, N ]], ∀ℓ ∈ [[1, L]], ynℓ = A(Inℓ), (3.1)

where Inℓ is the original true and unaltered value for observable ℓ and beam n and A is a general
observation operator. The observation operator A can include measurement noise, calibration
error, modeling error from the choice of forward model, or censorship, i.e., upper bounds on
observables. The number of beams ranges from N = 1, e.g., in Pérez-Montero (2014); Keil et al.
(2022), while some others consider multiple beams, e.g., N = 176 pixels in Wu et al. (2018)
and N = 798 galaxies in Galliano et al. (2021). Similarly, depending on the observed signal, the
number L of observables per beam can be O(102) to O(103) for non spectrally integrated signals
and O(100) to O(101) for line integrated intensities.

Inverse problem usually rely on the assumption that the true signals Inℓ can be reproduced
exactly and simultaneously for all n and ℓ by a forward model f for a physical parameter Θ =
(θn)N

n=1. In other words, it is assumed that there exists a physical parameter Θ such that for all
n and ℓ, Inℓ = fℓ(θn). The observation model (Eq. 3.1) is therefore rewritten

∀n ∈ [[1, N ]], ∀ℓ ∈ [[1, L]], ynℓ = A(fℓ(θn)). (3.2)
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In the following, we list some observation operators A used in ISM studies, including noise models
and censorship.

3.1.2.2 Purely Gaussian noise models

Gaussian and additive uncertainty models are widespread in ISM studies:

ynℓ = fℓ(θn) + ε
(a)
nℓ , ε(a) ∼ N (0, Σ(a)), (3.3)

where ε(a) is a measurement noise with zero mean and covariance matrix Σ(a). Such a model
is often a good approximation for noise models thanks to the central limit theorem. Besides, it
is extremely simple to manipulate. For these two reasons, Gaussian distributions are a by-default
choice in statistical modeling in ISM inverse problems (see e.g., Galliano et al. (2003); Chevallard
et al. (2013); Pérez-Montero (2014); Chevance et al. (2016); Wu et al. (2018); Lee et al. (2019);
Roueff et al. (2021); Keil et al. (2022); Behrens et al. (2022)). In all these works, the covariance
matrix Σ(a) is diagonal, i.e., all the noise components are assumed independent. In Galliano et al.
(2003); Chevance et al. (2016); Lee et al. (2019), this observation model underlies the choice of
the χ2 as a loss function:

L (Θ) = χ2
ν(Θ) =

N∑
n=1

L∑
ℓ=1

(fℓ(θn) − ynℓ)2

σ2
nℓ

, (3.4)

where ν is a so-called degree of freedom. This choice of notation comes from the fact that a sum
of ν i.i.d. squared Gaussian random variables follows a χ2

ν distribution. The degree of freedom
is often distinct from the dimension of Θ, even for linear models f (Andrae et al., 2010). In
other words, in general, ν ̸= NL. In some papers (e.g., Vale Asari et al. (2016)), the Gaussian
noise is considered on the log of the observations log ynℓ, which is equivalent to a multiplicative
noise ε(m) following a lognormal distribution. A non-diagonal covariance matrix Σ(a) permits to
account for correlation in Gaussian noise models. This assumption appears, e.g., in star property
inference (Bailer-Jones, 2011) where Σ(a) is known.

3.1.2.3 Combining additive and multiplicative noises

It is common in ISM studies to combine two sources of noise to account for thermal noise,
calibration noise, or model misspecification. Recall that in the inverse problem considered in this
thesis, we consider a Gaussian additive thermal noise and a multiplicative lognormal noise. This
latter noise includes both calibration error and model misspecification.

Gaussian additive and Gaussian multiplicative distributions – Some ISM studies combine
a Gaussian additive noise ε(a) and a Gaussian multiplicative noise ε(m). This multiplicative error
can represent calibration noise (Gordon et al., 2014; Ciurlo et al., 2016; Galliano, 2018; Galliano
et al., 2021) or model misspecification (Blanc et al., 2015; Vale Asari et al., 2016; Jóhannesson
et al., 2016). The observation model then reads

ynℓ = ε
(m)
nℓ fℓ(θn) + ε

(a)
nℓ , ε(m) ∼ N (1, Σ(m)), ε(a) ∼ N (0, Σ(a)). (3.5)

The covariance matrices Σ(a) are assumed known and diagonal in all these papers. In Vale Asari
et al. (2016) and Jóhannesson et al. (2016), the multiplicative error ε

(m)
nℓ is a single scalar value

equal for all observations, and handled as a nuisance parameter, i.e., inferred and marginalized.
In Blanc et al. (2015), the multiplicative uncertainty source ε

(m)
nℓ is also a unique scalar with

fixed variance. When the observation Y is a multispectral map, a hyperspectral map, or a set
of multichannel observations, the covariance matrix Σ(m) is assumed known. In such cases, it
needs to be specified both spatially and spectrally. Ciurlo et al. (2016) assumes no correlation,
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i.e., independent realizations for all n and ℓ. Gordon et al. (2014) considers a partial spectral
correlation and no spatial correlation. Galliano (2018); Galliano et al. (2021) consider a partial
spectral correlation and a spatial correlation of exactly 1.

Using a Gaussian model for multiplicative noise simplifies computation, as the overall uncer-
tainty model is Gaussian. However, depending on the standard deviation of the multiplicative
error, a Gaussian model may not accurately account for multiplicative uncertainty. A typical
model for multiplicative noise is the lognormal distribution, i.e., a Gaussian distribution for the
multiplying factor on the log scale. The lognormal distribution is symmetric in log scale, i.e.,
the chances of multiplying or dividing by a given factor are equal, which is not the case with a
Gaussian model.

Figure 3.1 illustrates this property. It shows that a Gaussian approximation is relevant for
a low mean calibration error (left), but inappropriate for larger multiplicative errors (right). In
particular, in the latter case, a Gaussian distribution allows negative multiplicative factors, while
they cannot be accommodated by the lognormal distribution.

Figure 3.1 – Quality of Gaussian approximation of a lognormal distribution for low and high
variance. Left: the multiplicative noise corresponds to an error of 10% in average. The associated
lognormal distribution is quite symmetric and is thus well approximated by a Gaussian distribution.
Right: the multiplicative noise corresponds to an error of a factor 2 in average. The associated
lognormal distribution is significantly asymmetric and is thus poorly approximated by a Gaussian
distribution.

Student’s t additive and Student’s t multiplicative distributions – Using a non-Gaussian
uncertainty model usually leads to a complex likelihood function with no closed-form expression.
For instance, in Kelly et al. (2012), the observation model is similar to Eq. 3.5, but with different
noise models: the additive noise ε(a) and the log of the multiplicative noise log ε(m) are assumed
to be independent and to follow a Student’s t distribution, whose pdf is

∀n, ℓ, π
(
ε

(a)
nℓ

)
=

Γ
(

v+1
2

)
√

vπ Γ
(

v
2
)
1 +

(
ε

(a)
nℓ

)2

v


− v+1

2

, (3.6)

with v the degree of freedom of the distribution, set to v = 8 in Kelly et al. (2012). The Student’s
t distribution boils down to the Cauchy distribution for v = 1 and to the Gaussian distribution for
v = ∞. In the article, the covariance matrix Σ(a) of the additive noise is known and diagonal,
and the calibration errors ε

(m)
nℓ are assumed independent spectrally and with spatial correlation of

exactly 1.
Setting a Student’s t distribution on the additive noise ε

(a)
nℓ and on the log of the multiplicative

noise log ε
(m)
nℓ is equivalent to assuming a Gaussian distribution where the standard deviations are

unknown but described with an inverse gamma prior. As the estimation of the standard deviations
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is performed prior to the inverse problem, using a Student’s t distribution is a statistically relevant
way to encode uncertainty on the noise standard deviations.

With these two Student’s t noise sources, the likelihood cannot be written in closed-form.
The authors obtained a closed-form likelihood by using a hierarchical model, i.e., by including
log ε(m) in the set of parameters to infer. This auxiliary variable was thus sampled, and ignored
when deriving estimators.

Other combinations of noises – Mixtures of noise models (Robert and Casella, 2004, chapter
1) are sometimes exploited to set one model for standard observations and one for outliers. In
astrochemistry, Gratier et al. (2016) uses a Gaussian mixture model (GMM) with two components

ynℓ|θn ∼ (1 − po) N (µs, σ2
s) + po N (µo, σ2

o), po ∈ [0, 1], (3.7)

where N (µs, σ2
s) is the noise model for standard observations, N (µo, σ2

o) is a model for outliers,
typically with σo ≫ σs, and po is the probability for the observation to be an outlier. Similarly,
to evaluate distances to local molecular clouds, Zucker et al. (2019) mixes a Gaussian model and
a uniform one. In both cases, the mixture parameter po is also inferred, which makes the model
hierarchical. Gratier et al. (2016) goes farther and also infers most of the noise model parameters
from the data.

3.1.2.4 Including censorship in the likelihood function

Upper bounds on observations are quite common in ISM studies. The corresponding observ-
ables are sometimes discarded in the inversion process. Omitting observables leads to a loss of
information that could damage the inference results. Including these upper bounds on observa-
tions in the likelihood function permits to account for all constraints provided by the observations.
In statistics, censorship permits to include such upper limits ω ≥ 0. In case of Gaussian noise,
the observation model becomes

ynℓ = max
{

ω, fℓ(θn) + ε
(a)
nℓ

}
=

ω if fℓ(θn) + ε
(a)
nℓ ≤ ω

fℓ(θn) + ε
(a)
nℓ otherwise

(3.8)

In (Ramambason et al., 2022), censorship is modeled with a half-normal distribution N−(ω, σ2).
Up to an additive constant, the associated likelihood function is

− ln π(ynℓ|θn) = 1
2σ2 (fℓ(θn) − ω)2 ι[−∞,ω] (fℓ(θn)) , (3.9)

where ι[−∞,ω](fℓ(θn)) = 0 if fℓ(θn) ≤ ω and +∞ otherwise. This approach suffers from two
main drawbacks. First, it prohibits values that are above the censoring threshold ω, though values
slightly above ω should not be unrealistic. Second, it biases fℓ(θn) towards values close to the
threshold ω, while values of fℓ(θn) ≪ ω are also compatible with the upper bound constraint.

In statistics, the standard approach to encode censorship in the likelihood is (Robert and
Casella, 2004, chapter 1)

− ln π(ω|θn) = − ln
∫ ω

−∞
π(ynℓ|θn) dynℓ (3.10)

The integral covers all the integrated intensities ynℓ ≤ ω, and sums the associated uncensored
likelihoods π(ynℓ|θn).

Figure 3.2 illustrates this censorship modeling for a Gaussian additive noise model ε
(a)
nℓ ∼

N (0, σ2). In this case, the integral in Eq. 3.10 can be evaluated efficiently for Gaussian noise
using the Gaussian cumulative density function (cdf) Φ(ω|fℓ(θ), σ2). Unlike the half Gaussian
mentioned above, it does not forbid all physical parameters θ such that fℓ(θ) > ω. Instead, it
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Figure 3.2 – Illustration of censorship in likelihood for Gaussian additive noise models ε
(a)
nℓ ∼

N (0, σ2). The first four panels show four values of f(θ(i)), i = 0, . . . , 3 and the associated
Gaussian additive pdf. The censored portion, below the censorship threshold ω, is highlighted.
The fifth panel shows the likelihood function taking censorship into account. The sixth panel
shows the corresponding negative log-likelihood.
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smoothly and increasingly penalizes them as fℓ(θ) gets farther to the threshold limit, i.e., as the
probability of ynℓ ≤ ω becomes smaller.

This censorship modeling is already used in some ISM inversion codes (Blanc et al., 2015;
Holdship et al., 2018; Thomas et al., 2018).

3.1.2.5 Avoiding the manual specification of a noise model

Finally, two types of approaches do not require specifying a noise model to perform the in-
ference. The first one abandons the noise model specification, while the second learns it from
observation without any signal.

Likelihood-free approach – The most famous approaches that avoid the noise specification
are called likelihood-free, with for instance the approximate Bayes computing (ABC) methods,
introduced in Beaumont et al. (2002) for statistical inference in genetics. See, e.g., Cranmer
et al. (2020) for a review on likelihood-free methods and Beaumont (2010) for a review on ABC
methods. Put in simple words, ABC methods replace the likelihood function by a distance be-
tween summary statistics of true and simulated observations. They were first used in cosmology
in Cameron and Pettitt (2012). Then, they became quite popular, e.g., with Weyant et al. (2013),
cosmoABC (Ishida et al., 2015), abcpmc (Akeret et al., 2015) 1, and astroABC (Jennings
and Madigan, 2017). ABC sampling is much rarer in ISM studies. It is used e.g., in Robin et al.
(2014) to study the thick disk in the Milky Way.

Learning the noise from observations – Abandoning all hope of specifying an accurate noise
model and replacing it with a distance on some statistics seems suboptimal. A recent alternative
consists in learning a correct noise model from observations of noise realizations without any signal.
For instance, in Hahn et al. (2019), the authors combine GMMs and independent component
analysis (ICA) (see, e.g., Hastie et al. (n.d., chapter 14)) to better approximate the likelihood
from datasets usually used for covariance analysis. In Legin et al. (2023), the noise distribution
of some observations of the Hubble space telescope and of the James Webb spatial telescope
(JWST) are learned with a score-based diffusion generative model (see, e.g., Song and Ermon
(2020)). This type of approach fully learns the noise distribution. Hierarchical models can also
learn from observations to estimate noise parameters. However, these parameters depend on a
noise model set a priori, which is more restrictive. To the best of our knowledge, no published
work in the ISM community tries to fully learn a noise distribution from observations.

Our proposal

In the general inverse problem considered in this thesis, we consider a Gaussian additive noise
ε(a) ∼ N (0, Σ(a)), a lognormal multiplicative error ε(m) ∼ N (0, Σ(m)) and a censorship level
ω ≥ 0. The multiplicative noise includes calibration error and, depending on the observation,
a model misspecification error. The two covariance matrices Σ(a) and Σ(m) are assumed to be
known and diagonal. Censorship is modeled as in Eq. 3.10. As the multiplicative noise is not
Gaussian, the overall likelihood function has no closed-form expression. In Section 3.4, we detail
the uncertainty model, its origin and the corresponding assumptions. Chapter 5 (Section 5.1.1)
proposes an approximation with controlled error of the associated intractable likelihood function.

3.1.3 Prior distributions and regularization functions

A prior distribution, or equivalently a regularization function, can encode any physical knowl-
edge on the parameters to infer Θ. There are two main philosophies regarding inference. The
first considers that the statistical model should only exploit information contained in the observed
data, and thus sets the prior as non-informative as possible, if any. The second prefers to add

1. https://abcpmc.readthedocs.io/en/latest/
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physical prior knowledge, e.g., to favor desirable properties in the posterior or to rule out non-
physical solutions.

Non-informative and weakly-informative priors are extremely widespread in ISM studies.
The most common is a uniform prior on Θ, with validity intervals on its components. This prior is
either stated explicitly (e.g., in Behrens et al. (2022); Blanc et al. (2015); Thomas et al. (2018);
Holdship et al. (2018)) or implicitly, when working on a lattice dataset (e.g., in Joblin et al.
(2018); Sheffer et al. (2011); Sheffer and Wolfire (2013)). This uniform prior can be set on the
linear or log scale, depending on the physical parameter and its dynamic range. For this prior
to be weakly informative, the lower and upper bounds are set to obtain wide intervals. These
bounds typically correspond to the orders of magnitude spanned by the physical parameter – see,
e.g., Wu et al. (2018); Joblin et al. (2018).

Informative priors are punctually exploited to encode additional knowledge. There are two
main classes of informative priors in the considered astrophysics communities:

— The first class exploits the structure of the physical parameter Θ. For instance, Paumard
et al. (2014); Ciurlo et al. (2016); Paumard et al. (2022) fit Gaussian line profiles on hyper-
spectral observations. Exploiting the map structure of the physical parameter, they enforce
spatial smoothness in the maps by adding an L1-L2 spatial regularization. The Rohsa fit-
ting algorithm (Marchal et al., 2019) also fits Gaussian line profiles on hyperspectral maps
using a spatial regularization. However, Rohsa relies on the L2 norm of the map Laplacian
as a regularization. Spatial regularization improves reconstructions particularly in the low
signal-to-noise ratio regions, where the observations mostly contain noise.

— The second class directly encodes physical information. For instance, Wu et al. (2018) rules
out non-physical solutions with a physically informed prior on predicted observations f(θ).
This prior constrained the reconstructed integrated intensities to be decreasing for the CO
lines J = 11 − 10, J = 12 − 11, and J = 13 − 12, as this condition seems always sat-
isfied in observations. In stellar properties studies, more advanced physics-informed priors
are sometimes used, such as the Hertzsprung-Russell Diagram prior on population of stars
in Bailer-Jones (2011). This prior ensures that inference results are physically consistent.

In the case of informative priors, one may know a relevant family of distributions for a con-
sidered inverse problem, but face uncertainty on the values of its parameters, e.g., its mean or
covariance. This hyperparameter tuning problem is crucial for inference, as different values yield
different priors and thus different trade-offs. For instance, Ciurlo et al. (2016) presents a tedious
manual setting of the six hyperparameters of its L1-L2 spatial regularization. Hierarchical Bayesian
models, also called multi-level models, represent an intermediate between weakly-informative pri-
ors and wrong over-informative priors. They offer a way to decompose the prior knowledge into
several elementary components, while accounting for uncertainties over each included item of
knowledge. The parameters of the prior distribution can then be inferred from the data along
with the physical parameters of interest Θ.

In the ISM community, Kelly et al. (2012) popularized hierarchical models for dust studies.
For instance, Galliano (2018) – which introduces the dust Bayesian inversion code HerBIE –
and Galliano et al. (2021) rely on a multivariate Student’s t distribution prior on all physical
parameters. Using a hierarchical statistical model, the mean and covariance parameters of this
prior distribution are inferred along with the physical parameters. To simplify the inference of the
covariance matrix, they exploit the separation method (Barnard et al., 2000) to divide covariances
into correlations and standard deviations. Hierarchical models have been also used in other dust
studies e.g., in Juvela et al. (2013); Veneziani et al. (2013). To the best of our knowledge, this
approach still remains to be applied in other ISM fields.

Our proposal – The proposed approach will exploit the spatial regularity of the parameters

71



Review of statistical inference in ISM studies and position of our problem

to be inferred through the L2 norm of the Laplacian operator, while restraining their values to
physically consistent ranges.

3.2 Statistical inference
In this section, we review the inference methods widespread in ISM studies to evaluate esti-

mators defined either as minimum of a loss function or with an integral.

3.2.1 Optimization-based inference

The MLE and MAP are widespread estimators in ISM studies. The methods listed below are
introduced in Chapter 2 (Section 2.2.1).

Grid search – Searching for the point in the dataset that best reproduces the observations
is very common in the inversion of integrated intensities of ionic, atomic or molecular lines e.g.,
in Sheffer et al. (2011); Sheffer and Wolfire (2013); Joblin et al. (2018); Lee et al. (2019). This
grid search approach only works in low dimensional settings, as the number of required precom-
puted models grows exponentially with the number of physical parameters. Besides, it requires
very fine grids to return accurate estimations, which means many evaluations of the forward model.

Gradient descent (GD) – GD algorithms are also quite common in ISM studies. They lead
to more accurate results and work in higher dimensional settings. One of the most common
GD method is the Levenberg-Marquardt algorithm, used e.g., in Schilke et al. (2010) to fit Her-
schel/HIFI spectra of an ortho-H2O+ line with a radiative transfer code, and in Galliano et al.
(2003) in a dust study. Other GD algorithms are sometimes used in ISM studies, such as conju-
gate gradient descent in Paumard et al. (2022) and preconditioned gradient descent – using the
limited memory BFGS (L-BFGS) preconditioner – in Wu et al. (2018). These gradient descent
algorithms perform well with unimodal posteriors. However, unlike grid search methods, they can
get trapped in local minima in case of a multimodal posterior.

Meta-heuristics – In multimodal cases, meta-heuristics such as simulated annealing and
genetic algorithms are sometimes preferred to escape from local minima, e.g., in the MAGIX
inversion code (Möller et al., 2013). These algorithms are also used in cosmology (Hannestad,
1999) or in the inference of star properties (Sarro et al., 2018).

The main limitation of optimization-based methods is that they only provide point estimates,
with no information about the associated uncertainties. This is highly problematic, in particular
with non-informative or weakly-informative priors and ill-posed problems, i.e., badly constrained
problems. For instance, low SNR observations or tracers with limited sensitivity with respect to
physical parameters can lead to non-physical results. Additional studies are necessary to quantify
uncertainty. For instance, Roueff et al. (2021) quantifies the uncertainty associated with the MLE
with the Cramér-Rao bound. As noted by Panter et al. (2003), this approach is only relevant
when the posterior is well approximated by a Gaussian at its mode, which is generally not the
case in astrophysics. In contrast, sampling-based approaches provide credibility intervals on the
physical parameter Θ along with point estimates for general posterior distributions.

3.2.2 Sampling-based inference

A sampling-based approach gives access to estimators defined with an integral – see Chapter 2
(Section 2.1.2). Several methods were already used in the ISM community.

Riemann integration with a grid of pdf evaluations – A simple method to evaluate an
integral performs a Riemann integration with a grid in the physical parameter space. The nega-
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tive log-posterior is evaluated at each point of the grid. This method was applied in some dust
physics studies (Da Cunha et al., 2008; Pacifici et al., 2012). The Bayesian-like Hii-Chi-Mistry
code (Pérez-Montero, 2014) uses a grid of Cloudy models to study Hii regions. From a grid
of models, it returns a mean estimator computed with a weighted χ2. This grid approach was
implemented for other ISM inverse problems with extremely low-dimensional settings (N = 1,
D ≤ 10), e.g., in the codes IZI (Blanc et al., 2015), BOND (Vale Asari et al., 2016), Neb-
ulaBayes (Thomas et al., 2018) or in Villa-Vélez et al. (2021). As the required number of
precomputed models grows exponentially with the dimension, this approach does not scale to
higher dimensions.

Markov chain Monte Carlo (MCMC) algorithms, introduced in Chapter 2 (Section 2.2.2.2),
scale better to high dimensions. MCMC algorithms were popularized in astronomy through cos-
mology in Christensen et al. (2001). The first public MCMC code, CosmoMC was published
in Lewis and Bridle (2002). These articles used random walk Metropolis-Hastings (RWMH) to
generate posterior samples, arguably the most widespread sampling kernel. CosmoMC then be-
came common in cosmological parameter inference, see, e.g., Tegmark et al. (2004), and was also
applied in stellar formation (Acquaviva et al., 2011), dust studies in nearby galaxies (Chevallard
et al., 2013) and fundamental properties of galaxies (Serra et al., 2011). All these applications
had low dimensionality – up to 11 in Lewis and Bridle (2002). RWMH was also applied in ISM
studies e.g., in dark interstellar clouds (Makrymallis and Viti, 2014), in dust (Paradis et al., 2010)
or in astrochemistry (Makrymallis and Viti, 2014).

Some more advanced Bayesian methods, introduced in Chapter 2 (Section 2.A), are also
already popular in the ISM community:

— The affine-invariant MCMC sampler and the associated emcee package is sometimes con-
sidered as the most popular MCMC algorithm in astronomy (Thrane and Talbot, 2019).
It was applied in astrochemistry (Gratier et al., 2016; Holdship et al., 2018; Keil et al.,
2022), extragalactic molecular gas (Yang et al., 2017). It is also popular out of the ISM
community, e.g., in stellar physics (Jackiewicz, 2020; Kashyap et al., 2021). This sampler
can exclusively address low dimensional problems, and requires to be initialized close to a
mode (Foreman-Mackey et al., 2013).

— Nested sampling is also a very popular Bayesian framework in astrophysics and ISM studies.
Popular algorithms include MultiNest (Feroz et al., 2009), Dynesty (Speagle, 2020) and
UltraNest (Buchner, 2016b; Buchner, 2021), that were developed by and for astrophysi-
cists. MultiNest is applied e.g., to study extragalactic molecular clouds (Kamenetzky
et al., 2014; Chevallard and Charlot, 2016) and cosmic ray propagation (Jóhannesson et
al., 2016). Dynesty is applied e.g., to evaluate distances between the Earth and nearby
molecular clouds (Zucker et al., 2018; Zucker et al., 2019) or to reconstruct their 3D struc-
ture (Zucker et al., 2021). UltraNest is applied e.g., on extragalactic SEDs (Behrens
et al., 2022). In particular, these codes can handle multimodal distribution, but remain
limited to low dimensional distributions, e.g., up to 30 in a toy case for MultiNest Feroz
et al. (2009) and in the inverse problem considered in Jóhannesson et al. (2016).

— Sequential MC (SMC) is quite rare in ISM but is nonetheless applied in Ramambason et al.
(2022) in an inversion of integrated intensities of ionic, atomic and molecular emission lines
– the problem we are interested in in this thesis. In that work, it is chosen for its ability to
sample from multimodal distributions in low dimension settings - up to 28 in the paper, for
three sectors - and to compute the Bayesian evidence. SMC is also used when the likelihood
is not specified with an ABC approach, especially in cosmology (see, e.g., Cameron and
Pettitt (2012); Weyant et al. (2013); Jennings and Madigan (2017)).

— One sampling algorithm based on a combination of MH, Gibbs sampling and ancillarity-
sufficiency interweaving strategy (ASIS) (Yu and Meng, 2011) is widespread in dust studies
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that involve a hierarchical model. ASIS is a sampling strategy that relies on complemen-
tary data augmentation schemes to better explore the posterior, including along strongly
correlated directions. This sampler was first used in a dust study in Kelly et al. (2012),
with implementation details provided in Kelly (2011). It was then coupled with a Gibbs
block coordinate approach to exploit the structure in the physical parameter Θ in very high
dimensional applications. For instance, Galliano (2018) involve a few thousand dimensions,
and (Galliano et al., 2021) about 10 000.

Our proposal – Recall that in the inverse problem considered in this thesis, the posterior
distribution is non-log-concave and thus potentially multimodal. The negative log-posterior is
also assumed to be twice differentiable and non gradient Lipschitz continuous. Besides, the phys-
ical parameters we aim at inferring live in high dimensions – up to O(104). The RWMH or the
affine-invariant sampler do not scale well with dimensionality and thus are not able to sample
from the considered posterior. Similarly, nested sampling and sequential MC could bypass the
multimodality and non gradient Lipschitz issues, but do not scale well to high dimensions. Fi-
nally, ASIS is based on two complementary data augmentation schemes. There exists other data
augmentation schemes in the signal processing community dedicated to accelerating MCMC algo-
rithms, e.g., (Vono et al., 2019). In this thesis, we do not resort to data augmentation strategies.
In Chapter 5 (Section 5.2), we define a dedicated sampler. Section 5.4 demonstrates that it
yields state-of-the art performance on two multimodal distributions. Future work may include a
comparison of the proposed sampler with MCMC algorithms involving data augmentation.

3.3 Comparing and checking observation models

As discussed in Chapter 2 (Section 2.3), once the inference is performed, one may want to
evaluate the quality of the fit and compare it to other fits. Model selection is a quite common
approach in astrophysics. However, it only compares models, as the values of the associated
criteria are not interpretable. Conversely, model checking assesses a model individually, and yields
interpretable diagnoses.

In this section, we first list applications of model comparison with Bayesian evidence and
information criteria. Then, applications of model checking methods are reviewed.

3.3.1 Model comparison

Model comparison is an active research topic in astrophysics and cosmology that motivated
the development of multiple statistical methods. As discussed in Chapter 2, model comparison
can be performed by estimating the expected log-predictive density (elpd) or the marginal likeli-
hood, also called Bayesian evidence.

The elpd and information criteria are rarely used in ISM studies, except for some simple
methods. For instance, in a study of star formation history in other galaxies, Acquaviva et al.
(2011) compares models Mi using the χ2 values of their respective best-fit. As it uses an ad-
ditive uncorrelated Gaussian noise model for a point estimate Θ̂, this criterion is equivalent to
the log-predictive density (lpd), introduced in Chapter 2 (Section 2.3.1). The extragalactic SED
analysis from Villa-Vélez et al. (2021) and the study of the thick disc in the Milky Way in Robin
et al. (2014) both use Bayesian approaches and approximate the full posterior distribution. Both
evaluate their results with the Bayesian information criterion (BIC) (Section 2.3.1) using the
maximum a posteriori Θ̂MAP. The ABC-based approach from Robin et al. (2014) resorts to a
surrogate likelihood function to evaluate the BIC. Finally, Lebouteiller and Ramambason (2022)
evaluates the widely applicable information criterion (WAIC) and leave-one-out cross-validation
approximation from Vehtari et al. (2017), in addition to the Bayesian evidence.
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The Bayesian evidence is a more widespread model comparison criterion in astrophysics. The
need for methods that address multimodal distributions in high dimension led to many dedicated
statistical developments. For instance, new statistical methods were proposed by astrophysicists
to evaluate the marginal likelihood from posterior samples (McEwen et al., 2022) or with nested
sampling, with e.g., development of MultiNest (Feroz and Hobson, 2008), UltraNest (Buch-
ner, 2016b; Buchner, 2021) and Dynesty (Speagle, 2020). Evaluating the Bayesian evidence
quickly became popular in cosmology to compare models – see Trotta (2008) for a review. It is
also widespread in astrophysical fields such as stellar physics, e.g., in Hatta et al. (2022). In ISM
studies, the evidence is sometimes evaluated:

— Ramambason et al. (2022) computes the evidence directly with the SMC sampler in a study
of extragalactic Hii regions.

— The inversion code Beagle (Chevallard and Charlot, 2016), which analyzes the SEDs of
galaxies, evaluates the evidence using MultiNest.

— Zucker et al. (2021) evaluates the evidence using Dynesty to study the 3D structure of
nearby molecular clouds.

— Kamenetzky et al. (2014), which studies molecular clouds properties in nearby galaxies,
resorts to model selection to compare local modes of one posterior distribution, using “local
evidences”. This evaluation of local evidence of each mode is performed with MultiNest.

3.3.2 Model checking with posterior predictive assessment
In ISM studies, the obtained loss function value in a non-linear least squares problem, often

noted χ2, is used in a three-case interpretation (Ivezić et al., 2020, chapter 4). When χ2 > 1,
the estimated parameters are judged not able to reproduce observations. A χ2 ≪ 1 suggests an
overfit or an overestimation of uncertainties on observations. Finally, χ2 ≃ 1 is the ideal case,
indicating physical parameters that reasonably reproduce the observations. This interpretation
was applied in ISM studies e.g., in Chevance et al. (2016); Joblin et al. (2018); Villa-Vélez et al.
(2021).

This interpretation comes with some limitations and was already criticized in the astrophysics
community (Andrae et al., 2010). In particular, the degree of freedom is challenging to estimate
for non-linear forward models and when a prior distribution is considered. Besides, this χ2 rule
only applies to Gaussian noise models. Finally, when Θ is described by a posterior distribution
and not by a point estimate Θ̂, the obtained χ2 value is approximated with a Monte Carlo (MC)
estimator. Replacing the true χ2 with an Monte Carlo (MC) estimator introduces an error that
is seldom accounted for in astrophysics.

In Chapter 2 (Section 2.3), we introduced the so-called Bayesian p-value (Eq. 2.57). This
p-value permits to check the ability of the forward model to reproduce observations. The afore-
mentioned χ2 rule can be transformed into a Bayesian p-value approach for a point estimate Θ̂
using the L2 test statistic from Eq. 2.55, reminded below

T (Ỹ, Θ) =
N∑

n=1

L∑
ℓ=1

(ynℓ − fℓ(θn))2

σ2
nℓ

. (3.11)

The inversion code Beagle (Chevallard and Charlot, 2016) aims at modeling and interpret-
ing spectral energy densities (SEDs) of galaxies. In Beagle, yℓ is the observed flux in band
ℓ, fℓ(Θ) the flux predicted by the model in band ℓ, and σℓ the standard deviation for band ℓ.
This code uses the χ2 both as a likelihood function and as a test statistic T for the Bayesian
p-value. As the authors consider a posterior distribution and not a point estimate Θ̂, this p-value
is intractable. The authors approximate it using the MC estimator presented in Gelman et al.
(1996) and in Eq. 2.59.
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Galliano et al. (2021) infers dust properties from the SED of nearby galaxies using the Her-
BIE inversion code (Galliano, 2018). In this article, yℓ is the observed flux in band ℓ, fℓ(Θ) the
flux predicted by the model in band ℓ, and σℓ the standard deviation for band ℓ. Lebouteiller
and Ramambason (2022) fits physical parameters to integrated intensity of atomic and molecular
emission lines using Cloudy. In this work, yℓ and fℓ(Θ) are integrated intensities of an atomic or
molecular emission line ℓ, and σℓ the corresponding observation standard deviation. In both these
articles, the authors use a likelihood more complex than uncorrelated Gaussian noise. For instance,
both include censored observations, i.e., upper limits on some low intensity observations. With
a censored likelihood, the posterior enforces observation reproductions ỹℓ to be below an upper
limit. Both these articles also use the χ2 as a test statistic T . With this statistic T , reproductions
that are far below this upper limit are heavily penalized by the test statistic, while relevant for
the likelihood function. A test statistic that favors the same behaviors as the likelihood should
be preferred. Finally, both high and low p-values are rejected in Galliano et al. (2021). While
rejection for high p-values is indicated in Gelman et al. (2015) for a simple test statistic, p-values
close to 1 do not indicate a problematic fit with the χ2 statistic. On the contrary, with this
discrepancy measure T , p-values close to 1 indicate that the model can reproduce observations
with smaller errors than the uncertainties in the noise model.

Our proposal – In Chapter 5 (Section 5.3), we resort to hypothesis testing to assess the com-
patibility of a forward model with the observations. We evaluate the Bayesian p-value from Gelman
et al. (1996), with three specificities:

1. We do not set the test statistic to the χ2. To ensure that the p-value is consistent with the
likelihood function in general cases, we set the test statistic to the negative log-likelihood
T (Y, Θ) = − ln π(Y|Θ). This choice generalizes the case of Beagle to arbitrary obser-
vation models.

2. We compute maps of p-values instead of one global p-value. This approach helps to identify
regions that are badly modeled by the Meudon PDR code in analyses.

3. We account for uncertainties on the p-value that come from the MC evaluation. This avoids
the rejections that are due to chance and caused by insufficient number of samples.

3.4 Our observation model
In this thesis, we consider hyperspectral observations such as the large maps IRAM-30m

“ORION-B” Large Program. Such maps are usually transformed into maps of integrated inten-
sities of L ∼ 5 − 30 ionic, atomic or molecular emission lines. In this section, we describe the
reduction process considered in this thesis and the associated uncertainty model.

3.4.1 Noise model on the original hyperspectral cube

We start with an observed hyperspectral cube O = (onk) ∈ RN×K , where N is the number of
pixels (observed spatial positions) and K the number of spectral channels (observed frequencies).
For instance, the Orion-B observation described in Pety et al. (2017) contains N = 106 pixels
and K = 200 000 spectral channels. Usually, observation maps contain between N = O(1) and
O(104) pixels.

Figure 3.3 shows examples of spectra of molecular emission lines from the Orion-B observations
presented in Pety et al. (2017). Each emission line is limited to an effective small range of spectral
channels.

As in Kelly et al. (2012); Galliano (2018); Galliano et al. (2021), we assume a mixture of
multiplicative and additive noises on the voxels, i.e., the elements of the cube:

∀n ∈ [[1, N ]], ∀k ∈ [[1, K]], onk = ε̃
(c)
nkInk + ε̃

(a)
nk , (3.12)
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with n a pixel index, k a spectral channel, and Ink the unaltered signal of interest. The term
ε̃(c) = (ε̃(c)

nk)nk is a multiplicative noise due to calibration error, and ε̃(a) = (ε̃(a)
nk )nk an additive

measurement noise.

The measurement noise ε̃(a) combines two sources of uncertainty. A common observation
procedure defines onk as the difference between two measurements, one “off” (observation of
a dark portion of the sky), and one “on” (observation of the position of interest n). Each
measurement counts photons on a small area during a fixed duration. As photons are considered
independent, the number of observed photons is modeled as independent realizations of a Poisson
distribution. When many photons are observed, the Poisson distribution can be well approximated
by a Gaussian distribution with known variance. Finally, the difference of the two measurements
yields a difference of two independent Gaussian distributions, which is itself Gaussian. Besides,
thermal noise also affects the observations. This thermal noise can be accurately modeled by an
additive Gaussian noise as well.

As a sum of these two Gaussian noises, ε̃
(a)
nk is modeled by a Gaussian distribution. In this thesis,

its covariance matrix Σ̃(a) is assumed diagonal, i.e., Σ̃(a) = diag(σ̃2
a,nℓ), for simplicity. Realizations

on different voxels (n, k) are thus assumed independent. This assumption is generally not verified
on real observations. For instance, Einig et al. (2023) the structure of the noise covariance in the
IRAM-30m Orion-B observations (Pety et al., 2017).

The calibration noise ε̃(c) represents a relative error with respect to the true signal Ink of
10% or lower (Einig et al., 2023). As described in Chapter 3 (Section 3.1.2.3), an additive Gaus-
sian noise cannot capture accurately such relative uncertainty, contrary to a multiplicative noise.
As in Kelly et al. (2012), we assume a lognormal model, i.e., a Gaussian distribution on ln ε̃(c).
The spectral correlation is partly taken into account. We assume that the multiplicative noise
realizations ε̃

(c)
nk in all the spectral channels associated with one emission line ℓ are equal. The

noise realization value is denoted ε
(c)
nℓ . Conversely, we neglect the correlation between the spectral

channels of distinct lines. As in the additive noise, the noise spatial correlation is neglected.
Overall, for a line ℓ and a pixel n, we assume ε

(c)
nℓ ∼ Lognormal(−σ2

c /2, σ2
c ), where the non-zero

mean on the log scale ensures E[ε(c)
nℓ ] = 1.

Intensities Ink can cover multiple decades within one hyperspectral cube – see, e.g., Pety
et al. (2017). The dominant noise for a voxel onk thus depends on the intensity Ink. Indeed, if
Ink ≫ σ̃a,nℓ, the additive noise becomes negligible and the multiplicative dominates. Conversely,
if Ink ≪ σ̃a,nℓ, the additive noise dominates. Therefore, one cannot neglect one of the two
sources of uncertainty.
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Figure 3.3 – Examples of molecular emission line spectra for different molecules in the Orion-B
cloud. The line profiles displayed here are averaged over all pixels in the observed map. The
velocities in the horizontal axes are translated for each line ℓ such that the 0 corresponds to its
characteristic frequency νℓ. Adapted from Pety et al. (2017).

Details for statisticians 3.1: Units for specific and integrated intensities

In Figure 3.3, the spectral channels are called velocity channels and expressed in km s−1,
and the intensities are expressed as temperatures. Integrated intensities are thus expressed
in K km s−1. These conventions are widespread in radio observations. In physics, the
integrated intensities are expressed in erg cm−2 s−1 sr−1, using the centimetre-gram-second
(cgs) unit system. The conversion is detailed here.

The Doppler effect provides a simple bijective relation between frequency ν and velocity v

dν [Hz] = ν

c
dv [m s−1] =

(
103 ν

c

)
dv [km s−1]. (3.13)

The measured specific intensity Iν in a spectral channel of frequency ν is converted to a
temperature T using a black body model and the Rayleigh-Jeans (RJ) approximation:

Iν [W m−2 Hz−1 sr−1] = 2hν3

c2
1

exp
{

hν
kBT [K]

}
− 1

RJ≃
(

2ν2

c2 kB

)
T [K], (3.14)

with kB the Boltzmann constant and h the Planck constant. Combining Eq. 3.13
and Eq. 3.14, the integrated intensity Iℓ reads

Iℓ [erg cm−2 s−1 sr−1] = 103 Iℓ [W m−2 sr−1] (3.15)

= 103
∫

Iν [W m−2 Hz−1 sr−1] × dν [Hz] (3.16)

=
(

2 × 106 ν3

c3 kB

)∫
T [K] × dv [km s−1]. (3.17)
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3.4.2 From the hyperspectral cube to maps of integrated intensities

There are multiple methods to evaluate the integrated intensity of an emission line ℓ at a
given pixel n from the hyperspectral cube. A widespread approach is to assume a line profile
shape, usually Voigt or Gaussian, and to fit it to the observations.

Details for statisticians 3.2: Evaluating integrated intensity with a line profile

For a static cloud, an emission line ℓ that corresponds to a quantum de-excitation is
characterized by a central frequency νℓ and a line profile ϕ such that

∫
ϕ(ν)dν = 1. The

integrated intensity Iℓ associated with an emission line ℓ is therefore obtained with

Iℓ =
∫

Iνϕ(ν − νℓ)dν. (3.18)

In astrophysics, the line profile ϕ is usually a Voigt profile, i.e., the convolution of a Gaussian
profile and of a Lorentzian profile. The Gaussian profile accounts for the speed distribution
of the gas particles and for microturbulence. The Lorentzian profile, also called Cauchy
profile, models a quantum effect that causes uncertainty on the energy level values. The
Voigt profile accounts for the three aforementioned sources of uncertainty. It is commonly
used for absorption observations, e.g., for H or the H2 absorption lines in the UV domain.
For emission lines, it is often simplified to a Gaussian profile, as the Lorentzian wings get
drowned in thermal noise. See Draine (2011, chapter 6) for more information on standard
line profiles.

In real observations, a cloud is generally not static, which causes perturbations in the charac-
teristic frequency νℓ. Codes such as CubeFit (Paumard et al., 2022) perform a Gaussian profile
fit to each spectrum to account for this perturbation. Other codes such as Rohsa (Paumard
et al., 2022) perform a Gaussian mixture fit to account for the existence of multiple components
in the cloud, each with a specific speed.

Figure 3.3 shows spectra of line emissions. In the high SNR regime, fitting a profile can provide
an accurate fit and yield an accurate estimate of the integrated intensity ynℓ. For instance, fitting
a Gaussian profile seems relevant HCO+ J = 1 − 0 and C18O J = 1 − 0 emission lines (top
right). Similarly, fitting a Gaussian mixture on the 12CO J = 1 − 0 profile (top left) seems
relevant. However, it is unclear how to define an uncertainty model on the resulting integrated
intensities. Besides, in the low SNR regime (bottom left) or in the absence of signal (bottom
right), fitting a Gaussian profile may either provide a non-physical result or fail. In the latter
case, the pixel is usually considered censored, but it is unclear with which upper bound – see
Chapter 3 (Section 3.1.2.4) for an introduction to likelihood model in presence of observation
censoring. See e.g., Gaudel et al. (2023) for another application to the Orion-B cloud to study
the gas kinematics.

A second approach consists in summing the spectral channels associated with a given line
ℓ. Some approaches such as Einig et al. (2023) may denoise the spectrum beforehand. Such
denoising relies on assumptions on the spectrum regularity (e.g., continuity or differentiability)
and on the noise (e.g., zero mean), but does not assume any shape for the profile. We do not
resort to denoising to avoid distorting the signal of interest and to exploit a relevant noise model.
For a given emission line ℓ at pixel n, the integrated intensity ynℓ is defined as the sum of a set
of spectral channels [[k(ℓ)

min, k
(ℓ)
max]]:

ynℓ =
k

(ℓ)
max∑

k=k
(ℓ)
min

onk =
k

(ℓ)
max∑

k=k
(ℓ)
min

(
ε

(c)
nℓ Ink + ε̃

(a)
nk

)
= ε

(c)
nℓ

k
(ℓ)
max∑

k=k
(ℓ)
min

Ink +
k

(ℓ)
max∑

k=k
(ℓ)
min

ε̃
(a)
nk . (3.19)
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The first sum defines the integrated intensity Ink before any alteration by noise. The second
sum is a sum of independent Gaussian distributions with known standard deviations σ̃a,nk, and
is therefore itself a Gaussian distribution ε

(a)
nℓ ∼ N (0, σ2

a,nℓ), with σ2
a,nℓ =

∑k
(ℓ)
max

k=k
(ℓ)
min

σ̃2
a,nk. We

rewrite Eq. 3.19 as

ynℓ = ε
(c)
nℓ Inℓ + ε

(a)
nℓ . (3.20)

The set of spectral channels [[k(ℓ)
min, k

(ℓ)
max]] may be fixed for all pixels n or adaptive. An adap-

tive set may result in reduced variance on additive noise, but include a bias on the integrated
intensities (Pety et al., 2017). In particular, an adaptive approach may cut the wings of the line
profile and underestimate the integrated intensity Inℓ. We use a fixed interval [[k(ℓ)

min, k
(ℓ)
max]] for all

pixels n, at the cost of potentially higher noise variance. The intervals were set conservatively,
reasonably large to include the whole line profile, even in case of Doppler shifting.

3.4.3 Forward model, observational effects and censorship
The Meudon PDR code as a forward model and model misspecification – A usual

hypothesis in inversion procedures is that the forward model f can predict exactly this integrated
intensity, i.e., that there exists a physical parameter θn such that Inℓ = fℓ(θn). In this thesis, the
forward model is set to the Meudon PDR code, introduced in Chapter 1 (Section 1.3). As already
mentioned, the Meudon PDR code might not be able to exactly reconstruct the observations. For
instance, the reaction constants, collision rates and photo-reaction cross-sections used in the code
come from laboratory measurements or from theoretical computations. The uncertainty on these
values induces uncertainty on the code predictions. Besides, the encoded physics are based on
physical assumptions and simplifications, such as the parallel slab geometry. Finally, in inference
procedures the Meudon PDR code f is replaced by the neural network emulator f̃ proposed in
Chapter 4, which introduces another approximation error.

We introduce a second multiplicative error source ε
(v)
nℓ to encode uncertainty on the model

validity such that Inℓ = ε
(v)
nℓ f̃ℓ(θn). For simplicity, we assume ε

(v)
nℓ ∼ Lognormal(−σ2

mod/2, σ2
mod)

with independent and identically distributed (i.i.d.) realizations for different pixels n or lines
ℓ. In this case, the full multiplicative uncertainty is ε

(m)
nℓ = ε

(v)
nℓ ε

(c)
nℓ . As a product of log-

normal distributions, this multiplicative uncertainty is itself a lognormal distribution ε
(m)
nℓ ∼

Lognormal(−σ2
m/2, σ2

m), with σ2
m = σ2

c + σ2
mod. The observation model in Eq. 3.20 thus be-

comes

ynℓ = ε
(c)
nℓ

(
ε

(v)
nℓ f̃ℓ(θn)

)
+ ε

(a)
nℓ = ε

(m)
nℓ f̃ℓ(θn) + ε

(a)
nℓ . (3.21)

Observational geometry effects – To account for beam dilution and for signal amplification
or attenuation effects due to the angle with the surface of the cloud, we introduce a last multi-
plicative parameter κ = (κn)N

n=1. Unlike the other uncertainty parameters, this parameter is to
be inferred. It scales all lines identically so that Eq. 3.21 is rewritten

ynℓ = ε
(m)
nℓ κnf̃ℓ(θn) + ε

(a)
nℓ . (3.22)

Such a parameter was also introduced e.g., in Sheffer and Wolfire (2013), where κn is defined
as a product of 4 terms. Two of these terms are smaller than 1, one of which being the beam
dilution factor. The two remaining are greater than 1. Similar multiplicative parameters were
also considered in Joblin et al. (2018). We assume that for all n, log10 κn ∈ [−1, 1]. To simplify
notation, this parameter κn is added to the parameter vector θn such that f̃(θn). Adding this
parameter does not affect the twice differentiable property of the forward model f̃ , as it is simple
to compute ∂ f̃

∂κn
(θn) and higher order derivatives.
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Censorship – For real data applications as in Chapter 6, we only have access to reduced
multiline integrated intensity maps instead of the raw hyperspectral map. In these cases, a simpler
observation model may be imposed. Upper values ωnℓ ≥ 0 on observations are sometimes provided
when Inℓ ≪ σa,nℓ. These upper values ωnℓ on observations correspond to lower sensitivity bounds
of the telescope. In these cases, we consider censorship as described in Chapter 3 (Eq. 3.10).
Overall, the general observation model considered in this thesis is

ynℓ = max
{

ωnℓ, ε
(m)
nℓ f̃ℓ(θn) + ε

(a)
nℓ

}
=

ωnℓ if ε
(m)
nℓ f̃ℓ(θn) + ε

(a)
nℓ ≤ ωnℓ

ε
(m)
nℓ f̃ℓ(θn) + ε

(a)
nℓ otherwise

. (3.23)

The absence of censorship corresponds to the case where ωnℓ = −∞.

3.5 Modeling, inference and model assessment choices
This section summarizes the choices we made in this thesis regarding statistical modeling,

inference and model assessment. These choices will be detailed in Part II.

Statistical modeling:
1. The forward model is set to the Meudon PDR code, as we assume that it simulates pho-

todissociation regions accurately. Unlike lighter codes, this numerical simulator requires a
few hours per evaluation. Evaluating it during the inference would result in an extremely
slow inversion procedure. To accelerate inference and be able to compute gradients effi-
ciently, we derive an accurate, fast, and light ANN emulator of the Meudon PDR code. This
emulator is trained from a training dataset with a regular grid structure on the parameter
space. The derivation of this emulator is the core of Chapter 4.

2. The uncertainty model from Eq. 3.23 combines two sources of noise: one additive and
Gaussian, associated with thermal noise, and one multiplicative that includes both calibra-
tion and model misspecification errors. The additive Gaussian noise dominates in low SNR
observations and becomes negligible in the high SNR regime. Conversely, the multiplica-
tive lognormal noise dominates at high SNR observations and is negligible in the low SNR
regime. Therefore, one cannot neglect one of the two noise sources. The resulting likelihood
function has an expression challenging to address as is. In Chapter 5 (Section 5.1.1), we
propose a closed-form and non-hierarchical approximation of the likelihood function with
controlled error.

3. The proposed prior distribution combines a weakly-informative smooth uniform prior on a
cube and an informative spatial regularization. The former encodes validity intervals for
the components of Θ. The latter exploits the map structure in Θ. It is based on the L2
norm of the maps Laplacian, as in Marchal et al. (2019). The resulting negative log-prior
is also twice differentiable. The proposed prior is fully introduced in Chapter 5 (Section 5.1).

Statistical inference – Chapter 5 (Section 5.2) presents a new MCMC algorithm dedicated
to map-structured data and high-dimensional multimodal distributions. The proposed sampler
combines two kernels:

1. The first kernel addresses the regularity issue of the posterior. It performs efficient lo-
cal exploration of the posterior by exploiting its local geometry, encoded by a RMSProp
preconditioner.

2. The second kernel addresses the multimodality of the posterior. It permits escapes from
the local minima by exploiting the map structure.

Model assessment – We use Bayesian hypothesis testing as Chevallard and Charlot (2016);
Galliano et al. (2021); Lebouteiller and Ramambason (2022). In Chapter 5 (Section 5.3), we
extend the test with three specificities:
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1. The discrepancy measure T is set to the negative log-likelihood for generality. The resulting
p-value thus remains relevant for non-Gaussian noise models.

2. We compute one p-value per pixel to help identify potential regions where the Meudon PDR
code does not simulate the physics accurately.

3. Uncertainties associated with the Monte Carlo estimators of the p-values are accounted for.
The test is therefore made more robust to wrong decisions caused by the error inherent to
MC estimation.

3.6 Conclusion
In this chapter, we reviewed statistical modeling and inference approaches adopted in the ISM

community. We showed that the choices of model and inference method heavily depend on the
community. Cosmology seems to be a pioneer in using state-of-the-art statistical approaches, e.g.,
with early uses of ANNs to emulate heavy numerical models and of advanced MCMC algorithms to
perform inference. Dust studies in the ISM community are also quite advanced, with e.g., the use
of sophisticated uncertainty models and the inference of prior hyperparameters with hierarchical
models. In particular, works like Galliano (2018) or Galliano et al. (2021) infer physical parameters
in very high dimensions – O(104) – and with advanced noise models. To the best of our knowledge,
these works are currently the only sampling-based applications with such dimensionality in the
ISM community. The only other mentioned works relying on such dimensions are Paumard et al.
(2014); Ciurlo et al. (2016); Paumard et al. (2022), which infer maps of parameters by exploiting
spatial regularization within an optimization algorithm.

In comparison, inverse problems based on maps of integrated intensities of ionic, atomic and
molecular lines have mainly been addressed for maps with a limited number of pixels. For in-
stance, Sheffer et al. (2011); Sheffer and Wolfire (2013); Joblin et al. (2018); Ramambason et al.
(2022) work on single-pixel observations. In Wu et al. (2018), the 176-pixel observation is handled
with a pixel-by-pixel approach. In the coming years, with the upcoming JWST data and large
observation surveys such as the IRAM-30m “ORION-B” Large Program, large observation maps
with varying SNR are expected to be more common. The inverse problems we are interested in
are therefore expected to increase in dimensionality.

In this thesis, we aim at inferring maps of physical parameter Θ with up to O(104) pixels. We
perform this inference using a state-of-the-art numerical model, the Meudon PDR code, and state-
of-the-art statistical modeling and inference methods. The resulting likelihood function is highly
non-linear, which causes the posterior distribution to be potentially multimodal. Usual sampling
algorithms such as RWMH or the affine-invariant MCMC usually fail to explore such distributions
and remain stuck in one local minimum. In addition, the code Meudon PDR is assumed to be
twice differentiable, but not gradient Lipschitz continuous. This latter property makes the local
exploration of the posterior complicated for classic gradient-based sampling algorithms such as
MALA or HMC.

Chapter 4 derives a fast, light and accurate approximation of the Meudon PDR code. Chap-
ter 5 (Section 5.1) details a likelihood function approximation, proposes a spatial regularization
prior and the resulting posterior distribution. Chapter 5 (Section 5.2) presents the proposed
MCMC algorithm used for inference. Chapter 5 (Section 5.4.2) presents a first very high dimen-
sional synthetic case. Chapter 6 presents multiple applications of the proposed approach to real
observations.
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Solving inverse problems on ISM
multiline maps

83





Chapter 4

Fast simulations of photodissociation re-
gion models

“ Learning with neural networks was
proposed in the mid-20th century. It
yields an effective learning paradigm and
has recently been shown to achieve
cutting-edge performance on several
learning tasks. ”

Shalev-Shwartz and Ben-David (2014,
chapter 20)
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In Chapter 3 (Section 3.1.1), we reviewed how numerical forward models are handled in studies
of the interstellar medium (ISM). In case of a simple and fast astrophysical model, the numerical
simulation is sometimes directly used within the inversion, e.g., in Holdship et al. (2018). The
inverse problem studied in this thesis – to be fully introduced in Chapter 5 – involves large obser-
vation maps. Each pixel of these maps is modeled using the Meudon PDR code. As the Meudon
PDR code requires a few hours for each evaluation, evaluating the associated likelihood during
the inversion procedure would be prohibitively slow. We farther described some simulation-based
inference approaches, including approximate Bayes computing methods and likelihood emulation.

This chapter is focused on emulating the Meudon PDR code from a set of evaluations in-
stead of the full likelihood function. This approach avoids re-training an emulator whenever the
nature or level of the noise changes. The resulting surrogate model will be included in the ob-
servation model detailed in Chapter 5. A similar strategy was adopted e.g., in Wu et al. (2018)
and Ramambason et al. (2022). Using an emulator instead of the original numerical code induces
approximation errors that should be minimized.

In this chapter, we propose a neural network-based emulator, and compare it with standard
interpolation methods in terms of speed, memory requirements and accuracy. We eventually
obtain a fast, light and accurate artificial neural network (ANN) emulator. This emulator is used
as a forward model in Chapter 5.

This chapter is based on the journal article Palud et al. (2023c) and the associated Gretsi
conference article Einig et al. (n.d.). This article is the product of an equal collaboration with
Lucas Einig, another PhD candidate of the ORION-B consortium.

The code associated with this chapter and its experiments was published in a Python pack-
age called nnbma (for Neural Network-Based Model Approximation). The code can be found
at https://github.com/einigl/ism-model-nn-approximation. It can be installed via pip
– see https://pypi.org/project/nnbma/. The associated documentation can be found at
https://ism-model-nn-approximation.readthedocs.io/en/latest/?badge=latest.

Section 4.1 provides a description of the considered interpolation and regression methods.
Section 4.2, introduces ANNs and how to fit them to a grid of precomputed models. Section 4.3
presents some methods to generate datasets of precomputed models with a good coverage of
the parameter space. The illustrative Section 4.4 compares all considered methods and dataset
structures on a simple case, the log Rosenbrock function. Section 4.5 describes the dataset of
precomputed models and introduces the metrics used to compare surrogate models. In Section 4.6,
we design ANNs that address the specificities of ISM numerical codes. Section 4.7 compares these
ANNs with classic interpolation methods in terms of speed, memory requirements and accuracy.

4.1 Deriving emulators with interpolation or regression

Deriving an emulator consists in estimating the function f̃ : RD → RL that maps input vectors
θ to output vectors y = f(θ) as closely as possible. This function f̃ is learned, or equivalently,
fitted, from a dataset of precomputed models D = {(θn, yn) ∈ RD × RL, n = 1, . . . , N}. We
remind that in this thesis, the input vector θ corresponds to a vector of physical parameters, e.g.,
temperature, thermal pressure, volume density, and the output vector y to observables computed
by a numerical code, e.g., integrated intensities of specific emission lines.

In this Section, we first summarize four interpolation methods we will use in our comparison.
Then, we present ANNs and the associated regression methods. For a more detailed introduction
to ANNs, see Shalev-Shwartz and Ben-David (2014, chapter 20).
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4.1.1 Interpolation methods

Interpolation methods have become a common approach to build surrogates of comprehensive
ISM models over the last years thanks to their conceptual and implementation simplicity. Four
families of interpolation methods are usually considered:

— Nearest-neighbor interpolation assigns to a new point the value of the closest point in the
dataset. It is fast but generally performs poorly in terms of accuracy. It was used e.g.,
in Ramambason et al. (2022).

— Piecewise linear interpolation generally performs better, while remaining quite fast. It first
triangulates the dataset, so that a new point is associated with a cell of the triangulation.
Then, it returns a weighted average of the cell points values. It was used e.g., in Thomas
et al. (2018).

— Spline interpolation (Bojanov et al., 1993) methods are based on piecewise polynomials,
yielding an even more accurate and still fast surrogate model. It was used e.g., in Blanc
et al. (2015).

— Radial basis function (RBF) interpolation (Fasshauer, 2007, chapter 6) uses the full dataset
for each evaluation. For a new point, it returns a weighted sum of the values of all the
dataset points, where the weights depend on the distance to this new point. Surrogate
models defined with RBF interpolation are generally very accurate but slow. It was used
e.g., in Wu et al. (2018).

Interpolation methods suffer from some drawbacks. By definition, a surrogate model defined
with an interpolation method passes exactly through the points of the dataset. This constraint
does not guarantee good accuracy on points not used during the fit. Besides, evaluating a
surrogate model defined with an interpolation method requires loading the whole dataset, which
can induce a very heavy memory cost when it contains many precomputed models or many
quantities associated with each model. Finally, although they are generally faster than the original
numerical codes, interpolation methods handle outputs (i.e., observables) independently. They
are thus quite slow when the number of outputs is large.

Accuracy can be improved by relaxing the constraint of passing through the points of the
dataset. The memory and speed drawbacks can be addressed using an approach that allows
predicting all outputs at once.

4.1.2 Regression methods

Relaxing the constraint of passing through the points of the dataset turns the interpolation
problem into a regression problem. The first step towards emulating a numerical model f is to
restrict the search of f̃ to a class of functions. Most classes of functions are parametrized with
vectors ψ. In the following, potential surrogate functions are sometimes denoted f̃ψ to emphasize
this point. For instance, in linear regression, an affine function f̃ψ : θ 7→ Wθ + b is uniquely
described by ψ = (W, b). Given the complexity of ISM numerical models, the class of affine
functions is too restrictive to produce accurate surrogate models, and richer classes are required.

Multiple classes of functions and the associated regression algorithms enable the emulation
of complex non-linear functions from data of precomputed models, such as polynomial functions,
k-nearest-neighbor regression (Shalev-Shwartz and Ben-David, 2014, chapter 19) – used e.g.,
in Smirnov-Pinchukov et al. (2022) –, Gaussian process regression (Rasmussen and Williams,
2006), decision trees and the associated ensemble methods such as random forest (RF) (Shalev-
Shwartz and Ben-David, 2014, chapter 18) – used e.g., in Bron et al. (2021) – or XGBoost (Chen
and Guestrin, 2016), ANNs (Shalev-Shwartz and Ben-David, 2014, chapter 20). All methods
based on decision trees or nearest-neighbors yield piecewise functions, which prevents from en-
forcing desirable regularity property in the surrogate model such as continuity or differentiability.
Besides, all the listed algorithms, except ANNs and nearest-neighbor interpolation, handle multiple
outputs independently, which slows prediction when the number of outputs is high. Conversely,
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ANNs predict all outputs at once from a common sequence of intermediate computations, which
is considerably faster. In addition, ANNs are known to yield very accurate surrogate models both
in theory and in practice (Shalev-Shwartz and Ben-David, 2014, chapter 20). Finally, an ANN
comes with the ability to automatically and efficiently compute the first or second order derivative
of its outputs with respect to its inputs θ, using automatic differentiation (Paszke et al., 2017).
In other words, for any output ℓ of an ANN, one can efficiently access the gradient ∇f̃ℓ or the
Hessian matrix ∇2f̃ℓ. This property is desirable to efficiently explore high dimensional parameter
space in inverse problems, as detailed in Chapter 3 (Section 3.1.1). We consequently adapt the
rich and versatile class of ANNs to address the complexity of ISM numerical models, to exploit
prior knowledge on the regularity of the function to approximate, and to efficiently predict all
outputs at once.

4.2 Neural networks for regression

The class of ANNs is first introduced. We then explain how to fit ANNs to a dataset.

4.2.1 Generalities on neural networks

Artificial neural networks (ANNs) form a class of mathematical models inspired from bio-
logical neural systems. The first ANN was proposed in McCulloch and Pitts (1943) to perform
logical operations. Since then, multiple hardware and algorithmic developments such as GPU
computing and back-propagation (Rumelhart et al., 1986) made them capable of learning more
complex patterns and relationships in data. They enjoy strong theoretical results. For different
sets of assumptions on the architecture, universal approximation theorems establish that ANNs
can approximate almost any continuous function (Hornik et al., 1989; Leshno et al., 1993). They
gained a widespread popularity after the 2012 ImageNet Challenge, an image classification com-
petition in which an ANN significantly outperformed competing methods. They are nowadays
state-of-the-art for a variety of tasks in vector, image, sound or text processing in multiple scien-
tific and industrial fields. As we showed in Chapter 3 (Section 3.1.1), ANNs are already used in
astrophysics, including ISM studies, to emulate numerical models (Grassi et al., 2011; de Mijolla
et al., 2019; Holdship et al., 2021; Grassi et al., 2022).

Formal description of an ANN – Throughout this thesis, an ANN is considered as a function
f̃ : θ ∈ RD 7→ f̃(θ) ∈ RL, where D and L are input and output dimensions, respectively. For
a numerical model, D is the number of considered physical parameters, e.g., thermal pressure or
visual extinction, and L is the number of predicted observables, e.g., line intensities. An ANN is
made of h + 1 intermediate functions f̃ (j), called layers. Intermediate layers 1 ≤ j ≤ h are called
the hidden layers and the final layer is the output layer. The jth layer takes an intermediate vector
θ(j) ∈ Rij as input and computes an intermediate output y(j) ∈ Roj . Intermediate dimensions
ij and oj can be chosen arbitrarily, except for i1 = D and oh+1 = L. In a feedforward neural
network, layers interact following an acyclic graph. The output of a layer j feeds one or more of
the next layers j′ > j, hence the notion of direction in a feedforward neural network.

Figure 4.1 shows the structure of a simple ANN that contains h = 2 hidden layers and one
output layer. This ANN takes in input D = 2 physical parameters and predicts L = 10 observ-
ables. It is an instance of a feedforward neural network as each layer only feeds layers closer to the
output layer, as shown on the left-hand side of the figure. More precisely, its layer graph is linear:
the output of one of its layers j is the input of the next layer j + 1, as the θ(j+1) = y(j) and
ij+1 = oj equalities show. Alternative feedforward architectures with non-linear layer graph exist,
such as residual networks (He et al., 2016) and dense networks (Huang et al., 2017). These ar-
chitectures include skip connections between layers that bypass the activation function to preserve
original input information and intermediate computations. However, linear layer graphs remain
the simplest and most widespread multi-layer architectures for vector classification or regression
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tasks. In the remainder of this chapter, ANNs are considered with such an architecture unless
mentioned otherwise.

Figure 4.1 – Structure of a simple feedforward neural network with h = 2 hidden layers and a
linear layer graph, shown on the left.

A hidden layer combines an affine transformation and a non-linear scalar function g(j) applied
element-wise:

f̃ (j) : θ(j) 7→ y(j) = g(j)(W(j)θ(j) + b(j)), (4.1)

with W(j) ∈ Roj×ij and b(j) ∈ Roj the weight matrix and bias vector of the affine transforma-
tion, respectively. The non-linear scalar function g(j) is called an activation function. Common
activation functions include the sigmoid, hyperbolic tangent, rectified error linear unit (ReLU),
and multiple variants – see Nwankpa et al. (2021) for a review. Choosing a specific activation
function g(j) for each of the h hidden layers might lead to better performance but would require
training many ANNs. A unique g is therefore generally set for all hidden layers. As an ANN is
a composition of affine transformations and activation functions, the regularity properties of the
activation function g apply to the full ANN. For instance, if g is differentiable, so is the full ANN
f̃ . The same implication holds for infinitely continuously differentiable functions.

The output layer transforms the outputs of one or more hidden layers into the desired pre-
diction with an affine transformation and a second activation function. This second activation
function depends on the considered problem. The sigmoid and softmax functions are usually
employed to return probabilities in binary and multi-class classification, respectively. In regression
tasks, the identity function is generally used.

Architecture and learnable parameters – Overall, in a regression context, an ANN is
uniquely defined by its layer graph, an activation function g, a number of hidden layers h ≥ 0, a
sequence of sizes of its layers (ij , oj)h+1

j=1 , and the sequence of weight matrices and bias vectors
ψ = (W(j), b(j))h+1

j=1 . All but ψ are manually set by the user prior to the fitting procedure.
They define the so-called architecture of the ANN. The only learnable parameters are the weight
matrices and bias vectors ψ = (W(j), b(j))h+1

j=1 . The fitting procedure adjusts them so that
f̃ψ ≃ f .

4.2.2 Fitting a neural network to a dataset
In regression, once the class of function is set, the associated parameter ψ is adjusted so

that f̃ψ fits the dataset D of precomputed models. In our case, the class of functions is set by
selecting an ANN architecture, and the associated parameter ψ contains the weights and biases
of the network’s layers. A loss function L(f̃ ; D) quantifies the distance between predictions f̃ℓ(θ)
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and the corresponding true values yℓ. It is based on an error function, e.g., the absolute error
(AE)

AE
(
f̃ ; (θ, yℓ)

)
=
∣∣∣f̃ℓ(θ) − yℓ

∣∣∣ , (4.2)

or the squared error (SE)

SE
(
f̃ ; (θ, yℓ)

)
=
(
f̃ℓ(θ) − yℓ

)2
. (4.3)

The loss function summarizes the set of N × L errors obtained on the dataset D. The mean is
often used for computational efficiency of evaluation and differentiation, yielding e.g., the mean
squared error (MSE) or the mean absolute error (MAE). Obtaining the best function f̃ boils down
to minimizing the loss function with respect to the parameter ψ

f̃ ∈ arg min
ψ

L
(
f̃ψ ; D

)
. (4.4)

In general, problems of the form of Eq. 4.4 do not admit a closed-form solution. Furthermore,
with ANNs, the loss function L

(
f̃ψ ; D

)
is generally not convex, with multiple saddle points and

local minima (Shalev-Shwartz and Ben-David, 2014, chapter 20). When ψ is low dimensional,
such problems can be solved approximately using a meta-heuristic such as a genetic algorithm
or simulated annealing – see Section 2.A.1. As ANNs typically contain at least hundreds of
parameters to tune, meta-heuristic methods are prohibitively slow.

In contrast, gradient descent (GD) methods are computationally very efficient. They rely
on auto-differentiation to efficiently evaluate the gradient of the loss function ∇ψL and on
back-propagation (Rumelhart et al., 1986) to efficiently update ψ. Stochastic gradient de-
scent (SGD) Shalev-Shwartz and Ben-David, 2014, chapter 14 accelerates the search by using
batches instead of the full dataset in gradient evaluations. Preconditioned variants such as RM-
SProp (Tieleman and Hinton, 2012) or Adam (Kingma and Ba, 2017) exploit the local geometry
of the loss function to escape from saddle points and farther accelerate convergence to a good
local minimum. This optimization procedure is often called training or learning phase with ANNs,
because the network progressively learns from the data as the loss function decreases.

4.3 Dataset structure
Like the choice of the class of function, the structure of the training dataset D in the θ-

space can have a dramatic impact on the accuracy of the obtained emulator. To approximate
the Meudon PDR code, we propose to resort to a lattice structure on a cube of dimension D
generated prior to any fit. This approach is very common in ISM studies (Joblin et al., 2018; Wu
et al., 2018; Ramambason et al., 2022) – see Chapter 3.

Lattice structured datasets – A regular grid structure has many advantages. First, if the
parameter space is a D-dimensional cube and the number of points N is such that N = KD

for some K ≥ 1, the lattice structure maximizes the minimum distance between two points of
the dataset. Therefore, this structure enforces good coverage of the parameter space. Second,
it is often more convenient to manually inspect a dataset with such a structure, especially for
D ≥ 3, when the full dataset cannot be visualized at once. Besides, it allows the use of efficient
interpolation methods such as splines, for which regular grid structures are mandatory. Also, the
regularity of the grid can be exploited to accelerate nearest-neighbor and linear interpolations.
Indeed, it facilitates the localization of the new point within the dataset and thus the identification
of the points to use for prediction. However, this structure is not necessary for RBF interpolation
methods or in regression approaches.

Despite these advantages, the lattice structure may not yield optimal emulators, and other
structures might yield better accuracy. For instance, for coarse grids, a lattice structure creates
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wide regions in the parameter space without any point in the dataset D. An emulator fitted in this
context could struggle to reproduce accurately brutal changes occurring in these regions. Besides,
it creates a strong anisotropy in the cube, which can reduce the accuracy of an emulator. For
instance, large gradient variations occurring between two slices of the lattice would be difficult to
emulate accurately.

Alternative methods to generate datasets with good coverage – Many alternative meth-
ods enable sampling a D-dimensional cube. The simplest would be to sample independent and
identically distributed (i.i.d.) points from a uniform distribution on the cube. However, this
method would leave some regions uncovered, and some pairs of points could be arbitrarily close,
which limits the information brought by each. Better methods enforce repulsion between points
to ensure a good coverage of the cube. Some of these methods are deterministic, with low
discrepancy sequences such as the Halton sequences used in quasi-Monte Carlo (QMC) meth-
ods (Asmussen and Glynn, 2007, chapter 9). Some others are partially random, such as latin
hypercube sampling (LHS) (McKay et al., 1979), its variants orthogonal LHS (OLHS) (Tang,
1993) and symmetric LHS (SLHS) (Ye et al., 2000), or stratified Monte Carlo (Haber, 1966).
These methods are simple to implement. To generate N points in the unit cube [O, 1]D, LHS
handles each dimension independently. For each dimension, it divides the [0, 1] segment in N
smaller segments of equal size, draws one sample per segment with a uniform distribution, and
randomly permutes the draws. Stratified Monte Carlo divides the cube in N smaller regions of
equal volume and draws one sample from a uniform distribution on each smaller region. Orthog-
onal LHS combines both LHS and stratified MC to ensure better coverage. Symmetric LHS is a
generalization of OLHS that enforces symmetry properties to farther improve the coverage of the
cube. Other LHS algorithms that optimize criteria such as the entropy or the minimum distance
between two points also exist - see Joseph (2016) for a review.

Figure 4.2 illustrates how each method would cover the unit square, i.e., for D = 2. The i.i.d.
draws with uniform distribution on square yield the visually worst datasets. The lattice structure
best covers corners and edges, but leaves large gaps between points. LHS and stratified MC lead
to datasets with better coverage of the square. By combining them, orthogonal LHS yields even
better datasets.

As illustrated in the next section, these methods may yield better accuracy than the lattice
structure. However, the associated accuracy has a high variance, as it depends on the presence or
absence of points in regions with high gradients. Using the lattice structure is therefore a good
heuristic.

Iterative methods resort e.g., to Gaussian process regression – also known as Kriging –
to progressively recommend new points to evaluate. Such methods could lead to even more
cleverly structured datasets, and yield better accuracy surrogate models with fewer data points.
However, they require re-fitting the surrogate model for each new point or batch of points.
It can be easily implemented for interpolation methods. It is computationally more expensive
for regression approaches, where the surrogate model is defined as solution of an optimization
problem. In addition, it is not straightforward how to use such an approach in the case of the
Meudon PDR code, considered in this chapter. The code predicts numerous outputs, which adds
to the computational cost for Gaussian processes. Some outputs of the code cover more decades
than others: a naive iterative approach would favor those outputs, which are not necessarily the
most physically interesting. Finally, the Meudon PDR code may produce un-physical outliers
– see Section 4.5.1. An iterative method favoring sampling large error regions could result in
an over-representation of input combinations leading to outliers, which are to be eliminated in
Section 4.6.1. For these reasons, iterative approaches are not considered in this chapter.

91



Fast simulations of photodissociation region models

Figure 4.2 – Illustration of methods to generate non-lattice datasets of N = 9 points. The
sampling principle of LHS, stratified MC and orthogonal LHS are indicated with the grids.

4.4 Illustration: the log Rosenbrock function
In this Section, we illustrate the four interpolation methods mentioned in Section 4.1.1 and

two regression methods, namely random forest (RF) and ANNs, on the log Rosenbrock func-
tion (Rosenbrock, 1960):

ln R : θ ∈ R2 7→ ln
[
1 + (1 − θ1)2 + 100

(
θ2 − θ2

1

)2
]

, (4.5)

which is positive and admits a minimum at (1, 1) such that ln R(1, 1) = 0. We restrict ourselves
to the [−1, 1] × [−0.5, 1.5] square.

The SciPy 1 (Virtanen et al., 2020) implementation is used for the interpolation methods.
For RBF interpolation, the cubic kernel is used as it yields the best results. For random forest
and ANNs, the scikit-learn 2 (Pedregosa et al., 2011) implementations are used. Note that
the Pytorch implementation is used in the remainder of this thesis. The scikit-learn imple-
mentation is used in this example for simplicity. The ANN architecture is set to a perceptron with
H = 2 hidden layers of 32 neurons each. The Rosenbrock function is smooth, i.e., infinitely con-
tinuously differentiable. The tanh activation function is used to enforce this smoothness property
in the emulator.

Figure 4.3 shows the values taken by this function on this subspace. Its banana shape being
relatively thin, it is challenging to reproduce accurately with a limited amount of points. The
results are compared over six dataset structures, namely lattice, Halton sequence, i.i.d. uniform,
LHS, stratified MC and orthogonal LHS. Each training dataset contains N = 49 points. The
accuracies of emulators are evaluated on a 151 × 151 grid on the [−1, 1] × [−0.5, 1.5] square,
using the maximum absolute error, the MAE and the MSE.

Figure 4.4 shows the emulator obtained for each method and the associated errors. All
methods struggle to reproduce accurately the banana shape of the Rosenbrock function, as there
are few points in the training set. In ISM numerical models, such strong and fast variations can

1. https://scipy.org/
2. https://scikit-learn.org/stable/index.html
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Figure 4.3 – log Rosenbrock function ln R (Eq. 4.5).

correspond to a change of regime and are thus of crucial importance. The overall performance
of an emulator highly relies on the presence of a few points in such regions. The presence or
absence of these key points in datasets generated by random methods induces a high variance in
the accuracy of emulators built from these datasets.

Table 4.1 quantifies the results of this comparison with three metrics: the maximum abso-
lute error, the MAE and the MSE. In all scenarios, ANNs and RBF interpolation yield the most
accurate emulators. Besides, ANNs provide the best emulator with respect to each of the three
metrics. However, the best results are not always obtained with a lattice structure.

Overall, this illustrative example shows three important aspects of the emulator derivation of
the Meudon PDR code:

1. ANNs often yield much more accurate emulators than interpolation methods.
2. The lattice structure might not always lead to optimal emulators. However, as it covers the

square very well, it still leads to good emulators. Besides, as the other considered methods
are random by nature and as only a few training points have a great impact on the emulator
accuracy, two datasets generated with the same method can lead to emulators with very
different accuracies. To limit uncertainties on causes of the quality of the results, we prefer
to exploit a lattice dataset in our emulation of the Meudon PDR code.

3. The result of this comparison thus depends on the error function. Choosing a relevant
accuracy metric is therefore crucial to derive a good emulator. In Section 4.5.2, we introduce
a new accuracy metric, the Error Factor, tailored to the Meudon PDR code.
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Figure 4.4 – Comparison of four popular interpolation methods and two regression methods,
namely random forest (RF) and ANN, on the log Rosenbrock function ln R (Eq. 4.5). For each
dataset structure, the first row shows the emulator obtained with the considered algorithm, and
the second row shows the absolute error. Cubic splines are only defined on a lattice. For linear
interpolation, white values indicate that the emulator is not defined for the corresponding value
of θ.
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Table 4.1 – Comparison of popular interpolation and regression methods on the log Rosenbrock
function with datasets of N = 49 points. The values correspond to the datasets and emulators
displayed in Figure 4.4. Bold values indicate the best emulator class for each training dataset
structure, and blue values indicate the best couple (structure, emulator class) for each accuracy
metric. As cubic splines can only be defined on a lattice, there is no value for the other dataset
structures. As linear interpolation is only defined inside the convex envelope of the training
dataset, its error can be computed on a fraction of the test set for all structures except the
lattice. For this reason, its values are indicated in parentheses.

Structure
Interpolation Regression

nearest linear cubic RBF random neural
neighbor spline forest network

Max absolute error
Lattice 2.974 1.880 1.611 1.568 2.754 0.787

i.i.d. uniform 4.404 (3.120) - 2.742 4.001 2.104
QMC 2.585 (1.909) - 1.766 2.850 2.742
LHS 3.740 (3.259) - 1.860 3.371 1.098

Stratified MC 3.148 (3.555) - 1.853 3.613 3.106
Orthogonal LHS 3.173 (3.378) - 2.127 3.225 1.736

mean absolute error (MAE)
Lattice 0.419 0.185 0.151 0.131 0.399 0.082

i.i.d. uniform 0.516 (0.332) - 0.225 0.653 0.163
QMC 0.391 (0.167) - 0.138 0.528 0.133
LHS 0.431 (0.302) - 0.139 0.544 0.072

Stratified MC 0.406 (0.162) - 0.138 0.566 0.177
Orthogonal LHS 0.407 (0.190) - 0.136 0.536 0.083

mean squared error (MSE)
Lattice 0.324 0.094 0.060 0.052 0.280 0.022

i.i.d. uniform 0.547 (0.343) - 0.177 0.788 0.092
QMC 0.276 (0.079) - 0.062 0.480 0.098
LHS 0.351 (0.276) - 0.080 0.549 0.025

Stratified MC 0.313 (0.074) - 0.065 0.529 0.152
Orthogonal LHS 0.307 (0.122) - 0.069 0.526 0.034
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4.5 Towards an emulator of the Meudon PDR code

In this Section, we describe the setup used to define and fit emulators of the Meudon PDR
code (Le Petit et al., 2006), introduced in Chapter 1. We first present the train and test sets,
and then introduce the metrics used to compare emulators.

4.5.1 Datasets

Physical parameters – We approximate the Meudon PDR code with respect to the D = 4
input parameters that are most relevant for inference (Wu et al., 2018). The three main ones are
the thermal pressure Pth, the scaling factor G0 of the interstellar standard radiation field and the
size of the slab of gas measured in total visual extinction Atot

V . As in Wu et al. (2018), we consider
a wide variety of environments with Pth ∈ [105, 109] K cm−3, G0 ∈ [1, 105] and Atot

V ∈ [1, 40]
mag. The Meudon PDR code computes line intensities for multiple angles φ between the cloud
surface and the line of sight. In the Meudon PDR code, this angle φ can cover a [0, 60] deg
interval. A face-on geometry corresponds to φ = 0 deg, and φ = 60 deg is the closest to an
edge-on geometry. To enable analyses of PDRs with known edge-on geometry such as the Orion
Bar (Joblin et al., 2018), this angle is added to the considered physical parameters. Table 4.2
details the considered ranges of the main input parameters. The secondary parameters of the
code, listed in Section 1.3, are set to their default values – see Table 1.3.

Table 4.2 – Input parameters in the Meudon PDR code and structure of training dataset.

Parameter Range Unit Training set lattice structure
of values Number of points Grid

Thermal pressure Pth [105, 109] K cm−3 14 log spacing
Radiative intensity G0 [1, 105] Mathis 14 log spacing
Total visual extinction Atot

V [1, 40] mag 14 log spacing
Line-of-sight angle φ [0, 60] deg 7 linear spacing

Datasets and first preprocessing – Two datasets of Meudon PDR code evaluations are
defined: a training set and a test set 3.

The training set is used to fit all surrogate models. It contains Ntrain = 19 208 points,
structured as a 14 × 14 × 14 × 7 uniform regular grid on (log10 Pth, log10 G0, log10 Atot

V , φ).
Table 4.2 shows its lattice structure. This uniform grid structure is chosen to include spline
interpolation in the comparison and to simplify the outlier identification procedure presented in
Section 4.6.1. The Meudon PDR code predicts line intensities that are strictly positive and span
multiple decades, from 10−50 to 10−2 erg cm−2 sr−1 s−1. To avoid giving more weight to high
line intensities in the regression and disregarding the lowest ones, we consider the intensities in
log scale. In other words, we derive emulators to reproduce the log-intensities ln y ∈ RL, i.e., we
derive emulators of ln f .

Similarly, Pth, G0, and Atot
V are considered in log scale. Even in log scale, the parame-

ters of interest cover intervals with quite different sizes. For instance, log10 G0 ∈ [0, 5] while
log10 Atot

V ∈ [0, 1.602], i.e., Atot
V covers an interval more than 3 times smaller than G0. Both in-

terpolation methods and neural network-based regression typically suffer from this difference. All
D parameters are thus standardized to have a zero mean and a unit standard deviation. This simple
transformation generally improves accuracy for both interpolation methods and ANNs (Shalev-
Shwartz and Ben-David, 2014, chapter 25).

The test set is used to assess the accuracy of surrogate models on data not used in the
training step. It contains Ntest = 3 192 points. These points are generated with 456 independent

3. Both datasets can be found in https://ism.obspm.fr/files/ArticleData/2023_Palud_Einig/2023_
Palud_Einig_data.zip.
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random draws from a uniform distribution on the (log10 Pth, log10 G0, log10 Atot
V ) cube and with

a regular grid of 7 values on φ. To ensure consistent preprocessing between the two sets, both
the input values θ and output values y of the test set undergo the same transformations as the
training set. In particular, the standardization applied to its input values θ relies on the means
and standard deviations obtained on the training set, and its output values y are considered in
log10-scale.

Outliers – Numerical codes may yield numerical instabilities. Such behavior was reported,
e.g., in Auld et al. (2007) about the WMAP 3-yr likelihood code. In its domain of validity, the
Meudon PDR code produces few of them. However, the considered complex non-linear physics
can also lead to physical bistabilities or multistabilities. For example, the H2 heating process can
produce bistable solutions (Burton et al., 1990; Röllig and Ossenkopf-Okada, 2022). In such a
case, spatial profiles computed by the code, e.g., of a species density or of the gas temperature,
can oscillate between the possible solutions at each position in the modeled cloud. The line
integrated intensities computed from these profiles can contain errors of up to a factor of 100
and thus are highly unreliable. Figure 4.5 shows one example of bistability and of its impact
on one of the integrated intensities. This case can be easily detected as the bistability affects
the temperature profile of the cloud, which is used to compute the integrated intensity of many
emission lines. More often, only a handful out of the L lines show such pathological behavior.

(a) Temperature profiles in five simulated
clouds, including the one with clear bistabil-
ity.

(b) Two-dimensional slice of the training set
for one line ℓ. The point indicated by a black
square corresponds to the bistable profile on
the left.

Figure 4.5 – Illustration of an invalid integrated intensity due to a bistability in temperature profile.
The corresponding point should be withdrawn from the training set.

The code being deterministic, an input vector θ consistently leads to a unique output vector
y. However, in the regions of the parameter space with such multistabilities, variations of intensi-
ties can be very chaotic and challenging for a surrogate model to reproduce. Such chaotic values
thus deteriorate the accuracy of any surrogate model, interpolation or ANN, and thus should not
be used. Unfortunately, as of today there exists no simple or complete procedure to check the
physical validity of a precomputed model of the Meudon PDR code. With a first scan of the
datasets, we remove a few lines that are particularly affected. The total number of considered
lines is therefore reduced from 5 409 to L = 5 375. This simple filter leaves other outliers in the
training and test datasets. Though we observe that these outliers are rare – we expect less than
1%, we do not have any specific a priori knowledge on their location nor on their exact proportion.
Manually checking the validity of each value is unrealistic given the sizes of the two datasets. The
most informative hypothesis we can make on outliers is that if one line in a precomputed model
is identified as an outlier, then it is likely for this precomputed model to contain other outliers,
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especially in lines of the same species or of isotopologues. This hypothesis is exploited in the
more thorough outlier detection method exploiting an ANN, introduced in Section 4.6.1.

Summary of the setup – The Meudon PDR code version to emulate is a function f : θ ∈
RD 7→ y ∈ RL, with D = 4 and L = 5 375. As the integrated intensities predicted by the
Meudon PDR code cover many decades, we train emulators of ln f , denoted ln f̃ , to reproduce
log-intensities ln y. We assume the log-Meudon PDR code, ln f , to be twice continuously differ-
entiable, except in the case of outliers that should be disregarded. This hypothesis ln f ∈ C 2 is
a reasonable physical assumption exploited in Chapter 5 (Section 5.2.1). In Section 4.6, we build
emulators ln f̃ so that they satisfy this regularity property.

4.5.2 Comparison metrics

Interpolation methods and ANNs are compared on evaluation speed, memory requirements
and approximation accuracy. We describe here the metrics used for the comparison, regardless of
how the surrogate models are defined or trained.

The evaluation speed is measured on the full set of L lines for 1 000 random points. The
measurements are performed on a personal laptop equipped with a 11th Gen Intel(R) Core(TM)
i7-1185G7, with 8 logical cores running at 3.00 GHz. ANNs and interpolation methods are run
on CPU to obtain a meaningful comparison. Running ANNs on a GPU could farther reduce their
evaluation times. The implementations of interpolation methods are from the SciPy Python
package, popular in ISM studies (Wu et al., 2018). Nearest-neighbor, linear and RBF interpola-
tion implementations allow for the evaluation of a vector function at once. Conversely, the spline
interpolation implementation requires an explicit loop over the L lines, which is slow in Python.
To avoid an unfair comparison with the other methods, the spline interpolation speeds are not
evaluated.

The memory requirements are quantified with the number of parameters necessary to fully
describe the surrogate model. Interpolation methods, for instance, require storing the full training
set. It corresponds to Ntrain(D + L) ≃ 1.03 × 108 parameters. In Python, these parameters are
stored using 64-bits floating-point numbers. Storing the full grid requires about 1.65 GB.

The accuracies of surrogate models are evaluated on the test set, composed of points not
used during training. To quantify accuracies, we define a new metric called the error factor (EF).
This metric is a symmetric version of relative errors. Unlike the AE or the SE on ln f̃ and ln y,
this metric does not favor predictions lower than the true value. Indeed, as line intensities are
considered in log-scale, the absolute error (Eq. 4.2) corresponds to the log-ratio of the predicted
and true line intensities. The error factor is this ratio transformed back to linear scale. For a
surrogate model f̃ on a given tuple (θ, ln y) and line ℓ, it reads

EF
(
ln f̃ ; (θ, ln yℓ)

)
= exp

{∣∣∣ln f̃ℓ(θ) − ln yℓ

∣∣∣} = max
{

f̃ℓ(θ)
yℓ

,
yℓ

f̃ℓ(θ)

}
. (4.6)

As the absolute value ensures positivity in log scale, an error factor is always superior or equal to
1. It can be expressed in percent using a 100 × (EF − 1) transformation. For readability, the error
factor is displayed in percent when EF < 2, i.e., 100%. An error factor that is not in percent is
indicated by the multiplication sign, e.g., “×3” corresponds to EF = 3.

Figure 4.6 compares the relative error and the error factor. The error factor is a symmetrized
relative error, as the absolute value also ensures symmetry in log scale. For small errors, i.e.,
EF ≃ 1, it is similar to the standard relative error. However, for larger errors, the error factor
is more relevant in our case. A standard relative error would return 100% for a factor of 2 too
high and 50% for a factor of 2 too low, while in both cases EF = 2. In the worst case, a relative
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error of 100% corresponds to a factor of 2 too high or a prediction of exactly 0, while EF = 2 in
the former case and EF = +∞ in the latter. Minimizing a standard relative error would therefore
lead to an under-estimation tendency, which is not the case for the proposed error factor.

Figure 4.6 – Comparison of the error factor and the relative error. To simplify the visualization,
the errors are plotted in decimal log scale, while the surrogate models train on the natural log
scale. We add 1 to the relative error to simplify the comparison and to avoid a divergence of
the log-relative error towards −∞ when f̃ℓ(θ) → yℓ. The relative error + 1 tends to 2 for large
negative errors, i.e., the relative error tends to and is upper bounded by 100%. This effect favors
underestimations compared to overestimations. Using the error factor cancels this undesirable
effect.

When applied to the full test set, the error factor yields a distribution of errors. This dis-
tribution is summarized by its mean, its 99th percentile and its maximum. The mean provides
an estimation of the average error to expect. The 99th percentile and maximum provide upper
bounds on the error. The maximum is very sensitive to outliers while the 99th percentile is more
robust. Figure 4.7 illustrates this distribution summary on a fictional dataset of 20 000 points
including 0.5% of outliers. The maximum is affected by the outliers, which induces a pessimistic
bias for the corresponding error upper bound estimation. The 99th percentile is not significantly
affected by the outliers, and provides a more relevant estimator of the actual upper bound of
the error factor for this fictional dataset. This example shows that the choice of percentile is a
trade-off based on the expected proportion of outliers. Lower percentiles such as 90th or 95th
underestimate the upper bound on the error factor, and percentiles higher than 99.5th would in
turn be sensitive to outliers like the max. The training and test sets generated with the Meudon
PDR case are expected to contain less than 1% of outliers. The 99th percentile is therefore
expected to be a relevant estimator of the error upper bound, robust to outliers.

In current IRAM-30m observations, the relative day-to-day calibration accuracy ranges from
3% to 10% – see e.g., Einig et al. (2023). The absolute flux calibration accuracy for ground
based observations is more difficult to estimate but cannot be better than the relative calibration
accuracy. For a surrogate model to be relevant for observations analysis and physical parameter
inference, we set the constraint that satisfactory surrogate models must have a mean error factor
below 10%.
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Figure 4.7 – Illustration of the impact of outliers on the mean, the 99th percentile and the max
estimators of the error factor. Note that the dataset used for this illustration is fictitious.

4.6 Designing and training adapted ANNs
The choice of architecture and training approach of ANNs are now discussed. In the following,

ANNs are trained with the MSE loss function. We set the activation function g to the Gaussian
error linear unit (GELU) (Hendrycks and Gimpel, 2023) to ensure that the resulting ANN is
twice continuously differentiable. Unless explicitly mentioned, our ANNs have H = 3 hidden
layers of equal size. This choice may not be optimal. A hyperparameter optimization step could
improve the network performance, but would require a validation dataset and the training of many
networks. As the results of Section 4.7 will show, this step is not necessary to obtain satisfactory
results.

ISM models such as the Meudon PDR code present specificities, namely the presence of
outliers and the unusual dimensions of the problem – very few inputs to predict many outputs. To
address these specificities, dedicated strategies are needed and are described in the subsections
below:

1. we apply an outlier removal procedure;
2. with a clustering method, we derive homogeneous line groups simpler to emulate with

separate networks;
3. to select an adequate size for hidden layers, we resort to a dimension reduction method;
4. we apply a polynomial transform to augment the input data and thus ease the learning of

nonlinearities;
5. we replace the standard ANN architecture by a dense architecture that exploits values in

intermediate layers to re-use intermediate computations.

4.6.1 Removing outliers from the training set

Outliers that come from either numerical instabilities or physical bistabilities or multistabilities
can be found in both the training and test sets, as described in Section 4.5.1. With a loss function
such as the MSE, outliers in the training set greatly deteriorate the quality of a fitted ANN. A
similar problem was reported in Auld et al. (2007) about the WMAP 3-yr likelihood code, and
addressed by removing them from the dataset. In Auld et al. (2007), the outliers could be
identified with a simple binary test. Such a test is not available in our case. More sophisticated
methods are therefore required.

Performing regression in presence of outliers is a crucial topic in machine learning. Multiple
methods exist for non-linear regression (Rousseeuw and Leroy, 1987). We resort to the method
proposed in Motulsky and Brown (2006), which consists of 3 steps:

1. A statistical model is fitted to the training set with a strategy robust to outliers.
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2. The training points with largest errors are reviewed.
3. Identified outliers are removed and a new statistical model is fitted to the cleaned training

set.
To avoid any risk of biasing the analysis towards optimistic results, we do not remove any value
from the test set. We now detail these three steps.

Step 1: first fit robust to outliers – For this first fit, we resort to an ANN designed as
described at the introduction of Section 4.6. The size of hidden layers is fixed with the dimension
reduction strategy that will be described in Section 4.6.2. We also include the polynomial trans-
form of the input, to be described presented in Section 4.6.3. For specific outlier removal step,
this fit is performed using the Cauchy loss function (CL). For a surrogate function f̃ and a pair
(θ, ln y), it reads

CL
(
ln f̃ ; (θ, ln yℓ)

)
= ln

[
1 +

(
ln f̃ℓ(θ) − ln yℓ

)2
]

. (4.7)

Figure 4.8 shows how the squared error (Eq. 4.3), the absolute error (Eq. 4.2), the error fac-
tor (Eq. 4.6), and the Cauchy loss function penalize errors. The Cauchy function gives less weight
to very large errors, which makes it more robust to outliers.

Figure 4.8 – Evolution of errors penalization by the considered loss functions. To simplify the
visualization, the errors are plotted in decimal log scale, while the surrogate models train on the
natural log scale. An error of 30 thus corresponds to a factor of 1030. Since some line intensities
range from 10−50 to 10−2, very high error can occur early in the training phase.

Step 2: review of training points with largest errors – The review of training points with
high errors is performed with a manual procedure. An instability in a given model of the grid
does not affect all lines, as all lines are not emitted in the same spatial regions of the model.
Therefore, we only remove affected lines instead of the full model. To accelerate this procedure,
we exploit similarities between lines. For instance, when one water line intensity is identified as an
outlier, it is highly likely that most of the water line intensities of the corresponding precomputed
model are outliers. We emphasize that outliers are associated with instabilities or multistabilities.
Physically consistent intensities that are challenging to reproduce, e.g., due to fast variations in
a change of regimes, are not considered as outliers and maintained in the training set. In total,
71 239 values were identified as outliers, i.e., 0.069% of the training set. Note that this outlier
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identification step is very informative, as it reveals regions of the parameter space that lead to
multistabilities. However, studying these regions is beyond the scope of this thesis.

Step 3: fit on the cleaned dataset – Once outliers are identified, they are removed from
the dataset, through a binary mask matrix M = (mnℓ)nℓ. This mask permits to disregard only
the identified outliers instead of removing all L lines of precomputed models with at least one
outlier. In this binary mask, mnℓ = 1 indicates that ynℓ is an outlier and should not be taken
into account, and mnℓ = 0 indicates that ynℓ is not an outlier. Elements of the training set
(θn, yn) ∈ RD × RL are augmented with corresponding binary mask vectors mn ∈ {0, 1}L. An
ANN, on the one hand, can easily take this mask into account for training by computing the loss
function and its gradient on non-masked values only. In the following, a masked version of the
MSE relying on the binary mask M is used when this outlier removal step is taken into account.

Existing implementations of interpolation methods, on the other hand, lack flexibility to handle
such a mask during the fit. As some points of the grid are removed for some lines, the spline
interpolation can not be applied on the masked training set. Nearest-neighbor, piecewise linear
and RBF interpolation methods can be applied but would require line by line fits and predictions,
as outliers don’t occur for the same training points θ for all lines. Such line by line manipulation
would be extremely slow with a Python implementation. To present a somewhat meaningful
comparison between ANNs and interpolation methods on the masked dataset, the masked values
are imputed. This imputation relies on a line by line fit of an RBF interpolator with linear kernel.
Masked values are replaced by interpolations computed from available data points. Interpolation
methods are then fitted with this imputed training set.

Note also that it would be possible to avoid the manual review by training a network and
automatically identifying outliers at once. Appendix 4.A outlines a possible approach as well as
the reasons why we chose not to apply it in this particular case.

4.6.2 Exploiting correlations between line intensities

Line intensities computed by the Meudon PDR code come from the radiative de-excitation of
energy levels. While non-local effects are accounted for in the radiative transfer, the excitation
of many lines is affected to a large extent by local variables such as the gas temperature or
density. As a result, high correlations between some lines are expected. Figure 4.9 shows the
L × L matrix of absolute Pearson correlation coefficients, with lines grouped by molecule. We
indeed find some strong correlations. In particular, lines from the same species are often highly
correlated, especially for water isotopologues and molecular hydrogen. However, some species
produce lines that are not correlated. For instance, high energy lines of SO have a very small
correlation with low energy lines, as the corresponding sub-matrix has a diagonal shape. Finally,
some lines from different species are highly correlated, e.g., OH+, SH+ and H2. Handling the L
lines independently, as in interpolation methods, ignores these correlations in the line intensities.
We exploit these correlations with two strategies: line clustering and dimension reduction.

Line clustering to divide and conquer

Figure 4.9 highlights some clusters of highly correlated lines. These clusters are not simply
related to the line carrier. We derive clusters of lines automatically from the correlation matrix
using the spectral clustering algorithm (Shalev-Shwartz and Ben-David, 2014, chapter 22). Spec-
tral clustering defines clusters such that lines from a same cluster are as similar as possible and
such that lines from different clusters are as different as possible. It relies on a similarity measure
such as the Pearson correlation, while most clustering algorithms are distance-based. We set the
number of clusters to the value that maximizes the ratio of intra to inter-cluster mean correlations.

Figure 4.10 presents the 4 clusters we obtain. The mean intra and inter-cluster correlations
are 0.895 et 0.462 respectively, while the mean correlation among all lines is 0.73. The obtained
clusters contain 3 712, 1 272, 241 and 150 lines, respectively. This imbalance between clusters
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Figure 4.9 – Meudon PDR code correlations among the L = 5 375 predicted lines from 27 chemical
species, shown with the L × L matrix of absolute Pearson correlation coefficients. A value of
exactly 1 for two lines means that there exists an exact affine relationship between their log-
intensities. The black squares on the diagonal group lines from a common chemical species. For
readability reasons, only the names of species with more than 100 lines predicted by the Meudon
PDR code are displayed.
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comes from the imbalance between molecules. For instance, H2 corresponds to 3 282 lines, i.e.,
61% of the lines computed by the Meudon PDR code. Figure 4.9 shows that all these lines are
highly correlated. Appendix 4.B provides a more complete description of the content of these 4
clusters. With this approach, an ANN is trained for each cluster.

Using PCA to set the size of the last hidden layer

A second and complementary approach to exploit these correlations is to assume that a vector
y with the L line intensities can be compressed to a vector of size L̃ < L with limited loss
of information. Formally, we assume that the line intensities y live in a subspace of dimension
L̃ < L where L̃ can be estimated using a dimension reduction algorithm. We resort to a principal
component analysis (PCA) (Shalev-Shwartz and Ben-David, 2014, chapter 23) on the training
set, which performs compressions using only affine transformations. We obtain that compressing
all L = 5 375 lines with only L̃ ≃ 1 000 principal components and then decompressing leads to a
mean error factor below 0.1% on the training set, which confirms our hypothesis.

Figure 4.1 shows that in an ANN such that D ≪ L, most parameters belong to the last
hidden layer. The size of this layer is thus critical to obtain a good accuracy. Too large a layer
might lead to overfitting; too small a layer could not capture the nonlinearities of the dataset.
Using PCA, we determine the dimension L̃ < L of a subspace in which the code outputs can be
described with limited accuracy loss. In regression, this last hidden layer also applies an affine
transformation. We therefore set the size of the last hidden layer to the estimated dimension L̃.
To predict the L̃ intermediate values of the last hidden layer, which are then used to predict all
L line intensities, the first two hidden layers are set with the same size.

Link with principal component regression – This approach shares similarities with principal
component regression, used e.g., in Spurio Mancini et al. (2022), but is not equivalent. Using
PCA, one obtains the optimal affine transformation to a subspace of dimension L̃ ≪ L. The
proposed approach uses PCA to estimate L̃ to set the size for the hidden layers to a relevant value.
Principal component regression (PCR) goes farther by fixing the output layer of the network to
the learned transformation. This approach might seem very advantageous in the considered case.
Since the output layer is the largest layer in our networks, it would reduce the number of param-
eters to learn. In this work, we tried both approaches. We chose to leave the output layer as a
learnable parameter as PCR leads to worsse results than those presented in the manuscript.

Application to the four clusters of lines – For the networks trained on the four clusters of
lines obtained in Section 4.6.2, the size of the last hidden layer is also set to the minimum number
of principal components that ensures a decompression with mean error factor below 0.1% on the
training set. The obtained sizes L̃ are approximately 500 (about 13% of the L = 3 712 lines of the
cluster), 350 (about 28%), 100 (about 41%) and 75 (50%), respectively. As the bigger clusters
are the most homogeneous, they have the smallest ratio L̃/L of subspace dimension L̃ with the
total number of lines L. The number of parameters necessary to describe four small specialized
ANNs is thus greatly reduced in comparison to a single larger general network.

4.6.3 A polynomial transform to learn nonlinearities

The nonlinearities in the Meudon PDR code make the approximation task challenging. In
an ANN, nonlinearities come from the activation function g. However, learning meaningful and
diversified nonlinearities is difficult with few hidden layers. Conversely, an ANN with numerous
layers can lead to overfitting and requires more time for evaluations and memory for storage.
Preprocessing the physical parameters θ with a variety of predefined non-linear functions eases
this learning task while maintaining a small network architecture. We choose to apply a polynomial
transform Pp which replaces the input vector θ of dimension D with an input vector containing
all monomials computed from the D entries of degree up to p. For instance, for D = 3 and
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Figure 4.10 – On both top and bottom plots: each column corresponds to one of the four line
clusters obtained in Section 4.6.2.
Top row: composition of each cluster. Each bar indicates the proportion of lines of a species in a
cluster. The red crosses correspond to exactly zero line. For each cluster, the 3 species with the
most lines are highlighted.
Bottom row: Pearson correlation of the most representative line of each cluster with the 3 main
physical parameters. The most representative line of a cluster is defined as the line with the
highest average correlation with the other lines. A round marker at a vertex indicates a negative
correlation.
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p = 2, θ = (θ1, θ2, θ3) is replaced with P2(θ) = (θ1, θ2, θ3, θ2
1, θ2

2, θ2
3, θ1θ2, θ1θ3, θ2θ3) ∈ R9.

For D = 4 and p = 3, P3(θ) ∈ R34. This approach is classic in regression (Ostertagová, 2012),
but less common to train ANNs.

It is well known in polynomial regression that a high maximum degree p can lead to overfit-
ting (Shalev-Shwartz and Ben-David, 2014, chapter 11). The analysis of the physical processes
indicates that the gas structure and emission properties depend on control quantities combin-
ing G0, nH (or Pth) and Atot

V . For instance, G0/nH is known to play an important role in
PDRs (Sternberg et al., 2014). It is therefore important to consider monomials combining these
3 physical parameters. In contrast, the angle φ is assumed to have a simpler role in the model. To
avoid overfitting, we choose the minimum value that combines the three parameters, p = 3, and
thus consider the polynomial transforms P3. This transformation is applied to the input variables
after the preprocessing step described in Section 4.5.1 – log scale for Pth, G0 and Atot

V , and
standardization of the D = 4 parameters. It is implemented as an additional first fixed hidden
layer. The gradient ∇θ f̃ can thus be efficiently evaluated with auto-differentiation methods.

4.6.4 Dense networks to reuse intermediate computations

Introduction to the dense architecture – The fully connected ANNs architecture consid-
ered so far, shown in Figure 4.1, is widely used in the deep learning community. However, this
architecture struggles to maintain input information in hidden layers, as it is transformed with
non-linear activation functions. It might therefore fail to reproduce very simple relationships. For
instance, the intensity of UV-pumped lines of H2 is highly correlated with G0. Using G0 directly
to predict intensities of such lines thus might be more relevant than passing it through non-linear
transformations. This architecture also struggles to pass gradient information all the way back
to the first hidden layers. This phenomenon, called gradient vanishing, might lead to largely sub-
optimal trained networks. The recent residual (He et al., 2016) and dense architectures (Huang
et al., 2017) address these two issues. We use the dense architecture for our regression problem.

A dense architecture is a special type of feedforward architecture where the input of a layer j+1
is the concatenation of the input and output vectors of the previous layer j: θ(j+1) = [[θ(j), y(j)]].
This architecture focuses on reusing intermediate values in hidden layers and can thus reduce the
number of parameters to train.

Figure 4.11 illustrates this dense architecture for a simple ANN with H = 2 hidden layers
and the same sequence of layer input sizes (ij)H+1

j=1 used to illustrate the standard feedforward
architecture in Figure 4.1. The output sizes oj of hidden layers are much smaller with the dense
architecture, as the input of layer j concatenates the input and output of layer j − 1. The weight
matrices W(j) of hidden layers are thus much smaller as well, which reduces the total number
of parameters to train. By lowering the number of parameters to learn while providing the same
number of inputs to the output layer, this architecture limits overfitting risks.

Considered dense architecture – As the number of parameters per layer is reduced, we
define ANNs with H = 9 hidden layers, i.e., 6 more layers than for the proposed networks with
the standard architecture, and yet with a similar total number of parameters. By definition, the
size of the hidden layers in a dense architecture is strictly increasing, as the size ij+1 of a layer
input is the sum ij + oj of the input and output sizes of the previous layer. The network is
set so that the input ij+1 of a layer j + 1 is 50% larger than the input of the previous layer
ij . With this geometric progression and the polynomial transform P3, the input of the output
layer contains 1 296 neurons, which is 29.6% larger than the recommendation from PCA obtained
in Section 4.6.2. However, out of these 1 296 neurons, 34 correspond to the input values, 17
to the output of the first hidden layer, 25 to the output of the second hidden layer, etc. In
other words, though the input of the output layer contains more neurons for the considered dense
neural network than the PCA recommendation, a majority of these neurons are the result of fewer
transformations.

When using this dense architecture strategy with the clustering approach, four dense networks
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Figure 4.11 – Structure of a dense neural network with H = 2 hidden layers and the same sequence
of layer input sizes (ij)H+1

j=1 used to illustrate the feedforward architecture in Figure 4.1.

with H = 9 hidden layers are designed. The size of the last hidden layer is also set to a slightly
larger value than the PCA recommendation. The geometric progressions of these 4 networks are
set to 35%, 30%, 15% and 10%, respectively.

4.7 Experiments: application to the Meudon PDR code
The ANNs designed and trained with the proposed strategies are compared with interpola-

tion methods with respect to accuracy, memory and speed. Table 4.3 shows the results of the
comparison. It is divided in two halves. The first presents models trained on the raw training
set, while the second contains models trained on the cleaned training set. The cleaned dataset
is based on the mask defined with the outlier detection procedure of Section 4.6.1. In each half,
the results of interpolation methods are first listed, followed by ANNs combining one or more of
the presented strategies.

The code and data produced for this experiment are public. The training set, the test sets, and
the mask on the train set can be found at https://ism.obspm.fr/files/ArticleData/2023_
Palud_Einig/2023_Palud_Einig_trained_ANN.zip. The code can be found at https://
github.com/einigl/ism-model-nn-approximation. All proposed ANNs were implemented
using the PyTorch 4 Python library (Paszke et al., 2019). The most accurate ANN is
available at https://ism.obspm.fr/files/ArticleData/2023_Palud_Einig/2023_Palud_
Einig_data.zip.

4.7.1 Performance analysis

The proposed ANNs outperform all interpolation methods on all aspects by a large margin:
they are between 100 and 1 000 times faster than reasonably accurate interpolation methods, and
between 14 and 38 times lighter in terms of memory. Interpolation methods handle the prediction
of L lines as L independent operations, while ANNs handle the L lines at once, which is much
faster. Interpolation methods require storing the full training set that contains 103 million 64-bit
floating point numbers, i.e., 1.65 GB in size. In contrast, ANNs use shared intermediate values in
hidden layers to predict all lines, which limits redundant computations and effectively compresses
the dataset. They can thus be fully described with between 2.7 and 7.8 million parameters, i.e.,
between 43 MB and 118 MB. Finally, the proposed ANNs are roughly twice as accurate as the best
interpolation methods on average and between two and three times as accurate with respect to

4. https://pytorch.org/
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Table 4.3 – Performance of interpolation methods and of the proposed ANNs with and without
removal of outlier from the training set. Evaluation speeds are measured on the full set of L lines
for 1 000 random points. The measurements are performed on a personal laptop equipped with 8
logical cores running at 3.00 GHz. Error factors are evaluated on the test set. Spline interpolation
methods lack vectorized implementation in Python and are thus slow: their speed is not evaluated
for comparison fairness. For ANN architectures:
– R: design of the last hidden layer using PCA,
– P: polynomial transform of the input up to degree 3,
– C: line clustering and parallel training of four specialist ANNs,
– D: dense architecture.

Method Error factor Memory Speed
mean 99th per. max (MB) (ms)

No
ou

tli
er

re
m

ov
al

near. neighbor ×13.1 ×11.3 ×3e5 1 650 62
linear 15.7 ×2.3 ×143 1 650 1.5e3

sp
lin

e linear 15.7 ×2.3 ×144 1 650 . . .
cubic 11.2 ×2.2 ×122 1 650 . . .

quintic 19.1 ×2.9 ×304 1 650 . . .

RB
F linear 10.2 96.8 ×99 1 650 1.1e4

cubic 10.4 ×2.1 ×112 1 650 1.1e4
quintic 10.9 ×2.1 ×118 1 650 1.1e4

AN
N R 7.3 64.8 ×81 118 12

R+P 6.2 49.7 ×84 118 13

O
ut

lie
rr

em
ov

al
on

tra
in

in
g

se
t

near. neighbor ×13.1 ×11.6 ×3e5 1 650 62
linear 15.9 ×2.4 ×143 1 650 1.5e3

sp
lin

e linear 15.9 ×2.4 ×144 1 650 . . .
cubic 11.1 ×2.2 ×120 1 650 . . .

quintic 20.0 ×2.7 ×285 1 650 . . .

RB
F linear 10.3 97.3 ×97.5 1 650 1.1e4

cubic 10.5 ×2.0 ×106 1 650 1.1e4
quintic 10.9 ×2.0 ×114 1 650 1.1e4

AN
N

R 5.1 42.0 ×32.8 118 12
R+P 5.5 42.3 ×41 118 13

R+P+C 4.9 44.5 ×44 51 14
R+P+D 4.5 33.1 ×33.8 125 11

R+P+C+D 4.8 37.9 ×37.6 43 14
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the percentile 99th. Overall, the proposed ANNs are the only surrogate models that yield a mean
error factor lower than 10% and thus that are suited to a comparison with actual observations.

4.7.2 Removing outliers is crucial

When the outlier removal step is not applied, the distribution of errors is highly skewed for
all surrogate models. For interpolation methods, the 99th percentile reveals that around 99% of
the predictions correspond to errors lower than a factor of 2. For the best neural network (R+P),
it reveals that 99% of the errors are lower than 49.7%. However, for all methods, the maximum
error is at least 80 times higher than the 99th percentile and reaches unacceptable values. An
inspection of the highest errors reveals that they are close to training points with outliers, which
indicates that these outliers significantly deteriorate the fit.

After removing outliers from the training set, interpolation methods do not show average
accuracy improvement. Only little improvements can be observed on the 99th percentile and
maximum EF, especially for the RBF interpolation methods. Replacing outliers with interpolated
values is therefore not relevant to derive surrogate models based on interpolation methods in this
case. In contrast, the two ANNs trained both with and without the outlier removal step (R and
R+P) show consequent improvements. With outlier removal, the mean EF decreased from 7.3%
and 6.2% to 5.1% and 5.5%, respectively. Similarly, the 99th percentile dropped from 64.8% and
49.7% to 42% and 42.3%. Finally, the maximum error is reduced by more than a factor of 2.
These important improvements demonstrate the interest of filtering outliers from the training set
before training ANNs.

4.7.3 The importance of the polynomial feature augmentation

The polynomial transform improves the accuracy in presence of outliers in the training set, but
deteriorates it after the outlier removal step. It provides flexibility to learn abrupt nonlinearities
caused by outliers. However, with outliers removed, the function to learn is smoother. The EF on
the masked training set is 1.44% without the polynomial transform (R) and 0.77% with it (R+P),
while the EF on the test set is lower without the polynomial transform. This improvement on
the training set does not lead to an improvement on the test set, suggesting an overfit. The
polynomial transform therefore requires additional strategies to better reproduce data unused
during the training phase.

Both the clustering step and dense architecture, used with the polynomial transform, led
to better accuracy. The surrogate model that exploits the line clustering but not the dense
architecture (R+P+C) improves the mean accuracy by 0.2 percentage points, while requiring
57% fewer parameters than the first two networks (R and R+P). A potential cause of the average
error factor improvement is the separation of the trainings of each specialized ANN. Since H2
lines represent 61% of all L lines, they dominate the loss function and thus are learned in priority.
To separate them from other clusters might have improved performance on those other clusters.

The surrogate model based on a single network with dense architecture (R+P+D) is the most
accurate on average and provides the lowest error upper bound for the robust 99th percentile
estimator. Even with more trainable parameters than the first two networks, it does not overfit.
It is also the fastest model as reusing intermediate values reduces the number of computations.

Finally, combining both line clustering and dense architectures (R+P+C+D) yields the lowest
memory usage with only 2.7 million parameters, i.e., 43.2 MB, which is 38 times lighter than
for interpolation methods. It also provides very good accuracy, both on average and for upper
bounds.

Overall, a dense architecture and the line clustering effectively limit overfitting and thus
perform better on data not used during the training phase. The line clustering leads to the
lightest models regarding memory requirements, and the dense architecture to the most accurate
models.
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4.8 Conclusion
The interpretation of observations of atomic and molecular tracers in galactic and extragalactic

interstellar medium requires comparison with state-of-the-art astrophysical models to infer physical
conditions. Such inference procedure requires numerous evaluations of the numerical model,
particularly so for Bayesian approaches. Inference on large observation maps – that are becoming
more and more common – farther relies on many evaluations. ISM models are often too slow
to perform such inference and are generally emulated using grids of precomputed models. This
emulation approach induces errors that are seldom quantified in the literature. Besides, these
methods can have high evaluation time and memory costs.

In this chapter, the general problem of deriving a fast, accurate and memory-light surrogate
model for a time-consuming ISM numerical model has been addressed. The proposed approach
has been assessed in the case of the Meudon PDR code, a state-of-the-art ISM code. Four
common families of interpolation methods – nearest-neighbor, linear, spline and RBF – have
been compared to specifically designed ANNs. We found that ANNs outperform all interpolation
methods by a large margin in terms of accuracy, speed and memory usage.

Attaining this performance level for an ISM model such as the Meudon PDR code requires
addressing their specificities. First, ISM models usually predict many statistically independent
observables – e.g., line intensities of many species – from few parameters – e.g., gas density
or temperature. This setting is unusual in ANN applications – except for ANNs that generate
structured data such as images, text or time series. Second, due to numerical instabilities or
physical bistabilities or multistabilities, such models sometimes produce outliers that harm the
training process. In this chapter, we proposed and combined five strategies to design and train
adapted ANNs:

— To identify outliers, we train a first ANN with a loss function robust to large errors. Training
points corresponding to large errors are manually reviewed. Identified outliers are removed
from the training set.

— Lines are clustered into homogeneous subsets that are simpler to emulate: for each cluster
one ANN is defined and trained.

— A dimension reduction technique, PCA, is used to determine an adequate size of hidden
layers.

— A polynomial transform of the input physical parameters provides precomputed nonlinearities
to the network, which permits the learning of nonlinearities with a limited number of hidden
layers.

— A dense architecture exploits intermediate computations and thus limits redundant com-
putations. Using such an architecture instead of the standard feedforward neural network
architecture improves speed and avoids overfitting.

With the proposed strategies, ANNs achieve 4.5% average accuracy while the best inter-
polation method, RBF, attains 10.2%. Upper bound on the errors, quantified using their 99th
percentile, reaches 33.1% for our ANNs compared to 97% for RBF. Besides, our ANNs are 1 000
times faster than RBF and are more than 10 times lighter in terms of memory. This chapter
focuses on an application to the Meudon PDR code, motivated by the inverse problem at the
core of this thesis. However, the proposed strategies are sufficiently general to be applicable to
many other ISM models.

As we will show in Chapter 5, the fast and accurate ANN emulators obtained in this chapter
enables performing sampling-based inference on observation maps using the Meudon PDR code,
a physically comprehensive model. As we will show in the Chapter 6, it will also permit efficient
analyses of large observations maps produced by today’s instruments such as the JWST, ALMA,
or the ORION-B dataset observed by the IRAM 30m (Pety et al., 2017).
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Appendix 4.A Automatic outlier detection procedure
In this Section, we describe one possible automatic method for outlier identification along

with the reasons why we chose not to use it. This method consists in simultaneously identifying
outliers and training the ANN with the corresponding masked loss function. A similar approach
was used in Gratier et al. (2016), where the likelihood combined two generative models: one for
outliers values and one for non-outliers values. An additional parameter – to be tuned during
training – determines how likely a value is to be an outlier. Formally, the mask M would be
considered as a continuous variable in [0, 1]N×L optimized along with the parameters ψ. Using a
masked squared error function, one loss function option could be

L
(
f̃ , M ; D

)
=
[

1
NL

N∑
n=1

L∑
ℓ=1

(1 − mnℓ)(ln f̃ℓ(θn) − ln ynℓ)2
]

+ λ1r1(M) + λ2r2(M), (4.8)

where r1 is a regularization function that favors mnℓ values close to 0 or 1, where r2 is a regular-
ization function that favors masks M that agree with a priori knowledge on outliers, and where
λ1, λ2 > 0 are regularization weights to be tuned. These properties are satisfied for instance with

r1(M) = ι[0,1](mnℓ) + 1
NL

mnℓ(1 − mnℓ) (4.9)

where ι[0,1] is the indicator function on the [0, 1] interval, i.e., where ι[0,1](x) = 0 if x ∈ [0, 1] and
+∞ otherwise, and

r2(M) = ∥M∥1 =
N∑

n=1

L∑
ℓ=1

|mnℓ|. (4.10)

Figure 4.12 shows the corresponding loss function for one value mnℓ. The total regularization has
a global minimum of value 0 at mnℓ = 0, i.e., when ynℓ is not considered as an outlier. It also
has a local minimum at mnℓ = 1, i.e., when ynℓ is considered as an outlier. This local minimum
has a higher value to limit the number of identified outliers. Higher values of λ2 result in higher
values attained at this local minimum, which in turn result in less identified outliers. Intermediate
values are penalized to encourage the mask values towards 0 and 1.

The main drawback of this approach is that the model might classify important and physically
consistent points that are challenging to emulate as outliers. The presented function r2 considers
all couples (n, ℓ) independently, which would cause any minimization algorithm to mask only the
hardest values to reproduce with an ANN. These hardest values to reproduce might not be outliers
and carry significant physical content that a relevant surrogate model must learn. For instance,
values close to an abrupt change of regime may be hard to reproduce, but an emulator that
disregards them would be irrelevant in observation analyses. More subtle regularization functions
r2 incorporating a priori knowledge on the outliers should thus be designed. For instance, r2
could encode the hypothesis stated in Section 4.5.1, that is, if a line of a precomputed model
is identified as an outlier, then it is likely that this precomputed model contains other outliers,
especially among the lines emitted by the same species and its isotopologues. The design of
such regularization functions is not trivial, and will then require tuning the associated parameters
λ1 and λ2, which is difficult as well. For this reason, we chose to use the method described
in Section 4.6.1 for our case, with its required manual review of a part of the training set. In
cases where informative prior knowledge on outlier location or distribution is accessible, and where
the mathematical formulation of such prior knowledge is manageable, this type of approach can
bypass the need for a manual review.
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Figure 4.12 – Regularization on the mask M with the r1 and r2 functions proposed in Eq. 4.9
and Eq. 4.10, respectively, and λ1 = 1. Values out of the [0, 1] interval are +∞ due to the
indicator function.

Appendix 4.B Content of clusters of lines
Figure 4.10 presents the four clusters obtained in Section 4.6.2. We now describe the line

content of the four clusters. All species have lines distributed in at most 3 clusters, except for
12CO that has lines in each of the 4 clusters. CO lines are indexed with 2 quantum numbers: the
rotational number J and the vibrational number v.

Cluster 1 – The first cluster gathers lines that are emitted from the most external UV illumi-
nated layers of the cloud and trace hot chemistry. It includes all H2 lines but three, and is thus
the largest. It also contains all lines from OH+ (209), CH+ (10), all 8 lines of S+, all 5 lines of
N, all 3 lines of O and the 158 µm line of C+, and CO transitions with low J values for v = 1 − 0
and v = 1 − 1. The line intensities of this cluster are highly and positively correlated to G0, and
not correlated at all with Atot

V .

Cluster 2 – The second cluster contains 99% of the 655 lines from water H16
2 O and its iso-

topologue H18
2 O. It also contains lines from high energy levels for several molecules (HD, CO,

13CO, C18O, 13C18O, HNC, HCN, HCO+, SO, CN, SH+, C2H, OH, and CS), and transitions
from the neutral atoms C, Si and S. Line intensities in this cluster are positively correlated with
Pth and G0 and not at all with Atot

V .

Cluster 3 – The third cluster contains mostly c-C3H2 lines, and some C2H lines. It also
includes two transitions of CO with moderate J values in the lowest vibrational level v = 0
(J = 3 − 2 and J = 4 − 3). Its line intensities are overall positively correlated with Pth and Atot

V

and negatively correlated with G0.

Cluster 4 – The fourth cluster contains the low energy lines of 13CO, C18O, 13C18O, HNC,
HCN, HCO+, SO and c-C3H2, and the lowest temperature transitions of CO (J = 1 − 0 and
J = 2 − 1). Its line intensities are overall positively correlated with Pth, strongly positively
correlated with Atot

V and negatively correlated with G0.
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Chapter 5

An MCMC algorithm for efficient inver-
sion with quantified uncertainty

“ At first glance, it might appear
surprising that a trivial mathematical
result obtained by an obscure minister
over 200 years ago ought still to excite so
much interest across so many disciplines,
from econometrics to biostatistics, from
financial risk analysis to cosmology. ”

Trotta (2008)
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In Part I, we depicted the interstellar medium (ISM), presented the Bayesian approach to
model and solve an inverse problem, and reviewed many statistical inference applications in ISM
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studies. In Chapter 4, we derived a fast, light and accurate artificial neural network (ANN)
emulator of the Meudon PDR code, i.e., of the forward model considered in this thesis inverse
problem. By construction, this ANN is twice continuously differentiable.

As outlined in Chapter 3, the proposed observation model combines additive Gaussian noise,
multiplicative lognormal calibration errors, and censorship. In this chapter, we formally set the
inverse problem studied in this thesis. Our goal is to derive large maps of physical parameters
Θ ∈ RN×D from large maps of observations Y ∈ RN×L, with N the number of beams or pixels
in the maps, D the number of considered physical parameters (e.g., the thermal pressure or the
visual extinction) and L the number of observed atomic or molecular integrated emission lines.
This inverse problem is solved with a new MCMC sampler. We resort to an MCMC algorithm to
provide credibility intervals associated with the estimations. This quantifies the uncertainty for
applications such as astrophysics where no ground truth is available. We exploit the map structure
and resort to a spatial regularization prior. As the resulting posterior distribution is potentially
multimodal, we design a dedicated MCMC sampler to explore it. This sampler combines two
sampling kernels: one responsible for global exploration, and one for efficient local exploration.

This chapter is based on Palud et al. (2023b), a journal article published in IEEE transactions
on signal processing (TSP) that describes the model and the sampler. Two conference articles also
introduce the model and the sampler: Palud et al. (2022a), published in the Gretsi conference,
and Palud et al. (2022b). Finally, the Bayesian hypothesis testing was published in a Gretsi
conference article, Palud et al. (2023a).

The code associated with this chapter and its experiments was published in a Python package
called Beetroots (for BayEsian infErence with spaTial Regularization of nOisy multi-line Ob-
servaTion mapS). The code can be found at https://github.com/pierrePalud/beetroots.
It can be installed via pip – see https://pypi.org/project/beetroots/. The associated doc-
umentation can be found at https://beetroots.readthedocs.io/en/latest/index.html.

In Section 5.1, we derive an approximation of the likelihood function with controlled error.
The prior and posterior distributions are also introduced. Section 5.2 introduces the proposed
sampler. In the illustrative Section 5.4, the proposed sampler is applied to two classical synthetic
multimodal use cases, namely a Gaussian mixture and a sensor localization problem. Results
are compared with other state-of-the-art samplers outlined in Chapter 2 (Section 2.A). In the
illustrative Section 5.4.2, the sampler is validated on the astrophysical inverse problem of interest
on synthetic data.

5.1 Proposed statistical model

This section first proposes an approximation of the likelihood with controlled error based on
a combination of purely Gaussian additive and purely lognormal multiplicative approximations.
Then, it introduces the considered prior distribution. Finally, we combine the prior distribution
with the likelihood function to define the posterior distribution.

5.1.1 Approximation of the likelihood function

Summary of the observation model – The observation model presented in Chapter 3
(Section 3.4) is briefly recalled. Individual observations y = (yℓ)L

ℓ=1 gather L lines. They are
considered to be generated from some parameter θ ∈ RD and the Meudon PDR code f : RD →
RL, where D is assumed to remain moderate, e.g. D ≲ 10. The Meudon PDR code prediction
for a channel ℓ is denoted by fℓ, so that for any θ ∈ RD, f(θ) = (f1(θ), · · · , fL(θ)). As a single
evaluation of the Meudon PDR code f is slow and computationally expensive, it is replaced by
the neural network-based surrogate model f̃ derived in Chapter 4. Individual observations and
parameters are grouped in maps Y = (yn)N

n=1 and Θ = (θn)N
n=1 of N pixels, with N potentially

O(104). The sensors are assumed to have a lower limit of sensitivity ωnℓ ∈ R below which
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an observation is considered censored. Both an additive and multiplicative noise degrade the
observations. The resulting observation model is, for n ∈ [[1, N ]] and ℓ ∈ [[1, L]],

ynℓ = max
{

ωnℓ, ε
(m)
nℓ f̃ℓ(θn) + ε

(a)
nℓ

}
, (5.1)

where ε
(a)
nℓ ∼ N (0, σ2

a,nℓ) is an additive Gaussian white noise, and ε
(m)
nℓ ∼ Lognormal(−σ2

m/2, σ2
m)

is a lognormal multiplicative noise such that E[ε(m)
nℓ ] = 1. The noise terms ε

(a)
nℓ and ε

(m)
nℓ are as-

sumed independent with known standard deviations σa,nℓ and σm, respectively. For low ratios
f̃ℓ(θn)/σa,nℓ low intensities, the additive noise dominates; for high ratios observations are mainly
damaged by the multiplicative noise.

Taking a mixture of noises into account – The likelihood function associated with the
observation model (Eq. 5.1) has no simple closed-form expression due to the mixture of noises.
We first consider the uncensored part of the model from Eq. 5.1. In statistics, there are three
main approaches to handle such a mixture of noises.

Approach 1: neglecting one source of noise – The first approach simply consists in ne-
glecting one source. For instance, similar mixtures of additive and multiplicative noises also occur
in medical ultrasound imaging (Krissian et al., 2007) or laser imaging and synthetic aperture
radars (Durand et al., 2010). In these fields, when turning to inference, one of the two noises
is generally neglected for sake of tractability (Krissian et al., 2007). As already mentioned, the
Meudon PDR code spans several decades which causes the nature of the dominant noise to de-
pend on the amplitude of f̃ℓ(θ). The additive noise can be neglected when f̃ℓ(θn) ≫ σa,nℓ,
while the multiplicative noise becomes negligible when f̃ℓ(θn) ≪ σa,nℓ. As each of the two noise
sources dominates in a physical regime, both need to be taken into account in the inversion.

Approach 2: using a hierarchical model – A second approach, applied e.g., in Kelly et al.
(2012), relies on hierarchical models. An auxiliary variable U ∈ RN×L such that unℓ = ε

(m)
nℓ f̃ℓ(θn)

is included. The observation is then rewritten asln unℓ = ln f̃ℓ(θn) + ln ε
(m)
nℓ , ln ε

(m)
nℓ ∼ N (−σ2

m/2, σ2
m),

ynℓ = unℓ + ε
(a)
nℓ , ε

(a)
nℓ ∼ N (0, σ2

a,nℓ),
(5.2)

and U needs to be sampled and inferred along with Θ, yielding the augmented posterior

π(Θ, U|Y) ∝ π(Y|U)π(U|Θ)π(Θ). (5.3)

The two likelihood terms π(Y|U) and π(U|Θ) have simple closed-form expressions, as they
are Gaussian and lognormal, respectively. This approach permits the use of the exact likelihood
model. Such a model is generally sampled with a Gibbs algorithm, i.e., that alternatively samples
from π(Θ|U, Y) and π(U|Θ, Y). It doubles the number of parameters to sample, which can
cause memory issues with large observation maps. This divide-to-conquer approach compensates
for this additional cost if sampling from the conditional distributions is simple, i.e., if the coupling
between U and Θ is limited.

Preliminary results on this approach with the considered case, not reported in the manuscript,
suggested that sampling is hard in practice although conceptually simple. Unlike in Kelly et al.
(2012), f̃ℓ is not gradient Lipschitz continuous and thus neither is − ln π(U|Θ). This absence of
gradient Lipschitz regularity and the changes in dominant noise creates a high coupling between
Θ and U, which makes the extended posterior difficult to sample. In the region of the parameter
space where the additive noise dominates, exploring the distribution on θn is likely to be slow
because the multiplicative noise is negligible. Similarly, exploring the distribution on unℓ is likely
to be slow when the additive noise is negligible. Avoiding a hierarchical model permits to always
consider the dominant noise.
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A possibility we did not explore yet is to resort to the ancillarity-sufficiency interweaving strat-
egy (ASIS) sampling approach, dedicated to reducing coupling in hierarchical models. This has
already been applied in dust studies, including in Kelly et al. (2012). Another option to reduce
the coupling would be to resort to a splitting algorithm – see e.g., Vono et al. (2019).

Approach 3 (proposed approach): approximating the likelihood function – The third
approach approximates the full likelihood function. For instance, Nicholson and Kaipio (2020) ap-
proximates the mixture using a purely additive Gaussian model. The approach we propose builds
on this approximation. The additive noise ε

(a)
nℓ in Eq. 5.1 can be neglected when f̃ℓ(θn) → ∞,

while the multiplicative noise ε
(m)
nℓ becomes negligible as f̃ℓ(θn) → 0. Therefore, for each obser-

vation ynℓ, the true likelihood is approximated using three different regimes: low, intermediate
and high values of f̃ℓ(θn). In the low value regime, the true likelihood function π(ynℓ|θn) is
approximated by an additive Gaussian approximation π(a)(ynℓ|θn) corresponding to

ynℓ ≃ f̃ℓ(θn) + e
(a)
nℓ , e

(a)
nℓ ∼ N (ma,nℓ, s2

a,nℓ), (5.4)

where ma,nℓ and s2
a,nℓ are obtained by matching the two first moments with the model from Eq. 5.1,

which yields {
ma,nℓ = 0,

s2
a,nℓ = f̃ℓ(θn)2(eσ2

m − 1) + σ2
a,nℓ.

(5.5)

Conversely, in the high value regime, a multiplicative lognormal approximation π(m)(ynℓ|θn) is
used. It reads

ynℓ ≃ e
(m)
nℓ f̃ℓ(θn), e

(m)
nℓ ∼ Lognormal

(
mm,nℓ, s2

m,nℓ

)
, (5.6)

where moment matching with Eq. 5.1 yields:mm,nℓ = −1
2

{
σ2

m + ln
[
1 + σ2

a,nℓ

f̃ℓ(θn)2eσ2
m

]}
,

s2
m,nℓ = −2 mm,nℓ so that E[e(m)

nℓ ] = 1.
(5.7)

For the intermediate regime, for each channel ℓ, we introduce parameters aℓ = (aℓ,0, aℓ,1) ∈
R2. aℓ,0 pinpoints the low to intermediate value transition and aℓ,1 the intermediate to high value
transition. In this intermediate regime, i.e., aℓ,0 ≤ f̃ℓ(θn) ≤ aℓ,1, we propose to use a geometric
average of the two likelihood approximations π(a)(ynℓ|θn) and π(m)(ynℓ|θn) with weights 1 − λ
and λ, respectively, see the first term of Eq. 5.9 below. The weight function λ is defined as a
twice differentiable sigmoid with values in [0, 1]:

λ(θn,aℓ) =


0 if f̃ℓ(θn) ≤ aℓ,0

1 if f̃ℓ(θn) ≥ aℓ,1

Q

(
ln f̃ℓ(θn)−ln aℓ,0

ln aℓ,1−ln aℓ,0

)
otherwise

, (5.8)

where Q is a polynomial such that Q(0) = 0, Q(0) = 1 and Q
′(0) = Q

′(1) = Q
′′(0) = Q

′′(1) = 0
for λ to be C 2. One of the simplest such polynomials is Q(u) = u3(6u2 − 15u + 10). Figure 5.1
illustrates the λ function. The accuracy of this likelihood approximation clearly depends on the
choice of the parameter aℓ. Appendix 5.B explains how to optimize aℓ to maximize the likelihood
approximation quality.

Censorship – To take censorship into account, let C = (cnℓ)n,ℓ ∈ {0, 1}NL be a matrix such
that cnℓ = 1 for a censored observation, and cnℓ = 0 otherwise. Let F (a)(·|θn) and F (m)(·|θn) be
the cumulative density function (cdf) of π(a)(·|θn) and π(m)(·|θn), respectively. The likelihood of
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Figure 5.1 – Illustration of the λ function from Eq. 5.8.

censored data involves F (a)(ωnℓ|θn) and F (m)(ωnℓ|θn). The proposed likelihood approximation
of the model from Eq. 5.1 finally reads

π̃(ynℓ|θn,aℓ) ∝
[
π(a)(ynℓ|θn)1−λ(θn,aℓ) π(m)(ynℓ|θn)λ(θn,aℓ)

]1−cnℓ (5.9)

×
[
F (a)(ωnℓ|θn)1−λ(θn,aℓ) F (m)(ωnℓ|θn)λ(θn,aℓ)

]cnℓ
.

5.1.2 Prior distribution

In this thesis we consider maps of physical parameters Θ ∈ RN×D, with N the number of
pixels in the map, and D the number of physical parameters per pixel. We combine two penalties
to build the prior distribution on Θ. The first provides validity intervals on the physical parame-
ters, as is common in ISM studies (see Chapter 3, Section 3.1.3). The second exploits the map
structure in Θ with a spatial regularization.

Smooth approximation of uniform distribution – The first penalty term encodes the validity
of f̃ on a compact set C = [l1, u1] × · · · × [lD, uD]. Note that the reduced model may be defined
out of C but will not be considered as valid since it was not trained on such points. The most
natural approach would be to use the indicator function ιCN of the set CN , where ιCN (Θ) = 0
if Θ ∈ CN , and +∞ otherwise. The PMALA kernel to be introduced in Section 5.2.1 requires
twice differentiability. The indicator function being non-continuous, it can not be used as is.
We use a regularized version. In optimization, one common approach is to replace the indicator
function with an exterior penalty function (Nocedal and Wright, 2006). Arguably one of the most
common exterior penalty is the quadratic penalty θnd 7→ [max(0, θnd − ud, ld − θnd)]2 (Nocedal
and Wright, 2006) which is differentiable and gradient Lipschitz, but not twice differentiable. To
obtain a twice differentiable approximation of ιCN , we use the quartic penalty:

ι̃CN : Θ 7→
N∑

n=1

D∑
d=1

[max(0, θnd − ud, ld − θnd)]4 , (5.10)

which is not gradient Lipschitz.

Spatial regularization – The second penalty term favors the spatial regularity of estimations.
It is based on a local regularizer h : RN → R+ applied to each map Θ·d = (θnd)1≤n≤N , with
d ∈ [[1, D]]. The regularizer can be the Euclidean norm of the usual gradient or Laplacian of the
component map, with regularization parameter τd > 0. In this thesis, for each of the D maps,
we use a L2 norm on the map Laplacian h(Θ·d) = ∥∆Θ·d∥2

2. This regularization function h is
twice differentiable. This spatial regularization was already used in the ISM community, e.g., in
the Rohsa code (Marchal et al., 2019).
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Overall, the resulting prior distribution is given by

π(Θ) ∝ exp
(

−ξ ι̃CN (Θ) −
D∑

d=1
τd h(Θ·d)

)
, (5.11)

where ξ > 0 is a penalty parameter. The higher ξ, the better the approximation of the indicator
function and the higher the penalty out of C.

Hyperparameters – This prior relies on two hyperparameters: ξ > 0 weighs the smooth
indicator function, and τ contains the D spatial regularization weights of the D maps to be
inferred. To learn the spatial regularization weights from the data as in Galliano (2018) would
avoid the tedious usual manual setting. In Appendix 5.A, we present a hierarchical model to learn
the prior parameters from the data, along with the reasons why we did not use it. Therefore,
in the remainder of this thesis, the prior parameters are set manually and iteratively to obtain a
trade-off between physically and visually consistent maps. To avoid underestimating uncertainties
and favoring physical consistency, the spatial regularization is set to low values, i.e., τd ∈ [1, 10]
for each physical parameter d. By default, τd is set to 1.

5.1.3 Posterior distribution

The posterior distribution combines NL independent likelihoods (Eq. 5.9) and the prior (Eq. 5.11):

π(Θ|Y) ∝
[

N∏
n=1

L∏
ℓ=1

π̃(ynℓ|θn,aℓ)
]

π(Θ). (5.12)

This posterior distribution is hard to manipulate as is, and requires sampling to derive estimators
and credibility intervals. However, drawing samples from this posterior is challenging since it is
non-log-concave, potentially multimodal. Besides, no gradient Lipschitz continuity is assumed for
the log-posterior. In the following and as in Chapter 2, the negative log-posterior pdf − ln π(Θ|Y)
is denoted L (Θ).

5.2 Proposed MCMC algorithm
As the forward model spans several decades, the gradient of the negative log-likelihood ∇L

has a potentially very large Lipschitz constant, if any. Besides, the smooth uniform component of
the prior is not gradient Lipschitz. The negative log posterior is therefore not gradient Lipschitz
either. In addition, the posterior distribution (Eq. 5.12) is in general non-log-concave, potentially
multimodal, which makes the sampling task challenging.

To address these two challenges, a new transition kernel is proposed as a combination of
two kernels: PMALA (Xifara et al., 2014) and MTM (Liu et al., 2021). PMALA tackles the
regularity issue to efficiently explore the neighborhood of a local mode, whereas MTM permits
jumps between modes.

5.2.1 PMALA transition kernel

MALA and HMC rely on a step size inversely proportional to the Lipschitz constant of ∇L,
if it exists. Here the forward model f̃ covers several decades so that this Lipschitz constant is
potentially very large or even infinite. Therefore, MALA and HMC will typically fail to efficiently
explore the posterior (Eq. 5.12). To accelerate the exploration, a preconditioned MALA equipped
with RMSProp (Tieleman and Hinton, 2012) is introduced to perform larger steps. To simplify
notation, we temporarily use the vector version of Θ in lexicographic order so that Θ ∈ RND.

A transition kernel that handles such situations relies on extensions of HMC and MALA to
Riemannian manifolds, introduced in Chapter 2 (Section 2.2.2.5). The Riemannian manifold
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MALA version was improved in Xifara et al. (2014), resulting in the so-called preconditioned
Metropolis adjusted Langevin algorithm (PMALA) kernel. It permits to exploit local information
geometry thanks to a position-dependent preconditioner. We propose to use the RMSProp pre-
conditioner (Tieleman and Hinton, 2012) that was initially defined in the deep learning literature
for fast neural networks training. It adaptively estimates a local variance of the gradient ∇L by
keeping memory of former proposals Θ(t)

c . At each step t, it updates a surrogate gradient variance
vector v(t) ∈ RND such that for all i ∈ [[1, ND]],

v
(t)
i = av

(t−1)
i + (1 − a)

[
∂L
∂θi

(
Θ(t)

c

)]2
= (1 − a)

t∑
j=1

at−j
[

∂L
∂θi

(
Θ(t−j)

c

)]2
, (5.13)

where a ∈]0, 1[ is an exponential decay rate. Note that the variance vector v(t) relies on candidates
Θ(t)

c instead of iterates Θ(t): candidates might not be kept in the Markov chain, but they still
contain important information about the shape of the distribution. The RMSProp preconditioner
is defined as (Tieleman and Hinton, 2012)

G(t) = diag
( 1

ϵ +
√

v(t)

)
∈ RND×ND, (5.14)

with ϵ a small damping parameter. This preconditioner has already been used in a MCMC
context (Li et al., 2016) within an approximate sampler. The goal in Li et al. (2016) was to
sample from a distribution defined over the parameters of a neural network trained on a large
dataset. Accept or reject steps were omitted as they would have required expensive computations
on the full dataset. Additionally, the discretization of the Langevin diffusion process equipped
with a position-dependent preconditioner comes with an additional drift term (Xifara et al., 2014)
that was neglected in Li et al. (2016). We correct these two approximations to sample exactly
from Eq. 5.12.

Following Xifara et al. (2014), the proposal distribution corresponding to PMALA with the
RMSProp preconditioner is the Gaussian distribution:

q
(
Θ(t)

c |Θ(t−1)
)

= N
(
Θ(t)

c |µ(t), Λ(t)
)

(5.15)

with µ(t) = Θ(t−1) − η G(t−1)∇L
(
Θ(t−1)

)
+ 2η γ(t−1),

Λ(t) = 2η G(t−1),
(5.16)

where η is a step size and γ(t−1) is the additional drift term due to the position-dependent
preconditioner (Xifara et al., 2014). In full generality, for all i ∈ [[1, ND]],

γ
(t−1)
i = 1

2

ND∑
j=1

∂G
(t−1)
ij

∂θ
(t−1)
j

. (5.17)

However, the RMSProp preconditioner is diagonal so that the sum in Eq. 5.17 reduces to the j = i
term only. Note that γ(t−1) is defined from a differentiation with respect to iterate Θ(t−1) while
the variance vector v in Eq. 5.13 is defined from candidates. Since all iterates start as candidates,
let j(t) be the number of iterations since last accept: j(t) = min

{
j ≥ 0|Θ(t) = Θ(t−j)

c

}
. The

correction terms γ
(t−1)
i are then given by

γ
(t−1)
i = − (1 − a)aj(t−1)

2
√

v
(t−1)
i

(
ϵ +

√
v

(t−1)
i

)2

(
∂L
∂θi

· ∂2L
∂θ2

i

)(
Θ(t−1)

)
. (5.18)
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We now can compute the four components involved in the accept-reject probability ρ(t) (Eq. 2.34)
except q(Θ(t−1)|Θ(t)

c ) = N
(
Θ(t−1)|µ(t)

c , Λ(t)
c

)
. To compute this last term, one needs to update

the variance v(t) and preconditioner G(t) and evaluate the candidate additional drift term γ
(t)
c .

By definition, j(t) = 0 for candidates, so for all i ∈ [[1, ND]],

γ
(t)
c,i = − (1 − a)

2
√

v
(t)
i

(
ϵ +

√
v

(t)
i

)2

(
∂L
∂θi

· ∂2L
∂θ2

i

)(
Θ(t−1)

)
. (5.19)

The parameters µ(t)
c , Λ(t)

c are thus given byµ
(t)
c = Θ(t)

c − η G(t)∇L
(
Θ(t)

c

)
+ 2η γ

(t)
c ,

Λ(t)
c = 2η G(t).

(5.20)

Algorithm 5.1 describes the proposed PMALA kernel with RMSProp preconditioner. It relies
on three scalar parameters: a damping parameter ϵ, an exponential decay rate a and a step size
η. The first two are generally set to ϵ = 10−5 and a = 0.99 (Li et al., 2016). The step size
is chosen empirically. MALA achieves optimal convergence rates with an acceptance rate equal
to 0.574 when the components of Θ are independent (Robert and Casella, 2004). Despite the
interdependencies in the posterior distribution, we also set η to obtain an average acceptance rate
close to 0.574, which yields good results in practice.

Algorithm 5.1: PMALA kernel K1 at step t

Input: Θ(t−1), v(t−1), j(t−1)

Output: Θ(t), v(t), j(t)

// Propose candidate
1 G(t−1) and γ(t−1) // using Eq. 5.14 and Eq. 5.18
2 µ(t) and Λ(t) // using Eq. 5.16
3 Θ(t)

c ∼ N (µ(t), Λ(t))
// Accept or reject

4 v(t), G(t) and γ(t)
c // using Eq. 5.13, Eq. 5.14, and Eq. 5.19

5 µ
(t)
c , Λ(t)

c and ρ(t) // using Eq. 5.20, and Eq. 2.34
6 Draw ζ ∼ Unif (0, 1)
7 if ζ ≤ ρ(t) then Θ(t) = Θ(t)

c , j(t) = 0
8 else Θ(t) = Θ(t−1), j(t) = j(t−1) + 1

Accounting for the correction term γ is necessary in stochastic gradient MCMC (SG-MCMC)
as it does not apply accept-reject steps. Alternatively, disregarding it, as in Li et al. (2016), leads to
a controlled error on estimations. In our case, as we do apply a MH accept-reject step, computing
the correction term is not mandatory to obtain an MCMC algorithm that converges to the correct
stationary distribution π(Θ|Y). However, we keep this term to obtain a correct discretization
of the associated Langevin diffusion process. As stated in Chapter 2 (Section 2.2.2.4), better
discretization of the Langevin process often leads to better candidates.

5.2.2 MTM transition kernel

The non-log-concavity and potential multimodality of the posterior (Eq. 5.12) is the second
major difficulty to be addressed. As explained in Chapter 2, samplers such as MH, MALA, HMC
or even PMALA fail to explore the full distribution when modes are far away: they get stuck in
one. In Section 2.A, we reviewed existing algorithms dedicated to multimodal distributions. None
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of these methods can efficiently address the very high dimensionality O(104) to be encountered
in some of the applications considered in this thesis.

We define a kernel that can escape a local mode and explore other ones without any knowl-
edge about the number, positions or variances of the modes. To do so, we propose to exploit two
particularities of the considered posterior, namely its map structure and the speed of evaluation
of its forward model - and thus of its full pdf. Instead of sampling the whole vector Θ ∈ RND at
once, it uses a Metropolis-within-Gibbs sampler to decompose it into N individual θn (see Chap-
ter 2, Section 2.2.2.6). For each conditional distribution, it harnesses an independent multiple-try
Metropolis (I-MTM) approach (Liu et al., 2021; Martino, 2018) (see Chapter 2, Section 2.2.2.7).
This method generates K ≥ 1 candidates (θ(k)

n )K
k=1 independently of θ(t−1)

n . This divide-to-
conquer approach permits to consider N conditional distributions π

(
θn|yn, Θ(t−1+(n−1)/N)

\n

)
of

small dimension, where Θ(t−1+(n−1)/N)
\n =

(
θ

(t)
1 , . . . ,θ

(t)
n−1,θ

(t−1)
n+1 , . . . ,θ

(t−1)
N

)
. Candidates are

sampled from a proposal distribution q
(
θn|Θ(t−1)

\n

)
that should be permissive enough to generate

candidates in all modes of π
(
θn|yn, Θ(t−1)

\n

)
. Then, using the importance weight function w

from Eq. 2.42 adapted to this case,

w
(
θ(k)

n

)
=

π
(
θ(k)

n |yn, Θ(t−1)
\n

)
q
(
θ(k)

n |Θ(t−1)
\n

) , (5.21)

one candidate is selected using a categorical distribution with selection probability wk for candidate
k

wk =
w
(
θ(k)

n

)∑K
j=1 w

(
θ(j)

n

) . (5.22)

The MH step is then performed with the selected candidate i and the following generalized
acceptance probability, adapted from Eq. 2.44,

ρ̃(t)
n = min

(
1,

w
(
θ(i)

n

)
+
∑K

j=1,j ̸=i w
(
θ(j)

n

)
w
(
θ(t−1)

n

)
+
∑K

j=1,j ̸=i w
(
θ(j)

n

)) . (5.23)

Algorithm 5.2 summarizes the proposed Gibbs and MTM kernel. Note that due to the Gibbs
approach, it updates one component at a time and returns the result of all updates. A succession
of intermediate updates

(
Θ(t−1+n/N))N

n=1 is therefore introduced (see Algorithm 2.3). This tran-
sition kernel relies on the choice of the proposal distribution q and on the number of candidates K
generated at each step. This parameter is chosen as a trade-off between computational intensity
and average acceptance probability: the higher K, the higher the acceptance probability, the
mixing capability but also the computational cost.

In image inverse problems, many common spatial priors are based on a local operator such as
the image gradient or Laplacian. In such cases, many components θn are conditionally indepen-
dent. They can be sampled in parallel using a Chromatic Gibbs sampler (Gonzalez et al., 2011),
which can significantly speed up computations. Note that this Gibbs sampling and chromatic
Gibbs sampling can also be adopted in the PMALA kernel to farther accelerate local explorations.

5.2.3 Proposed sampler and implementation details
To combine a good local exploration of modes as well as jumps between modes, the proposed

kernel mixes the PMALA and MTM transition kernels above. At every step t, the MTM kernel
is selected with probability pMTM, and the PMALA kernel with probability 1 − pMTM. Since
the MTM kernel divides the parameter space in N D-dimensional subspaces, the PMALA global
integer j(t) ≥ 0 is replaced by a vector j(t) ∈ NN , where j

(t)
n counts the number of steps since

last acceptance for component θn. When a component θn is accepted by the MTM kernel, the
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Algorithm 5.2: MTM kernel K2 at step t

Input: Θ(t−1)

Output: Θ(t)

1 for n = 1 to N do
// Propose candidates, select one

2 θ(k)
n ∼ q

(
θn

∣∣∣Θ(t−1+ n−1
N )

\n

)
for k = 1 to K

3 w
(
θ(k)

n

)
for k = 1 to K // using Eq. 5.21

4 wk for k = 1 to K // using Eq. 5.22
5 i ∼ Cat(w1, · · · , wK)

// Accept or reject

6 ρ̃
(t)
n // using Eq. 5.23

7 Draw ζn ∼ Unif (0, 1)
8 if ζn ≤ ρ̃

(t)
n then

9 θ
(t−1+ n

N )
n = θ(i)

n , Θ(t−1+ n
N )

\n = Θ(t−1+ n−1
N )

\n

10 else Θ(t−1+ n
N ) = Θ(t−1+ n−1

N )

counter jn is reset to 0 and the variance component vn ∈ RD is updated as in Eq. 5.13 with
∂L
∂θn

(
Θ(t)).

Algorithm 5.3 reports the complete proposed sampler. Similarly to RDMC and WHMC, the
proposed sampler mixes a kernel dedicated to local exploration – PMALA – and another to
jump between modes – MTM. The decomposition of the parameter space into N D-dimensional
subspaces makes the sampler much simpler than previous approaches. It will perform well in
structured problems that allow such decomposition, e.g., images and graphs, and poorly in high-
dimensional problems that do not, e.g., Gaussian Mixtures over the full space. In particular,
resorting to an Gibbs and MTM strategy leads to fast convergence to the high probability regions.
Therefore, the burn-in phase is shorter than with usual MCMC algorithms. Using the Gibbs
approach in the PMALA kernel also accelerates convergence and local exploration.

An optimization algorithm can be obtained from this sampler. It combines preconditioned
gradient descent and simulated annealing-like component-wise updates that can escape from lo-
cal minima.

Regarding theoretical properties, the PMALA kernel satisfies the detailed balance property –
from Robert and Casella (2004, theorem 7.2) – and produces ergodic Markov chains – from Robert
and Casella (2004, corollary 7.5). The proposed MTM kernel is a Metropolis-within-Gibbs algo-
rithm with propositions independent to the current location and with multiple candidates K. In
the particular case where K = 1, it satisfies the detailed balance property and produces uniformly
ergodic Markov Chains – from Jones et al. (2014, theorem 7). Using K > 1 candidates in a
MTM framework maintains detailed balance and ergodicity (Martino, 2018). As a mixture of
kernels having the same stationary distribution, the proposed kernel also admits the posterior as
a stationary distribution – from Robert and Casella (2004, chapter 10). As the MTM kernel
produces uniformly ergodic Markov chains, so does the proposed mixture kernel – from Robert
and Casella (2004, proposition 10.20). These results of convergence towards the posterior are
mostly asymptotic and also hold for simpler algorithms such as RWMH (Roberts and Tweedie,
1996). A comparative theoretical study of non-asymptotic properties that could demonstrate a
faster convergence of the proposed sampler is beyond the scope of this manuscript. However,
Section 5.2.4 presents empirical results showing that the proposed sampler yields state-of-the-art
performance on multimodal distributions in low-dimensional settings. As reported in Section 5.4,
the proposed sampler also yields state-of-the-art performance on higher dimensional applications
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Algorithm 5.3: Proposed sampler: PMALA and MTM
Input: number of iterations TMC, starting point Θ(0)

Output: Markov chain {Θ(t)}TMC
t=1

1 Initialize v
(0)
nd =

[
∂L

∂θnd

(
Θ(0))]2 for all n and d

2 Initialize j(0) = 0N

3 for t = 1 to TMC do
4 Draw ζ ∼ Unif (0, 1)
5 if ζ > pMTM then // PMALA kernel (Algo. 5.1)
6 Θ(t), v(t), j(t) = K1

(
Θ(t−1), v(t−1), j(t−1))

7 else // MTM kernel (Algo. 5.2)
8 Θ(t) = K2

(
Θ(t−1))

// Update PMALA parameters
9 for n = 1 to N do

10 if candidate for θn was accepted then ∀d,

11 v
(t)
nd = av

(t−1)
nd + (1 − a)

[
∂L

∂θnd
(Θ(t))

]2,

12 j
(t)
n = 0, v(t)

\n = v(t−1)
\n , j(t)

\n = j
(t−1)
\n

with relevant low-dimensional conditional distributions.

5.2.4 Illustration: 2D Gaussian mixture model

The proposed sampler is applied to a two-dimensional Gaussian mixture model (GMM) re-
stricted to the square C = [−15, 15]2. This simple multimodal distribution, shown on Figure 5.2
(top left), is set to contain 15 modes (µi, Σi). It will demonstrate the ability of the proposed
sampler to jump between modes. For simplicity, all the modes have an equal weight in the mixture

π(θ) ∝
[ 15∑

i=1
N (θ|µi, Σi)

]
exp (−ξ ι̃C(θ)) , (5.24)

with ξ = 104. No natural structure decomposition exists for a GMM since each observation
consists of N = 1 point only in dimension D = 2. A Markov chain composed of TMC = 10 000
samples is considered, including TBI = 100 burn-in samples. To illustrate the role of each of the
two kernels in the proposed sampler, two different values are considered for the probability of
selecting the MTM kernel: pMTM = 0.1 or pMTM = 0.9. The number of candidates of the MTM
kernel is set to K = 50, and the proposal distribution q is the smooth uniform prior on C – see
Appendix 5.C. The MTM candidates weights w

(
θ(k)

n

)
in Eq. 5.21 are then equal to the likelihood

term, i.e., the sum of Gaussian pdfs. The default values a = 0.99 and ϵ = 10−5 are considered
for the exponential decay and damping factor of the PMALA kernel (Li et al., 2016), and its step
size is set to η = 0.25. The proposed approach is compared to the state-of-the-art wormhole
Hamiltonian Monte Carlo (WHMC) (Lan et al., 2014), using the same number of samples. Note
that WHMC needs the prior knowledge of mode positions (µi)1≤i≤15, while the proposed kernel
does not.

The three sampling algorithms widespread in astrophysics introduced in Chapter 2 (Ap-
pendix 2.A) are also applied. The affine-invariant sampler (Goodman and Weare, 2010) is run
with 4 parallel chains, using the emcee implementation (Foreman-Mackey et al., 2013). The
sequential MC (SMC) algorithm (Del Moral et al., 2006) is run with the state-of-the-art PyMC
code 1 (Abril-Pla et al., 2023). The MultiNest algorithm (Feroz and Hobson, 2008) is run with

1. https://www.pymc.io/welcome.html
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its Python implementation PyMultiNest (Buchner, 2016a). All three algorithms are run with
their respective default parameters. Note that these three samplers are not MCMC algorithms.

Figure 5.2 shows the 2D histograms obtained with the six samplers. The affine-invariant
sampler is the only sampler that fails to explore all the modes. The five others visit all the
modes, approximately give them equal weights in the histogramm, and their local dispersion
obeys the covariance structures equally well. Table 5.1 compares their bias 2and effective sample
size (ESS) for the MCMC algorithms – see Chapter 2 (Section 2.2.2) for the definition of the ESS.
When pMTM = 0.9, the proposed sampler achieves the second lowest bias and the highest ESS. In
particular, it achieves better performances than WHMC, despite the absence of information about
the position of the modes µi. The high ESS values result from the 85% acceptance rate of the
MTM kernel for K = 50. However, the MTM kernel with a fixed number of candidates K would
not scale up to much higher dimensions. The probability to jump between modes is proportional
to the volume of the high probability regions compared to the volume of C, and thus decreases
exponentially with the dimension of the problem. The proposed sampler would therefore fail to
reach isolated modes in a high-dimensional GMM, whereas WHMC would succeed to do so by
exploiting its additional information about the modes. However, the proposed approach focuses
on scenarios where the parameter space can be partitioned into a collection of N subspaces of
limited dimension D, typically D ≲ 10. The MTM kernel thus remains out of reach from the
curse of dimension thanks to the structure of the problem. As in this simple GMM example, the
proposed sampler can then outperform WHMC, even without any prior information on the modes
of a multimodal distribution.

Table 5.1 – Samplers comparison on 2D Gaussian mixture model.

Algorithm Bias ESS∥∥∥θ̂MMSE − E[θ]
∥∥∥ θ1 θ2

Affine-invariant sampler (Goodman and Weare, 2010) 4.32 · 100 – –
sequential MC (Del Moral et al., 2006) 1.09 · 10−1 – –
MultiNest (Feroz and Hobson, 2008) 3.22 · 10−2 – –

WHMC (Lan et al., 2014) 1.28 · 10−1 2 753 2 993
Proposed, pMTM = 0.1 7.02 · 10−1 395 444
Proposed, pMTM = 0.9 4.61 · 10−2 6 157 5 780

2. To compute the bias, we consider that E[θ ] ≃ 1
15
∑15

i=1 µi, which is inexact due to the the smooth indicator
term. However, the probability mass of the Gaussian mixture out of the validity intervals is numerically negligible.
Therefore, the error due to this approximation is negligible as well.
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(a) Affine-invariant sampler (b) SMC

(c) MultiNest (d) WHMC

(e) Proposed kernel with pMTM = 0.1 (f) Proposed kernel with pMTM = 0.9

Figure 5.2 – Comparison of samplers on a 2D Gaussian mixture model. The red ellipses show the
probability level at 2σ. All histograms are in logarithmic norm.
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5.3 Model checking using a predictive posterior p-value
This section presents a method that checks whether the observation model M can reproduce

the observation Y. As in Chapter 2 (Section 2.1), we consider that the model M gathers
the forward model and the noise model. In astrophysics applications, the forward model is the
emulator of the Meudon PDR code defined in Chapter 4. The noise model is described in Chapter 3
(Section 3.4).

To perform this model checking, we resort to the predictive posterior p-value introduced in
Chapter 2 (Section 2.3.2). As we showed in Chapter 3 (Section 3.3.2), this approach was already
used in astrophysics. We improve it in two ways. First, we set the discrepancy measure to the
negative log-likelihood for generality. As the resulting predictive posterior p-value is intractable,
we approximate it with a Monte Carlo (MC) estimator. Second, we control the associated ap-
proximation error to avoid making wrong decisions because of insufficient number of iterates in
our MC estimator.

5.3.1 Definition of selected p-value
For inverse problems relying on a non-linear forward model or on a posterior distribution instead

of a point estimate Θ̂, there exists no general test statistic T that leads to an exact evaluation
of the p-value. The choice of the test statistic should then enforce consistent behavior between
the observation model and the p-value. We propose to use the negative log likelihood function
as a test statistic,

T (Ỹ, Θ) = − ln π
(
Ỹ|Θ, M

)
, (5.25)

where Ỹ are reproductions of observations following the observation model. In addition, as the
observation model handles pixels independently, we propose to evaluate one p-value per pixel.
Overall, a map p = (pn)N

n=1 of N p-values is evaluated on the marginal posterior predictive
distributions ỹn|Y. The p-value pn corresponds to the measure of the set

In = {(ỹn, Θ) | π (ỹn|Θ, M) ≤ π (yn|Θ, M)} , (5.26)

i.e.,

pn =
∫

1In(ỹn, Θ) π(ỹn|Θ, M) π(Θ|Y, M) dΘdỹn. (5.27)

Small p-values pn enable detecting anomalies in observed maps, e.g., regions that are not well
modeled by a PDR. This definition is general, as it does not rely on restraining assumptions on
the observation model. The only two necessary assumptions are 1) that the observation model
can be used to generate observations from a given Θ and 2) that the likelihood function can be
evaluated.

5.3.2 p-value approximation and associated uncertainties
As detailed in Chapter 2 (Section 2.3.2), for general models the p-value is evaluated with a

Monte Carlo (MC) estimator p̂ (Eq. 2.57). The map of p-values p̂(t) = (p̂(t)
n )N

n=1 can be evaluated
after the burn-in phase of size TBI ≥ 0:

p̂(t)
n = 1

t − TBI

t∑
τ=TBI+1

1In

(
ỹ(τ)

n , Θ(τ)
)

. (5.28)

Algorithm 5.4 details how this estimator can be effortlessly included in an MCMC algorithm. In
case of a point estimator Θ̂, the Markov chain is replaced by Θ(0) = . . . = Θ(TMC) = Θ̂, and
TBI = 0.
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Algorithm 5.4: MCMC sampling with p-value computation
Input: Starting point Θ(TBI), sampling kernel K, numbers of iterations TBI et TMC

1 Initialization: map of p-values p̂(TBI) = 0N , u(TBI) = 0N

2 for t = TBI + 1, . . . , TMC // After burn-in phase
3 do
4 Θ(t),

(
π(yn|Θ(t), M)

)N

n=1
= K(Θ(t−1))

// Sample from K
5 Ỹ(t) ∼ π

(
·|Θ(t), M

)
// generate observation reproduction

6 u
(t)
n = u

(t−1)
n + 1In

(
ỹ(t)

n , Θ(t)
)

for n ∈ [[1, N ]] // update p-values

7 p̂(TMC) = 1
TMC−TBI

u(TMC)

Output: Markov chain {Θ(t)}TMC
t=TBI+1, map of p-values p̂(TMC)

Accounting for the uncertainty inherent to a Monte Carlo estimation of the p-values makes
hypothesis testing more robust. The probability of null hypothesis rejection with confidence level
α then corresponds to the cdf of pn evaluated on α, P[pn ≤ α]. Using a threshold δ ∈ [0, 0.5],
P[pn ≤ α] ∈ [δ, 1 − δ] implies that more samples (Θ(t), ỹ(t)

n ) are necessary to make a decision
with the desired confidence level. The model M is rejected for pixel n when P[p(t)

n ≤ α] > 1 − δ,
and is not rejected when P[p(t)

n ≤ α] < δ. In other words,
P[p(t)

n ≤ α] > 1 − δ =⇒ model M is rejected for pixel n with confidence level α.

P[p(t)
n ≤ α] < δ =⇒ model M is not rejected for pixel n with confidence level α.

P[p(t)
n ≤ α] ∈ [δ, 1 − δ] =⇒ the sample size is insufficient to make a decision.

(5.29)

In general, evaluating the cdf of the p-value pn would require an additional MCMC layer. We avoid
this additional step and maintain a reasonable cost for this test. First, note from Eq. 5.27 that
1In(ỹn, Θ) is a binary random variable that equals 1 with probability pn and 0 with probability
1 − pn. In other words, it follows a Bernoulli distribution of parameter pn. A natural prior
distribution for pn is a uniform distribution on [0, 1], as pn is a probability. This is a special case
of a Beta distribution, Beta(1, 1), which is the conjugate prior of the Bernoulli distribution (Gelman
et al., 2015, chapter 2, section 2.4). The uncertainty on pn thus can be reasonably modeled by
an a posteriori Beta distribution with closed-form parameters

p(t)
n ∼ Beta

(
1 + N (t)

n p̂(t)
n , 1 + N (t)

n (1 − p̂(t)
n )
)

, (5.30)

for any t > TBI, with N
(t)
n the number of independent samples. When the posterior on Θ is re-

duced to a Dirac on an estimator Θ̂, then all samples are independent and N
(t)
n = t − TBI. When

a Markov chain is generated to sample from the posterior distribution π(Θ|Y, M), the samples
Θ(t) are correlated. To compensate this correlation and avoid underestimating uncertainties, we
set N

(t)
n to the effective sample size (ESS) on Θ, i.e., N

(t)
n = ESS(t)

n This approach permits
accounting for errors associated with the numerical evaluation of the p-values, which makes the
test more robust.

Figure 5.3 shows three cases using this definition of the p-value. In this case, In the first
case, the Beta distribution has most of its weight on p-values higher than α. The cdf at α is
therefore very small. An associated model M would not be rejected. In the second case, the Beta
distribution has most of its weight on p-values lower than α. The cdf at α is therefore very high,
and higher than the threshold δ. An associated model M would therefore be rejected. Finally, in
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the third case, the Beta distribution has significant weight both below and above the confidence
level α. As a consequence, the cdf evaluated at α falls in the [δ, 1 − δ] interval. In this case, more
samples would be necessary to make a decision.

Figure 5.3 – Illustration of the three-case test for model assessment. In this case, α = 0.1 and
δ = 0.1.

5.3.3 Illustration: 2D Gaussian distribution
As already shown in Chapter 2 (Section 2.3.2), the Bayesian p-value can be efficiently es-

timated in the case of a point estimate Θ̂ and of an additive Gaussian noise model. In this
particular case, the test statistic T follows a χ2

NL distribution, with N the number of pixels and
L the number of observables per pixel. This subsection illustrates this equivalence and shows
that the proposed test behaves as expected. In particular, we illustrate the convergence of the
distribution on p(t) to the theoretical value p at speed 1/

√
t. We consider an inverse problem

such that N = 1 et L = 2, i.e., with an observation y ∈ R2. The forward model is set to the
identity function f = id2. The noise is assumed Gaussian, additive and with unit variance. We
consider three estimators θ̂(i) ∈ R2. The confidence levels are set to α = 0.05 and δ = 0.1.

Figure 5.4 shows the convergence of the three p-values estimated with Eq. 5.28 to the theoret-
ical values. With TMC = 103 independent samples drawn from the posterior predictive distribution
π(ỹ|θ̂(i)

, M), the point estimate p̂ from Eq. 5.28 leads to a rejection of the null hypothesis from
θ̂

(1) and from θ̂
(2), and to a non-rejection from θ̂

(3). These decisions are in agreement with those
corresponding to the theoretical p-values for θ̂(1) and θ̂(3). However, for θ̂(2), the rejection is
in disagreement with the theoretical p-values, which is higher than the confidence level α. This
rejection is caused by the uncertainties inherent to using a Monte Carlo estimator of the p-value
with insufficient number of samples. Using the Beta distribution (Eq. 5.30) to quantify uncer-
tainty, one obtains P[p(t)

n ≤ α] = 0.83. Since P[p(t)
n ≤ α] ∈ [δ, 1 − δ], the proposed three-case

test (Eq. 5.29) identifies this issue and recommends drawing more samples. With TMC = 104,
P[p(t)

n ≤ α] = 0.096 < δ. The proposed three-case test then considers that enough samples have
been drawn to make a confident decision, and the model associated with θ̂(2) is not rejected.
This decision is consistent with the corresponding theoretical p-value. The proposed three-case
test (Eq. 5.29) is therefore robust to using a Monte Carlo estimator of the p-values.
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(a) (b)

(c)

Figure 5.4 – Application of Bayesian p-value with three-case test on a simple case, with Gaussian
noise and point estimate θ̂, and comparison with corresponding theoretical p-values. (Top left)
pdf of residuals ỹ − θ̂ (in gray levels) and TMC = 1 000 independent samples ỹ ∼ π(ỹ|θ̂(i)). The
contours correspond to constant values of ∥ỹ− θ̂∥2

2. (Top right) Distribution χ2
2 of ∥ỹ− θ̂∥2

2. The
vertical lines correspond to the contour lines in Figure 5.4a. (Bottom) Convergence of p-value
estimator (Eq. 5.28) and of the 90% credibility intervals, obtained from Eq. 5.30.
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5.4 Applications
In this section, the proposed sampler is applied to two inverse problems: a sensor localization

problem and a synthetic example of the general astrophysics problem addressed in this thesis.

5.4.1 Sensor localization
The sensor localization problem introduced in Ihler et al. (2005) is a common test case in

multimodal sampling, e.g., in Ahn et al. (2013); Lan et al. (2014); Pompe et al. (2020). Three
sensors have known locations and will serve as a reference to avoid ambiguities with respect to
translation, rotation and negation. The goal is to estimate the unknown positions Θ ∈ RND of
N = 8 sensors in dimension D = 2. The observation matrix Y ∈ RNL collects noisy and partially
censored pairwise distances, where L = N + 3 is the total number of sensors. The distance
to sensor ℓ feeds channel ℓ, so that the forward model is fℓ(θn) = ∥θn − θℓ∥. Note that only
N + 2 distances will really be used since fℓ(θℓ) = 0, and that we set ynℓ = 0 by convention. The
probability of communication from sensor ℓ ∈ [[1, L]] to sensor n ∈ [[1, N ]] is set to exp

{
−fℓ(θn)2

2R2

}
with R = 0.3. In absence of communication, the observation is censored, which is encoded by the
binary latent variable cnℓ = 1. Otherwise, cnℓ = 0 when the observation occurs and is corrupted
by a white Gaussian noise

ynℓ = fℓ(θn) + εnℓ, with εnℓ ∼ N (0, σ2), (5.31)

with σ = 0.02, leading to

− ln π (Y|Θ) =
N∑

n=1

L∑
ℓ=1

(1 − cnℓ)
[

(fℓ(θn) − ynℓ)2

2σ2 +fℓ(θn)2

2R2

]
(5.32)

+ cnℓ ln
[
1 − exp

(
−fℓ(θn)2

2R2

)]
,

The smoothed uniform prior on the square C = [−0.35, 1.2]2 is used as a prior on the location
of each sensor. The corresponding penalty parameter ξ introduced in Eq. 5.11 is set to 104.
This prior is non-informative enough to match the results shown in Ahn et al. (2013); Lan et al.
(2014); Pompe et al. (2020). The proposed sampler is compared to both regeneration darting
MC (RDMC) (Ahn et al., 2013) and WHMC. A Markov chain of size 30 000 is generated by
each algorithm, including 5 000 burn-in samples. The parameters of the PMALA kernel are set
to a = 0.99, ϵ = 10−5 and η = 1.5 × 10−3. The MTM kernel is selected with pMTM = 0.1 or
pMTM = 0.9. Its proposal distribution q is set to the smooth uniform prior on C. For each sensor,
the high probability regions are small compared to C. To obtain high acceptance rates for the
MTM kernel, the number of candidates is set to K = 1 000. Better proposal distributions can be
obtained for this specific problem, which is beyond the scope of this experiment.

Figure 5.5 shows the marginal distributions of each sensor position. The four samplers iden-
tified the same modes. Table 5.2 compares the samplers in terms of ESS. With pMTM = 0.9,
the proposed sampler yields better mixing capability than WHMC and RDMC. This is due to the
partition of the ND = 16-dimensional problem into N = 8 simpler D = 2-dimensional problems.
This divide-to-conquer strategy exploits the problem structure to fight the curse of dimension.

Bayesian model assessment – For sake of illustration, one observed distance is divided by a
factor 10 to make the observation set inconsistent. The resulting posterior is sampled using the
same parameters as above and pMTM = 0.9. Figure 5.6 indicates which observed distance was
modified, and compares the marginal posterior distributions with and without this alteration. It
appears that few sensors are affected, as most of the marginals are very similar in the two cases.
If the ground truth was not known, one could not detect the issue from the marginal posterior
distributions alone.
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(a) RDMC (b) WHMC

(c) Proposed with pMTM = 0.1 (d) Proposed with pMTM = 0.9

Figure 5.5 – Marginal distributions of the sensors positions for the considered samplers. The graph
shows the true position of all sensors. The sensors with a known position are in red and those
whose position is inferred are in blue. The edges of the graph indicate which pairs of sensors are
observed.

Table 5.2 – Effective Sample Size (ESS) on the sensor localization problem.

MCMC sampler ESS
min mean max

WHMC (Lan et al., 2014) 29 1 026 5 753
RDMC (Ahn et al., 2013) 168 3 354 11 192

Proposed, pMTM = 0.1 29 329 1 235
Proposed, pMTM = 0.9 299 3 561 16 789
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The proposed extended Bayesian model assessment computes one p-value per sensor. In the
non altered case, the observations are derived from the observation model and are thus compatible
with it. The smallest estimated p-value is p̂

(TMC)
n = 0.58 and the largest probability of rejection

P
[
p(TMC) ≤ α

]
= 8 × 10−99 ≤ δ. The model assessment test thus does not reject any position

estimation. In the altered case, most sensors are not rejected, as they are little to not affected
by this observation modification. Indeed, for these unaffected sensors, the smallest estimated
p-value is p̂

(TMC)
n = 0.60 and the largest probability of rejection P

[
p(TMC) ≤ α

]
= 5 × 10−159 ≤ δ.

However, the model assessment test rejects the three sensors affected by the alteration. For these
three sensors, the largest estimated p-value is p̂

(TMC)
n = 3 × 10−5 and the smallest probability of

rejection P
[
p(TMC) ≤ α

]
= 1 − 3 × 10−6 > 1 − δ. Therefore, the model assessment approach

detects the generated incompatibility between the observations and the observation model. In
addition, it pinpoints which sensors are problematic, which helps in identifying the origin of the
incompatibility.

(a) Marginals with the true observations.
The model assessment test does not reject
any position estimation.

(b) Marginals with one observation divided
by 10. The model assessment test rejects
the three sensors affected by this observa-
tion. The other sensors are not rejected, as
their positions are little to not affected by
this observation modification.

Figure 5.6 – Application of model assessment on sensor localization problem.

5.4.2 Realistic astrophysical data

The overall approach is now applied to a synthetic yet realistic case of the general inverse prob-
lem addressed in this thesis. The goal is to reconstruct maps of physical parameters of a molecular
cloud from radio wave multispectral intensity maps. Each observation map contains N = 4 096
pixels. Each pixel is associated with D = 4 physical parameters θ = (κ, Pth, G0, Atot

V ), so that
the aim is to infer a set of parameters Θ = (θn)N

n=1 in dimension N × D = 16 536. The angle φ
is set to 0 deg. As κ is a nuisance parameter related to the conditions of observations, its ground
truth value is set to 1 over the whole map. The main parameters of interest are the thermal
pressure Pth, the intensity of a UV radiative field G0 – measured in reference to the Habing ISRF
– and the visual extinction Atot

V , related to the cloud depth along the line of sight. The physical
parameters Θ = (θn) undergo the preprocessing described in Chapter 4 to have similar dynamics.
As an abuse of notation, the preprocessed physical parameters are also denoted Θ = (θn). In the
following, all distributions are defined on the preprocessed physical parameters.

Figure 5.7 shows the ground truth parameters Θ∗ in original scale. These maps are chosen
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according to a plausible astrophysical scenario (Pety et al., 2017). They correspond to a PDR
seen edge-on, with a UV source illuminating the right of the image. This scenario covers a wide
variety of physical environments such as an atomic diffuse medium on the right of the map, an
actual PDR on the right, a deep molecular cloud with a buried source on the left.

Figure 5.7 – Structure of the synthetic molecular cloud and associated true maps of physical
parameters Θ. The circle on the top left of the maps indicates a buried source. The surrounding
region is a deep molecular cloud. The region on the right is a PDR illuminated by a UV source
out of the image.

From the true (preprocessed) maps Θ∗, the emulator f̃ of the Meudon PDR code derived
in Chapter 4 generates observation maps of L = 10 emission lines. These lines are 12CO lines
of mid-J rotational transitions, from J = 4 − 3 to J = 13 − 12. For each line ℓ, f̃ℓ ranges
from 10−18 to 10−2 erg cm−2 s−1 sr−1. These maps are deteriorated according to the observation
model from Eq. 5.1. In other words, they are affected by an Gaussian additive uncorrelated noise,
a lognormal multiplicative uncorrelated noise and censorship. Model misspecification noise is not
considered in this example, as the forward model f̃ is used both to define the observation Y
and to infer the physical parameters Θ. The standard deviation of the multiplicative noise is set
to σm = log(1.1), which roughly represents a 10% alteration in average that corresponds to a
calibration error. For the additive noise, σa,nℓ = σa = 1.38715 · 10−10 erg cm−2 s−1 sr−1 for all
pixel n and line ℓ so that the signal-to-noise ratio (SNR) varies between −81 and 79 dB. The
censorship level is set to ωnℓ = ω = 3σa for all pixel n and line ℓ. Figure 5.8 shows the observation
maps of two lines and the spatial distribution of censorship importance.

Figure 5.8 – Some observation maps of the astrophysical experiment. From left to right: line
ℓ = 1, line ℓ = 10, proportion of censored lines per pixel.

The likelihood approximation is obtained as indicated in Section 5.1.1, and its parameters aℓ

are adjusted as described in Appendix 5.B. The validity set C of physical parameters is set as
in Wu et al. (2018), and the penalty parameter ξ of the smooth uniform prior is set to 104. Given
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Figure 5.9 – Inference results: (left) ground truth Θ∗; (middle) MMSE estimate from the proposed
transition kernel; (right) size of the 95% credibility interval (CI), in % of the size of the validity
intervals. All values of Θ are displayed in the preprocessed space.
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the smoothness of the true maps, for each d the chosen spatial regularizer h is taken as

h(Θ·d) = ∥∆Θ·d∥2
2 =

N∑
n=1

∑
i∈Vn

(θnd − θid)2, (5.33)

where ∆ is the discrete 5-point based 2D Laplacian operator, and Vn is the set of neighbors of
pixel n induced by ∆. The hyperparameter τ from Eq. 5.11 is fixed to τ = (10, 2, 3, 4).

Inference is carried out using 10 000 iterations of a Markov chain including 1 500 burn-in
samples. The parameters of the proposed sampler are set to a = 0.99, ϵ = 10−5 and η = 5×10−7

for PMALA, and to pMTM = 0.5 and K = 50 for MTM. Since the operator ∆ only compares
a pixel to its four neighbors and since the indicator prior and likelihood are pixel-wise, the set
of pixels can be partitioned into two conditionally independent subsets of pixels. A two sites
Chromatic Gibbs sampling (Gonzalez et al., 2011) is therefore performed in the MTM kernel to
speed up computations. Note that using the smooth uniform prior as a proposal distribution in
MTM is inefficient due to the small size of high probability regions compared to the volume of
C. The proposal distribution q is based on the spatial prior (Eq. 5.33) instead. For any pixel, one
can show that the conditional spatial prior is a Gaussian distribution centered on the mean of the
set of neighboring pixels Vn. Since maps are assumed to be smooth, the likelihood functions for
a pixel n and its neighbors should correspond to similar modes in the parameters’ domain. If the
neighbors are not all in the same mode, the mean of the neighbors will in general not fall in a
high probability region. Therefore, for a pixel n, the proposal distribution is defined as a Gaussian
mixture whose modes are all the means of non-empty subsets V ∈ P(Vn) of Vn:

q(θn|Θ\n) ∝
D∏

d=1

∑
V ∈P(Vn)

exp
[
−2τd

∑
i∈V

(θnd − θid)2
]

(5.34)

∝
D∏

d=1

∑
V ∈P(Vn)

exp

−2τd|V |
(

θnd − 1
|V |

∑
i∈V

θid

)2
 . (5.35)

Performance is assessed for the minimum mean square error (MMSE) estimate Θ̂. Recall
that the inferred parameters Θ correspond to normalized logarithms of physical parameters Θ.
Therefore, prediction errors on the D parameter maps Θ·d are comparable. The quality of the
reconstruction is quantified with the mean squared error (MSE) ∥Θ̂−Θ∗∥2

2 and the reconstruction
signal-to-noise ratio (R-SNR) 20 log10

(
∥Θ∗∥

∥Θ̂−Θ∗∥

)
.

Figure 5.9 shows the estimation results. The MMSE estimate Θ̂ (middle) is very close to the
ground truth Θ∗ (left). The reconstructions are qualitatively very consistent with the underlying
physics. The parameter Θ·4, corresponding to Atot

V , is known by astrophysicists to be the most
difficult to retrieve from 12CO low and mid-J lines. Indeed, these lines get optically thick,
which means that observed photons come from the surface of the cloud, and that the integrated
intensities saturate with Atot

V ≳ 7 mag. Such pixels appear in the top left corner of the ground
truth map.

Table 5.3 shows the MSE and the R-SNR for each parameter Θ·d, and the relative size of the
credibility intervals with respect to the associated (normalized) validity interval C. As expected,
the MSE is larger for Θ·4 (↔ Atot

V ), and the relative size of its credibility intervals are overall the
largest, about 16.2%. The problem is also very ill-posed for all parameters in pixels with very low
SNR, where most of the lines are censored, see Figure 5.8 (right). To interpret the results from
an astrophysical viewpoint, performances are computed over two subsets of pixels with either
less or more than 50% of censored lines. As expected, the credibility intervals of the latter are
about twice as large as the former. Finally, all the parameters but Atot

V are well constrained for
pixels with less than 50% of censored lines. The inference remains challenging since the posterior
contains many local modes with high L values, but the proposal distribution q permits the Markov
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chain to successfully reach the mode of interest. The relative quadratic error results in an R-SNR
between 15.5 dB and 23.4 dB. Credibility intervals at 95% level remain small, ranging from 5.7%
to 9.3% of the admissible interval C.

Table 5.3 – Reconstruction metrics and relative size of credible intervals for the astrophysics
experiment. The R-SNR is not defined for Θ·1, as its ground truth is 0 everywhere.

MMSE Mean 95% credibility intervals size

MSE R-SNR censorship overall(dB) ≤ 50% > 50%
Θ·1 0.017 – 6.1 % 11.9 % 6.8 %
Θ·2 0.019 16.8 9.3 % 20.6 % 9.9 %
Θ·3 0.009 23.4 5.7 % 19.8 % 6.5 %
Θ·4 0.034 15.5 16.3 % 14.5 % 16.2 %

Combining all the difficulties addressed in the general inverse problem addressed in this thesis,
this synthetic inverse problem illustrates the good performances of the proposed approach in a
challenging scenario. The proposed likelihood approximation enabled handling the censorship
and mixture of noises present in the observation model. Dealing with a multimodal posterior
distribution, the MTM kernel allows the different modes to be visited, while the PMALA kernel
permits to explore them efficiently. The proposed sampler provides high quality estimates and
informative credibility intervals.

5.5 Conclusion
In this chapter, we addressed a family of inverse problems that combine several difficulties:

a non-linear black-box forward model, potentially non-injective, that covers multiple decades;
observations damaged by both censorship and a mixture of additive and multiplicative noises. The
proposed approach takes into account as many sources of uncertainty as possible. The likelihood
is intractable and leads to a potentially multimodal posterior distribution. An approximation of
the likelihood was proposed, based on a model reduction and an approximate parametric noise
mixture model with controlled error. The prior distribution combined a spatial regularization and
a smoothed uniform distribution encoding validity constraints on the physical parameters.

To efficiently sample from the resulting multimodal posterior, an original MCMC algorithm
combining two kernels was proposed. The Gibbs-like MTM kernel permits jumps between modes,
while the PMALA kernel efficiently explores the local geometry of each mode. The proposed
sampler was shown to be competitive with state-of-the-art multimodal sampling methods on a
Gaussian mixture model and a sensor localization problem. A realistic application to a challenging
inverse problem on a large observation map has shown the interest and the good performances of
the proposed approach. Estimation errors remain small and uncertainties are quantified.

In addition to the MCMC algorithm, the Bayesian hypothesis testing procedure was extended.
Uncertainties due to the Monte Carlo evaluation of the p-value are accounted for in the rejection
or non-rejection decision. This approach permits in real applications to assess the compatibility
between the observations and the observation model.

In the next chapter, the proposed approach is applied to real observations of photodissociation
regions.
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Appendix 5.A Tuning automatically the prior hyperparameters
The considered prior from Eq. 5.11 is reminded here:

π(Θ) ∝ exp
(

−ξ ι̃CN (Θ) −
D∑

d=1
τd h(Θ·d)

)
.

This prior relies on two hyperparameters: ξ > 0 weighs the smooth indicator function, and τ
contains the D spatial regularization weights of the D maps to be inferred. The indicator prior
parameter ξ has little impact on estimations. However, the values of the spatial regularization
weights τ have a dramatic impact on the posterior distribution. In some cases, this parameter can
be learned from the data using a hierarchical model, as in Galliano (2018). For instance, Pereyra
et al. (2015) proposes a general approach to estimate the best regularization parameter along
with the physical parameters Θ. However, this approach requires the prior to be k-homogeneous.
In our case, the box constraints encoding the validity intervals violate this condition. Using
hierarchical model and sampling from the extended posterior distribution is thus much harder.

We tried applying the maximum marginal likelihood estimator presented in Vidal et al. (2020)
to automatically tune τ . However, the additive noise variance is sometimes overestimated in
astrophysics applications, as we will show in Chapter 6. In such cases, the spatial regularization
weights τd diverge, leading to constant estimated maps. Such maps are unrealistic for the en-
vironments considered in Chapter 6. To avoid such divergences, we chose to set manually the
model hyperparameters, depending on the expected smoothness in the final estimated maps and
with inversions with different values.

Appendix 5.B Optimization of the approximation parameter

For each channel ℓ, the parameter aℓ = (aℓ,0, aℓ,1) locates the frontiers between low, interme-
diate and high values regimes of ln f̃ℓ in the definition of λ (Eq. 5.8). It has a critical influence on
the approximation quality. It should be adjusted to ln f̃ℓ, σa and σm. For simplicity, in this sub-
section, likelihood functions are conditioned with respect to z = ln f̃ℓ(θ) ∈ R instead of θ ∈ RD.
The true likelihood is not explicit, but the model in Eq. 5.1 can be easily sampled from, and the
approximation (Eq. 5.9) is known.

The parameter aℓ is set to obtain an approximation as close as possible to the true likelihood,
with respect to some divergence criterion. The Kullback-Leibler (KL) divergence would be a
natural choice. However, due to the number of decades spanned, the standard deviation of KL
estimators is in practice larger than the quantity of interest (Kraskov et al., 2004), which prevents
from performing optimization. The Kolmogorov-Smirnov (KS) distance is not affected by this
property: for a given z, it only requires ordered samples (y(i))M

i=1. It reads

D̂KS(z,aℓ) = sup
y∈R

∣∣∣F̂M (y|z) − F̃ (y|z,aℓ)
∣∣∣ , (5.36)

where F̂M (·|z) is the empirical cdf of the true likelihood π(·|z) estimated from M samples y(i),
and F̃ (·|z,aℓ) is the cdf of the proposed approximation (Eq. 5.9). Assuming that θ follows a
uniform distribution on C yields a distribution on z with pdf π(z) which can be estimated by
kernel density estimation (KDE). The function to minimize is

φ(aℓ) = Ez

[
D̂KS (z,aℓ)

]
=
∫

D̂KS(z,aℓ)π(z)dz. (5.37)

An estimator φ̂ can be obtained using numerical integration on z over S bins. The higher M
and S, the better the estimation accuracy. Minimizing φ̂ can be performed using a grid search,
which is quite computationally intensive. A cheaper alternative is to use a Bayesian optimization
(BO) procedure (Shahriari et al., 2016). This optimization was applied for each channel in the
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astrophysical application described in Section 5.4.2. Both grid search and BO approaches were
used. The KDE of π(z) was performed from 810 000 samples. The BO procedure was run
with S = 100 and M = 250 000 using Nogueira (2014–) with default parameters. Figure 5.10
shows the results for one channel. The proposed approximation with adjusted aℓ is closer to the
true likelihood than a purely additive Gaussian approximation, i.e., aℓ,0 > maxj z(j), or a purely
multiplicative lognormal approximations, i.e., aℓ,1 < minj z(j).

Figure 5.10 – Maximization of − log10 φ̂ using both Bayesian optimization (BO) and grid search
for one channel of the astrophysical case detailed in 5.4.2. In BO, a Gaussian process (GP) replaces
the function to optimize (left column). The red dashed vertical bar represents the value of a0+a1

2
for which the additive and multiplicative noises have equal variances, i.e. σ2

a = f̃ℓ(θ)2Var[ε(m)
nℓ ],

at λ = 1
2 . For clarity, all scales are displayed in log10 scale, while computations are done in ln

scale.

Appendix 5.C Sampling from the smoothed indicator distribution

This section describes the algorithm to draw samples from the real-valued probability distri-
bution with density π(θ) ∝ exp

(
−ξ ι̃[l,u](θ)

)
, with l < u and ι̃[l,u] introduced in Eq. 5.10. To

this aim, consider the generalized normal distribution GN (0, 1/ξ4, 4) of pdf (Nadarajah, 2005)

pGN (θ) = 2ξ
1
4

Γ(1/4) exp
(
−ξ θ4

)
. (5.38)
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Note that π(θ) is a continuous extension of a uniform distribution and of this generalized normal
distribution at 0.

π(θ) ∝


pGN (θ − l) if θ < l,

pGN (0) if θ ∈ [l, u],
pGN (u − θ) if θ > u.

(5.39)

The normalizing constant of π(θ) is 1 + pGN (0)(u − l). The weight of the uniform section in the
combination is therefore

wUnif = 1
1 + Γ(1/4)

2
1

ξ
1
4 (u−l)

. (5.40)

Algorithm 5.5 summarizes the procedure to sample from π(θ).

Algorithm 5.5: Sampling from the smooth distribution in Eq. 5.39
Input: scale factor ξ, bounds l, u ∈ R such that l < u
Output: sample θ

1 wUnif // using Eq. 5.40
2 z ∼ B(wUnif)
3 if z = 1 then θ ∼ Unif (l, u)
4 else
5 θ ∼ GN (0, 1/ξ4, 4) // using Nardon and Pianca (2009)
6 if θ < 0 then θ = θ + l else θ = θ + u
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Chapter 6

Application to real data

“ In theory, there is no difference between
theory and practice. In practice there is. ”

Benjamin Brewster, “The Yale Literary
Magazine”, February 1882
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In Chapter 4, we derived an approximation of the Meudon PDR code, that we now use to
model photodissociation regions (PDRs). Chapter 5 presented the full observation model, prior
and posterior distributions, and the proposed method to sample from the posterior. It also in-
troduced the Bayesian test of hypothesis that permits to assess the compatibility of the model
with the observations. In this Chapter, we apply the full inference workflow to real observations
of photodissociation regions in star forming regions in order to determine the physical conditions
in these environments. A journal article is currently in preparation.

Section 6.1 summarizes the full inversion procedure. In Section 6.2, we apply our method to
observations of NGC 7023 (N = 1 and L = 17) studied in Joblin et al. (2018). Appendix 6.A
describes a similar analysis on the Orion bar, that was also studied in Joblin et al. (2018).
Section 6.3 presents a first application to real-life multi-pixel observation maps. It studies the
Carina nebula maps analyzed in Wu et al. (2018) (N = 176 pixels and L = 12 lines for inversion).
These first two analyses demonstrate that our results are consistent with those of Joblin et al.
(2018) and Wu et al. (2018). They also show that our approach is richer as it provides complete
uncertainty quantification in addition to the point estimates. Section 6.4 studies the OMC-1
observations introduced in Goicoechea et al. (2019) (N = 2 475 pixels and L = 4 lines for
inversion). The proposed analysis is the first for these OMC-1 observations.
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6.1 Summary of the inversion procedure

This section summarizes the inversion procedure presented in Chapters 4 and 5. Figure 6.1
illustrates the full procedure.

Figure 6.1 – Full inference workflow. Observations and noise standard deviations are assumed
known. The indicated model and sampler parameters need to be adjusted for each application.

Setting the posterior distribution – In this chapter, the posterior distribution is defined on
maps of physical parameters Θ = (θn)N

n=1 ∈ RN×D. The physical parameter vectors contain
D = 4 elements: θ = (κ, Pth, G0, Atot

V ), with κ a scaling parameter, Pth the cloud thermal
pressure, G0 the intensity of the incident radiative field and Atot

V the cloud total visual extinction
– see Chapter 1 (Section 1.1.4) for a description of these parameters. The posterior distribution
relies on a likelihood function and on a prior distribution.

The likelihood function relies on a forward model and a noise model. The noise model described
in Chapter 3 (Section 3.4) combines a Gaussian additive noise and a lognormal multiplicative
noise. The corresponding standard deviations, (σa,nℓ) and σm, are assumed known. The forward
model f is the Meudon PDR code, which requires a few hours for each evaluation. As inference
requires many evaluations, we replace it with a fast and accurate neural network-based emulator
f̃ (Chapter 4). The resulting likelihood function has no simple closed-form expression. Chapter 5
(Section 5.1.1) proposed a simple approximation with controlled error. This approximation relies
on parameters (aℓ) to be adjusted to minimize the error – see Chapter 5 (Appendix 5.B).

The prior distribution combines an indicator term that restricts values to an acceptable range
for each parameter, and a spatial regularization term that favors smooth reconstructed maps for
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multi-pixel observations. In this chapter, the indicator prior is set on the validity intervals used to
train the emulator f̃ in Chapter 4, i.e., Pth ∈ [105, 109] K cm−3, G0 ∈ [1, 105] 1, and Atot

V ∈ [1, 40]
mag. The scaling parameter κ is limited to [0.1, 10]. The smoothing of the indicator prior at
the edges of the domain is performed using ξ = 104. The spatial regularization term relies on a
weight parameter τ ∈ R4, that will be adjusted for multi-pixel observations.

Performing inference with the proposed sampler – Markov chain Monte Carlo (MCMC)
algorithms produce sets of TMC ≥ 1 correlated samples (Θ(t))TMC

t=1 from the posterior distribution.
In each application, the number of iterates TMC is chosen so that the posterior distribution is well
sampled. In particular, the duration of the burn-in phase TBI is set so that estimators are only
evaluated from iterates in the Markov chain stationary phase.

The MCMC proposed in Chapter 5 (Section 5.2) combines two update steps. The first update
step is called PMALA. It is an MCMC variant of a preconditioned gradient descent that performs
efficient local exploration of the posterior distribution. We resort to the RMSProp diagonal
preconditioner, which offers a good trade-off between computational costs and preconditioning
efficiency – see Chapter 2 (Section 2.2.2.5). It relies on three parameters: a step size η, a
damping parameter ϵ and an exponential decay rate a. In this chapter, the damping parameter
and exponential decay rate are set to their default values, i.e., ϵ = 10−5 and a = 0.99. In each
application, the step size is chosen so that the average acceptance probability is close to the
MALA optimum acceptance probability, i.e., around 50%-60%.

The second update step is called MTM. It permits to globally explore the posterior and to
escape local minima for multimodal distributions. It handles pixels individually. For each pixel,
it generates K ≥ 1 candidates from a proposal distribution q, and selects one to perform an
accept-reject step. At each iteration t, one of the two update steps is selected with probability
pMTM ∈ [0, 1] for MTM and 1−pMTM for PMALA. For each application, the number of candidates
K and the selection probability pMTM are set to explore efficiently the posterior distribution, i.e.,
to obtain high effective sample sizes (ESSs) – see Chapter 2 (Section 2.2.2.2).

The output correlated set (Θ(t))TMC
t=1 can be used to perform checks including on the chain

convergence – did the sampling reach high probability region of the posterior distribution? – and
on the mixing performance – did the sampling explore well the posterior distribution? These tests
were performed for all the applications presented in this chapter, but are not shown for conciseness.

Bayesian hypothesis testing – The ability of the Meudon PDR code and of the noise model
to explain the observations is checked for each application. We resort to the model assessment
method presented in Chapter 5 (Section 5.3). This method evaluates a p-value for each pixel
n. A p-value below a confidence level α pinpoints an incompatibility between the model and the
observation. The proposed sampling algorithm evaluates Monte Carlo (MC) estimators p̂

(TMC)
n

of the p-values – see Chapter 2 (Section 2.2.2) for a description on MC estimators. The un-
certainty inherent to the MC estimator is accounted for, allowing us to evaluate a probability of
rejection P[pn ≤ α]. We proposed a three-case rule by introducing a probability threshold δ to
make the test robust to the MC estimator error. In this chapter, we choose α = 0.05 and δ = 0.1.

MMSE, credibility intervals and uncertainty factor – The set of correlated samples
(Θ(t))TMC

t=1 are used to evaluate MC estimators. In this chapter, two estimators are considered: the
minimum mean square error (MMSE) and credibility intervals (CIs). The MMSE Θ̂MMSE is the
sample mean and approximates the posterior expectation. Credibility intervals enable to quantify
the uncertainty associated with each inferred physical parameter. See Chapter 2 (Section 2.1.2)
for a description of these estimators.

The parameters inferred in this chapter cover multiple decades. Uncertainties on these param-
eters are thus better described with a multiplicative error. We define the uncertainty factor (UF)

1. In this thesis, G0 is defined in reference to the Habing ISRF. See Chapter 1 (Section 1.1.4) for more details.

143



Application to real data

to quantify this multiplicative error. For a confidence level α and a credibility interval [lα, uα],

UFα =
√

uα

lα
, (6.1)

so that the true value is expected to be within a factor UFα below or above the estimated value.
For a lognormal posterior distribution on a physical parameter, the UF68% corresponds to a 1σ
error. Similarly, UF95% corresponds to a ≃ 2σ error. By default, we denote UF = UF68%.

6.2 NGC 7023
Joblin et al. (2018) analyzed two one-pixel PDR observations: one of NGC 7023, and one

of the Orion Bar. We applied the proposed inversion procedure to both. In this section, we
only present results on NGC 7023 for conciseness. We demonstrate that the proposed inversion
procedure yields consistent results with Joblin et al. (2018) and provides complete uncertainty
quantification in addition to point estimates. Appendix 6.A presents the results for the Orion Bar.

Located in the Cepheus constellation, NGC 7023 is a PDR illuminated by the spectroscopic
binary system HD 200775 [RA(2000) = 21h01m36.9s; Dec(2000) =+68 09047.800]. Its distance
from the Sun was estimated at 320 ± 51 pc in Benisty et al. (2013). NGC 7023 is extensively
studied to understand the effect of radiative feedback because of its edge-on geometry, brightness
and proximity. The two stars in the binary system are classified as B3Ve and B5 (Alecian et al.,
2008). Chokshi et al. (1988) estimated an intensity of G0 = 2 600 and a proton density of
nH ≃ 4 × 103 cm−3 from the C+ 158 µm and O 63 µm lines.

Joblin et al. (2018) studied the impact of radiative feedback in NGC 7023 from Herschel ob-
servations combined with some Spitzer-IRS observations for rotational lines of H2. The resulting
observations gathered L = 17 lines on N = 1 pixel, including 12CO lines (from J = 11 → 10 to
J = 19 → 18), rotational H2 lines (from S(0) to S(5)) and low level CH+ rotational lines (from
J = 1 → 0 to J = 3 → 2). These observations were modeled with a Gaussian additive and
uncorrelated noise model. The standard deviations (σa,ℓ)L

ℓ=1 were assumed known and included
calibration error. The analysis was performed with the version 1.5.4 of the Meudon PDR code
with a fixed value of G0 = 2 600. As the observed lines only trace the warm molecular layer of
the PDR, the visual extinction Atot

V was fixed to 10 mag. The observation angle φ was set to 60
deg to account for the edge-on geometry of the cloud – the Meudon PDR code cannot run for
φ = 90 deg due to its infinite slab with finite thickness geometry, and φ = 60 deg is the closest to
an edge-on inclination. The inference was performed on θ = (κ, Pth) using a grid search on Pth
and a simple continuous optimization for κ. They obtained Pth = 1 × 108 K cm−3 and κ = 0.7.
This high Pth value indicates that the radiative feedback compresses the PDR.

Inversion setup – The posterior distribution is defined on the physical parameter vector
θ = (κ, Pth, G0, Atot

V ) ∈ R4. As in Joblin et al. (2018), we set the observation angle to φ = 60
deg. The calibration error is included in the additive error. The multiplicative noise source
accounts only for the model misspecification. We set σm = ln 1.3, where a 1σ error for this
multiplicative term corresponds to a factor 1.3. The resulting observation model is

∀ℓ ∈ [[1, L]], yℓ = ε
(m)
ℓ f̃ℓ(θ) + ε

(a)
ℓ , (6.2)

with ε
(m)
ℓ ∼ Lognormal(−σ2

m/2, σ2
m) and ε

(a)
ℓ ∼ N (0, σ2

a,ℓ) for all lines ℓ. The likelihood ap-
proximation parameters aℓ are optimized using the Bayesian optimization procedure described in
Chapter 5 (Appendix 5.B). The proposed sampler is run for TMC = 20 000 iterations including
TBI = 500 of burn-in. The MTM kernel has a selection probability of pMTM = 0.5. As the ob-
servation only contains one pixel, the proposal q is set to the smoothed uniform prior distribution
and the number of candidates to K = 2 000. The PMALA step size is set to η = 0.05.
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Model assessment and Bayesian p-value – The proposed sampling algorithm led to an
estimated p-value of p̂(TMC) = 0.56 and to a rejection probability of P

[
p(t) ≤ α

]
< 10−200 < δ,

which does not lead to a rejection. This indicates that the Meudon PDR code and the noise
model are compatible with the observations.

Figure 6.2 shows how the observations y compare to the marginal posterior predictive dis-
tributions π(ỹnℓ|y) for lines used and not used for the inversion. It permits to visualize the
compatibility between the observation y and the posterior distribution on the physical parameters
θ. However, these plots are imperfect as the Gaussian additive noise can lead to negative predicted
observations ỹℓ in the low SNR regime. These negative values are not displayed. Underestimating
the integrated intensity yℓ may thus not imply incompatibility between an observation yℓ and the
observation model.

Figure 6.2a shows that for the L lines used for the inversion, the observations yℓ fall in high
probability regions of the marginal predictive distributions π(ỹnℓ|y), in agreement with the results
of Joblin et al. (2018). In particular, the Meudon PDR prediction from the MMSE f̃(θ̂MMSE) suc-
cessfully reproduces all the lines at once. For lines that were not used in the inversion procedure,
Figure 6.2b shows that this inversion reproduces well the low J lines of 12CO, but underestimates
the 13CO and C18O. This discrepancy was already noted in Joblin et al. (2018). It might be due
to the fact that the considered grid of Meudon PDR code simulations does not include mutual
radiative shielding between 12CO and its isotopologues. Figure 6.2c shows satisfying compatibility
for the marginals except for the O 3p J = 1−2 at 63 µm, which is overestimated by a factor ≃ 10.
Joblin et al. (2018) showed the same overestimation for the O 63 µm line and underestimations
for 13CO and C18O lines.

Inference results – Figure 6.3 shows the pairwise histograms of the posterior samples obtained
with the proposed MCMC algorithm. We first note that posterior distribution indicates high
uncertainties as it covers a large portion of the physical parameter space. The visual extinction
Atot

V is not constrained at all as the full interval [1, 40] mag is covered. This is due to the fact
that the observed lines are warm gas tracers and are thus emitted in the warm external layer
of the PDR. Therefore, they do not trace the total column density of matter. However, the
triplet (κ, Pth, G0) is well constrained, although the individual credibility intervals are large. In
particular, κ and G0 are strongly anti-correlated. The G0 thus has a large uncertainty. However,
its MMSE and posterior mode are of a few 103, which is compatible with past estimations. The
thermal pressure Pth is well constrained at 108 K cm−3.

Joblin et al. (2018) identified a positive correlation among multiple sources between estimated
Pth and G0. This correlation could have been caused by a positive correlation in uncertainties
on individual (Pth, G0) estimations. Figure 6.3 shows a negative slope in the (Pth, G0) joint
histogram, which indicates that the correlation in uncertainties is negative. Figure 6.21 in Ap-
pendix 6.A shows that a similar inference on Orion bar observations leads to the same negative
correlation in uncertainties. Therefore, the positive correlation among multiple sources should
have a physical origin, as hypothesized in Joblin et al. (2018).

Table 6.1 shows the physical parameters estimated values and their credibility intervals. For
Pth, G0 and Atot

V , the values from Joblin et al. (2018) fall in the credibility intervals, which
means that the two estimations are consistent. In addition, the MMSE is close to the values
from Joblin et al. (2018). However, this is mostly a coincidence considering how spread the
posterior distribution is over the parameter space. The scaling parameter κ is the only parameter
for which the two estimations are incompatible. In principle, κ corresponds to observational
effects such as the beam filling factor and the inclination of the PDR with respect to the line
of sight. However, the forward models differ in the two estimations. Joblin et al. (2018) relies
on the version 1.5.4 of the Meudon PDR code, while we use an emulator of version 1.7 which
contains better implementation of physical processes and updated atomic and molecular data.
Besides, Joblin et al. (2018) exploited dust grain properties corresponding to dense gas, while
we used average galactic grain properties. These differences appear to result in a multiplicative
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(a) Lines used for the inversion.

(b) Additional lines of CO and isotopologues, un-
seen during the inversion.

(c) Additional lines of other molecules,
atoms and ions, unseen during the in-
version.

Figure 6.2 – Posterior predictive assessment for NGC 7023. Comparison of observations Y and
associated noise model with posterior predictive distributions on f̃(Θ), with Θ ∼ π(Θ|Y).
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factor for the lines used in the inversion that was compensated for by κ.

Figure 6.3 – Inference results for NGC 7023. Two-dimensional marginal histograms in the physical
parameters Θ space. All histograms are in logarithmic norm.
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Table 6.1 – Inference results on NGC 7023. Joblin et al. (2018) only infers κ and Pth.

κ Pth G0 Atot
V

– (K cm−3) – (mag)
(Joblin et al., 2018) 0.7 1 × 108 2.6 × 103 10

MMSE 2.9 9.7 × 107 4.0 × 103 7.3

68% credibility interval
lower bound l68% 1.2 8.1 × 107 1.8 × 103 2.2
upper bound u68% 6.0 1.2 × 108 1.0 × 104 24.9

UF68% 2.2 1.2 2.4 3.4

95% credibility interval
lower bound l95% 0.8 4.7 × 107 1.3 × 103 1.1
upper bound u95% 9.0 1.5 × 108 8.9 × 104 41.2

UF95% 3.3 1.8 8.2 6.1

6.3 The Carina nebula

Having tested the method on known single-pixel observations, we now move to multi-pixel
maps. In this section, we perform inference on an already studied observation of the Carina
nebula. This analysis aims at completing the validation of the proposed method, at showing the
relevance of the spatial regularization and of the sampling approach compared to optimization.

The Carina nebula is located in the Milky Way, at an estimated distance of 2.4 kpc from the
Sun (Smith, 2006). Illuminated by the massive star clusters Trumpler 14 and Trumpler 16, it is
the brightest nebula in the sky of the Southern hemisphere. It includes two major components,
Car I and Car II, separated by ≃ 7 pc. The structure of Car I is farther divided into three
bright regions: Car I-W, Car I-E, and Car I-S, located in the west, east and south of Car I,
respectively (Whiteoak, 1994). Wu et al. (2018) studied the CO and C emission observed by
Herschel SPIRE/FTS. Figure 6.4 shows the field of view, which includes Car I-E, Car I-S, and a
region at the intersection of Car I and Car II (Car I/II).

(a) Localization of the field of view with respect
to the Trumpler 14 star cluster.

(b) Effective field of view (gray pixels). The
background image is taken in the DSS2-red
band. The magenta crosses indicate the point-
ings used during observation. The blue and yel-
low crosses pinpoint two massive stars. Taken
from Wu et al. (2018).

Figure 6.4 – Observation of the Carina nebula.
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The G0 in the Car I-E region was estimated of the order of 104 from stellar composition
and FIR observations (Brooks et al., 2003; Mizutani et al., 2004). However, estimations with
PDR models led to lower values: G0 = 1 390 according to Oberst et al. (2011) and G0 = 3 200
according to Kramer et al. (2008).

In Wu et al. (2018), the authors inferred multiple parameters – including G0 – from L = 12
lines, including 10 12CO lines (from J = 4 → 3 to J = 13 → 12) and 2 atomic C lines (3p,
J = 1 → 0 and J = 2 → 1). They used a RBF interpolation of a grid of the version 1.5.4 of the
Meudon PDR model with PAHs in the dust population. The noise model involved an additive,
uncorrelated Gaussian noise. The prior distribution relied on an indicator term with wide validity
intervals on the physical parameters and on an ad hoc physics-informed regularization term. This
ad hoc regularization term enforced the reconstructed integrated intensities to be decreasing for
the CO lines J = 11 → 10, J = 12 → 11, and J = 13 → 12, as this condition seems always satis-
fied in observations. This ad hoc constraint is not generalizable to observations of other lines that
the high J rotational lines of 12CO. The inversion estimated the maximum a posteriori (MAP)
using a preconditioned gradient descent algorithm with the limited memory BFGS preconditioner.
In the Car I-E region, they obtained G0 ≃ 2 × 104.

Inversion setup – The inference is performed with the same L = 12 lines as in Wu et al.
(2018). Figure 6.5 shows the integrated intensity maps Y. These maps contain N = 176 pixels.

Figure 6.5 – Observations of the Carina nebula. The Car I-E is brightest for all lines, as it is
directly illuminated by the Trumpler 14 star cluster.

The inference is performed with the data used in Wu et al. (2018). The standard deviations
σa,nℓ of the additive noise already include multiplicative errors. As the signal-to-noise ratio is low
in this map, we decided not to include additional multiplicative noise in the observation model.
Besides, some standard deviations σa,nℓ are missing. To avoid biasing the reconstructed maps, the
associated observations ynℓ are disregarded for the inversion 2. The resulting observation model
is

ynℓ = f̃ℓ(θn) + ε
(a)
nℓ , ε

(a)
nℓ ∼ N (0, σ2

a,nℓ). (6.3)

2. The associated observations are disregarded by setting σa,nℓ = 1 erg cm−2 s−1 sr−1, an arbitrarily high value.
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The spatial regularization parameter is set to τd = 1 for each of the D = 4 physical parameters.
We tried multiple values between 0.1 and 10 for each parameter, and selected the value that led
to physically consistent maps that reproduce the structures in the observations. Note that we do
not resort to the same prior as in Wu et al. (2018): the article used a line-specific pixel-wise ad
hoc constraint on the predicted integrated intensities, while we rely on a more generally applicable
spatial regularization term.

The observation angle φ varies in the field of view, as the Car I-E is considered to be edge-on
while the Car I-S is face-on. For optically thin lines such as excited 12CO lines, φ is degenerated
with the scaling parameter κ. Therefore, we chose not to infer it, and set it to φ = 0 deg.

As this use case is the first map of real observations, we compare the maximum likelihood
estimator (MLE) and the MMSE. The MLE is evaluated for comparison, as a naive estimator. It
is the estimator most compatible with the observations for each pixel, and is thus very sensitive
to noise. In particular, it does not exploit the spatial regularization and is not accompanied by an
uncertainty quantification. The goal is to demonstrate the interest of the spatial regularization.

The MLE is evaluated using the optimization algorithm adapted from the proposed sampler
mentioned in Chapter 5 (Section 5.2.3), run for 500 iterations. This variant combines two update
steps. The first update step is a preconditioned gradient descent step with the RMSProp precon-
ditioner. It was run with the step size η = 0.03. At each step t, it was selected with probability
1−pMTM = 0.99. The second update step, selected with probability pMTM = 0.01, is a simulated
annealing-like variant of the MTM kernel. Unlike gradient descent algorithms, this second update
step enables to escape from local minima. As the MLE does not include the spatial regularization,
the proposal q is set to the smoothed uniform prior. It generates K = 200 candidates.

The MMSE and the credibility intervals are obtained with the approach we proposed in this
thesis. Both are evaluated from a Markov chain with TMC = 10 000 iterates, including 500 of
burn-in. The PMALA kernel relies on a step size η = 0.003. The MTM kernel is selected with
probability pMTM = 0.5. It generates K = 20 candidates from the proposal q described in Chap-
ter 5 (Eq. 5.35).

Model assessment and Bayesian p-value – Figure 6.6 shows the maps of estimated p-
values p̂

(TMC)
n , of rejection probabilities P[pn ≤ α] and of the resulting rejection decision. All the

estimated p-values are above 0.5. This indicates a good fit between the observations and the
observation model. When accounting for the uncertainty on the p-values estimation, the highest
model rejection probability is 4 × 10−81. None of the pixels was rejected.

(a) Map of estimated p-values (b) Map of rejection probabili-
ties

(c) Decision for each pixel

Figure 6.6 – Model assessment on the Carina observations from Wu et al. (2018).

Figure 6.7 compares the observations with the marginal posterior predictive distributions for
the two highlighted pixels. For the Car I-E pixel, the bright 12CO lines are well reproduced. How-
ever, the predicted integrated intensities for the atomic C lines differ from the true observations
by up to a factor 5. Yet, these values for the C lines are considered compatible as the standard
deviations of the additive noise are large. In the Car I-S pixel, the 12CO lines are not as bright
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as in the Car I-E, and are roughly as bright as atomic C lines. The errors between predicted
integrated intensities and observations are thus more uniformly distributed among 12CO lines and
atomic C lines.

Figure 6.7 – Posterior predictive assessment two pixels of the Carina nebula on the lines used
for the inversion. Comparison of observations Y and associated noise model with posterior
predictive distributions on f̃(Θ), with Θ ∼ π(Θ|Y). Note that these plots are imperfect as the
Gaussian additive noise can lead to negative predicted observations ỹℓ in the low SNR regime.
These negative values are not displayed. For the lower intensities, underestimating the integrated
intensity yℓ may thus be compatible with the additive Gaussian noise model.

Inference results: MLE, MMSE and UF – Figure 6.8 shows the obtained MLE, MMSE
and UF. It also shows the estimated thermal pressure Pth and incident radiative field intensity G0
maps from Wu et al. (2018). The maps of scaling factor κ and of visual extinction Atot

V were not
displayed in the article.

The MLE is visually not good. It presents unrealistic values and variations especially in Pth
and Atot

V because of its sensitivity to noise. Therefore, it cannot be exploited to extract meaningful
information on the physical parameters in the observed region.
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Conversely, the MMSE is smooth and spatially consistent. The maps of Pth and G0 show a
clear frontier between the Car I-E and Car I-S regions, with an increase by a factor ∼ 3 − 5 from
Car I-S to Car I-E. They also show a blurry frontier between the Car I-S and Car I/II regions,
with higher Pth and G0 in the Car I/II region. These lower values in the Car I-S region are due
to the fact that this region is farther in the back than the other two, and thus farther away from
the Trumpler 14 star cluster. The scaling parameter κ ranges from 0.1 to 1.2, with its highest
values attained in the Car I-E region. The lower values may correspond to smaller and spatially
unresolved PDR edges. The higher values may be due to the more edge-on geometry and to
a higher beam filling factor. Finally, the observed lines do not trace the total visual extinction
for deep clouds as they are emitted mostly from the warm surface of the cloud. It is therefore
expected not to recover well the spatial structure in the Atot

V map. Figures 6.10 and 6.9 show
pairwise two-dimensional histograms of the posterior distribution samples. Unlike in NGC 7023,
there is no strong degeneracy between κ and G0, although there is a negative correlation between
the two parameters. In both pixels, there is also a negative correlation between Pth and G0. In
the bright Car I-E region, this correlation is higher, which might be due to the higher SNR and
constraining power of the observed lines.

The UF maps show that the uncertainty is on average lower in the bright Car I-E region. This
is due to the larger signal-to-noise ratio in this region. It also illustrates the constraining power
of the spatial regularization. Indeed, on each map, the pixels with highest UF are on the border
of the image and with only one neighbor.

The inferred maps from Wu et al. (2018) are spatially very similar to the MMSE. However, the
G0 values differ. In the bright Car I-E region, the article found G0 ≃ 2 × 104, while in the MMSE
G0 ≃ 5 × 103. Figure 6.10 shows that the point from the article falls in a low posterior density
region, even though it is close to the posterior mode. This difference is due to the Meudon
PDR code version change – Wu et al. (2018) relied on version 1.5.4 with polycyclic aromatic
hydrocarbons (PAH) while we resort to version 1.7 with its standard dust population, which does
not include PAHs. To check whether the differences came from the difference in the model used
and not from the inversion procedure, we trained a neural network emulator of the grid that was
used in the article and performed the inversion again. The G0 values in the obtained MMSE maps
were similar to those of Wu et al. (2018).
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Figure 6.8 – Inference results for the Carina nebula.
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Figure 6.9 – Inference results for the Car I-S pixel of the Carina nebula. Two-dimensional marginal
histograms in the physical parameters Θ space. All histograms are in logarithmic norm.
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Figure 6.10 – Inference results for the Car I-E pixel of the Carina nebula. Two-dimensional marginal
histograms in the physical parameters Θ space. All histograms are in logarithmic norm.
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6.4 Orion molecular cloud 1 (OMC-1)

The first two applications considered observations that had already been previously studied
with the Meudon PDR code. In this section, we apply our inference procedure on the Orion molec-
ular cloud 1 (OMC-1) far infrared and millimetric maps described in Goicoechea et al. (2019).
This inference is the first performed on the full OMC-1 map. Unlike in the two previous applica-
tions, it is not clear a priori whether the considered lines can constrain the physical parameters.

The OMC-1 is a bright region of the Orion A cloud. It is located at about 414 pc (Menten
et al., 2007) from the Sun, making it the closest region of star formation for stars of intermediate
and high masses. Figure 6.11 shows its position in Orion A and its general structure. OMC-1
is illuminated by the Trapezium star cluster, which contains many heavy stars. The cluster lies
within the Hii bubble. It heats and photodissociates the Orion bar and the East PDR. The two
major star-forming sites are the Becklin-Neugebauer/Kleinmann-Low region (BN/KL) and Orion
South (Orion S). The Orion bar is one of the most famous and studied PDRs.

(a) The Orion A star-formation cloud seen
by ESA’s Herschel space observatory. The
black rectangle outlines the observed re-
gion of OMC-1, centered on the Trapez-
ium star cluster. The image is a compos-
ite of the wavelengths of 70 µm (blue),
160 µm (green) and 250 µm (red), i.e.,
dust emission. It spans about 1.3 × 1.6
deg2. The moon is shown for scale. Cred-
its: ESA/Herschel/Ph. André, D. Poly-
chroni, A. Roy, V. Könyves, N. Schneider
for the Gould Belt survey Key Programme.

(b) OMC-1 composite image covering ∼
85 arcmin2 at ∼ 12” with three emission
lines: the C+ 158 µm line which traces the
FUV-illuminated surface of the molecular
cloud (red), the C18O, J = 2 → 1 line
which traces cold dense gas (blue) and the
HCO+ J = 3 → 2 line (green). Taken
from Goicoechea et al. (2019).

Figure 6.11 – Structure of the OMC-1 cloud.

Inversion setup – The considered observation Y contains L = 4 molecular emission lines:
CH+ (J = 1 → 0), CO (J = 2 → 1), CO (J = 10 → 9), and HCO+ (J = 3 → 2). Other lines
such as C+ 158 µm and 13CO J = 2 → 1 were measured. We tried performing inversion with
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these lines, which resulted in an incompatibility between the models and observations. Therefore,
these lines are removed for this analysis.

Figure 6.12 shows the observation maps associated with the L = 4 lines used in the inversion.
The BN/KL region is masked (in white, in the center of the maps) as it is known to be dominated
by shocks. As such events are not included in PDRs models, this region is removed for inversion
to avoid biasing the neighboring pixels with the spatial regularization. Dedicated models such
as the Paris-Durham code (Godard et al., 2019) would better simulate this region. Note that
the model assessment approach might have rejected the model for these pixels. Four pixels are
highlighted in this figure: in the Orion bar (lowest square), in the East PDR (mid-height square),
in the North-East border of the map (top left square) and in the North-West ridge edge (top right
square). Results on these pixels will be detailed.

(a) CH+ (J = 1 → J = 0) (b) CO ν = 0 (J = 2 → J = 1)

(c) CO ν = 0 (J = 10 → J = 9) (d) HCO+ (J = 3 → J = 2)

Figure 6.12 – Observations of OMC-1 used for inversion. The white region is the middle of
the maps is the BN/KL region, dominated by shocks, and not considered in the inversion. The
remaining white pixels correspond to negative integrated intensities due to the additive Gaussian
noise. The inference results will be detailed for the four pixels highlighted with a black square.

The observation model is identical to Eq. 6.2. The integrated intensity maps Y and the asso-
ciated additive noise standard deviations (σa,nℓ)nℓ are computed directly from the hyperspectral
cubes. The multiplicative noise is modeled as a lognormal distribution that combines two terms.
The model misspecification is set so that a 3σ error corresponds to an error of a factor 3, i.e.,
σmod = 1

3 ln 3 ≃ ln 1.44. An estimated 8% calibration error is considered for the whole map,
i.e., σc = ln 1.08. The total multiplicative standard deviation is σm =

√
σ2

mod + σ2
c ≃ 0.373 ≃
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ln 1.452. The parameters aℓ of the likelihood approximation should be optimized for each pixel,
which is very computationally demanding for N > 103 pixels. For simplicity, we set aℓ to high
values so that only the additive Gaussian approximation is used. After testing different values, the
spatial regularization parameter τ is set to 1 for the four physical parameters to obtain smooth
and physically consistent maps.

The observation angle φ between the surface of the cloud and the line of sight varies in the
observed map. For instance, the Orion South (Orion S) region is considered to be mostly face-on
(φ ∼ 0 deg) while the Orion bar is close to edge-on (φ ≃ 90 deg). To avoid inferring more
parameters than observed lines, we set φ = 0 deg. Like in the Carina nebula inversion, we assume
that the inclination effect will be approximately captured by the scaling factor κ.

Like for the Carina nebula, we compare the MLE, as a naive estimator yet widespread in
astrophysics – see Chapter 3 –, and the MMSE from the method proposed in this thesis. The
MLE does not exploit spatial regularization and handles all pixels independently. It is obtained
with the optimization algorithm used for the Carina nebula run for 500 iterations. At each step,
the optimization variant of the MTM kernel is used with probability pMTM = 0.02. The proposal
distribution is set to the smooth uniform prior, and the number of candidates to K = 50. The
preconditioned gradient descent update step size is set to η = 0.03.

The MMSE is evaluated from a Markov chain of TMC = 10 000 iterates, including TBI = 500
of burn-in, generated with the proposed MCMC algorithm. At each iteration t, the MTM kernel
is selected with probability pMTM = 0.5. It generates K = 50 candidates for each pixel θn. As in
the Carina inversion, the proposal q is set to the Gaussian mixture defined with the neighboring
pixels described in Chapter 5 (Eq. 5.35). The PMALA step size is set to η = 0.1.

Model assessment and Bayesian p-value – Figure 6.13 shows the map of estimated p-
values (p̂(TMC)

n )N
n=1. As computing the effective sample size (ESS) is costly for large observation

maps, the uncertainties due to the Monte Carlo estimation of the p-values is not accounted for.
However, Figure 6.13a shows that the estimated p-values is larger than 0.5 on the regions of
interest of the maps. As a result, as shown in Figure 6.13b, only 7 pixels out of 2 475 lead to
a model rejection, i.e., less than 0.3%. In particular, none of the 4 highlighted pixels lead to a
model rejection.

Figure 6.14 shows that the predicted integrated intensities are very close to the actual obser-
vations. The only exception is the CH+ J = 1 → 0 emission line for the pixel in the North-West
ridge edge, where the MMSE is a factor ∼ 3 − 5 too high. Note that the two pixels from PDRs
contain brighter lines than the two other pixels, which is also visible in Figure 6.12.

(a) Estimated p-value map. (b) Associated decision.

Figure 6.13 – Model assessment for OMC-1.

158



Application to real data

Figure 6.14 – Posterior predictive assessment for four pixels of OMC-1 on the lines used for the
inversion. Comparison of observations Y and associated noise model with posterior predictive
distributions on f̃(Θ), with Θ ∼ π(Θ|Y).
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Inference results: MLE, MMSE, and UF maps – Figure 6.15 shows inference results for
both likelihood minimization and posterior sampling. The spatial structures in the observations
are recovered with the MMSE when including the spatial smoothness prior, but hardly visible
when using a simple MLE. Due to the low number of lines L, the spatial regularization plays a key
role in recovering the correct spatial structure. As there are few lines and thus few constraints for
the models, the likelihood is very sensitive to noise and the MLE presents unphysical variations.
Conversely, the spatial regularization permits each pixel to access the information contained in its
neighbors, which share similar physical conditions.

We now focus on the MMSE and UF maps. The MMSE permits to recover the overall
structure of OMC-1. The Orion bar, the Hii region, the Orion S region, the East PDR and the
North-West ridge are visible on each of the D = 4 reconstructed maps. The scaling factor κ is
close to 1 in the bright regions. In the Orion S region, in the East PDR and in the Orion bar, the
thermal pressure Pth is estimated at ≃ 4 × 108 K cm−3, and the radiative intensity factor G0 at
≃ 5 × 104. In these regions, the recovered visual extinction Atot

V is roughly 10 mag. These values
are consistent with the literature and with the analysis of the one-pixel observation of the Orion
bar presented in Appendix 6.A. Our results show for the first time that the high thermal pressures
previously found in the Orion Bar appear to be widespread in the PDRs of OMC-1.

Over the whole map, the UF is lower than 1.5 for the scaling factor κ, than 2 for the visual
extinction Atot

V . This means that the typical error is at most 50% for κ, and of a factor 2 for Atot
V .

Despite using only L = 4 lines to infer D = 4 parameters for each pixel, these two parameters
are thus well constrained. Similarly, on most of the map, the UF is lower than 3 for the thermal
pressure Pth and than 4 for the intensity of the incident radiative field G0. These two parameters
are thus relatively well constrained considering their large validity intervals and the low number
of lines used for inversion (L = 4). The UF maps of Pth and G0 show that the darker regions
yield higher associated uncertainties. Besides, the UF attains a maximum in the North-West ridge
edge, around one of the highlighted pixels.

Inference results: analysis of highlighted pixels – Figure 6.16 shows the pairwise his-
tograms for the Orion bar pixel (lowest of the four squares). Figure 6.17 shows the pairwise
histograms for the East PDR pixel (mid-height square). They show that the marginal posterior
distributions for these two pixels are simple, as they could be well approximated by a Gaussian
distribution with a diagonal covariance matrix. Uncertainties are large but do not show degen-
eracy between parameters. Figure 6.18 shows the North-East pixel (top left square). This pixel
and its surrounding region yields a more moderate Pth (≃ 7 × 107 K cm−3) while the G0 remains
similar to what is found in the Orion Bar (≃ 5 × 104). This seems to contradict the correlation
between Pth and G0 described in Joblin et al. (2018) and Wu et al. (2018). Further investigation
is thus required to better understand this specific region.

Finally, Figure 6.19 shows that the UF peak around the North-West ridge edge pixel (top right
pixel) corresponds to a bimodality in the joint distribution (Pth, G0). The sampler successfully
identified the two modes in the (Pth, G0) joint distributions, which is challenging for standard
MCMC algorithms. The two modes correspond to two different environments. One has a very
high G0 ≃ 3 × 104 and a moderate Pth ≃ 3 × 107 K cm−3. The other, which is more likely, has a
moderate G0 ≃ 5 × 103 and a very high Pth ≃ 3 × 108 K cm−3. Different hypotheses may explain
this bimodality. For instance, the existence of two solutions may be due to the low number of
lines L = 4. In this case, adding other lines for the inversion may remove one mode. Another
possibility is that this pixel mixes emissions from distinct environments at different positions along
the line of sight. This is also possible as this pixel is on the edge of a ridge. Note that although
the MMSE values represented on the reconstructed maps fall in a high probability region, it does
not fall in a mode. In such a case, the MAP would be a more representative estimator of maps
of Pth and G0, but would require running an additional optimization algorithm.
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Figure 6.15 – Inference results for OMC-1.

161



Application to real data

Figure 6.16 – Inference results for OMC-1: Orion bar pixel. Two-dimensional marginal histograms
in the physical parameters Θ space. All histograms are in logarithmic norm.
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Figure 6.17 – Inference results for OMC-1: East PDR pixel. Two-dimensional marginal histograms
in the physical parameters Θ space. All histograms are in logarithmic norm.
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Figure 6.18 – Inference results for OMC-1: North-East edge pixel. Two-dimensional marginal
histograms in the physical parameters Θ space. All histograms are in logarithmic norm.
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Figure 6.19 – Inference results for OMC-1: North-West ridge edge pixel. Two-dimensional
marginal histograms in the physical parameters Θ space. All histograms are in logarithmic norm.
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6.5 Conclusion
In this chapter, we applied the full inference procedure to three real observations – NGC 7023,

the Carina nebula and OMC-1. The preliminary analysis of the presented inference results already
provides interesting astrophysical insights. For instance, Joblin et al. (2018) and Wu et al. (2018)
describe a positive correlation between point estimates of Pth and G0 among multiple sources.
In contrast, our inference results on NGC 7023, the Carina nebula and the Orion bar revealed
a negative correlation between these two parameters in their joint distribution. Putting things
together, this result indicates that the positive correlation among sources from the literature was
not due to inference uncertainties, and is likely to have a physical origin. However, in view of
the large estimation uncertainties, deriving a numerical relation between Pth and G0 from point
estimates seems inaccurate. In particular, the power law between proposed in Joblin et al. (2018)
and Wu et al. (2018) may be improved by accounting for these inference uncertainties.

We emphasize that this is the first study of maps of ionic, atomic or molecular line observations
that permits to infer maps of physical parameters and to quantify the associated uncertainties
at once. In particular, the proposed method proved to be able to detect multiple modes and to
compare their relative weights in the posterior distribution. It also proved to be able to detect
correlations between inferred physical parameters. These properties lead to finer and more trustful
results and interpretations.
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Appendix 6.A Orion Bar
The Orion Bar PDR lies ∼ 2’ south-east of the Trapezium star cluster (Allers et al., 2005).

This cluster of massive stars creates a Hii region that penetrates into the parent molecular cloud.
The distance between the Orion nebula and the Sun has been measured at 414 ± 7 pc (Menten
et al., 2007). Because of its proximity and edge-on geometry, the Bar is one of the most studied
PDRs.

Joblin et al. (2018) analyzed the Orion bar with an observation of L = 24 lines in N = 1 pixel.
The observed lines used in the inversion include 12CO lines (from J = 11 → 10 to J = 23 → 22),
rotational H2 lines (from S(0) to S(5)) and low level CH+ rotational lines (from J = 1 → 0 to
J = 6 → 5). The noise on the observation y was assumed additive, Gaussian and uncorrelated
with known standard deviations (σa,ℓ)L

ℓ=1. Like NGC 7023, the authors inferred θ = (κ, Pth),
while fixing the observation angle to φ = 60 deg and the total extinction to Atot

V = 10 mag – as
the observed lines did not provide sufficient constraint on Atot

V . Based on Tielens and Hollenbach
(1985) and Marconi et al. (1998), they set G0 = 2 × 104. Like NGC 7023, the fit was performed
with a grid search on Pth and a simple continuous optimization on κ.

They obtained Pth = 2.8 × 108 K cm−3 and κ = 1.3.

Inversion setup – In this analysis, we use the same observation model as for NGC 7023 (Eq. 6.2).
The prior hyperparameters and validity intervals are identical. The parameters of the proposed
sampler are the same as in the previous section, except for the step size of the PMALA kernel.
We empirically set it to η = 0.03 to improve the acceptance probability.

Model assessment and Bayesian p-value – In Joblin et al. (2018), the authors stated
that the fit did not reproduce the observations as well as for NGC 7023. Applying our infer-
ence procedure, we obtain an estimated p-value is p̂(TMC) = 0.52, and a rejection probability of
P
[
p(t) ≤ α

]
< 10−200 < δ, which does not lead to a rejection. Therefore, the considered obser-

vation model is compatible with the observations. Figure 6.20 compares the marginal posterior
predictive distributions with the true observations. Most H2 lines and the CH+ J = 1 − 0 line
are relatively poorly reconstructed, with an error of a factor ∼ 3 for the MMSE on these lines.
However, this factor 3 remains compatible with the errors σa,ℓ and σm in the observation model.

Inference results – Figure 6.21 shows our estimation results. The anticorrelation between
Pth and G0 observed in NGC 7023 is also visible here. This is expected as we are using almost
the same set of lines as observational constraints. As in NGC 7023, the results for Pth, G0
and Atot

V are overall consistent with the values from Joblin et al. (2018). Table 6.2 details the
obtained values. The obtained G0 = 3.0 × 104 – with G0 ∈ [4.8 × 103, 1.3 × 105] with probability
95% – is consistent with the literature. The inferred thermal pressure Pth = 1.1 × 108 K cm−3

– with Pth ∈ [4.7 × 107, 2.8 × 108] K cm−3 with probability 95% – is slightly lower than the
2.8 × 108 K cm−3 from Joblin et al. (2018). Conversely, the scaling factor κ = 5.2 – with
κ ∈ [2.7, 10] with probability 95% – is much larger than 1.3. Like in NGC 7023, this might be
due to the change of Meudon PDR version – 1.5.4 in Joblin et al. (2018), and 1.7 in our work.
It may also be due to the difference in some secondary parameters.
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Figure 6.20 – Posterior predictive assessment for the Orion Bar on the lines used for the inversion.
Comparison of observations Y and associated noise model with posterior predictive distributions
on f̃(Θ), with Θ ∼ π(Θ|Y).

Table 6.2 – Inference results on Orion Bar. In Joblin et al. (2018), only the scaling parameter κ
and the thermal pressure Pth are inferred.

κ Pth G0 Atot
V

– (K cm−3) – (mag)
(Joblin et al., 2018) 1.3 2.8 × 108 2 × 104 10

MMSE 5.2 1.1 × 108 3.0 × 104 11.6

68% credibility interval
lower bound l68% 3.7 8.0 × 107 9.5 × 103 4.1
upper bound u68% 7.5 1.6 × 108 8.5 × 104 31.5

UF68% 1.4 1.4 3.0 2.8

95% credibility interval
lower bound l95% 2.7 4.7 × 107 4.8 × 103 1.9
upper bound u95% 10.0 2.8 × 108 1.3 × 105 42.4

UF95% 1.9 2.5 5.2 4.7
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Figure 6.21 – Inference results for the Orion Bar. Two-dimensional marginal histograms in the
physical parameters Θ space. All histograms are in logarithmic norm.
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“People from different backgrounds
approach a subject in different ways and
ask different questions.”

Jocelyn Bell Burnell
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Conclusions
The study of the ISM carries fundamental questions such as the regulation of star formation or

the development of molecular complexity, possibly leading to the formation of prebiotic molecules.
In this thesis, we studied the impact of the radiative feedback of newborn massive stars on
their parent molecular clouds. New facilities at IRAM, ALMA and the JWST might lead to
breakthroughs in the coming years, thanks to the very rich hyperspectral data they provide. For
instance, the IRAM-30m Large Program “Orion B” observed the Orion B cloud at dense core
resolution, resulting in a million-pixel map, with 240 000 spectral bands containing emissions of
dozens of ionic, atomic or molecular tracers (Pety et al., 2017). In this thesis, we addressed five
problems to extract as much information as possible from such observations combined with an
ISM numerical model such as the Meudon PDR code:

— Deriving fast, accurate and light emulators of the Meudon PDR code, an ISM numerical
model, to be able to make inference scalable. This task was addressed in Chapter 4.

— Approximating the likelihood function to obtain a simple closed-form expression without
neglecting a source of noise. The obtained approximation simplifies the sampling task
while introducing a small and controlled error. This task was addressed in Chapter 5
(Section 5.1.1).

— Proposing a spatial regularization prior to improve the quality of estimations in low signal-
to-noise ratio regions. This task was addressed in Chapter 5 (Section 5.1).

— Estimating physical parameter maps such as the thermal pressure and the total visual
extinction from observations, to bring new insights on the interstellar medium (ISM) and
star formation. The proposed Bayesian inference method accounts for as much physics as
possible – in the forward model, in the observation model, and in the prior distribution
– and scales well enough to be applied to observation maps of up to O(104) pixels. It
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provides uncertainty quantification through credibility intervals. This task was addressed in
Chapter 5 (Section 5.2).

— Assessing the compatibility between the observation model and the observations, to po-
tentially provide feedback to the astrophysicists who build these models. This task was
addressed in Chapter 5 (Section 5.3).

An additional task was also addressed. It consists in selecting the most informative observables
to minimize uncertainty on inferred physical parameters. The resulting variable selection method
is based on the conditional differential entropy – or, equivalently, on the mutual information.
Although we already have preliminary results, this work is still in progress in collaboration with
other members of the ORION-B consortium. This task was not presented in the body of this
manuscript. The interested reader can find a description of the preliminary results on our side,
i.e., on the numerical model side, in Appendix A.

As part of an interdisciplinary project, this thesis yielded contributions in both statistics and
astrophysics for each of the considered problems.

Contributions in statistics

The main methodological contributions of this thesis are the proposition of a general method
to build emulators, of a likelihood approximation, of a new Markov chain Monte Carlo (MCMC)
algorithm, and of an extension of the Bayesian test of hypothesis.

Derivation of fast and accurate approximations of ISM numerical models – State-of-the-
art ISM numerical models have prohibitively long evaluation times. They are thus often replaced
with approximations for inference, which induces an error. Interpolation methods are often used in
the ISM community (Wu et al., 2018; Ramambason et al., 2022), and the associated error is not
always quantified. In Chapter 4, we proposed to apply general strategies to emulate a numerical
model that predicts many observables at once and punctually produces outliers. We applied these
strategies to emulate the Meudon PDR code, and compared the obtained artificial neural networks
(ANNs) with interpolation methods with respect to memory requirements, speed, and accuracy.
The proposed ANNs significantly outperformed all the considered interpolation methods.

Likelihood approximation – The observation model introduced in Chapter 3 (Section 3.4),
which involves a multiplicative lognormal noise and an additive Gaussian noise, does not lead to a
simple closed-form likelihood function. In Section 5.1.1, instead of neglecting one source of noise,
we proposed a parametric closed-form approximation of the likelihood function. This approxima-
tion builds on that from Nicholson and Kaipio (2020), which is purely additive and Gaussian. We
combined a similar additive and Gaussian approximation with a multiplicative and lognormal one
using a weighted geometric mean. The weight of this geometric mean is a function of the physical
parameters such that the multiplicative approximation dominates in the high SNR regime, and
the additive approximation in the low SNR regime. In Section 5.B, we proposed a grid search and
a Bayesian optimization approach to tune the weight parameters so that the approximation error
is minimized.

A new MCMC algorithm – The posterior distribution presented in Chapter 5 (Section 5.1.3)
is challenging to sample from. The log-posterior is considered to be non log-concave and non
gradient Lipschitz continuous, or with an unusable Lipschitz constant. We proposed in Section 5.2
a new MCMC algorithm. This algorithm combines two sampling kernels, each addressing one of
these two difficulties.

The first kernel is based on a preconditioned MALA algorithm (Xifara et al., 2014) that
exploits information on the local geometry of the log-posterior to propose relevant candidates.
We resorted to the RMSProp preconditioner (Tieleman and Hinton, 2012), which was already
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applied in an MCMC algorithm (Li et al., 2016). We improved the algorithm from Li et al. (2016)
by performing accept-reject steps and by accounting for the correction term γ that emerges from
a position-dependent preconditioner.

The second kernel combines three algorithms. A Gibbs sampling (Geman and Geman, 1984)
divides the physical parameter of dimension N × D into N conditional distributions of dimension
D that are easier to explore. A multiple-try Metropolis algorithm (Martino, 2018) increases the
probability of acceptance, and uses a proposal distribution that allows escapes from local modes.
A chromatic Gibbs sampling algorithm (Gonzalez et al., 2011) permits to perform the sampling
of many pixels in parallel, which greatly accelerates the sampling.

Extension of Bayesian hypothesis testing for model assessment – Solving an inverse
problem relies on the hypothesis of a possibly misspecified observation model. The Bayesian test
described in Gelman et al. (1996) permits to assess the model compatibility with the observations.
It relies on a test statistic that permits to compare true observations with observations reproduced
from the observation model. For simple cases such as a point estimate, a Gaussian additive
uncorrelated noise and the L2 norm as the test statistic, the p-value associated with the test can
be computed exactly. Otherwise, it is approximated by a Monte Carlo (MC) estimator, which
induces an error that can lead to a wrong decision on the compatibility or incompatibility of the
model with the observations. In Chapter 5 (Section 5.3), we extended the test to account for the
uncertainty due to the MC approximation error. We considered the p-value as a random variable.
Using a simple likelihood model and a conjugate prior, we obtained a simple uncertainty description
of the p-value. This description represents a negligible additional computational cost with respect
to the standard MC estimator. The proposed test can detect cases where the uncertainty on the
MC estimator is too large to reject or not the numerical model. Too large uncertainties indicate
that longer Markov chains should be used.

Contributions in astrophysics

Chapter 3 reviewed applications of statistical inference in ISM studies, and the position of our
work with respect to the literature. We now review our contributions for the ISM community,
namely the derivation of a fast, accurate and light surrogate for numerical models, the use of a
spatial regularization prior, the use of Bayesian inference for high dimensional observation maps
of integrated intensities, the application of the model assessment test, and the insights obtained
from the application of our methods to real data.

Informative spatial regularization prior – To exploit the map structure of the physical pa-
rameters, we resorted to a spatial regularizing prior – introduced in Chapter 5 (Section 5.1.2).
Like Marchal et al. (2019), we use a L2 norm of the map Laplacian. However, this article aimed
at fitting one mixture of Gaussian profiles per spectrum on a hyperspectral map, while we directly
infer more complex physical parameters. A common approach in the ISM community for low SNR
regions is to stack pixels to increase the SNR, thus reducing spatial resolution. This spatial regu-
larization approach permits to better exploit low SNR observations, as it enables pixels to access
the information contained in their neighbors. In addition, the spatial regularization is negligible
when the likelihood function constrains well the physical parameters, i.e., in high SNR observa-
tions and good tracers of the physical parameters. It can thus be seen as a form of adaptive
stacking.

Bayesian inference for high dimensional maps – When the observed lines constrain poorly
the physical conditions or when the Signal-to-Noise Ratio is low, multiple solutions might recon-
struct observations equivalently well. Moreover, the non-linearity of astrochemistry models leads
to non-convex and even multi-modal problems. Many methods used in interstellar astrophysics do
not consider these degeneracies and only return one estimated map (Joblin et al., 2018; Wu et al.,
2018). Most methods get trapped in local minima and estimations have no optimality guarantees.
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Heuristics can overcome this issue for small maps but would be unrealistically slow for larger ones.
In Chapter 6, using a Bayesian approach, we obtained meaningful uncertainty quantification on
inferred physical parameters. In the ISM community, dust studies such as Galliano (2018); Gal-
liano et al. (2021) had already applied Bayesian sampling methods in high dimensional settings.
However, sampling methods had never been used – to the best of our knowledge – to reconstruct
maps of physical parameters from observations of integrated intensities of ionic, atomic or molec-
ular emission lines.

Model assessment with Bayesian hypothesis test – In ISM studies, the compatibility of
the model with the observations is rarely assessed. However, recently, Lebouteiller and Ramam-
bason (2022) used multiple information criteria, the Bayesian evidence and a model assessment
to estimate the number of distinct environments that are necessary to explain observations. Sim-
ilarly, Galliano (2022) used the Bayesian hypothesis test to assess the quality of the model. In
Chapter 6, we applied our extended test of hypothesis which includes the error that comes from
the MC approximation. We also apply it to each pixel of our reconstructed maps, which permits
to identify pixels corresponding to environments that are poorly modeled by the Meudon PDR
code. Such pixels may not correspond to PDR, or may pinpoint an insufficiency from the Meudon
PDR code. This feedback is therefore valuable for astrophysicists working on numerical models,
as it can indicate potentially necessary future development.

New insights – Applications of the proposed method to real observations already brought new
astrophysical insights. Here, we highlight two of them. First, in Joblin et al. (2018) and Wu et al.
(2018), the authors outline a positive correlation between point estimates of the thermal pressure
Pth and the intensity of the incident UV radiative field G0 among multiple sources. In contrast,
our inference results on NGC 7023, the Carina nebula and the Orion bar revealed a negative
correlation between these two parameters in their joint distribution. This result indicates that the
positive correlation among sources from the literature is not due to inference uncertainties, and
is likely to have a physical origin. However, the large estimation uncertainties indicate that the
numerical power law relations between Pth and G0 proposed in Joblin et al. (2018) and Wu et al.
(2018) may be improved by accounting for these inference uncertainties.

Second, the presented analysis on the OMC-1 cloud is the first inference performed on the full
observation map. The results are consistent with the literature, with e.g., Pth ≃ 3−5×108 Kcm−3

and G0 ≃ 3 − 5 × 104 in the Orion bar. New information about the region are provided, such as
the fact that the pressure is high in all the PDRs around the Trapezium star cluster. Additional
analyses are still required for a full physical interpretation of the inference results.

Perspectives

This manuscript represents a milestone in our research on the ISM and star formation with the
ORION-B consortium. This work could now be extended in multiple directions. In the following,
we list some promising directions.

Derivation of better emulators for ISM numerical models – The proposed neural network-
based emulation strategy is quite general and could be applied to other ISM numerical models.
In general, numerical models are based on a system of coupled equations, potentially partial
differential equations. Deriving an emulator from a set of input-output pairs seems suboptimal as
the emulator could in principle be trained to satisfy the system of equations. The physics-informed
neural networks (Raissi et al., 2019) form a potentially promising approach to derive surrogate
models for the ISM community. Such ANNs are trained directly with the system of physical
differential equations. Therefore, they have access to more information during training, and thus
generalize better with limited datasets. This seems particularly promising for chemistry models,
for which the differential equations are easy to write. This lead was considered for the Meudon
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PDR code. However, like many complex ISM codes, it includes many microphysical processes and
thus many equations. The physics-informed ANNs were thus badly suited to this task.

A second potentially promising lead regarding the emulator is the management of outliers. We
proposed a three-step approach that includes a semi-manual check. Preventing a numerical model
from producing such outliers would be statistically simpler, and would improve the confidence in
the model predictions. This is very challenging for a code as complex as the Meudon PDR code,
in which bistability – the existence of two solutions for an equation system – can occur at different
levels. Then, deriving a deterministic binary test that detects outliers would prevent from using
any in the training of the emulator. Again, this is very challenging for the Meudon PDR code, as
the number of profiles to check is high. Finally, if a statistical approach needs be used for outliers,
a potentially better approach would be to learn the surrogate model and fit the binary mask on
outliers at once, as detailed in Chapter 4 (Appendix 4.A). However, this approach would require
careful hyperparameter tuning to avoid the classification of physically meaningful points that are
difficult to reproduce as outliers.

Observation model – Several improvements of the observation model could be explored.
First, using a hierarchical model instead of the proposed approximation of the likelihood function
would permit to use the exact observation model in the inversion. We did try to adapt the
proposed sampler to the hierarchical model, but using the approximation proved to considerably
simplify the sampling. A possibility we did not explore yet is to resort to the ancillarity-sufficiency
interweaving strategy (ASIS) sampling approach, already applied in dust studies, for instance
in (Kelly, 2011; Kelly et al., 2012; Galliano, 2018).

Second, the observation model specified in Chapter 3 (Section 3.4) neglected all the corre-
lations in the noise. This choice greatly simplified the definition of the likelihood function and
the computation of its first and second order derivative, as it enabled to consider the observation
elements ynℓ individually. However, it is known that the noise realizations in a telescope are not
independent, neither spatially nor spectrally. For instance, in Einig et al. (2023), the authors
describe the spatial and spectral noise structure in the Orion-B observations. Similarly, as we
showed in Chapter 3 (Section 3.1.2), dust studies now frequently include non diagonal terms in
the noise covariance. Accounting for these noise correlations would provide additional information
in the observation model, which is likely to result in lower uncertainties on estimates.

Finally, the noise model presented in Section 3.4 and exploited for OMC-1 in Section 6.4
slightly overestimates the additive noise standard deviation. Indeed, we set a constant interval
for the spectral integration of the intensities, and used large intervals to avoid cutting any signal.
Using a line profile fitting algorithm such as Rohsa (Marchal et al., 2019) or CubeFit Paumard
et al. (2022) may lead to more accurate integrated intensity estimates. Similarly, the denoiser
proposed in (Einig et al., 2023) improves the SNR without assuming a line profile. However, these
approaches may introduce a bias in the estimated integrated intensities. Besides, it is not simple
how to describe the associated uncertainties, which is crucial for the inversion.

To improve the observation model with respect to the last two points, one could infer at
once both 1) the multiline maps of integrated intensities from the hyperspectral maps with the
complete noise model and 2) the physical parameters from the multiline maps of integrated inten-
sities. The resulting complex posterior distribution would be written with a hierarchical model and
sampled from using a Gibbs sampler. Such an approach might define a heavier inverse problem.
However, the effective noise on the multiline maps would be reduced, which would lead to smaller
uncertainties in inferred physical parameters.

Choice of a preconditioner – We chose the RMSProp preconditioner because it is a diagonal
preconditioner that proved efficient in high dimensions both in theory and in practice (Dauphin
et al., 2015). As it is diagonal and only requires first order derivatives, the correction term γ
in PMALA that comes from the position-dependent preconditioner can be written and evaluated
with acceptable costs – see Chapter 5 (Section 5.2.1). This correction term ensures a good dis-
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cretization of a Langevin diffusion process, which favors good candidates. However, accounting
for this term is not necessary to ensure ergodicity or that the posterior is the invariant distribution
of the generated Markov chain, even if the correction term is neglected. Other preconditioners
that take into account the spatial regularization may lead to better mixing properties. As the
spatial regularization prior is equivalent to a Gaussian distribution with a band precision matrix,
implementing PMALA with such a preconditioner could exploit classic methods to sample from
a Gaussian distribution (Vono et al., 2021). Such a preconditioner may perform better than RM-
SProp, e.g., for large spatial regularization parameter τ .

Analysis of larger observation maps – The proposed sampler was applied to cases with
dimensions up to ND = 4 × 104. Although this is already large, new and future maps are even
larger. For instance, the Orion-B map (Pety et al., 2017) contains 106 pixels. There are two
necessary and independent approaches to scale to these maps.

First, the Orion-B map contains multiple environments. Indeed, the Horsehead nebula is
better modeled with a PDR model, but the dense cores in the cloud require a dark cloud time-
dependent model. Similarly, the original observations of OMC-1 studied in Chapter 6 (Section 6.4)
contain the BN/KL region, which is dominated by shocks. To be able to perform inference
on these observations using the Meudon PDR code, some pixels were masked. In addition,
observations cannot be spatially well resolved, which means that some pixels may contain multiple
environments that require different models. Inference on such large maps would therefore require
simultaneously unmixing the environments on each pixel and estimating the physical parameters
of each environment. This is part of the PhD project of Antoine Zakardjian started in 2022,
member of the ORION-B consortium, supervised by Jérôme Pety and Annie Hughes.

Second, even neglecting these mixtures of environments, the proposed algorithm is unlikely
to scale to these dimensions without additional effort. Distributed algorithms are a common
solution to divide one computationally very expensive task into smaller tasks addressed in parallel
by different workers. Thanks to the simple regularization prior and diagonal noise correlation,
the proposed MCMC algorithm could certainly be distributed, using for instance the framework
presented in Thouvenin et al. (2023). This is also in part the PhD project of Maxime Bouton
started in 2022, supervised by Pierre Chainais and Pierre-Antoine Thouvenin.
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Entropy of probability distributions and
line selection

“You’re going to have to make a choice,
Mr. Anderson.”

The Matrix (1999), Lana and Lilly
Wachowski
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In Chapter 4, we derived a surrogate model of the full Meudon PDR code. This surrogate
model emulates all the 5 375 emission lines predicted by the Meudon PDR code. Chapter 5
introduced the posterior distribution involved in the inverse problem considered in this thesis.
In actual ISM observations, due to observational constraints, only L ≃ 5 to 30 lines are ob-
served. Observations contain different lines depending on the telescope or observed wavelength
range. In particular, observing lines in the infrared (IR) domain requires space telescopes, as
these wavelengths are absorbed by the Earth atmosphere. In general, observing maps of many
lines is extremely expensive. Besides, observing all lines at once is unfeasible due to the large
differences in wavelengths, from near infrared to millimetric domains. It is therefore crucial to
prepare observations to measure lines that permit to infer physical parameters of interest with low
uncertainty.

In this chapter, we present a statistical method that determines, for a fixed number of emission
lines, the set of lines that leads to the lowest uncertainty on inferred physical parameters. This
uncertainty is quantified with the conditional differential entropy – or equivalently, the mutual
information. We evaluate the best set of lines for a variety of true physical conditions θ ∈ RD

and for different sizes L of sets.

This project is a collaboration with Lucas Einig and Antoine Roueff, also members of the
ORION-B consortium. The overall goal is to apply this variable selection strategy both on nu-
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merical models and the Orion-B dataset (Pety et al., 2017), and to compare the results. In this
appendix, we only present the theoretical developments of a line selection method. This is still
ongoing work and an application to the Meudon PDR code with the noise model presented in
Chapter 3 is currently under study.

Section A.1.2 introduces the mean squared error (MSE) considered in this context, the con-
ditional differential entropy and the Fano bound that links the two. Section A.2 applies the Fano
bound to a simple case with an affine forward model and an additive uncorrelated Gaussian noise
to provide intuitive insights.

A.1 A line selection method that compares posterior distributions

In this chapter, we aim at determining the set of K ∈ [[1, L]] lines that leads to the lowest
uncertainty on inferred physical parameters, i.e., that is the most informative. This uncertainty
is quantified with a general mean squared error (MSE). As this MSE is in general not accessible,
we resort to a lower bound on the MSE called the Fano bound. The Fano bound relies on the
conditional differential entropy, that can be evaluated with a Monte Carlo (MC) estimator from
samples. The set of K lines that minimizes the conditional differential entropy also minimizes the
Fano bound.

A.1.1 Using the MSE as a quantitative criterion to rank sets of lines
Distribution on the observation π(y|θ∗) – The results of such a search depend on the type

of observed environment. We account for this dependence and determine the most informative set
of K lines for different physical conditions θ∗ ∈ RD. Applying the observation model presented
in Chapter 3 (Eq. 3.23) with the “true” physical parameters θ∗, ω = −∞ – no censorship –, and
a set of lines S ∈ 2[[1,L]] yields

∀ℓ ∈ S, yℓ = ε
(m)
nℓ f̃ℓ(θ∗) + ε

(a)
nℓ , ε

(a)
nℓ ∼ N (0, σ2

a), ε
(m)
nℓ ∼ Lognormal

(
−σ2

m

2 , σ2
m

)
. (A.1)

This observation model defines a distribution on observations denoted π(y|θ∗).

Joint distribution π(θ, y) – From each observation y, the posterior distribution π(θ|y) is
defined as in Chapter 5 (Eq. 5.12). In this case, as we consider a single pixel, there is no spatial
regularization. The combination of the distribution on observations (Eq. A.1) and the posterior
distribution defines a joint distribution on (θ, y)

π(θ, y) = π(θ|y)π(y|θ∗). (A.2)

Sampling from this joint distribution is equivalent to solving one inverse problems per sample
y ∼ π(y|θ∗), i.e., per realization of noise on an observation of the environment characterized by
θ∗.

A general mean squared error (MSE) as quantitative criterion – To select a set of
lines s ⊂ [[1, L]], we need to compare joint distributions on (θ, y) with respect to a quantitative
criterion. As already mentioned, the goal of this chapter is to determine the set of lines that best
constrains the physical parameters. The MSE quantifies this notion of well constrained parameters.
Here, the MSE is integrated with respect to both observation y and physical parameters θ,

MSE = E(θ ,y)
[
∥θ − θ̂(y)∥2

2

]
=
∫

∥θ − θ̂(y)∥2
2 π(θ, y) dθ dy (A.3)

The MSE is minimized with one estimator θ̂ : y 7→ θ̂(y), the posterior expectation θ̂(y) =
E [θ|y]. Chapters 2 and 5 covered how to evaluate the posterior expectation for a single value of
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y using an Monte Carlo (MC) estimator. When y follows a distribution, evaluating the posterior
expectation would require running an MCMC algorithm for each y value, which is highly inefficient.

An alternative to using the MSE directly to rank sets of lines is to compute a lower bound on
the MSE. In the following, we consider an entropy-based lower bound, called the Fano bound.

A.1.2 Differential entropy and the Fano Bound

Selecting the set of lines that best constrains the physical parameters is equivalent, in a sense,
to selecting the set that brings most information on the physical parameters, i.e., that minimizes
the uncertainties in inference. This notion of uncertainty can be quantified using the entropy of
a distribution.

Differential entropy – The differential entropy is similar to a Shannon entropy counterpart
for continuous random variables. For θ ∈ RD,

h(θ) = Eθ [− ln π(θ)] = −
∫

ln π(θ) π(θ) dθ, (A.4)

with π(θ) any distribution on θ. Table A.1 provides the entropy formula for a few common
parametric distributions. The larger the entropy of a distribution, the larger the uncertainties
it describes. For instance, the entropy of a univariate Gaussian distribution increases with the
log-variance and is independent to its mean. Similarly, the entropy of a uniform distribution on a
compact set is the log-volume of this set. The smaller the volume, the smaller the uncertainties
on the associated random variable. These examples also show that the differential entropy is
not always positive, unlike the Shannon entropy that applies to discrete random variables. For a
univariate Gaussian distribution, when the variance tends to 0, the differential entropy tends to
−∞. For a uniform distribution on a compact set, the differential entropy tends to −∞ when
the volume of the set tends to 0.

Table A.1 – Differential entropy for a few common distributions. The Vol set operator corresponds
to the volume of a set. The det function corresponds to the determinant of a matrix.

distribution differential entropy h

univariate
θ ∈ R

θ ∼ N (µ, σ2), µ ∈ R, σ > 0 1
2 ln (2πe) + 1

2 ln σ2

θ ∼ Unif (a, b), a < b ln(b − a)

θ ∼ Lognormal(µ, σ2), µ ∈ R, σ > 0 µ + 1
2 ln

(
2πe σ2

)
multivariate

θ ∈ RD, D > 1

θ ∼ N (µ, Σ) D

2 ln (2πe) + 1
2 ln det(Σ)

θ ∼ Unif (C), C ⊂ RD ln Vol C

Conditional differential entropy – The conditional differential entropy is defined for an
observation variable y ∈ RL and a parameter θ ∈ RD,

h(θ|y) = E(θ ,y) [− ln π(θ|y)] = −
∫

ln π(θ|y) π(θ, y) dθ dy. (A.5)

One essential property of the conditional differential entropy is that

h(θ|y) = −
∫

ln π(θ, y)
π(y|θ∗) π(θ, y) dθ dy = h(θ, y) − h(y). (A.6)
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This means that evaluating the conditional entropy is equivalent to computing the differential
entropy of two linked distributions. Note that differential entropy and conditional differential
entropy are linked to the mutual information MI(θ, y), as

MI(θ, y) = h(θ) − h(θ|y). (A.7)

Unlike differential entropy and conditional differential entropy, the mutual information is always
positive, as h(θ) ≥ h(θ|y).

Fano bound – The conditional differential entropy provides a lower bound on the general
MSE from Eq. A.3. This lower bound is called the Fano bound, and reads

E(θ ,y)
[
∥θ − θ̂(y)∥2

2

]
≥ D

2πe
exp

( 2
D

h(θ|y)
)

. (A.8)

This entropy-based lower bound on the MSE does not require the choice of an estimator nor its
computation for all y drawn from the joint distribution π(θ, y). It is only based on a summary
statistic of the joint distribution π(θ, y), the conditional differential entropy. Besides, this lower
bound is quite tight. The inequality turns into an equality in the case where the posterior
distribution θ is Gaussian, and there exists λ > 0 such that C = λID. Appendix A.A derives this
lower bound. In essence, this derivation relies on the fact the Gaussian distribution maximizes the
entropy, and on the arithmetic mean geometric mean inequality

[det C]
1
D ≤ Tr C

D
(A.9)

Finally, this bound can be shown to be tighter than other lower bounds such as the Bayesian
Cramér-Rao bound (Aras et al., 2019).

A.1.3 Selection of the best set of lines as a discrete optimization problem

Unlike the simple cases listed in Table A.1, the distributions on (θ, y) and y are not para-
metric. Therefore, their differential entropies do not have simple closed-form expressions. Both
K, D ≲ 10, thus a grid-based quadrature of the differential entropies in Eq. A.6 would be possible.
However, for simplicity, we resort to MC estimators ĥ(TMC)(θ∗, S)

ĥ(TMC)(θ∗, S) = − 1
TMC

TMC∑
t=1

ln π(θ(t), y(t))
π(y(t))

(A.10)

= 1
TMC

TMC∑
t=1

ln π(y(t)) − 1
TMC

TMC∑
t=1

ln π(θ(t), y(t)), (A.11)

with y(t) ∼ π(y|θ∗) and θ(t) ∼ π(θ|y(t)) for all t. The best set of K lines for a given θ∗ is the
solution of the discrete combinatorial optimization problem

S∗
K(θ∗) ∈ arg min

S∈SK

ĥ(TMC)(θ∗, S), (A.12)

with SK ⊂ 2[[1,L]] the set of sets of K lines.

A.2 Illustration: a Gaussian and linear case
In this section, we consider a multivariate case in which the noise model is Gaussian, the

forward model is affine and the prior on θ is also Gaussian. In this simple case, the MSE can be
written in closed form. The MSE is compared with the Fano bound to visualize how tight this

180



Entropy of probability distributions and line selection

bound is.

The considered simple inverse problem consists in estimating a physical parameter vector
θ ∈ RD from an observation vector y ∈ RL. The forward model is set to an affine function
θ 7→ Aθ + b, with A ∈ RL×D and b ∈ RL. The considered noise ε is Gaussian additive and
uncorrelated. We consider the following observation model, that involves

y = Aθ + b + ε, with ε ∼ N (0, σ2IL). (A.13)

The prior is set to a zero-mean Gaussian distribution

θ ∼ N (0, τ2ID). (A.14)

In this setting, this prior is conjugate. The posterior distribution can thus be written simply by
combining Eq. A.13 and Eq. A.14. It is given by

θ|y ∼ N (µ, C), (A.15)

with 
C = Cov(θ|y) =

[ 1
σ2 AT A + 1

τ2 ID

]−1
= τ2

[
ID + τ2

σ2 AT A
]−1

,

µ = E[θ|y] = 1
σ2 CAT (y − b).

(A.16)

The posterior expectation µ = E[θ|y] is the estimator θ̂(y) that minimizes the MSE. With this
estimator, the MSE reduces to

E(θ ,y)
[
∥θ − θ̂(y)∥2

]
= Tr C = τ2 Tr

[ID + τ2

σ2 AT A
]−1

 . (A.17)

In the following, we derive the Fano lower bounds on the MSE to compare how tight it is.

Fano Bound – The computation of the Fano bound relies on h(θ|y) = h(θ, y) − h(y). As
(θ, y) and y are Gaussian random variables,

h(y) = 1
2 ln

[
(2πe)L det(σ2IL + τ2AAT )

]
,

h(θ, y) = 1
2 ln

(
(2πe)D+Lτ2Dσ2L

)
,

(A.18)

and

h(θ|y) = 1
2 ln

[
(2πe)D τ2Dσ2L

det(σ2IL + τ2AAT )

]
. (A.19)

The Fano Bound reads

E(θ ,y)
[
∥θ − θ̂(y)∥2

]
≥ D

2πe
exp

( 2
D

h(θ|y)
)

= D
τ2σ2(L/D)

det(σ2IL + τ2AAT )(1/D) . (A.20)

The Weinstein-Aronszajn identity permits to simplify the comparison with the true MSE. It reads

det(σ2IL + τ2AAT ) = σ2(L/D) det
(

ID + τ2

σ2 AT A
)

. (A.21)
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One can thus rewrite Eq. A.20 to

E(θ ,y)
[
∥θ − θ̂(y)∥2

]
≥ τ2D det

[ID + τ2

σ2 AT A
]−1

(1/D)

. (A.22)

This bound is very similar to the true MSE. The main difference comes from the arithmetic mean
geometric mean inequality.

The Fano bound attains the true MSE if and only if the posterior on θ is Gaussian, the
estimator is the posterior expectation, and the covariance matrix C = λID for some λ ≥ 0. The
first two conditions are verified in this linear and Gaussian simple illustration. For the last one,
considering C from Eq. A.16,

∃λ ≥ 0, C = λID ⇔ ∃λ2 ≥ 0, AT A = λ2ID

⇔ A = 0 or ∃λ2 > 0,
AT

√
λ2

A√
λ2

= ID

The first case, A = 0, implies that the observation model does not provide any information on
θ, and that the posterior distribution on θ is the same as the prior distribution. The second case
can only be satisfied if D ≤ L. Indeed, if D > L, it is impossible for AT A to be full rank.

Special cases – Table A.2 summarizes the formulae obtained in this case for the true MSE
and the Fano bound. The first two formulae illustrate the role of the arithmetic mean geometric
mean inequality (Eq. A.9) in the relevance of the Fano bound. The Fano bound equals exactly
the true MSE when the prior is dominant, when the matrix A is square with constant diagonal,
or when both the observation and physical parameter vectors are reduced to scalars. The last
two cases show that the linear map A minimizing the true MSE is the largest gradient a. In the
general case, the most informative linear map A has the largest singular values. To obtain large
singular values, the lines of A should have large norms and be as orthogonal as possible.

Table A.2 – Comparison of true MSE and Fano bound in Gaussian linear inverse problem

Case True MSE Fano bound
(Eq. A.17) (Eq. A.22)

General τ2 Tr
([

ID + τ2

σ2 AT A
]−1

)
τ2D det

[ID + τ2

σ2 AT A
]−1

(1/D)

σ → 0 σ2 Tr
([

AT A
]−1

)
σ2D det

([
AT A

]−1
)(1/D)

∥A∥F → 0
or τ → 0 Dτ2 Dτ2

D = L
and A = aID

τ2σ2

a2τ2 + σ2
τ2σ2

a2τ2 + σ2

D = L = 1 τ2σ2

a2τ2 + σ2
τ2σ2

a2τ2 + σ2

A.3 Conclusion
In this chapter, we presented a variable selection algorithm that permits identifying the lines

that lead to the lowest uncertainties in inference. The MSE is used as a quantitative criterion to
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quantify this uncertainty. As it cannot be evaluated, we resort to comparing lower bounds on the
MSE. The Fano bound is a tight lower bound. It is based on the conditional differential entropy
of a joint distribution π(θ, y), which can be evaluated efficiently with an MC estimator.

Future work involves adapting the code of the sampling algorithm proposed in Chapter 5 to
include a distribution on the observation π(y|θ∗). Then, it will be applied to compare sets of lines
predicted by the Meudon PDR code. The full set of L = 5 375 lines can be considerably reduced to
a few hundreds by only considering lines that are observable, i.e., that reach intensities larger than
σa. However, even with this smaller number of lines, the number of sets to evaluate becomes very
large for K ≥ 2. A heuristic approach may be needed to perform selection. Such methods include
e.g., greedy algorithms, stepwise forward selection or backward elimination methods (Shalev-
Shwartz and Ben-David, 2014, chapter 25, section 25.1), and meta-heuristics (Dreo et al., 2006).
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Appendix A.A Derivation of the multivariate Fano Bound

The scalar case
This subsection’s goal is to serve as a simple case to the next one. It is essentially a more

detailed version (particularly about hypothesis) than Cover and Thomas (2006, theorem 8.6.6).

Theorem A.A.1 (Estimator MSE and differential entropy in 1D case). For any scalar random
variable θ ∈ R and any estimator θ̂,

E
[
(θ − θ̂)2

]
≥ 1

2πe
e2h(θ), (A.23)

with equality if and only if θ is Gaussian and θ̂ = E[θ]

Proof. Let θ̂ be any estimator of θ. Then

E
[
(θ − θ̂)2

]
≥ min

θ̂

E
[
(θ − θ̂)2

]
= E

[
(θ − E[θ])2

]
= Var(θ). (A.24)

Then, to get a relation between the variance of θ and its entropy, one uses the fact that for
scalar random variables with given variance, the Gaussian distribution has maximum entropy. Let
σ2 = Var(θ) and Z ∼ N (µ, σ2), Then,

h(θ) ≤ h(Z) = 1
2 ln(2πeσ2), (A.25)

which gives

Var(θ) = σ2 ≥ 1
2πe

e2h(θ), (A.26)

with equality if and only if θ is Gaussian.

Corollary A.A.1.1. Given side information y ∈ RL and estimator θ̂(y), it follows that

E(θ,y)
[
(θ − θ̂(y))2

]
≥ 1

2πe
e2h(θ|y), (A.27)

with equality if and only if θ is Gaussian and the estimator θ̂(y) is the posterior expectation, i.e.,
θ̂(y) = E [θ|y].

Proof. Let θ̂(y) be any estimator of θ from observation y. Then

E(θ,y)
[
(θ − θ̂(y))2

]
≥ min

θ̂

E(θ,y)
[
(θ − θ̂(y))2

]
= E(θ,y)

[
(θ − E[θ|y])2

]
(A.28)

= Ey [Var(θ|y)] (A.29)

Note that Ey [Var(θ|y)] is the average variance of θ|y (when averaging over y). Likewise, by
definition, h(θ|y) is the average entropy of θ|y (averaged over y). Therefore, by applying the
theorem above, one gets the expected inequality. Like in the theorem above, equality is attained
when θ is Gaussian and the estimator θ̂(y) is the posterior expectation, ie θ̂(y) = E [θ|y].

No assumption over the distribution or dimensionality of y is necessary. This implies that this
bound works whether the relation between θ and ynℓ is linear or not.

In the general case, we can’t compute h(θ|y) analytically, and we need to estimate it with an
MC estimator. When the pdfs can be evaluated – which is the case in this chapter – then the
standard estimator from Eq. A.10 can be used. When the pdfs cannot be evaluated, the entropy
can be evaluated with the estimator from Kraskov et al. (2004).
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In higher dimensions
Theorem A.A.2 (Estimator MSE and differential entropy in multivariate case). For any random
vector θ ∈ RD and any estimator θ̂,

E
[
∥θ − θ̂∥2

]
≥ D

2πe
exp

( 2
D

h(θ)
)

, (A.30)

with equality if and only if θ is Gaussian, θ̂ = E[θ] and the covariance matrix of θ is proportional
to the identity.

Proof. Let θ̂ be any estimator of θ.

E
[
∥θ − θ̂∥2

]
≥ min

θ̂

E
[
∥θ − θ̂∥2

]
= Tr C, (A.31)

with C ∈ MD(R) the covariance matrix of θ. Then, to get a relation between the trace of
the covariance matrix of θ and its entropy, one uses the fact that for a random vector with
given covariance matrix, the multivariate Gaussian distribution has maximum entropy. Let Z ∼
N (0, C). Then,

h(θ) ≤ h(Z) = 1
2 ln(det(2πeC)), (A.32)

which yields

det(C) ≥ 1
(2πe)D

exp (2h(θ)) . (A.33)

Using the arithmetic mean geometric mean inequality, i.e.,

[det C]
1
D ≤ Tr C

D
, (A.34)

we get

Tr C ≥ D [det C]
1
D ≥ D

2πe
exp

( 2
D

h(θ)
)

, (A.35)

with equality iif θ is Gaussian and C is proportional to the identity.

Corollary A.A.2.1. Given side information y and estimator θ̂(y), it follows that

E(θ ,y)
[
∥θ − θ̂(y)∥2

]
≥ D

2πe
exp

( 2
D

h(θ|y)
)

(A.36)

Proof. The proof of this corollary is similar to the previous one: we rewrite the MSE to get an
average covariance matrix for θ|y (averaged over y), and apply the theorem to get the inequality
with h(θ|y).

Here again, no assumption is made over the distribution of y.
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Acronyms

ABC approximate Bayes computing
AdaGrad adaptive gradient algorithm
AE absolute error
AIC Akaike information criterion
ALMA Atacama large millimeter/submillimeter

array
ANN artificial neural network
ASIS ancillarity-sufficiency interweaving strat-

egy
au astronomical unit

BB black body
BIC Bayesian information criterion
BO Bayesian optimization

cdf cumulative density function
cgs centimetre-gram-second
CI credibility interval
CL Cauchy loss function
CLT central limit theorem
CNM cold neutral medium

DGMC distributed genetic MC
DIC deviance information criterion
DMC darting MC

EES equi-energy sampler
EF error factor
elpd expected log-predictive density
EMC evolutionary MC
ESS effective sample size
EUV extreme ultraviolet

FIR far infrared
FUV far ultraviolet

GA genetic algorithm
GD gradient descent
GELU Gaussian error linear unit
GMC giant molecular cloud
GMM Gaussian mixture model
GP Gaussian process

HIM hot ionized medium

HMC Hamiltonian Monte Carlo
HPR high probability region
HST Hubble space telescope

ICA independent component analysis
i.i.d. independent and identically distributed
I-MH independent Metropolis-Hastings
I-MTM independent multiple-try Metropolis
IR infrared
ISM interstellar medium
ISRF interstellar radiation field

JAMS jumping adaptative multimodal sampler
JWST James Webb spatial telescope

KDE kernel density estimation
KL Kullback-Leibler
KS Kolmogorov-Smirnov

L-BFGS limited memory BFGS
LHS latin hypercube sampling
LM Levenberg-Marquardt
LMC large Magellanic cloud
lpd log-predictive density
LTE local thermal equilibrium
LVG large velocity gradient
ly light-year

MAE mean absolute error
MALA Metropolis adjusted Langevin algorithm
MAP maximum a posteriori
MBB modified black body
MC Monte Carlo
MCMC Markov chain Monte Carlo
MH Metropolis-Hastings
ML machine learning
MLE maximum likelihood estimator
MMALA manifold Metropolis adjusted

Langevin algorithm
MMSE minimum mean square error
MSE mean squared error
MTM multiple-try Metropolis
MW Milky Way
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ACRONYMS

MYULA Moreau-Yosida unadjusted Langevin
algorithm

NIR near infrared

OLHS orthogonal LHS

PAH polycyclic aromatic hydrocarbons
pc parsec
PCA principal component analysis
PCR principal component regression
pdf probability density function
PDR photodissociation region
PGD preconditioned gradient descent
PMALA preconditioned Metropolis adjusted

Langevin algorithm
pmf probability mass function

QMC quasi-Monte Carlo

RBF radial basis function
RDMC regeneration darting MC
ReLU rectified error linear unit
RF random forest
RJ Rayleigh-Jeans
RMHMC Riemannian manifold HMC
RMSProp root mean squared propagation
R-SNR reconstruction signal-to-noise ratio

RWMH random walk Metropolis-Hastings

SA simulated annealing
SDE stochastic differential equation
SE squared error
SED spectral energy density
SFR star formation rate
SGD stochastic gradient descent
SG-MCMC stochastic gradient MCMC
SLED spectral line energy distribution
SLHS symmetric LHS
SMC sequential MC
SNR signal-to-noise ratio

UF uncertainty factor
ULA unadjusted Langevin algorithm
UV ultraviolet

VBI variational Bayes inference

WAIC widely applicable information criterion
WBIC widely applicable Bayesian information

criterion
WHMC wormhole Hamiltonian Monte Carlo
WIM warm ionized medium
WNM warm neutral medium

YSO young stellar object
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Résumé court

Méthodes d’échantillonnage pour l’inférence statistique de problèmes inverses
non linéaires : distribution spatiale des propriétés physico-chimiques du milieu

interstellaire

Le milieu interstellaire (MIS) est un milieu très diffus qui remplit l’immense volume entre les
objets célestes tels que les étoiles et les trous noirs au sein d’une galaxie. L’étude du MIS soulève
des questions fondamentales dont la formation d’étoiles. Les étoiles naissent de l’effondrement
gravitationnel de parties de régions froides et denses du MIS appelées nuages moléculaires.

Cette thèse analyse des cartes multispectrales de nuages moléculaires dans les domaines infra-
rouge lointain et radio, obtenues par des télescopes spatiaux ou terrestres. L’attention est portée
aux nuages illuminés et chauffés par des étoiles massives voisines émettant des photons UV. La
couche de surface de tels nuages, où le champ radiatif UV chauffe et dissocie le gaz moléculaire,
est appelée région de photodissociation (PDR). Leur cartes multispectrales contiennent typique-
ment de 1 à 10 000 pixels, où chaque pixel contient l’intensité intégrée de 5 à 30 raies d’émission.
Ces intensités peuvent être comparées avec les prédictions d’un modèle numérique du MIS tel que
le code PDR de Meudon, qui calcule ces intensités à partir de paramètres physiques. Cette thèse
vise à estimer des cartes de paramètres physiques (tels que la pression thermique ou l’intensité du
champ UV incident) à partir d’une carte d’observation et du code PDR de Meudon. Ce problème
est une instance d’une classe générale de problèmes inverses.

Une nouvelle méthode d’inférence tenant compte d’autant de sources d’incertitudes que pos-
sible est introduite. Une procédure générale est proposée pour construire une approximation de
modèles numériques. Elle exploite un réseau de neurones spécifique et surpasse les méthodes d’in-
terpolation en termes de précision, de poids mémoire et de durée d’évaluation. Une régularisation
spatiale améliore les estimations. Une approche par échantillonnage est considérée pour fournir des
quantification d’incertitudes en plus d’estimateurs ponctuels de cartes de paramètres physiques
afin de compenser l’absence de vérité terrain, inhérente à l’astrophysique. L’algorithme Monte
Carlo Markov chain (MCMC) proposé combine deux échantillonneurs : l’un identifie les minima
locaux dans l’espace des paramètres tandis que l’autre les explore efficacement. Finalement, la
pertinence du modèle d’observation considéré pour l’inférence est vérifiée. La méthode proposée
est appliquée à des données synthétiques pour validation, puis à des observations réelles. Les
résultats sont analysés pour fournir des interprétations astrophysiques.

Mots-clés – Problèmes inverses, algorithmes MCMC, milieu interstellaire, nuages molécu-
laires, régions de photodissociation, apprentissage statistique.
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Abstract

Sampling methods for statistical inference of non-linear inverse problems:
spatial distribution of physico-chemical properties of the interstellar medium

The interstellar medium (ISM) is a very diffuse medium that fills the extraordinarily large
volume between celestial objects such as stars and black holes in a galaxy. The study of the
ISM raises fundamental questions including star formation. Stars are born from the gravitational
collapse of a part of cold and dense regions of the ISM called molecular clouds.

This thesis analyzes multispectral maps of molecular clouds in the infrared and radio domains,
observed by space or ground telescopes. The focus is put on clouds that are illuminated and
heated by nearby massive stars emitting UV photons. The surface layer of such clouds, where
the UV irradiation heats and dissociates the molecular gas, is called a photodissociation region
(PDR). Their multispectral maps typically contain from 1 to 10 000 pixels, where each pixel
contains the integrated intensities of 5 to 30 emission lines. These intensities can be compared
with the predictions of an ISM numerical model such as the Meudon PDR code that computes
intensities from physical parameters. This thesis aims at estimating maps of physical parameters
(such as the thermal pressure or the intensity of the incident UV field) from an observation map
and the Meudon PDR code. This problem is an instance of a general class of inverse problems.

A new inference method that accounts for as many uncertainty sources as possible is intro-
duced. A general procedure to derive a surrogate approximation of numerical models is proposed.
It is based on a specific neural network and outperforms interpolation methods in accuracy,
memory weight and evaluation time. A spatial regularization improves estimations. A sampling
approach is considered to provide uncertainty quantification along with the estimated physical
parameter maps to address the absence of ground truth, inherent to astrophysics. The proposed
Monte Carlo Markov Chain (MCMC) algorithm combines two samplers: one identifies local min-
ima in the parameters space while the second efficiently explores them. Finally, the relevance of
the observation model considered for inference is assessed. The proposed method is applied to syn-
thetic data for validation and then to real observations. The results are analyzed for astrophysical
interpretation.

Keywords – Inverse problems, MCMC algorithms, interstellar medium, molecular clouds,
photodissociation regions, machine learning.
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