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École doctorale n◦564 Physique en Île-de-France (PIF)
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Titre: Transport RF à travers une barre Hall mésoscopique couplée à des
résonateurs micro-ondes sur puce

Mots clés: transport mésoscopique, micro-ondes, effet Hall quantique, bruit
de grenaille

Résumé: Dans cette thèse, nous rap-
portons des études expérimentales sur
le transport radiofréquence dans un
Hall Bar de taille mésoscopique en
régime de Hall quantique. Le Hall Bar
est un gaz d’électrons bidimensionnel
formé dans une hétérostructure semi-
conductrice de GaAs/GaAlAs. La dy-
namique de ce Hall Bar est étudiée
en modélisant des résonateurs sur puce
qui y sont attachés et qui résonnent à
4,6 GHz. Ils fournissent une adapta-
tion d’impédance avec Hall-Bar, nous
permettant ainsi de sonder la physique
en régime de réponse linéaire. Nous
avons ainsi déterminé l’impédance du
gaz électronique en régime de hall

quantique. Le gaz électronique se
comporte comme un transformateur
d’impédance. Nous avons mesuré le
bruit de tir à haute fréquence à travers
l’appareil et déterminé les règles de
composition d’impédance pour celui-ci
dans diverses configurations de circuit.
Enfin, nous avons tenté des expériences
pour mesurer la rétro-action quantique
de ces résonateurs sur le point de
contact quantique à une fraction de
remplissage de 2. Nous avons ob-
servé que ces effets ne sont pas canon-
iques comme dans les jonctions tun-
nel, mais sont affectés par la nature de
la transformation d’impédance du gaz
électronique.

Title: RF-Transport through mesoscopic Hall Bar coupled to microwave res-
onators

Keywords: mesoscopic transport, microwaves, Quantum Hall Effect, Shot
noise

Abstract: In this thesis, we report ex-
perimental studies on radio frequency
transport in mesoscopic size Hall Bar
in quantum hall regime. The Hall
Bar is a two-dimensional electron gas
formed in semiconductor heterostruc-
ture of GaAs/GaAlAs. The dynamics
of this Hall Bar are studied by pattern-
ing On-chip resonators attached to it
which resonate at 4.6 GHz. They pro-
vide impedance matching with Hall-
Bar, thereby, allowing us to probe
the physics in linear response regime.
With that we have determined the
impedance of electron gas in quan-

tum hall regime. Electron gas behaves
as an impedance transformer.We have
measured high-frequency shot noise
through the device and determined the
Impedance composition rules for it un-
der various circuit setups. Lastly, we
have attempted experiments to mea-
sure the quantum back-action of these
resonators on the Quantum point con-
tact at filling fraction of 2. We have ob-
served that these effects are not canon-
ical like in tunnel junctions, but are
affected by impedance transformation
nature of the electron gas.
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Chapter 1

Summary

In this thesis, dynamics of mesoscopic circuits in Quantum Hall regime have been

studied. We have a mesoscopic size electron gas that is galvanically attached to

on-chip microwave resonators. These resonators provide impedance matching and

thus has allowed us to explore the physics of our device at high frequencies in linear

response regime.

Quantum Point ContactMesa

Cold Ground

Resonator

Switch Gate

a) b)

Figure 1.1: Electron micro-graph of the device. a) Zoom-out picture showing two
resonators having two-dimensional electron gas in between. All around is a contin-
uous metallic ground plane. b) Zoom-in picture in between resonators. The yellow
polygon there marks the boundary of electron gas buried 100 nm below the surface.
On top of it, at the centre, is the Quantum Point Contact (shown in red). There
are also switch-gates, 2 on each side, allowing to have different circuit configura-
tions. And there is an ohmic contact on opposite edges of mesa which connects it
to metallic ground plane (termed as cold grounds).
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Figure 1.2: RF transmission (S21 max) (shown in red) along with two-probe resis-
tance (in blue). There is a smooth variation of RF transmission with shubnikov-
deHaas type oscillations as filling fraction is decreased with increase of the magnetic
field

1.1 RF Transmission in Quantum Hall Regime

We have measured the high-frequency impedance of this mesoscopic circuit in the

Quantum Hall Regime by measuring the RF transmission through the sample using

vector network analyser. The observations have shown that in the range of 4-8 GHz

frequencies, the chiral system (electron gas) behaves like an impedance transformer,

with its specific rules dictated by the chirality due to Quantum Hall Effect. In par-

ticular, the transport through the edge states can be described as the one through a

uni-directional transmission line. For magnetic fields where filling fraction is an in-

teger ranging from 10 to 2, the collective excitations (Edge-magnetoplasmons) have

linear dispersion relation and thus propagate with velocity which is linear with hall

conductance. The current and voltage waves acquire a simple propagation phase

when going through the device. When exploring within ν = 2 plateau, we have

explained the data by assuming an ohmic dissipation and then by assuming a RC

coupling to the bulk localised states. When a scattering center like Quantum Point

Contact is used, then things are slightly complicated, but basically by following

the general scattering theory rules and incorporating the phase propagation of plas-



a)

b) c)

Figure 1.3: S21 curves for ν = 2, 3 and 4 along with fits. The obtained τ are 84.9
ps, 54.65 ps and 49.375 ps respectively.

mons, it can be explained. From the zero field measurement, we have been able to

characterize our resonators’ internal resistance and determine the gain of the full

RF chain in order to make the above mentioned claims quantitative.

1.2 Noise Measurements at ν = 2 Plateau

We have then studied the high-frequency Shot noise emitted by DC biasing the

Quantum Point Contact in different sample configurations. This has resulted in

understanding the microwave coupling of the noise emitted from the QPC to detec-

tion chain. Thanks to the high-impedance nature of these on-chip resonators, the

coupling is better than having just 50 ohm line, thereby, increasing S.N.R and re-

ducing greatly the measurement time. Our findings show here that for 3-point setup

configuration, the coupling of the noise is independent of the phase acquired by the

noise signal when traversing from the QPC to the resonators. This is because there

is no feedback of the current fluctuations that gets injected back to the system, due
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Figure 1.4: Circuit schematic for 3-point configuration. Inner-edge channel is fully
reflected by the QPC while outer-edge is transmitted with probability τ . The Shot
noise from the QPC gets injected into the outer edge channel on both sides of it
which then reaches the resonator. The power received into the detection lines is
proportional to δIn and δIs which are some fraction of δI, the bare Shot noise
emitted from the QPC, owing to the current division.

to on-chip grounds. The detected power spectral density in 3-point setup for large

DC bias (eV >> hfo) is given as:

δP

Poff

=
1

kBTN

(eV − hf)τ(1− τ)

RK

Re(Zdet)

|1 + 2GKZdet|2
(1.1)

This allows us to quantify RF gain of the detection chain. The noise temperature

of the Cryo-Amplifiers as seen from the sample comes out to be 9.3K

In 2-point setup, however, there is no on-chip ground. This leads to classical feed-

back of the fluctuations onto the QPC, making the propagative phase an important

quantity. The detected power spectral density in this configuration is given as:

δP

Poff

=
1

kBTN

⟨δI2bare⟩Re(Zdet)

|1 + (2− (1− 2τ)e−i2ϕo) Zdet

RK
|2

(1.2)

By making basic fits with experimental data we have been able to extract the value

of the acquired phase ϕo (see figure 1.7)
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Figure 1.6: 2-point noise circuit: We do differential biasing across Quantum Point
Contact. On the north side of the sample, a small current bias Iac is applied via
lock-in amplifier and voltage is measured. The resistors RF to ground on each side
are 12 kΩ. They help us to have a voltage bias. On RF side, we have two cryo-amps
on each detection lines allowing us to measure the auto-correlation accurately. The
splitting of emitted signal from sample into two lines is done by -3dB hybrid coupler
(shown as brown square). Unfortunately, line C was disconnected during the run.
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Figure 1.7: Integrated noise power along with fits with Vdc = 58.7µV for three cross-
correlations which are named here as ’AB’, ’AD’ and ’DB’ respectively in 2-point
setup.

1.3 Quantum-Back Action of Resonators

In a third set of experiments, we have explored the Quantum Back-action of the

resonators onto the QPC, owing to the fact that feedback by zero-point fluctuations

on QPC is always there, and that these fluctuations are sizeable due to the large

characteristic impedance of the resonators. The observed reduction of differential

conductance is a bit surprising. For one thing, the effects are seen at bias values

which are equivalent to the energy quantum of the resonator and that these observed

effects are not as strong as one would expect from the nature of the electromagnetic

environment (value of characteristic impedance). We suspect that due to finite

size of the electron gas between QPC and the resonators, there is an impedance

transformation of the LC oscillator, thereby, changing the impedance nature of the

environment. Currently, we do not have an understanding of this effect.



𝜏 decreasing

Figure 1.8: δG/G∞ plot as a function of bias applied. We see a reduction of the
conductance at two bias values (±20µV ) (20µV ∼ hfo), symmetric about zero bias.
The relative reduction with respect to large bias increases more with decreasing
transmission.

1.4 Conclusion

In Conclusion, we can say that this mesoscopic circuit containing on-chip microwave

resonators coupled to an electron gas in Quantum Hall regime is a good way to

explore the dynamics of the electron gas, uncovering its high-frequency properties

and also conveying information about how to compose the impedance of this chiral

system with a circuit (resonator) having an impedance comparable to it. Also, with

this knowledge, we could quantify the microwave coupling of the noise being emitted

from quantum conductor to the detection circuit and study the quantum back-action

of the resonators on quantum conductors. For these dynamical coulomb bockade

effects, perhaps a smaller size of electron gas might be useful, since it will have less

propagation effects, thus, weaker impedance transformation properties.



Chapter 2

Résumé en Français

Dans cette thèse, nous avons étudié la dynamique des circuits mésoscopiques en

l’effet hall quantique. Nous disposons d’un gaz électronique de taille mésoscopique

qui est connecté galvaniquement aux résonateurs micro-ondes défini on chip. Ces

résonateurs une impedance de detection élevé et nous ont ainsi permis d’explorer la

physique de notre dispositif à hautes fréquences en régime de réponse linéaire.

Quantum Point ContactMesa

Cold Ground

Resonator

Switch Gate

a) b)

Figure 2.1: Micrographie électronique de l’appareil. a) Image zoom arrière mon-
trant deux résonateurs ayant un gaz d’électrons bidimensionnel entre les deux. Tout
autour se trouve un plan de masse métallique continu. b) Image zoomée entre les
résonateurs. Le polygone jaune marque la limite du gaz électronique enfoui à 100
nm sous la surface. Au-dessus, au centre, se trouve le Quantum Point Contact
(représenté en rouge). Il existe également des interrupteurs, 2 de chaque côté, per-
mettant d’avoir différentes configurations de circuits. Et il y a un contact ohmique
sur les bords opposés du mesa qui le relie au plan de masse métallique (appelé masse
froide).
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Figure 2.2: Transmission RF (S21 max) (représentée en rouge) avec résistance à
deux sondes (en bleu). Il existe une variation douce de la transmission RF avec les
oscillations de type Shubnikov-deHaas, car la fraction de remplissage diminue avec
l’augmentation du champ magnétique.

2.1 Transmission RF dans le régime Quantum Hall

Nous avons mesuré l’impédance haute fréquence de ce circuit mésoscopique dans le

régime Quantum Hall en mesurant la transmission RF à travers l’échantillon à l’aide

d’un analyseur de réseau vectoriel. Nos resultats ont montré qu’aux fréquences de 4

à 8 GHz, le système chiral (électron gazeux) se comporte comme un transformateur

d’impédance, avec ses règles spécifiques dictées par la chiralité due à l’effet Hall

quantique. En particulier, le transport à travers les états de bord peut être décrit

comme celui passant par une ligne de transmission unidirectionnelle et chirale. Pour

les champs magnétiques où le facteur de remplissage est un nombre entier allant

de 10 à 2, les excitations collectives (Edge-magnétoplasmons) ont une relation de

dispersion linéaire et se propagent ainsi avec une vitesse linéaire avec la conductance

de Hall. Les ondes de courant et de tension acquièrent une phase de propagation

simple lorsqu’elles traversent l’appareil. Lors de l’exploration du plateau ν = 2,

nous avons expliqué les données en supposant un modèle de dissipation ohmique,

où la conductance par unité de longueur varie en fonction du champ magnétique à

travers le plateau. Lorsqu’un centre de diffusion tel que Contact Ponctuel Quantique



a)

b) c)

Figure 2.3: Courbes S21 pour ν = 2, 3 et 4 avec ajustements. Les τ obtenus sont
respectivement de 84,9 ps, 54,65 ps et 49,375 ps

est utilisé, les choses sont alors légèrement compliquées, mais fondamentalement,

en suivant les règles générales de la théorie de la diffusion et en incorporant la

propagation de phase des plasmons, cela peut être expliqué. A partir de la mesure

du champ nul, nous avons pu caractériser la résistance interne de nos résonateurs et

déterminer le gain de la chaine RF complète.

2.2 Mesures de bruit au plateau ν = 2

Nous avons ensuite étudié le bruit haute fréquence émis par le Contact Ponctuel

Quantique dans la chaine de détection dans différentes configurations d’échantillons.

Cela a permis de comprendre le couplage micro-onde du bruit émis par le QPC à la

chaine de détection. Grâce à la haute impédance de ces résonateurs, le couplage est

meilleur qu’une ligne de 50 ohms, augmentant ainsi le S.N.R et réduisant le temps

de mesure. Nos résultats montrent ici que pour une configuration à 3 points, le

couplage du bruit est indépendant de la phase acquise par le signal de bruit lors du
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Figure 2.4: Schéma de circuit pour configuration 3 points. Le canal de bord intérieur
est entièrement reflété par le QPC tandis que le bord extérieur est transmis avec
une probabilité τ . Le bruit de tir du QPC est injecté dans le canal de bord extérieur
des deux côtés de celui-ci, qui atteint ensuite le résonateur. La puissance reçue dans
les lignes de détection est proportionnelle à δIn et δIs qui représentent une fraction
de δI, le bruit de tir nu émis par le QPC, en raison du division actuelle.

passage du QPC aux résonateurs. En effet, il n’y a pas de retour des fluctuations de

courant qui sont réinjectées dans le système, en raison des masses sur la puce. La

densité spectrale de puissance détectée dans une configuration à 3 points est donnée

par :

δP

Poff

=
1

kBTN

(eV − hf)τ(1− τ)

RK

Re(Zdet)

|1 + 2GKZdet|2
(2.1)

Cela nous permet de quantifier le gain RF de la chaine de détection. La température

de bruit des cryo-amplificateurs, telle que vue sur l’échantillon, est de 9,3K.

Dans une configuration à 2 points, cependant, il n’y a pas de masse sur puce. Cela

conduit à un retour classique des fluctuations sur le QPC, faisant de la phase de

propagation une grandeur importante. La densité spectrale de puissance détectée

dans cette configuration est donnée par :

δP

Poff

=
1

kBTN

⟨δI2bare⟩Re(Zdet)

|1 + (2− (1− 2τ)e−i2ϕo) Zdet

RK
|2

(2.2)
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Figure 2.5: Dépendance de transmission de la puissance de bruit intégrée pour le
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canonique τ(1 − τ). Les lignes continues sont obtenues en additionnant la formule
1.1 sur la fréquence, où TN est saisi sous la forme 9,3K
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Figure 2.6: Circuit de bruit à 2 points : nous effectuons une polarisation différentielle
à travers Quantum Point Contact. Sur le côté nord de l’échantillon, une petite
polarisation de courant Iac est appliquée via un amplificateur verrouillable et la
tension est mesurée. Les résistances RF à la terre de chaque côté sont de 12 kΩ.
Ils nous aident à avoir une polarisation en tension. Côté RF, nous disposons de
deux cryo-ampères sur chaque ligne de détection nous permettant de mesurer l’auto-
corrélation avec précision. La division du signal émis par l’échantillon en deux lignes
est effectuée par un coupleur hybride de -3 dB (représenté par un carré marron).
Malheureusement, la ligne C a été déconnectée pendant la course.
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Figure 2.7: La puissance de bruit intégrée s’adapte à Vdc = 58, 7µV pour trois
corrélations croisées nommées ici respectivement ’AB’, ’AD’ et ’DB’ dans une con-
figuration à 2 points.

En effectuant des ajustements de base avec les données expérimentales, nous avons

pu extraire la valeur de la phase acquise ϕo (figure 2.7)

2.3 Quantum-Back Action of Resonators

Dans une troisième série d’expériences, nous avons exploré la rétro-action quantique

des résonateurs sur le QPC, du fait que la rétroaction par les fluctuations du point

zéro sur le QPC est toujours présente et que ces fluctuations sont importantes en rai-

son de la grande impédance caractéristique de les résonateurs. La réduction observée

de la conductance différentielle est un peu surprenante. D’une part, les effets sont

observés à des valeurs de biais équivalentes au quantum d’énergie du résonateur mais

ces effets observés ne sont pas aussi forts que ce que l’on pourrait attendre de la na-

ture de l’environnement électromagnétique (valeur de l’impédance caractéristique).

Nous soupçonnons qu’en raison de la taille finie du gaz d’électrons entre QPC et
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Figure 2.8: tracé δG/G∞ en fonction du biais appliqué. Nous constatons une
réduction de la conductance à deux valeurs de biais (±20µV ) (20µV ∼ hfo),
symétriques par rapport au biais nul. La réduction relative par rapport aux bi-
ais importants augmente davantage avec la diminution de la transmission.

les résonateurs, il se produit une transformation d’impédance de l’oscillateur LC,

modifiant ainsi la nature de l’impédance de l’environnement. Nous ne comprenons

toujours pas ce phénomène

2.4 Conclusion

En conclusion, nous pouvons dire que ce circuit mésoscopique contenant des résonateurs

micro-ondes sur puce avec du gaz d’électrons en régime l’effet hall quantique est un

bon moyen d’explorer la dynamique du gaz d’électrons, en découvrant ses propriétés

d’impédance à haute fréquence et en transmettant également des informations sur la

façon dont composer l’impédance de ce système chiral avec un circuit (résonateur)

ayant une impédance comparable à celui-ci. De plus, grâce à ces connaissances, nous

avons quantifier le couplage micro-onde du bruit émis par le conducteur quantique

vers le circuit de détection et étudier la rétroaction quantique des résonateurs sur les

conducteurs quantiques. Pour ces effets de blocage dynamique de Coulomb, peut-

être qu’une taille plus petite de gaz électronique pourrait être utile, car elle aura



moins d’effets de propagation, donc des propriétés de transformation d’impédance

plus faibles.



Chapter 3

General Introduction

The experimental work in this thesis lies in the field of Mesoscopic quantum trans-

port. The systems studied here are electrical circuits that can be patterned by

using standard techniques of Nano-Lithography. The conductors patterned are of

the order of few fermi-wavelength of the charge carriers. These charge carriers, thus,

maintain their quantum behavior while traversing through these conductors. And

this quantum nature of carriers is manifested in the measured physical quantities

such as current through the device. In order to observe this quantum behavior,

though, these conductors need to kept at low temperatures. For that purpose, cryo-

genic refrigerators are used (see figure 3.1).

The conductors act as bottlenecks or scattering centre for the charge carriers. Due

to this, motion of carriers through these conductors under the application of applied

bias is probabilistic. Hence, the current through these devices always has inherent

fluctuations in time (figure 3.2). In general, these conductors are embedded in some

external circuit. This external circuit can be a transmission line (co-axial cable)

for carrying signals from the device at cold temperature to the room temperature,

LC oscillator for studying the response in a given bandwidth etc. Now, since the

current fluctuates, it acts as source of electromagnetic radiation. This radiation,

which one can think of as photons, interacts with this external circuit which are de-

21



(Dilu�on Fridge)

Figure 3.1: Mesoscopic size conductor. Electrons maintain their phase coherence
while getting scattered through it. The size of this conductor is smaller than phase
coherence length Lϕ, so that phase coherence of carriers is maintained. This phe-
nomenon is observed at low temperatures, that’s why dilution refrigerators are
needed. The picture shows Dry dilution refrigerator from Cryo-Concept used in
our lab.

scribed by an impedance Z(ω). We would like to study this interaction of radiation

with the external circuit. Our mesoscopic conductor is kept at about 20 mK. The

frequency of photons which are thermally populated at this temperature is about

400 MHz. So, the radiation (photons) at these frequencies would already be present

in the system in additon with the one radiated due to transfer of carriers through

the conductors. That’s why, we want to measure the dynamics of interactions at

large frequencies, focusing only on the photons generated due to transport through

𝑒−
𝐼(𝑡)

𝑡

⟨𝐼𝑑𝑐 ⟩

Figure 3.2: Passage of electrons through mesoscopic conductor leads to inherent
fluctuations of current through device.
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Figure 3.3: Full circuit containing mesoscopic conductor with external impedance.

mesoscopic conductor. For this reason, we have chosen to study in C-band of mi-

crowaves spectrum, in 4-8 GHz regime (figure 3.3).

One main question that would like to address is the nature of emitted photons due

to electronic transport. Consider that external circuit is a transmission line that

carries this signal from the sample at cold temperature to room temperature. Now,

an interesting question that has been theoretically asked is, can these photons have

same statistics as electrons? The answer to this question is yes and has been pro-

vided in (9),(8) (figure 3.4). For that we need a single channel of electrons where

each transmitting electron emit a single photon. Now, the impedance of conductors

having a single channel of electrons is about 26 kΩ while the impedance of stan-

dard transmission lines is 50Ω. This would produce a huge impedance mismatch,

thereby, reducing the amount of power delivered to transmission line. To circumvent

this issue, one can put an impedance transformer, which would increase the detected

power and hence, signal to noise ratio.

So, to study these physics of photon emission through single channel, we first need a

system that can provide us with single electron channels and where the mesoscopic

conductor is patterned to produce radiation. For this reason, we have chosen GaAs

semiconductor hetero structure based two-dimensional electron gas. The electron
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Figure 3.4: Circuit setup for measuring the statistics of emitted photons into trans-
mission line (external circuit) due to transfer of electrons through mesoscopic con-
ductor

Split gates

Edge-states

Figure 3.5: The platform for performing photon statistics experiments in single
electron channel limit.

gas is formed at the interface of GaAs and GaAlAs (more in the next section) and

has high mobility (in the sample that we use, it is about 560,000 cm2/V s). By

depositing a metallic gate on top of this hetero structure and biasing it, we can have

a field effect and thereby, tune the density of electron gas. Now in order to have

electron channels, we work in quantum hall regime. Here our electron gas is placed

in a perpendicular magnetic field. Due to this, cyclotron motion of electrons gets

quantized and energy spectrum develops a gap in the bulk of the sample. There

is no transport through the bulk of the sample. However, along the edges, states

do exist that can carry the current through the device, but along a given direction.

These chiral states, known as edge states, provide us with spin resolved channels at
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Figure 3.6: Schematic circuit for measuring photon statistics experiment

sufficiently high magnetic fields for electronic transport where motion of electrons

through these states is ballistic. Now, with the deposition of specific geometry of

metallic gates on top of the hetero-structure, known as split gates, these electronic

channels can be selectively tuned, thereby, providing us with a full platform for

studying the transport at high-frequencies and determining the nature of emitted

photons.

In this thesis, in particular, two major experiments have been performed. First,

the impedance of the sample (electron gas) is determined at high magnetic fields

by radio-frequency transmission measurements. The nature of the impedance is

important to know as it determines the amount of power that gets deposited into

external(detection) circuit. Moreover, these results have revealed rich behavior of

the physics of the electron gas at these high frequencies in the quantum hall regime,

where transport is dominated by collective excitations. In the second set of experi-

ments, Shot noise measurements are performed in two different circuit setups of the

device which has allowed us to calibrate the noise measurement circuitry and also

determine output impedance of our quantum conductor. These experiments provide

full characterisation of the system at high magnetic fields and at high frequencies.

The knowledge and insights gained here will be useful in performing photon statis-

tics experiments that we originally aimed for.



In the coming sections, we explain the basic building blocks of our platform.

3.1 Two-Dimensional Electron Gas

In this thesis, the system on which experiments are performed is an electron gas

confined in two dimensions. This gas of electrons is formed at the interface of

semiconducting heterostructure. In our case, we use GaAs/AlGaAs heterostructure

2DEG. These are grown by Molecular Beam epitaxy technique and are provided to

us by Antonella Cavanna and Ulf Gennser from C2N, Palaiseau, France.

In this technique crystal is grown layer by layer and during this course it is possible

Figure 3.7: Layer sequence in MBE grown GaAs/GaAlAs heterostructure. 2-DEG
can be seen in a thin confinement between GaAs substrate and AlxGa1−xAs. (43)

to change the composition of GaAs such that it changes to AlxGa1−xAs suddenly

at a crystal plane, which leads to the change in energy band structure.

One can engineer the bands not only by changing the composition of the mate-

rial constituent during crystal growth but also by introducing atoms in relatively

small concentrations at different lattice sites. This process is referred to as doping.

Dopants that can release electrons into the conduction band through thermal acti-

vation (e.g., Si on a Ga lattice site in a GaAs crystal) are called Donors. Others

which release holes in the valence band are called as Acceptors.

In GaAs, Si donors form bound states close the bottom of the conduction band. By



Figure 3.8: The band bending diagram of the heterostructure: As a result of charge
equilibration the conduction band energy along the z direction forms a triangular
quantum well, where the electrons are trapped, located approximately 100 nm below
the surface.

using a special doping technique, known as δ-doping and putting in a spacer layer,

one can reduce the electrostatic interaction between the 2D electron gas and these

dopants, leading to high mobility.

The electrons in 2DEG are confined by a triangular potential well that results from

the band bending at the interface of GaAs/GaAlAs. The confinement potential is

a combination of the repulsive barrier due to the conduction band offset between

the two semiconductors and the attractive potential due to the positively charged

ionized donors left on the GaAlAs side.

The confinement of the electrons results in the quantization of the motion along the

direction perpendicular to the interface, generating 2-dimensional subbands. Elec-

trons are free to move in the plane of the interface but the transverse kinetic energy

Ez takes only discrete values. In GaAs a typical energy separation between sub-

bands is of the order of 10-40 meV. This means that at low temperature, typically

below 100K, and low electrons density only the first subband is occupied and the

system behaves as an effective 2-dimensional conductor.



3.1.1 Quantum Point Contact

Metallic Gates can be deposited on the heterostructure of GaAs/GaAlAs. Owing to

the Schottky gap between the metal and GaAs,the gate does not couple galvancally.

When a negative voltage is applied to these gates the carrier density of electron gas

below can be tuned as a result of field effect. This is one of the reason why GaAs

based 2DEG’s are used as High Electron Mobility Transistors (HEMT) and

are main components for cryogenic amplifiers. These amplifiers have very low input

noise and thus are widely used in cryogenic condensed matter physics experiments,

where one measures extremely low amplitude signals.

There exist a special arrangement of metallic gates which is very useful in mesoscopic

transport experiments. This is called as Split Gate arrangement. The gates de-

posited have a gap between each other that is at max half a micro meter (∼ 500nm)

large. By applying a negative gate voltage to this pair of split gates, one not only

depletes the carrier density beneath them, but also forms a potential barrier in the

gap region whose height depends on applied gate voltage. This potential barrier

thus formed, is a constriction for the incoming electrons and acts as a scattering

centre for them. These Split Gates are known as Quantum Point Contacts.

For high quality 2DEG’s, the two-point conductance through the Quantum Point

Contacts as a function of gate volage is quantised (77). The quantum of resistance

here is half of Von-klitzing constant (RK ≃ 25812.8Ω) for zero magnetic field owing

to the spin degeneracy.

To understand the Conductance through the Quantum Point Contact, let’s first

have a basic picture of Quantum Transport . The Two-dimensional electron gas is

confined transversely to the direction of propagation of electrons. Since, the motion

along longitudinal (along x) and transverse (along y) direction is independent, the

wave function of the electron can be represented as : ψ(x, y) = eikxxχ(y), where χ(y)

represents the eigenstates due to confinement along y-direction. These states are

also known as electronic modes. The energy of the charge carrier with a wave-vector



Figure 3.9: Quantized Steps of Conductance in Quantum Point Contact (7),(77).
Inset shows Quantum Point Contact formed by Split gates.

Figure 3.10: Illustration of transport in a 2DEG: The two eigenmodes for transport
of electrons are shown schematically. Left contact has chemical potential µL larger
than µR, but both are at same temperature T. The transport direction is along
x-axis.

kx and in the mode (or channel) n is given as:

Ek,n = En +
h̄2k2

2m
(3.1)

The current contribution for a given mode in an infinitesimal energy interval dE is:

dIn = ±2ev(E)dn(E)f±(E) (3.2)

Where dn(E) is the number density of carriers per unit length, f(E) is fermi-



distribution, telling us about probability of the state being filled at energy E. Factor

2 is spin-degeneracy. The signs tells us direction of current. The Density of states :

dn/dE in 1-D is simply given as 1
hv
. Substituting this in above equation, we get the

current in terms of energy differential

dIn = ±2e

h
f±(E)dE (3.3)

The net current is given by taking the difference of + and- terms (or left and right

terms). Here µL − µR = eVdc. Integrating equation 3.3 with taking difference gives

us:

In =
2e

h

∫
(fL(E)− fR(E))dE (3.4)

Since this current is independent of the mode, the total current is just sum of it.

Itot =
2e

h

N∑
n=1

∫
(fL(E)− fR(E))dE (3.5)

Now, the bias Vdc applied is negligible compared to fermi energy EF
1. One can

approximate the difference (fL(E) − fR(E)) ∼ −∂fL(E)
∂E

eVdc. Substituting this ex-

pression into 3.5 and dividing by the voltage Vdc, we get

G =
2e2

h

N∑
n=1

fL(En) (3.6)

At zero temperature, this simply reads as ,

G =
2e2

h
N (3.7)

So, each channel contributes a conductance Go =
2e2

h
. The above situation describes

what is called as ballistic transport. Here, even though there is no scattering in the

1It is typically in few micro electron volt whereas fermi energy is in meV



Figure 3.11: Scattering centre in a two-point geometry. The incoming electrons from
left/right contacts are reflected or transmitted with some finite probability to the
other side.

sample, but still the each channel has a resistance of h
2e2

. This resistance arises due

to the dissipation that happens at the contacts.

Now, since we have the basic picture of origin of quantised conductance, we can

proceed further to include a scattering centre in our device and see how the trans-

port is modified. The approach followed here is that of scattering theory, which

is commonly referred in this field as Landauer-Buttiker Formalism. It relates

the transport properties of the sample (like current, noise, etc..) to the scattering

properties that are assumed to be known from quantum mechanical calculations.

To pictorially represent the situation, consider the figure 3.11,which has a scattering

centre. It is described by a Scattering Matrix S. The electronic states are described

by the creation and annihilation operators which are defined for each lead connect-

ing reservoir to the scattering centre. They obey the following anti-commutation

rules:

{a+Ln(E), aLn′(E ′)} = δn,n′δ(E − E ′) (3.8)

The scattering field operators b+(E) and b(E ′) are related to a+(E) and a(E) by



the following form:



bL1

bL2

...

bLn

bR1

bR2

...

bRn



= Ŝ



aL1

aL2

...

aLn

aR1

aR2

...

aRn



(3.9)

The current in a given lead is expressed as an operator and is given as:

ÎL(t) =
2e

h

∑
n

∫
dEdE ′ei(E−E′)t/h[a+L,n(E)aL,n(E

′)− b+L,n(E)bL,n(E
′)] (3.10)

Now,the quantum statistical average of the product of creation and annihilation

operators is given as:

⟨a+L,n(E)aL,n(E
′)⟩ = δ(E − E ′)fL(E) (3.11)

Utilizing this in equation 3.10, we obtain the average current.

⟨Î⟩ = 2e2

h

∑
n

∫
dETn(E)(fL(E)− fR(E)) (3.12)

By using the same approximation regarding fermi function used in equation 3.6, we

obtain conductance as:

G =
2e2

h

∑
n

∫
dETn(E)

(
−∂fL(E)

∂E

)
(3.13)

To interpret the above conductance we need to have a reasonable concrete model



for the potential provided by the scattering centre to the incoming electrons. This

will allow us to know how transmission T (E) changes as we tune potential profile of

scattering centre. In our case, this scattering centre is Quantum Point Contact and

by applying gate voltage we can change the potential profile and hence, transmission

for a given energy. The most used model for Quantum Point Contact is the Saddle

Point Model developed by Buttiker (14).

Here the potential felt by incoming electrons is of the following form:

V (x, y) = −1

2
mω2

xx
2 +

1

2
mω2

yy
2 + Vo (3.14)

The confinement along the y-axis (transverse direction) is harmonic-type potential,

which give us with subband energies as : En = h̄ωy(n + 1
2
) .The transmission

probability Tn(E) of the nth mode can be expressed analytically as :

Tn(E) =
1

1 + e−2πϵn
(3.15)

where the energy parameter, ϵn is given as:

ϵn =
E − h̄ωy(n+ 1/2)− Vo

h̄ωx

(3.16)

If for given n , E << h̄ωy(n+
1
2
)+Vo, then transmission is suppressed exponentially,

whereas for E >> h̄ωy(n+
1
2
)+Vo it is close to 1. It is half at E = h̄ωy(n+

1
2
)+Vo.

So, we see how the conductance quantisation happens for transport through a

Quantum Point Contact. The above basic picture was given for a ballistic conductor,

where scattering events only happens at the quantum point contact. In realistic

devices, one can have static impurities which leads to scattering of electrons at

those impurity sites, in addition to the scattering at QPC. So the net transmission

is the sum of amplitudes from all the paths (impurity + QPC) and leads to smearing

and even disappearance of the conductance plateaus even though the entire system
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Figure 3.12: Transmission for n= 0,1,2 subbands for Saddle Point Model. Black
curve represents the total transmission
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is at very low temperature (20mK). One can get rid of this back-scattering due

to the impurities pretty much by studying the transport in High perpendicular

magnetic field. This is the field of Quantum Hall Effect and is the regime where

we have done most of our studies of RF transport. Following few pages will give an

introduction to Quantum Hall Effect.

3.2 Quantum Hall Effect

Hall Effect was first seen in semiconductors in 1890’s by Edwin Hall (38). When

a perpendicular magnetic field is applied to the semiconductor (fig 3.13) which is

biased, let’s say, in the y-direction, a current develops in the transverse direction

which is proportional to the applied perpendicular field B. The resistance along this

transverse direction follows a straight line with B and is known as Hall Resistance

Rh.

Almost 100 years later, in the year 1980, Von Klitzing (48), while studying the

electron gas in inversion layer of silicon MOSFET under high magnetic field in

NEEL institute Grenoble observed that hall resistance becomes quantised in units

containing only fundamental constants , h and e. This unit of resistance is called as

RK , the Klitzing constant and has metrological importance . It’s measured value is
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Figure 3.13: 2-D Hall Bar Geometry: In a steady-state situation when a current
I(shown in red) is flowing through the bar, at a constant magnetic field B a Hall
voltage develops transverse to the current flow (field lines shown in green).This
voltage increases linearly with B.

:

RK = 25812.80745...Ω (3.17)

The inversion layer MOSFET did not had a good mobility but still the exact quan-

tisation of Hall resistance was observed and was surprising. It was the first universal

result seen in semiconductor physics and this value is now used to ascertain the fine-

structure constant. Prior to that the fine-structure constant was only determined

in atomic physics experiments.

3.2.1 Landau Quantisation

We derive here the Landau level energy spectrum of a an electron under a strong

perpendicular magnetic field B . For more details, one can refer to (81).

The electrons, being in 2DEG are confined in x-y direction, magnetic field is along

z- axis. We use Landau gauge i.e A = (0, Bx, 0). The Hamiltonian of an electron is

given as :

H =
1

2m
(p+ eA)2 (3.18)

expanding the above hamiltonian, we get :



H =
1

2m
[px + (py + (eA))]2 (3.19)

Since, the Hamiltonian is translationally invariant along the y-direction, the wave

function Ψ(x, y) can be decomposed as a product of a function dependent on x and

a plane wave moving along y-axis.

Ψ(x, y) = χ(x)eiky (3.20)

Schrodinger’s Equation for the function χ(x) then becomes,

[
1

2
p2x +

1

2
mω2

c (kl
2
B + x2)]χ(x) = Eχ(x) (3.21)

Here, ωc = eB/m is the cyclotron frequency and lB =
√

h̄
eB

is the magnetic length.

The above equation is similar to that of the one-dimensional harmonic oscillator

whose minimum is shifted to −kl2B. Depending upon the value of k, the electron

wave-function along x-axis has different central position. The eigenvalues of the

energy are that of the harmonic oscillator, parametrized by this k value.

En,k = h̄ωc

(
n+

1

2

)
(3.22)

Clearly, if we know how many k values are allowed in our finite sized two -dimensional

electron system, we can calculate the number of the states with the same energy En.

For that , we assume periodic boundary conditions along y-axis. This means that :

ky =
2π

Ly

n (3.23)

is quantized and takes only discrete values. Since the x- values are dependent

on k, the spacing between the consecutive centres of the wave-functions with same

energy is : ∆x = ∆kyl
2
B. Dividing the length along the x-axis i.e Lx by the spacing



gives the degeneracy of Landau levels with Energy En.

N =
Lx

∆x
=
LxLyB

h/e
(3.24)

The term LxLyB is the total flux Φ and the ratio h
e
is the flux quantum Φo.

N =
Φ

Φo
(3.25)

Thus, the degeneracy is equal to the number of flux quanta threading the sample.

3.3 Motion Under Electric field

In the presence of the Electric field E⃗ = (E, 0, 0), the potential term V = −eEx

adds to the Hamiltonian in equation 3.19. This potential translates the landau

wave-function to new position

xk = −kl2B − mE

eB2

and modifies the eigen-energy as follows:

En,k = h̄ωc

(
n+

1

2

)
− eExk +

1

2
mv2D (3.26)

Here vD = E
B

is the drift velocity with which electrons drift. This electric field

is usually developed when a voltage is applied across the y-direction. This leads

to the current density jy = nevD, such that Hall conductivity σxy = nee
B

and the

longitudinal conductivity σxx = 0. Now, if n number of Landau Levels are fully

filled, it means that the total number of electrons are occupying all the degenerate

states of these landau levels. The number of degenerate states per unit area for a

given landau level is given in equation 3.25. Total degeneracy per unit area is n



E

x

ℏ𝜔𝑐

𝐸F

Figure 3.14: Landau Levels. We show here three of them below Fermi Energy. The
confining potential at the edges makes the levels rise in energy as we go closer to
the edge. The disorder potential in the bulk of sample is drawn here as random
variation of Energy in the bulk as a function of position x.

times this number, which is equal to electron density in the sample.

ne =
n

2πl2B
(3.27)

If we substitute this expression for electron density ne in Hall conductivity, the 2D

conductivity is given as:

σxy =
ne2

h
(3.28)

The number n is known as filling fraction.

3.3.1 Edge States

Since, the sample has finite size, the edges provide the confining potential U(x) to

the electrons. This potential leads to a modification of the landau levels along the

edges. It’s eigen-energies will be modified from equation 3.22. They are pictorially

depicted in figure 3.14. One can think of this potential as providing electric field

at the edges to the electrons. In order to see this, we assume that this confinement

potential varies smoothly over the magnetic length lB. Then, the eigen-energies can
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Figure 3.15: Hall resistance as a function of magnetic field. It is quantised in integer
fractions of Von-Klitzing constant RK .

be written as:

En,k = h̄ωc

(
n+

1

2

)
+ U(xk) (3.29)

From the above equation, the velocity along the edge comes out to be:

v =
1

eB

∂U(xk)

∂xk
(3.30)

In the above expression ∂U(xk)
e∂xk

plays the role of electric field. So, the electrons drift

along the edges of the sample. When the Fermi level lies in between the landau-

levels, then the current is solely carried along the edge of the sample.

3.3.2 Role of Disorder

The explanations given above tells that indeed we do observe Hall resistance which

is h
ne2

(from 3.28), but that it is only for a very small range in the value of the

Magnetic field where the edge channel exist. Whereas experimentally, one observes

the ’plateaus’ in the Hall resistance curve vs magnetic field (figure 3.15). This effect

is explained by disorder in the system.

We assume that disorder potential is smooth, its amplitude is smaller than both

cyclotron and zeeman gap and its gradient is smaller than h̄ωC

lB
and ∆Z

lB
where ∆Z



is the zeeman energy which matters when magnetic field is sufficiently strong and

leads to spin-polarized landau levels. When these constraints for disorder are met,

then it cannot mix-up spin split landau levels and can only be added adiabatically

to their energy (see figure 3.14). This creates hills and valleys of potentials in the

bulk region. When the Fermi Level crosses this hill or valley, it also leads to states

with a velocity just like edge states. But, these states just encircle these hills and

valleys rather than providing any contribution to the current.

Figure 3.16: Localized and extended states in a dirty sample. Drifting states crossing
the Fermi energy in a dirty sample originating from the lowest (red), 1st (blue)
and 2nd (yellow) Landau levels. Edge channels are perfectly transmitted along the
sample. Drifting states arising from disorder are localized within the bulk. The
transition between two situations having a well defined number of edge channels is
driven by the percolation of the innermost (here, the blue) edge-channel.

3.3.3 Percolation

For macroscopic samples, the drifting bulk states furnish a reservoir of localized

states (see figure 3.16). At a fixed density, sweeping the magnetic field will change

the size of the localized orbits.Therefore, even if they do not contribute to transport,

they pin the Fermi energy between two Landau levels for wider ranges of magnetic

field. Following this picture, the transition between two situations having a distinct

number of well defined edge channels is driven by the percolation of the innermost

edge channel.
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Figure 3.17: Two port conductor having one edge state (ν = 1) on both edges. They
carry the potential of the contact from where they origin ( here it is displayed as
the color of these edge states). We assume that VR > VL.

3.3.4 Buttiker’s Picture for Edge transport

We have seen that when biased, the current in the Integer Quantum Hall regime is

carried solely by the edge states. When on the Hall plateau there is no backscatter-

ing since the measured longitudinal resistance is zero. Hence, these edge channels

become pathways for the ballistic transport. By noting these properties of the edge

states, Buttiker(13) put forward his theory of transport in Quantum Hall regime

via edge channels. As discussed in the previous section on scattering formalism, we

observe that these edge channels can be seen as modes where the current propagates

from one contact to the other. One can thus use all the tools of the scattering for-

malism to calculate current, conductance etc from it in Quantum Hall regime. We

will illustrate it by calculating the two probe resistance of a Hall bar having only

one edge state flowing between two contacts. Because of the chirality, these edge

states carry the potential of the contact from where they origin. This leads to the

current expressions as follows:

IL = e

∫
vDν(E)fL(E − eVL)dE

IR = e

∫
vDν(E)fR(E − eVR)dE

where vD is the drift velocity along the specific edge, ν(E) is the density of states

and fL, fR are the fermi-functions of the contacts, respectively. Now, since this



transport along edge states can be thought of as in 1-D, density of states are in-

versely proportional to velocity. Substituting this information in the above current

expressions, and noting that net current is IR − IL, we obtain:

Inet =
e2

h
(VR − VL)

The two-point resistance is thus, R2pt = h
e2

(see figure 3.17). For samples that

have elastic scattering at high magnetic fields, as long as cyclotron radius is smaller

than the elastic mean free path length, this scattering is always suppressed. More

generally, Buttiker explained how Hall measurements of resistance be affected if one

has disordered contact, what happens when inelastic scattering occurs and why is

Hall effect is quantized for larger samples. These investigations help established the

nature of edge states and the dispersion curve depicted in figure 3.14.

3.3.5 C.S.G picture of Edge States

All the previous considerations are based on the idea of single electron picture. Since

electrons are charged, they will have interactions among other electrons. These

interaction effects should in principle modify the Energy band structure (here it

means changing the confining potential in a self-consistent way) and also should

affect the distribution of electron density in the two-dimensional electron gas. The

modifications of landau levels that happens by considering these interactions is done

by studying how electrostatic energy changes across the sample (16),(4).

It shows that landau level energy does not rise continuously as one approach to the

edge. But, rather rises in a step like fashion. In general, the filling factor ν = no2πl
2
B

is not an integer, here no is electron density of the gas in the bulk at zero magnetic

field. Then as the field is swept up, that integer Landau-level will get depleted.

After it has fully depleted, the fermi level has to go to Lower landau-level. But to



do so, it requires to change energy by exactly h̄ωC . Hence, the electrostatic potential

changes by this amount till fermi-level gets aligned with landau level. During this

process, there is no state available for the electrons to go, so there density remains

constant. This process leads to the formation of incompressible and compressible

strips. The magnetic field leads to formation of these strips.



Figure 3.18: From (16). (a), (b), (c) depicts the Buttiker picture of edge-states
based on non-interacting electrons. There the density changes abruptly at the edge
as one less fully filled landau level cuts the Fermi-level. The confinement potential
is considered as smoothly varying. Whereas in (d), (e), (f) Confinement Potential
changes owing to the screening done by electrons in 2DEG. The step like fashion
change is due to in-compressible and compressible stripes. Since there are no states
in in-compressible strip, it does not changes the density, while compressible strip
has non-zero density of states, density there follows the dependence like that of zero
field 2DEG acted upon by side-gates.



3.4 Magneto-Plasmons

Figure 3.19: Schematic illustration of charge disturbance created by an ac-drive that
travels along the edge states.

We have presented in the previous sections the theory and formalism of DC-

Transport in the Hall-bars. The notion of Edge-states as ballistic channels for elec-

trons neatly explains the transport measurements done in DC in Integer Quantum

Hall Regime. With Scattering centre such as Quantum Point Contact, one can use

them as beam-splitter to probe the phase-coherence length of electrons (72), do

energy spectroscopy measurements for inner and outer edge channel, where dissi-

pation mechanisms are probed (3), and much more. In this thesis, we probe the

physics of our two-dimensional electron gas with or without scattering centre in

radio-frequency regime.

More generally, the RF transport under perpendicular magnetic field is described

by collective excitations that carry the signal. From pioneering experiments in mid

1980’s done in non-degenerate two-dimensional electron gases (34),(58), it is shown

that spectrum of collective excitation have two-branches: The one whose frequency

increases with magnetic field, called as Bulk-magnetoplasmons, whereas the other

whose frequency decreases with magnetic field, called as Edge-magnetoplasmons.

In the quantum Hall regime, where transport happens along the edges, these edge-

magnetoplasmons are sole carriers of the AC signal. Classically, one can think of

them like a disturbance in the electron density which propagates from one contact

to other. In the regime of relatively low magnetic field, where longitudinal and Hall

resistance are both finite and the edges of the sample are sharply defined, Volkov



and Mikhailov (78) gave the expression for the dispersion relation for these edge-

magnetoplasmons.

ω(k) =
σxyk

2πϵ0ϵ

(
ln

(
2

kL

)
+ 1

)
(3.31)

where L, given as:

L = i
σxx
2ωϵ0ϵ

(3.32)

describes the transversal spatial extent of the edge-plasmons. There have been many

experiments done to learn more and more about these edge excitations. These in-

clude in particular, time-domain measurements where a voltage pulse of definite

width and magnitude is sent through the device and the resulting outgoing pulse

is measured, which reveals information about dispersion relation, velocity and dis-

sipation of the edge excitation (5),(49),(46),(84),(37). When at integer Quantum

Hall regime , having integer filling fraction (let’s say ν = 2), σxx → 0, then these

measurements reveal that spatial width of edge-excitations is that of compressible

edge stripes and not given by 3.32. In Fujisawa’s group (46),(49), they measured

b)a)

Figure 3.20: a) Velocity dependence for gated and ungated sample as a function of
filling factor (49). The velocity for EMP is larger for the ungated sample than that
for gated sample due to screening provided by the gates. b) The velocity vs gate-
voltage curve at a fix filling factor. Velocity increases as the gate-voltage becomes
more negative (46)

the velocity dependence vs filling factor and found that for a given edge-profile, the



edge-magnetoplasmon velocity is proportional to Quantum Hall Conductivity. And

also when the edges of the sample are gate-defined, then at a fixed filling factor, the

velocity increases with more negative voltage (see figure 3.20b ). This implies that

velocity depends inversely upon the capacitance CH to ground.

vemp =
σxy
CH

(3.33)

All these measurements had large amplitude of voltage pulse (few milli-volts) and

were performed at relatively large temperatures (typically about 1.5K or above).

Also, the sample size were bigger (∼ 1000µm) as well.

In this thesis, we will present frequency resolved experiments. These measurements

carry the information about the admittance of Quantum Hall device. Probing the

finite frequency impedance of the Hall-bar in the sub-GHz or above regime has been

done by various groups (28),(29). In these pioneering works the AC response is

measured at a given frequency, which is then studied for various magnetic field.

In the reference (28), the finite-frequency admittance of Hall Bar with Quantum

Point contact was determined. The results were explained by the theory provided in

(18),(17) which develops admittance of the Hall bar to the lowest order in frequency.

However, the transport measurement done there were at frequencies lower than ours

(which is in 4-8 GHz regime).

In another set of remarkable experiments presented in (11), with the usage of RF

transport techniques in novel ways at ν = 2, they were able to measure the charge

and neutral modes separation from the single collective excitation injected in the

outer-edge channel initially. This single collective excitation splits into separate

charge and neutral mode owing to the strong coulomb interactions among the co-

propagating edge-channels. Here S21 measurements were done ranging from 0.7 to

11 GHz. There sample was also of similar dimension than ours.

Also, in the work of Hashisaka et.al (40),(41), it was shown that since coulomb



screening in the 2D systems is weaker than in 3D, so depending upon the electrostatic

environment around the edge channels (metallic gates etc.) there can be a RF

coupling between edge channels lying on the opposite sides of the sample. They

did the similar kind of RF transport measurements as done in (28), upto frequency

of 3 GHz in a sample which was 500µm long and 100µm wide. When the QPC

was pinched, the obtained S21 was modelled as coupled edge-channels across QPC,

talking to each other capacitively described by a capacitance per unit length, cX .

In all the experiments described above, the detection impedance is 50Ω. When

going to lower integer filling fractions (let’s say ν = 2), the sample impedance

increases. This results in large reflection coefficient, thereby, decreasing signal to

noise ratio. So, to circumvent this problem of impedance mismatch, we fabricate on-

chip microwave resonators directly connected to our electron gas. They self-resonate

at about 5.5 GHz and have characteristic impedance of 1kΩ. An upshot of these

resonators is good signal to noise ratio at large sample impedance, thereby, allowing

us to do frequency resolved measurements in linear-response regime. However, this

impedance matching is effective in a finite bandwidth of about 500 MHz about

the resonance frequency. Hence, our measurements will be limited to this given

bandwidth about the resonance. Also, we will need to calibrate the gain of RF

chain and as we will see in the coming chapter, need to account for the capacitance

of electron gas as well. Our sample is in mesoscopic scale with length of about 30µm

and width 10µm. The mixing chamber temperature at which sample lies is 15 mK

and the excitation drive amplitude is in few micro-volts on chip.

We describe the RF-transport here at fixed filling factors and model the S21 based

on the theory provided in Hashisaka et.al (41) and modify it catering to the need

of our device. It essentially is called as plasmon scattering approach. Under this

approach, plasmons generated at one contact, when going to another contact along

edge channels, experience interaction. This interaction can be presented in terms of

scattering of three types:
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Figure 3.21: Electron Micro-graph of the device. a) Zoom-out picture showing
two resonators having two-dimensional electron gas in between. All around is a
continuous metallic ground plane. b) Zoom-in picture in between resonators. The
yellow polygon there marks the boundary of electron gas buried 100 nm below the
surface. On top of it, at the centre, is the Quantum Point Contact (shown in
red). There are also switch-gates, 2 on each side, allowing to have different circuit
configurations. And there is an ohmic contact on opposite edges of mesa which
connects it to metallic ground plane (termed as cold grounds).

• A propagation phase acquired by travelling between two contacts

• Capacitive coupling among edge channels on opposite sides of sample due to

weak coulomb screening

• When a Scattering centre is present (Like QPC), it can be additional scattering

on top of the other two.

Since we have on-chip resonators attached directly to the sample, the impedance

to ground, which for these resonators at resonance is about 10kΩ, is way larger

than 50Ω. This mean in particular that current getting out of the sample will not

be same as current getting in. For the frequency resolved experiments described

above, as the samples there had 50Ω to ground, the RF transmission measurements

directly yielded non-local admittance Gαβ(ω) of the device. In our case, we will see

that Hall-Bar becomes a chiral impedance transformer and in general, we will need

the knowledge of two-probe impedance, in addition to outgoing current in order to

explain our measurements.
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Figure 3.22: Circuit illustration for a 2DEG in Quantum Hall regime having in
series with it a detection circuit with an Admittance of Gdet which is comparable
to the Hall resistance of the 2DEG. The current incident to the 2DEG at the left
contact Ipol and the current leaving it It are in general not equal. a) Moreover, the
plasmon interaction can be formulated in terms of a scattering matrix. b) ,c), d)
describe three different cases which can be handled with scattering approach. In b)
the scattering is just a phase. In c) scattering happens due to capacitive interactions
among opposite edge channels and in d) QPC action can also be taken into account.



Chapter 4

AC Transport in Quantum Hall

regime

4.1 Introduction

We present here RF transmission measurements of a two-dimensional electron gas

which is connected on-chip microwave resonators. We send broadband frequency

voltage drive (4 to 8 GHz) and measure its response. The amplitude of this ac

voltage drive is about 2µV , making our experimental conditions to be in linear-

response regime. We will analyse this RF transmission at zero magnetic field and

at finite magnetic field with or without the presence of quantum point contact.

4.1.1 Working Principle

In Microwave engineering, the components are usually characterized by scattering

measurements. These measurements tell you what is the nature of the component in

terms of its impedance Z(ω), insertion loss and also the directivity of signal transfer.

In commercial usage, the cables used for the measurements have a definite standard

impedance Zc = 50Ω. If the signal travelling through these cables encounter a device

with impedance different from 50 Ω, then some of the power will be reflected back.

51



Figure 4.1: Experimental setup: Switch gates (shown in black) are biased at -0.4V
to disconnect mesa from the cold grounds, making a two point configuration setup.
Signal is sent from the V.N.A through port 1 and output is received at port 2,
measuring S21 through the sample.

The quantity quantifying this reflected power is reflection coefficient , Γ. It is given

as:

Γ(ω) =
Zsample(ω)− Zc

Zsample(ω) + Zc

(4.1)

So, some of the power is reflected and remaining gets transmitted through the

device. The scattering parameter that display the information of transmitted power

by measuring its ratio w.r.t input power is the S21 parameter (66). Formally

written as:

S21 =
Pout

Pin

(4.2)

A Vector Network Analyzer gives out this measurement (sketched in figure 4.1).

Similar to the Reflection coefficient, it is a complex quantity with a magnitude and

phase.

S21 = |S21|(f)e−iϕ(f) (4.3)

The curve in figure 4.4 is a measured S21 showing the behavior of the sample con-

taining resonators in series with it.

In principle, any change made to the sample, let’s say, by changing physical pa-



Figure 4.2: Schematic setup for S21 measurement with a Vector Network Anal-
yser.

rameters (for eg, Gate voltage, Magnetic field, cold grounds etc..) will affect its ac

properties (Impedance in this case), which in turn, will be visible in S21 line-shape.

We, hence, perform these measurements at different physical conditions and char-

acterize the device. Our main goal being here to know what is the Impedance Z(ω)

of the Electron gas.

4.1.2 Phase Calibration

From the figure 4.2 showing the schematic setup for a S21 measurement and figure

4.3 displaying the full setup, we see that cables connecting the Vector Network

Analyzer have different microwave components. These components add some phase

to the S21 measurement. In the end, the total phase measured is :

Φ(f) = ϕcable(f) + ϕsample(f) + ϕcomponents(f) (4.4)

In order to know the device phase, we need to get rid of the phase of the connecting

co-axial cables and that of the microwave components. We try to get rid of the

phase due to cable length by adjusting the delay time directly on VNA. Also we
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Figure 4.3: Microwave setup for the S21 measurements. Different elements are
labeled accordingly. In this setup, we have two inputs (via directional couplers) and
two output ports(via amplification line) for measuring S21 in different direction. In
this figure, only one set is labeled.

subtract the phase of the 3 cavity filters in the detection chain. The subtraction is

done by measuring the phase of the filter at room temperature and assuming that

the phase changes very slightly at low temperature, so this measured phase closely

resembles to that at low temperature. (See Appendix for more details)

After correction, the phase will only be that from the sample. This allows us to

have the real and imaginary part of the transmission which will let us know about

the impedance of sample. In figure 4.4, both amplitude and phase of S21(f) are

plotted after phase calibration. In order to know about RF behavior of electron gas,

we first study the RF transmission through it at zero field. As we will see below, it

will help us calibrate the resonators, the overall gain of the chain and the parasitic

capacitances.



4.2 Zero field Characteristics

The two-dimensional electron gas that we use has an electron density ne = 1.27 ×

1015m−2. We give here the values of mean-free path, relaxation time from basic

assumptions of the free-electron gas. Knowing the electron density, the Fermi wave-

vector kF can be found from the standard formula:

kF =
√
2πne (4.5)

Using this, we can obtain Fermi-velocity, vF

vF =
h̄kF
m

(4.6)

It’s value is 106ms−1. The resistance of the gas Rdc at zero field is 300Ω. Using the

standard expression for conductivity in Drude theory (61), we obtain the relaxation

time as:

τsc =
m

ne2Rdc

(4.7)

It is 3 pico-seconds. Knowing the scattering time and fermi-velocity, we obtain the

mean-free path lm = 3µm. The mesa is 30µm long and 10µm wide. Comparing

these dimensions with the mean free path we see that we are in between diffusive

and ballistic regime. At zero magnetic field, when QPC is not active, we can write

the impedance of electron gas as (12):

Z(ω) = Rdc + iωLK (4.8)

Where, LK is the kinetic inductance and arises due to inertial out of phase response

of the charge carriers to the ac drive. For a 2D system of length L and width W , it

is given as:

LK =
m

nse2
L

W
(4.9)
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Figure 4.4: S21 resonance curve at zero magnetic field with amplitude (shown in
blue) and phase (shown in red) .The shift of the curve is attributed to the additional
capacitance provided by the electron gas.

This formula gives the value of kinetic inductance to be 5.7 nH.

4.2.1 Basic Features

In the figure 4.4, measurement of S21 curve is presented as a function of frequency.

We see that resonance of the curve is about 4.3 GHz which is quite low as compared

to self-resonance of the coil (≃ 5.5 GHz) that was simulated in SONNET software

(60). We attribute this large frequency shift due to parallel addition of the mesa

capacitance to the parasitic capacitance of the coil, which effectively decreases the

resonance frequency fo.

If the resonance frequency of the resonators is given as:

fo =
1

2π
√
LC

(4.10)



Where L and C are the bare Inductance and capacitance of each coil respectively.

The addition of mesa capacitance Cm
1 modifies it as:

f
′

o =
1

2π
√
L(C + Cm)

(4.11)

By knowing the resonance frequency from S21 measurement, one can extract the

capacitance of electron gas to ground from the formula above. This mesa capacitance

to ground along with impedance mentioned in the previous section will be useful in

making minimal circuit model for electron gas in the section below.

Since, amplitude of S21 curve has some finite width, it can be used to characterise

internal resistance rcoil of the coil that tells the loaded Q-factor of the resonator.

For the case when the 2-point resistance of electron gas is low as compared to the

output impedance of detection circuit (which is the case for B=0T), the Q-factor of

the S21 :

QS21 =
fo

∆fFWHM

(4.12)

is the same as that of the external Q-factor of the resonator, which, in the lumped

element approximation of resonator as an LCR circuit, is given as:

Qres =
Zc

rcoil + 50
(4.13)

Both resonance frequency fo and the bandwidth ∆f can be extracted from the S21

amplitude curve.

The characteristic Impedance Zc of the resonator is given as:

Zc =

√
L

C
(4.14)

1The capacitance Cm is added for one coil. Since there are two coils, this capacitance is added
to each of them, thereby making the total capacitance to ground to be 2Cm.



It is 1kΩ for the bare coil as simulated in the SONNET simulation by our group’s

previous PhD student Jonas Mueller (60). But, since there is an added capacitance

of the mesa to the coil capacitance, this changes the characteristic impedance Zc.

By using equations 4.11 and 4.14, one arrives at a simple expression:

Z
′

c = Zc
f

′
o

fo
(4.15)

Here fo = 5.5 GHz is bare resonance frequency. Now, using:

QS21 = Qres (4.16)

and substituting Z
′
c from equation 4.15, we get internal resistance rcoil of the coils.

It comes out to be 13Ω. This is in good agreement with DC resistance measurement

done at room-temperature on the sample having two coils connected to each other,

with R.R.R (residual resistivity ratio) of 10 measured for gold deposited similarly.



4.2.2 Lumped Element Model for S21

We can model the S21 through our device by assuming it is a Lumped element

circuit. This assumption holds because at zero field, ac transport is carried by

2D-plasmons, which propagate very fast (∼ 108ms−1). It implies that propagating

signal does not acquire any significant phase as it traverses the device length (which

is about 30 microns in our case). The two-terminal Impedance Z(ω) of electron

𝐿𝑐𝑜𝑖𝑙

𝐶𝑐𝑜𝑖𝑙

𝑟𝑐𝑜𝑖𝑙

𝐶𝑚𝑒𝑠𝑎

𝐶𝑝

Vin

𝑍(𝜔)

Resonator

a)

b)

Figure 4.5: a) Electron microscope picture of the mesa in between resonators. Yel-
low polygon gives the boundary of electron gas beneath the surface. For the RF
transmission, switch gates (shown in black) are put to use to cut the connection of
electron gas to the cold grounds (shown in blue) and have a two-terminal configu-
ration. b) Equivalent lumped element circuit model. The electron gas is modelled
as a π network. There is a parasitic coupling capacitance Cp in between resonators.

gas (represented as a grey rectangle in figure 4.5) when Quantum Point contact

is active can be very well approximated as that of a resistor. It is because the

impedance due to kinetic inductance (LK) at the frequencies where resonance lies



(≃ 4.3GHz) is very small compared to the two-terminal resistance of the Quantum

Point Contact. This resistance is measured with standard lock-in techniques (it is

done via inductive port of Bias-tee as drawn in the figure 4.3). Also, the electron

gas has some capacitance to ground, which we name here as Cmesa. This adds to

the resonator coil capacitance and modifies the resonant frequency.

The RF transmission here is just the ratio Vout

Vin
. The amplitude of S21 will be

absolute square of this ratio 2

Let us build this S21 from the impedance of the full circuit. We explain in pieces

the different impedance. Consider below the detection impedance. As seen from the

𝐿𝑐𝑜𝑖𝑙

𝐶𝑐𝑜𝑖𝑙 + 𝐶𝑚𝑒𝑠𝑎

𝑟𝑐𝑜𝑖𝑙

Figure 4.6: Resonator impedance as seen from the red dot to ground.

red node to the ground (figure 4.6), it is the impedance to ground as seen from the

output node of the sample. It is given as:

Zdet(ω) =

(
iω(Ccoil + Cmesa) +

1

rcoil + 50 + iωLcoil

)−1

(4.17)

To this we add two-terminal impedance of the sample , which we call as Z(ω) here

in parallel with parasitic capacitance CP . The new impedance is thus,

Z1(ω) = Zdet(ω) +
1

iωCP
Z(ω)

1
iωCP

+ Z(ω)
(4.18)

Now, if we add remaining resonator circuit to Z1(ω), here, capacitance gets added

2|S21| = |Vout/Vin|2, since it is expressed as the ratio of output power obtained from device
over input power applied by the source.



𝐿𝑐𝑜𝑖𝑙
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𝑟𝑐𝑜𝑖𝑙

𝑍(𝜔)

𝐶𝑝

Figure 4.7: Total impedance Z1(ω) as from the red node to the ground. Z(ω) is the
two-probe resistance. CP is the parasitic capacitive coupling

to Z1(ω) in parallel and rcoil and Lcoil, the resistance and inductor are added in

series addition. The total impedance is then given as:

Ztot(ω) =

(
iω(Ccoil + Cmesa) +

1

Z1(ω)

)−1

+ rcoil + iωLcoil (4.19)

As can be seen from the figure 4.8, we introduce reflection coefficient Γ at the node

connecting 50 ohm line coming from the source to the total impedance Ztot(ω) as

seen from that node to ground. This is so because of the mismatch between these

two impedances (66). Thanks to the impedance Zdet(ω), Z1(ω) and Ztot(ω), we can:

• deduce the voltage at the input port V1 = (1 + Γ)Vin

• deduce from the successive voltage dividers the output voltage Vout from Vin

This gives us the transfer function Vout

Vin
:

Vout
Vin

=
50Zdet(ω)(1 + Γ(ω))

(iωLcoil + rcoil + 50)Z1(ω)Ztot(ω)

(
iω(Ccoil + Cmesa) +

1

Z1(ω)

)−1

(4.20)

We now use the formula 4.20 and study the RF-transport at zero field. The resistance

of the sample is changed by the action of Quantum Point Contact. From the RF

simulations of the device, the bare value of the inductance of coil is Lcoil =29nH

and that of capacitance is Ccoil =29fF. The coils are assumed to be identical in
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Figure 4.8: The Full circuit with total impedance Ztot(ω) presented in the red-square.
The equivalent circuit below which identifies the circuit with standard circuit in
microwave engineering where, transmission line is shunted by an impedance (66)

the sense that they have same resonance frequency and Q-factor. As is already

mentioned in the previous section, when the resistance of the electron gas is not

very large (which is the case when Voltage on quantum point contact is zero ), the

S21 curve’s full-width at half maxima is equal to that of Re(Zdet) and we can obtain

the internal resistance of the coil. Also, as mentioned in the previous section, the

observed resonance of S21 curve is not at simulated value, but lies far below it (∼ 4.3

GHz). This is due to extra capacitance Cmesa of electron gas. We will use it as a fit

parameter to explain the change of resonance frequency of transmission curves as a

function of voltage on QPC. We now present both our DC and RF measurements

where the RF measurements are fitted with the above model.

First, we present the DC two-probe conductance data in the figure 4.9. As the gate

voltage on qpc gets more negative, the electron gas starts to deplete more and more

(see figure 4.10). For Vqpc= -1.5V there is no DC connection, thereby, two-probe

conductance drops to zero within our experimental accuracy. For each value of the



Figure 4.9: Two-probe conductance of the electron gas. The region where 0V <
V qpc < +0.3V is the positive offset. We do it to reduce the pinch-off gate voltage
value (where there is no DC transport) so as to avoid leakage currents from gates
to electron gas. In this measurement, the pinch-off voltage = -1.5 V

DC conductance, we have measured S21 trace. As we change the qpc gate voltage,

changes are recorded on the S21 trace. We fit this S21 data with formula 4.20 where

impedance of electron gas is two-probe DC resistance. Using that, we fit the S21

curve at +0.3 V of qpc voltage with amplitude and capacitance to ground (Cmesa)

as two fit parameters. The amplitude obtained is equivalent to the gain of the chain

and has a value of about -11.4 dB. The gain of RF chain is not changing much in

the frequency interval where our S21 resonant curve lies (see appendix). After that,

we extract the shunting capacitance CP ∼1.2fF from S21 fit for qpc gate voltage

having no DC transport (Vqpc=-1.5V). We then fix these values in all the rest of

the S21 fittings, change two-probe resistance depending upon the qpc gate voltage

values (as measured in figure 4.9) and make mesa capacitance (Cmesa) as the single

fit parameter.

4.2.3 Results and Discussion

In the figure 4.11, the curves at different qpc gate voltage values along with fits

using equation 4.20 are presented. The variation of mesa capacitance with gate



Vqpc< 0V

𝑉𝑔

Figure 4.10: Schematic illustration of depletion of electron gas beneath qpc gates
as voltage on the gates gets more and more negative. Light blue region represents
2D electron gas. White regions close to QPC gates represents the depleted region.
This depletion of electron gas leads to reduction of its capacitance to ground.

a) b)

c) d)

Figure 4.11: S21 curves along with fits. a), b) and c) are curves for some values
of Vqpc other than pinch-off, while d) is the S21 curve at pinch-off (G2pt ∼ 0).
Note that the RF- transmission at pinch off retains the shape of the self resonance
implying that it is capacitive coupling from one ohmic-contact of the mesa to the
other which connect resonators with electron gas.
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Figure 4.12: Mesa capacitance obtained from S21 fits (on the left) and from elec-
trostatic simulation (on the right). The variation of capacitance when QPC is in
action is indeed well captured, but there is a big overall offset in the capacitance
obtained from fit.

voltage is presented in the figure (4.12). More Physically, this capacitance change

happens as the electron gas beneath qpc gate gets depleted. This variation can be

modelled by electrostatic considerations. To first approximation, one can consider

a single metallic gate of length 10µm (width of our mesa) and 500 nm across,

mimicking our QPC on top of electron gas. Then by numerically solving Laplace’s

equation one can obtain the spatial variation of electron density beneath the gates.

With that, geometric capacitance to ground can be estimated as a function of gate

voltage. What we find is that when qpc is in action (Vqpc < 0 V), the change in

the capacitance to ground as obtained from the fits is similar to the electrostatic

numerical analysis. Both show decrease of capacitance of about 0.7fF. However, the

capacitance to ground obtained from fits has a big offset. Now, this capacitance

gets added to the resonator’s capacitance and with it, we obtain the S21 line shape

at proper resonance frequency. Its value being big probably means that perhaps the

actual capacitance of the resonator (which we took it to 29fF) is not the simulated

value. We will return to this point again while studying RF transmission for finite

magnetic fields.



4.3 S21 for Finite Magnetic Field

In the previous section we showed S21 measurements at zero magnetic field and

explained them using a lumped element model for the impedance of two-dimensional

electron gas.

Here we present S21 measurements at each point of magnetic field as it is swept

up. The sample is in two-probe setup (figure 4.13), where the ground ( as seen on

inductive port of bias-tee) is the body of the dilution fridge at room temperature

(cold ground is not active here). Along with S21 curves, we measure the DC two-

probe resistance simultaneously. Figure 4.14 presents the amplitude of S21 for few

different magnetic fields.

4.3.1 2-probe setup

Figure 4.13: General Schematic setup for 2 point configuration vs B field. The Vdc is
a small lock-in excitation at very low frequency that measures two point resistance
vs B. Here Gate voltage Vg on Quantum Point Contact is zero. The edges of the
mesa are defined partly by the switch gates and partly by chemical etching.

To analyse the S21 data vs magnetic field, we extract their resonance frequency,

maximum amplitude and full width at half maxima respectively and see how they

change as a function of magnetic field. These quantities are extracted by fitting a

Lorentzian to the S21 amplitude curve (figure 4.15). We observe some interest-

ing trends which can be discussed qualitatively. The maximum amplitude of S21
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Figure 4.14: S21 vs B. Decrease in amplitude vs B and shift of resonance frequency
is evident for different filling fractions. Note that the amplitude is higher for ν = 2.

decreases sharply and starts to exhibit oscillations as a function of magnetic field

for fields larger than 250 mT. These amplitudes are maximum at approximately the

middle of Hall plateaus for all the filling fractions that are observable in D.C upto

ν = 2. They are not constant along the hall plateau where two-probe resistance is

constant (equal to hall resistance). So, we observe no quantisation for RF transmis-

sion. The resonance frequency starts to shift larger values, hitting the maximum at

filling fraction ν = 2. The width also increases upto the field for which at D.C we

are in filling fraction ν = 4 and then it decreases. Both frequency and width show

smooth oscillations as well. All these changes are due to change in the impedance of

the electron gas. We will try to explain these features of RF transmission at integer

filling fraction with the plasmon scattering approach introduced in the first chapter.
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Figure 4.15: Lorentzian fit to S21 curve to extract maximum amplitude, resonance
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Figure 4.16: Magnitude, resonance frequency and width of S21 as a function of
Magnetic field B. The trends are given till ν = 2
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Figure 4.17: Circuit illustration for a 2DEG in Quantum Hall regime having in
series with it a detection circuit with an Admittance of Gdet which is comparable
to the Hall resistance of the 2DEG. The current incident to the 2DEG at the left
contact Ipol and the current leaving it It are in general not equal. a) Moreover, the
plasmon interaction can be formulated in terms of a scattering matrix. b) ,c), d)
describe three different cases which can be handled with scattering approach. In b)
the scattering is just a phase. In c) scattering happens due to capacitive interactions
among opposite edge channels and in d) QPC action can also be taken into account.

Consider the circuit in figure (4.17a). We consider the sample to be in integer

quantum hall plateau. The sample is injected with a current Ipol. This is an AC

current that excites the edge-plasmons in the sample which then travels from the left

contact to the right one. We follow the approach mentioned in (40) and model an

edge-channel as a unidirectional transmission line. The excess charge distribution

ρ(x, t) that happens after the application of ac-drive is related to the voltage V (x, t)

at position x on the edge-channel by the relation:

ρ(x, t) = CHV (x, t) (4.21)

where CH is the channel capacitance, representing effective electrochemical capaci-

tance (17) between the channel and the ground. The current I(x, t) is related with

the excess density via the continuity equation as:

∂I

∂x
= −∂ρ

∂t
(4.22)
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Figure 4.18: A Uni-directional transmission line model for Edge-magnetoplasmons
in Edge-channels in integer filling fraction. The edge channel are characterised with
a characteristic impedance as Hall resistance and capacitance per unit length to
ground as an electrochemical capacitance CH

we assume that I(x, t) and V (x, t) satisfy the constitutive relation as:

I(x, t) = σxyV (x, t) (4.23)

This implies that one can think of edge channel as a chiral transmission line with

characteristic impedance as Z = V/I = 1/σxy. From the above relations, we obtain

the wave-equation for edge magnetoplasmons as:

∂I(x, t)

∂t
= −σxy

CH

∂I(x, t)

∂x
(4.24)

This first-order P.D.E has a general solution of the form I(x−vempt), where plasmon

velocity is given as:

vemp =
σxy
CH

(4.25)

The plasmon propagation is seen as an EM perturbation (current, density, voltage)

propagating along the edge-channel. Now, we describe any interaction that happens

in the sample as a plasmon scattering matrix S. This matrix can just consist of

phases when capacitive interactions among edge states is weak, otherwise, it can

describe full interactions when capacitance among edge states is present, with or



without Quantum Point Contact, with scattering parameters that are derived in

(40). To that formalism, the modification that we do is to introduce the Detection

impedance in series with our electron gas. Let’s say that we have integer filling

fraction ν = N . We write constitutive hall relations at left and right contacts for

ith edge channel.

I iL,in = GkVL

I iR,in = GkVR

IL,in =
N∑
i=1

I iL,in = NGkVL

IR,in =
N∑
i=1

I iR,in = NGkVR (4.26)

And also the current conservation equations at the contacts.

Ipol =
N∑
i=1

(I iL,in − I iL,out)

It =
N∑
i=1

(I iR,out − I iR,in)

It = VRGdet (4.27)

Here Gk is the quantum of conductance and Gdet is detection admittance. Now, we

use scattering matrix for each edge-channel to relate outgoing currents with input

currents.

IL,out =
N∑
i=1

I iL,out =
N∑
i=1

(si11I
i
L,in + si12I

i
R,in)

IR,out =
N∑
i=1

I iR,out =
N∑
i=1

(si21I
i
L,in + si22I

i
R,in) (4.28)



Using 4.26 and 4.27 in 4.28, we obtain the relation between VL and VR:

VR(ω) = VL(ω)

∑N
i=1 s

i
21Gk(

Gdet +
∑N

i=1(1− si22)Gk

) (4.29)

Substituting this relation into 4.27 for Ipol we obtain two-probe impedance of the

device as seen from the left contact.

VL
Ipol

= Z2pt(ω) =
Rk(∑N

i=1(1− si11)−
(
∑N

i=1 s
i
12)(

∑N
j=1 s

j
21)

(
∑N

j=1(1−sj22))+
Rk
Zdet

) (4.30)

Here Zdet is the impedance of the detection circuit (it is inverse of admittance Gdet)

from the rightmost node connected to sample in figure 4.17. The transconductance

is obtained as :

GT (ω) =
It
VL

=

∑N
i=1 s

i
21Gk((∑N

i=1(1− si22)
)

Gk

Gdet
+ 1
) (4.31)

Relating the incoming voltage carried by the current Iin at the input of the coil

at the left contact of the sample to that at the output of the sample coupled to

detection line at the right contact as shown in figure 4.17, and knowing the two-

probe impedance to ground from the left contact, we can build the full transfer

function of our device at finite magnetic field. The transfer function 4.20,becomes:

T (ω) =
50(1 + Γ(ω))(Zc(ω)Z2pt(ω))

(iωLcoil + rcoil + 50)(Zc(ω) + Z2pt(ω))Ztot(ω)
GT (ω) (4.32)

We now use this formalism to explain our RF-transmission measurements in Integer

Quantum Hall regime. The data is related to figure 4.16 where no QPC is used. In

this case, we assume that the scattering matrix for each edge channel is just a phase
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Figure 4.19: S21 curves for ν = 2, 3 and 4 along with fits with transfer function
given in 4.32 having scattering matrix as given in 4.33. The obtained τ are 84.9 ps,
54.65 ps and 49.375 ps respectively, The mesa capacitance obtained for three of the
curves is 9.62fF, 9.67fF and 9.7fF respectively.

factor owing to the propagation in the sample.

Ŝ =

0 e−iβL

e−iβL 0

 (4.33)

βL = ωτ (4.34)

Using this scattering matrix in the expressions for Z2pt, VR and It, we get relatively

simple forms for input impedance and trans-conductance:

VR = VL
e−iβL(

1 + RH

Zdet

) (4.35)



Figure 4.20: More data of S21 along with fits for filling factor of 5,6,7 and 8.

Z2pt =
RH(

1− e−i2βL

1+
RH
Zdet

) (4.36)

It
VL

=
e−iβLGH(
1 + GH

Gdet

) (4.37)

The phase factor βL in the scattering matrix can be converted into ωτ by assuming

linear dispersion relation of chiral plasmons propagating in edge-channel (40; 49).

The τ is the traversal time of the plasmon in the sample. By making this time

as a fit parameter along with some extra capacitance (to align the curve at right

frequency) we obtain the fits at integer filling fraction from 2 to 8 (figure 4.19, 4.20).

Plotting the fit parameters ( dwell time and extra capacitance) with filling factor,

we see their dependence (figure 4.21). From the fits we see that dwell time decreases

while increasing filling factor, meaning:

vemp ∝ σxy (4.38)

Taking the length of edge channel to be 30µm, we can obtain the dependence of



Figure 4.21: Dependence of Dwell time and extra capacitance with filling factor.
Notice that extra capacitance is constant within error bars. It does not depends
upon magnetic field.

Figure 4.22: Velocity vs filling factor.

plasmon velocity with filling factor (see figure 4.22). These observations have been

seen in (49). Also, the extra capacitance obtained is not different for these filling

factors, which makes sense as the change in geometric capacitance is small for few

edge channels. This capacitance is most likely the additional capacitance of each

resonator that comes during their fabrication.

The simple propagation model for Edge-magnetoplasmons at integer Quantum Hall

regime explains our data for RF transport at integer filling factor. In particular, the

equation 4.36 conveys that the electron gas in the quantum hall regime behaves as

an impedance transformer. This property is similar to transmission lines acting as

quarter-wave transformers (66). This impedance transformation depends upon the



Figure 4.23: For magnetic field across any integer plateau (here ν = 2 is highlighted
in particular), |S21| max. amplitude shows non-monotonous behavior.

load impedance (Zdet), hall resistance, length of sample and velocity of propagation.

The behavior of S21 curves for different integer filling fraction typically depends

upon load impedance and length of the sample. The results will be different had

we had a sample of different length or a different profile of load impedance. What

is most striking implication of the eq. 4.36 is that if the load is a short, then no

matter what is the length of the device, the two-probe impedance of electron gas at

these frequencies is hall resistance. It is assumed here that there is no longitudinal

resistance. However, we are able to explain S21 curves at magnetic fields where

longitudinal resistance does not fully vanish (for integer ν = 7,8 and 10). This

means that edge excitations are not scattered, are localised strongly along the edges

and go uninterrupted from one contact to other. This observation rhymes with

theoretical findings of Volkov and Mikhailov (78).

4.3.2 Non-Monotonous S21 trend across ν = 2 Plateau

In the previous section, we saw that at integer filling fraction, we can explain our S21

line shapes by a lossless transmission line model for edge-magnetoplasmons. From

the figure 4.23, we observe that at quantum Hall plateau, the RF transmission is
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Figure 4.24: Schematic illustration of edge plasmons (shown as red pulse) with
localised states. The coupling of plasmons with localised states leads to losses.

maximum at the centre of the plateau but decreases as one moves away from it

on either sides. We think that this decrease in S21 amplitude is caused due to

the coupling of edge plasmons with localised states in the bulk. Now, localised

states exists in the bulk due to disorder (33),(67), (68), (52), (39). Due to them,

the quantum hall plateau is stabilised (figure 4.24). As one is moving away from

the centre the coupling to these localised states increases, thereby, increasing signal

losses. We explain here our S21 line shapes across ν = 2 plateau by considering in

a phenomenological manner, the coupling to the bulk.

4.3.3 Resistive coupling to Bulk

In the figure 4.25, we have presented Edge channel as a transmission line with char-

acteristic impedance as Hall resistance and capacitance to ground as electrochemical

capactance CH per unit length. In addition, there is a conductance per unit length



𝐶𝐻 𝑑𝑥 𝑔𝐻𝑑𝑥

𝑍𝑐 = 𝜎𝑥𝑦
−1

𝑑𝑥

𝐼(𝑥, 𝑡) 𝐼(𝑥 + 𝑑𝑥, 𝑡)

𝑉(𝑥, 𝑡) 𝑉(𝑥 + 𝑑𝑥, 𝑡)

Figure 4.25: Edge magnetoplasmon model showing ohmic dissipation given by a
conductance per unit length

gH that accounts for the ohmic dissipation. This model leads to the following dif-

ferential equation for the current wave I(x, t):

∂I(x, t)

∂t
= −σxy

CH

∂I(x, t)

∂x
− gH
CH

I(x, t) (4.39)

With an ansatz of the form I(β, ω)ei(βx−ωt), we obtain the complex dispersion rela-

tion as:

ω̃ =
σxy
CH

β − i
gH
CH

(4.40)

This means that for an edge-magnetoplasmon excitation to go from one contact

to another, it will not only have a propagation phase, but will also be attenuated

exponentially. Incorporating these changes in equations 4.35 and 4.36, we obtain

the following expression:

VR(ω̃) = VL(ω̃)
e−iω̃τ(

1 + RH

Zdet

) (4.41)

Z2pt(ω̃) =
RH(

1− e−i2ω̃τ

1+
RH
Zdet

) (4.42)

Here τ is still the traversal time of the plasmons. In this model, the conductance

per unit length gH will be dependent on the magnetic field spanning the size of the



Hall plateau, becoming larger at values away from the centre of hall plateau. We
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Figure 4.26: Dwell time dependence on the magnetic field spanning ν = 2 Hall
plateau.

now use the equations 4.41 and 4.42 in our Transfer function formula 4.32 and use

it to fit our S21 data spanning ν = 2 plateau. The fit parameters here are the dwell

time τ , some extra capacitance to ground (Cextra) and the dissipation factor gH
σxy

.

The figures 4.26, 4.27 and 4.28 are the results of the fit. The dwell time increases

with the magnetic field. From this and also knowing that our 2DEG is 30µm long,

we can extract the velocity of edge-plasmons. From the dissipation factor we obtain

conductance per unit length. That’s what is plotted in figure 4.27. The S21 line

shapes along with fitted real and imaginary parts obtained from the above model

are presented in figure 4.29

By assuming a frequency independent ohmic dissipation, we have been able to ex-

plain the S21 line shapes in a phenomenological manner across ν = 2 plateau. The

obtained conductance per unit length gives us the DC resistance to ground to be in

100’s of kilo-ohms. We know that these values are false, since these must have been

seen in our two-probe DC resistance measurements.
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Figure 4.27: Conductance per unit length in Sm−1 as a function of magnetic field.
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Figure 4.28: Mesa capacitance variation with changing magnetic field across the
Hall plateau

4.3.4 RC coupling to the Bulk

We now use another coupling of edge plasmons with the bulk localised states. It

is of the form of a RC circuit. Physically, this means that the edge plasmons are

capacitively coupled with bulk localised states. Due to this, there is leakage of

signal, which then gets dissipated in those states. This description of RF transport

can again be given in terms of dissipative transmission line minimal model (figure

4.30), where Cl and Rl are the loss capacitance per unit length and resistor per unit

length respectively. With this model, the equation 4.22 is replaced by,

∂I

∂x
= −∂(ρCH

+ ρCl
)

∂t
(4.43)



Figure 4.29: S21 data along with fits with model incorporating dissipation for dif-
ferent values of magnetic field across the Hall Plateau.
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Figure 4.30: RC coupling of edge plasmons to localised states presented as dissipative
transmission lines. The loss capacitance Cl and resistance Rl describe the loss of
signal

Here, ρCl
is the charge on loss capacitance Cl and ρCH

is the charge on electrochem-

ical capacitance CH . Furthermore, in addition to equation 4.21,

V =
ρCl

Cl

+
∂ρCl

∂t
Rl =

ρCH

CH

(4.44)

holds. Solving these equations leads to following dispersion relation:

ω =
σxyk

CH + Cl

− i
Cl(σxyωkRl − ω2CHRl)

CH + Cl

(4.45)

We assume that the dissipation is small. In that case, Re(ω) >> Im(ω). The

dispersion relation then becomes,

ω =
σxyk

CH + Cl

− i
RlC

2
l

CH + Cl

Re(ω)2 (4.46)

This indicates that the dissipation increases with frequency. This form of dissipation

has indeed been used to explain losses observed in frequency resolved transmission

measurements (11) and time resolved measurements (50). From Eq. 4.46, we see

that prefactor of Re(ω)2 has units of time. We make this time as our fit parameter

for modelling dissipation. One can think of it as a RC time associated with this
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Figure 4.31: Trends of dwell time, dissipation (as a RC time) and and extra capac-
itance vs B

coupling that changes as we move across the hall plateau. Note that our frequency is

not varied to great extent due to narrow band resonators. Again, the fit parameters

are dwell time, extra capacitance (Cextra) and this dissipation term having units of

time. Fitting the S21 curves for magnetic field across ν = 2 plateau gives us the

trends of these parameters with magnetic field (figure 4.31).

We observe that dwell time follows similar dependence as in resistive coupling model.

The dissipation expressed in time units goes to close to zero at the centre of hall

plateau. The RC time is in few pico seconds range. This order of magnitude has

been observed in the literature (11) for electron gas with similar densities as ours.

Extra capacitance is around 9.4 fF, not depending significantly on magnetic field.

The curves with fits are in figure 4.32.

So, frequency dependent dissipation mechanism which describes capacitive coupling

of edge plamons with bulk localised states seems to describe our S21 trend across

ν = 2 plateau. The values of the RC time obtained from the fits are reasonable.
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Figure 4.32: S21 fits with RC dissipation model. Here dashed lines are fits, green
being real part of S21 and red being imaginary part.

The trend shows that the capacitive coupling does indeed increase as we move away

from the centre of hall plateau.

Both dissipative models fit equally well our data, since we cannot efficiently discrim-

inate between ω2 dependence and ω independent loss mechanisms within our finite

detection bandwidth. Nevertheless, the parameters extracted from ω independent

loss model fit are incompatible with the DC characterisation of the sample. This

strongly supports the modelling of dissipation with RC coupling circuits.



4.4 RF transport through QPC at ν = 2

In the previous section we presented RF transport through the device as a function

of magnetic field. A simple chiral model of uni-directional transmission line for the

Sample at integer filling fraction was established which was then used to construct

the transfer function to describe the measurements. Now we describe measurements

at integer filling factor 2 having Quantum Point contact in action.

4.4.1 Formulation

A Quantum Point Contact partitions edge channels one by one. If there are N

edge channels then the innermost channel gets partitioned first and outermost gets

partitioned at the end. The current from one contact to the other in two-probe

conductor through partitioned edge channel is dictated by the scattering matrix

ŜQPC of the Quantum Point contact. The transmitted and reflected currents are
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1

𝐼𝑖𝑛 ,+
1
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Figure 4.33: An Illustration of the RF transport at filling fraction 2 where inner-
edge channel is fully pinched and outer-edge channel is partitioned by QPC. The
current signal that enters the electron gas are labelled with ’+’ and those that leave
are labelled as ’-’. The total scattering matrix of the device will be composed of that
of QPC and mesa where signal travels a distance ’l’ towards QPC from the contact.

described by transmission and reflection probability. The channels which go through

unpartitioned have transmission probability 1, each having conductance Gk. Now,

from the knowledge gathered in previous section we know that for N edge channels

going from one contact to other, the non-local conductance at GHz frequencies is



proportional to the product of Hall conductance GH = NGk times the propagation

phase factor e−iβL (see eq. 4.37). When one of these channel is partitioned by

QPC, then the conductance will be transmission probability ’t’ times Gke
−iβL plus

(N − 1)Gke
−iβL. We start with this basic model for explaining RF transport in

Quantum Hall regime under the action of QPC. We can use the general expressions

for Z2pt, VR obtained in equations 4.30, 4.29 and solve them for the active QPC case.

For ν = 2 case, N=2 and assuming that the inner-edge channel is fully pinched and

outer-edge channel is being partitioned, the obtained expressions for Z2pt, VR are:

VR =
te−i2βl(

Rk

Zdet
+ (2− e−i2βl − (1− t)e−i2βl)

) (4.47)

Z2pt =
Rk(

(2− e−i2βl − (1− t)e−i2βl)− t2e−i2βl

(2−e−i2βl−(1−t)e−i2βl)+
Rk
Zdet

) (4.48)

As mentioned in the figure 4.33, the length ’l’ is from the QPC to the contact.

We assume here that sample has the same length from QPC to either of north

or south contact. So, the traversed distance from one contact to other (in case

of transmission) or getting back to the same contact (in case of full reflection) is

’2l’. Using the above expression in equation 4.32, we describe S21 lineshapes for

outer-edge channel. Assuming again βl = ωτ , here we make traversal time as fit

parameter. From the figure 4.35, we see that for the transmission greater than 0.6,

the fit to the data is more or less okay, but for transmission below it, fits are lousy.

For very low transmission [τ = 0.157, 0], it seems like the model completely fails to

describe amplitude. For one thing, we have not included the inter-edge coupling of

the outer-edge channel across the QPC (see figure 4.37). In the references (41),(40),

this capacitance was considered among the edge-channels across the QPC, owing

to the fact that these edge channels were relatively close to each other (separation

among them being the width of QPC gate electrode, which is 500 nm in our case).

At the time of writing this thesis, we are trying to incorporate this capacitance in
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Figure 4.35: S21 data along with fits for outer-edge channel

our model and hope to explain the results for low transmission.
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Figure 4.36: Obtained propagation time from the fits as a function of QPC gate
voltage. The three values from the pinch-off are off due to lousy fits.
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Figure 4.37: Display of Inter-edge capacitance CX between outer-edge channel across
the Quantum Point contact.



4.5 Conclusion

In the RF transmission measurements, we have explored the impedance of a 2D

mesoscopic electron gas at zero and finite magnetic field.

At zero field, the lumped element description of electron gas as resistor with some

capacitance to ground enabled us to characterize the RF circuit. We calibrated

overall gain of chain, determined internal resistance of resonators and parasitic ca-

pacitance among these resonators. We also found out that there is a large residual

capacitance to ground.

At finite magnetic field, especially for integer filling fractions, we explained the mea-

sured S21 curves by the chiral edge-plasmons propagation approach. The edge states

were described as chiral transmission line with characteristic impedance given by

the hall resistance, RH . Due to this phenomena, the electron gas with some sizable

impedance in series to ground acts as an impedance transformer. The impedance

transformation properties depends upon hall resistance, load impedance and length

of the sample. By using this information, we could explain S21 curves (both real

and imaginary part) with our transfer function. We only needed the information

of input impedance and trans-impedance of our electron gas in two-probe setup.

With it we obtained linear dependence of velocity with filling fraction and found a

residual capacitance of about 9.67fF, independent of magnetic field. This value tells

us that maybe the capacitance of the resonator has this value more in it than what

is provided by SONNET simulation (Jonas Mueller thesis work (60)).

Then we tried explaining the non-monotonous trend of S21 amplitude across ν = 2

plateau with two phenomenological models. Both were described as dissipative

transmission lines. In the first model, the dissipation was ohmic and gave resistance

to ground values in 100’s kilo ohm range, which is not physical as they could have

been measured. In the second model, the dissipation was captured in RC circuit

coupling of edge plasmons with localised states in the bulk. The dissipation term

was quadratic in frequency and the RC time dependence on magnetic field gave val-



ues in pico second range. It vanished at the centre of plateau, implying no coupling

to the bulk.

We also tried explaining the RF transport at the ν = 2 plateau where the qpc is

active. We proceeded with a simple changes to our plasmon propagation model by

adding scattering centre to it. With that, for outer edge channel, we were able to

explain S21 curves for transmission larger than 0.6. Perhaps, the model is too sim-

plistic and one need to use distributed capacitance network as described in (40),(41).

We would like to stress that in the RF transmission measurements, the signal fed

through the ohmic contacts is injected in all edge channels along a given edge. So,

the contacts feed the plasmon field on the full edge profile. Now, in the next chapter,

we will discuss about noise measurements, where the injection of RF signal (shot

noise to be more precise) will be done selectively in a given edge channel using the

quantum point contact.





Chapter 5

Effect of Impedance composition

Laws on High frequency Shot

Noise In Integer Quantum Hall

Regime

5.1 Introduction

We saw how the impedance of the Hall-bar behaves at high frequencies when a large

impedance load (resonator in this case) is attached in series to it. The effect was

observed experimentally through RF transmission measurements performed with

a Vector Network Analyser. Now, in this chapter we will see how this impedance

composition laws affects the Shot Noise power into to the detection circuit, delivered

by our sample. We will study these effects in three different circuit configurations

of the sample which will provide us more insight into the physics of it.

93



Figure 5.1: Vacuum Tube having thermionic emission of electrons from the Cath-
ode (K). They then get transported to Anode (A). The resulting current exhibits
fluctuations in time that are characterised by its average value and the charge of
electrons(75).

5.2 Shot Noise

Shot noise was first discovered by Walter Schottky in 1918 (75),(76) while he was

studying the current fluctuations in vacuum tubes. He found out that Spectral

density of current fluctuations, where current is produced due to thermionic emission

of electrons from cathode, is proportional to the charge transferred times the average

current.

SII = 2eĪ (5.1)

This noise produced is classical as the electrons that get transported are at high

temperature, and hence, have Boltzmann distribution. In a Mesoscopic device, at

low temperature, the charge transport through a scattering centre is probabilistic

even though the bias applied across the device (figure 5.2) is constant in time. One

can picture this as follows, the incoming electrons emitted through the contact at

a constant rate are either transmitted or reflected from the scattering centre with

some finite probability.

This does lead to an average current ⟨I⟩ which is constant in time, but will have

statistical fluctuations about this average value. These fluctuations thus produced

are of fundamental nature and are more informative than the average current itself.

For instance, it tells us about the charge of carriers undertaking this transport,

their statistics etc (79),(57). In the pioneering experiment (51), the shot noise



through Quantum Point Contact was measured to be below that of the classical

value (equation 5.1), revealing the Fermi-statistics of electrons undertaking this

transport. In the fractional Quantum Hall regime, it has revealed the fractional

charge of quasi-particles tunneling through Quantum Point Contact (74; 22; 10).

Experimentally, the current fluctuations are probed at specific setup dependent

S D

R

T

Figure 5.2: Illustration of Charge transport in a Mesoscopic device. Electrons are
represented as pulses spaced equally in time. They are incident upon scattering
centre from left. After the scattering, one pulse gets reflected (represented with
dotted lines) while the two other are transmitted. Here the average current is
constant, but the instantaneous current fluctuates in time.

Figure 5.3: Shot Noise dependence on transmission: Curve in grey is conductance
trace vs gate voltage applied on Quantum Point Contact. Curve in black displays
schematically shot noise where 0 < τ < 1. It peaks at τ = 0.5. Figure taken from
(79)

time-scales that can be compared to two time scales: Temperature ( h
kBT

) and bias

( h
eVdc

). If the probed time scale is larger than both temperature and bias, we call

this noise: low frequency noise. The expression for the Shot noise at low frequency



and at zero temperature for a single spin-polarized channel is as follows (79):

SII =
e2

h
τ(1− τ)eVdc (5.2)

The factor (1− τ) is the reduction factor with respect to Schottky noise that is due

to fermi-statistics. Shot noise is maximum at τ = 0.5 and goes to zero when either

there is no partitioning (τ = 1) or when there is no current (τ = 0) (see figure

5.3). Also, this expression is only valid when transmission τ is energy independent.

If the probed time is shorter than the temperature, then it is termed as finite-

frequency noise. In this thesis, we have done studies in the finite frequency noise:

kBT < hfdet ≤ eVdc. The edge states due to Quantum Hall effect provide us with

chiral transport channels for electrons and since we can partition edge channels

selectively by Quantum Point Contact, it allows us to study noise of each single

channel one by one.

5.2.1 Measurement of Finite-Frequency Noise

Our sample has on-chip resonators attached directly to the electron gas. When

the noise is emitted by Quantum Point Contact, it gets detected by these res-

onators. We follow the detection scheme as first given by Lesovik and Loosen

(54),(31),(19),(6). The current Operator Î(t) defined in Landauer-Buttiker scat-

tering theory (79) does not commute with itself at different times. This implies

that it’s time auto-correlation is a complex quantity. It means that power spectral

density, which is the Fourier transform of this auto-correlation is not symmetric in

frequency.

S(ω) =

∫
⟨Î(t)Î(t+ τ)⟩e−iωτdτ

S(ω) ̸= S(−ω) (5.3)



In Lesovik and Loosen approach, the current noise produced by the Quantum con-

ductor acts as a small time-dependent perturbation for the detector, which in our

case, is an LC resonator. The coupling is of the form:

V̂ (t) = Φ̂Î(t) (5.4)

Here, Φ̂ is the electromagnetic flux across the resonator. It is analogous to the

position variable in usual Harmonic oscillator description (25),(62). The Shot noise

Î(t) can be thought of as random force driving the oscillator. This driving produces

energy exchanges between the oscillator and the conductor and following power

exchange is measured:

Pmeas(ωo) = Re(Zdet)((1 + nB)S(−ωo)− nBS(ωo)) (5.5)

Here factor Re(Zdet) is the real part of detection circuit impedance, with nB as the

bose-einstein occupation factor.

nB(ωo) =
1

e
h̄ωo
kBT − 1

(5.6)

S(−ωo) triggers emission of energy from the conductor to the detector, whereas

S(ωo) triggers absorption from it. The equation 5.5 basically conveys that detector

couples differently with positive and negative frequency noise, depending upon the

resonator state. For example, if we are at zero temperature, then nB = 0. It means

that detector only measures the emission noise S(−ωo) from the conductor. This

is similar to spontaneous emission into vacuum. At finite temperature, we not only

have stimulated emission term nBS(−ωo) in addition to spontaneous emission, but

also the stimulated absorption term −nBS(ωo). We assume in our experiments that

resonators are very cold (at mixing chamber temperature ∼ 15 mK). This essen-

tially makes Bose-Einstein factor very small (∼ e−15), thus making the measured



noise power spectral density predominantly as emission noise from the Quantum

conductor. So, all the noise measurements shown in this chapter are emission noise

measurements based on this assumption.

The above described method of noise detection, which is implemented in our device

has an advantage that with this scheme we are able to couple the current fluctua-

tions of the Quantum conductor to the transmission line, which can then be used

to convey these signals to RF detection circuit at room temperature. We then use

standard RF signal processing techniques to measure and analyse these fluctuations.

This method, which first came out in (21) has been used to perform some amazing

microwave Quantum Optics experiments (64),(70),(71), where correlations among

the photons by the emitted noise have been measured. We do not explore this aspect

of noise measurements in this thesis.

5.2.2 Experimental method of Noise Measurement

Having said about the principle of measurement of noise in the previous section, we

will now talk about the experimental procedure with which noise is measured. The

noise signal emitted from the sample has to be amplified for it to be detected well at

room temperature. For this reason, we use amplifiers. First set of amplification is

done at 4K stage by cryo-amplifiers known as HEMTs. These amplifiers provide a

gain of about 40dB and add a parasitic noise equivalent to thermal noise of a resistor

kept at a temperature of few kelvins. They need to be impedance matched to ensure

all the incident noise signal is amplified and nothing is reflected. The power spectral

density at the output of this amplifier reads : SP (ω) = G×(kBTN+ZoSII(ω)), where

SII(ω) is the current noise emitted by the Quantum conductor towards Zo = 50Ω

and TN is the noise temperature of the amplifier.

The amplified signal can then be brought to the room temperature by further am-

plification with room temperature amplifier. So, the Radio-frequency amplification

chain for noise signal consists of amplifier at 4K stage and at 300K stage. The



signal after the amplification from this cascaded amplifier chain is : S
(2)
P (ω) =

G(2) × (kBT
(2)
N + G(1) × (kBT

(1)
N + ZoSII(ω))). If G(1)T

(1)
N >> T

(2)
N , then the signal

to noise ratio is dominated by the noise level of the first cryogenic amplifier.

This parasitic noise signal, as mentioned before, is very large compared to the emit-

ted noise. The cryo-amplifiers used in our setup are provided by Low Noise Factory

and have noise temperature of 2-3 K. Compared to that, temperature equivalent of

the emitted noise from Quantum Point contact is of the order of 7-9 mK. When the

bias is applied to the system, we call it as an ON state of measurement. In this state

the signal measured at the output of amplification chain is the already mentioned

expression of S
(2)
P (ω), or just SP (ω) if we neglect contribution of noise from room

temperature amplifier and keep in mind that Gain G = G(1) ×G(2). When no bias

is applied, which is the OFF state, the measured signal is G(1) ×G(2) × kBT
(1)
N . So,

we extract our signal by doing ON -OFF procedure. However, the Gain G has slow

variations in time. To correct for these variations, we divide the difference of ON

and OFF by the OFF measurement. Hence, the measured quantity is:

Smeas =
SON − SOFF

SOFF

(5.7)

We make some crucial assumptions while following this procedure of measuring

emitted noise from the sample at room temperature. First, the input noise from

the cryogenic amplifiers is constant in time. Second, during time delay between

the measurement of the ON signal and OFF signal, we assume that Gain of the

chain does not changes. The typical time between them is 1 minute in our data

acquisition routine. A small change of gain during this time delay can ruin the

measurement. For the auto-correlation noise spectral density, the OFF signal is the

parasitic noise signal kBTN of the given detection line. Here ON and OFF signal are

almost identical in magnitude since emitted noise is very small compared to OFF

noise. For the cross-correlation, the OFF signal is the parasitic cross-talk between
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Figure 5.4: Typical plot of Power Spectral Density. Here the noise is given in terms
of input noise of the Cryo amplifier (kBTN). The wiggles in spectra is due to standing
waves form due to imperfect connection in the detection chain between sample and
the cryo amplifier.

two different lines which is much smaller than OFF noise signal of each of given

lines. In the light of this, we see that fast variation of the gain is more likely to make

auto-correlation noise measurement lousy than cross-correlation by the experimental

bias arising from the gain drift. So, in this thesis, as will be shown in the coming

sections, we have measured noise in the setup where each detection line is divided

into 2 lines so as to measure auto-correlation more accurately. It is done by using

a -3dB Hybrid coupler (shown in blue in figure 5.7). This is one way we fight with

variation of the gain that changes faster than averaging time. Figure 5.4 gives the

measured noise spectra by following the ON/OFF procedure (see equation 5.7).

Also, we see in figure 5.7, there is another Radio-frequency device (2 of them per

each line infact) just before the input of Cryo-amplifier. These 3-port devices are

known as circulators and have chiral transport properties due to the presence of

ferritic material in them. They protect the sample from the voltage noise coming

from the cryo-amplifiers. Rather, that noise is sent to 50 ohm to ground which is

thermalized at the 12mK mixing chamber plate.

The signal to be detected at room temperature is a microwave voltage generated by
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Figure 5.5: OFF Noise spectra. Blue and Orange is the OFF spectra of the two
detection lines across QPC, green is the OFF spectra of cross-correlation of the two.
As can be seen, Cross-OFF is negligible as compared to auto-correlation OFF signal.

the sample at the input of the transmission line, oscillating in the coupled 4-8 GHz

band is:

Vac(t) = Vo(âe
−iωt + â+eiωt) (5.8)

with Vo =
√
Zch̄ is the zero point fluctuations in the transmission line of impedance

Zc (82). Experimentally, it is not possible to digitize this high-frequency signal

directly with our Analog to digital converter (ADC) card. Rather, we adopt the

method of Heterodyne detection, where this signal is multiplied with another clas-

sical oscillating signal of frequency ωLO. It is produced by local oscillator. As a

result of this multiplication, we obtain signal containing two parts: one which is at

frequency ωLO −ω and the other at ωLO +ω. Only the low frequency part is chosen

by passing it through a low-pass filter. As can be seen in the figure 5.4, spectrum

starts in frequency space from 4.3 GHz, but has as centre frequency of about 4.7

GHz. The frequency ωLO is chosen such that all the spectra can be brought down

to low-frequency, making 4.3 GHz to be DC, where it can then be digitized with

the ADC card. Since the spectra is not decaying sharply at 4 GHz (as resonance

lies close to it), we put another band-pass filters that can cut the spectrum more
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Figure 5.6: Variation of the integrated noise power in OFF configuration with time
for two different detection lines. These Slow variations are taken care of by dividing
the excess noise by OFF signal. Here each point is obtained by summing area under
the curve for the OFF spectra in figure 5.5.

sharply. The purpose here being that when the heterodyning is done, it produces

less aliasing of the down-converted signal. We use bandpass cavity filters centered

around 5 GHz with different bandwidths to do the job.

After heterodyning is done, signal is then passed through a low-pass filter, after

which it then goes to the ADC for signal processing. The ADC can operate at 5

Giga samples/ sec. When all the four channels are being used (as shown in figure

5.8),the sampling rate per channel is 1.25 Giga samples/sec. This gives a Nyquist

bandwidth of 625 MHz. For the case where only two channels are used (as in the case

of 3pt-setup shown in the next section), the sampling rate is 2.5 giga samples/sec,

giving the bandwidth to be 1.25 GHz.

After having said about experimental measurement of noise, let’s have a look at the

RF Shot noise characterized by these techniques.
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Figure 5.7: Noise setup for measuring auto as well as cross-correlations accurately
from the sample. Here is the setup till 4K stage of the Dilution fridge. Each main
detection line is split into two by -3dB coupler.
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Figure 5.8: Room Temperature setup for the shot noise measurement. The noise
signal after amplification from the Cryo-Amps (Shown in green) gets into the room-
temperature chain. We have tried to maintain the overall gain of about 40dB in
all the 4 lines. After the amplification and band-pass filtering of the noise signal,
it is then fed into the mixer where it is mixed with a local oscillator tone set at
4.3 GHz with an amplitude of +22 dBm at its input. This local oscillator signal
is divided into 4 lines equally, making the amplitude at the input at the mixer to
be +16 dBm. After this mixing the down-converted signal is selected by low-pass
filter, which then is finally fed to the ADC.



5.3 Noise in 3-point configuration

Here we report the measurement of RF noise in the integer quantum Hall regime.

Here the chirality is counterclockwise as set by out of plane magnetic field. We

set the side-gates to 0V. By applying current bias on the top (east) ohmic contact

we send a current along the top edge of the mesa. It then gets partitioned at the

Quantum Point Contact and the reflected (transmitted) current (and noise) reach

the resonator situated at north (south) sides of the sample respectively following the

edge channels. We study this measured noise as a function of bias, Vdc and QPC

gate voltage, Vg.

Vg

N S

Figure 5.9: 3-point Configuration : Noise emitted by the Quantum Point Contact
reach the resonators which acts as a receiver antenna

Let’s first discuss qualitatively the shot noise power measured at ν = 2. What we

observe here is that the detected noise power follows a canonical dependence on the

transmission : SII ∝ τ(1 − τ) for outer edge channel. For the inner edge channel

(see figure 5.10), however, we right away observe two things: the dependence on the

QPC transmission is not canonical (as in for outer edge channel) and its magnitude is

almost three times less as compared to that for outer edge channel. The transmission

for inner edge channel depends upon energy, as can be seen from the figure 5.11,

whereas, it is energy independent for the outer edge channel.

In the following section we provide a more quantitative analysis of the measured

noise. In order to do so, we need to understand how does the detected noise power
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Figure 5.11: DC Transmission for both inner (1 < τ < 2) and outer(0 < τ < 1)
edge channel in 3pt configuration. Energy dependence of inner channel is evident,
while it is feeble for outer channel.

is related to shot noise emitted by the QPC.

5.3.1 Microwave coupling

For a single channel in general, the complete emission shot noise formula is given as

(83):

SII(f) = A
e2

h
τ(1− τ)

(
hf + eV

e
hf+eV
kBT − 1

+
hf − eV

e
hf−eV
kBT − 1

− 2hf

e
hf

kBT − 1

)
(5.9)
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Figure 5.12: Current noise circuit: Quantum conductor of impedance Zs acts as
a source of current noise δI. The noise δIt that gets transmitted to the detection
impedance Zdet is simply given by current division between these two impedances.

Here A is the ratio of microwave coupling of the emitted current noise power in the

detection circuit to the noise temperature of the Cryo-amplifier. In our experiments,

the measurement of noise is done in the units of cryo amplifier noise (kBTN). In

order to explain the power spectral densities for different bias and transmission, we

need to know the origin of the factor A. For that we need to quantify microwave cou-

pling of the noise emitted by Quantum point contact to the detection circuit. Let’s

discuss the circuit given in figure 5.12, where we have our noise source which injects

some current fluctuations onto the detection circuit. Let the sample impedance

be denoted as Zs. Due to current division, the current fluctuations entering the

detection impedance Zdet will be given as:

δIt = δI
Zs

Zs + Zdet

(5.10)

The noise power detected on the detection circuit will then be :

δP = ⟨δI2t ⟩Re(Zdet) = ⟨δI2⟩
∣∣∣∣ Zs

Zs + Zdet

∣∣∣∣2Re(Zdet) (5.11)



We would like to determine this microwave coupling in the 3-point setup when the

outer edge channel is being partitioned. In order to do that we will make current

balance at the contacts which couple the detection circuit (resonator) to the sample.

These contacts are labelled as ’N’ and ’S’ in the figure 5.13. For the 3pt-setup, the

impedance to ground is always the hall resistance RH . This can be seen from

equation 4.36 where Zdet = 0. The shot noise emitted by Quantum Point contact

towards south contact is negative to that emitted towards north contact due to

conservation of current fluctuations. However, when this noise signal reaches the

contacts, it acquires the propagation phase ϕ. Assuming that the sample length

from the QPC to either detection setup contacts is same, this phase acquired is the

same as well. The fluctuations injected by the QPC to the north contact is:

δIinj = δIe−iϕ (5.12)

This fluctuating signal then undergoes current division at that contact. Some of it

goes to the detection setup circuit δIt, while the rest of it, δIref goes to cold ground

on chip via Hall resistance as the voltage at that contact injects signal in both edge

channel. These current fluctuations are related to the voltage on that contact as:

δIt = δVnGdet

δIref = δVn2GK (5.13)

The current balancing at that contact gives us:

δIt = δIe−iϕ − δIref

δVnGdet = δIe−iϕ − δVn2GK (5.14)



𝛿𝐼𝑁

𝑍𝑑𝑒𝑡

E

W

SN

𝑉𝑔

𝛿𝐼𝑆

𝛿𝐼

−𝛿𝐼

𝛿𝐼𝑟𝑒𝑓

𝛿𝐼𝑟𝑒𝑓

Figure 5.13: Circuit schematic for 3-pt configuration. Inner-edge channel is fully
pinched while outer-edge is transmitted with probability τ . The noise from QPC
gets injected into outer edge on both sides of it which then reach resonator after
having current division. The power received into the detection lines is δIn and δIs
which are some fraction of δI, the bare noise emitted from QPC, owing to the current
division.

Similarly, for the south contact, we get:

δVsGdet = −δIe−iϕ − δVs2GK (5.15)

From equations 5.14 and 5.15, we see that fluctuating voltage at north and south

contact are negative of each other. Using 5.13 and 5.14, we obtain the transmitted

current fluctuations as:

δIt =
δIe−iϕ

1 + 2GKZdet

(5.16)

The detected power spectral density in terms of noise temperature of cryo-amplifier

is thus,

δP

Poff

=
1

kBTN

⟨δI2⟩Re(Zdet)

|1 + 2GKZdet|2
(5.17)

We observe that equation 5.17 is similar to equation 5.11 apart from the factor 1
kBTN

,

so as to have quantity which is what we measure experimentally. The microwave cou-

pling for the 3 point setup is completely independent of the transmission probability.

This is due to the chirality of edge magnetoplasmons. The current fluctuations that
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Figure 5.14: Cross-spectra at 58µV for different transmissions along with the fits
(dashed lines) with equation 5.18. The data is presented here after savgol-filtering
it for clarity.

are reflected back to the sample from the contact (let’s say at the north contact ’N’)

go to the ground and do not feedback to the quantum point contact (see figure 5.13).

The resonators just act as antenna for the noise signals produced by the Quantum

point Contact.

5.3.2 Noise Spectra

Now that we know how the emitted noise couples to the detection circuit, we use this

information to explain our measured spectral density and integrated noise power.

From the fit we extract the effective noise temperature (TN). For this particular

set of experiment, the measured bandwidth of power spectral density is about 1.25

GHz around 4.7 GHz, the resonance frequency. We go to large bias value (at about

60µV ) and assume that bare noise produced by QPC is linear function of bias. This

leads to the following formula for detected power spectral density:

δP

Poff

=
1

kBTN

(eV − hf)τ(1− τ)

RK

Re(Zdet)

|1 + 2GKZdet|2
(5.18)

Using this we obtain fits of measured power spectral density and get noise tem-
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Figure 5.15: Obtained noise temperature from the above spectra fit. Note that for
very low and very high transmission the noise power spectral density is low, thereby
making fits a bit lousy. Thus values of TN is lousy for low and large transmission

perature to be about 9.3K as referred to the output of QPC (figure 5.15. The data

for power spectral density is a cross-correlation signal (figure 5.14). From the pre-

vious discussion on measuring our noise spectrum, we noted that difference of ON

and OFF noise is normalised by OFF noise which is the cryo-amplifier noise kBTN .

Now, this is true for noise measured in one line (for auto-correlation). For the

cross-correlation, we normalise it by the product of OFF signal of north and south

detection lines. The noise temperature is thus, square-root of product of noise tem-

perature of two-lines:
√
TN1TN2. The cryo-amplifier’s used in north and south lines

have noise temperature of 2-3 K at their input. We measure large noise temperature

as referred to the output of QPC. This is due to the losses that happen when the

noise signal that travels from the sample to these amplifiers. Some of the power is

burnt in the resonators coils (they have internal resistance of 12.5Ω), while rest is

lost due to propagation. The microwave chain attenuates the RF noise power by

roughly 6 dB.

Knowing the effective noise temperature, we can determine the electronic tempera-

ture by fitting the noise power with 5.9. It comes out to be about 65mK (figure

5.16). Now that we know both noise temperature of the amplifier and electronic
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Figure 5.16: Integrated noise power vs DC-bias. The transmission for the outer-edge
channel is 0.48. The obtained temperature is 64.9 mK. Here each point of data is
obtained by summing the noise spectral density over the frequency bandwidth.
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Figure 5.17: Transmission dependence of the Integrated noise power for outer -edge
channel. It follows canonical τ(1− τ) dependence. The continuous lines is obtained
by summing the formula 5.17 over frequency, where TN is input as 9.3K and ⟨δI2⟩
is given by equation 5.9 having temperature as 64.9 mK.



Figure 5.18: Integrated noise power as a function of transmission for different bias
values at ν = 3 Hall plateau. The detected noise power decreases as one injects
noise signal from outer edge channel to innermost edge channel with quantum point
contact.

temperature and we know expression for the detected power spectral density, we

can use this info test our prediction with data of integrated power vs transmission

curve (see figure 5.17).

5.3.3 Dissipation

We saw in figure 5.10 that the detected noise power from inner-edge channel was

highly attenuated with respect to the outer edge channel. The attenuation was close

to 70 percent of that in outer edge channel. Note that this measurement is done at

centre of hall plateau. At the centre of hall plateau, in the precedent chapter, we

described RF transmission through the edge channel as lossless. Losses as coupling

to the bulk localised states were invoked when magnetic field is changed across the

ν = 2 plateau. To explore it further, we have done the same noise measurements at

ν = 3 filling fraction (centre of plateau). In the figure 5.18, we see that for a given

DC bias applied, the detected noise power is maximum for outer-edge channel fol-

lowed by middle and inner channels. And moreover, the relative reduction of noise

power from inner edge channel is again 70 percent compared to that in outer edge



Figure 5.19: Differential conductance for different edge channels. The energy depen-
dence of transmission for middle and inner edge channel affects the detected noise
power.

channel. The losses seen in noise measurements at the centre of plateau seem to

contradict the understanding we obtained from the measurements of the precedent

chapter.

We note one thing. In RF transmission measurements, the signal is injected from

the ohmic contact which is galvanically coupled to all charge carriers at the edge.

On the other side, in noise measurements, quantum point contact can selectively

inject noise (RF signal) either in inner or outer edge channel. This relation between

dissipation and the way RF signal is injected into the edge channel lead us to con-

sider the different edge-magnetoplasmon modes that carry the signal. These modes

were first theorized in a hydro-dynamical model by Aleiner and Glazmann (1). They

studied low-energy spectrum of collective excitations of electron gas placed under

high magnetic field having smooth edge profile. They found out that along with

usual charge edge-mode, there are other modes as well having different spatial vari-

ation of charge density. In the charge edge mode, the density variation is along the

edge, whereas for the other modes, the variation of density happens as well in the

transverse direction to the edge (see figure 5.20). All these modes live all across the

edge channels. In the RF transmission measurement, the signal injected via ohmic
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Figure 5.20: Taken from (1). Charge modes (faster, long lived) oscillate along the
edge of the electron gas, whereas dipolar modes (slower and short lived) oscillate
transverse to it. ’a’ represent the width of boundary strip over which these modes
live. It is the total width of compressible strips for a given integer filling fraction in
CSG picture (16)

contact imposes a fluctuating potential across the full width of the edge, implying

a coupling to charge mode. However, shot noise couples to both charge and soft

modes. The decay rate of these edge-modes is dependent on the mode itself. Soft

modes have faster decay rates than charge mode. Hence, due to this reason, our

description of RF transmission through the edge channels by charge modes was suf-

ficient. We did not have to invoke the other edge modes carrying our signal. Even

though there are time-dependent transport measurements through 2D electron gas

in quantum hall regime (27), where the soft modes have been observed by pulsating

a voltage on a contact. The magnitude of the pulse used is of the order of 10 meV,

which potentially provides a non-linear drive to the system.

For the case where one selectively excites single edge channel, coulomb interac-

tions among these channels play an important role. There have been many studies,

both in DC and RF transport that reveal the effect of these interactions. In DC

transport regime, energy redistribution among edge channels (53; 69), dephasing of

interferences in electronic mach-zehnder interferometer (73),(42) are few examples

of interplay of interactions among co-propagating edge channels. They are described

in the circuit model by a capacitor between these channels. There are some the-

oretical works (55),(23),(24; 56) and much more that have attempted to explain



dissipation, decoherence and energy relaxation seen in the above mentioned trans-

port measurements. In RF transport regime, there is a seminal frequency resolved

experimental work by Erwann Bocquillon et al. (11), where, by giving a RF signal

to the outer channel through QPC, the signal from the inner channel was measured.

They measured inter channel plasmon scattering matrix from this experiment. This

results showed that due to coulomb interactions, the collective excitation at one of

edge channel is decomposed into charge and neutral modes amongst the two co-

propagating edge channels. These modes move with different velocities. They also

observed the dissipation in the measured signal from inner channel, when frequency

of excitation was increased. This dissipation was taken to be quadratic in frequency.

Our noise measurements at both ν = 2 and ν = 3 provide new results regarding

dissipation at high frequencies in edge channels. To our knowledge, such asymmetric

dissipation with respect to the driven edge channel has never observed. Although

we have seen a significant loss of noise power in inner-edge channel, it is true that

we cannot say how much power, if any, is lost from outer edge channel. It is because

we do not have an independent way to calibrate our noise RF chain. The noise

temperature TN ≃ 9K as referred to the QPC output, obtained from outer channel

noise is a bit higher than what has been previously measured in the experiments

done in our dilution fridge with similar cryogenic RF circuitry. In the work (59), the

noise temperature of 6-8K has been reported. Maybe the difference between this

noise temperature and our noise temperature is the losses in outer edge channel. At

this point, we do not have a better understanding. We believe that the description

of RF transport by capacitively coupled edge channels is a good starting model. A

modification would be to include coupling of edge channels to the bulk. We are

currently trying a toy circuit model (see figure 5.21) of capacitively coupled edge

channels which might qualitatively capture the observed loss of noise power. Here

for ν = 2, both edge channels are modelled as chiral transmission lines of ZC = RK .

They are coupled to each other via a distributed capacitance per unit length Cx.



The coupling to the bulk is given by series RC circuit. Hopefully, it might explain

our results. Let’s see!

5.3.4 Summary

So, for the 3 probe setup, we found that noise power detected when driving the outer

edge channel follows τ(1− τ) dependence. We showed that the microwave coupling

of the emitted noise to the detection circuit is independent of DC QPC transmission.

This is due to the chirality. The reflected current fluctuations from either of the north

or south contact are sent to on-chip ground due to chiral direction of transport. So

there is no feedback of fluctuations of any sort on the quantum point contact. We

calibrated the noise temperature of the cryogenic amplifier (assuming no losses in

outer edge channel). With that we obtained the electron temperature from shot

noise. We also observed losses in the measured noise power from partitioning of

inner edge channel, both at ν = 2 and ν = 3 filling fractions. This lost of high

frequency noise power challenge our understanding of dissipation that happens in

edge channels.
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Figure 5.21: Toy circuit model for shot noise propagation through outer (shown
in red) and inner (shown in blue) edge channel. Both channels are modelled as
transmission lines with Zc = RK . They are coupled to each other by capacitance
per unit length Cx. The inner edge channel is coupled with bulk via lossy capacitance
and resistance per unit length. After traversing either of the channel, the noise signal
then goes to load impedance ZL (detection circuit) where noise power is measured.
a) When noise signal is injected from QPC (shown as current source) to the outer
edge channel. b) noise signal injection in inner edge channel



5.4 Noise in 2-Point configuration

When we set the side gates voltages to -0.4V, the connection of electron gas is cut

from the on-chip grounds. In this configuration, the bias is applied through the

inductive port of bias-tee, both from north and south sides,in differential mode, re-

spectively (see figure 5.22). We again change both Vg and Vdc and measure 2-point

differential resistance R2pt and the noise through the resonators. For measuring

noise, we have placed 2 cryo-amplifier on both detection lines, totaling 4 of them.

The purpose here being to measure auto-correlation more accurately. Since, in

this configuration, the resonators (electromagnetic environment) are in series with

our coherent conductor (Quantum Point Contact), we expect noise feeding back to

Quantum Point Contact. The power detected will, hence, depend on the QPC trans-

mission and will also have a phase dependence due to propagation. Let’s first derive

these relations, as was done for three point configuration. Here as well, inner-edge
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Figure 5.22: 2-point noise circuit: We do differential biasing across Quantum Point
Contact. On the north side of the sample, a small current bias Iac is applied via lock-
in amplifier and voltage is measured. The bias resistor for lock-in is 99.1 MΩ (not
shown here). The bias resistors R1 and R2 are 953M Ω and 960M Ω respectively. The
resistors RF to ground on each side are 12 kΩ. They help us to have a voltage bias.
On RF side, we have two cryo-amps on each detection lines allowing us to measure
the auto-correlation accurately. The splitting of emitted signal from sample into
two lines is done by -3dB hybrid coupler (shown as brown square). Unfortunately,
line C was disconnected during the run.

channel is fully pinched. Noise is generated by partitioning of outer-edge channel.



We use constitutive relations and current conservation rule at north and south con-

tacts.

δI+o,N = GKδVN

δI+i,N = GKδVN

δI+o,S = GKδVS

δI+i,S = GKδVS (5.19)

δI−i,N = GKe
−i2ϕiδVN

δI−i,S = GKe
−i2ϕiδVS (5.20)

δI−o,N = (1− τ)e−i2ϕoGKδVN + τe−i2ϕoGKδVS + δIbaree
−iϕo

δI−o,S = (1− τ)e−i2ϕoGKδVS + τe−i2ϕoGKδVN − δIbaree
−iϕo (5.21)

δIN = δI−o,N + δI−i,N − δI+o,N − δI+i,N

δIS = δI−o,S + δI−i,S − δI+o,S − δI+i,S (5.22)

The set of equations presented in 5.20 and 5.21 convey the outgoing current fluctu-

ations from the quantum point contact to the detection circuit at north and south

locations (see figure 5.22). The term GKe
−i2ϕiδVN is the current fluctuation that

after entering into the sample through inner channel from the contact at north, gets

out of it with a phase accumulation 2ϕi. Here we see in this naive relations that at

the contacts, the fluctuations feeding in are not only due to QPC, but also due to

feedback. The noise signal travels roughly the same path ’l’ when traversing from

QPC to ohmic contact or vice-versa through the edge channel on either side of the

sample. Thus, the total phase accumulated from contact to contact is twice of that



accumulated in contact to QPC.

Substituting equations 5.20 and 5.21 in 5.22, we find that voltage fluctuations at

north and south contact are opposite of each other, similar to what was obtained in

3-point configuration. Finally, we obtain the fluctuating current δIN going to the

north detection circuit as :

δIN =
δIbaree

−iϕo

1 + (2− (1− 2τ)e−i2ϕo − ei2ϕi) Zdet

RK

(5.23)

The power detected is thus given as:

δP

Poff

=
1

kBTN

⟨δI2bare⟩Re(Zdet)

|1 + (2− (1− 2τ)e−i2ϕo − ei2ϕi) Zdet

RK
|2

(5.24)

Both equations 5.23 and 5.24 contain in their denominator phase-factor due to prop-

agation in inner-edge channel. Now, from the data of noise in 3pt-configuration of

inner channel (see figure 5.10), we saw that there was attenuation in the emitted

noise. In 3-point setup, the phase accumulated was only due to the distance tra-

versed from quantum point contact to ohmic contact. Herein 2-point setup, due

to the feedback the noise injected in inner-edge channel gets back to the contact

by traversing twice the distance (that is why the term 2ϕi). In that case, the at-

tenuation of the noise would be twice to that seen in 3pt-configuration. So, in the

simple model, we neglect altogether the contribution of the noise signal via inner-

edge channel which lead us to drop the term e−i2ϕi from the equation 5.24. Hence,

the equation becomes:

δP

Poff

=
1

kBTN

⟨δI2bare⟩Re(Zdet)

|1 + (2− (1− 2τ)e−i2ϕo) Zdet

RK
|2

(5.25)

Again, for large bias, the emitted noise is simply proportional to this bias which

simplifies the expression for ⟨δI2bare⟩ as ⟨δI2bare⟩ =
(eVdc−hf)

RK
τ(1− τ). Summing equa-

tion 5.25 over frequency bandwidth will give us integrated noise power. We use it
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Figure 5.23: Integrated Noise power along with fits with Vdc = 58.755µV for three
cross-correlations which are named here as ’AB’, ’AD’ and ’DB’ respectively.

to fit our measured data and obtain from there the values of noise temperature TN

and propagating time ∆t = ϕo

ω
.

Out of the 4 cryo-amplifiers used, the one named as ’C’ was faulty. So, here we could

only have three different cross-correlations instead of six. They are named as ’AB’,

’AD’ and ’DB’, respectively. Among them ’DB’ represents the auto-correlation of the

south detection line (see figure 5.22). We present the data of these cross-correlations.

For the two bias values, the obtained noise temperature and the propagation time

are same within error-bars for the given cross-correlation. The temperature values

obtained is as referred to the sample. Now, we know that when the signal comes out

of the sample and enters the detection chain, there will be some losses. Moreover,

since we have hybrid coupler, it divides each detection line into two parts and splits

the signal into half in amplitude 1.The amplifiers used have stated noise tempera-

ture of about 2-3 K. Due to this hybrid coupler the noise temperature cannot be

1In addition to that, it adds a constant phase of 90 degrees to the signal entering one of the
branch with respect to other.
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Figure 5.24: Integrated Noise power along with fits with Vdc = 44.177µV .

less than 4K. Our obtained value is between 8-10 K in close agreement with noise

temperatures obtained in 3-point setup, implying that we loose half of the signal

before it reaches hybrid coupler.

The obtained value of propagating time is in 48-46 picosecond range. The length

traversed from the Quantum Point contact to the ohmic contact is 20µm. This

gives us the velocity of the travelling noise signal. it comes out to be 4.1×105ms−1.

This is a bit faster than the one obtained from RF transmission studies done in the

sample without using QPC (there it was 3.52 × 105ms−1 at ν = 2, B=2.66T). We

understand it as follows: the signal generated at the centre of QPC travels along

the boundary of about 5µm in length which is gate defined (gate of the QPC). The

capacitance to ground for a gate defined edge is smaller and hence its velocity is

larger.

5.4.1 Discussion

In 2 point-configuration, we saw that due to classical feedback of current fluctuations

onto the Quantum point contact, the fluctuations that enter the detection setup



depend on the DC transmission probability τ and also to the propagation phase. We

used the information of dissipation of noise signal when it is injected into inner-edge

channel and got a simple expression 5.25, where its phase contribution is neglected.

If we were to compare equation 5.11 to equation 5.24, we can obtain the output

impedance of the QPC. It is given as:

ZQPC =
RK(

1− (1−2τ)e−i2ϕo

2

) (5.26)

This is so because the detection impedance is now 2Zdet, since both resonators are

in series with QPC and current noise injected to north contact is negative to that

injected in south contact. Now one can imagine a similar sample but whose mesa size

is very small, such that propagation phases, both for inner and outer edge channel

are negligible. In that case, we might use the full expression of 5.23 and obtain

output impedance as:

ZQPC =
RK(

1− (1−2τ)e−i2ϕo−e−i2ϕi

2

) (5.27)

What our findings show that output impedance can change depending upon length

of the device. This is more in the sense that one needs to consider the feedback

contribution to outgoing current fluctuations by the inner-edge channel. A detailed

study of dissipation seen in noise through inner edge channel is needed. Perhaps

testing samples of various length is a way to go. In this way, formula 5.27 can be

thoroughly checked.

Also, the observed deviation of detected noise in this configuration resembles very

closely to the theoretical prediction of third cumulant correction of Shot noise (30).

This is due to the Quantum back-action effects of resonator (electromagnetic en-

vironment) onto the QPC (coherent quantum conductor). Under this effect the
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Figure 5.25: Modified emitted shot noise (5.28) as a function of transmission for
various β values. We see that for negative values of β the noise is larger for trans-
missions larger than 0.5. It is similar to our measured noise power. However, in this
plot the microwave coupling α is assumed to be constant.

modified bare shot noise emitted from the QPC is written as (30):

SII(τ) = α[τ(1− τ) + βτ(1− τ)(1− 2τ)] (5.28)

where β indicates the strength of the back-action effect due to quantum fluctuations

of external impedance. This correction increases emitted noise for transmission

larger than 0.5 and decreases it for transmission values less than 0.5. This implies

that β < 0. α is the microwave coupling term. If we plot the above formula with

constant α, we obtain curves for different values of β ( figure 5.25). From our

microwave coupling analysis we found that α is not constant but depends upon

propagation phase and transmission. By assuming standard expression for emitted

noise along with this coupling, we were able to produce our measured results with

values of phase consistent with RF transmission measurements. These propagation

effects itself produce deviation of noise which resembles to modified emitted noise.

At this point we cannot conclude that these effects are absent in our measurements.

In order to observe such fine effect, a short mesa size is needed which can get rid of

propagation effects. For short mesa, the output impedance of QPC would lead to
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Figure 5.26: Noise power as function of transmission for short mesa sample. Here
the output impedance of QPC is RK

τ
. With detection impedance of 50 Ω we see

that detected noise is same as emitted bare noise. However, for large detection
impedance( ∼ 10kΩ), detected noise tilts towards transmission values lower than
0.5.

following transmitted fluctuations into detection circuit:

St
II = SII

∣∣∣∣∣ RK

τ

Zdet +
RK

τ

∣∣∣∣∣
2

(5.29)

Plotting the noise power using above expression for detection impedance of 50 Ω

and 10 kΩ (figure 5.26), we see that for large detection impedance, noise power is

tilted to transmission values smaller than 0.5. If we were to observe these back-

action effects on short mesa sample, we need to see the deviation from the green

curve in figure 5.26. That being said, we do observe quantum back-action effects

in our current sample on the differential conductance in 2 probe configuration (see

next chapter for details).



Chapter 6

Quantum Back-Action

In the previous chapter, we studied the impedance composition laws that taught

us about how RF-transmission is coupled through the sample and how much Shot

noise is detected by resonators. It was all thanks to the high impedance nature

of these resonators that made us resolve these measurements with decent signal to

noise ratio and thus allowing us to perform them in linear response regime. This

high impedance nature of these resonators also means that they have large quantum

zero-point motion of the voltage at the contact that connects them to the electron

gas. In the quantum Hall regime, since there are edge-states having resistance of

25.8kΩ, this mesoscopic circuit arrangement thus, provide us a way of coupling a

high-impedance environment to a single quantum channel. The single quantum

channel is obtained by partitioning the edge-channel via Quantum Point contact.

For this we work at ν = 2 and study this effect by partitioning outer edge channel.

This quantum effect of the external environment on the transport properties of

conductor (tunnel junction, Quantum point contacts, Quantum dots etc.) is called

as Dynamical Coulomb Blockade.
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6.1 Introduction

When a Quantum conductor, like a tunnel junction is placed in an electrical circuit

(referred in literature as an Environment), one observes the reduction of the low-

bias conductance of conductor. This effect is known as Environmental or Dynamical

Coulomb Blockade and arises in conductors with very small capacitance such that

they have large charging energy:

EC =
e2

2C
(6.1)

In order to observe single electron charging effects the thermal energy of the elec-

trons must be smaller than the charging energy EC << kBT , otherwise thermal

fluctuations blur-out the blockade effect. For example: the charging energy e2

2C
is

about 1K·kB for a capacitance of C ∼ 1fF . Thus these effects can be observed

in dilution refrigerators for circuits having capacitances in the few 10s of fF. De-

pending upon whether the charge on the conductor is completely localised or it is

discharging through the capacitance depends upon the impedance of the external

circuit, these effects are termed as Static coulomb blockade or Dynamical coulomb

Blockade respectively.

For the static coulomb effect, we can assume a quantum dot formed by two tunnel

junctions. It is essentially an electrostatic island made by two series capacitances

defined by the insulating layer of the tunnel junctions, yet electrons can tunnel in

and out via the tunneling effect. As the electronic charge of the island is discrete,

one can regard a tunneling current as a series of single electronic tunneling events

assumed to be a weak perturbation to the island states. When an electron is trans-

ferred to the island, it increases its charge by an elementary charge and the biasing

source thus needs to provide the electrochemical work of the single electron charging

energy of the island EC = e2

2C
, with C the sum of capacitances from the island to

ground. Otherwise, for low biases eVbias <
e2

2C
, the electron transfer is blocked. The



observed conductance is zero.

It turns out that it is not even necessary to have an electrostatic island to block or re-

duce charge transport, indeed the dynamical Coulomb blockade (DCB) occurs when

any mesoscopic conductor of finite transmission, for this example a NIN-junction,

is placed in series with an electrical circuit having a finite dissipative admittance

(26; 32)(see figure 6.1). If the conductor, that we represent as a normal tunneling

Figure 6.1: Illustration of the DCB effect for a tunnel junction in different electrical
circuits: a) tunnel junction in a zero impedance biasing circuit; b) in series with a
resistor; c) in series with a single LC resonator (1 EM-mode). The corresponding
conductance curves are shown schematically for a) in black, for b) in red, for c) in
blue. Solid lines illustrate the zero temperature limit, while dashed lines represent
the finite, yet low, temperature behaviour where kBT is much smaller than the
characteristic energies of the environment: Eenv = h̄/RC for (b) and Eenv = h̄/

√
LC

for (c).

element in parallel to its charging capacitance C, was in a perfect voltage biasing cir-

cuit (zero series impedance), the charge accumulated at the capacitor’s plates after

a tunneling event would immediately relax and not perturb the tunneling dynamics.

If we now add a resistor with impedance Z(f) ≃ R into the circuit environment,

we introduce a finite life time τRC = RC for the electric influence field trapped

within the plates of the capacitor. Whether the single electron charging energy is

well defined with respect to this relaxation dynamics, depends on its corresponding



energy uncertainty δERC = h
τRC

.Thus single electron charging effects become rele-

vant when ERC < EC , which is the case when R > h
e2
. It results in a suppression of

the electronic transport similar to the static Coulomb blockade in the ideal case of

zero temperature and small biases. This qualitative picture given above yields the

right order of magnitude of the resistance necessary to observe sizeable reduction of

the conductance at small but finite temperature: the conductance is not fully sup-

pressed and also increases with the applied bias until the charging energy is reached

and the blockade is lifted (36; 45).However, at zero temperature and bias voltage,

the conductance is expected to vanish for any non-zero value of the series resistance

In order to obtain a better microscopic picture, it is useful to exploit the Caldeira

and Legget (15) representation of linear dissipative circuits as an ensemble of electro-

magnetic modes which is equivalent to a series of LC-resonators. Thus a macroscopic

resistor is an infinite chain of resonators with different frequencies so that the resistor

is able to absorb photons at any energy. Within this picture, the DCB corresponds

to inelastic tunneling, i.e. tunneling electrons may spontaneously emit a number

of photons into their environment. We illustrate this in figure 6.1: In situation a),

for a perfectly shunted tunnel junction, all electrons tunnel elastically. However in

situation b), when a resistor is added in series, electrons may tunnel inelastically

with their energy being dissipated into the environment as a photon. Case b) in re-

turn implies that electrons can not pass the junction unless they carry the necessary

energy to emit the photon, so that the conductance diminishes at low biases (dark

red dashed line in figure 6.1) and vanishes at low temperature (red solid line in fig-

ure 6.1). When the circuit attached to the junction consists of a single resonator of

frequency f, as shown in c), one can observe a similar suppression of the conductance

that is also lifted for increasing bias voltages. Having only one resonator mode in

the environment, inelastic processes are only possible if the electrons have energies

that are multiples of the resonator’s energy and thus the blockade release occurs step

by step at bias values eV = n · hf. Hence one can observe plateaus for electronic



tunneling events with multiple photon emissions (see figure 6.1 (blue)). Yet again,

as is the case for the resistor, the sharp step-profile is only obtainable close to zero

temperature kBT << hf . At finite temperature the steps will be smoothed by the

thermal fluctuations.

6.2 DCB Effect for arbitrary transmission

The dynamic Coulomb blockade is well understood for the tunnel junction or any

conductor where all electronic channels have a very small probability to be transmit-

ted through the conductor (τ << 1) (36), the reason for this is that in this limit the

junction can be treated as a Hamiltonian perturbation to the circuit. At finite trans-

mission however, there is no general theory that enables a prediction of the dynamics

of an arbitrary quantum conductor embedded in an arbitrary linear circuit. Some

models for finite transmission values τ were made for a weak impedance environment

by Golubev (35) and Yeyati (80) in 2001 and Kindermann (47) in 2003, predicting

a conductance suppression proportional to the shot noise reduction F = (1− τ). By

now, their theories are experimentally tested by Cron et al. (20) and Altimiras et al.

(2) for the weak blockade regime of a single channel of a QPC coupled to a different

weak impedance environments. Later on, the experimental work was also extended

to high impedance environments, the strong blockade regime, by Parmentier et al.

(63) and Jezouin et al. (44). In (63), the conductance of QPC was studied both

with bias and temperature for two different resistive environment having resistance

of 13kΩ and 26kΩ. The conductance in the presence of environment at any bias and

temperature for any arbitrary transmission was found as:

GQPC(V, T ) =
τ∞
RK

(
1 + EB(Z, V, T )

1 + τ∞EB(Z, V, T )

)
(6.2)

Here EB(Z, V, T ) = limG∞→∞
δG
G∞

is the relative change in the conductance for the

tunnel junction embedded in the same environment as the Quantum Point contact.



τ∞ is the bare transmission of the QPC when high impedance environment is not

present or it is the value of the transmission measured at large biases or temperature

(eV, kBT >> EC) where DCB effects gets washed out. This means, in particular,

that the ratio of the relative change of conductance at zero bias to the bare conduc-

tance, which is the back-action correction to the conductance δG
G∞

is proportional

to (1 − RKGQPC(V, T )) and not to (1 − τ∞), which is the case for low impedance

environment. We here will study this effect on Quantum Point Contact having a

high impedance LC circuit as an environment.

6.3 Experimental Conditions

We present here our experimental results of differential conductance of a Quantum

Point Contact at ν = 2, when the outer-edge channel is being pinched and setup

is in two-point configuration. In this setup, both LC resonators are in series with

Quantum Point Contact. So, the characteristic impedance of the total external

circuit as seen from quantum point contact will be twice that of a single resonator.

From the RF transmission lineshapes and noise spectra at ν = 2, we have seen

that resonance of the microwave resonators is close to 4.7 GHz. Using this and

knowing that self resonance of the coil was at 5.5 GHz, we can deduce the modified

characteristic impedance of the coil.

Z
′

c = Zc
f

′
0

f0
(6.3)

Since Zc = 1kΩ, the modified characteristic impedance is 854.54Ω. So, the charac-

teristic impedance of the environment is twice of that, which is 1.7kΩ. Resonant

frequency of 4.7 GHz translates to the bias of 19.46µV via eV = hf relation. The

bias applied in the experiment ranges from +60µV to −60µV respectively. Thus, we

have probed dynamical coulomb blockade effects up to 3 times this value in energy

(eVmax ≃ 3hf). We do only a differential biasing scheme across QPC (see figure 6.2)
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Figure 6.2: Circuit Illustration of the differential conductance measurement having
two resonators in series with the Quantum Point contact. In this scheme we bias
across QPC in differential mode via the inductive path of bias-tee. The resistors R1
and R2 are large bias resistors . Resistors RF are of the order 6.2kΩ.

to minimize the effects due to the electrostatic dependence of the QPC transmission

on the DC bias.

6.4 Observations and Results

We now present the experimental results. We show the dependence of the DC

conductance on the applied bias for different QPC conditions (different gate voltage

Vg values). From figure 6.3, we make following observations:

• there are dips in the value of conductance trace around zero bias value. Close

to ±20µV , the conductance peaks for each QPC value.

• even though we are doing this measurement under differential bias, there still

seems to be a slope as one goes from negative to positive bias, and that these

slopes are somewhat dependent on the value of QPC at which bias trace is

taken.

• There is nothing like a step shape profile of differential conductance for any

given QPC value which one would expect from DCB effect due to a LC res-

onator. One would expect not a step-shape but rather something of that
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Figure 6.3: Dependence of the DC transmission of the outer edge channel on the
applied bias for various values of QPC.

form that is smoothed by the effective temperature which consists of electron

temperature and lock-in voltage used to measure the differential conductance.

Subtracting the slopes from the curve in the figure 6.3, we obtain the figure

6.4. One can see that there are dips in the conductance at zero bias, but also some

bulges at around the value of bias close to ±20µV . To gain more insight, we take

an interpolation of the data in figure 6.4 and plot the ratio of relative change of

conductance to bare conductance G∞ as a function of applied bias for all the QPC

values. This bare conductance is what is measured for any QPC value at large bias

(here at ±60µV , see figure 6.4). From figure 6.5, we see that at bias values ±20µV

the DCB correction to the conductance increases with decrease of the transmission

measured at that value. But the increase is quite small; about 5 percent for the

tunnel regime. If we were to estimate the reduction when the environment is a pure

LC resonator having Zc as mentioned above, then it is 1 − e
−2πZc
RK ∼ 0.2, about 20

percent (65). This is clearly not the case.

Also, we note one curious observation of the dependence of the slope of dI/dV curves

on zero bias transmission for each value of QPC. The result is plotted in the figure



Figure 6.4: Plot after slope correction for each trace of transmission with bias. The
dotted blacklines on either sides convey the bare transmission of QPC τ∞.

𝜏 decreasing

Figure 6.5: δG/G∞ plot as a function of bias applied. We see reduction of con-
ductance at two bias values (±20µV ), symmetric about zero bias. The reduction
increases more with decreasing transmission.
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Figure 6.6: Dependence of the slope of differential conductance in fig 6.3 on trans-
mission at zero bias. The curve looks like shot noise measured in 2 point setup.

6.6. The slope follows the trend which is much like the shot noise curves that we

have measured in 2point-configuration. At this point, we are trying to understand it

as well. Maybe, there is somehow a quantum back-action of noise on the I-V curve

of QPC which produces this slope.

6.5 Discussion

We have tried to measure the DCB correction to the conductance of the QPC having

two resonators in series with it. Naively, it would have gotten us about 20 percent

reduction in the conduction. But it gave about 5-6 percent. Also, the relative

reduction curves are not like we would expect for a LC resonator in a thermal

state. The reductions are seen at bias values close to energy quantum of the LC

resonator. Currently, we do not have any theory to explain our experimental results.

However, one thing can be said about the nature of the environment as seen from the

QPC. Since the electron gas in between QPC and resonator has a sizeable length, it

means that there is an impedance transformation of the LC resonators done by the

electron gas. We have seen from the RF transmission measurements how the phase

propagation effects build up in electron gas and make it a impedance transformer.



It is not surprising that it is happening here as well. At this point we are working

on it.





Chapter 7

Conclusions and Perspectives

In conclusion, this thesis highlights the study of RF transport through mesoscopic

sample in Quantum Hall Regime. With the help of on-chip microwave resonators,

we performed two main experiments: RF transmission through the device and RF

Shot noise.

In RF transmission measurements done at zero magnetic field, we characterized

our device (internal resistance of the coil, parasitic capacitance) and calibrated the

gain of RF chain. Using this information we studied this transmission at finite

magnetic fields. In the integer quantum hall regime the RF signal in the elec-

tron gas is carried along the edge states by low-energy collective excitation known

as edge-magnetoplasmons. The transport through Edge-states at these frequencies

was modelled as that in transmission lines, but uni-directional in nature. For integer

filling fractions, edge channels were described as non-dissipative chiral transmission

lines having characteristic impedance as Hall resistance. The edge-plasmons travers-

ing along the edge acquire a propagation phase. Due to this, the electron gas in

the quantum hall regime acts as an impedance transformer, with impedance trans-

formation laws markedly different from the ones arising from the usual reciprocal

transmission lines. Thanks to the formalism that we derived to understand these

impedance transformations, we could model the transmission through the device
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consisting of 2DEG in series with two large impedance RF resonators. By changing

the magnetic field applied to the sample we found a linear dependence of velocity of

Edge magnetoplasmons as a function of filling fraction at integer values. We then

described RF transmission line shapes across the ν = 2 plateau by modelling the

transport as a dissipative transmission line where the dissipation is ohmic in nature.

A possible physical picture here is that of leakage of the RF signal carried by edge

excitation to the bulk of the sample (to the localised states) where it is dissipated.

This leakage depends upon the magnetic field as one moves across the hall plateau.

Our ohmic model of dissipation resulted in leakage conductance values in the range

of 100 kΩ when we are away from the centre of the plateau. These values are not

physical as it would have been seen in two-probe DC measurements. We have then

used another phenomenological dissipation term which is quadratic in frequency. It

physically describes a RC leakage coupling of the RF signal in the edge channel to

the localised states in the bulk. The RC leakage time obtained is in few picoseconds

in agreement with results obtained in (11). In all these measurements of RF trans-

mission, the signal was injected into the full edge profile (their number depending

upon filling fraction) from a galvanically connected contact. So, we expect to couple

predominantly to the charge mode(1) whose density oscillations are strictly along

the edge. This charge mode’s leakage across various hall plateaus gives us the non-

monotonous trend of S21 amplitudes.

Next, we investigated the RF Shot noise emitted by a DC biased QPC predominately

at the centre of the ν = 2 plateau, primarily in two different circuit configurations.

In the first one, known as the three-probe scheme, we found out current division

rules, giving the fraction of the emitted noise which couples to the detection circuit.

The current division factor depends on the hall resistance and on the impedance of

the detection circuit. It is, therefore, independent of QPC transmission. For the

noise emitted by partitioning outer edge channel, we calibrated the RF noise chain

by determining the noise temperature of cryo amplifiers. However, the noise emitted



from the partitioning of inner edge channel had surprises. The corresponding de-

tected noise power was found to be 70 percent lower with respect to the one emitted

from the outer edge channel. This, to our knowledge is the first measurement of

its kind where such a loss of RF noise power is seen. Similar measurements were

also performed at ν = 3 and it was found that noise detected when driving the

inner-most channel was again 70 percent lower than when driving the outermost

edge channel. Since with the help of QPC we can selectively drive a RF noise sig-

nal into different edge channels, we could observe that even at the centre of the

quantum hall plateau dissipation of the RF signal can occur. While our data shows

unambiguously that driving the innermost edge channel give rise to large losses as

compared to when driving the outer edge channel, we could not make a quantitative

analysis of the signal coupled when driving the outer channel. Comparison of the

noise temperature as referred to the output of QPC with that measured in a similar

setup with tunnel junctions makes us, nevertheless, confident that losses in outer

edge channel are smaller than 20 percent. For RF transmission measurements, the

plasmon propagation at the centre of Hall plateau was found to propagate without

losses, opposite to what is seen in noise measurements. When QPC selectively drive

a RF signal into either outer or inner edge channel, the excited chiral plasmons are,

nevertheles, coupled to each other by Coulomb interactions. In this way, perhaps a

basic description of losses in the measured noise power can be provided by assuming

coupled transmission line circuit, where the inner channel has a RC coupling to the

bulk. In the second setup, the two-probe configuration, the QPC was set in series

with resonators. In this case, the detected noise showed strong deviations from 3-

point configuration, where it scaled canonically as τ(1−τ). This deviation has been

predicted to be the quantum back-action correction of noise due to environment

(30), but the observed effect was way larger than expected. We found that due

to the phase accumulated by plasmon propagation, the output impedance of the

QPC is a complicated function of propagation phase and DC QPC transmission.



If one assumes the standard shot noise dependence on transmission (τ(1− τ)), the

detected noise power resulting from τ current division factor leads to a different

τ dependence as compared to the emitted noise. This formulation reproduces our

data with propagation phase values agreeing closely to those that we obtained from

the RF transmission measurements through the hall bar. However, it doesn’t rule

out any quantum back-action correction to the noise. The coupled noise signal is

predominately affected by impedance transformation effect which we could not char-

acterize on 10 percent level needed to disentangle classical and quantum back-action

effects. The propagation effects due to moderate length (l ∼ 30µm) of the mesa

turn out to be more prominent.

Lastly, we have measured the back-action on differential conductance in the two-

probe setup. We do observe an intriguing QPC dependence of differential conduc-

tance in two-point setup, not seen in 3-point setup. The deviation of the conductance

from its asymptotic value at large bias is larger for lower transmission values, as ex-

pected from predictions. Qualitatively, this results are in line with the predictions in

(47), but a detailed theory has yet to be established. Here, we suspect the impedance

as observed from QPC to ground is not that of LC oscillator but rather transformed

by the intervening mesa structure. On top of it, since the classical back-action is

strong (as seen from noise measurements in two-point configuration), it means that

state of the resonators cannot be assumed as a simple gaussian bath.

Therefore, this experimental work has paved a new way of understanding dynamical

transport in Quantum Hall regime and brought exciting new questions that we hope

will lead to more detailed understanding of the underlying physics at play.

7.1 Perspectives

With the experiments done, we learned new things. First, high frequency shot noise

came out to be a new tool to probe dissipation in Quantum Hall regime. To the



best of our knowledge, the loss of noise power in inner edge channel as compared to

outer edge channel is not observed in low-frequency noise measurements (typically

measured around 2-3 MHz), neither when integrating the full energy flux carried by

the edge channel (53). The high frequency plasmons that carry the noise signal when

driving the inner-most edge channel show unambiguously more dissipation than

when driving the outer edge channel. To understand these dissipation effects, further

work is needed. This will also help to understand more the way different edge channel

are coupled with each other and with the bulk. Heat transport measurements can be

employed to check whether these losses are dissipated as heat in the bulk or simply

redistributed within the edge channels at lower frequencies.

Second, in order to observe quantum back-action effects on shot noise, we need a

shorter mesa size. This will help get rid of phase propagation effects. But, one needs

to think on the parasitic capacitance between resonators that can shunt the QPC

(it is about 1 fF in the present sample), since now they will be more closer to each

other. So, a careful thought on designing the device is needed.

Lastly, the three-probe circuit scheme in our device can already be used to probe the

statistics of the photons emitted in the detection circuit by the electronic shot noise.

Here the resonators only acts as a receiving antenna for the emitted noise and no

fluctuations feedback to quantum point contact. With all these properties, one can

finally perform experiments to see whether the emitted photons show anti-bunching

effects or not, as predicted in (9),(8).





Appendix A

Appendix

A.1 Gain of the RF-Chain

Knowing the DC two-point resistance to ground and substituting it as the Impedance

in between the resonators, one can get the fit from the model. This gives us the

Gain of the chain G.

The gain G tells us about the net amplification RF-signal gets when it traverses

through the full microwave chain of elements, starting from port 1 of V.N.A, going

through the sample and coming back to port 2. This Gain is frequency dependent

and is different when one moves slightly in frequency space. This is because transfer

functions (S21 specs) of microwave components are not fully flat in frequency space,

there are standing waves formed due to the impedance mismatch that happens when

connecting two-cables as connections are never perfect and there are insertion losses

due to the finite length traversed by the signal plus some deliberate insertion of

dissipation elements into the microwave chain.

A.2 Phase of the cavity filter

Here we present the phase of the cavity filter and the delay time, which is computed

as dϕ
df
. As can be seen from the figure A.1 at the band edge of the filter response

145



(close to 4 GHz and 8 GHz), the delay time is not linear with frequency. It there-

fore, adds significant distortion to the net phase measured by V.N.A then any other

microwave component given the fact that for RF transmission measurement setup,

three of these filters are used. So, we remove three times the phase of this filter from

the measured phase.

The measurement presented in A.1 are taken at room temperature and it is assumed

that all the three filters are more or less identical in specifications. And that fea-

tures at cryogenic temperatures are not that different for the phase than at room

temperature even though it is known that filter’s length contracts when cooled.
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Figure A.1: Phase (shown in red and the delay time (shown in blue) of 4-8 GHz
cavity filter. In our setup we use three of them (two in the mixing chamber of the
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[17] T. Christen and M. Büttiker. Low frequency admittance of a quantum point

contact. Phys. Rev. Lett., 77:143–146, Jul 1996.
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