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RÉSUMÉ

Cette thèse explore l’utilisation de la structure partiellement-séparable pour l’optimisation
continue sans contrainte, en particulier pour les méthodes quasi-Newton et l’entraînement de
réseaux de neurones.

Une fonction partiellement-séparable est la somme de fonctions éléments, chacune de dimension
inférieure à celle du problème total. Le Hessien peut être agrégé en approximant séparément
le Hessien de chaque fonction élément avec une matrice dense. Cela préserve la structure
creuse du Hessien, contrairement aux méthodes quasi-Newton à mémoire limitée. En pratique,
ces méthodes nécessitent moins d’itérations qu’une méthode quasi-Newton à mémoire limitée
et peuvent être parallélisées en distribuant les calculs liés aux fonctions éléments.

Cependant, la revue de littérature de la thèse révèle certaines limites lorsque la dimension
des fonctions éléments est grande. De plus, le seul logiciel d’optimisation libre exploitant la
structure partiellement-séparable1 est inutilisable pour les utilisateurs inexpérimentés sans
l’utilisation d’un langage de modélisation commercial.

Dans cette thèse, des solutions sont proposées pour remédier à ces lacunes, ainsi qu’une
application des concepts d’optimisation partiellement-séparable à l’apprentissage supervisé
d’un réseau de neurones.

La première contribution est une suite logicielle libre basée sur une détection automatique
de la structure partiellement-séparable d’un problème, c’est-à-dire qu’elle retrouve chaque
fonction élément de dimension réduite. Elle alloue des structures de données partitionnées
nécessaires pour stocker les dérivées (approximées) et définit des méthodes d’optimisation quasi-
Newton (à mémoire limitée) partitionnées. L’ensemble de la suite est intégré à l’écosystème
JuliaSmoothOptimizers2, qui rassemble de nombreux outils pour l’optimisation continue,
notamment des algorithmes d’optimisation qui peuvent exploiter la séparabilité partielle
détectée.

Dans la deuxième contribution, l’approximation d’un Hessien élément par une matrice dense
est remplacée par un opérateur linéaire quasi-Newton à mémoire limitée. Par conséquent,
le coût en mémoire pour stocker et effectuer un produit entre l’approximation du Hessien
et un vecteur n’est plus quadratiquement lié à la dimension des fonctions éléments. Une
telle approximation partitionnée à mémoire limitée est alors applicable lorsque les fonctions
éléments sont grandes, contrairement à une approximation partitionnée dense. La norme

1LANCELOT [33]
2détaillé dans [110]
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de chaque nouvel opérateur quasi-Newton partitionné à mémoire limitée peut être bornée,
garantissant que sa méthode de région de confiance relative converge. De plus, les résultats
numériques montrent que ces méthodes surpassent les méthodes quasi-Newton partitionnées
ou à mémoire limitée lorsque les fonctions éléments sont larges.

La dernière contribution examine l’exploitation de la structure partiellement-séparable dans
l’entraînement supervisé d’un réseau de neurones. En général, le problème d’optimisation
associé à l’entraînement n’est pas partiellement-séparable. Par conséquent, une fonction de
perte partiellement-séparable et une architecture de réseau de neurones partitionnée sont
introduites pour rendre l’entraînement partiellement-séparable. Les résultats numériques
montrent qu’une combinaison de ces deux contributions est compétitive avec les architectures
et fonctions de perte usuelles. L’entraînement de cette combinaison peut être réalisé en
parallèle, de manière complémentaire aux techniques d’apprentissage supervisé parallèles
existantes. Plus spécifiquement, les calculs de chaque fonction de perte élément peuvent être
distribués à un travailleur qui opère uniquement sur un fragment du réseau de neurones. Le
problème d’entraînement partiellement-séparable possède des larges éléments pour lesquels
un entraînement quasi-Newton partitionné à mémoire limitée est proposé. Cet entraînement
est empiriquement montré comme compétitif avec les méthodes d’entraînement de l’état de
l’art et légèrement inférieur à Adam.
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ABSTRACT

This thesis investigates the use of the partially-separable structure for continuous unconstrained
optimization, in particular for quasi-Newton methods and neural network training.

A partially-separable function is the sum of element functions, each of lower dimension than
the total problem. The Hessian can be aggregated by separately approximating the Hessian
of each element function with a dense matrix. This preserves the sparsity pattern of the
Hessian, in contrast to limited-memory quasi-Newton methods. In practice, these methods
require fewer iterations than a limited-memory quasi-Newton method and can be parallelized
by distributing the computations related to the element functions.

However, the literature review of the thesis reveals some limitations, particularly when the
dimension of the element functions is large. Additionally, the only open-source optimization
software exploiting the partially-separable structure3 is unusable for inexperienced users
without using a commercial modelling language.

In this thesis, solutions are proposed to address these shortcomings, along with an application
of partially-separable optimization concepts to supervised learning of a neural network.

The first contribution is an open source software suite based on an automatic detection
of the partially-separable structure of a problem, i.e., retrieves each reduced-dimensional
element function. It allocates partitioned data structures necessary for storing (approximated)
derivatives and defines (limited-memory) partitioned quasi-Newton optimization methods.
The entire suite is integrated into the JuliaSmoothOptimizers4 ecosystem, which gathers
numerous tools for continuous optimization, including optimization algorithms that can exploit
the detected partial separability.

In the second contribution, the approximation of an element Hessian by a dense matrix is
replaced with a limited-memory quasi-Newton linear operator. As a result, the memory cost
for storing and performing a Hessian-approximation vector product is no longer quadratically
related to the dimension of the element functions. Such a limited-memory partitioned
approximation is then applicable when the element functions are large, conversely to a
dense partitioned approximation. The norm of each new limited-memory partitioned quasi-
Newton operator can be bounded, ensuring that its relative trust-region method converges.
Additionally, numerical results show that these methods outperform partitioned or limited-
memory quasi-Newton methods when the elements are large.

3LANCELOT [33]
4detailed in [110]
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The final contribution examines the exploitation of the partially-separable structure in the
supervised training of a neural network. In general, the optimization problem associated
with training is not partially-separable. Therefore, a partially-separable loss function and
a partitioned network architecture are introduced to make the training partially-separable.
Numerical results show that a combination of these two contributions is competitive with
state-of-the-art architectures and loss functions. The training of this combination can be
carried out in parallel, complementarily to existing parallel supervised learning techniques.
More specifically, the calculations of each element loss function can be distributed to a worker
who only needs to operate a fragment of the neural network. The partially-separable training
problem possesses large elements for which a limited-memory partitioned quasi-Newton
training is proposed. This training is empirically shown to be competitive with state-of-the-art
training methods and slightly inferior to Adam.
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RÉSUMÉ DE LA THÈSE

Contexte

Cette thèse est centrée sur l’utilisation de la structure partiellement-séparable durant la
minimisation d’un problème continu sans contrainte :

min
x∈Rn

f(x)

où f : Rn → R ∈ C2 est partiellement-séparable, i.e., f somme des fonctions éléments de
moindre dimension :

f(x) =
N∑

i=1
f̂i(x̂i), x̂i := Uix, (1)

où chaque Ui ∈ Rni×n, ni < n sélectionne les variables paramétrant la fonction élément
f̂i : Rni → R. Le gradient et le Hessien s’expriment de la forme suivante :

∇f(x) =
N∑

i=1
U⊤

i ∇f̂i(x̂i), ∇2f(x) =
N∑

i=1
U⊤

i ∇2f̂i(x̂i)Ui,

où ∇f̂i ∈ Rni et ∇2f̂i ∈ Rni×ni sont respectivement le gradient et le Hessien de la fonction
élément f̂i. [76, Théorème 1] justifie l’intérêt de la séparabilité partielle en démontrant
que chaque fonction possédant un Hessien creux est partiellement-séparable. La nature
partitionnée des dérivées sera exploitée par les méthodes quasi-Newton qui seront ensuite
appliquées à l’entraînement d’un réseau de neurones. Note: la notation donnée par (1)
est complète, mais diffère de celle initiallement proposée au début du chapitre 1. Dans le
chapitre 1, les notions liées à la séparabilité partielle sont introduites pas à pas, partant ainsi
d’une définition plus générale qui est affinée par la suite pour trouver (1).

De manière générale, l’utilisation du Hessien par les méthodes de Newton est considérée comme
trop coûteuse pour un problème de grande dimension. Les méthodes quasi-Newton permettent
de pallier ce problème en approximant de manière itérative ∇2f(xk) par des matrices Bk = B⊤

k

mises à jour par les évaluations de∇f(xk) [23, 41, 101]. Historiquement, l’approximation quasi-
Newton d’un Hessien est réalisée par le biais d’une matrice dense, rendant l’approximation
inapplicable pour un problème de grande dimension. Les approximations quasi-Newton
sont néanmoins applicables à ces problèmes par l’introduction des variantes à mémoire
limitée. Ces variantes approximent à partir d’un faible nombre de paires de vecteurs (xk+1 −
xk,∇f(xk+1)−∇f(xk)) le produit Hessien-vecteur par un opérateur linéaire v → Bkv ≈ v →
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∇2f(xk)v [45, 101]. Cependant, la construction d’une approximation quasi-Newton ne permet
pas de conserver la structure creuse du Hessien. Lorsque la fonction f est partiellement-
séparable, on peut faire l’approximation

Bk =
N∑

i=1
U⊤

i B̂i,kUi, (2)

en agrégeant les approximations du Hessien de chaque fonction élément B̂i,k = B̂⊤
i,k ≈

∇2f̂i(x̂i,k) ∈ Rni×ni , x̂i,k := Uixk. Ces méthodes quasi-Newton partitionnées sont applicables
aux problèmes de grandes dimensions et conservent la structure creuse du Hessien [28, 75, 76,
104, 107], contrairement à une méthode quasi-Newton à mémoire limitée. En pratique, ces
méthodes réalisent moins d’itérations qu’une méthode quasi-Newton à mémoire limitée [75,
101, 105, 148], et sont facilement parallélisables en distribuant les calculs attribués à chaque
fonction élément [27, 58, 91, 99, 116, 136].

Le chapitre 2 rappelle des concepts liés aux méthodes quasi-Newton et le chapitre 3 est
un état de l’art sur la minimisation partiellement-séparable. En particulier, la section 3.1
détaille les propriétés d’une fonction partiellement-séparable et les illustre par des exemples.
La section 3.2 décrit les principales méthodes quasi-Newton partitionnées ainsi que leurs
résultats de convergence. Par la suite, les sections 3.3 et 3.4 regroupent différentes méthodes
d’optimisation continue exploitant la séparabilité partielle. Les sections 3.5 à 3.7 précisent
comment l’exploitation de la séparabilité partielle permet l’implémentation de routines
numériques spécifiques, aboutissant à des logiciels dédiés. La section 3.8 présente plusieurs
méthodes d’optimisation sans dérivées incorporant la structure partiellement-séparable. La
section 3.9 conclut par une analyse critique de l’état de l’art.

L’analyse critique relève deux principaux facteurs limitant le développement des méthodes
quasi-Newton partitionnées. Premièrement, les B̂i,k sont denses, ce qui nécessite que les ni

soient petits pour mémoriser Bk avec peu de mémoire. Lorsque les ni sont larges, mémoriser
chaque B̂i,k devient coûteux. Ainsi, lorsque f possède des fonctions éléments de grande
dimension, l’approximation Bk d’une méthode quasi-Newton partitionnée devient (très)
coûteuse en mémoire. Deuxièmement, il manque un logiciel libre détectant automatiquement
la séparabilité partielle d’une fonction f . En effet, le logiciel libre Fortran LANCELOT
[33] extrait la séparabilité partielle du format SIF (Standard Input Format [34]), dont la
modélisation nécessite le renseignement de la structure par l’utilisateur; tandis que AMPL [62]
est un langage de modélisation commercial. Cette thèse apporte une solution pour chacun de
ces problèmes, ainsi qu’une application des concepts de séparabilité partielle à l’apprentissage
profond. Le chapitre 4 propose une méthode quasi-Newton partitionnée à mémoire limitée
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supportant les fonctions éléments de grande dimension. Le chapitre 5 applique les méthodes
développées durant le chapitre 4 à l’entraînement d’un réseau de neurones dont le problème
d’entraînement partiellement-séparable possède des fonctions éléments de grande dimension.
Le chapitre 6 présente l’ensemble du code produit nécessaire aux contributions des chapitres 4
et 5.

Méthodes quasi-Newton partitionnée à mémoire limitée

Le chapitre 4 introduit les méthodes quasi-Newton partitionnées à mémoire limitée afin
de minimiser une fonction partiellement-séparable ayant des fonctions éléments de grande
dimension. Dans ces méthodes présentées à la section 4.1, le produit Hessien-vecteur de
chaque fonction élément est approximé par un opérateur quasi-Newton à mémoire limitée
v → B̂iUiv. L’agrégation des résultats de tous les v → B̂i,kUiv permet de calculer v → Bkv.
L’opérateur v → Bkv permet de définir une approximation quadratique

mk(s) := f(xk) +
(

N∑
i=1
∇f̂i(x̂i,k)

)⊤

s+ 1
2s

⊤
(

N∑
i=1

U⊤
i B̂i,kUi

)
︸ ︷︷ ︸

Bk

s, mk(s) ≈ f(xk + s). (3)

La minimisation du sous-problème mins∈Rn mk(s) détermine à chaque itération la direction
de descente d’une recherche linéaire lorsque Bk ≻ 0, ou le pas d’une région de confiance en
ajoutant la contrainte ∥s∥ ≤ ∆k,∆k > 0. En pratique, ce sous-problème est résolu par la
méthode du gradient conjugué tronqué [84, 143] en employant uniquement v → Bkv. Il en
résulte trois nouvelles méthodes de région de confiance quasi-Newton partitionnées à mémoire
limitée. La première, nommée PLBFGS, approxime chaque v → B̂i,kUiv par un opérateur
linéaire à mémoire limitée quasi-Newton BFGS (LBFGS) [20, 21, 23, 59, 67, 101, 114, 141]. La
seconde, nommée PLSR1, approxime chaque v → B̂i,kUiv par un opérateur linéaire à mémoire
limitée quasi-Newton SR1 (LSR1) [23, 41, 102]. La troisième, nommée PLSE, approxime
chaque v → B̂i,kUiv par un opérateur LSR1 lorsque les conditions numériques pour employer
un opérateur LBFGS ne sont pas satisfaites. Les trois méthodes PLBFGS, PLSR1 et PLSE
sont démontrées comme convergentes par la même preuve, détaillée dans la section 4.2. La
preuve consiste à borner ∥Bk∥ à chaque itération k d’une méthode de région de confiance afin
de garantir la convergence globale. Pour réaliser cela, chaque ∥B̂i,k∥ est borné par l’application
de garde-fous numériques supplémentaires lors de la mise à jour de B̂i,k à chaque itération.

Les résultats numériques présentés section 4.3 comparent plusieurs méthodes quasi-Newton
sur des problèmes partiellement-séparables. Afin de minimiser une fonction partiellement-
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séparable possédant des fonctions éléments de grande dimension, on considère la fonction

f limit =
√

n−3∑
j=1

 (j+2)
√

n∑
i=(j−1)

√
n

ixi

2

1 + x2
j

+
√

n−5∑
j=1

 (j+4)
√

n+5∑
i=(j−1)

√
n+5

ixi

2

1 + x2
j

, (4)

pour laquelle les ni augmentent à mesure que n croît. La fig. 0.3 indique le temps, les
itérations et le nombre de produits Bkv nécessaire avant que chaque méthode atteigne un
point stationnaire de f limit, i.e. ∥∇f(xk)∥ ≤ ϵmin(1, ∥∇f(x0)∥). Trois méthodes de région de
confiance quasi-Newton sont comparées : PLSE, PSR1 et LBFGS. LBFGS est une méthode
quasi-Newton à mémoire limitée. PSR1 est une méthode approximant chaque ∇2f̂i(x̂i,k) par
une matrice dense B̂i,k, mise à jour à chaque itération par la formule SR1 (2.15). PLSE est
une des méthodes quasi-Newton partitionnée à mémoire limitée.

(a) Iterations. (b) Temps en secondes.

(c) Nombre de produits Bkv.

Figure 0.3 Performance des méthodes quasi-Newton minimisant f limit (4).
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La fig. 0.3a illustre que PSR1 et PLSE nécessitent moins d’itérations pour minimiser (4) que
LBFGS. Le nombre d’itérations requis par LBFGS est entre trois et cinq fois supérieur à
celui de PSR1 ou de PLSE, peu importe la dimension de n. La fig. 0.3b indique le temps
avant convergence. Ici, PLSE domine PSR1 et LBFGS, qui ont respectivement un temps de
convergence quatre et cinq fois plus important que PLSE lorsque n = 10 000. De plus, le
temps de résolution de PLSE semble indépendant de la dimension. Finalement, la fig. 0.3c
illustre graphiquement le nombre de produits Bkv nécessaires avant convergence, sachant que
Bkv est l’opération la plus coûteuse de chaque méthode. PSR1 est la méthode nécessitant
le moins de produits Bkv, suivie par PLSE et LBFGS. Cependant, PSR1 nécessite plus de
temps que PLSE pour calculer un produit Bkv lorque n grandit, en raison de l’approximation
de chaque ∇2f̂i par une matrice dense. La fig. 0.3 indique PLSE comme la méthode la plus
adaptée pour résoudre un problème partiellement-séparable ayant des fonctions éléments de
grande dimension.

Les caractéristiques principales d’une méthode quasi-Newton partitionnée à mémoire limitée
sont :

• une approximation de ∇2f(xk) creuse, contrairement aux méthodes quasi-Newton à
mémoire limitée;

• un espace mémoire raisonnable et un opérateur v → Bkv efficace lorsque les ni sont
grands, contrairement aux méthodes quasi-Newton partitionnées standards.

L’application de la séparabilité partielle à l’apprentissage profond

L’entraînement supervisé d’un réseau de neurones se base sur un jeu de données (X ,Y) défini
au préalable. À chaque itération, il se formule :

min
w∈Rn

L(X, Y ;w) (5)

où L est la fonction de perte estimant la performance d’un réseau de neurones paramétré par
les poids/variables w selon le lot (X, Y ) issu du jeu de données (X ,Y). Lorsque l’objectif
de (5) est de classifier une entrée parmi un ensemble de classes donné, la fonction de perte
L se base sur l’évaluation du réseau de neurones, considéré comme une fonction de scores
c : Rn → RC , où C est le nombre de classes prédéfini à l’avance. La section 2.2 rappelle ces
notions fondamentales.

Le chapitre 5 propose un problème d’entraînement (5) partiellement-séparable pouvant être
minimisé par une méthode quasi-Newton partitionnée à mémoire limitée. Cependant, toutes
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les fonctions de perte L ne sont pas partiellement-séparables. La section 5.1 propose une
nouvelle fonction de perte :

LPSL(X, Y ;w) :=
C∑

p=1

C∑
j=1̸=k

hp,j(X, Y ;w), hp,j(X, Y ;w) := 1
L

L∑
l=1

δp,j(y(l)) ecj(x(l);w)−cp(x(l);w),

(6)
où pi(x(l);w) := exp(ci(x

(l);w))∑C

j=1 exp(cj(x(l);w))
, (x(l), y(l)) est un des L couples de donnée-observation issu

de (X, Y ) et δp,j(y(l)) = 1 si y(l) = p ou 0 sinon. En utilisant LPSL, le problème (5) se reformule
comme un problème partiellement-séparable, voir les détails section 5.1. En supplément,
afin de réduire le sous-ensemble des variables dont dépend hp,j(X, Y ;w), la section 5.2 in-
troduit le concept d’architecture partitionnée. L’ingrédient clé de cette architecture est la
couche séparable, illustrée fig. 0.4, qui est différente de la couche dense et de convolution
rappelées section 2.2.2. L’empilement de couches séparables produit une architecture par-

Figure 0.4 Une couche séparable, 9 × 6, considérant C = 3 classes.

titionnée. La fig. 0.5 illustre une architecture LeNet [96] et une architecture partitionnée,
dénotée PSNet. L’emploi des couches séparables permet aux scores cj de dépendre d’un

c1 c2 c3

c1 c2 c3

Figure 0.5 Dépendance des poids de chaque score, pour des réseaux LeNet (gauche) et PSNet
(droite) simplifiés.

sous-ensemble réduit des variables du réseaux, indentifiables respectivement par la couleur
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bleu, jaune et rouge. Les variables communes à tous les scores sont en verts. Contrairement à
PSNet, les variables communes prédominent pour LeNet.

Les figs. 0.6 and 0.7 comparent les quatre couples architecture-fonction-de-perte possibles
à partir des architectures LeNet et PSNet et des fonctions de perte LPSL et LNLL (2.2.3).
Les spécifications des architectures LeNet et PSNet employées sont renseignées section 5.2.4.
Chaque combinaison est entraînée par la méthode du premier ordre Adam [93] sur les jeux de
données MNIST [97] et CIFAR10 [94], détaillés section 2.2.1. Les figs. 0.6 and 0.7 montrent

Figure 0.6 Précision au cours des époques de LeNet et PSNet pour LNLL et LPSL sur MNIST
L = 100.

Figure 0.7 Précision au cours des époques de LeNet et PSNet pour LNLL et LPSL sur CIFAR10
L = 100.
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que la combinaison de PSNet et de LPSL est compétitive avec la combinaison de LeNet et de
LNLL. La performance de PSNet dans la fig. 0.7 s’explique car l’architecture possède plus
de couches de convolution que LeNet. La couche de convolution est un des concepts clés de
la réussite actuelle des réseaux de neurones en classification d’images. Pour autant, PSNet
possède moins de variables que LeNet. La combinaison de PSNet et de LP SL permet de
décrire un nouveau schéma de parallélisation, défini en détails section 5.2.5.

Les méthodes quasi-Newton partitionnées à mémoire limitée entraînant un réseau de neurones
sont définies par l’algorithme 5.3.1. Elles sont similaires aux méthodes PLBFGS, PLSR1 et
PLSE du chapitre 4. Les figs. 0.8 and 0.9 comparent la précision de différentes méthodes
d’entraînement pour une architecture PSNet utilisant LPSL. Les méthodes d’entraînement
considérées sont : PLBFGS, PLSR1, PLSE, LBFGS [4, 25, 26], Adam et SGD [96].

Figure 0.8 Précision au cours des époques pour différentes méthodes d’entraînement considerant
PSNet et LPSL sur MNIST, L = 100.

Les figs. 0.8 and 0.9 démontrent que la précision d’un entraînement avec PLBFGS ou PLSR1
est supérieure à celle de PLSE, LBFGS et SGD, mais reste inférieure à celle d’Adam. Les
limites de PLBFGS, PLSR1 et PLSE sont énumérées section 5.4.

Logiciels exploitant la séparabilité partielle

Le chapitre 6 énumère et détaille l’ensemble du code implémenté durant cette thèse. Le code
est divisé dans des modules Julia [5] qui implémentent les contributions des chapitres 4 et 5.
Ces modules sont intégrés à l’écosystème JuliaSmoothOptimizers (JSO) [110] regroupant des
outils pour l’optimisation continue. Chaque module est public et bénéficie de l’intégration
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Figure 0.9 Précision au cours des époques pour différentes méthodes d’entraînement considerant
PSNet et LPSL sur CIFAR10, L = 100.

continue, comprenant : une documentation générée automatiquement, une validation par des
tests, et des relectures extérieures afin de valider une modification importante. La table 6.1
indique pour chaque module : la version, le pourcentage de code couvert par les tests, le
nombre de lignes, et sa section associée. Le chapitre 6 est divisé en deux parties.

Les sections 6.3 à 6.6 définissent une suite logicielle permettant notamment de détecter au-
tomatiquement la structure partiellement-séparable d’un problème, c’est-à-dire la récupération
de chaque fonction élément f̂i de dimension réduite. Suite à cela, les structures de données
partitionnées nécessaire à la mémorisation ou l’approximation des dérivées sont allouées, ce
qui permet la définition de plusieurs modèles d’optimisation quasi-Newton partitionnés (à
mémoire limitée). Chacun de ces modèles satisfait l’interface des modèles d’optimisation sur
laquelle se basent les implémentations abstraites des méthodes d’optimisation de JSO. Ainsi,
l’implémentation de la région de confiance de JSO exploite les approximations quasi-Newton
(à mémoire limitée) Bk ≈ ∇2f(xk) et met en oeuvre les algorithmes 3.2.1 et 4.1.1 définis
aux sections 3.2 et 4.1. Les modules décrits dans les sections 6.3 à 6.6 génèrent les résultats
numériques du chapitre 4, incluant la fig. 0.3. Les dépendances logicielles entre ces modules
sont illustrées par la fig. 6.1.

Les sections 6.7 et 6.8 se concentrent sur l’apprentissage profond. Le module défini section 6.7
propose une interface entre un problème d’entraînement d’un réseau de neurones et un modèle
d’optimisation de JSO. Par conséquent, un réseau de neurones peut être entraîné par un
algorithme d’optimisation développé au sein de JSO. Le module défini section 6.8 implémente
la détection de la structure partiellement-séparable d’une fonction de perte, les architectures
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partitionnées et l’entraînement quasi-Newton partitionné à mémoire limitée. Ce module
produit les résultats numériques de la section 5.3, incluant les figures 0.8, 0.6, 0.7 et 0.9.

Conclusion

La revue de littérature dédiée à la séparabilité partielle souligne deux lacunes :

• les méthodes quasi-Newton partitionnées sont inefficaces pour minimiser une fonction
partiellement-séparable ayant des fonctions éléments de grande dimension ;

• l’absence de logiciel libre détectant automatiquement la séparabilité partielle.

Le chapitre 4 propose une solution pour minimiser efficacement des problèmes dont les
fonctions éléments sont de grande taille. Chaque hessien d’une fonction élément est approximé
par un opérateur quasi-Newton à mémoire limitée. L’approximation de cette solution permet
d’obtenir une approximation creuse de ∇2f(xk), nécessitant un espace mémoire raisonnable
et un opérateur v → Bkv efficace lorsque les ni sont grands, contrairement aux méthodes
quasi-Newton partitionnées standards.

Le chapitre 5 applique les concepts liés à la séparabilité partielle durant l’entraînement
supervisé d’un réseau de neurones. La section 5.1 introduit une fonction de perte partiellement-
séparable LPSL. La section 5.2 introduit les architectures partitionnées PSNet. La combinaison
de PSNet et LPSL est compétitive avec des architectures et des fonctions de perte de l’état-de-
l’art. De plus, cette combinaison est entraînable par des méthodes quasi-Newton partitionnées
à mémoire limitée. Ces méthodes sont compétitives avec les méthodes issues de la littérature,
seulement inférieures à Adam.

Le chapitre 6 présente les modules Julia développés durant cette thèse permettant de détecter
et d’exploiter automatiquement la structure partiellement-séparable. Ces modules produisent
les résultats numériques des chapitres 4 et 5. Enfin, les limitations de nos travaux de recherche
sont énumérées dans la section 7.2 et les travaux futurs dans la section 7.3.
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CHAPTER 1 INTRODUCTION AND CONTEXT

1.1 Context

This thesis focuses on the minimization of large scale unconstrained continuous optimization
problems, such as :

min
x∈Rn

f(x) (1.1)

where f : Rn → R ∈ C2 possesses a partially-separable structure:

f(x) =
N∑

i=1
fi(x), fi : Rn → R, (1.2)

considering that each element function fi(x) depends on a subset of the decision variables. To
avoid introducing too many notations, (1.2) is a simplified definition of partial separability. A
complete definition of the partially-separable function f specifying the lower dimension of
the element functions is given Section 3.1.1, by (3.3). Partially-separable problems appear
in several fields, e.g., variational calculus, including optimal command, sparse least-square
problems, resource allocation problems, urban traffic network analysis and matrix completion
problems [27, 75, 91, 151]. For example, the variational calculus "shortest curve" problem:

min
x

∫ t1
t0

√
1 + .

x2dt

s.t. x(t0) = a,

x(t1) = b,

discretized with the trapezoidal rule results in

min
x∈Rn

h

2

√
1 + x2 − x1

h
+

n−1∑
i=2

h

√
1 + xi+1 − xi−1

2h + h

2

√
1 + xn − xn−1

h
,

s.t. x1 = a,

xn = b,

reformulated as the partially-separable unconstrained optimization problem:

min
x∈Rn−2

h
2

√
1 + x2−a

h
+ h

√
1 + x3−a

2h
+
(∑n−2

i=3 h
√

1 + xi+1−xi−1
2h

)
+ h

√
1 + b−xn−2

2h
,+h

2

√
1 + b−xn−1

h

by substituting x1 = a and xn = b in the objective, i.e. x = (x2, x3, . . . , xn−1)⊤ ∈ Rn−2.
Consequently, N , the number of element function, equals n and each element function is at
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most size 2, i.e., ni ≤ 2, ∀1 ≤ i ≤ N , forming a tridiagonal Hessian matrix.

Both first order and second order methods are candidate to minimize such problems. The
former methods rely only on the gradient ∇f while the latter ones incorporate curvature
from the Hessian ∇2f to minimize f . Second order methods offer better convergence results
than first order methods, but require supplementary computational resources. As this thesis
focuses on large scale optimization, i.e., where n is large, the computation of any Hessian
related information is considered too costly. This led to the development of quasi-Newton
methods, which update iteratively an approximation B ≈ ∇2f from gradient evaluations
computed across the iterations. At each iteration, a quadratic approximation of f is built
without incurring Hessian computation. Initially, any quasi-Newton method was supported
by a dense matrix, which eventually raised an issue for large problems, as storing n(n+1)

2

terms becomes unaffordable. Thus, limited-memory quasi-Newton variants became popular
to minimize large problems, being based on a cheap linear operator v → Bv ≈ v → ∇2fv

allowing to solve a quadratic subproblem with the (truncated) conjugate gradient method
[84, 143].

By construction, every quasi-Newton update produces a dense Hessian approximation, and
therefore, cannot exploit the sparse structure that the real Hessian may have. Although
sparse quasi-Newton methods exist, their numerical results are originally unsatisfactory [146]
(1977). Few years later, in 1982, Griewank and Toint demonstrated that any function having
a sparse Hessian is partially-separable [76, Theorem 1]. At the same time, they presented
the partitioned quasi-Newton methods, where ∇2f ≈ B = ∑N

i=1 Bi considering Bi ≈ ∇2fi.
As each fi depends on a subset of variables, each Bi can be stored as a dense matrix of
small size. Consequently, the storage of the partitioned B is generally a lot smaller than a
dense matrix and Bv = ∑N

i=1 Biv can aggregate efficiently the contributions of every Biv.
Usually, the partially-separable discretized problems possess element function depending on
very few variables. Moreover, a finer discretization results in a larger problem f with a
sparser ∇2f , making them ideal candidates for partitioned quasi-Newton methods. When f

is partially-separable, partitioned quasi-Newton methods outperform any other quasi-Newton
variants [101, 148].

This thesis continues the work started four decades ago about the exploitation of partial
separability and tries to rejuvenate some of its ideas. In particular, partial separability
concepts are applied to deep learning training problems which exhibit a structure similar
to partial separability. This structure has never been exploited and could introduce a new
parallel scheme, which is a critical issue for this growing area of research.
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1.2 Problematics

This thesis is partly motivated by the shortcomings identified during the literature review
and by the application of partial separability concepts to supervised learning, resulting in
three works.

The first project studies and completes the literature review. It provides an overview of the
schemes and algorithms exploiting partial separability. The critical analysis concluding the
literature review exposes what the current partitioned quasi-Newton algorithms lack. The
both next projects are based on the conclusion drawn from this literature review.

The second project seeks to remedy two issues of partitioned quasi-Newton methods: providing
an open source package detecting automatically the partially-separable structure, and designing
an optimization method that manages large element functions. Currently, the sole partitioned
quasi-Newton Fortran solver LANCELOT [33] is based either on the Standard input format (SIF)
or AMPL [62], a commercial modelling language. Therefore, a new open source software is
needed before implementing methods that exploit partial separability. The automatic detection
of partial separability is based on tree-walking algorithms applied to the computational graph
of a function, similarly to [64]. Consequently, the first step is to retrieve the expression tree
from a modelling language, isolate element functions and provide routines for evaluating them
and their derivatives. Moreover, the implementation of partitioned quasi-Newton methods
requires the definition of partitioned data structures for storing element gradients and Hessians.
The resulting software must be incorporated in the JuliaSmoothOptimizers (JSO) ecosystem.
It must enable the JSO interface-based solvers to exploit efficiently a partitioned quasi-Newton
operator. Once this software is implemented, the support of large element functions expands
the range of problems for which partial separability can be exploited. Any problem having
a sparse Hessian becomes a candidate problem for JSO partitioned quasi-Newton methods,
without informing its partial separability.

The third project studies the application of partial separability concepts in a supervised
learning context. Generally, the optimization problem related to a neural network training
is generally not partially-separable. In order to be partially-separable, a new partitioned
neural network architecture must be used as well as a loss function maintaining its structure.
The resulting training problem is (extremely) large and possesses large element functions.
There are two difficulties in implementing these concepts. First, there are no methods to
automatically compute the partial separability of such a training problem. Second, the routines
computing the derivatives of the loss function are not designed to compute the derivatives
of the element functions. Nonetheless, the algorithms exploiting partial separability often
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result in straightforward parallel implementations, which is of interest in a supervised learning
context.

1.3 Outline

This thesis recalls in Chapter 2 some concepts about numerical quasi-Newton optimization
methods and supervised learning. Although partial-separability is not mentioned during
this chapter, those ideas will be reused later while exploiting partial-separability. The
reader familiar with both quasi-Newton optimization concepts, described in Section 2.1, and
supervised learning, depicted in Section 2.2, can go straight to the Chapter 3, which is a
literature review about partially-separable optimization.

A full definition of the partially-separable structure with several examples is provided in Sec-
tion 3.1. The Section 3.2 details fully the partitioned quasi-Newton methods. Both the Sec-
tion 3.3 and Section 3.4 encompass continuous methods exploiting partial separability. Next,
the Sections 3.5 to 3.7 enumerate schemes and implementations exploiting efficiently the
partially-separable structure. The Section 3.8 presents several derivative-free methods incorpo-
rating partial separability. The Section 3.9 concludes the chapter with a critical analysis about
partitioned quasi-Newton methods. The survey written by Bigeon, Orban, and Raynaud [9]
inspired this chapter.

The Chapter 4 introduces new limited-memory partitioned quasi-Newton methods in Sec-
tion 4.1. The Section 4.2 proves their global convergence while the Section 4.3 displays their
numerical results. This contribution adapts to this thesis the research conducted by Bigeon,
Orban, and Raynaud [8].

The Chapter 5 gathers the deep learning contributions exploiting partial separability. The
training must consider a partially-separable loss function as described in Section 5.1, and
possess a partitioned architecture as developed in Section 5.2. If such requirements are fulfilled,
a new parallelization scheme is possible and detailed in Section 5.2. The Section 5.3 showcases
results of the limited-memory partitioned quasi-Newton training. The Section 5.4 concludes
with their limitations. Raynaud, Orban, and Bigeon [135] introduce the partially-separable
loss function and the partitioned architecture, while Raynaud, Orban, and Bigeon [134]
present the limited-memory partitioned quasi-Newton trainings.

All the pieces of code that are developed for the previous chapters are gathered in Chapter 6.
The Section 6.1 gives a quantitative overview of the work accomplished. All the code produced
is integrated into the JSO environment briefly summarized in Section 6.2. The Sections 6.3
to 6.6 enumerate and detail the pieces of software designed for partially-separable optimization,
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i.e., related with Chapters 3 and 4. The Sections 6.7 and 6.8 focus on deep learning and
implement the Section 2.2 and Chapter 5.

Finally, the conclusion and future works are discussed in Chapter 7.
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CHAPTER 2 BACKGROUND

This chapter lays the ground for the contributions presented in Chapter 4 and Chapter 5, and
introduces the constraints that the softwares implemented in Chapter 6 must incorporate. In
particular, this chapter recalls the concepts related to quasi-Newton methods for unconstrained
optimization Section 2.1 and the basics for supervised learning Section 2.2. Those two sections
contain no reference to the partially-separable structure. Additionally, the notions and the
notation used try to match the popular notation employed nowadays and will be reused
later in the thesis. A familiar reader with inexact quasi-Newton methods may progress to
the Chapter 3 which presents a literature review about the optimization of partially-separable
problems.

2.1 Concepts related to quasi-Newton methods

Those notions are popular in continuous optimization and have been extensively studied in
books such as Numerical Optimization by Nocedal and Wright [115] and Trust-region methods
by Conn et al. [39]

In nonlinear optimization, most methods seek to reduce iteratively the value of the objective
function. At every iteration k, an approximated solution of a simpler subproblem related to xk

finds the step sk, in turn used to determine the next iterate xk+1 = xk + sk. In this thesis, we
consider mainly two families of methods: the line searches, presented in Section 2.1.1, and the
trust-region methods introduced in Section 2.1.2. The description of both families anticipates
the exploitation of a quadratic approximation of f(xk) to generate sk. The Section 2.1.3
recalls the secant quasi-Newton methods, employed to build a quadratic approximation of f
by approximating ∇2f from gradient evaluations, as well as their numerical implementations.
Finally, the Section 2.1.4 presents the (truncated) conjugate gradient—an iterative matrix-free
method solving inexactly the quadratic subproblem induced by a quasi-Newton line search or
a quasi-Newton trust-region.

2.1.1 Line search methods

A line search method is divided in two steps. First, given xk it generates a direction search
dk, which most of the time will be a descent direction, that is such that

∇f(xk)⊤dk < 0.
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To fulfill this criterion, the most straightforward candidate is the steepest descent dk =
−∇f(xk) making ∇f(xk)⊤dk = −∥∇f(xk)∥2. Second, it solves a one dimensional minimiza-
tion problem along the line span by dk

arg min
α∈R+

ϕ(α) = f(xk + αdk). (2.1)

The solution resulting of (2.1) allows setting sk = αdk and updating xk+1 = xk + sk. Those
two steps are repeated until convergence occurs, which is numerically reached when either
an absolute criterion ∥∇f(xk)∥ ≤ ϵ1 or a relative criterion ∥∇f(xk)∥ ≤ ϵ2∥∇f(x0)∥ holds,
considering ϵ1, ϵ2 > 0 small, e.g. 10−6.

When α solves (2.1), the method is referred as an exact line search. Finding such an α may
be computationally intensive, and, in order to spare computational effort, it is frequent to get
an approximate solution of (2.1). Those methods are inexact line searches and seek to obtain
a sufficient decrease, such as the Armijo condition:

f(xk + αdk) ≤ f(xk) + τ1α∇f(xk)⊤dk, 0 < τ1 < 1, (2.2)

ensuring that α brings a decrease which is at least a fraction of the directional derivative,
implying f(xk+1) < f(xk).

The Armijo condition can be enforced with the curvature condition

∇f(xk + αdk)⊤dk ≥ τ2∇f(xk)⊤dk, τ2 > 0, (2.3)

to avoid steps not exploiting the slope ahead of them. Together, the Armijo and the curvature
conditions form the Wolfe conditions, which are a standard to prove the global convergence
for several line search methods. However, the curvature condition requires the computation
of ∇f(xk + αdk) for every α tested, which can be expensive for large problems. Hence, to
avoid multiple gradient evaluations, an alternative is the backtracking line search, described
in Algorithm 2.1.1. In addition of satisfying the Armijo condition, the Algorithm 2.1.1

Algorithm 2.1.1 Backtracking Line Search [115, Algorithm 3.1]
Choose ᾱ > 0, α = ᾱ, 0 < ρ < 1, 0 < τ1 < 1
while the Armijo condition (2.2) is not satisfied do

α = ρα
end while

ensures that α is not too short, since it collects the first step that is not too long, i.e., which
satisfies (2.2). Such line search can be proven globally convergent, that is under suitable
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conditions
lim inf

k→∞
∥∇f(xk)∥ = 0,

ensuring the method to eventually reach a stationary point.

A variant of the Algorithm 2.1.1 is the two ways backtracking line search that allows α to
grow as long as (2.2) remains satisfied1. When α > α0 fails (2.2), then the previous value of
α is taken. Conversely, when α = α0 fails, then α is determined by the Algorithm 2.1.1.

2.1.2 Trust-region methods

Unlike the line search method, the trust-regions methods are not confined to one (or several)
directions. Instead, the model mk(s) approximates f(xk + s) in a close trusted neighborhood
of the current iterate:

arg mins∈Rn mk(s) ≈ f(xk + s)
s.t. ∥s∥ ≤ ∆k

, (2.4)

where ∆k parametrizes the trust-region size. Usually, mk(s) approximates f(xk + s) in the
sense of

mk(0) = f(x) and ∇mk(0) = ∇f(xk).

Several choices of norm can be chosen for ∥s∥ ≤ ∆k in (2.4) [39, Sections 7.7 and 7.8], but
this thesis only considers the euclidean norm ∥.∥2. Hence, the trust-region is a ball centred in
xk with a radius of ∆k.

The radius ∆k is eventually updated at every iteration, i.e., increased or decreased, depending
on the fitness between mk(s) and f(xk + s), computed by:

ρk := f(xk)− f(xk + s)
mk(0)−mk(s) . (2.5)

If ρk ≤ 0, then the approximate solution s results in f(xk + s) ≥ f(xk), since mk(s) < mk(0)
by definition. In such a case, mk(s) is clearly unable to approximate properly f(xk + s) in the
entirety of the trust-region, and therefore, ∆k+1 is chosen smaller than ∆k. Conversely, when
ρk > 0 then f(xk + s) < f(xk). Additionally, when ρk tends to 1, then mk(s) tends to match
f(xk + s), which confers more confidence toward the model mk within the trust-region and
resulting in a trust-region expansion for the next iteration. To summarize, after computing

1A simpler implementation of Algorithm 3.5 (p. 60) from [115]
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ρk, ∆k is updated as

∆k+1 ∈


[γ3∆k, γ4∆k] if ρk ≥ η2,

[γ2∆k, ∆k] if η1 ≤ ρk < η2,

[γ1∆k, γ2∆k) if ρk < η1,

(2.6)

where 0 < γ1 ≤ γ2 < 1 < γ3 < γ4 and 0 < η1 ≤ η2 < 1.

Similar to a line search, it is not necessary to solve (2.4) exactly for the trust-region method
to achieve global convergence. When the model mk is quadratic

mk(s) = f(xk) +∇f(xk)⊤s+ 1
2s

⊤Bks ≈ f(xk + s), where Bk ≈ ∇2f(xk), (2.7)

the step only needs to produce a sufficient decrease in the sense that

mk(0)−mk(s) ≥ τ ∥∇f(xk)∥ min
(
∥∇f(xk)∥
1 + ∥Bk∥

, ∆k

)
, 0 < τ < 1, (2.8)

to globally converge [39, Theorem 6.4.6]. By considering τ = 1
2 , this decrease is verified by

the Cauchy point:
sC = −α ∆k

∥∇f(xk)∥∇f(xk), (2.9)

where

α =


1 if ∇f(xk)⊤Bk∇f(xk) ≤ 0,

min
(

∥∇f(xk)∥3

∆k∇f(xk)⊤Bk∇f(xk)
, 1
)

otherwise,
(2.10)

which is the exact solution for the steepest descent direction mk (2.7) considering ∥s∥ ≤ ∆k.
The computation of sC has the advantage of being cheap, and can be a default output when
more sophisticated methods fail, providing in any case a solution ensuring (2.8). Theoretically,
when any method solving (2.4) guarantees s to satisfy (2.8), then the trust-region method
is globally convergent as the line search does (2.1.1). In particular, fixing η1 > 0 obliges
s to bring a decrease to f , and make the iterates of the trust-region globally converge [39,
Theorem 6.4.6]:

lim
k→∞
∥∇f(xk)∥ = 0. (2.11)

The scheme of a quadratic trust-region method is summarized in Algorithm 2.1.2, modelled
after [39, Algorithm 6.1.1].

If Bk = ∇2f(xk), then Algorithm 2.1.2 is a Newton trust-region method. The next section
discusses how approximate ∇2f(xk) with Bk. By doing so, it avoids evaluating ∇2f(xk),
which is generally assumed too costly.
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Algorithm 2.1.2 Quadratic Trust-Region Algorithm
Choose x0 ∈ Rn, ∆0 > 0, 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1 < γ3 < γ4
Choose B0 = B⊤

0 ≈ ∇2f(x0). Initial approximation
for k = 0, 1, . . . do

Compute an approximate solution sk of (2.4) that satisfies (2.8) considering mk in (2.7).
Compute the ratio ρk (2.5)
if ρk ≥ η1 then successful step

set xk+1 = xk + sk

else unsuccessful step
set xk+1 = xk

end if
Update the trust-region radius according to (2.6)

end for

2.1.3 Quasi-Newton methods

Quasi-Newton methods, pioneered by Davidon [41] in 1959, seek to improve upon the
convergence properties of first-order methods without incurring the cost of evaluating second
derivatives exactly, as in Newton’s methods. They do so by iteratively updating an Hessian
approximation. Among quasi-Newton methods, secant methods have proven to be particularly
effective and update the Hessian approximation based on local information, including: the last
step s and an approximation of the function curvature along s from first-order information only.
Some secant methods have properties ensuring fast local convergence; although convergence
typically occurs at a superlinear rate instead of the quadratic rate of Newton’s methods [45].
Secant methods begin with an initial symmetric approximation B0 ≈ ∇2f(x0) at the initial
guess x0, and seek for an updated approximation satisfying the secant equation

Bk+1sk = yk, k ≥ 0 (2.12)

where sk := xk+1 − xk is the last step taken, and yk := ∇f(xk+1) − ∇f(xk). The secant
equation results from the fact that

mk+1(s) = f(xk+1) +∇f(xk+1)⊤s+ 1
2s

⊤Bk+1s,

and that ∇mk+1(−sk) is known to be ∇f(xk), calculated at the previous iteration. Hence, a
condition onto Bk+1 can be expressed as:

∇mk+1(−sk) = ∇f(xk+1)−Bk+1sk = ∇f(xk),
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which can be reformulated as :

Bk+1sk = ∇f(xk+1)−∇f(xk) = yk.

Because (2.12) in itself does not determine Bk+1, additional conditions are imposed. Among
others, Bk+1 should remain symmetric, and Bk+1 −Bk should be of rank-1 or rank-2. This
section does not intend to give a complete account of secant methods, even less of quasi-
Newton methods; consequently, the interested reader may refer to [45] for more details. For
reference, the most commonly used secant method in practice is the BFGS method—Broyden
[20], Fletcher [59], Goldfarb [67], Shanno [141]— which is based on the following formula
update

BBFGS
k+1 = Bk −

(Bksk)(Bksk)⊤

s⊤
k Bksk

+ yky
⊤
k

s⊤
k yk

. (2.13)

The BFGS update preserves the positive definiteness of Bk as long as the curvature condition

s⊤
k yk > 0 or s⊤

k yk ≥ ϵ > 0 in practice, (2.14)

is fulfilled, which automatically holds when the process determining sk verifies (2.3), e.g. a
Wolfe line search satisfying both (2.2) and (2.3). When Bk does not need to be positive
definite, one can use the SR1 update formula [41]:

BSR1
k+1 = Bk + (yk −Bksk)(yk −Bksk)⊤

(yk −Bksk)⊤sk

. (2.15)

To avoid numerical instability, it is customary to only perform the SR1 update provided that

|s⊤
k (yk −Bksk)| ≥ ϵ2 ∥sk∥∥(yk −Bksk)∥, ϵ2 > 0. (2.16)

As f may not be convex, having Bk not necessarily positive definite may result in a more
realistic Hessian approximation. When Bk possesses negative curvatures, minimizing (2.7) is
impossible as mk is not bounded. As a consequence, a line search method must be adapted
if one seeks for the line search to stop. Conversely, a trust-region guarantees ∥s∥ ≤ ∆k,
which limits the size of s and the influence of the quadratic term of mk onto the result s.
Nevertheless, the negative curvature case should be handled properly when solving (2.4). The
next section describes a method solving both line search and trust-region methods when the
quadratic subproblem is not convex. The adaptation of the Algorithm 2.1.2 for the needs of
quasi-Newton methods is described in Algorithm 2.1.3.

An important point to keep in mind is that there is no particular reason to expect the vectors
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Algorithm 2.1.3 Quasi-Newton Trust-Region Algorithm
Choose x0 ∈ Rn, ∆0 > 0, 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1 < γ3 < γ4
Choose B0 = B⊤

0 ≈ ∇2f(x0). Initial approximation
for k = 0, 1, . . . do

Compute an approximate solution sk of (2.4) that satisfies (2.8) considering mk (2.7).
Compute the ratio ρk (2.5)
if ρk ≥ η1 then successful step

set xk+1 = xk + sk

update Bk using (2.13) or (2.15) with yk := ∇f(xk+1)−∇f(xk) and sk

else unsuccessful step
set xk+1 = xk

end if
Update the trust-region radius according to (2.6)

end for

Bksk and yk to be sparse. As a consequence, even though B0 and ∇2f(xk) may be sparse, Bk+1

will typically be dense. Thus, in the case of a sparse problem f , the structure of Bk+1 bears
no resemblance to that of ∇2f(xk+1). A symmetric dense matrix Bk ∈ Rn×n is the simplest
data structure allowing the memorization of all the quasi-Newton updates. Unfortunately, a
dense matrix dashes any hopes of efficient storage for large-scale problems.

To overcome this issue, several authors proposed some solutions. Powell [127] proposed updates
that take sparsity into account and do not modify structural zeros. Toint [146] shows that
performing those updates involves the solution of sparse symmetric and positive-definite linear
systems. Shanno [140] derives sparse updates as solutions to norm-minimization problems,
analogously to the way standard updates such as (2.13) are derived, and, in particular, reports
promising numerical performance with the sparse BFGS update. However, the numerical
performances of those methods remain unsatisfactory [146] and were quickly overshadowed
by other methods.

2.1.3.1 Limited-memory variant

In parallel of sparse quasi-Newton approximations, limited-memory approximations emerged [21,
23, 101, 102, 114]. The limited-memory variants of BFGS and SR1 are commonly referred
to as LBFGS and LSR1. They take advantage of the low-rank’s updates to store only the
m ≥ 1 most recent pairs {sj, yj} and apply (2.13) or (2.15) implicitly to update an initial
approximation B

(0)
k = (B(0)

k )⊤ (≻ 0 for LBFGS) chosen afresh at each iteration [114]. A
simple loop can be devised to compute operator-vector products Bkv by scanning the pairs
{sj, yj} in store and B

(0)
k . Bk is a linear operator, representing a linear application v → Bkv

without the intrinsic cost of a matrix. Practically, limited-memory variants allow users to
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predefine the storage requirements in Θ(2mn), where m is the memory set beforehand, and
efficiently compute operator-vector products without explicitly forming Bk. In these methods,
Bk incorporates a computationally cheap initializer B(0)

k , e.g. B(0)
k = λkI with λk equals to 1

or y⊤
k yk. Bk sums B(0)

k to m quasi-Newton updates XlX
⊤
l , 1 ≤ l ≤ m,Xj ∈ Rn×1 or Rn×2,

where each Xl represents a quasi-Newton update. Therefore, the complexity of the product
Bkv is computed by summing all XlX

⊤
l v, setting the complexity of Bkv to Θ(mn) or Θ(2mn)

whether Xj ∈ Rn×1, e.g. (2.15), or Xj ∈ Rn×2, e.g. (2.13). However, the computation of
new vectors Bksk every time a new pair (sk, yk) replaces the oldest pair retained (sk−m, yk−m)
makes the update of all Xl in Θ(3

2m
2n). The complexity of the update can be reduced

to Θ(2mn) by the implementation of a block representation of LBFGS or LSR1, a variant
where Bk is written as the result of several matrix-matrix products [23]. Later in the thesis,
the sum of B(0)

k and the first j quasi-Newton updates B(0)
k +∑j

l=1 XlX
⊤
l will be denoted as

B
(j)
k , 1 ≤ j ≤ m.

A line search or a trust-region integrates a quasi-Newton approximation Bk by considering
mk as a quadratic approximation of f(xk) such as (2.7). Therefore, both Algorithm 2.1.1
and Algorithm 2.1.2 only need to get an initial guess B(0)

k and update Bk when the step sk has
been accepted, after computing yk and verifying that the numerical safeguards of the chosen
quasi-Newton formula hold. The next section details a method using only Bkv products to
solve a symmetric positive definite linear system, and one variant devised for the minimization
of a quadratic subproblem (2.4) or (2.1) where Bk does not need to be positive definite.

Finally, it is worth noting that Liu and Nocedal [101] developed the most successful imple-
mentation among limited-memory quasi-Newton methods and that it does not approximate
∇2f(xk). Instead, this line search method updates directly HBFGS

k ≈ (∇2f(xk))−1 instead
of BBFGS

k and therefore obtains s = −H∇f(xk) without solving a linear system. A similar
method using Hk will be used later in Chapter 4 and Chapter 5 for numerical comparisons.

2.1.4 Conjugate gradient and the truncated variant

The efficiency of a trust-region method or a line search relies heavily on the procedure used to
compute respectively sk or dk. For this thesis, both sk or dk are computed with the truncated
conjugate gradient method [143], which is a variant of the conjugate gradient method [84].

The conjugate gradient method is an iterative method solving Ax = b where A = A⊤ ≻
0 [84]. Furthermore, it can be seen as a method solving a quadratic strictly convex problem
q(x) = 1

2x
⊤Ax − b⊤x as ∇q(x) = Ax − b = 0 describes the minimum of q. Whereas direct

methods—factorizing A by a product of structured matrices before solving Ax = b—require
access to the matrix A, the conjugate gradient only needs the linear application v → Av. This
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feature synergizes well with limited-memory quasi-Newton operators and allow the resolution
of large linear systems with little storage. In the case A is not positive definite, ∇q(x) = 0
does not characterize a minimum of (2.7), and does not necessarily return a descent direction
for a line search (2.1) or a decreasing candidate within the trust-region (2.4). After describing
how the conjugate gradient operates for A ≻ 0, the adaptions for quadratic non-convex inexact
quasi-Newton methods are discussed.

The conjugate gradient method performs successive exact line searches onto the quadratic
problem q along the conjugate directions pi:

p⊤
i Apj = 0, ∀i ̸= j.

After an exact line search, it sets the next iterate

xk+1 = xk + αkpk, αk = − r⊤
k pk

p⊤
k Apk

, rk = ∇q(xk) = Axk − b.

Iteratively, rk can be updated as rk+1 = rk + αkApk. Unlike a coordinate exact line search,
which performs successive exact line searches along ei without guarantying convergence in
a finite number of iterations, the use of conjugate directions guarantees to converge after
n iterations in exact arithmetic [84]. The miracle of the conjugate gradient iterates is to
generate any conjugate direction pk from xk, A and pk−1

pk = −rk + βkpk−1, βk = r⊤
k Apk−1

p⊤
k−1Apk−1

,

and thus, keeping the method’s storage minimal as all pk−i, 1 ≤ i ≤ k − 2 are ignored. The
Algorithm 2.1.4 summarizes the conjugate gradient method described above.

The conjugate gradient possesses several properties:

• the residuals ri are mutually orthogonal. Therefore, αk can be simplified to r
⊤
k rk

p
⊤
k Apk

;

• in exact arithmetic, the methods converges in n or r iterations, where r is the number
of distinct eigenvalues of A.

Furthermore, by setting x0 to 0 the norm of xk increases monotonically

∥xk+1∥2 = ∥xk∥2 + 2αkx
⊤
k pk + α2

k∥pk∥2,

knowing that x⊤
k pk is proven to be superior to 0 [115, Theorem 7.3].
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Algorithm 2.1.4 Conjugate Gradient Method [84]
A = A⊤ ≻ 0, b Input
initial guess x0, e.g. x0 = 0 ∈ Rn

r0 = Ax0 − b, p0 = −r0
while rk ̸= 0 do

αk = − r
⊤
k pk

p
⊤
k Apk

xk+1 = xk + αkpk

rk+1 = rk + αkApk

βk+1 = r
⊤
k+1Apk

p
⊤
k Apk

pk+1 = −rk+1 + βk+1pk

k = k + 1
end while

The Algorithm 2.1.4 may also integrate a preconditioner to improve the condition number of
the linear system and gather its eigenvalues. The new linear system solved is:

C−⊤AC−1x̄ = C−⊤b, considering x̄ = Cx.

For practical efficiency, a favorable trade-off must be found. Indeed, the computational effort
gained from the reduction of iterations must compensate the introduction of computation
into the Algorithm 2.1.4 made to incorporate a preconditioner C.

An important case appears when A is not positive definite, then computing αk or βk may
be infeasible. Therefore, the conjugate gradient method must be adapted for the line
search and the trust-region contexts, which seek to approximately minimize a quadratic
approximation (2.7).

2.1.4.1 Line search adaptation

For an inexact line search, the determination of dk by minimizing mk (2.7) is equivalent to
Bkdk = −∇f(xk) when Bk ≻ 0, which is covered by Algorithm 2.1.4. Conversely, when
Bk ̸≻ 0, one of the conjugated direction may lie on a negative curvature piBkpi ≤ 0. In that
case, instead of setting αk to ∞, dk is set to the previous conjugated direction pi−1, which
is a descent direction. If the first conjugate gradient direction generated finds a negative
curvature, i.e. p1Bkp1 ≤ 0, then dk = p0 = −∇f(xk). Additionally, instead of iterating until
∥rk∥ = 0, the conjugate gradient method loops until ∥rk∥ ≤ ηk∥∇f(xk)∥, which prevents
numerical issues. By setting ηk = min(0.5,

√
∥∇f(xk)∥) the inexact line search guarantees a

superlinear convergence rate2.
2[115] p.169 before Algorithm 7.1
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2.1.4.2 Trust-region adaptation

For the trust-region context, Steihaug developed an efficient variant of the Algorithm 2.1.4
named truncated-conjugate gradient [143, 147]. The idea is to set x0 to 0 —making its norm
increasing monotonically— and check after each iteration if the current iterate remains in
the trust-region, i.e. if ∥xk∥ ≤ ∆ holds or not. When the minimization along pk leads to
a next iterate xk + αkpk outside the trust-region, then xk+1 is set to xk + αkpk such that
∥xk + αkpk∥ = ∆. Such cases may appear when pk is a non-positive curvature of Bk, i.e.
p⊤

k Bkpk ≤ 0, or simply by accepting a larger step αkpk than the trust-region permits.

By design, the point found by the truncated conjugate gradient method will bring a decrease
at least equal to the Cauchy’s point. In the worst case scenario, the algorithm stops during the
minimization of p1 either because p⊤

1 Bkp1 ≤ 0 or ∥α1p1∥ > ∆, then the algorithm terminates
and returns x1 set to the Cauchy point sC (2.9). If the minimization along p1 is a success,
the minimization of subsequent pk will ensure that mk(pk) ≤ mk(p1) ≤ mk(sC), making them
satisfy the sufficient decrease condition (2.8). Hence, a quadratic trust-region algorithm using
the truncated conjugate gradient converges.

2.1.5 Computing derivatives

Most of smooth optimization methods compute derivatives either to find iteratively the next
iterate or to check if the current iterate xk is a local optimum. There exist several ways to
numerically approximate one partial derivative of f :

∂f(x)
∂xi

:= lim
ϵ→0

f(x+ ϵei)− f(x)
ϵ

, f : Rn → R ∈ C1. (2.17)

The most applicable method is the finite difference, which only require evaluations of f to
approximate ∂f

∂xi
. To do so, it first evaluates f(x) and f(x+ ϵei) to thereafter compute

∂f

∂xi

≈ f(x+ ϵei)− f(x)
ϵ

, ϵ > 0.

Unfortunately, finite difference has a severe drawback since ϵ is limited by the machine precision
utilized (mainly floating point reals) and therefore cannot infinitely approach 0 as in (2.17).
This limitation introduces round off errors during the approximation of a partial derivative.
Round off errors are accentuated as the storage of the floating arithmetic variables shrinks, to
eventually become the most prevalent contribution of the partial derivative approximation.

When the final user knows and can access the expression tree of f , he can apply other methods
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requiring usually less computational resources and diminishing round off errors. One method is
the symbolic differentiation, which constructs a new expression tree for each partial derivative
of f by applying the derivation rules recursively on the nodes composing the expression tree
of f . However, when the expression tree of f : Rn → Rm is consequent, storing either n or m
expression trees of similar size to f may be unrealistic.

Alternatives to symbolic differentiation exist, headed by automatic differentiation (AD), which
computes on the fly the derivatives of f by going through its expression tree. Unlike symbolic
differentiation, AD produces numerical values of derivatives without creating explicitly its
analytical expression. Without fully detailing AD, the remaining of the section briefly recalls
how the modes of AD work and their advantages. Numerous literature exists on AD, such
as [64, 73] or [115, Section 8.2], that an interested reader may consult for more insights.

AD merely applies the principle of the chain rule onto f : Rn → Rm that is a sequence of
differentiable operators. For example, suppose f(x) = g(h(x)), where g : Rp → Rm and
h : Rn → Rp, then the generalized chain rule is:

∇f(x) =


∑p

i=1
∂g1
∂hi
∇hi(x)⊤

...∑p
i=1

∂gm

∂hi
∇hi(x)⊤

 , (2.18)

which explicit ∇f from the variations of g compared to those of h, i.e. ∂g
∂hi

, and ∇h. The
chain rule can be applied recursively on the sequence of operations forming f in two different
fashions. It may start either from the leaves of the expression tree, i.e. the variables, or
from its root after a proper evaluation of f , resulting respectively in: the forward mode and
the reverse mode. The machine learning community refers to the reverse mode as the back
propagation.

2.1.5.1 Automatic differentiation: forward mode

The forward mode initiates from the leaves with a seed vector s ∈ Rn for which the m

directional derivatives of f will be computed. Thereafter, it propagates the computation
of directional derivatives through the intermediate nodes of f up to the root, making the
directional derivatives of every sub function composing f available, e.g. h(x) or g(x). In
general si = ei, i = 1, ..., n, and each si allows the computation of m partial derivatives
(∂f1

∂xi
, . . . , ∂fm

∂xi
) in one sweep. As a result, the seed matrix S = In permits to compute every

partial derivative from f as in (2.18). The implementation of the forward mode AD can be
done by using dual numbers, implemented by overloading all the operators that f uses and
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without requiring supplementary storage.

2.1.5.2 Automatic differentiation: reverse mode

The reverse mode operates in two stages, the first one evaluates f(x) starting from the leaves
of the expression tree set to x, while the second computes the partial derivatives starting
from the root. During the (second) backward pass, each node accumulates the contributions
it has made to its direct predecessor nodes (closer to the root) into its adjoint value. The
contribution depends on the derivative rule set for the operation that the predecessor node
represents as well as the predecessor adjoint value. By storing adjoint values, the reverse pass
needs to store a tape shaped as the expression tree of f , which can be an issue for a large
numerical process. Usually, a modelling software integrates right from the start a suitable
storage for adjoint values to the expression tree of f , to keep their memorization affordable.
Initially, all adjoint values are set to 0 except for the root node, corresponding to the fj of
interest which is set to 1 and initiates the backward pass. One reverse mode sweep computes
the gradient of fj: ( ∂fj

∂x1
, . . . ,

∂fj

∂xn
). Therefore, m backward passes are needed to compute all

partial derivatives from f as in (2.18). The Figure 2.1 illustrates an example of the reverse
mode for f(x) = (4.5− (x1x2 +x3x4))2. In this graph, each node is identified by a number, e.g.
the node 9 represents the difference between the node 7 and node 8 . In addition, each node
contains: two values red (left) and blue (bottom right), which respectively inform about the
node value resulting from the forward pass and the adjoint value computed during the reverse
pass assuming x1 = 1.5, x2 = 2, x3 = 2.5 and x4 = 3. The forward values propagated from
the leaves depend on the operators they go across. The reverse values ∂f

∂ l
for all 1 ≤ l ≤ 10

are computed subsequently, ending with ∂f
∂ l
, 1 ≤ l ≤ 4 which are the partial derivatives of

interest. Later, the Figure 3.1 illustrates another example of reverse automatic differentiation
for a (group) partially-separable function.

More generally, the time for computing one forward or reverse sweep is roughly a multiplication
by five times of the computation time needed to evaluate f [73]. Therefore, one should prefer
the reverse mode when m≪ n and the forward mode if n≪ m. Hence, if m = 1, one should
prefer the reverse mode, as long as the tape’s storage is not an issue. When n and m are
close, both modes have comparable performance.

This section has presented the main concepts related to the quasi-Newton methods. In
particular the line search and the trust-region methods, which can both employ a quadratic
approximation of f(xk) to model a subproblem at each iteration. To avoid the computation
of the Hessian, the quadratic approximation relies on a quasi-Newton approximation of the
Hessian and the computation of derivatives provided by the automatic differentiation. The
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Figure 2.1 Automatic differentiation for f(x) = (4.5− (x1x2 + x3x4))2

resulting quadratic subproblem can be solved with the (truncated) conjugate gradient method.
Altogether, these concepts may define a convergent quasi-Newton method.

The next section recalls the basis for supervised learning. Notably, the management of the
dataset, the neural network architecture and the training formulated as an optimization
problem.

2.2 Supervised learning and parallelization of neural network training

This section describes the key components composing the training of a multiclass classification
neural networks, whose purpose is to classify any input into one of the C classes set in
advance [48]. In practice, a neural network architecture calculates a score cj for each class.
Consequently, a neural network can be conceptualized as a function c : Rn → RC that will
try to classify any given input that conforms to its architectural specifications. Among the
C scores, it selects the class with the highest score arg maxj=1,...,C cj. Those problems are a
part of the supervised learning, i.e., where the neural network is trained from a dataset. In
this thesis, the topic of interest is the computer vision, considering pictures as neural network
inputs. Before introducing a neural network training problem, three ingredients are needed:

• a dataset, which is problem specific, as recalled in Section 2.2.1;
• a neural network architecture, described in Section 2.2.2 with a focus on how computa-

tions are propagated through the neural network from the inputs of the dataset;
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• a loss function, which quantifies the correctness of the class(es) determined by the neural
network for one or several inputs, as presented in Section 2.2.3.

The loss function will finally be used in Section 2.2.4 as the objective function of the
optimization problem training the neural network.

Note: The variables of a neural network are denoted with w instead of x, which is commonly
used for the neural network inputs.

2.2.1 Dataset

A dataset consists of a collection of observations denoted as X , paired with their corresponding
labels Y . Here, each x ∈ X represents an individual observation, and its corresponding label
y ∈ Y is characterized by 1 ≤ y ≤ C, y ∈ N. A dataset contains L pairs of observation-label
{(x(l), y(l))}L

l=1. Any input x(l) can be vectorized to become an input of the neural network
architecture, i.e., x(l) ∈ Rd.

Usually, the dataset is split into two segments: the training dataset and the test dataset.
The training dataset is used to train the neural network while the test dataset tests the real
effectiveness of the neural network on independent data. In particular, the percentage of
correct recognition over the entire test dataset can assess the neural-network’s capacity, this
is the accuracy.

Later on, our numerical results focus on two specific datasets: MNIST [97] and CIFAR10 [94],
both encompassing labelled pictures of ten distinct classes (C = 10). MNIST comprises
grayscale images of handwritten digits, each having dimensions of 28× 28 pixels. Conversely,
CIFAR10 consists of color images (i.e. an RGB image) with dimensions of 32 × 32 pixels.
Although both datasets have the same range of labels (C = 10), they differ on the dimension
of the vectorized x. Consequently, an architecture made for MNIST can not be used to
classify CIFAR10 pictures. Lastly, the training dataset of MNIST encompasses 60 000 labelled
pictures while the test dataset gathers 10 000 labelled pictures. Similarly, CIFAR10 regroups
50 000 labelled pictures in its training dataset and 10 000 in its test dataset.

When the optimizer has gone through the complete training dataset once, the optimizer is said
to have reach one epoch. The capacity of a neural network is frequently measured depending
on how many data the neural network has seen (scaled on epochs).
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2.2.2 Neural network architecture

A neural network architecture is composed of K layers. The k-th layer aggregates a collection
of neurons V k and a connection with the previous layer outputs. The i-th neuron of the k-th
layer is V k

i . Every neuron is an intermediary node of the computational graph that the neural
network represents. The set of all neurons is denoted as V = ∪k∈{1,...,K}V

k the union of all
neuron layers. The neurons composing V 0 are particular, since their values are directly set
from the input, i.e. |V 0| = d and V 0

i = xi.

The connection between the neuron layers V k−1 and V k is denoted W k, completed with a
bias bk. The bias can be seen as an additional unitary neuron from V k−1 connected with the
neurons of V k, e.g. W 0 is an identity function. Both dimensions of W k and bk depend on
|V k−1|, |V k| and how the neurons are connected. The variable vector w ∈ Rn aggregates a
vectorized version of all Wk and bk. There exist many ways to connect layers, and, most of them
make intervene variables, also known as weights. Consequently, the modification of variables
parametrizing W k will change the neuron evaluations of the subsequent V k+j, 0 ≤ j ≤ K − k.
In particular, the training seeks to modify variables until the neural network meets the
expectations set. All connections between layers are not exhaustively recalled here, but two
of them are detailed, as they will be used later in Chapter 5.

A dense layer links all neurons from V k−1 to all neurons of V k. To simplify further equations,
W k is written as a matrix W k ∈ R|V k|×|V k−1|, where W k

i,j is the variable between V k−1
j and

V k
i , while bk is a vector bk ∈ R|V k|. As a consequence, all the variables between the neurons

of V k−1 and V k
i are gathered by the i-th line of W k, i.e. W k

i,: = W kei, completed with the
bias bk

i . The value of V k
i (x;w) is then computed from V k−1(x;w), W k

i,: and bk
i through the

mean of an activation function, such as the sigmoid:

V k
i (x;w) := 1

1 + e−(W k
i,:V

k−1(x;w)+b
k−1
i )

.

Other activation functions exist, but this thesis considers mostly the sigmoid as it is infinitely
derivable. The Figure 2.2 graphically highlights the variables from W k necessitated to compute
V k

i (x;w) from an activation function. Additionally, the notation and an architecture composed
of dense layers is illustrated graphically Figure 2.3. To make this illustration complete, the
architecture displayed integrates a loss function: the negative log-likelihood (composed of
the softmax function) described in Section 2.2.3. When the neural network is composed
only of dense layers, then n = ∑K

k=1

(
|V k|+ 1

)
× |V k−1|. This makes the amount of variable

increasing quadratically depending on the size of the neuron layers, which rapidly becomes
unbearable for any large neural network architecture.
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To remedy this issue, Lecun et al. [96] proposed an alternative for computer vision: the
convolutional layer, which requires fewer variables for the same practical efficiency. Unlike a
dense layer, a convolutional layer integrates the spatial information entangled in an input, i.e.,
the distance between pixels contains information for an image. Practically, a convolutional
layer applies one or several kernels, i.e. filters, to a spatially organized input. Every kernel is
applied successively onto different input’s subsets that completely cover the input and capture
its local features. The kernel application and the notation enumerated in the next paragraph
are illustrated by the Figure 2.4. Every kernel applies to a channelled input and results in
one channel of the output. Any input is channelled, for example, a grayscale image has a one
channel (gray shades) while an RGB color image has 3 channels: red shades, green shades
and blue shades.

Formally, a convolutional layer takes an input with p1 channels and applies p2 kernels
to return an intermediate image of p2 channels. Every kernel is parametrized by p1, its
height h1, width h2, a stride p3 and the size of an artificial border p4 added on the input.
Hence, a kernel contains p1 channels and each of them is a matrix K ∈ Rh1×h2 . The kernel
application traverses the channeled input respecting the stride p3 and input dimensions.
Concretely, each input’s channel selects h1 × h2 connected components represented by the
matrix J l ∈ Rh1×h2 , 1 ≤ l ≤ p1, Then, each kernel channels K l multiply component wisely
J l, i.e.

(∑p1
l=1

∑h1
i=1

∑h2
j=1 K

l
i,jJ

l
i,j

)
+ b, where b is the bias. Consequently, a convolutional layer

contains (h1 × h2 × p1 + 1)× p2 variables, where +1 is the bias.

To reduce the size of the intermediate image, a pooling layer can be applied, parameterized
by its height h3, its width h4, and a stride p5. The main pooling layers include max pooling,
min pooling, and average pooling, which respectively take the maximum, minimum, and
average of a subset of h3 × h4 connected components from the intermediate image. The
Figure 2.5 illustrates the max pooling onto one channel of the intermediate image resulting
from the Figure 2.4. To perpetuate the positivity nature of a pixel (intensity ≥ 0), it is
common to apply an activation function, such as the sigmoid function (2.2.2) on the result of
the convolutional layer. The Figure 2.5 does not apply an activation function to maintain
simple numerical values.

Convolutional layers are popular because they isolate local features of an image. Also, they
require minimal preprocessing and are robust to translations of the neural network input x(l),
unlike dense layers.

The evaluation of a neural network architecture evaluates successively all its layers, regardless of
their type, starting with V 0(x;w) = x, where x is the input and w the variables parametrizing
the neural network. Consequently, if x is a grayscale picture, V 0 contains as many neurons
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as pixels encompassed in x. The output resulting from the evaluation of V k is denoted as
V k(x;w) = (V k

1 (x;w), V k
2 (x;w), . . . , V k

|V k|(x;w)) (w is used for simplicity, only a subset of
w is used for evaluating V k except for V K). Finally, the output from the neural network
architecture c(x;w) ∈ RC is equivalent to V K(x;w).

2.2.3 Loss function

Given an observation x and a label y, the loss function L seeks to assess if arg max1≤j≤C cj(x;w)
matches the label y. A popular example of loss function is the negative log likelihood LNLL,
based on the softmax layer p(x;w) such that:

pi(x;w) := exp(ci(x;w))∑C
j=1 exp(cj(x;w))

, ∀1 ≤ i ≤ C, 0 ≤ pi(x;w) < 1, (2.19)

which normalizes the scores ci and provide a probabilistic interpretation, i.e., ∑C
i=1 pi(x,w) = 1.

The negative log likelihood function is applied to a pair (x, y) as

LNLL(x, y;w) := − log(py(x;w)) > 0,

and can be generalized for a dataset (X ,Y) as

LNLL(X ,Y ;w) = 1
L

L∑
l=1
LNLL(x(l), y(l);w) = − 1

L

L∑
l=1

log(p
y

(l)(x(l);w)).

The value of LNLL increases exponentially when the normalized score of the class targeted
py(x;w) moves away from 1. Such a case occurs when the wrong class is determined
max1≤j≤C cj(x;w) > cy(x;w) or when the other scores are large enough to diminish py(x;w).

The loss function tops the neural network architecture and becomes the root of its expression
tree, as illustrated in Figure 2.3. The gradient of L is generally computed by backpropagation,
a synonym of the reverse automatic differentiation, see Section 2.1.5.

The next sections detail:

• the formulation of the optimization problem training a neural network architecture;

• how the hardware limitation forces the resulting optimization problem to be structurally
stochastic;

• the most popular optimizers existing to train a neural network;
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• how the computation may be distributed either to speed-up training or share the
computational effort between several devices/workers;

• one particular problematic known as federated learning, which seeks to push the training
of a neural network toward edge devices–the final user devices, each having limited
resources–.

2.2.4 Neural network training

To summarize the previous section, a neural network works properly when the appliance of
the loss function to an observation-label couple L(x, y;w) or the entire dataset L(X ,Y ;w) is
small. Therefore, the minimization of L(X ,Y ;w):

minw∈Rn L(X ,Y ;w), (2.20)

will modify w to diminish the loss function value over the entire dataset, which should result
in a misclassification reduction, i.e., increase the neural-network’s accuracy.

However, datasets have expanded to the point where they can no longer be loaded into a
single hardware. For example, the ImageNet dataset comprises over 14 million images [138].
As the evaluation of L(X ,Y;w) is considered impossible, the training relies in practice on
minibatches (X, Y ), which are subsets of the entire dataset (X, Y ) ⊆ (X ,Y), |(X, Y )| = L

where L < L. The minibatch training problem considering (X, Y ) =
{
(x(l), y(l))

}L

l=1
is then

min
w∈Rn

L(X, Y ;w) = 1
L

L∑
l=1
L(x(l), y(l);w). (2.21)

To go through the entire dataset, a new random minibatch is loaded at each iteration of
the optimizer. Two different minibatches (X(1), Y (1)) and (X(2), Y (2)) result in different
values L(X(1), Y (1);w) and L(X(2), Y (2);w), also different to L(X ,Y;w). The difference
between L(X, Y ;w) and L(X ,Y ;w) can be considered as a stochastic noise. Hence, selecting
random minibatches prevents the resolution of (2.20) by successive resolutions of (2.21) to
be deterministic. Therefore, the optimizers requiring minibatches are referred as stochastic
minibatch methods.

2.2.5 Neural network optimizers

The foundation of stochastic optimization was laid by Robbins and Monro [137]. The method
root lies in gradient loss computation from data subsets, commonly known since as the
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stochastic gradient descent (SGD) [96]. SGD represents the prototype among gradient-based
methods, where weight updates rely on scalar adjustments derived of first partial derivatives.
Generally, gradient based methods are such

w
(k+1)
i = w

(k)
i + α

(k)
i (∇L(X(k), Y (k);w))i, k ≥ 0, 1 ≤ i ≤ n, (2.22)

where k represents the iteration’s index, and w
(k)
i is the i-th weight at the k-th iteration.

Consequently, optimizers that train a neural network incorporate this stochastic nature by
dynamically adapting a(k) = (α(k)

1 , . . . , α(k)
n )⊤. While not aiming for an exhaustive review of

all stochastic gradient-based methods, we list some well-known approaches below. For more
comprehensive information, interested readers are directed to surveys on this topic [3, 15].
Momentum was introduced by [112], followed by more recent techniques like AdaGrad [50],
RMSProp [85], and Adam [93]. The latter amalgamates AdaGrad and RMSProp to adjust a(k)

based on estimates of the first and second gradient moments. Adam will be used in Section 5.2.4
and Section 5.3.1 for comparing neural network trainings. For this reason, the Algorithm 2.2.1
summarizes the algorithm Adam which minimizes the loss function L(X, Y ;w) where w is the
weight vector that parametrizes a neural network. The default values for α, β1, β2, ϵ are usually

Algorithm 2.2.1 Adam [93]
1: α > 0, β1, β2 ∈ (0, 1)
2: k = 0, m(0) = 0 ∈ Rn, v(0) = 0 ∈ Rn, w(0) ∈ Rn

3: for k = 0, 1, . . . do
4: Select a new minibatch (X(k), Y (k))
5: k = k + 1
6: g(k) = ∇L(X(k), Y (k);w(k)) loss function gradient
7: m(k) = β1m

(k−1) + (1− β1)g(k) Update biased first moment estimate
8: v(k) = β2v

(k−1) + (1− β2)g(k).2 Update biased second raw moment estimate
9: m̄(k) = m

(k)

1−β
k
1

Compute bias-corrected first moment estimate

10: v̄(k) = v
(k)

1−β
k
2

Compute bias-corrected second raw moment estimate

11: w(k) = w(k) − αm̄(k)./(√.v̄(k).+ ϵ) Update of the weights
12: end for

α = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8 [93]. Also, note that the operations ./, .2 and √.
are element-wise operations applied onto a vector. For example, suppose g = (g1, g2, . . . , gn)⊤,
then g.2 = (g2

1, g
2
2, . . . , g

2
n)⊤.

Gradient methods have the advantage of requiring fewer memory, unlike basic quasi-Newton
methods which rely on the support of a dense matrix. Therefore, only the limited-memory
quasi-Newton methods remain applicable to minimize such large optimization problems.
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Similarly to the stochastic gradient-based methods, the stochastic limited-memory quasi-
Newton methods replace the gradient with stochastic gradient, notably to compute y during
quasi-Newton updates (2.13), (2.15), see [4, 25, 26].

Within a stochastic setup, both gradient-based methods and limited quasi-Newton methods
achieve sub-linear convergence rates [15]. However, quasi-Newton methods are likely to
enhance the hidden constant behind the theoretical asymptotic convergence results [15].
Generally, the hyperparameters of a quasi-Newton method are less sensible than those of
gradient-based methods, due to their scale invariant properties. In practice, the gradient-based
method Adam remains the most efficient method to train a neural network (at the time of
writing).

2.2.6 Neural network parallelization

In addition of the optimizer used, the architecture plays a pivotal role in practical performance,
as larger architectures often lead to enhanced results [29]. As a result, training computationally
expensive deep neural networks in a reasonable time requires parallel optimization methods
that scale to adequate computational resources. In the context of supervised learning,
two problems arise. First, the sheer size of training datasets precludes their simultaneous
evaluation, requiring the use of minibatches, each containing a fraction of the original dataset.
Second, with the continuous expansion of neural network sizes, a solitary hardware component
might prove insufficient for storing or training a neural network [43], e.g. GPT-4 is estimated
to be parametrized with approximately 1012 variables. Several techniques coexist to remedy
those issues.

The first parallel scheme, called data parallelism, requires the exploitation of a graphical
processing unit (GPU). The GPU takes advantage of the minibatch evaluation to dispatch
efficiently the computation related to the observation-label couples across its numerous
cores [29, 43, 130]. By doing so, the larger the minibatch is, the greater the speed-up
is. However, for a single epoch, there is generally more progress by considering smaller
minibatches.

When the architecture is too large, a natural idea is to fragment the neural network training,
which has produced multiple schemes and implementations, from which two emerge: model
parallelism and tensor parallelism. The idea of model parallelism is that each worker is
tasked with storing a specific neuron layer [83, 87]. To achieve the computation of the loss
function and its derivatives, both forward pass and reverse passes are adapted to transfer
layer computation outputs to the worker related with its subsequent layer. Conversely, tensor
parallelism [6, 98] operates by assigning to each worker a slice of one or several layers. Once
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all workers have computed the slices pertaining to a given layer, the results are shared among
all the workers to enable the next layer evaluation. Both approaches effectively fragment
neural network training by incorporating communication among workers. However, in an
unfavorable setup, communication costs can significantly impair practical performance [3].

Finally, Hybrid parallelism integrates all previous strategies to propose techniques that enhance
practical efficiency. For instance, both model parallelism and tensor parallelism can harness
data parallelism by appropriately managing minibatches. Adapting model parallelism is
straightforward, but for tensor parallelism, the same minibatch must be loaded onto multiple
workers. To achieve competitive performance, implementations prioritize maintaining a
balanced workload across workers depending on the computational intensity of layers [3].
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CHAPTER 3 LITERATURE REVIEW

This chapter constitutes a literature review on the exploitation of partial separability in
optimization, derived from Bigeon, Orban, and Raynaud [9]. The Section 3.1 recalls in details
the definition of what a partially-separable function is, elaborates on the partitioned structure
nature of its derivatives, defines a generalization of partial separability named group-partial
separability, and provides other definitions of partial separability not related to the content of
this thesis. Then, the Section 3.2 introduces the most well-known partitioned quasi-Newton
methods and their respective theoretical results. The Section 3.3 groups the description of other
continuous optimization methods that exploit partial separability by design, complemented by
two methods dedicated to the particular partially-separable problems presented in Section 3.4.
The Section 3.5 gathers various works explaining how partial separability helps in computing
derivatives, which is a critical factor for efficient numerical methods. Thereafter, the Section 3.6
describes some pieces of software integrating partitioned quasi-Newton updates, based on what
the previous sections present. Unlike the contributions encompassed in Section 3.6, which are
mostly sequential implementations, the Section 3.7 summarizes several parallel methods or
implementations exploiting the partially-separable structure to operate. Before concluding,
the Section 3.8 breaks down the exploitation of partial separability for derivative-free methods.
Finally, the Section 3.9 proposes a critical analysis of partially-separable optimization and its
current limits, which guided the subsequent research of this thesis.

3.1 Partially-separable structure

This section defines thoroughly a partially-separable function, details the partitioned structure
of its derivatives, presents a generalization of partial separability and enumerates close
"partially-separable" definitions out of this thesis context.

3.1.1 Partially-separable function

Most of the time, the minimization method for f : Rn → R can take advantage of the
underlying structure if it can be identified. One interesting information is the knowledge
of invariant subspace for which the value of f remains constant. Such a subspace is called
nullspace N ⊆ Rn :

f(x+ s) = f(x),∀x ∈ Rn and ∀ s ∈ N .
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As such, that is neither an interesting nor a compelling example, but it takes its meaning
when f may be written in the form

f(x) =
N∑

i=1
fi(x), fi : Rn → R, i = 1, . . . , N, (3.1)

and each fi has a nonempty nullspace Ni. Such a situation could occur because each fi

only depends on a subset of variables, but the definition is more general in the sense that
nullspaces do not need to be aligned with euclidean axis. Total separability is perhaps the
simplest special case of (3.1), it corresponds to the case where each fi only depends on xi, Ni

is then Span(ei)⊥:

f(x) =
n∑

i=1
fi(xi), fi : R→ R.

It may be generalized to block separable functions, where each fi only depends on an orthogonal
subset of variables:

f(x) =
N∑

i=1
fi(x[i]), fi : Rni → R,

where x[i] selects a subset of components of x. Consequently, Ni is spanned by at least all
components of x not captured by x[i]. Structurally, fi is such that Ni ⊇

⋃
j∈{1,...,N}\{i}Nj and∑N

i=1 ni = n.

Let’s now consider a slightly more elaborate example:

f(x) =
n−1∑
i=1

fi(x), fi(x) = (xi + xi+1)4, (3.2)

the nullspace of fi is Ni = {s ∈ Rn | si + si+1 = 0}. The situation is similar if fi(x) =
sin(xi + xi+1), except that due to periodicity, Ni can be described as {s ∈ Rn | si + si+1 = 0
(mod 2π)}. The nullspace cannot always be stated so easily, and sometimes, we must fall
back on a subset of Ni that has a simpler expression. In the examples above, one could choose
Ni = {s ∈ Rn | si = si+1 = 0} or Ni = {s ∈ Rn | si = si+1 = 0 (mod 2π)}. Such subsets are
sometimes called trivial nullspaces. In certain cases, finding a subset of the nullspace strictly
larger than the trivial nullspace can be difficult, for example if fi(x) = xixi+1.

When searching for a minimizer of f , it is interesting for fi to have a nullspace as large as
possible, i.e., the contribution of fi is confined to a small subset of Rn. For the rest of the
thesis, a partially-separable function can be described as

f(x) =
N∑

i=1
f̂i(x̂i), f̂i(x̂i) = fi(x), x̂i := Uix, (3.3)
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where Ui ∈ Rni×n and f̂i : Rni → R. In such definition, f̂i depends only on a subset of
variables, or, more precisely, on few linear combinations of a subset of variables captured by
Ui. It completes (3.1), by specifying the nullspace of every fi(x) = f̂i(x̂i), which corresponds
to Range(Ui)⊥. Any object ̂i refers to an object related to the element function f̂i instead of
f , e.g., ∇f̂i is the i-th element gradient. Consequently, the size of ̂i is related to ni instead
of n.

If the j-th column of Ui has at least one nonzero element, then xj participates in fi and is
called an elemental variable of fi. The number of elemental variables of fi is denoted nE

i .
Thus, one possible choice for Ui is the subset of rows of the identity corresponding to elemental
variables, denoted UE

i . For instance, if fi(x) = sin(x12 − 2x23)(x7 + x12 + x23), only nE
i = 3

variables participate in fi, and we may use Ui = UE
i as the 3× n matrix composed of rows 12,

23 and 7 of the n× n identity. The formulation of fi depending on its elemental variables is

f̂E
i (y1, y2, y3) := sin(y1 − 2y2)(y3 + y1 + y2),

so that

fi(x) = f̂E
i (UE

i x), UE
i :=


e⊤

12

e⊤
23

e⊤
7

 .
For the decomposition (3.1) to be useful, it is necessary that nE

i < n. However, it is also
possible to write

fi(x) = f̂ I
i (x̂I), x̂I := U I

i x, U I
i :=

 e⊤
12 − 2e⊤

23

e⊤
7 + e⊤

12 + e⊤
23

 ,
where this time, f̂ I

i depends on nI
i = 2 variables and can be written f̂ I

i (y1, y2) := sin(y1)y2.
Now, U I

i selects several linear combinations of variables, such that x̂I
1 := x12 − 2x23 and

x̂I
2 := x7 + x12 + x23, which are called internal variables. Obviously, it is always possible to

choose U I
i = UE

i but exploiting internal variables is only useful if we identify a choice of U I
i

such that nI
i < nE

i .

Elemental variables describe the trivial nullspace of fi whereas proper choices of internal
variables describe larger subsets of the nullspace, and perhaps even the entire nullspace. Which
representation choose between UE

i or U I
i is of importance, since it impacts the efficiency of

routines exploiting partial separability. The Section 3.3.3, summarize the approach of Conn
et al. [36] to answer this interrogation.
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Returning to (3.2), the elemental variables of fi are xi and xi+1, so that nE
i = 2 and

f̂E
i : R2 → R, f̂E

i (x̂E
1 , x̂

E
2 ) = (x̂E

1 + x̂E
2 )4, UE

i :=
 e⊤

i

e⊤
i+1

 .
Alternatively, we may set nI

i = 1 and

f̂ I
i : R→ R, f̂ I

i (x̂I
1) = (x̂I

1)4
, U I

i :=
[
e⊤

i + e⊤
i+1

]
.

Therefore, any s in the trivial nullspace NE
i is such that UE

i s = 0, and any s ∈ Ni is such
that U I

i s = UE
i s = 0.

Although matrices are convenient to define Ui in (3.3), an efficient computer representation of
partial separability represents Ui with a linear operator, e.g., via an ni-vector identifying the
variables selected by Ui. The Section 3.1.2 presents the partitioned derivatives of f and details
how their computations depend directly on Ui and ni. Therefore, having operator-vector
product v → Uiv more efficient than a dense matrix also helps during the assembly of element
derivative contributions.

In the rest of the thesis, no distinction is made between an internal and an elemental function,
gradient or Hessian, they will be referred as element function, element gradient or element
Hessian, respectively f̂i : Rni → R, ∇f̂i ∈ Rni and ∇2f̂i ∈ Rni×ni . However, the pieces of
software presented in Chapter 6 consider f̂E

i and UE
i for which:

UE
i =

e⊤
i

e⊤
j

 , is stored with the vector Ui = [i, j]

and v → Uiv selects the components v[i] and v[j] from the vector v.

The relevancy of partial separability in large-scale optimization originates from Griewank and
Toint [76], which demonstrated:

Theorem 3.1.1 (derived from Griewank and Toint [76]). If there exist 1 ≤ i ̸= j ≤ n

such that ∂
2
f

∂xi∂xj
= 0, ∀x ∈ Rn then f is partially-separable.

Theorem 3.1.1 makes any problem having a sparse Hessian partially-separable, and susceptible
to consider the partitioned quasi-Newton methods described in Section 3.2. Originally, [76,
Theorem 1] establishes the partial separability of f using the sparsity of higher order:

∂nf(x)
∂x1∂x2 . . . ∂xn

= 0, ∀x ∈ Rn. (3.4)
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Consequently, if there is i ̸= j, such that ∂
2
f

∂xi∂xj
= 0, then f satisfies straightforwardly (3.4).

Griewank and Toint [76] technically defined f as partially-separable if it satisfies:

∑
e∈E0

(−1)|e|f(xe) = 0, ∀x ∈ Rn, (3.5)

considering the vertex set of the unit cube E0, such that ∀e ∈ E0, e = (ϵ1, ϵ2, . . . , ϵn)⊤ where
ϵi ∈ {0, 1} and xe = (ϵ1x1, ϵ2x2, . . . , ϵnxn)⊤ the projection of x onto the vertex e of the
rectangle R := {(α1x1, α2x2, . . . , αnxn)⊤, with 0 ≤ αi ≤ 1, ∀ 1 ≤ i ≤ n}. Thus, |E0| = 2n,
the metric |e| = ∑n

i=1 ϵi and the special vertex e1 = (1, 1, . . . , 1) is such as f(x
e

1) = f(x). By
moving e1 into the right side of (3.5), it simplifies as:

f(x) = (−1)n+1
n−1∑
k=0

(−1)k
∑

e∈E0,|e|=k

f(xe).

Suppose

Def(x) = ∂|e|f(x)
∂ϵ1x1∂

ϵ2x2 . . . ∂
ϵnxn

,

then, for each e such that Def ≡ 0 the function f(xe) can be described as a linear combination
of several fê(xê) := f(xê), where ê ∈ Ee := {ê : ϵ̂i ≤ ϵi, 1 ≤ i ≤ n and |ê| ≤ |e|}. The linear
decomposition into sub-functions of every f(xe) leads to:

f(x) =
∑
ê∈E

fê(xê), (3.6)

where E ⊆ ⋃
e∈E0

Ee ⊆ E0 a minimal vertex subset such that for any ê ∈ E, Dêf ̸≡ 0.
The formulation (3.6) is equivalent to (3.3) and led the way for studies analyzing f from fê

nullspaces. In particular, a trivial nullspace occurs for any function independent of certain
variables, which is the case for every fê since there is at least one ϵ̂i = 0.

3.1.2 Derivatives of a partially-separable function

Partially-separable functions satisfying (3.3) yield structured derivative computations. If each
fi ∈ C2, then

∇f(x) =
N∑

i=1
∇fi(x) =

N∑
i=1

U⊤
i ∇f̂i(Uix) =

N∑
i=1

U⊤
i ∇f̂i(x̂i), (3.7a)

∇2f(x) =
N∑

i=1
∇2fi(x) =

N∑
i=1

U⊤
i ∇2f̂i(Uix)Ui =

N∑
i=1

U⊤
i ∇2f̂i(x̂i)Ui. (3.7b)
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For example, suppose f such as:

f(x) = (x1x3)4

x2
2 + 1

+ (x3x5)4

x2
4 + 1

+ exp((x1 + x3 + x5)2), f : R5 → R, (3.8)

which can be written as:

f(x) = f̂1(x1, x2, x3) + f̂2(x3, x4, x5) + f̂3(x1, x3, x5), f̂i : R3 → R,

where

f̂1(y1, y2, y3) = (y1y3)4

y2
2 + 1

, f̂2(y1, y2, y3) = (y1y3)4

y2
2 + 1

, f̂3(y1, y2, y3) = exp((y1 + y2 + y3)2).

Therefore, the gradient structure is:

∇f(x) =




︸ ︷︷ ︸
U

⊤
1 ∇f̂1

+




︸ ︷︷ ︸
U

⊤
2 ∇f̂2

+




︸ ︷︷ ︸
U

⊤
3 ∇f̂3

=




,

while the Hessian structure is:

∇2f(x) =




︸ ︷︷ ︸

U
⊤
1 ∇2

f̂1U1

+




︸ ︷︷ ︸

U
⊤
2 ∇2

f̂2U2

+




︸ ︷︷ ︸

U
⊤
3 ∇2

f̂3U3

=




,

considering that the yellow, red and blue colors represent respectively the contributions from
f̂1, f̂2 and f̂3. and other colors express the combination of several element contributions for
a single partial derivative. The same example is reused in Section 6.3 to describe how the
partially-separable structure is automatically detected from an analytical expression stored as
an expression graph.

From (3.7a), ∇f(x) can either be stored as an n-vector accumulating the contributions of
each f̂i, or as the set {∇f̂i(x̂i) | i = 1, . . . , N} encompassing N vectors of size ni, i = 1, . . . , N .
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The second option has computational advantages. Firstly, when there are few component
changes in x, recomputing ∇f only needs to update few ∇f̂i(x̂i). For example, suppose f(x)
as (3.8) and that every ∇f̂i(Uix) is known, then the computation of ∇f(x+ e1) only needs to
recompute ∇f̂1(U1(x+ e1)) and ∇f̂3(U3(x+ e1)), which avoids the unnecessary computation
of ∇f̂2(U2(x + e1)). Secondly, ∇f can be computed in parallel by dispatching ∇f̂i(x̂i) to
several cores [99]. For more details, the Section 3.5 delves further into the computation of
derivatives.

Similarly, instead of assembling ∇2f(x), it is possible to store separately the element Hessians
{∇2f̂i(x̂i) | i = 1, . . . , N} as small dense matrices with their corresponding Ui. This partitioned
storage makes possible the computation of Hessian-vector products by accumulating the
∇2f̂i(x̂i)Uiv contributions and the factorization of ∇2f(x) without ever assembling the
matrix [52, 53]. Storing all ∇2f̂i(x̂i) requires 1

2
∑N

i=1 ni(ni + 1) real numbers, to which we must
add the storage of Ui for i = 1, . . . , N . Clearly, if the resulting overall storage is significantly
smaller than 1

2n(n+ 1), there is virtue to keeping the element Hessians unassembled. Keeping
them unassembled also has the benefits that we mentioned for the gradient: only certain
element Hessians need be recomputed after a sparse update of x, and their evaluation can be
carried out in parallel.

Finally, (3.7b) suggests that an approximation Bk = B⊤
k ≈ ∇2f(x) can be obtained in the

form
Bk =

N∑
i=1

U⊤
i B̂i,kUi, where B̂i,k = B̂⊤

i,k ≈ ∇2f̂i(x̂i). (3.9)

Griewank and Toint [75] saw in (3.9) an opportunity to develop partitioned quasi-Newton
updates and partitioned quasi-Newton methods, a topic that we develop further in Section 3.2.

The appliance of Ui and U⊤
i in (3.7) scatters the contributions of the small element gradients

∇f̂i(x̂i) and element Hessians ∇2f̂i(x̂i) to the components of ∇f(x) and ∇2f(x) they con-
tribute during assembly. The smaller nE

i is compared to n, the sparser is the contribution of
∇f̂i(x) and ∇2f̂i(x) to ∇f(x) and ∇2f(x). However, it is not because f is partially-separable
that ∇2f(x) is sparse. For instance, we may have the decomposition

f(x1, x2, x3) = f̂1(x1, x2) + f̂2(x1, x3) + f̂3(x2, x3),

which has U⊤
1 ∇2f̂1U1, U⊤

2 ∇2f̂2U2 and U⊤
3 ∇2f̂3U3 all sparse, but ∇2f(x) dense:

∇2f(x) =


 , (3.10)
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where yellow, red and blue are respectively the contributions of f̂1, f̂2 and f̂3. However, as
we elaborate in Theorem 3.1.1, the converse holds: if ∇2f(x) is sparse, then f is partially-
separable.

3.1.3 Group partial separability

As the first version of the LANCELOT solver Conn et al. [33] and the SIF modeling lan-
guage [34] were developed, further examined in Section 3.6.2 and Section 3.6.3, Conn et al.
[33] generalize (3.1) and formulate the concept of a group-partially-separable function. Those
functions are of the form

f(x) =
m∑

j=1
gj(lj(x) +

Nj∑
i=1

fi(x)), g ∈ C2, (3.11)

where gj : R→ R, is the j-th group function, lj is the linear term of the j-th group, and fi,
i = 1, . . . , Nj are the nonlinear functions of the j-th group. The variables appearing in the
j-th group can be accessed by Uj , while the nonlinear terms can use an internal representation
based upon Uj to select their variables. As an extension to the SIF, Gould et al. [69] further
refine (3.11) to expose quadratic terms explicitly, i.e.,

f(x) =
m∑

j=1
gj(lj(x) +

Nj∑
i=1

fi(x) + c) + 1
2x

⊤Hx, (3.12)

where H = H⊤ and c is a constant.

A simple example about group partial separability is the matrix completion problem:

min
X∈Rm×r

,Y ∈Rr×n
f(X, Y ) = ∥(A−XY )Ω∥2

F , (3.13)

where A ∈ Rm×n is the matrix with a known subset of its entries Ω that XY seeks to
approximate. The projection operator (.)Ω is defined as [(Z)Ω]i,j = Zi,j if (i, j) ∈ Ω or 0
otherwise. Matrix completion problem can be reformulated as:

f(X, Y ) =
∑

(h,k)∈Ω
gh,k(X, Y ) =

∑
(h,k)∈Ω

(
Ah,k −

r∑
l=1

Xh,lYl,k

)2

.

f sums |Ω| identical group functions gh,k(y) = y2. All group dimensions are 2r, containing
a constant term Ah,k and the nonlinear terms ∑r

l=1 Xh,lYl,k. Suppose that r = 1 in (3.13)
making X and Y two vectors and gh,k(x, y) =

(
Ah,k − xy

)2
: R2 → R applied onto Xh and
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Yk. The addition of the regularization terms ∥X∥2
F + ∥Y ∥2

F to (3.11) furnishes the quadratic
terms of (3.12).

Group partial separability can enhance automatic differentiation for computing ∇f . The
Figure 3.1 illustrates the reverse mode for one group of the group partially-separable function
gh,k presented (3.13) considering r = 2:

f(X, Y ) =
∑

(h,k)∈Ω

(
Ah,k −

2∑
l=1

Xh,lYl,k

)2

︸ ︷︷ ︸
gh,k

, X ∈ Rm×2, Y ∈ R2×n. (3.14)

The Figure 3.1 is intentionally similar with Figure 2.1, which details automatic differentiation.
Similarly, each node is identified by a number and contains two values red (left) and blue
(bottom right) which respectively inform about the node values resulting from a forward
evaluation and the adjoint values. In this example, x1, x2, x3 and x4 are replaced with Y2,j =
1.5, Xi,2 = 2, Y1,j = 2.5 and Xi,1 = 3. Unlike the Figure 2.1, the group partial separability
allows computing a group derivative ∇gh,k(X, Y ) without knowing the value of the complete
expression tree, i.e. f(X, Y ), as ∂f

∂gh,k
= ∂f

∂ 11
.
∂ 11

∂ 10
= 1. Furthermore, ∂ 10

∂ 9
= 2. 9 enables the

computation of ∂ 10

∂ l
, 1 ≤ l ≤ 8 right after the evaluation of 9 , i.e. ∂ 10

∂ 8
= ∂ 10

∂ 9
.∂ 9
∂ 8

= 1.2. 9 = 12.
Lastly, the dotted curves indicate that a node could have edges related to other groups which
do not appear to keep the example minimal. The accumulation of all the other groups’
contributions computes ∇f and is equivalent to summing all ∇gh,k. In the particular case
of (3.14), every group is identical. The tape described in Figure 3.1 is enough to compute
all ∇gh,k, which avoids the storage of |Ω| − 1 tapes. Practically, the values of the leaves
Y2,j, Xi,2, Y1,j, Xi,1 must be modified accordingly and the indices of X and Y are likely to
become irrelevant.

3.1.4 Other definitions of partial separability

There exist other concepts close to partial separability that Omidvar et al. [117] and Liang
[100] exploit. Their definitions differ with the definition given in Section 3.1.1. Omidvar et al.
[117] define a variable xi as separable if it satisfies

argmin
x∈Rn

f(x) =
argmin

xi∈R
f(. . . , xi, . . . ), argmin

{xj}j∈J ∈Rn−1
f({xj}j∈J ,xi)

 , (3.15)

where J := {{1, . . . , n}\{i}} and xi the i-th fixed variable. Note that a “totally separable”
function f(x) = ∑n

i=1 fi(xi) is a particular case of (3.15). More generally, Omidvar et al. [117]
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Figure 3.1 Automatic differentiation for one group of a group partially-separable function

define a partially-separable function as

argmin
x∈Rn

f(x) =
argmin

x[1]∈R
n1
f(x[1], . . . ), . . . , argmin

x[m]∈R
nm

f(. . . , x[m])
 , (3.16)

where x ∈ Rn can be divided into m subcomponents x = (x[1], . . . , x[m]), where ∑m
i=1 ni = n.

This definition strongly differs with (3.1), as f is not a sum and variables interact nonlinearly
with each others which prevent (3.16) to be satisfied. Nevertheless, those definitions gave
birth to several evolutionary algorithms [66, 91, 117, 154, 155] to solve (3.16).

A special case of such partial separability is partially additively separable f(x) = ∑N
i=1 fi(x[i])

where x[i] is a mutually exclusive decision vector. Partial additive separability is equivalent
to f(x) = ∑N

i=1 fi(Uix) where each element function uses an independent subset of variables,
i.e., U⊤

i Uj = 0, i ≠ j, i, j = 1, 2, . . . , N and element Hessians are not overlapping. Such
a problem can be viewed as separated subproblems, which enables straightforward parallel
optimization methods.

In addition, Liang [100] gives a different definition of a separable function:

f(x) = f1(x1)f2(x2) . . . fn(xn),
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which can be generalized into a partially-separable function as:

f(x) =
L∑

l=1
fl,1(x1)fl,2(x2) . . . fl,n(xn). (3.17)

Such a structure appears in medical imaging, for which Haldar and Liang [80] provides a
minimization method. Nonetheless, (3.17) partial separability also differs with (3.1) as each
term of the sum contains every decision variables.

Finally, closer to what (3.1) considers, Bouzarkouna et al. [18] extend the definition of (3.1)
by replacing Ui with a nonlinear operator Φi : Rn → Rni :

f(x) =
∑

fi(Φi(x)).

To solve such problem, Bouzarkouna et al. propose a population based stochastic search
rank-based algorithm, described in Section 3.8.

3.2 Partitioned quasi-Newton methods

The idea of partitioned quasi-Newton updates is to aggregate B̂i,k ≈ ∇2fi(x̂i,k) to approximate
Bk ≈ ∇2f(xk). If every element Hessian approximation update satisfies its element secant
equation:

B̂i,k+1ŝi,k = B̂i,k+1Uisk = ŷi,k = ∇f̂i(x̂i,k + ŝi,k)−∇f̂i(x̂i,k), (3.18)

then Bk+1 also satisfies the global secant equation

Bk+1sk =
N∑

i=1
U⊤

i

(
B̂i,k+1Uisk

)
=

N∑
i=1

U⊤
i

(
∇f̂i(x̂i,k+1)−∇f̂i(x̂i,k)

)
= ∇f(xk+1)−∇f(xk) = yk.

(3.19)
However, contrary to unstructured quasi-Newton methods, ŝi,k does not come from the
minimization of f̂i,k. Therefore, unlike a Wolfe (L)BFGS line search, the quasi-Newton’s
formula numerical safeguards (2.14) adapted for element Hessian approximation updates,
parametrized by ŝi,k and ŷi,k, may not automatically hold.

The partitioned-BFGS update, commonly denoted as PBFGS [75, 76], supposes that every
element Hessian is updated with the BFGS formula B̂i,k+1 = B̂BFGS

i,k+1 from (2.13) where sk and
yk are replaced with ŝi,k and ŷi,k. If every element curvature condition ŝ⊤

i,kŷi,k > 0 holds for
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any k and B̂i,0 ≻ 0, then B̂i,k ≻ 0 and Bk ≻ 0

v⊤Bkv = v⊤
N∑

i=1
U⊤

i B̂i,kUiv =
N∑

i=1
v̂⊤

i,kB̂i,kv̂i,k︸ ︷︷ ︸
>0

> 0, ∀v ∈ Rn.

Conversely, if one or several element curvature conditions fail, the update of the corresponding
B̂i,k would make them lose their positive definiteness and so forth making possibly Bk ̸≻ 0.
Fortunately, several strategies exist to preserve the positive definiteness of B̂i,k+1, and therefore
that of Bk+1. One may choose to: skip the update B̂i,k+1 = B̂i,k, reinitialize B̂i,k+1 = B̂i,init ≻ 0,
or apply a damped update [128] keeping B̂i,k+1 ≻ 0. Nevertheless, the resulting Bk+1 is unlikely
to verify the secant condition.

Griewank and Toint [79] proposed the first known routine implementing PBFGS, named
PSPMIN, described later in Section 3.6. The success of PBFGS [79, 101] led the way to
the development of other partitioned quasi-Newton methods, for example PSR1 B̂i,k+1 =
B̂SR1

i,k+1, ∀i [75, 76] and several others described later in the section.

To ensure the convergence, Griewank and Toint [77] describe a partitioned minimization
method based on the assumption that every element function is convex, making f equally
convex. Therefore, every B̂i,k is positive definite. The update formula is either BFGS (2.13)
or DFP (Davidon [41] Fletcher and Powell [60]):

BDFP
k+1 = Bk −

Bksy
⊤
k + yks

⊤Bk

y⊤
k s

+ yky
⊤
k

y⊤
k s

(1 + s⊤Bks

y⊤
k s

), (3.20)

another popular positive definite quasi-Newton update at that time.

In this context, Griewank and Toint [75] theoretically study the behaviour of both BFGS
and DFP updates to determine which one is best suited for partitioned updates, considering
that ŝi,k and ŷi,k do not result from f̂i minimization. To do so they study the unstructured
approximation Bk ≈ ∇2f(xk) ∈ Rn×n, a sparse symmetric positive semi-definite matrix
with an initial nullspace that may not correspond to the nullspace of ∇2f . The main result
of Griewank and Toint [75] is:

Proposition 3.2.1. Let ∇2f be continuous and positive semi-definite at all x in a convex
compact subset D of Rn. Given any symmetric positive semi-definite n× n matrix Bk, let
the set S consists of all (s, y) ∈ Rn ×Rn such that, for some x ∈ D with x+ s ∈ D,

(∇f(x+ s)−∇f(x))⊤s > 0.
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Then BBFGS
k+1 defined by (2.13) is uniformly bounded over all (s, y) in S with s⊤Bks ̸= 0.

For BDFP
k+1 defined by (3.20) to have the same property, it is necessary that for all x ∈ D,

Null(∇2f(x)) ⊆ Null(Bk) or ∇2f(x) = 0,

Furthermore, if, for some x in D,

Null(Bk) ̸⊆ Null(∇2f(x))

then there is (s, y) ∈ S such that

rank(BDFP
k+1 ) = rank(Bk) + 1.

In view of the Proposition 3.2.1, BBFGS
k+1 remains well-defined and is uniformly bounded, despite

y⊤
k sk or s⊤

k Bksk being close to zero. In the cases y⊤
k sk ≈ 0 or s⊤

k Bksk ≈ 0, it is still possible to
use a restart scheme, a damped vector yk or skip the update to keep the positive definiteness.
On the other hand, DFP has a property increasing the nullspace of Bk+1, by adding span(yk)
to range(BDFP

k+1 ) for matching the nullspace of ∇2f . However, beside the numerical issues
from starting with a nullspace of Bk too small, the process increasing the spanned space by
BDFP

k+1 may result with ∥BDFP
k+1 ∥ unbounded.

The analysis of Griewank and Toint unanimously favours the use of BFGS for Bk rather
than DFP. The authors confirmed the Proposition 3.2.1 numerically by showing that PBFGS
performs half as many iterations as PDFP and three times fewer gradient evaluations.

Later on, in order to prove convergence for partitioned quasi-Newton methods, [74, 77, 149]
assume that all element functions fi are convex, so is f . Griewank and Toint [77] derive the
first local convergence theory for partitioned quasi-Newton methods, which, interestingly,
does not require the limiting Hessian to be nonsingular, but Hölder continuous. Griewank
and Toint employ an inexact partitioned variable metric (line search) method to establish
Q-superlinear local convergence:

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥q = µ with q > 1, µ ∈ (0,∞) or q = 1, µ = 0, (3.21)

as long as the element quasi-Newton updates are in the convex Broyden class. In order to
reach the Q-superlinear convergence, the linear system iteratively determining the search
direction must be solved exactly asymptotically. During the proof process, Griewank and
Toint happen to bound {∥B̂i,k∥}k, {∥Bk∥}k and {∥B−1

k ∥}k using suitable numerical safeguards
and positive semidefinite initialization of B̂i,0 ≻ 0. To ensure the boundness of {∥B̂i,k∥}k,
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{∥Bk∥}k and {∥B−1
k ∥}k, the partitioned updates proposed skip the element quasi-Newton

updates when they do not meet those numerical safeguards.

Later, Toint [149] extends the local convergence of Griewank and Toint [77] to establish a
global convergence. Similarly to Griewank and Toint [77], Toint uses a line search where the
search direction is determined with the conjugate gradient. The Hessian is also assumed to
be Hölder continuous while every element Hessian approximation is updated with the BFGS
formula. Contrary to [77], Toint [149]’s proof may prevent the update of every element at each
iteration. Nonetheless, the remaining element Hessian approximation updates are enough to
prove global convergence, as well as Q-superlinear local convergence, considering the same
assumptions as [77].

Griewank [74] proposes another global convergence proof using an inexact PBFGS line search.
Unlike Toint [149], BFGS is applied to every element function but all ∇2fi are required to be
Lipschitz continuous. B̂i is damped, i.e. ŷi is slightly modified, when its element curvature
condition fails. Griewank establishes global convergence and local R-superlinear convergence:

∥xk − x∗∥ ≤ ϵk,

considering that ϵk converges Q-linearly, i.e., satisfies (3.21) with q = 1 and µ = (0,∞). If
every ∇f̂i happens to be strictly differentiable [74, eq 2.5-2.6], which includes the case where
f ∈ C1, then the local convergence becomes almost Q-superlinear. Furthermore, when all
∇2f̂i pass the Dini’s test [74, eq 2.8-9]—originating from harmonic analysis “This relation
can be used to bound the effects of the nonlinearities in g on the updating process” [90]—,
which automatically holds when all ∇2f̂i are Hölder continuous, then the convergence rate is
Q-superlinear.

In a similar fashion to PBFGS, Cao and Yao [28] define a partitioned quasi-Newton update
exploiting the Powell-symmetric-Broyden (PSB) formula [126]:

BPSB
k+1 = Bk + zks

⊤
k + skz

⊤
k

∥sk∥2 − z⊤
k sk.sks

⊤
k

∥sk∥4 , zk := yk −Bksk,

which may result with BPSB
k+1 not positive definite. Consequently, sPSB issued from Bks

PSB =
−∇f(xk) may not be a descent direction. Therefore, Cao and Yao rely on a projected
quasi-Newton line search method initiated by An et al. [2] to ensure that s lies in a descent
direction. It linearly combines the steepest descent direction −∇f(xk) and sPSB:

s = −∇f(xk) + λk

(
I − ∇f(xk)∇f(xk)⊤

∥∇f(xk)∥2

)
sPSB, Bks

PSB = −∇f(xk),
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where

λk =


0 if ∇f(xk)⊤sPSB

k = 0

min
{
λk

1
4 ,
∥∇f(xk)∥2

|∇f(xk)⊤sPSB
k |

}
otherwise,

considering λ > 0 is practically set to 103 in the numerical experiments. Once s is found, an
Armijo line search determines αk to set xk+1 = xk + αks and Bk is updated.

In the partitioned case, Cao and Yao [28] update every B̂i,k with the PSB formula:

B̂PSB
i,k+1 = B̂i,k −

ẑi,kŝ
⊤
i,k + ŝi,kẑ

⊤
i,k

∥ŝi,k∥2 − ẑ⊤
i,kŝi,k

∥ŝi,k∥4 ŝi,kŝ
⊤
i,k, ẑi,k := ŷi,k − B̂i,kŝi,k,

where
ŝi,k := λkαkUis

PPSB if ŝi,k ̸= 0,

considering

Bks
PPSB = −∇f(xk), Bk =

N∑
i=1

U⊤
i B̂

PSB
i,k Ui.

Cao and Yao prove a global and a superlinear convergence under the assumptions that
f is uniformly convex, twice continuously differentiable and that every ∇2f̂i is Lipschitz
continuous.

The PPSB method is compared to a PBFGS and a LBFGS line searches [75, 101] considering
a set of 30 partially-separable problems described by [106] with a size’s range from 103 to
106. Cao and Yao report that PPSB requires generally slightly less iterations, function and
gradient evaluations than PBFGS and LBFGS. By taking fewer iterates and by having similar
subsidiary cost than PBFGS, PPSB takes less CPU time than PBFGS. However, when only
the CPU time matters, LBFGS performance is comparable to that of PPSB.

Griewank and Toint [75] stated that a straightforward partitioned PSB method (PPSB) may
not bring benefit compared to a sparse quasi-Newton update. Those numerical results contra-
dict this claim. Strangely enough, PBFGS performances are close to LBFGS performances,
which is not replicated in other quasi-Newton comparisons, e.g. Liu and Nocedal [101], where
PBFGS outperforms LBFGS.

3.2.1 Partitioned update for nonsmooth element functions

To deal with the nonsmoothness of f̂i, Lukšan et al. [104] implement PSEN, a bundle method
which relies on a partitioned quasi-Newton line search. Contrary to the partitioned method
proofs presented earlier in this section, each element function needs only to be locally Lipschitz
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continuous for the method to globally converge. Hence, instead of using the gradient, a
(Clarke) subgradient is used which is a convex combination of the nearest subgradients
computed [104, eq.7, step 7 in Alg. 1].

As a line search, the descent direction dk is determined by solving the partitioned linear
system Bkdk = −∇f(xk), where Bk is partitioned as (3.9) and remains positive definite. To
do so, Lukšan et al. compute the Cholesky factorization of Bk. When dk happens to not be a
descent direction, the element-Hessian approximations B̂i,k are updated with SR1 enforced
with a safeguard ensuring that Bk remains positive definite, similarly to the curvature condition
for BFGS. If the numerical safeguards fail, then the update is skipped, i.e. B̂i,k+1 = B̂i,k.

Numerical results show a comparison of the partitioned line search with an unstructured
bundle method and an unstructured proximal bundle method, on problems of size 50, 200
and 1000. For most partially-separable problems tested, the partitioned line search converges
to a stationary point within the fewest function/gradient evaluations. Moreover, it is the only
method out of the three tested applicable for problems of size 1000. The implementation of
the algorithm is available in the Fortran library LSA Lukšan et al. [105].

3.2.2 Partitioned Quasi-Newton vs. Limited-Memory Quasi-Newton

Toint [148] and Lukšan et al. [106] historically collect over two hundred partially-separable
problems that may be useful to compare limited-memory and partitioned quasi-Newton
implementations. Nowadays, the CUTEst collection [71] contains hundreds more. To the
best of our knowledge, there is no recent exhaustive comparison between the limited-memory
quasi-Newton and partitioned quasi-Newton methods. The comparisons come from Griewank
and Toint [75], Griewank and Toint [79], Liu and Nocedal [101], Conn et al. [35] and Lukšan
et al. [105]. Drawing general conclusions from those studies is difficult, mainly because
the methods differ in nature—some are line search methods, while some are trust-region
methods—as do the implementations and programming languages. However, they suggest
that if ni ≪ n, N is moderate, and the overlap between element Hessians does not drag
down memory requirements too much, then the partitioned methods typically outperform
their full-space and limited-memory counterparts. The comparison by Liu and Nocedal [101]
suggests that PBFGS outperforms LBFGS in cases such as those just described, but LBFGS
remains significantly more general. The Section 4.3 illustrates this trend with the Figure 4.4
where all partitioned quasi-Newton methods outperform a LBFGS line search.
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3.2.3 Partitioned update without element gradients

Up to now, the partitioned quasi-Newton methods presented have always had access to the
element function gradients∇f̂i, and thus to ŷi. Malmedy and Toint [107] interest themselves to
the case where the partially-separable structure is known –allowing a partitioned quasi-Newton
approximation to exist– but only ∇f is accessible during the minimization process. Ultimately,
the method must solve infinite-dimensional problems arising from the discretization of partial
differential equations. Therefore, the authors used a recursive multilevel trust-region [72],
whose recursively returns a finer solution x ∈ Rn of the discretized problem f : Rn → R for
which n is getting increasingly bigger. Note that to match Malmedy and Toint [107] notation,
each element function fi : Rn → R is full size, but their corresponding vectors or matrix are
sparse, e.g. ∇fi ∈ Rn or Bi,k ∈ Rn×n.

The approximation of an element Hessian is guided by several assumptions such as: Bi,k =
U⊤

i B̂i,kUi, Bi,k = B⊤
i,k and Bi,k must satisfy the element secant equation utilizing an extrapo-

lated yi,k. Those different conditions formulate an optimization problem:

min 1
2
∑N

i=1 ωi∥Bi,k+1 −Bi,k∥2
F

s.t. Bi,k+1 −Bi,k = (Bi,k+1 −Bi,k)⊤ ∀ i = 1, .., N
Bi,k+1sk = yi,k

Iiyi,k = yi,k

Ji •Bi,k+1 = Bi,k+1∑N
i=1 yi,k = yk,

(3.22)

where:

• • is the Hadamard product;

• Ji = UE
i

⊤
1ni

1
⊤
ni
UE

i is the identity of the Hadamard product, 1ni
= (1, 1, ..., 1)⊤ ∈ Rni ;

• Ii = UE
i

⊤
UE

i ∈ Rn×n is a sparse diagonal matrix, whose diagonal components are set to
one only for the variables parametrizing the i-th element function.

Regardless of the availability of yi,k = U⊤
i ŷi,k, the extrapolated yi,k satisfies ∑N

i=1 yi,k = yk.

The first order optimal condition of the Lagrangian problem from (3.22) leads to the PPSB
update, a 3-steps algorithm [107, Algorithm 2.3]. First, it decomposes iteratively the step
s into {si}N

i=1 and form S = ∑N
i=1 ω

−1
i (∥si∥Ii + sis

⊤
i ), ωi > 0. Then, it solves the sparse

linear system Sc = y − Hs, and decomposes c into {ci}N
i=1. Finally, it updates BPSPSB

k+1 =∑N
i=1 B

PSB2
i,k+1 = ∑N

i=1

(
Bi,k + ω−1

i (cis
⊤
i + sic

⊤
i )
)
. Here, the denotation PSB differs from the one

used in [28], and is therefore denoted by PSB2 while the partitioned approximation is PSPSB.
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The numerical results consider fifteen problems in infinite-dimensional spaces and involve
differential operators. All the following methods are based on the recursive multilevel trust-
region method, and only the approximation of ∇2f changes. PSPSB is compared to:

• LTS (Lower Triangular Substitution): finite difference computation of ∇2f by exploiting
only the sparsity pattern of the problem and gradient evaluations [40];

• LTS-O, a LTS-variant using optimal column groups [68];

• Sparse PSB method (S-PSB), [107, Algorithm 2.2], [146], which is closely related to
PSPSB. The main difference between the two method is that PSPSB weights heavier
the overlapping elements of the Hessian than S-PSB.

A first performance profile criterion counts the objective function evaluations to which is
added five times the gradient evaluations before convergence. For this criteria, LTS-O and
PSPSB are the two methods whose runs require the lesser function and gradient evaluations.
LTS-O has a slight advantage as it solves all problems, while PSPSB fails for two problems.
A second performance profile compares the CPU time and reports PSPSB to be slightly
faster than S-PSB, but significantly slower than both LTS methods. These results are partly
explained by the fact that LTS methods update the Hessian approximation periodically, rather
than iteratively as PSPSB and S-PSB do. In addition, LTS methods only solve a triangular
linear system while both PSB methods solve a sparse linear system at every update. Overall,
the results uniformly favour LTS-O to solve the infinite-dimensional problems.

3.2.4 Partitioned quasi-Newton trust-region

To conclude this section, the Algorithm 3.2.1 presents a variant of the Algorithm 2.1.2
using a partitioned quasi-Newton approximation of ∇2f(xk), similarly to PSPMIN [79]
and LANCELOT [33]. The main difference is the (partitioned) update of the matrix Bk.
Instead of using s and y, the partitioned quasi-Newton update is based on ŝi,k and ŷi,k. An
implementation closely aligned with Algorithm 3.2.1 will be used in Section 4.3 for comparing
numerically partitioned quasi-Newton and unstructured quasi-Newton trust-region methods.
The Algorithm 3.2.1 has three variants, changing the way an element Hessian approximation
is updated (Line 8):

• PBFGS, where B̂i,k+1 = B̂BFGS
i,k+1 (2.13);

• PSR1, where B̂i,k+1 = B̂SR1
i,k+1 (2.15);
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• PSE, where B̂i,k+1 = B̂BFGS
i,k+1 if ŝ⊤

i,kŷi,k > ϵ or B̂i,k+1 = B̂SR1
i,k+1 otherwise. By having more

chances to update B̂i,k, BPSE
k+1 is more likely to satisfy the secant equation.

All methods perform numerical safeguards when updating every element Hessian approxima-
tion. If the safeguards fail, then the update is skipped B̂i,k+1 = B̂i,k.

Algorithm 3.2.1 Partitioned Quasi-Newton Trust-Region Algorithm
1: Choose x0 ∈ Rn, ∆0 > 0, 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1 < γ3 < γ4, and 0 < ϵ1, ϵ2.
2: Choose for every element B̂0,i = B̂⊤

0,i ≈ ∇2f̂i(x0). initial approximation
3: for k = 0, 1, . . . do
4: Compute an approximate solution sk of

min
s
mk(s) s.t.∥s∥ ≤ ∆k, mk(s) := f(xk) +∇f(xk)⊤s+ 1

2s
⊤
(

N∑
i=1

U⊤
i B̂i,kUi

)
s,

bringing a sufficient decrease (2.8).
5: Compute the ratio ρk := f(xk)−f(xk+s)

mk(0)−mk(s) .
6: if ρk ≥ η1 then successful step
7: set xk+1 = xk + sk

8: update every B̂i,k with either (2.13) or (2.15) by replacing s and y respectively by
ŝi,k := x̂i,k+1 − x̂i,k and ŷki

:= ∇f̂i(x̂i,k+1)−∇f̂i(x̂i,k). If the safeguards (2.16) or (2.14)
considering ŝi,k and ŷi,k instead of s and y fail, then B̂i,k+1 = B̂i,k.

9: else unsuccessful step
10: set xk+1 = xk and every B̂i,k+1 = B̂i,k.
11: end if
12: Update the trust-region radius according to

∆k+1 ∈


[γ3∆k, γ4∆k] if ρk ≥ η2,

[γ2∆k, ∆k] if η1 ≤ ρk < η2,

[γ1∆k, γ2∆k) if ρk < η1.

(3.23)

13: end for

3.3 Optimization methods enhancing partial separability exploitation

3.3.1 Structured trust-region methods

Conn et al. [37] describe a structured trust-region method for minimizing a partially-separable
problem. The quadratic trust-region subproblem can be seen as the minimization of a
partitioned quadratic model:

mk(s) :=
N∑

i=1
m̂i,k(ŝi), (3.24)
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aggregating element quadratic models:

m̂i,k(ŝi) := f̂i(x̂i,k) +∇f̂i(x̂i,k)⊤ŝi + 1
2 ŝ

⊤
i B̂i,kŝi, 1 ≤ i ≤ N.

Hence, Conn et al. [37] design a partitioned trust-region, where each element quadratic model
is associated with an element trust-region:

Bi,k := {x ∈ Rn | ∥Ui(x− xk)∥ ≤ ∆i,k}, (3.25)

where ∆i,k > 0 is the element trust-region radius. The overall trust-region

Bk =
N⋂

i=1
Bi,k

may be asymmetric and may allow larger steps in some directions than in others.

To find a step sk in Bk, a first step s1
k is computed in the simpler, unstructured, trust-region

Bmin
k = Bk ∩ {x ∈ Rn | ∥Ui(x− xk)∥ ≤ ∆min

k } ⊂ Bk,

where
∆min

k = min{∆i,k | i = 1, . . . , N} > 0.

Subsequently, the user may employ any procedure to extend s1
k ∈ Bmin

k to a step s2
k ∈ Bk as

long as the latter satisfies a sufficient decrease condition.

Every iteration, each element radius ∆i,k is updated individually based on the step acceptance
and the decrease of its corresponding element function f̂i. Such procedure may push radii
of highly nonlinear element functions to remain small compared to other element radii. To
compensate this side effect, a hybrid strategy includes an overall radius ∆k > 0 bounding
element radii such as

∆h
i,k := max{∆k,∆i,k}.

Consequently, the element and overall trust-regions are redefined as

Bi,k := {x ∈ Rn | ∥Ui(x− xk)∥ ≤ ∆h
i,k}

and
Bmin

k = {x ∈ Rn | ∥Ui(x− xk)∥ ≤ ∆k}.

Conn et al. [37] propose a sounded framework to solve the trust-region subproblem by
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aggregating the solutions of element trust-region subproblem results. This can be seen as
an attempt to replace the truncated conjugate gradient by a method incorporating partial
separability in its core. Nonetheless, the question of how aggregate the element trust-region
solutions remains open. At the time of Conn et al. [37], the implementation of a structured
trust-region was not competitive with an unstructured trust-region, making [37] lacks numerical
results.

3.3.2 Partial separability exploitation to solve quadratic subproblem

3.3.2.1 Accelerate the conjugate gradient with a partitioned preconditioner

The partitioned-matrix-vector product ∇2fv or Bkv aggregates the computation of ∇2f̂iv̂i or
B̂iv̂i to fasten conjugate gradient computation, see Section 2.1.4 and Section 3.1.2. However,
the conjugate gradient performance can be worsened if the linear system is bad conditioned.
Therefore, partial separability can be exploited to define dedicated preconditioners improving
conjugate gradient runs. Such a preconditioner is used to disminish the conditioning number
of the linear system, which ultimately reduces the iterations needed before the conjugate
gradient method converges. Daydé et al. [42] developed and tested several element-by-
element preconditioners for a partitioned matrix, i.e., each element Hessian B̂i has its own
preconditioner. Those preconditioners are inspired from finite element methods and scale on
ni, making the storage reasonable.

The resulting numerical measures indicate that partitioned preconditioners best perform
when the overlap between the element Hessians is scarse. As the overlap between elements
increases, the performance of partitioned preconditioners becomes close to that of a diagonal
preconditioner. Nonetheless, these element-by-element preconditioners remain better for
ill-conditionned problems. Consequently, some of those preconditioners were added to the
LANCELOT software—see Section 3.6.3.

Lastly, Daydé et al. observe that when two element functions significantly overlap, it may
be advantageous to merge both element functions. This observation resulted in the design
of two amalgamation algorithms, which tend to speed up both the preconditioning and the
operator-vector products, similarly to the work of Conn et al. [33] described in Section 3.3.3.1.

3.3.2.2 Structured factorizations of Bk

Direct methods are alternatives to iterative methods, e.g., the conjugate gradient method,
for solving a linear system Bks = −∇f(xk), and therefore, finding a solution to a line search
or a trust-region subproblem. To do so, direct methods find a factorization of Bk, such as
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the Cholesky factorization Bk = LL⊤, where L is a lower triangular matrix, if Bk = B⊤
k ≻ 0.

Originally, Irons [89] described a frontal implementation of a Cholesky factorization for a
sparse matrix A = A⊤ ≻ 0 aggregating element contributions Âi ∈ Rni×ni :

A =
N∑

i=1
Ai =

N∑
i=1

U⊤
i ÂiUi ≻ 0.

The frontal method takes advantage of the basic operation of the Gaussian elimination

aij ← aij − aikakj/akk

which can be performed as soon as the row k —the pivot row— (and therefore column k)
has been fully aggregated from some Âi. Once the contribution of each Âi to row k of A has
been taken into account, it does not need to wait for the rest of A to be assembled. The fully
aggregated but not yet eliminated rows and columns of A are maintained in a data structure
called the front, which must remain small compared to n for computations to be efficient. The
chief difference between a frontal method using a sparse matrix or a partitioned matrix is the
routine managing the front, which in the latter case must accumulate element contributions
properly on the fly while it only requires data access for a sparse matrix.

Frontal methods originated from finite-element simulations in structural mechanics. They
became quite popular in continuous optimization thanks in particular to the contributions
of Duff and Reid [53], who generalize the approach of Irons [89] to symmetric indefinite systems
by drawing inspiration from the dense symmetric indefinite factorization of Bunch and Parlett
[22]. In particular, Duff and Reid describe the multifrontal method, which maintains multiple
fronts simultaneously, and can therefore offer an opportunity for parallel computation. In
later years, refinements of the frontal and multifrontal methods made them an essential
component of any efficient large-scale optimization software and can be found in libraries
such as MA57 [51], MA62 [54], MUMPS [1] or PARDISO [139]. They are used in such widely
successful optimization libraries as IPOPT [153], GALAHAD [70], and KNITRO [24].

Like any other sparse factorization, frontal and multifrontal methods may suffer from fill-in,
i.e., the factors may be significantly denser than A, see Figure 3.2 for example. Therefore, the
first step is to identify a fill-reducing permutation before proceeding with the factorization.
To completely avoid fill-in after permutation, Griewank and Toint [78] demonstrated that the
pattern of A must be a perfect graph, i.e. having a permutation of A which is an overlapping
block diagonal matrix. Furthermore, a good permutation for a (multi-)frontal method should
also keep the front size(s) moderate while seeking to develop several fronts.
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Figure 3.2 Arrow Hessian pattern (left) and its factor (right)

Conn et al. [35] evaluate the performance of a (multi-)frontal method for a partitioned matrix
such as (3.7b) or (3.9) in a non linear optimization context. Conn et al. [35] exploit the
multifrontal factorization implementation of [52] and conclude, on a relatively limited test set,
that its performance is competitive with that of the truncated conjugate gradient method [143]
in a trust-region context. They observe that the performance of the multifrontal method
is excellent when the trust-region model is convex and the fill-in is moderate. However, its
performance decreases in the presence of directions of negative curvature, i.e. B ̸≻ 0, or when
significant fill-in occurs.

3.3.3 Enhance the performance of partitioned quasi-Newton methods

This section shows how partial separability can be preprocessed to improve the performance
of any partitioned quasi-Newton method detailed Section 3.2.

3.3.3.1 Merge element functions and choose Ui representation

The software LANCELOT developed by Conn et al. [36] is a partitioned quasi-Newton trust-
region method, solving at each iterate the trust-region subproblem mainly with the truncated
conjugate gradient. Thus, beside the cost implied by computing every f̂i and ∇f̂i, the main
cost of LANCELOT resides in conjugate gradient iterations, whose complexity scales on

Bkv =
N∑

i=1
U⊤

i B̂i,kUiv. (3.26)

Investigating how to reduce the computations related to Bkv means improving the trust-region
method efficiency. Conn et al. remark that if two elements i and j widely overlap, merging
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the elements i and j into a single element reduces the amount of computation needed by
Bkv. Suppose an extreme example B ∈ Rn×n aggregating B̂i ∈ Rn−1×n−1 and B̂j ∈ Rn−1×n−1.
Hence, B̂i and B̂j overlap over n − 2 variables. As B is a dense matrix, Bv requires n2

floating point operations, or flops, while each B̂iUiv or B̂jUjv requires (n− 1)2 flops. Since
n2 < 2(n− 1)2, computing Bv requires fewer flops than aggregating B̂iUiv and B̂jUjv. This
question is related to how memory is managed. The same argument, i.e. n(n+1)

2 < n(n− 1),
favours storing B over separate B̂i and B̂j , even if it means the loss of structural sparsity. An
illustration of such an example considering n = 6 is as follows:

U⊤
i B̂iUi + U⊤

j B̂jUj =




,

where the overlapping partial derivatives are in purple.

As a result, Conn et al. come up with a merge procedure, merging two elements together
when the sparsity gain obtained by storing two distinct elements Hessians is inferior to the
intrinsic overlap between elements. The merge procedure is recursively applied over all pairs of
elements until a stable decomposition of f is found, which is a simple solution for a large-scale
set covering problem, a NP-hard combinatorial problem. The downside of merging is the
diminution of the number of elements, resulting in a partitioned matrix Bk denser and closer
to an unstructured quasi-Newton approximation than before the merging.

In addition, Conn et al. [36] propose an expand procedure to chose whether an element Hessian
B̂i ≈ ∇2f̂i(x̂k) should use its elemental B̂E

i or its internal B̂I
i Hessian approximation. This

choice reflects on the flops (3.26) needs, as:

B̂E
i = C⊤

i B̂
I
i Ci, Ci ∈ Rn

I
i ×n

E
i , (3.27)

where Ci is a sparse matrix representing the linear combinations of variables appearing in
f̂i. Ci is composed of di nonzero components. Note that if nI

i > nE
i , then B̂I

i is memory and
computationally counterproductive.

The cost of B̂E
i U

E
i v is nE

i
2, as the linear operator UE

i only selects pertinent variables in a
straightforward and highly efficient way. On the contrary, B̂I

i U
I
i v depends on the sparsity

of Ci, i.e. di, as well as v → B̂I
kv which requires nI

i
2 flops. Thus, Conn et al. [36] propose a
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criterion expanding B̂I
i to B̂E

i only if nE
i

2
< 2di + nI

i
2.

Merge cuts off the finer block representation to improve the efficiency of storage and computa-
tion by sacrificing sparsity. Expand is a trade-off between storage and computation efficiency.
If the memory is an issue, expand should be used cautiously. Both procedures reformulate
properly the partially-separable structure before starting the trust-region more efficiently.
The results Conn et al. [36] present via LANCELOT show that a combination of merge and
expand divides by two the computation while it multiplies by three the storage .

3.3.3.2 Decomposition of a partially-separable function into convex element
functions

Griewank and Toint [77] first proved the local superlinear convergence of an inexact partitioned
quasi-Newton line search method. To do so, every element function Hessian must be semi-
definite positive when reaching an isolated minimizer of f making f̂i locally convex and
leaving the indefinite case unsupported. From this point, Griewank and Toint [78] study
the structure prerequisites and try to convexify every element function. Their approach
shifts (artificial) quadratic terms between element functions to force every f̂i to be locally
convex. As mentioned previously, there is almost an infinite number of decompositions for a
partially-separable function f . Therefore, before shifting quadratic terms, Griewank and Toint
study thoroughly the partially-separable decomposition, resulting in a procedure comparing
two partially-separable structures.

A partially-separable structure may be described as a collection of element ranges derived
from the element functions considered. The i-th element range is equivalent to Span(U⊤

i ),
with an additional constraint on the element function decomposition that Span(U⊤

i ) ̸⊂
Span(U⊤

j ),∀i ̸= j. This means that

Ui =
e⊤

1

e⊤
2

 and


e⊤

1

e⊤
2

e⊤
3


cannot coexist. Suppose now two collections of element ranges {Jj}

NJ
j=1 and {Ri}

NR
i=1 of

f . {Jj}
NJ
j=1 is said to be included in {Ri}

NR
i=1 if, for any j ∈ {1, . . . , NJ }, there exists

i ∈ {1, ..., NR} such that Jj ⊆ Ri. In that case, {Jj}
NJ
j=1 is said to be finer than {Ri}

NR
i=1.

Conversely, {Ri}
NR
i=1 is coarser than {Jj}

NJ
j=1 as long as {Jj}

NJ
j=1 and {Ri}

NR
i=1 are different.

Note that there may exist almost an infinity of finest partially-separable structures. From
theses definitions, Griewank and Toint characterize the totally convex separability structure,
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an additional structure ensuring the convexification of element functions when ∇2f is positive
definite.

Theorem 3.3.1 (Theorem 1 [78]). Any totally convex separability structure {Ri}
NR
i=1 must

be maximal in that the element ranges of Ri are exactly the maximal generator ranges of
the associated Hessian space H. Furthermore, any other partial separability structure with
the same Hessian space must be finer than {Ri}

NR
i=1.

Without detailing futher the Theorem 3.3.1, it implies that only the coarsest partially-
separable structure can be totally convex. The consequence of the Theorem 3.3.1 is rather
disappointing since one would like to work on the finest partially-separable structure due to its
sparsest Hessian. However, it allows quadratic shifting terms according to {Ri}m

i=1 on which
the appliance of PBFGS can match the theoretical convergence [77]. Another interesting
property of a totally convex function f is the perfect graph pattern of ∇2f due to the coarser
partially-separable decomposition. As a consequence, ∇2f or Bk has Cholesky factors without
fill-in [78, Theorem 4].

The main issue of the convexification approach is that the shifting must be done at every
iteration, which may be computationally intensive. The convexification strategies tested at
the time of [78] were too costly, and resulted in slower convergence than a PBFGS applied on
f without shifting.

3.3.3.3 New basis to express sparser partially-separable polynomials

Kim et al. [92] are interested in solving a sparse semidefinite positive relaxation of large-scale
polynomial optimization problems. As a sum of monomials, polynomials are disposed to be
partially-separable functions as long as every monomial does not involve all decision variables.
Kim et al. [92] seeks to find a non-singular linear transformation P of decision variables to
improve the partially-separable structure of the objective g(x) = f(Px). Kim et al. aim
to increase the sparsity of ∇2g compared to ∇2f and get sparser Cholesky factors for ∇2g

than ∇2f in order to solve more efficiently the original problem. By increasing the Hessian’s
sparsity, sparse Newton or partitioned quasi-Newton methods have faster computation and
cheaper storage, which can extend the set of problems practically solvable. In addition, the
procedure seeks to return a Hessian structure such that the Cholesky factorization has no
fill-in, i.e., a maximal partially-separable structure in the sense of [78],

The next example illustrates an ideal case of transformation P . Suppose the polynomial

f(x) =
n−1∑
i=1

(xi − xi+1)3 + (
n∑

i=1
xi)4.
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The term ∑n−1
i=1 (xi − xi+1)3 induces a tridiagonal Hessian, while (∑n

i=1 xi)4 induces a dense
Hessian.

Now, consider the non-singular transformation

P =



1 0 . . . . . . 0
−1 1 0 . . . .

...
0 −1 1 0 . 0
... . . . . . . . . . . . . ...
0 . 0 −1 1 0
0 . . . 0 −1 1


, P−1 =



1 0 . . . . . . 0
... 1 0 ...
... . . . . . . ...
... . . . . . . ...
... . . . 0
1 . . . . . . . 1


,

whose application onto x (i.e. x = Pz) returns:

x1 = z1

xi = zi − zi−1 2 ≤ i ≤ n.

Transposing Pz to f returns:

g(z) = f(Pz),
= (z1 + (z2 − z1))3 +∑n−1

i=2

(
(zi − zi−1) + (zi+1 − zi)

)3
+
(
z1 +∑n

i=2(zi − zi−1)
)4
,

= z3
2 +∑n−1

i=2 (zi+1 − zi−1)3 + z4
n.

The element functions of g depend on at most two decision variables, making ∇2g tridiagonal.

In order to find P , the first step is to retrieve the nullspace of any polynomial p(x) : Rn → R,
i.e., finding w such that:

p(x+ λw)− p(x) = 0, ∀λ ∈ R and ∀x ∈ Rn. (3.28)

By factorizing (3.28) terms with λ, a new linear equation system appears, whose solutions
form the polynomial nullspace. An example of such a factorization is given in [92, Section 2.3].
Thereafter, the columns of P are selected from the nullspace basis resulting of the polynomial
nullspace.

In order to assess the quality of g, Kim et al. formalize the correlative sparsity pattern E:

K(h) = {j ∈ {1, ..., n} | ej ∈ nullspace(h)},
E({ĝi}N

i=1) = ⋃
j∈{1,...,N}({1, ..., n}\K(ĝj))× ({1, ..., n}\K(ĝj)),
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as an indicator of ∇2g sparsity and that of ∇2g Cholesky factors. In practice, E enables
the extraction of the adjacency matrix of an undirected graph, similarly to ∑N

i=1 U
⊤
i Ui. The

cardinality #E(g) measures the sparsity of ∇2g, since ∂
2
g

∂xi∂xj
= 0,∀(i, j) /∈ E. Therefore, if

#E(g) ≪ n2 then ∇2f is (very) sparse. Moreover, as stated in Griewank and Toint [78],
if the graph induced by E(g) is chordal, ∇2g is an overlapping block diagonal matrix with
Cholesky factors as sparse as ∇2g.

Kim et al. find a transformation P by resolving a combinatorial problem with a greedy
algorithm. The problem looks for transformed decision variables which are invariant for
most transformed element functions. The relevancy of transformed decision variables is
assessed with E. The problem is solved in two parts. The first one solves approximately the
combinatorial problem, while the second checks for the feasibility of the solution determined.

The numerical results state that after the application of P , the transformed polynomials
have: smaller monomial (element) dimensions, a sparser Hessian and sparser Cholesky factors.
However, despite solving more efficiently the subsequent transformed polynomial, finding the
transformation P takes more CPU time than solving the original polynomial. Nonetheless, the
approach remains relevant as the transformed problem allows dealing with larger polynomial
problems which could not have been solved without the sparsification resulting from P .

3.4 Partially-separable problems with dedicated methods

This section compiles two partially-separable problems for which partial separability allows
the design of dedicated methods.

3.4.1 Large scale nonlinear network problems

In Toint and Tuyttens [151], the authors are interested in solving a large scale nonlinear
network problem:

min
x∈Rn

f(x) = ∑N
i=1 f̂i(Uix)

s.t. Ax = b

l ≤ x ≤ u

, (3.29)

where f is a partially-separable function, A ∈ Rm×n (m ≤ n) is a node-arc incidence matrix,
b is the supply/demand vector and l, u ∈ Rn are the upper and lower bounds for the flow
of the oriented network that A models. Such models gather a large set of problem: energy
distribution problem, hydroeletric power management or urban traffic network analysis [151].

To keep the sequence of iterative solutions feasible, the step taken at each iteration lies in
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Null(A) spanned by Z. To characterize Z, A is divided in three A = (B S N) (basic, superbasic
and nonbasic variables) where B is a square nonsingular matrix, enabling a straightforward
choice for Z = (−B−1S I 0)⊤. Similarly, the step s is divided in three s = (sB sS sN )⊤. As
the steps minimizing the quadratic approximation of f (3.29) lie in span(Z), at each iteration
the linear system:

(Z⊤GZ)sS = −Z⊤∇f(x), G =
N∑

i=1
UiĜiUi, Ĝi ≈ ∇2fi(x), (3.30)

BsB = −SsS , (3.31)

sN = 0, (3.32)

must be solved. Concretely, sS tries to minimize the quadratic approximation of f while sB

focuses on satisfying As = 0 to preserve feasibility.

Toint and Tuyttens choose to solve (3.30) using the truncated conjugate gradient method [84,
143] which does not form Z⊤GZ, a potentially dense matrix, and requires only v → (Z⊤GZ)v
and exploits the partitioned structure of G. After determining sS from (3.30), a line search
is performed to find α such that αsS , sB and sN satisfy the constraints of (3.29). To do so,
the projection P (xS + αsS) tries if xS + αsS satisfies the upper/lower bounds constraints.
The step size α is increased iteratively until xS + αsS first reaches the upper/lower bound
constraints. Then, it computes sB = −αB−1SsS and sets sN to 0. Those two phases are
repeated until the overall step (sB, αsS , 0)⊤ parametrized by α is feasible and achieves a
sufficient decrease of f .

The mandatory decrease can be computed from sS , as sS contains the only variables able to
bring a decrease:

f(x+ (sB, αsS , 0)⊤)− f(x) ≤ µ1(Z⊤∇f(xk))⊤sS , 0 ≤ µ1 ≤ 1
2 .

In the particular case where superbasis independent sets exist, then Z⊤GZ becomes block
diagonal and each independent set may have its own (cheaper) block-optimization process.

The numerical results show a comparison of four variants using different methods for approxi-
mating the element Hessians Ĝi: an analytic second derivatives, a finite difference estimation,
a quasi-Newton update —BFGS until a negative curvature is found to switch over SR1— and
the Dembo method [44], which consists in the linear operator:

U⊤
i ∇2f̂i(x)Uis ≈ U⊤

i ĜiUis = U⊤
i (∇f̂i(Ui(x+ ϵs))−∇f̂i(Uix)),
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where ϵ is an appropriate step length, e.g. 10−6.

All those variants are implemented by the Fortran subroutine LSNNO [152]. The most effective
variant, considering both CPU time and iterations, is the one exploiting analytic second
derivatives. When they are inaccessible and if the gradient is computationally expensive,
the partitioned quasi-Newton method would be preferred over the finite difference element
Hessian approximation. The performance of the Dembo’s variant varies strongly depending
on the problem considered. By approximating every Gv with a gradient computation, each
outer iteration calculates as many gradients as conjugate gradient iterations needed. On
most problems studied in [152], the Dembo’s variant performs far more conjugate gradient
iterations, and therefore, requires far more gradient evaluations. Nonetheless, it does not
reflect linearly on CPU time, even though, it usually converges slower than the three other
variants.

3.4.2 Signal reconstruction

Hamam and Romberg [81] formulate a partially-separable problem to reconstruct a streaming
signal. The model considers that every element function is convex, C2 and depends on two
element variables. Specifically, the signal is reconstructed iteratively by minimizing a sequence
of partially-separable subproblems:

Jn(x) =
n∑

i=1
li(xi−1, xi),

where li may be a least-squared loss on observed data over a time frame parametrized by
xi−1 and xi (starting from x0). Jn+1 is formed by adding the element loss li+1(xi, xi+1) to
Jn, which has for effect to continue the signal reconstruction process over a new time frame.
Structurally, ∇2Jn is a tridiagonal matrix, formed by overlapping element Hessians of size
2. Therefore, ∇2Jn pattern forms a chordal graph and may be LU-factorized without fill-in
by bi-diagonal triangular matrices [78]. The structures of the Hessian and its factor are
illustrated in Figure 3.3

To minimize the sequence of Jn, Hamam and Romberg present a general algorithm for any
problem having a block tridiagonal Hessian (including tridiagonal Hessian). The algorithm
relies on the proof that if ∇2Jn and ∇2Jn+1 are diagonal dominant matrices, then the solution
vector xJn

∗ ∈ Rn+1 of Jn is only weakly coupled to the solution xJn+1
∗ ∈ Rn+2 of Jn+1, i.e.,

as n − i increases, xJn
i

∗
− xJn+1

i

∗
decreases exponentially [81, theorem 3.3]. Intuitively, the

more xJn
i

∗ parametrizes a distant time of the signal’s reconstruction Jn, the less xJn
i

∗ value is
related to that of xJn

n
∗.
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Figure 3.3 Tridiagonnal Hessian pattern (left) and its factor (right)

From this observation, xJn
∗

resulting from the minimization of Jn is recycled to warm start the
minimization of Jn+1. Thereafter, Jn+1 is minimized iteratively by solving the Newton linear
system ∇2Jn+1(x)s = −∇Jn+1(x) until ∥∇Jn+1(x)∥ is sufficiently low. The linear system
is solved by exploiting a LU factorization of ∇2Jn, for which a forward-backward process
computing s on the fly is proposed. As xJn

i

∗
− xJn+1

i

∗
decreases exponentially when i is far

from n, Hamam and Romberg ultimately update only the last components of xJn
∗ to find

xJn+1
∗, i.e., xJn+1

i

∗
= x

Jn
i

∗
, ∀1 ≤ i ≤ n − m, parametrized by the buffer size m. It takes

advantage of the forward-backward process to cut off computation related to the Newton
update beyond the cache. As a consequence, the update’s complexity is independent of the
dimension of ∇2Jn and remains constant even though n increases.

The numerical results explore the reconstitution of an intensity function (denoted as λ(t)) of
a non-homogeneous Poisson process. [81, Figure 1] illustrates how the signal reconstruction
error at a given time diminishes as new Jn+k, k > 0 are successively minimized. [81, Figure
2] empirically corroborates how the buffer’s size growth causes the error of the solution to
decrease (exponentially) before it reaches a threshold, beyond which, updating variables
becomes irrelevant.

3.5 Computation of the partitioned derivatives

The computation of derivatives is mandatory for minimizing a nonlinear problem with quasi-
Newton methods. It serves many purposes, such as assessing if a critical point has been
reached, computing a descent direction or performing a quasi-Newton update. All those cases
are illustrated by the Algorithm 2.1.3. For performing partitioned quasi-Newton updates,
one must compute (in most cases) the element gradients ∇f̂i. This section intends to list
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the schemes proposed over the years to compute the element gradients and the partitioned
Hessian-vector product.

3.5.1 Straightforward procedure when f̂i is available

When f : Rn → R is partially-separable and each f̂i : Rni → R is individually accessible,
both automatic differentiation modes can be applied directly onto f̂i for computing element
gradients ∇f̂i of size ni. In the case where ni is much smaller than n, the difference between
both forward and reverse modes disminishes, and should theoretically take at most 5.nmax

i

the time of one f evaluation.

Unlike the forward mode that benefits indirectly the small dimensions ni, the reverse mode does
not take as much advantage of the partial separability to speed up its computation. However,
instead of keeping the tape of f , it keeps one smaller tape for every f̂i. In practice, several
element functions may be identical, but applied onto different variables, i.e. f̂i(Uix) = f̂j(Uix).
Consequently, the reverse mode only needs to store the distinct element function tapes instead
of every element function tape, which may reduce significantly the storage requirement as
well as reducing the computational resource needed to build the tapes.

In addition, the computation of the Hessian-vector product v → ∇2f(x)v in large problems
can benefit from the partial separability of f :

∇2f(x)v =
(

N∑
i=1

U⊤
i ∇2f̂i(x̂i)Ui

)
v =

N∑
i=1

U⊤
i ∇2f̂i(x̂i)v̂i.

The Hessian-vector product can be computed efficiently by using sequentially the reverse
mode and the forward mode [73]. Applying this technique to every f̂i permits the computation
of every ∇2f̂i(x̂i)v̂i which can be accumulated to form ∇2f(x)v. These approaches compute
∇f̂i(x̂i) or ∇2f̂i(x̂i)v̂i independently, and thus, can be parallelized straightforwardly before
accumulating sequentially the element contributions [32].

The next section explains the computation of the partitioned gradient when only f can be
evaluated, i.e., f̂i cannot be evaluated individually. This situation occurs when f results from
a "black-box" numerical simulation for which the partially-separable structure is known.

3.5.2 Exploiting directional derivatives

In the case all f̂i are evaluated at once, the partitioned derivatives can be computed by
applying a technique originated from sparse Jacobian computation that employs directional
derivatives [40]. To apply this technique, f such as (3.1) must be reformulated as F : Rn →
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RN :

F (x) =


f1(x)
f2(x)

...
fN(x)

 , f(x) = 1
⊤F (x), ∇f(x) = 1

⊤∇F (x), ∇F (x) =


∇f1(x)⊤

∇f2(x)⊤

...
∇fN(x)⊤

 .

Since each fi depends only on few variables, the Jacobian ∇F is (very) sparse. Suppose the
example f(x) = f̂1(x1, x3) + f̂2(x1, x4) + f̂3(x2, x3) + f̂4(x2, x4) + f̂5(x3), then the sparsity
pattern of ∇F is:

F (x) =



f1(x)
f2(x)
f3(x)
f4(x)
f5(x)


, ∇F =



□ △
□ ⋄

♢ △
♢ ⋄
△


, (3.33)

where □,△,♢ and ⋄ represent non-zero components.

Usually, finite difference and forward automatic differentiation compute partial derivatives
considering a seed matrix. For example, by carrying out the direction s = e1, both finite
difference and forward automatic differentiation estimate the first column of ∇F , i.e. □ (3.33).
Hence, the seed is generally set to S = In. Curtis et al. [40] propose to accelerate the
computation of ∇F by finding sets of orthogonal columns of ∇F . A set of orthogonal columns
allows a safe evaluation of several element function derivatives with one direction summing
several ei, where i are the orthogonal column indices. The sets of orthogonal columns are
found with a column colouring performed onto the sparsity pattern of ∇F . Since the sparsity
pattern of ∇F remains identical over the iterations, the colouring is performed only once.
After the colouring, the directions determined are gathered in a compressed matrix Sc. For
example, considering (3.33):



□ △
□ ⋄

♢ △
♢ ⋄
△


, leads to Sc =


1 0
1 0
0 1
0 1

 .

Thereafter, the direction s1 = e1+e2 computes ∂fj

∂x1
, j = 1, 2 and ∂fj

∂x2
, j = 3, 4, while s2 = e3+e4

computes ∂fj

∂x3
, j = 1, 3, 5 and ∂fj

∂x4
, j = 2, 4. Similar approaches exist to construct either a

partitioned interpolation of f,∇f and ∇2f [31], or to generate a direction search s minimizing
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the number of element-function calls to evaluate f(x+ s) [125], both methods are detailed
in Section 3.8.

The amount of element gradients evaluated simultaneously depends on the cardinal of each
orthogonal column set. Therefore, for best efficiency, the colouring should be balanced. Overall,
the reduction obtained depends on the Jacobian sparsity induced by the partially-separable
structure of f . The most extreme case is total separability, i.e. Ui = e⊤

i , 1, . . . , N , making
∇F diagonal, where one adapted s = ∑n

i=1 ei is enough to compute the whole Jacobian.

Coleman and Moré [30] applied this scheme using finite differences while Bischof and El-khadiri
[12] used it with forward automatic differentiation. Bischof and El-khadiri [12] contribution
extends ADIFOR, an automatic differentiation library in Fortran, to compute efficiently the
partitioned gradient without having individual access to every f̂i. The approach is reported to
not consume additional storage, while numerical results relate performance few times slower
than a hand coded gradient for very sparse problems. Bischof et al. [13] prolong [12] with
the library SparsLinC, which integrates a sparse approach that does not require the user to
inform partial separability to compute a sparse ∇F , i.e., the Ui are unknown. The numerical
results report that the sparse approach computes the sparse Jacobian 10 times slower than
the method developed in [12]. Finally, Bouaricha and Moré [16] combine the ideas from [12]
and [13] to create a hybrid approach that utilizes the sparse approach to find the Jacobian
sparsity in the early iterates and then determines a colouring of ∇F for subsequently applying
the compressed approach during the following iterations. The hybrid approach is integrated
in the ELSO framework [16]. As the extra cost of sparse iterates is flooded among all iterates,
the hybrid variant performance is similar to the compressed variant while benefiting the
usability of the sparse approach.

3.6 Partitioned quasi-Newton software

The main objectives of exploiting partial separability is to develop efficient numerical im-
plementations while performing a partitioned quasi-Newton approximation of the Hessian.
It is therefore natural that several software libraries emerged over the years that make it
possible to model and solve large problems faster than implementations that do not exploit
the partially-separable structure. In this section, we review a number of such libraries and
their behaviour in solving large-scale optimization problems. The review is organized in
approximate historical order of appearance.
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3.6.1 PSPMIN

One of the earliest software implementations that exploits the partially-separable structure is
the PSPMIN routine of Griewank and Toint [79], which implements a partitioned quasi-Newton
method described by Griewank and Toint [75, 76, 77] and Toint [149] for bound-constrained
optimization. PSPMIN extends the research implementation of Griewank and Toint [77] to
nonconvex decompositions, i.e., decompositions of the form (3.1) where the element functions
fi are not necessarily convex, and to problems with bound constraints.

PSPMIN is a trust-region method in which a quasi-Newton quadratic model of the objective
is updated at each iteration and used to compute a step. The step is first computed as the
solution of the partitioned quasi-Newton equation Bks = −∇f(xk) by the conjugate gradient
method [84] with diagonal preconditioner and adaptive stopping tolerance. The truncation
strategy of Steihaug [143] is applied if a direction of negative curvature is found during the
conjugate gradient iterations, see Section 2.1.4 for more details. However, if no negative
curvature direction is found, the trust-region constraint is not enforced so as to allow the
use of a full quasi-Newton step when the tolerance shrinks. A line search is subsequently
performed along the projection of the step into the trust-region so as to ensure sufficient
decrease. The element Hessian approximations are then updated in such a way that the secant
equation (2.12) remains satisfied. PSPMIN capitalizes on the partially-separable structure to
save function and gradient evaluations by only evaluating elements whose variables changed
significantly during the most recent iteration. Griewank and Toint note that the quasi-Newton
approximations of the element functions are typically singular beyond the fact that they only
depend on a subset of variables, and make provision for their efficient storage. They also
observe that several element Hessians may share the same range space. Thus, instead of
storing dense element matrices BE

i of size nE
i (details Section 3.1.1), they write BE

i = C⊤
i B

I
i Ci

and store the dense internal element matrices BI
i of size nI

i = rank(Bi), which is the same
equation as (3.27). The matrix BI

i represents a particular choice of internal variables for
f̂i, making Ci = U I

i (UE
i )⊤ ∈ Rn

I
i ×n

E
i . Whether one chooses BE

i or BI
i is studied in details

by [36], which is summarized in Section 3.3.3.1. The matrices Ci are not stored, but the user
is required to provide functions to compute matrix-vector products with Ci and C⊤

i and to
solve systems with coefficients Ci and C⊤

i . Each individual BI
i is updated using the BFGS

formula until the curvature condition (2.14) fails, after which BI
i is updated using the SR1

formula. The update is skipped if (2.14) fails and the SR1 denominator is too close to zero.

PSPMIN is also available as subroutine VE08, which is part of the HSL Mathematical Software
Library [86], formerly the Harwell Subroutine Library. The user is required to supply functions
to evaluate each f̂i and ∇f̂i. If exact derivatives are not provided, they are approximated
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by way of finite differences. Even when exact derivatives are available, finite differences may
be used to compute an initial quasi-Newton approximation, a variant that is reported to be
efficient on average, though slightly less robust than a simple diagonal initialization on the
problems tested by Griewank and Toint. PSPMIN performed favorably compared to earlier
methods that employed sparse quasi-Newton updates in an attempt to solve large problems
with sparse Hessians, such as those of Shanno [140]. Even though the problems tested were
rather small by today’s standards, there is no doubt that PSPMIN ignited further research
into efficient computational procedures for large-scale problems and indicated that exploiting
partial separability was an effective way to do so.

Clearly, an algorithm such as PSPMIN could in theory be accelerated if computations on
the element functions are dispatched to different processors. However, we only expect a
speedup if those computations are sufficiently costly, otherwise, the communication costs
between processors will dash any hopes of time savings. Griewank and Toint comment on
those aspects, although [79] does not provide a parallel implementation of PSPMIN.

A variant of PSPMIN for large-scale nonlinear least-squares problems is available as subroutine
VE10 in the HSL Mathematical Software Library [86], and is described by Toint [150]. VE10
is designed for problems of the form

f(x) := 1
2∥r(x)∥2 = 1

2

m∑
i=1

ri(x)2, r(x) =


r1(x)
. . .

rm(x)

 , r : Rn → Rm,

subject to bound constraints. It is able to employ separate models for each element residual
ri(x), and updates an approximation

∇ri(x)∇ri(x)⊤ + ri(x)Bi,

where Bi = B⊤
i ≈ ∇2ri(x) is either zero, which corresponds to a Gauss-Newton model, or is

updated by way of the BFGS formula if the curvature condition s⊤(∇ri(x+ s)−∇ri(x)) > 0
is satisfied, and a safeguarded symmetric rank-1 update otherwise. Like PSPMIN, VE10
is a trust-region method, in which a search direction is computed using the truncated
conjugate gradient method of Steihaug [143]. A line search is subsequently performed to
ensure satisfaction of the Wolfe conditions. Toint observes that a full quasi-Newton model
is more efficient and reliable than a pure Gauss-Newton model on average, but that a pure
Gauss-Newton model is far more efficient on a subset of problems. This observation motivates
the design of a strategy to select a model type for each element function individually at each
iteration, but the numerical performance is disappointing due to frequent changes between
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model types. Toint experiments with strategies that tend to prefer element quasi-Newton
models and his biased best fit overall strategy compares favorably with NL2SOL [46, 47],
which employs a dense overall quasi-Newton model.

3.6.2 Revenge of the SIF

Although Griewank and Toint [79] state that inputting the partially-separable structure into
PSPMIN is “usually very easy”,1 it remains inconvenient when modeling a problem manually,
and may be better suited to situations where the user injects a partially-separable problem
from another program into PSPMIN. When modeling by hand, say when experimenting with
various formulations of a problem, specifying the explicit partially-separable structure can be
tedious. Toint [148] released a report with a complete description of the test set used in the
experiments of Griewank and Toint [79]. He provides an analytic statement of each of the
50 problems along with its Fortran implementation. It is not difficult to see how enriching
such a test set, or correcting a bug, is error prone and cumbersome, and how specifying large
problems can be considerably more difficult than specifying small problems. However, for
purposes of benchmarking, such a test set is precious. A step towards making it easier to
model problems and input the partially-separable structure into routines that can exploit
it was made with the creation of the SIF: the Standard Input Format, initially described
by Conn et al. [34], who readily acknowledge2

“[. . .] the very idea of defining a Standard Input Format (SIF) was forced on the
authors by the sheer difficulty they experienced in specifying large problems.”

The SIF is inspired from the earlier MPS, or Mathematical Programming System; a specification
format designed to represent, archive and share linear and mixed-integer linear optimization
problems. Early versions of MPS were set up for punch cards and users would represent
problems in column-oriented fashion with different data occurring in different columns on the
card. Although the MPS later developed a “free form”, where columns no longer needed to
be respected, the SIF preserved the column-oriented problem representation.

The SIF lets users represent problem functions in group-partially-separable form —see Sec-
tion 3.1.3. To a user accustomed to using algebraic modeling languages, the SIF may appear
as a program in assembly language would appear to a user of a high-level interpreted language.
Algebraic modeling languages such as AMPL3 [62] and GAMS4 [19] were already in use when

1Bottom of p. 208.
2Bottom of p. 14.
3A Modeling Language for Mathematical Programming
4The General Algebraic Modeling System
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the SIF was developed but they did not acquire the capability to detect the partially-separable
structure automatically until several years later—see Section 3.6.4. In addition, the SIF was
in the public domain.

Problems modeled in the SIF must be translated into a set of Fortran subroutines that fully
decribe the group-partially-separable structure of each problem function: the groups, the
transformations from elemental to internal variables, the element functions, and so forth.
That is the task of the decoder. The resulting Fortran subroutines can subsequently be
compiled and linked together with the main solver. To this day, the process remains slightly
cumbersome as a separate executable must be compiled and linked for each problem. There
is no support for shared libraries. We note in passing that the recent interface between the
SIF decoder and the Julia [5] programming language implemented by Orban et al. [118] does
make provision for shared libraries.

Bongartz et al. [14] recognized that not all solvers are written with the SIF in mind and
assembled the Constrained and Unconstrained Testing Environment (CUTE): a library of
tools to facilitate high-level interaction with problems modeled in SIF and translated by the
decoder, including: evaluating the objective and its derivatives, evaluating the Lagrangian
and its derivatives, multiplying the constraint Jacobian by a vector, and so forth. CUTE also
gives access to the collection of problems modeled in SIF and to a tool used to select a subset
of problems matching a number of requirements. Conn et al. [34] report that at the time of its
inception, more than five hundred problems had been modeled in SIF, including the PSPMIN
problems described by Toint [148]. At the time of the writing of [14], the collection contained
738 problems. More importantly, CUTE also featured interfaces to ten optimization packages
along with scripts that took care of compilation and linking, and let the user run a solver
on a test problem from the command line or from a script. Finally, CUTE also contained a
MATLAB interface to the tools that let users write solvers or simply interact with models in
a high-level language.

There is no denying that the SIF resulted in the first significant collection of test problems
for large-scale nonlinear optimization and remains one of the main interfaces of continuous
optimization solvers. Today, highly successful solvers such as IPOPT [153], KNITRO [24] and
SNOPT [65] all have a CUTE interface. Gould et al. [69] released CUTEr, the next iteration of
CUTE, which, among other features, provided interfaces to 13 additional solvers, extensions of
the SIF to model quadratic optimization problems explicitly in a way that is compatible with
the QPS format—an MPS extension to quadratic and mixed-integer quadratic optimization
problems [109]—support for parameters in SIF files, and facilities to interface with solvers
written in Fortran 95 and C/C++. The most recent iteration is named CUTEst [71] and
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features Fortran 2003 support, dynamic allocation, and approximately 200 new problems
compared to CUTEr. At the time of this writing, the CUTEst collection5 features nearly 1, 500
problems.

3.6.3 LANCELOT and GALAHAD

LANCELOT was probably the first implementation of a large-scale optimization solver that
built upon the partially- and group-partially-separable structure of problems, and it did so via
the SIF modeling system. LANCELOT is designed for general nonlinear constrained problems
in the form

minimize
x

f(x) subject to c(x) = 0, ℓ ≤ x ≤ u,

where both the objective and constraints c : Rn → Rm are assumed to be twice-continuously
differentiable and group-partially-separable with given structure. The equality constraints are
taken into account by way of an augmented Lagrangian algorithm, i.e., LANCELOT solves a
sequence of problems of the form

minimize
x

L(x; y, ρ) subject to ℓ ≤ x ≤ u,

for fixed values of the parameters y ∈ Rm and ρ > 0, where L(x; y, ρ) := f(x) − y⊤c(x) +
1
2ρ∥c(x)∥2 is the augmented Lagrangian. Suppose f(x) = ∑N0

i=1 f̂i(Uix) with

cj(x) =
Nj∑
i=1

ĉj,i(Uj,ix) = 0, ∀ 1 ≤ j ≤ m,

where Uj,i collects the variables parametrizing cj,i, then

L(x; y, ρ) =
N0∑
i=1

f̂i(Uix) +
m∑

j=1

Nj∑
i=1

yj ĉj,i(Uj,ix) +
m∑

j=1

Nj∑
i1=1

Nj∑
i2=1

ρĉj,i1(Uj,i1x)ĉj,i2(Uj,i2x)︸ ︷︷ ︸
ĥj,i1,i2

(Uj,i1,i2
x)

,

where Uj,i1,i2 combines Uj,i1 and Uj,i2 . Knowledge of the group-partially-separable structure
of f and c translates to knowledge of that of L(x; y, ρ), so that its values and derivatives may
be evaluated or approximated efficiently. For example, suppose:

ĥj,i1,i2(x1, x2, x3) = ĉj,i1(x1).ĉj,i2(x2, x3),

5https://bitbucket.org/optrove/sif

https://bitbucket.org/optrove/sif


69

and suppose that ĉj,i1(x1) = 4x1 and ĉj,i2(x2, x3) is a nonlinear function. Then, the partial
derivatives of ĥj,i1,i2 are:

∂ĥj,i1,i2

∂x1
= 4ĉj,i2(x2, x3),

∂ĥj,i1,i2

∂x2
= ĉj,i1(x1).

∂ĉj,i2(x2, x3)
∂x2

= 4x1.
∂ĉj,i2(x2, x3)

∂x2
,

and
∂ĥj,i1,i2

∂x3
= ĉj,i1(x1).

∂ĉj,i2(x2, x3)
∂x3

= 4x1.
∂ĉj,i2(x2, x3)

∂x3
.

Even without the linear nature of ĉj,i1 , if the variables of ĉj,i1 and ĉj,i2 are not overlapping,
then ∇ĥj,i1,i2 is mainly a recombination of ∇ĉj,i1 and ∇ĉj,i2 . Also, when computing ρ∇ĥj,i1,i2 ,

ρ can be simply dispatched after aggregating the contributions of each ∂ĥj,i1,i2
∂xi

.

Each bound-constrained subproblem above is solved inexactly using a trust-region method [39].
At each trust-region iteration, a quadratic model m(s) ≈ L(x + s; y, ρ) is approximately
minimized inside the intersection of an ℓ∞-norm ball and the box ℓ ≤ x + s ≤ u using
a projected search procedure named SBMIN. The model m employs either exact second
derivatives or quasi-Newton approximations. In the course of the minimization of the
model, SBMIN requires the solution of Newton-type systems Bs = −∇L(x, y, ρ), where
B = B⊤ ≈ ∇2L(x; y, ρ) may be indefinite, semi-definite or definite. One option is to use an
iterative method to compute s, and SBMIN implements the conjugate gradient method [84]
with a choice of preconditioners. Another option is to factorize B. Among other choices,
SBMIN uses the sparse multifrontal factorization package MA27 of Duff and Reid [52, 53].
MA27 required B to be assembled prior to analysis and factorization. It is not until subroutine
MA62 of Duff and Scott [54] that the factorization of symmetric matrices in finite-element
format became available, although MA62 is a frontal method and is limited to positive-definite
systems as it does not perform numerical pivoting.

The GALAHAD library [70] features an updated version of LANCELOT. From the point of view
of partial separability, one of the main additions is the use of structured trust-regions [37]

—Section 3.3.1.

3.6.4 The AMPL modeling language

In the AMPL modeling language, developed by Fourer et al. [61] as an algebraic modeling
language for optimization, nonlinear objectives and constraints are modeled by combining user-
defined variables using predefined operators and functions. The user may define expressions
that appear several times in the statement of a problem, or that help make the model more
readable. Expressions and combinations of expressions are translated to an internal format
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comprised, among others, of a directed acyclic graph (DAG) indicating how constants and
variables are combined to form those expressions. The leaves of the graph are those constants
and variables, while intermediate nodes represent operators and functions used to combine
them. Such format is often used in modeling languages but also in other areas, such as, for
instance, compilers. The immediate benefit of the DAG is that once values are assigned to
variables, they can be propagated through the graph to evaluate each subexpression, i.e., to
assign a value to each intermediate node representing the value of the expression represented
by the subgraph of its descendants. The same structure can be used to propagate derivatives
via AD in forward or reverse mode, which has long been a key feature of AMPL for smooth
optimization. Gay [64] briefly reviews how AD works in AMPL and extends tree walks to
automatically identify the partially-separable structure, which greatly simplifies the user’s
task. The strategy is to walk the DAG and accumulate linear subexpressions until a nonlinear
operation occurs. Those linear subexpressions determine rows of the Ui in (3.3) while the
nonlinear operations determine f̂i. Linear terms are subsequently normalized and inserted
into a hash table so duplicates can be found efficiently. Gay [64] determines that for a
specific protein-folding problem, the time spent detecting the partially-separable structure
approximately amounts to the time to set up the data structures to evaluate functions and
gradients, and notes that computing a Hessian by accumulating the Hessian of each f̂i can
be much faster than by using straightforward reverse-mode AD on the DAG of f . One of
the outcomes of the automatic detection of the partially-separable structure in AMPL is an
interface to LANCELOT.6

3.6.5 Large-scale algorithms (LSA)

Later in the 2000’s, Lukšan et al. [105] implemented several methods to solve "large-scale
unconstrained and box constrained optimization and large-scale systems of nonlinear equa-
tions" [105]. In total, Lukšan et al. developed fourteen basic Fortran subroutines gathered in
the library LSA. Among these fourteen subroutines, three line searches exploit the partially-
separable structure of f : PSED, PSEC, and PSEN [105, Section 4] which are inspired of
the works from Griewank and Toint [75, 76]. Both PSED and PSEC are counterparts of the
VE08 and VE10 routines. The latter method, PSEN, is designed to solve partially-separable
functions having nonsmooth element functions [104] and is summarized in Section 3.2.1.
PSED and PSEN solve the linear system derived from the quadratic subproblem with a
direct method while PSEC exploits an iterative method. The contribution of Lukšan et al.
is completed with the description of 82 partially-separable problems [106] used to furnish

6See http://netlib.org/ampl/solvers/lancelot/index.html
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numerical results.

Other pieces of software exploiting the partial separability exist. However, as they are not
focused around partitioned quasi-Newton methods, they are described elsewhere through the
present literature review. Notably:

• LSNNO [152], detailed in Section 3.4.1, is a Fortran routine based on the SIF format
designed to solve large scale nonlinear network problems;

• ELSO [16], summarized in Section 3.5.2, specify how partial separability can efficiently
compute partitioned derivatives using directional derivatives;

• BFO [124, 125], presented in Section 3.8, is a derivative-free pattern search implemented
in Matlab. BFO exploits the partially-separable structure in both its search step and
poll step;

• CMA-ES has a variant exploiting partial separability named P-sep lmm-CMA-ES [18],
as detailed in Section 3.8. P-sep lmm-CMA-ES assembles small element meta-models of
size ni to break the dimensional curse inherent to an unstructured meta-model of size n.
CMA-ES is available in several languages: C(++), Fortran, Java, Matlab, R, Scilab
and Python, the latter having additional feature unavailable in other languages.

3.7 Parallelization of partially-separable methods

In addition of looking for optimization methods converging in lesser iterations, optimization
scientists are always interested in finding ways to reduce the total time needed to find a
satisfactory solution. While programming started mostly with sequential computation, the
rise of efficient graphic cards and parallelized architecture made distributed computation
one of the most active area of research in optimization. The most known straightforward
and scalable problems exploiting parallelization are the (block-)separable problems, which
are a special case of partial separability. Hence, this section develops methods where partial
separability is exploited to leverage additional ways of parallelization, split between the
synchronous and asynchronous methods. Furthermore, some insights on the known limitation
such as: communication between processors, synchronization of computation or the task’s
granularity of the distributed process will be discussed.

3.7.1 Synchronous methods

Lescrenier [99] details how partial separability allows an inexact line search exploiting a
partitioned quasi-Newton Hessian approximation to be parallelized on several processors.



72

Every iteration of the inexact line search consists mainly in four phases: the evaluation of
the gradient ∇f(xk), an inexact solution of Bks = −∇f(xk), the step size α determined
through f(xk + αs) evaluations and the update of the partitioned matrix Bk. Each one of
those methods involves either a partially-separable function or a partitioned data structure.
Therefore, it can distribute computation over its element functions or element data structures.
To measure how much scalable a parallel implementation is, Lescrenier defines the efficiency
as the average time of a processor’s activity during a given method, evaluating indirectly
communication and sequential aggregation processes.

To distribute the computational effort of f and ∇f , each processor handles the evaluation
of one or several f̂i or ∇f̂i. Once, f̂i and ∇f̂i are calculated, the element contributions
are aggregated sequentially, due to overlap between variables. As an inexact line search,
Bks = −∇f(xk) is inexactly solved by the truncated conjugate gradient method [84, 143].
During this phase, the partitioned matrix vector product Bkv = ∑N

i=1 U
⊤
i B̂i,kUiv is distributed

across processors, each performing several element matrix vector products B̂i,kUiv, later
aggregated using U⊤

i to form Bkv. The limits of these three phases is the synchronization
needed to aggregate the result of size n, making the method not fully parallel. Furthermore,
the more processors there are, the more synchronization prevents each method’s efficiency to
reach 1. The numerical experiments consider up to five processors and display the efficiency
measured for all the methods. The efficiencies of those three methods decrease for any new
processor added, to reach between 0.55 and 0.6 when considering five processors.

The last method, the partitioned quasi-Newton update of Bk, distributes across processors
every element update, which computes ŷi,k (3.18), ŝi,k and performs the quasi-Newton update
onto B̂i,k. The partitioned update is the method that best parallelizes out of the four by
having no sequential aggregation and obtain an efficiency of 0.8 for 5 processors. Finally,
when f is separable, the method becomes almost fully separable since the variables do not
overlap.

Okoubi and Koko [116] define a parallel projected gradient (Nesterov) algorithm to solve
smooth convex partially-separable problems. The algorithm combines two steps. The first one
solves element subproblems separately while the second aggregates their solutions to update
x. Each element problem is a quadratic approximation depending on the element gradient
Lipschitz constant Li. To define properly the problem solved at each iterate, Okoubi and
Koko [116] divide x ∈ Rn into an N -vector x[] := (x[1], x[2], ..., x[N ]) ∈ Rn1 ×Rn2 × · · · ×RnN ,
where x[1] := U1x. x[] represents the memory maintained in parallel during the optimization
process. When f is not separable, x[i] may contain variables used by several other element
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functions. Hence, suppose 1 ≤ i ̸= j ≤ N such that UiU
⊤
j ̸= 0, then x[i] can be seen as:

x[i] =
 x[ii]

x[ij]


where x[ii] refers to the pure variables of f̂i while x[ij] selects the shared variables between f̂i

and f̂j. From this formulation, the following problem is solved at each iteration:

min
x∈Rn

f(x) =
N∑

i=1
f̂i(x[i]) (3.34a)

x[ij] − x[ji] = 0,∀i ∈ {1, ..., N}, ∀j ∈Mi, (3.34b)

x[i] ∈ Rni , ∀ ∈ {1, ..., N}, (3.34c)

where Mi := {j = 1, . . . , N | UiU
⊤
j ≠ 0} is the set of element function indices sharing

variables with f̂i. By imposing the constraints x[ij] − x[ji] = 0, the variables shared by several
element functions (i.e. scattered across many x[i]) must be all equal. Okoubi and Koko [116]
reformulated (3.34) as

min
x[]

N∑
i=1

f̂i(x[i]) +
N∑

i=1
gi(x[i]), (3.35)

where gi : Rni → R is the characteristic function of the set Ki := {x[] ∈ Rn1×Rn2×· · ·×RnN |
x[ij] − x[ji] = 0,∀j such as UiU

⊤
j ̸= 0}. Concretely, gi(x[i]) values 0 if x[] ∈ Ki and values +∞

otherwise.

To solve (3.35) considering the current point y[], every element y[i] solves the following
subproblem :

arg min
y[i]

gi(y[i]) + Li

2 ∥y[i] − (x[i] − L−1
i ∇f̂i(x[i]))∥2,

leading to the element step s[i] = x[i] − L−1
i ∇f̂i(x[i]), where Li is the Lipschitz’s constant of

∇f̂i. Then, every element step is projected on Ki, which corresponds to aggregate the element
steps s[i] as follows:

s+
[ii] = s[ii], s+

[ij] = 1
|Mi|+ 1

∑
j∈Mi

1
|Mi|

s[ij] + s[ji]

 .
The term s+

[ij] is the barycenter of all element contributions involved in s[ij], j ∈ Mi. For
example if |Mi| = 1 then s+

[ij] = s[ij]+s[ji]
2 , making s+

[ij] = s+
[ji] and Uis

+ = s+
[i]. Before the next

iteration starts, x[i],k+1 = x[i],k+1 + αks[i] is updated considering αk > αk−1 > · · · > α0 = 1,
which could be restarted when f fails to decrease. The numerical results on quadratic
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partially-separable problems plebiscite the restart strategy, notably when the number of
processors is small and the element-gradient Lipschitz constants are not clustered.

Note that if the architecture has less than N processors available, some element functions
may be merged homogeneously together until their number matches the amount of processors
available.

Another parallel algorithm originates from Kaya et al. [91] and results in HAMSI, which is
designed to solve the matrix completion problem (3.13). This algorithm proposes to split f
into groups of non-overlapping element functions f (i) and minimize iteratively each of them
periodically. Therefore, the method first determines subset of element functions where none
of the element functions overlap, for example:

f(x) = f̂1(x1, x2) + f̂2(x2, x3) + f̂3(x3, x4) + f̂4(x4, x5),
= f (1)(x) + f (2)(x),

f (1)(x) = f̂1(x1, x2) + f̂3(x3, x4),
f (2)(x) = f̂2(x2, x3) + f̂4(x4, x5).

(3.36)

The decomposition of f returns f (1) and f (2) as (block) separable functions. Then, at each
iteration, one f (i) is periodically solved using a block-separable optimization method. To
solve each subproblem, Kaya et al. [91] build a quadratic approximation of f (i). However,
contrary to the Section 3.2, no ∇2f̂j is approximated individually. Instead, a block-LBFGS
approximation H of ∇2f−1(xk) is built iteratively, which provides an efficient operator-vector
product with sparse vectors or sparse matrices [23]. Note that the pair s, y updating H comes
from different f (i) evaluated successively. H is then employed for approximating the Hessian of
one element function subset f (i). As f (i) is block-separable, Kaya et al. propose to approximate
each block of the Hessian with Ĥj = UjHU

⊤
j ≈ ∇2f̂−1

j , before solving independently the
resulting element quadratic problems of smaller size. While this method strongly differ with
the content of the Section 3.2, this is no surprise that the method works as the subproblem
solution is a descent direction.

In order to scale uniformly the minimization of non-overlapping element function subsets, the
computational effort must be distributed fairly among the processors. To do so, Kaya et al.
put an intense effort to find balanced non-overlapping element-function subsets. Thus, the size
of the independent variable subsets found after a proper colouring of the bipartite graph must
be homogeneous, e.g., f from (3.36) is decomposed as f (1) and f (2) both having two element
functions (of identical size). After testing some colouring, [91] reports STRATA-B as the
best grouping as it achieves nearly a linear speed-up depending on the number of threads. In
practice, the difference between STRATA, the naive implementation, and STRATA-B becomes
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larger as the problem dimension grows. For the largest instances tested, STRATA-B is three
times faster than STRATA. Additionally, HAMSI is compared to a handmade minibatch
gradient descent (mb-GD) method, which is outperformed, whatever the grouping strategy
chose.

Toward asynchronous methods

Richtárik and Takáč [136] proposed a partitioned coordinate descent method (PCDM) to
parallelize the minimization of partially-separable problems. This method is designed to solve

min
x∈Rn

f(x) + ψ(x), f(x) =
N∑

i=1
fi(x),

where ψ is a block separable regularizer, e.g. the L1 norm, and fi depends on a subset of
variables. Both f and ψ are convex. Additionally, the decision variables are divided into
distinct blocks:

x = (x(1), x(2), . . . , x(jmax)) ∈ Rn, x(j) = U⊤
j x, U

⊤
j ∈ Rnj×n,

Observe that U = [U1...Ujmax
] is a permutation of I. Consequently, U⊤

j1Uj2 = 0, ∀j1 ̸= j2 and∑N
j=1 nj = n. Therefore, every element function depends on variables selected from several

Uj. The number of Uj each element function depends on is referred as the separability degree.
This definition differs with Ui as described by (3.3), which selects the (linear combination of)
variables parametrizing f̂i.

PCDM is a method supporting proximal operators and utilizing randomized blocks of variables
to parallelize computation. At every iteration, a subset Sk ⊆ {1, . . . , jmax} is randomly pulled.
Hence, it will iteratively update only x(j),∀j ∈ Sk from the function h(x):

h(x) = arg min
h∈Rn

f(x) +∇f(x)⊤h+ β
2∥h∥

2
w + ψ(x+ h),

where β > 0 is fixed depending on the separability degree of f and w ∈ Rnjmax is chosen from
the block Lipschitz’s constants L = [L1, . . . , Ljmax

] defined as:

∥U⊤
j

(
∇f(x+ Ujt)−∇f(x)

)
∥(j) ≤ Lj∥t∥(j), ∀t ∈ Rnj ,

where
∥v∥(j) = v⊤Ajv, v ∈ Rnj , Aj ∈ Rnj×nj ≻ 0,

making the function h(x) minimizing a block separable problem. Therefore, h(x) can be
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distributed across the block variables selected by Sk safely. Each variable block gets

h(x)(j) = arg min
h

(j)∈Rnj

∇f(x)⊤Ujh
(j) + βwj

2 ∥h
(j)∥2

(j) + ψ(x(j) + h(j)).

Later on, Fercoq and Richtárik [56, 57] proposed a distributed block coordinate descent
optimization method APPROX (Accelerated, Parallel, and PROXimal) as an upgrade of
PDCM. Specifically, [56] integrates an accelerated variant to achieve the O(1/k2) convergence
result that Nesterov [113] originally obtained. Thereafter, Fercoq and Richtárik [57] propose an
asynchronous implementation of APPROX, which is reported as 5 times faster than the initial
implementation from [56]. In addition, it introduces new step sizes and different samplings of
Sk. Finally, Mareček et al. [108] refined specific implementations for two particular problems:
solving sparse least squares and training support vector machines for which they report
promising results.

Despite that neither PCDM nor APPROX minimize f by exploiting its partial separability, the
notion of partially-separable degree permits a bound on the number of iterations performed.
That bound is reached when the number of (block) variables matches the number of processors
available.

3.7.2 Asynchronous methods

Synchronization and communication processes prevent synchronous methods to be completely
parallel. Hence, asynchronous methods, e.g. Fercoq and Richtárik [57], seem to be the key to
get fully parallel methods.

In order to minimize a partially-separable function in parallel, a natural idea is to divide
element functions into subsets which are minimized independently. However, having variables
appearing in several subsets prevent generally any algorithm to reach a minimizer only
by minimizing individually these subsets. A necessary condition is then to have subsets
of element-functions depending on distinct variables, i.e., which do not interfere with any
variable of other subsets of element-functions. Therefore, to minimize xi ∈ R, every element
function depending on xi must be identified:

Ei := {j ∈ {1, . . . , N} | Ujei ̸= 0}.

Then, every variable on which element function from Ei depends on must be locked:

Oi := {j ∈ {1, . . . , n} | ∃ l ∈ Ei : Ulej ̸= 0}.
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Hence, an independent subproblem minimizing xi appears by locking |Oi| variables:

min
xi∈R

f̄(xi) =
∑
i∈Ei

f̄i(xi), f̄i(xi) := f̂i(Uix̄),

where
x̄ ∈ Rn, x̄i = xi and x̄j remain fixed ∀j ∈ Oi\{i}.

The same scheme can be extended to minimize all xi, i ∈ S ⊆ {1, . . . , n} a subset of variable
indices. In this case:

ES :=
⋃
i∈S

Ei, OS :=
⋃
i∈S

Oi,

creating the subproblem:

min
xS∈R|S|

f̄(xS) =
∑

i∈ES

f̄i(xS), f̄i(xS) := f̂i(Uix̄),

where
x̄ ∈ Rn, x̄i = xi, ∀i ∈ S and x̄j remain fixed ∀j ∈ OS\S.

Note that x̄ is in Rn to simplify the equations by using Ui, but x̄ could be in R|Oi| or R|OS |.

Fischer and Helmberg [58] use this procedure within a bundle method minimizing a subset of
variables at each iterate. The algorithm is originally designed for any unstructured problem.
But, an unstructured problem induces a subproblem in Rn which requires every variable to be
locked, dashing any hope of parallelization. Partial separability reduces the subproblem to a
subset of variablesOS and element functions ES. Hence, by defining orthogonal variable subsets
which can be minimized independently, the method becomes parallel in a straightforward way.
One process selects S such that OS is free, lock OS, minimizes the subproblem of dimension |S|
from ES, updates xS and frees the variables OS. After the proper selection of S1 from the first
process, a second process can start selecting S2 such that OS2 does not overlap on OS1 , and
so forth. The method minimizes successive independent subproblems until it converges. The
use of independent variable subsets avoid complete data synchronization, making the method
asynchronous. Fischer and Helmberg apply the algorithm to the Lagrangian relaxation of a
train timetabling problem in time expanded networks. The speed-up obtained is reported
to depend on the interdependencies between constraints. In particular, long-distance trains,
interacting with a lot of other trains and stations, decreases the speed-up obtained.

Lastly, Cannelli et al. [27] presented an asynchronous and distributed algorithm for optimizing
multi-agent systems by exploiting their partial separability. In a multi-agent system, the
objective is related to a network having agents ai, 1 ≤ i ≤ N whose inner-variables are
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selected by Uai
, i.e. Uai

U⊤
aj

= 0, ∀1 ≤ i ̸= j ≤ N . The objective sums agent objectives, each
of which depends on the variables from the agent and its neighbours, gathered in Ni (note
that ai ∈ Ni):

min
x∈Rn

N∑
i=1

hi(Uai
x) + gi(

⋃
j∈Ni

Uaj
x), (3.37)

considering ⋃j∈Ni
Uaj

=
[
U⊤

aj1
U⊤

aj2
. . . U⊤

ajmax

]⊤
, where aj1 , aj2 , . . . , ajmax ∈ Ni. Hence,⋃

j∈Ni
Uaj

x selects a subset of variables, depending on the network sparsity. Problems for-
mulated as (3.37) appear notably in: network utility maximization and resource allocation
problems, state estimation in power network, cooperative localization in wireless networks,
map building in robotic networks and machine learning [27]. The formulation (3.37) leads to:

min
x∈Rn

N∑
i=1

f̂i(
⋃

j∈Ni

Uaj
x), f̂i(

⋃
j∈Ni

Uaj
x) := h(Uai

) + g(
⋃

j∈Ni

Uaj
x).

The optimization of each agent is dispatched to a single process minimizing Uai
x. Each

agent solves a convex approximation of f̂i considering possibly outdated values for Uaj
x, j ∈

Ni\{ai} [27, eq. 2-3]. The newer values of Uai
x are transmitted to the neighbour’s agents

aj, j ∈ Ni\{ai} periodically. Cannelli et al. [27] propose two protocols:

• protocol (a) updates every neighbour after any change in Uai
x;

• protocol (b) updates each neighbour every |Ni| agent iterations (cyclic).

The asynchronous algorithm is proved to converge sublinearly with a near linear speed-up
according to the number of agents. Also, it is reported to reduce the time lost in communication
processes and in synchronization compared to the synchronous variant. Moreover, a beneficial
side effect is the algorithm’s robustness about packet losses.

Numerical results compare the two communication protocols on distributed matrix completion
problem (3.13). Protocol (b) is demonstrated to perform better than protocol (a) in the light
of communication exchanges, which is the bottleneck for parallel methods.

3.8 Derivative-free methods

The exploitation of partial separability is not restricted to continuous optimization only.
This section intends to provide some insight on how derivative free optimization exploits the
partially-separable structure to evaluate f , or approximate ∇f or ∇2f using: finite difference,
Newton polynomial or other interpolation methods. Exploiting the structure can drastically
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reduce both the amount of f evaluations and/or the storage usually required. Lastly, we
summarize a genetic algorithm employing a partitioned crossover operator derived from the
partially-separable structure of f .

3.8.1 Quadratic interpolation exploiting partial separability

Colson and Toint [31] minimize a partially-separable function (3.1) with a quadratic trust-
region method which does not access derivatives. Hence, at each iterate, the trust-region
subproblem aggregates all element-function quadratic interpolations:

mins∈Rn mk(s) = ∑N
i=1 mi,k(s) = ∑N

i=1 m̂i,k(ŝi)
s.t. ∥s∥ ≤ ∆k

, (3.38)

where m̂i,k(ŝi) is an interpolating quadratic polynomial of f̂i(x̂i,k + ŝi) such as:

m̂i,k(ŝi) := f̂i(x̂i,k) + ĝ⊤
i,kŝi + 1

2 ŝ
⊤
i B̂i,kŝi : Rni → R,

considering that both ĝi,k and B̂i,k approximate respectively ∇f̂i(x̂i,k) and ∇2f̂i(x̂i,k).

Each m̂i,k is built from a subset of points that the i-th element function visited Yi and
their associated values {f̂i(ŷj)}ŷj∈Yi

, with |Yi| ≤ pi = ni + 1
2ni(ni + 1). To ensure a unique

interpolating quadratic polynomial, i.e., a unique pair ĝi, B̂i, the points ŷ ∈ Yi must verify a
geometric and practical property known as poisedness. Poisedness ensures that points of Yi

“do not collapse in a lower dimensional space or do not lie on the same quadratic curve from
which an infinity of interpolating quadratic polynomial may be found” [31]. Nevertheless,
if |Yi| < pi, making Yi not poised, at least one polynomial interpolation exists for which
m̂i,k(ŷ) = f̂i(ŷ), ∀ŷ ∈ Yi. The poisedness of Yi can be improved by solving two trust-region
sub-problems, as [31, Section. 2] points out using the method introduced in [39, Chapter
7]. Colson and Toint [31] used Newton fundamental polynomials [38] to interpolate ĝi, B̂i

from Yi. In that case, poisedness is theoretically ensured as long as nonnormalized Newton
fundamental polynomials and their interpolation points are different from zero.

The trust-region method starts from an initial point x0, conditioning each element quadratic
interpolation to Yi = {x̂i,0}. Then, at every new iterations, if |Yi| < pi and x̂i,k+1 does not
break poisedness, then x̂i,k+1 is simply added to Yi. When |Yi| = pi, the updating process
may replace one ŷ of Yi by x̂i,k+1 if the resulting Yi is best poised or if x̂i,k+1 is closer to the
trust-region than ŷ. Unlike partitioned quasi-Newton updates, every Yi can capitalize on
f̂i(x̂i,k + ŝi,k) to improve the poisedness of Yi whether s coming from (3.38) is successful or
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not. It comes handy for managing a trust-region, where keeping a proper geometry becomes
difficult as ∆k decreases. In particular, the bad geometries of Yi may result in an unsuccessful
s. Hence, the poisedness of Yi must be enhanced every time ∆k decreases, by computing
new points if necessary. If a new best point is found by accident during the management
of some Yi, then the method continues from this point. Finally, to terminate/converge in a
derivative-free context, the trust-region relies on ∥gk∥ ≤ ϵ, ϵ > 0 completed with:

f(x)−mk(x) ≤ κ∆2, ∀x such that ∥x− xk∥ ≤ ∆, κ > 0,

which guarantees the validity of the quadratic model in the local ball, as described [39, p.308].

Colson and Toint [31] develop two approaches to update Yi depending on the assumptions:

• assumption I: each element function can be evaluated separately;

• assumption G: all element functions are evaluated simultaneously, i.e., {f̂i(x̂i,k)}N
i=1 at

once.

In the case of assumption I, the management of Yi is straightforward since the poisedness
of each element can be managed independently by evaluations of f̂i. Conversely, for the
assumption G, each {f̂i(Uix)}N

i=1 evaluation must try to poise as many Yi as possible. Therefore,
to make every {f̂i(Uix)}N

i=1 profitable, Colson and Toint seek to identify element-function
subsets without overlapping element variables. The idea to poise a many Yi geometry within
the minimal amount of {f̂i(Uix)}N

i=1 evaluations is inspired from Curtis et al. [40] and defines:

f0(x) =


f̂l1(Ul1x)
f̂l2(Ul2x)

...
f̂l#L

(Ul#L
x)

 , ∇f0(x) =


∇f̂l1(Ul1x)⊤

∇f̂l2(Ul2x)⊤

...
∇f̂l#L

(Ul#L
x)⊤

 ,

where L = {l1, l2, . . . , l#L} ⊆ {1, 2, . . . , N} informs the set of element function interpolations
requiring a geometry improvement. A proper row coloring of ∇f0(x) defines orthogonal
columns. Each color describes a subset G ⊆ L of non-overlapping element functions such
that ∀i, j ∈ G2, i ̸= j : UiU

⊤
j = 0. Such a group of non-overlapping element functions

allows to improve the poisedness of all Yi, i ∈ G with a single evaluation of {f̂i(Uix)}N
i=1.

A similar scheme is exploited in automatic differentiation to accelerate forward automatic
differentiation [12], see Section 3.5.2 for more details about the coloring.

Both methods I and G outperform the unstructured methods in terms of function evaluations
(especially the method I). Moreover, the method I approximates ∇2f(xk) more accurately
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than method G and seems to require an amount of f evaluations depending on the overlapping
between element functions instead of n. The work of [31] was first implemented in Fortran
with PSDFO, and renew 20 years later in Matlab with the Brute Force Optimizer (BFO)
solver [125].

Similarly to Colson and Toint [31], CMA-ES [82], a population based stochastic search
rank-based algorithm, integrates a variant exploiting the partial separability of f when the
structure is known. To enhance the speed convergence of an unstructured function f , a first
variant incorporates a metamodel of f : lmm-CMA-ES [17]. We focus on a lmm-CMA-ES’s
variant, named P-SEP lmm-CMA-ES Bouzarkouna et al. [18], which integrates an idea similar
to method I [31] to form a partitioned metamodel where each element function possesses a
metamodel.

At each iteration (or generation) of the standard CMA-ES algorithm, a new population of
λ points is sampled. These points are then ranked depending on how close they are from
the current optimum. The new population is generated by summing the current estimate
of the optimum and random vectors —with independent multivariate normal distributions,
considering a zero mean vector and a covariance matrix— coupled to an adaptive step length.
Finally, the estimate of the optimum is iteratively updated with the weighted mean of the
best individuals, the step length and the covariance matrix.

Instead of using only the default generation, lmm-CMA-ES exploits the archive points, named
training set, as well as their objective function evaluations to build an unstructured quadratic
metamodel. For any point q ∈ Rn, a metamodel f̄(q, b) seeks to approximate f(q):

f̄(x, b) = b⊤(x2
1, . . . , x

2
n, x1x2, . . . , xn−1xn, x1, . . . , xn, 1), b ∈ R

(
n(n+3)

2 +1
)
, (3.39)

from the k nearest points of q within the training set. The vector b is deduced by minimizing
a subproblem close to a nonlinear least square problem, integrating the Mahalanobis distance
(related to the covariance matrix) between q and the considered points of the training set.
Take note that every time q changes or a new point enters the training set then b must
be redefined. To construct a quadratic metamodel, the training set must contain at least
kmin = n(n+3)

2 + 1 points, while using k = 2kmin points is recommended. By default, the
standard CMA-ES strategy is used until kmin points are accumulated.

Back to the outer iteration, the metamodel evaluates every point from the new population. As
a result, every point gets a value from f̄ leading to an approximate ranking without evaluating
f . Hence, only the best ranked points are truly evaluated, helping in the refinement of new
metamodels to best approximate the remaining population points. If the ensuing ranking
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(based on f) remains mostly the same, then it prevents the rest of the population to be
evaluated. Conversely, when the ranking among the best points changes, then the next best
points are evaluated until no significant change is observed. Additionally, the initial amount
of points truly evaluated changes over iterations depending on the number of inner iterations
previously required before breaking the inner loop. If few iterations were needed, the amount
of points that must be evaluated decreases, otherwise it stagnates or increases. Also, note
that any f evaluation enters the training set.

Contrary to [75–77], Bouzarkouna et al. [18] define a partially-separable function as:

f(x) =
N∑

i=1
f̂i(ϕi(x)),

where ϕi(x) : Rn → Rni could be a nonlinear mapping. Bouzarkouna et al. motivations for ϕi

to exist are the need of distances, between (petrol) well coordinates (the variables), which
involves nonlinearity. Beside the difference between ϕi and Ui, the idea stays the same. P-SEP
lmm-CMA-ES adapts f̄ (3.39) to accumulate element metamodels:

f̄(x) =
N∑

i=1

¯̂
f i(ϕi(x), bi),

where ¯̂
f i(ϕi(x), bi) replicates to f̂i what (3.39) does to f . The element covariance matrix,

mandatory for computing bi, is built iteratively from the evaluations of f̂i(ϕi(x)) or from the
approximations ¯̂

fi(ϕi(x), bi) if not all best individuals are evaluated.

The numerical results of P-sep lmm-CMA-ES [18] show a speed-up factor from 4.5 up to 15
between the standard CMA-ES and P-SEP lmm-CMA-ES for a Rosenbrock’s function. On
the same problems, the unstructured variant lmm-CMA-ES obtains a speed-up factor of 3.
Furthermore, the bigger the instance is, the bigger the speed-up from P-sep lmm-CMA-ES
is, unlike lmm-CMA-ES whose speed-up decreases as the dimension increases. Another
experiment reveals that changing ni = 2 to ni = 4 for all element functions reduces the
speedup factor from 8.6 to 2.2. Moreover, the larger the population is, the fewer outer-
iterations are needed. Usually, iterations are reduced by a factor 1.5 to 2. Additionally, in
particular cases, P-sep lmm-CMA-ES achieves the maximal theoretical speed-up, which is
equal to the population’s size. Bouzarkouna et al. conclude by stating that a partitioned
metamodel breaks the curse of dimensionality related to meta-models (k being too big) for
large partially-separable problems when every ni remains small enough.
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3.8.2 Pattern searches

Price and Toint [129] describe a pattern search exploiting the partial separability to reduce
the computational effort put during the poll step. At each iteration of a pattern search, the
poll step considers a grid of several points (partly aligned on the euclidean axis), all of which
are evaluated by the objective function. Thereafter, the pattern search selects the new best
solution if there is any and starts a new grid. If no such solution exists, the current solution
remains, and the grid length shrinks. To be more flexible, the grid’s size considered may differ
depending on the directions considered, but further equations will not mention it for sake
of simplicity. The pattern search converges when no evaluation of the grid points yields a
decrease and that the step length is smaller than the tolerance set prior to the execution.

The pattern search exploits partial separability to reduce as much as possible the number of
element function f̂i calls needed to evaluate the grid points. Indeed, the evaluation of f can
be seen as the evaluation of its N element functions, for which we suppose a unitary cost.
Thus, a grid evaluation without integrating partial separability necessitates |V |N element
function calls, where V is the set of directions considered.

The main idea of Price and Toint [129] is to tailor the direction set V according to the partial
separability to reduce the element function calls needed to evaluate the grid. The set V is
formed by the euclidean axes {e1, . . . , en} to which are added en+j = −

(∑
i∈Sj

ei

)
, 1 ≤ j ≤ p,

where each Sj is defined after analyzing the partial-separability of f . Each Sj represents a
subset of non-interacting variables, i.e., appearing exactly on the same element functions. For
example, consider:

f(x) = f̂1(x1, x2, x3) + f̂2(x1, x2, x4, x5) + f̂3(x4, x5), (3.40)

then
x1 appears in f̂1, f̂2,

x2 appears in f̂1, f̂2,

x3 appears in f̂1,

x4 appears in f̂2, f̂3,

x5 appears in f̂2, f̂3,

(3.41)

resulting in S1 := {1, 2}, S2 := {3} and S3 := {4, 5}. Hence, for f such as (3.40):

V = {e1, e2, e3, e4, e5,−(e1 + e2),−e3,−(e4 + e5)}.

Structurally, every ei has its index i covered by one of the subspace Sj. Therefore, each Sj

can be held responsible to evaluate f(x+ v) where v ∈ {ei| i ∈ Sj} ∪ {−
∑

i∈Sj
ei} by making
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the computation related to its corresponding element functions. Note that v⊤
i vj = 0 for any

vi ∈ Si and vj ∈ Sj ̸= Si. In the case of (3.40), S1 and S3 require two element functions
while S2 depends only on f̂1, so that every f(x+ v), v ∈ V \{e3,−e3} requires two element
function evaluations instead of three (3.41). Therefore, the grid evaluation, i.e. V , is done by
14 element-function evaluations while it would require 24 element-function evaluations with
an unstructured procedure.

Contrary to the default unstructured search, the decreasing points resulting from the eval-
uations of v ∈ Sj, 1 ≤ j ≤ p must be aggregated. Hence, Price and Toint propose a greedy
procedure aggregating all sub-steps sj ∈ Rn, to form s. The greedy iterative algorithm starts
by selecting s̄0 from S̄0 ⊆

⋃
j∈{1,...,p} Sj, where every v ∈ S̄0 brings a decrease to the sum of

element functions affiliated to its corresponding Sj. Then S̄0 is updated to S̄1 by cutting off
s̄0, as well as all the others sub-steps whose their decrease would be invalidated by accepting
the change of s̄0. For example, in (3.41), any solution of S2 would interfere with any solution
of S1, since x3 is used by both f̂1 and f̂2. The greedy algorithm loops over S̄l until S̄l becomes
empty.

As a result, the step s, which sums the successive s̄l may be sparse, since the solution of some
Sj are likely to not be used. However, each s̄l guarantees to bring a decrease for its affiliated
element functions, making s summing several decreases despite the sparse update. Several
strategies to choose which s̄l must be taken next exist, e.g., choosing v ∈ S̄l which brings
the biggest decrease. But regardless of the strategy used, the overall scheme that ensures
successive decreases remains.

The more dramatic improvement resulting from the partitioned poll step appears when f is
totally separable f = ∑n

i=1 f̂i(xi) (N = n). In such case, evaluating f(x + ei), ∀ 1 ≤ i ≤ n

without exploiting the structure would require n2 element-function calls while it requires only
2n element function calls when the structure is exploited, i.e., Sj = {i}, 1 ≤ j ≤ n.

Brute Force Optimizer (BFO), developed by Porcelli and Toint [124] is a direct-search
derivative free Matlab optimizer for bound constrained problems, who is supporting both
continuous and discrete variables. Porcelli and Toint [125] extends [124] in a gray-box context
where variables are only continuous. The extension exploits the coordinate partial separability
of a problem, i.e., knowing that f̂i exist as well as their respective UE

i . The extension considers
that each f̂i may be evaluated separately, but ∇f̂i remains inaccessible. Porcelli and Toint
[125] combine the ideas from Colson and Toint [31] and Price and Toint [129] to take advantage
of partial separability during both the poll step and the search step.

Similarly to Price and Toint [129], the partially-separable structure is preprocessed to determine
subspaces of independent (or non-interacting) variables and the element functions they depend
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on. However, the employment of those subspaces during the poll step differs from [129]. In
particular, the positive basis giving the poll directions is not fixed along the iterates. Also,
rather than aggregating sub-steps, and potentially neglecting some others, the poll step
generates structured orthogonal directions in Rn from the independent variables. That way,
each orthogonal direction can combine several euclidean basis vectors while minimizing the
number of element function calls. For flexibility, each independent variable subspace considers
its own stepsize, which is iteratively updated depending on its local achievements.

The first phase of the poll step is achieved when every stepsize is beneath the threshold set
in advance. It corresponds to the fact that no further improvement can be obtained from
every independent variable subspace. Nevertheless, the random poll directions remain heavily
structured by independent variables, making an improvement of f still possible. Therefore, to
guarantee convergence, a second unstructured poll step is performed. To avoid n evaluations
of f as a typical unstructured poll step would operate, Porcelli and Toint propose to evaluate
f on a smaller set of orthogonal directions designed to break the hidden structure of the first
poll step. Once the convergence is disproved by the second poll step, the first poll step starts
again from the new best point.

In addition of the poll step, the search step can exploit partial separability to build partitioned
interpolation models similarly to Colson and Toint [31]. Those models may be linear or
quadratic, considering either a diagonal Hessian or a full Hessian approximation. Each one of
those variants requires respectfully: ni + 1, 2ni + 1 and (ni+1)(ni+2)

2 points for each element
function f̂i. In order to manage the bound constraints, the interpolated model in embedded
in a trust-region method.

The numerical results indicate that partial separability is best exploited in the poll step rather
than in the search step. The computational gain from the poll step using partial separability
outperforms an unstructured pattern search method, especially when the problem’s size grows.
Moreover, the partitioned polling step seems to converge with a number of f evaluations
independent of n. The second phase of the poll step and the breakage of the hidden structure
are illustrated graphically [125, Section 4], but it does not delay the global convergence by
an order of magnitude. However, the benefit of the partitioned quadratic approximations
used in the search step is unclear. The performance and data profiles inform that the search
step variant performs slightly better on small problems, but this gain vanishes for medium
and large problems. Nonetheless, for few specific problems [125, Table 1.3], the partitioned
search step can significantly reduce the number of f evaluations. In addition, a partitioned
quadratic approximation is computationally intensive, which prevents running such method
for most large problems [125, Table 1.3]. Overall, Porcelli and Toint explain that the choice
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of using a partitioned search step is problem specific and preconize to test with or without it
for each problem.

3.8.3 Partitioned crossover operator

In [55], Durand and Alliot seek to solve an air traffic conflict problem, whose formulation
happens to be partially-separable, with a genetic algorithm. A typical genetic algorithm
infants a new solution xchild from two valid solutions xparent1 and xparent2 by the means of a
crossover operator. Hence, Durand and Alliot [55] propose a dedicated partitioned crossover
operator based on the partial separability of f . The specific crossover operator is based upon
a local fitness function:

Gi(x) =
∑

j∈Qi

fj(x̂j)
nj

, fj : Rnj → R,

where Qi := {j ∈ {1, . . . , N} | Ujei ̸= 0} is the set of element functions parametrized by xi.
The adapted crossover operator compares the local fitness of each component of the parents
to create xchild. The rules are as follows:

• if Gi(xparent1) < Gi(xparent2)−∆ then xchild
i = xparent1

i ;

• else if Gi(xparent1) > Gi(xparent2) + ∆ then xchild
i = xparent2

i ;

• otherwise, |Gi(xparent1)−Gi(xparent2)| ≤ ∆, then, choose randomly between xparent1
i and

xparent2
i or make a linear combination of both if xi is continuous;

considering ∆ > 0. A statistical study compares the children’s fitness produced by either an
unstructured crossover operator or a partitioned crossover operator on a bit string function.
[55, Figures 1 and 2] show the superiority of the partitioned operator over the unstructured
operator, since the former has significantly higher probabilities to produce better (fitted)
children. Moreover, the partitioned operator finds more global optima, and finds them faster
than the unstructured operator [55, Figure 5].

3.9 Critical analysis

This chapter assembles most of the literature about partially-separable functions. As this
section comes to an end, it is time to draw some conclusions about the exploitation of the
partial separability for continuous optimization.

In general, optimization methods can take advantage of partial separability when it exists.
In this chapter, every method exploiting the partially-separable structure outperforms its
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unstructured counterpart. This is particularly true in the case of partitioned quasi-Newton
methods over limited-memory quasi-Newton methods. The dominance of partitioned quasi-
Newton methods can mostly be explained by the replication of the Hessian’s sparsity, unlike
limited-memory quasi-Newton methods.

Therefore, as long as the Hessian is sparse and that the storage of its sparse matrix is
affordable, then partitioned quasi-Newton methods are applicable, since they have a similar
memory storage requirement. Also, the best application cases of partial separability occur
when f is (block) separable. Without overlapping, storing element Hessian approximations
is as costly as storing the sparse Hessian matrix. Moreover, in such a case, a factorization
can be performed without fill-in and straightforward asynchronous parallel methods can be
implemented.

Partitioned quasi-Newton methods start to face issues when the element function dimensions
are large. In such a case, storing the sparse matrix of the Hessian or its partitioned quasi-
Newton approximation usually becomes unaffordable. Additionally, given a constant amount
of element functions, the larger element function dimensions are, the more element function
overlaps are likely to occur; in general, the methods exploiting partial separability tend to
be more efficient when the overlapping between element functions is small. To answer this
issue, the Section 3.3.3 provides partial answers, e.g., merge the overlapping element functions
may reduce the memory storage and the computational effort required. However, in doing so,
the partitioned quasi-Newton methods approximate less element function Hessians, making
the partitioned Hessian approximation less sparse than the real Hessian, and it reduces the
rank of the partitioned quasi-Newton update as well. Finally, the conjugate gradient method
emerges as the most suited method for solving a partitioned linear system, since it takes
advantage of the faster evaluation of the partitioned-matrix-vector and its potential parallel
evaluation. Unfortunately, it does not exploit the partial separability for generating the
conjugate directions, and it requires synchronization at each iteration.

The Chapter 4 addresses the issue related to the large element function dimensions. Its
contribution is applied later in Chapter 5 for training deep neural networks by minimizing a
partially-separable function with large element functions. The remaining issue that is the
replacement of the conjugate gradient for solving the quadratic subproblem at each iteration
of a quasi-Newton method is discussed in Chapter 7 and in Appendix B.
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CHAPTER 4 Limited memory variant of partitioned quasi-Newton methods

This chapter presents a solution to the issue that partitioned quasi-Newton methods face
when the dimension of an element function is large. Such a situation can occur for the matrix
completion problem (3.13) when r becomes large, making B̂i ∈ R2r×2r undergoes the same
issue that quasi-Newton methods face for large problems, i.e., store a large dense matrix.
Hence, this chapter contribution approximates each v̂i → ∇2f̂iv̂i with a limited-memory
quasi-Newton operator LBFGS or LSR1, as recalled in Section 2.1.3.1. This approach keeps
the sparsity structure of ∇2f , reduces the storage of each B̂i and decreases the complexity of
the partitioned-matrix-vector product v → Bv from Θ(∑N

i=1
ni(ni+1)

2 ) to Θ(∑N
i=1 2mni), where

m is the memory parameter.

The Section 4.1 presents the details of the new limited-memory partitioned quasi-Newton
trust-region algorithms. The Section 4.2 proves that every trust-region algorithm is globally
convergent. The proof needs to bound ∥Bk∥, which, in turn, necessitates to bound all
∥B̂i∥ across all iterations. Finally, the Section 4.3 studies the practical performance of the
limited-memory partitioned quasi-Newton trust-region algorithms, whose implementations
are detailed in Chapter 6. First, the Section 4.3.1 compares:

• two Newton trust-region methods. One method exploits the partial separability for
computing derivatives with automatic differentiation while the other does not;

• one LBFGS line search, for which Hk ≈ ∇2f(xk)−1;

• several partitioned quasi-Newton trust-region methods;

• several limited-memory partitioned quasi-Newton trust-region methods, introduced
in Section 4.1;

on a test set of partially-separable problems of size n = 5000. Second, the best methods out of
the Section 4.3.1 are compared in Section 4.3.2 on a partially-separable problem for which ni

increases as n grows. In this last comparison, the limited-memory partitioned quasi-Newton
method outperforms the limited-memory or partitioned quasi-Newton methods it is compared
with. Bigeon, Orban, and Raynaud [8] originate most of the content of this chapter as well as
its related implementation in Chapter 6.
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4.1 Partitioned limited-memory quasi-Newton trust-region

All the partitioned quasi-Newton methods discussed in Chapter 2 utilize dense matrices to
store all element Hessian approximations B̂i. The storage cost and the complexity of the
partitioned-matrix-vector product for such a partitioned matrix is given by

Θ
(

N∑
i=1

ni(ni + 1)
2

)
,

which is smaller than n(n+1)
2 if ni and the number of elements N is such that

N ≤ n(n+1)
(n

max
i (nmax

i +1)) , nmax
i = max

1≤i≤N
ni, (4.1)

which implies
N∑

i=1

ni(ni + 1)
2 ≤ N

nmax
i (nmax

i + 1)
2 ≤ n(n+ 1)

2 ,

ensuring that storing all individual B̂i is cheaper than storing a dense matrix Bk. As the size of
the elements increases, the storage of N dense matrices B̂i becomes expensive, especially if N is
large. The partitioned quasi-Newton methods encounter the same issue faced by unstructured
quasi-Newton methods. In such cases, the use of traditional partitioned quasi-Newton methods
may not be feasible.

This chapter proposes viable partitioned quasi-Newton operators for large-element partially-
separable functions by approximating each ∇2f̂i with a quasi-Newton linear operator B̂i,
either LBFGS or LSR1, detailed in Section 2.1.3.1. By replacing a dense matrix with a
limited-memory linear operator, the cost of each B̂i drops from Θ(ni(ni+1)

2 ) to Θ(2mni), where
1 ≤ m ≤ 20 is a typical memory factor. When aggregated together, the memory cost and the
complexity of the partitioned-matrix-vector product are reduced to

Θ
(

2
N∑

i=1
mni

)
.

Three new methods derive from this scheme:

• PLBFGS approximates each ∇2f̂i with a LBFGS operator. Among others, this method
is well-suited for problems having every f̂i convex, since B̂i will preserve the positive
definiteness of ∇2f̂i.

• PLSR1 approximates each ∇2f̂i with a LSR1 operator. This method is suitable when



90

some f̂i are nonconvex, i.e. ∇2f̂i ̸≻ 0.

• PLSE1 combines both LBFGS and LSR1 operators for approximating ∇2f̂i to best
satisfy the secant equation (3.19). By default, B̂i will use a LBFGS update. If the
safeguard verifying the secant equation fails, i.e. s⊤y < ϵ, ϵ > 0, then an LSR1 update
is performed. If the numerical safeguard of LSR1 |s⊤

k zk| ≥ ϵ ∥sk∥∥zk∥ also fails, then B̂i

is left unchanged. By allowing B̂i to be updated by either LBFGS or LSR1, every B̂i is
more likely to be updated, making B partitioned such as (3.9) best satisfy (3.19).

The Algorithm 4.1.1 is a specification of the quadratic trust-region Algorithm 2.1.3 considering
that Bk is a limited-memory partitioned quasi-Newton operator BPLBFGS

k , BPLSR1
k , or BPLSE

k .
PLBFGS, PLSR1 and PLSE only differ during the update of Bk, i.e., during the update of
every B̂i,k.

All PLBFGS, PLSR1 or PLSE operators have the advantages to :

• keep Bk as sparse as ∇2f ;

• support large element functions, making the storage of Bk in Θ
(∑N

i=1 2mni

)
instead of∑N

i=1
ni(ni+1)

2 . Similarly to (4.1), ∑N
i=1 2mnmax

i ≤ n(n+1)
2 as long as N ≤ n(n+1)

4n
max
i m

;

• perform an efficient partitioned-matrix-vector product v → Bkv in Θ
(∑N

i=1 2mni

)
.

The next section proves the global convergence of the Algorithm 4.1.1 and Section 4.3 shows
numerical comparisons of PLBFGS, PLSR1 and PLSE with limited-memory and standard
partitioned quasi-Newton methods.

4.2 Global convergence proof

The convergence analysis presented in this section focuses on the convergence to first-order
critical points of the Algorithm 4.1.1. It assumes several assumptions:

Assumption 4.2.1 (Assumptions on the problem). The objective function f is bounded
below on Rn. f is partially-separable as defined in (3.3), and each element function f̂i is
twice continuously differentiable on Rni.

Consequently, f is twice continuously differentiable on Rn.

1SE stands for secant equation
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Algorithm 4.1.1 Limited-Memory Partitioned Quasi-Newton Trust-Region Algorithm
(PLBFGS, PLSR1, PLSE)

1: Choose m ∈ N∗, x0 ∈ Rn, ∆0 > 0, 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1 < γ3 < γ4, 0 < τ < 1
and 0 < ϵ1, ϵ2.

2: Choose for every element i a linear operator LBFGS or LSR1 and B̂0,i = B̂⊤
0,i ≈ ∇2f̂i(x0).

initial approximation
3: for k = 0, 1, . . . do
4: Compute an approximate solution sk of

min
s
mk(s) s.t.∥s∥ ≤ ∆k, mk(s) := f(xk) +∇f(xk)⊤s+ 1

2s
⊤
(

N∑
i=1

U⊤
i B̂i,kUi

)
s,

bringing a sufficient decrease (2.8):

mk(0)−mk(s) ≥ τ ∥∇f(xk)∥ min
(
∥∇f(xk)∥
1 + ∥Bk∥

, ∆k

)
, 0 < τ < 1.

The step sk can be computed with the truncated conjugate gradient method detailed
in Section 2.1.4.

5: Compute the ratio
ρk := f(xk)− f(xk + sk)

mk(0)−mk(sk) .

6: if ρk ≥ η1 then successful step
7: set xk+1 = xk + sk,
8: update every B̂i,k to:

BPLBFGS
k+1 : B̂i,k+1 = B̂LBFGS

i,k+1 if ŝ⊤
i,kŷi,k ≥ ϵ1,

BPLSR1
k+1 : B̂i,k+1 = B̂LSR1

i,k+1 if |ŝ⊤
i,kẑi,k| ≥ ϵ2∥ŝi,k∥∥ẑi,k∥,

BPLSE
k+1 : B̂i,k+1 = B̂LBFGS

i,k+1 if ŝ⊤
i,kŷi,k ≥ ϵ1,

B̂i,k+1 = B̂LSR1
i,k+1 if ŝ⊤

i,kŷi,k < ϵ1 and |ŝ⊤
i,kẑi,k| ≥ ϵ2∥ŝi,k∥∥ẑi,k∥,

(4.2)

given ŝi,k := x̂i,k+1 − x̂i,k, ŷki
:= ∇f̂i(x̂i,k+1)−∇f̂i(x̂i,k) and ẑi,k := ŷi,k − B̂i,kŝi,k.

When the numerical safeguards (4.2), (4.7) and (4.8) fail, then B̂i,k+1 = B̂i,k for
BPLBFGS

k+1 , BPLSR1
k+1 or BPLSE

k+1 .
9: else unsuccessful step

10: set xk+1 = xk and every B̂i,k+1 = B̂i,k.
11: end if
12: Update the trust-region radius according to

∆k+1 ∈


[γ3∆k, γ4∆k] if ρk ≥ η2,

[γ2∆k, ∆k] if η1 ≤ ρk < η2,

[γ1∆k, γ2∆k) if ρk < η1.

(4.3)

13: end for
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To prove global convergence, we need to establish [39, assumption AM.4d], which states:

∞∑
k=1

1
φk

= +∞, (4.4)

where
φk := 1 + max

j=1,...,k
∥Bj∥. (4.5)

The purpose of the proof is to show that the sequence ∑∞
k=1

1
φk

diverges. To do so, we need to
bound the norm of Bj at every iteration.

The triangular inequality decomposes ∥Bj∥ as follows:

∥Bj∥ ≤ ∥B
(0)
j ∥+ ∥Bj −B

(0)
j ∥,

where B(0)
j aggregates all the element initializers and Bj −B

(0)
j accumulates the contributions

of low-rank limited-memory quasi-Newton updates from every element. Those terms can be
expressed as:

B
(0)
j =

N∑
i=1

UiB̂
(0)
j,i U

⊤
i and Bj −B

(0)
j =

N∑
i=1

U⊤
i

(
B̂

(m)
j,i − B̂

(0)
j,i

)
Ui,

where B̂(0)
j,i represents the initial approximation of the i-th element Hessian operator at the

iteration j, and B̂
(m)
j,i is the complete linear operator considering at most m LBFGS or LSR1

updates, as described in Section 2.1.3.1 for the unstructured case.

By substituting these expressions into (4.5), we obtain:

1
φk

≥ 1
maxj=1,...,k 1 + ∥B(0)

j ∥+ ∥Bj −B
(0)
j ∥

.

The following proof is divided into two parts. The first part aims to prove that ∑∞
k=1

1
∥B

(0)
k ∥

diverges under reasonable assumptions. The second part focuses on bounding ∥Bk −B
(0)
k ∥ for

any k. This is achieved by introducing suitable numerical safeguards for the pairs ŝi,k and ŷi,k

updating each element quasi-Newton operator B̂i,k (4.2).

Suppose B̂(0)
i,k = λkI, several choices of λi,k exist at each iteration. Thus, bounding ∥B(0)

k ∥
is not trivial without further assumptions. To let a degree of freedom on how each B̂

(0)
i,k is

chosen, and allow a growth of ∥B(0)
k ∥, we make the following assumption
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Assumption 4.2.2 (Maximal element initializer series diverges).

∞∑
k=1

1
maxi=1,...,N ∥B̂

(0)
i,k ∥

= +∞.

The choice λi,k = 1 trivially satisfies Assumption 4.2.2. However, when λi,k = ŷ
⊤
i,kŷi,k

ŷ
⊤
i,k ŝi,k

, additional
conditions must be considered. For example, ŷi and ŝi should not be too much orthogonal
such that |λi,k| ≤ c1, c1 > 0.

Lemma 4.2.1. If Assumption 4.2.2 holds, then

∞∑
k=1

1
∥B(0)

k ∥
= +∞. (4.6)

Proof. As B(0)
k = ∑N

i=1 U
⊤
i B̂

(0)
i,kUi, then

∥B(0)
k ∥ ≤

N∑
i=1
∥Ui∥2∥B̂(0)

i,k ∥ ≤ N max
i=1,...,N

∥Ui∥2 max
i=1,...,N

∥B̂(0)
i,k ∥,

where N maxi=1,...,N ∥Ui∥2 > 0 is a constant with respect to k. Therefore, the Assumption 4.2.2
yields

∞∑
k=1

1
∥B(0)

k ∥
≥ 1
N maxi=1,...,N ∥Ui∥2

∞∑
k=1

1
maxi=1,...,N ∥B̂

(0)
i,k ∥

= +∞.

Now that (4.6) is satisfied, we focus on bounding ∥Bk − B
(0)
k ∥ by introducing numerical

safeguards for the quasi-Newton update of each B̂i,k. Those safeguards prevent the updates
from introducing unbounded rank one terms.

Lemma 4.2.2 (Boundedness of an element quasi-Newton update). For any B̂i,k that
accumulates m quasi-Newton updates (BFGS or SR1) satisfying the usual safeguards (4.2)
and enforced with

|ŝ⊤
i,k(ŷi,k − B̂i,kŝi,k)| ≥ ωSR1∥ŷi,k − B̂i,kŝi,k∥2, where ωSR1 > 0, (4.7)

for SR1 and

|ŷ⊤
i,kŝi,k| ≥ ωBFGS1∥ŷi,k∥2, and |ŝ⊤

i,kB̂i,kŝi,k| ≥ ωBFGS2∥B̂i,kŝi,k∥2, (4.8)
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for BFGS, where ωBFGS1 , ωBFGS2 > 0; then there exists ΩQNU > 0a such that

∥B̂(j+1)
i,k − B̂(j)

i,k ∥ ≤ ΩQNU,

for all k, i and 0 ≤ j ≤ m− 1.
aQNU stands for quasi-Newton update.

Proof. Since the two quasi-Newton updates BFGS and SR1 require different numerical
safeguards, the bounding of ∥B̂(j+1)SR1

i,k − B̂(j)
i,k ∥ and ∥B̂(j+1)BFGS

i,k − B̂(j)
i,k ∥ are distinguished.

Suppose that the j-th quasi-Newton formula updating B̂(j)
i,k to B̂(j+1)

i,k is SR1. By enforcing (4.2)
with (4.7) at every iteration k, then:

∥B̂(j+1)SR1

i,k − B̂(j)
i,k ∥ ≤

∥ŝi,k−m+j − B̂i,k−m+j ŷi,k−m+j∥2

|ŝ⊤
i,k−m+j(ŷi,k−m+j − B̂i,k−m+j ŝi,k−m+j)|

≤ ω−1
SR1.

Suppose that the j-th quasi-Newton formula updating B̂
(j)
i,k to B̂

(j+1)
i,k is BFGS and that

both (4.2) and (4.8) hold at every iteration k, then:

∥B̂(j+1)BFGS

i,k − B̂(j)
i,k ∥ ≤

∥B̂i,k−m+j ŷi,k−m+j,i∥2

|ŝ⊤
i,k−m+jB̂i,k−m+j ŝi,k−m+j|

+ ∥ŷi,k−m+j∥2

|ŷ⊤
i,k−m+j ŝi,k−m+j|

≤ ω−1
BFGS1

+ ω−1
BFGS2

.

The different constants ω−1
BFGS1

, ω−1
BFGS2

and ω−1
SR1 remain unchanged along the iterations.

Therefore, ∥B̂(j+1)
i,k − B̂(j)

i,k ∥ is bounded by

∥B̂(j+1)
i,k − B̂(j)

i,k ∥ ≤ max(ω−1
BFGS1

+ ω−1
BFGS2

, ω−1
SR1) = ΩQNU,

whether B̂i,k represents a BFGS update or an SR1 update, for any iteration k and any element
i.

If an element Hessian approximation fails to satisfy the numerical safeguards, e.g. the
curvature condition for a LBFGS operator, then the update for that element is skipped, and
B̂

(j+1)
i,k = B̂

(j)
i,k . Alternatively, a damped ˜̂yi,k that satisfies the numerical safeguards can be

used. Either ways, the boundedness property stated in Lemma 4.2.2 still holds, ensuring that
the norm of the element quasi-Newton update remains bounded.
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Lemma 4.2.3 (Boundedness of an element limited-memory quasi-Newton operator). For
any B̂i,k, accumulating m quasi-Newton updates satisfying the numerical safeguards (4.2),
(4.7) and (4.8), then there exists ΩLM > 0a such that

∥B̂(m)
i,k − B̂

(0)
i,k ∥ ≤ ΩLM,

for any iteration k and any element i, independently of the quasi-Newton updates performed
by B̂i,k.

aLM stands for limited-memory

Proof. We decompose B̂(m)
i,k − B̂

(0)
i,k as

B̂
(m)
i,k − B̂

(0)
i,k = B̂

(m)
i,k − B̂

(m−1)
i,k + B̂

(m−1)
i,k − B̂(m−2)

i,k + · · ·+ B̂
(1)
i,k − B̂

(0)
i,k ,

as m individual updates. Thus, by applying m times Lemma 4.2.2, we find an upper-bound
of ∥B̂(m)

i,k − B̂
(0)
i,k ∥:

∥B̂(m)
i,k − B̂

(0)
i,k ∥ ≤

m∑
j=1
∥B̂(j)

i,k − B̂
(j−1)
i,k ∥ ≤

m∑
j=1

ΩQNU ≤ mΩQNU = ΩLM,

for any iteration k and any element i.

One interesting characteristic of both Lemma 4.2.2 and Lemma 4.2.3 is that they apply
without any distinction to both BFGS and SR1 updates. This means that those lemmas
naturally handle the changes in quasi-Newton updates that can be performed by a single
element Hessian approximation B̂i,k, as in the case of BPLSE

k . Furthermore, ΩLM also provides
a bound for all limited-memory quasi-Newton operators B̂i,k that have accumulated less than
m quasi-Newton updates. This situation occurs for every element during the m − 1 first
iterations of an optimization method, or when some element updates are skipped.

Lemma 4.2.4 (Boundedness of a limited-memory partitioned quasi-Newton update).
For any limited-memory partitioned quasi-Newton operator Bk as described in Section 4.1
and Algorithm 4.1.1 that satisfies the numerical safeguards (4.2), (4.7) and (4.8), then
there exists Ω > 0

∥Bk −B
(0)
k ∥ ≤ Ω,

for all k.
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Proof. By definition,

Bk −B
(0)
k =

N∑
i=1

U⊤
i

(
B̂

(m)
i,k − B̂

(0)
i,k

)
Ui.

Thus, the norm may be bounded as:

∥Bk −B
(0)
k ∥ ≤

N∑
i=1
∥Ui∥2∥B̂(m)

i,k − B̂
(0)
i,k ∥ ≤ max

i=1,...,N
∥Ui∥2

N∑
i=1
∥B̂(m)

i,k − B̂
(0)
i,k ∥. (4.9)

Lemma 4.2.3 provides an upper-bound for any ∥B̂(m)
i,k − B̂

(0)
i,k ∥, which simplifies (4.9) to:

∥Bk −B
(0)
k ∥ ≤ max

i=1,...,N
∥Ui∥2

N∑
i=1

ΩLM ≤ N max
i=1,...,N

∥Ui∥2ΩLM = Ω,

for any iteration k, since N maxi=1,...,N ∥Ui∥2 is constant.

By assuming the Assumption 4.2.2, the Lemma 4.2.1 proves that ∑∞
k=1

1
∥B

(0)
j ∥

diverges. Fur-

thermore, the Lemma 4.2.4 determines an upper bound for ∥Bk −B
(0)
k ∥ regardless of k. With

both requirements covered, we prove now (4.4).

Theorem 4.2.1. If Assumption 4.2.2 holds, then any limited-memory partitioned quasi-
Newton trust-region method presented in Algorithm 4.1.1, namely: PLBFGS, PLSR1 or
PLSE satisfies:

∞∑
k=1

1
φk

= +∞,

as along as the safeguards (4.2), (4.7) and (4.8) are satisfied across the iterations.

Proof. Lemma 4.2.4 informs that

∥Bk∥ ≤ ∥Bk −B
(0)
k ∥+ ∥B(0)

k ∥ ≤ Ω + ∥B(0)
k ∥.

Therefore,
1
∥Bk∥

≥ 1
Ω + ∥B(0)

k ∥
and

∞∑
k=1

1
∥Bk∥

≥
∞∑

k=1

1
Ω + ∥B(0)

k ∥
.

By assuming the Assumption 4.2.2, the Lemma 4.2.1 guarantees

∞∑
k=1

1
∥B(0)

k ∥
= +∞,
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which gives straightforwardly
∞∑

k=1

1
Ω + ∥B(0)

k ∥
= +∞.

Theorem 4.2.1 proves [39, AM4.d] leaving only two assumptions to make for fulfilling the
conditions of [39, Theorems 8.4.7].

Assumption 4.2.3. [39, AN.1] There exists a constant κune ≥ 1 such that, for all k,

1
κune

∥x∥p ≤ ∥x∥ ≤ κune∥x∥p,

for all x ∈ Rn.

Assumption 4.2.4. [39, AM.4f]

lim
k→∞,k∈S

φk. (f(xk)− f(xk+1)) = 0,

where S is the set of successful iterations.

From these two additional assumptions, the convergence theorem based on [39, Theorems
8.4.7] can be stated.

Theorem 4.2.2 (Boundedness of limited-memory partitioned quasi-Newton operators
(PLBFGS, PLSR1 and PLSE)). By assuming that Assumption 4.2.1 (f̂i ∈ C2, ∀i), As-
sumption 4.2.2, Assumption 4.2.3 and Assumption 4.2.4 hold; the sequence of points xk

generated by each limited-memory partitioned quasi-Newton trust-region method, namely:
PLBFGS, PLSR1 and PLSE formalized by the Algorithm 4.1.1 and enforced with the
numerical safeguards (4.2), (4.7) and (4.8) converges

lim
k→∞
∥∇f(xk)∥ = 0.

Proof. By assuming Assumption 4.2.1 and choosing Bk as a limited-memory partitioned linear
operator makes mk ∈ C2 and f(xk) = mk(0). Consequently, several assumptions related to
trust-region convergence, namely [39, AF.1-2, AM.1, AM.2, AM.3], are covered. Furthermore,
solving (2.4) with the truncated conjugate gradient [144] covers [39, AA.1], whereas γ3 and γ4

choices from the Algorithm 4.1.1 fulfill [39, AA.4]. Finally, Theorem 4.2.1 covers [39, AM.4d]
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and Assumption 4.2.4 completes the assumptions made for [39, theorem 8.4.7]: AF.1-3, AM.1,
AM.2, AM.3, AA.1, AA.4, AM.4d. As a result,

lim
k→∞
∥∇f(xk)∥ = 0.

The Theorem 4.2.2 ensures the convergence of PLBFGS, PLSR1 and PLSE to a stationary
point.

4.3 Numerical results

This section compares several trust-region methods described in the previous sections on a
set of 65 partially-separable problems from Orban et al. [123]. The details of the partially-
separable structure of these problems are provided in Appendix A. The numerical results
compare several variants of a trust-region method:

• Newton variants, similar to the Algorithm 2.1.2 where Bk = ∇2f(xk);

• quasi-Newton variants, similar to the Algorithm 2.1.3;

• partitioned quasi-Newton variants, similar to the Algorithm 3.2.1;

• limited-memory partitioned variants, similar to the Algorithm 4.1.1.

All the methods tested result from the same trust-region implementation. It slightly differs
from precedent trust-region algorithms by adding a backtracking line search (Algorithm 2.1.1)
along sk when sk is an unsuccessful step, as proposed in [39, section 10.3.2]. As a consequence,
the differences between all variants are the approximation Bk ≈ ∇2f(xk) and the numerical
routines involved to compute f,∇f and v → Bkv. The Julia modules implemented and used
for producing those numerical results are detailed in Chapter 6. The following list details all
the methods and their specifics:

• (Newton) PHv and Hv: both methods compute Bkv = ∇2f(xk)v using different
approaches. Hv uses reverse and forward automatic differentiation on f to compute
∇2f(xk)v [73] while PHv aggregates the contributions of ∇2f̂i(x̂i,k)Uiv computed with
reverse and forward automatic differentiation applied onto f̂i, see Section 3.5.

• (Quasi-Newton) LBFGS_TR and LSR1_TR: these methods consider Bk as a LBFGS
operator or a LSR1 operator, respectively, see Section 2.1.3.1.
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• Partitioned quasi-Newton methods consider Bk as a sum of element quasi-Newton
operators, i.e., Bkv = ∑N

i=1 UiB̂i,kUiv. The methods below consider each B̂i,k as a dense
matrix, the methods are:

– PBFGS: each B̂i,k+1 = B̂BFGS
i,k+1 if ŷ⊤

i,kŝi,k ≥ ϵ1.

– PSR1: each B̂i,k+1 = B̂SR1
i,k+1 if |ŝ⊤

i,kẑi,k| ≥ ϵ2∥ŝi,k∥∥ẑi,k∥, where ẑi := ŷi,k − B̂i,kŝi,k,
and ϵ2 > 0.

– PCS: the convex element functions are updated with BFGS, i.e. B̂i,k+1 = B̂BFGS
i,k+1

while the nonconvex element functions are updated with SR1, i.e. B̂i,k+1 = B̂SR1
i,k+1.

The recognition of convexity is detailed later in Section 6.3.

– PSE: B̂i,k+1 = B̂BFGS
i,k+1 if ŷ⊤

i,kŝi,k > ϵ1, otherwise B̂i,k+1 = B̂SR1
i,k+1.

• Limited-memory partitioned quasi-Newton methods are similar to the partitioned
quasi-Newton methods but every B̂i,k is a linear operator, the methods are:

– PLBFGS: each B̂i,k+1 = B̂LBFGS
i,k+1 when ŷ⊤

i,kŝi,k ≥ ϵ1;

– PLSR1: each B̂i,k+1 = B̂LSR1
i,k+1 when |ŝ⊤

i,kẑi,k| ≥ ϵ2∥ŝi,k∥∥ẑi,k∥;

– PLSE: some B̂i,k are LBFGS operators while the rest are LSR1 operators. Similarly
to PSE, if ŷ⊤

i,kŝi,k > ϵ1, then the pair ŝi,k, ŷi,k will be used to perform B̂i,k+1 =
B̂LBFGS

i,k+1 , otherwise it will perform B̂i,k+1 = B̂LSR1
i,k+1.

If the numerical safeguards fail during an element quasi-Newton update, then the
element update is skipped.

To reproduce the numerical comparisons discussed in Chapter 3, a LBFGS line search method
is added. This LBFGS implementation is similar to Liu and Nocedal [101] employing the
linear operator Hk approximating

(
∇2f(xk)

)−1
, i.e. Hk = B−1

k . The results of the comparisons
are illustrated with Dolan and Moré performance profiles [49], considering criteria such as
computation time and number of iterations before achieving first-order convergence.

In Section 4.3.2, the best methods out of the Section 4.3.1 are compared on a partially-
separable problem with element functions that become larger as the problem dimension
grows. This study compares how the nature of an element Hessian approximation B̂i,k, i.e., a
dense matrix or a limited-memory operator, impacts the problem resolution. This scenario
assesses the relevancy of limited-memory partitioned quasi-Newton Hessian approximations
for partially-separable functions with large element functions, which is the main issue for
classical partitioned quasi-Newton methods.



100

4.3.1 Comparing quasi-Newton methods

All numerical experiments in this chapter were conducted on an Intel(R) Xeon(R) Gold 6126
CPU 2.60GHz architecture. In the test set considered, the partially-separable objectives
have element functions of relatively small sizes compared to the overall problem size, e.g.,
2 = ni ≪ n = 5000. The profiles are built considering a time budget and an iteration budget.
For example, if a solver, i.e., an optimization method, runs for more than one hour or exceeds
50 000 evaluations of the objective, the solver stops. Such failed executions do not meet
the absolute or relative first-order convergence criteria, which are respectively defined as
∥∇f(xk)∥ ≤ 10−6 and ∥∇f(xk)∥ ≤ 10−6∥∇f(x0)∥, considering the initial point x0. Therefore,
the problem is not counted as solved for this particular solver.

The Figure 4.1 presents the performance profiles for Newton and quasi-Newton methods,
and aims to reproduce a state-of-the-art methods comparison. An attentive reader may find
surprising that two methods performing the same iterations: PHv and Hv, result in two
clearly different curves. This difference is most likely not only explained by the floating
arithmetic difference between implementations. Although floating divergences can occur, most
of the problems solved within the allowed budgets result in identical iteration counts. However,
the partitioned Hessian-vector product of PHv outperforms the Hessian-vector product of
Hv, making PHv faster to solve the trust-region subproblem (2.4) than Hv. Concretely,
Hv fails to solve some problems given the time budget unlike PHv. Consequently, PHv
solves 84% of the test set while Hv solves 61% of the test set. PHv and Hv have the best
iteration records for 52% of the test set out of all methods. Hence, it produces parallel curves
between the two methods on the iteration performance profile, ending with a 23% difference
of problems solved. The parallel curves break at some points, due to the existing floating
arithmetic differences between the methods and due to problems for which PHv is not the
best method (in iteration). The two quasi-Newton methods LBFGS and LBFGS_TR
exhibit similar iteration performance, solving both 80% of the test set. Among the solved
problems, LBFGS_TR solves 93.75% of them faster than LBFGS. Lastly, LSR1_TR
solves only 58% of the test set. Overall, Newton methods require fewer iterations. However,
due to ∇2f(xk)v computational effort, fewer iterations do not reflect in smaller resolution
time. Although PHv displays the advantages of exploiting partial separability over Hv,
LBFGS methods solve most of the problems in less time than PHv.

The Figure 4.2 shows comparisons of PBFGS, PSR1, PCS, and PSE in terms of time and
iterations. The iteration performance profile distinguishes two groups of methods. First: PSE
and PBFGS and second: PSR1 and PCS. The two methods of each group solve roughly the
same percentage of problems and display similar performance curves. The first group seems to
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Figure 4.1 Iteration (left) and time (right) performance profiles for Newton and quasi-Newton
methods.

Figure 4.2 Iteration (left) and time (right) performance profiles for partitioned quasi-Newton
methods.
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solve more than 50% of the test set with fewer iterations than the second group, which happens
to dominate the remaining 25% problems of the test set. The best method of each group:
PSE and PSR1 solve respectively 70% and 82% of the test set with respect to the given
budgets. The record of time consumption for partitioned quasi-Newton methods Figure 4.2
indicates that the second group generally out speeds group one in time resolution, and PSR1
emerges as the fastest method seemingly on all problems. This observation can be justified
by the fact that both a B̂BFGS

i,k+1 update and a product v → B̂BFGS
i,k+1 v require roughly the double

of computational effort than a B̂SR1
i,k+1 update and a product v → B̂SR1

i,k+1v need. As PCS and
PSR1 mostly perform B̂SR1

i,k+1 while PBFGS and PSE mostly perform B̂BFGS
i,k+1 , PCS and

PSR1 are less computationally intensive.

The Figure 4.3 shows comparisons of the limited-memory partitioned quasi-Newton methods:
PLBFGS, PLSR1, and PLSE. Among them, PLSE dominates by necessitating fewer
iterations and less time before convergence than PLSR1 and PLBFGS. PLSE solves 77%
of the problems, PLSR1 68% and PLBFGS 57%. Nonetheless, having fewer iterations does
not translate directly to shorter runtime. This difference in performance can be attributed to
the change of quasi-Newton linear operator between B̂i,k and B̂i,k+1 for PLSE, which requires
additional allocations and affects the overall runtime efficiency. It is worth noting that both
PBFGS and PLBFGS struggle to perform well in those experiments. The ineffectiveness
of partitioned (L)BFGS element updates may be due to two reasons. First, the element
functions are not necessarily convex. Second, more truncated conjugate gradient iterations
may be needed for solving the convex trust-region subproblem when the solution is inside the
trust-region, i.e., there is no negative curvature to cut off conjugate gradient iterations.

The Figure 4.4 provides a comprehensive comparison by gathering the most significant methods
from the previous profiles: PHv, LBFGS, PSE, PSR1, PLSE. In the iteration performance
profile, three trends coexist: first PHv, second the partitioned quasi-Newton methods,
and lastly, LBFGS. PHv dominates the iteration performance profile. The partitioned
quasi-Newton methods all require fewer iterations than LBFGS, except perhaps PSE.

The time performance profile records that both PHv and LBFGS, despite being the best and
worst method in terms of iterations, have similar time performance. Partitioned quasi-Newton
methods dominate, led by the dense versions PSR1 and PSE, followed by PLSE.

The results displayed in Figure 4.4 suggest to use PSR1 or PSE in case f is partially-separable.
Although the partially-separable problems used in this section do not favour limited-memory
partitioned quasi-Newton methods, i.e., ni are small, PLSE remains a more efficient method
than PHv or LBFGS. The next section will illustrate PLSE’s features when element sizes
grow larger.
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Figure 4.3 Iteration (left) and time (right) performance profiles for limited-memory partitioned
quasi-Newton methods.

Figure 4.4 Summary of iteration (left) and time (right) performance profiles for (limited-
memory) partitioned quasi-Newton methods
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4.3.2 Experiments with limited-memory partitioned quasi-Newton methods

In this section, the numerical experiments consider a partially-separable function that is
designed to gradually increase ni and N as n grows larger. The function is formulated as

f limit =
√

n−3∑
j=1

 (j+2)
√

n∑
i=(j−1)

√
n

ixi

2

1 + x2
j

+
√

n−5∑
j=1

 (j+4)
√

n+5∑
i=(j−1)

√
n+5

ixi

2

1 + x2
j

. (4.10)

f limit has N ≈ 2
√
n − 8 element functions, and challenges the standard partitioned quasi-

Newton methods since storing large dense matrices B̂i becomes memory intensive. The use of
√
n for indexing the sum in (4.10) suppose to round

√
n to a near integer. By doing so, for all

n such that β2 < n < (β + 1)2, f(n) is either f(β2) or f((β + 1)2). Therefore, only n ∈ {β2 |
β ∈ N∗} are relevant for modelling functions f of different dimensions. The Table 4.1 gives
some measures for f limit depending on n ∈ {36, 625, 2500, 10000} = {β2 | β ∈ {6, 25, 50, 100}}.
ED stands for element dimension, i.e. ni, and EC stands for element contribution, which
counts the number of element functions in which each variable occurs.

Table 4.1 Instance details of f limit for n ∈ {36, 625, 2500, 10000}

size (n) N min. ED mean ED max ED mean EC max EC
36 4 18 21.75 31 2.42 4
625 42 75 100.24 127 6.73 9
2500 92 150 200.38 252 7.37 9
10000 192 300 400.44 502 7.69 9

The Figure 4.5 displays a comparison of the best method from each quasi-Newton trust-
region family established in the previous section, namely: LBFGS, PSR1 and PLSE. The
Figure 4.5a shows iterations, the Figure 4.5b records time and Figure 4.5c exposes the number
of products Bkv required before each method reaches a first-order convergence. In Figure 4.5a,
both PSR1 and PLSE require fewer iterations than LBFGS. Both methods expose an
iteration count seemingly independent of n, at least three times smaller than LBFGS. The
superior performance of partitioned methods in terms of iterations can be attributed by the
better approximations Bk of ∇2f(xk), which at least, maintains the sparsity structure of
∇2f(xk).

The Figure 4.5b records the convergence time, and exhibits different behaviours compared
to the iteration counts from Figure 4.5a. For LBFGS, whereas the iteration count seems
to stagnate as n increases, the convergence time continues to grow with a linear rate, up to
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(a) Iterations (b) Time in second

(c) Number of Bkv performed

Figure 4.5 Metrics of quasi-newton methods solving (4.10).

reach more than five PLSE’s time for n = 10 000. PSR1’s time also increases with n, having
identical time than PLSE for n ≤ 2500 and reaching four PLSE’s time for n = 10 000.
Conversely, PLSE’s time remains mostly constant. It is worth noting that spikes in the
iteration counts from the Figure 4.5a are not always echoed by spikes in Figure 4.5b. This is
due to the fact that most of the computational effort of a trust-region method comes from
the truncated conjugate gradient method. Although the amount of products Bkv performed
usually scales with ∇f , it is not always the case. Therefore, in some cases, the time spent for
computing products Bkv overshadows the time spent for evaluating f or ∇f . This particular
behaviour is illustrated in Figure 4.5 for n = 7744 = 882. While the number of iterations
remains similar to n = 7569 = 872, the number of products Bkv performed doubles, which
reflects in Figure 4.5b.

The limitation of the standard partitioned quasi-Newton methods for this type of partially-
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separable function lies in the cost of storing and manipulating the dense matrices B̂i,k. Hence,
as ni grows, the storage and computational costs for operating Bk increase quadratically.
Conversely, limited-memory partitioned quasi-Newton methods, such as PLSE, overcome this
limitation by employing linear operators for approximating v̂i → ∇2f̂i(x̂i)v̂i and best perform
when ni is large.

The Figure 4.5b indicates that the time growth of PLSE for minimizing f limit is almost
null compared to PSR1, even though PLSE may perform more Bkv products than PSR1
(Figure 4.5c). This study determines that limited-memory partitioned quasi-Newton methods
are better suited for partially-separable functions having large element functions. The key
features of PLBFGS, PLSR1 and PLSE are: a sparse Hessian approximation, a reasonable
memory usage and an efficient operator-vector product v → Bkv.

4.4 Conclusion

This chapter presented several limited-memory partitioned quasi-Newton operators to ap-
proximate the Hessian of the objective function. While a partitioned quasi-Newton operator
approximates each element Hessian by a dense matrix, its limited-memory variant approx-
imates each element Hessian by a limited-memory quasi-Newton operator. The resulting
partitioned-matrix possesses a faster partitioned-matrix-vector product and alleviates the
memory requirement from Θ

(∑N
i=1

ni(ni+1)
2

)
to Θ

(∑N
i=1 mni

)
. As a consequence, a partially-

separable function with large element functions can be efficiently minimized.

The next chapter transfers the concepts of partial separability to deep learning, resulting in
the formulation of a partially-separable training problem with large element functions. This
new training problem is later minimized with a limited-memory partitioned quasi-Newton
method.
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CHAPTER 5 Partially-separable learning

In this chapter, the concepts of partial separability are transferred to deep learning. This
contribution is divided in three parts. The Julia modules implementing those parts are
detailed in Chapter 6.

The first part, detailed in Section 5.1, focuses on the impact that the loss function employed
has onto the computation of the loss function derivatives. When the loss function exhibits
partial separability, the gradient of the loss function sums the contributions of element loss
functions, each of smaller dimension. This approach lends itself to parallelization within a
master(s)-workers framework by assigning one or several element functions to each worker.
Unlike model parallelism or tensor parallelism, recalled in Section 2.2.6, it does not necessitate
communication between workers after the evaluation of every layer and solely aggregates the
element loss contributions. Consequently, it can seamlessly integrate the other parallelism
schemes introduced in Section 2.2.6.

The second part studies in Section 5.2 the effective exploitation of a partially-separable loss
function during the neural network training, which heavily depends on the neural network’s
architecture. Generally, conventional architectures fail to exploit partial separability as
their loss element function dimensions approach the overall neural network dimension, i.e.,
ni ≈ n. Hence, Section 5.2 introduces the separable layer, designed to reduce the loss
function dimensions in comparison to the total neural network dimension. As a consequence,
a partitioned neural network, i.e., stacking several separable layers, that employs a partially-
separable loss function can be theoretically trained over several workers, each containing only
a small fragment of the neural network. Numerical results show that a combination of a
partially-separable loss function and a partitioned architecture has a comparable performance
to that of a standard architecture paired with a conventional loss function. Raynaud, Orban,
and Bigeon [135] introduce most of the content of those two first parts, whereas Raynaud,
Orban, and Bigeon [134] focus on the third and last part.

The third part, presented in Section 5.3, implements a limited-memory partitioned quasi-
Newton training. In the continuation of the Chapter 4, each element loss function Hessian is
approximated with a LBFGS or a LSR1 operator. Unlike the Chapter 4, the optimization
method is a line search instead of a trust-region method. The numerical results presented
in Section 5.3.1 show that limited-memory partitioned quasi-Newton trainings are competitive
with state-of-the-art trainings, including a LBFGS training.

The current limitations and the remaining open problems are discussed in Section 5.4.
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5.1 Partially-separable loss function

Before investigating on partially-separable loss functions, one must observe that most loss
functions are depending nonlinearly on all scores ci. This is the case for LNLL(X, Y ;w):

LNLL(X, Y ;w) = 1
L

∑L
l=1− log(p

y
(l)(x(l);w))︸ ︷︷ ︸

LNLL(x(l)
,y

(l);w)

, pi(x(l);w) := exp(ci(x
(l);w))∑C

j=1 exp(cj(x(l);w))
.

Therefore, LNLL(x(l), y(l);w) does not fulfill the criteria of an element function, as its dimension
matches that of LNLL(X, Y ;w), i.e., LNLL(x(l), y(l);w) : Rn

NLL
→ R is such that n = nNLL ≮ n.

To define an element loss of smaller dimension, it must depend on a subset of the scores cj,
which structurally rely on a subset of weights, i.e. ĉj : Rnj → R parametized by Uj (Figure 5.1
and Figure 5.3). To remedy this issue, the partially-separable loss (PSL) sums element loss
functions depending on a couple of scores:

LPSL(X, Y ;w) := 1
L

L∑
l=1

C∑
j=1

e
cj(x(l);w)−c

y
(l) (x(l);w)

, (5.1a)

=
C∑

p=1

C∑
j=1̸=k

hp,j(X, Y ;w), (5.1b)

hp,j(X, Y ;w) := 1
L

L∑
l=1

δp,j(y(l)) ecj(x(l);w)−cp(x(l);w), (5.1c)

where δp,j(y(l)) = 1 if y(l) = p, and 0 otherwise. The element loss function hp,j relies solely on
the weights that parametrize the two scores cp and cj:

hp,j(X, Y ;w) = ĥp,j(X, Y ;Up,jw), Up,j ∈ Rnp,j×n. (5.2)

Up,j is the linear operator combining the weights selected by both Up and Uj . As a consequence,
np,j ≤ np + nj and np,j ≤ n. Structurally, np,j = np + nj when there is no weight overlap
between cj and cp, and np,j = n only if C = 2. If the neural network gets a maximum score

cj different from c
y

(l) for a given input x(l), then e
cj(x(l);w)−c

y
(l) (x(l);w) will return a large value.

Hence, minimizing (5.1a) reduces misclassification.

The LPSL loss sums N = C2−C element functions ĥp,j , each of which calculates a loss between
a pair of distinct classes cp and cj (p ̸= j). In cases where the neural network is symmetric,
there exists a common set of weights on which every element function depends (although this
set could be empty). Such a simplified symmetric neural network having common weights is
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illustrated in Figure 5.3. Additionally, all element losses perform the same computation in
a symmetric neural network, but with different weights as parameters—np1,j1 = np2,k2 while
Up1,j1 ≠ Up2,j2 , for all (p1, j1) ̸= (p2, j2). The specific dimensions of each ĥp,j depends upon
the layers composing the neural network architecture. The Section 5.2 develops deeper this
subject and introduces the concept of a separable layer to make np,j a smaller fraction of n.

5.2 Separable layer and partitioned architecture

5.2.1 The issue of standard architectures

As previously discussed, a partially-separable loss function can be employed with any type
of multiclass classification neural network. This section explains why most architectures
fail to exploit partially-separable loss functions. For instance, the Figure 5.1 showcases

c1 c2 c3

Figure 5.1 Weight dependencies of simplified LeNet scores

the weight dependencies of each score within an overly simplified LeNet [96] architecture.
This architecture incorporates two convolutional layers, defined in Section 2.2.2, consisting
respectively of two and three kernels. Subsequently, two dense layers are applied. The setup
is tailored for a vectorized input of size four and generates C = 3 class scores. Distinct
colors—blue, yellow, and red—represent weights that exclusively parameterize a single score.
Meanwhile, common weights shared among all scores are indicated in green. In this example,
the distinct colors are solely utilized to differentiate weights forming the last layer, i.e. prior
the loss function layer, e.g. softmax in Figure 2.3. All weights beneath this layer are common
weights (in green). Generally, the application of a dense or a convolutional layer onto a given
layer makes all the precedent weights (from bottom to top) common for all scores cj. As a
result, any neural network topped by a dense layer generates scores depending on the vast
majority of the network, i.e., nj ≈ n, ∀ 1 ≤ j ≤ C. Consequently, np,j ≥ max(nj, np) tends
to approach n.
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5.2.2 Separable layer

Figure 5.2 A separable layer, 9 × 6, considering C = 3 groups

The concept of separable layers is introduced to mitigate nj in comparison to n, such as
depicted in Figure 5.2. This layer divides the neurons from two consecutive layers into C
groups, with each group being fully connected to its counterpart in the subsequent layer,
similarly to [145]. A separable layer employs C times fewer weights than a fully connected layer.
Structurally, it propagates the group weight dependencies from one layer to its corresponding
group in the next layer, to which are added the weights parametrizing the separable layer
itself. Unlike dense or convolutional layers, it avoids spreading weight dependencies of the
precedent layer across all neurons of the subsequent layer. However, here are some relevant
practical considerations:

• if a layer relies nonlinearly on all the outputs from a stack of separable layers, then the
partitioned structure introduced by the stack of separable layers vanishes;

• the output dimension of the layer preceding the initial separable layer must be a multiple
of C. Consequently, dense layers will necessitate α ∗ C neurons, while convolutional
layers will require α ∗ C kernels, where α ∈ N∗. Each group within a separable layer in
based on the output of either α neurons or α kernels.

5.2.3 Partitioned architecture

When multiple separable layers are successively stacked, they form a highly structured neural
network which will be referred as a partitioned architecture, or more succinctly PSNet. The
Figure 5.3 illustrates a simplified PSNet architecture composed of the same two convolutional
layers, similarly to the Figure 5.1, followed by three separable layers. Input and output
configurations remain consistent with Figure 5.1. By concentrating the weight overlaps within
the first layer, both nj

n
and np,j

n
become smaller.

The loss function LPSL(X, Y ;w) achieves minimal common weights when all layers beyond
the first one are separable. In this ideal scenario, Up1,j1U

⊤
p2,j2 = 0 holds true whenever

p2 ̸= p1 ≠ j2 and p2 ≠ j1 ̸= j2. Moreover, each score and element loss function are
parametrized respectively by n

C
and 2n

C
variables, representing the smallest fractions nj and
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Figure 5.3 Weight dependencies of simplified PSNet scores

np,j can respectively attain. When the number of classes grows, the count of element loss
functions N=C2−C increases while n

C
and 2n

C
decrease if the architecture conserves identical

element functions ĥp,j. Additional insights of the new architecture PSNet, can be found
in Section 5.2.4, e.g., practical values for nj, np,j,

nj

n
and np,j

n
.

5.2.4 Numerical results

This section provides comparisons between combinations of a LeNet or a PSNet architecture
with either the LNLL or the LPSL loss function. All pairs of architecture and loss function
are trained using the same optimizer Adam [93], defined in Algorithm 2.2.1. Adam trainings
consider minibatches of size 20 or 100. The trainings run on an Nvidia A100 Tensor Core
GPU and involve relatively small architectures. The subsequent results serve as a proof of
concept to demonstrate the effectiveness of PSNet and LPSL.

Our focus centers on two specific datasets: MNIST [97] and CIFAR10 [94], both encompassing
ten distinct classes, i.e. C = 10. MNIST comprises grayscale images of handwritten digits,
each having 28× 28 pixels. Conversely, CIFAR10 consists of color images, i.e., three channel
inputs, each of 32× 32 pixels.

The architectures presented in both figures are constructed using Knet.jl [156], while the
datasets are sourced from MLDatasets.jl [95]. The Figures 5.4 to 5.7 compile the training of
architecture-loss pairs: PSNET-NLL, PSNET-PSL, LeNet-NLL and LeNet-PSL. Each curve
displayed is the mean of 10 trainings surrounded by its respective standard deviation error.
The code generating those numerical results is detailed in Section 6.7.

In Figures 5.4 and 5.5, both architectures are tailored for the MNIST dataset. The LeNet
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Figure 5.4 LeNet and PSNet training accuracies over epochs on MNIST, considering mini-
batches of size 20.

Figure 5.5 LeNet and PSNet training accuracies over epochs on MNIST, considering mini-
batches of size 100.

architecture comprises two convolutional layers followed by three dense layers. Both convolu-
tional layers employ 5× 5 kernels and incorporate average pooling. The first convolutional
layer employs 6 kernels, while the second employs 16 kernels. The subsequent fully connected
layers contain respectively 120, 84, and 10 neurons.
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On the other hand, PSNet consists of two convolutional layers followed by three separable
layers. Both convolutional layers use 5 × 5 kernels and include average pooling. The first
convolutional layer employs 40 kernels, while the second employs 30 kernels. As a result, the
separable layers consist of 240, 150, and 10 neurons respectively.

The LeNet architecture is parameterized by 44426 weights, while the PSNet architecture is
parameterized by 53780 weights. In PSNet, each score (resp. element loss) relies on 6340 (resp.
11588) weights. All PSNet scores have 1092 common weights at the root of the neural network.
The Section 5.2.4 presents succinctly the specifics of both LeNet and PSNet architectures for
the MNIST dataset.

Figure 5.6 LeNet and PSNet training accuracies over epochs on CIFAR10, considering
minibatches of size 20.

In Figures 5.6 and 5.7, the architectures depicted in the first figure have been modified to
accommodate the input size for the CIFAR10 dataset. Both LeNet and PSNet have adjusted
their first convolutional layers to handle three-channelled images. Additionally, the three dense
layers of LeNet have been adapted to consist of 200, 100, and 10 neurons, respectively. In the
case of PSNet, the number of kernels in the second convolutional layer has been increased from
40 to 60. Furthermore, the separable layers have been adjusted to be parameterized by 350,
150, and 10 neurons. With these adaptations, the modified LeNet and PSNet architectures
are respectively parameterized by 103882 and 81750 weights. In PSNet, each score (resp.
element loss function) depends on 12279 (resp. 19998) weights and all element loss functions
share 4560 common weights. The Section 5.2.4 summarizes the specifics of all architectures.
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Figure 5.7 LeNet and PSNet training accuracies over epochs on CIFAR10, considering
minibatches of size 100.

Table 5.1 Architecture details

LeNet PSNet
type MNIST CIFAR10 type MNIST CIFAR10
Conv 5× 5× 1× 6 5× 5× 3× 6 Conv 5× 5× 1× 30 5× 5× 3× 30
Conv 5× 5× 6× 16 5× 5× 6× 16 Conv 5× 5× 30× 40 5× 5× 30× 60
Dense 256× 120 400× 200 Separable 480× 240 750× 350
Dense 120× 84 200× 100 Separable 240× 150 350× 150
Dense 84× 10 100× 10 Separable 150× 10 150× 10
n 44426 103882 n 53780 81750

nj, np,j - - nj, np,j 6340, 11588 12279, 19998
nj

n
,

np,j

n
- - nj

n
,

np,j

n
0.11, 0.21 0.15, 0.24

The comparison results presented in Figures 5.4 and 5.5 showcase the accuracy—the percentage
of correct predictions on the test dataset—of the loss function PSL or NLL to train LeNet
and PSNet onto the MNIST dataset. Regardless of the architecture employed, any training
using PSL starts off slower compared to NLL, especially when using the minibatches of size
20. However, over time, PSL trainings tend to catch up with NLL trainings and approach
asymptotically a similar performance. The standard deviation of training results is higher for
PSL compared to NLL, a pattern that is consistent across both datasets, as demonstrated
in Figures 5.6 and 5.7. The Figures 5.6 and 5.7 display the same comparisons for the CIFAR10
dataset. While the ranking between loss functions remains consistent, the architecture used
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plays a more significant role than the chosen loss function. This phenomenon is noticeable for
minibatches of size 100 and is particularly evident for minibatches of size 20. Nonetheless, for
minibatches size of 20, the training of LeNet-PSL exhibits overfitting with a high standard
deviation error. Raw results indicate consistent drops in accuracy (down to 20%) that are
regained after a few epochs, recovering a stable 50% accuracy. Solving this overfitting issue is
a topic for future research, but note that regularization techniques induce big changes in the
partially-separable structure of the training, see for example Section 5.2.6.

Given that PSNet is composed of fewer weights than LeNet (81750 vs. 103882), it is surprising
to witness the superiority of PSNet over LeNet. This difference can be attributed to the
kernels added on the convolutional layers of PSNet, which are cornerstones of the computer
vision current success. The addition of those kernels compensate the dimension growth of
LeNet to accommodate CIFAR10. Separable layers indirectly induced this addition, since the
accommodation to CIFAR10 required far fewer weights than for dense layers.

5.2.5 Parallel partitioned architecture computations

This section outlines a scalable strategy to efficiently distribute the computation of a parti-
tioned neural network training using a partially-separable loss function. A straightforward
approach is to allocate a single element function ĥp,j to each available worker. Since LPSL

consists of N element functions (5.1a), it ideally requires N workers. Each worker needs
memory proportional to Θ(np,j) to store its respective element function, which could be
significantly smaller than n if separable layers are properly employed. During the forward
pass, a worker computes ĥp,j, and during the reverse pass, it computes ∇ĥp,j. Subsequently,
the worker sends its computed contributions to the master node(s). The master node(s)
maintain a vector g of size n, which is initially zeroed, and accumulate worker contributions.
Each worker’s contribution, of size np,j, is scattered across g based on Up,j. If the total
network’s size n is too large to be accommodated by a single hardware unit, the vector g can
be managed by multiple master nodes. For instance, C + 1 master nodes can be utilized,
with one storing the common weights to all scores, while the C remaining masters store the
distinct weights of each score cj. Additionally, the master nodes are responsible for updating
iteratively w before transmitting Up,jw to the workers.

The straightforward strategy distributing every element loss function might saturate the
available devices due to the quadratic growth of N with respect to C. The symmetry of
partitioned architectures provides a solution to this issue by allowing a worker to easily switch
the element function it manages. This symmetry arises from the fact that all scores cj share
the same underlying function but are parametrized by different Uj matrices. Consequently,
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the results of two different element loss functions are governed by the same element loss
function ĥp,j, while being driven by distinct Up,j linear operators, i.e., ĥp1,j1(X, Y, Up1,j1w) =
ĥp2,j2(X, Y, Up1,j1w) where (p1, j1) ̸= (p2, j2). Hence, by substituting the loaded weights Up1,j1w

with Up2,j2w, a worker operates ĥp2,j2 instead of ĥp1,j1 and can therefore compute several
multiple element loss functions and their derivatives. This trick significantly reduces the
number of workers needed and facilitates the utilization of computational resource.

An essential point to consider is that there is no need to compute the element loss ĥp,j for the
observations x(l) that are not labelled as p ≠ y(l). Therefore, the data required for a worker
only represents a fraction 1

C
of the entire training dataset. Additionally, several element

functions may be merged, for instance, a worker can cumulate ĥp1,j1 and ĥp2,j2 . In that case,
the neural network subpart handled by the worker may expand, and the labelled observations
that the worker consider will combine p1 and p2. The only merge that does not augment the
dimension is ĥp,j + ĥj,p, as the weights of these two element loss functions completely overlap.
In the case where more than N workers are available, the same element function may be
duplicated across multiple workers. In this scenario, each worker evaluates a disjoint subset of
data to avoid duplicate computation. This parallel scheme based on LPSL and a partitioned
architecture can be combined with data parallelism, model parallelism, and tensor parallelism
to further distribute computation.

The Figure 5.8 illustrates these notions for the PSNet example from the Figure 5.3. It denotes
by Mi the i-th master node and by (X(i)

p , Y (i)
p ) the i− th minibatch from the dataset subset

(Xp, Yp) ⊂ (X, Y ) containing only the data labelled as p, i.e., y = p, ∀y ∈ Yp.

Although the proposition of this section is interesting, this scheme was not tested in practice.
It would have required a framework able to access several distant workers with the ability
of evaluating the communication. Without such requirements, this proposition remains a
theoretical idea to distribute neural network computation.

5.2.6 Dropout consequences

The introduction of techniques like the dropout [142] can enhance the partial separability of
the loss function. Dropout randomly deactivates some weights during the training, affecting
dynamically the loss function’s structure. For a partially-separable loss function, the dropout
impacts the subset of weights that each element function depends on. In an extreme case,
where an entire layer is temporarily dropped out, the partitioned network may exhibit a
separable behavior. The Figure 5.9 illustrates onto PSNet (Figure 5.3) the consequences
of the dropout when it is applied on the layer encompassing all common weights. Each
score cj1 becomes independent of all other scores cj2 (Uj1U

⊤
j2 = 0 for all j2 ̸= j1) leading to
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Figure 5.8 Partitioned neural network paired with LPSL computation distribution
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Figure 5.9 Weight dependencies of PSNet scores when the first convolutional layer is dropped
out (dotted deactivated weights)

non-overlapping element functions; therefore Up1,j1U
⊤
p2,j2 = 0 as long as p2 ̸= j1 ̸= j2 and

p2 ̸= p1 ̸= j2. In the case where the complete neural network can be accommodated in a
single hardware, all ∇ĥp,j can be evaluated with fewer reverse passes.

5.3 Limited-memory partitioned quasi-Newton training

Second-order methods differ from gradient-based methods, which update weights with the
sampled loss gradient ∇L(X, Y ;w), without seeking an approximation of ∇2L(X, Y ;w).
Quasi-Newton methods seek to mimic the Hessian B ≈ ∇2L(X, Y ;w) by updating B along
iterations to minimize a quadratic approximation of L. In this section, LPSL(X, Y ;w) is
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minimized by a limited-memory partitioned quasi-Newton method. Unlike gradient based
methods, a quasi-Newton method needs to compute a gradient difference at each iteration.
Therefore, two gradient evaluations are needed for the same minibatch, e.g. (L)BFGS needs
yk = ∇LPSL(X, Y ;wk+1)−∇LPSL(X, Y ;wk), otherwise the meaning of yk is lost.

Unlike quasi-Newton methods, any partitioned quasi-Newton method needs to compute
the partitioned gradient, i.e., the computation of every element function gradient ∇ĥp,j.
Unfortunately, the automatic differentiation (or backpropagation) engine employed to compute
∇LPSL is unable to store distinctly the contributions of all ∇ĥp,j to ∇LPSL. Practically, the
computation of all ∇ĥp,j falls backs on the computation of N = C(C − 1) element function
gradients, each of which has a similar cost than computing ∇LPSL. In other words, for a
MNIST or a CIFAR10 architecture (C = 10), computing all ∇ĥp,j costs N = 90 gradient
evaluations of ∇LPSL. As the gradient computation is usually the most computationally
intensive operation of a training, a partitioned quasi-Newton training is at least N times slower
than a gradient based method (by iteration). For example, one limited-memory partitioned
quasi-Newton training applied on the MNIST’s PSNet architecture for 100 epochs and with
minibatches of size 100, as described in Section 5.2, takes 50 hours. Consequently, 500 GPU
hours are needed for computing the mean of one training.

Although previous chapters focus on trust-region methods, here, the limited-memory parti-
tioned quasi-Newton training implements an inexact line search (see Section 2.1.1). Initially, a
trust-region method such as Algorithm 4.1.1 was exploited. However, early numerical results
for trust-region methods show that if successive steps sk were rejected, i.e. ρk < 0, then
the trust-region radius shrinks and prevents larger subsequent steps. This may become an
issue when considering the stochastic noise introduced by the minibatch evaluation, which
may prevail on the (element) gradients real difference. A line search as no constraint such as
∥s∥ ≤ ∆k, and therefore, is more likely to accept larger steps and resolve this trust-region
issue. By doing so, it best exploits the computation of each partitioned gradient. The Algo-
rithm 5.3.1 outlines an inexact line search method minimizing a partially-separable function
f by exploiting a limited-memory partitioned quasi-Newton approximation of ∇2f .

In order to avoid the introduction of too many notation indices in the limited-memory
partitioned quasi-Newton line search algorithm, the following notation is employed:

• f and ∇f correspond respectively to the sampled loss function LPSL(X, Y ;w) and its
gradient ∇LPSL(X, Y ;w);

• f̂i refers to one element loss function ĥp,j, and consequently Ui refers to Up,j
;

• ŷi,k = ∇f̂i(wk+1) − ∇f̂i(wk) = ∇ĥp,j(X, Y ;Up,jwk+1) − ∇ĥp,j(X, Y ;Up,jwk) computed
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on the same minibatch X, Y ;

which is similar to the Chapters 3 and 4 and the Algorithm 4.1.1. The detection of the
element variables composing each ĥp,j is briefly detailed in Figure 6.4.

Algorithm 5.3.1 Inexact Partitioned Quasi-Newton Line Search
1: Choose w0 ∈ Rn, τ1, τ2 ∈ R+,
2: Choose B0 = B⊤

0 = ∑N
i=1 U

⊤
i B̂0,iUi ≈ ∇2f(w0).

3: k = 0
4: repeat
5: Compute an inexact solution dk

min
dk

mk(dk) = f(wk) +∇f(wk)⊤dk + 1
2d

⊤
k Bkdk

by using the conjugate gradient, such that ∥Bkdk +∇f(wk)∥2 ≤ τ1.
6: Perform a line search to retrieve α > 0 such that

f(wk)− f(wk + αsk) ≥ ατ2∇f(wk),

for example Algorithm 2.1.1
7: set wk+1 = wk + αkdk

8: update every B̂i,k given ŝi,k = αkUidk and ŷi,k satisfying B̂i,k+1ŝi,k = ŷi,k (4.2).
9: k = k + 1

10: until convergence

5.3.1 Numerical results

In Figures 5.10 and 5.11, similarly to the Section 5.2.4, each curve represents the mean
accuracy while its surrounding shaded region is its standard deviation error. Again, the results
are produced in Julia [5], with gradient-based method implementations from Knet.jl [156].
All methods run on an Nvidia A100 Tensor Core GPU, using minibatches of size 100. MNIST
trainings run for 50 epochs whereas CIFAR10 trainings run for 100 epochs.

The Figures 5.10 and 5.11 illustrate the comparison between several optimizers: SGD, Adam,
LBFGS, PLBFGS, PLSR1 and PLSE. Adam (resp. SGD) learning rate is fixed at 0.001 (resp.
0.025), while β1 = 0.9, β2 = 0.999 and ϵ = 10−8. All are employed to minimize LPSL using a
PSNet architecture over MNIST and CIFAR10 datasets. In this setup, Adam achieves the
best accuracy, followed closely by PLSR1 and PLBFGS, and then finally LBFGS and SGD.
SGD’s slower convergence can be attributed to its small learning rate, which is chosen to
prevent numerical instability during gradient computations.
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Figure 5.10 Comparison of optimizer accuracies over epochs during PSNet training when
minimizing LPSL (5.1a) on MNIST.

Figure 5.11 Comparison of optimizer accuracies over epochs during PSNet training when
minimizing LPSL (5.1a) on CIFAR10.

5.3.2 A parallel partitioned Hessian-vector product

This section embeds a limited-memory partitioned quasi-Newton approximation of ∇2LPSL

into the parallel scheme presented in Section 5.2.5. The partial separability of LPSL structures
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heavily the Hessian:

∇2LPSL =
C∑

p=1

C∑
j=1̸=k

U⊤
p,j∇2ĥp,jUp,j.

While directly computing and storing each element loss function Hessian might be impractical
due to its size, calculating the Hessian-vector product remains accessible. In this scenario,
the master node(s) aggregate the workers contributions ∇2ĥp,j(Up,jw)Up,jv computed from a
reverse-forward pass of automatic differentiation, see Section 2.1.5 and Section 3.5.

When every ∇2ĥp,j is approximated by a limited-memory quasi-Newton operator, then

Bv =
C∑

p=1

C∑
j=1̸=k

U⊤
p,jB̂p,jUp,jv, B̂p,j ≈ ∇2ĥp,j.

Similarly to the Hessian-vector product, this approach involves that each worker computes
B̂p,jUp,jv and sends its contributions to master(s) which will aggregate them using U⊤

p,j.
Consequently, the conjugate gradient method [84] needs master(s) to synchronize all workers
contributions at every iteration to compute effectively Bv.

5.4 Limitations and open problems

This chapter introduced three new concepts: a partially-separable loss function, a partitioned
architecture and a limited-memory partitioned quasi-Newton training. Except for a partially-
separable loss function which easily integrates in most neural-network modelling libraries, the
two other concepts require consequent efforts for an effective implementation.

First, a partitioned architecture leverages a new scheme for parallel computation when the
loss function is partially-separable. Specifically, in a computer vision context, each score is
parametrized by a subset of neural-network weights. By combining a couple of scores, each
element loss function requires only a fragment of the neural network to operate. Therefore,
the computational effort related to the loss function or its derivatives can be distributed to
working units, each managing one element function, i.e., a neural network fragment. Test this
parallelization procedure requires access to one worker for each element function, e.g. N = 90
workers for MNIST and CIFAR architectures, as well as a complete framework aggregating
worker results and measuring communication costs. Due to the lack of computational resource
at our disposal and probably of expertise, those aspects have not been studied yet. Still, two
particular setups are relevant depending on the computational capacity of the workers. If each
worker is a powerful device, e.g. a GPU, then the partial separability parallelization should
be compared with the other parallelization schemes presented in Section 2.2.6. If the workers
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are countless less powerful devices, which is a federated learning context, then each worker
can: accommodates the minibatch size it considers computing the element loss function
and its derivatives, see Figure 5.8, and it can evaluate autonomously its neural-network
fragment before sending its contributions to master(s). For both setups, the scalability and
the communication must be evaluated and compared with state-of-the-art implementations.

Second, a limited-memory partitioned quasi-Newton training requires the computation of all
element loss gradients. As mentioned in Section 5.2, the neural-network modelling libraries do
not return the element loss function gradient contributions from the computation of the loss
function gradient. Therefore, the solution implemented computes individually each element
gradient at roughly the same cost of the total gradient, making the partitioned gradient
cost N times that of the loss function gradient. Although the loss function gradient do not
compute the element gradient contributions, they could be propagated with an adequate
storage. Separate storage for element contributions is feasible, but would multiply the memory
needed depending on the number of element functions contributing to each weight. Finally,
the indexing operations on vectors or matrices are not scalable on GPU and practically
slow down the efficiency of the GPU parallelization. Therefore, the two Julia modules
PartitionedStructures.jl and PartitionedVectors.jl, described in the next chapter,
should remove indexing operations from their routines to best scale on GPU.

These are the two major issues. Their resolutions could transform the contributions of this
chapter into practically competitive training methods.
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CHAPTER 6 Software packages

This chapter details the implementation of the methods defined in Chapter 4 and in Chapter 5.
The Section 6.1 provides some information about the programming environment and some
metadata on the code developed. The Section 6.2 gives an overview of the JuliaSmoothOpti-
mizers (JSO) ecosystem, which proposes several tools for numerical continuous optimization.
In particular, the Sections 6.3 to 6.6 explain how the (limited-memory) partitioned quasi-
Newton methods are integrated in JSO. More specifically, the partially-separable structure
is automatically detected by using the work from the Section 6.3. Then, the Sections 6.4
and 6.5 define the partitioned data structures needed for running a partitioned quasi-Newton
minimization method, as well as the related operations mandatory for both Algorithm 3.2.1
and Algorithm 4.1.1. Finally, the Section 6.6 articulates the features developed in previ-
ous sections to provide a partitioned quasi-Newton model exploiting the partially-separable
structure whenever it is advantageous.

The remaining sections are about the training of (partitioned) neural networks. The Section 6.7
presents an interface that formulates a neural network as an optimization model compatible
with JSO’s tools. Lastly, the Section 6.8 extends the contribution described in Section 6.7
to enable a limited-memory partitioned quasi-Newton training, i.e., an implementation of
the Algorithm 5.3.1.

6.1 Programming environment and metadata

All the code presented in this chapter is implemented in Julia, a high-level programming
language specifically designed for scientific computing [5]. Julia is known for its natural
multi-precision support and its compatibility with interface-oriented code architectures. Unlike
other popular high-level programming languages such as Python or Matlab, pure Julia code
can achieve performance comparable to that of C/C++ [103].

Additionally, all the code developed by the JSO community is open source and follows
continuous integration standards, which include: a documentation generated automatically,
validation by tests, and pull-request review(s) before integrating significant code changes.
The Table 6.1 summarizes for each Julia module some information: version, percentage of
code covered by tests, number of lines and its related section.
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Table 6.1 Julia modules metadata

Name version code coverage lines Section
ExpressionTreeForge.jl 0.1.6 81% 8000 6.3
PartitionedStructures.jl 0.1.6 97% 7000 6.4

PartitionedVectors.jl 0.1.2 99% 2000 6.5
PartiallySeparableNLPModels.jl 0.3.5 97% 4000 6.6

KnetNLPModels.jl : 0.2.3 79% 2 000 6.7
PartitionedKnetNLPModels.jl : 0.0.1 ≈30% 2 000 6.8

6.2 JuliaSmoothOptimizers (JSO) ecosystem architecture

The JSO ecosystem gathers tools to democratize nonlinear optimization methods, to solve for
example:

min
x∈Rn

f(x).

This section discusses how the partial separability of f is integrated in the JSO ecosystem.
In particular, how the partial separability knowledge is incorporated into the JSO models
and the JSO multi-precision solvers. See Figure 6.1 for a graphical overview of the module
dependencies within JSO.

A key component of the JSO ecosystem is NLPModels.jl [120], which provides an abstract
interface for optimization models employed to implement JSO solvers. Any model that
conforms to the NLPModel’s interface must implement several methods, evaluating: the
objective function, the gradient, the Hessian-vector product, or alternatively, the linear
application v → Bkv ≈ v → ∇2f(xk)v. In our context, the simplest type of model will be
referred as pure Julia’s model. Such a model considers a Julia function as the objective and
computes derivatives with automatic differentiation techniques [73].

All JSO solvers based on the NLPModels’s interface are gathered in JSOSolvers.jl [121]. The
code of these solvers is generic, i.e., they minimize any model that respects the NLPModels’s
interface while leveraging its distinct features. The Sections 6.3 to 6.6 focus on TRUNK, a
trust-region solver from JSO that closely aligns with Algorithm 2.1.2. The main difference is
that a backtracking line search (Algorithm 2.1.1) is performed along the direction s determined
by (2.4) when ρk is too small to accept xk + s as the next iterate. Nonetheless, the tools
developed in Sections 6.3 to 6.6 are designed to be applicable to other JSO solvers as well.

By default, when minimizing a pure Julia’s model with TRUNK, the exact Hessian is
used. Therefore, TRUNK implements a Newton trust-region method. An alternative option
for a pure Julia’s model is to incorporate a LBFGS or a LSR1 operator to approximate

https://github.com/JuliaSmoothOptimizers/ExpressionTreeForge.jl
https://github.com/JuliaSmoothOptimizers/PartitionedStructures.jl
https://github.com/JuliaSmoothOptimizers/PartitionedVectors.jl
https://github.com/JuliaSmoothOptimizers/PartiallySeparableNLPModels.jl
https://github.com/JuliaSmoothOptimizers/KnetNLPModels.jl
https://github.com/JuliaSmoothOptimizers/PartitionedKnetNLPModels.jl
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the Hessian [119, 122] (see the Section 2.1.3). This modification overwrites the Hessian
operations and utilizes the limited-memory quasi-Newton operator instead. Consequently, the
limited-memory quasi-Newton model specializes TRUNK into a limited-memory quasi-Newton
trust-region solver.

The contribution from the Sections 6.3 to 6.6 is to detect automatically the partially-separable
structure of a pure Julia’s model to formulate a partially-separable model. By default, a
partially-separable model uses Bk = ∇2f(xk) = ∑N

i=1 U
⊤
i ∇2f̂i(x̂i,k)Ui by computing only the

derivatives of the element functions, which reduces the computational effort to access ∇2f or
v → ∇2fv. In addition, the user may incorporate one of the various partitioned quasi-Newton
operators: PBFGS, PSR1, PSE, PCS, or the limited-memory variants: PLBFGS, PLSR1 and
PLSE presented in Section 4.1, providing sparse Bk ≈ ∇2f(xk) or v → Bkv ≈ v → ∇2f(xk)v.
Partially-separable models not only overwrite the Hessian operations, but other NLPModel’s
methods that could benefit from partial separability, e.g., computing f or ∇f . As a result,
TRUNK is specialized in as many partitioned quasi-Newton solvers as there are partitioned
quasi-Newton models.

In order to ensure efficiency without sacrificing flexibility, JSO solvers pre-allocate all data
structures to avoid runtime allocations. In particular, it requires a type deriving from
AbstractVector that must store xk, while assuming that the same type will also store ∇f(xk),
sk, and yk as defined in Algorithm 2.1.2. However, storing xk (usually a Vector), ∇f(xk) (the
partitioned gradient), and yk (the partitioned gradient difference) with a single data structure
is quite challenging. Furthermore, the same data structure must parametrize the linear
application v → Bkv and behave properly with the Krylov.jl’s implementation of the truncated
conjugate gradient method [111], which has its own solver structure. Those constraints led to
the creation of the type PartitionedVector, deriving from AbstractVector, which behaves
like a Vector for xk and sk while keeping track of element contributions for ∇f(xk) and
yk. A PartitionedVector matches the needs of the NLPModel’s interface and supports all
operations required by TRUNK and the truncated conjugate gradient solvers. In practice,
any partially-separable model properly instantiates the PartitionedVectors, the partitioned
quasi-Newton operator and all solver structures needed for allocating and running both
TRUNK and the truncated conjugate gradient methods.

The remainder of this section enumerates the JSO modules developed during this thesis that
allow TRUNK to exploit partial separability:

• ExpressionTreeForge.jl [131], described in Section 6.3, automatically detects the partially-
separable structure from a NLPModel. It supports pure Julia’s models, JuMP mod-



126

els [88]1, as well as the native Julia type Expr;

• PartitionedStructures.jl [132], elaborated in Section 6.4, describes the partitioned struc-
ture implementations related to partitioned quasi-Newton approximations or partitioned
gradients;

• PartitionedVectors.jl [133], detailed in Section 6.5, introduces the PartitionedVector
type and its related methods, which are essential for TRUNK and the truncated
conjugate gradient solvers. PartitionedVector and its related methods are based on
PartitionedStructures.jl.

• PartiallySeparableNLPModels.jl [7] combines these modules (see Figure 6.1) to: detect
partial separability, allocate properly the partitioned data structures and exploit partial
separability to compute derivatives. As a result, it encompasses all the (limited-memory)
partitioned quasi-Newton models with respect to the NLPModel’s interface.

As a user, running TRUNK on any model from PartiallySeparableNLPModels.jl performs a
trust-region method exploiting partial separability.

6.3 ExpressionTreeForge.jl

ExpressionTreeForge.jl is a toolbox dealing with an expression tree, which, in our unconstrained
optimization context, represents the objective function. Each of ExpressionTreeForge’s
algorithms is based on a tree interface that JuMP’s models adhere to. For any supported
tree, each leave is either a variable or a constant node, while intermediate nodes (including
the root) represent operators. ExpressionTreeForge provides several tree-walking algorithms,
illustrated by Figure 6.2 and Figure 6.3, which offer:

• an automatic detection of f partial separability, by recursively removing the addi-
tive operators from the root of the expression tree. Then, it identifies the subtrees
corresponding to element functions fi : Rn → R;

• the inference of Ui and ni from each fi to define the reduced dimension element function
f̂i(x̂i) = fi(x), x̂i := Uix ∈ Rni . Ui selects the subset of variables appearing in fi as a
linear operator, each row of which is a Euclidean basis vector. In practice, Ui is a vector
of integers indicating the indices of the variables that parameterize fi. Consequently,
the variable indices of fi expression tree are adjusted according to Ui to construct f̂i.
For example, fi(x) = xixi+1 becomes f̂i(x1, x2) = x1x2 with Ui = [i, i+1];

1a popular Julia modelling language
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Figure 6.1 Abstract type and interface dependencies of JSO related to partial separability.
The text and the boxes in red denote the code developed during the thesis.
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• bound propagation and convexity detection for all nodes of an expression tree, e.g.
f̂i. Initially, leaf nodes are set to the bounds (−∞,+∞) to fit the unconstrained
optimization requirement. The bounds are then propagated to every intermediate node
based on specific operator rules depending on the bounds of the children. Convexity
detection follows a similar strategy, guided by operator rules from Fourer et al. [63],
based on both children bounds and children convexity statuses. For example, suppose
f(y) = ey, then f ◦ g is convex only if g is convex [63].

The illustrations of the ExpressionTreeForge algorithms are based on the following example:

f(x) = (x1x3)4

x2
2 + 1

+ (x3x5)4

x2
4 + 1

+ exp((x1 + x3 + x5)2), (6.1)

for which the tree-walking algorithms are illustrated in Figure 6.2 and in Figure 6.3. Their
results are:

f̂1(y1, y2, y3) = f̂2(y1, y2, y3) = (y1y3)4

y2
2 + 1

,

f̂3(y1, y2, y3) = exp((y1 + y2 + y3)2),

U1 =


e⊤

1

e⊤
2

e⊤
3

 , U2 =


e⊤

3

e⊤
4

e⊤
5

 , U3 =


e⊤

1

e⊤
3

e⊤
5

 .
, (6.2)

ExpressionTreeForge.jl identifies the partially-separable structure and returns all the reduced-
size f̂i as well as their respective Ui. All f̂i and Ui are transmitted to ensuing modules to
allocate partitioned data structures and define a partially-separable model.

6.4 PartitionedStructures.jl

PartitionedStructures.jl defines the partitioned vectors and the partitioned matrices, which
are the data structures related to the partitioned nature of the derivatives (3.7). Partitioned
data structures store separately either the element-vector contributions or the element-matrix
contributions. A partitioned vector can also represent the linear applications Uiv, ∀ 1 ≤ i ≤ N ,
or the result of a partitioned-matrix-vector product (more details in Section 6.5). The
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partitioned derivatives of f and Uiv from of f (6.1) are of the form:

∇f(x) =




︸ ︷︷ ︸
U

⊤
1 ∇f̂1

+




︸ ︷︷ ︸
U

⊤
2 ∇f̂2

+




︸ ︷︷ ︸
U

⊤
3 ∇f̂3

=




,




︸ ︷︷ ︸

v

:




︸ ︷︷ ︸
v̂1=U1v




︸ ︷︷ ︸
v̂2=U2v




︸ ︷︷ ︸
v̂3=U3v

and

∇2f(x) =




︸ ︷︷ ︸

U
⊤
1 ∇2

f̂1U1

+




︸ ︷︷ ︸

U
⊤
2 ∇2

f̂2U2

+




︸ ︷︷ ︸

U
⊤
3 ∇2

f̂3U3

=




,

where yellow, red and blue represent respectively the contributions from f̂1, f̂2 and f̂3. Other
colors express the combination of several element contributions for a single partial derivative.

Additionally, PartitionedStructures.jl provides subroutines for performing: basic operations
on partitioned vectors, the partitioned-matrix-vector product and the partitioned quasi-
Newton updates. To facilitate their utilization, all partitioned quasi-Newton updates have a
homogeneous interface, relying on a partitioned matrix and two partitioned vectors representing
respectively all ŷi,k := ∇f̂i(x̂i,k+1)−∇f̂i(x̂i,k) and all ŝi := Uis.

A partitioned object (i.e. vector or matrix) consists of an ordered set of element objects and
an index table that indicates which element object affects which xj, 1 ≤ j ≤ n. A partitioned
vector stores a Julia Vector in case it must build in-place its associated vector, e.g., build
∇f from all ∇f̂i. The storage of such a Vector of size n is negligible as ∑N

i=1 ni ≥ n by
definition. Similarly, a partitioned quasi-Newton operator can aggregate element contributions
to form either a SparseMatrix or a Matrix, primarily for tests. The main distinction between
partitioned objects lies in the nature of their element objects, which can be: a Vector, a
symmetric Matrix, or a QuasiNewtonLinearOperator. In addition, each element object
maintains a list of variable indices, equivalent to Ui. Therefore, the memory footprint of the
partitioned structures is not directly related to n like regular vectors or symmetric matrices.
The memory storage required for a partitioned vector is Θ

(∑N
i=1 ni

)
while a partitioned

matrix takes Θ
(∑N

i=1
1
2ni(ni + 1)

)
and its limited-memory variant needs Θ(∑N

i=1 2mni).
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The simplest way to instantiate partitioned structures is by indicating the variable indices
used by each f̂i, i.e. Ui. This can take the form of a nested Vector of integer U encompassing
every Ui. In the case of (6.2), for which U1, U2, U3 : R5 → R3, U can be defined as follows:

U = [U1,U2,U3], where U1 = [1,2,3], U2 = [3,4,5], U3 = [1,3,5].

The value n = 5 can be added manually or automatically detected from the maximum value
contained within all Ui. The tree walks of ExpressionTreeForge.jl detailed in Section 6.3 and
displayed in Figure 6.2 provide all the information needed to create U , and therefore, any
partitioned object.

6.5 PartitionedVectors.jl

PartitionedStructures.jl defines the partitioned data structures, in particular, the partitioned
vectors. As PartitionedStructures.jl define an abstract type for all partitioned structures, a
partitioned vector cannot be directly a subtype deriving from AbstractVector. Therefore,
PartitionedVectors.jl wraps a partitioned vector from PartitionedStructures.jl into a new
type PartitionedVector to fulfill the AbstractVector interface from Julia. Ultimately, the
type PartitionedVector must support: in place broadcasted instructions and satisfy the
quasi-Newton update interface to run properly the TRUNK and the truncated conjugate
gradient methods. As TRUNK considers all ∇f, y and x, s from the Algorithm 2.1.2 as a
single type deriving from AbstractVector, a PartitionedVector must have two distinct
usages:

• Usage 1: storing distinct element vector values. In this case, the associated vector is
built by aggregating the element vectors using U⊤

i . For example, the gradient vector
∇f = ∑N

i=1 U
⊤
i ∇f̂i accumulates element-vector contributions ∇f̂i with U⊤

i to form ∇f .

• Usage 2: each element vector represents the linear applications Ui onto v ∈ Rn, i.e.,
v̂i := Uiv, ∀ 1 ≤ i ≤ N . For example, if we consider Ui from (6.2) and x = (1, 2,

√
2, π, 5),

then the PartitionedVector of usage 2 results in x̂1 = (1, 2,
√

2), x̂2 = (
√

2, π, 5), and
x̂3 = (1,

√
2, 5). Unlike the first usage, the associated vector of the second usage does

not aggregate element contributions through U⊤
i . Instead, if needed, the original vector

v can be reconstructed by extracting every component vj from element vectors for which
Uiej ̸= 0.

The first usage is mandatory to perform partitioned quasi-Newton updates, by computing ŷi

from ∇f̂i, as well as storing all B̂i,kv̂i results. The second usage is used to track the current
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point x and step s, as well as performing element-matrix-vector product v̂i = Uiv. Both
usages must coexist during TRUNK and conjugation-gradient iterations. Additionally, for
running TRUNK and conjugate gradient methods without additional runtime allocations,
both usages necessitate in-place broadcasted methods, notably: axby!, axpby! and mul!
which are discussed later.

To fulfill the AbstractVector interface, the indexing operation pv[i] returns the i-th element
vector. For example, pv[i] = v̂i sets the i-th element vector of pv to the value of v̂i, where
v̂i is either an element vector or a Vector of size ni. Additionally, basic element-wise
operations such as addition, subtraction, and scalar multiplication are implemented for
PartitionedVectors, enabling operations like -(pv[1] + pv[1]) == -2 * pv[1].

A broadcasted operation applied onto a PartitionedVector is applied element-vector by
element-vector. For example, pv1 .= pv2 and pv .= pv0 ; pv .= 2 .* pv ; pv[i] == 2
.* pv0[i] are valid. However, two requirements are needed to perform properly broadcasted
operations with PartitionedVectors, which are: all the PartitionedVectors involved must
have the same usage (1 or 2) and an identical partitioned structure, i.e., identical Ui, ∀i.
Broadcasted operations with PartitionedVectors of different usages may lead to an unclear
semantic with a result that does not correspond to any meaningful partitioned operation.
For example, if partitioned_gradient collects all ∇f̂i (usage 1) and Uiv collects all Uiv

(usage 2), then partitioned_gradient .+ Uiv sets every element vector to ∇f̂i +Uiv which
is generally irrelevant.

Also, broadcasting a constant must be used with care since pv .= 1 sets every element vector
pv[i] to (1, 1, ..., 1)⊤ ∈ Rni . This makes sense for a PartitionedVector of usage 2, i.e.
v̂i = Uiv, where

Ui (1, 1, ..., 1)⊤︸ ︷︷ ︸
∈Rn

= (1, 1, ..., 1)⊤︸ ︷︷ ︸
R

ni

,

for all i. However, for a PartitionedVector of usage 1, operations like .= α or .+ α, where
α is a scalar, do not have a clear meaning in terms of partitioned operations. The only
exception is pv .= 0, which can be useful for initializing a PartitionedVector to zeros
before populating it with actual values, e.g., pv = similar(pv0) ; pv .= 0.

PartitionedVectors of both usages support scalar product and norm methods, which are
essential for the trust-region method (see Algorithm 3.2.1 and Algorithm 4.1.1). Some
of these methods, such as the scalar product between PartitionedVectors, may exploit
partial separability depending on the usage of the PartitionedVectors. Let’s consider
v := ∑N

i=1 U
⊤
i v̂i and a Vector w represented respectfully by a PartitionedVector of usage 1
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and 2. In such case, the scalar product v⊤w

v⊤w = (
N∑

i=1
U⊤

i v̂i)⊤w =
N∑

i=1
v̂⊤

i Uiw︸︷︷︸
usage 2

=
N∑

i=1
v̂⊤

i ŵi,

can be computed by accumulating the scalar products of every pair of element vectors v[i]
and w[i]. If both v and w are of the same usage, then it is easier to calculate the scalar
product directly from the vector represented by either v or w, as explained earlier. Afterwards,
the scalar product computes v⊤w directly on the assembled vectors. Similarly, the norm is
computed from the Vector represented by the PartitionedVector.

The next critical step is how the conjugate gradient method from Krylov.jl [111] exploits the
partitioned-matrix-vector product with PartitionedVectors:

Bv =
N∑

i=1
U⊤

i B̂iUiv.

Computing Bv requires first v[i] = v̂i = Uiv, which is known if v is a PartitionedVector of
usage 2. Then, the linear application of B̂i is applied to v[i] to get Bv[i] .= B̂iv[i]. Finally,
the results are aggregated into Bv = ∑N

i=1 U
⊤
i Bv[i], making Bv a PartitionedVector of

usage 1. Even though Bv is of usage 1, the solution of the trust-region subproblem s is of
usage 2, since it must provide ŝi = Uis during the partitioned quasi-Newton update. To
transfer Bv to s safely, we overload the axpy!(α,x,y) method used in Krylov.jl, which is
equivalent to y .= x .* α .+ y, α ∈ R, when y is of usage 1 and x is of usage 2. The
overloaded axpy! method builds the associated Vectors of both Bv and s and then applies
axpy! on both Vectors to store the result in s.

Note that axpy! and axpby!, i.e., y .= x .* α .+ y .* β, perform more computation
for PartitionedVectors than for Vectors. As a matter of fact n ≤ ∑N

i=1 ni, therefore,
dispatching axpy! or axpby! across element vectors requires more computational effort than
for a Vector. Additionally, the execution of a matrix-vector product does not scale linearly
with the size of the data structure. Similarly, applying one given operation on N vectors of
size ni is slower than applying the same operation on a single vector of size ∑N

i=1 ni.

6.6 PartiallySeparableNLPModels.jl

PartiallySeparableNLPModels.jl articulates the modules presented in Sections 6.3 to 6.5 to
define a partially-separable model or a partitioned quasi-Newton model. First, Expression-
TreeForge.jl detects the partially-separable structure. Then, PartitionedStructures.jl and
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PartitionedVectors.jl allocate the adequate partitioned structures. Additionally, PartiallySepa-
rableNLPModels.jl manages the computation of partitioned derivatives with reverse automatic
differentiation applied to each element function. Therefore, as mentioned in Section 3.5,
PartiallySeparableNLPModels.jl detects the duplication of element functions, such as f̂1 and
f̂2 in (6.2), to minimize the number of tapes required for automatic differentiation. As a
result, only M ≤ N distinct element functions remain, paired with a matching between Ui

and those M element functions. Additionally, if the estimated memory of the partitioned
matrix becomes too large, i.e., either ∑N

i=1
ni(ni+1)

2 or ∑N
i=1 mni is larger than 1

2n(n+ 1), then
the partially-separable structure is ignored. In practice, it means reverting to an unstructured
problem where f̂1 = f : Rn → R and U1 = I ∈ Rn×n. By making those adjustments, the
memory footprint as well as the complexity of v → Bkv is reduced.

To summarize, PartiallySeparableNLPModels.jl defines several partitioned models, each
approximating differently the Hessian:

• PBFGSNLPModel, PSR1NLPModel, PCSNLPModel, or PSENLPModel use a dense
quasi-Newton matrix B̂i,k ≈ ∇2f̂i as described in Section 3.2;

• PLBFGSNLPModel, PLSR1NLPModel, or PLSENLPModel use a new limited-memory
quasi-Newton operator v̂i → B̂i,kv̂i ≈ v̂i → ∇2f̂i(x̂i,k)v̂i as introduced in Section 4.1;

• PSNLPModel exploits both reverse and forward automatic differentiation to compute
separately element Hessian-vector products ∇2f̂i(x̂i,k)Uiv before it aggregates those
contributions to build ∇2fv.

As a result, partitioned quasi-Newton models specialize TRUNK into as many partitioned
quasi-Newton solvers as there are models.

6.7 KnetNLPModels.jl

6.7.1 Summary

KnetNLPModels.jl is a Julia [5] module integrated in JSO. It is designed to bridge the
gap between JSO optimization solvers and the deep neural network modeling framework
Knet.jl [156]. While it is possible to write and integrate solvers directly into Knet.jl, separating
them into standalone packages offers advantages in terms of modularity, flexibility and
ecosystem interoperability. The decoupling of the modeling tool from the optimization solvers
allows users and researchers to employ a wide variety of optimization solvers, including a
range of existing solvers not traditionally applied to deep network training such as R2 [10, 11].
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Knet.jl, as a standalone framework, does not have built-in interfaces with general optimization
frameworks like JSO. However, it allows users to model deep neural network architectures
and combine them with a loss function and a dataset from MLDataset.jl [95]. In particular, it
provides pre-defined neural layers, such as dense layers, convolutional layers, see Section 2.2.2,
and other complex layers. Additionally, it allows users to initialize the weights using various
methods, such as uniform distribution. Moreover, Knet.jl offers a wide range of loss functions,
e.g., negative log likelihood (2.2.3), and provide the flexibility for users to define their own loss
functions according to their specific needs. Furthermore, it enables an efficient evaluation of
the neural network outputs, the sampled loss and its derivatives, on both CPU and GPU. This
flexibility allows the weights to be represented as either a Vector (for CPU) or a CUVector
(for Nvidia GPU), with support for multiple floating-point systems. In addition, Knet.jl
facilitates the definition of minibatches as iterators over the dataset, enabling efficient batch
processing during training. This can also be used to evaluate the accuracy of the trained
neural network on the test dataset. Lastly, it naturally supports various stochastic optimizers,
such as: stochastic gradient [96], Nesterov acceleration [112], Adagrad [50], and Adam [93],
which are used to produce numerical results.

KnetNLPModels.jl adopts the triptych of architecture, dataset, and loss function to model
a neural network training problem as an unconstrained optimization problem with respect
to the NLPModel’s interface. Consequently, those models can be solved using first- and
second-order solvers from JSOSolvers.jl. However, the JSO solvers are deterministic. To
palliate this issue, they integrate a callback mechanism that allows the user to change the
training minibatch and its size at each iteration, producing stochastic solvers. Lastly, note
that contrary to usual stochastic optimizers, all methods in JSOSolvers enforce the decrease
of a certain merit function.

6.7.2 Training a neural network with KnetNLPModels.jl and JSO solvers

The following section illustrates how to train a LeNet architecture [96] using JSO solvers.
Assume that LeNet architecture is defined in Knet.jl using LNLL (2.2.3), the MNIST dataset is
loaded from MLDataset and the minibatch loaders data_train, data_test exist, such as in
the KnetNLPModels.jl documentation. Then, the LeNet model is casted as an KnetNLPModel:

using KnetLNPModels

size_minibatch = 100
LeNetNLPModel = KnetNLPModel(

LeNet;

https://jso.dev/KnetNLPModels.jl/stable/LeNet_Training/
https://jso.dev/KnetNLPModels.jl/stable/LeNet_Training/


136

data_train,
data_test,
size_minibatch,

)

LeNetNLPModel can utilize a solver from JSOSolvers to minimize the loss of LeNetNLPModel
iteratively evaluated with sampled data. The modification of the training minibatch is
accomplished with the callback mechanism incorporated in JSOSolvers, executing the callback
function at the conclusion of each iteration. In the following code snippet, we demonstrate
the execution of the R2 solver with a callback that changes the training minibatch at each
iteration:

using JSOSolvers

max_time = 300. # run at most 5min
callback = (LeNetNLPModel,

solver,
stats) -> KnetNLPModels.minibatch_next_train!(LeNetNLPModel)

solver_stats = R2(LeNetNLPModel; callback, max_time)
test_accuracy = KnetNLPModels.accuracy(LeNetNLPModel)

Another JSO solver that can train LeNetNLPModel is the line search LBFGS solver:

solver_stats = lbfgs(LeNetNLPModel; callback, max_time)

To run a trust-region method, LeNetNLPModel integrates a LSR1 approximation of the Hessian
and run trunk:

using NLPModelsModifiers # contains LSR1Model

lsr1_LeNet = LSR1Model(LeNetNLPModel)
callback_lsr1 =

(lsr1_LeNet, solver, stats) -> KnetNLPModels.minibatch_next_train!(
lsr1_LeNet.model

)
solver_stats = trunk(lsr1_LeNet; callback = callback_lsr1, max_time)
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To summarize, KnetNLPModels provides a user-friendly interface between the deep neural
networks modelled from Knet and the NLPModel’s interface. Furthermore, the introduc-
tion of the callback enables the deterministic solvers from JSO to seamless adapt for the
stochastic context of supervised learning, with the same simplicity of usage. Whereas the
current section focuses on standard neural network architectures, the next section presents
PartitionedKnetNLPModels.jl, an extension of KnetNLPModels.jl dedicated to partitioned
architectures and limited-memory partitioned quasi-Newton training, respectively introduced
in Section 5.2 and Section 5.3.

6.8 PartitionedKnetNLPModels

The idea of this section is to extend a KnetNLPModel into a PartitionedKnetNLPModel
(Partitioned-KnetNLPModel) and implement the limited-memory partitioned quasi-Newton
training presented in Section 5.3. PartitionedKnetNLPModels.jl is an experimental code and
the last module implemented during this thesis. As such, it is not fully integrated in the JSO
ecosystem. Consequently, it cannot benefit from the trust-region solver trunk used previously
for numerical results. Nevertheless, PartitionedKnetNLPModels.jl implements a two ways
backtracking line search, following the Algorithm 5.3.1, which exploits a limited-memory
partitioned quasi-Newton operator Bk to operate.

In order to exploit the partial separability, the first step is to compute the dependencies of
all neural network scores cj, to determine Up,j parametrizing ĥp,j. The computation of the
dependencies is propagated during a forward evaluation of the neural network. Generally, all
neurons depend on the previous layer’s neurons weight dependencies and the weights that
parameterize the layer to which they belong. The only exceptions are the neurons from the
first layer, since they depend only on the input given to the neural network; hence, their weight
dependencies are null, making an empty set initiating the propagation toward the second
layer. During the forward propagation, each neuron accumulates the weights it depends on
from the previous layers. Therefore, at the end of the propagation, each neuron representing
a score cj compiles all the weights on which it depends. The Figure 6.4 illustrates those
dependencies for a simplified PSNet.

In the case of LPSL (5.1a), each element loss function ĥp,j (5.2) relies on the difference of a
couple of scores. Therefore, ĥp,j is parametrized by the union of weight dependencies from
both cj and cp to form Up,j . Note that the partially-separable structure may differ depending
on the partially-separable loss function chosen. Based on those Up,j, the partitioned data
structures needed for Algorithm 5.3.1 are allocated from PartiallySeparableStructures.jl and
PartitionedVectors.jl either to store individually ∇ĥp,j or approximate ∇2ĥp,j . Although those
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c1 c2 c3 c1 c2 c3

Figure 6.4 Weight dependencies for the score c1 (left) and for the element function ĥ1,2 (right)

partitioned data structures and their routines do not fully support GPU computation, most
of the runtime is monopolized by the computation of the partitioned gradient. Partitioned-
KnetNLPModels.jl computes the partitioned gradient by evaluating separately the gradient
of each element function ∇ĥp,j. Despite computing the element function gradients on GPU,
the computation of N = C(C − 1) gradients monopolizes the runtime. As the quality of
the iterates can not compensate the time lost, limited-memory partitioned quasi-Newton
optimizers are not competitive with first order optimizers when only training time is com-
pared. Nevertheless, the numerical results shown Section 5.2.4 illustrate the accuracy over
training dataset epochs for several optimizers which indicate that limited-memory partitioned
quasi-Newton optimizers are competitive with first-order optimizers.

6.9 Conclusion

This chapter enumerates and details the Julia implementations resulting from the research
activities conducted during this thesis. Some Julia modules are designed for unconstrained
nonlinear optimization methods while others focus on deep learning. The former replicate
state-of-the-art numerical results and effectively implement the limited-memory partitioned
quasi-Newton methods. The latter implement the partitioned neural-network architecture,
the partially-separable loss function, and several limited-memory partitioned quasi-Newton
optimizers.

Implementing the concepts related to partial separability revealed difficulties not immediately
apparent in theory. Those limitations are enumerated in Section 7.2, alongside a summary of
this thesis works and future work, which, together, conclude this thesis.



139

CHAPTER 7 CONCLUSION

This manuscript presented several contributions thorough the previous chapters. This last
chapter summarizes the contributions from each chapter in Section 7.1. The Section 7.2
enumerates the remaining limitations. To conclude, the Section 7.3 presents future work for
enhancing the performance of the partitioned quasi-Newton methods.

7.1 Summary of Works

The Chapter 3 is a literature review about the minimization of partially-separable functions
[9]. This chapter provides an overview of several methods from various fields of optimization,
and, gives an idea about what can be expected from exploiting partial separability. It results
in the identification of two shortcomings of partitioned quasi-Newton methods: the lack of an
open source software package detecting automatically the partially-separable structure, and
the absence of a method supporting large element functions.

The Chapter 4 remedies the second shortcoming by enabling partitioned quasi-Newton
methods to manage large element functions [8]. This approach approximates every large
element function Hessian by a quasi-Newton linear operator instead of a dense matrix.
Although the Hessian matrix cannot be directly assembled, the approximated Hessian-vector
product can be evaluated and used effectively by the (truncated) conjugate gradient method
to solve a the quadratic subproblem. Moreover, the memory storage decreases significantly
and one approximated Hessian-vector product requires less computational resource. A global
convergence proof is provided for all newly introduced methods. The numerical results indicate
that the limited-memory partitioned quasi-Newton methods outperform partitioned/limited-
memory quasi-Newton methods for problems having large element functions.

The Chapter 5 applies the concepts akin to partial separability during the supervised training
of a deep neural network [134, 135]. To do so, the Sections 5.2 and 5.3 respectively introduce a
partitioned neural network architecture and a partially-separable loss function. By using both,
the resulting training problem is partially-separable and can be minimized with a limited-
memory partitioned quasi-Newton method. The numerical results obtained outperform the
LBFGS optimizer and are comparable with the state of the art first order optimizers. The
combination of both the partitioned architecture and the partially-separable loss function
leverages a new way to distribute computation, where each worker operates on a neural-
network’s fragment.
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All the pieces of software that produce the numerical results of the previous chapters are
presented in Chapter 6 through several Julia modules. Most of those modules are designed
to minimize general nonlinear partially-separable problems. In particular, they enable the
automatic detection of partial separability and allocate the suitable partitioned data structures
needed for partitioned quasi-Newton methods. Others modules are dedicated to supervised
learning. The first one provides an interface between a neural network training problem
and an optimization model, while the other implements the limited-memory partitioned
quasi-Newton optimizers for training a neural network. Because they bridge the gap between
theory and practice, the implementation of those Julia modules raises some issues that are
enumerated in the next section.

7.2 Limitations

The contributions made in Chapter 4 and Chapter 5 both extend the application cases of
partial separability. However, despite the global convergence proof of the limited-memory
partitioned quasi-Newton methods presented in Section 4.2, a local rate of convergence such
as Griewank [74] would be appreciated. Also, the implementations resulting from the Chapter 4
and Chapter 5 suffer some limitations which are partly described in Chapter 6.

First, the modules exploiting the partial separability to minimize a non-linear problem, e.g.
PartiallySeparableNLPModels.jl, do not have all the features that LANCELOT has. In
particular, they lack:

• constraints support;

• the internal representation of element functions, i.e., fi(x) = f̂ I
i (U I

i x), where U I
i is a

sparse matrix selecting linear combinations of decision variables as internal variables,
see Section 3.1.1;

• a complete merge strategy for problems having a lot of overlapping elements. Such a
strategy may reduce the computational effort during partitioned quasi-Newton methods
by merging elements, and therefore, cutting Bk sparsity. Although Conn et al. [36]
explicit some criteria to choose whether two elements should be merged or not, those
criteria should be adapted to consider the limited-memory quasi-Newton approximations
of the element function Hessians. If preserving the sparsity prevails on reducing the
computational resource for computing v → Bkv, then a new ideal trade-off must be
found.
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Second, the PLSE method implemented in PartiallySeparableNLPModels.jl alternates
between LBFGS and LSR1 operators to best approximate ∇2f̂i(Uixk). The current state
of implementation of quasi-Newton linear operators in JSO obliges the allocation of a new
LBFGS or LSR1 operator whenever it switches from one to another. This implementation
has two drawbacks:

• it induces allocations during runtime, and, it resets the memory of the newly allocated
operator, i.e., it cannot use the pairs (s, y) from previous iterations. The difficulty lies
in the fact that LBFGS and LSR1 do not compute the same vectors for performing the
operator-vector product. LBFGS computes Bs and y, while LSR1 needs y −Bs;

• the current implementation of a quasi-Newton operator does not support GPU compu-
tation. This could be enabled with a block-LBFGS or a block-LSR1 implementation.

Third and more fundamentally, the exploitation of partial separability makes the numerical
routines operate on smaller data structures. In general, in-place routines (at least in Julia)
scale better for large data structures. Hence, in a sequential programming context, splitting
the computation across small data structures increases the computation time. To minimize this
drawback, the partitioned structures, especially the PartitionedVectors, could aggregate
all the element contributions to a single large data structure, e.g., a Vector of size ∑N

i=1 ni,
since most operations are element-wise.

Likewise, the computation of partitioned derivatives scales better for large data structures. In
addition of maintaining supplementary information for computing element derivatives during
the reverse/backward propagation, the use of small tapes is less productive than one bigger
tape. This particularity is true for the modelling modules about nonlinear optimization and
deep learning. The best solution for this problem should be an end-to-end solver with its
own modelling and automatic differentiation tools, implementing routines dedicated to the
partially-separable structure.

Finally, the biggest upgrade that could help partitioned quasi-Newton methods to reach new
heights would be the replacement of the truncated conjugate gradient to solve the partitioned
quadratic subproblem. In spite of exploiting the partitioned structure through (approximated)
Hessian-vector products to operate in parallel, it requires synchronization at each conjugate
gradient iteration. The next section presents topics for future research, among which, an idea
for replacing the conjugate gradient method.
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7.3 Future Research

The several issues that the previous section addresses can all become future works. In
particular, the features available in LANCELOT and currently missing could all be implemented
by following the LANCELOT literature [33], summarized in Section 3.3.3.1 and Section 3.6.3.
The rest of this section is decomposed in three independent themes, each improving the
numerical effectiveness of partitioned quasi-Newton methods.

This first theme is about best modelling the partially-separable problems by a directed acyclic
graph, which is closely related to automatic differentiation. It induces to work closely with a
modelling language, such a JuMP [88], and adapt the directed acyclic graph to best exploit
partial separability. In particular, it could factorize the identical element functions from the
directed acyclic graph and generate a dedicated tape for the reverse automatic differentiation.
Each vertex may have more than one adjoint value computed, i.e., one adjoint value for each
element function using this vertex. Each variable vertex may have several adjoint values,
corresponding to the element partial derivative contributions, whose sum is the total partial
derivative. A direct extension would be the modelling of a (partitioned) neural network with
this tool that could resolve the partitioned gradient issue.

The second theme focuses on the efficiency of the modules that allocate the partitioned data
structures and their routines. To do so, the partitioned data structures must be tailored for
the architecture on which they will be used, either a CPU or a GPU. A novel implementation
of a PartitionedVector could use a Vector of size ∑N

i=1 ni where each element contribution
is characterized by range of size ni. This approach can be efficiently applied to GPU, by
replacing the Vector to its GPU counterpart, e.g. CuVector (NVIDIA-GPU Vector). The
partitioned matrix may also be tailored for GPU computation by replacing the Matrix with
a CuMatrix. For larger element functions, the limited-memory quasi-Newton operators from
JSO must be adapted for GPU. Once the development of a block-LBFGS implementation
functioning with GPU is done, the limited-memory partitioned quasi-Newton operators will
fully leverage GPU computation.

The last theme is the replacement of the (truncated) conjugate gradient method to solve
a partitioned quadratic subproblem. As the conjugate gradient exploits the partitioned
structure to eventually distribute its computation, this new method must be parallel. Ideally,
this method requires less synchronization than the conjugate gradient. To do so, a two
steps algorithm, similar to Okoubi and Koko [116], could be devised. First, it would solve
the quadratic element subproblems and it would aggregate the element solutions found.
Unlike Okoubi and Koko [116], which utilize the Lipschitz constant of the element function,
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the element quadratic approximation m̂i,k (3.3.1) exploits the element Hessian approximation
B̂i,k,

The minimization of each m̂i,k can be done by several methods, e.g., the (truncated) conjugate
gradient. However, the aggregation of element solutions is not the barycenter of element
solution contributions, such as in [116], but a new quadratic subproblem for every overlap
between element solutions. As the definition of this subproblem is technical, a simple example
aggregating two element solutions is fully detailed in Appendix B. This simple scheme can be
applied recursively onto every overlap between elements to produce a solution for the total
quadratic subproblem mk. Depending on the partially-separable structure, i.e., how element
functions overlap, an order of resolution must be found. If several element functions overlap
each others, then multiple aggregation subproblems can be carried out in parallel. Once they
are done, the same process applies recursively onto the aggregated element solutions that still
overlap.
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APPENDIX A PARTIALLY-SEPARABLE PROBLEM STRUCTURES

This appendix details in Table A.1 the information of the partially-separable problems
considered producing the performance profiles Section 4.3. The linear and constant element
functions are merged together, and are therefore not counted. The term general is used for
element functions which are not quadratic, and for element functions which are neither convex
nor concave. In order to restrain column’s heading sizes, consider:

• med for mean element dimension;

• mad for maximal element dimension;

• mic for minimal elemental contribution (for one decision variable);

• mec for mean elemental contribution (for one decision variable);

• mac for maximal elemental contribution (for one decision variable).
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Table A.1 Partial separability details of the partially-separable problems set

name n N M quadratic general convex concave general med mad mic mec mac
arwhead5000 5000 9999 3 0 4999 9999 5000 0 1.5 2 2 3 4999
bdqrtic5000 5000 9992 2 4996 4996 9992 0 0 3.0 5 1 6 4996
brybnd5000 5000 5000 7 0 5000 0 0 5000 7 7 2 7 7

chnrosnb5000 5000 9998 5000 4999 4999 4999 0 4999 1.5 2 1 3 3
clplatea5000 4900 19045 5 9522 9522 19045 1 0 2 2 0 7.7 8
clplateb4900 4900 19114 5 9522 9522 19114 70 0 2 2 0 7.7 8
clplatec4900 4900 19046 7 9522 9522 19046 2 0 2 2 0 7.7 8

cragglvy4900 4900 12245 5 2449 9796 7347 0 4898 1.6 2 2 4 4
dixmaane4900 4899 9799 6534 6532 3266 4900 1 4899 1.5 2 3 3.0 3
dixmaanf4899 4899 14697 6535 6532 8164 4900 1 9797 1.7 2 4 5 5
dixmaang4899 4899 14697 6535 6532 8164 4900 1 9797 1.7 2 4 5 5
dixmaanh4899 4899 14697 6535 6532 8164 4900 1 9797 1.7 2 4 5 5
dixmaani4899 4899 9799 6534 6532 3266 4900 1 4899 1.5 2 3 3 3
dixmaanj4899 4899 14697 6535 6532 8164 4900 1 9797 1.7 2 4 5 5
dixmaank4899 4899 14697 6535 6532 8164 4900 1 9797 1.7 2 4 5 5
dixmaanl4899 4899 14697 6535 6532 8164 4900 1 9797 1.7 2 4 5 5

dixmaanm4899 4899 9799 9799 6532 3266 4900 1 4899 1.5 2 3 3 3
dixmaann4899 4899 14697 14697 6532 8164 4900 1 9797 1.7 2 4 5 5
dixmaano4899 4899 14697 14697 6532 8164 4900 1 9797 1.7 2 4 5 5
dixmaanp4899 4899 14697 14697 6532 8164 4900 1 9797 1.7 2 4 5 5
dixon3dq4899 4899 4899 2 4899 0 4899 0 0 2 2 1 2 2

dqdrtic4899 4899 4899 5 4899 0 4899 0 0 1.0 1 1 1.0 1
dqrtic4899 4899 4899 4899 0 4899 4899 0 0 1.0 1 1 1.0 1

edensch4899 4899 14695 4 4898 9796 9797 1 4898 1.3 2 2 4 4
engval14899 4899 9797 3 0 4898 9797 4899 0 1.5 2 1 3 3
errinros4899 4899 9796 4899 4898 4898 4898 0 4898 1.5 2 1 3 3

extrosnb4899 4899 4899 2 1 4898 1 0 4898 2 2 1 2 2
fletcbv24899 4899 14698 5 4900 4899 9799 4899 4899 1.3 2 4 4.0 4
fletcbv34899 4899 14698 4 4900 9798 4900 0 9798 1.3 2 4 4.0 4
freuroth4899 4899 9796 4 0 9796 0 0 9796 2.0 2 2 4 4

genhumps4899 4899 9797 3 4899 4898 4899 0 4898 1.5 2 2 3 3
genrose4899 4899 9797 3 4898 4898 4899 1 4898 1.5 2 1 3 3

genrose-nash4899 4899 9797 3 4898 4898 4899 1 4898 1.5 2 1 3 3
morebv4899 4899 4899 4899 0 4899 0 0 4899 3 3 2 3 3

ncb204899 4899 14667 4893 10 9768 9788 4889 4879 7.3 20 1 21.8 23
noncvxu24899 4899 9798 6 4899 4899 4899 0 4899 3 3 4 6 10
noncvxun4899 4899 9796 6 4898 4898 4898 0 4898 3 3 2 6 10

nondia4899 4899 4899 2 1 4898 1 0 4898 2 2 1 2 4899
nondquar4899 4899 4899 2 2 4897 4899 0 0 3 3 2 3 4898
penalty34899 4899 2454 6 2449 4 2450 1 4 9 4899 3 4.5 5
powellsg4899 4896 4896 4 2448 2448 4896 0 0 2 2 2 2.0 2

quartc4896 4896 4896 4896 0 4896 4896 0 0 1 1 1 1.0 1
sbrybnd4896 4896 4896 4896 0 4896 0 0 4896 7 7 2 7 7

schmvett4896 4896 14682 3 0 14682 0 0 14682 2.3 3 2 7 7
sinquad4896 4896 4896 3 0 4896 1 0 4895 3 3 1 3 4896
sparsine4896 4896 4896 4896 0 4896 0 0 4896 6 6 4 6 9
sparsqur4896 4896 4896 4896 0 4896 4896 0 0 6 6 4 6 9
spmsrtls4896 4897 9791 9791 0 9791 0 0 9791 2.2 3 3 4.3 5
srosenbr4897 4896 4896 2 2448 2448 2448 0 2448 1.5 2 1 1.5 2
tointgss4896 4896 4894 2 0 4894 0 0 4894 3.0 3 1 3 3
tquartic4896 4896 4895 2 1 4894 1 0 4894 2 2 0 2 4895

tridia4896 4896 4896 4896 4896 0 4896 0 0 2 2 1 2 2
vardim4896 4896 4898 3 4897 1 4898 0 0 3 4896 3 3.0 3
woods4896 4896 7344 5 4896 2448 4896 0 2448 1.6 2 2 2.5 3
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APPENDIX B CONJUGATE GRADIENT REPLACEMENT

The formulation of a partitioned subproblem is clearly described by Okoubi and Koko [116],
explicit by (3.34). Okoubi and Koko solve the partitioned subproblem in two steps. First,
they solve separately the element subproblems and then aggregate their solutions to find
a global solution. While the solution proposed by Okoubi and Koko [116] to solve element
subproblems require only gradient information, it expresses an aggregation procedure taking
the barycenter of element subproblem solutions. A similar approach can be applied for a
partitioned quadratic subproblem.

In general, the exact solution of the partitioned linear system is not correlated to the element
linear system solutions, even if all element matrices are positive definite. Nevertheless, both
a line search or a trust-region subproblem only require the solution to be either a descent
direction or a step comparable to the Cauchy point. Hence, it falls down to: formulate the
partitioned quadratic subproblem, a solver for the element subproblems and an aggregation
procedure that results in a total solution holding sufficient properties for convergence.

The rest of the section illustrates through a simple example an alternative method to solve a
partitioned quadratic subproblem. The function f sums two overlapping element functions
fi : Rni → R and fj : Rnj → R. At the k-th trust-region iteration, an element quadratic
suproblem is:

minŝl,k
f̂l(x̂l,k) +

(
∇f̂l(x̂l,k)

)⊤
ŝl,k + 1

2 ŝ
⊤
l,kB̂l,kŝl,k

s.t. ∥ŝl,k∥ ≤ ∆l,k

which can be solved with the truncated conjugate gradient method for example and returning
either ŝi,k or ŝj,k.

By setting one element solution, e.g. ŝi,k, as an immutable part of the final solution, a new
subproblem arise for minimizing the total quadratic subproblem. This aggregation process
seeks to find ŝj,k[j]

, i.e., the remaining variables of ŝj,k left to be minimized, the ones that are
not overlapping with ŝi,k. The total quadratic subproblem considering that s aggregates the
result of ŝi,k and ŝj,k[j]

∈ Rn−ni is

min
ŝj,k[j]

∈Rn−ni

(∑N
l=1 U

⊤
l ∇f̂l(x̂l,k)

)⊤
s+ 1

2s
⊤
(∑N

l=1 U
⊤
l B̂lUl

)
s

s.t. ∥ŝj,k[j]
∥ ≤ ∆k

with s =
 ŝi,k

ŝj,k[j]

 .
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Due to ŝi,k being a constant, several terms are constant, simplifying the problem to

min
ŝj,k[j]

∈Rn−ni

(
2ŝ⊤

i,k[j]
B̂j[i,j] +∇f̂j(x̂j,k)[j]

)⊤
ŝj,k[j]

+ ŝ⊤
j,k[j]

B̂j[j,j] ŝj,k[j]

s.t. ∥ŝj,k[j]
∥ ≤ ∆k

, (B.1)

where ŝi,k[j]
= ŝj,k[i]

is the part of ŝj,k overlapping and fixed by ŝi,k. ∇f̂j(x̂j,k)[j] represents
the element gradient components that ŝj,k[j]

interacts with in ∇f(xk)⊤s and B̂j is block-
decomposed as

B̂j =
 B̂j[i,i] B̂j[i,j]

B̂j[j,i] B̂j[j,j]

 where
B̂j[i,i] ∈ R

(nj−n+ni)×(nj−n+ni), B̂j[j,j] ∈ R
(n−ni)×(n−ni),

B̂j[i,j] = B̂⊤
j[j,i] ∈ R

(nj−n+ni)×(n−ni).

B̂j[i,i] gathers the components of B̂j overlapping with B̂i ; it is a vanishing constant term
in (B.1). B̂j[i,j] and B̂⊤

j[j,i] are multiplied by both ŝi,k[j]
and ŝj,k[j]

, making 2ŝ⊤
i,k[j]

B̂j[i,j] +
∇f̂j(x̂j,k)[j] the linear factor of the aggregation problem. Finally, the quadratic terms of (B.1)
result from B̂j[j,j] . This aggregation problem (B.1) can also be solved with the truncated
conjugate gradient method.

The investigation on several instances of (B.1) shows potential. Frequently, the value found
by this aggregated solution for the quadratic subproblem is (a lot) smaller than the one
found from the unstructured conjugate gradient method. This scheme could be extended for
more complex partitioned quadratic problems by solving recursively a combination of two
element suproblems. However, several issues remain, such as: whether choose ŝi,k or ŝj,k as the
initial solution, what properties the structure need to verify for ensuring a proper recursion
between element solutions, and a thorough investigation about the impact of the overlapping
size between elements must be done. Nonetheless, a trust-region method incorporating
this alternative would benefit from the convergence proof of the partitioned trust-region
method [37] with few efforts.
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