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Notations

In this manuscript an effort is made to provide a uniform notation with other computer vision

references [136]. Thus, scalars s are in mixed case italic font, vectors vvv are given in lower case

bold while matrices MMM are upper case bold. To access vectors or matrices elements, we will use

accolades notations by specifying their indices MMM[i, j] with i, j ∈ Z+
0 . Inferred elements will be

denoted with "̂", thus, predicted values âaa will be compared with their ground-truth measurements

aaa.

Z Integers numbers

Z+
0 Positive integers in 0,1,2, ...

R Real numbers

vvv ∈ Rn Vector of size n

MMM ∈ Rn×m Matrix of size n×m

|a|=
√

a2 Absolute value of a ∈ R

||aaa|| Norm of aaa

ttt 3D translation vector

RRR 3D rotation matrix

sss 3D scale vector ∈ R3

xxx = (ttt,RRR) 3D rigid body
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Introduction

1 Motivations and research problems

Adolescent Idiopathic Scoliosis (AIS) is a progressive disease, with multiple forms, mostly af-

fecting young women and evolving throughout the period of growth. 1% to 3% of the population

is concerned [147]. It causes lateral deformations of the spine resulting in changes in the global

shape of the trunk and its posture. For the most severe cases, this condition impacts the respiratory

functions, causes back pain, discomfort, posture asymmetry and other disorders in locomotion.

Currently, diagnosis and analysis are based on clinical examinations and the analysis of X-rays

showing spinal deformities [75].

The current recommendation is the use of an orthopaedic brace [114, 147] to stop the progression

of the sideways curvatures. In the most severe cases of scoliosis, or in the event of orthopedic brace

failure, surgery is indicated to correct vertebral rotation anomalies. These treatments are subject-

specific and rely primarily on a precise description of the patient’s anatomy obtained through

clinical analysis and X-rays. In addition, due to the progressive nature of scoliosis, a regular

follow-up is required. However, radiography raises several concerns, mainly due to the recurrent

radiation exposure, thereby increasing the likelihood of cancer development [78].

However, scientific literature show promising results in the detection and monitoring of scoliosis

from non-ionizing acquisition methods [135]. These methods are based on superficial measure-

ments of the torso that can be correlated with spinal deformities. Yet, they cannot enable the

evaluation of the progression of scoliotic curvatures. However, recent methods, combining outer

images and deep-learning algorithms, have been developed to correlate internal and external back

characteristics [80, 146]. These methods have focused so far on a 2D and partial characterization

of the spinal deformations, while scoliosis is inherently a three-dimensional condition [130].

Beside the static analysis of the torso, motion capture (mocap) analysis is also investigated as

a non-ionizing approach highlighting dynamic patterns in AIS patients [134]. Motion capture

provides a superficial analysis of the patient’s motion and does not directly capture the actual dy-

namics of the spine inside the body. Several works have investigated how to describe the spinal

alignments in motion by acquiring 3D trajectories of mocap markers positioned on the palpable

spinous process of the vertebrae [101, 122, 125]. However, these methods are validated towards

Adult Spinal Deformity (ASD), without back surface representation, and cannot be easily imple-

mented on young patients with AIS.

The promising results provided by the recent literature demonstrate a strong correlation between

internal characteristics of the spine and external static and dynamic measurements of the back.
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The objective of this thesis is to quantify the correlation between these superficial measurements

and the 3D shape of the scoliotic spine in individuals with AIS. This research aims to contribute

to the development of safe, non-invasive and non-ionizing methods for the early detection and

monitoring of idiopathic scoliosis through static and dynamic assessments.

2 Challenges

The various aspects of this thesis require detailed and precise acquisitions of both the internal

(spine) and external anatomy (skin) of the patient. While the main part of the state-of-the-art relies

on 2D acquisitions, addressing these issues in three dimensions demands specific techniques and

methods.

For the spine, the recent advancements in biplanar X-ray imaging, notably through technologies

like EOS systems (EOS Imaging, Paris, France), now enable a detailed 3D reconstruction of the

vertebrae alignments and geometries [62]. These methods are also adapted to address scoliosis in

the young population with a lower radiation emission compared to conventional 3D acquisition

methods such as computed tomography [52].

However, for the skin, the reconstruction from X-rays remains challenging [100], especially for

scoliotic patients whose trunk can be significantly deformed. Low-cost 3D scanning tools have

become essential as they allow for fine acquisition of the body’s surface [56, 104]. Nevertheless,

the capture of the spine and skin are usually performed in different conditions (acquisition tool,

time, environment, etc.) leading to difficulties in their registration, especially concerning posture

aspects [18].

In addition, this thesis aims to investigate the dynamic aspects of idiopathic scoliosis, made fea-

sible through the collection of marker-based motion capture data. In addition, to the difficulties

in aligning such data with the surface and radiographic modalities mentioned earlier, the existing

state-of-the-art in this field is currently sparse, without consensus, when it comes to the dynamic

characteristics of adolescent scoliosis.

Another challenge involves the recruitment of a sufficient number of patients, encompassing a

diverse range of phenotypes (sexe, age, scoliosis condition), to create a database for the develop-

ment and validation of our methods. This is particularly complicated since the required data are

themselves challenging to obtain for a single patient. It should be noted that our data collection

has been impacted by the global health crisis caused by the Covid-19 pandemic. In addition, there

is currently no public database offering such data, making it difficult for the research community

to properly compare the different approaches and obtained results.
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3 Contributions

Different contributions will be presented in this manuscript.

A first contribution is a novel method of reconstruction of the spinal alignments from a single depth

map of the back. This method is designed to provide a detailed analysis of the spine alignments

in 3D allowing the detection and characterization of scoliosis using accessible and non-ionizing

3D sensors. To develop our approach, we built a database consisting of digital twins of hospital

patients completed with CT-scan segmentations derived from a public database, the New Mexico

Decedent Image Database (NMDID). Our inference algorithm is trained to predict a latent PCA

representation of the spine from depth images. This dimensional reduction allows us to preserve

most of its information and variability while reducing the complexity of the 3D spine positions.

Our Convolutional Neural Network predicts 3D vertebrae positions with an average error of below

the cm. From the predicted 3D positions, scoliosis can be located and estimated like the sagittal

aligments, namely kyphosis and lordosis. In addition, our non-ionizing approach can detect sco-

liosis with an accuracy of 89%. This project has been presented as abstracts in national [4] and

international [2] conferences and received the Best Poster award at IABM 2023 (national sym-

posium in artificial intelligence applied in biomedical imaging) [5]. We make our inference code

publicly available for research purpose1.

The second contribution is named "Multi-modal data correspondence for the 4D analysis of the

spine with Adolescent Idiopathic Scoliosis". In this work, we propose a novel approach allowing

the creation of subject-specific kinematic models of patients with AIS that includes a 3D represen-

tation of their spine and their back surface. To address the issue of the correspondence between

different data modalities (skin, scan, mocap), we leverage radio-opaque markers to register the

model into the inner and outer observations. With respect to the previous work, our method does

not rely on a precise palpation for the placement of the markers. Once created, the resulting nu-

merical twin can be driven by solely external measurements to reconstruct spinal motion. As a

preliminary result, we validated our approach with X-rays of two patients in lateral bending and

show an accuracy of the vertebra positions below 1 cm on each orientation axis and near 5 degrees

in orientations. This project has been presented in an international conference [2] and published

in a peer-reviewed journal, Bioengineering 2023 (MDPI) [22].

4 Scientific context

The PhD project started the 1st of April 2020 with the support of the ANRT within the CIFRE

agreement (Industrial Convention of Formation by Research), no.2019/1197, with Anatoscope,

Inria and Grenoble Alpes University Hospital. A part of the presented work was established at

Anatoscope, under the supervision of François Faure (CEO) and Inria (French national research

1Link to the source code repository: https://gitlab.inria.fr/spine/skin_to_spine
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institute of computer science and automation), in the Morpheo project team, under the supervision

of Sergi Pujades, Edmond Boyer and Jean-Sébastien Franco.

Data were collected at Grenoble Alpes University Hospital under the direction of Aurélien Cour-

voisier and Olivier Daniel. The studies were approved by two Ethical Committees: CECIC Rhône-

Alpes-Auvergne, Clermont-Ferrand, IRB 5891 and CPP Ile de France 2 on the 07/20/2020, n◦ ID

RCB: 2020-A01071-38. All parents and patients received an information letter and signed a con-

sent form for publication.

5 Manuscript structure

Scoliosis is a complex medical condition affecting different parts of the human body. Thus, this

manuscript will start with anatomical definitions of the spine and an introduction of Adolescent

Idiopathic Scoliosis in a dedicated chapter. Next, we will outline the existing methodologies and

state-of-the-art approaches that allow for a comprehensive characterization of this condition and

its early detection. Then, we will present our contributions and how they address the current chal-

lenges. By covering different kind of examination approaches of the spinal disorders in this thesis,

we facilitate the dissertation by categorizing them into two distinct types: static and dynamic.

The first is the static method of examination from medical images. We will point out the current

limitations and challenges in the characterization of the spinal alignments using X-ray radiographs.

A particular emphasis will be placed on the quantification of the 3D deformities from non-ionizing

methods by the external analysis of the torso using machine-learning methods. We will make a re-

view of the literature before a presentation of our contribution that allows a 3D characterization of

the full thoracolumbar spine alignments while proposing an accessible, non-ionising examination

method.

The second type of approach is dynamic, based on motion capture analysis. We will present

the different biomarkers that are usually tracked during the acquisitions, methods presented in

the literature with their limitations. Then, we will present our approach to address the current

challenges in the dynamic characterization of scoliosis with motion capture analysis. In this work,

we use a kinematic subject-specific model of the patients leveraging multi-modal data: X-rays in

several positions, surface scans and motion capture. Once created, the model can be driven by

solely external measurements.
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1
Anatomy of the trunk and the Adolescent

Idiopathic Scoliosis
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Introduction

Idiopathic scoliosis is a progressive disorder that affects the entire spine and its connected struc-

tures. Before delving into the description of this condition, we need first to introduce the foun-

dational anatomical concepts required for describing all anatomical components. We will then

provide a detailed overview of the asymptomatic spinal anatomy and its associated anatomical

structures namely the rib cage and the pelvis. Interested by the dynamic behaviour of the spine,

we will also explore these aspects in a dedicated section. Then, we will introduce the focal syn-

drome of this manuscript: Adolescent Idiopathic Scoliosis. We will provide an overview of the

condition, its impacts, its causes and describe its evolutionary aspect.
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Figure 1.1: The three anatomical planes of reference. S: sagittal ; C: coronal: T: transverse.
Created by Nicolas Comte.

1.1 Descriptive anatomy of the spine and its associated structures

1.1.1 Reference planes for anatomical description

Before a description of the anatomy of the spine, we need to address some anatomical concepts

that provide reference points regarding the position and orientation of anatomical structures in

space.

The human body and its anatomical components are usually described from three planes of refer-

ence (fig. 1.1). These planes are defined by three orientation axis: antero-posterior, medio-lateral

and infero-superior. They can be described as follow:

The coronal (or frontal) plane : divides the body into front (anterior) and back (posterior) sides.

The sagittal (or profile) plane : divides the body into the left and right. It gives a view from the

profile (left or right).

The transverse (or axial) plane : is an orthogonal plane from the two others. It gives view from

the top (cranial, superior) or the bottom (caudal, inferior) of the anatomical structures.

1.1.2 General anatomy of the spine

The spine is a complex structure that can be summarized by stacked articulated vertebrae, hous-

ing the spinal cord, part of the central nervous system [98]. The vertebral column is generally

7



(a) Dorsal view (b) Sagittal view

Figure 1.2: Anatomy and curvatures along the spine. 1. sacral-coccyx kyphosis ; 2. lumbar
lordosis ; 3. thoracic kyphosis ; 4. cervical lordosis. Created by Nicolas Comte, based on models
provided by the company Anatoscope [1].

composed by 33 vertebrae, in average, named and classified according to their region:

• 7 cervical vertebrae ;

• 12 thoracics, parts of the rib-cage ;

• 5 lumbars ;

• Sacrum: composed of 5 fused vertebrae, part of the pelvis ;

• Coccyx, also composed of fused vertebrae (part of the pelvis too).

The asymptomatic spine can be seen almost straight frontally (fig. 1.2a), it’s not the case on the

profile. The column follows 4 successive natural curvatures of two different types [71] (fig. 1.2b):

kyphotic : convex curvature at the thoracic and sacral-coccyx regions ;

lordotic : concave curvature at the cervical and lumbar regions.

The shape of the vertebrae varies according to their region (fig. 1.3). However they share a similar

structure (fig. 1.4): a vertebral body on the anterior part and the posterior part formed by eleven

elements: two pedicles, two laminae and seven processes (one spinous, two transverses and four

articulars).

Vertebrae are connected each other by three joints:

8



(a) The Atlas-Axis articulation (b) Cervical vertebra

(c) Thoracic vertebra (d) Lumbar vertebra

Figure 1.3: Differences in shape of the vertebrae along the spine. Geometries obtained from
anatomical models provided by the company Anatoscope [1].

Figure 1.4: Structure of a vertebra. a: vertebral body ; b: superior endplate ; c: left transverse
process ; d: upper-left articular process ; e: lamina ; f: spinous process ; g: lower-right articular
process ; h: left transverse process ; i: pedicle. The vertebral body with the pedicles and lamina
form the spinal canal. Created by Nicolas Comte.
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• the Intervertebral disc (IVD) joint;

• two facet-joints (or zygapophyseal joints) on the articular processes.

Furthermore, there are several ligaments that connect the vertebrae, ensuring the stability of the

joints. They also provide a high mechanical protection to the spine [71].

It should be noted that vertebrae can have anatomical particularities according to their region:

• the axial articulation (pivot-joint) between the Altas (C01) and the Axis (C02) in the cervical

region (fig. 1.3a) allowing a large rotation of the head in the transverse plane;

• the articular facets of the thoracic vertebrae connecting the ribs on the body and the articular

processes.

1.1.3 The rib cage

Figure 1.5: Anatomy of the thoracic skeleton. 1-7 true ribs ; 8-12 false ribs. Created by Nicolas
Comte with elements from Netter 2018 [98].

The rib cage is formed by the thoracic column, the ribs, and the sternum (fig. 1.5). This structure

plays a major role on the protection of vital organs (great vessels, lungs, heart) and mechanics of

the respiratory system (ventilation).

Ribs are long and curved bones that can be described in five successive parts (from the back to the

front) [98]: the head connected to the vertebral body (form the costo-vertebral joint), the neck, the

tubercule connected to the transverse process (form the costo-transverse joint), the angle, the body

joined to the sternum with costal cartilage on the front.

We can distinguish two kind of ribs depending on the attachment to the sternum. The first seven

pairs, called true ribs, are directly connected to the sternum with the costal cartilage. The others are

10



Figure 1.6: Anatomy of the pelvis. Left: face view of the pelvis ; Right: lateral view of the left hip
bone. Created by Nicolas Comte.

considered as false ribs. They can be connected indirectly to the sternum by the costal cartilage

above them or, like the two lowermost ribs, simply not connected. These ones are also called

floating ribs.

The sternum is located in the middle of the front of the chest (fig. 1.5). It’s structured in three

parts (from the top to the bottom): the manubrium connected to the two clavicles on its top and

the first pair of ribs on its bottom, the body connected to the other costal cartilages and the xiphoïd

process.

1.1.4 The pelvis

The pelvis is the lower part of the trunk and plays a vital role in supporting the upper body,

providing stability and transmitting forces between the spine and the lower limbs. It also houses

and protects various organs, including the reproductive organs, urinary bladder, and part of the

digestive system.

The pelvis is composed of several bony structures (fig. 1.6): the right and left hip bones (or os

coxae) connected to the sacrum.

The hip bone is composed of different regions: the ilium, the ischium and the pubic bone. Sev-

eral parts are palpable from the skin and are usually used as anatomical landmarks: the anterior

superior iliac spine (ASIS) and the posterior superior iliac spine (PSIS).
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(a) Flexion (b) Extension (c) Lateral bending (d) Axial rotation

Figure 1.7: Global movements of the spine. Figure from Kapandji 2004 [71].

1.2 Functional anatomy of the spine

1.2.1 General description

The general motion of the trunk, and the spine, can be described in the three anatomical planes

[71, 103] (fig. 1.7):

• sagittal (or profile) plane on which they are moving in flexion/extension ;

• coronal (or frontal, dorsal) plane, in lateral bending ;

• transverse (or axial) plane, in axial rotation.

1.2.2 Description at the Functional Spine Unit (FSU)

The movements of vertebrae are often defined at the Functional Spine Unit (FSU) itself. The FSU

is a unit of two connected vertebrae describing the motion of the upper vertebra according to the

lower one on the three anatomical planes. The rotation is usually described by the Instantaneous

Center of Rotation (ICR) and the Range of Motion (ROM) [103]. These elements can be mea-

sured with two landmarks defined on the upper vertebral body, that are moving with the vertebra

(fig.1.8). Then, a line is drawn according to the displacement of the landmarks and perpendicular

bisectors are erected on these segments. The resulting 2D intersection point is called ICR. The

angle measured by the rotation around this point is the ROM.

ROM and ICR change according to the vertebra region. For example the axial rotation at the

cervical level is high at about 45-50 degrees while the lumbar spine is at about 5 degrees. It can

be explained by the local characteristics of each vertebrae: the Atlas (C01) and the Axis (C02)

are moving with a pivot-joint while the lumbar part is constrained laterally by its zygapophyseal
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(a) Instantaneous Center of Rotation (ICR) (b) Range of Motion (ROM)

Figure 1.8: Example of measurements for a flexion at the FSU. A and B are two landmarks taken
at the beginning of the movement moving both to A’ and B’. The perpendicular bisector is drawn at
each segment (A-A’, B-B’) and the intersection gives the ICR location, here on the sagittal plane.
The ROM is the angle given by this rotation. Created by Nicolas Comte.

joints [71].

It should be noted that the spine is also affected by natural and non-voluntary movements. Specif-

ically, when the spine bends laterally, the vertebral bodies exhibit an inherent automatic response

in the transverse plane, where they rotate naturally towards the convexity of the curvature. This

can be seen in X-ray radiographs on the coronal plane when the patients bends and also in scol-

iotic spines inducing lateral curvatures of the spine [71, 75]. On the image, the vertebral bodies

loose their symmetry aspect and the spineous processes move towards the concavity with the two

pedicles.

However, there is a lack of consensus on the movements between the vertebrae, even for asymp-

tomatic cases. In-vivo experiments are rare and non-invasive measurements are made from X-rays

before and after the movement and can be subject to a lack of reliability [107, 123]. More di-

rect insights can be made in-vitro on cadaveric pieces [102, 150] although they may be suscepti-

ble to tissue degradation and the absence of active muscle functions. In silico simulations using

biomechanical spine models are considered as promising approaches [37]. However, their limita-

tions arise from the incomplete description and validation of the loadings experienced along the

spine [35, 36, 102].
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1.3 Adolescent Idiopathic Scoliosis

After introducing the anatomical foundations of the spine, we can observe that the vertebral col-

umn is a complex structure that plays a central role in the human body structure. Thus, deformities

in this structure can have significant health impacts. This thesis focuses more specifically on the

analysis of these deformities in Adolescent Idiopathic Scoliosis (AIS). Therefore, in this section,

we will describe this condition, its underlying causes and the consequences in time for the patient.

1.3.1 Generalities

Adolescent Idiopathic Scoliosis is a complex medical condition that primarily affects young in-

dividuals between the ages of 10 and 16 [147]. It is characterized by the development of three-

dimensional deformities in the spine during the growth period. The term "idiopathic" is used

because the exact cause of the condition is unknown. Anomalous vertebral rotations take place

throughout the spine, exhibiting themselves in three dimensions [24,64,83]. These rotations partic-

ularly impact the frontal plane, leading to the appearance of lateral curvatures known as scoliosis.

The severity of the deformations in AIS is commonly assessed using the Cobb angle from 2D

radiographs in the frontal plane. The Cobb angle is determined by measuring the absolute angle

between the most tilted vertebrae located at the top and bottom of the abnormal curvature [75]

(fig. 1.9). This measurement quantifies the magnitude of the abnormal lateral deviation, with a

higher Cobb angle suggesting a more pronounced deformity. Approximately 1-3% of adolescents

are affected by this condition, characterized by a major curvature with a Cobb angle greater than

10 degrees [147].

The spine has a central role in the structural support of the body. Thus, scoliosis impacts also

the connected structures (pelvis and ribcage) and can lead to various consequences as pulmonary

disorders, cardiac issues, physical restrictions in terms of mobility, muscle strength, and back pain,

as well as cosmetic concerns in severe cases.

Bracing has been regarded as the standard of care for patients at a high risk of progression,

particularly those with curves greater than 25◦(Cobb) in skeletally immature individuals, and

for patient with progression exceeding 5◦ per year. For greater angles (> 45◦) surgery can be

planned [75, 147]. The main objective of these therapeutic interventions is to effectively rectify

the abnormal spinal rotations present in patients. Therefore, the design of the orthopedic brace

and the surgical treatment rely on a detailed understanding of the patient’s anatomy provided by

clinical analysis and X-ray images.

1.3.2 Pathogenesis

Causes of scoliosis are not clear and still being investigated. Several conditions are studied, be-

cause of their relation with the disease. The erect posture of humans is a notable focus in research.

As humans are the only animals that can stand, they are also the only animals affected by scolio-
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Figure 1.9: X-ray on scoliotic patient showing its thoracic and thoracolumbar scoliotic curvatures
on the frontal plane. The Cobb angle is measured between the superior endplate of the upper end-
vertebra of the curvature and the inferior endplate of the lower end-vertebra. The coronal balance
is also measured (3 mm).
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sis [30, 83]. An assumption is that upright bipedal posture may induce a rotator instability from

which scoliosis found its origin [41].

Genetic patterns are also investigated, as there are instances of scoliosis running in families. How-

ever, a reliable profile directly correlated with the disease has yet to be identified [83].

Anatomical asymmetries, growth and deformities of the spine are pointed out at the musculoskele-

tal level. The role of the nervous system in scoliosis is also under investigation. Researchers are

exploring potential connections between nervous system abnormalities and the development of the

condition [30, 70, 83]. Even a correlation with abnormal platelets is also considered [83].

Despite all these research efforts scoliosis continues to be considered as an idiopathic disorder,

i.e., a disease for which the cause is unknown.

1.3.3 Clinical analysis

Figure 1.10: Scoliosis evolution law of Duval-Beaupere (1988) showing curvature evolution (de-
grees, in bold line according to the age in years). Dashed line represents the annual growth
increment of the patient in cm. Arrows along the line are showing three events of the adolescent
growth peak: starting of puberty at about 10 y., first menstruations and then the Risser sign (bone
age) at stage 4 corresponding to the end of the growth peak.

During the peak growth period, there is a notable progression of the sideways curves in scoliosis

(see fig. 1.10). As a result, there is a strong motivation to detect and stop the advancement of

the disease as early as possible. To achieve this, regular clinical analyses are planned, including

interviews, clinical physical examinations and radiograph acquisitions. The clinical examination

aims to evaluate the general condition of the patient such as stage of puberty, trunk asymmetries,

posture anomalies or muscular rigidity. The Adam’s Forward Bend test can be used to assess
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Figure 1.11: The Adam’s forward bend test. Left: asymptomatic case; Right: case with scoliosis.
Created by Nicolas Comte.

scoliosis [147] (fig. 1.11). The test highlights the rib-hump caused by rotational anomalies of the

spine, breaking the symmetry of the back.

Finally, the radiographic examination is planned to confirm the presence or absence, of spinal de-

formities, usually from a coronal view. The Cobb angle is measured, from the images, to evaluate

the magnitude of the lateral deviations. In case of mild scoliotic curvature, the progression of the

deformity can be assessed with an additional X-ray in the next months. Other factors are also

taken into consideration when assessing the risk of curve progression, including age at diagnosis,

menarchal status (onset of menstruation) and Risser score (an indicator of skeletal maturity) [43].

Thus, follow-up intervals are adapted according to these elements [78].

However, the dynamics of scoliosis evolution are specific to each patient making the estimation of

deformity progression challenging. More recent studies have demonstrated promising results with

machine learning approaches to estimate the risk of progression [25,129] by integrating the three-

dimensional profile of the spine. In addition, these methods are exhibiting potential in predicting

the shapes of scoliosis curvatures as in [8, 51].
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1.4 Summary

In this chapter, we introduced the essential anatomic concepts that allow the description the spine

shape and its motion. The spine is a complex structure composed of vertebrae, of different shapes

and properties, associated with various bony elements. It plays several roles in the human body in

terms of structural support and mobility.

Then, we presented Adolescent Idiopathic Scoliosis (AIS), which is a multifaceted medical condi-

tion that evolves over time and impacts the entire three-dimensional structure of the spine. Given

its progressive nature, early detection and comprehensive characterization of the curvatures are

crucial for prompt and effective treatment. However, as the term "idiopathic" suggests, the under-

lying causes are unknown, making AIS prediction challenging. As a result, scoliosis needs to be

screened to detect the first signs of the deformity. For an early detection, a detailed characterization

of the trunk is implemented, describing both external and internal patient’s anatomy.

Consequently, in this thesis work, it is essential to understand the current methodology that enables

a comprehensive overview of the spine and its deformities. In addition, this thesis also focuses on

exploring the early stages of AIS. Therefore, in the next chapter, we will focuses on the existing

AIS descriptors measured for the detection and monitoring of scoliosis.
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2
Static characterization of scoliosis
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Introduction

Adolescent Idiopathic Scoliosis (AIS) is a progressive disease of the spine with causes that remain

unknown. Consequently, patient healthcare rely on a regular follow-up evaluating deformities

magnitude over years. A main interest is to detect scoliosis as early as possible in order to plan

a prompt treatment, usually with an orthopaedic brace that stops progression. Moreover, the im-

plementation of treatment requires patient-specific approaches to these deformations through a

comprehensive characterization of the patient’s anatomy.

Historically, this characterization is done in 2D through the analysis of radiographic images in the

frontal plane highlighting lateral deviations of the spine [75]. From this view, the Cobb angle can

be measured, which is the standard measurement quantifying magnitude of deformations. Usually,

angles exceeding 10 degrees are regarded as curvatures with a risk of progression [147]. The

recent advances in three-dimensional imaging have allowed access to the 3D shape of the spine

and improved the understanding of scoliosis. However, these radiographic approaches have been

shown to increase the risk of cancer development, particularly in the case of repeated exposure

required for medical follow-up in diagnosed patients [60, 91, 115].

Scoliosis also manifest itself on the surface of the body, for instance by breaking the symmetry of

the trunk. Given the prevalence of AIS in the population, these external signs allows the imple-

mentation of screening strategies. The methods are based on an analysis of the back but do not

allow an examination of the internal deformations required to assess scoliosis progression.

Studies comparing these external measurements with internal ones show the possibility to estimate

the magnitude of scoliosis deformity. More recent studies, using deep-learning approaches were

also able to predict the Cobb angle from external back images. Yet, these methods provide an

estimation of the Cobb angle, which is a partial and 2D measurement of the deformity while

scoliosis is better characterized in 3D in its full length.

In a contribution, we propose a new non-ionizing approach that address the current challenges into

the analysis of scoliosis. We trained a Deep Learning algorithm to predict the 3D thoracolumbar

vertebra positions, encoded in a PCA representation, from depth images of the back. We evaluated

our method against X-ray observations and showed that our approach presents promising results

into the analysis of the spinal alignments, in different anatomical planes, and the detection of

scoliotic curvatures.

In this chapter, we will present for the first time, the various radiographic measurements used

to describe spinal deformations. Secondly, we will introduce non-ionizing analysis methods for

monitoring scoliotic patients through the superficial examination of the back. We will highlight

their limitations before the presentation of our contribution.
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Figure 2.1: Structure of a scoliotic curvature and measurement of the Cobb angle from X-rays
(left). N: neutral vertebra; E: end vertebra; A: apical vertebra

2.1 Characterization from X-ray acquisitions

Traditional characterization techniques rely on individual 2D X-ray images, thus providing 2D

descriptors of the spine alignments like the Cobb angle. More recent approaches use bi-planar

X-ray imaging techniques which allow to extract 3D characteristics of the spine. In a first time,

we will describe the different descriptors that are measured from the 2D X-ray images and the

classifications built from these elements. In a second time we will introduce the different 3D

measurements provided by the recent imaging systems.

2.1.1 2D radiographic methods

2.1.1.1 Anatomical landmarks and descriptors

The measurements of the spinal alignments are usually gathered on a coronal view of the spine

exhibiting the scoliotic deformities. From these images, several landmarks are located and de-

scriptors computed following Scoliosis Research Society (SRS) recommendations.

The end and apical vertebrae. Scoliosis can be described from X-rays in the coronal plane

showing lateral deviations. The curvature is delimited by two end (or limit, junctional) vertebrae

which are the two most rotated elements in the plane (fig. 2.1). The most deviated vertebra along

this segment is called "Apical"

The Cobb angle. As described in section 1.3.1 page 14, the Cobb angle is a descriptor employed

to assess the magnitude of a spinal curvature. On the coronal plane, an angle superior than 10◦

spine is defined as a true scoliotic curvature with risk of progression [147]. A measurement be-

tween 10-20◦is considered as mild scoliosis, from 20◦ to 45◦ moderate and severe for curvature
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Figure 2.2: Grading of vertebral axial rotation with the Nash-Moe method [95], from [99]: grade
0 (neutral position) to 4. The rotation is quantified on the basis of the pedicle’s position on the
frontal view (seen in X-ray as ovals) in one of these imaginary lines.

over 45◦ [75].

The Kyphosis and Lordosis angles. These angles give the magnitude of the corresponding

curvature on the sagittal plane. They are measured according to the Cobb angle method between

two vertebra references. From T01 (or T04) and T12 to compute thoracic kyphosis and L01 and

L05 for lumbar lordosis.

The Vertebral Axial Rotation (VAR). VAR (or AVR) is quantifying the rotation of a vertebra

on the transverse (axial) plane. It’s historically evaluated with the Nash-Moe method [95] from

coronal views of the spine. Its measurement is usually made from the pedicle location according

to the vertebral body. In the Nash-Moe method, the body is divided into three imaginary segments

and the rotation is quantified on the basis of the pedicle location in regard to them (fig. 2.2). It

should be noted that other methods of measurements, based on the pedicle or spinous process

locations, are presented in the literature [142].

2.1.1.2 Scoliosis classification systems

The analysis of scoliosis and its inherent complexity in shape has led to the creation of different

classifications. First mentions in the literature are showing the Schulthess classification system

since 1905 [94] dividing scoliosis according to the curve location. Ponseti and Friedman pub-

lished in 1950 a new classification [112] that distinguishes spines according to the global shape of

the spine and their evolution. Other works extend or introduced new curvatures to classify shapes

of scoliosis as Moe and Kettleson’s (1970). In 1983, King et al. [76] published a new system

to give guidelines for surgical treatment, mainly for Harrington rod instrumentation. This clas-

sification has been widely used but gives a poor inter- and intra-observer reliability [27]. Within

the evolution of spine surgery, Lenke et al. published in 2001 a new classification system [86],

with better reliability scores. It mainly distinguish spines according to the frontal plane, accord-

ing to trunk imbalance, the number of curvatures and their shape. It’s currently recognized as a

gold-standard classification in scoliosis surgery. This system splits spines into 6 classes with 3

additional "modifiers" given from the sagittal profile, for a total of 14 classes (fig. 2.3).

However this classification, coming from surgery, may not be suitable for designing braces in-

tended to prevent and correct scoliosis curves through external forces. For instance, the Rigo et al.
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Figure 2.3: Lenke et al. 2001 classification, figure from the original paper [86]
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2010 classification [114] or the De Mauroy et al. 2008 classification [29], which are used to for-

mulate brace design guidelines, rely on radiographic measurements, like the Lenke classification,

with additional external descriptors like trunk asymmetry, rib hump, balance and pelvis position.

2.1.1.3 Discussion

The main interest of these classifications is to label spinal deformity in order to give guidelines

for brace conception and surgery planning and instrumentation. These systems are mainly based

on a static descriptive analysis from the frontal plane that can be subject to errors and ambiguity.

For instance, the Cobb angle, used for the assessment of scoliosis, is subject to intra- and inter-

reliability scores decreasing for smaller curvatures and that vary with 95% confidence interval

ranging from 3◦ to 10◦ [11,141]. The source of error has been found in the practitioner’s ability in

interpreting the X-ray images, specifically in locating the end-vertebrae and estimating the slopes

from the vertebral endplates to define the angle [57]. The exact identification of the anatomical

landmarks can be difficult due to variations in vertebrae appearances, patient positioning, orienta-

tion, overlap between bony structures or the quality of the X-ray images. In addition, successive

studies have shown the constraints of the Cobb angle, as it solely characterizes the deviation in

the coronal plane, missing important features of the curvature, especially in the transverse plane

involving vertebral axial rotations [25, 64, 108, 129].

2.1.2 3D radiographic methods

As scoliosis is acknowledged as a three-dimensional deformity of the spine, the existing clinical

approach of analyzing the spine in two dimensions provides only a limited overview of the defor-

mities. Thus, there is a clear need to establish new coordinate systems and descriptors that allow

for a thorough and comprehensive assessment of the three-dimensional spinal alignment.

2.1.2.1 The EOS imaging system

The 3D analysis of the spine was usually made from radiograph techniques like Computed Tomog-

raphy (CT). However, numerous studies have documented the risk of cancer, increased in repeated

ionizing exposure as implemented in AIS monitoring [78]. In addition, CT-Scans and Magnetic

Resonance Imaging (MRI) are performed with the patient lying down and do not allow a weight-

bearing analysis, in upright physiological position, as required to analyse spinal alignments. This

change in position is also affecting the analysis, for instance scoliosis shape changes by 11◦ (Cobb

angle) in average (std: 5◦) [138].

The EOS imaging system has been designed to address these issues by leveraging less-ionizing

radiograph techniques [52]. Two X-ray emitters and detectors are placed orthogonally (fig. 2.4).

During the acquisition, the sources move vertically and simultaneously producing two images

(coronal and sagittal) of the patient in standing pose. Then, the 3D reconstruction can be done

using the SterEOS software (EOS Imaging, France). This software allows the semi-automated re-

construction of the skeleton geometries from anatomical stereo-landmarks manually located onto
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Figure 2.4: Geometry of the EOS imaging system. Figure from Kelly and Delakis 2021 [74].
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the biplanar images [62]. An additional manual step allows the refinement of the resulting model

on the radiographs. This method allow a fine reconstruction of the patient anatomy with an accu-

racy in shape of 1.1 mm with 95% CI less than 1.7 mm compared to CT reconstructions [54].

Due to its less ionizing nature, this technique is also investigated in the analysis of the spinal

alignments in different poses [101]. This system will be used in our following contributions.

2.1.2.2 Coordinate systems

Recommendations of 3D coordinate systems have been proposed to describe spine and individual

vertebra positions and orientations. Usually two systems are described: a local axis system (at each

individual vertebra) and a spinal axis system (describing the entire trunk position and orientation).

Three definitions are often used in the literature: from Panjabi (1978) [103], from the Scoliosis

Research Society (SRS) [130] and the International Society of Biomechanics (ISB) [149], tables

2.1.

Tableau 2.1: Definitions of the local axis system orientations in the literature. The SRS and ISB
systems are based on the location of anatomical landmarks: the middle of the endplates (red) and
the pedicles (blue). Figures by Nicolas Comte.

Axis system x y z Figure

Panjabi system [103] Left Up Forward

SRS system [130] Forward Left Up

ISB system [149] Forward Up Right

These systems differ in their orientations definitions (see table 2.1) and in their construction. Both

the SRS and ISB systems use the same landmarks on the vertebrae (center of the endplates, pedicle

locations, ...) that allow for definition of a 3D position and orientation of the vertebra.

2.1.2.3 Description of the spine curvatures

In the goal to better characterize scoliosis in 3D, the SRS Working Group on 3D Terminology of

Spinal Deformity has been constituted. The group was tasked with the development of descriptors

to ultimately elaborate a 3D characterization of scoliosis [130]. The resulting report provides
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Figure 2.5: The da Vinci view, figure from Labelle et al. 2011 [84].

references to describe the spine in 3D, with vertebra orientations and the global 3D shape of

scoliosis within planes:

The Best fit plane (BFP) This element is defined as the plane which best fits the curve defined

by the centroid of each vertebral body of a specified region of the spine. It’s mostly useful

to define Plane of maximum curvature (PMC) [130] at the scoliosis level defined by the end

and apical vertebrae.

The Cobb angle on the Plane of maximum curvature Measured between the end-vertebra fol-

lowing the Cobb angle method on this plane.

The Torsion Index Described in Drevelle [39], this index is the mean of the sum of the Inter-

vertebral Axial Rotations of the upper hemicurve (upper limit to the apical vertebra) and

of the lower hemicurve (apical to lower limit vertebra) inside the scoliotic curvature. The

descriptor is usually computed from 3D reconstructions.

In addition, the SRS recommend a new visualization tool summarizing and locating in one picture

the 3D properties of the spine: the da Vinci view [117]. This figure is a top-view projection of the

planes of maximum curvature showing scoliosis locations and orientations (fig. 2.5).
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(a) Poncet et al. 2001 classification [111] is
based on the geometrical torsion index. Figure
from [110].

(b) Sangole et al. 2009 classification [117] use
planes of maximum curvatures and angles. Fig-
ure from [117].

Figure 2.6: Different approaches of the 3D nature of the spine for 3D classification

2.1.2.4 3D classifications

There are several 3D classifications systems in the literature. Their main differences are coming

from their approach to describe the spine mathematically. The first one is coming from Poncet

et al. 2001 [111] considering the spine as an helicoidal structure and computing at each level

a geometrical torsion index from Frenet’s formula. Duong et al. 2006 [42] classified scoliosis

shapes using wavelets transformations of the vertebra centroids. The other classifications tend

to use the angles in the three anatomical planes (cobb angles, kyphosis, lordosis, vertebral axial

rotations...), the Plane of maximum curvature and its orientation like Sangole et al. 2009 [117]

for example. Similar classifications [64, 69, 117, 126] are showing subgroups inside the Lenke

classification. These profiles can be distinguished from the transverse plane suggesting a lack of

personalization of the scoliotic treatment. Thus, it highlights the limitations of this classification

and the importance of a full 3D representation of the skeleton.

2.1.2.5 Discussion

The three-dimensional capture of the spine provides a more detailed understanding of the patient

characteristics. In particular, it allows the measurements of descriptors that are still poorly de-

scribed by traditional methods, such as axial rotations in the transverse plane. These descriptors

enable a more specific description of scoliosis, and thus improve the characterization process es-

sential for the implementation of a specific treatment as required for the design of an orthopedic

brace or surgery. These studies show that 2D characterization of the scoliotic curve reveals inher-

ent structural differences that are not apparent in a single view and illustrate the influence of the
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measure on curve classification [69]. Even the Lenke 2001 classification is affected: 3D analysis

is highlighting sub-classes that can be distinguished from the transverse plane [42, 69, 117, 126].

Beside shape classification, descriptors of the transverse plane have also been correlated with

scoliosis progression [25]. Thus, Skalli et al. 2017 [129] investigated the use axial rotations (apical

and inter-vertebral) and torsion index to estimate a risk of progression of scoliotic curvatures and

were able to obtain in their validation process an accuracy of 89% in classification.

Let us note that these 3D classifications have not been adopted in clinical usage and remain used

in research studies only. Donzelli et al. [34] points several reasons: the inherent complexity of

3D analysis, not intuitive for clinicians for an everyday activity and the significant resources and

equipments to capture the 3D shape of the spine that are currently not common in hospitals.
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Figure 2.7: The Adam’s forward bend test with a scoliometer. Created by Nicolas Comte.

2.2 Detection and monitoring from superficial analysis of the torso

Despite the reliability of X-ray imaging methods for detecting scoliosis, they have limitations

that make them unsuitable for screening. They are complex techniques requiring considerable

resources to use, in terms of cost, maintenance, acquisition time and qualified personnel. Fur-

thermore, these techniques involve ionizing radiation, which increase the potential risk of cancer

development [60, 91, 115], especially with repeated exposure, as necessary for diagnosed patients

with regular monitoring.

2.2.1 Screening strategies from back surface measurements

By affecting the entire spine and its connected structures, scoliosis alters the overall symmetry of

the torso. Therefore, screening methods focus on the evaluation of external features. The primary

approach, the Adam’s forward bend test, visually identifies rib humps, which serve as indicators of

scoliosis. This method can be combined with a scoliometer, a goniometer, designed to quantify the

degree of asymmetry of the trunk (fig. 2.7). Another method, developed in the literature, is Moiré

topography [148]. This is a photostereometric imaging method where the examiner identifies

irregularities of contour lines representing depth levels of the back surface (called Moiré) [72].

In addition to their high potential in the detection of scoliosis, these examination approaches

provide a quantitative analysis of the trunk deformations. Recent methods leveraging three-

dimensional capture and digitization of the back surface [15, 61, 79, 81, 113] allow the automa-

tisation of these measurements. These techniques, using depth sensors or rasterstereography [38],

facilitate three-dimensional analysis of the body surface in relation to spinal deformations, with

good reliability and validity scores [135].
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(a) In Choi et al. 2017 [20], authors were able
to predict the positions of the vertebrae from
moiré images using CNN. They presented an
other method to give the axial rotations in a sec-
ond study [19, 146]. Figure from [146].

(b) Kokabu et al. 2019 [81] and 2021 [80] pro-
posed methods to predict the Cobb angle from
a 3D image of the back in Adam’s forward bend
test. They measured asymmetries of the captured
point-cloud related to spine deformities. Figure
from [81]

Figure 2.8: Different works allowing scoliosis monitoring from outer images of the back and CNN
approaches.

2.2.2 Quantification of spine deformities from the surface

These free-radiation methods are promising in the assessment of scoliosis but are not allowing

measurements of the spinal deformities as provided by X-ray imaging tools.

This is due to the lack of understanding regarding the connection between the internal and ex-

ternal deformations. Given the complexity of this relationship, machine learning tools have been

investigated to learn this relationship from the available data. Jaremko et al. 2001 [66] present

a first artificial neural network regressor of the Cobb angle from different features obtained from

torso surface cross-sections. In 2002 [67], authors proposed an other model, coupled with a ge-

netic algorithm to identify the relevant torso asymmetry descriptors improving the regression task.

Adankon et al. 2012 [7] uses least-squares support vector machines to determine scoliosis curve

type from torso surface beyond thoracic major, lumbar major, thoracolumbar major and double

major curves.

Since 2019, the recent advances in Deep Learning, coming from Convolutional Neural Network

(CNN) models, facilitate the inference of the Cobb angle from images of back. CNNs are partic-

ularly used due to their ability to interpret visual informations from diverse kind of images (depth

maps, RGB, etc.). In these models, each image is processed through different convolutional lay-

ers in charge of the extraction of the visual features. Then, additional components like activation

functions, pooling or fully connected layers can be associated to process the relevant features for

regression or classification.

For instance, Yang et al. [151] proposed a method of screening scoliosis automatically from RGB

images of unclothed back. A first CNN model delimits the region of interest (the back) on the

photo and an other model classifies the region according to the Cobb angle among four classes

(asymptomatic, mild, moderate, severe). In their study, Watanabe et al. 2019 [146] estimate

2D spinal alignments [20] and axial rotations [19] from Moiré images cropped around the spine
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(fig. 2.8a). Kokabu et al. 2021 [80] extend the Adam’s forward bend test, using a depth sensor

by predicting the main Cobb angle. Their method has also been evaluated from depth maps in

different poses and garment conditions [65].

2.2.3 Discussion

As a summary, surface analysis techniques are designed to characterize external 3D deformities

of the back in order to detect scoliosis and estimate the magnitude of its severity. Recent studies,

based on deep-learning [80,146,151], present methods that facilitate the modeling of the complex

relation between external and internal deformations, enabling the inference of radiographic mea-

surements, like the Cobb angle, from images of the back. These works opens the possibility of

non-ionizing detection of scoliosis and the follow-up of the internal spinal deformities to monitor

their progression. For instance, Choi et al. 2017 [20] reported an average error in the evaluation

of the Cobb angle from Moiré images of 3.13° (std: 2.22°) for early-onset scoliosis (Cobb angle

between 10-20°). It should be noted that the Cobb angle measured from X-ray images, is reported

with 95% CI ranging from 3 to 10◦ [11]. Making these results promising in the assessment of

scoliosis progression evaluation.

In case of monitoring and characterization for treatment decision and planning, a full 3D character-

ization is preferred as discussed section 2.1.2. Unfortunately, these methods are usually providing

a limited 2D characterization of the deformities. To the best of our knowledge, some studies in-

vestigate regression methods to retrieve 3D spine informations from torso surfaces. Nérot et al.

2016 [96] trained Principal Component Analysis (PCA) models to regress the 3D positions of the

spinal joint centers from reconstructed skin point-clouds of healthy spines. In 2018, Nérot et al.

2018 [97] employed regression equations to deduce sagittal alignments from external landmarks.

However, these investigations did not specifically address scoliosis and were applied and validated

on asymptomatic subjects. In contrast, Caturano et al. introduced a similar approach in 2022 [18]

on scoliosis subjects, with a regression model inferring the 3D spine alignments from keypoints

of a 3D back surface scan.

However, the inference process of internal positions from external scans remains challenging.

Beyond the difficulty of collecting 3D patient data, the different modalities must be consistent

with each other. In their study, Choi et al. 2017 [20] projected the X-ray view on the back image

to obtain the 2D vertebra positions inside. Caturano et al. 2022 [18] fused the biplanar X-ray

images and 3D optical scans with 3D rigid transformations. However, as highlighted in their

publication, these acquisitions were not performed simultaneously, and patients may change their

posture, leading to a lack of correspondence. Addressing the discrepancy in these data should be

considered, in the future, to improve model inferences.

An other solution is to reconstruct the body surface directly from X-rays. However, this task is also

challenging: only the silhouette can be easily distinguished in the images, and the use of anatomi-

cal stereo-landmarks, as employed in 3D reconstruction of the spine in the SterEOS software [62],

is limited. Nérot et al. 2015 [100] employed an anatomical model based on a set of control points
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identified in the images, with refinement performed on the silhouettes contours. This method is

based on an asymptomatic deformable model and is challenging to implement in scoliotic subjects

characterized by a deformed and asymmetrical back. Gajny et al. 2019 [49] addressed this issue

by using a statistical model of the torso comprising skeleton characteristics (spine, rib cage, and

pelvis), which can be refined using a set of 10 radio-opaque markers. Yet, this method has not

been evaluated against true surface scans. Another strategy is the use of calibrated depth cameras

during radiograph acquisitions from which a skin surface can be reconstructed [56]. In practice,

the available size of the radiography cabin should be taken into account when positioning cameras

to obtain comprehensive views of the patient’s back. For instance, the dimensions of the available

place inside the EOS cabin is 76 cm width × 76 cm length [74].
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2.3 Contribution: 3D inference of the scoliotic spine from depth maps

2.3.1 Introduction

Detection and monitoring of scoliosis rely on a comprehensive characterization of spine deformi-

ties. Recent studies [80, 146, 151] showed a strong correlation between 2D spinal alignments and

back surface. Their results are promising, thus paving the way for a non-ionizing detection and

monitoring of Adolescent Idiopathic Scoliosis from external back images. As recommended in

the literature, scoliosis is better described in 3D [130]. The aim of the following contribution is

to quantify the correlation of the back with the 3D spinal alignments. Our hypothesis is that the

information present in a depth map of the back of a person has a very strong correlation with the

underlying 3D shape of the spine, i.e. the 3D location of each vertebra. Thus, a model taking as

input a depth map could predict the 3D shape of the spine. The goal of this study is to evaluate

such a strategy and its accuracy by comparing the predictions made by a CNN model with real-life

measurements of spine positions and curvatures.

2.3.2 Data collection and processing

There is currently no database to our knowledge that provide both a 3D image of the torso and

its skeleton of a large amount of patients. We need to create our own database from available

resources where these data can be retrieved. We identified two among them:

• The New Mexico Decedent Image Database (NMDID) ;

• Data collected in our institution Grenoble Hospitals (GH).

In the following sections we will describe how we constituted our database from these two data

sources.

2.3.2.1 The New Mexico Decedent Image Database

Database overview. The NMDID, New Mexico Decedent Image Database [44], is a collection

of post mortem CT-Scans, full-body, from the New-Mexico University. These volumetric images

are associated within metadata about the medical history of the body like informations about the

presence of scoliosis. Yet, about 5% of these corpses present scoliosis with a high variability of

conservation and preservation. This is due to different conditions as the state of the decomposition

or the causes of death that can affect partially or completely the body integrity. Still, this database

is an important source of data providing volumetric internal and external information of human

bodies. For our project, we selected the full-torso scans which are captures in the axial planes with

0.5mm thickness between each slice (1 mm ×1 mm pixel spacing in average). By segmenting the

volumetric images, we can extract the 3D geometries of the relevant structures (skin and spine).

Inclusion and exclusion criteria. For our analysis we selected cases with torso scans according

to different criteria listed below and based on the available metadata as well as on visual inspec-
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Figure 2.9: Example of the issue of back flattening. Ventral part on the top, back is below. This
issue appears particularly with individuals with obesity condition.

tions of the images:

• Annotation with presence or not of scoliosis disorder.

• Age between 0-30 y.

• 17 thoracolumbar vertebrae (12 thoracic, 5 lumbar, without transitional vertebra).

• On the Body Mass Index (BMI): a selection on BMI was needed since the corpses are

in supine position, and the back is flatten during the CT-acquisition. High BMI bodies

had completely flat backs with no shape information (fig. 2.9). So we compute the BMI

according to metadata and exclude cases up to 30 kg/m2, threshold of obesity.

• On the body integrity: the torso needs to be preserved without modification or alteration

of its shape by external factors (condition of death, decomposition score, materials, etc.).

Therefore we excluded cases in a decomposition condition and according to the causes of

death that can affect the quality of the body. Several cases with surgery history of the torso

are also excluded.

Trunk segmentation. From the selected cases, we automatically segmented the thoracolumbar

spine vertebrae using Meng et al. 2023 method [92] and the skin with a binary segmentation

approach on each slice of the volumetric image.

Meng et al. 2023 [92] algorithm performs well on the majority of the patients but failed when

facing some conditions like:

• Damaged body, broken bones ;

• Voxel noise due to materials inside or near the body (implants, surgical instruments, bullets,
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handscuffs, ...) ;

• Severe scoliosis.

For the skin, the segmentation can be performed with classical segmentation methods based on

thresholding. Volumetric images are 3D matrices where each voxel contains one value at the

Houndsfield unit describing the local radiodensity. With this element, we have informations about

the material nature at the voxel level.

(a) Original image (b) 1. Blur application (c) 2. Binarization by threshold-
ing

(d) 3. Component analysis and
selection of the largest one.

(e) 4. Flood-filling to remove
"holes" inside the body.

(f) Resulting mask over the orig-
inal image.

Figure 2.10: Segmentation on a trunc slice, step by step.

Thus, we created a 4-steps method segmenting each slice of the volumetric image (fig. 2.10):

1. Blur to limit ambiant noise ;

2. Segment soft-issues to eliminate the void and instruments (metallic pieces, bed, etc.). The

result is a binary image ;

3. Remove small elements (noise, clothes, instruments, etc.) using connected components

analysis ;

4. Removing internal "holes" like lungs or intestinal lumen using flood filling.

The results are then turned into meshes using the marching-cubes algorithm [89]. Then, we create

2D renderings of the resulting back surfaces in depth maps that facilitate the body inspection in

order to select manually well-preserved bodies.
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2.3.2.2 The GH dataset

Collected data. Patient recruitment and data collection were approved by two Ethical Commit-

tees. The dataset was collected and published in Courvoisier et al. 2019 [26]: CECIC Rhône-

Alpes-Auvergne, Clermont-Ferrand, IRB 5891. The IRB for recent cases is CPP Ile de France 2

on the 07/20/2020, n◦ ID RCB: 2020-A01071-38. All parents and patients received an information

letter.

Two types of data were collected from 32 patients with AIS (7-16 y. old, 81% females) with no

treatment:

• a 3D surface scan of the back or the torso with an optical scan (ScanGogh II Vorum Research

Corporation or the Occipital Structure Sensor Mark II)

• the 3D spine reconstruction obtained from biplanar X-rays with the EOS Imaging sys-

tems [62].

Skin and spine correspondence. As discussed in 2.3.4, body surface reconstruction from X-

rays is challenging. In our case, we have 3D surface acquisitions obtained outside the EOS radio-

graphy cabin. As the surface scan and the EOS images were not performed simultaneously, the

patient pose can vary between both acquisitions has encountered by Caturano et al. 2022 [18].

We therefore added an additional step to adjust the skin surface pose to match the EOS pose. We

use a 3D kinematic anatomic model in Sofa [33], which we personalize to the spine and the back

surface. We then deform the pose of the avatar to match the visual envelope extracted from the

biplanar EOS radiographs after binarization (fig. 2.11a and fig. 2.12). To facilitate the registration

the visual envelope has been manually edited by removing parts that are not included in the surface

scans (head, upper and lower limbs).

The obtained avatar has thus the skin surface in the same pose as the one observed during the

radiographs. The registration steps are detailed in Appendix A page 103.

2.3.2.3 Depth map generation

From the meshes of the backs of the patients we rendered depth maps using an orthographic

camera model. Depth maps are greyscale images where all pixels represent the distance of the

object from the camera. For the NMDID subjects, we directly used the segmented skin, whereas

for the GH subjects, we used the skin of the repositioned avatar matching the 3D spine shape in

the radiographs.

2.3.2.4 Spine 3D characteristics

The 3D vertebra model geometries obtained from the EOS Imaging system [62] and the automatic

CT segmentation [92] are translated into centers of gravity from which we computed the 3D spine

characteristics. Using the method by Choi et al. [20] based on cubic B-Splines, we computed the

scoliosis severity by selecting the maximum absolute Cobb angle value. Kyphosis and lordosis
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(a) Visual hull constructed from the biplanar im-
ages

(b) Surface scan of the patient obtained with an
optical scan

Figure 2.11: The use of the visual hull

were obtained with splines fitted in the sagittal plane between T04-T12 and L01-L05 respectively.

As we do not model S01, we computed the lordosis Cobb angle using the L05 centroid.

2.3.2.5 Final dataset

From the NMDID and GH datasets we reconstructed 121 pairs of 3D spines and surfaces of the

back: 89 from the NMDID and 32 from GH. The input dataset we consider is therefore composed

of 45% females aged between 7 and 30 years old. 38 cases with scoliosis are included in our

analysis with different type of curvatures (simple, double curvatures). Fig. 2.14 illustrates one

case of each dataset with the depth map and the 3D characterization of the associated spine. Fig.

2.15 shows the distribution of the scoliosis severity measured in our dataset in using [20].

2.3.3 Method

Our method takes as input a depth map of the back of a patient and outputs the 3D location of the

thoracolumbar vertebrae. To ease the spine prediction we use a low dimensional representation of

the spine based on Principal Component Analysis (PCA). Fig. 2.20 presents the overview of the

inference method.
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Figure 2.12: Superimposition of the skin according to the silhouettes. In green are the silhouettes
on the radiographs and blue the rendered silhouettes of the surf. scan. Intersection of the shapes
is in yellow. Usually, to make a rigid registration, the Iterative Closest Point algorithm can be
applied [13]. But it needs the source mesh to be correctly initialized spatially. To do that we find
the best position of the surf. scan inside the visual hull by overlapping their silhouettes and by
maximizing the Intersection over Union score.

Figure 2.13: Resulting avatar of the patient with the spine coming from 3D reconstruction of the
SterEOS software and the skin from our anatomical registration workflow.
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(a) GH (b) NMDID

Figure 2.14: Dataset examples. For each subject we have a depth map, the 3D vertebrae locations
and the measured angles. Coronal (left) and sagittal (right) views.

Figure 2.15: Distribution of the main Cobb angle (scoliosis severity in ◦) in our dataset.

2.3.3.1 Data Processing

To structure the dataset and ease the learning task we process the data. Following Choi et al. [20],

the depth maps on the spine are centered and cropped according to its length, then resized to a

224× 224 resolution. Depth pixel observations are further normalized between [−1,1], and the

antero-posterior positions of the vertebrae are defined with respect to a median vertebra (T08).

This 3D transformation allows a simpler representation of the spine while keeping the vertebrae

alignment information. It differs from [97] and [18] which are regressing absolute positions.

We augment the dataset applying a random set of different transformations, such as mirroring

and rotating the torso in 3D. From the 121 rendered depth maps, the data augmentation raises the

amount of images to 10,890.
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2.3.3.2 PCA spine representation

To ensure that the predicted individual vertebrae create a consistent spine shape, we use a low di-

mensional representation based on PCA [47]. The learned PCA space can produce a compressed

latent representation of the spine data, while preserving most of its information and variability.

Two main advantages follow. The prediction of PCA coefficients is less complex than the predic-

tion of each of the 17 individual vertebrae 3D locations (17×3 = 51). In addition, the compressed

latent representation enforces regularization over the estimated spine locations. In fig. 2.16, we

show the main difference of the direct prediction (without PCA) of the vertebra positions by our

CNN model against their indirect inference with a PCA.

(a) Ground-truth (b) Direct CNN model predictions
of the 17 vertebra positions

(c) Predictions from the predicted
PCA weights

Figure 2.16: Effects of the PCA in the prediction of the vertebra positions with our CNN model.
Example on an asymptomatic case from the NMDID. First row shows predictions on the input
depth map (coronal plane) and second row predictions projected in the sagittal plane.

In a detailed analysis, we can see that a PCA model trained with our data can explain 95% of the

variability with only 9 dimensions (from 17x3 with the raw coordinates), see fig. 2.17.

From the fig. 2.18, we can interpret the first components of the the PCA. The first highlights dif-

ferences in poses in our datasets between supine (NMDID) and upright standing (GH) conducting

in changes of kyphotic and lordotic curvatures. The second and the third components change the

global rotation of the spine in the coronal and sagittal planes. The fourth component modifies

the kyphosis and lordosis curvatures. Finally, the fifth component is the first one that controls

scoliosis.
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Figure 2.17: Cumulative explained variance by the PCA according to the number of components.

(a) Coronal plane

(b) Sagittal plane

(c) Transverse plane

Figure 2.18: Effects of the first components on the PCA average of the spine positions.
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Figure 2.19: Reconstruction error by the PCA on the training dataset according to the number of
components.

In fig. 2.19, we plot the average reconstruction error according to the number of components of

the PCA. The maximum error of the reconstruction becomes lower than 5 pix (∼1 cm) passed 20

components (fig. 2.19) with an average error below 1 pix (∼ 2mm).

We also test the PCA model on an unseen dataset. Using a stratified 20-fold cross validation, we

obtained reconstruction errors, scaled to the mm, of 0.92 mm (std: 0.75 mm) in average with a

maximum distance error of 7.94 mm. The scoliosis curvatures (below and up to 10◦) are also

preserved with a mean absolute error of 2.71 degrees (std: 2.49 deg.).

In conclusion, the use of a PCA model provides a detailed representation of the spine with fewer

dimensions, from 51 to 20 (60% reduction). This type of model enables the entire thoraco-lumbar

spine to be reconstructed with reasonable accuracy, less than one mm in average.

2.3.3.3 CNN architecture

Our model aims to predict a vector of 17×3 values representing the 3D coordinates of the tho-

racolumbar vertebrae from a single grayscale image. Our problem is similar to 3D connected

keypoints coordinates estimation found in Human Pose Estimation. These field are interested to

estimate the articulated 3D joint locations of the body from images or videos. That was also

this approach that has been investigated by Choi et al. 2017 [20] using an adaptated AlexNet’s

architecture made for 2D Human Pose Estimation purpose.

We use ResNet-18 [58] model as our backbone CNN architecture, which has been shown to be

efficient for regression tasks. It encodes the depth image (224×224, 1 channel) into the aforemen-

tioned latent PCA representation of the spine, which is in turn easily decoded into the 3D vertebra

positions (fig. 2.20). We train the network to minimize Mean Squared Errors (MSE) between the

vertebrae coordinates ΘΘΘiii ∈ R17×3 and PCA coefficients θθθ iii ∈ R20 predicted by the neural model
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Figure 2.20: Global architecture of our network: Resnet18 is making a regression on the depth
image in order to find a reduced representation of the coordinates. A PCA inversion module is
added to transform this representation to the actual coordinates.

and their corresponding elements i of the training dataset:

Loss = ωθ MSE(θ̂θθ ,θθθ)+ωΘMSE(PCA−1(θ̂θθ),ΘΘΘ) (2.1)

Each loss component is associated with a constant weight ωθ and ωΘ ∈ R.

The model is trained using an Adam optimizer with PyTorch [106] with 2500 epochs and a learning

rate of 1e-4.

2.3.3.4 Evaluation

Stratified K-Fold Cross Validation. To evaluate our approach we chose a k-fold cross-validation

strategy which splits our dataset into three subsets. The first is the train dataset which will be used

by the network for the training process. The second, validation dataset is used to estimate the

model skill during the training and, usually, check if the model overfits. In this case, the model is

not able to make accurate predictions from unseen data and became too specialized on the training

images. Thus, we stop the training process. Since the validation dataset is also conditionning the

training process, we need a last un-seen sample of data that can be used to evaluate the final state

of the model.

Because of the diversity in data origin (NMDID or CHUGA) and medical condition (scoliosis or

not) we need to maintain their ratio in the samples. Thus, we are stratified.

Evaluation metrics. We evaluate the vertebrae location accuracy by computing the 3D distances

between the ground-truth and the predictions as well as 2D distances in the coronal and sagittal

planes. We evaluate the spine curvature accuracy by computing the Mean Absolute Error (MAE)

in three angles: the main coronal Cobb angle [20], kyphosis (T04-T12) and lordosis (L01-L05).

As the 3D predicted spine of our method can also be used for spine classification. We chose the

main Cobb angle threshold of 10◦ related to early-stage progressive scoliotic curvatures [147]. We

compute binary classification metrics: sensitivity, specificity, positive predictive value, accuracy

and Area Under the Curve (AUC) of the Receiver Operating Characteristic. All of our quantita-
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Figure 2.21: Selection of results. White: ground-truth; blue: predictions. Top row: coronal view
for each case, bottom row: sagittal view. GH: institution; NMDID: New Mexico Decedent Image
Database; L: Left; R: Right; P: Posterior; A: Anterior.

tive results are computed using the stratified 20-fold cross-validation (CV) on the full dataset as

described in 2.3.3.4. All metrics are computed by averaging over all test sets.

2.3.4 Results and Discussions

2.3.4.1 3D spine prediction accuracy

Vertebra locations. MAE of the vertebrae location predictions are reported in table 2.2. Our

model is able to predict the 3D vertebra positions with an average 3D error below the cm. These

predictions allows the characterization of the spinal alignments (scoliosis, kyphosis, lordosis) with

automated measurements [20]. Visuals of the predictions are presented in fig. 2.21.

Spine 3D characteristics. Table 2.2 reports the angle errors between the predicted spine shapes

and the ground truth ones. The last three lines of the table 2.4) are provided for the comparison

with the literature. Note how our approach is the only one predicting kyphosis and lordosis. Nu-

merical results are provided for informative comparison on the range of values, as the considered

datasets are different, both in size and population.

Classification. Classification results are reported in table 2.2. Our method is able to discriminate

cases with scoliosis with a sensitivity of 64% and a specificity of 99%. We report a positive

predictive value of 95%, an accuracy of 89% and an AUC of 90%. Fig. 2.22 shows the predicted

severity against the ground truth one with the 10◦ classification thresholds. Let us note how several

miss-classifications arise near the 10° threshold and the underestimation of moderate and severe

scoliosis cases. In conclusions we provide leads to improve these predictions.

2.3.4.2 Ablation studies

To further understand the proposed approach we performed two complementary experiments.

Recent work by Klarqvist et al. 2022 [77] has shown that it is possible to estimate body compo-
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Tableau 2.2: Spine prediction accuracy. Vertebrae errors in mm of the 3D locations (3D) and 2D
coronal (Cor.) and sagittal (Sag.) projections. Angle errors in degrees in the scoliosis severity
(Sco. sev.), kyphosis (Kyph.) and lordosis (Lord.). Scoliosis classification (≥ 10◦) sensitivity
(Sens.) and specificity (Spec.).

Locations (mm) Characteristics (◦) Classification

Study 3D Cor. Sag. Sco. sev. Kyph. Lord. Sens. Spec.

Ours 7.07 4.51 5.60 5.46 6.44 8.26 0.64 0.99

(4.69) (2.99) (4.62) (6.19) (5.49) (6.85)

[20] × 5.4 (3.5) × 3.42 (2.64) × × NA NA

[151] × × × × × × 0.88 0.84

[80] × × × [4.4 - 4.7] × × 0.99 0.42

Figure 2.22: Comparison between predicted scoliosis severity and ground-truth measurements.

sition from solely body silhouettes. We consider the analogous case for the prediction of the 3D

spine: instead to use a depth map as input we consider the case where only the binary silhouette

of the back surface is observed.

In addition, we also experiment by training and testing on the two different datasets (GH and

NMDID) to see if the imbalance of scoliotic patients in the datasets has an effect on the predictions.

Predictions from binary images. We tested the impact of depth information by training our

model to reconstruct the 3D positions on binary images that show only the silhouette of the torso.

The results in table 2.3 illustrate that model using depth maps achieves overall better performance.

Depth is informative for the network. It is interesting to note the capability of the sihouette network

to reconstruct scoliosis curvatures with a severity error of 6.34◦. The biggest difference is obtained

in the sagittal plane alignments, which is coherent with the lack of depth information in the binary
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Tableau 2.3: Comparison with binarized depth information, i.e. silhouette (silh). MAE (with std.)
on locations in 3D, coronal (Cor.) and sagittal (Sag.) plane and the estimated scoliosis severity.
Detection is evaluated sensitivity (Sens). and specificity (Spec.).

Type 3D (mm) Cor. (mm) Sag. (mm) Severity (°) Sens. Spec.

silh 10.02 (6.96) 4.91 (3.34) 8.55 (7.22) 6.34 (7.86) 0.52 0.98

depth 7.07 (4.69) 4.51 (2.99) 5.60 (4.62) 5.46 (6.19) 0.64 0.99

silhouette image.

Datasets difference. The inclusion of NMDID allows us to validate the approach on asymp-

tomatic cases. However, it could have a negative impact on the prediction of the scoliotic cases

by adding bias. We thus evaluate the impact of the NMDID dataset on the network regression

performance. We train solely on GH (scoliotic data) and on both GH and NMDID (scoliotic +

asymptomatic) data and report the results on table 2.4. Including the NMDID cases in the training

set does not introduce any bias in the prediction performances (first two lines) on GH subjects and

confirms that the inclusion of spines without scoliosis from deceased subjects in supine position

does not deteriorate the predictions over living patients acquired with the regular protocol.

Tableau 2.4: MAE in locations in mm and standard deviations comparing results according to
subjects included in training and testing processes.

Study Train Test 3D Coronal Sagittal

Ours GH GH 8.81 (5.19) 5.87 (3.73) 6.76 (4.97)

Ours GH+NMDID GH 8.80 (5.46) 5.90 (3.73) 6.74 (5.26)

Ours GH+NMDID NMDID 6.45 (4.21) 4.01 (2.49) 5.19 (4.30)

Ours GH+NMDID GH+NMDID 7.07 (4.69) 4.51 (2.99) 5.60 (4.62)

2.3.5 Conclusion

In this work, we presented an approach to predict the 3D spine shape of a patient from a depth map

of the back. This depth map can be obtained with depth sensors, which are usually inexpensive,

portable, making them a promising cost-effective, non-ionizing approach to quantify scoliotic de-

formities. Our approach provides 3D predictions of the vertebrae locations and allows to compute

relevant anatomic curvatures along the spine as well as a fast scoliosis diagnosis.

To address the challenge of 3D reconstruction, we leveraged personalized kinematic models that

allow a full representation of GH patients with their spine and skin in the pose of the X-rays

acquisition. Thus, a part of our study is constrained by the use of a simulated skin in training

and testing times. The incorporation of the actual scans, for these patients, has the potential to

improve outcomes and validate the models under genuine conditions. This issue can be solved

with a ground-truth representation of the spine in the pose of the scan acquisition that is currently
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not possible to obtain.

Another venue of improvement of the presented work would be to add more subjects with mod-

erate and severe scoliosis in the training pipeline. As shown in fig. 2.22, our model tends to

underestimate severe deviations due to the low number of such cases in our dataset. To make

this possible, as well as to foster future research in this direction, we make our trained model and

training code available for research purposes1.

In addition, our work does not consider their individual vertebrae 3D orientation. It has been

studied that the axial vertebra rotation contains information related to the early detection of scol-

iosis [25] and its evolution [129]. Our approach could be adapted in the future to also predict the

orientations of the individual vertebrae. To that end, the PCA representation should be reconsid-

ered, as a linear approach might not be well suited to capture the 3D rotations.

1https://gitlab.inria.fr/spine/skin_to_spine
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2.4 Summary

In this chapter, we described the different examination methods of the patient spine and surface.

First, we presented the approaches of evaluation from X-ray observations of the body. 2D radio-

graph analysis of the torso is the main technique to describe spinal alignments and deformities.

We described the different measurements that can be made from the images like the Cobb angle.

Several classification systems, based on these measurements, like the Lenke classification, have

been created to guide treatment planning.

These methods provide a partial analysis of the spine, usually limited to the frontal plane, whereas

scoliosis is by nature a three-dimensional deformity. Recent advances in 3D imaging, like the

EOS imaging system, show the importance of the analysis of the transverse plane highlighting

the rotational anomalies of the vertebrae. This comprehensive approach provides a more accu-

rate assessment of the deformities and aids in tailoring effective treatment strategies for each pa-

tient, ultimately leading to improved clinical outcomes. Therefore, emphasizing the importance of

adopting three-dimensional imaging techniques for a thorough evaluation of the spine is crucial in

advancing our understanding and management of spinal deformities.

However, it is crucial to take into account the potential risks of cancer associated with repeated

exposure to radiation from X-rays. We presented several studies that have paved the way for

scoliosis monitoring with radiation-free imaging techniques like rasterstereography. Some of these

works, using artificial intelligence, are able to predict internal radiographic measurements, from

external views, and detect scoliosis with an high sensitivity. Despite the great advances coming

from these methods, the resulting characterization is partial or limited in 2D.

In section 2.3, we proposed, in a contribution, a novel approach of inference that takes as input

a depth map of the back of a person and outputs the 3D shape estimation of the thoracolumbar

spine. Combining a CNN model to extract the relevant features in the input images, our model

predicts an efficient PCA latent representation of the spine in 3D. With this approach, our method

predicts 3D vertebrae positions with an average 3D error of 7.1mm (std: 4.7mm). From the

predicted 3D positions, coronal (scoliosis) and sagittal (kyphosis and lordosis) spine alignments

can be located and evaluated. By measuring scoliosis, we showed that we are also able to detect

scoliosis disorders from the input depth map. For future research investigations, we make our code

publicly available with the trained models.
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3
Dynamic characterization of scoliosis
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Introduction

The spine has a central role in the structure and mobility of the trunk. Deformations of the spine,

in the case of idiopathic scoliosis, have significant impacts on the entire body. Despite the recent

advances in the acquisition and description of the torso anatomy in 3D, the causes and factors con-

tributing to scoliosis progression remain poorly understood. Thus, it is necessary to identify early

clinical and radiographic markers associated with progressive scoliosis. A notable observation is

that current analysis methods primarily rely on a static characterization of the torso (surface and

spine), neglecting its dynamic aspects.

The dynamic analysis of the spine is currently challenging because it requires observing and

measuring vertebral movements either invasively by inserting markers [116] or by using ionizing

imaging systems [16]. According to these limitations, current methods primarily rely on super-

ficial body measurements through motion capture, highlighting dynamic patterns in Adolescent

Idiopathic Scoliosis patients [134]. Currently, there is no consensus emerging from the literature

regarding the impacts of scoliosis on movement.

Recent methods presented in the literature propose to make in correspondence static radiographic

data with superficial markers to digitally reconstruct spine movements [101, 125]. These methods

demonstrate promising results as they enable, tracking movements of spinal alignments using

motion capture. However, these approaches have only been applied and validated in individuals

with Adult Spinal Deformity (ASD) without surface representation.

In a new contribution, we present a novel approach aimed to address the current challenges by

leveraging a personalized kinematic model registered in multi-modal acquisitions, internal and

external, of AIS patients. This digital twin can then be driven by external measurements to predict

the 3D trajectories in translation and rotation of the patient’s vertebrae. In a preliminary study,

we show that these predictions are close to radiographic measurements, i.e. near 1 cm in each

orientation axis and 5◦ in orientation, quantifying that the spine and the back surface motion

patterns are highly correlated.
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3.1 Approaches in the analysis of the torso in motion with scoliosis

As discussed in part 1.2.1, the spine assumes a pivotal role in orchestrating various aspects of

trunk motion. Therefore its study is mandatory to further investigate the patient’s condition and

improve the characterization of the disorders. In this section, we present the different methods

in the literature that allow the measurement of the spine dynamics. Then, we will present the

non-ionizing methods allowing the analysis of the motion of patients with Adolescent Idiopathic

Scoliosis.

3.1.1 Methods of tracking the in vivo motion of the vertebrae

Motion of the spine is usually described at the vertebra level as described in 1.2. However, the

in vivo measurements of the vertebra motion are challenging and rely on invasive and ionizing

approaches. For instance, MacWilliams et al. 2013 [90] use indwelling bone pins inserted into

the vertebrae of interest. Connected to reflective markers they were able to track the motion of the

lumbar vertebrae during gait analysis. Less invasive, dynamic radiography imaging techniques like

dual-fluoroscopy can be used to study spine motion [16]. However, these methods have a limited

field of view, focusing the analysis on a small region like the lumbar part. In addition, fluoroscopy

involves the use of continuous ionizing radiation, exposing patients to potentially harmful dose.

Less-ionizing, Dynamic Digital Radiography [3] shows promising results in dynamic analysis but,

to our knowledge, has not been used for the spine analysis. However, these dynamic and ionizing

methods are limited to the analysis of 2D motion. MRI can also be considered as an alternative [48]

and can provide three-dimensional images without the risk of ionizing emissions. However, this

imaging system is limited to a non-weight bearing analysis with a high cost and longer acquisition

times, making this method less practical.

3.1.2 Analysis based on superficial features

Other non-invasive and non-ionizing techniques are focused on superficial feature measurements

of the body with force plateforms, goniometers or Electromyography (EMG). In addition, recent

methods using motion capture (mocap) facilitated the analysis of the patient motion by recording

3D trajectories of a set of markers placed on the back. We can report several biomechanical

descriptors investigated in gait or flexion analysis:

• Ground Reaction Force (GRF) using force plateforms [119] mainly used to describe asym-

metry on patient’s pose or motion (gait for instance).

• Range of Motion (ROM) at spine levels, pelvic, hip or knee with motion capture [50, 122,

133, 134] or in some papers with the rachimetre [14, 109].

• Gait descriptors like speed of walking, cadence, stride/step length, width and gait asymme-

try [28].

• Physiological descriptors are also investigated in relation to motion as Electromyography
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(EMG) measuring muscle activity [105] and more indirectly, heart, respiratory activity or

oxygen consumption during motion [9].

As highlighted in a review by Daryabor et al. in 2017 [28] regarding gait analysis, there is a lack of

agreement concerning the impact of AIS on temporal-spatial parameters. The literature presents

varying viewpoints on the influence of AIS on gait asymmetry descriptors and the ROM in the

frontal and transverse planes at the hip and pelvis. In particular, gait kinematics asymmetry have

been observed, particularly as postural instability increased in individuals with scoliosis, leading

to alterations in lateral bending movement [133, 134].

A main drawback present in the current analysis methods in the fact that motion capture offers

a surface-level examination of a patient’s motion dynamics through generalized measurements of

spinal alignments. However, this approach lacks the granularity required for describing motion at

the level of individual vertebrae. A detailed analysis of the spinal alignments can be obtained by

acquiring 3D trajectories of markers positioned on the palpable spinous process of the vertebrae.

These approaches, however, are sensitive to the palpation task and underestimate the coronal cur-

vatures measurements [59, 121]. This issue can be fixed with numerical correction regarding the

true anatomy [101, 124, 125].
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3.2 The biomechanical modeling of the spine

As we show, the invasive nature of the in-vivo measurements of spinal loads or dynamic makes

these methods unsuitable for clinical analysis. Even, the trajectories of the spinous processes are

not representing the internal spine behaviour. Thus, biomechanical models can be presented as

alternative tools to reconstruct, in silico, the musculo-skeletal system mechanics.

3.2.1 Types of models

From the recent literature, we can differenciate two types of models that differ by their math-

ematical representation of the anatomic structures and interactions: Finite Element Model and

Multi-body model (fig. 3.1).

(a) Example of a finite-element model, from Coogan
et al. 2016 [23] focused in the simulation of the
intravertebral disc.

(b) Example with rigid-bodies modeling from
Christophy et al. 2012 [21]. The model is com-
posed of the skeleton (rigid-bodies) associated with
muscles and joints. It is used to study skeleton mo-
tion with muscular activity.

Figure 3.1: Different types of models of the spine and purposes

3.2.1.1 FEM models

Finite-Element modeling (FEM) is a common approach to study spine behaviour [143]. It approx-

imates the system as a multitude of functions within complex geometrical and material properties.

All elements are usually considered as deformable volumes. It is used to determine force dis-

tribution, loadings and motion properties [36, 37] along the spine with injuries [145], surgical

instrumentation [127, 145] or brace treatment [10, 118, 139, 140]. There are also several models

that investigate the effect of aging and bone growth in individuals with AIS [70, 131].

3.2.1.2 Multi-body/Rigid-body models

With fewer parameters than FEM, less consuming in computation time, these models are com-

posed of non-deformable elements like bones, connected with elastic structures (joints, ligaments

and other flexible tissues) [17, 21, 63, 120]. These models are used to determine loadings, me-
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chanical properties, muscular activity [17, 31, 63, 120] along the spine. As FEM, they can be

involved in studies about spine instrumentation [32] or brace treatment [26]. These models can

also be useful for medical imaging registration [40,53] and can be associated with motion capture

analysis [101, 128].

3.2.2 Specificity to patient anatomy

Models are often rich, incorporating a detailed representation of the spine with the rib-cage, its

disks, ligaments or muscles. Depending on the collected information captured from a single pa-

tient, we can categorize the modeling strategies in two main types: scaled models and subject-

specific models. Scaled models can be useful in situations where obtaining subject-specific data is

challenging: they involve a generic model, which is a standardized anatomical representation, ad-

justed to match the subject’s general body dimensions. While scaled models are computationally

efficient and require less time for data collection, they may not accurately represent subject’s char-

acteristics and may lead to less accurate results compared to subject-specific models. By including

patient anatomy (vertebra geometries and alignments for instance), subject-specific approaches al-

lows for a more precise biomechanical analysis and better understanding of individual movement

patterns.

In the analysis of scoliosis condition, these models are mainly focused on the treatment (brace or

surgery) simulation. For example, Courvoisier et al. [26] leverage a subject-specific biomechanical

models to simulate and predict the effectiveness of the spine response of a brace.

3.2.3 Application to motion analysis

We have identified one model that allows the reconstruction of vertebrae motion under scolio-

sis condition, Overbergh et al. 2020 [101]. In their study the authors proposed and validated a

workflow that incorporates a subject-specific kinematic model, created from [17], that can be used

towards marker-based motion capture analysis. The model, fig. 3.2, is composed of vertebra ge-

ometries, obtained from segmented CT-Scans and aligned with EOS biplanar X-rays images. Each

bone is connected to the adjacent structure with a spherical joint (3 DOFs in rotation). Then, they

were able to validate their kinematic predictions against low-dose biplanar X-rays of patients in

different poses. Their approach demonstrates encouraging outcomes with transnational errors be-

low the 5 mm in average in each orientation axis, and rotational errors around 5◦. We should note

that their methodology has been assessed within the context of Adult Spinal Deformity (ASD) and

rely on a meticulous palpation task which can be tedious to apply to young patient with Adolescent

Idiopathic Scoliosis (AIS).

3.3 Discussion

Given the challenges associated with in vivo spinal motion measurement, analysis predominantly

relies on external dynamic body motion capture. While a variety of features are captured, the level
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Figure 3.2: Model involved in the study of Overbergh et al. 2020, figure from [101].

of detail in these measurements might contribute to the limited comprehension of scoliosis effects

on spinal movement. Novel analysis methods using mathematical representations of the spine and

coupled with motion capture [122, 124, 125], facilitate the reconstruction of 3D spinal alignments

from superficial markers. These approaches leverage recent advancements in low-dose biplanar

radiography, enabling the 3D reconstruction of the spine with the superficial marker positions.

However, these methods do not comprehensively describe individual vertebral movement, partic-

ularly in terms of rotation [125]. Subject-specific biomechanical models can address this gap.

These models enable the analysis of the motion at the vertebra level using external markers placed

on spinous processes as presented in Overbergh et al. 2020 [101].
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3.4 Contribution: Multi-Modal Data Correspondence for the 4D Anal-
ysis of the Spine with Adolescent Idiopathic Scoliosis

The current methods for analyzing trunk motion with scoliosis rely on measurements from the

surface and do not allow for a comprehensive analysis of spinal kinematics at the vertebra level

as X-ray imaging techniques can provide. In this work, we propose to build a subject specific

kinematic model of patients with AIS that captures both their internal and external specificities.

The resulting digital twin can then be driven with mocap markers on the back of the patient, which

yields the actual kinematics of the spine. In a preliminary study, we present a validation of the

predictions against 3D spine reconstructions of two patients who performed lateral bendings.

3.4.1 Method

3.4.1.1 Collected data

Figure 3.3: Summary of our workflow with the annotated data. A set of radio-opaque markers
(blue circles) are placed on the back approximately according to different vertebra levels. No
palpation is required. The acquisition of their 3D location in both modalities (surface scan and
Biplanar X-Rays) allows the spatial correspondence between the internal and external structures
(skin and spine).

Our dataset consists of 8 patients aged between 8 and 16 years, with AIS (Cobb angle range: 14-

68◦) and without any treatment history. They have been included in our study following the IRB

CPP Ile de France 2 on the 07/20/2020: n◦ ID RCB: 2020-A01071-38. All parents and patients

received an information letter. Two data modalities have been collected in our institution for each

subject (fig. 3.4):

• A biplanar X-ray of their trunk made with an EOS imaging system

• A surface scan of the back using an Occipital Structure Sensor Mark II (XRPro, LLC, Sara-

tov)

58



(a) Biplanar X-ray captured
in the EOS acquisition sys-
tem. We can notice white dots
corresponding to radio-opaque
markers in place of mocap ones.

(b) Spine model generated from
the DICOM with the SterEOS
software.

(c) Scan of the skin – 3D acqui-
sition of the skin made with the
Occipital Structure Sensor de-
vice [6].

Figure 3.4: Types of data collected for a single patient at Grenoble Hospitals.

During all acquisitions, the patients wear a set of 18 radio-opaque markers positioned on the

neighbourhood of 5 vertebra: T1, T4, T7, T10 and L03. The marker placement does not require a

precise palpation. The markers can be identified and located in the X-ray images and the surface

skin mesh (fig. 3.3 and 3.6).

To evaluate the kinematic predictions of the model, X-rays of two voluntary patients, Cobb angles

of 14◦ and 29◦, were captured in left and right lateral bending. These images will be used to

quantify the inference of the spine motion inside the body in different poses.

3.4.1.2 Data processing

Some manual steps are needed to annotate the images. The first step is to make the semi-automated

reconstruction of the 3D geometries of the spine from the biplanar radiographs with the SterEOS

software [62] (EOS Imaging, Paris, France). Then, the radio-opaque markers, visible in the im-

ages, are located in 2D and their 3D position is computed using the calibration information avail-

able in the DICOMs metadata [55].

The transformation into 3D coordinates is facilitated by the conception of the EOS imaging sys-

tem. Knowing the geometry of the system, we can retrieve the 3D coordinates of the identified

landmarks of the biplanar images by drawing lines between the emitters and the identified land-

marks.

From the surface skin mesh, the markers locations are identified. As the surface scan and the EOS

reconstruction are defined in a different global frame, we use a rigid registration to bring them

in the same frame. Namely, we compute the translation and rotation that minimize the distance

between the 3D markers identified in both modalities. Let us note, that as the pose might be
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slightly different in both acquisitions, we use RANdom SAmple Consensus (RANSAC) [46] to

filter out markers, whose positions might have significantly changed with the patients pose. This

registration provides a first association between the surface scan and the spine 3D reconstruction.

3.4.1.3 The subject-specific kinematic model

To create a 4D numerical twin of the patient, we leverage the Anatoscope technology based on

"Anatomy transfer" [26, 33]. This method deforms an initial anatomical model to capture the in-

ternal and external shapes of the patient with rigid and elastic registration processes. The resulting

avatar can then be used for biomedical simulations, namely, the parameters of the model can be op-

timized so that the skin of the model matches the mocap markers, while enforcing biomechanical

constraints on the spine behaviour.

3.4.1.3.1 Model overview

The kinematic model is composed of Nx = 18 articulated rigid-bodies xxxi defined in positions pi ∈
R3 and rotations Ri ∈ R3×3, corresponding to each i thoracolumbar vertebra and the pelvis. In

addition each bone is associated with a set of scale parameters sss that modify the model geometries

(of 5000 vertices in average). The bones are connected by K = 17 joints of 6 degrees-of-freedoms

(DOFs), in translations and rotations as defined by Ignasiak et al 2016 [63]. We followed the

modification applied by Koutras et al 2021 [82] allowing a symmetrical definition of the vertebra

motion (table 3.1). The position of the joints is defined in the middle of the segment drawn

between the two adjacent endplate centroids (fig. 3.5). Their orientation is defined accordingly to

the inferior rigid-body. The model also has a skin surface (mesh of 2173 vertices) which is rigged

by the articulated rigid bodies.

Figure 3.5: Positioning of the joints relatively to the two connected vertebrae.

3.4.1.3.2 Model registration

The following section gives an overview of the registration process. A detailed description of the

workflow is provided in Appendix A page 103.
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Tableau 3.1: Stiffness values at each joint of the model. Shear and compression are expressed in
kN/m, flexion-extension, axial-rotation and lateral bending in N.m/rad.

Joint region shear compr. flex.-ext. ax.-rotation lat. bending

Thoracic 262 1720 286 177 223

Lumbar 245 1720 143 498 149

The first step of the registration process is to change the pose xxx and the shape sss parameters of

the model so that the models’ spine fits the 3D reconstructed spine and the models’ skin surface

captures the surface scan. As the shape parameters sss only capture several deformation models,

the obtained geometries do not precisely match the patient-specific geometries. Thus, in a second

step, we refine the geometries of the model’s vertebrae and skin to match the patient’s observations

(EOS geometries and surface scan). Once the patient surfaces are captured by the model, the shape

parameters are fixed.

Let us note that the patients pose during the surface scan is slightly different than the pose in the

radiography, thus, the location of the markers lllA on the resulting model differs from the marker

locations lllX on the X-rays.

To fix this issue, we transfer the M markers positions lllSS ∈ R3×M located on the surface scan onto

the model skin mesh. We identify the closest mesh face of the model to a marker and define the

marker location on the model mesh using the barycentric coordinates of the face vertices.

Then, we use a temporary set of pose parameters xxx′ that are optimized so that the model markers

lllA(xxx′) match the ones in the X-rays lllX . This effectively changes the model skin surface to match

the pose of the patient in the EOS device.

The marker-based optimization is computed as

x̂xx′ = arg min
xxx′

(
i=M

∑
i=1
||lllA

i (xxx
′)− lllX

i ||2 +EA(xxx′)

)
, (3.1)

where the energy EA is a regularization term enforcing anatomic constraints on joints of the model.

The resulting model skin surface matches the pose of the back surface during the X-ray acquisi-

tions. Thus, we create a synced skin and spine model by disregarding the temporal parameters

xxx′ and associating the current optimized skin to the original model parameters xxx obtained during

the first registration process. As a result, the anatomical model is a numerical twin of the patient,

including the skeleton and the skin rigged with common model parameters. The association of the

skin and spine is performed on the pose observed during the X-ray acquisitions with the help of

the radio-opaque markers. Given a new set of markers, the model parameters can be optimized

using Equation (3.1) and obtain the skin model matching the input markers, as well as a prediction
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of the spine geometry inside the body.

3.4.1.4 Accuracy of the anatomical model

To evaluate the quality of our model, we compute several metrics related to the accuracy in shape,

positions and orientations of the vertebrae. The ground-truth measurements of the vertebrae are

based on the 3D annotations provided by the SterEOS software. We compare our model meshes

with the reconstructed ones.

The vertebra location is defined with the center of mass of the corresponding mesh. The euclidean

distance between the corresponding ground truth and model meshes is then computed with their

mean absolute difference on each anatomical axis. Differences in orientations are given by the 2D

projection of a vertebra orientation vector, computed according to the recommendations of the ISB

(International Society of Biomechanics) [149] on a given anatomical plane. The resulting angle

between the SterEOS measurement and our model in then measured for each vertebra on each

plane. To assess the quality of the model vertebrae geometry we compute the absolute mean and

standard deviation of the point-to-surface distances between the model geometries and the EOS

3D reconstructed spines.

As the body surface of the back during the radiograph acquisitions is not available, we evaluate

the model fit to radiographs by computing the 3D euclidean distances between the radio-opaque

markers on the model and in the X-ray. We also quantify the contribution of the model skin

correction step used to reconstruct the pose of the back during the X-ray acquisition.

3.4.1.5 Validation of the kinematic predictions

We validate the motion of the spine inside the body predicted by our model as follows. Two

voluntary subjects with AIS were acquired in different poses in the EOS imaging system. The

standard pose, standing with hands on the cheeks, was used to create the digital twin (fig. 3.6

left). Then two other poses, right and left lateral bending, were also acquired (fig. 3.6 right). From

the resulting images the marker positions were identified and located and the 3D spine model

reconstructed. The markers of these poses are used to drive the model, and the obtained 3D spine

is compared to the reconstructed one. Specifically, given a set of 3D markers in the X-rays lllX , the

model parameters xxx can be optimized, so that the model markers lllA best match the input markers

lllX by optimizing Eq. 3.1.

Let us note that the 3D reconstruction of the vertebrae in lateral bending is not straightforward

due to the overlapping of the different bones on the profile X-ray (fig. 3.6b right). Thus, the

vertebra details needed for the reconstruction are difficult to extract: the computed geometries

of the vertebrae do not accurately match the image and do not match the geometries obtained in

the standing pose. To overcome this issue, we rigidly registered the model vertebra geometries

obtained in the standing position to the reconstructions in bending position. This step computes

the optimal rigid transformation of each vertebra to minimize the projected distances of the model

geometries in standing and those obtained in bending.
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(a) Standing (b) Lateral-bending

Figure 3.6: Biplanar X-rays of the same patient in standing and lateral bending. During the ac-
quisitions the patient wears radio-opaque markers. In bending, several stereo-landmarks, needed
for the spine reconstructions are hidden, particularly in the thoracic part.

With this procedure we obtain the 3D rigid location and orientation of each vertebra from the

bending images. Thus, we compute the orientation errors with respect to the predictions by using

the intrinsic Euler angles defined by the ISB XYZ sequence (coronal, axial, sagittal). The accuracy

in position is given as described in 3.4.1.4.

3.4.2 Results

We evaluate the created digital twin in two settings. We first quantify the capability of the model

to capture the data in the standing position, and then we evaluate the precision of the model on the

bending position. For each position we assess the external accuracy, i.e. how well does the model

fit the 3D markers, as well as the internal accuracy, i.e. how well does the model capture the shape

and position of the 3D spine inside the body.

3.4.2.1 Accuracy of the subject-specific model in standing

External accuracy. We tested our method to correct the pose of the model skin according to

the 3D positions of the markers in the X-rays. In fig. 3.7, it appears that we were able to have a

significant gain in accuracy of the surface reconstruction of the model, reflected by the position

of the markers, with the correction step. The average distance error decreases from 9.86 mm (std:

8.10 mm) to 4.47 mm (std: 2.70 mm).

Internal accuracy. Measurements in positions are made by computing the center of mass of

each mesh. Orientations of each thoracic and lumbar vertebra (T01-L05) are produced according

to the ISB recommendations. The shape accuracy is given for each vertebra by computing the
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mean of the absolute point-to-surface distances. The results are detailed for each vertebra on

table 3.2. The error in positioning T01 is due to a model registration error on a unique patient

whose vertebra has a particular shape. Despite this result, the model performs well in capturing

the morphological specificities of the patient’s spine.

Figure 3.7: Distance error per marker from the resulting model to the radiograph positions. We
compare a simple rigid registration of the skin onto the radio-opaque markers using RANSAC
(blue) with an additional step of the pose correction using a kinematic model (orange) .

3.4.2.2 Accuracy of the subject-specific model in bending

From the X-ray images, the radio-opaque marker positions were manually extracted and their 3D

location triangulated. Their positions serve as inputs for the inverse-kinematics problem.

For this experiment, we removed the two most lateral markers at the T04 level as these markers

are subject to the movement of the scapula, which is not included in our model. We can notice that

their positions have not correctly fit their target by the anatomical model for these two subjects

with an average 3D error of 6.68 mm (std: 1.25 mm).

Let us note that for one subject, the right bending pose resulted in most markers being out of the

X-ray frontal plane view. Thus we do not report metrics on this case.

External accuracy. After the marker optimization, the model markers reached their correspond-

ing targets with an average distance error of 4.66 mm (std: 2.14 mm).

Internal accuracy. We evaluated the accuracy of our predictions in positions by comparing the

center of mass of each vertebra. The errors in rotations are given by comparing the intrinsic Euler
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Tableau 3.2: Accuracy (Mean Absolute Error, MAE) of the avatar vertebrae in shape, positions
and orientations

Positions (mm) Orientations (deg) Shape
(mm)

ID 3D
distance

Anteropos. Mediolat. Inferosup. Coronal Sagittal Axial P.-t.-S.
distance

T01 1.32
(3.28)

1.05
(2.78)

0.7 (1.78) 0.11
(0.18)

1.67
(2.92)

1.98 (2.6) 3.58
(5.33)

0.31
(0.33)

T02 0.33 (0.7) 0.15
(0.26)

0.27
(0.66)

0.06
(0.08)

1.25
(1.23)

3.19
(2.34)

1.55
(1.09)

0.28
(0.27)

T03 0.17
(0.18)

0.14
(0.19)

0.06
(0.04)

0.05
(0.06)

1.33
(0.77)

7.22
(4.66)

1.87
(1.38)

0.28
(0.25)

T04 0.27
(0.28)

0.23
(0.26)

0.06
(0.06)

0.1 (0.12) 2.16
(1.44)

3.4 (3.69) 1.28
(0.86)

0.31
(0.28)

T05 0.18
(0.23)

0.14
(0.23)

0.04
(0.02)

0.07
(0.09)

2.77
(2.98)

1.52 (1.0) 1.67
(0.53)

0.29
(0.28)

T06 0.07
(0.06)

0.06
(0.06)

0.03
(0.02)

0.02
(0.01)

1.48
(1.55)

2.14
(1.47)

2.47
(2.23)

0.26
(0.24)

T07 0.24
(0.25)

0.15 (0.2) 0.09
(0.08)

0.15
(0.14)

1.04
(1.52)

2.23
(1.56)

1.17
(1.13)

0.31
(0.28)

T08 0.13
(0.06)

0.1 (0.06) 0.03
(0.02)

0.06
(0.04)

0.92
(0.79)

5.14
(2.36)

3.07
(3.09)

0.29
(0.31)

T09 0.15
(0.07)

0.12
(0.08)

0.06
(0.04)

0.03
(0.04)

1.17
(0.58)

4.35
(2.29)

2.29
(3.84)

0.28
(0.25)

T10 0.14
(0.06)

0.11
(0.08)

0.04
(0.03)

0.04
(0.02)

1.79
(0.96)

7.8 (3.5) 4.21
(3.44)

0.31 (0.3)

T11 0.21
(0.23)

0.16
(0.16)

0.05
(0.06)

0.12
(0.17)

1.4 (0.87) 8.11
(2.24)

2.63
(2.21)

0.3 (0.28)

T12 0.12
(0.15)

0.09
(0.14)

0.05
(0.07)

0.04
(0.04)

1.34
(0.63)

1.63
(1.56)

2.27
(2.02)

0.29
(0.27)

L01 0.19
(0.28)

0.14
(0.28)

0.07
(0.04)

0.06
(0.09)

1.78
(1.83)

3.84
(3.28)

1.79
(1.17)

0.31 (0.3)

L02 0.29
(0.27)

0.24
(0.27)

0.07
(0.06)

0.1 (0.12) 1.57
(1.61)

5.43
(4.81)

4.66
(8.08)

0.28
(0.26)

L03 0.31
(0.27)

0.28
(0.24)

0.05
(0.06)

0.1 (0.14) 2.62
(3.85)

4.74 (1.3) 2.79
(2.64)

0.28
(0.26)

L04 0.44
(0.23)

0.43
(0.22)

0.05
(0.06)

0.06
(0.06)

1.16
(1.22)

5.74
(2.15)

3.04
(5.16)

0.31
(0.29)

L05 0.61
(0.29)

0.58
(0.26)

0.1 (0.1) 0.15
(0.09)

1.65 (1.4) 2.37
(2.25)

3.7 (5.79) 0.3 (0.28)

All 0.31
(0.83)

0.25
(0.70)

0.11
(0.46)

0.08
(0.10)

01.59
(1.73)

4.17
(3.32)

2.59
(3.49)

0.29
(0.28)
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angles between the ground-truth and predictions according to the XYZ order given by the ISB

recommendations [149]. The results are presented for each vertebra table 3.3.

Tableau 3.3: Accuracy of the predictions (MAE) of the vertebra positions and orientations accord-
ing to the marker positions in lateral bending.

Positions (mm) Orientations (deg)

ID Anteropos. Mediolat. Inferosup. Coronal Sagittal Axial

T01 4.53 (1.32) 2.38 (1.21) 3.62 (2.56) 6.17 (6.03) 2.3 (2.47) 2.2 (1.63)

T02 3.84 (1.9) 3.35 (3.84) 3.71 (2.47) 7.73 (6.57) 1.7 (1.36) 5.27 (4.24)

T03 3.47 (2.64) 4.98 (4.97) 2.6 (2.99) 6.39 (4.48) 1.17 (1.05) 3.41 (3.92)

T04 3.78 (3.13) 6.31 (5.98) 2.6 (1.71) 4.56 (4.52) 1.53 (0.98) 2.04 (1.04)

T05 4.21 (3.57) 7.13 (6.23) 1.86 (0.9) 4.87 (2.11) 1.69 (1.2) 2.96 (0.63)

T06 4.94 (4.25) 7.45 (6.25) 1.38 (1.17) 2.53 (1.45) 2.47 (1.99) 4.32 (2.0)

T07 5.55 (3.54) 7.12 (6.92) 0.92 (1.45) 2.03 (1.14) 2.35 (0.8) 4.4 (4.34)

T08 5.24 (2.64) 7.57 (6.86) 1.29 (1.03) 2.14 (2.15) 2.83 (1.35) 2.94 (1.33)

T09 4.39 (2.73) 9.0 (6.03) 1.49 (1.43) 3.65 (3.58) 1.8 (1.77) 2.99 (0.43)

T10 4.22 (3.44) 10.66 (2.45) 1.05 (0.95) 4.59 (6.29) 1.31 (1.07) 5.48 (4.8)

T11 3.32 (4.42) 12.01 (0.78) 1.53 (0.82) 4.19 (4.46) 1.55 (1.81) 7.28 (4.04)

T12 3.26 (2.65) 12.93 (1.76) 2.15 (0.37) 4.39 (4.06) 3.54 (1.08) 7.14 (4.02)

L01 5.42 (5.78) 14.42 (3.96) 1.36 (0.76) 7.69 (11.85) 8.1 (9.25) 8.01 (6.84)

L02 5.19 (5.13) 13.79 (4.57) 1.82 (1.19) 2.98 (2.99) 4.0 (1.19) 9.54 (6.36)

L03 5.39 (5.58) 11.09 (2.7) 0.94 (0.33) 2.9 (3.03) 1.23 (0.92) 7.1 (0.32)

L04 4.04 (3.97) 6.75 (3.64) 1.43 (0.19) 6.05 (7.55) 3.12 (2.57) 6.13 (5.55)

L05 3.78 (3.2) 7.38 (4.52) 1.59 (0.92) 4.76 (3.16) 2.95 (3.06) 13.98 (5.02)

All 4.39 (3.13) 8.49 (5.13) 1.84 (1.45) 4.57 (4.53) 2.57 (2.77) 5.60 (4.38)

The 3D accuracy of the predicted positions is close to the cm in average with 1.07 cm (std: 0.42

cm). It can be noted that the predictions are affected by a global lateral shift in the side of the

movement (fig. 3.8) highlighted on the mediolateral axis (MAE 8.49 mm, std: 5.13 mm). Despite

this error, the orientation in the corresponding plane (coronal) is closer to the expectations (4.57◦,

std: 4.53◦, table 3.3). The greater error in the L05 transverse rotation can be due to a lack of

superficial constraints (i.e. markers) in this region.

3.4.3 Discussion

In this section, we presented a semi-automatic workflow that allows the creation of a 4D numerical

avatar of patients with AIS reflecting their inner and external anatomy. The inputs were captured

using safe and low-dose imaging methods and do not need a sensitive palpation task that cannot

be easily applied on young subjects in a daily clinical usage. An anatomical avatar is deformed in

order to capture the internal (spine) and external (skin) specificities of the patient obtained from
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(a) Patient A, bending left

(b) Patient B, bending right

Figure 3.8: Predictions (blue) against the ground-truth (black) on the coronal and sagittal planes
(scale in mm). The free dots represents the marker positions and the connected ones the vertebrae.
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the different modalities. The model was able to capture the vertebra geometries with a mean error

below the mm (0.29 mm, std: 0.28 mm) allowing us to compute several descriptors of the vertebra

positions and orientations automatically. One major challenge is to recover the external shape of

the patient during the X-ray acquisitions, as the patient’s pose is necessarily different from the

surface scan acquired separately. A solution can be found in the introduction of 3D sensors during

the X-ray acquisition [56]. We proposed a method that leverages radio-opaque markers, visible

in both X-ray images and surface scan, to correct the pose of the model’s back. This additional

step in our workflow allows us to capture the change in pose of the patient in standing and to

increase the correspondence with the markers in the X-rays from 9.86 mm (8.10 mm) in average

to 4.47 mm (std: 2.70 mm). However, we can notice the difficulty of our model to fit the lateral

markers particularly on the upper part of the body. This can be explained by the fact that we are

not modeling the shoulder girdle and some markers, positioned near T04 for instance, are placed

on the scapula.

In a preliminary study, we validate the predictions of the kinematic model with secondary X-rays

of two voluntary patients asked to make lateral bending (left and right, fig. 3.6). One capture

was rejected due to the low visibility of the markers. The marker positions were used as inputs

of the simulator and the predicted positions and orientations of the vertebrae compared to 3D X-

ray reconstructions. Beside the low number of subjects in our study, a limitation can be found in

our evaluation which is restricted to an analysis of the spine in two different poses which is not

allowing a comprehensive analysis of the full motion. It should be noted that kinematic evaluations

are currently possible only through semi-static measurements, as a true kinematic analysis is not

feasible with the current methods of capture of the vertebral motion.

The creation of a thoracolumbar kinematic model of patients with scoliosis condition was also

investigated by Overbergh et al 2020 [101]. They were able to make a subject specific model of

their patients comprising bone geometries and a set of superficial markers. Then, they compared

their kinematic predictions against secondary X-rays of subjects in different poses. However,

this workflow was designed towards Adult Spinal Deformity analysis and was not integrating the

external surface of the back. We proposed a method that is leveraging the 3D acquisition of the

back avoiding any precise or time-consuming task of palpation. Thus, this protocol can be used

by less experienced medical staff.

Today, to our knowledge, we don’t have reference values determining whether the accuracy of

kinematic predictions is sufficient for daily clinical analysis. Only Overbergh et al. [101] allows

us to compare results in the context of spine with scoliosis. Our predictions are in the range of

values of those reported in [101] in positions and orientations except for the mediolateral axis

measurements. In this case, the predicted spine was affected by a global lateral shift in the side

of the bending. The orientations of the vertebrae were in the range of acceptable values with an

average accuracy below 6◦ on the intrinsic Euler rotations. The reconstructions in the lumbar part

of the spine showed a more important error particularly on the axial rotations. This is also the

most flexible part of the spine where rotations can be underestimated by our kinematic model.
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A source of the errors can be identified in the joints of our generic model where stiffness matrices

are defined using the Ignasiak et al. 2016 [63] and Koutras et al. 2021 [82] values, obtained

from healthy adult observations. Optimization processes can be planned in order to estimate more

specific kinematic parameters such as the joints stiffness or the markers constraint [144]. The

addition of radio-opaque markers on the hips would allow us to improve the model predictions in

the lower part of the spine and to validate predictions with the inclusion of the pelvis. In addition,

compared to the literature, our approach relies on markers which are not placed closely to bony

structures. Thus, we should also consider potential errors introduced by skin deformation artifacts.

Furthermore, the recruitment of more patients, with and without AIS, captured in a wide variety

of poses (flexion, extension, lateral bending, etc.), would provide a more comprehensive overview

of the model’s performances.

3.4.4 Conclusion

Combined with 3D X-ray imaging, the characterization of the spine in motion provides valuable

insights about the scoliosis condition of the patient. The dynamic analysis of AIS presents a sig-

nificant challenge due to the absence of non-invasive and non-ionizing techniques for capturing

vertebra motion. In this study we investigated the use of a subject-specific kinematic model ob-

tained from low-dose biplanar X-rays, a surface scan and a set of radio-opaque markers. In our

preliminary result, we evaluated the kinematic behaviour of the model against secondary biplanar

X-rays of two patients in lateral bending. We show that our predictions are close to the radiograph

observations with an accuracy near 1 cm in 3D position and 5◦ in orientation.

Future work can be considered such as the addition of markers or the optimization of the physical

model constraints. Leveraging bigger cohorts of patients in motion will further allow to better

characterize the individual physical properties of the patients. Ultimately, a comprehensive un-

derstanding of scoliosis using 4D digital twins will lead to improved scoliosis classification, its

diagnosis and the treatment with biomedical simulation.
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3.5 Summary

Given the challenges associated with in vivo spinal motion measurement, the analysis mainly relies

on external measurements of the body motion. While a variety of features are captured, the level

of detail in these measurements might contribute to the limited comprehension of how scoliosis

affects spinal movement. The analysis remains superficial and is not providing the underlying

internal spinal kinematics. As shown in this chapter, subject-specific biomechanical models can

address this gap. These models, based on X-ray medical images allow the reconstruction of the

spinal trajectories from external marker positions.

In section 3.4, we proposed a new approach that facilitates the marker placement and allows the

analysis of the back and spine motion at the vertebra level. For this purpose, we use a subject-

specific kinematic model of the patients created from different sources: the spine obtained using

a 3D low-dose imaging system (EOS) and the skin shape captured with an optical 3D sensor. Our

method leverage radio-opaque markers that allows the registration of an articulated anatomical

model on these different modalities. As a result, we can reconstruct a kinematic digital twin

capturing his external and internal characteristics. In a preliminary study we evaluated the ability

of our model to reconstruct spine dynamics from the superficial marker positions. This validation,

based on a small number of patients (2), shows promising results in predicting these 3D vertebra

trajectories in translation and rotation.
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Conclusion and perspectives

1 Summary

1.1 3D static characterization of scoliosis with non-ionizing methods

Adolescent Idiopathic Scoliosis (AIS) is a progressive disease of the spine that needs to be detected

rapidly for prompt and effective treatment. This detection relies on measurements of internal spinal

deformities and their evolution between medical visits. However, the characterization process

needs the use of ionizing imaging techniques which carry a potential risk of cancer development,

particularly for patients who need regular monitoring.

Safe and non-ionizing approaches, based on 2D or 3D acquisitions of the back surface, are showing

promising results in detecting and characterizing spinal deformities [135]. These methods, in

particular those coupled with machine-learning algorithms, allow for the inference of deformation

parameters that could previously only be obtained from X-ray images [80, 146]. However, these

techniques have limitations when it comes to characterize deformations. They are essentially

based on local, 2D measurement of the main Cobb angle, whereas scoliosis is by nature a three-

dimensional deformation affecting the entire spine [25, 130].

In a first contribution, we propose to go further and to push the characterization in 3D in the

full thoracolumbar spine while proposing an accessible, non-ionizing examination method. For

this purpose, our approach is based on depth maps of the back that can be obtained from cheap

and easy-to-use 3D sensors and deep-learning algorithms. We also leveraged a public database,

the New Mexico Decedent Image Database [44], to include additional examples to our hospital

dataset. The resulting dataset provides 121 representations of the torso and their corresponding 3D

spine reconstructions that can be used to train our regression model. To ease spine predictions, we

use a low dimensional representation of the spine based on Principal Component Analysis. Our

approach extends the spine examination, usually in the coronal plane (scoliosis), to the sagittal

plane (kyphosis and lordosis). In addition to the 3D characterization of the spinal alignments, we

show that our method can also be considered into the detection of early scoliosis disorders.

1.2 Towards a 4D analysis of the spine with AIS

Beyond the static aspects in the description of the spinal deformities, recent advancements in mo-

tion capture enable the dynamic analysis of the human body. Studies dedicated to idiopathic scol-

iosis rely on the analysis of superficial markers that are not describing the actual internal motion.

For this purpose, novel approaches propose to use biomechanical models, built from 3D imaging

techniques, to reconstruct the internal spine dynamics. These methods have been developed and
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validated primarily on Adult Spinal Deformity patients and, however, can be challenging to apply

to young patients with idiopathic scoliosis.

In this manuscript, we propose a new approach that leverage a digital twin of the patient with AIS

allowing the analysis of spine motion. This model is created from different sources: the spine

obtained from a 3D low-dose imaging system (EOS) and the skin captured with an optical 3D

sensor. Our method leverages radio-opaque markers that enable the registration of an articulated

anatomical model on these different modalities. The resulting digital twin can be then driven from

outer measurements, like motion capture, to reproduce realistic internal motion. In a preliminary

study, we validated our kinematic model on two voluntary patients with AIS who underwent lateral

flexion radiographs. Driven by the 3D radio-opaque marker positions, the model show promising

results in the prediction of the 3D displacement of the vertebra in translation and rotation.
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2 Discussions and near future research directions

In this section, we provide a discussion on several points of our methodology. Our works present

various uncertainties and limitations that could be assessed and resolved in near research direc-

tions.

2.1 Contribution 1: 3D inference of the scoliotic spine from depth maps

(a) Personalized model skin (b) Original scan

Figure 3.9: Difference between model skin representation and original scans for patients with full
(first row) and partial (second row) back acquisition.

In the first contribution, the inference models are trained and tested with data samples that encom-

passed real back views (NMDID segmentations) and skin reconstructions derived from anatomical

models (GH patients).

As we can note, we were not able to use the original surface scans because they were acquired in

a pose that may differ from the one obtained for the spine (fig. 3.9). In future studies, we could

annotate and incorporate these scans into the analysis, thereby validating the inference models

with more realistic image captures of backs with AIS.

We could consider the kinematic model developed in section 3.4 that can potentially be integrated

into the data processing pipeline. Ultimately, this integration could facilitate the reconstruction of

vertebral positions within the original scans.

Consequently, we could enhance the training process by incorporating data from various sources

and poses, aiming to improve model performance and enhance its generalization capabilities

across different 3D acquisition sources.
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2.2 Contribution 2: Multi-Modal Data Correspondence for the 4D Analysis of the
Spine with Adolescent Idiopathic Scoliosis

2.2.1 The localization of the radio-opaque markers in biplanar X-rays

2.2.1.1 Facilitate marker identification

Our second contribution, presented in chapter 3, is based on a primary manual task of localization

of the radio-opaque markers on the biplanar X-rays. This task can be complicated in specific

conditions, particularly when the markers are aligned in the same axis as presented fig. 3.10. In

this situation, precise visual inspection of the marker shape and 3D surface acquisition of the back

are needed to associate the markers in the two views. Alternatively, this issue can be limited in

future acquisitions by avoiding markers alignment.

In addition, we can facilitate this task by making it fully automatic. As markers are easily localized

in images, we could easily train a Convolutional Neural Network to detect and identify these

markers in the images. This requires, however, collecting a sufficient number of images to train

the network.

2.2.1.2 Quantify precision noise

In future experiments, it would be of interest to assess the effect of errors in marker localization.

For this purpose, we can design an experiment by introducing random noise in their 2D coordinates

and thus, evaluating the resulting alterations in the model’s dynamic predictions. This experiment

has the potential to offer a quantitative understanding of the influence of the marker localization

task in our results.

2.2.2 Increase the classification of the numerical twins to the patients characteristics

As presented in chapter 3 section 3.4, our subject-specific kinematic model construction allows a

fine capture of the patients spine geometries. However, the kinematic constraints in the 6D inter-

vertebral joints, are defined from healthy adult subjects while the aim of the model is to represent

young patients with spine deformities. Thus, our model is not reproducing the behaviour of an un-

healthy spine with altered biomechanics. The use of more specific stiffness matrices, derived from

patient acquisitions, like X-rays in bending or motion capture, with inverse kinematics experi-

Figure 3.10: Ambiguity with the manual identification and matching of markers on the X-ray
images. The difficulty is to correlate the two markers located in yellow on the profile view (on the
right) with their corresponding positions on the frontal view (on the left).
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ments, can increase the accuracy of the model’s dynamic predictions. Furthermore, compare these

specific intervertebral joints properties to those obtained from healthy patients can significantly

enhance our understanding of the influence of scoliosis on the spine dynamics.

2.2.3 Limitations with dynamic validations

A limitation in the evaluation of dynamic predictions is linked the challenge to obtain true in vivo

spinal kinematic measurements. The current state-of-the-art [101] and our approach, compare pre-

dictions against different poses of patients during low-dose X-rays with the EOS imaging system.

These evaluations are semi-static and are not taking in account the entire body motion. For this

purpose, dynamic radiography can be investigated to collect such measurements but the risk of

radiation exposure should be considered, particularly for young patients followed for adolescent

idiopathic scoliosis [78].

In addition, to the best of our knowledge, there is no standard defining the accuracy of motion

prediction for clinical use. Results can be compared with similar studies, in our case Overbergh et

al. 2020 [101], to evaluate the magnitude of our errors.

2.3 On both contributions

2.3.1 Need of additional acquisition of patients with scoliosis

Our contributions show promising results towards the 3D characterization of the spine with AIS

from external acquisitions of the back, whether static or in motion. However, we can point out

some improvements that can be mainly leveraged by the inclusion of additional subjects in the

near future, particularly with patients with moderate to severe scoliosis.

As shown in chapter 2 section 3, our model tends to underestimate these scoliosis curvatures in the

inference from depth maps. In fig. 2.22 page 46, we can see that patients below 25◦ of scoliosis

tend to be underestimated by our method. This issue can be explained by a scarce representation of

these deformities in our dataset, mainly constituted of asymptomatic and mild scoliosis subjects.

We can also point out the limited number of patients recruited for our study chapter 3 section 3:

we validated our model with two voluntary patients while the use of a high variety of scoliotic

curvatures and movements would provide a better overview of our model performances. In its

current form, our analysis is limited to a preliminary analysis in the reconstruction of the vertebra

trajectories.

2.3.2 Facilitate validation and comparisons between studies

The current state-of-the-art is usually reporting results without sharing any dataset or source code.

In future, the creation of a public, freely accessible database, like the New Mexico Decedent Image

Database, would greatly facilitate the creation and validation of data-driven methods. It could also

allow clear results comparisons between studies which are currently difficult to interpret due to

the variations in datasets, made on different populations (scoliosis prevalence, severity, etc.).
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Another aspect is the availability of the code, frequently not easily accessible, which would facili-

tate the reproducibility of the experiments and tests. For this reason, we make our code available,

with the trained models, for research purposes.
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3 Long term directions

Our works are opening several possible research directions towards the assessment of scoliosis

with non-ionizing methods and motion capture.

3.1 3D inference of the spine alignments from depth maps

3.1.1 Creation of an accessible mobile screening tool

Figure 3.11: Summary of our method. A depth map is rendered from a 3D capture of the back.
Then, a Convolutional Neural Network is trained to infer the 3D vertebrae positions inside the
image. Scoliosis, lordosis and kyphosis can be estimated from the predicted spinal alignments.

In chapter 2 page 34, our work demonstrates the capability of deducing 3D spinal alignments from

a single depth map of the back. With the widespread availability of 3D sensors in common mobile

devices like smartphones and accessories, these tools become easy-to-use and cost-effective for

data acquisition. By integrating specialized software, such as ours, into these devices, we have

the potential to simplify the detection and the monitoring of idiopathic scoliosis (fig. 3.11). This

could be facilitated by medical personnel during school screenings but also by the general public.

However, there are still additions to be made to this software. Our results are given according

to depth maps in inputs that are already cropped on the spine. As [151], we can include an

automated task of cropping to propose a fully automated method of inference. Faster-RCNN,

for instance, shows accurate results in the localization of the spine from RGB images of the back

[151]. This method can be implemented to propose a complete automated solution for screening

and monitoring scoliosis disorders.

Furthermore, we identify scoliosis curvatures from vertebra centroids defined by the gravity cen-

ters of the full vertebra geometries. We employ the approach established by Choi et al. in

2017 [20] to locate and estimate the Cobb angles. A comprehensive examination of this mea-

surement method is furnished in Appendix B, and is showing similar results with the traditional
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method of measurement as reported in [20]. However, this method has some constraints that may

arise in particular subjects leading to false negative cases.

3.1.2 Additional features

We can also push the characterization further by investigating the ability of our approach to infer

the Vertebral Axial Rotation (VAR), presented in chapter 2 page 24, that is also an important

descriptor of the scoliosis deformities at a given vertebra level. Several studies highlight their

importance in the estimation of the risk of progression of scoliosis [25, 129]. This step needs

an accurate measurement of the vertebra rotations that can be made from EOS images and 3D

reconstructions [64]. Choi et al [19], and then Watanabe et al 2019 [146], show in their study, the

possibility to retrieve such measurements from Moiré images. However, their method is based on

the location of the spinous process that can be deformed in scoliosis condition. By choosing an

appropriate method (like those using vertebra pedicles [130]), we could train our model to infer

the axial rotations in addition of the vertebra positions. As a result, our model will be able to

give more advanced descriptors of 3D scoliosis deformations, such as the Torsion index, based on

intervertebral rotations [39].

Therefore, by having a detailed analysis of the spine alignments provided by our inference method,

we would also explore the possibility of reconstructing the vertebra geometries and thus, provide a

full 3D representation of the spine. In this direction, we can use the current knowledge in statistical

shape modeling used in semi-automated reconstructions methods of the spine [62] that can even

work with partial information [93]. This direction has recently been investigated by Liang et al

2023 [87]. They were able to infer the vertebra alignments and geometries of a given person from

an RGB-D image, with unclothed back surface in standing position. Unfortunately, due to a lack

of annotated ground-truth data, they could only evaluate the accuracy of their predictions in the

coronal alignments.

3.2 Towards a facilitated comprehensive 4D analysis of the spine

3.2.1 The use of marker-less motion capture methods

As discussed in chapter 3 page 58, our protocol requires a short preparation by placing the mark-

ers on the back. Even if our method is simplifying the protocol of placement of the markers,

recent acquisition systems of motion capture are eliminating this preliminary task: the marker-less

systems. These methods rely on depth or RGB cameras and computer vision techniques to track

and analyze the motion [137]. By correlating images captured from different points of view and

identifying common points in each frame, the system can effectively reconstruct the body surface

in 3D. For this purpose, deformable kinematic models like SMPL [88] are commonly employed

to accurately represent the human body and its motion.

Methods like Keller et al. 2022 [73] can also be considered. In their study, the authors trained a

statistical model to learn the correlation between the full body surface and the skeleton allowing
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a reconstruction of the bony elements from surface reconstructions in different poses with better

results compared to Anatomy transfer [33]. However, their work was not focused on accurate

3D spinal reconstruction. Additional research can be made by integrating patients with scoliosis,

biplanar X-ray images in their method with the inclusion of models capable of capturing asym-

metrical trunk affected with scoliosis, as discussed in section 2.2.3 page 32.

In our approaches, the external surface is also included and associated with spinal elements, and

thus can be integrated into these techniques. This can be achieved by registering the personalized

kinematic model onto the 3D surface reconstructions obtained from the marker-less methods as

we registered this one on mocap markers positions.

This change in motion capture technique, combined with subject-specific models has the potential

to significantly enhance and simplify the dynamic analysis of the spine motion in future clinical

routines.

3.2.2 Towards a comprehensive analysis of the spine to investigate new biomarkers

In chapter 3 section 3.4, our contribution opened the possibility to combine the current low-dose

3D characterization techniques of the spine with motion capture. Our method provides a detailed

description of the motion of the spine at each vertebra level. This advancement allows us to

combine dynamic descriptors, such as the Range of Motion, at each anatomical plane, with the

detailed static characterization of the spine and torso, as established in previous works [85, 129].

This integration of static and dynamic data is invaluable in the context of scoliosis research and

treatment. Integrating these multi-modal data into a statistical analysis would lead to identify

specific patterns and correlations between static structural irregularities and the individual dynamic

motion characteristics.

3.3 Incorporation of our models into longitudinal studies

Our subject-specific model offers an opportunity to facilitate the investigation of novel 4D biomark-

ers for predicting scoliosis progression into a comprehensive longitudinal analysis. For this pur-

pose, we can create multiple instances, or digital twins, of a given patient at specific time intervals,

allowing the examination of their scoliosis development over time. Beside the current static 3D

descriptors collected from radiographs, our model can also provide kinematic descriptors (e.g.

Range of Motions) of the spine, correlated with surface measurements.

In term, by collecting and analyzing this data across a sufficient cohort of AIS patients, we can

significantly enhance our understanding of scoliosis and its progression during adolescence. The

identification of biomarkers, taking into account both spatial, motion and aging dimensions, be-

comes feasible through this approach and will lead to the development of predictive models, im-

proving the detection and the management of patients at an early stage of the disease.
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A
Appendix A: Anatomical model registration

workflow for creation of patients digital twins
including their internal and external anatomy

In this appendix, we provide a comprehensive overview of our

anatomical models with details about the rigid and elastic registra-

tion methods involved in our work.
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1 Overview of the anatomical models

Two anatomical models, developed with Anatoscope [1], are involved in our studies depending on

the surface scan of the patient that can include the full surface of the trunk (fig. A.1) or the back

only (fig. A.2).

The first model is a full trunk anatomical representation including the rib cage, the spine (C01-

Coccyx) with the pelvis. Each bone surface is associated with a rigid body (6 DOFs, 3 in transla-

tion and 3 in rotation). This model has been used to create avatars from patient data including a

full scan of their torso.

The second version of the model is a lighter one, from which we removed bony structures that have

not been reconstructed during the EOS acquisitions (ribs, costal cartilage, sternum and cervical

vertebrae). The front part of the model has also been removed to fit the back acquisitions of

patients.

In the two models, each bone i is represented by a mesh associated with a rigid-body defined in

positions ti ∈ R3 and rotations Ri ∈ R3×3. Each body xxxi is then connected to the others with an

elastic joint of 6 DOFs defined by translational and rotational stiffnesses. In addition each bone is

associated with a set of shape parameters sss that modify the scales of the model geometries. The

bones are connected to the adjacent element by K joints of 6 degrees-of-freedoms (DOFs). The

model also has a skin surface which is rigged by the articulated rigid bodies. The "light" version

of the model is associated with a set of barycentric landmarks lllA that represent superficial markers

used in marker-based motion capture.

2 Model registration workflow

In the following steps, we call "source" the model elements that are going to the registration

processes. We call "target" the collected data, the vertebra geometries of the patients, obtained

from the X-rays, and the skin obtained from surface scans. The registrations are implemented and

run in Sofa [45].

Initial model positioning and scaling For each version of the model, we start with a first global

registration in position and scale of the vertebra source geometries onto the targets obtained from

the X-rays reconstructions.

Pose and scale registration. The first step of the registration process is to change the 3D pose

xxx and the scales sss of the model, so that the models’ spine fits the 3D target spine. The association

between the source and the target is managed by an implementation of the Iterative Closest Point

(ICP) algorithm in Sofa finding the closest target surface of a given source vertex by minimizing

the euclidean distance. To avoid unnatural poses, we use a regularization term EA that is defined
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(a) Face (b) Profile

Figure A.1: Full torso version of our model.

(a) Face (b) Profile

Figure A.2: Light version of our model.
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Figure A.3: Overview of the registration of the model surfaces onto the patient data.

by the joint constraints inside the kinematic rig. The final optimization is thus

(x̂xx, ŝss) = arg min
xxx,sss

(dps(SA(xxx,sss),SX)+EA(xxx,sss)) , (A.1)

where dps is the point-to-surface distances defined by the ICP, SA are surfaces of the source,

determined by the pose and shape vectors and SX the target meshes obtained from the EOS recon-

structions. These steps are resumed fig. A.3 with screenshots fig. A.5.

Shape refinement. As the shape parameters sss only capture scales of the model, the obtained

geometries do not precisely match the patient specific geometries. Thus, we refine the geometries

of the source vertebrae and skin to match the patient’s observations with a non-linear deformation.

The rigid frames of the rig xxx are fixed as the scale parameters sss. The model surfaces (skin and

bones) are subdivided into FEM sub-volumes. Each element is parameterized by control frames

φφφ optimized in order to match model surfaces SA onto the target meshes (EOS SX and skin scan

SS). This step is constrained by EFEM regularization term with a constant young modulus property

constant during the process that avoid unrealistic folds during the elastic deformation.

φ̂φφ = arg min
φφφ

(
dps(SFEM

A (φφφ),(SX ,SS))+EFEM(φφφ)
)
, (A.2)

Once the patient surfaces have been captured by the model, the shape parameters are fixed.

Pose correction. Let us note that the patients pose during the surface scan is slightly different

than the pose in the radiography. We can retrieve informations about the radiographic skin pose in

different ways.
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Figure A.4: Overview of the registration of the model skin onto the X-rays informations. In the
case of the patients without markers, the silhouette (visual hull) is inferred from the biplanar X-
rays and used as target in the pose registration step.

For the patients from which we acquired a full torso acquisition, we used the 3D silhouette (visual

hull, fig. A.6a) obtained from their biplanar radiographs. However that is not possible for patient

with partial acquisitions (back only, fig. A.6b). For these patients, we leverage a set of M radio-

opaque markers that can be located in 3D from the X-rays and surface scans.

The association between the source and target features is straightforward for cases with the mark-

ers that can easily be identified. For full-torso acquisition, we can associate these features with an

ICP at each iteration of the registration process.

Then we use a temporary set of pose parameters xxx′ that will be optimized so that the external

model landmarks (markers or skin vertices) lllA(xxx′) match the ones in the X-rays lllX (radio-opaque

markers or closest-points in the visual hull). This will effectively change the model skin surface to

match the pose of the patient in the EOS device. The marker-based optimization is computed as

x̂xx′ = arg min
xxx′

(
i=M

∑
i=1
||lllA

i (xxx
′)− lllX

i ||2 +EA(xxx′)

)
, (A.3)

where the energy EA is a regularization term enforcing anatomic constraints on the joints of the

model.

The resulting model skin surface matches the pose of the back surface during the X-ray acquisi-

tions. Thus, we create a synced skin and spine model, by disregarding the temporal parameters xxx′

and associating the current optimized skin to the original model parameters xxx obtained during the

first registration process.

The full workflow for this step is summarized fig. A.4.

As a result, the anatomical model is a numerical twin of the patient, including the skeleton and
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the skin rigged with common model parameters. The association of the skin and spine is done on

the pose observed during the X-ray acquisitions with the help of the radio-opaque markers or the

visual hull.

(a) Initial step: global
rigid registration of the
model onto the input
data

(b) Spine scale+pose
registration

(c) Initial step of the re-
finement by subdividing
the model meshes into
subvolumes

(d) Results

Figure A.5: Registration of the shapes of the anatomical model onto the input data. Blue: model
(source) surface; Red: target

(a) Registration on the
visual hull for patients
with full torso scan

(b) Registration on the
radio-opaque markers
(balls) for patients with
partial scan

Figure A.6: Correction of the model surface on the X-ray pose. Blue: model surface (source);
Red: target (X-ray informations)
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B
Appendix B: Detection and quantification of

scoliosis from splines

In this appendix, we will provide a detailed analysis of the Choi-

Watanabe method [20, 146], used section 2.3, allowing the estima-

tion of the Cobb angle from vertebra positions. According to the

limitations highlighted by this analysis we propose an alternative

approach.
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3 The Choi - Watanabe method

3.1 Introduction

In chapter 2, we estimate the Cobb angle (scoliosis severity) from vertebra positions. For this

purpose, we use the method developed by Choi et al. 2017 [20], and re-published in Watanabe et

al. 2019 [146]. This method enables the localization and estimation of the intensity of scoliotic

curvatures from the positions of vertebra centroids along the coronal plane (Fig. B.1). Their

method is similar to Jeffries et al. 1980 [68], Stokes et al. 1987 [132] and Berthonnaud and

Dimnet 2007 [12] estimating the Cobb angle from curves and by the location of inflexion points

(using polynomials or B-Splines). Alternative approaches, such as the one presented in [8], locate

the Cobb angle by pinpointing the apical vertebra. This involves the identification of the maxima

and minima points along the spinal curve. Subsequently, the Cobb angle is derived by locating the

most-tilted vertebrae above and below the apical level.

Figure B.1: Overview of their method of measurement (from [146]). The first steps are dedicated
to the location of inflexion points along a spline draw from the vertebra positions. Then, these
points were selected according to their location from the others and designated as end-vertebrae.
Finally, the Cobb angle is measured at the intervertebral levels.

In their study, Choi et al. 2017 [20], and then Watanabe et al. 2019 [146], the authors compare the

estimated maximum angles with those measured by a specialist using the traditional radiographic

method (i.e. based on endplates, see section 2.1.1.1). According to their results [20, 146], evalua-

tion metrics over all scoliotic curvatures (below and above the 10 deg. threshold) gives a remark-

able accuracy of 3.42 ◦ (std: 2.64 ◦) with a mean error that decreases with scoliosis magnitude.

Jeffries et al. [68] and Stokes et al. 1987 [132] provided the correlation coefficient between their

method and the traditional measurement, both evaluated to 0.97. Unfortunately, these approaches

lack any measurement of their capability to differentiate scoliotic and asymptomatic spines.

The aim of this section is to evaluate the Choi et al. 2017 method in our dataset and provide

a detailed analysis of the accuracy of this approach in the assessment of scoliosis from vertebra

positions.
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3.2 Methods

3.2.1 Our dataset

To evaluate the Choi et al. 2017 method we created a dataset of 51 3D spines reconstructions of

Grenoble Hospital patients with Adolescent Idiopathic Scoliosis (simple or double curve, Cobb

angle between 10 and 68 ◦). Spine alignments and geometries are obtained with the SterEOS

software (EOS Imaging, Paris, France) from biplanar X-rays. From each spine, we extract the

gravity center of each vertebra geometries and project their positions on the frontal plane. We will

consider as ground-truth the maximum Cobb angle measured from the traditional method (chapter

2, section 3.4.1.4).

3.2.2 Metrics

We compared the ground-truth measurements with those obtained using Choi et al. 2017 by com-

puting the linear correlation and providing the Pearson coefficient of correlation (R). In addition,

we compute the Mean Absolute Error (MAE) as provided in their paper [20] and conduct a paired-

sample T-test to evaluate the similarity of the obtained angles with the traditional method.

3.3 Results and discussion

Figure B.2: Estimation of the Cobb angle with the Choi et al. method compared to the ground-
truth measurements (usual method).

From our dataset, we observe a MAE of 4.82◦ (std: 3.77◦). The correlation between the two

methods of measurement is high with a correlation coefficient of 0.93 (fig. B.2). We can notice a

slight underestimation of the Cobb angle we measure at 3.42◦ (std: 5.07◦) in average.

The paired-sample t-test can be conducted with the Shapiro-Wilk statistic, test of normality, of

the differences that can not be rejected (p-value = 0.18). The t-test shows a significant (p-value =

1.67e-05) difference between the two measurement methods in our dataset.
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Five patients (10% of the dataset) were estimated as asymptomatic according to the Choi et al.

2017 method while their "true" Cobb angle is higher than 10◦ (fig. B.3, left). No Cobb angle has

been detected for one of them while his scoliosis has been evaluated at 19 ◦ from the traditional

method. This can be explained by the fact that only one inflexion point has been detected due

to the "S" shape of his spine. In other cases scoliosis is not accurately located (fig. B.3, right),

resulting in a wrong estimation of the scoliosis severity.

3.4 Conclusion

The Choi et al. 2017 method performs well in the localization and quantification of scoliosis

along vertebra centroids. However it fails in particular cases where the number of inflexion points

is too low or too high. Thus, we can conclude that methods based on inflexion points can fail in

particular cases.

Figure B.3: Coronal views of cases where Choi et al. 2017 fails to evaluate the Cobb angle. The
actual values (obtained from X-rays) are from left to right: 19◦, 20◦ and 10◦. The errors are
mainly due to the mis-localization of the end vertebrae. On the left, only one inflexion point has
been identified. On the right too many of them were detected (6), leading to the deletion of the
relevant end-vertebrae during the selection of inflexion points in the Choi et al. 2017 algorithm.
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4 Our proposal

As highlighted by the subjects were the algorithm fails, the analysis of curvatures from inflexion

points can miss scoliosis cases. In this section, we propose another method to evaluate the Cobb

angle that extends the analysis on the entire spine shape. We evaluate our method against the Choi

et al. method, with regard to ground-truth measurements by computing the MAE and the linear

correlation between the measurement methods. A paired sample T-Test will be conducted to test

the similarity of the estimations between the different methods.

4.1 Algorithm

Our method starts as Choi et al. 2017 with a Cubic B-Spline drawn from the 2D vertebra positions.

Perpendicular lines from the spline are computed at each vertebra level. The following steps are

then detailed in the pseudo-code 1. Our algorithm traverses through all potential curvatures from

top to bottom and retains those that maximize the magnitude (given by the Cobb angle). The

detection and localization of the curvature is based on the sign and the value of the angle between

the upper line (level i) and lower one (level j). In absolute value, this angle correspond to the Cobb

angle between end vertebrae as used in [11].

4.2 Results and discussion

Figure B.4: Estimation of the Cobb angle according to our method and Choi et al. 2017 against
the classic X-rays measurement.

Fig. B.4 we compare the our predictions with ground-truth measurements. It appears in these

results that our method is better to retrieve the actual Cobb angle values with a MAE of 3.28◦

(std: 2.78◦). The Pearson correlation coefficient is higher (R=0.95, p-value < 0.05) without False

Negative spines with scoliosis. in fig. B.6 we can notice that the cases where Choi et al. 2017 fails

are correctly annotated by our method.
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Algorithm 1 Pseudo-code of our method
Require: ttt ▷ List of perpendicular lines to the spline at each vertebra level

nv← 17 ▷ Number of vertebrae
ns← 3 ▷ Minimum number of vertebrae -1 along a scoliotic curvature
κκκ ← [] ▷ List of cobb angles
i← 0
while i < nv−ns do ▷ For each vertebra from T01 to L05

ti← ttt[i]
j← i+1
αi← None
while j < nv do ▷ For each vertebra below

t j← ttt[ j]
α j← SIGNED_ANGLE(ti, t j) ▷ Compute the signed angle between lines
if αi ̸= None AND (SIGN(αi) ̸= SIGN(α j) OR |α j|< |αi|) then

break ▷ End of the curvature, leave
end if
αi = α j ▷ Update maximum angle in the current curvature

end while
if ( j− i)> ns then

if LENGT H(κκκ) == 0 then
Append αi in κκκ

else
if SIGN(κκκ[i−1]) == SIGN(αi) then ▷ If the current angle is in the same curvature

as before, update with the maximum value
if |SIGN(κκκ[i−1])|< |αi| then

κκκ[i−1]← αi

end if
else if SIGN(κκκ[i−1]) ̸= SIGN(αi) then ▷ Change of curvature

Append αi in κκκ

end if
end if

end if
end while
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(a) Choi et al. 2017 (b) Ours

Figure B.5: Bland-Altman diagrams of the two Cobb angle estimation methods. The ground-
truth is measured with the classic method from X-rays. A positive value on the ordinate indicates
an underestimation, and a positive value an overestimation. Dashed-lines=1.96-fold standard
deviation with mean deviation (bias).

Figure B.6: Coronal views of cases where Choi et al. 2017 fails to evaluate the Cobb angle;
Results with our method. The actual values (obtained from X-rays) are from left to right: 19◦, 20◦

and 10◦.

115



Tableau B.1: Paired-sample T-Tests of the two methods against the Ground-truth measurement.
The normality of the differences (method-ground-truth) is evaluated with a Shapiro-Wilk test. The
p-value is given in parenthesis.

Method Choi et al. 2017 Ours

Shapiro-Wilk 0.97 (0.18) 0.98 (0.50)

T-test -4.76 (1.67e-05) 0.73 (0.47)

In fig. B.5 we present Bland-Altman diagrams of the Choi et al. 2017 results and ours allowing

the analysis of measurement bias and heteroscedasticity. We can notice that there is no underesti-

mation of scoliosis in average with a bias close to zero which is confirmed by the paired-Sample

T-test provided table B.1.

These superior results can be attributed to the inclusion of T01 and L05 levels in our algorithm.

In addition, our algorithm seeks the highest Cobb angle within a specific curvature, effectively

addressing the challenge of multiple inflection points present in noisy zig-zag shaped curvatures.

4.3 Conclusion

The Choi et al. 2017 method of Cobb angle measurement is showing comparative results in the

estimation of scoliosis with the traditional method using endplates from X-rays. This methods has

the advantage to identify the end-vertebrae compared to other methods [68, 132]. Unfortunately,

it fails in a few cases, leading to an underestimation of scoliosis severity, and thus, an increased

number of False-Positive.

We thus proposed a new method to solve the problems encountered by Choi et al. 2017 in these

particular cases. Our results are superior and could even replace the traditional measurement

method. Indeed, the "traditional" method requires interpretation of X-ray images to locate the end-

vertebrae and estimate their slope from their endplates conducting to a lack of reliability [11,141]

in the estimation of the scoliosis severity.

In future work, methods of measurement should be evaluated with metrics that inform about the

precision of the Cobb angle (with the MAE for instance), in correlation with the manual method,

and the location of the detected apical and end-vertebrae (that were not available in our dataset).

Furthermore, it is possible to contrast these techniques with variations of spinal poses with individ-

uals with and without symptoms. Conducting such investigations would offer a reliable assessment

of these approaches while pinpointing their specific practical boundaries.
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