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Titre : Comment aborder les Marqueurs Discursifs : une approche prosodique, basée sur corpus, 
computationnelle et expérimentale 

Mots clés : Pragmatique ; Prosodie ; Structure Informationnelle ; Marqueurs Discursifs ; Traitement 
Automatique du Langage  

Résumé : L'objectif principal de cette recherche est 
d'examiner les marqueurs discursifs (MD) dans les 
interactions vocales spontanées. Les MDs sont des 
lexèmes ou des expressions qui ont subi une 
pragmaticalisation. Ils ne participent pas à la 
construction du sens, étant orientés vers la gestion 
des interactions parlées. Les fonctions proposées 
varient beaucoup selon les objectifs et la méthode 
d'analyse, et la plupart des études prennent le lexique 
comme point de départ. Cependant, une même 
fonction peut être réalisée à travers plusieurs 
lexèmes. Cette recherche adopte une approche 
différente. Le critère formel est la forme prosodique, 
considérée comme plus stable et révélatrice au 
regard des fonctionnalités des MDs. L'objectif est de 
comprendre les facteurs qui contribuent à la 
transmission des fonctions des MDs et comment la 
forme prosodique peut être utilisée pour prédire 
leurs fonctions respectives. Le cadre théorique utilisé 
est Language into Act Theory (L-AcT – Cavalcante, 
2020 ; Cresti, 2000 ; Moneglia & Raso, 2014). La L-AcT 
considère les MDs comme un type particulier d'unité 
informationnelle (UI), correspondant à des unités 
prosodiques et soumise à des restrictions de 
distribution. Sur la base d'études antérieures (Cresti, 
2000 ; Raso, 2014 ; Raso & Vieira, 2016 ; Raso & 
Ferrari, 2020), un cadre descriptif révisé des MDs est 
proposé avec les fonctions suivantes : Allocutive 
(cohésion sociale) ; Conative (indiquant une solution 
illocutoire) ; Expressive (surprise non illocutoire) ; 
Marquage (surligne); et Incipit (ouverture d'une TU 
ou d'un tour de parole). Des preuves statistiques et 
expérimentales soutenant la 

proposition sont présentées. Un échantillon d'UIs 
contenant des candidats MDs a été extrait du 
corpus C-ORAL-BRASIL I (Raso & Mello, 2012). Les 
données ont été classées selon les cinq classes 
fonctionnelles proposées. 30 descripteurs 
acoustico-prosodiques ont été estimés, incluant la 
forme intonative, l'allongement syllabique et 
l'intensité relative. Différents modèles de 
classification ont été entraînés et évalués en 
validation croisée. Le meilleur modèle de 
classification atteint une précision de 78 % pour 
cinq classes. Ces résultats montrent que, malgré la 
grande variabilité des contextes, des locuteurs et 
des styles d'énoncé, il est possible de parvenir à 
une classification fonctionnelle raisonnable grâce à 
la forme prosodique des MDs. Enfin, une évaluation 
perceptive étudie la capacité des participants à 
identifier les classes de MDs qui se produisent en 
position initiale, uniquement sur la base d'indices 
prosodiques. 25 énoncés contenant trois fonctions 
différentes (ALL, CNT et INP) et sept lexèmes 
différents ont été sélectionnés. Ces exemples ont 
été reproduits en chambre sourde par un locuteur 
expérimenté et ces originaux manipulés pour 
porter les formes prototypiques des fonctions 
cibles. Ces stimuli ont été présentés à 120 
participants. Les résultats montrent que tous les 
facteurs contrôlés jouent un rôle significatif : le 
contexte original, la forme prosodique et le lexique. 
Cependant, seule la forme prosodique indique, de 
manière moins variable et moins soumise à 
l’interprétation des phrases, la fonction visée. 
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Title : How to deal with Discourse Markers: a prosodic, corpus-based, computational and experimental proposal 

Keywords : Pragmatics; Prosody; Information Structure; Discourse Markers; Natural Language Processing  

Abstract : The primary focus of this research is to 
examine Discourse Markers (DMs) in spontaneous 
spoken interactions. DMs are lexemes or small 
expressions that underwent pragmaticalization. They 
do not participate in constructing the meaning, being 
directed at managing spoken interactions. Proposed 
DM functions vary greatly depending on goals and 
analytical methods, with most studies taking the 
lexicon as a departing point. However, the same DM 
function can be accomplished through various 
lexemes. This research takes a different approach. 
The formal criterion is the prosodic form, which is 
deemed more stable and revealing regarding the 
functionalities of DMs. Thus, the objective is to 
comprehend the factors contributing to expressing 
DMs’ functions and understand how their prosodic 
form can predict their respective functions. The 
theoretical framework utilized for this investigation is 
the Language into Act Theory (L-AcT – Cavalcante, 
2020; Cresti, 2000; Moneglia & Raso, 2014). The L-
AcT views DMs as a special type of Information Unit 
(IU), which are conveyed by prosodic units and have 
distributional constraints. Based on previous studies 
(Cresti, 2000; Raso, 2014; Raso & Vieira, 2016; Raso & 
Ferrari, 2020), a reviewed DM framework is proposed: 
the Allocutive (social cohesion); the Conative 
(pointing to an illocutionary solution); the Expressive 
(enacting non-illocutionary surprise); the Highlighter 
(highlighting); and the Incipit (opening a TU or a 
turn). Statistical and experimental evidence 
supporting the proposal is presented. An IU sample 
containing DM candidates was extracted from the C-
ORAL-BRASIL I corpus (Raso & Mello, 2012).   

The data were categorized into the five proposed 
classes. 30 prosodic-acoustic descriptors were 
estimated, including intonational shape, syllable 
lengthening, and relative intensity. Different 
classification models were trained and evaluated 
on a cross-validation set. The best classification 
model achieved an accuracy score of 78% for these 
five categories. The more relevant features for 
distinguishing each class from others are 
described. The results show that despite the large 
variability of contexts, speakers, and speaking 
styles, achieving a reasonable classification 
through the prosodic form is possible. Additionally, 
an experiment evaluated participants' ability to 
recognize DM classes occurring in the initial 
position based on prosodic cues. 25 utterances 
containing three different DM functions (ALL, CNT, 
and INP) and seven different lexemes were 
selected. A trained speaker reproduced instances in 
a sound-processed room, and the original DMs 
were manipulated to match the prototypical forms 
of all functional targets. The stimuli were presented 
to 120 participants, whose task was to identify the 
function. Results show that all controlled factors 
were relevant: the original context, the prosodic 
form, and the lexicon. However, the prosodic form 
is less variable and less submitted to the sentence’s 
interpretation to cue functionality. 
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Título : Como lidar com os Marcadores Discursivos : uma abordagem prosódica, baseada em corpus, 
computacional e experimental 

Palavras-chave : Pragmática; Prosódia; Estrutura Informacional; Marcadores Discursivos; Processamento da 
Linguagem Natural 

Resumo : O foco principal desta pesquisa é examinar 
Marcadores de Discurso (MDs) em interações de fala 
espontânea. DMs são lexemas ou expressões que 
passaram por pragmaticalização. Eles não participam 
da construção do significado, sendo direcionados ao 
gerenciamento das interações faladas. As funções 
propostas variam muito dependendo dos objetivos e 
do método analítico, e a maioria dos estudos toma o 
léxico como ponto de partida. Contudo, uma mesma 
função pode ser realizada através de vários lexemas. 
Esta pesquisa adota uma abordagem diferente. O 
critério formal é a forma prosódica, considerada mais 
estável e reveladora no que diz respeito às 
funcionalidades dos DMs. O objetivo é compreender 
os fatores que contribuem para a veiculação dos DMs 
e como a forma prosódica pode ser utilizada para 
prever as respectivas funções. O referencial teórico 
utilizado é a Language into Act (L-AcT – Cavalcante, 
2020; Cresti, 2000; Moneglia & Raso, 2014). A L-AcT 
vê os DMs como um tipo especial de Unidade 
Informacional (UI), que é veiculada por unidades 
prosódicas e possui restrições distribucionais. Com 
base em estudos anteriores (Cresti, 2000; Raso, 2014; 
Raso & Vieira, 2016; Raso & Ferrari, 2020), propõe-se 
um quadro de MDs revisto: o Alocutivo (coesão 
social); o Conativo (apontando para uma solução 
ilocucionária); o Expressivo (representando surpresa 
não ilocucionária); o Marcador (destaque); e o 
Incipitário (abrir uma TU ou um turno). São 
apresentadas evidências estatísticas e experimentais 
que apoiam a proposta.  

Uma amostra de UIs contendo candidatos a DM foi 
extraída do C-ORAL-BRASIL I (Raso & Mello, 2012). 
Os dados foram categorizados nas cinco classes 
propostas. Foram estimados 30 descritores 
prosódico-acústicos, incluindo forma entoacional, 
alongamento silábico e intensidade relativa. 
Diferentes modelos de classificação foram 
treinados e avaliados em validação cruzada. O 
melhor modelo de classificação obteve uma 
acurácia de 78%. Os resultados mostram que, 
apesar da grande variabilidade de contextos, 
falantes e estilos de elocução, é possível conseguir 
uma classificação razoável por meio da forma 
prosódica. Além disso, foi realizado um 
experimento para avaliar a capacidade dos 
participantes de reconhecer classes de DM que 
ocorrem na posição inicial com base apenas em 
pistas prosódicas. Foram selecionados 25 
enunciados contendo três funções diferentes (ALL, 
CNT e INP) e sete lexemas diferentes. As instâncias 
foram registradas em um ambiente controlado e os 
originais foram manipulados para corresponder às 
formas prototípicas de outros DMs alvo. Os 
estímulos foram apresentados a 120 participantes. 
Os resultados mostram que todos os fatores 
controlados desempenham um papel relevante: o 
contexto original, a forma prosódica e o léxico. No 
entanto, apenas a forma prosódica é menos 
variável. 

 

 

 



 

 

 

RESUMÉ SUBSTANTIEL EN FRANÇAIS 
 

L'objectif principal de cette recherche était d'étudier les Marqueurs 
discursifs (MD) dans les corpus de parole spontanée. Dans la 
littérature, le point de départ de l'étude des MD est généralement le 
lexique ; on peut choisir, par exemple, le lexème GENRE et, sur la base 
de critères syntaxiques, distributionnels ou contextuels, étudier les 
fonctions que cet élément peut assumer. Cette procédure entraîne des 
problèmes cruciaux. Les modèles basés sur le lexique n'ont pas permis 
de définir, d'expliquer et de prédire clairement les fonctions des MD. 
La réponse à ce problème a été ancrée dans la prosodie des Marqueurs 
discursifs. À cette fin, j'ai expliqué l'importance de l'analyse prosodique 
de la parole et comment le discours est organisé par la théorie sur 
laquelle se base cette recherche, la Language into Act Theory (L-AcT – 
Cavalcante, 2020 ; Cresti, 2000 ; Moneglia & Raso, 2014). J'ai discuté 
de la façon dont les MD peuvent être définis de manière à permettre 
leur prédiction et comment on peut discriminer leurs fonctions sur la 
base de leurs formes prosodiques (Cresti, 2000 ; Frosali, 2008 ; Raso et 
al., 2022 ; Raso & Vieira, 2016). J'ai passé en revue les travaux antérieurs 
sur les fonctions et les formes théoriques des MD et présenté une 
proposition contenant cinq macro-fonctions des MD. Les fondements 
d'un modèle visant à expliquer la projection des formes prosodiques 
sur les fonctions théoriques proposées des MD ont également été 
esquissés, ainsi qu'une exploration de la mesure dans laquelle cette 
projection est possible. De plus, la validation de la proposition d'un 
point de vue statistique et expérimental a été abordée. 

Une gamme variée de corrélats acoustiques de hauteur de voix, 
d'intensité et de rythme de la parole a été estimée pour modéliser les 
MD. Un problème fréquent lors de l'analyse des données concerne 
l'estimation et le traçage de la courbe de la fréquence fondamentale 
(f0), le corrélat de la hauteur de voix. Cela est particulièrement vrai 
lorsqu'il s'agit de données de parole spontanée. Enregistrées en 
dehors d’environnements acoustiquement isolés et contrôlés, le signal 
de parole peut être rapidement dégradé par la présence de 
réverbération, de climatiseurs, de ventilateurs, de bruits de moteurs de 
voiture ou d'autres phénomènes similaires. Cela peut conduire à ce 
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que les Algorithmes de Détection de la Hauteur de Voix (en anglais, 
Pitch Detection Algorithm – PDA) estiment de manière inexacte les 
valeurs de f0. Au cours des 30 dernières années, plusieurs méthodes et 
algorithmes ont été proposés pour faire face à de tels problèmes. 
Chaque méthode présente différentes sensibilités aux diverses 
conditions dégradant le signal de parole. Un autre problème est que 
les données de parole enregistrées dans des paramètres non contrôlés 
peuvent nécessiter que les chercheurs révisent manuellement les 
données de f0 et ajustent divers paramètres fournis par les algorithmes 
PDA. Étant donné que chaque environnement d'enregistrement 
présente des conditions acoustiques différentes, on peut supposer que 
chaque fichier audio nécessitera une paramétrisation différente pour 
obtenir l'estimation et le traçage de f0 optimaux. Assurer la 
reproductibilité du travail nécessiterait de garder une trace de toutes 
les modifications apportées aux données de f0 et de toutes les 
paramétrisations appliquées à chaque fichier audio analysé. Pour 
rationaliser cette tâche potentiellement lourde, chronophage et sujette 
aux erreurs, la solution proposée améliore le traçage de f0 en 
comparant la sortie de plusieurs algorithmes PDA avec un modèle de 
décision voisé/non-voisé. 

Un autre aspect important de ce travail a été les efforts déployés 
pour une validation des fonctions proposées des MD d'un point de vue 
perceptuel. Par exemple, l'approche basée sur le corpus présentée par 
Lee et al. (2020), qui ont extrait un large ensemble de MD de différents 
corpus et les ont classés selon leurs fonctions, a permis aux auteurs 
d'observer des corrélations entre les fonctions des MD et leurs 
caractéristiques prosodiques, dans deux langues (anglais et français) 
et plusieurs styles de parole. Pendant ce temps, la validation 
perceptuelle de l'importance des indices prosodiques pour les diverses 
fonctions des MD est encore rare dans la littérature : le travail proposé 
dans Didirková et al. (2019) constituant une étape importante pour la 
validation de telles relations en français. Dans cette recherche, une 
méthodologie pour la validation de la relation entre les fonctions des 
MD et leurs formes prosodiques a été proposée. 

Les Marqueurs de Discours ont été définis dans ce travail 
comme des unités informatives ayant des fonctions interactionnelles. 
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En tant que tels, les MD sont véhiculés à travers des unités 
prosodiques, ils ont des macro-fonctions spécifiques qui sont 
transmises par (ou associées à) une forme prosodique, et ils ont des 
préférences distributionnelles. Les MD ne sont pas compositionnels 
par rapport aux structures qu’ils parasitent. Au lieu de cela, ils visent à 
réguler les aspects interactionnels du discours. Ils peuvent promouvoir 
la cohésion sociale (ALL), attirer l'attention du destinataire sur une 
solution illocutoire (CNT), exprimer la surprise sans force illocutoire 
(EXP), mettre en évidence un contenu précédent (EVD/HGL), ou 
simplement commencer l'énoncé (INP). Chaque fonction proposée 
peut être remplie avec une gamme variée de lexèmes ou d’expressions 
courtes. Il a été démontré que le lexique est variable tandis que la 
forme prosodique peut rendre compte de la reconnaissance des 
fonctions proposées avec de bonnes performances dans une tâche de 
classification. Il a également été démontré que, globalement, la 
prosodie a des effets positifs sur la reconnaissance des fonctions des 
MD. Néanmoins, il a également été démontré que le lexique joue 
également un rôle important dans l'interprétation des fonctions des 
MDs. 

Un modèle de classification a été présenté avec les 
caractéristiques les plus pertinentes pour la distinction de chaque 
classe de MD contre les autres. Il est possible de dire que le modèle de 
classification présente de bonnes performances (scores de précision 
variant entre 68% et 78% pour cinq classes). Ce modèle ne présente 
pas le même niveau de précision que ceux présentés dans Gobbo 
(2019) – environ 80%. Cependant, la proposition actuelle (et le modèle 
respectif) est plus complexe : la tâche a été réalisée non pas avec trois 
mais cinq classes de MD. De plus, le modèle actuel tient compte des 
observations précédemment non classées qui ont été laissées de côté 
soit parce qu'elles étaient ambiguës, soit parce qu'elles ne 
correspondaient à aucune classe existante. Enfin, le modèle a été 
évalué avec des techniques plus robustes, et ses performances posent 
moins de questions écologiques. Une autre observation intéressante 
concerne les caractéristiques les plus fréquemment choisies par les 
modèles « un contre le reste ». Dans la plupart des cas, les 
caractéristiques impliquant la fréquence fondamentale étaient 
importantes. Les exceptions sont la classe ALL, qui sélectionne la durée 
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(plus longue), et INP, qui sélectionne l'intensité (plus élevée) et la durée 
(plus courte). Les caractéristiques d'alignement se sont également 
avérées pertinentes pour les distinctions. 

Une approche intéressante pour un modèle plus 
compréhensible pourrait être d'avoir des modèles dédiés à des 
caractéristiques spécifiques. Un ensemble pourrait être construit qui 
regroupe des modèles, chacun dédié à une facette des MDs. Par 
exemple, un modèle pourrait voter exclusivement sur la base des 
caractéristiques prosodiques. Un autre pourrait être en charge des 
aspects liés à la distribution du MD dans le schéma. Non seulement 
une caractéristique catégorielle indiquant la position 
(initiale/médiane/finale) pourrait s'avérer utile, mais également des 
caractéristiques plus fines pourraient être testées qui reflètent la 
distance relative du MD par rapport à l'unité illocutoire (à la fois en 
unité de temps relative et en nombre d'unités informatives), ainsi que 
les unités informatives voisines. Un autre modèle pourrait être 
responsable de juger la classe basée sur le remplissage lexical du MD. 
Cela pourrait être réalisé en utilisant des sentences embeddings 
(sentence transformers – Reimers & Gurevych, 2020) comme entrée. 
Cela empêcherait, par exemple, que les prénoms (fréquemment utilisés 
dans CNT et INP) soient traités comme des catégories très divergentes, 
comme un simple encodage catégoriel du texte du MD. 

De plus, certaines conclusions importantes ont été tirées des 
tests perceptuels. Premièrement, certains lexèmes ont reçu de fortes 
associations avec certaines fonctions. Ces associations semblent être 
favorisées ou défavorisées par la prosodie (et par l'illocution). Par 
exemple, 'não' (non) a une fonction conclusive, mais la perception de 
ce lexème comme conclusif devient plus saillante lorsque la forme 
prosodique est descendante et moins saillante lorsqu'elle est 
ascendante. Mais l'attribution catégorielle quasi systématique de 
fonctionnalité par les participants du test à certains lexèmes (par 
exemple, 'uai' ou 'eh') ne doit pas être exagérée : d'abord, elle peut 
varier beaucoup selon l'interprétation contextuelle du lexème (aucun 
lexème n'a une interprétation fixe à partir de la forme écrite, dans 
toutes les énonciations), et deuxièmement – si les participants se fient 
à la signification de base des lexèmes, les observations du corpus 
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montrent que ces lexèmes sont utilisés dans une variété de contextes. 
Il se peut que les participants aient du mal avec la nature désémantisée 
des MD dans ce cas. D'autres travaux seront nécessaires pour offrir des 
protocoles expérimentaux capables de faire face à cette limitation (un 
protocole d'association, comme dans Shochi et al., 2020, peut s'avérer 
intéressant). Cependant, le lexique offre un large éventail de 
possibilités, surtout depuis que les noms propres peuvent être utilisés 
comme MD dans CNT et ALL. De plus, le lexique est pluri-fonctionnel ; 
la signification des lexèmes dépend fortement du contexte. Cela rend 
une classification fonctionnelle à partir du lexique compliquée. En 
outre, le lexique est très variable diatopiquement, diaphasiquement et 
diachroniquement, rendant une classification encore plus compliquée. 
Deuxièmement, le type d'illocution et son contenu sémantique se sont 
avérés avoir un effet sur l'interprétation globale de l'énoncé. Bien sûr, 
ce qui était demandé était l'interprétation du MD, qui est intégré dans 
l'énoncé, mais toute la structure produit une signification globale. Il est 
raisonnable de penser que le rôle fonctionnel du MD est interprété de 
manière holistique au sein de l'énoncé. Par conséquent, si l'illocution 
porte (ou est interprétée comme) une surprise illocutoire, une 
conclusion, ou autre chose, cela affecte l'interprétation du MD par le 
participant. Cependant, la fonction du MD est, dans une large mesure, 
indépendante de l'illocution. Il semble sensé de penser que l'illocution 
impose certaines contraintes combinatoires sur le MD, mais il doit y 
avoir un certain degré de liberté. De plus, il existe également de 
nombreuses catégories d'illocution (dont la plupart ont encore besoin 
de descriptions plus approfondies), et ce facteur n’a pas pu être 
contrôlé. Ce qui a été pris en compte était un facteur de classe DM 
original simplifié (qui devrait résumer toutes les caractéristiques 
naturelles de l'énoncé original). 

Cette recherche a identifié cinq formes prosodiques qui 
semblent fonctionnellement cohérentes et suffisantes pour couvrir 
toutes les fonctions des MD. La prosodie peut varier diatopiquement 
et diaphasiquement (peut-être aussi diachroniquement) en fonction 
des paramètres attitudinaux : une intensité plus élevée ou plus basse, 
une plage de f0, un taux d'articulation peuvent indubitablement 
dépendre des caractéristiques démographiques des participants 
(genre, âge, niveau socio-culturel, et autres) et de la situation (les gens 
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ajustent leur attitude en fonction de la situation de communication). 
Mais la forme prosodique (mouvement et alignement, avant tout) 
reste, dans une large mesure, constante. Cette constance est 
exactement ce qui a permis d'obtenir de bons scores sur les tâches de 
classification. 

Sur la base de ces considérations, la conclusion provisoire tirée 
des expériences est que pour catégoriser les MD, étant donné que de 
nombreux facteurs influencent leur interprétation, il faut commencer 
par le facteur le moins variable – la forme prosodique, sachant que 
d'autres facteurs peuvent modifier l'interprétation de base de la forme 
et peuvent même la modifier beaucoup. On ne devrait pas, de manière 
avisée, commencer par les facteurs qui varient le plus, tels que le 
lexique, les attitudes, ou les types d'illocutions. Ce sont tous des 
facteurs avec des degrés importants de variation qui ne permettent 
pas une organisation initiale. Si nous, à titre d'exemple, commençons 
par le lexique, nous arriverons à la conclusion que le même lexème 
peut accomplir des fonctions essentiellement différentes et que la 
même fonction peut être accomplie par des lexèmes entièrement 
différents, disons, un nom propre et un verbe. 

Comme il a été argumenté, les MDs proposés basés sur la 
prosodie sont des macro-fonctions qui peuvent prendre des sous-
fonctions plus spécifiques en fonction du contexte. Cependant, les 
sous-fonctions sont cohérentes avec les macro-fonctions. Par exemple, 
CNT est censé pointer vers la solution illocutoire, c'est-à-dire vers 
l'intention du locuteur. Si le locuteur dit quelque chose, puis 
s'interrompt pour introduire une nouvelle planification, cette 
réparation peut être introduite par un CNT (si elle pointe vers une 
conclusion) ou par un INP, si le locuteur veut, par exemple, marquer 
un fort contraste avec l'idéation interrompue. 

Enfin, la conception des expériences a montré certaines 
limitations : la formulation des questions, la nature des données, la 
définition des catégories possibles utilisées pour répondre sont 
notablement complexes et peuvent ne pas permettre une 
compréhension aisée par certains participants. Les locuteurs naïfs ne 
sont pas enseignés pendant la scolarité à identifier la prosodie ou les 
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MD de la même manière qu'ils sont enseignés à interpréter un lexème 
comme 'uai' en tant qu'interjection pouvant exprimer la surprise. Le 
biais écrit, hérité du système éducatif, a peut-être joué un rôle 
significatif dans nos résultats. Une réflexion est donc nécessaire pour 
aider à concevoir d'autres expériences qui prennent en compte les 
problèmes observés pour les tâches métalinguistiques présentées aux 
participants naïfs. Une idée possible est de présenter uniquement des 
exemples naturels, sans manipulations et décontextualisations, et de 
demander aux participants d'identifier la fonction. 
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The entire universe is 
perfused with signs, if it is 

not composed exclusively of 
signs. 

(Charles Sanders Peirce) 

 

I have never doubted the 
truth of signs, Adso; they are 

the only things man has 
with which to orient himself 

in the world. 

(The Name of the Rose, 
Umberto Eco) 

 

Science is the belief in the ignorance of experts. 

(Richard Feynman)  
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1 INTRODUCTION 

The main goal of this research is to study Discourse Markers (DMs) in 
spontaneous speech corpora. In the literature, the starting point of the 
study of DMs is usually the lexicon; one may choose, for instance, the 
lexeme LIKE and, based on syntactic, distributional, or contextual 
criteria, and study the functions that this item can assume. This 
procedure entails crucial problems to which I will return during this 
exposition. For now, it is enough to say that lexicon-based models have 
not allowed, to my knowledge, a framework that clearly defines, 
explains, and allows for the prediction of DMs’ functions. The answer 
to this problem will be anchored on the prosody of Discourse Markers. 
To this aim, I will explain the importance of the prosodic parsing for 
speech and how discourse is organized by the theory underpinning 
this research, the Language into Act Theory (L-AcT – Cavalcante, 2020; 
Cresti, 2000; Moneglia & Raso, 2014). We will discuss how DMs can be 
defined in a way that allows their prediction and how one can 
discriminate their functions based on their prosodic forms (Cresti, 2000; 
Frosali, 2008; Raso et al., 2022; Raso & Vieira, 2016). I will review previous 
works on the theoretical functions and forms of DMs and present a 
proposal containing five DM macro-functions. The foundations of a 
model aimed at explaining the mapping of prosodic forms onto the 
proposed DM theoretical functions will be outlined, along with 
exploring the extent to which this mapping is possible. Additionally, 
the validation of the proposal from statistical and experimental 
standpoints will be addressed. 

A varied range of pitch, loudness, and speech rhythm acoustic 
correlates were estimated to model DMs. A frequent issue during data 
analysis concerns estimating and tracking the fundamental frequency 
(f0), the correlate of voice pitch. This is especially true when dealing 
with spontaneous speech data. Recorded out of acoustically isolated 
and controlled settings, the speech signal can be rapidly degraded by 
the presence of reverberation, air-conditioners, fans, car engine noises, 
or other such phenomena. This may lead to Pitch Detection Algorithms 
(PDAs) inaccurately estimating f0 values. Over the past 30 years, several 
methods and algorithms have been proposed to cope with such 



 

 

 

36 

problems. Each method displays different sensitivities to the diverse 
conditions degrading the speech signal. Another problem is that 
speech data recorded in uncontrolled settings may require researchers 
to manually revise f0 data and adjust various parameters provided by 
PDA algorithms. Since each recording setting exhibits different 
acoustic conditions, it can be assumed that each audio file will need 
different parametrization to achieve the most realistic f0 estimation 
and tracking. Ensuring the reproducibility of the work would require 
keeping track of all modifications made to f0 data and all 
parametrizations applied to each audio file analyzed. To streamline this 
potentially burdensome, time-consuming, and error-prone task, the 
proposed solution enhances f0 tracking by comparing the output of 
multiple PDA algorithms with a voicing decision model. 

Another important aspect of this work concerns validating the 
proposed DM functions from a perceptual standpoint. For instance, 
the corpus-based approach presented by Lee et al. (2020), who 
extracted a large set of DMs from different corpora and classified them 
according to their functions, allowed the authors to observe 
correlations between the functions of DMs and their prosodic 
characteristics, across two languages (English and French) and several 
speech styles. Meanwhile, the perceptual validation of the importance 
of prosodic cues to the various functions of DMs are still rare in the 
literature: the work proposed in Didirková et al. (2019) being an 
important step for the validation of such relationships in French. In this 
research, a methodology for the validation of the relationship between 
DM functions and prosodic forms is proposed. 

 

1.1 ORGANIZATION OF THIS WORK 

Besides this introduction, this work is comprised of eight other 
chapters. The first two chapters are dedicated to the theoretical issues 
related to this research. The second chapter will review the theoretical 
foundations underpinning this research. I will show how one can 
segment the speech flow and how the L-AcT offers a framework 
accounting for its organization. In the third chapter, I discuss defining 
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and recognizing Discourse Markers in speech. I present the most 
recent proposal for the DM theoretical functions, their prosodic forms, 
and distributional constraints. Chapter 4 is dedicated to the 
methodological aspects of my work. In the fourth chapter, I present 
the spontaneous speech corpus from which DM instances were 
extracted. I also give further details on the methods I will use to extract 
and model the prosodic-acoustic parameters of the DMs. Chapter 5 is 
dedicated to the methodological endeavor of improving fundamental 
frequency estimation and tracking. I show how a model was trained to 
classify voiced/unvoiced regions and how f0 estimations obtained 
from various PDAs produced an f0 path. Chapters 6 and 7 are 
dedicated, respectively, to the presentation of the descriptive statistics 
and an exploratory data analysis of the DM instances found in the 
sample utilized in this work. Finally, in chapter 8, I outline the 
perceptual experiments designed to assess the degree of 
recognizability of DMs by means of their prosodic forms, and I present 
the results and issues of the experiments. 

 

1.2 SUMMARY OF THE RESEARCH GOALS 

The general objectives of this research can be summed up as it follows. 
The first objective is to present a new proposal for the L-AcT’s DM 
framework based on the prosodic form and to provide statistical and 
experimental evidence thereto. Another goal is to enhance f0 
estimations and tracking for audio files recorded in natural settings. 
The specific research goals are: 

 

(a) Review and deepen the classification of Discourse Markers 

and other short information units of L-AcT’s DM framework; 

(b) Implement a solution for the choice and tracking of f0 can-

didates based on available PDAs and couple it with a voicing 

decision model; 
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(c) Train and evaluate a supervised model to assess the degree 

to which a statistical model strictly based on prosodic infor-

mation can classify DM observations into the proposed DM 

functions; 

(d) Run perceptual experiments aimed at evaluating the extent 

to which participants can discriminate and identify DM func-

tions (by means of strictly prosodic manipulations). 
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2 THEORETICAL FRAMEWORK 

2.1 INTRODUCTION 

The theoretical framework underpinning this research is the Language 
into Act Theory (henceforth L-AcT – Cavalcante, 2020; Cresti, 2000; 
Moneglia & Raso, 2014). The L-AcT intends to be a corpus-driven theory, 
and its framework extends the Speech Act Theory (Austin, 1962). The 
theory’s central tenets result from years of systematic observation and 
study of spontaneous speech corpora. These tenets are centered 
around the idea that to speak is to act in the world and that prosody 
plays a crucial role in conveying the functions of speech units. This 
chapter will present the theory’s main principles and concepts. We 
begin with the importance of segmenting speech and establishing a 
reference unit of analysis. Then, we move on to some implications of 
speech segmentation. This is a precondition for defining what a 
Discourse Marker is. Its definition will be presented further ahead, but 
its ultimate goal is to allow the identification and prediction of the 
phenomenon. Firstly, we will present the reference units for analyzing the 
speech data according to the L-AcT. Then, we show L-AcT’s proposal for 
the organization of speech – the Information Structure. Only after these 
steps we will be able to propose our definition of DM. Audio files used as 
examples of this and the ensuing chapters can be downloaded from 
<SHARED_MATERIALS_THESIS>1 

 

2.2 WHY AND HOW TO SEGMENT THE SPEECH 

In this research, we are studying Discourse Markers based on data from 
spontaneous speech corpus. The first methodological question is how 
the speech can be segmented and what our primary reference unit is. 
Depending on the goal of any analysis, the speech may be segmented 
at different levels, in types of units of various sizes, each helping to 

 

1 https://1drv.ms/f/s!Ar5G4HnYDsd9goeGYdFY_6CL9ZID9hg?e=wWZKvQ 

https://1drv.ms/f/s!Ar5G4HnYDsd9goeGYdFY_6CL9ZID9hg?e=wWZKvQ
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understand the relations at different linguistic levels (Izre’El et al., 2020) 
For instance, we can segment the speech into phones, syllables, words 
(whose definition is highly dependent on our approach – Blanche-
Benveniste, 1997), or other higher-level linguistic entities (intonation 
units, utterances, turns, to name a few). The present research is inserted 
in a theoretical framework whose main objective is to explain how the 
same lexical content can be organized (or packaged) in different ways 
so that speakers achieve their communicative goals in spontaneous 
speech interactions (Raso & Cavalcante, 2022). Therefore, by reference 
unit, we mean the smallest communicative unit of speech. The 
explanations and exemplifications that follow try, thus, to highlight the 
importance of segmenting speech and establishing the basic units of 
reference from which our analyses will be carried out. 

To show the importance of the subject, we can resort to one of 
the examples - and the discussion - presented in Izre’el et al. (2020). But 
before delving into it, we must introduce L-AcT’s central reference unit, 
in other words, the smaller communicative unit of speech. This unit is 
the terminated unit (TU): 

 

Terminated unit 

The minimal speech chunk that displays both pragmatic and prosodic 
autonomy.  

 

The pragmatic autonomy means that the TU must convey at least one 
speech act (like an assertion, a calling, an invitation, an order, a 
question, or a warning, among many other possibilities). The prosodic 
autonomy means the speech chunk is perceived as complete, as 
concluded by a prosodic sign of terminality (a terminal boundary). This 
definition entails many consequences. For now, it is important to say 
that the TU is formed by at least one prosodic unit that conveys an 
illocution. 

 With this definition, we can analyze some linguistic relations 
within a string of words ripped off from its structure (syntactic or 
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semantic). Izre’El et al. (2020) propose the following sequence: people 
give John the book I promised him. This is not a natural example 
extracted from the corpora used for this research. Still, it helps, in the 
first moment, understand some implications of the prosodic 
segmentation of speech. We will present examples extracted from the 
corpus further ahead. Here, we will adapt the original rationale and 
assume only one kind of boundary, the one requested by the TU – the 
terminal boundary2. We will mark this boundary with “//,” the same 
symbol adopted by the corpora used in this research3. We will assume 
the following arrangements of TUs (but others are possible): 

 

Example 1 

(a) people give John the book I promised him // 
(b) people // give John the book I promised him // 
(c) people // give John the book // I promised him // 
(d) people give John the book // I promised him // 

 

As can be observed, different segmentations result in different 
numbers of TUs – or, as in the case of (b) and (d), the same number 
but made up of different words. The segmentation is insufficient to 
impose an illocutionary value for each unit, but rather how many there 
are. The segmentation limits the potential illocutions we may have and, 
as such, constitutes a first step towards the interpretation of the 
sequences.  

 

2 Different proposals for the prosodic segmentation can be found in the literature. What is 
certain is that any kind of segmentation will imply the presence of a boundary, “either 
perceived or theoretically proposed and correlated to other kinds of phenomena” (Izre’El et 
al., 2020). As pointed out by Izre’El et al. (2020), two different perspectives can arise from 
the study of segmentation. The first one is focused on the units formed by boundaries – the 
prosodic units – and the functions they may carry. The second one is focused on the study of 
the acoustic cues that are associated with a boundary (Raso et al., 2020a, 2020b; Teixeira & 
Malvessi Mittmann, 2018). 

3 The corpora of the C-ORAL family. We will give further detail on them in Chapter 4.1. C-
ORAL corpus 
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Only after segmenting the speech and assigning an illocution 
to the TU, we can make morphosyntactic considerations. But before 
moving on to morphosyntax, let's say something about the illocutions 
that may be present in each TU. We can take, for the sake of 
simplification, the segmentation proposed for (a), (b), and (c) and 
suppose the following illocutionary values: 

 

Example 2 

(a) people give John the book I promised him (Assertion) // 
(b) people (Calling) // give John the book I promised him (Order) // 
(c) people (Calling) // give John the book (Expression of surprise) // I 
promised him (Confirmation request) // 

 

In (a), we have a single illocution, an assertion. In (b), we can have a 
calling followed by an order. In (c), we can have a calling followed by 
two confirmation requests, which could be paraphrased as “people! 
You really mean I should give John the book!? Did I promise him that?”.  

We can observe that establishing a TU will have many 
implications at the morphosyntactic level. One straightforward 
consequence is that morphosyntactic relations will have their primary 
domains of analysis within the prosodic unit, which in this case 
corresponds to the TU. Depending on how a sequence of words is 
segmented, the domain in which these words are related changes, and 
therefore, the relations change. For instance, in (a), people is the 
syntactic subject that gives John (the syntactic indirect object) the book 
(the syntactic direct object). The same is not true for (b) and (c). Here, 
the lexical item is used, on its own, to perform the illocutions of calling. 

However, a TU may also display an internal organization. Words 
can be grouped into prosodic units that will, in principle, accomplish a 
communicative function. The prosodic units within a TU will be 
signaled by a non-terminal boundary. This kind of boundary is marked 
through a simple slash (“/”). We can take as an example the word 
sequence “in outer space research activities have been canceled”. We 
will assume the following arrangements of prosodic units (but others 
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are possible): 

 

Example 3 

(a) in outer space / research activities have been canceled// 
(b) in outer space research / activities have been cancelled // 
 

As we can see, different boundary positions entail different local 
morphosyntactic relations and, therefore, different meanings. In (a) 
research specifies the subject activities, whereas in (b) it is adjunct 
specified by outer space. The segmentation, both with terminal and 
non-terminal boundaries, establishes the domain of relationship 
among words. Thus, speech cannot be analyzed unless it has been 
segmented first. 

 

2.3 THE TERMINATED UNIT: UTTERANCE OR STANZA 

So far, we have said that the TU must have at least one illocution and 
a terminal boundary. However, the TU may take on two forms: the 
utterance, when it is formed by a single pattern, or the stanza, when it 
is formed by more than one pattern (Cresti, 2010a). A pattern is made 
up of one illocutionary core unit and other optional units around it. 
When two or more patterns are juxtaposed (i.e., separated by non-
terminal boundaries that convey continuation), we have a stanza. We 
will explore the concept of pattern a bit more in the next section. 

 

2.4 THE PATTERN 

A pattern may be of two kinds: simple or compound. A simple pattern 
is formed by a unique prosodic unit. This unit will necessarily be the 
one that carries the illocution. To illustrate the concept, we will show 
some examples extracted from the AE minicorpus (Cavalcante et al., 
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2018)4. This minicorpus comprises texts sampled from the Santa 
Barbara Corpus of Spoken American English (SBCSAE – du Bois et al., 
2000-2005) and was annotated in accordance with the methodological 
criteria adopted by the C-ORAL family corpora. The example below 
illustrates a simple pattern: 

 

Audio file 1 - afamcv01_174 
Simple pattern 

KEN: [174] what kind of enzymes (Open question) // 
LEN: [175] mainly digestive (Answer) // 

 

In the example above, we have two TUs. Each one is formed by a simple 
pattern and performs one illocution. However, as previously discussed, 
the lexical content of a TU can be structured in more than one prosodic 
unit. The TU will, in this case, be performed through a compound 
pattern. The example below displays a TU whose pattern is formed by 
three prosodic units: 

 

Audio file 2 - afamcv01_174 
Compound pattern 

FRE: [28] I put down on the card / you know / no cases (Assertion) // 

 

4 The examples shown in this chapter were extracted from the C-ORAL family corpora (see 
Chapter 4.1. C-ORAL corpus for further detail). They are identified by their ranking in the 
files attached to this work (Audio 1) and a code (afamcv01_174) that identifies their source 
file. The first letter in the code stands for the language of the minicorpus (a = American 
English, b = Brazilian Portuguese, f = French, I = Italian, p = European Portuguese, and s = 
European Spanish), the following three stands for the domain of interaction (fam = 
family/private, pub = public), and the final two letters represents the type of interaction (mn 
= monologue, dl = dialogue, cv = conversation). The number after the underscore indicates 
the rank of the TU inside the source text file. The transcription of each TU is introduced by a 
three-letter code identifying the speaker (KEN) and followed by the indication of the ranking. 
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Here, the compound pattern is formed by the prosodic unit carrying 
the illocution (an assertion) and by two other units. The sole mandatory 
unit is, thus, the last one. The two other units are optional. This means 
that the first two units can be disposed of without prejudice for the 
performance of the illocution. Moreover, if this TU were performed 
without one or both of the two non-terminal boundaries, its meaning 
would sensibly change. For instance, if there was no non-terminal 
boundary between card and you know, you know would have to be 
interpreted as a specifier of card. By hearing the corresponding audio, 
we clearly notice that this was not the speaker’s intention. The speaker 
structured the pattern this way with a communicative goal in mind. 

Thus, to sum up, the pattern is an assemblage of one or more 
prosodic units, one of which will necessarily carry the illocution (the 
illocutionary unit). Other optional non-illocutionary prosodic units can 
be added to the pattern. Optional units can occur both before, after, 
and, in some cases, even within the illocutionary unit, and the pattern 
can achieve a relatively complex structure. The non-illocutionary units 
will be functionally and subordinated to the illocutionary unit.  

But often we can observe two or more patterns juxtaposed by 
a non-terminal boundary. They are, in such cases, subpatterns of the 
same TU. This TU is the stanza. Subpatterns can be assembled using 
the same constraints that apply to patterns. Each subpattern will thus 
have a core illocutionary unit, which can be complemented with other 
optional units. 

 

Audio file 3 - afamcv01_174  

Subpatterns 

FRA: [176] I mean / I waited (Assertion) / and waited (Assertion) / and waited 
(Assertion) / and waited (Assertion) / and everyone had given up (Assertion) 
// 

 

In the stanza above, the pattern is formed by five subpatterns. Using 
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curly brackets, we can identify the beginning and end of each one: 

 

Audio file 4 - afamcv01_174 

Subpatterns 

FRA: [176] { I mean / I waited (Assertion) / } { and waited (Assertion) / } { and 
waited (Assertion) / } { and waited (Assertion) / } { and everyone had given 
up (Assertion) // } 

 

This stanza features a repetition of the same illocution with almost the 
same lexical content. We can easily observe how the illocutions are not 
performed in a sequence of TUs but rather in a unique TU whose 
patterns are linked by non-terminal boundaries. Only the first 
subpattern is complex. The illocution is performed by its second 
prosodic unit. The following four subpatterns are simple. The example 
below illustrates another stanza. Curly brackets once again delimit 
beginnings and ends of subpatterns, and illocutionary units are shown 
in bold: 

 

Audio file 5 - afamcv01_174 

Complex pattern 

KIR: [81] { a potential for bringing over diseases / is obviously there / } { so / 
the thought was / okay / let 's get some eggs / } { Sea World San Diego / has 
Gentus / } { and / apparently / just not enough eggs to share // } 

 

This stanza features four subpatterns. In this case, all of them are 
complex, i.e., formed by the illocutionary unit plus other optional units. 
In the next section, we will explain the relationship between the 
prosodic and the information patterning in accordance with the L-AcT. 
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2.5 THE RELATIONSHIP BETWEEN THE PROSODIC AND INFORMATION 
PATTERNING 

The L-AcT (Cavalcante, 2020; Cresti, 2000; Cresti & Moneglia, 2010; 
Moneglia & Raso, 2014) puts forth that the prosodic unit is the formal 
vehicle that conveys the function of the information unit (IU), i.e., a unit 
of the Information Structure (IS). The IS is a general term that includes 
concepts aiming to explain how the information is packaged (or 
organized) in the speech flow. L-AcT’s approach to the IS assumes that 
speakers have at their disposal a limited inventory of IUs. The choice 
of an informational function is not constrained by the context (as in 
Krifka & Musan (2012), but by what communicative value the speaker 
wants to give to a unit. Of course, the context has influence in the 
speaker’s decision, but not in a deterministic way. This vision attributes 
to IS a strong linguistic status, since there are formal cues to recognize 
what the speaker wants to do, no matter the context. It is the speaker 
who decides, in the same context, what s/he wants to convey. 

One of L-AcT’s main principles is that there is a tendential 
isomorphism between the prosodic units and the IUs. Prosodic and 
information units are viewed as two dimensions of the same object. 
The L-AcT recognizes that prosody signals the boundaries of a pattern, 
segmenting it internally into interdependent units to which 
informational functions are associated. An IU will thus correspond in 
principle to each prosodic unit. The cases in which this tenet does not 
hold true will be explained at the end of this chapter. Besides, the 
specific informational function of each prosodic unit is marked by a 
specific prosodic form, as will be seen later. 

Based on the observation of spontaneous speech corpora, a 
number of functions of IUs were identified and described. L-AcT’s IS 
framework distinguishes two kinds of IUs: textual and dialogic units. 
Textual units are responsible for building up the text (the semantic and 
syntactic content) of the utterance. The dialogic units are, on the other 
hand, devoted to regulating the communicative exchange itself. The 
dialogic units correspond to what other frameworks call Discourse 
Markers (DMs). Unless otherwise specified, we will use DM and dialogic 
unit interchangeably. And since this is the very object of this research, 
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we will introduce L-AcT’s proposal for DMs in greater depth in a 
dedicated chapter. Here, I will focus on briefly presenting the textual 
IUs. 

 

2.6 THE UNITS OF THE INFORMATION STRUCTURE ACCORDING TO THE L-
ACT 

L-AcT’s IS framework identifies six main textual IUs: the Comment 
(COM), the Topic (TOP), the Appendix of Comment (APC), the 
Appendix of Topic (APT), the Parenthetic (PAR), and the Locutive 
Introducer (INT). The analysis of IUs is based on functional, prosodic 
and distributional criteria. This brings us to another important principle 
assumed by the theory: the form-function pairing. According to the L-
AcT, IUs have dedicated prosodic forms. A prosodic form is a set of 
prosodic parameters consistently associated with the conveyance of 
pragmatic functions of the same kind (Firenzuoli, 2003). Prosodic forms 
are typically described in terms of variations of fundamental frequency 
(f0), direction of f0 movement, f0 movement alignment, mean syllabic 
duration (articulation rate), and intensity. A prosodic form with which 
a prosodic unit is performed, guides, at the foreground, the 
conveyance of an information function. Besides, each IU will have 
distributional constraints or preferences with respect to the 
illocutionary unit. In the following subsections, we present the 
descriptions of each textual IU. At the end, a summary table containing 
tags, functions, and main references is also provided. 

 

2.6.1 The Comment (COM) 

The Comment (COM) is defined as the unit that conveys the illocution 
(Cresti, 2000, 2020; Raso & Rocha, 2016; B. Rocha, 2016; B. Rocha & Raso, 
2016). This definition has three implications. The first one is that the 
COM is the sole necessary and sufficient unit for the performance of a 
TU. In other words, if a pattern is simple, the prosodic unit present will 
necessarily correspond to a COM. The second implication is that, in 
COM’s case, the prosodic criterion leads to different prosodic forms. 
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Here, COM’s prosodic form varies not in accordance with an 
information value per se but depending on the type of illocution 
carried by COM. Lastly, COM’s distribution is free. Within a pattern, 
COM is the central reference unit with respect to which other IU’s 
distributional constraints are described. The example below shows 
three examples of COM5 realized in dedicated prosodic units and filled 
with the same lexeme (love). Each COM (bold face) carries a different 
type of illocution conveyed through different prosodic realizations: 

 

Audio file 6 – afamdl02_183-187 – COM 

DAR: [183] do what you want with the time you have // [184] learn / give / 
whatever // 
PAM: [185] love // 
%ill: directive (proposal) 
DAR: [186] love // 
%ill: expressive (doubt) 
PAM: [187] love // 
%ill: representative (conclusion) 

 

COM’s prosodic forms are described in terms of variations within a 
prosodic prominence called functional nucleus. This portion of the unit 
does not necessarily correspond to the whole syllabic extension of 
COM. The functional nucleus by itself is deemed to carry the prosodic 
characteristics responsible for signaling the illocutionary function. The 
functional nucleus is usually comprised of one or two syllables. The 
nucleus can be preceded by a preparation and/or followed by a coda, 
both of which do not carry information function but host the rest of 
the semantic content of the unit. Sometimes, the functional nucleus 
can be separated into two semi-nuclei; in this case, if necessary, a 
linking portion – also without information function – will lie between 
the two discontinuous parts of the same nucleus. More will be said 

 

5 In the C-ORAL family corpora, IUs are annotated through a three-letter tag inside equal 
signs (=TAG=) that follows the boundary signs enclosing the referenced unit. The illocutionary 
value of COM is not annotated in the corpora, but it is here indicated following the 
annotation rules of the corpora (%ill: illocutionary value). 
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about COM and its forms when we talk about the illocution. The figure 
below shows f0 (blue line), intensity (red line) and the duration (the x-
axis) of the three illocutions in Audio 4: 

 

Figure 1 - Prosodic form of illocutions in Audio 4 

 

We can see and hear that the three different illocutions have different 
are vehiculated by different prosodic forms, notwithstanding other 
aspects, discussed in the next section, also being important. 

 

2.6.1.1 Pragmatic and cognitive parameters 

COM is the unit responsible for carrying the prosodic form that will 
signal the illocution. The prosodic form will vary in accordance with 
what kind of illocution the speaker intends to perform. The 
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documentation of illocutions poses a strenuous challenge, with 
completion remaining an ongoing endeavor. A central question arises: 
which criteria should guide the classification of linguistic actions within 
the global context? The L-AcT advocates for the identification of 
pragmatic-cognitive parameters as descriptors of illocutions. It is 
imperative to recognize that an illocution cannot be exclusively 
defined by a particular prosodic form; rather, the form serves as a 
conveyance mechanism for a deeper conceptual content that still 
requires elucidation. The L-AcT proposes that the foundation for 
defining illocutions should rest upon the pragmatic-cognitive 
parameters – see, for instance, Moneglia (2011), as well as works by Raso 
& Rocha (2016), Rocha (2016a), and Rocha & Raso (2016). The pragmatic-
cognitive perspective posits that certain illocutions possess inherent 
clarity, making formal differentiation unnecessary; examples include 
directives illocutions like orders and instructions. Conversely, for 
illocutions with closely aligned parameters, such as assertions and 
questions occurring in analogous contexts, the employment of formal 
prosodic distinctions becomes imperative. 

The description of the pragmatic and cognitive parameters that 
allows the identification of an illocution plays a central role in the 
methodology utilized within L-AcT’s research groups. It is important to 
mention that such descriptions must take into account the smallest 
possible number of pragmatic and cognitive parameters so as to avoid 
unnecessary overspecification (Rocha, 2016b). Furthermore, the choice 
of parameters and respective specifications must be carried out 
experimentally (see Rocha, 2016; Raso & Rocha, 2016a; Raso and 
Rocha, 2016b, for an empiric methodology on the identification of 
illocutions). A number of at least five parameters have been observed 
to be relevant to the distinction of illocutions cross-linguistically 
(Moneglia, 2011; Rocha, 2016; Raso & Rocha, 2016; Cresti & Fujimura, 
2018; Cresti & Moneglia, 2018). They are listed in Table 1: 
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Table 1 - Pragmatic and cognitive parameters 

Type of 
Parameter Parameter 

Communication 

Channel 
Attentional horizon 
Focus 
Context 
Reference object 

Proxemics 
Space relations between participants and their movements 
Gesticulation 
Gaze 

Social 
Speaker's roles and conditions 
Addressee’s roles and conditions 

Speaker activity 
Intentional values 
Speaker's commitment to the truth 
Speaker's affective involvement 

Expected 
effects 

Conventionally expected effects on the addressee 
Conventionally expected effects in the context 
Fulfillment time 
Benefit 

(Adapted from Cresti, 2020) 

 

For instance, many illocutions cannot be performed when the 
communication channel is not open, such as in the case of questions, 
confirmation request, and presentations. The need to perform such 
illocutions when the communication channel is closed may elicit the 
performance of a patterned illocution where the first illocution will be 
a call aimed at opening the channel. I talk about the patterned 
illocutions in the following subsection. 

 

2.6.1.2 Patterned illocutions 

I said before that each pattern contains one COM together with other 
optional IUs. However, the pattern may sometimes present more than 
one illocutionary unit. When this is the case, the illocutionary units are 
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called Multiple Comments (CMM).  CMMs form a chain of two or more 
illocutionary units targeting a unified rhetorical effect. They thus seem 
to result from a single planification by the speaker. Chains of CMM are 
signaled by strongly conventionalized prosodic patterns, constituting 
a patterned illocution conventionalized in order to achieve a holistic 
rhetorical effect (Panunzi & Gregori, 2012; Panunzi & Mittmann, 2014). 
Although each CMM performs its own illocution, the illocutionary 
pattern must be interpreted as a whole. Chains of CMM form one 
unique nuclear pattern around which other optional non-illocutionary 
IUs can be added. Typical compositional illocutionary patterns are lists, 
comparisons, and requests of confirmation. 

 

Audio file 7 - afamdl01_111 – CMMs forming a compositional 
illocutionary pattern  

BER: do I get it /=CMM= or not //=CMM= 
%ill: Request of confirmation 

 

2.6.1.3 Stanzas 

As aforementioned, a stanza (Cresti, 2010b) is a type of TU formed by 
patterns juxtaposed by non-terminal boundaries. In a stanza, the 
illocutionary unit of each pattern enclosed by non-terminal boundaries 
is annotated as a Bound Comment (COB). The illocutionary unit of the 
last pattern (the one enclosed by a terminal boundary) is annotated as 
a regular COM. Instead of having a unified rhetorical effect, COBs – 
and stanzas – are rather the product of the speaker’s flow of thought. 
They tend to occur longer turns, when the actional activation is lower, 
like in monologic speech. In these situations, it is the semantic content 
that takes on the central role, leading to a weakened sequence of 
illocutions typically of the same class, such as in the example below, in 
which the illocutionary units pertain to the assertive class: 

 

Audio 6 – afammn03_124 – COBs forming a stanza 

ALA: [124] so I 'm driving up to the house /=COB= and there 's a car in front 
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of me /=COB= and the guy is just like sitting there /=COB= in the middle of 
the road /=COB= and he 's not moving /=COB= and you know / I wanna park 
the car //=COM= 

 

2.6.2 The Topic (TOP) 

Functionally, the Topic (TOP) provides a domain of identification 
(individual, spatial, temporal, etc.) for the interpretation of the 
illocution conveyed by COM. If not preceded by a TOP, COM must be 
interpreted in accordance with a domain given in the context. TOP 
allows for the detachment from the context (Hockett, 1958). 
Prosodically, TOP is also characterized by the presence of a functional 
nucleus, which carries the function. TOP’s functional nucleus can take 
on three forms (Cavalcante, 2020; Firenzuoli & Signorini, 2003; Raso et al., 
2016; Raso & Cavalcante, 2021; Cavalcante, Raso, Barbosa, to appear). 
Type 1 is characterized by a rising-falling fundamental frequency (f0) 
movement in the last stressed and post-stressed syllables. The 
following examples were adapted from Cavalcante (2020): 

 

Audio file 8 – afamdl01_067 – TOP – Type 1  

[67] once I get my experience /=TOP= I’ll be up there too / in the top-four 
salesmen 

//  
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Figure 2 - Type 1 TOP 

 

Type 2 is marked only by a rising fundamental frequency (f0) 
movement in the last stressed and post-stressed syllables. 

 

Audio file 9 - afamdl01_080 – TOP – Type 2 

XXX: [80] but in a sense /=TOP= I need a [/1] some type of steady income // 
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 Figure 3 - Type 2 TOP  

 

Type 3 has two semi-nuclei – often discontinuous: the first semi-
nucleus displays high to extra-high f0 values, and the second semi-
nucleus has lower f0 values. When they are discontinuous, the two 
semi-nuclei are separated by functionally inactive syllables called 
linking portions. The linking portion corresponds to what to the 
preparation of the other two types of TOP. 

 

Audio file 10 - afamcv04_138 – TOP – Type 3 

XXX: [138] when Mary tells me to get a sleep over the weekend /=TOP= you 
know I need to get sleep over the weekend // 
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Figure 4 - Type 3 TOP 

 

All three types feature syllable lengthening and higher intensity in the 
nuclei. Types 1 and 2 display the most prominent lengthening. 
Distributionally, TOP always occurs before COM. 

 

2.6.3 The Appendix of Comment (APC) 

Functionally, the Appendix of Comment (APC) integrates COM with 
textual content that usually corresponds to information already 
available in the context. Although integrating COM, the APC does not 
contribute to the performance of the illocution. If APC is cut off, the 
pragmatic autonomy of COM remains unchanged. Prosodically, the 
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APC is characterized by a flat or falling f0 movement without a 
functional nucleus (Cavalcante, 2020; Moneglia & Raso, 2014). 
Distributionally, it occurs always after COM. The example below brings 
an example of APC in utterance 25. We provide some context before 
to make it possible to see how the referent all places is already given 
in stanza 236: 

 

Audio file 11 - afamcv01_025 – APC 

KEN: [23]  but the whole town /=TOP= still has the old Mexican plaza /=COB= 
and the Mexican governor / general's house /=TOP= was right there /=COB= 
and / <and the church /=TOP= and that kind of thing is> / you know / right in 
the center of Sonoma //=COM= 
JOA: [24] and that 's like the main street /=COM= you know // 
JOA: [25]  Sonoma /=COM= of all places //=APC= 

 

6 Overlapping speech is transcribed within angle brackets (<speech>). IUs that were not 
introduced yet do not receive annotation in this example.  
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Figure 5 - APC 

 

2.6.4 The Appendix of Topic (APT) 

Analogue to the APC, the Appendix of Topic (APT) is functionally 
characterized by providing TOP with textual content integration. 
Differently from APC, this integration is not contextually given 
information; it rather supplements the domain of application of the 
illocutionary force identified by TOP. Its prosodic form seems, on the 
other hand, to be a bit more complex than that of the APC. Sometimes, 
it reproduces the f0 contours of TOP in a smaller range and without a 
functional nucleus; sometimes, APT has a falling f0 movement 
(Cavalcante, 2020). Distributionally, APT always occur after the TOP. 

 

Audio file 12 – afamdl02_053 – APT  



 

 

 

60 

PAM: [53] the things I know most /=TOP= about life and death /=APT= come 
from 

[/1]=SCA=7 from /=SCA= my grandmother //=COM= 

 

 

Figure 6 - APT 

 

2.6.5 The Parenthetic (PAR) 

The Parenthetic (PAR) has a metalinguistic function. It delivers a 
commentary on the content of its hosting pattern (Tucci, 2004a, 2009). 
PARs are frequently used as a modalizing mechanisms, expressing the 
speaker’s point of view on the content of the pattern. Prosodically, PAR 

 

7 Unit to be introduced in 2.6.7. 
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is characterized by an overall flat and low f0 profile, typically higher 
articulation rate, and low intensity with respect to the neighboring IUs 
(Tucci, 2004b). It is frequently followed or preceded by silent pauses. 
Distributionally, it can occur in any position – even within another 
textual IU – except for the beginning of the pattern. The example below 
illustrates a PAR that is embedded in the first COB8: 

 

Audio file 13 – afammn05_010 – PAR 

COR: [10] <and then like>  [/3] =EMP= and then they 'll like /=INT= take these 
/=SCA= butt plugs /=COB= or whatever you wanna call 'em /=PAR= and they 
'll shove it up their anus /=COB= and /=AUX= they have to walk around with 
it //=COM= 

 

 

8 IUs interrupted by another intervening IU and then resumed are signaled with the prefix 
“i-” before the tag of its interrupted chunk. 
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Figure 7 - PAR 

 

2.6.6 The Locutive Introducer (INT) 

Functionally, the Locutive Introducer signals that the illocution that 
follows has pragmatic coordinates (individual, temporal, and spatial) 
distinct from those of the unfolding TU. Most frequently, it is used to 
introduce meta-illocutions such as reported speech, but it can also 
signal illocutions containing spoken thoughts, lists, emblematic 
exemplifications, to name a few possibilities. It can also introduce lists 
of PARs. Prosodically, it is characterized by a falling f0 profile at the 
end of the unit, a higher articulation rate and pronounced phonetic 
reduction (Maia Rocha & Raso, 2011; Maia Rocha, 2011; Toledo, 2024). 
Besides, it tends to feature a sharp prosodic contrast with respect to 
the introduced IU. Distributionally, it always occurs before the 
introduced IU. The example below illustrates INT introducing a 
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reported speech9: 

 

Audio file 14 - afamdl03_106 – INT 

ANE: 106]  and I ate the other one /=COB= then half of the other one /=COB= 
it was like /=INT= whoa //=COM= 

 

 

Figure 8 - INT 

 

2.6.7 Scanning Units (SCA) 

We said that there is a tendential isomorphism between the prosodic 

 

9 IUs part of reported speech are annotated through the suffix “_r” after its tag. 



 

 

 

64 

unit and the IU. This principle is flouted in some cases. Sometimes, an 
IU can be realized by means of more than one prosodic unit. This may 
be caused by different reasons. Most frequently, this is due to 
dysfluencies or caused by articulatory reasons (the content of an IU 
may be too big to be articulated in one single prosodic unit). Less 
often, splitting the IU into multiple prosodic units is made for rhetorical 
purposes. In such cases, the prosodic units coming before the last 
prosodic unit of the IU receives the annotation of Scanning Units (SCA). 
The prosodic form that carries the information function will be always 
at the last prosodic unit of the IU. 

In some situations, the speaker may replan her speech program, 
potentially leading to an SCA and the retraction of some words. A 
retraction occurs when the speaker makes minor adjustments to the 
initial program by withdrawing some words. 

 

 Audio file 15 – afammn06_010 - Scanning Unit with retraction  
JIM: [10] and /=AUX= the way it 's marketed /=COB= and the way we 're 
[/2]=SCA= we develop needs for it //=COM= 

 

In the example above, the content we’re is withdrawn in favor of we 
develop. The sign [/2] indicates both the occurrence of a non-terminal 
boundary and the retraction of two words before. Notice that the IU 
here is not abandoned but rather split into two prosodic units; a 
portion of the SCA unit – and the way – is not retracted. The IU is 
realized through two prosodic units: SCA and COM. 

 

2.6.8 Empty, time-taking, interrupted, and unclassified prosodic units 

Sometimes, the speaker retracts the content of an entire prosodic unit. 
This may be caused by the need to restart the speech planning. The 
fully retracted prosodic unit is annotated as an empty prosodic unit 
(EMP).  
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Audio file 16 – apubmn01_285 – Empty prosodic unit 
AMY: [285] are they [/2]=EMP= I mean /=AUX= are they being hesitant about 
it //=COM= 

 

This case is not to be confounded with a meaningful repetition, which 
can occur in speech (Cavalcante, 2020). In meaningful repetitions, the 
information function is identifiable through a clearly realized prosodic 
form and its rhetorical effect. In the example above, the empty 
prosodic unit seems driven by a speech dysfluency. Speech dysfluencies 
are non-pathological hesitations that lead to phenomena such as 
repetitions, repairs, and filled pauses (time-taking vocalizations). Such 
dysfluencies are frequent even in fluent speech, and can create 
prosodic units without an information function. 

The sound used in filled pauses (time-taking vocalization) may 
vary across languages. The corpora of the C-ORAL family signal these 
vocalizations with the generic sign &he. When it specifically carries one 
such vocalization, the prosodic unit receives the annotation TMT 
(Time-taking). The example below illustrates one such filled pause: 

 

Audio file 17 – apubdl02_10 – Time-taking prosodic unit 
LAR: [10] &he /=TMT= I do n't know //=COM= 

 

Sometimes, speakers may also stop their speech program by 
beginning a new TU or by abandoning the turn – for instance, when 
they are interrupted by another participant. When this is the case, the 
boundary created is annotated with a + sign. And, if, for any reason, 
the information unit cannot be recognized, the IU receives the tag 
Unclassified IU (UNC). This may be the case when the IU is interrupted, 
such as in Audio file 13, or when the speech chunk is perceived as an 
IU, but its content and communicative value cannot be recognized due 
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to overlapping, background noises, and muffled or whispered speech. 
Audio file 14 illustrates the latter case. Here, the xxx sign marks that 
one word was not recognized during the corpus transcription task10. 

 

Audio file 18 - afamcv02_174 - Unclassified unit 
BET: [174] no /=COB= I +=UNC= 

  

Audio file 19 – apubdl02_098 - Unclassified unit 
LAR: [98] <xxx> +=UNC 

 

2.7 SUMMARY TABLES 

Table 2 below presents a summary of the textual IUs proposed by the 
L-AcT, as well as their tags, functions, and main references: 

 

Table 2 - Synthetic table of the textual IUs assumed by the L-AcT, their 

functions and main references 

IU TAG FUNCTION REFERENCES 

Comment COM 

Conveys the illocution. It is the 
necessary and sufficient unit for 
the realization of the terminated 
unit 

(Cresti, 2000; 2020; 
Moneglia & Raso, 
2014; Raso & Rocha, 
2016a; 2016b; Rocha, 
2016) 

 

10 The other signs used in the transcription of the C-ORAL family corpora will be dealt with 
when we present the corpora used for this work. 
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IU TAG FUNCTION REFERENCES 

Multiple 
Comment CMM 

Patterned illocutions that produce 
a conventionalized rhetoric effect; 
it is built upon a single illocutionary 
pattern 

(Panunzi & Gregori, 
2012) 

Topic TOP 

Identifies the domain of 
identification – spatial, temporal, 
individual – for the interpretation 
of the illocutionary force carried by 
COM 

(Firenzuoli & 
Signorini, 2003; 
Signorini, 2005; 
Mittmann, 2012; 
Rocha, 2012; 
Cavalcante, 2016; 
Raso et al., 2017 
Cavalcante, 2020; 
Raso & Cavalcante, 
2021) 

Bound 
Comment COB 

The illocutionary unit of a 
sequence of subpatterns 
juxtaposed by non-terminal 
boundaries. It forms a stanza. 

(Cresti, 2010) 

Appendix 
of 
Comment 

APC 
Adds textual content to a COM 
unit, often corresponding to given 
information 

 (Moneglia & Raso, 
2014; Cavalcante, 
2020) 

Appendix 
of Topic APT Adds textual content to a TOP unit 

 (Moneglia & Raso, 
2014; Cavalcante, 
2020) 

Parenthetic PAR 
Delivers a metalinguistic 
commentary on the content of the 
TU. 

(Tucci, 2004, 2009) 

Locutive 
Introducer INT 

Signals that the following IU must 
be interpreted according to 
pragmatic coordinates other than 
those of the unfolding terminated 
unit 

(Maia Rocha, 2010; 
Maia Rocha & Raso, 
2011; Toledo, to 
appear) 

 

Table 3, on its turn, presents a summary of tags and uses given to other 
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prosodic units that either do not bear an informational value or that 
could have their value identified: 

 

Table 3 - Synthetic table of tags given to other prosodic units 

UNIT TAG USE 

Scanned 
Unit SCA 

Identifies cases in which the IU is realized through more 
than one prosodic unit. The first prosodic units of the IU will 
be annotated through SCA. Only the last prosodic unit will 
receive the tag of the corresponding IU. 

Empty Unit EMP 
Identifies units that the speaker intends to withdraw. 
Mainly (but not only) used for repairs and repetitions that 
do not purport a rhetorical effect. 

Time-taking 
Unit TMT 

Identifies prosodic units created by filled pauses (time-
taking vocalizations) 

Unclassified 
Units UNC 

Identifies prosodic units that for some reason (overlapping 
speech, background noise, muffled or whispered voice) 
could not have their informational value recognized. 

 

In the next chapter, I will focus on deepening the L-AcT proposal for 
Dialogical Units. I will explain why this proposal accounts for Discourse 
Markers better than other approaches that depart from the lexicon, 
context and/or syntactic structure.  
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3 REVISION AND DEEPENING OF THE PROPOSAL 
FOR DMS 

The main goal of this chapter is to propose a revised framework for 
interactional Discourse Markers (DM). A substantial body of literature 
about DMs has been produced since the 1980s. However, it is still 
necessary to define what a DM is. More specifically, we lack a 
satisfactory response to two important questions. First, how can one 
determine whether a small expression or lexical item function as a DM? 
Secondly, how can one determine a lexical item's precise function once 
one has determined that it behaves like a DM? One major issue that 
biases the studies on DMs is that the lexicon is typically the starting 
point, with rare and partial exceptions. In the attempt to respond to 
the first question, it is contended that the prosodic cues, not the lexical 
filler, are the means by which DMs can be identified. Next, I will tackle 
the second question and demonstrate how corpus analysis enables us 
to determine five prosodic forms for five distinct DM functions. Before 
doing that, I will (a) briefly review the literature on DMs and (b) 
comment some defining features as per the literature. 

 

3.1 BRIEF OVERVIEW 

Discourse Markers have been on the agenda of various branches of 
linguistic studies and allied fields for as long as since the early 1980s. 
One important milestone on their study is Schiffrin (1987), but it is not 
until the mid-1990s that Discourse Markers began to come to its own 
(Brinton, 2010) with research focusing on English (Jucker, 1997; Traugott, 
1995) but also on other languages such as  Catalan (Cuenca & Marín, 
2012), Chinese (Biq, 1990), Croatian (Dedaić, 2005), Danish (Emmertsen & 
Heinemann, 2010), Dutch (Mazeland & Huiskes, 2001), Estonian (Keevallik 
& Vint, 2012), Finnish (Hakulinen, 1998), French (Cadiot et al., 1985), 
German (Abraham, 1991), Hebrew (Maschler, 1997), Hungarian (Dér & 
Markó, 2010), Icelandic (Hilmisdóttir, 2011), Indonesian (Rofiq, 2018), 
Italian (Bazzanella, 1990), and Latin (Kroon, 1997). These bulk of research 
has explored the cognitive, expressive, social, and textual aspects of 
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Discourse Markers. With a few exceptions, the literature identifies the 
scope of the research departing from lexical items or small expressions 
presenting some syntactic characteristics. DMs are seldom defined, 
and, not rarely, the category encompasses a large number of other 
phenomena that, in our view, could be better accounted for as yet 
other phenomena. I will come back to this point further ahead. 

 Discourse Markers have been studied from different 
perspectives by different groups of scholars. The definition of DMs 
seems to be related to research interests and theoretical frameworks 
supporting the study. Schiffrin's (1987) initial work defined DM as 
"sequentially dependent elements which bracket units of talk" and 
proposed that they can be considered as a set of linguistic expressions 
comprising members of word classes as varied as conjunctions, 
interjections, and adverbs. Fraser (1999) defines DMs as a class of lexical 
expressions drawn primarily from the syntactic classes of conjunctions, 
adverbs, and prepositional phrases. Maschler's approach views all DMs 
as metalinguistic units, emphasizing this characteristic as their basic 
defining feature. Heine et al. (2019) view DMs as invariable expressions 
that are syntactically independent from their environment, typically set 
off prosodically from the rest of the utterance, and their function is to 
relate an utterance to discourse situation.  

We can see that what has been studied as Discourse Markers 
can comprise a varied number of phenomena. DMs can have 
interactional, metalinguistic/metacomment, and textual cohesive 
macro-functions. It can even work as frame-shifting device. In the next 
section, I comment on some of the formal features and characteristics 
of DMs typically found in the literature. 

 

3.2 SOME FEATURES OF DMS 

The literature points to some formal features and characteristics that 
help define, identify and predict Discourse Markers (DMs). Some 
characteristics pointed out by the literature, according to Raso et al. 
(2022) and Raso & Ferrari (2020) are: 
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(a) DMs are lexical items or small expressions that do not combine 

on the semantic and syntactic level with the rest of the utter-

ance. This means that they are not properly a part of the prop-

ositional content and are, therefore, non-compositional items; 

(b) The lexical items or small expressions functioning as DMs lose 

(at least partially) their semantic meaning and acquire a prag-

matic function; 

(c) DMs are polyfunctional; this statement may be use in two dif-

ferent senses: in the first one, it means that one DM occurrence 

may have one or more functions at the same time; in the second 

one, it means that a lexical item or small expression may take 

on different functions in different occurrences depending on 

the context; 

(d) A varied range of DM functions is found in the literature. By way 

of example, we can mention functions concerned with linguistic 

modality, illocution, conative function, turn-taking devices, and 

politeness, metalinguistic, and that is not an exhaustive list. 

 

I would like to address these characteristics so as to evaluate to what 
extent they are adherent to L-AcT’s framework. Arguments are 
presented in the order in which these characteristics are set out above. 

 

3.2.1 Non-compositionality 

First of all, we agree with (a) that DMs are non-compositional items 
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both from semantic and syntactic standpoints. They do not combine 
with the propositional content of the utterance. The first question we 
should be concerned by is, thus, (a) how the non-compositionality is 
signaled in speech and (b) what features allows the addressees to 
understand the differences between the pairs of realizations of the 
three examples that follow: 

 

Compositionality – Example 111 

(a) God save the queen! 

and  

(b) God, save the queen! (Where God is an exclamation and the rest of the 

utterance performs an order) 

 

In the first case, GOD is the subject of the sentence, and it is in a relation 
of compositionality with the text of the utterance. In the second 
example, GOD could be replaced by very different lexical items used as, 
for instance, exclamations or imprecations (Raso et al., 2022). In any 
case, we need formal criteria of non-syntactic nature to ascertain which 
interpretation to follow since, here, there is nothing neither in lexicon 
nor in syntax that say that we may have a boundary between GOD and 
SAVE. 

 

Compositionality – Example 2 

(a) Tipo meu deus. 

Like my god. 

(b) Tipo, meu deus! 

 

11 Example adapted from Raso & Ferrari (2020). 
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Like, oh my god! 

 

TIPO (type) is canonically a noun in Portuguese and not a comparative 
connective such as LIKE. In example (a), it is used as a grammatical item: 
como meu deus (like my god), a non-canonical use that is frequently 
observed in spontaneous speech. Here, the item is syntactically and 
semantically compositional with rest of the utterance. In example (b), 
TIPO can be used with an interactional function. The same logic can be 
applied to small expressions like I mean: 

 

Compositionality – Example 3 

(a) I mean I’m not going. 

(b) I mean, I’m not going. 

 

In (a), a compositional use may lead to the paraphrase “by what I said 
I meant that I’m not going”, while in (b) the speaker may just want to 
draw the interlocutor’s attention. 

 These examples were brought up to show that the lexical item 
(or the small expression) and the syntactic structure are far from 
enough to mark the loss of compositionality. To say with certainty that 
the compositionality is broken, we must take into account, firstly, the 
prosodic segmentation. In the data analyzed in this research, the 
interruption of compositionality is marked by a prosodic non-terminal 
boundary. We can now move to the second item of the list of DM 
properties. 

 

3.2.2 Desemantization 

Discourse Markers, in the sense that interests this research, are lexical 
items or small expressions that lose their semantic value. I want to 
show how an analysis that considers the prosodic form can help us 
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evaluate the semantic emptiness. The first condition is that the lexeme 
or small expression be isolated in a prosodic unit (i.e., that it be set off 
from the rest of utterance by a non-terminal boundary). This gives a 
first clue that the unit may be non-compositional. This discussion may 
be a bit longer, but it helps us respond to the last two points of our list 
– especially when I talk about DM functions. 

For this discussion, it may be useful to take some examples of 
the same lexical item occurring in different contexts, either in prosodic 
isolation or not. I will resort to an item that may occur in many different 
informational contexts: ASSIM (like this). This item can be used with its 
full semantic value but also with interactional functions. This causes the 
lexeme to occur in units of widely varying informational values. Such a 
feature is desirable if we aim to show how the same lexeme can take 
on different functions depending on its prosodic realization. For the 
sake of space, I will not illustrate all the different functions ASSIM can 
assume but rather three different contexts it can occur in. A more 
detailed list of functions ASSIM can take on and the pragmatic 
implications can be found in Raso & Santos (2020). The examples are 
taken from the C-ORAL-BRASIL I corpus (Raso & Mello, 2012). 

The first context is the nucleus – or part of the nucleus – of the 
illocutionary unit (that is, the nucleus of COM). In this context, ASSIM 
can be paraphrased with its full semantic meaning (like this): 

 

ASSIM in illocutionary nucleus of COM 

Audio file 20 - bfamcv04_191-196 

*BRU: [191] cê pode fazer assim // 
*BRU: [192] que isso é <similar> //  
*HEL: [193] <tá> // 
*HEL: [194] e assim //  
*BRU: [195] não // 
*BRU: [196] assim // 
 
*BRU: [191] you can do it this way // 
*BRU: [192] ‘cause this is <similar> //  
*HEL: [193] <ok> // 
*HEL: [194] and this way //  
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*BRU: [195] no // 
*BRU: [196] this way // 
 

The three instances of ASSIM are replaceable by “in this way / like this” 
and are sufficient for the illocution to be conveyed. ASSIM can also 
occur in a dedicated non-illocutionary IU. The informational functions 
assumed in this case can be both textual, or interactional. First, I show 
one textual function. The following example illustrates an utterance in 
which ASSIM assumes the semantic function of modalization: 

 

ASSIM in a dedicated unit with a textual function 

Audio file 21 - bpubcv03_123 

FER: [123] pra gente nũ ter uma tradução <bem> / &he / chula / assim / bem 
ao pé da letra horrorosa / aí fica <complicado> // 

 
FER: [123] so that we don’t end up with a translation very / &he / pimp / let’s 
say so / very literal and poor / this gets <complicated> // 

 

In this example, ASSIM can be paraphrased by “let's say so” with the 
intention of attenuating “pimp”. It thus assumes a function compatible 
with that of a modalizing Parenthetical (PAR), i.e., a textual IU.  

 In addition to textual functions, ASSIM can take on interactional 
functions typical of DMs in the sense of this research. The following 
example shows a case where ASSIM no longer turns to the text of the 
utterance but to the interaction itself: 

 

ASSIM in dedicated unit with interactional function 

Audio file 22 - bpubdl05_254 

GET: [254] então / é uma abelha que / assim / também tem um futuro como 
polinizador / né // 
GET: [254] so / this is a bee that / you know / also has a future as a pollinator 
/ huh // 
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I will talk about the specific function of this realization later on. But it 
can be said that the attitude with which the assertion is enacted does 
not leave much place for interpretations such as “like this,” or “let's say 
so” in the same approximative way it is used in the Parenthetical. Here, 
the speaker seems to use this unit to draw the addressee’s attention 
to a conclusion, i.e., to the point they were trying to reach to. I do not 
dive into the prosodic differences of the examples given, but their 
coherence with information functions is pointed out in Raso & Santos 
(2020). 

By showing these examples, I tried to show how the same lexical 
item can assume different informational values depending on the 
prosodic realization; one of the basic assumptions of the L-AcT is that 
each IU is correlated with a prosodic form that guides, at the forefront, 
the interpretation of its informational value. The point of these 
examples is to show that the prosodic segmentation is not enough, 
notwithstanding its importance. Together with distributional 
constraints and the prosodic segmentation, the prosodic realization of 
a specific content will serve as a formal criterion enabling us to analyze 
and discriminate between illocutions and DMs. The examples given in 
this section will now help us respond to the poly-functionality of DMs. 

 

3.2.3 Poly-functionality of DMs 

Our view agrees with the statement that the same lexical item or small 
expression can take on different functions. However, the same does 
not hold true for the statement saying that a concrete item (an 
occurrence/token) can bear more than one function at the same time. 
At least not if we mean function of the same level. 

 As explained in Chapter 2, the L-AcT put forth the hypothesis 
according to which there is an isomorphic relationship between the 
prosodic unit and the Information Structure (with the exceptions 
explained therein). Furthermore, different information functions seem 
to be correlated with specific prosodic realizations. The relationship 
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established by the different informational functions is of paradigmatic 
nature. When a unit is TOP, it cannot be COM at the same time. As a 
matter of fact, one can observe some prosodic variation among 
different realizations of the same function. But this variation seems 
related to different attitudes – as defined in Mello & Raso, (2011) and 
Raso & Rocha (2016) –, to emotions, as well as to many other 
sociolinguistic variables. A prosodic form will convey a unique 
interactional function. For analytical purposes, when there is doubt 
between two functions, we can also resort to distributional constraints. 

 

3.2.4 Functions of DMs 

Thus far, I have explained why prosody must be given a primary role 
on the study of DMs. Now I would like to deal with some of the 
functions described in the literature. I begin with the most obvious. 
DMs should not be confused with illocutions; not in the sense that DMs 
are dealt with in this research. Illocutions are textual units that build 
the semantic content of the utterance; illocutions carry the speech act 
being enacted by the terminated sequence. DMs are not semantically 
compositional with the text of the utterance. 

A second function mentioned in the literature is related to the 
notion of modality. Assuming the sense given by Bally (1950), i.e., that 
the modality marks the position taken by the speaker with respect to 
the expressed content, we have to admit that there is a semantically 
compositional relationship between modal operators and the 
propositional content of the utterance. By attributing modal functions 
to DMs, we call into question the premise that there is no 
compositionality between the DM and the utterance. If the unit is 
compositional (and thus build the text of the pattern), it is not a DM in 
the sense dealt with in this research. This could be sufficient to say that 
DMs do not take on modal functions, especially when we consider that 
DMs are also desemanticized. 
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3.2.5 Summary of the section 

The L-AcT offers analytical criteria whereby one can isolate DMs from 
other kinds of units; these principles are of prosodic and informational 
nature. The prosodic segmentation gives a first cue about the non-
compositionality of a unit. The prosodic form works as the formal 
principle that, at the forefront, enables the distinction of different types 
of informational functions. As a matter of fact, lexical and syntactic 
formal features do not allow for the identification of DMs. The lexicon 
can take on any function depending on the concrete realization. The 
lexicon is also variable over time and space, whereas prosody is more 
stable. We do not deny that many factors and aspects play a role in 
assigning subfunctions to DMs within context. What is argued is that 
prosody plays a leading/mapping role in this assignment. The prosodic 
form works as a primary branching mechanism that, together with 
other aspects, leads to a specific, contextualized subfunction. The 
prosodic form is stable, while the lexicon can vary greatly. The sub-
function can be determined by the lexicon, through the interaction of 
the lexical item with prosody and with the context in which the DM is 
produced. In the subsections to follow, I present our last proposal for 
the macro-functions of interactional DMs. As much as possible, I try to 
match the functions indicated in the literature with the functions 
offered by our proposal, showing how that macro-function and 
prosodic form are coherent with proposed subfunctions. 

 

3.3 L-ACT’S DISCOURSE MARKERS FRAMEWORK HISTORY 

This concise presentation offers a historical overview of the 
examination of DMs within the Language into Act Theory (L-AcT) 
research framework. The latest proposal identifies and addresses 
various issues in the preceding descriptions. 

The initial proposal, put forth by Cresti (2000), introduced four 
DMs (Dialogic Units in L-AcT’s terminology): Incipit (INP), Conative 
(CNT), Allocutive (ALL), and Phatic (PHA). According to Cresti's 
proposition, the INP's function involves initiating the turn or utterance 
while expressing affective contrast with the preceding utterance. It 
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consistently occurs at the outset of an utterance or at the beginning of 
the sub-pattern of a stanza. Prosodically, INP displays high f0 with 
respect to illocution. Cresti (2000) observed three f0 profiles: rising, 
falling, and rising-falling, without addressing the reason for the 
apparent variability in conveying the same function. 

CNT, described by Cresti (2000), aims to persuade the addressee 
to undertake or cease a specific action. Its distribution is unrestricted. 
Prosodically, CNT features a falling f0 profile, short duration, and 
elevated intensity, though not as high as those observed in INP. 

ALL serves the purpose of establishing social cohesion among 
conversation participants or clarifying the utterance’s addressee. 
Typically filled with titles, epithets, and proper names, ALL exhibits a 
free distribution according to Cresti's proposal. 

As per Cresti's initial proposal, PHA aims to keep the 
communication channel open. Despite being noted for its short 
duration and low intensity, Cresti did not assign a specific f0 profile to 
this unit. Additionally, PHA is suggested to have a free distribution, 
contributing to challenges addressed later in this work. 

Finally, EXP, according to Cresti’s proposal, expresses emotional 
support for the illocution and exhibits a distributionally free nature. 
Prosodically, EXP displays mean intensity and duration, with an f0 
profile described by the author as modulated, allowing for one or more 
f0 movements. 

Raso (2014) attempted an initial systematization of Cresti’s 
(2000) framework by comparing DM samples from the Italian and 
Brazilian Portuguese C-ORAL corpora. Recognizing the need for a 
refined prosodic description, Raso (2014) laid the groundwork for 
subsequent works. Raso & Vieira (2016) addressed apparent variations 
in INP’s f0 contours and partly elucidated the prosodic distinction 
between CNT and ALL. Gobbo (2019) introduced a supervised 
classification model focusing on parameters derived from prosodic-
acoustic measurements for the three most clearly defined functions: 
INP, CNT, and ALL. His model achieves a 0.86 goodness of fit (as 
measured by the accuracy score) with eight prosodic parameters. Raso 
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et al. (2022) further delved into L-AcT’s DM framework, establishing 
methodological foundations for this research. The subsequent section 
presents our most recent proposal. At this point, I would like to reflect 
on the problems to be tackled: 

 

a) What is the function of the PHA? Keeping the channel open 

can be attributed to many things, starting with TMT. What 

would be the prosodic correlates of PHA? 

b) What does emotional support mean in EXP? It does not have 

a defined form either. 

c) How can the formal variability of INP be explained? 

 

With unexplained variable forms (EXP, PHA and INP) it would not be 
possible to guarantee that the prosodic form is the formal vehicle of 
the function. 

 

3.4 THE MOST RECENT PROPOSAL FOR DMS 

This proposal encompasses five Discourse Marker (DM) units. The two 
most clearly defined units from prior research (CNT, and ALL) have 
been kept unchanged from Raso & Vieira (2016) and Raso & Ferrari 
(2020), as their descriptions were considered satisfactory due to the 
coherent mapping between prosodic form and assigned functions. 
Functionally, we have redefined EXP and assigned a specific prosodic 
form to it. The Phatic Unit was excluded. According to Cresti (2000), 
PHA's function is to maintain an open communication channel. 
However, this function can be accomplished by various other devices, 
such as filled pauses or Scanned Units. PHA lacked a distinct function, 
its prosodic form was somewhat unspecified, and its distribution did 
not contribute significantly to disambiguation. Furthermore, in first 
moment we hypothesized a new form tentatively called FLAT. Then, we 
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observed that the FLAT and INP shared a distinctive common trait: 
both exhibit a clear flat contour over the stressed syllable. But INP had 
a high f0 profile and FLAT a low f0 profile. This variation can be better 
accounted for as function of the absence or presence of an attitude of 
contrast with respect to what was said before. Thus, the description of 
INP presented in Raso & Vieira (2016) was also received but with 
modifications. One new unit has been introduced and is presented 
subsequently. 

In the revision process leading to this proposal, three key steps 
were undertaken: 

 

a) a reassessment of prosodic boundaries annotation; 

b) an exploration of regularities in prosodic forms; 

c) an examination of these regularities in the context of previously 

identified and newly proposed interactional functions. 

 

The ensuing section outlines the five DM functions. A comprehensive 
summary table, featuring functions, forms, distribution, and frequency 
of each DM, is provided at the conclusion of this proposal. 

 

3.4.1 The Incipit (INP) 

In the preceding subsection, attention was directed towards the 
diverse f0 profiles described by Cresti (2000) for the INP unit. As 
elucidated by Raso & Vieira (2016), INP can exhibit a remarkably wide 
f0 range within an exceptionally brief duration. Its prosodic form is 
characterized by a flat f0 profile over the stressed vowel, accompanied 
by very high intensity level—exceeding the mean value of COM in both 
instances.  

There are two types of INP. The first one is the high INP, which 
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marks a contrast with respect to what was said before. This type is 
characterized by a high flat f0 profile over the stressed vowel. When 
the stressed vowel is preceded by voiced segmental material, a rising 
f0 movement is observed before reaching the higher value of the 
stressed vowel. Similarly, when the stressed vowel is followed by 
voiced material, the profile assumes a falling f0 movement after the 
stressed vowel. In instances where both rising and falling movements 
are present, the highest f0 level is at the stressed vowel. It is worth 
noting the perceptible tenseness on the stressed vowel of INP, 
although this aspect remains outside the scope of evaluation in the 
current work. The following examples illustrates these characteristics: 

 

Example of a high INP 

Audio bfamdl02_197 

*BAL: não /=INP= mas é porque eu tô pensando assim //  

            no / but it is because I’m thinking this way // 
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Figure 9 - Form of high INP 

 

 

The figure 9 above shows how the form of the INP is affected by an 
initial voiced consonant that causes a rising movement until the vowel 
of the diphthong, which sharply falls in the semivowel. 

 Another type of INP is the one that does not mark a contrast to 
previous content (flat INP). It has intensity and duration similar to the 
contrastive INP. But the flat profile is low with respect to COM, as in 
the example and Figure 10 below: 

 

Example of a flat INP 
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 Audio file 23 - bfammn05_102 

*JUN: ah /=FLAT= Nossa /=EXP= aquea máquina é lixo demais //=COM= 

   oh /=FLAT= Holy / that camera is complete trash // 

 

Figure 10 - Form of flat INP 

 

 

3.4.2 The Conative (CNT) 

CNT is distinguished by a falling f0 movement, often accompanied by 
a high f0 variation rate. However, the variation rate may be influenced 
by attitudinal factors. This fall is not as pronounced as the movement 
seen in INP outside the stress and is lower than the mean f0 of COM. 
In contrast to ALL, where the f0 movement falls from the unit’s onset, 
the CNT's falling movement aligns with the stressed vowel. Raso & 
Ferrari (2020) noted that a slightly rising f0 movement (a preparation) 
can be observed in the presence of voiced segmental material before 
the stressed vowel. This preparation is more noticeable when the 
stressed syllable is not initial, but it may also be discerned when there 
is sufficient voiced material before the stressed vowel. Raso & Ferrari 
(2020) proposed a more precise functional definition of CNT, 
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indicating its role in signaling the illocutionary resolution of the 
utterance. 

 

Example of CNT 

 Audio file 24 – btelpv06_094 

*LUR: não / adorou / Lelena //=CNT=  

        no / he liked it / Lelena // 

 

Figure 11 - Form of CNT 

 

 

We can observe in Figure 11 the alignment of the falling f0 movement 
with the stressed syllable and the rising movement over the pre-
stressed syllable. 
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3.4.3 The Allocutive (ALL) 

Cresti (2000) proposed the occurrence of ALL in any position. However, 
upon closer examination of this unit's behavior, Raso & Ferrari (2020) 
observed that it does not manifest at the beginning of a pattern and 
tends to favor the final position. Although very few instances were 
identified in medial positions, these occurrences provided valuable 
insights into the f0 profile of ALL. Irrespective of the stress structure of 
the lexical item, the f0 profile of ALL falls along the unit’s onset and 
then flattens. ALL exhibits lower intensity levels than other units and 
some segmental lengthening. Whereas the portions under the falling 
f0 movement are phonetically well articulated, segments of the flat 
portion often undergo phonetic reduction, and their intensity may be 
so low that f0 estimation becomes challenging. 

 

Example of ALL 

 Audio file 25 – btelpv06_003 

*LUR: oi / tudo bom / Lelena //=ALL=    

           hello / everything OK / Lelena // 
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Figure 12 - Form of ALL 

 

 

3.4.4 The Expressive (EXP) 

EXP is, according to previous works, utilized to express emotional 
support for the illocution, highlighting its distributional freedom and 
the potential inclusion of multiple f0 movements in its prosodic form. 
However, certain issues arise from this characterization. The definition 
of providing emotional support to the illocution is overly vague, and 
furthermore, a distinct prosodic form has not been assigned to the 
unit. 

We maintain that there is a specific DM that we still call EXP, but 
that we describe in a clearly different way. EXP is employed to convey 
surprise but is enacted in a manner that prevents it from being 
interpreted as an illocution. It manifests a rising f0 movement until the 
stressed vowel, which may briefly fall in the presence of segmental 
material after. There is a marked lengthening on the stressed syllable 
with respect to the mean syllabic duration of COM. The intensity of 
EXP is comparable to that of COM or slightly lower. This unit 
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consistently appears at the beginning of the pattern. 

 

Example of EXP 

 Audio file 26 – bfammn05_102 

*TON: Nossa /=EXP= ea deixou no uteí pra mim /=COM= hein sô //=CNT= 

       Holy /=EXP= she left it in the UCI for me / you saw // 

 

Figure 13 - Form of EXP 

 

 

3.4.5 The Highligher (HGL/EVD) 

The Highlighter was provisionally labeled as EVD (Evidenciador in BP). 
It directs the addressee's attention to the preceding statement, often 
performed with a focus. HGL/EVD is typically produced with a slightly 
rising f0 movement and significantly lower intensity than the COM. The 
duration is considerably shorter than that of COM. The slope of the 
rising movement can range from nearly flat to distinctly rising, 
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contingent on the speaker's attitude. 

 

Example of EVD 

 Audio file 27 - bfamdl01_201 

*REN: tá cheio mesmo /=COM= viu //=EVD= 

            it’s really crowded /=COM= huh //=EVD= 

 

Figure 14 - Form of EVD 

 

 

3.4.6 Summary table 

The table provided below offers a summary of the functions, 
fundamental f0 movements, intensity levels, durations, and 
distributions of Discourse Markers (DMs) in relation to the illocutionary 
unit. Dashed lines represent non-mandatory f0 movements. 
Additionally, the intensity and duration levels are indicative trends that 
require a more refined statistical description. The dataset's token count 
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for each identified function is also included. 

 

Table 4 - DM summary table 

UNIT FUNCTION 
BASIC F0 

MOVEMENT 
INTENSITY DURATION DISTRIBUTION 

INP 
Begin the 
uterance 

  

Higher than 
COM 

Much 
shorter than 

COM 

 Beginning of the 
patern 

CNT 
Point to an 
illocu�onary 
solu�on 

  
Lower than 

COM 
Shorter than 

COM 
Free 

ALL 
Establish social 
cohesion 

  
Lower than 

COM 
Shorter than 

COM 
Middle or at the 

end of the patern  

EXP 

Convey 
surprise in a 
non-
illocu�onary 
way 

  
Paired to 

COM 

 Paired to or 
longer than 

COM 

 Beginning of the 
patern 

EVD 
Highlight what 
was said 

  
Lower than 

COM 
Shorter than 

COM  
Middle or at the 

end of the patern  

 

The ensuing section will delve into the materials and methods 
employed in this research, encompassing a description of the corpora 
utilized, the methodologies applied to model prosodic form. 
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4 MATERIALS AND METHODS 

This chapter details the materials and methods employed to 
substantiate the recent proposal presented in Chapter 3. This chapter 
is centered on the prosodic-acoustic features utilized for modeling the 
prosodic forms of Discourse Markers (DMs), specifically delving into 
three distinct feature groups: intensity, speech rate, and fundamental 
frequency (f0). Firstly, I delineate the corpus used for this work, 
specifying its characteristics. Then, I give the details of how the DM 
sample was obtained and annotated. I also present the procedures 
utilized for the standardization of prosodic features. Finally, I present 
the prosodic features used for the DM description and the 
classification task. All scripts and notebooks used in this research are 
available at https://github.com/saulo-
smendes/discourse_markers_scripts. Other materials, both for the 
statistical and experimental analyses, are available at 
<SHARED_MATERIALS_THESIS> or via the QR code below: 

 

 

https://github.com/saulo-smendes/discourse_markers_scripts
https://github.com/saulo-smendes/discourse_markers_scripts
https://1drv.ms/f/s!Ar5G4HnYDsd9goeGYdFY_6CL9ZID9hg?e=jXIUv8
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4.1 C-ORAL CORPUS 

4.1.1 Core characteristics 

The analysis of the prosodic forms of DM was based on a sample 
extracted from the spontaneous speech corpus C-ORAL-BRASIL I (Raso 
& Mello, 2012), a corpus representing spontaneous spoken Brazilian 
Portuguese, especially from the diatopy of Minas Gerais. The C-ORAL-
BRASIL was structured to be comparable to the corpora of the C-
ORAL-ROM family (Cresti & Moneglia, 2005), representing French, 
Italian, Spanish and European Portuguese. For this work, the most 
important feature of the corpus is its annotation with prosodic 
information (Cresti & Moneglia, 1997). The corpus is annotated with 
terminal boundaries, delimiting utterances and stanzas (terminated 
sequences), and non-terminal boundaries, delimiting prosodic units. 

Another important feature of the corpus is that it recorded 
spontaneous speech in natural and wide diaphasic contexts, i.e., 
situational variation, unlike controlled situations, in which linguistic 
behaviors are highly predictable (Raso & Mello, 2014). Situational 
variation generally entails actional variation, i.e., variation in the 
linguistic actions being performed (illocutions). Variation in linguistic 
actions is, in turn, a decisive factor in recording a greater number of 
speech structures, as variation at the level of the Information Structure  
(Raso & Mello, 2014). With more varied structures, one can observe 
more contexts where the same lexeme can occur with different 
informational values, which is crucial for studying DMs. 

In general, the corpora of the C-ORAL family are provided with 
special features enabling multilevel research. All corpora are 
comprised of: a) audio files, textual files, text-to-speech alignment files 
supported by the software WinPitch (Martin, 2015); b) metadata; c) 
lexical and morphosyntactically tagged textual files12; d) frequency 

 

12 Particularly, the C-ORAL-BRASIL corpora were tagged with the parser PALAVRAS (Bick, 
2012). 
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lists, measurements of the corpora, and statistical data of participants. 

The textual format of the C-ORAL corpora followed the CHAT 
Transcription Format (MacWhinney, 2000) adapted for segmentation 
(Moneglia and Cresti, 1997). The format encompasses two levels. On 
the first level, headers contain the metadata of the recorded event, 
such as participants’ socioeconomic background, topic, situation, and 
place of the recording session, as well as information on the audio file, 
such as word count, length, and acoustic quality classification. The 
second level contains the transcriptions of speech, paralinguistic and 
nonlinguistic events, and the segmentation. The text can be organized 
by turn or terminated sequence, which we introduce in the next 
subsection. 

To enable the study of the informational structuring of speech, 
the corpora of some of the project's languages have also been 
equipped with informationally annotated minicorpora, following the 
architecture of the matrix corpora (see Martínez et al., 2018; Panunzi & 
Gregori, 2012; Panunzi & Mittmann, 2014). In addition, the project also 
has other linguistic resources, already compiled or being compiled, 
such as for example, the American English minicorpus (Cavalcante & 
Ramos, 2016, with texts extracted from the Santa Barbara Corpus of 
Spoken American English - SBCSAE, Du Bois et al., 2000), C-ORAL-
ANGOLA (see B. Rocha et al., 2019, for details of the progress of the 
compilation) and C-ORAL-ESQ (Ferrari et al., in preparation). 

 

4.1.2 Organization of the C-ORAL-BRASIL corpus 

The C-ORAL-BRASIL corpus was organized into four sub-corpora. 
These sub-corpora are: 

 

I. Subcorpus of Informal Speech in a Natural Context 

II. Subcorpus of Formal Speech in Natural Context 

III. Media Subcorpus 
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IV. Subcorpus of telephone calls 

 

In addition, the work of compiling and publishing the corpus was 
divided into two stages. The first stage was completed with the 
publication of the Informal Speech in Natural Context subcorpus, C-
ORAL-BRASIL I, in 2012 (Raso & Mello, 2012). Covering the Formal 
Speech in Natural Context, Media, and Telephone Calls subcorpora, 
the second stage, C-ORAL-BRASIL II, has already completed its 
compilation and validation work, and its results will soon be published 
(Raso, Mello & Ferrari, in preparation). Only the C-ORAL-BRASIL I was 
sampled for this study since it has already been published and is 
available for research. 

The texts in C-ORAL-BRASIL I were divided into two social 
contexts: family/private and public (Raso, 2012a). The texts were 
organized by interactional typology. The monologues included texts in 
which speech is predominantly monologic, i.e., carried out mostly by 
just one participant. In dialogues, the interactions are more evenly 
distributed between two participants. Finally, in conversations, three or 
more participants interact. The architecture of the C-ORAL-BRASIL 
subcorpora are presented in Table 5 and Table 6 below: 

 

Table 5 - Informal subcorpus (C-ORAL-BRASIL I) 

Linguage 
register Social context Structure of the 

communication event 

Number 
of 

words 

Number of 
files 

Informal 
Family/private Monologues / dialogues / 

conversations 159,364 105 

Public Monologues / dialogues / 
conversations 48,766 34 

1. Informal in Natural Context (Subtotal) 208,130 139 
 

Table 6 - Subcorpora and domains of use of the C-ORAL-BRASIL II 
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Language 
register Subcorpus Domain of use 

Number 
of 

words 

Number 
of files 

Formal Natural 
Context 

Business 10,851 4 
Conference 17,320 9 
Law 16,107 9 
Political debate 15,707 12 
Political speech 16,047 15 
Preaching 12,826 9 
Profession explanation 16,247 8 
Teaching 16,291 8 

Subtotals (Natural Context) 139,647 74 

Formal Media 

Documentary 23,530 29 
Extra 24,728 16 
Interview 15,506 9 
Meteorology 232 1 
News 6,096 9 
Scientific Press 13,233 12 
Sport 12,234 7 
Talk show 44,088 18 

Subtotals (Media) 121,396 101 

Informal Telephone 
Private conversations 25,533 50 
Public conversations 5,755 29 

Subtotals (Telephonic corpus) 31,308 79 
Totals (CORAL-BRASIL II) 292,351 254 

 

Together, the C-ORAL-BRASIL I and the C-ORAL-BRASIL II make up a 
total of 393 files and 500,481 words, thus being a medium-sized 
spontaneous speech corpus. With respect to the time period 
represented, the vast majority of recording sessions were carried out 
between 2009 and 2017. 
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4.1.3 Segmentation 

4.1.3.1 Annotation scheme 

Texts were prosodically parsed into terminated sequences, signaled by 
a terminal boundary transcribed with a double-slash sign (//), and non-
terminal prosodic units marked by a non-terminal boundary 
transcribed with a single-slash sign (/). 

 

Example of segmentation  

Audio file 28 - bnatte03_093-094 

*ALA: [93] como é que ele vai saber lá / qual foi a parte do texto 
<que tinha> + 

*GER: [94] <eu te falei> / ele tem / internamente aqui / alguns 
tipos de [/3] como posso dizer pra vocês / certos parâmetros / 
que ele vai tirar / do texto // 

 

*ALA: [93] how was it supposed to recognize / which part of the 
text <was to be> + 

*GER: [94] <I told you> / it has / internally here / some kinds of 
[/3] how can I put that to you / certain parameters / that will be 
drawn / from the text // 

 

In the example above, the speech stream between the beginning of 
the speaker’s turn and the terminal boundary sign forms a terminated 
sequence. However, the speaker’s whole turn may be formed by 
multiple terminated sequences, as in the example below, where digits 
in square brackets signal the beginning of another terminated 
sequence. Texts are aligned to speech on the terminated sequence 
level. 
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Example of segmentation  

Audio file 29 - bnatbu02_001-002 

 *NEU: [1] aqui o' // [2] eu tenho ele com braço de vinte-e-cinco 
/ e tenho e' com braço de quinze // 

 

*NEU: [1] take a look // [2] I have the twenty-five [width sofa] 
arm option / and I have the fifteen option // 

 

The segmentation also signals retractions accompanied by non-
terminal boundaries. Broadly, retractions are the withdrawal of a part 
of the text often triggered by changes in the speaker’s initial speech 
program or by mistakes. They are also frequently used as a time-taking 
device in which case a word may be repeatedly uttered. In case 
retractions trigger a non-terminal boundary, the boundary sign is 
followed by a digit that indicates the number of words retracted. This 
sign is embedded in square brackets. In the first example, the 
retraction of alguns tipos de (some kinds of) is signaled by [/3]. 

Speech may also be interrupted before getting to a point where 
a terminal or non-terminal boundary would be properly or completely 
signaled. This occurs when speakers abandon their program either by 
starting another turn or as a consequence of having their turn taken 
by another participant. Interruptions are indicated by a plus sign (+), 
as shown in the first example. 

 

4.1.3.2 Validation of the segmentation 

The segmentation underwent a specific validation, which is out of the 
scope of this work. The methods and results are further detailed in 
Mello et al. (2012). It is nonetheless important to present them here. The 
prosodic boundary annotation was validated by measuring the 
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reliability of the inter-annotator agreement on the annotation of 
prosodic boundaries. Two validations were carried out, one before the 
bulk of texts were prosodically parsed and another after compilation, 
just before the corpus final revision. These tasks aimed not only at 
standardizing the annotation beforehand but also at ensuring its 
quality at the last compilation step. 

The degree of agreement was evaluated by the Fleiss’ kappa 
statistic (Fleiss, 1971), which assesses the reliability of agreement 
between more than two raters in assigning categorical classes. The 
degrees of agreement that should be met were established during the 
planning phase of the corpus. It was established that the kappa values 
of at least 0.8 (almost perfect agreement) for terminal boundaries and 
0.6 (substantial agreement) for non-terminal boundaries should be 
met. 

The assessment of the degree of agreement was done as 
follows. Each annotator received texts (audio plus transcripts without 
prosodic boundary signs) to be annotated within the following three 
days. The task encompassed texts of mostly monologic and dialogic 
interactions. Each word boundary was a candidate for receiving the 
boundary sign. If there was no boundary, the blank space should not 
be changed. If annotators perceive a boundary, they should indicate it 
by adding the proper sign for a non-terminal or terminal boundary. 
Because they are special cases, retraction and interruption signs were 
left aside. For instance, retractions may trigger (but not always) non-
terminal boundaries. 

Three different agreement rates were calculated. The overall 
agreement was obtained by adding all possible positions (i.e., all word 
boundaries) and considering the agreement on the absence of a 
boundary, the presence of a non-terminal boundary, or the presence 
of a terminal boundary. In its turn, the partial agreement was aimed at 
putting in evidence how salient a boundary of any kind was. To 
calculate it, all positions were considered, as in the overall agreement, 
but this time, no distinction between the two boundary types was 
made. Finally, in a more conservative approach, the realistic agreement 
was calculated by tallying only the positions where at least one 
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boundary of any kind was marked, thus eliminating the effect that 
word boundaries without perceived prosodic boundaries would have 
over the statistic. 

After the agreement rates were calculated, the divergences were 
discussed in each group. After each session, another annotation task 
was repeated until the kappa values of 0.8 (terminal) and 0.6 (non-
terminal) for the overall agreement were reached. It is noteworthy that 
both groups always displayed good agreement rates for terminal 
boundaries and that, as pointed out by Moneglia et al. (2010) and 
Mello et al. (2012), experience and practice played a crucial role in the 
recognition of boundaries. The results of the partial agreement 
showed that annotators had no problem distinguishing between the 
absence and presence of boundaries (kappa values always higher than 
0.84 for the best-performing group and 0.75 for the least-performing 
group). Divergence was recorded mostly for the distinction between 
non-terminal and terminal boundaries. 

The kappa values for the realistic agreement were met in the 
validation done after the first compilation phase, just before the corpus 
underwent its final revisions. The kappa values achieved by the group 
in charge of revising the segmentation are shown in the table below. 
They show that, even with the most conservative approach, prosodic 
annotators achieved  

 

Table 7 - Kappa values for the realistic agreement rate before 
segmentation validation 

Type of agreement Total Dialogues Monologues 
Realistic agreement 0.65 0.66 0.63 

 (substantial agreement) (substantial 
agreement) 

(substantial 
agreement) 

Terminal 
boundaries 

0.81 0.80 0.80 

 (almost perfect 
agreement) 

(almost perfect 
agreement) 

(almost perfect 
agreement) 

Non-terminal  0.62 0.65 0.59 
boundaries (substantial agreement) (substantial (moderate agreement) 
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Type of agreement Total Dialogues Monologues 
agreement) 

(Adapted from Mello et al., 2012: 165) 

 

This procedure was maintained in the compilation of the C-ORAL-
BRASIL II by having the most experimented and best-performing 
prosodic annotators on the upper-level tasks. To be responsible for the 
segmentation revision, a group of annotators must have achieved an 
overall agreement rate of 0.80 (for terminal boundaries) and 0.60 (for 
non-terminal boundaries), as measured by Fleiss’ kappa values. 

 Considering the important consequences of prosodic parsing 
over syntax and information structure, the Laboratory for Empirical and 
Experimental Linguistic Studies (LEEL/UFMG) in partnership with the 
Phonetics Laboratory of the Campinas University has been carrying out 
research aimed at identifying the acoustico-phonetic features guiding 
the production and perception of boundaries and at developing 
models for their automatic detection on spontaneous speech (for 
further information see: Barbosa and Raso, 2018; Raso, Teixeira, and 
Barbosa, 2020; Teixeira, Barbosa, and Raso, 2018). The studies have 
examined a large number of acoustic measurements extracted from a 
time window positioned around prosodic boundaries of the same type 
marked by at least 50% of annotators. These measurements 
encompass speech rate and rhythm, standardized segment duration, 
fundamental frequency (f0), intensity, and silent pauses. Although it is 
still ongoing work, the results obtained to date are promising. To this 
point, the accuracy of the best models is at 0.74 for terminal 
boundaries and 0.66 for non-terminal boundaries in a cross-validation 
set. These models show that silent pause and f0 features are the most 
important elements contributing to terminal boundaries detection 
and, on the other hand, that duration plus pause features contribute 
to the best-performing non-terminal boundary model. Studying the 
role played by pauses is presently an issue of major concern since they 
have also been shown to be a confounding element in the distinction 
between non-terminal and terminal boundaries. 
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4.1.4 Text transcription 

The transcription of the textual content followed an orthographic-
based norm coupled with a set of special criteria (Raso & Mello, 2009, 
2012). The orthographic norm enables texts to be easily understood 
and handled by users. It also enables text to be automatically 
processed without dealing with an uncountable number of variant 
forms unknown beforehand, such as partial or full phonetic-based 
transcriptions. However, many characteristics of spontaneous speech 
cannot be overlooked. The set of special criteria aimed, thus, at 
documenting possible grammaticalization and lexicalization processes 
ongoing in the language. Without this documentation, many 
phenomena deserving further investigation would be lost, or their 
study would be more complex. The set also established the 
transcription signs for several other non-linguistic and paralinguistic 
phenomena of pragmatic interest. The transcription criteria are 
available in Appendix A (11). 

 

4.1.5 Morphosyntactic parsing 

The C-ORAL-BRASIL corpus also contains morphosyntactic annotation 
files. These files present the syntactic functions of each word, as well 
as their respective morphological classification. These elements allow 
advanced searches on observable syntactic patterns in speech. The 
annotation was done using the PALAVRAS morphosyntactic annotator 
(Bick et al., 2012). 

 

4.1.6 Minicorpus 

To conduct research on Information Structure according to the L-AcT, 
identifying prosodic units is a preliminary step. However, annotating 
these units is a laborious task that requires a considerable amount of 
time and collaboration from trained individuals. Corpora like those of 
the C-ORAL family can hardly receive a full informational annotation. 
For instance, the informal part of the C-ORAL-BRASIL corpus alone 
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contains nearly 62,000 prosodic units (Cavalcante, 2020). To address 
this issue, scaled-down versions of these corpora have been created, 
which correspond to the minicorpora referred to at the beginning of 
this chapter. The minicorpora of the C-ORAL family maintain the same 
architecture than the matrix corpora from which they derive. The BP 
minicorpus comes from the C-ORAL-BRASIL I corpus, and it is 
composed of an equivalent proportion of monologues, dialogues, and 
conversations. The minicorpora are also somewhat balanced in terms 
of the distribution of their texts according to sociological context 
(family/private and public). Besides the BP minicorpus, informationally 
annotated minicorpora are also available for Italian (Cresti et al., 2022), 
American English (Cavalcante & Ramos, 2016), and Spanish (Martínez 
& Somacarrera, 2018). 

 

4.1.7 Availability 

The C-ORAL-BRASIL I (both the matrix corpus and the minicorpus) is 
fully available for download at <www.c-oral-brasil.org>. In addition, 
the minicorpora can be consulted through the Database for Corpora 
Multimedia platform (DB-CoM, available at <http://www.c-oral-
brasil.org/db-com>) and the Database for Information Patterning 
Interlinguistic Comparison, the DB-IPIC 
(<http://www.lablita.it/app/dbipic/>). 

 

4.2 DM SAMPLING 

A total of 1025 tokens were annotated as a type of Dialogic Unit 
(Discourse Marker) in the BP Minicorpus. This sample was revised in 
Gobbo (2019), resulting in the following distribution across the 
pragmatic functions that were attributed to them: 

 

Table 8 - DM tokens in the BP minicorpus (Gobbo, 2019) 

Discourse DCT ALL CNT INP AUX Total 
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Marker13 
BP minicorpus 173 63 84 40 665 1025 
Not analyzed 173 12 15 4 261 465 
Analyzed 0 51 69 36 404 560 

 

According to Gobbo (2019), many observations had to be discarded 
because it was impossible to apply the acoustic extraction procedures 
or because the tokens were unreliable. The main motives leading to 
discard a unit were: (i) overlapping speech or too much background 
noise; (ii) token could not properly be segmented; (iii) f0 curve could 
not be adjusted acceptably; (iv) utterance as a whole was unreliable; or 
(vi) absence of reference unit (see 4.4.1. Reference for the 
standardization of prosodic-acoustic parameters).  

During his research, Gobbo’s model (2019) accounted for the 
three DM functions accurately labeled in the BP minicorpus. However, 
the author points out that some data were deliberately not discarded 
rigorously to preserve a sufficient quantity of observations for data 
analysis. Gobbo’s (2019) sample was further revised here. This revision 
aimed to check audio quality issues and the existence of prosodic 
boundaries (see Santos & Raso, 2022, for some biases in speech 
segmentation) and establish a proper categorization of tokens under 
the AUX label. The results of this revision are shown below Table 9. 

 

Table 9 - Discarded tokens by criterion 

Discard criterion Number of tokens 
Absence of boundary 160 
Overlapping speech 1 
Other quality issues 17 
Other reasons 10 
Illocutionary 64 

 

13 DCT: Discourse Connector; ALL: Allocutive; CNT: Conative; INP: Incipit; AUX: tag is used to 
label information units that probably are Discourse Markers but whose functions have not 
been identified. 
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Discard criterion Number of tokens 
Total 252 

 

From Gobbo’s (2019) work, a total of 252 tokens were discarded for 
the reasons given in the table above. The remaining 308 tokens were 
distributed across the following DM functions, as presented in Table 
10. 

 

Table 10 - DM distribution in the revised sample 

Position/DM ALL CNT DCT EVD EXP INP Total 
Initial 0 68 6 0 24 41 139 
Medial 9 9 2 5 2 5 32 
Final 30 34 2 71 0 0 137 
Total 39 111 10 76 26 46 308 

 

Considering the quantity of data and its clear imbalance across 
functions and positions, which might negatively affect a classification 
task's results, new DM candidates were searched in the texts of the 
matrix C-ORAL-BRASIL I corpus that was not used in the BP mini 
corpus. The selection criteria were prosodic isolation, position (initial 
or final), and lexical recurrence. For instance, proper names were 
identified within each file and queried for the search of potential ALL 
and CNT candidates. Analogously, Nossa/No’ (holy) tokens in prosodic 
isolation and initial position were sought as EXP candidates. This 
procedure was automatically done thanks to Python scripts that read 
the corpus XML files and extracted the audio based on regular 
expressions. The resulting queries were subjected to the same revision 
procedures applied to Gobbo’s sample. 123 new tokens were added 
to the sample after the new sampling. Table 11 displays the final DM 
distribution across the five functions. Notice that the 10 DCT tokens 
were excluded, since analyzing cohesive DM is out of the scope of this 
research. 
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Table 11 - Final sample used for the classification task 

Position/DM ALL CNT EVD EXP INP Total 
Initial 0 73 0 69 71 213 
Medial 9 9 5 2 5 30 
Final 60 57 71 0 0 188 
Total 69 139 76 71 76 431 

 

Table 12 displays the frequency of lexemes/small expressions by DM 
class. We see that many lexemes and small expressions can take on 
different DM functions. 

 

Table 12 - Lexical frequency by DM class 

  DM FUNCTION 
TEXT ALL CNT EVD EXP INP TOTAL 

proper_name 50 28 0 0 0 78 
né 0 0 60 0 1 61 

Nossa 0 1 0 39 8 48 
No' 0 0 0 16 7 23 
não 0 9 0 1 13 23 
ah 0 6 0 8 8 22 
uai 0 14 0 0 4 18 
o' 0 10 0 0 5 15 

gente 0 1 0 0 7 8 
sô 0 8 0 0 0 8 
ô 0 6 0 0 2 8 

bom 0 4 0 0 2 6 
cara 4 2 0 0 0 6 

minha filha 6 0 0 0 0 6 
viu 0 0 6 0 0 6 
é 0 1 0 0 5 6 

aqui o' 0 4 0 0 0 4 
hein 0 0 4 0 0 4 
ué 0 4 0 0 0 4 

ahn 0 3 0 0 0 3 
então 0 1 0 0 2 3 
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  DM FUNCTION 
TEXT ALL CNT EVD EXP INP TOTAL 
gente 2 0 0 1 0 3 

porque 0 1 0 0 2 3 
pô 0 2 0 0 1 3 

sabe 0 0 3 0 0 3 
tá 0 2 1 0 0 3 

ah não 0 0 0 0 2 2 
ai 0 1 0 1 0 2 
aí 0 1 0 0 1 2 

bicho 1 1 0 0 0 2 
eh 0 1 0 0 1 2 

meu filho 1 1 0 0 0 2 
oh 0 0 0 1 1 2 

olha 0 0 0 0 2 2 
olha p' cê ver 0 2 0 0 0 2 

pera aí 0 1 0 0 1 2 
sim/assim 0 2 0 0 0 2 
tá vendo 0 2 0 0 0 2 

velho 1 1 0 0 0 2 
é não 0 1 0 0 1 2 
agora 0 1 0 0 0 1 

ah bom 0 1 0 0 0 1 
aqui 0 1 0 0 0 1 
bem 0 1 0 0 0 1 
boba 1 0 0 0 0 1 

cê sabe 0 1 0 0 0 1 
cê vê 0 1 0 0 0 1 
enfim 0 1 0 0 0 1 

entendeu 0 0 1 0 0 1 
então o'  0 1 0 0 0 1 
hhh tá 0 1 0 0 0 1 

mas 0 0 0 0 1 1 
mas assim 0 1 0 0 0 1 

mãe 1 0 0 0 0 1 
não não 0 0 0 0 1 1 

né minha filha 1 0 0 0 0 1 
o' Bruno 0 0 0 0 1 1 
o' Rena 0 1 0 0 0 1 
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  DM FUNCTION 
TEXT ALL CNT EVD EXP INP TOTAL 
ocê o' 0 1 0 0 0 1 
pois é 0 1 0 0 0 1 

pô Mailton 0 0 0 0 1 1 
que 0 1 0 0 0 1 

quer dizer 0 1 0 0 0 1 
quer ver 0 1 0 0 0 1 
se bem 0 0 0 1 0 1 

uhn 0 0 0 1 0 1 
viu Carlão 0 1 0 0 0 1 
viu Zé hhh 0 1 0 0 0 1 

TOTAL 68 139 75 69 80 431 
 

Figure 15 shows that the lexical fillers follow the same distribution 
languages generally follow: the Zipfian distribution. A few lexemes or 
small expressions have high frequency, and the vast majority are 
underrepresented. This illustrates how the lexical filling of Discourse 
Markers can be rather variable. 

 

Figure 15 - Distribution of lexemes/small expressions 
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However, some DM classes seem to be more flexible whereas other 
have more constraints with respect to the lexical content. The DM 
classes that display the most variability in terms of lexical filling are 
CNT and INP. On the other hand, the most constrained class is EVD. 
Finally, Gobbo (2019) has shown that approximately 80% of the DMs 
are adjacent to their illocutionary unit, and 20% are one or more 
information units distant from COM. 

 

4.3 DATA PROCESSING AND ANNOTATION 

4.3.1 Data preparation 

A Python script (the C-ORAL_searcher) was used to generate a list of 
utterances from the corpus xml files. The script extracted the portions 
corresponding to each utterance from the original audio files by using 
the start and end time information. 300 milliseconds before and after 
the given times were added. When audios were recorded in stereo, 
only the channel matching the utterance's speaker was extracted for 
analysis; the other channel was discarded. A Praat script created a 
TextGrid file (a Praat object used for segmentation and annotation) for 
each file using the utterance table. Five tiers made up the structure of 
the TextGrids (see Figure 17 - Illustration of an annotated file): (1) the 
transcription of the whole utterance; (2) the syllabic annotation; (3) the 
delimitation of the stressed vowel; (4) the transcriptions delimited by 
Information Unit; and (5) the tag of the Information Unit. All tiers were 
boundary tiers. At this point, boundaries were not yet aligned with 
respective events. 

 

4.3.2 Data annotation 

The annotation of syllabic units followed the criteria recommended in 
the literature for identifying phonetic boundaries. The oscillogram and 
the broadband spectrogram of the acoustic signal were simultaneously 
examined as a guide for the segmentation (Machač & Skarnitzl, 2009; 
Turk et al., 2006). 
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The use of ASCII characters for the phonetic transcription 
facilitated annotation and ensured compatibility with the normalized 
duration estimation method (Barbosa, 2013), detailed in the next 
section. A broad phonetic transcription, devoid of distinct 
representations for allophones, was employed, with Figure 16 
illustrating the notation used and its equivalence in IPA symbols. 

The inherent spontaneity and diverse environmental conditions 
of recordings generated spectrographic images more contaminated 
than those acquired from controlled environments with acoustic 
protection and muffling. This led to an increased reliance on listening 
to the audio files. The characteristics of utterances displaying low 
intensity, high articulation rate, and reduced phonetic realization 
exacerbate these difficulties and may result in inaccuracies. 
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Figure 16 - Correspondence between IPA and ASCII characters14 
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The same challenges rendered the application of automatic 
segmentation procedures (forced alignment) exceedingly complex for 
the analyzed recordings. To be compatible with the transcription 
scheme used for the duration standardization procedure, the Alinha-
PB phonetic aligner (Kruse & Barbosa, 2021) was tested for the task. 
However, satisfactory results would require more entries to the 
system’s exception dictionary. This is because the Mineiro dialect is 
particularly keen on final droppings and coarticulation, anticipation, 
and sandhi phenomena. The Figure 17 below illustrates an annotated 
file: 

 

Figure 17 - Illustration of an annotated file 

 

 

The information contained in TextGrid objects was collected using the 
 

14 For further details on the correspondence between IPA and ASCII characters, see the 
documentation available at: https://github.com/pabarbosa/prosody-
scripts/blob/master/ProsodyDescriptorExtractor/Documents/IPAASCIICorrespondanceTabl
e_BP.pdf 

 

https://github.com/pabarbosa/prosody-scripts/blob/master/ProsodyDescriptorExtractor/Documents/IPAASCIICorrespondanceTable_BP.pdf
https://github.com/pabarbosa/prosody-scripts/blob/master/ProsodyDescriptorExtractor/Documents/IPAASCIICorrespondanceTable_BP.pdf
https://github.com/pabarbosa/prosody-scripts/blob/master/ProsodyDescriptorExtractor/Documents/IPAASCIICorrespondanceTable_BP.pdf
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Python Praat wrapper Parselmouth package (Jadoul et al., 2018) and 
used to select data points of interest, which were later used to calculate 
the measurements described in section 4.4. Prosodic-acoustic 
parameters estimation). 

 

4.4 STANDARDIZATION OF MEASURES 

4.4.1 Reference for the standardization of prosodic-acoustic parameters 

Prosody conveys information beyond the parsing of speech and the 
Information Structure. It can give cues on the attitude and speakers’ 
emotional state or their sex, age, vocal tract characteristics, and even 
health conditions (Mello & Raso, 2011). This introduces variation 
unrelated to the linguistic functions targeted here, the Information 
Structure. 

 For this reason, it is important to adopt a procedure that inhibits 
non-linguistic variation as much as possible in extracting acoustic 
measurements. We can envisage three ways of doing this. The first 
would be to standardize the parameters by the mean and standard 
deviation of all the utterances of a given speaker. As well as making 
data processing computationally more expensive, this procedure may 
prove to be insufficient. Depending on their intentions, the speaker 
changes their average speech rate, intensity, and average pitch from 
one utterance to the next. Another procedure would be to standardize 
the parameters based on the averages and standard deviation of only 
the utterance in which the Discourse Marker is inserted. However, the 
IS pattern may vary in large proportions from one utterance to another. 
Some utterances are quite complex, and others simpler. Furthermore, 
in the case of the stanza units, the variation of different speech acts 
and adjacent structures can also be added to the basic measures for 
standardization. 

A procedure proposed by Raso (2014) and already successfully 
tested in subsequent work (Raso & Vieira, 2016; Gobbo, 2019) is to 
take as a reference the illocutionary unit of the pattern to which the 
DM is linked. This procedure is advantageous because the variation in 



 

 

 

113 

a pattern’s IS is related to this unit. The Comment (COM) is the central 
node that conveys the speaker's actional intention and links the 
adjacent informational units that supplement the speaker's 
communicative intention. Moreover, it is the sole IU that occurs in 
every terminated sequence. For future work, it could be interesting to 
test how the adoption of other heuristics may influence the final scores 
of the classification model with respect to a baseline model that takes 
as input non-standardized measurements. In the present work, we 
observed that adopting COM as a measure for standardization can 
help improve the accuracy of a five-class classification model by up to 
30 percentage points15. 

Some terminated sequences may present more than one COM 
unit, such as in the cases of stanzas or patterned illocutions. In the case 
of stanzas, we considered only the illocutionary unit in whose pattern 
the DM was. When the pattern had patterned illocutions, a chain of 
Multiple Comments (CMM), all the CMMs of the chain were 
considered. 

 

4.4.2 Standardization of prosodic-acoustic parameters 

For the normalization of the prosodic-acoustic parameters, Raso & 
Vieira (2026) and Gobbo (2019) utilized a proportional difference of 
the measurements from the DM with respect to the reference (COM), 
as shown by the formula below: 

 

Figure 18 - Proportional difference 

𝑀𝑀𝐷𝐷𝐷𝐷
𝑑𝑑 =

 |𝑀𝑀𝐷𝐷𝐷𝐷
𝑎𝑎 | −  |𝑀𝑀𝑅𝑅𝑅𝑅

𝑎𝑎 |
 |𝑀𝑀𝑅𝑅𝑅𝑅

𝑎𝑎  |
 

 

15 Comparing two classifications models: one trained with non-standardized features and 
another with standardized features. 
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Where: 

𝑀𝑀𝐷𝐷𝐷𝐷
𝑑𝑑  is the value of the proportional difference between the DM and 

the Reference Unit; 

𝑀𝑀𝐷𝐷𝐷𝐷
𝑎𝑎  is the absolute value of the DM; and 

𝑀𝑀𝑅𝑅𝑅𝑅
𝑎𝑎  is the absolute value of the Reference Unit. 

 

This procedure was applied to the consolidated values (statistics) of 
the entire DM and Reference Units. For each audio file (containing one 
utterance), I estimated the raw prosodic measurements with a 5ms 
sampling rate. Then, based on the annotation files and the temporal 
information of the target DMs and reference units’ boundaries, I set 
off time points of interest and obtained consolidated measurements. 
For this reason, I applied the normalization procedure frame-wise, 
before consolidating the measurements. Unlike previous work (Gobbo, 
2019), Standard Score (Z-scores) normalization procedure was 
adopted. Each sampled time point was transformed into z-scores 
considering each utterance's mean and standard deviation previously 
computed for the Reference Units (COM/COB/CMM annotated as such 
in the TextGrids). The z-score is obtained by the following formula: 

 

𝑓𝑓(𝑡𝑡) =  
𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑅𝑅𝑅𝑅
𝜎𝜎𝑅𝑅𝑅𝑅

 

 

Where: 

𝑓𝑓(𝑡𝑡) is the function for transforming each time point in z-scores; 

𝑥𝑥𝑡𝑡 is the estimated measure of each time point; 

𝜇𝜇𝑅𝑅𝑅𝑅 is the mean of the estimated measure for the Reference Unit’s 
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interval; and 

𝜎𝜎𝑅𝑅𝑅𝑅 is the standard deviation of the estimated measure for the 
Reference Unit’s interval. 

 

This procedure was applied to all estimates before deriving the 
prosodic descriptors of intensity, duration, and fundamental frequency 
outlined in the next section. 

 

4.5 PROSODIC-ACOUSTIC PARAMETERS ESTIMATION 

The estimation of prosodic features outlined in this section mostly 
followed the ones proposed in Gobbo (2019). I added parameters of 
f0 curves and some parameters of intensity (spectral emphasis and 
intensity in voiced regions) and made some changes concerning how 
features were calculated. In total, 30 features were derived from the 
standardized measurements. They are organized as follows: 

 

a) features of intensity; 

b) features of duration; 

c) features of f0; 

d) features of f0 variation; 

e) features of alignment with the DM’s stressed vowel; 

f) features of f0 curve. 

 

The extraction of estimations for each time point was automated 
through Python and Praat scripts and then processed through a 
Python script for target intervals. 
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4.5.1 Features of intensity 

Intensity features were extracted using a Praat wrapper Python 
package from intensity objects. We derived six features of intensity: 

 

a) Mean intensity of the DM; 

b) Intensity standard deviation of the DM; 

c) Maximum intensity of the DM; 

d) Minimum intensity of the DM; 

e) Mean intensity on the DM’s stressed vowel16; 

f) Mean spectral emphasis on the DM’s stressed vowel17; 

 

Spectral emphasis was calculated as in Traunmüller & Eriksson (2000), 
considering values for the stressed vowel. 

 

4.5.2 Features of duration 

Duration features were: 

 

a) Mean Z-scores of the DM’s syllabic duration; 

b) Z-scores of the DM’s stressed syllable; 

c) DM’s raw duration; 

 

16 Considering only voiced regions of the audio file. 

17 Considering only voiced regions of the audio file. 
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The estimation of z-scores for the phonetic syllables followed Barbosa 
(2013) using a Praat script implemented by Gobbo (2019). The data 
was then consolidated with a Python script. We did not consider the 
standardized duration of the DM unit proposed by Gobbo (2019) since 
it correlates with the mean standardized duration and since that 
feature is irrelevant in Gobbo’s three-class model. 

Modeling the relationship between perceived rhythm and 
articulation rate is also non-trivial. This is due to phoneme-specific 
intrinsic and co-intrinsic durations. Several procedures are available to 
normalize the raw duration of segments in similar contexts (Campbell 
& Isard, 1991). This statistical approach allows an efficient estimation of 
segmental lengthening, expressed as the deviation from the expected 
duration of a phoneme with a set of properties. Relying on this 
approach, Barbosa (2007) developed a model of speech rhythm that 
estimates the lengthening of syllable or syllable-like units (the so-
called Vowel-to-Vowel unit – or VV unit) at the segmental level. 

This algorithm considers in-context expected mean durations 
and standard deviations and serially applies two techniques for 
normalizing raw duration: a z-score transformation and a 5-point 
moving average filtering procedure. The z-scores are calculated 
according to the equation 2 below: 

 

 Equation 1 – Z-scores 

𝑧𝑧 =
(𝑥𝑥 –  𝜇𝜇)
𝜎𝜎

 

 

where z, the z-score for a given segment, is calculated by subtracting 
µ, the mean expected value of this segment, from x, the raw duration 
value, then dividing by σ, the standard deviation of the expected value. 
Each zi z-score value is then smoothed by the moving average filter. 
The closer to zi, the larger the weight applied to neighboring z-scores 
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(eq. 3). 

 

Equation 2 – Z-smoothen-i 

𝑧𝑧𝑖𝑖 =
1 ⋅ 𝑧𝑧𝑖𝑖−2 + 3 · 𝑧𝑧𝑖𝑖−1 + 5 · 𝑧𝑧𝑖𝑖+3 + 3 · 𝑧𝑧𝑖𝑖+1 + 1 · 𝑧𝑧𝑖𝑖+2

13
 

 

This model was implemented into a semi-automatic tool available to 
the research community, that outputs measures of rhythm from 
segmented speech (Barbosa, 2013). 

 

4.5.3 Features of fundamental frequency (f0) 

The processing of f0 data points was the object of a special procedure 
described in a dedicated chapter. All measurements involving f0 data 
points were calculated from pre-processed f0 estimations. The 
purpose of this procedure was to avoid manual intervention for the f0 
estimation and tracking, as was done in Gobbo (2019). The features of 
f0 are: 

 

a) Mean fundamental frequency (f0) of the DM; 

b) Standard deviation of f0 of the DM; 

c) Maximum f0 estimation of the DM; 

d) Minimum f0 estimation of the DM; 

 

4.5.4 Features of f0 variation 

The measures of f0 variation were: 
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a) F0 slope over the DM from the beginning to the ending points; 

b) F0 slope over the DM’s stressed vowel; 

c) F0 range over the DM; 

d) F0 slope before the central point of the stressed vowel; 

e) F0 slope after the central point of the stressed vowel; 

 

F0 slope measures were calculated using the linear coefficient 
outputted by the polyfit function of the Numpy Python package (Harris 
et al., 2020). F0 points were separated by region of interest: the 
complete DM (a); the stressed vowel (b); the values before the central 
point of the stressed vowel (whose boundaries were annotated in a 
special tier on Praat); the values after the central point of the stressed 
vowel. The F0 range within the DM was calculated as the difference 
between the maximum and minimum f0 estimations over the DM. 

A difference with respect to Gobbo (2019) is that the slopes were 
not calculated by taking the f0 estimates for initial and ending times 
but by fitting the regression line to all the points available for the 
respective intervals. This has the advantage that potentially deviant 
points at the boundaries of regions of interest will not have a relevant 
impact on the computation (note that micro-prosodic effects are likely 
to be observed at segmental boundaries).  

 

4.5.5 Alignment features  

The alignment features were: 

 

a) Ratio of maximum intensity; 

b) Ratio of minimum intensity; 

c) Ratio of maximum f0; 
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d) Ratio of minimum f0; 

e) Ratio of maximum intensity with respect to the central point of 

the stressed vowel; 

f) Ratio of minimum intensity with respect to the central point of 

the stressed vowel; 

g) Ratio of maximum f0 with respect to the central point of the 

stressed vowel; 

h) Ratio of minimum f0 with respect to the central point of the 

stressed vowel. 

 

From (a) to (d), the ratios were calculated as the difference between 
the timing of the critical point (max or min of f0 and intensity) and the 
timing of the initial point of the DM, divided by the duration of the 
DM. These features aimed to show the proportion, from 0 to 1, at which 
these critical points were realized. 

 From (e) to (h), the ratios were calculated as the difference 
between the critical point's time and the vowel’s starting point, divided 
by the duration of the stressed vowel. Unlike the previous 
measurements, these measurements can take on values inferior to 0 or 
superior to 1. Values between 0 and 1 indicate that the critical point 
occurred within the stressed vowel. If they equal 0, the critical point 
happens at the beginning of the stressed vowel, and if they equal 1, 
exactly at the end of the stressed vowel. Values inferior to 0 indicate 
critical points before the stressed vowel, and values superior to 1 refer 
to critical points after the stressed vowel. 

 

4.5.6 Features of f0 curves 

A vector of 30 f0 data points was estimated for each DM using linear 
interpolation (through the interp1D function in Python) to run a curve-



 

 

 

121 

fitting algorithm with a normalized temporal vector (see Xu, 2013). The 
procedure to obtain the curve coefficients is further described in 
section 7.2. Curve fitting). The number of 30 points was chosen by 
dividing 300ms (approximately the average duration of a Discourse 
Marker) in 10ms steps. Further details on the curve fitting are given in 
section 7.2. 
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5 EXTRACTING ROBUST F0 CURVES 

5.1 MOTIVATION 

Estimating the fundamental frequency (f0) has historically been 
challenging in audio signal processing. While numerous context- and 
condition-specific approaches have been developed and have been 
successful in their particular uses, creating context- and condition-free 
f0 estimators is a rather bold task (Gerhard, 2003; Raso et al., 2022). For 
example, an all-purpose PDA (musical note and speech detection) 
without Viterbi smoothing, like YIN (de Cheveigné & Kawahara, 2002), 
may perform less efficiently when applied for speech analysis; a noise-
resilient PDA (BaNa - Ba et al., 2012; Yang et al., 2014) may fail to properly 
devoice zones of the audio affected by reverberation phenomena, 
since this algorithm tend to overestimate the number of voiced frames 
in clean conditions. As a result, while there are many f0 estimators 
available today, very few (if any) of them will be able to cover and solve, 
at the same time, all or the majority of the problems affecting the f0 
signal. 

The correct estimation and tracking18 of f0 values become an 
even greater problem when we deal with spontaneous speech data. 
Recorded out of acoustically isolated and controlled settings, the 
signal of spontaneous speech can be rapidly degraded by non-modal 
phonation (Gerratt & Kreiman, 2001) and the additive noise it may 
generate (D’Alessandro, 2006), other analog phenomena, and for 
technical reasons19. Non-modal phonations raise significant difficulties 
regarding evaluating a frequency (i.e., a regular phenomenon), whose 

 

18 By f0 estimation, we mean the estimation of alternative f0 values within a unique 
timeframe (each f0 candidate value); tracking stands for the extraction of continuous f0 
trajectories (considering all timeframes) from the underlying sources (possible f0 candidates 
at each timeframe). 

19 Saturation, low sampling rate and low bandwidth, lossy audio compression. 
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definition is problematic when vocal folds vibration mechanisms are 
not regular. 

 Several methods and algorithms have been proposed to 
estimate formant values and to determine, at each timeframe, what the 
most probable f0 candidates are.  Each of these PDAs is sensitive to 
different phenomena degrading the speech signal. For instance, some 
of them can identify the best candidates even in very noisy conditions, 
while others may not return any estimation. Of course, solving all these 
problems is a fiendishly difficult task, which, by no means, we imply to 
undertake. All the same, we do want to put to good use the strengths 
of available PDA algorithms to have better f0 estimations and tracking 
in a natural setting. 

Another problem is that speech data recorded in non-
controlled settings requires the researcher to tweak many parameters 
offered by PDA algorithms. Since each recording setting displays 
different acoustic conditions, each audio might need different 
parametrization to produce the most realistic f0 estimation and 
tracking. By way of example, linguists who have dealt with 
spontaneous speech can easily relate to the fact that each audio may 
need a different voicing threshold value to display the most adequate 
voicing decision as perceived for the segmental material.  This solution 
will likely replace the file-by-file parametrization required to obtain 
appropriate f0 estimations, tracking, and adequate voicing decision. 

 

5.2 PITCH DETECTION ALGORITHMS 

Most PDA algorithms can be classified into four broad categories: (a) 
time-domain methods, which are based on the temporal dynamics of 
the signal; (b) frequency-domain methods; (c), hybrid methods, which 
put together time- and frequency-domain approaches; and (d) 
statistical frequency-domain methods. Except for statistical methods 
(for instance, approaches based on neural networks), these approaches 
have in common the fact that they (a) pre-process the signal by 
filtering or splitting it into frames, (b) search for values most likely to 
be f0 candidates, and (c) track the most probable f0 trajectory or 
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impose transitional constraints so as to output estimations and 
tracking that display a continuity – since in each timeframe we have 
several competing f0 candidates whose strengths will not necessarily 
be in a continuous curve. 

 In this section, we give a rather elementary overview of how 
some of these algorithms work. Several premises and mathematical 
explanations are deliberately skipped since they would entail a much 
more profound and complex research. For more in-depth and 
comprehensive accounts of the main algorithms, implementations, 
criticisms, and performances, we refer the reader to Gerhard (2003), 
Ferro & Tamburini (2019), Sukhostat & Imamverdiyev (2015), Jouvet & 
Laprie (2017), and Bechtold (2021), as well as to each PDA’s main 
references, which provide, besides implementation detailing, 
benchmarking on competing PDAs’ performances. 

One of the simplest approaches to estimating f0 is that of zero-
crossing algorithms. It consists basically in measuring the timing 
between the signal’s zero-crossing points and calculate the frequency 
by dividing the number of complete periods per unit of time (complete 
periods per second). But this approach is not reliable when the signal 
displays complicated waveforms which are composed of multiple sine 
waves with differing periods, and, especially in noisy data – which is 
the case of speech data. 

 More complex methods search for matches by comparing 
portions of the signal with other portions that have been offset by a 
trial period. This is how auto-correlation algorithms like AMDF 
(average magnitude difference function), ASMDF (average squared 
mean difference function), and others functions work. For signals with 
high periodicity, these algorithms can produce estimations that are 
quite accurate. However, the most basic implementations struggle with 
noisy data and are often prone to octave and fifth jumps. Time-domain 
approaches frequently build upon these methods. But to overcome the 
above-mentioned difficulties, they come with smoothening 
procedures and movement constraints to make their estimations and 
tracking more in line with how humans would judge the pitch. 

On the other hand, the periodogram is used by frequency-
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domain methods to translate the signal into a rough estimate of the 
frequency spectrum. The Fast-Fourier Transform (FFT), the crucial 
component of the periodogram method, makes such approaches 
suitable for many tasks. Nonetheless, the algorithms build upon this 
approach demands more processing capacity as the necessary 
precision levels grow. Well-known frequency-domain algorithms 
include the harmonic product spectrum, cepstral analysis, maximum 
likelihood, and the detection of peaks produced by harmonic series. 

As mentioned, some algorithms put together temporal and 
frequency-based approaches. These algorithms are based upon a 
combination of time-domain processing using an autocorrelation 
function like the normalized cross-correlation function and frequency-
domain processing based on spectral information in order to identify 
f0 candidates. Having f0 candidates from both time and frequency 
domains, the algorithm may use a dynamic programming algorithm or 
other movement constraints to output a final f0 tracking. 

Recently, PDA algorithms that use statistical approaches to do 
part of the estimation or the tracking tasks have been put forward. By 
way of example, Ferro & Tamburini (2019) proposes a Neural Smoother 
intended to improve the performances of other PDA algorithms. This 
smoother is intended to be an additional layer of postprocessing, as 
the author acknowledges that most PDA algorithms are accompanied 
by some Viterbi-like smoothening procedure or movement constraint 
after f0 estimation. The authors point that postprocessing procedures 
are often insufficient to produce a reliable f0 contour throughout 
whole utterances. The proposed postprocessing smoother acts by 
leveraging a Long Short-Term Memories Neural Network, a particular 
kind of recurrent neural network, used to correct f0 detection errors 
outputted by state-of-the-art Pitch Detection Algorithms. One 
criticism to such approach is that, even if a good-performance model 
is found, it does not allow for the understanding of how the problem 
is solved (black-box model). As pointed by Gerhardt (2003), the 
algorithmic information ends up stored in the model’s 
weights/parameters, hindering the comprehension of what is going on 
under the hood. Especially in models based on deep, complex 
architectures, the mapping between the variables passed on to the 
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model and its final weights becomes rather opaque. 

 As an initial step, an inclusive approach is adopted, where 
multiple Pitch Detection Algorithm (PDA) algorithms, spanning time-, 
frequency-, and mixed domains, are employed. This approach, 
described as a hit-on-everything-that-walks strategy, aims to generate 
f0 estimations that are more independent of context and conditions. 
The outputs from these diverse algorithms are then compared to 
determine the most plausible estimation. Utilizing a dynamic 
programming approach, the best f0 tracking is established, 
incorporating additional penalizing and rewarding factors. 
Subsequently, a Neural Network (NN) model is applied to derive a 
context-independent, frame-by-frame voicing decision. 

Given the significant computational cost associated with 
employing numerous algorithms, a crucial aspect of this work involves 
eliminating redundant information, particularly from more intricate 
algorithms. In the forthcoming sections, the algorithms employed thus 
far are enumerated, and a comprehensive explanation of the Voicing 
Decision model is provided. 

 

5.3 VOICING DECISION MODEL  

5.3.1 Introduction 

Studying prosodic changes in spontaneous speech is increasingly 
important –  especially when the target concerns pragmatic variations 
linked to sociolinguistic factors, real-life interactions, and spoken 
expressivity (see, e.g., Drager, 2015; Émond et al., 2013; Meer & Fuchs, 
2022). A main problem with spontaneous speech is linked to the 
frequently poor recording quality, as well as the presence of 
reverberation and various background noises (e.g., street noise, 
ambient noise in busy places, background voices or music). 

Obtaining reliable f0 profiles is a task that can be split into three 
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subtasks: f0 values estimation, f0 tracking, and Voicing Decision (VD)20. 
As previously said, to accomplish these tasks, many pitch detection 
algorithms (PDA) are available today with good performances. 
However, most PDAs do not behave well in noisy situations. A rapid 
degradation of performances may be observed when different kinds 
of noise are added to clean speech (Émond et al., 2013; Jouvet & Laprie, 
2017). Jouvet & Laprie (2017) also noticed that the type of error 
(estimation or voicing decision) varies according to the type of noise. 

Some PDAs were specifically developed to be robust to noise 
(e.g., Gonzalez & Brookes, 2014; Yang et al., 2014). However, some still fail 
or were not designed to tackle the Voicing Decision task specifically. 
For instance, Yang et al. (2014) presents a good performance for f0 
estimation in noise, but the voicing decision (VD) task is left aside. 

  As pointed out by Jouvet & Laprie (2017), the VD task is one of 
the main sources of errors when PDAs are assessed in noisy conditions. 
This task has recently received some attention as a stand-alone object 
(see e.g., Batra et al., 2022, for clean audio, and Pradeep et al., 2019, for 
white noise). This section shows that the VD accuracy of available PDAs 
is differently affected by the type of noise added. Some PDAs perform 
better on clean data but do not yield good results on noisy data; others 
were specially developed to be robust to noisy data but underperform 
on clean data. To solve this issue, a CNN-based classification model 
was trained. Its aim is to outperform the VD accuracy of tested PDAs 
on both clean and noisy data. The specificity of the system is that it 
was trained on a much more varied range of types and levels of realistic 
noises than those of previous studies. 

Some phenomena differ in controlled and natural conditions 
(see, e.g., de Ruiter, 2015; Meer & Fuchs, 2022) and spontaneous speech 
(broadcast media or field recordings). These phenomena need to be 
well understood in order to adequately process spoken 
communication in various settings (Wagner et al., 2015). For this reason, 

 

20 Note that the voicing or voiced/unvoiced decision here is not the same task as Voice 
Activity Detection (VAD) (e.g., Lavechin et al., 2020) that targets longer-term detection of 
speech, may it be voiced or not. 
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the VD accuracy of the assessed PDAs and the proposed system on a 
corpus of spontaneous speech recorded in natural settings are also 
evaluated. 

  The methods section presents (a) the corpora used and how 
they were augmented with different types and levels of noises, (b) the 
set of features used to train the proposed model, and (c) the models' 
architecture. In the results section, the evolution of VD errors for a set 
of existing PDAs and the proposed model are evaluated to compare 
their performances in various types of noise and signal-to-noise ratio 
(SNR) levels and on real spontaneous (and noisy) datasets. 

 

5.3.2 Methods 

5.3.2.1 Corpora 

Three speech databases were used (KeelePitchDB, CSTR, and C-ORAL-
BRASIL-I); two of them provide clean speech with electroglottogram 
signal to allow for accurate F0 measurements, and one is a sample of 
a spontaneous speech corpus that was only used for evaluation. The 
C-ORAL-BRASIL corpus (Raso & Mello, 2012) is a large database of 
spontaneous speech containing recordings of dozens of Brazilian 
Portuguese speakers in various styles, situations, and places. Details on 
the corpora can be found in Table 1. The two clean corpora were 
augmented by adding various types of noise to the original recordings 
at different signal-to-noise ratios (SNR). From the C-ORAL complete 
corpus, a sample was selected for a study on Discourse Markers. From 
there, 62 audio files that feature many natural background noises were 
picked to serve as unseen data collected in natural settings. To 
establish their voicing ground truth, audio files were manually revised 
at frame level by two experienced annotators whose inter-annotator 
agreement degree was assessed as almost perfect - Cohen’s Kappa 
(Cohen, 1968): 0.8; agreement rate: 0.91. 

 

Table 13 - Speech corpora: name, language (Lang: English or Brazilian 
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Portuguese, BP), number of speakers (Spk: Fe- male/Male), total 
duration (Dur, in minutes), proportion used for training and testing 

(Tr/Te, if applicable), and reference (Ref) 
Name Lang Spk Dur Tr/Te Ref 

KeelePitchDB English 5/5 5 80/20 (Plante et al., 1995) 

CSTR English 1/1 5 80/20 (Bagshaw et al., 1993) 

C-ORAL-BRASIL BP 11/14 3.7 –/100 (Raso & Mello, 2012) 

 

The two clean corpora were augmented by adding various types of 
noise at different signal-to-noise ratios (SNR) to the original 
recordings. From the C-ORAL complete corpus, a sample was selected 
for a study on Discourse Markers (Gobbo, 2019). From there, 62 audio 
files that feature a large amount of natural background noises were 
picked to serve as unseen data collected in natural settings. 

The dataset used for training and testing was produced by 
augmenting the two clean corpora (KeelePitchDB and CSTR in Table 
13). Eight different noises were applied to each original sound 
(extracted from the RSG-1021 and QUT-NOISE-TIMIT22) and two room-
impulse-answers (extracted from the C4DM Room Impulse Answer23 
database) to introduce reverberation at different SNRs. These 
particular noise types were chosen for two reasons: (a) they frequently 
occur in recordings made in a natural setting, and (b) they degrade f0 
estimation and VD on different levels. Details on the noises are given 
in  

 

Table 14. The nine targeted SNRs were 20, 15, 10, 5, 0, -5, -10, -
15, -20dB. Before the processing, all sounds were down sampled to 

 

21 http://www.steeneken.nl/7-noise-data-base/ 

22 https://github.com/qutsaivt/QUT-NOISE 

23 http://www.isophonics.org/content/room-impulse-answer-data-set 
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16kHz. 

 

Table 14 - Types of noise and source 
Name Type Origin Dur Ref 

Classroom RIR C4DM – (Stewart & Sandler, 2010) 
Large room RIR C4DM – (Stewart & Sandler, 2010) 

Babbling (F) noise RSG-10 3’1” (Steeneken & Varga, 1993; 
Varga & Steeneken, 1993) 

Babbling (M) noise RSG-10 3’55” (Steeneken & Varga, 1993; 
Varga & Steeneken, 1993) 

CAFE-CAFE-1 noise QUT 42’ (Dean et al., 2010, 2015) 
CAR-

WINDOWNB-1 noise QUT 44’ (Dean et al., 2010, 2015) 

STREET-CITY-1 noise QUT 32’ (Dean et al., 2010, 2015) 
Air Cond. noise Lab 4’ * 
Ventilator noise Lab 4’ * 

Electr. noise Lab 4’ * 
 

The noise augmentation was performed using Praat scripts (Boersma & 
Weenink, 2022).  Each original sound was adjusted to a default, arbitrary 
mean (over the complete file) intensity level of 70dB (approx. -21 
dBFS), and each noise to a mean intensity level corresponding to one 
of the targeted SNR (i.e., at a level of 65 dB to reach a mean SNR of 5 
dB).  The two sounds were then mixed. For each original sound, an 
extract of equal duration as the target sound was extracted from a 
random part of the noise file and used for the nine SNR values of this 
given noise. For the reverberation, a convolution between the original 
sound and the RIR was performed; next, the produced signal was 
mixed with the original sound using a similar process as for the noise, 
at a given SNR - the mean level of the convoluted sound being 
adjusted to obtain the desired SNR (the extra length was cut before 
mixing it). In this process, the original dataset was augmented by a 
factor of 90. 

From this augmented dataset, about 20% was pseudo-
randomly selected for testing.  Two speakers (one female and one male 
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out of 10 speakers) were randomly selected from the KeelPitchDB 
(which contains only one file per speaker), and 20% of the files of each 
of the two speakers from the CSTR database. Then, these original files, 
and all those obtained through the noise augmentation process, were 
grouped to be used as a test set, while the remaining were used for 
training. This way, 20% of the speakers of the KeelPitchDB were not 
seen by the models, and neither were the sentences of CSTR (having 
only two speakers in this last corpus, it is impossible to separate one 
from the training set). The C-ORAL-BRASIL subset, recorded in noisy 
conditions and thus not augmented, was used as unseen data for the 
final evaluation. 

 

5.3.2.2 F0 estimation and voicing decision 

The estimation of f0 benefits from a large inventory of existing PDAs. 
Most PDAs can be classified into three broad categories with respect 
to f0 estimation: (a) time-domain methods (TD), which are based on 
the temporal dynamics of the signal; (b) frequency-domain methods 
(FD); and (c) hybrid methods, which put together time- and frequency-
domain approaches. Besides, PDAs may deploy techniques to improve 
f0 tracking (such as smoothing and the Viterbi algorithm - VA) and 
reach a voicing decision. A set of 14 PDAs were chosen for their 
availability and the variety of their approach to f0 estimation and 
voicing decisions. Table 15 details the PDA used in this study. Each PDA 
was used to estimate the f0 from the waveforms of the augmented 
corpus. F0 outputs may greatly vary depending on the f0 range passed 
on to PDA algorithms. 

 

Table 15 - List of the PDA tested in this study, with general 
characteristics 

PDA Type References 
Praat AC    TD (Boersma & Weenink, 2022) 

Praat SHS FD 
(Boersma & Weenink, 2022; Hermes, 

1988) 
Praat CC TD+VA (Boersma & Weenink, 2022) 
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PDA Type References 
RAPT TD+VA (Talkin et al., 1995) 
YIN TD (de Cheveigné & Kawahara, 2002) 
Legacy STRAIGHT FD+TD (Kawahara et al., 2005) 
SWIPE    FD (Camacho & Harris, 2008) 
SWIPEP FD (Camacho & Harris, 2008) 
YAAPT FD+TD+VA (Zahorian & Hu, 2008) 
openSMILE AC TD+VA (Eyben et al., 2013) 
BaNa FD+TD+V (Yang et al., 2014) 
PEFAC FD+VA (Gonzalez & Brookes, 2014) 
pYIN  TD+VA (Mauch & Dixon, 2014) 
SRH (COVAREP)    FD (Degottex et al., 2014) 

 

 

Although some approaches rely on default ranges (see, e.g., Vaysse et 
al., 2022), we selected a broad range (75 to 1000 Hz)24. Given the nature 
of the data, f0 peaks as high as 850Hz were observed in the C-ORAL-
BRASIL subset. Other default parameters were not changed. Among 
the tested PDAs, some algorithms produce f0 estimations for each 
frame, plus a voicing probability, while others only output f0 estimates 
for voiced frames (i.e., after explicitly having a voiced/unvoiced 
decision). When a voicing probability was available, different 
probability thresholds were tested to maximize their accuracy score 
with respect to the ground truth. To that effect, I used a search space 
of seven probability levels distributed between the second and third 
observed probability quartiles. 

 

5.3.2.3 Additional features 

Acoustic features were extracted from the speech signals to train the 
VD model. The first set was the f0 values (and VD decision) estimated 

 

24 The simpler implementation of de Cheveigné & Kawahara (2002) used here, does not 
allow for a maximum range value. 
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by the 14 PDA systems. We also estimated the intensity and the 
Cepstral Peak Prominence using Praat (Boersma & Weenink, 2022), the  
Harmonics-to-Noise Ratio using the PAPD algorithm (Sturmel, 2011), 
the spectral emphasis following (Traunmüller & Eriksson, 2000), and 20 
MFCCs using the librosa package (McFee et al., 2015) for Python. 
Outputs of all features were resampled at a 10ms step. 

 

5.3.3 Models 

Prior to adopting a specific modeling technique, we tested several 
baseline models by using a subset of our data on an 80/20 split. The 
results (accuracy and f1 scores) are shown in Table 16: 

 

Table 16 - Performance of tested models 
Model Accuracy F1-score 

Stochastic Gradient Descent 69 69 
LogReg 69 73 
LDA   69 73 
GaussianNB   70 73 
RandomForest    72 75 
RNN LSTM   84 86 
FNN  85 87 
RNN GRU   85 87 
RNN BiLSTM   85 87 
CNN   85 88 

 

The obtained accuracies led us toward the use of a CNN model. 
Although RNN models exhibit similar results, the CNN model has two 
advantages: (a) it can account for neighboring timeframes (like the 
RNN models), which is desirable since providing context may improve 
the model (Hinton et al., 2012), and (b) CNN architectures offer similar 
results with more efficiency. Furthermore, it yielded higher accuracy 
and f1-score. The CNN model is configured as follows: 
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 (A) Conv2D: Filters: 32; Kernel size: 3x3; ReLU. 

 (B) Conv2D: Filters: 64; Kernel size: 3x3; ReLU. 

 (C) MaxPooling2D: Pool size: 2x2; followed by Dropout 01 and 
a Flatten layer. 

 (D) Dense: Units(s): 32; ReLU; followed by Dropout 02. 

 (E) Dense: Unit(s): 1; Sigmoid activation function. 

A Label Smoothing is applied to the output. 

An Early stopping callback was set to monitor validation loss 
value with patience of 5 increasing values. 

 

Figure 19 displays the corresponding layers of the model: 

 

Figure 19 - Flowchart of the VD CNN model architecture 
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To find the best parameters for the model, a Hyperband search (Li et 
al., 2017) was used. The search spaces, as well as the chosen 
parameters, are shown in the last column of Table 17. 

 

Table 17 - Hyperparameters, search spaces and selected parameter for 
the VD decision CNN model 

Hyperparameter Search Space Sel. par. 
Batch size 16, 32, 64, 128, 256 64 
Optimizer Adam, RMSprop, Adadelta Adam 
Optimizer LR 0.0001, 0.001, 0.01 0.0001 
Droupout 01 0.0, 0.2, 0.4, 0.6, 0.8 0.2 
Droupout 02 0.0, 0.2, 0.4, 0.6, 0.8 0.5 
Label Smoothing 0.0, 0.1, 0.2 0.1 

 

A 5-fold cross-validation was conducted to evaluate the performance 
of our best model by splitting the dataset into five equal parts. For 
each iteration, the model was trained on four folds and evaluated on 
the remaining fold. The process was repeated for each different held-
out fold for evaluation. To avoid data leaking, speakers and files were 
not shared between train/test splits. Our model achieved an average 
accuracy of 88.21% over the five iterations, with a standard deviation 
of 0.61. This result indicates that the model is consistent in its 
performance across different parts of the dataset. 

 

5.3.4 Results 

This section presents two sets of results: one linked to the 
degradations of the VD (by PDAs and the selected models) on 
controlled additions of noises, evaluated on the test set of the 
augmented corpus, and another is their output on the C-ORAL-BRASIL 
subset, which offers a naturally occurring set of noisy speech. BaNa 
(Yang et al., 2014), YIN (de Cheveigné & Kawahara, 2002), and RAPT (Talkin, 
2005) are excluded from the comparison since they target f0 estimation 
but not VD.  
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The quality measurement used here is the Accuracy calculated 
as the ratio of true voiced and unvoiced frames to the total number of 
frames; this is the inverse of the Voicing Detection Error used by (Jouvet 
& Laprie, 2017). Results are shown in Table 18: 

 

Table 18 - Global Accuracy (Glob. acc.) observed on the test set for 
each PDA and Model: mean (standard deviation), all SNR and noise 

type mixed; Accuracy of these systems on the Clean part of the test set 
only (Clean Ac.); Accuracy estimated on the Unseen data 

PDA/Model 
Global accuracy Clean accuracy Unseen accuracy 
Mean Std. Mean Std. Mean Std. 

Praat AC 0.72 (0.17) 0.93 (0.03) 0.84 (0.10) 
Praat CC 0.71 (0.17) 0.94 (0.02) 0.83 (0.10) 

Praat SHS 0.62 (0.12) 0.81 (0.04) 0.69 (0.12) 
Straight 0.66 (0.17) 0.91 (0.04) 0.74 (0.16) 
Swipe 0.75 (0.15) 0.94 (0.03) 0.83 (0.09) 

Swipep 0.75 (0.15) 0.94 (0.03) 0.83 (0.08) 
YAAPT 0.73 (0.18) 0.94 (0.03) 0.85 (0.08) 

openSMILE 0.74 (0.15) 0.92 (0.04) 0.76 (0.16) 
PEFAC 0.80 (0.11) 0.90 (0.03) 0.86 (0.05) 
pYIN 0.68 (0.14) 0.87 (0.06) 0.66 (0.19) 
SRH 0.76 (0.13) 0.91 (0.03) 0.73 (0.22) 

Model all 0.88 (0.11) 0.96 (0.02) 0.88 (0.06) 
Model f0 0.85 (0.12) 0.96 (0.03) 0.88 (0.05) 

Model MFCC 0.85 (0.12) 0.95 (0.02) 0.77 (0.12) 
 

 

5.3.4.1 Effect of noises at different SNR 

 

Figure 20 presents the expected degradation of performances, in terms 
of Accuracy, observed on the test set with increased SNR for all PDAs 
and for the three models --- according to the type of noises 
considered. Most PDAs are robust to light levels of noise, but 
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performances generally drop between SNR +15 and +10 dB. The Praat 
AC system, which has among the best performances on clean speech 
(see the Clean Acc. column of Table 18), is relatively sensitive to noise: 
its performances rapidly degrade on noisy signals (at about +10dB 
SNR). Conversely, the PEFAC model has remarkably robust 
performances in noise (being the best PDA tested here at SNRs below 
10dB), but has lower performances on clean speech. These different 
performances of available PDAs support our approach to build a 
system that could be accurate on any signal, clean or noisy. 

 

Figure 20 - Effect of SNR (all noises mixed) on the accuracy of the VD 
by the 11 PDAs and the three models. 
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Comparing the curves of the three models in Figure 20, one can 
observe the complete model outperforms the others --- with mean 
accuracy above 0.9 at SNR = 0dB, which is a remarkable performance: 
there is, thus, some synergy between the proposed features. The 
model based on f0 only comes close to the full one in "clean" situations 
(because the PDAs already did a great job), while the MFCC features 
have more importance in the most adverse situations. 

 

5.3.4.2 Effect of noise type 

Figure 21 presents the slope of Accuracy with SNR for a sub-selection 
of PDAs (among those best performing globally for this task) and for 
the three models, according to the type of noises considered. 

Noises have been grouped according to their characteristics: 
RIR includes the two reverberations, babbling the two babble noises, 
Social regroups Café and Street (that have non-stationary 
characteristics), and Vent. includes Ventilator and Air conditioning.  
Comparing the results on the different noise types in Figure 21, one 
can observe large differences: it is important to propose systems 
trained in noise conditions adequate to real recording situations. While 
reverberation, which is an adverse condition for most PDAs, is well-
supported by our models, the two more difficult situations seem to be 
related to babbling and social noises (let's note the best model is still 
close to 0.9 at SNR = 0dB – but performances fall afterward). 

 

Figure 21 - Accuracy per SNR level and noise type (plots), for our three 



 

 

 

139 

models (all, f0, MFCC) and the tested PDAs 

 

 

The other noises (on the lower row of Figure 21, which have some 
stationary characteristics, but may introduce periodic noise, are also 
detrimental to many PDA, even at the lightest noise levels --- but they 
are also well dealt for by our proposed models.  
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5.3.4.3 Evaluation with the spontaneous speech corpus 

The evaluation of unseen data was performed on a spontaneous 
corpus that features some files with notable noise. The column Unseen 
Accuracy of Table 18 gives the mean performances of the PDA and of 
the models on this dataset. Compared with performances on clean 
data, it shows a significant degradation of performances for all 
systems. This comparative degradation from a clean dataset to a noisy 
one shows the proposed model still provides the best performances, 
and a relatively reduced degradation (-8 p.p.), but the PEFAC system 
shows its strength in such a situation, having comparable scores, and 
the smallest degradation (having relatively low scores on clean data). 

 

5.3.5 Conclusion 

We evaluated the VD task of 11 PDA systems using ten realistic noise 
conditions controlled in nine SNR levels on two reference databases. 
We also evaluated these PDAs and the proposed system on a corpus 
of spontaneous speech recorded in natural settings. The proposed 
system introduces a quality increment of 2% on clean data (reaching 
an accuracy of 0.96) and 8% on global accuracy (clean + noisy data) 
compared to the best-performing PDA. 

This section showed how the Voicing Decision task, essential to 
obtain reliable f0, suffers from a diverse range of noises: how SNR 
degrades performances, depending on the noise type. Starting from 
the capabilities of existing PDA algorithms, it is proposed a CNN-based 
model targeting the specific task of voicing decision, not a complete 
pitch detection algorithm; the model is more robust to noise than the 
compared PDAs for all types and noise levels evaluated. In the next 
section, another important aspect for obtaining reliable f0 curves, the 
f0 tracking, is tackled. 

 

5.4 DYNAMIC PROGRAMMING ALGORITHM 

For each timeframe of an audio signal, multiple f0 estimations are 
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available. Before anything, specifying that the output measurements 
have timeframes of 5ms each is useful. Each timeframe has one 
estimated value per PDA algorithm, i.e., 14 f0 estimated values per 
timeframe. A dynamic programming algorithm was implemented 
based on Weenink (2022), Talkin et al. (1995), and Bartošek (2011). The 
following explanation is also broadly based on and adapted from these 
authors, but some changes to their original implementation have been 
made. PDAs often produce very deviant estimations (high standard 
deviation) and sometimes very coherent estimations (small standard 
deviation). The deviant estimations often occur in zones with high 
noise levels, creaky voices, or where no f0 should be perceived. 
Coherent estimations occur where the signal is clearer and f0 can be 
more easily estimated. 

 We deal with each PDA estimation for each timeframe as if it is 
an f0 candidate, since only one estimation will be picked up at the end 
of this procedure. We must now decide what the best candidate is. For 
this decision, we will make three assumptions. The first assumption is 
that each algorithm will make its best bet, i.e., it will send out its most 
likely f0 estimation for each timeframe, considering its strongest 
candidates and other post-treatment procedures. Observing the 
timeframes where f0 estimations are highly coherent, we are led to 
think that the real-world f0 value must be most likely situated where 
most PDAs agree. In other words, the closer to the median value 
(always for the same timeframe), the more likely an estimation is. We 
use this as a heuristic for all timeframes, even if they display deviant 
estimations. This is our first assumption: the real-world value is close 
to where most algorithms agree. At first sight, this may look 
problematic, but very deviant timeframes will likely have their 
estimations zeroed when we apply our voicing decision model. We will 
talk about this later. For now, we will be focused on f0 tracking. So, to 
sum up, for each timeframe, the closer to the median a PDA estimated 
value is, the stronger it will be. The second assumption is that each 
algorithm has a different sensitivity to different phenomena (resilience 
to noise, for instance) and that their fortes should be reflected in the 
final strength of their bets. For now, suffice it to say that we still need 
to empirically find the reward and penalty factors to be globally 
applied to the costs of each PDA’s estimation. That said, we can now 
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show the within-frame cost function that accounts for the fact that the 
more distant from the median a PDA estimation is, the more costly its 
estimation will be. This cost function is based on Bartošek (2011). The 
equations below give the probability of a(x) for each PDA’s f0 
estimation for timeframe t (f0k) with respect to the median value of f0 
estimations of all PDA algorithms (Medt) in the same timeframe: 

 

Equation 3 – Semitone cents between two frequencies 

𝑥𝑥 = 1200 �𝑙𝑙𝑙𝑙𝑙𝑙2 �
𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡
𝑓𝑓0𝑘𝑘

�� 

 

Equation 4 – Within-frame probability 

𝑎𝑎(𝑥𝑥) =
1

𝑀𝑀0.0012𝑥𝑥 

 

The cost function within the frame constitutes only a partial solution, 
as its validity is confined to the consideration of each timeframe in 
isolation. Notwithstanding certain specific cases, the vocal folds 
produce vibrations characterized by varying frequencies, whether 
increasing, remaining constant, or decreasing continuously. 
Consequently, real-world fundamental frequency (f0) values exhibit 
context-dependent behaviors. In cases deemed exceptional, it is 
assumed that the majority or nearly all of the Pitch Detection 
Algorithm (PDA) estimations will likely indicate abrupt changes – 
marking the third and final assumption. 

Selecting the strongest f0 estimation (i.e., the one closest to the 
median) at a local level (within each timeframe) does not consistently 
yield the genuine global f0 contour in the real world – the contour 
formed when considering the estimated values across all timeframes. 
Indeed, opting for the strongest local values may result in a highly 
discontinuous global f0 contour. At this point, a heuristic to determine 
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which f0 estimation to choose when their strengths are equal needs to 
be addressed. 

To address these issues, a function that incorporates the costs 
associated with transitioning from one f0 estimation to the next is 
required. The objective is to ensure a smooth f0 contour without it 
being entirely flat. This is achieved by discouraging substantial f0 
changes between timeframes, constituting the between-frames cost. 
The between-frame cost function is formulated below, resembling the 
within-frame cost function, with the distinction that the starting point 
for determining the transition probability a(x) is not the median value 
in timeframe t, but rather an f0 estimation in timeframe t and an f0 
estimation in timeframe t+1: 

 

 Equation 5 – Semitone cents between two frequencies 

𝑥𝑥 = 1200 �𝑙𝑙𝑙𝑙𝑙𝑙2 �
𝑓𝑓0𝑡𝑡
𝑓𝑓0𝑡𝑡+1

�� 

 

Equation 6 – Between-frames probability  

𝑎𝑎(𝑥𝑥) =
1

𝑀𝑀0.0012𝑥𝑥 

 

Moreover, transition costs do not come into play for candidates with 
equal frequencies; costs are only incurred when there is a change in 
frequency. 

There is also a consideration for introducing a penalizing factor 
to restrict changes from one PDA to another. The objective is to 
preserve an algorithm's estimations to the greatest extent possible. 
The intention is not to simply flatten the global fundamental frequency 
(f0) contour by consistently selecting the next f0 point with the least 
steep inclination from one frame to the next, without considering 
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which Pitch Detection Algorithm (PDA) produced it. Stability is sought 
to a considerable extent, aiming to maintain contours. This factor is 
designed to, to some degree, safeguard the contours generated by a 
particular algorithm. 

With that being said, the optimal f0 tracking is the track that 
incurs the minimum global cost, accounting for within-frame costs, 
between-frame costs, and penalties and rewards applied to PDAs. 
Numerous algorithms are available for finding optimal, least costly 
tracks – or, succinctly, a path. A path in this context refers to a sequence 
connecting f0 candidates in successive timeframes. The start point may 
be chosen as the f0 candidate displaying the maximum agreement 
with the median value in the first frame, and the end can occur at any 
candidate in the last frame. The figure below illustrates two paths over 
eight consecutive timeframes, presenting estimations from five PDA 
algorithms for each timeframe. 

 

Figure 22 - F0 trellis 
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This figure depicts a trellis, where each path corresponds to a possible 
global f0 contour assignment. Having m PDAs’ estimations by 
timeframe and n timeframes, we arrive at a total mn possible paths – 
time complexity O(mn). Even with a relatively small number of PDAs 
and audio of short duration, the number of possible paths to walk 
through is very high from a computational standpoint. To manage this 
task, an algorithm that narrows down the number of steps to be 
performed by taking on a few assumptions is needed. The Viterbi 
algorithm (Viterbi, 1967) is a dynamic programming algorithm widely 
used both for estimating the Maximum a Posteriori Probability 
estimate of the most likely sequence of hidden states (Hidden Markov 
Models) and for finding the optimal path through a chain of 
nodes/events having a cost function. It is also widely used in 
computational linguistics applications like speech recognition, speech 
synthesis, diarization, and keyword spotting. It can cut the exponential 
time complexity from O(mn) to O(n*m2). For that 600-ms audio, the 
number of operations is greatly reduced, and the total time to obtain 
a result is less than 1 ms. 

The underlying assumption is that the most likely path from the 
first time point up to a given time point t must depend only on the f0 
estimations of timeframe t and the most likely sequence of f0 points 
that led to that state at timeframe t−1. Put simply, the algorithm only 
takes into account neighboring frames. The probabilities or costs are 
evaluated locally, and there is no explicit dependence on timeframes 
with more than one timeframe behind. It follows that the calculation 
must be executed sequentially, the path going always in the same 
sense of time – from left to right, in a spatial representation. 

The Viterbi algorithm operates on the state machine 
assumption. That is, at any time point, the f0 point being modelled is 
chosen from a finite number of states. Each state is given by a PDA’s 
f0 estimation and its within-frame and between-frame costs. Multiple 
chains of states (paths) lead to a certain state, but only (or at least) one 
of them is the most likely path to that state because it entails the least 
costly path, also known as the winning path or the Viterbi path. The 
algorithm does not keep track of all possible paths and costs 
associated with leading to a certain state, as a complete solution would 

https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation
https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Speech_synthesis
https://en.wikipedia.org/wiki/Speech_synthesis
https://en.wikipedia.org/wiki/Diarization
https://en.wikipedia.org/wiki/Keyword_spotting
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do. It will examine all local transitions leading to a state (from state s-
1 to s) and keep the most likely one. The index of the most probable, 
least costly state is stored, and the next timeframe will be evaluated. 
This is a key assumption of the Viterbi algorithm. A second key 
assumption is that a transition from a state to the next one entails 
transition probabilities or transition costs. The transition costs are 
computed from within-frame and between frame costs. The last 
assumption is that a cumulative cost can be achieved by summing the 
state-to-state transition costs. The algorithm stores the cumulative 
costs in each state. Then, it goes forward and combines the cumulative 
costs of all possible previous states with the local transition costs. The 
algorithm evaluates the combinations of local costs and accumulated 
costs and pick up the least costly transition. All other paths are 
discarded. When the end of the trellis is reached, we will have the 
lowest accumulated cost (the maximum accumulated probability), the 
chosen f0 estimation at each frame and the chosen PDA index frame 
by frame. 

 

5.5 OUTPUT 

5.5.1 Viterbi Algorithm 

Figure 23 exhibits the f0 estimations of six PDA algorithms for the 
audio file bfamcv03_202. For the sake of exemplification, only six 
algorithms that outputs continuous estimations are used here. The 
estimations of each PDA are color-coded: 

 

Figure 23 - Raw F0 estimations of six different PDAs for audio file 
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bfamcv03_202 

 

 

It is noteworthy that even in the reliable voiced zone (approximately 
between 500 and 1250ms), some algorithms produce octave and fifth 
jumps – see Praat AC and PEFAC. After the data are passed through 
the VA algorithm, we end up with the winning (or Viterbi) path shown 
in Figure 24 - Viterbi Path. In this figure, there is only one choice by 
frame. The chosen algorithm for each frame is color-coded (right 
upper legend box). 
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Figure 24 - Viterbi Path for audio file bfamcv03_202 

 

 

Unduly voiced frames can now be devoiced with the Voicing Decision 
model. 

 

5.5.2 Voicing Decision Model 

Figure 25 displays the predictions of the CNN Voicing Decision model. 
For visualization purposes, unvoiced time points are zeroed. Unvoiced 
frames are color-coded in red on the x-axis and voiced frames in blue. 
F0 estimations are coded in blue and green. Green points represent 
the f0 estimations passed through the VA algorithm, and blue points 
represent the ground truth (unseen data) used to evaluate the VD 
model. Here, the y-axis scale is changed to make the contour clearer. 

 

Figure 25 - Predictions of the best voicing decision model for audio file 



 

 

 

149 

bfamcv03_202 

 

 

As can be observed, there are only two small zones of misassigned 
voicing decision around 500ms (0.50s), and the model performs well 
even in voiced zones where PDAs’ estimations are more coherent, like 
in the unvoiced zone between 1000 and 1250ms (check against Figure 
23). 

 

5.6 ALGORITHMS USED FOR THE ESTIMATION F0 PARAMETERS 

Only six PDA algorithms were effectively used to estimate f0 through 
the VA plus VD model solution. They are BaNa (Yang et al., 2014), Praat 
AC (Boersma, 1993), Pefac (Gonzalez & Brookes, 2014), Straight (Kawahara 
et al., 2005), Swipep (Camacho, 2007), and YAAPT (Kasi, 2002). They were 
chosen because they yield the best results for the VD modeling task, 
thus minimizing VDE, and because they represent a good subset of 
different types of PDAs, with different robustness. After VA plus VD 
processing, f0 features were calculated in accordance with Section 4.4. 
Prosodic-acoustic parameters estimation). 

 In the next chapter, descriptive statistics and an exploratory data 
analysis are presented. 

  



 

 

 

150 

6 DESCRIPTIVE AND INFERENTIAL STATISTICS OF 
THE DISCOURSE MARKERS 

This chapter presents the descriptive statistics of the prosodic-acoustic 
features employed for the classification model (Chapter 7) and an 
Exploratory Data Analysis (EDA – Tukey, 1977). The EDA is applied to 
summarize the primary characteristics of the descriptors within a 
dataset. Utilizing data visualization techniques such as boxplots, 
histograms, and scatterplots, EDA aims to provide insights into 
hypotheses, qualitative analyses, and potential errors (outliers). The 
primary objective is to visually examine what is revealed about the set 
of descriptors, including means, medians, distributions, skewness, 
variance, and covariance. The 30 features listed in Chapter 4 are 
described, each accompanied by the following summary information: 

 

a) Arithmetic mean; 

b) Standard deviation; 

c) Median; 

d) Trimmed mean; 

e) Minimum value; 

f) Maximum value; 

g) Range; 

h) Asymmetry; 

i) Kurtosis. 

 

The distribution of each feature is illustrated through boxplots for each 
Discourse Marker function. A Kruskal-Wallis non-parametric test was 
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applied to compare differences between pairs of Discourse Markers for 
each feature. A significance level of 0.05 was employed. A table 
displaying significant differences between pairs of DM categories for 
each feature is presented after the boxplot. Interactions between 
features within each group are visualized through pairplots that 
incorporate the feature's histogram (on the diagonal) and Pearson’s 
correlation coefficients (PCC) between pairs of features.  

All statistical summaries, analyses, and plots were generated 
using Python (Matplotlib, Seaborn, and Scipy Stats). 

 

6.1 FEATURES OF INTENSITY 

The set of intensity features encompasses mean intensity 
(mean_intensity_dm), standard deviation of intensity 
(std_intensity_dm), maximum intensity (max_intensity_dm), minimum 
intensity (min_intensity_dm), mean intensity on the stressed vowel 
(mean_intensity_stressed_dm), and spectral emphasis on the stressed 
vowel (mean_se_stressed_dm). These features were individually 
estimated and normalised for each Discourse Marker (DM) instance 
relative to its node COM. 

In Figure 26 below, the distribution of each feature is presented 
by DM function, color-coded to match the hues used in the tables of 
summary statistics. The boxplots include a notch; non-overlapping 
notches suggest evidence (at a 95% confidence level) of significantly 
different medians when comparing boxplots of different DM functions, 
assuming normal distributions in the compared classes. A Kruskal-
Wallis test, summarized shortly after the boxplots, provides a more 
reliable assessment. 

The DM functions tend to follow the order INP > EXP > CNT > 
EVD > ALL for their mean intensity. This aligns with previous 
observations by Raso & Vieira (2016) and Gobbo (2019), considering 
their assessed classes, where the intensity order was INP > CNT > ALL. 
However, when considering only the stressed vowels (for both mean 
intensity and spectral emphasis), a different class emerges at the top: 
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EXP > INP > CNT > EVD > ALL. 

Gobbo’s model identified intensity features as crucial for 
distinguishing ALL, CNT, and INP. In his sample, ALL consistently 
occupied the final position relative to the COM, CNT could be in any 
position, and INP was consistently in the initial position. There is a 
noticeable trend for intensity in DM functions in the initial position to 
be higher than in the final position. This trend aligns with the natural 
expectation that near terminal boundaries, segments are elongated, 
and f0 and intensity decrease. Despite this tendency, a notable contrast 
can still be observed in the final position between classes with 
generally higher intensity (CNT and EVD) and ALL, the latter displaying 
the lowest intensity among all classes. 
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Figure 26 - Distribution of features of intensity by class of DM 

 



 

 

 

154 

 

The table presented below provides a summary of the Kruskal-Wallis 
tests conducted on pairs of Discourse Markers classes. An initial 
observation based solely on mean intensity might suggest distinct 
distributions across all DM functions. However, upon closer 
examination, it becomes apparent that the differences between EXP 
and INP and ALL and EVD do not reach statistical significance when 
exclusively considering the stressed vowel. Focusing on measures of 
the stressed vowel may offer a more reliable indicator of the volume 
perceived by interlocutors, as it partially mitigates variations 
introduced by surrounding segments (given that intensity in 
consonantal segments tends to exhibit greater variability than in 
vowels). Nonetheless, intrinsic vowel intensity contributes some 
variation to the system. The absence of a significant difference 
between EXP and INP appears to be further supported by spectral 
emphasis. 

 

Table 19 - Significative differences between pairs of DMs by feature of 
intensity 

DM PAIR 

M
ea

n 
In

te
ns

ity
 (D

M
) 

SD
T 

In
te

ns
ity

 (D
M

) 

M
ax

 In
te

ns
ity

 (D
M

) 

M
in

 In
te

ns
ity

 (D
M

) 

M
ea

n 
In

te
ns

ity
 

(s
tr

es
se

d 
sy

lla
bl

e)
 

M
ea

n 
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Em
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 (s
tr
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d 
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bl

e)
 

CNT EXP ✓ ✗ ✓ ✗ ✓ ✓ 
CNT ALL ✓ ✗ ✓ ✓ ✓ ✗ 
CNT INP ✓ ✗ ✓ ✓ ✓ ✓ 
CNT EVD ✓ ✓ ✓ ✗ ✓ ✓ 
EXP ALL ✓ ✗ ✓ ✓ ✓ ✓ 
EXP INP ✓ ✓ ✗ ✓ ✗ ✗ 
EXP EVD ✓ ✓ ✓ ✗ ✓ ✓ 
ALL INP ✓ ✓ ✓ ✓ ✓ ✓ 
ALL EVD ✓ ✓ ✗ ✓ ✗ ✓ 
INP EVD ✓ ✓ ✓ ✓ ✓ ✓ 
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(✓ = siginificative difference; ✗ = non-significative difference) 

 

 

Table 20 - Statistical summary of the features of intensity 

Fe
at

ur
e 

DM
 

M
ea

n 

St
an

da
rd

 D
ev
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tio

n 

M
ed

ia
n 

Tr
im

m
ed

 M
ea

n 

M
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um

 

M
ax

im
um

 

Ra
ng

e 

Sk
ew

ne
ss

 

Ku
rt
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M
ea

n 
In

te
ns

ity
 

(D
M

) 

ALL -1.038 1.073 -0.799 -0.950 -4.708 0.876 5.584 -0.984 3.953 

CNT 0.008 1.074 0.048 0.052 -3.542 2.531 6.073 -0.528 3.493 

EVD -0.367 0.558 -0.397 -0.372 -1.612 1.180 2.792 0.136 2.457 

EXP 0.333 0.718 0.405 0.374 -1.829 1.468 3.297 -0.601 3.039 

INP 0.708 0.796 0.724 0.690 -2.264 3.326 5.590 0.037 5.905 

  

SD
T 

In
te

ns
ity

 
(D

M
) 

ALL 0.780 0.443 0.684 0.716 0.106 2.425 2.319 1.949 7.511 

CNT 0.706 0.445 0.614 0.652 0.100 2.468 2.368 1.364 5.120 

EVD 0.406 0.251 0.348 0.382 0.073 1.091 1.018 0.868 3.113 

EXP 0.727 0.349 0.769 0.718 0.141 1.545 1.404 0.172 2.474 

INP 0.611 0.457 0.531 0.556 0.031 3.221 3.191 2.855 15.565 

  

M
ax

 In
te

ns
ity

 
(D

M
) 

ALL 0.147 0.878 0.191 0.154 -1.868 2.646 4.514 0.033 2.811 

CNT 0.932 0.920 0.899 0.903 -1.607 4.366 5.972 0.385 3.780 

EVD 0.174 0.689 0.197 0.168 -1.414 1.699 3.113 0.050 2.536 

EXP 1.260 0.721 1.331 1.297 -0.766 3.081 3.847 -0.476 3.823 

INP 1.399 0.709 1.298 1.341 -0.230 4.257 4.487 1.271 6.370 

  

M
in

 In
te

ns
ity

 
(D

M
) 

ALL -2.495 1.556 -2.225 -2.305 -7.816 0.380 8.196 -1.471 5.481 

CNT -1.379 1.503 -1.223 -1.285 -6.558 1.619 8.177 -0.736 3.621 

EVD -1.243 0.692 -1.229 -1.229 -2.715 0.111 2.826 -0.109 2.229 

EXP -1.064 0.997 -1.105 -0.995 -4.100 0.563 4.663 -0.632 3.242 

INP -0.601 1.514 -0.199 -0.444 -8.982 1.878 10.859 -2.606 14.115 

  

In
te

ns
ity

 
(S

tr
es

se
d  ALL -0.427 1.018 -0.303 -0.377 -2.610 1.555 4.166 -0.438 2.560 

CNT 0.427 0.955 0.467 0.434 -2.481 2.689 5.170 -0.180 3.036 
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EVD -0.211 0.598 -0.167 -0.208 -1.626 1.193 2.819 -0.074 2.454 

EXP 0.878 0.742 1.011 0.941 -1.499 2.433 3.931 -0.963 4.183 

INP 1.075 0.635 1.022 1.030 -0.447 3.801 4.248 1.249 7.079 

  

Sp
ec

tr
al
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ph
as

is
 

(S
tr

es
se

d 
vo

w
el

) ALL 0.255 0.965 0.347 0.272 -1.928 2.428 4.356 -0.157 2.609 

CNT 0.634 1.690 0.427 0.494 -1.492 17.330 18.822 7.090 69.790 

EVD -0.330 0.578 -0.394 -0.352 -1.887 1.102 2.989 0.241 3.292 

EXP 0.946 0.897 1.010 0.971 -1.329 2.995 4.323 -0.326 3.109 

INP 0.845 0.952 0.804 0.827 -1.614 5.702 7.315 1.319 10.423 

 

 



 

 

 

157 

Figure 27 - Correlation between features of intensity 

 

 

The pairplot in figure 25 shows that there is a high collinearity between 
the mean intensity of the whole DM and that of the stressed vowel. 
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The collinearity is weaker when these two features are compared with 
the spectral emphasis on the stressed vowel. 

 

6.2 FEATURES OF DURATION 

In Figure 28 below, the distribution of duration features is depicted, 
including the mean standardized duration of syllables (zsil_mean) 
following Barbosa (2013) and the duration of the entire Discourse 
Marker (DM) relative to COM (dm_duration). Notably, two levels of 
differences are observable: firstly, in the case of ALL and EXP, which 
exhibit longer durations and tend to have a mean comparable to COM 
(median around 0); secondly, for CNT, EVD, and INP, which tend to be 
shorter than ALL and EXP, as well as COM. 

 

Figure 28 - Distribution of the features of duration 

 

The described tendency is confirmed by the Kruskal-Wallis test, shown 
below, except for the pair INP-EVD, whose distributions are also 
significantly different. 
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Table 21 - Significant differences between pairs of DMs by features of 
duration 

DM PAIR 

M
ea

n 
du

ra
tio

n 
(z

-s
co

re
s)

 

To
ta

l d
ur

at
io

n 
(z

-s
co

re
s)

 

CNT EXP ✓ ✓ 
CNT ALL ✓ ✓ 
CNT INP ✗ ✓ 
CNT EVD ✗ ✗ 
EXP ALL ✗ ✓ 
EXP INP ✓ ✓ 
EXP EVD ✗ ✓ 
ALL INP ✓ ✓ 
ALL EVD ✗ ✓ 
INP EVD ✓ ✓ 

 

Table 22 - Statistical summary of the features of duration 

Fe
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Ar
tic

ul
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te

 
(D

M
 z-

sc
or

es
) ALL 0.486 2.297 0.274 0.261 -3.124 6.996 10.120 0.917 3.586 

CNT -0.335 2.492 -0.725 -0.559 -4.826 6.674 11.500 0.840 3.302 

EVD -0.017 2.173 -0.552 -0.227 -3.157 5.927 9.084 0.879 2.928 

EXP 0.171 1.608 0.036 0.016 -2.415 6.586 9.001 1.382 6.138 

INP -1.210 1.576 -1.076 -1.138 -5.436 2.472 7.908 -0.425 3.396 

  

Du
ra

tio
n 

(z
-

sc
or

es
) 

ALL 0.297 0.105 0.274 0.290 0.119 0.614 0.494 0.891 3.447 

CNT 0.196 0.098 0.176 0.185 0.060 0.455 0.395 0.947 3.047 

EVD 0.171 0.057 0.153 0.166 0.088 0.344 0.256 0.844 2.975 

EXP 0.221 0.066 0.225 0.220 0.107 0.387 0.280 0.122 2.312 
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INP 0.149 0.059 0.147 0.146 0.041 0.344 0.303 0.591 3.230 

 

 

Figure 29 - Correlation between features of duration 
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6.3 FEATURES OF FUNDAMENTAL FREQUENCY (F0) 

In Figure 30 below, the distribution of fundamental frequency features 
is presented. Again, two levels of relevant differences are shown: firstly, 
for ALL, which exhibits lower fundamental frequency (f0), lower max f0, 
and lower min f0; and secondly, for CNT, EXP, EVD, and INP, which tend 
to have a mean f0 approximately at the same level as COM. 

An observation regarding INP is relevant here. In previous 
studies, INP was perceived to have the highest mean f0 level among 
all DM functions. In the current proposal, instances with functional 
similarity and a similar f0 form were added to the INP class, specifically 
those starting the utterance with a flat f0 profile. The height of the tone 
can vary, with INP displaying a low to medium flat tone or a high flat 
tone based on the speaker’s attitude. The inclusion of instances with 
lower flat tones in the class is reflected in the mean f0 levels of INP. 
Nevertheless, it remains the DM function with the highest central 
tendency of mean f0. However, this difference does not appear 
significant when comparing INP and EXP for mean f0 and max f0. 

Another relevant aspect of the data is the observation that INP 
exhibits the least spread when considering the standard deviation of 
f0 points (also, the lowest mean STD in Table 9). This indicates that this 
DM function has the flattest f0 contour, as expected. 
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Figure 30 - Distribution of the features of f0 

 

 

Figure 31 - Significant differences between pairs of DMs by features of 
f0 

DM PAIR 
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n 
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ST
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CNT EXP ✗ ✗ ✗ ✗ 
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DM PAIR 

M
ea

n 
f0

 

ST
D 

f0
 

M
ax

 f0
 

M
in

 f0
 

CNT ALL ✓ ✓ ✓ ✓ 
CNT INP ✓ ✓ ✗ ✓ 
CNT EVD ✗ ✓ ✗ ✗ 
EXP ALL ✓ ✗ ✓ ✓ 
EXP INP ✗ ✓ ✗ ✓ 
EXP EVD ✗ ✓ ✓ ✗ 
ALL INP ✓ ✓ ✓ ✓ 
ALL EVD ✓ ✓ ✓ ✓ 
INP EVD ✓ ✓ ✗ ✓ 

 

Table 23 - Statistical summary of the features of f0 

Fe
at

ur
e 

DM
 

M
ea
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rd
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M
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M
ea

n 
f0

 

ALL -2.185 2.486 -1.513 -1.796 -13.516 1.196 14.712 -2.747 12.190 

CNT -0.351 1.102 -0.307 -0.320 -4.548 2.973 7.521 -0.388 4.663 

EVD -0.266 1.218 -0.391 -0.274 -4.780 3.180 7.960 -0.154 5.262 

EXP -0.155 0.732 -0.019 -0.144 -1.845 1.937 3.782 -0.064 2.974 

INP 0.114 1.409 0.041 0.054 -3.950 6.379 10.329 1.084 7.778 

  

ST
D 

f0
 

ALL 1.128 1.201 0.755 0.892 0.058 5.017 4.959 1.855 5.642 

CNT 0.689 0.618 0.496 0.578 0.022 3.145 3.122 1.987 7.036 

EVD 0.512 0.496 0.312 0.423 0.038 2.295 2.257 1.687 5.332 

EXP 0.800 0.719 0.599 0.682 0.107 3.566 3.459 1.839 6.529 

INP 0.343 0.415 0.192 0.255 0.019 2.117 2.098 2.434 9.327 

  

M
ax

 f0
 

ALL 0.102 3.661 -0.375 -0.296 -10.754 17.375 28.129 2.252 12.873 

CNT 0.733 1.555 0.487 0.562 -2.054 7.442 9.497 1.566 6.811 

EVD 0.324 1.053 0.101 0.248 -1.770 3.735 5.505 0.882 3.857 

EXP 1.048 1.775 0.663 0.751 -1.227 10.396 11.623 3.092 14.645 

INP 0.762 1.635 0.542 0.573 -1.777 6.878 8.655 1.502 6.058 
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M
in

 f0
 

ALL -4.045 3.627 -2.947 -3.421 -16.998 -0.298 16.699 -2.055 7.199 

CNT -1.600 2.119 -1.232 -1.349 -18.027 1.835 19.862 -3.992 28.677 

EVD -1.444 2.146 -1.061 -1.246 -7.888 2.951 10.839 -0.980 4.032 

EXP -1.834 2.152 -1.253 -1.462 -11.775 0.467 12.241 -2.409 9.678 

INP -0.607 1.615 -0.435 -0.543 -5.556 5.474 11.030 -0.108 5.774 

 

Figure 32 below shows that there are significant correlations between 
mean f0, on the one hand, and maximum and minimum f0 levels on 
the other. 
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Figure 32 - Correlation between features of f0 

 

 

6.4 FEATURES OF F0 VARIATION 

The features of f0 variation were specifically crafted to capture the 
general movements of fundamental frequency (f0) with respect to the 
stressed vowel (Gobbo, 2019). The features include the regression line 
on the entire Discourse Marker instances (pitch_slope_dm), on the 
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stressed vowel (pitch_slope_stressed), the f0 range (max – min: 
pitch_range_dm), f0 slope before the mid-point of the stressed vowel 
(pitch_slope_before_stressed_dm), and f0 slope after the mid-point of 
the stressed vowel (pitch_slope_after_stressed_dm). While another 
approach involves fitting a polynomial curve to the data and utilizing 
the polynomial’s coefficients as descriptors, it may not effectively 
capture the flat f0 profiles typically found in instances of the INP class. 
Therefore, we retained the features proposed by Gobbo (2019) for the 
sake of comparability and as a robust descriptor of the tendencies 
observed along the stressed vowels. 

A strong correlation is observed between the movements on 
the entire DM and those on its stressed vowel. Consequently, our focus 
will primarily be on the stressed vowel. The qualitative analysis 
proposed that the ALL and CNT DMs would exhibit negative slopes 
along the stressed vowels (falling f0 movements), EXP and EVD positive 
slopes (rising f0 movements), and INP the flattest movements (f0 slope 
≈ 0). These expectations can be confirmed in the boxplots. In terms of 
the absolute values of f0 slope, the ascending order from the flattest 
to the steepest is: INP < EVD < EXP < ALL < CNT (this order is 
confirmed in the summary statistics table). 

Another noteworthy tendency is observed in the EVD class. 
Despite being perceptually characterized by a distinctive rising 
movement, the class exhibits the second flattest f0 movement over the 
stressed vowel. Most EVD instances occur in the final position of 
terminated sequences; a region correlated with falling f0 profiles 
conveying terminal boundaries. Here, we hypothesize that a sustained, 
almost flat movement is sufficient to mark the EVD function. The 
contrast is not with a flat movement but rather with a baseline falling 
movement. 
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Figure 33 - Distribution of features of f0 variation 
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Table 24 - Significant differences between pairs of DMs by features of 
f0 variation 

DM PAIR 

F0
 sl

op
e 

F0
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) 

F0
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F0
 sl

op
e 
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st
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ed
 v

ow
el

 

CNT EXP ✓ ✓ ✗ ✓ ✓ 
CNT ALL ✗ ✗ ✓ ✓ ✓ 
CNT INP ✓ ✓ ✓ ✓ ✓ 
CNT EVD ✓ ✓ ✓ ✓ ✓ 
EXP ALL ✓ ✓ ✗ ✓ ✗ 
EXP INP ✓ ✓ ✓ ✓ ✗ 
EXP EVD ✗ ✓ ✓ ✗ ✓ 
ALL INP ✓ ✓ ✓ ✓ ✓ 
ALL EVD ✓ ✓ ✓ ✓ ✓ 
INP EVD ✓ ✓ ✓ ✓ ✓ 

 

Table 25 - Summary statistics of the features of f0 variation 

Fe
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M
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F0
 sl

op
e 

(D
M

) ALL -6.927 19.525 -5.190 -7.215 -62.620 115.202 177.822 3.250 24.611 

CNT -8.122 15.756 -6.824 -7.173 -115.554 52.008 167.562 -2.432 19.880 

EVD 6.428 7.499 4.543 5.860 -14.752 28.682 43.433 0.641 3.856 

EXP 5.355 9.853 3.603 4.920 -19.906 36.860 56.767 0.645 4.771 

INP 3.007 12.782 1.013 1.470 -19.112 94.178 113.289 4.909 34.120 

  

F0
 sl

op
e 

(S
tr

es
se

d 
vo

w
el

) ALL -9.680 24.336 -6.554 -9.301 -120.815 115.202 236.017 0.541 17.465 

CNT -13.158 19.359 -9.767 -10.992 -152.867 27.052 179.920 -4.309 29.264 

EVD 4.703 6.759 4.547 4.454 -21.536 24.666 46.201 -0.074 6.522 
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EXP 8.047 7.141 6.676 8.007 -13.172 26.962 40.134 0.008 3.648 

INP 2.589 13.047 0.645 0.657 -15.662 94.178 109.839 4.853 32.271 

  

F0
 ra

ng
e 

ALL 4.146 4.682 2.458 3.223 0.182 24.540 24.357 2.439 9.276 

CNT 2.333 2.329 1.607 1.914 0.071 15.973 15.902 2.503 11.581 

EVD 1.767 1.883 0.952 1.409 0.143 8.907 8.764 1.815 5.769 

EXP 2.881 2.818 2.062 2.404 0.258 13.659 13.401 1.905 6.640 

INP 1.369 2.082 0.556 0.879 0.063 11.649 11.586 3.003 12.411 

  

F0
 sl

op
e 

be
fo

re
 

st
re

ss
ed

 v
ow

el
 ALL -10.514 42.157 -6.445 -7.258 -304.342 124.572 428.913 -4.707 37.409 

CNT -4.295 22.816 -2.596 -3.128 -135.790 65.403 201.193 -1.972 13.451 

EVD 8.386 12.998 5.649 7.551 -34.210 68.198 102.408 1.172 9.051 

EXP 13.350 21.151 7.253 9.356 -20.559 120.635 141.194 3.293 14.786 

INP 5.459 16.670 1.631 3.400 -30.133 115.431 145.565 4.042 26.066 

  

F0
 sl
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 ALL -9.084 28.264 -2.654 -6.170 -150.455 106.521 256.976 -1.427 15.139 

CNT -9.525 19.513 -7.529 -9.211 -101.661 140.791 242.452 2.624 31.006 

EVD 0.819 12.107 0.890 1.257 -42.434 57.426 99.860 -0.122 12.312 

EXP -4.961 15.189 -1.602 -2.901 -60.742 28.384 89.126 -2.051 8.524 

INP 0.667 19.745 -0.329 -1.035 -45.402 130.677 176.079 4.139 27.036 
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Figure 34 - Correlation between features of f0 variation 

 

 

6.5 FEATURES OF ALIGNMENT 

The alignment features were designed to capture the alignment 
tendencies of the maximum and minimum points of f0 and intensity 
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within the DM instance, with respect to the central point of the stressed 
vowel. The boxplots in the first and third rows of Figure 35 shows the 
position within the DM instance where the maximum and minimum 
points of intensity and f0 are achieved. Values closer to 0 indicates that 
the time point of interest is closer to the beginning of the DM instance 
whereas values closer to 1 indicates that the time point of interest is 
closer to the end. The boxplots in the second and fourth rows show 
how the timepoints of interest are displaced with respect to the central 
point of the stressed vowels. Values closer to 0 indicate that the 
timepoint of interest is aligned with the center of the stressed vowel. 
Values different than 0 indicate a displacement with respect to the 
stressed vowel central point. The higher the absolute value is, the 
larger the displacement. Negative values indicate that the timepoint of 
interest occurs before the central point of the stressed vowel and 
positive values that it occurs after the central point of the stressed 
vowel. 

Starting with intensity alignment, the maximum intensity tends 
to be reached shortly after the midpoint of the DM across all classes 
except for ALL, where the maximum intensity occurs at the DM's 
beginning. Note that this intensity alignment does not necessarily 
correlate with other features. For example, the EVD class tends to attain 
its highest intensity point well before the central point of the stressed 
vowel. Nevertheless, the peak of the f0 tends to occur at the end of the 
unit (compare EVD distributions and medians in the left boxplots of 
the second and third rows). Conversely, concerning minimum intensity, 
the tendency is reversed: for all DM functions except ALL, the minimum 
intensity tends to occur at the beginning of the DM. 

In terms of f0, the observed distributions in the boxplots 
correspond to the described curves for each DM function. ALL and CNT 
display the maximum point at the beginning and the minimum point 
tending towards the end of the units, indicating a falling f0 movement. 
In contrast, EVD and EXP have the minimum f0 point at the beginning 
and the maximum point tending towards the end of the unit. INP, 
however, does not exhibit a clear tendency in this regard. Despite this, 
the maximum f0 aligns distinctly with the central point of the stressed 
vowel. 
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Figure 35 - Distribution of the features of alignment 
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Table 26 shows the significant differences between pairs of DM 
functions for the alignment features. The ratios of maximum and 
minimum f0 (inside the DM), and maximum f0 with respect to the 
central point of the stressed vowel are distinctive across DM functions. 
This tendency is not so clear when we analyze the coefficients of f0 
curves alone, as is shown in the next subsection. Therefore, although 
these features are reflected in the f0 curves, keeping and testing them 
in the final classification tasks seems good. 

 

Table 26 - Significant differences between pairs of DMs by features of 
alignment 
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CNT EXP ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ 
CNT ALL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
CNT INP ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ 
CNT EVD ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ 
EXP ALL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
EXP INP ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ 
EXP EVD ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ 
ALL INP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
ALL EVD ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ 
INP EVD ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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Table 27 - Summary statistics of the features of alignment 
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ALL 0.290 0.237 0.266 0.270 0.001 0.882 0.882 0.548 2.600 

CNT 0.515 0.248 0.501 0.520 0.001 0.999 0.998 -0.134 2.324 

EVD 0.521 0.279 0.576 0.536 0.001 0.966 0.966 -0.453 2.095 

EXP 0.567 0.212 0.545 0.568 0.010 0.997 0.987 -0.054 2.790 

INP 0.622 0.217 0.626 0.628 0.051 0.996 0.945 -0.276 2.731 
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ALL 0.683 0.323 0.780 0.716 0.006 0.999 0.993 -0.856 2.258 

CNT 0.439 0.419 0.272 0.425 0.001 1.000 0.999 0.317 1.320 

EVD 0.509 0.435 0.310 0.511 0.002 0.999 0.997 0.096 1.138 

EXP 0.445 0.434 0.228 0.434 0.001 1.000 0.999 0.139 1.131 

INP 0.275 0.403 0.033 0.218 0.001 0.999 0.998 1.085 2.220 
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) ALL -16.033 15.593 -12.619 -13.585 -114.826 -2.067 112.759 -4.123 25.020 

CNT -5.098 11.190 -2.339 -3.344 -90.631 7.179 97.810 -4.240 28.489 

EVD -29.681 33.757 -18.893 -23.542 -203.281 0.364 203.645 -2.935 13.224 

EXP -0.848 7.891 0.636 0.537 -45.952 7.955 53.907 -4.092 21.017 

INP -0.352 12.712 1.415 1.193 -103.241 13.228 116.469 -6.957 55.267 
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) ALL -12.471 15.314 -10.180 -10.242 -107.155 3.129 110.284 -3.857 22.907 

CNT -5.915 11.261 -4.573 -4.458 -86.301 14.029 100.331 -3.741 23.590 

EVD -29.780 34.213 -20.830 -23.908 -208.517 1.832 210.350 -3.007 14.080 

EXP -2.022 8.729 -2.244 -0.681 -41.100 7.400 48.500 -2.881 12.909 

INP -4.748 12.016 -4.214 -3.711 -95.863 11.517 107.380 -5.604 42.707 
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) ALL 0.192 0.288 0.020 0.139 0.000 0.989 0.989 1.523 4.029 

CNT 0.255 0.245 0.186 0.223 0.000 0.968 0.968 1.012 3.319 

EVD 0.724 0.273 0.797 0.769 0.004 0.997 0.993 -1.344 3.957 

EXP 0.700 0.202 0.701 0.712 0.010 0.999 0.989 -0.592 3.526 

INP 0.504 0.323 0.476 0.503 0.005 0.997 0.993 0.030 1.581 
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ALL 0.582 0.305 0.641 0.601 0.005 0.989 0.984 -0.598 2.131 
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CNT 0.692 0.334 0.842 0.731 0.004 1.000 0.996 -0.874 2.212 

EVD 0.189 0.264 0.072 0.128 0.000 0.994 0.994 2.113 6.503 

EXP 0.317 0.385 0.085 0.279 0.001 0.999 0.998 0.809 1.854 

INP 0.388 0.391 0.204 0.362 0.001 0.996 0.996 0.468 1.494 
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ALL -17.141 15.406 -14.585 -15.157 -117.383 0.882 118.265 -4.331 27.642 

CNT -7.846 10.592 -5.170 -6.134 -92.796 4.945 97.742 -4.749 33.736 

EVD -27.831 33.454 -17.276 -21.951 -203.063 2.410 205.473 -2.960 13.652 

EXP 0.269 7.745 2.104 1.821 -40.962 6.882 47.844 -3.882 18.568 

INP -1.709 11.793 -0.957 -0.365 -94.018 14.165 108.184 -6.253 48.405 
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ALL -13.255 16.078 -10.008 -10.752 -116.653 1.424 118.077 -4.287 26.511 

CNT -3.519 11.876 -1.360 -1.805 -86.301 14.029 100.331 -3.450 21.004 

EVD -33.084 34.937 -22.704 -27.169 -209.608 2.042 211.650 -2.825 12.654 

EXP -3.261 9.052 -2.562 -1.795 -47.893 6.294 54.187 -3.105 14.505 

INP -3.049 13.232 -2.682 -1.812 -102.626 15.224 117.850 -5.491 41.399 
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Figure 36 - Correlation between features of alignment 

 

 

6.6 FEATURES OF FITTED CURVES 

A cubic polynomial function was chosen to fit the f0 curves. The cubic 
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function was selected because it was a good compromise between 
data fitting and accuracy scores. Furthermore, higher degree 
polynomials diminish the Mean Square Error (MSE - metric used to 
evaluate the goodness of fitting) but create unnecessary details, which 
are probably not perceived by the interlocutor. This choice is further 
motivated in the next chapter. 

 

Equation 7 - Polynomial coefficients of the cubic function 
𝑓𝑓0 = 𝑐𝑐𝑙𝑙𝑀𝑀𝑓𝑓0. 𝑥𝑥3 + 𝑐𝑐𝑙𝑙𝑀𝑀𝑓𝑓1. 𝑥𝑥2 + 𝑐𝑐𝑙𝑙𝑀𝑀𝑓𝑓2. 𝑥𝑥 + 𝑐𝑐𝑙𝑙𝑀𝑀𝑓𝑓3 

 

The cubic polynomial has four coefficients. They are encoded, as in 
Equation 7 - Polynomial coefficients, as coef_0 (1st coefficient), coef_1 
(2nd coefficient), coef_2 (3rd coefficient), and coef_3 (4th coefficient). 
Figure 37 shows the distribution of the coefficients of f0 curve. 
Emphasis will be placed on the significant differences between pairs of 
DMs by coefficient. 
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Figure 37 - Distribution of features of f0 curve 

 

Table 28 shows the pairs of DMs and whether the difference between 
the distribution of coefficients is significant. For all groups of features 
analyzed so far, at least one feature always exhibited a significant 
difference between a pair. Here, there is a special situation. The pairs 
CNT-INP and EXP-EVD do not display any significantly different 
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coefficients. This could be expected for EXP and EVD, which are 
characterized by a rising f0 movement until the stressed vowel; this 
movement is potentially followed by a falling movement when 
segmental material is present. Other features, such as intensity, 
duration, and position, are good candidates to observe a possible 
difference. For the CNT-INP pair, the analysis is a little bit more 
convoluted. Most importantly, as we show, the fitted curves for these 
two DM functions result in different forms. A possible explanation can 
be drawn by looking at the boxplots of the four coefficients of both 
CNT and INP. First, the central tendencies are always very similar for all 
four coefficients. Second, although INP has a narrower spread, its data 
is always within the limits of CNT’s coefficient distributions. 

 

Table 28 - Significant differences between pairs of DMs by f0 curve 
coefficients 

DM PAIR 

1s
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t 

2n
d 

co
ef

fic
ie

nt
 

3r
d 

co
ef
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nt
 

4t
h 

co
ef

fic
ie

nt
 

CNT EXP ✓ ✓ ✗ ✓ 
CNT ALL ✗ ✗ ✓ ✓ 
CNT INP ✗ ✗ ✗ ✗ 
CNT EVD ✓ ✓ ✗ ✓ 
EXP ALL ✓ ✗ ✓ ✗ 
EXP INP ✓ ✓ ✗ ✓ 
EXP EVD ✗ ✗ ✗ ✗ 
ALL INP ✗ ✗ ✓ ✓ 
ALL EVD ✓ ✗ ✓ ✗ 
INP EVD ✓ ✓ ✗ ✓ 

 

Figure 38 displays the fitted curves by DM function using a cubic 
polynomial function. The curves were fitted, always taking 30 f0 
samples regularly spaced along all the DM instances. 
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Figure 38 - Fitted curves by DM function using a cubic function 

 

 

The fitted curves are very much in line with initial expectations. They 
are a good representation of the prototypical curves described in the 
qualitative analysis. ALL (blue curve) displays a falling f0 movement 
from the beginning of the DM, even when there is segmental material 
before the stressed vowel. Furthermore, ALL curves confirm the 
observation that this DM function exhibits the lowest f0 mean 
compared to the illocutionary unit (COM). The CNT (orange) curve is 
characterized by the steepest f0 falling movement along the stressed 
vowel. This can be seen from time points 5 to 25. However, if CNT has 
segmental material before the stressed vowel, it is expected to have a 
rising preparatory movement, making its falling movement more 
prominent. This can be observed in the data, and the preparation is 
reflected in the fitted curve from time 0 to 5. From a perceptual 
standpoint, both the preparation and the different levels of mean f0 
participate in distinguishing between the two DM functions, which may 
occur in the same position. EVD (green line) and EXP (red line) have 
similar movements and f0 levels. However, these two DM functions do 
not occur in the same position. Moreover, EXP’s rising movement is 
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typically steeper than EVD, which most frequently occurs in the final 
position. Finally, INP displays the flattest of the forms, as expected. 
Looking only at the fitted curves of CNT and INP, one can see they are 
quite distinct. All the same, many INP instances with marked attitude 
display a rising movement (when there is voiced segmental material) 
followed by a flat profile (necessary movement) at the stressed vowel 
and finished by a falling f0 movement (when there is voiced segmental 
material after the stressed vowel). In such cases, the fitted curve can 
prove rather insufficient for the distinction, especially considering that, 
here, the effect of duration is neutralized by the 30-point interpolation. 
For the distinction of this pair, good candidates are f0 slopes on the 
stressed vowel and mean standardized duration. 

 Table 29 shows the summary of statistics, and Figure 39 exhibits 
the correlation between the coefficients of the fitted curves. 

 

Table 29 - Statistics summary of the features of f0 curve 
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1s
t c

oe
ffi

ci
en

t ALL 0.0002 0.0011 0.000 0.000 -0.002 0.006 0.008 2.260 13.745 

CNT 0.0002 0.0006 0.000 0.000 -0.002 0.003 0.005 1.063 7.891 

EVD -0.0001 0.0004 0.000 0.000 -0.002 0.001 0.003 -1.187 8.106 

EXP -0.0001 0.0003 0.000 0.000 -0.001 0.001 0.002 1.077 5.535 

INP 0.0000 0.0005 0.000 0.000 -0.002 0.001 0.004 -1.285 11.266 

  

2n
d 

co
ef
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ie

nt
 ALL -0.006 0.041 0.000 -0.004 -0.207 0.105 0.312 -1.614 10.555 

CNT -0.009 0.027 -0.004 -0.007 -0.128 0.106 0.234 -1.006 9.351 

EVD 0.005 0.019 0.001 0.003 -0.052 0.085 0.137 1.377 9.141 

EXP 0.000 0.015 0.003 0.002 -0.061 0.025 0.086 -1.671 6.352 

INP -0.003 0.024 -0.001 -0.003 -0.091 0.114 0.205 1.208 12.679 

  

3r d  ALL -0.039 0.384 -0.077 -0.069 -1.007 1.440 2.447 1.318 7.632 
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CNT 0.090 0.330 0.024 0.062 -1.056 1.660 2.716 1.321 8.717 

EVD -0.006 0.253 0.017 0.016 -1.204 0.568 1.772 -1.876 9.789 

EXP 0.113 0.227 0.020 0.074 -0.214 0.941 1.156 1.885 6.245 

INP 0.055 0.348 0.025 0.057 -1.419 1.746 3.164 0.000 14.017 

  

4t
h 

co
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nt
 ALL -1.364 2.125 -1.080 -1.192 -11.012 2.413 13.424 -1.558 7.947 

CNT -0.130 1.423 -0.111 -0.195 -4.383 4.758 9.141 0.427 3.797 

EVD -0.638 1.501 -0.882 -0.684 -6.640 4.521 11.162 -0.079 7.185 

EXP -1.168 1.265 -0.992 -1.005 -6.720 0.525 7.244 -1.815 7.582 

INP -0.134 1.923 -0.157 -0.241 -9.064 5.892 14.956 -0.259 9.327 
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Figure 39 - Correlation between coefficients of the fitted curves 

 

 

*** 
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In the next chapter, I will present the different classification models 
trained and what are the most relevant features for the tasks. 
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7 CLASSIFICATION MODELS 

This section presents the models trained to classify the five DM classes 
from the prosodic parameters extracted from the corpus. The objective 
is to show how handcrafted features specifically designed to represent 
purely prosodic-acoustic features can correctly classify our five DM 
functions. Before diving into the results of the classification models, 
the curve fitting procedure is explained. We deal with this problem in 
this chapter because it specifically considered two factors: the 
goodness of fit of the curves (as measured by MSE) and the 
performance of a classification model, taking only the parameters of 
the best-fitting polynomial coefficients as input. Secondly, the criteria 
used to evaluate the performances of the classification models are set 
out. As a starting point, a good model must perform better than a 
baseline model for a 5-class classification task. The goal is to show that 
high performance can be met only by using the prosodic features. 
Then, I move on to comparing different classification techniques. 
Based on the best-performing technique, I will fine-tune the model 
and check the most important descriptors (features) for an overall 
classification model and each DM class against the others. 

 

7.1 CRITERIA FOR ASSESSING DIFFERENT CLASSIFICATION MODELS 

Evaluating a good performance in a classification task depends on 
several factors. This may include the nature of the data, the task's 
difficulty, the number of observations available, and the application's 
specific requirements. However, some general guidelines can be drawn 
from the problem at hand. 

I am dealing with a 5-class classification task. The dataset is 
imbalanced. The CNT function is the majority class and represents as 
much as 32% of the whole dataset. Gries (2021) recommends that the 
model should attain a n accuracy score exceeding the percentage of 
the majority class (so that its performance is not considered chance). 



 

 

 

186 

A commonly used benchmark compares the model's accuracy 
to the baseline accuracy (for the problem at hand, 32% accuracy score). 
If the model performs significantly better than the baseline, the model 
is learning valuable patterns from the data. What is considered good 
can vary depending on the context. 

The accuracy score is, of course, one of many metrics to be 
considered. This is especially true when one is dealing with imbalanced 
data. Other metrics may come in handy if initial and final CNTs are put 
in the same class (as I motivatedly do). Precision, recall, F1-score, and 
the confusion matrix help understand the model's performances. All 
the same, most of the time, the accuracy score is used as the metric 
whose best performance is to be pursued. 

 

7.2 F0 CURVE FITTING 

Fitting polynomial functions to each observation entails a relevant 
trade-off. On the one hand, one may increase the degree of the 
polynomial function and get a lower Mean Squared Error (MSE). On 
the other hand, one adds details to the curve that are irrelevant to 
human perception and the model (see the MOMEL stylization process, 
for example – Hirst & Espesser, 1993). The goal here is not to assess how 
the curve fitting may adapt to human perception but to find a good 
compromise between the goodness of fit (how the curves fit the data 
as measured by the MSE) and the qualitative descriptions for each DM 
class. As said in the previous chapter, the regression line over the 
stressed vowel may carry a good deal of information about the DM 
class. However, a fitted curve can also say something about the general 
f0 level of the DM instance, where its peaks and valleys occur, and what 
movements seem to happen throughout the entire DM instance. The 
fitted curve parameters can ideally bring about distinctive patterns of 
DM classes outside the stressed vowel. To illustrate this, we can take, 
as an example, CNT and ALL instances with a pre-stressed syllable. In 
this region, where CNT is expected to exhibit a preparatory rising 
movement, ALL will display a falling movement followed by a flat 
profile. Also, CNT is expected to have a higher f0 level, while ALL will 
show a lower f0 level. These patterns are not captured by f0 slopes on 
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the stressed syllable, but the parameters of a polynomial function may 
ideally account for them. 

 As previously mentioned, I am interested in the f0 curve of the 
complete DM unit. The normalized f0 points used for the estimations 
of parameters involving f0 measurements took into consideration only 
time points that our Voicing Decision model (VD model) classified as 
voiced. Utilizing only the voiced points is a good heuristic if one wants 
to avoid potentially deviant estimations that can be caused by fricative 
sounds, plosive, and sound transition regions. Even if the Viterbi 
Algorithm was used to smoothen f0 estimations, there might be cases 
(in the estimation of whole utterances) where all the PDA algorithms 
may have outputted highly deviant (and erroneous) f0 estimations. 
However, I have an important consideration to make concerning 
voicing in speech. 

 There are two main reasons segmental material is to be 
produced voiced and unvoiced – which are valid, at least for this 
research’s target language, Brazilian Portuguese. The first one is 
phonological. In BP (as well as in most languages), voicing is a 
distinctive trait that allows the language to increase its phoneme 
inventory. Voicing is thus primarily relevant for the distinction on the 
morphological and lexical levels. The second one has a broader 
communicative function. In some types of voice qualities, voicing can 
be almost absent, such as in voiceless or whispered speech, for which 
the vocal folds are not actively mobilized (e.g., Laver, 1980). However, I 
consider that for carrying the pragmatic functions under analysis (that 
of the DM functions), the more complete the f0 curve is, the better. Of 
course, there is the possibility that specific voice qualities might be 
correlated with some DM functions. However, this aspect needs to be 
further investigated, and it is left out of the scope of this research. 

 That being said, I needed to close the gaps between voiced and 
unvoiced segments. Three possible paths were envisaged. The first one 
filled in the gaps with the averages between the edges of the voiced 
and unvoiced regions. However, this would result in straight curves, 
which would be especially problematic when unvoiced segments 
occurred in regions with falling and rising profiles (Mixdorff & Niebuhr, 
2013). A second possibility would be to use some imputation 
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technique. I used the SoftImpute from the fancyimpute (Rubinsteyn & 
Feldman, 2016) package for Python and Sci-Kit Learn (Pedregosa et al., 
2011) Iterative Imputer to test this possibility. The SoftImpute 
technique completes a matrix through iterative soft thresholding of 
Singular Value Decompositions (SVD). This algorithm was inspired by 
the softImpute R package, which is based on Spectral Regularization 
Algorithms for Learning Large Incomplete Matrices (Hastie et al., 2014). 
In turn, the Iterative Imputer utilizes round-robin linear regression that 
models features with missing values as a function of other features. In 
both cases, the data matrix is split by class (typically with similar 
shapes), each timeframe is assumed to be a feature and missing points 
are imputed as a function of the other data in the matrix. The more 
variation the data presents, the more the imputed values will be 
negatively affected. Figure 40 and Figure 41 show the results of these 
imputers for two different audio files: 

 

Figure 40 - SofImpute (left) and Iterative Imputer (right) results for file 
bfamcv07_114 
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Figure 41 - SofImpute (left) and Iterative Imputer (right) results for file 
bfamcv22_127 
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As we can observe, SoftImpute and IterativeImputer work reasonably 
well for file bfamcv22_127. Here, a simpler polynomial function would 
easily sweep the noise away, leaving the features of the curve that are 
relevant for the work. Nonetheless, both imputers create inadmissible 
noise for the first DM instance (bfamcv07_114 in Figure 40, right). The 
polynomial curve would certainly be leveled upwards to account for 
the noise created, at least with SofImpute. There is a plethora of 
imputing methods available. Testing their adequacy to the data would 
require a good deal of work and ground truth f0 estimations on a 5-
class DM dataset especially labelled for this purpose.  Since I do not 
dispose of such data, another heuristic was adopted. 

 Many PDA algorithms output f0 estimations for all sampled 
timepoints. Instead of returning missing values for timepoints that 
were judged unvoiced, these algorithms do their “best estimations” 
and output both an f0 value and a voicing probability. The voicing 
probability thresholding is not done by the algorithm. It is up to the 
user to find out what the best threshold is. This can be highly 
problematic if the user does not have a ground truth voicing decision 
with respect to which they could minimize the error. But for the 
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purposes of this work, it can be a good idea to have the estimations of 
these continuous algorithms through the Viterbi Algorithm such that 
their estimates result in a continuous curve. Of course, this does not 
safeguard us against some level of error (especially where all PDA are 
wrong), but this heuristic can result in curves closer to the reality. At 
this point, one could argue that (a) simply passing the existing f0 points 
to the curve fitting algorithm or that (b) doing a simple linear 
interpolation between the points of gapping regions would be safer 
than using any imputation technique or the heuristic adopted. To (a), I 
can respond that the curve fitting algorithm used does not accept 
missing values. The data would need imputation before fitting anyway 
and discarding observations with no missing values would potentially 
result in an empty matrix. To (b), there is the problem that nothing 
could guarantee beforehand that there would be voiced points on 
both borders of regions with missing values. This would rule out the 
linear interpolation. For instance, in Figure 41, if all f0 estimations after 
timepoint 15 were missing, no reasonable interpolation would be 
possible. 

The six PDAs whose estimations were available for all timepoints 
were employed. They are namely PEFAC (Gonzalez & Brookes, 2014), 
RAPT (Talkin & Kleijn, 1995), SWIPE (Camacho, 2007), SWIPEP (Camacho, 
2007), SRH (Degottex et al., 2014), and YIN (de Cheveigné & Kawahara, 
2002). Their output was interpolated for 30 equally spaced timepoints. 
This was done for two reasons: one, because the curve-fitting 
algorithm always needs the same number of points; and two, because 
it neutralizes the curve's durational differences. Figure 42 shows the 
result of this procedure for file bfamcv07_114, which presented more 
issues when imputation methods were applied: 

 

Figure 42 - F0 curve of six selected PDAs smoothed by Viterbi 
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Algorithm 

 
 

With the continuous data, a curve-fitting algorithm was used to test 
six potential polynomial functions, ranging from the linear (two 
coefficients/parameters) to the sextic function (with 7 
coefficients/parameters). Furthermore, six different classification 
models were trained, taking only the fitted curves' parameters as input. 
These models aimed to assess to what degree a model based solely on 
f0 curve features can correctly predict the five DM classes. The models 
were evaluated on a stratified 5-fold cross-validation set. Only one 
classification technique was used, the Linear Discriminant Analysis, 
which exhibited some of the best accuracy scores for the tasks carried 
out in this chapter, as shown further ahead. Furthermore, the number 
of observations in each class was balanced. This was done because the 
CNT class has almost double the size of other classes that tend to occur 
in fixed positions (CNT can occur in initial and final positions). Table 30 
shows the mean MSE value, the standard deviation of MSE values, and 
the mean accuracy score of the 5-fold cross-validation task: 
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Table 30 - Classification performance based on f0 curve coefficients 

Poly 
function 

Mean 
MSE 

STD 
MSE 

Mean 
Accuracy 

score 
Linear 0.67 2.65 0.48 
Quadratic 0.48 1.98 0.51 
Cubic 0.38 1.54 0.51 
Quartic 0.29 1.04 0.50 
Quintic 0.22 0.77 0.52 
Sextic 0.18 0.64 0.50 

 

Performance above 0.5 is achieved using all polynomial function 
coefficients of 2 or more degrees. The quadratic function would 
already exhibit satisfactory results. However, one of the goals of this 
work is to find the prototypical curves of each DM class. By inspecting 
the results of the fitted curves against the actual f0 data, we can see 
that the quadratic function (Figure 43) will oversimplify the data when 
we compare it against the cubic function (Figure 44). Figure 45 displays 
the fitted curve for the quartic function. 

 

Figure 43 - Fitted curve vs original data of the quadratic function 



 

 

 

194 

(Audio file bfamcv11_2) 

 
Figure 44 - Fitted curve vs original data of the cubic function (Audio file 

bfamcv11_2) 

 
Figure 45 - Fitted curve vs original data of the quartic function (Audio 
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file bfamcv11_2) 

 
In the examples above, the quartic function fits the original curve much 
better. However, if we check the accuracy score of the model that uses 
its parameters, we can observe that the quartic function leads to the 
second worst results among the tested functions. To avoid creating 
more parameters and, at the same time, oversimplifying the data, it 
was decided to use the coefficients of the cubic function. 

 To create a visualization of the prototypical curves, the data was 
split into the five DM classes and the curves were fitted to the resulting 
matrices using the cubic function. Figure 46 shows the resulting curves. 

 

Figure 46 - Prototypical f0 curves of each DM class using the cubic 
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function 

 
 

We can now look at the confusion matrix resulting from the LDA 
classification model taking as input only the coefficients of the cubic 
function in Figure 47. Note that this model has no information about 
the position of DM instances. 

 

Figure 47 - Confusion matrix for an LDA model using coefficients of the 
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cubic function 

 
As we can see, the best-performing class is ALL. As already mentioned 
in the previous chapter, this class has, in general, the most distinctive 
curve in terms of form and level. It starts to fall from the beginning, 
and it has the lowest f0 level of all forms. If we consider only f0 level, 
we can see that CNT, EXP and EVD have almost the same level. This 
can be checked on the descriptive statistics of mean f0 in Table 23 in 
the previous chapter. However, CNT has the most distinctive form, and 
this is reflected in the classification accuracy score of this class, which 
is the second best performing.  In third place, we have the EVD class. 
This class is generally not mixed with others but INP. This is because 
INP can have a slightly rising f0 curve, just as EVD. The DM's position 
and other parameters will play a crucial role in class distinction here. 
The distinction of EXP and INP on the base of f0 curves also represent 
a crucial problem. INP has a flat profile on the stressed vowel but when 
it has voiced segmental material before, it may display a rising profile. 
This will be translated into a curve similar to EXP. Many EXP and INP 
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instances can thus be easily confounded when taken in isolation and 
without phonemic information. In the next section, I put the f0 curve 
parameters together with the other features to analyze the 
performance of different baseline models. 

 

7.3 CHOOSING A CLASSIFICATION TECHNIQUE 

The last section dealt with models that only took into account f0 
features. From here, I begin by selecting a classification technique 
using all prosodic features. The baseline classifiers presented here will 
serve for the selection of a technique that will be used in the next steps 
of this work. At this point, the models are trained using the whole 
dataset. As a reminder, the dataset presents some imbalancedness, 
especially for the CNT class, which has as much as double the 
observations as the other classes (but can be found in two positions). 
The amount of data of the other classes ranges between 68 and 80 
observations (see Table 18). 

 

Table 31 - Number of observations and proportions per DM class 

Class Observations Proportion 
ALL 68 0.16 
CNT 139 0.32 
EVD 75 0.17 
EXP 69 0.16 
INP 80 0.19 

 

For training the models, a simple stratified train/evaluation split with 
the ratio (0.75/0.25) was adopted. Since the number of observations is 
limited, training was done on the whole train subset. 12 classification 
techniques were evaluated: Linear Discriminant Analysis (LDA), 
Quadratic Discriminant Analysis (QDA), K-Nearest Neighbors (KNN), 
Naïve Bayes (NBC), Random Forest (RFC), Gradient Boosting (GBC), 
Bagging (BAG), AdaBoost (ADA), Decision Tree (DTC), Support Vector 
Machine (SVC), Logistic Regression (LGC), and Multi-layer Perceptron 
(MLP). A basic description of these algorithms, as well as their pros and 
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cons are summarized below, based on Géron (2022) and on the 
documentation of Scikit-Learn (Pedregosa et al., 2011): 

 

LDA and QDA. Both methods try to find a combination of 
features that characterizes or separate two or more classes. LDA 
uses a linear whereas QDA uses a quadratic decision surface. 
Due to their intrinsic multiclass nature, quickly computed 
closed-form solutions, shown practical effectiveness, and lack of 
tuning hyperparameters, both approaches can be very effective 
and easy to handle. 

KNN. The K-Nearest Neighbors algorithm stores train data in 
vectors and then compares new data to stored data based on a 
selected metric – typically the Euclidean distance. KNN is simple 
to implement and handles multi-class tasks well with enough 
representative observations. On the other hand, its 
hyperparameter tuning can be more complicated (need to find 
k best value and best comparison metric), and computation is 
costly (it does not handle large datasets with too many features 
well). 

NBC. The Naïve Bayes is a simple algorithm that can effectively 
handle large datasets. It works especially well for text 
classification tasks like sentiment analysis and spam filtering. 
Naïve Bayes simplifies computation and reduces overfitting by 
assuming that characteristics are conditionally independent of 
the classes. For this reason, the algorithm performs effectively 
even with a small amount of training data. Because Naïve Bayes 
is resistant to irrelevant features, it is appropriate for high-
dimensional data25. Naïve Bayes assumes that features are 
independent, which is not the case in most real-case 
circumstances. In cases where the independence assumption is 
broken, this may result in less-than-ideal performances. Also, it 
may not capture intricate feature interactions. Compared to 

 

25 High-dimensional data are defined as data in which the number of features (parameters) 
is close to or larger than the number of observations. 
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more complex algorithms, this may reduce accuracy, particularly 
when working with highly correlated features. For Naïve Bayes 
to accurately estimate the class probabilities, adequate training 
data must be available.  

RFC. Random Forest is an ensemble learning technique26 that 
combines several decision trees to provide predictions. It is 
appropriate for various classification tasks due to its strong 
accuracy and resilience against overfitting. Random Forest can 
handle numerical and categorical features without requiring a 
lot of data preprocessing. Additionally, it has good handling 
power for outliers and missing values. By offering feature 
importance measures, Random Forest helps users comprehend 
the relative significance of various aspects throughout the 
classification process. This can help with feature selection and 
prediction interpretation. On the other hand, this algorithm can 
be computationally costly, particularly when working with big 
datasets or an ensemble of several trees. Training and 
evaluation times could go up a lot. Predictions can be biased as 
a result of its tendency to favor the majority class, and RFC may 
not work well for imbalanced data. When compared to 
individual decision trees, Random Forest can be challenging to 
interpret since its ensemble nature makes it difficult to 
comprehend the underlying decision-making process. 

GBC. Using a series of weak learners27, usually decision trees, 
the Gradient Boost Classifier is an ensemble learning algorithm 
that generally exhibits a powerful predictive capacity. It has a 
reputation for being very accurate and capable of handling 
complicated datasets. Gradient Boosting is flexible for handling 
a variety of data types (numerical and categorical features). Due 

 

26 A technique that creates an ensemble of submodels and/or multiple subsets of the data 
under the hood. The base estimators can vary depending on the algorithm. Random Forest, 
for instance, always use Decision Trees. 

27 Win ensemble learning, weak learners are submodels that perform better than random 
guesses, whereas strong learners exhibit good accuracy scores. 
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to its ability to give minority classes greater weights, it also 
performs well on datasets that are imbalanced. By offering 
feature importance metrics, gradient boosting enables users to 
comprehend the relative significance of several characteristics 
throughout the classification process. This can help with model 
interpretation and feature selection. Gradient boosting can be 
costly and time-consuming in terms of computation, 
particularly when working with big datasets or a lot of weak 
learners. To avoid overfitting and attain peak performance, 
hyperparameters like learning rate and tree depth must be 
optimized. Because gradient boosting can easily pick up noise 
and outliers, it may not work well on noisy or sparse datasets. 
In these situations, data pretreatment and feature selection are 
essential to enhancing performance. 

BAG. The Bagging Classifier is also an ensemble learning 
technique that generates predictions by combining several base 
estimators (models). Different from Random Forest, the base 
estimator must be chosen by the user. By lowering variance and 
overfitting, it helps raise the model's overall stability and 
accuracy. Bagging can handle both numerical and categorical 
features. Additionally, it has good handling power for outliers 
and missing values. Large datasets can benefit from bagging 
because it is parallelizable and computationally efficient. Also, it 
can offer class probability estimates, enabling more complex 
predictions. Bagging does not work well with imbalanced 
datasets, and its predictions are biased due to its tendency to 
favor the majority class. Individual base classifiers are easier to 
understand than bagged data. The algorithm's ensemble nature 
makes it difficult to comprehend the underlying decision-
making process. High-dimensional data might not be good 
candidates for bagging. It may result in overfitting and in 
increased computational complexity. 

ADA. AdaBoost Classifier is another ensemble technique that 
joins several weak learners, usually decision trees, to produce a 
powerful predictive model. The base estimator must also be 
tweaked by the user. It is reputed for being very accurate and 
capable of handling complicated datasets. AdaBoost is 
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especially good at managing imbalanced datasets because it 
lets the model concentrate on the minority class. It can handle 
both numerical and categorical features. It also offers feature 
importance measurements, making interpretation easier. 
AdaBoost is susceptible to noisy data and outliers, which could 
result in overfitting. This technique can be costly and time-
consuming in terms of computation, particularly when working 
with big datasets or a large number of weak learners. If the weak 
learners are overly complex or prone to overfitting, AdaBoost 
could not work effectively. Selecting suitable weak learners and 
fine-tuning hyperparameters are crucial in avoiding overfitting 
and attaining peak efficiency. 

DTC. The Decision Tree Classifier is an easy-to-interpret 
technique that efficiently manages numerical and categorical 
features. It is appropriate for complicated datasets because it 
can manage non-linear interactions between features and the 
target variable. Decision trees do not need a lot of data 
preprocessing to handle outliers and missing values. Overfitting 
is a common problem with decision trees, particularly when the 
tree grows too intricate or deep. Small changes in the data may 
cause decision trees to react differently, resulting in various tree 
architectures and possibly different predictions. Due to their 
propensity to favor the majority class and inability to reliably 
anticipate the minority class, decision trees may not perform 
well on imbalanced data. 

SVC. Support Vector Machines is a technique that maximizes 
the margin between classes to identify the ideal hyperplane for 
dividing the data. SVM works well when there are more features 
than observations (high-dimensional data). By utilizing kernel 
functions, it may also manage non-linear interactions between 
features. Some of SVM's drawbacks include its sensitivity to the 
selection of the kernel function and hyperparameters. 
Computational costs may also be high, particularly for huge 
datasets. 

LRC. Logistic Regression is an algorithm for binary classification 
problems. It uses a logistic function to model the relationship 
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between the features and the probability of pertaining to a 
specific class. Logistic Regression excels in handling huge 
datasets. The findings are also interpretable because the 
coefficients may be utilized to comprehend how each feature 
affects the estimated probability. On the other hand, the 
algorithm assumes a linear relationship between the target log-
odds and the features. If the relation is non-linear, it might not 
function well. Moreover, it is susceptible to outliers when there 
is multicollinearity among features. These problems can be 
lessened with regularization techniques like L1 or L2 
regularization. 

MLP. A simple Feed-forward Neural Network Classifier 
consisting of at least input, hidden, and output layers that 
process data in a forward direction. It can model complex non-
linear relationships and is widely used in image and speech 
recognition applications. However, it requires a large amount of 
data to train effectively and can be prone to overfitting without 
proper regularization. 

 

SVM and Logistic regression models are classifiers specialized in 
binomial classifications. In the Sci-kit learn package, if these models 
receive multiclass data, they adopt a One-Vs-Rest classification 
strategy by default. This strategy is characterized by building multiple 
models that make binomial classifications sequentially. 

Table 32, below, exhibits the classification report of each 
classifier. The classification report contains metrics of precision, recall, 
f1-score, micro-accuracy/f1-score, macro-accuracy/f1-score, and 
average accuracy/f1-score. These metrics are presented below: 

 

Equation 8 - Precision 

𝑃𝑃𝑃𝑃𝑀𝑀𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

 

Where, 
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TP is the number of True Positives; and 

FP is the number of False Positives. 

 

Recall measures, of all CNT in the dataset, how many of them the 
model predicted as CNT.  

 

Equation 9 - Recall 

𝑅𝑅𝑀𝑀𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

 

Where, 

TP is the number of True Positives; and 

FN is the number of False Negatives. 

The f1-score is the harmonic mean of precision and recall, calculated 
as 

 

Equation 10 - F1-score 

F1 𝑃𝑃𝑐𝑐𝑙𝑙𝑃𝑃𝑀𝑀 = 2 ∗
𝑃𝑃𝑃𝑃𝑀𝑀𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 ∗ 𝑅𝑅𝑀𝑀𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙
𝑃𝑃𝑃𝑃𝑀𝑀𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 + 𝑅𝑅𝑀𝑀𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙

 

 

In multi-class classification, f1-scores are calculated for each class in a 
One-vs-Rest (OvR) approach instead of a single overall f1-score, as for 
binary classification. The micro-accuracy and the micro f1-score are the 
proportions of correctly classified observations out of all observations. 
The accuracy score is simply the number of correct predictions divided 
by the number of observations of each class in the support (number of 
evaluated instances). The number is the same for the global accuracy 
and the f1-score, presented in the merged line. In their turn, the macro 
averages are the arithmetic mean either of the accuracy score or the 
f1-score. Finally, the weighted averages are calculated by taking the 
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means of all classes weighted by each class’s support. The focus is on 
the global accuracies (accuracy in the merged lines). 

 

Table 32 - Classification report of different classifiers 

MODEL / 
TECHNIQUE CLASS PRECISION RECALL F1-

SCORE SUPPORT 

LD
A 

ALL 0.86 0.71 0.77 17 
CNT 0.79 0.63 0.70 35 
EVD 0.70 0.84 0.76 19 
EXP 0.62 0.76 0.68 17 
INP 0.59 0.65 0.62 20 

accuracy 0.70 
macro avg 0.71 0.72 0.71 108 

weighted avg 0.72 0.70 0.70 108 

Q
D

A 

ALL 0.53 0.53 0.53 17 
CNT 0.43 0.46 0.44 35 
EVD 0.86 0.63 0.73 19 
EXP 0.56 0.53 0.55 17 
INP 0.46 0.55 0.50 20 

accuracy 0.53 
macro avg 0.57 0.54 0.55 108 

weighted avg 0.55 0.53 0.53 108 

KN
N

 

ALL 0.67 0.59 0.63 17 
CNT 0.70 0.66 0.68 35 
EVD 0.65 0.68 0.67 19 
EXP 0.48 0.65 0.55 17 
INP 0.59 0.50 0.54 20 

accuracy 0.62 
macro avg 0.62 0.62 0.61 108 

weighted avg 0.63 0.62 0.62 108 

N
BC

 

ALL 0.56 0.29 0.38 17 
CNT 0.52 0.46 0.48 35 
EVD 0.68 0.79 0.73 19 
EXP 0.50 0.71 0.59 17 
INP 0.45 0.50 0.48 20 

accuracy 0.54 
macro avg 0.54 0.55 0.53 108 
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MODEL / 
TECHNIQUE CLASS PRECISION RECALL F1-

SCORE SUPPORT 

weighted avg 0.54 0.54 0.53 108 
RF

C 
ALL 0.83 0.59 0.69 17 
CNT 0.67 0.83 0.74 35 
EVD 0.75 0.79 0.77 19 
EXP 0.47 0.53 0.50 17 
INP 0.50 0.35 0.41 20 

accuracy 0.65 
macro avg 0.65 0.62 0.62 108 

weighted avg 0.65 0.65 0.64 108 

G
BC

 

ALL 0.92 0.71 0.80 17 
CNT 0.69 0.83 0.75 35 
EVD 0.72 0.68 0.70 19 
EXP 0.53 0.59 0.56 17 
INP 0.50 0.40 0.44 20 

accuracy 0.67 
macro avg 0.67 0.64 0.65 108 

weighted avg 0.67 0.67 0.66 108 

BA
G

 

ALL 0.91 0.59 0.71 17 
CNT 0.74 0.83 0.78 35 
EVD 0.81 0.89 0.85 19 
EXP 0.61 0.82 0.70 17 
INP 0.64 0.45 0.53 20 

accuracy 0.73 
macro avg 0.74 0.72 0.72 108 

weighted avg 0.74 0.73 0.72 108 

AD
A 

ALL 0.00 0.00 0.00 17 
CNT 0.64 0.80 0.71 35 
EVD 0.67 0.95 0.78 19 
EXP 0.47 0.88 0.61 17 
INP 0.40 0.10 0.16 20 

accuracy 0.58 
macro avg 0.43 0.55 0.45 108 

weighted avg 0.47 0.58 0.49 108 

D
TC

 ALL 0.65 0.65 0.65 17 
CNT 0.74 0.66 0.70 35 
EVD 0.74 0.74 0.74 19 
EXP 0.62 0.76 0.68 17 



 

 

 

207 

MODEL / 
TECHNIQUE CLASS PRECISION RECALL F1-

SCORE SUPPORT 

INP 0.45 0.45 0.45 20 
accuracy 0.65 

macro avg 0.64 0.65 0.64 108 
weighted avg 0.65 0.65 0.65 108 

SV
C 

ALL 0.88 0.41 0.56 17 
CNT 0.68 0.77 0.72 35 
EVD 0.60 0.63 0.62 19 
EXP 0.47 0.47 0.47 17 
INP 0.43 0.50 0.47 20 

accuracy 0.59 
macro avg 0.61 0.56 0.57 108 

weighted avg 0.62 0.59 0.59 108 

LG
C 

ALL 0.83 0.59 0.69 17 
CNT 0.74 0.74 0.74 35 
EVD 0.70 0.74 0.72 19 
EXP 0.50 0.53 0.51 17 
INP 0.52 0.60 0.56 20 

accuracy 0.66 
macro avg 0.66 0.64 0.64 108 

weighted avg 0.67 0.66 0.66 108 

M
LP

 

ALL 0.90 0.53 0.67 17 
CNT 0.72 0.74 0.73 35 
EVD 0.76 0.84 0.80 19 
EXP 0.50 0.53 0.51 17 
INP 0.52 0.60 0.56 20 

accuracy 0.67 
macro avg 0.68 0.65 0.65 108 

weighted avg 0.69 0.67 0.67 108 
 

The models exhibiting the best overall performances are in descending 
order the Bagging classifier (0.73), the LDA model (0.70) and the MLP 
model (0.67), as measured by the micro-averaged f1-score. Because it 
is easier to hyperparameter tune while showing good results, the LDA 
model was selected for the next steps of this work: balancing the data, 
conducting a feature selection, and training and evaluating an overall 
model with more robust evaluation techniques (stratified k-fold and 
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Leave-One-Out cross-validation sets). 

 

7.4 FEATURE SELECTION WITH LEAPS AND BOUNDS 

Feature selection is the deployment of algorithms to reduce the 
dimensionality of data and improve model performance. There are 
many reasons why a feature selection algorithm can be used. They can 
make the model simpler and faster to run. They may improve 
performance by removing irrelevant features and thus making the data 
more compatible with the modelling technique. They can be used to 
avoid the curse of dimensionality28. More importantly for this research, 
feature selection can be used to show which of them are more 
mobilized to predict target classes, thus helping understand the 
model. 

To carry out this task, the Leaps and Bounds algorithm (Furnival 
& Wilson, 1974, implemented in R by Lumley & Miller, 2004) was used. 
This algorithm was used in Gobbo (2019) for a 3-class classification 
model with good results. The primary purpose of the Leaps and 
Bounds algorithm is to explore subsets of features so as to identify the 
best combination for building a regression model. The algorithm is 
particularly useful when the number of potential features is high, thus 
making computationally expensive or impractical to test all possible 
combinations. 30 features would result in 230 different models to be 
evaluated, which is not a reasonable solution. 

The Leaps and Bounds algorithm works by making leaps 
(Forward Selection). It starts with an empty set of predictor features. At 
each step, it adds the features that results in the highest improvement 
in model fit until a predetermined stopping criterion is reached. The 
algorithm continues this procedure until the stopping criterion is met. 
Then, the algorithm bounds (Backward Elimination). It starts with the 
full set of predictor features. At each step, it removes the feature that 
has the least impact on the model fit and continues until the stopping 

 

28 Increasing the number of features in a problem entails exponentially increasing the 
number of observations for the model to be reliable (Bellman et al., 1957).   
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criterion is met. The Leaps and Bounds algorithm allow for an efficient 
exploration of the feature space, providing a good compromise 
between the forward selection and backward elimination methods. The 
subset of features that yields the best fit according to a specified 
criterion (e.g., adjusted R-squared, AIC, BIC) is then picked as the final 
model. While the Leaps and Bounds algorithm was proposed in the 
context of linear regression, similar concepts and principles can be 
extended to other regression techniques. This is the case with the 
Linear Discriminant Analysis (LDA). In R, the leaps package provides a 
function called regsubsets() that implements the leaps and bounds 
feature selection method. 

The same procedure followed in Gobbo (2019) was adopted 
here. However, I evaluate the models on an overall 5-class and a One-
Vs-Rest approach. The selection criteria for models of different sizes 
was the Mean Square Error (MSE) in prediction, as given by Mallow’s 
Cp statistic (Mallows, 1973; 2000). In statistics, Mallows's Cp is used to 
evaluate the fit of regression models. It is applied in the context of 
feature selection, where many features are available for predicting 
some outcome. Smaller Cp values, typically between 0 and 1, indicate 
that the model is relatively precise. 

The script used for this purpose was implemented by Gobbo 
(2019). It uses the regsubset() function from the leaps package. This 
function finds the best models for each number of parameters. The 
function was set to use all features available and 431 DM instances and 
search for a maximum of 60 best combinations chosen from all 
possible subsets of features. This resulted in 1679 combinations. The 
number 60 was arbitrarily chosen as large enough without excessive 
computational cost. This number was tested by Gobbo (2019) with 
meaningful results. 

 

7.4.1 Global model 

I begin with the global model (for the 5 DM classes). Figure 48 below 
shows Cp values for the 60 best combinations of features as a function 
of the number of parameters for all the combinations chosen by Leaps 
and Bounds: 
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Figure 48 - Estimation of MSE (Cp) for the 60 best combinations of 
features 

 
The lowest Cp value suggests a number of 15 features for the best 
model. The number of times each feature was selected in the 1679 
models was calculated. Figure 49 shows the results. We can observe 
that the 15 most selected parameter were, in descending order: 

 

1. the alignment f0 peak inside the DM instance 

2. mean relative intensity in the stressed vowel 

3. relative DM duration, 

4. f0 slope in the stressed vowel 

5. 3rd f0 curve coefficient 

6. alignment of f0 valley inside the DM instance 

7. the 2nd f0 curve coefficient 

8. f0 slope in the whole DM instance 

9. Alignment of max intensity with respect to the stressed vowel 

10. Alignment of min intensity with respect to the stressed vowel 

11. Standardized duration of the stressed syllable 
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12. 1st coefficient of the f0 curve 

13. Alignment of min f0 inside the DM instance 

14. 4th coefficient of the f0 curve 

15. Alignment of min intensity inside the DM instance 

 

Figure 49 - Number of times each feature was selected among best 
combinations (%) 

 
Each of the 1679 selected feature combinations was modeled using 
the LDA function from the Mass R package (Venables & Ripley, 2010). 
The LDA works by finding the linear combinations of features that best 
separate the classes. It maximizes the ratio of the between-class 
variance to the within-class variance to reduce data dimensionality 
while keeping class differences. LDA models take on two main 
assumptions. The first one is that the data within each class has a 
Gaussian distribution. The second one is that the classes have the same 
covariance matrix. As shown in the previous chapter, these 
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assumptions should not be met for our data, given that not all feature 
distributions are normal. However, LDA is known for exhibiting good 
performance results even when these assumptions are unmet. As a 
matter of fact, these assumptions are seldom met in the wild. Figure 
50 shows the results of the best models for each number of features: 

 

Figure 50 - Overall accuracy and max accuracy score as a function of 
number of features 

 
 

The first observation is that, at this stage, the accuracy score is 
measuring not the models’ generalization capability but the goodness 
of fitness, i.e., how well the models fit the data. This means that each 
model was trained on the whole dataset and tested on the whole 
dataset. Models with more robust generalization power, using 
stratified k-fold and Leave-One-Out cross-validation sets, are 
evaluated further ahead.  

Some observations are noteworthy. First of all, the overall 
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model’s goodness of fit starts to stabilize (around 0.7 accuracy score) 
approximately from 13 n features on. This is in line with Mallow’s Cp 
stat results, which indicated an optimal number of features around 15 
(See Figure 48). However, the number of features needed for each class 
in the overall model vary a lot. The CNT class needs only two features. 
The INP class achieves a good fit with approximately three features. To 
achieve almost 0.88, the EXP needs only five features. The EVD class 
needs around 8 features to stabilize, and the ALL class needs around 7 
features. The overall model needing 15, it is most likely that the 
features mobilized by each class are not always the same. This is 
checked in the following subsections. 

 Figure 51 below shows the LDA plot of the model using the 15 
most selected features. An LDA plot is typically used to show the 
separation between classes in a four-dimensional space visually. Each 
axis corresponds to one of the four discriminant functions, which are 
linear combinations of the original features. The plot shows how well 
the classes are distinguished based on these linear combinations. It 
helps identify patterns and relationships in the data and showcase the 
effectiveness of LDA model in reducing dimensionality while 
preserving class-related information. Here, each class is shown with its 
label and a different color. We can see, for instance, that the least 
separated classes are overall EXP and INP. The most separable class, 
on the other hand, is ALL, a result that is in line with the results of the 
LDA model that took as input only the f0 curve coefficients. 
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Figure 51 - LDA plot for 15 features 

 
Table 33 displays the coefficients of the LDA. They stand for the 
weights assigned to input features projections onto the discriminant 
axes. The bigger the absolute value, the larger the effect on class 
separation. The sign of the coefficient (positive/negative) indicates the 
directionality of the feature's influence on class separation in the linear 
combination defined by the LDA. At the bottom of the table, the 
proportions of trace are also presented for each Linear Disciminant 
(LD). They refer to the eigenvalues of the covariance matrix, which 
represents the amount of variance explained by each LD. 

 

Table 33 - Coefficients of discriminative functions 

Feature LD1 LD2 LD3 LD4 
coef_1 2.642 1.003 1.768 0.720 
coef_2 1.828 -0.074 0.370 -0.807 
ratio_min_f0_stressed_dm 1.138 0.821 0.830 2.422 
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Feature LD1 LD2 LD3 LD4 
coef_0 1.084 0.912 1.259 1.391 
ratio_max_f0_dm 0.775 0.628 0.457 -1.078 
zsil_stressed_syl 0.665 -2.722 0.687 1.374 
mean_intensity_stressed_dm 0.599 0.075 0.298 0.428 
pitch_slope_stressed_dm 0.403 0.373 0.950 0.048 
coef_3 0.371 -0.070 -0.484 -0.250 
mean_pitch_dm 0.303 0.320 -0.404 -0.189 
ratio_max_intensity_dm 0.256 -0.137 -0.157 0.079 
ratio_min_intensity_dm 0.203 0.021 0.017 1.061 
mean_intensity_dm 0.069 -0.248 -0.072 0.341 
pitch_slope_after_stressed_dm 0.010 0.036 -0.248 0.109 
ratio_max_f0_stressed_dm -0.006 -1.970 -1.237 4.276 
std_intensity_dm -0.058 -0.650 0.144 -0.579 
mean_se_stressed_dm -0.067 -0.293 0.150 -0.179 
std_pitch_dm -0.108 -0.127 0.257 -1.027 
max_pitch_dm -0.183 -0.108 0.344 0.652 
max_intensity_dm -0.247 0.004 -0.171 0.104 
min_intensity_dm -0.249 -0.559 0.273 -0.887 
min_pitch_dm -0.293 -0.460 0.205 -0.635 
ratio_max_intensity_stressed_dm -0.362 0.124 0.757 -1.127 
ratio_min_f0_dm -0.390 -0.359 -0.481 -0.839 
zsil_mean -0.412 2.810 -0.986 -1.746 
pitch_slope_dm -0.468 -0.229 -0.752 0.153 
ratio_min_intensity_stressed_dm -0.581 0.255 0.156 -5.430 
dm_duration -0.667 -0.071 0.739 -0.095 

  
PROPORTION OF TRACE 0.464 0.328 0.150 0.058 

 

Together, LD1 and LD2 accounts for the 77% of the variance between 
classes. The 14 features with the most impact over each LD are 
indicated in red. For LD1, f0 curve coefficients, as well as relative 
duration and alignment of min intensity with respect to the stressed 
vowel play the most relevant roles. For LD2, mean syllabic duration and 
syllabic duration of the stressed syllable have the biggest impact. LD3 
also has a non-negligeable impact on separating classes. The most 
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relevant features are curve coefficients and alignment of max f0 with 
respect to the stressed syllable. 

 Finally, Table 34 and Table 35 display, respectively, the 
confusion matrix and performance metrics by class for the 15-feature 
overall model. It is possible to see that the most separable classes are 
ALL and EVD, and the least EXP and INP. 

 

Table 34 - Confusion matrix - Overall model 

 
Observation Ratio 

ALL CNT EVD EXP INP ALL CNT EVD EXP INP 

ALL 

Tr
ue

 la
be

l 

53 14 0 0 0 0.791 0.209 0.000 0.000 0.000 

CNT 8 101 9 5 21 0.056 0.701 0.063 0.035 0.146 

EVD 4 4 58 6 3 0.053 0.053 0.773 0.080 0.040 

EXP 3 8 5 47 15 0.038 0.103 0.064 0.603 0.192 

INP 0 12 3 11 41 0.000 0.179 0.045 0.164 0.612 

 Prediction 

 

Table 35 - Performance metrics by class for the overall model 

METRIC ALL CNT EVD EXP INP 
Sensitivity 0.78 0.73 0.77 0.68 0.51 
Specificity 0.96 0.85 0.95 0.91 0.93 
Pos Pred Value 0.79 0.70 0.77 0.60 0.61 
Neg Pred Value 0.96 0.87 0.95 0.94 0.89 
Prevalence 0.16 0.32 0.17 0.16 0.19 
Detection Rate 0.12 0.23 0.13 0.11 0.10 
Detection Prevalence 0.16 0.33 0.17 0.18 0.16 
Balanced Accuracy 0.87 0.79 0.86 0.80 0.72 

 

7.4.2 ALL Against OTHERS 

In this and the following subsections, I tested the same feature 
selection procedure with models trained to classify only two classes: a 
target class (here, ALL) and the label OTHER. To do that, all the 
observations from the target class were selected, and the other labels 
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were labeled as OTHER. This caused the classes to be highly 
imbalanced. I first tried to balance the data by selecting the same 
number of observations of OTHERS and the target DM class. This has 
proved better in terms of goodness of fit, but the resulting models 
were way too dependent on the observations randomly picked from 
the whole dataset. Setting different seeds might result in different 
features being selected as the most important. Moreover, the balanced 
subset would not reflect the decision-making process of the overall 5-
class model. To remedy the imbalancedness, the best models were 
selected not by their global accuracy score but by the f1-score, which 
is a robust metric for imbalanced data. The goal was to find what 
features are more frequently used by the model when one class is 
checked against the others, as well as the optimal number of features. 
They are probably the best candidates to distinguish the target class 
from the others. This is useful, especially considering that the number 
of features necessary to achieve the best fit differs from class to class, 
as seen in Figure 49. In addition to the LDA models, a Decision Tree 
(DT) model (R rpart package - Therneau et al., 2015) was run using the 
same features selected by the LDA feature selection evaluation. The 
respective DT plot was also generated. A DT plot is a visual 
representation of the decision-making process of a model, making it 
useful for feature selection by highlighting the features that contribute 
significantly to the model's performance. The Cp statistic, the most 
selected features, and the DT plot are provided for each one-vs-others 
model. 

 The Cp statistic indicates the number of features that will 
achieve the best fit for the ALL-vs-OTHERS model, which should be 
around 13. This is shown in Figure 52. The features selected most 
frequently are, in their turn, shown in Figure 53. 
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Figure 52 - Cp statistic (ALL vs OTHERS) 
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Figure 53 - Most selected features (ALL vs OTHERS) 

 
 

The model with the best f1-score fit only needs exactly 13 features. 
They are namely: 

 

a) Min intensity; 

b) Mean intensity in the stressed vowel; 

c) F0 slope in the whole DM instance; 

d) F0 range; 

e) F0 slope 

f) Alignment of max intensity; 

g) Alignment of max f0; 
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h) Alignment of max f0 with respect to the stressed vowel; 

i) Mean syllabic duration; 

j) Relative duration; 

k) Second, third, and fourth f0 curve coefficients; 

 

Notice that the best model will not necessarily have the optimal 
number of features indicated by the Cp statistic. It is also noteworthy 
that ALL selects almost all f0 curve coefficients. This was foreseeable 
since this is the DM class with the most distinctive curve, as seen in 
part 7.2. Curve fitting: ALL achieved the best classification scores based 
solely on the f0 curve. The model also selects intensity, duration, and 
f0 slope parameters as important predictors. ALL is the unit with the 
highest mean intensity; it is longer than EVD and CNT (which also occur 
in final positions), and it has a negative slope in pre-stressed syllables 
(when they exist). The DT plot in Figure 54 allows the visualization of 
the most important parts of the decision-making process. 
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Figure 54 - Decision Tree plot (ALL vs OTHERS) 

 
Here, max f0 should be aligned as closest as possible to the initial 
boundary - f0 curve falling right from the start of the DM instance. DM 
duration is also important since ALL is longer than CNT and EVD. This 
is followed by the min intensity feature and the third f0 curve 
coefficient (coef_2). ALL exhibits the lowest intensity levels and the 
most distinctive f0 curve, as seen in Table 20. Table 36 displays the fit 
of the ALL-vs-OTHERS models. 
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Table 36 - Model fit (ALL vs OTHERS) 

Metric LDA DTC 
Accuracy 0.93 0.93 
Avg accuracy 0.85 0.83 
F1-score 0.78 0.75 

 

 

7.4.3 CNT against OTHERS 

Figure 55 and Figure 56 display the Cp statistic and the most selected 
features considering all evaluated CNT-vs-OTHERS models. 

 

Figure 55 - Cp statistic (CNT vs OTHERS) 

 



 

 

 

223 

 

 

Figure 56 - Most selected features (CNT vs OTHERS) 

 
 

The Cp statistic indicates that the optimal number of features should 
be around 15. The best accuracy is however obtained with 21 features. 
They are namely: 

 

a) Mean f0; 

b) Min f0;  

c) Intensity standard deviation; 

d) Min intensity; 
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e) Mean intensity in the stressed vowel; 

f) Mean spectral emphasis; 

g) F0 slope on the DM instance; 

h) F0 slope in the stressed vowel; 

i) F0 slope before the stressed vowel; 

j) F0 slope after the stressed vowel; 

k) Alignment of max intensity; 

l) Alignment of min intensity; 

m) Alignment of min intensity with respect to the stressed vowel; 

n) Alignment of max f0; 

o) Alignment of min f0; 

p) Alignment of min f0 with respect to the stressed vowel; 

q) Mean syllabic duration; 

r) Relative duration; 

s) Third, second and fourth f0 curve coefficients; 

 

The importance of these features can be observed in Figure 57. Here, 
a distinctive feature is the f0 slope in the stressed syllable. Indeed, CNT 
proved to have the highest f0 slope. While other units are 
characterized by rising and flat f0 movements, only ALL and CNT have 
sharply falling movements within the stressed vowel. The difference 
between these two units seems to be in the mean f0 level. As 
aforementioned, ALL has the lowest f0 level. This is not reflected in the 
DT plot, but the parameters of intensity alignment may play an 
important role in the distinction between these two units. 
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Figure 57 - Decision Tree plot (CNT vs OTHERS) 

 
Table 37 below shows the fit of the best ALL-vs-OTHERS models. 

 

Table 37 - Model fit (CNT vs OTHERS) 

Metric LDA DTC 
Accuracy 0.84 0.88 
Avg 
accuracy 0.8 0.86 
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Metric LDA DTC 
F1-score 0.73 0.82 

 

 

7.4.4 EVD against OTHERS 

Figure 58 and Figure 59 presents the Cp statistic and the most selected 
features by all EVD-vs-OTHERS models: 

 

Figure 58 - Cp statistic (EVD vs OTHERS) 
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Figure 59 - Most selected features (EVD vs OTHERS) 

 

 

The Cp statistic suggests that the best fit should be around 13 features. 
However, the best LDA model selects 21 features. They are namely: 

 

a) Mean f0; 

b) F0 standard deviation;  

c) Max f0; 

d) Min f0; 

e) Intensity standard deviation;  

f) Max intensity; 

g) Min intensity; 

h) Spectral emphasis in the stressed vowel; 

i) F0 slope in the stressed vowel; 
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j) F0 slope before the stressed vowel; 

k) F0 slope after the stressed vowel; 

l) Alignment of min intensity with respect to the stressed vowel; 

m) Alignment of max f0; 

n) Alignment of min f0; 

o) Alignment of max f0 with respect to the stressed vowel; 

p) Alignment of min f0 with respect to the stressed vowel; 

q) Mean syllabic duration; 

r) Relative duration; 

s) Second, third and fourth f0 curve coefficients; 

 

Against CNT and ALL, which also occur in the final position, EVD 
presents a rising f0 curve, with alignment of min and max f0 
respectively at the beginning and at the end of the DM instance. 
Furthermore, these alignments tend to occur closer to the boundaries 
(opposite of CNT). The mean f0 level is also important to distinguish 
EVD from ALL. The former has a higher level, and the latter has the 
lowest f0 level. Figure 60 allows us to see that the parameters of 
alignment as well as the parameters of f0 slope in the stressed vowel 
play the most important role in the classification of EVD against other 
DM classes: 
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Figure 60 - Decision Tree plot (EVD vs OTHERS) 

 
Table 38 exhibits the fits of the best EVD-vs-OTHERS models: 

 

Table 38 - Model fit (EVD vs OTHERS) 

Metric LDA DTC 
Accuracy 0.93 0.94 
Avg 
accuracy 0.85 0.91 

F1-score 0.79 0.84 
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7.4.5 EXP against OTHERS 

Figure 61 and Figure 62 show the Cp statistic and the most selected 
features for the EXP-vs-OTHERS models. 

 

Figure 61 - Cp statistic (EXP vs OTHERS) 
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Figure 62 - Most selected features (EXP vs OTHERS) 

 
 

The Cp statistic indicates that the optimal number should be met with 
12 features. Again, the Cp value does not reach a value between 0 and 
1. The best fit is also achieved with an exceptionally high number of 
features: 

 

a) F0 standard-deviation; 

b) Max f0; 

c) Intensity standard-deviation; 

d) Max intensity; 

e) Min intensity; 

f) Mean intensity in the stressed vowel; 
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g) Spectral emphasis in the stressed vowel; 

h) F0 slope; 

i) F0 slope in the stressed vowel; 

j) F0 range; 

k) F0 slope after the stressed vowel; 

l) Alignment of min intensity; 

m) Alignment of max intensity with respect to the stressed vowel; 

n) Alignment of min intensity with respect to the stressed vowel; 

o) Alignment of max f0; 

p) Alignment of min f0; 

q) Alignment of max f0 with respect to the stressed vowel; 

r) Relative duration; 

s) First, second, third and fourth f0 curve coefficients. 

 

The DT plot (Figure 63) helps explain what seem to be the most 
important features. Here, the first and most important one is the 
alignment of max f0 with respect to the stressed vowel. Values greater 
than 0 indicate that the max f0 point occurs after the central point of 
the stressed vowel, which is precisely what should happen with a unit 
that displays a rising f0 movement. The relative duration also plays an 
important role. As seen in the previous chapter, EXP tends to be the 
longest DM class. Furthermore, f0 slope in the stressed vowel reflects 
EXP’s rising movement. This is also one of the most important features. 
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Figure 63 - Decision Tree plot (EXP vs OTHERS) 

 
Table 39 shows the fit of the best EXP-vs-OTHERS models: 

 

Table 39 - Model fit (EXP vs OTHERS) 

Metric LDA DTC 
Accuracy 0.9 0.94 
Avg 
accuracy 0.77 0.89 
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Metric LDA DTC 
F1-score 0.66 0.82 

 

 

7.4.6 INP against OTHERS 

Finally, Figure 64 and Figure 65 shows the Cp statistic and the most 
selected features of the INP-vs-OTHERS models. The Cp statistic 
reaches a value between 0 and 1 around 14 parameters: 

 

Figure 64 - Cp statistic (INP vs OTHERS) 
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Figure 65 - Most selected features (INP vs OTHERS) 

 
The LDA model with the best fit also selects many features (16). 
However, this model’s performance is equivalent to random guessing. 
Its f1-score is 0.5, as shown in Table 40. On the other hand, the DT 
model using the selected features displays an f1-score of 0.73. The 
most important features of this model are shown in Figure 66. Here, 
some combinations of features seem to be important. First, higher 
levels of mean intensity with a shorter f0 range in the stressed vowel 
combine with an f0 slope in the stressed vowel that should not surpass 
-1.5. Second, short relative duration combines with an f0 slope in the 
stressed vowel that should be greater than 3.7. The alignment of min 
f0 also seems to play an important role in the distinction. Interestingly, 
INP displays the most variability in terms of the f0 curve. It tends to 
display the flattest f0 movement in the stressed vowel, but it can be 
accompanied by rising and falling movements depending on the 
segments present before and after the stressed vowels. Since other DM 
classes in the same position can exhibit similar movements, the task of 
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classifying INP based on f0 shape can become more complicated. 

 

Figure 66 - Decision Tree (INP vs OTHERS) 

 
Table 40 shows the fit for the best INP-vs-OTHERS models. 
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Table 40 - Model fit (INP vs OTHERS) 

Metric LDA DTC 
Accuracy 0.86 0.9 
Avg accuracy 0.67 0.82 
F1-score 0.5 0.73 

 

 

7.4.7 Global model with Select K Best  

Gobbo (2019) observed that as few as 9 features could be used to 
achieve a good model fit. The author’s classification model took as 
input three DM classes, ALL, CNT, and INP, making up a total of 156 
observations. In this dataset, INP always occurred in final position, CNT 
mostly in initial and final position, and ALL always in final position.  The 
selected parameters were intensity, minimum intensity, alignment of 
min intensity, mean f0, alignment of maximum f0, f0 slope in the 
stressed syllable, number of syllables and raw duration. The accuracy 
score (goodness of fit) reached 84.6%. The best model seems to be a 
bit more intricate and convolute in our data. At some point, all features 
were selected by one of the models. I tried another feature selection 
approach using a different evaluation strategy to double-check the 
results shown in the previous subsections. The SelectKBest algorithm 
from Scikit-Learn (Pedregosa et al., 2011) removes all but the k features 
with the highest scores based on a specified statistical test or scoring 
function. Here, the F-statistic was used (f_classif method in Scikit-
Learn). A stratified 10-fold cross-validation set was used to evaluate 
the best models. The average accuracy scores and f1-score were 
calculated from each fold. The results are shown in Figure 67: 

 

Figure 67 - F1-score and accuracy score as a function of number of 
features resulting from the SelectKBest algorithm using a stratified 10-
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fold cross-validation set 

 
 

The results are quite consistent with the Leaps and Bounds approach. 
Increasing the number of features improves the model’s performance. 
However, this improvement is much less noticeable from k=4 onwards. 
Two other observations seem to be confirmed. The most easily 
classifiable DM class is ALL. Assessed against the others, INP is less 
than chance. 

 

7.5 OTHER MODELS 

Three main modelling issues remain to this point. As mentioned 
before, the dataset used is imbalanced (1). This may cause some bias 
in results since the models presented so far may have a bias toward 
voting for the majority class (the CNT). Moreover, most of the models 
presented were not evaluated in a cross-validation set (2). This strategy 
has a number of advantages over classical evaluation strategies. It 
helps reduce bias by repeatedly training and evaluating the model on 
different subsets of the data. It can better predict how the model will 
perform in the wild since it will be repeatedly tested on unseen data. It 
helps detect and prevent overfitting, thus ensuring that the model is 
not learning unnecessary and way too many detailed patterns of the 
training data but is effectively learning useful patterns that generalize 
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well to new, unseen data. Finally, only non-finetuned, simpler 
classification techniques have been used thus far (3). 

 To address (1), two techniques aimed at rebalancing the data 
were employed: undersampling and oversampling. For undersampling, 
many techniques are available, the simplest being a random selection 
that takes the size of majority classes down the size of the minority 
class. However, random undersampling can cause the loss of important 
information, especially when intra-class data presents high variance. 
For this reason, a NearMiss approach from the imblearn package 
(Lemaître et al., 2017) was preferred. NearMiss is also available in a large 
number of flavors. Here, the NearMiss-1 approach was chosen. 
NearMiss-1 focuses on reducing the number of observations of 
majority classes by picking samples that are close to the decision 
boundary of the minority class. It is thus focused on “hard-to-learn” 
observations, i.e., the observations of the majority class closer to the 
minority class. This is interesting because some DM classes, such as 
INP vs CNT, have hard-to-draw decision boundaries. For the 
oversampling, SMOTE (Synthetic Minority Over-sampling Technique) 
from the imblearn package was used. SMOTE generates synthetic 
observations of the minority class interpolating existing minority class 
observations. 

 To address (2), a stratified k-fold cross-validation approach 
(Pedregosa et al., 2011) was used. This cross-validation technique splits 
the dataset into k folds while keeping the same class distribution in 
each fold. The model is trained k times, with each fold as the test set 
once and the remaining folds as the training set. The final accuracy 
score is the average across all folds. This technique provides a more 
robust evaluation of the model's generalization capability. 
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Figure 68 - Visual representation of Stratified k-fold Cross-validation29 

 
 

Finally, to address (3), four classifiers (LDA, Decision Tree, 
Logistic Regression, and K-Nearest Neighbors) were fine-tuned.  The 
best performing classifier was then used as a base estimator for a 
Bagging Model, which was further fine-tuned. The best bagging model 
was additionally evaluated on a Leave-One-Out Cross-Validation 
(LOOCV) set (from Scikit-learn, Pedregosa et al., 2011). LOOCV involves 
training a model k times, where k corresponds to the number of 
observations in the dataset. In each iteration, one observation is set 
apart to be used as the “test set”, and the model is trained on the 
remaining observations. The final accuracy score is the average of the 
scores of these k evaluations. This technique provides a thorough 

 

29 Code available at < https://scikit-
learn.org/stable/auto_examples/model_selection/plot_cv_indices.html#sphx-glr-auto-
examples-model-selection-plot-cv-indices-py> 
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assessment of the model’s generalization capability with minimal bias. 
This technique was not used for the grid search on models’ 
hyperparameters because it would entail a very high computational 
cost. 

The search spaces for the grid search of model’s best 
hyperparameters are not further described in this section, since they 
involve heuristics commonly used in Machine Learning approaches. 
These parameters, as well as the pipelines for this part of the work, are 
provided in a notebook. The results of the described methods are 
summarized in Table 41 below: 

 

Table 41 - Results table for Bagging Models with balanced data 

Sampling Support Best base 
estimator 

BE's 
accuracy 

Bagging 
model's 
accuracy 

LOOCV 
accuracy 

Undersampling 68 LDA 0.71 0.71 0.68 

Oversampling 139 Logistic 
Regression 0.76 0.76 0.78 

 

It is possible to say that the overall accuracy scores for this 5-DM-class 
classification task are somewhere between 68% and 78%, two issues 
considered. Firstly, that the data was undersampled with a more 
conservative approach, which may have caused some performance 
loss. Secondly, that oversampling with synthetic data is far from ideal. 
A general downside of the approach is that synthetic observations are 
created without taking into consideration observations from the 
majority class. This may potentially result in ambiguous observations 
when decision boundaries are fuzzy – strong overlap between classes 
(SMOTE, 2011). 

 Figure 69 and Figure 70, respectively for under- and 
oversampling, display the confusion matrices for the best bagging 
models considering the LOOCV approach: 

Figure 69 - Confusion Matrix - LOOCV - Undersampling 
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Figure 70 - Confusion Matrix - LOOCV - Oversampling 
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The most easily recognizable classes change from previous results. 
Before, INP was the most difficult and ALL the easiest DM class to 
classify. The EVD (Highlighter) is the most easily classified here, 
whereas CNT is often confounded with ALL and INP. 
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8 PERCEPTUAL EXPERIMENTS 

8.1 INTRODUCTION 

Chapter 7. (CLASSIFICATION MODELS) showed how and to what 
degree prosodic features can be used for distinguishing the functional 
nature of DMs within spontaneously produced speech utterances. This 
chapter presents a perceptual approach to evaluate the perceived 
differences across the functions of DMs in Brazilian Portuguese. It is 
based on the principles of the Language into Act theory (Cresti, 2000), 
which assumes that the prosodic form has a main role in implementing 
the DMs’ pragmatic functions. Section 3.4. The most recent proposal 
for DMs presented five different DM classes, each implemented by 
prototypical prosodic contours. The prosodic implementation of these 
functions is also linked to other parameters, such as their position 
regarding the illocutionary unit (initial, medial, or final). Four functions 
(CNT, EXP, and INP) can occur at the beginning of the terminated 
sequence, but two of them, ALL and EVD, strongly prefer the final 
position in Brazilian Portuguese. 

This chapter is a first step towards understanding how prosody 
can carry DM functions from a perceptive standpoint; the evaluation 
tasks presented in this chapter are restricted to the three functions that 
appear before the illocutionary unit: Incipit (INP), Conative (CNT), and 
Expressive (EXP). INP signals the speaker’s intention to begin an 
utterance; EXP conveys non-illocutionary surprise; and CNT, which is 
distributionally free, indicates the illocutionary solution of the 
utterance. The goal is to evaluate the relevance of prosodic 
characteristics to implementing and perceiving these three functional 
categories. Another goal is to understand what other factors can 
contribute to or thwart the prosodic classification of DM functions. 
Two tasks are reported in this chapter. The first followed a 
discrimination paradigm with a restricted number of lexical fillers, and 
the second followed an identification paradigm with seven different 
lexical fillers. 

The following sections present the selection of DMs, their 
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prosodic modification by a speech resynthesis procedure, and the 
implementation of the perceptual evaluations, using the paradigms 
mentioned, to evaluate the ability of participants to match the 
prototypical prosodic forms to a definition of each of these three 
functions. 

 

8.2 DATASET OF THE DISCRIMINATION TASK 

Three utterances were selected from the C-ORAL-BRASIL corpus (Raso 
& Mello, 2012) to present an illocution immediately preceded by a DM, 
the latter conveying one of the three targeted functions (CNT, EXP, 
INP). The original versions of these utterances were used for 
resynthesis and presentation to participants. This choice (keeping the 
original audio content) led to more restrictive data selection criteria. 
Among the criteria used to select the utterances were: 

 

a) The quality of the audio: the C-ORAL corpus contains sponta-

neous data that may have adverse recording conditions; this 

could impair the quality of prosodic modifications; thus, these 

stimuli were rejected. 

b) A lexical unit used as DM may have several functions, but not 

necessarily all the three targeted here, so only lexemes compat-

ible with the three functions were selected. 

c) Some lexemes may also generate functional confusion to the 

listeners due to heavier semantic load; for this reason, the po-

tential lexical items had to be restricted to lexemes as light as 

possible from a semantic standpoint. 

d) For similar reasons, the illocution following the selected DM 

must have a value adequate to the three functions. 
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The difficulty in finding examples fulfilling all these conditions explains 
the restricted set of examples used here; other instances were found, 
but their quality, as well as a preference to keep the experimental task 
as short as possible (here about 15 minutes), led us to keep only three 
utterances. These three utterances (produced by three different adult 
speakers, one male, for the INP, and two females, all speakers from the 
Minas Gerais variety of Brazilian Portuguese) were the following (with 
the DM enclosed in squared brackets): 

 

a) CNT: “[ah], não acaba não” (“[ah], it’s not over”)  

b) EXP: “[ah], primeiro a letra” (“[ah], first the letter”) 

c) INP: “[gente], é so um professor falando” (“[guys], it’s just a pro-

fessor talking”) 

 

8.3 DATASET OF THE IDENTIFICATION TASK 

In the identification task, we also wanted to evaluate the effect of the 
lexical content of the DM. Thus, a more varied number of lexical fillers 
were selected from the C-ORAL-BRASIL corpus. Here, the quality of the 
audio was not an issue, because the examples were reproduced by one 
native speaker of BP in a controlled setting. The main restriction for 
this selection was that each lexeme should occur in all targeted 
functions within the corpus. Furthermore, preference was given to 
utterances that carried more neutral, assertive illocutionary units, so to 
avoid this uncontrolled factor having an effect linked with the specific 
speech act performed. The seven different lexemes chosen were: ah 
(oh), é (yeah), gente (guys), não (no), oh (oh/look), porra (fuck), uai 
(typically regarded as a mark of surprise/disbelief). Three examples per 
lexeme were selected, each one carrying a target function. The 
exceptions were ah and uai. For the former, six examples were chosen 
(two per DM function). This is because a total of 8x3 utterances were 
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required to complete the Latin square experimental design (see latter). 
However, only seven different lexemes were founded fulfilling the 
three targeted functions. For uai, one additional CNT was selected to 
be used as a training stimulus. Each example was manipulated and 
resynthesized to resemble as much as possible the prototypical forms 
of the target functions. The original examples were:  

 

Table 42 - Examples used in the identification task 

LEXEME FILE ORIGINAL 
FUNCTION TEXT 

AH bfamdl04_132 CNT 
ah / mas é claro // 
Oh / but that’s obvious // 

AH bpubdl01_119 CNT 
ah / não acaba não // 
oh / it doesn't end // 

AH bfamcv04_263 EXP 
ah / primeiro a letra // 
oh / first the letter // 

AH bfamdl05_267 EXP 
ah / ele vai colocar corrimão // 
oh / he's going to install handrails // 

AH bfamdl01_241 INP 
ah / vão levar esse mesmo // 
oh / let's take this one // 

AH bfamdl01_260 INP 
ah / mas esse é ruim // 
oh / but that's a bad one // 

É/EH bpubdl02_215 CNT 
é / eu trouxe o oito e o nove // 
yeah / I brought the eight and the nine 
// 

É/EH bpubdl02_054 EXP 
é / mas é mesmo // 
yeah / but that's right // 

É/EH bfamdl01_096 INP 
é / hoje cê tá faminta // 
yeah / you’re starving today // 

GENTE bfamdl26_67 CNT 
gente / é muito bonitinho // 
guys / so cute // 

GENTE bfamdl03_35 EXP 
gente / eu te falei // 
gosh / I told you // 

GENTE bfamcv26_262 INP 
gente / é só um professor falando  // 
guys / it's just a professor talking // 

NÃO bpubmn01_093 CNT não / a diretora muito boa  // 
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LEXEME FILE ORIGINAL 
FUNCTION TEXT 

no / the principal is a very nice person 
// 

NÃO bfamcv05_87 EXP 
não / vai sô // 
no / go man // 

NÃO bfamcv02_141 INP 
não / mas ea tá é brincando // 
no / but she's just kidding // 

OH/O' bfamdl22_090 CNT 

o' / tem um dinheiro preso aqui no 
banco // 
look / you have a balance stuck here 
at the bank // 

OH/O' bpubdl02_145 EXP 
oh / o bondade sua // 
oh / how kind of you // 

OH/O' bpubdl11_292 INP 
o' / ajudar ele ajuda // 
look / he does help // 

PORRA/PÔ bfamcv32_212 CNT 
pô / só três minutos // 
fuck / just three minutes // 

PORRA/PÔ bfamdl20_188 EXP 
pô / o cara tá famoso // 
fuck / the guy got famous // 

PORRA/PÔ bfamdl17_132 INP 
pô / garçom underground  // 
fuck / underground waiter // 

UAI/UÉ bfamdl21_047 CNT 
uai / tem que ter isso aqui também // 
oh / there has to be that here too // 

UAI/UÉ bfamdl28_078 CNT 
uai / vamo ver // 
well / we'll see // 

UAI/UÉ bfamdl33_105 EXP 
uai / cê já pôs o trem pra fritar // 
oh / you're already frying this thing // 

UAI/UÉ bfamcv11_041 INP 
uai / ele conversa demais da conta // 
oh / he just talks too much // 

 

 

8.4 RESYNTHESIS 

The utterances were extracted from the original recordings and edited 
in the following way. For the discrimination task, a noise reduction 
algorithm available in Praat (Boersma & Weenink, 2022) was applied to 
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the signal to remove some stationary background noises (cars passing 
in the street, notably). The illocutionary part of the utterance was then 
edited to keep only the targeted part; in that case, the final part of the 
illocution was also modified to sound like a terminated assertion (final 
pitch and intensity fall). This was not done for the audio files used in 
the identification task, since their reproductions were recorded in a 
controlled environment and the illocutionary units were realized with 
terminal boundaries. 

For both tasks, the prosodic characteristics of the DM units were 
then modified to correspond to the prototypical description of the 
three targeted functions. These modifications were done by using 
Praat’s “Manipulate” function, that allows varying speech fundamental 
frequency (F0) and duration using the TD-PSOLA algorithm (Moulines 
& Charpentier, 1990), and then by modifying the sound intensity, using 
Praat IntensityTier objects. Figure 71 shows the spectrograms, with 
overlaid f0 (red dots, in Hz) and intensity (green line, in dB) contours 
resulting of the modification process for the three prosodic functions 
(CNT, EXP, INP, from top to bottom) on the DM “gente” and the 
utterance “é so um professor falando”. The end of the DM is marked 
with a blue vertical line. 

 

Figure 71 - Example of manipulations of the three utterances used in 
the discrimination task – Red points represent f0 tracking and the 
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green curve represents intensity levels 

 

 

The targeted prosodic characteristics linked to each function may be 
described in the following way (see sections 3.4. The most recent 
proposal for DMs and 7.2. Curve fitting). CNT displays a falling f0 
movement from the stressed vowel after a slightly rising movement, if 
there is pre-stress material; it has a much lower intensity and a shorter 
segmental duration than the illocution’s mean. EXP presents a rising f0 
movement until the end of the stressed vowel, then a flat or slightly 
falling f0 movement, if there is post-stress material; its segmental 
duration and intensity levels are below that of the illocution mean but 
above that of CNT. The INP has a flat f0, with a very short duration and 
higher intensity than the illocution. The original and modified versions 
of the DMs are presented in Figure 71 for the complete utterance 
“gente / é só um professor falando” (the visible desynchronization of 
the illocutionary part comes from the different durations of the three 
version of the “gente” DM). The DMs resulting from this process of 



 

 

 

251 

prosodic stylization to elicit the prototypical prosodic characteristics of 
the CNT, EXP and INP functions are presented in (without the 
associated illocutions), so as to make the prosodic similarities within a 
function more visible. 

 

Figure 72 - Manipulated DMs of the discrimination task 

 

 

The original DMs were each modified in three versions, leading to the 
stimuli that have a given lexical and segmental origin (the original DM 
in its illocutionary context), and three prosodic variants, that 
correspond to the three functions (CNT, EXP, INP). The exact prosodic 
characteristics of a DM for a given function may obviously vary with 
the speaker and the illocution characteristics (low or high vocal effort, 
for example, but the prototypical prosodic characteristics are those 
described above. This process resulted in nine stimuli for the 
discrimination task and 78 stimuli for the identification task. 
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 Finally, for the identification task, the stimuli were also 
presented in their written form without any audio. The goal was to 
evaluate potential biases carried by the lexemes (without the prosodic 
realization). 

 

8.5 PARTICIPANTS 

Participants were recruited via social media to pass the perceptual 
experiments. All were adults, L1 speakers of BP. The tests were 
anonymous, and participants were asked to have the tests via a web 
interface. They were instructed to wear headphones, and an informed 
consent form was displayed, which they had to accept before starting. 
They should first answer three demographic questions (age, gender, 
and if their first language was BP) before initiating the experiments. 
Some participants connected to the interface but stopped the process 
before actually having the test (just answering the demographic 
questions); they were not included in the analyses. Table 43 and Table 
44 show the summary of participants for the discrimination and the 
identification test, respectively: 

 

Table 43 - Summary of participants of the discrimination test 

Discrimination test 
  Total participants Mean age Std age 

Female  53 28  13 
Male  32  33  12.1 

Total/Avg  85  29.9  12.8 
 

Table 44 - Summary of participants of the identification test 
Identification test 

  Total participants Mean age Std age 

Female 68 27.7 13.6 
Male 52 27.8 9.9 

Total/Avg 120 27.8 12.1 
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8.6 DISCRIMINATION AND IDENTIFICATION PARADIGMS 

The interfaces for the perceptual experiments were developed using 
the web-based “PsyToolkit” application (Stoet, 2010, 2017). It has been 
shown that online psychological evaluations do reach results similar to 
those of in-lab testing for a number of classical psychological 
evaluations (Kochari, 2019; Sasaki & Yamada, 2019). Therefore, the web-
based interface was here preferred as it simplifies greatly recruiting 
participants with more varied profiles.  

 

8.6.1 Discrimination task 

The stimuli were presented in pairs: for the three versions of a DM from 
the same utterance, three pairs were made (CNT-EXP, CNT-INP, EXP-
INP). For the three utterances, this leads to nine pairs of stimuli. For 
each pair presentation, participants had to judge which of the two 
prosodic contours of the DM best fit a given definition, in an AB 
discrimination protocol. The definitions that correspond to the three 
tested functions were the following (where “DM” was replaced by 
either “GENTE” or “AH”, according to the tested lexeme): 

 

CNT: "Se você quisesse passar uma ideia de conclusão em função 
do que foi dito antes, qual das duas realizações de DM você 
escolheria?" (“To convey an idea of conclusion based on what 
was said before, which of the two performances of DM would 
you choose?”) 

 

EXP: "Se você quisesse manifestar que ficou surpreendido com o 
que foi dito antes, qual das duas realizações de DM você 
escolheria?" (“To express that you were surprised by what was 
said before, which of the two performances of DM would you 
choose?”) 
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INP: "Se você quisesse apenas começar a frase, qual das duas 
realizações de DM você escolheria?" (“If you just wanted to start 
the sentence, which of the two performances of DM would you 
choose?”) 

 

Each pair was presented twice, with alternatively one of the two 
definitions corresponding in turn to one of the two prosodic versions 
of the pair, leading to 18 presentations (of pairs plus definition) for 
each judge. For each of the 18 presentations, the pairs were presented 
in the AB or BA order, randomly. 

During the test, for each pair presentation, a participant was first 
presented with the two complete utterances and the target definition, 
and could freely listen to the performances A and B; the utterance was 
transcribed orthographically. Then, the participant switched to a screen 
were only the two versions (A and B) of a DM pair could be freely 
listened to (without the illocution). A third screen then presented the 
two complete utterances (i.e., the DM plus the illocution, in the two 
versions A and B) only once, one after the other, with a 500ms pause 
between them. After this final listening, participants had to select the 
DM that best fit the definition, clicking on the A or B button (the 
attribution of the two sentences to the A or B slots was done 
randomly). The next pair was then presented, following the same 
three-step procedure. Test completion took about 15 minutes. 

 

8.6.2 Identification task 

In the discrimination task, participants were presented the description 
of a DM function and had to decide which one of two prosodic 
realizations best match the function. In the identification task, on the 
other hand, participants were presented a stimulus and had to decide 
(respond) what function that prosodic realization best corresponds to. 

The stimuli were presented with the prosodic characteristics of 
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one of the DMs modified in three versions. The prosodic forms will be 
referred to as Descending, Ascending, Flat – for short D/A/F. These 
references are preferred to CNT/EXP/INP, because using the functions’ 
labels would introduce a confusion between acoustic form and 
function. Additionally, to the three audio forms (D/A/F), a Written (W) 
presentation modality was proposed. 

During the test, for each stimulus, a participant was first 
presented with the audios of the DM and of the complete utterance. 
They could freely listen to the DM and the utterance, but they had to 
listened to both before being given the possibility to choose a 
function. When an audio was presented, participants were not given 
an orthographic transcription. This was done only for the written 
presentations in which case no audio was given. For written stimuli, 
participants were presented the DM and the illocutionary unit 
separated by a comma, in the form “uai, vamo ver” (well, let’s see). 
After hearing the audios or having some time to read the written 
stimulus, participants were presented three boxes containing the 
description of the functions with the following content: 

 

• Anunciar uma conclusão (Announce a conclusion – 

which should be matched with Descending/CNT – func-

tion coded as CON) 

• Manifestar uma surpresa (Show surprise – which should 

be matched with Ascending/EXP – function coded as 

SUR) 

• Apenas começar a frase (Simply start the phrase – which 

should be matched with Flat/INP – function coded as 

STA) 

 

The selection was forced-choice. Each participant was presented 24 
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stimuli from the Latin square plus four stimuli with “uai, vamo ver” as 
a training start. Each group of the Latin square contained one version 
of the manipulated DMs for each lexeme. The stimuli were based on 
24 utterances, each composed of a MD and their COM part. The DMs 
were based on seven (plus one more “ah”) different lexeme - ah 
(presented twice), eh, gente, não, oh, pô, uai, each being presented with 
three functions (CNT, EXP, INP), making up the 24 (8*3) stimuli, plus 
four training stimuli per participant. The next stimulus was then 
presented, following the same procedure. Test completion took about 
10 minutes. The first stimuli used for training were not taken into 
account in the analysis. To sum up: 

 

a) The listeners were distributed in four groups, following a Latin 

square distribution, so each group was presented one of the 24 

utterances once – with one modality Ascending (A), Descending 

(D), Flat (F) or Written (W); 

b) Each group was presented with a given utterance with a differ-

ent modality; 

c) Each group saw all 24 utterances, and were presented with the 

same number of stimuli with a given modality, and to all the 7 

lexemes. 

 

8.7 ANALYSIS OF THE DISCRIMINATION TASK RESULTS 

The findings presented in this section were first published in Raso et 
al. (to appear). The A or B answer to each pair was expressed as a 
“Match” if the selected DM’s prosodic characteristics actually matched 
the proposed definition (or as a “Miss” if not). There were therefore six 
types of pairs plus definition: in the following notation, the first DM of 
a pair (marked in bold) also corresponds to the presented definition 
(i.e., the boldface function corresponds to the presented definition, a 
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“Match” answer is thus equal to this boldface function). A listener was 
presented with the following set of Pairs: (CNT-EXP), (CNT-INP), (EXP-
CNT), (EXP-INP), (INP-CNT), (INP-EXP). These six pairs of stimuli were 
presented through three lexical Contexts: the three sentences (the DM 
+ illocution) – thus, 18 presentations to each participant. Each Pair was 
presented (randomly) in a given Order (AB or BA). 

 

8.7.1 Binomial generalized model 

These three factors, the presented Pair, the lexical Context, and the 
presentation Order, were used as fixed factors in a binomial 
generalized linear model to explain the variation in the proportion of 
(Match, Miss) answers (dependent variable) by the 85 participants.  

  Following Crawley (2012), a maximal model was fit (using the 
glm() function of the R software, R Core Team, 2022), with the 
dependent variable (proportion of Match answers) explained by the 
three fixed factors plus all their double and triple interactions. This 
maximal model was then submitted to a simplification process, 
removing iteratively the higher order interactions, when this did not 
lead to a significant loss of explanatory power in the model. The 
simplification steps are summarized in Table 45, which presents the 
model simplification process (output of R’s step() function), with the 
interactions or factors tested at each step, and the progressive 
reduction of the AIC criterion. The last row contains the minimal 
adequate model. The minimal adequate model contains only the Pair 
factor, that explains variations in the proportion of (Match, Miss) 
answers. 

 

Table 45 - summary of the model simplification process (output of R’s 
step() function) 

 Resid. 
df 

Resid. 
deviance 

Df Deviance Pr(>Chi) 
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Start:      Model: (Match, Miss) ~ Pair * Context * Order 

<none> 0 0    

- Pair: 
Context:Order 

10 6.921 -
10 

-6.921 0.7329 

Step 2:   Model: (Match, Miss) ~ (Pair + Context + Order)^2 

<none> 10 6.921    

- Pair: Context 20 21.038 -
10 

-14.117 0.1677 

- Context:Order 12 11.303 -2 -4.382 0.1118 

- Pair:Order 15 15.600 -5 -8.679 0.1226 

Step 3:  Model: (Match, Miss) ~ (Pair + Context) * Order 

<none> 20 21.038    

- Context:Order 22 25.638 -2 -4.600 0.1003 

- Pair:Order 25 30.112 -5 -9.074 0.1062 

Step 4:  Model: (Match, Miss) ~ Pair + Context + Order + Pair:Order 

<none> 22 25.638    

- Pair:Order 27 34.532 -5 -8.894 0.1134 

- Context 24 31.409 -2 -5.771 0.0558 

Step 5:  Model: (Match, Miss) ~ Pair + Context + Order 

<none> 27 34.532    

- Order 28 34.567 -1 -0.035 0.8510 

- Context 29 39.763 -2 -5.231 0.0731 

- Pair 32 133.034 -5 -98.503 < 2.2e-
16 
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Step 6:  Model: (Match, Miss) ~ Pair + Context 

<none> 28 34.567    

- Context 30 39.811 -2 -5.244 0.0727 

- Pair 33 133.047 -5 -98.480 < 2.2e-
16 

Step 7:  Model: (Match, Miss) ~ Pair 

<none> 30 39.811    

- Pair 35 138.019 -5 -98.209 < 2.2e-
16 

 

The binomial regression, detailed above, showed that only the 
type of Pair had a significant effect on the proportion of (Match, Miss) 
answers, the other two independent variables (the lexical Context and 
the presentation Order, were dropped during the simplification phase). 
The model summary is proposed in Table 46, presenting the values of 
the binomial model’s coefficients; the (CNT-EXP) level of the Pair factor 
was used for intercept.  

 

Table 46 - Output of the minimal adequate model, presenting the 
values of the binomial model’s coefficients; the (CNT-EXP) level of the 

Pair factor was used for intercept. Uncertainty intervals (profile-
likelihood) and p-values (two-tailed) computed using a Wald z-

distribution approximation 

Parameter Log-Odds SE 95% CI z p 

(Intercept) 0.80 0.14 [ 0.54,  1.07] 5.91 < .001 

Pair (CNT-INP) -0.47 0.19 [-0.83, -0.10] -2.51  0.012  

Pair (EXP-CNT) 0.88 0.22 [ 0.46,  1.32] 4.02  < .001 

Pair (EXP-INP)  1.33 0.24 [ 0.86,  1.83] 5.45  < .001 
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Pair (INP-CNT) -0.19  0.19 [-0.57,  0.17] -1.03  0.301  

Pair (INP-EXP)  -3.04e-16  0.19 [-0.38,  0.38] -1.59e-15  > .999 

 

8.7.2 Proportion of Match by Pair 

Figure 73 shows the proportion of Match predicted by the model for 
the six types of Pair + definition (Order not having a significant effect, 
the first part of each pair indicates the proposed definition). Four Pairs, 
(CNT-EXP), (CNT-INP), (INP-CNT), and (INP-EXP), reached a 
comparable level of discrimination (from 60 to 70%), that do not show 
significant differences between themselves (see Table 46 - Output of 
the minimal adequate model, presenting the values of the binomial 
model’s coefficients; the (CNT-EXP) level of the Pair factor was used for 
intercept. Uncertainty intervals (profile-likelihood) and p-values (two-
tailed) computed using a Wald z-distribution approximation); 
conversely, the (EXP-CNT) and (EXP-INP) Pairs showed a significant rise 
of Match answers compared to all the other Pairs (above 80% of 
Match). 

Figure 73 - Proportion of Match answers fitted by the binomial 
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regression as a function of the type of Pair 

 

 

8.8 ANALYSIS OF THE IDENTIFICATION TASK 

Participants answered which of the three proposed function they 
thought best fit each stimulus. This categorical answer (CON/SUR/STA) 
is used as a dependent variable to a multinomial regression (fit using 
the multinom() function of R’s “nnet” library; Venables & Ripley, 2010) – 
thus we observed the variation in the proportion of each category 
(CON/SUR/STA) in the participants’ answer according to the following 
independent variables: 

 

a) The presentation Modality (four levels: D/A/F/W) 

b) The Lexeme used for the DM (seven levels: 

ah/eh/gente/não/oh/po/uai) 
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c) The functional Class of the DM in the utterance (three levels: 

CNT/EXP/INP) 

 
8.8.1 Multinomial model 

The model is expressed with the following formula, following Gries 
(2021) and using R’s syntax: 

 

Answer ~ 1 + Modality * Lexeme * Class 

 

The model with three parameters was fitted to the proportion of 
answers observed in each possible function (Conclusion, Surprise, 
Start). The simplification of the model was tested, but removing the 
three-way interaction did lead to a significant loss in the model – which 
was thus kept. Table 47 presents the likelihood ratio tests of the 
Multinomial Models comparing the complete model to a model 
without the triple interaction: 

 

Table 47 - Multinomial models - Complete model vs Model without 
triple factor interaction 

Answer: AnswerID             
Model Resid. df Resid. Dev Test Df LR stat. Pr(Chi) 
1 1 + (MODALITY + DM + CLASS)^2 11396 10221.815         
2 1 +  MODALITY * DM * CLASS 11324 9963.957 1 vs 2 72 257.8577 0 

 

The model's output is presented in Table 48 and through a series of 
figures that represent the mean tendencies estimated from the model 
for each of the factors and their interactions. The reference levels are 
– for Modality (W), for Lexeme (ah), for Class (CNT). The full model 
explains about 40% of the total variance (R2 = 0.414). 
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Table 48 - Multinomial model's output - Identification task 
  Estimate Std. Error z-values P-values 

(Intercept):SUR -0.7674999 2.37E-01 -3.23E+00 1.22E-03 
(Intercept):STA -0.4420649 2.14E-01 -2.07E+00 3.85E-02 
MODALITY.D:SUR 0.17313417 3.24E-01 5.35E-01 5.93E-01 
MODALITY.D:STA 0.29348805 2.88E-01 1.02E+00 3.08E-01 
MODALITY.A:SUR 1.0863096 3.32E-01 3.27E+00 1.07E-03 
MODALITY.A:STA 0.76055551 3.16E-01 2.41E+00 1.60E-02 
MODALITY.F:SUR -0.8412311 4.54E-01 -1.85E+00 6.40E-02 
MODALITY.F:STA 0.70430108 3.00E-01 2.35E+00 1.88E-02 
LEXEME.eh:SUR -12.1391 3.23E-01 -3.76E+01 0.00E+00 
LEXEME.eh:STA 0.441934 3.59E-01 1.23E+00 2.18E-01 
LEXEME.gente:SUR 1.54170112 4.22E-01 3.65E+00 2.60E-04 
LEXEME.gente:STA 1.48437303 3.98E-01 3.73E+00 1.92E-04 
LEXEME.não:SUR -1.352839 4.93E-01 -2.74E+00 6.06E-03 
LEXEME.não:STA -0.9852789 3.86E-01 -2.55E+00 1.07E-02 
LEXEME.oh:SUR 2.78205109 5.83E-01 4.77E+00 1.81E-06 
LEXEME.oh:STA 1.94588392 5.93E-01 3.28E+00 1.02E-03 
LEXEME.pô:SUR 1.79678677 4.38E-01 4.10E+00 4.12E-05 
LEXEME.pô:STA 0.44177576 4.96E-01 8.91E-01 3.73E-01 
LEXEME.uai:SUR 1.13459906 3.88E-01 2.93E+00 3.43E-03 
LEXEME.uai:STA 0.72900894 3.78E-01 1.93E+00 5.37E-02 
CLASS.EXP:SUR 0.55645749 3.31E-01 1.68E+00 9.27E-02 
CLASS.EXP:STA 0.86372361 2.92E-01 2.96E+00 3.06E-03 
CLASS.INP:SUR -1.024674 3.92E-01 -2.61E+00 8.93E-03 
CLASS.INP:STA -0.2509021 2.95E-01 -8.49E-01 3.96E-01 
MOD.D:LEX.eh:SUR -7.0236511 3.89E-01 -1.81E+01 7.86E-73 
MOD.D:LEX.eh:STA -0.9293943 5.01E-01 -1.85E+00 6.37E-02 
MOD.A:LEX.eh:SUR 10.6674262 3.23E-01 3.31E+01 8.12E-240 
MOD.A:LEX.eh:STA -1.5078001 5.15E-01 -2.93E+00 3.39E-03 
MOD.F:LEX.eh:SUR -4.6879704 3.92E-01 -1.20E+01 5.58E-33 
MOD.F:LEX.eh:STA -0.7039616 4.78E-01 -1.47E+00 1.41E-01 
MOD.D:LEX.gente:SUR -1.5343611 6.18E-01 -2.48E+00 1.31E-02 
MOD.D:LEX.gente:STA -1.2302136 5.49E-01 -2.24E+00 2.50E-02 
MOD.A:LEX.gente:SUR -0.9049054 6.09E-01 -1.49E+00 1.37E-01 
MOD.A:LEX.gente:STA -1.3319495 6.12E-01 -2.18E+00 2.96E-02 
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  Estimate Std. Error z-values P-values 

MOD.F:LEX.gente:SUR 0.22182027 6.95E-01 3.19E-01 7.50E-01 
MOD.F:LEX.gente:STA -0.4935599 5.57E-01 -8.87E-01 3.75E-01 
MOD.D:LEX.não:SUR -0.6551678 7.48E-01 -8.76E-01 3.81E-01 
MOD.D:LEX.não:STA -0.2158763 5.26E-01 -4.11E-01 6.81E-01 
MOD.A:LEX.não:SUR -0.98064 7.62E-01 -1.29E+00 1.98E-01 
MOD.A:LEX.não:STA -0.0951623 5.55E-01 -1.72E-01 8.64E-01 
MOD.F:LEX.não:SUR 1.08982671 8.25E-01 1.32E+00 1.87E-01 
MOD.F:LEX.não:STA 0.55595015 5.26E-01 1.06E+00 2.91E-01 
MOD.D:LEX.oh:SUR -3.1997803 7.47E-01 -4.28E+00 1.86E-05 
MOD.D:LEX.oh:STA -1.2505036 6.78E-01 -1.84E+00 6.53E-02 
MOD.A:LEX.oh:SUR -1.9375649 7.24E-01 -2.67E+00 7.48E-03 
MOD.A:LEX.oh:STA -1.1663417 7.34E-01 -1.59E+00 1.12E-01 
MOD.F:LEX.oh:SUR -0.991607 8.20E-01 -1.21E+00 2.27E-01 
MOD.F:LEX.oh:STA -1.2525982 7.31E-01 -1.71E+00 8.64E-02 
MOD.D:LEX.pô:SUR 1.93313219 8.73E-01 2.21E+00 2.68E-02 
MOD.D:LEX.pô:STA 0.40037483 1.02E+00 3.94E-01 6.94E-01 
MOD.A:LEX.pô:SUR 1.38122055 8.73E-01 1.58E+00 1.13E-01 
MOD.A:LEX.pô:STA -12.460575 3.37E-01 -3.70E+01 4.38E-300 
MOD.F:LEX.pô:SUR 16.2529971 4.26E-01 3.82E+01 0.00E+00 
MOD.F:LEX.pô:STA 14.31567 4.26E-01 3.36E+01 4.47E-248 
MOD.D:LEX.uai:SUR 1.81030513 6.87E-01 2.63E+00 8.44E-03 
MOD.D:LEX.uai:STA -1.2745262 9.64E-01 -1.32E+00 1.86E-01 
MOD.A:LEX.uai:SUR 12.7595235 3.96E-01 3.22E+01 1.92E-227 
MOD.A:LEX.uai:STA 11.1293792 3.96E-01 2.81E+01 1.55E-173 
MOD.F:LEX.uai:SUR 3.87489255 9.04E-01 4.29E+00 1.80E-05 
MOD.F:LEX.uai:STA 0.10665185 9.24E-01 1.15E-01 9.08E-01 
MOD.D:CLA.EXP:SUR -1.0973622 4.81E-01 -2.28E+00 2.26E-02 
MOD.D:CLA.EXP:STA -0.9119158 4.02E-01 -2.27E+00 2.34E-02 
MOD.A:CLA.EXP:SUR -0.5120142 4.65E-01 -1.10E+00 2.71E-01 
MOD.A:CLA.EXP:STA -1.5567355 4.65E-01 -3.35E+00 8.04E-04 
MOD.F:CLA.EXP:SUR 0.86941925 5.93E-01 1.47E+00 1.42E-01 
MOD.F:CLA.EXP:STA 0.02645984 4.29E-01 6.17E-02 9.51E-01 
MOD.D:CLA.INP:SUR -1.2715235 6.83E-01 -1.86E+00 6.25E-02 
MOD.D:CLA.INP:STA -0.6989976 4.24E-01 -1.65E+00 9.95E-02 
MOD.A:CLA.INP:SUR -0.4728121 5.12E-01 -9.24E-01 3.56E-01 
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  Estimate Std. Error z-values P-values 

MOD.A:CLA.INP:STA -1.5335674 4.58E-01 -3.35E+00 8.10E-04 
MOD.F:CLA.INP:SUR -0.644471 7.50E-01 -8.59E-01 3.90E-01 
MOD.F:CLA.INP:STA -1.2737015 4.17E-01 -3.05E+00 2.28E-03 
LEX.eh:CLA.EXP:SUR 10.6156875 4.33E-01 2.45E+01 5.68E-133 
LEX.eh:CLA.EXP:STA -1.9051096 5.30E-01 -3.59E+00 3.27E-04 
LEX.gente:CLA.EXP:SUR -1.1080397 5.86E-01 -1.89E+00 5.88E-02 
LEX.gente:CLA.EXP:STA -2.1941125 5.86E-01 -3.74E+00 1.82E-04 
LEX.não:CLA.EXP:SUR 0.53364226 6.57E-01 8.12E-01 4.17E-01 
LEX.não:CLA.EXP:STA 0.69675237 5.05E-01 1.38E+00 1.68E-01 
LEX.oh:CLA.EXP:SUR -1.3666603 7.08E-01 -1.93E+00 5.35E-02 
LEX.oh:CLA.EXP:STA -2.2132325 7.38E-01 -3.00E+00 2.73E-03 
LEX.pô:CLA.EXP:SUR -0.4220729 6.14E-01 -6.88E-01 4.92E-01 
LEX.pô:CLA.EXP:STA -0.863144 6.96E-01 -1.24E+00 2.15E-01 
LEX.uai:CLA.EXP:SUR 1.27364951 6.94E-01 1.84E+00 6.64E-02 
LEX.uai:CLA.EXP:STA -0.4571967 7.46E-01 -6.12E-01 5.40E-01 
LEX.eh:CLA.INP:SUR 12.405187 4.21E-01 2.95E+01 4.93E-191 
LEX.eh:CLA.INP:STA -1.2750308 5.41E-01 -2.36E+00 1.84E-02 
LEX.gente:CLA.INP:SUR 1.80830946 6.53E-01 2.77E+00 5.64E-03 
LEX.gente:CLA.INP:STA -1.079613 7.01E-01 -1.54E+00 1.24E-01 
LEX.não:CLA.INP:SUR 1.12968809 7.90E-01 1.43E+00 1.53E-01 
LEX.não:CLA.INP:STA 0.76173036 5.54E-01 1.37E+00 1.69E-01 
LEX.oh:CLA.INP:SUR -1.7624074 7.47E-01 -2.36E+00 1.84E-02 
LEX.oh:CLA.INP:STA -0.9842286 6.79E-01 -1.45E+00 1.47E-01 
LEX.pô:CLA.INP:SUR 0.74309379 6.09E-01 1.22E+00 2.23E-01 
LEX.pô:CLA.INP:STA -0.153651 6.53E-01 -2.35E-01 8.14E-01 
LEX.uai:CLA.INP:SUR -0.1309569 6.27E-01 -2.09E-01 8.35E-01 
LEX.uai:CLA.INP:STA -0.1318734 5.29E-01 -2.49E-01 8.03E-01 
MOD.D:LEX.eh:CLA.EXP:SUR -7.8919199 1.88E-06 -4.21E+06 0.00E+00 
MOD.D:LEX.eh:CLA.EXP:STA 0.57456579 7.65E-01 7.51E-01 4.52E-01 
MOD.A:LEX.eh:CLA.EXP:SUR -11.404081 5.92E-01 -1.93E+01 9.55E-83 
MOD.A:LEX.eh:CLA.EXP:STA 2.91485386 7.46E-01 3.90E+00 9.42E-05 
MOD.F:LEX.eh:CLA.EXP:SUR -10.471388 1.96E-06 -5.34E+06 0.00E+00 
MOD.F:LEX.eh:CLA.EXP:STA 0.50372351 7.24E-01 6.95E-01 4.87E-01 
MOD.D:LEX.gente:CLA.EXP:SUR 2.10211678 8.69E-01 2.42E+00 1.56E-02 
MOD.D:LEX.gente:CLA.EXP:STA 2.4551159 7.96E-01 3.08E+00 2.05E-03 
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  Estimate Std. Error z-values P-values 

MOD.A:LEX.gente:CLA.EXP:SUR 1.49343504 8.45E-01 1.77E+00 7.72E-02 
MOD.A:LEX.gente:CLA.EXP:STA 3.00298292 8.90E-01 3.37E+00 7.42E-04 
MOD.F:LEX.gente:CLA.EXP:SUR -0.6396237 9.08E-01 -7.05E-01 4.81E-01 
MOD.F:LEX.gente:CLA.EXP:STA -0.028942 7.94E-01 -3.65E-02 9.71E-01 
MOD.D:LEX.não:CLA.EXP:SUR 0.90528762 1.06E+00 8.56E-01 3.92E-01 
MOD.D:LEX.não:CLA.EXP:STA 0.7011499 7.16E-01 9.79E-01 3.28E-01 
MOD.A:LEX.não:CLA.EXP:SUR -1.1285794 1.17E+00 -9.67E-01 3.33E-01 
MOD.A:LEX.não:CLA.EXP:STA 0.67812176 7.56E-01 8.97E-01 3.69E-01 
MOD.F:LEX.não:CLA.EXP:SUR -0.4929838 1.03E+00 -4.77E-01 6.33E-01 
MOD.F:LEX.não:CLA.EXP:STA -1.265535 7.18E-01 -1.76E+00 7.80E-02 
MOD.D:LEX.oh:CLA.EXP:SUR 4.71144041 1.04E+00 4.52E+00 6.11E-06 
MOD.D:LEX.oh:CLA.EXP:STA 4.11241159 9.83E-01 4.18E+00 2.88E-05 
MOD.A:LEX.oh:CLA.EXP:SUR 2.17353243 1.01E+00 2.15E+00 3.16E-02 
MOD.A:LEX.oh:CLA.EXP:STA 3.06116893 1.06E+00 2.88E+00 3.99E-03 
MOD.F:LEX.oh:CLA.EXP:SUR -0.2416419 1.05E+00 -2.31E-01 8.17E-01 
MOD.F:LEX.oh:CLA.EXP:STA 1.21415742 9.50E-01 1.28E+00 2.01E-01 
MOD.D:LEX.pô:CLA.EXP:SUR -2.6244963 1.07E+00 -2.46E+00 1.38E-02 
MOD.D:LEX.pô:CLA.EXP:STA 0.59243144 1.18E+00 5.03E-01 6.15E-01 
MOD.A:LEX.pô:CLA.EXP:SUR -1.5937316 1.06E+00 -1.51E+00 1.32E-01 
MOD.A:LEX.pô:CLA.EXP:STA 13.7256775 5.22E-01 2.63E+01 3.33E-152 
MOD.F:LEX.pô:CLA.EXP:SUR -18.543526 6.38E-01 -2.91E+01 1.27E-185 
MOD.F:LEX.pô:CLA.EXP:STA -15.45223 6.15E-01 -2.51E+01 1.67E-139 
MOD.D:LEX.uai:CLA.EXP:SUR 13.4801762 5.23E-01 2.58E+01 1.84E-146 
MOD.D:LEX.uai:CLA.EXP:STA 16.7643823 5.23E-01 3.21E+01 2.15E-225 
MOD.A:LEX.uai:CLA.EXP:SUR 0.18688439 4.77E-01 3.92E-01 6.95E-01 
MOD.A:LEX.uai:CLA.EXP:STA 1.91870389 4.77E-01 4.02E+00 5.79E-05 
MOD.F:LEX.uai:CLA.EXP:SUR 9.17556343 4.57E-01 2.01E+01 1.01E-89 
MOD.F:LEX.uai:CLA.EXP:STA 12.1357541 4.57E-01 2.66E+01 1.77E-155 
MOD.D:LEX.eh:CLA.INP:SUR 8.16678486 3.89E-01 2.10E+01 8.44E-98 
MOD.D:LEX.eh:CLA.INP:STA 1.9672228 7.41E-01 2.66E+00 7.90E-03 
MOD.A:LEX.eh:CLA.INP:SUR -9.2693381 5.30E-01 -1.75E+01 1.53E-68 
MOD.A:LEX.eh:CLA.INP:STA 2.82574832 8.52E-01 3.32E+00 9.10E-04 
MOD.F:LEX.eh:CLA.INP:SUR 6.67041614 3.92E-01 1.70E+01 5.71E-65 
MOD.F:LEX.eh:CLA.INP:STA 2.10638951 7.36E-01 2.86E+00 4.22E-03 
MOD.D:LEX.gente:CLA.INP:SUR 1.27534787 9.98E-01 1.28E+00 2.01E-01 
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  Estimate Std. Error z-values P-values 

MOD.D:LEX.gente:CLA.INP:STA 2.36576577 8.84E-01 2.68E+00 7.44E-03 
MOD.A:LEX.gente:CLA.INP:SUR 2.2603486 1.09E+00 2.07E+00 3.81E-02 
MOD.A:LEX.gente:CLA.INP:STA 2.39246756 1.33E+00 1.79E+00 7.27E-02 
MOD.F:LEX.gente:CLA.INP:SUR 0.49364038 1.07E+00 4.63E-01 6.43E-01 
MOD.F:LEX.gente:CLA.INP:STA 1.82062744 9.21E-01 1.98E+00 4.81E-02 
MOD.D:LEX.não:CLA.INP:SUR 2.99579988 1.15E+00 2.60E+00 9.29E-03 
MOD.D:LEX.não:CLA.INP:STA 0.91900142 7.75E-01 1.19E+00 2.35E-01 
MOD.A:LEX.não:CLA.INP:SUR 0.30365954 1.10E+00 2.77E-01 7.82E-01 
MOD.A:LEX.não:CLA.INP:STA 0.55247188 7.92E-01 6.98E-01 4.85E-01 
MOD.F:LEX.não:CLA.INP:SUR 1.78264142 1.19E+00 1.50E+00 1.34E-01 
MOD.F:LEX.não:CLA.INP:STA 0.7868999 7.42E-01 1.06E+00 2.89E-01 
MOD.D:LEX.oh:CLA.INP:SUR 2.36285205 1.25E+00 1.88E+00 5.97E-02 
MOD.D:LEX.oh:CLA.INP:STA 0.75833397 8.49E-01 8.93E-01 3.72E-01 
MOD.A:LEX.oh:CLA.INP:SUR 2.45269488 9.59E-01 2.56E+00 1.05E-02 
MOD.A:LEX.oh:CLA.INP:STA 1.9217158 9.18E-01 2.09E+00 3.64E-02 
MOD.F:LEX.oh:CLA.INP:SUR 1.64143282 1.16E+00 1.41E+00 1.58E-01 
MOD.F:LEX.oh:CLA.INP:STA 1.61801819 8.66E-01 1.87E+00 6.18E-02 
MOD.D:LEX.pô:CLA.INP:SUR -2.275693 1.15E+00 -1.99E+00 4.70E-02 
MOD.D:LEX.pô:CLA.INP:STA 0.47879523 1.16E+00 4.14E-01 6.79E-01 
MOD.A:LEX.pô:CLA.INP:SUR -1.2955056 1.07E+00 -1.21E+00 2.27E-01 
MOD.A:LEX.pô:CLA.INP:STA 13.3504141 5.42E-01 2.46E+01 4.21E-134 
MOD.F:LEX.pô:CLA.INP:SUR -15.515113 7.40E-01 -2.10E+01 1.18E-97 
MOD.F:LEX.pô:CLA.INP:STA -12.178482 5.98E-01 -2.04E+01 3.91E-92 
MOD.D:LEX.uai:CLA.INP:SUR -1.3093373 1.07E+00 -1.23E+00 2.19E-01 
MOD.D:LEX.uai:CLA.INP:STA 1.64248924 1.09E+00 1.51E+00 1.32E-01 
MOD.A:LEX.uai:CLA.INP:SUR -11.619451 5.31E-01 -2.19E+01 2.50E-106 
MOD.A:LEX.uai:CLA.INP:STA -10.394189 5.09E-01 -2.04E+01 1.44E-92 
MOD.F:LEX.uai:CLA.INP:SUR -3.2100308 1.23E+00 -2.60E+00 9.20E-03 
MOD.F:LEX.uai:CLA.INP:STA -0.3572834 1.07E+00 -3.33E-01 7.39E-01 

 

In the following subsections, the proportion of the three possible 
answers (Conclusion: CON; Surprise: SUR; Start: STA) are presented for 
the main effects of each factor and for their double and triple 
interactions. 
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8.8.2 Effect of the presentation Modality 

Figure 74 shows the proportion of answers for each function (CON, 
SUR, STA) as a function of the presentation Modality – one of the three 
prosodic forms (D/A/F) or the written presentation (w). Our initial 
expectations were that the Descending (D) form would favor the 
Conclusion answer (CON); the Ascending (A) form would favor the 
Surprise (SUR) answer; the flat (F) would favor the Start (STA) answer. 
For the written (W) modality, we did not expect any particular result 
but it gives an idea of the bias linked to the lexical level; since here the 
effect of all utterance and lexemes is averaged, and because this effect 
is counterbalanced by construction, it shall give answers close to 
chance (1/3). In the figures, the grey dashed line stands for the 
proportion representing chance answer. 

 

Figure 74 - Proportion of the (CON, SUR, STA) answers  
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for each level of the stimuli’s presentation Modality  

 

 

The first thing observable is that the W modality does not relevantly 
favor a functional interpretation. Answers are distributed around 
chance, but we can see that SUR is the least favored interpretation on 
the basis of the written presentations. On the other hand, by looking 
at the three modalities, we can see that the SUR interpretation is 
strongly impacted by prosody (being selected over 60% of the times 
for the Ascending contours, and not for the two other contours), and 
that this impact happens in accordance with initial expectations: A 
favors SUR. Also in line with initial expectations are the answers for the 
flat form stimuli: F favors STA. In its turn, the Descending form (D) 
disfavors SUR, but contrary to our expectations, the most favored 
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interpretation was STA but not CON – albeit D does not disfavor CON, 
as the F presentation does. Overall, we can say that (a) the 
interpretation of SUR seems to be the most directly dependent of 
prosody form both because it is disfavored by the written modality and 
because only one prosodic form favors its interpretation; and (b) that 
both D and F favors STA, with F the form most clearly linked to STA. 
However, we need to factor the lexeme in to check how prosody and 
the lexicon affected the functional interpretations. Before doing that, 
we check how the lexicon alone conditions the functional 
interpretation. 

 
 

8.8.3 The lexeme 

Figure 75 exhibits the proportion of answers as a function of the 
Lexeme. It was expected that if prosody only were in play, it would 
supersede the effect of the lexicon. Since factors are blocked, this 
would be translated into proportion of answers near the chance 
dashed line. However, we have some clear tendencies in the opposite 
direction.  

 

Figure 75 - Proportion of the (CON, SUR, STA) answers for each level of 
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Lexeme used for the stimuli 

 

 

Firstly, the lexemes pô and uai clearly disfavor the functional 
interpretations of start and conclusion, while favoring surprise. On the 
other hand, não and eh disfavor SUR, favors CON, and are neutral to 
STA. Although showing some variation, gente, oh and ah seem to 
influence less the functional answer. 
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8.8.4 The functional CLASS attributed to the original stimuli 

Figure 76 shows the proportion of answers as a function of the 
functional class originally assigned to each utterance selected to create 
the stimuli. As a reminder, each original utterance (DM plus illocution) 
was manipulated into three prosodic versions. An original CNT plus 
illocution would thus result in three DM, each with one function (CNT, 
EXP, and INT) plus the illocution. In this example, the original DM class 
was CNT. Expected results would, thus, show a random distribution 
across classes, if prosody only were playing a role in the functional 
attribution by participants. A result based on the original functional 
category would be shown by a strong match between the pairs CNT-
CON, EXP-SUR, and INP-STA. This is not what happens. However, 
original CNTs and EXP seems to favor STA whereas INP favors CON 
answer. 

 

Figure 76 - Proportion of the (CON, SUR, STA) answer for each level of 



 

 

 

273 

the functional Class of the stimuli 

 

 

I will now present the results of the interactions between these three 
factors. 

 

8.8.5 Interaction between presentation modality and lexeme 

Figure 77 exhibits the interaction between the presentation modality 
(written or manipulated prosodic forms) and the lexeme. 
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Figure 77 - Interaction between modality and lexeme 

 

 

For the written modality, there is a tendency for the lexemes pô, uai, 
gente to favor the SUR answer. The lexemes ah, não and eh, on the 
other hand, disfavor SUR and favors CON. Generally, the STA answer is 
not linked to any lexeme; only pô seem to disfavor STA to some extent. 

 The descending (D) form will affect negatively SUR answers in 
all lexemes but in pô and, especially, uai. Comparing W and D 
modalities, the SUR answers in surplus for the D presentations for uai 
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seems to come mostly from the CON answers observed in the W 
modality, while STA levels do not change. As a matter of fact, no matter 
what prosodic form uai takes on, it will tendentially be interpreted as 
a surprise. For the other Lexemes in the D modality, ah, não and eh 
favor the CON answers, whereas only oh will favor STA. 

 The ascending (A) form strongly affects the lexemes pô, uai, 
gente, and oh towards a SUR answers. Although this prosodic form is 
perceptually salient, the lexemes não and eh with A contours received 
a majority of CON answers. The STA answers are mostly disfavored for 
lexemes pô, uai, and gente. 

 Interestingly, the flat (F) form does especially favor, compared 
to other conditions, a STA answer for a given Lexeme. This is line with 
our expectations, but may be reinterpreted here as a double effect of 
prosody and Lexeme: the function of prosodic changes is primarily 
interpreted by participants under the bias of their semantic 
interpretation of the Lexeme. In the case of Flat prosodic form, only 
uai favors SUR and eh favors CON. Besides, flat pô and uai never elicit 
CON answers, and flat eh never elicit SUR answer: some interpretations 
of prosodic forms seem to be limited by the Lexeme. 

 

8.8.6 Interaction between modality and DM class 

Figure 78 shows the proportion of answers as function of the original 
Class and the Modality (W/D/A/F). Expected results would higher 
proportions for pairs Descending-CON, Ascending-SUR, and Flat-STA, 
whatever the original Class of the utterance; this would indicate that 
the original class does not bias interpretation of the prosodic form. 

Original CNT utterances with A prosody bias answers toward 
more SUR answers and F prosody bias towards STA answers – 
disfavoring the two other answers. In the case of D prosody, the CON 
answers are favored, while the SUR is disfavored but the STA answer 
are not disfavored. This is mostly in line with our expectations; let’s 
note for this Class, the SUR answers are disfavored in the written 
presentations. 



 

 

 

276 

Original EXP utterances will favor the STA answer both with the 
Descending and the Flat forms. Only SUR is favored when we have the 
Ascending form. Here, the written modality does not elicit any 
particular functional interpretation (proportion around 1/3 for all 
functions). The CON answer is disfavored in all prosodic form. Here, it 
is possible to see that there seems to be an incompatibility between 
the illocutions typically introduced by CNT and EXP, since 
manipulating CNTs into EXPs did not pose any particular problem. 

 

Figure 78 - Proportion of the (CON, SUR, STA) answers for each level of 
the presentation Modality of the stimuli for each functional Class 

 

 

The original utterances with the INP Class favored the CON answer for 
written presentation with two of the three prosodic modalities (D and 
F) but not the Ascending modality – in that case, the prosody favors 
the SUR answers. So, it seems these illocutions favor a conclusive 
interpretation. 



 

 

 

277 

 

8.8.7 Interaction between lexeme and DM class 

Figure 79 shows the effect on the proportion of answers of the 
interaction between the original DM Class and the Lexeme (averaging 
the effect of the presentation Modality). Considering that neither the 
context/illocution nor the lexeme influence functional answer would 
result in random distribution of answers, which is not the case. 

 Utterances classified originally as CNT favor SUR answers for the 
lexemes pô and uai, while não and eh favor the CON interpretation. 
Gente, oh, and ah present a more balanced distribution, although STA 
is favored. In original EXP utterances, pô, gente, and ah display similar 
distributions, whereas SUR is favored by the lexeme uai and disfavored 
by the lexemes não and eh, this last lexeme leaning towards CON once 
again. Original INP utterances do not strongly affect pô and uai. On 
the other hand, gente favors the SUR answer while ah, não, and eh 
favors the CON interpretation. 

Figure 79 - Proportion of the (CON, SUR, STA) answers for  
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each level Lexeme and functional Class 
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8.8.8 Triple interaction between MODALITY * LEXEME * CLASS 

Figure 80 exhibits the triple interaction between presentation modality, 
original functional class, and lexeme. The surprise (SUR) answer is 
favored in most cases by the Ascending form and by the lexemes pô, 
uai, and gente. This answer is especially disfavored by the lexemes não 
and eh, and when the original utterance carried a CNT or an EXP. On 
the other extreme, the conclusive (CON) answer is favored by the 
lexemes ah, não, and eh, in almost combination of Modalities and 
original Class. However, the descending form (D), expected for CNT, 
tends the reinforce the CON answer in such lexemes, while the Flat 
form tends to reinforce the STA answer, often on par with CON on 
those lexemes. The STA answer, expected for utterance with Class INP, 
is favored by the lexeme oh and by descending and flat prosodic forms, 
especially with original CNT and EXP utterances. 

 

Figure 80 - Proportion of the (CON, SUR, STA) answers for each level of 
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Lexeme, functional Class, and Presentation Modality 

 

 

8.9 DISCUSSION OF RESULTS 

The results of the discrimination test support the hypothesis of the 
importance of the prosodic realization in the functional interpretation 
of DMs in dialogic interactions. This first experiment was, however, 
more limited in terms of lexeme and utterances. It also showed that a 
discrimination paradigm allows the participants to better focus on 
prosodic form than a discrimination protocol, that favors more holistic 
interpretations of a given stimulus.  A reduced set of three utterances 
and two lexemes (“ah”, “gente”) were tested. Albeit no effect of lexical 
Context was observed, more studies on a potential role of the other 
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linguistic levels were required. Another limitation was linked with the 
INP definition, that is not fully comparable to the two others 
definitions, being simpler. As shown during the preceding chapter, the 
INP function is also frequently observed with another prototypical 
contour (similarly flat and short, but with a much higher F0), which 
marks an attitude of contrast with what was said. However, this first 
perceptual validation has its strengths. First because it is based on fully 
spontaneous occurrences of DMs, a feature rarely observed in the 
perceptual evaluation of prosody, and that avoid the construction of 
artificial, unaccounted linguistic structures – and carries the original 
performance of a speakers in its complexity. Moreover, the prosodic 
characteristics of the DM part in the stimuli were derived from the 
theoretical description of the DMs’ functions – thus no stimulus was 
exempt of quality bias linked to the resynthesis process, and all the DM 
carried an equivalent prosodic meaning, potentially removing features 
linked to affective or idiosyncratic characteristics of the original 
recordings. The paradigm used for this first evaluation was based on 
AB pair discriminations. This approach was preferred as the task was 
thought to be potentially complex, and pair comparisons allow an 
enhanced perception of subtle differences. The results, which clearly 
support the ability of listeners to select a prosodic form consistently 
for an association with a functional category, pleaded for validating 
the relationship of prosodic shape and functional definition using an 
identification task. A drawback of pair comparison is the rapid inflation 
in the number of presentations, each individual stimuli being paired 
with all the others: this strongly limits the ability to test many variations 
across factors, something an identification paradigm is better 
designed for. 

 Considering the limitations of the first test, a more complete 
evaluation for the same functions was conducted. This time, an 
identification paradigm was adopted, and a more complete set of 
lexemes was used. All examples were attested in the C-ORAL-BRASIL-
I corpus, each one carrying, after modification, the three prosodic 
forms associated with the functional roles. Instead of two, a total of 
seven lexemes were tested (which is the maximal number of lexemes 
attested for these three functions in the corpus available). It seems that 
many factors are likely to have an effect and contribute to the final 
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interpretation of DMs’ functional roles: the prosody of the DM, the 
lexeme, the type of illocution, and the context. This last factor is absent 
of the stimuli presented, and so participants may tend to reconstruct 
one so to semantically interpret the proposed utterances. 
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9 CONCLUSION 

Discourse Markers were defined in this work as information units with 
interactional functions. As such, DMs are vehiculated through prosodic 
units, they have specific macro-functions that are conveyed by (or 
associated with) a prosodic form, and they have distributional 
preferences. DMs are not compositional with respect to the hosting 
pattern. Instead, they are aimed at regulating interactional aspects of 
the discourse. They may promote social cohesion (ALL), draw the 
addressee’s attention to an illocutionary solution (CNT), express 
surprise without illocutionary force (EXP), highlight a previous content 
(EVD/HGL), or simply begin the utterance (INP). Each proposed 
function can be filled with a varied range of lexemes or small 
expressions, as shown in Table 12 - Lexical frequency by DM class. The 
lexicon has been shown to be variable whereas the prosodic form can 
account for the recognition of the proposed functions with good 
performance in a classification task. It has also been shown that, 
overall, prosody has positive effects on the recognition of DM 
functions. Nonetheless, the lexicon has been also shown to play an 
important role in the interpretation of DMs’ role. 

A classification model was presented together with the most 
relevant features for the distinction of each DM class against the 
others. It is possible to say that the classification model presents a 
good performance (accuracy scores varying between 68% and 78% for 
five classes). This model does not present the same accuracy level as 
those presented in Gobbo (2019) – around 80%. However, the current 
proposal (and respective model) is more complex: the task was carried 
out not with three but five DM classes. Moreover, the current model 
accounts for previously unclassified observations that were left out 
either because they were ambiguous or did not fit any existing class. 
Finally, the model was evaluated with more robust techniques, and its 
performance may reflect more reliably what happens in the wild. 
Another interesting observation concerns the features most frequently 
chosen by the one-vs-others models. In most cases, features involving 
fundamental frequency were important. Exceptions are the ALL class, 
which selects duration, and INP, which selects intensity and duration. 
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Alignment features also proved to be relevant for the distinctions. 

 An interesting approach for a more comprehensible model 
could be to have feature-dedicated models. An ensemble could be 
built that congregates models, each dedicated to a Discourse Markers 
facet. For instance, a model could vote based exclusively on the 
prosodic features. Another one could be in charge of aspects related 
to the distribution of the DM within the pattern. Not only a categorical 
feature indicating position (initial/medial/final) could prove useful, but 
also more fine-grained features could be tested that reflect the relative 
distance of the DM with respect to the illocutionary unit (both in 
relative time unit and of the number of information units), as well as 
neighboring information units. Another model could be responsible 
for judging the class based on the DM’s lexical filling. This could be 
achieved using sentence embeddings (sentence transformers – 
Reimers & Gurevych, 2020) as input. This would prevent, for instance, 
first names (frequently used in CNT and INP) from being dealt with as 
very divergent categories, like a simple categorical encoding of the 
DM’s text. 

Furthermore, some important conclusions can be drawn from 
the perceptual tests. Firstly, some lexemes received strong associations 
with some functions. These associations seem to be favored or 
disfavored by prosody (and by the illocution). For example, não (no) 
has a conclusive function, but the perception of this Lexeme as 
conclusive becomes more salient when the prosodic form is 
descending and less salient when ascending. But the near categorical 
attribution of functionality by the test participants to some lexemes 
(e.g., uai or eh) shall not be overstated: first it may vary a lot according 
to the contextual interpretation of the lexeme (no lexeme has a fixed 
interpretation from the written form, across all utterances), and second 
– if participants rely on the basic meaning of lexemes, the corpus 
observations shown these lexemes are used in a variety of contexts. It 
may be that the participants struggle with the desemanticized nature 
of DM in this case. More works will be required to offer experimental 
protocols able to cope with this limitation (an association protocol, as 
in Shochi et al., 2020, may prove interesting). However, the lexicon offers 
a large set of possibilities, especially since proper names can be used 
as DMs in CNT and ALL. Moreover, the lexicon is pluri-functional; the 
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meaning of lexemes is highly dependent on the context. This makes a 
functional classification from lexicon complicated. Furthermore, the 
lexicon is very variable diastrically, diaphasically and diachronically, 
making a classification even more complicated. Secondly, both the 
type of illocution and its semantic content have been shown to have 
an effect on the global interpretation of the utterance. Of course, what 
was asked was the interpretation of the DM, which is embedded in the 
utterance, but the whole structure is producing a global meaning. It is 
reasonable to think that the DM functional role is holistically 
interpreted within the utterance. Therefore, if the illocution carries (or 
is interpreted30 as) an illocutionary surprise, a conclusion, or something 
else, that affects the participant’s interpretation of the DM. However, 
the function of the DM is, to a large extent, independent of the 
illocution. It seems sensible to think that the illocution imposes some 
combinatorial constraint on the DM, but there must be a degree of 
freedom. In addition, there are also many illocution categories (most 
of which are still in need of deeper descriptions), and this factor cannot 
be controlled for. What was taken into account was a simplified 
original DM class factor (that should sum up all the natural 
characteristics of the original utterance). 

This research identified five prosodic forms that seem 
functionally coherent and sufficient to cover all the functions of the 
DMs. Prosody can vary diastratically and diaphasically (perhaps 
diachronically too) based on attitudinal parameters: higher or lower 
intensity, f0 range, articulation rate can undoubtedly depend on the 
demographic characteristics of participants (gender, age, socio-
cultural level, and others) and on the situation (people adjust their 
attitude depending on the communicative situation). But the prosodic 
form (movement and alignment, first and foremost) remains, to a great 
extent, constant. This constancy is exactly what allowed for the good 

 

30 Let’s note that in the case of the stimuli used for this experiment, their interactional 
interpretation is really difficult without having access to the history of the dialogues they 
were excised from. And, as shown by the results of the factor Class, presented in its written 
Modality, the participants did attribute some functions to the sentences that were not in line 
with the original categories. 
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classification scores obtained. 

Based on these considerations, the provisional conclusion 
drawn from the experiments is that to categorize DMs, given that many 
factors influence their interpretation, one should start with the less 
variable factor –the prosodic form, knowing that other factors can 
modify the basic interpretation of the form and can even modify it a 
lot. One should not, advisably, start with the factors that vary the most, 
such as the lexicon, attitudes, or types of illocutions. These are all 
factors with important degrees of variation that do not allow for an 
initial organization. If we, by way of example, start with the lexicon, we 
will come to the conclusion that the same lexeme can accomplish 
essentially different functions and that the same function can be 
accomplished by entirely different lexemes, say, a proper name and a 
verb. 

As it was argued, the prosodically-based proposed DMs are 
macro-functions that can take on more specific subfunctions 
depending on the context. However, the subfunctions are coherent 
with the macro-functions. For instance, CNT is thought to point to the 
illocutionary solution, i.e., to point to the intention of the speaker. If 
the speaker says something, then interrupts themselves to introduce a 
new planification, this repair can be introduced by a CNT (if pointing 
to a conclusion) or by an INP, if the speaker wants, for instance, mark 
a strong contrast with the interrupted ideation. 

Finally, the design of the experiments showed some limitations: 
the wording of the questions, the nature of the data, the definition of 
the possible categories used to answer are notably complex and may 
not allow a smooth understanding by some participants. Naïve 
speakers are not taught during schooling to identify prosody or DMs 
the same way they are taught to interpret a lexeme like uai as an 
interjection that can express surprise. Here, the written bias, inherited 
from the educational system, may have played a significant role in our 
results. Reflection is therefore necessary to help design other 
experiments that takes into account the issues observed for 
metalinguistic tasks presented to naïve participants. A possible idea is 
to present only natural examples, without manipulations and 
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decontextualizations, and ask participants to identify the function. 
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11 APPENDIX A - TRANSCRIPTION CRITERIA 

 

In the following subsections, we present the corpus transcription 
criteria. This section is based, as a whole, on Mello and Raso (2009) and 
Mello et al. (2012). We start with some rules applicable to text 
transcribed in accordance with the standard spelling form [§A.1]. 
Although this is to some extent self-explaining, it needed some 
standardization. We then pass to non-linguistic criteria ([§A.2] through 
[§A.10]). From [§A.11] to [§A.13], introduce the criteria for linguistically 
less conventionalized phenomena. From [§A.14] on, we present the 
criteria concerned with the core linguistic phenomena, following, when 
possible, the order phonetics/phonology > morphology > syntax > 
lexicon. 

Phenomena are provided with examples from the corpora and 
respective translations. We tried to keep translations as close as 
possible to originals, from a structural standpoint, to facilitate the 
comprehension of phenomena. Thus, translations sometimes should 
not be taken literally. The audio files presented in this work are 
available at <SHARED_MATERIALS_THESIS>. 

Before delving into them, we want to call the reader’s attention 
to an issue. Each section represents a criterion according to which 
transcription errors were tallied. Some criteria encompass subcriteria. 
In a perfect scenario, the sections would have been broken down until 
each phenomenon was completely homogeneous. However, this 
would lead to a much more complex work, which we decided not to 
undertake at this moment. 

 

 

1. Standard spelling form  
The Brazilian Portuguese (BP) standard norm was observed in all cases 
where a special criterion lacked. Words are transcribed following the 

https://1drv.ms/f/s!Ar5G4HnYDsd9goeGYdFY_6CL9ZID9hg?e=jXIUv8
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BP standard spelling form as pronounced, i.e., without the inclusion or 
exclusion of items. The standard spelling form followed the 
Orthographic Form of 1943. The Houaiss Dictionary of the Portuguese 
Language (Houaiss, 2nd Edition, April 2007) was chosen to be the 
reference for spelling forms in as much as it was the most complete 
Portuguese dictionary to that date. The following mistakes were tallied 
in this criterion. 

 

1.1 Misspelling 

It accounts for general misspelled form of all tokens for which there is 
no special criterion. 

 

1.2 Words unintendingly spelled in accordance with the new spelling form 
(Orthographic Agreement of 1990), like: 

 

a) lingüiça (sausage) instead of linguiça; 
b)  freqüência (frequency) instead of frequência; 
c) jibóia (boa) instead of jiboia; 
d) mini-projeto (mini project) instead of miniprojeto; 
e) mão-de-obra (manpower) instead of mão de obra; 
f) microondas (microwave) instead of micro-ondas; 

 

1.3 Capitalization or syllable division 

Except for titles and proper nouns, words should never be capitalized, 
even at the beginning of the terminated sequence. Syllable division is 
not used unless the word is scanned and separated by a prosodic 
boundary sign. Such occurrences are commented on the metadata. 

 

1.4 Pronunciation mistakes 

If the speaker incorrectly pronounces a word and correct herself 
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subsequently, the mistake is transcribed as pronounced. If the speaker, 
on the other hand, mistakes the pronunciation without repairing it, the 
standard spelling form is transcribed and commented on the 
metadata.  

 

1.5 Alphabet letter names 

Alphabet letters are transcribed orthographically. If, say, letter j is 
referred to in the audio, it is transcribed as letra jota (letter jay). 

 

2. Word misunderstanding 
Misunderstood words, word deletion, and word insertion are set off 
from the main standard spelling form criterion and tallied separately.  

 

Word misunderstanding [bmedrp01_1_057] 

*GIU: [57] a gente quer / por exemplo / o lance do devedê do 
Metropolitan // 

*GIU: [57] we want / for instance / the DVD thing of the 
Metropolitan // 

 

In the example below, the transcription displays do (of the), whereas 
what is actually pronounced is no (at the). 

 

3. Word deletion 
Word deletion accounts for words that, although present in the audios, 
are not transcribed. The example below presents a transcription where 
the word aí (then) is not transcribed. 
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Word deletion [btelpv31_099] 
*JES: [99] <&a [/1] aí eu> tava pertinho / (aí) eu aproveitei e fui 
lá // 

*JES: [99] <&th [/1] then I> was around / (then) I took the 
occasion and went there // 

 

Any deleted word, notwithstanding the concurrent applicability of 
other special criteria, is counted in this type of error. 

 

4. Word insertion 
Word insertion comprises words transcribed despite not being present 
in the audio, such as eu (I) in the example below. 

 

Word insertion [bnatpd10_019] 

*ARN: [19] <não> / eu tô [/2] eu nũ tô vendo não / mas eu tô 
percebendo // 

*ARN: [19] <no> / I’m [/2] I can’t see it / but I can notice // 

 

5. Unintelligible speech and anonymization 
Words and speech chunks heard but not understood by transcribers 
receives a special sign. If just one word was not identified, it is 
transcribed with the symbol xxx. 

 

Unintelligible word [bnatpd07_068] 

*COA: [68] essa tréplica dela acaba xxx // 

*COA: [68] her rejoinder ends up xxx // 
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When more than one word is not identified, the speech chunk is 
transcribed with yyyy (second example below). 

 

Unintelligible speech chunk [bnatbu03_392] 

*DBC: [399]  cê entendeu / yyyy / ah / tem que ficar não sei o 
que parado na conta / pode aplicar // 

*DBC: [399] did you get it / yyyy / say / anything must remain in 
the account for some time / you can invest it // 

 

In some cases, the audio is beeped so as to preserve participants’ 
anonymity and/or privacy. Anonymized speech chunks are transcribed 
with the symbol yyy. The example below displays the anonymized 
number of a legal proceeding. The fact that the participant lives with 
HIV is the main reason why the proceeding was brought by. 

 

Anonymization [bnatpd07_068] 

*ANI: [1] audiência de instrução e julgamento / do processo 
número yyy / yyy / yyy / yyy / yyy // 

*ANI: [1] evidentiary and judgment hearing / case number yyy / 
yyy / yyy / yyy / yyy // 

 

6. Paralinguistic and non-linguistic elements  
Cough, gasps, groans, laughs, moans, sighs, throat-clear, as well as 
other non-linguistic sounds produced or referred to by participants are 
transcribed with the symbol hhh. 
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Paralinguistic sound [bteplv22_050] 

*MOI: [50] hhh cê é doido hhh // 

*MOI: [50] hhh you’re mad hhh // 

 

Paralinguistic and non-linguistic elements are not set off from the 
ongoing speech stream with prosodic boundary signs unless they are 
really prosodically parsed and bear communicative value at the same 
time, such as non-natural, ostensive coughs, laughs and even surprise 
or astonishment sounds. The example below has a paralinguistic sound 
that emulates surprise used as an answer to a rather banal fact. 

 

Paralinguistic sound prosodically parsed [bteplv27_010-012] 

*GRA: [10] ah / foi bom / mãe / cê acredita que só fui eu e &um 
[/1] mais uma menina // 

*LUZ: [11] hhh // [12] por quê // 

*GRA: [10] oh / it was good / mom / do you believe that only me 
and &an [/1] another girl showed up // 

*LUZ: [11] hhh // [12] why // 

 

Due to their high frequency and degree of conventionalization, two 
paralinguistic sounds have their own sign. The first one is the dental 
click sound used to mark annoyance, which is transcribed with nts: 

 

Click sound [bnatla05_230] 

*AGN: [231] como é que é / nts / &he / &sa [/1] Sagrada Família 
// 
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*AGN: [231] how is that / nts / &he / &sa [/1] Sagrada Família 
// 

 

Likewise, the whistle-like sound generally used to get someone’s 
attention or to shush someone is transcribed with psiu (loosely 
translatable as psst or shh). 

 

Psiu sound [bmedts01_1_266] 

*MRC: [264] vai fazer aquilo de verdade // [265]  &el [/1] ele nũ 
+ [266]  psiu // [267]  tô brincando hhh // 

*MRC: [264] you’re gonna do that for real // [265]  &he [/1] he 
doesn’t + [266]  psiu // [267]  I’m kidding hhh // 

 

7. Retraction 
As explained in [§2.3], retractions are frequently accompanied by non-
terminal prosodic boundaries. When this is the case, the boundary sign 
receives the additional annotation of how many words are retracted 
by the speaker. One additional aspect of this annotation that needs to 
be heeded is that the number of words canceled out must be 
distributed among boundary signs whenever the retraction scope goes 
back beyond one prosodic unit (speech chunk between two 
boundaries): 

 

Wrong annotation of retraction [bmedts07_175] 

*JOS: [175] mas o que &diz / já que você <nũ> [/8] <o que que 
cê tava> <falando> // 

*JOS: [175] but what did you &say / since you’re <not> [/8] 
<what were you> <talking about> // 
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Correct annotation of retraction [bmedts07_175] 

*JOS: [175] mas o que &diz [/4] já que você <nũ> [/4] <o que 
que cê tava> <falando> // 

*JOS: [175] but what did you &say [/4] since you’re <not> [/4] 
<what were you> <talking about> // 

 

Since validating the corpus segmentation was out of the scope of this 
work, just the number of retracted words and their distribution were 
validated. 

 

8. Numerals 
Numerals are transcribed in accordance with the standard spelling 
form, and the Arabic numeral symbols (numerical digits) are left for the 
mark-up and annotation scheme. The transcription followed some 
particularities. 

 

8.1 Hyphenation 

For the sake of comparability with other C-ORAL corpora, numerals, 
either cardinals or ordinals, are hyphenated and counted as a unique 
word. 

 

Ordinals [bmedsp02_305] 

*AND: [305]  a distância do Vasco pro décimo-sexto / era de 
quatro / e nũ é / de seis / né // 

*AND: [305] Vasco’s distance to the sixteenth classified / was 
four / and not / six / huh // 
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8.2 Non-hyphenation of approximators/estimators 

Non-numeric expressions used to approximate or estimate a number, 
such as e pouco (something) or e sei lá (and whatever), are not 
hyphenated together. 

 

Approximation/estimation of numbers [bnatbu03_392] 

*DBC: [392]  é cento-e-quarenta e poucos / cento-e-trinta e 
poucos / nũ sei // 

*DBC: [392]  it’s one-hundred-forty something / one-hundred-
thirty something / I don’t know // 

 

8.3 Non-hyphenation of decimals and thousands separators 

When they are pronounced, decimal and thousands separators are not 
hyphenated together with numerals. 

 

Separators [bnatpd01_014] 

*NEW: [14]  só no mês de março / quarenta-e-um vírgula nove 
// 

*NEW: [14] only on march / forty-one comma nine // 

 

8.4 Hyphenation of fractional numerals 

Only the part forming a regular cardinal numeral is hyphenated. The 
table below displays some examples: 

 

Examples of fractional numerals 
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Numeral Portuguese 
standard norm Corpus convention Translation 

 1 1 2�   Um e meio um e meio One and a half 

21 1
2�   Vinte e um e meio vinte-e-um e meio Twenty-two and a 

half 

3
4�  Três quartos Três quartos Three thirds 

 21
40�  Vinte e um 

quadragésimos 
Vinte-e-um 

quadragésimos 
Twenty-one 

fortieths 

21
41�  

Vinte e um 
quarenta e um 

avos 

Vinte-e-um 
quarenta-e-um avos 

Twenty-one forty-
firsts 

 

The fractions of hours follow, thus, this rule. 

 

Fractional numerals [btelpb13_005] 

*SAN: [5] bom / então / olha só // [6] minha cliente das cinco e 
meia acabou de desmarcar / cê quer vim cinco e meia // 

*SAN: [5] well / so / look // [6] my half-past-five costumer just 
called to cancel / do you wanna come at half past five // 

 

8.5 Numerals spelled digit by digit 

Numerical codes or numerals recombined for simplification were 
transcribed as pronounced. If digit by digit, no hyphenation is used. If 
a recombination, just the recombined numerals are hyphenated. 

 

Numerals spelled digit by digit [btelpv38_032-033] 

*ALE: [32] pode falar / Marcelo // 
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*MAR: [33] nove nove dois / 

 

*ALE: [32] say it / Marcelo // 

*MAR: [33] nine nine two / 

 

8.6 Numerals separated by prosodic boundaries 

When one numeral is separated by a prosodic boundary, just the 
separated parts are hyphenated. 

 

Compound number divided into two prosodic units 
[bnatbu04_036] 

*GER: [36] vinte-mil / <e-quatrocentos / o> valor // 

*GER: [36] twenty-thousand / <four-hundred / the> value // 

 

9. Hesitations and interrupted words 
9.1 Hesitations 

Hesitation are transcribed as &he no matter the vowel quality the 
sound is produced with. They are transcribed as many times as they 
are effectively produced and separated by a boundary sign just in case 
they are prosodically parsed. 

 

Hesitation [bmedts06_026] 

*CAR: [26] &he / &he / a pesquisa pega / meninos / e meninas 
/ <né> // 

*CAR: [26] &he / &he / the research considers / boys / and girls 
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/ <huh> //  

 

9.2 Cases of hesitations that needed to be heeded 

Transcribers received instruction to pay close attention to the forms eh 
(interjection) and é (it is or yes), whose sounds can be confounded with 
that of hesitations. To decide which form should be employed, 
transcribers could both use prosodic cues and check the adequacy of 
replacing the symbol by yes (since é is frequently used to convey 
agreement) or by a different interjection, as a commutation test. It was 
agreed that, whenever the sound could convey agreement, the form é 
would take preference. 

 

Hesitation [btelpb16_007-008] 

*KEN: [7] deixa eu te falar // [8] &he / a Cléo já voltou // 

*CLA: [9] já sim // 

*KEN: [7] let me ask you // [8] &he / did Cléo come back // 

*CLA: [9] she did // 

 

Agreement [bmedts01_02_069-071] 

*SUE: [69] <isso / é verdade> hhh // 

*FAT: [70] é // 

*SUE: [69] <is that / true> hhh // 

*FAT: [70] yes // 

 

Interjection [bmedts04_278] 
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*ANG: [278] <eh> / que coisa <boa> // 

*ANG: [278] <ahh> / what a good thing // 

 

9.3 Interrupted words 

Interrupted words are also signaled by the ampersand symbol & so as 
to enable their identification and exclusion from word counts. 
Although sometimes the full word can be identified with the help of 
context, only the pronounced part is transcribed. 

 

Interrupted word [bmedts06_026] 

*FRE: [117] <tá> // [118] cê acha que cê volta / antes das oito / 
lá do [/1] do [/1] do Del Rey // 

*MAR: [119] &vol [/1] claro / meu filho // 

 

*FRE: [117] <okay> // [118] you think you come back / before 
eight / from [/1] from [/1] from the Del Rey // 

*MAR: [119] &vol (I come, as a resumptive answer conveying 
agreement) [/1] sure / son // 

 

10. Acronyms 
In BP, acronyms are usually pronounced in two fashions. When the 
letters forming the acronym match a possible syllabic combination of 
the language, the acronym is pronounced as a regular word. 
Otherwise, each letter is spelled out to form a word. The transcription 
of acronyms followed, thus, this twofold criterion and has some 
peculiarities. 
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10.1 Word acronyms 

Acronyms of the former type were simply transcribed in uppercase 
letters as they are usually written. In the example below, CEMIG stands 
for the Companhia Energética de Minas Gerais (Energy Company of 
Minas Gerais). 

 

Regular acronym [bnatla01_164] 

*CLA: [164] vocês prestaram pra CEMIG / e pra Receita Federal 
// 

*CLA: [164] you guys worked for CEMIG / and for the Federal 
Revenue // 

 

10.2 Acronyms spelled letter by letter 

Acronyms of the latter type received a special convention. Each letter 
should be transcribed orthographically as it is pronounced and put 
together in lowercase. Most Portuguese letter names receive an accent 
mark in written language, such as pê for p. Since they are also spelled 
as a unique word, acronyms of this type respect the accentuation rules 
of regular Portuguese words. This system, which is out of the scope of 
this work, provides rules mainly for proparoxytone and oxytone words, 
the latter encompassing most acronyms of this type.  For instance, the 
correct transcription of PDV (which stands for Plano de Demissão 
Voluntária, in English, Volunteer Dismissal Program) is pedevê because 
the accent falls on the last syllable, and not pêdêvê. 

 

Spelled-out acronym [bnatla01_184] 

*EDU: [186] que a &P [/2] a / Protex diz que tava usando o 
ceenepejota da Confederal // 

*EDU: [186] that &P [/2] (the) / Protex claims they were using the 
ceenepejota of Confederal // 
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In the example above, cenepejota stands for Cadastro Nacional de 
Pessoas Jurídicas (National Register of Legal Entities) and it is formed 
by assembling cê (c) + ene (n) + pê (p) + jota (jay). In this case, the 
accent falls on jo and there is no need for an accent mark according to 
the accentuation rules of Portuguese, whose words are paroxytone by 
standard. 

 

10.3 Mixed acronyms 

Some acronyms may be pronounced in a mixed fashion or be 
accompanied by numerals. One such case is MPEG-4. The first letter is 
spelled out (eme for M) and the remaining part is pronounced like a 
regular word (pegue for PEG). In this case, the acronym is transcribed 
as pronounced, thus emepegue, in lowercase and in a unique word. 
Numerals, in their turn, are transcribed separately following their own 
criteria [§A.6]. MPEG4 is, thus, transcribed as emepegue quatro. If there 
were, say, an MPEG21, it would be transcribed as emepegue vinte-e-
um. 

 Two final observations on this criterion. The first one is that 
acronyms that have become full words – taking on inflections and 
being regularly written with lowercase letters – are transcribed as 
regular words. Thus, radar (radar) is not uppercased and óvni (UFO) 
receives an accent mark. Finally, OK, which is spelled out in accordance 
with the original English letter names, is adapted as oquei. 

 

11. Foreign words 
Foreign words and foreign proper nouns are transcribed in accordance 
with their original spelling forms. 

 

Foreign word [bmedrp09_2_007] 
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*JUL: [7] a primeira barreira foi tecnológica // [8] muitos taxistas 
não sabiam nem atender uma ligação num smartphone // 

*JUL: [7] the first was a technological barrier // [8] many taxi 
drivers could barely answer a call using a smartphone // 

 

Minor phonological adaptations on the pronunciation of foreign 
words, like the paragoge of [i] at consonantal syllable codas, are not 
transcribed unless the detail is referred to by speakers. On the other 
hand, if the word is clearly pronounced incorrectly, it is transcribed with 
the wrong spelling. In such cases, transcribers must provide this 
information on the metadata. 

 

Foreign word incorrectly pronounced [bfamdl04_047] 

*SIL: [47] como se a gente tivesse num Big Brogher // 

*SIL: [47] as if we were on Big Brogher // 

 

Loanwords that have already undergone phonological and 
orthographic adaptations to enter the Portuguese lexicon, such as 
clip>clipe, stress>estresse, and portfolio/portafoglio>portfólio, are 
transcribed in accordance with the Portuguese spelling form unless 
they are pronounced as in their original languages. In this case, the 
original spelling form is used. 

 

12. Onomatopoeias 
Many onomatopoeias are already conventionalized, either formally or 
by the use, and the transcription tended to follow these conventions. 
They follow, anyway, the pronunciation. For instance, the 
onomatopoeia of knocking a door can be transcribed either as toc toc 
or toque toque, the latter preferred when there is the paragoge of [i] 



 

 

 

318 

after [k], the most frequent case. 

 

Onomatopoeia [bmedsp02_132-135] 

*PAU: [132] eu esqueci // [133] como é que é // 

*AND: [134] pum / pum // 

*PAU: [135] ah // [136] isso // 

 

*PAU: [132] I forgot // [133] how it is // 

*AND: [134] poom / poom // 

*PAU: [135] oh // [136] that’s it // 

 

In some situations, it may happen that one of the participants is 
reading out a text for the others. Readers may sometimes use the 
sound nanananã so as to signal that some part of the text is skipped 
for not being of interest. It is transcribed like this no matter how many 
times the syllable na is repeated. 

 

Skipped text sound [bpucv02_154] 

*OSV: [154] em vistoria realizada no dia quatorze do sete 
nanananã / no endereço acima mencionado / constatamos 
uma residência / que dista + 

 

*OSV: [154] in an inspection carried out on the fourteenth day of 
the seventh nanananã / at the above-mentioned address / we 
found a residence / that is + 
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13. Interjections and exclamations 
The interjections ah, eh, ih, oh, uh and exclamations oi (hi), olá (hello), 
alô (hello) are transcribed in accordance with the standard spelling 
form. The vocative exclamation frequently used in PB is transcribed as 
ô, which is similar to the old, poetic English vocative form O but rather 
frequent in BP spontaneous speech. The distinction between this and 
other forms may present some difficulty, which is addressed in 
[§A.13.1].  Likewise, a set of aspired and glottalized sounds used for 
multiple purposes received special conventions [§A.13.2] and require 
attention. Exclamations of religious genesis also received special 
transcription rules [§A.13.3]. Finally, plural marks were respected when 
they are pronounced [§A.13.4]. 

 

13.1 Distinction between oh, ô, and o’ 

The vocative exclamation frequently precedes names of persons being 
addressed. Its quality may vary depending on the diatopy and context 
but it is always transcribed as ô. The distinction between ô (vocative), 
oh (interjection), and o’ (reduced form of the verb to see [§A.23]) may 
sometimes be difficult. Transcribers were, thus, instructed to replace it 
by another interjection (such as ah) and by the full form of o’, olha 
(look), to check which one was more suitable for the context. 

 

Vocative exclamation [btelpv38_016-018] 

*MAR: [16] ô Alex // [17]  <enquanto> eu procuro aqui / 

*ALE: [18] <oi> // 

 

*MAR: [16] Alex // [17] <while> I’m searching here / 

*ALE: [18] <what> // 
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13.2 Aspired and glottalized sounds 

 Some exclamations are often employed to express agreement, 
disagreement, irony, doubt, as well as to show that the discourse is 
being followed and understood. These exclamations, namely hum, 
ham, uhn, and ahn, are transcribed in accordance with their 
pronunciation. To decide between them, transcribers should check the 
consonantal sound (aspired or glottalized) and the vowel quality. 
Aspired sounds are transcribed either as hum or ham, and glottalized 
sounds as uhn or ahn. The use at context may also help to distinguish 
between them. Hum hum and ham ham are frequently used to show 
agreement or that the hearer is following the discourse. Some 
examples help clarify the distinctions. 

 

hum hum used to agree [btelpv03_042-044] 

*BRU: [41] <entendeu> // [42]  <o instrutor> é [/1] é meu 
conhecido / a gente combinou assim // 

*GAB: [43] ah sim // [44] hum hum // 

 

*BRU: [41] <you got it> // [42] <the instructor> is [/1] he’s an 
acquaintance of mine / we agreed this way // 

*GAB: [43] oh okay // [44] hum hum // 

 

On the other hand, uhn uhn and ahn ahn are frequently used to 
express disagreement. 

 

uhn uhn used to disagree [btelpb04_029-030] 

*RON: [29] então nũ vai ser a quantidade de vias mais um não 
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// 

*JON: [30] uhn uhn // 

*RON: [29] so it won’t be as many copies as [promissory] notes 
plus one // 

*JON: [30] uhn uhn // 

 

Isolated, hum, ham, uhn and ahn may be used to express doubt, 
comprehension, irony, and to show that the hearer is following the 
discourse or some instructions, depending on the prosodic realization. 

 

Ahn used to express doubt [btelpv05_024-027] 

*REN: [24] cê almoçou &f + 

*TER: [25] ahn // 

*REN: [26] cê foi almoçar fora // 

*TER: [27] fomos almoçar fora / menino // 

 

*REN: [24] you went out to &l + 

*TER: [25] ahn // 

*REN: [26] you went out to lunch // 

*TER: [27] we went out to lunch / girl // 

 

12.3 Exclamations of religious genesis 

Exclamations of religious genesis – like Nossa Senhora (Our Lady), 
Virgem Maria (Virgin Mary), Ave Maria (Hail Mary), or Jesus – are rather 
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frequent in BP and, thus, received special conventions. Firstly, they are 
always capitalized. Some full forms often take on reduced forms and 
should be transcribed as such. Nossa Senhora (Our Lady) may become 
Nossa, No’, Nu’, and even a form redeveloped to reinforce perplexity, 
Nusga. Virgem Maria (Virgin Mary) may be transcribed as Vixe’ or Vix’, 
depending on whether the final vowel is realized. And Ave Maria (Hail 
Mary) may be reduced to just Ave or Aff’. 

 

12.4 Plural mark 

Although invariable according to the traditional grammar, interjections 
and exclamations may occasionally take on the plural form in speech. 
Therefore, it was conventionalized that both should receive the plural 
mark (-s) when it was pronounced. Olá (hello) may, thus, become olás, 
oi (hi) → ois, and ô (o vocative) → ôs. 

 

14. Rhotacism 
As aforementioned, phenomena of phonetic-phonologic nature were 
left out of the transcription criteria. The exception is rhotacism. As 
Mello et al. (2012) point out, this phenomenon is rather common and 
perceptually salient in PB, especially in lower diastratic varieties. It may 
happen at consonantal clusters like /bl/, /kl/, /fl, /gl/, /pl/, /tl/, /vl/, the 
/l/ shifting to /R/. It may also happen at the syllable coda, such as, for 
instance, in vol.tou > vor.tou (it came back). Although it does not 
necessarily imply lexicalization or grammaticalization processes, 
rhotacism is respected in the transcription. Thus, if, say, atlético 
(athletic) is pronounced as a[tɾ]ético, it is transcribed atrético. 

 

Rhotacism in stop cluster [bfamcv11_106] 

*TIT: [106] esses remédio que eu tenho costume de tomar não 
me comprica (complica) // 

*TIT: [106] these medicines I usually take don’t do me harm // 
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Rhotacism in syllable coda [bfammn14_100] 

*ANT: [100] aí nós tava chegando aqui no arto (alto) aqui 
descendo // 

*ANT: [100] so we were arriving on the heights going down here 
// 

 

15. Number agreement in verbs 
There is a well-known tendency in BP for subject pronouns to be 
cliticized and retained by the verb and for plural verb forms to become 
less used. The inflection used by speakers is respected in the 
transcription.  

 

Non-standard first-person plural [bnatps11_049] 

*PED: [160] <se ele fosse> morrer / nós nũ ia (nós íamos) botar 
o Sarney de vice // 

*PED: [160] <if he were going> to die / we wouldn’t have Sarney 
as vice [-president] // 

 

Non-standard second-person plural [bnatps11_049] 

*CAR: [49]  cês pode (cês podem) ver que estamos ali / 

*CAR: [49]  you can see us there / 

 

Non-standard third-person plural [btelpb04_069] 

*JON: [69] es <vai (vão) imprimir> só o recibim com a 
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promissória embaixo // 

*JON: [69] they <will print> just the receipt and promissory 
note below // 

 

Reduced plural forms, like foro (they went), are transcribed in 
accordance with the standard spelling form, in this case, foram. 

 

16. Number agreement in nouns and adjectives 
Another tendency is for nouns and adjectives to lose the plural morph, 
which is retained only by the article. The absence of plural morph is 
also respected in the transcription. 

 

Non-standard noun plural [btelpb04_069] 

*ROB: [21] sai mais barato / ajudar os argentino (argentinos) a 
resolver o problema do default / 

*ROB: [21] it pays off / helping the Argentinians to solve the 
default problem / 

 

Non-standard noun and adjective plurals [bmedpr08_2_059] 

*ENA: [59] que é as barca antiga // 

*ENA: [59] which are the old boats // 

 

17. First-person plural verbal variant forms 
 

The first-person plural verbal inflection may be marked by a reduced 
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form. The transcription follows the pronunciation. Transcribers should, 
thus, observe two aspects of the form: the thematic vowel (underlined 
in the examples below) and the realization of the final /s/. For instance, 
the form -amos may be replaced either by -amo or -emo. Likewise, -
emos > -emo, -imos > -imo. 

 

First-person plural verbal variant form [bmedts02_151-152] 

*PED: [151] aí nós fizemos as Diretas Já / ganhamo (ganhamos) 
// [152] aí fizemo (fizemos) a eleição // 

*PED: [151] so we led the Diretas Já / we won (ganhamos) // 
[152] and we hold the elections // 

 

18. Variant forms of the verb estar (to be) 
The verb estar (to be) may lose its first syllable es- virtually in any form 
and must be transcribed accordingly. 

 

Variant form of estar (to be) [btelpv33_126] 

*DON: [126] eles tavam (estavam) brigando / coitada // 

*DON: [126] they were having an argument / the poor thing // 

 

Although inflections follow, in general, the standard norm, two forms 
received minor modifications. Firstly, the apheresis of estou31 (I am) is 
transcribed as tô (instead of tou) so as to follow the use in informal 
written BP.  Secondly, the apheresis of esteja32 (be) is transcribed either 

 

31 Present tense indicative first-person singular form. 

32 Form of the present tense subjunctive first- and third-person singular and of the imperative 
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as teje or teja, depending on the pronunciation. 

 

19. Variant forms of the verb ir (to go) 
The present tense indicative first-person singular standard form of the 
verb ir (to go) is vamos (we go). This form is frequently used with a 
cohortative function, similar to the use of let’s in English, and is 
oftentimes reduced to vamo or vão. The reduced forms are respected 
in the transcription. 

 

Variant forms of verb ir (to go) [bmedsp03_159] 

*DEN: [159] nós vão (vamos) trocar umas idéia // 

*DEN: [159] we’re gonna bounce some ideas off each other // 

 

The form vão is also shared with the indicative third-person plural 
form. 

 

20. Variant forms of the verb vir (to come) 
Portuguese infinitive verbal forms are marked by a final /r/, which is 
frequently lost in speech. The infinitive form of the verb vir (to come) 
may additionally be nasalized, coinciding with the form vim (I came). 
This variation is transcribed in accordance with the pronunciation. 

 

Variant forms of verb vir (to come) [btelpb28_009] 

 

first-, second- and third-person singular. 
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*SAN: [9] então pode vim (vir) // 

*SAN: [9] so you may come // 

 

21. Variant forms of the verb ter (to have) 
The present tense indicative first-person singular form of the verb ter 
(to have), tenho (I have), takes on a reduced variant form, tem, 
especially in the phrase eu tem que (I have to). This form is shared with 
the third-person ela tem que (she has to). 

 

Variant form of the verb ter (to have) [bpubdl02_238] 

*JAN: [238] depois eu tem que comprar uma // 

*JAN: [238] later on I have to buy one // 

 

22. Variant forms of the verb poder (can) 
The present tense indicative first-person singular form of the verb 
poder (can/may), pode (I can / I may) frequently takes on a reduced 
form po’, which is transcribed following the pronunciation. 

 

Variant form of the verb poder (to have) [bnatpr09_143] 

*ANT: [143]  po' (pode) ficar tranqüilo // 

*ANT: [143] you can rest assured // 

 

23. Variant forms of the verb olhar (to look) 
The imperative second-person singular form of the verb olhar (to look), 
olha (look), also take on two apocopated forms. The form may be 
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transcribed either as a’ or o’ depending on the quality of the vowel 
pronounced. 

 

Variant form of the verb olhar (to look) [bmedin01_2_092] 

*JMM: [92] a' lá // 

*JMM: [92] look over there // 

 

Variant form of the verb olhar (to look) [bnatla02_077] 

*JOS: [77]  tá pra cá o' (olha) // 

*JOS: [77] it’s over here look // 

 

24. Variant forms of the verb tomar (to take) 
The imperative second-person singular form of the verb tomar (to 
take), toma (take), also has an apocopated form, transcribed as tó. 

 

Variant form of the verb tomar (to take) [bfamdl33_157] 

*HER: tó / vai guardando / isso aí // 

*HER: take it / keep putting away / that // 

 

25. Contraction of prepositions and articles 
25.1 Standard norm contractions 

The Portuguese standard spelling form provides for the contraction of 
a few prepositions and articles. For instance: 
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a (to) + articles 

ao, à, aos, às 

 

de (of/from) + articles 

do, da, dos, das, dum, duma, duns, dumas 

 

em (in/on/at) + articles 

no, na, nos, nas, num, numa, nuns, numas 

 

por/per (by/for) + articles 

pelo, pela, pelos, pelas 

 

25.2 Special additional contractions 

The transcription follows the pronunciation, allowing for contractions 
not covered by the standard norm. Some frequent non-standard 
contractions are: 

 

com (with) + articles 

co, ca, cos, cas, cum, cuma, cuns, cumas  

 

para (for/to) + articles 

pra, pro, pras, pros, prum, pruma, pruns, prumas 
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The text below brings an example of a non-standard contraction 
recorded in formal context. 

 

Non-standard contraction of preposition and article 
[bmednw06_085] 

*CAR: [85] nós estamos vivendo um momento / &he / aonde / 
né / a / população fala cos (com + os) parlamentares / os 
parlamentares trazem ao relator as suas sugestões / e / é natural 
que nesse momento aconteçam ajustes // 

 

*CAR: [85] we’re living a moment / &he / in which / huh / the / 
population speak with (the) representatives / representatives 
bring suggestions to rapporteurs / and / it’s natural to have some 
adjustments in these moments // 

 

25.3 Additional variant forms of prepositions and their contractions 

Two prepositions also received variant forms. Para (for/to) may be 
reduced to pa or p’. Like the others, this form may contract with the 
articles. 

 

pa/p’ (for/to) + articles 

po, pos, pa, pas, pum, puns, puma, pumas 

 

The preposition em (in/on/at) may also take on the form ni. The 
contractions of this form with the articles results in forms already 
covered by the standard norm. 
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Non-standard form of em (in/on/at) [bmedex13_51] 

*MAR: [51] e aí / o primeiro tempo foi muito ruim / foi / &he / 
ruim ni todos os aspectos / né // 

*MAR: [51] so / the first half went pretty badly / it was / &he / 
bad in all aspects / right // 

 

26. Contraction of prepositions and other words 
26.1 Standard norm contractions 

 

The BP standard norm also provides for the contraction of some 
prepositions with other words, like pronouns, demonstratives, and 
some adverbs. Without being exhaustive, we present the most 
frequent: 

 

a (to) + aquele/aquela (that) 

àquele, àquela, àqueles, àquelas 

 

de (of/from) + ele/ela (he/she) 

dele, dela, deles, delas 

 

de (of/from) + aqui (here) / ali (there) 

daqui, dali 

 

em (in/on/at) + esse/essa (this) 
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nesse, nessa, nesses, nessas 

 

em + outro/outra (other) 

noutro, noutra, noutros, noutras 

 

26.2 Special contractions 

Some contractions not covered by the standard norm are allowed by 
the corpus transcription rules so as to adapt to the pronunciation. For 
this, a reduced form of the preposition followed by apostrophe is used. 
The reduced forms are c’ (com), d’ (de), n’ (em), p’ (para), pr’ (para). They 
are, all the same, separated by a space from the words they contract 
with.  

 

Non-standard contraction of preposition and subject pronoun 
[btelpb29_069] 

*BRU: [69] então nũ precisa d' eu (de eu) preocupar não // 

*BRU: [69] so there’s no need for me to worry // 

 

Non-standard contraction of preposition and demonstrative 
pronoun [bnatla03_123] 

*ALE: [123] você mora p' aquela (para aquela) <região> // 

*ALE: [123] you live over that <region> // 

 

The ways contractions with the above-mentioned prepositions can 
happen are not provided for beforehand. This is an open-list criterion 
that allows for as many combinations as found in the corpus. 
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26.3 Contractions with non-standard variant forms of pronouns and 
demonstratives 

The subsections to follow introduce non-standard variant forms for 
second- [§A.27] and third-person pronouns [§A.28], as well as for 
reduced demonstratives [§A.29]. The way these forms contract with 
prepositions depends on which rule ([§A.26.1] or [§A.26.2]) applies to 
the contraction of their standard variant form. 

Suppose the contraction of the preposition de (of/from) and the 
reduced demonstrative variant form aques (those) [§A.29]. Its standard 
form is aqueles (those). There is, indeed, a contraction provided for by 
the standard norm, which is daqueles. In this case, the contraction of 
the non-standard form follows [§A.26.1]. 

  

 Contraction following [§A.26.1] [btelpv29_156] 

*SEB: [115] tem um fusquinha verde / na porta da loja aqui / um 
fusquinha daques antiguim mesmo / verdim / original // 

*SEB: [115] there’s a green Beetle (car) / in front of the store’s 
doorway / one of those very old Beetles / all green / original // 

 

Now suppose we have the contraction of the preposition com (with) 
and the second-person singular non-standard variant form ocê (you). 
This contraction follows [§A.26.2] since the contraction of com + você 
(the standard form) is not covered by the standard norm. 

 

Contraction following [§A.26.2] [btelpb29_039] 

*BRU: [39] a Aline conversou c' ocê (com ocê) sobre o lanche 
que vai ter que ter todo dia // 
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*BRU: [39] did Aline talk to you about the snack supposed to be 
served the whole period // 

 

27. Second-person pronoun variant forms 
The second-person pronoun você (you) can also be transcribed with its 
reduced forms. They are, namely, ocê/ocês and cê/cês (you/you all). 

 

Non-standard second-person pronoun variant form 
[bnatbu03_275] 

*DBC: [275] cê entendeu // 

*DBC: [275] you got it // 

 

Non-standard contraction of preposition and non-standard 
second-person pronoun [bnatbu02_233] 

*NEU: [236] pr' ocê ver // 

*NEU: [236] who would’ve thought of that (lit. for you to see) // 

 

28. Third-person pronoun variant forms 

The third-person pronouns received additional reduced forms, as 
shown in the table below. 

 

Standard and reduced forms of the third-person subject pronoun 

Standard 
form 

Reduced 
form Translation 
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ele e’ he 

ela ea she 

eles es plural masculine 

elas eas plural feminine 

 

The reduced forms may also contract with preposition as provided for 
by [§A.26.3]. The standard norm covers the contraction of the standard 
form with two prepositions: de (of/from), and em (in/on/at). The 
possible contractions of these prepositions with the reduced forms are, 
thus: 

 

Possible standard contractions with reduced third-person pronouns 

Reduced forms With de With em 

e’ de’ ne’ 

ea dea nea 

es des nes 

eas deas neas 

 

Otherwise, the contraction follows the open-list criterion provided for 
by the special criteria. 

 

Non-standard contraction of preposition with a reduced third-
person pronoun [bfamdl25_207] 

LIA: [207] pr' ea tratar // 
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LIA: [207] for her to be treated // 

 

29. Reduced demonstratives 

Distal demonstrative forms may be transcribed with a series of reduced 
forms, as shown in the table below. 

 

Full and reduced distal demonstrative forms 

Full form Reduced 
form Translation 

aquele aque’ Sing. masculine distal demonstrative 
(that) 

aquela aquea Sing. feminine distal demonstrative 
(that) 

aqueles aques Plural masculine distal demonstrative 
(that) 

aquelas aqueas Plural feminine distal p demonstrative 
(that) 

 

The contraction of prepositions and reduced demonstratives follows 
the same rule in [§A.26.3]. The standard norm covering the 
contractions a (to), de (of), em (in/on/at), the possible forms are: 

 

Possible standard contractions with reduced demonstratives 

Reduced 
form With a With de With em 
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aquele àque’ daque’ naque’ 

aquela àquea daquea naquea 

aqueles àques daques naques 

aquelas àqueas daqueas naqueas 

 

Otherwise, the contraction follows the open-list criterion. 

 

Non-standard contraction of preposition and distal 
demonstrative pronoun [bfamdl20_042] 

*OSM: [42] nũ conta nada p' aque' (para aquele) cara não / 

*OSM: [42] don’t tell it to that guy at all / 

 

Non-standard contraction of preposition and distal 
demonstrative pronoun [bfammn14_104] 

*ANT: [104] c' aqueas batidim pesada de’ // 

*ANT: [104] with that heavy walking of him // 

 

30. Diminutive variant forms 
 

Two reduced forms, -im (sing.) and -ins (plural), are added to the 
standard diminutive paradigm (-inho/-inha/-inhos/-inhas). 

 

Diminutive form [btelpv44_007] 
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*SIL: [7] tomou banhozim agora aí // 

*SIL: [7] you just took a shower now // 

 

31. Pseudo-cleft constructions 
31.1 Pseudo-cleft interrogative constructions 

 

In BP, speakers seem to be losing awareness of the presence of the 
copula verb in cleft interrogative constructions like que é que (what is 
that), por que é que (why is that), and onde é que (where is that). 
Pseudo-cleft constructions, where the copula is clearly missing, such 
as que que (what that), por que que (why that), onde que (where that) 
are respected in the transcription. 

 

Pseudo-cleft interrogative construction [bnatla04_039] 

*ESC: [39] e como que cê ficou sabendo disso // 

*ESC: [39] and how (is) that you came to know this // 

 

32.2 Other pseudo-cleft constructions 

Other pseudo-cleft constructions may also lack the copula and are 
transcribed as pronounced.  

 

Other cleft constructions [bpubcv09_377] 

*MAR: [377] ela que apanha // 

*MAR: [377] she (is the one) who gets beaten // 
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The standard cleft construction for the example above is é ela que 
apanha or ela é que apanha. 

 

32. Aphaeretic forms 
Since aphaeresis may indicate a lexicalization process, aphaeretic 
forms are transcribed as pronounced. Their occurrences are enlisted 
on the metadata and inputted to the morphosyntactic parser. Some 
examples are listed below: 

 

 brigado < obrigado (thanks) 

cabou < acabou (it’s finished / it’s over) 

fessor < professor (professor) 

xá < deixa (let/leave) 

tendi < entendi (I got it) 

 

33. Negation 
The reduced form of the negation particle não (not/no) is transcribed 
as nũ – not to be confounded with num, contraction of em (in) + um 
(a). A frequent pattern found in the corpus is the double-negation like 
in the example below. 

 

Negation [bnatpr09_079] 

*ANT: [79] mas nũ tá não // 

*ANT: [79] but it is not // 
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The contraction of the negation particle with é (present tense indicative 
first-person singular variant forms of the verb to be) is transcribed as 
n’ é (it is not). The example below exhibits a double negation with a 
contracted form, and a double negation combined with the negative 
pronoun nada (nothing). 

 

Double negation and contracted form [bnatpr09_079] 

*MAR: [40] é / n' é barato não / viu // [41] nũ achei / nada 
barato não // 

*MAR: [40] yeah / it isn’t cheap / huh // [41] I didn’t find it / cheap 
at all // 

 

34. Variant forms of senhor/senhora (Mister/Sir – 
Mrs./Madam) 
The honorifics senhor (Mister/Sir) and senhora (Mrs./Madam) take on 
some variant forms, which are respected in the transcription. The 
following forms are possible: 

 

Variant forms of senhor/senhora 

 Alternative 
forms 

Correspondent standard 
form 

sior 
senhor 

(Mr./Sir) 
seu 

sô 

siora senhora 

(Mrs./Madam) sio’ 
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sá 

 

Below, we give two examples in context. 

 

Variant form of senhora (formal second-person pronoun) – 
bnatla04_059 

*HIL: [59]  quando eu cheguei do serviço / minha menor virou 
pra mim e falou / mãe / a / Gabriela falou assim p' siora dar 
uma olhada no computador / 

*HIL: [59] when I got home from work / my youngest daughter 
was like / mom / (the) / Gabriela asked you to check the 
computer / 

 

Variant form of senhor (Mr.) – bnatps11_005 

*CAR: [5] sô Geraldo / e a família dele toda // 

*CAR: [5] Mr Geraldo / and his whole family // 

 

35. Intensifier maior/mó 
The reduced form of the intensifier maior (bigger/very/a lot), mó, is 
respected in the transcription. 

 

Intensifier variant form [bmedex03_207] 

*MAR: [207] tá aqui dando mó força aqui pra gente // 

*MAR: [207] he’s here helping us a lot // 
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