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Résumé

Les problèmes étudiés dans le domaine de la combinatoire sont souvent de la forme “Est-il
vrai qu’un objet X satisfait la propriété Y ?”. Si c’est vrai, l’informaticien aime avoir un
“certificat”. Par exemple, si la question est de savoir si un graphe admet une 3-coloration,
alors, une telle coloration fournit un certificat dans le cas d’une réponse positive. Qu’en
est-il si la réponse est négative ? Quel serait un certificat du fait qu’un graphe n’est pas
3-coloriable ? Quelle serait une raison “évidente” pour laquelle un graphe n’admet pas de
couplage parfait, ou qu’un autre n’admet pas de stable de taille n/3 ? Dans le cas d’une
réponse négative, l’idée de certificat semble plus complexe. Au cours de cette thèse, nous
avons travaillé sur le problème de la coloration. Nous avons proposé un type de certificat
canonique de non k-coloriabilité dans le cas général qui, si G est un graphe tel que χ(G) > k,
fait intervenir un nouvel objet combinatoire construit à partir de G : le graphe Zk

G. Cet
objet est lié aux certificats algébriques liés au théorème des zéros de Hilbert (Nullstellensatz)
déjà mis en évidence par Bayer ([5]), Alon et Tarsi ([2]) et étudiés par De Loera et al ([13])
et Li, Lowenstein et Omar ([6]). Notre construction donne une interprétation combinatoire
à ces certificats qui n’étaient jusque là que de purs objets algébriques. De plus, les graphes
ainsi définis, appelés graphes exponentiels sont en eux-mêmes des objets intéressants dont
nous avons exploré les propriétés. Nous avons défini, plus généralement, Γk

G où Γk désigne
soit l’anneau Zk, soit, si défini, le corps à k éléments Fk. Lorsque k est un nombre premier, les
deux structures sont identiques et on les note alors kG. À l’inverse, si k est une puissance non
triviale d’un nombre premier, ces deux structures sont différentes. Pourtant, nous montrons
que aussi bien Zk

G que Fk
G comportent un certificat de non k-coloriabilité pour G dès lors

que χ(G) > k sans pour autant que ces deux graphes soient isomorphes. Ce certificat, appelé
edge-clique certificat est lié aux certificats algébriques issus du Nullstellensatz dans le cas
de Zk

G mais pas dans celui de Fk
G où nous ne connaissons pas de correspondance simple

en algèbre. L’étude de ces graphes exponentiels s’est révélée riche. Nous avons notamment
montré que si Γk

G et Γk
G′ sont isomorphes, alors G et G′ sont isomorphes. Autrement dit,

il est possible de définir un logarithme sur les graphes exponentiels. Nous avons également
étudié les colorations des graphes exponentiels. Un de nos résultats qui justifie l’intérêt
porté à la structure est le suivant : Pour toute puissance de nombre premier q, un graphe
G vérifie χ(G) = q si, et seulement si, χ

(
Fq

G
)

= q. La preuve que nous proposons est non
constructive en ce sens qu’elle ne permet pas de trouver une q-coloration de G à partir d’une
q-coloration de Fq

G. De plus, s’il est possible de construire une q-coloration de Fq
G à partir
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iv RÉSUMÉ

d’une coloration de G, nous ne savons pas, en général, ce que sont les q-colorations de Fq
G.

Cependant, dans le cas particulier où q = 3, nous avons établi que toutes les 3-colorations
du graphe 3G sont des extensions affines d’une coloration de G.

L’étude de ces graphes exponentiels a révélé un lien étroit avec ce que nous appelons
l’analyse de Fourier sur les graphes. En particulier, nous introduisons la notion de precolor-
ing qui est une fonction sommant à zéro sur toutes les edge-cliques (qui sont un type spécial
de cliques dans le contexte des graphes exponentiels) d’un graphe exponentiel. L’existence
d’un precoloring non nul conduit à l’existence d’une coloration de G. L’ensemble de ces
fonctions est un espace vectoriel et les transformées de Fourier des colorations de G en
forment une base. Ceci nous a conduit à donner une preuve simple du théorème des zéros
dans le cas particulier qui nous intéresse dans cette thèse.

À partir de ces notions, nous avons développé une théorie visant cette fois à montrer
l’existence d’une k-coloration. Bien que, selon nous, fort prometteuse, cette théorie est
difficile à appliquer, même dans des cas simples. Nous avons cependant pu l’utiliser pour
donner une nouvelle preuve, assez courte et élégante, de la conjecture d’Erdös sur la 3-
colorabilité des graphes formés d’un cycle hamiltonien et d’une union disjointe de triangles
([16]).

Enfin, nous donnons un noyau en O(k2 log k) pour le cograph editing problem, améliorant
un résultat de Havet et al ([17]).



Abstract

Problems in combinatorics are often questions of the form “Is it true that object X satisfies
property Y?”. If true, the computer scientist often wants some “certificate”. For instance, if
the question is whether some graph admits a 3-coloring, we would like an example of such
coloring as a certificate. However, in case the answer is negative, the notion of certificate
is unclear. How could you certify that some graph is not 3-colorable? Is there an obvious
reason for which some graph has no perfect matching, or that another graph has no stable
set of size n/3? In this PhD thesis, we have studied the coloring problem. We have
introduced a canonical way to certify the non k-colorability of graphs. If χ(G) > k, this
certificate is related to a new graph defined from G that we denote by Zk

G and that we
call power graph. This combinatorial object is connected the algebraic certificates related
to Hilbert’s Nullstellensatz theorem introduced by Bayer ([5]), Alon and Tarsi ([2]), and
studied by De Loera et al ([13]) and Li, Lowenstein and Omar ([6]). Our construction allows
a combinatorial interpretation of those Nullstellensatz certificates. Moreover, those power
graphs are interesting objects of which we explored the properties. We have defined, more
generally, Γk

G where Γk is either the ring Zk, or, when defined, the field with k elements Fk.
When k is a prime number, those structures are identical so we use the notation kG. On
the contrary, if k is a non trivial power of a prime number, those structures are different.
Yet, we prove that Zk

G, as well as Fk
G, contains a certificate of non k-colorability whenever

χ(G) > k although those two graphs are not isomorphic. This certificate, called edge-clique
certificate, is connected to the Nullstellensatz certificates in the case of Zk

G but not in the
case of Fk

G where we do not know any correspondence in algebra. The study of those
power graphs revealed itself interesting. For instance, we prove that if Γk

G and Γk
G′ are

isomorphic then G and G′ are isomorphic. In other words, it is possible to define a logarithm
on the power graphs. We did also study the colorings of those power graphs. One of our
results that justify the interest for the structure is the following: For every power of a prime
number q, a graph G satisfies χ(G) = q if, and only if, χ

(
Fq

G
)

= q. Our proof of this
result is non constructive in the sens that it does not explain how to build such q-coloring
of G from a q-coloring of Fq

G. Moreover, although we can build a q-coloring of Fq
G from a

q-coloring of G, we do not know the shape of the q-colorings of Fq
G in general. However,

in the specific case where q = 3, we prove that the q-colorings of Fq
G are affine extensions

of the q-colorings of G.
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vi ABSTRACT

The study of those power graphs has shown a narrow connection with what we call the
Fourier analysis on graphs. In particular, we introduce the notion of precoloring that is a
function that sums to zero on every edge-cliques (which are special cliques in the context
of power graphs) of a power graph. The existence of a non zero precoloring leads to the
existence of a coloring for G. The set of those functions is a linear space and the Fourier
transform of the colorings of G form a basis of that space. This allowed us to propose a
simple proof of the Nullstellensatz theorem in the specific case of interest for this thesis.

With those notions, we developed a theory aiming at proving colorability results. Al-
though, according to us, this theory is promising, it is hard to use, even on simple examples.
Still, we have been able to use it in order to make a new simple and quite elegant proof
of Erdös conjecture on the 3-colorability of graphs formed by a Hamiltonian cycle and a
disjoint union of triangles.

Finally, we prove a kernel in O(k2 log k) for the cograph editing problem, improving a
result of Havet et al ([17]).
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Notations

Common
N The set of all non negative integers
Z The set of all integers
R The set of all real numbers
C The set of all complex numbers
J k ; ℓ K The set of integers {i ∈ Z : k ≤ i ≤ ℓ} with k, ℓ ∈ Z
FE The set of the total functions from set E to set F
P(X) or 2X The power set of the set X(X

k

)
The subsets of the set X of cardinality k

E ⊎ F The union of E and F when E ∩ F = ∅
|X| The cardinality of set X
1x For a set E and x ∈ E, the indicator function of x in E

j The primitive cubic root of unity e 2iπ
3

Graph theory
G[X] The subgraph induced by X on G
H ⊆ G H is an induced subgraph of G
uv The (unoriented) edge between the vertices u and v
G⊕H The fulljoin of graph G and graph H
G+H The disjoint union of graphs G and H

General algebra
k ∧ n The GCD of integers k and n
Fq The field of cardinality q (when defined)
Zn The ring of integers modulo n
Un The group of nth roots of unity in C
A[X1, . . . , Xn] Polynomials in X1, . . . , Xn with coefficients in the ring A
Linear algebra
ImKM The image of the matrix M in the field K
KerK The kernel of the matrix M in the field K
Mn,k(A) The set of n× k matrices with coefficients in the ring A
M ⊗N The kronecker (or tensor) product of matrix M by matrix N
tM The transpose of matrix M
X⊥ The set of vectors orthogonal to every element of the set X
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Introduction (in french)

This chapter is an introduction for french readers. A translation of this introduction can
be found in the next chapter.

Cette thèse traite de théorie des graphes, un sous-domaine des mathématiques dis-
crètes aussi appelées informatique fondamentale. Son objectif est la mise en place d’outils
théoriques algébriques utiles pour la résolution de problèmes combinatoires portant sur les
graphes.

Les graphes constituent un concept mathématique simple et pourtant très utile pour
beaucoup de situations concrètes. C’est en 1735 que Leonhard Euler utilise cette notion pour
résoudre une énigme devenue célèbre : le problème des sept ponts de Königsberg. Cette ville
de Prusse-Orientale1 compte sept ponts permettant de rallier une île et une presqu’île. Est-il
possible de se promener dans la ville en empruntant une et une seule fois chacun des ponts et
en revenant à son point de départ ? Cela semblait bien impossible. . . Cependant, comment
en être certain ? Euler chercha une preuve mathématique de cette impossibilité. Sans
nous comparer à cet immense mathématicien, c’est également ce que nous avons cherché à
faire au cours de cette thèse : donner des certificats d’impossibilité pour des problèmes de
graphes. Et, le problème des sept ponts de Königsberg en est un !

Formellement, un graphe est un ensemble de points appelés sommets reliés entre eux par
des traits appelés arêtes. On dit de deux sommet reliés par une arête qu’ils sont adjacents.
Par exemple, un cube, ou plus généralement n’importe quel polyèdre, est un graphe. On
peut parfois dessiner un graphe. Par exemple, la Figure 1 donne trois représentations
différentes d’un même graphe : le cube. Cela peut sembler surprenant de prime abord mais
il s’agit bien du même objet dessiné de trois façons différentes. Les relations d’adjacence,
seule information contenue dans un graphe, sont en effet les mêmes dans les trois cas.

Dans un graphe, un ensemble de sommets S tel qu’aucune arête ne relie deux de ces
sommets est appelé un stable ou encore un ensemble indépendant. Inversement, un graphe
dont toutes les paires de sommets sont reliées par des arêtes est appelée une clique. Pour
illustrer ces notions, considérons une communauté de personnes, par exemple, les paroissiens
d’une église dans une grande ville comme Lyon. Supposons vouloir organiser un dîner en
rassemblant des paroissiens qui ne se connaissent pas. On peut modéliser ce problème à
l’aide d’un graphe : chaque sommet représente un paroissien et on relie deux paroissiens
par une arête si, et seulement si, ils se connaissent déjà. Un stable du graphe fournit un

1qui est désormais russe et rebaptisée Kaliningrad
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6 INTRODUCTION (IN FRENCH)

(a) Représentation usuelle (b) Représentation planaire (c) Représentation bipartie

Figure 1: Trois représentations graphiques du cube

Figure 2: Une clique de taille maximale en pointillés violets et un stable de taille maximale
en dans l’ellipse en pointillé

ensemble de paroissiens qui ne se sont encore jamais rencontrés (sur la Figure 2, on peut par
exemple considérer les sommets dans l’ellipse). Si à l’inverse on souhaite réunir uniquement
des gens se connaissant déjà, on chercherait alors une clique, c’est-à-dire un ensemble de
sommets comportant un maximum d’arête (par exemple, le triangle en pointillés violets
sur la Figure 2). Le degré d’un sommet est le nombre de ses voisins. Ainsi, un sommet
de degré maximum représente ici un paroissien parmi les plus populaires. Le problème de
déterminer un stable de taille maximale (ou stable maximum) est en général difficile2. Il en
va de même pour le problème de trouver une clique de taille maximale dans un graphe, ces
deux problèmes étant substantiellement identiques puisqu’une clique dans G est un stable
dans le complémentaire de G, c’est-à-dire le graphe obtenu à partir de G en inversant la
relation d’adjacence.

2C’est un problème NP-complet.
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Une brève histoire de la théorie des graphes
En 1852, les frères mathématiciens Francis et Frédérick Guthrie font une conjecture sur-
prenante : toute carte peut être coloriée avec seulement quatre couleurs. Plus précisément,
si l’on veut colorier chaque zone d’une carte (les pays du monde, les départements français
ou encore ceux d’un pays imaginaire) de sorte que deux zones frontalières n’aient pas la
même couleur3, alors, il existe toujours une solution n’utilisant pas plus que quatre couleurs.
Ne parvenant pas à prouver la conjecture, Frédérick demandera à son professeur : Auguste
De Morgan. Ce brillant mathématicien fût également mis en échec. C’est Alfred Kempe qui
en publiera la première démonstration, ou plutôt, tentative de démonstration car celle-ci
s’avèrera fausse ! Kempe parvient tout de même à une preuve correcte d’un résultat plus
faible : le théorème des cinq couleurs qui énonce que, sous les mêmes hypothèses, cinq
couleurs suffisent. Ce problème de coloration de cartes se formalise naturellement avec les
graphes en représentant chaque zone par un sommet et en définissant la relation d’adjacence
par le fait de partager une frontière. Les graphes ainsi obtenus sont dits planaires car ils
peuvent être représentés dans le plan sans qu’aucune de leurs arêtes ne se croise. Une telle
classe de graphes est difficile à appréhender car la propriété qui la caractérise est plus com-
plexe que l’on pourrait le croire. En effet, il est difficile de formaliser le fait qu’il existe
une représentation dans laquelle les arêtes ne se croisent pas. C’est un concept difficile à
manipuler formellement. Par exemple, la Figure 3 représente deux fois le même graphe : de
façon planaire en 3b et non planaire en 3a. En outre, montrer qu’un graphe est non planaire
n’est, en général, pas chose aisée. Par exemple, le graphe de Petersen (voir Figure 4) ne
peut pas être représenté de façon planaire.

(a) prisme (b) prisme représenté de façon planaire

Figure 3: Deux représentations du prime

Ainsi, colorier les régions de la carte revient à choisir une couleur pour chaque sommet
du graphe planaire sous-jacent sans que deux sommets adjacents n’aient la même couleur.
Plus généralement, une coloration d’un graphe est un choix de couleurs pour chacun de
ses sommets tel que deux sommets adjacents n’aient pas la même couleur. En particulier,
les sommets d’une même couleur forment un stable. Malgré l’aspect moins esthétique,
on utilisera des nombres en lieu et place des couleurs. Par exemple, le cube dont on a

3Il faudra considérer uniquement les frontières de longueur non nulle et donc exclure notamment les
points triples comme il en existe sur Terre. De plus, on parle de couleur pour une zone, pas pour un pays.
Ainsi, une exclave est considérée comme une zone distincte du pays auquel elle appartient.
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Figure 4: Graphe de Petersen

déjà donné trois représentations à la Figure 1 peut être colorié avec deux couleurs (voir
Figure 5a). C’est particulièrement évident lorsque l’on adopte la représentation du cube
comme un graphe biparti (voir Figure 5b) et, bien sûr, cette notion ne dépend pas de
la manière dont on pourrait dessiner le graphe. Nous parlerons de bonne coloration (en
anglais, proper coloring) ou simplement de coloration pour faire référence à un étiquetage
des sommets (en anglais, labelling) qui respecte la condition énoncée ci-dessus. À l’inverse,
lorsque cette condition n’est pas supposée vérifiée, on parlera simplement d’étiquetage.

1 0

10

0 1

01

(a) Une 2-coloration du cube

1

1

1

1

0

0

0

0

(b) Une 2-coloration du cube

Figure 5: Coloration du cube avec deux couleurs

Dans le cas du cube, il est impossible d’utiliser moins de deux couleurs. On dit alors que
le nombre chromatique du cube vaut 2. Plus généralement, le nombre chromatique d’un
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graphe G, noté χ(G), est le nombre minimal de couleurs nécessaire pour colorier ce graphe.
La Figure 6 montre une 3-coloration du graphe de Petersen. Il est impossible de colorier ce
graphe avec moins de trois couleurs et donc son nombre chromatique vaut 3. Déterminer le
nombre chromatique d’un graphe est, en général, un problème difficile.

0

1

0

1 2

1

0

2

2 1

Figure 6: Une 3-coloration du graphe de Petersen

Le théorème des quatre couleurs énonce donc que le nombre chromatique d’un graphe
planaire vaut au plus 4. Il faudra attendre 1976, soit plus d’un siècle après la conjecture des
frères Guthrie, et les mathématiciens Kenneth Appel et Wolfgang Haken ([3]) pour avoir
preuve correcte. Pour la première fois, la démonstration est assistée par ordinateur ce qui
posera le problème suivant : comment être certain que la preuve est correcte en dépit d’une
disjonction sur pas moins de 1478 cas et d’une longueur astronomique de 600 pages une fois
imprimée4 ? Plus tard, Robertson, Sanders, Seymour et Thomas simplifieront la preuve
en ramenant le nombre de cas à 633. Aujourd’hui encore, le résultat reste mystérieux et
la preuve peut laisser le mathématicien sur sa faim car peu éclairante sur les raisons de la
validité du théorème. Selon Paul Erdös, le théorème des quatre couleurs est “un problème
subtil et non pas un problème complexe”, et une démonstration simple5 devrait exister car
la classe des graphes planaire est, selon lui, un sous-ensemble de la classe des graphes à
considérer. Une preuve simple de ce célèbre résultat constituerait sans doute une grande
nouvelle pour la communauté des mathématiciens.

La coloration de graphe intervient dans de nombreux problèmes d’optimisation. C’est
sans doute la raison pour laquelle ce problème continue d’intéresser les chercheurs. Nous en
donnons ici quelques exemples. Supposons devoir organiser des examens dans une université
comportant de nombreuses classes et de nombreux cours. Bien sûr, deux épreuves auxquelles
doit participer un même étudiant ne peuvent avoir lieu en même temps. Comment organiser
les examens en parallélisant le plus possible les épreuves ? Définissons G comme le graphe

4Une erreur sera d’ailleurs trouvée dans la preuve initiale !
5Une “proof from the Book” !
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dont les sommets sont les épreuves et la relation d’adjacence entre deux sommets est définie
par le fait que les deux épreuves concernent un même étudiant. Dans toute coloration, les
sommets d’une même couleur sont des épreuves pouvant avoir lieu au même moment. Ainsi,
une coloration atteignant χ(G) parallélise les examens de façon optimale.

Un autre exemple, en réalité tout à fait similaire, est celui du plan de table. Supposons
devoir placer des invités à un mariage autour de tables de sorte que toute paire d’invités qui
ne s’apprécient pas (ce qui, hélas, semble arriver dans toutes les familles) ne soient pas à
la même table. Là encore, on peut modéliser le problème avec un graphe dont les sommets
sont les invités et la relation d’adjacence définie par le fait que les invités ne s’apprécient
pas. Une table doit donc être un stable du graphe. Ainsi, une coloration du graphe dont
le nombre de couleurs est minimal donne un plan de table respectant les contraintes en
minimisant le nombre de tables.

Enfin, supposons vouloir déployer un réseau d’antennes téléphoniques. On a besoin
d’associer une bande de fréquences à chaque antenne. Idéalement, on aimerait réutiliser au
maximum les bandes de fréquences car cela représente un coût. Cependant, deux antennes
proches risquent d’interférer si elles communiquent sur les mêmes fréquences. On peut alors
représenter chaque antenne par un sommet et relier les paires d’antennes trop proches par
des arêtes. Le nombre chromatique du graphe ainsi obtenu correspond au nombre de bandes
de fréquences minimal requis pour le dispositif.

D’une façon générale, on cherche des majorants et des minorants des nombres chroma-
tiques des graphes d’une certaine classe. On dispose notamment de l’encadrement simple
suivant :

Théorème. Soit G un graphe, ω(G) la taille de sa plus grande clique et ∆(G) son degré
maximum. On a

ω(G) ≤ χ(G) ≤ ∆(G) + 1

Malheureusement, χ(G) peut être arbitrairement éloigné de ces bornes. En effet, il existe
des graphes sans triangle de nombre chromatique arbitrairement grand (voir [25]) et, par
ailleurs, un graphe constitué d’un sommet de degré n et de n sommets de degré 1 a un
nombre chromatique de 2 mais un degré maximum de n.

Le problème de la coloration optimale d’un graphe est difficile car, bien que les con-
traintes soient locales, l’optimalité du nombre de couleurs se comprend globalement, dans
le graphe entier. Ainsi, raisonner à partir de sous-graphes ne peut être une méthode fonc-
tionnelle en général6. À l’inverse, la notion de mineur7 d’un graphe semble prometteuse.
Citons à ce titre la célèbre conjecture de Hadwiger ([18]), ouverte depuis 1943. Notons
H(G) le nombre de Hadwiger de G, c’est-à-dire le plus petit entier k tel que G ait le graphe
complet à k sommets pour mineur.

Conjecture (Hadwiger). Pour tout graphe G, χ(G) ≤ H(G).
6Si c’était le cas, le problème de la détermination du nombre chromatique serait dans P et donc, on

aurait P = NP. . .
7Un mineur d’un graphe G est un graphe obtenu à partir de G suite à l’application des opérations

suivantes : suppression d’un sommet isolé, suppression d’une arête, contraction d’une arête.
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Les idées développées au cours de cette thèse

Prouver que l’on peut colorier un graphe donné G avec k couleurs est une chose. Montrer
que ce nombre est minimal en est une autre. Un moyen de faire est de montrer qu’il est
impossible de colorier G avec k−1 couleurs. Ceci permet alors de déterminer le nombre chro-
matique de G en l’approchant “par dessous”. C’est le point de départ de cette thèse. Plus
généralement, on aimerait, lorsque χ(G) > k, un certificat de non k-coloriabilité pour G.
Un tel certificat pourrait, a priori, prendre plusieurs formes. Par exemple, si G contient
une clique de taille k + 1, alors cette clique constitue bien une preuve, un certificat que
χ(G) > k. La Figure 7 représente un graphe qui n’est pas 3-coloriable car il contient une
clique de taille 4 représentée dans l’ellipse en pointillé.

Figure 7: Un graphe contenant une clique de taille 4

Malheureusement, il n’est pas toujours possible de trouver un sous-graphe pouvant servir
de certificat. Au cours de cette thèse, nous présenterons une méthode générique permettant
de certifier qu’un graphe est non k-coloriable. Nos travaux s’inscrivent dans la lignée de ceux
de Bayer ([5]), De Loera ([12], [13]) et Li, Lowenstein et Omar ([6]). Ceux-ci s’intéressent
à l’utilisation des polynômes multivariés pour encoder le problème de la 3-colorabilité d’un
graphe. En effet, le théorème Nullstellensatz d’Hilbert (1.5.1) fournit un certificat dans le
cas où le graphe n’est pas k-coloriable. Ce certificat prend cependant la forme d’une famille
de polynômes et n’a, a priori, aucun lien avec le graphe de départ G. Nous montrerons
pourtant qu’il est possible de créer une extension “naturelle” du graphe G dans laquelle un
tel certificat algébrique a une interprétation combinatoire. Par exemple, si l’on s’intéresse
à la 3-coloriabilité d’un graphe G, on peut définir un graphe noté 3G qui vérifie χ(G) ≤
3 ⇔ χ

(
3G
)

≤ 3 (voir la Section 1.3). Nous verrons qu’il y a, dans un cadre plus général,
plusieurs extensions de graphes possibles lorsque k n’est pas un nombre premier. Nous
discuterons des différences entre ces différentes extensions à la Section 1.4.

Après avoir étudié ces extensions de graphes, que nous appelons graphes exponentiels ou
power graphs, nous avons découvert un lien avec ce que l’on pourrait nommer l’analyse de
Fourier sur les graphes. Afin d’illustrer ce concept, nous introduisons ici une nouvelle notion
concernant la coloration de graphes : on souhaite maintenant colorier les arêtes d’un graphe.
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La condition à respecter est désormais que deux arêtes adjacentes, c’est-à-dire reliées à un
même sommet, doivent avoir des couleurs différentes. On parle alors de edge-coloration par
opposition à la vertex-coloration que nous avons vue juste avant. Bien sûr, il ne s’agit pas
là d’un problème fondamentalement différent puisque colorier les arêtes d’un graphe revient
à colorier les sommets de son line graph8. La Figure 8a représente une 3-edge-coloration du
cube. Il est bien sûr également possible de visualiser la même chose sur une représentation
du cube comme graphe biparti (voir Figure 8b).

(a) 3-coloration des arêtes du cube (b) 3-coloration des arêtes du cube

Figure 8: Deux représentations d’une edge-coloration du cube avec trois couleurs

Notre idée est d’utiliser la seconde représentation et de faire la remarque suivante : une
coloration des arêtes d’un graphe biparti est correcte si, et seulement si, elle est correcte pour
les sommets de droite ainsi que pour les sommets de gauche. Dit autrement, une coloration
des arêtes d’un graphe biparti est bonne si, et seulement si, deux arêtes incidentes à droite
(resp. à gauche) sont de couleurs différentes. Ceci peut être exprimé simplement à l’aide
d’un produit scalaire : considérons le vecteur fL de taille 3m/2 (m étant le nombre d’arêtes
du graphe) indexé par tous les 3-étiquetages possibles des arêtes qui a un 1 en face des
3-colorations des arêtes bonnes du point de vue des sommets de gauche, et un 0 sinon.
De même, on définit de façon analogue fR le vecteur caractéristique des 3-colorations des
arêtes bonnes à droite. Par construction, ⟨fL, fR⟩ est le nombre de bonnes 3-colorations des
arêtes de G. Ainsi, montrer que ce produit scalaire est non nul revient à prouver que G est
3-edge-coloriable. Une introduction plus formelle de cela est faite à la Section 2.1.

Plutôt que de calculer directement ce produit scalaire, nous calculons
〈
f̂L, f̂R

〉
où ·̂

désigne la multiplication par une matrice de Fourier appropriée (voir Section 2.2). Ces ma-
trices ont la propriété de conserver le produit scalaire de sorte que ⟨fL, fR⟩ =

〈
f̂L, f̂R

〉
. Dans

8Le line graph d’un graphe G, noté L (G), a pour ensemble de sommets les arêtes de G. De plus, deux
sommets de L (G) sont reliés si et seulement si les arêtes correspondantes sont adjacentes dans G.
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certains cas, nous avons un argument simple permettant d’affirmer que ce dernier produit
scalaire est non nul. Notons que notre méthode fonctionne également avec des graphes
non bipartis moyennant quelques changements (voir par exemple la Proposition 2.1.2)
ainsi qu’avec la coloration de sommets. Nous proposons à ce titre une nouvelle preuve
du théorème de Fleischner et Stiebitz ([16]) à la Section 2.3.1.

L’analyse de Fourier sur les graphes développée dans cette thèse a un lien avec les graphes
exponentiels. Les transformées de Fourier des bonnes colorations forment en effet une base
de l’espace des precolorings qui sont des fonctions qui admettent une caractérisation simple
sur les graphes exponentiels. Ceci est détaillé à la Section 2.2.5.

Enfin, de nombreuses questions naturelles peuvent être traitées au sujet des graphes
exponentiels. En particulier, quelles sont les propriétés de G qu’on retrouve nécessairement
dans ses différentes exponentielles ? Comment une modification sur G se répercute-t-elle ?
Ces questions sont délicates et beaucoup restent ouvertes. Au cours de nos recherches, nous
avons étudié le problème d’édition vers un cographe : Étant donné un graphe G, comment
éditer (changer les relations d’adjacence), de façon optimale (à la fois en nombre d’arêtes
modifiées et en temps d’éxécution) pour le transformer en un graphe sans chemin de taille 4
induit ? Une introduction plus complète à ces problèmes d’édition est faite à la Section 3.1.
Nous avons amélioré un résultat de Havet et al ([17]) en passant d’un noyau cubique à un
noyau “quasi-quadratique”9. L’article a été accepté dans Discrete Applied Maths et sera
publié prochainement.

Introduction aux preuves algébriques sur les graphes
Dans le but de mettre en perspective les travaux réalisés au cours de cette thèse, nous illus-
trons ici quelques résultats sur les polynômes qui ont été utilisés pour montrer des théorèmes
sur les graphes. Ceux-ci sont essentiellement basés sur le résultat suivant, dit Nullstellensatz
combinatoire. Ce théorème a permis de montrer de nombreux résultats et, en particulier,
des résultats de coloration. Nous donnons ici certains de ces résultats et en esquissons cer-
taines preuves. L’idée générale consiste à introduire un polynôme dont les racines sont les
solutions du problème (typiquement, une bonne coloration d’un graphe donné). Le Null-
stellensatz combinatoire donne des conditions sur les racines d’un tel polynôme et permet
alors de conclure, en utilisant une preuve par l’absurde, à l’existence d’une solution.

Théorème (Nullstellensatz combinatoire). Soient K un corps commutatif, n ∈ N∗ et
P ∈ K[X1, . . . , Xn]. Soient S1, . . . , Sn des parties finies de K. Si P s’annule en tout
point de S1 × · · · × Sn, alors

P ∈
〈 ∏

s∈Si

(Xi − s)
〉

i∈J 1 ; n K

De plus, P peut s’écrire P =
n∑

i=1

( ∏
s∈Si

(Xi − s)
)
Hi

9Le noyau est en O
(
k2 log k

)
.
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avec ∀i ∈ J 1 ; n K deg(Hi) ≤ degP − |Si|

Remarque. Dans le cas où un des Si est vide, le produit cartésien S1 × · · · × Sn est vide et
l’idéal engendré par les ∏

s∈Si

(Xi − s) contient alors 1 et est donc égal à K[X1, . . . , Xn].

Ce théorème vient généraliser le résultat bien connu sur les polynômes à une seule indéter-
minée :

Théorème. Soient K un corps commutatif et P ∈ K[X]. Si α ∈ K est tel que P (α) = 0,
alors

(X − α) | P

On peut prouver le théorème du Nullstellensatz combinatoire par récurrence en utilisant le
fait qu’un polynôme de K[X1, . . . , Xn+1] est un polynôme en Xn+1 dont les coefficients sont
des éléments de K[X1, . . . , Xn]. Autrement dit,

K[X1, . . . , Xn+1] = K[X1, . . . , Xn][Xn+1]
La grande idée consiste à utiliser le fait bien connu que seul le polynôme nul a strictement
plus de racines que son degré dans le contexte des polynômes à une indéterminée mais dont
les coefficients sont des polynômes en d’autres indéterminées10. Une preuve du Nullstellen-
satz combinatoire peut être trouvée dans [1] où Alon en donne plusieurs applications à la
théorie des graphes. Il prouve notamment le théorème suivant, qui généralise un résultat
conjecturé par Berge et Sauer et démontré pour la première fois par Taśkinov dans [33] :
tout graphe 4-régulier contient un sous-graphe 3-régulier.

Théorème. Soit p un nombre premier. Tout graphe dont le degré moyen est strictement
supérieur à 2p− 2 et dont le degré maximum est inférieur à 2p− 1 contient un sous-graphe
p-régulier.

Preuve. Soient p un nombre premier et G = (V,E) un graphe dont le degré moyen est
strictement supérieur à 2p− 2 et le degré maximum inférieur à 2p− 1. On note m = |E| et
on considère l’anneau de polynômes Zp[X1, . . . , Xm]. Posons

P = ∏
v∈V

(
1 −

(∑
e∋v
Xe

)p−1
)

−
∏

e∈E
(1 −Xe)

On fait ici l’abus de notation e = i où i est le numéro de l’arête e. Comme nous le verrons, la
plupart des notions abordées dans cette thèse, à l’instar du rang d’une matrice d’adjacence,
sont indépendantes du choix de la numérotation faite sur les sommets (ou les arêtes) du
graphe. Posons

Q = ∏
v∈V

(
1 −

(∑
e∋v
Xe

)p−1
)

et R = ∏
e∈E

(1 −Xe)

Remarque. Les calculs qui suivent sont faits dans Zp. Il faut donc considérer toutes les
sommes et tous les produits modulo p.

10Un élément de K[X1, . . . , Xn] est, en particulier, un élément de K(X1, . . . , Xn), le corps des fractions
rationnelles en X1, . . . , Xn.
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Remarquons à présent que, (x1, . . . , xm) ∈ {0, 1}m vérifie ∏
v∈V

(
1 −

(∑
e∋v
xe

)p−1
)

= 0 si,

et seulement si,
∃v ∈ V

∑
e∋v
xe ̸= 0

En effet, Zp est un anneau intègre donc le produit ∏
v∈V

(
1 −

(∑
e∋v
xe

)p−1
)

est nul si, et

seulement si, un de ces termes, au moins, est nul. Cela équivaut donc à l’existence d’un
v ∈ V tel que (∑

e∋v
xe

)p−1
= 1

Or, comme p est premier, (Zp
∗,×) est un groupe fini d’ordre p− 1 et que les xe sont dans

{0, 1}, le théorème de Lagrange11 permet donc d’affirmer que cela équivaut à ∑
e∋v
xe ̸= 0.

Cependant, une telle somme est non nulle dans Zp si, et seulement si, son nombre de termes
non nuls n’est pas un multiple de p. Supposons l’existence de (x1, . . . , xm) ∈ {0, 1}m tel
que Q(x1, . . . , xm) ̸= 0. Dès lors, d’après ce que nous venons de faire, dans le sous-graphe
constitué des arêtes e ∈ E pour lesquelles xe = 1, tout sommet a pour degré un multiple
de p. Le degré maximal de G étant 2p − 1, un tel multiple vaut soit 0, soit p. Un tel
sous-graphe donne donc le résultat escompté.

Montrons donc l’existence de (x1, . . . , xm) ∈ {0, 1}m tel que Q(x1, . . . , xm) ̸= 0. Sup-
posons par l’absurde que P s’annule en tout point de {0, 1}m. Dès lors, d’après le Nullstel-
lensatz combinatoire, P peut s’écrire

P =
m∑

i=1
Xi(Xi − 1)Hi

avec Hi ∈ Zp[X1, · · · , Xm] tels que
∀i ∈ J 1 ; m K deg(Xi(Xi − 1)Hi) ≤ deg(P )

Remarquons que deg(Q) ≤ (p− 1) |V |. Or, (p− 1) |V | < m. En effet la condition sur le
degré moyen de G se traduit par

1
|V |

∑
v∈V

deg(v) > 2p− 2

d’où, d’après la formule d’Euler, m > (p− 1) |V |

En revanche, deg(R) = m. De ce fait, le coefficient du monôme
m∏

i=1
Xi dans P vaut (−1)m+1.

Notons, comme nous le ferons à la Section 2.2.4,
(
X(x1,...,xm)

)∗
(P ) le coefficient de

m∏
i=1
Xi

xi

dans P . On a donc (
X(1,...,1)

)∗
(P ) = (−1)m+1

De ce fait
m∑

i=1

(
X(1,...,1)

)∗
(Xi(Xi − 1)Hi) = (−1)m+1

11Ou encore, plus directement, le petit théorème de Fermat.
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On note alors mi = (1, . . . , 1, 0, 1, . . . , 1) le m-uplet de {0, 1}m qui a un zéro uniquement en
position i. Il existe donc i ∈ J 1 ; m K tel que

(Xmi)∗ (Hi) ̸= 0
puis deg(Hi) ≥ m− 1
d’où deg(Xi(Xi − 1)Hi) ≥ m+ 1
ce qui est absurde. Ainsi, il existe donc (x1, . . . , xm) ∈ {0, 1}m tel que P (x1, . . . , xm) ̸= 0.
De plus, comme P (0, . . . , 0) = 0 (et 1 ̸= 0 dans Zp), on a donc (x1, . . . , xm) ∈ {0, 1}m \
{(0, . . . , 0)}. Ainsi, R(x1, . . . , xm) = 0. Il s’ensuit que Q(x1, . . . , xm) ̸= 0 ce qui conclut. □

Remarque.

• Il faut comprendre ici que le polynôme R ne joue qu’un rôle technique dans cette
démonstration. Il sert essentiellement à augmenter artificiellement le degré de P afin
d’utiliser le Nullstellensatz combinatoire. De fait, il y a bien d’autres polynômes
possibles pour mener à bien cette preuve. Le choix d’un polynôme adapté, afin de
rendre la preuve la plus simple possible est donc crucial. Cette question sera abordée
dans cette thèse et constitue un axe de recherche intéressant.

• La preuve n’est pas constructive en ce sens qu’elle ne donne pas de moyen d’exhiber
un tel sous-graphe. Il s’agit en effet d’une preuve d’existence par l’absurde. Cela sera,
nous le verrons, récurrent dans les preuves menées au cours de cette thèse.

Nous donnons à présent les grandes lignes de la preuve du théorème de Fleischner et
Stiebitz (voir [16]). Une nouvelle preuve, utilisant les outils développés au cours de cette
thèse sera faite à la Section 2.3.1. Comme la première preuve, celle-ci utilisera un argument
de comptage dû à Petrov qui, lui-même, reprouve aussi le théorème de Fleischner et Stiebitz
(voir [30]).

Théorème (Fleischner et Stiebitz). Tout graphe qui est l’union arête disjointe d’un cycle
hamiltonien et d’une union sommet disjointe de triangles est 3-choisissable.

La notion de “choisissabilité” (en anglais “choosability”) se définit de la manière suivante.
Étant donné un graphe G et une application f ∈ NV (G), on dit que G est f -choisissable si,
et seulement si, pour toute famille d’ensembles (Sv)v∈V (G) telle que

∀v ∈ V (G) |Sv| = f(v)
il existe une coloration de c de G vérifiant

∀v ∈ V (G) c(v) ∈ Sv

Autrement dit, étant donné f(v) possibilités de couleurs pour chaque sommet v ∈ V (G),
il est possible de choisir une de ces possibilités pour chaque sommet de manière à avoir une
coloration de G. Un graphe est dit k-choisissable (avec k ∈ N) si, et seulement si, il est
f -choisissable où f est la fonction constante égale à k. Un graphe k-choisissable est en
particulier k-coloriable (il suffit de prendre Sv = J 0 ; k − 1 K pour tout v ∈ V (G)) mais la
réciproque est fausse en général : le graphe biparti complet K3,3 est 2-coloriable mais pas
2-choisissable. Le théorème de Fleischner et Stiebitz est donc plus fort que la conjecture
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initiale d’Erdös en 1990 où il était simplement question de 3-colorabilité. Il convient de
noter qu’une autre preuve, “élémentaire”, de la conjecture d’Erdös a été faite par Sachs en
1994 (voir [31]).

On note D = (V,E) le graphe obtenu à partir de G en orientant le cycle hamiltonien et
chaque triangle de manière cyclique. L’idée de la preuve de Fleischner et Stiebitz consiste
alors à considérer une telle orientation D de G et d’introduire le polynôme suivant :

PD = ∏
(u,v)∈E

(Xu −Xv)

Notons EE(D) (resp. EO(D)) le nombre de sous-graphes eulériens qui ont un nombre
pair (resp. impair) d’arêtes. Fleischner et Stiebitz montrent dans [16], grâce des arguments
de comptages, que ∣∣∣(X(1,...,1)

)∗
(PD)

∣∣∣ = |EE(D) − EO(D)|
et que de plus, EE(D) − EO(D) = 2 [4] ce qui permet de conclure que le coefficient de
X(1,...,1) dans PD est non nul. Comme précédemment, on montre, grâce au Nullstellensatz
combinatoire, qu’il n’est pas possible que PD s’annule en tout point de {0, 1, 2}n.

En effet, supposons par l’absurde que PD s’annule en tout point de {0, 1, 2}n. Dès lors,
d’après le Nullstellensatz combinatoire, PD peut s’écrire

PD =
n∑

i=1
Xi(Xi − 1)(Xi − 2)Hi

avec ∀i ∈ J 1 ; n K deg(Hi) ≤ deg (PD) − 3
Notons comme précédemment ni = (1, . . . , 1, 0, 1, . . . , 1) le n-uplet de {0, 1}n qui a un zéro
uniquement en position i. Comme

(
X(1,...,1)

)∗
(PD) ̸= 0, il existe i ∈ J 1 ; n K tel que

(Xni)∗ (Hi) ̸= 0 ce qui, là encore, contredit l’hypothèse sur le degré de Hi.

Remarque. La définition de coloration pour un graphe orienté ne change pas par rapport
à celle relative au graphe non orienté sous-jacent. En réalité, si G est un graphe et D une
orientation de G, alors en posant

PG = ∏
(u,v)∈E(G)

(Xu −Xv) et PD = ∏
(u,v)∈E(D)

(Xu −Xv)

on a PG = (−1)|E(D)|PD
2

De ce fait, les polynômes PG et PD ont les mêmes racines. Le fait de travailler avec une
version orientée du graphe permet simplement de simplifier l’argument de comptage.

En fait, une importante partie de la preuve de Fleischner et Stiebitz repose sur le résultat
suivant de Alon et Tarsi (voir [2]) :

Théorème. Soit D = (V,E) un graphe orienté vérifiant EE(D) ̸= EO(D). Dès lors, D est
f -choisissable avec

f :
{
V → N
v 7→ dv + 1

où dv est le degré sortant de v ∈ V .
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Preuve. Posons PD = ∏
(u,v)∈E

(Xu −Xv). Sans perdre en généralité, on suppose que les

sommets de D sont les éléments de J 1 ; n K. De même que dans la preuve précédente, on a∣∣∣(X(d1,...,dn)
)∗

(PD)
∣∣∣ = |EE(D) − EO(D)|

ce qui prouve que le coefficient de X(d1,...,dn) dans PD est non nul. On considère alors,
pour tout i ∈ J 1 ; n K, un ensemble Si de cardinal di + 1. Supposons par l’absurde que PD

s’annule en tout point de S1 × · · · × Sn. Dès lors, d’après le Nullstellensatz combinatoire,
PD peut s’écrire

PD =
n∑

i=1

( ∏
s∈Si

(Xi − s)
)
Hi

avec ∀i ∈ J 1 ; n K deg(Hi) ≤ degPD − |Si|
Comme

(
X(d1,...,dn)

)∗
(PD) ̸= 0, il existe i ∈ J 1 ; n K tel que(

X(d1,...,dn)
)∗
(( ∏

s∈Si

(Xi − s)
)
Hi

)
̸= 0

ce qui amène à une contradiction quant au degré de Hi. □
Un corollaire simple de ce résultat est qu’un graphe G de degré maximum ∆ est ∆ +

1-choisissable et donc, en particulier ∆ + 1-coloriable. On retrouve alors une partie du
théorème de Brooks. La preuve complète du théorème de Brooks a d’ailleurs été refaite par
Hladkýa, Král et Schauz dans [22] grâce au Nullstellensatz combinatoire.

Les idées d’Alon et Tarsi ont véritable été prolifiques, et pas seulement dans le cadre
de la coloration de graphe classique. Par exemple, Norine, Wong et Zhu les ont réinvesti
dans [28] pour démontrer des résultats de (p, q)-list coloring. Si (p, q) ∈ N2 vérifient p > q,
on appelle (p, q)-coloration d’un graphe G une coloration à au plus p couleurs vérifiant une
contrainte supplémentaire de distance entre les couleurs : deux couleurs sur des sommets
adjacents doivent être à distance au moins q. Cependant, une telle définition conduirait à
des effets de bord qui casseraient la symétrie entre les couleurs. On utilise donc Zp comme
ensemble de couleurs et on définit la distance suivante :

d :
{

J 0 ; p− 1 K2 → R
(i, j) 7→ min (|i− j| , p− |i− j|)

Intuitivement, il s’agit de la longueur du plus court chemin entre i et j si l’on représente
les éléments de Zp comme des points équidistants sur un cercle. Ainsi, une (p, q)-coloration
d’un graphe G est une coloration de G grâce aux éléments de Zp qui vérifie que deux
sommets adjacents ont des couleurs à distance au moins q au sens de la distance d. Pour
q = 1, on retrouve la définition d’une p-coloration.

Il est aussi possible de définir la f -(p, q)-choisissabilité de manière analogue à la f -
choisissabilité lorsque f est majorée par p. Norine, Wong et Zhu proposent alors dans [28]
une extension du résultat précédent dont la preuve utilise, la encore, le Nullstellensatz
combinatoire.

Les travaux présentés dans cette thèse reprennent l’esprit général des démonstrations
précédentes. Ils sont cependant réellement novateurs et proposent un point de vue différent
sur ces preuves algébriques. Une des valeurs ajoutées est l’introduction d’un objet dual aux
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polynômes qui encodent les problèmes de coloration (et plus généralement, les problèmes
de graphes pouvant s’exprimer à l’aide de polynômes) : les precolorings (voir Section 1.10).
Une des difficultés des preuves précédentes est le choix d’un bon polynôme pour encoder le
problème. La même difficulté se retrouvera dans le choix de bons precolorings. Cependant,
nous donnons des pistes pour les choisir judicieusement, ce qui ouvre peut-être une voie
nouvelle et passionnante à explorer.

Après ces années de thèse, et à l’heure où il faut se résoudre à mettre un point final à
ce travail, je réalise que cette exploration n’en est peut-être qu’à son commencement. Il y
a encore tant à faire !

Nous espérons que, malgré la lourdeur du formalisme, hélas tout à fait indispensable
à la rigueur que requièrent les concepts développés dans cette thèse, la lecture de cette
dernière sera agréable et qu’elle pourra inspirer d’autres mathématiciens pour la poursuite
des travaux humblement commencés ici.

Enfin, ces années de thèse constituent le point final de longues études et le présent
manuscrit, le dernier examen. Nous remercions le jury de se livrer à sa critique malgré
l’appréhension bien naturelle que cela provoque fatalement chez tout étudiant.

“L’épreuve de l’examen est utile et juste, et en dépit de faciles déclamations,
celui qui ne l’a point surmontée n’en surmontera aucune autre.”

Paul Valéry





Introduction (in english)

This thesis deals with graph theory, which is a part of the discrete mathematics, or, more
specifically, of computer science. It aims at developing new theoretical tools in order to
solve problems on graphs.

A graph is a simple object, yet very useful. In 1735, Leonhard Euler used the notion of
graphs to solve a famous problem: the seven bridges of Königsberg. Königsberg is a city
located in Prussia12 has seven bridges in order to connect two islands. Is it possible to do
a closed walk in the city, taking each bridges exactly once? It seems impossible but can we
prove it? Euler did seek a formal proof of this negative result. Although we are certainly
not as bright as Euler was, this thesis is also about finding proofs, certificates of infeasibility
for graphs related problems. Indeed, the problem of the seven bridges of Königsberg is a
graph problem!

A graph is a set of points called vertices connected with each other by lines called edges.
Two vertices connected by en edge are said to be adjacent. For instance, a cube, or more
generally any polyhedron, is a graph. Sometimes, we can make a drawing of a graph. For
instance, Figure 9 shows three drawings of the same graph: the cube. This can be surprising
but this is really the same object. Indeed, the adjacency relations are the same, and this is
all that matters when we are dealing with graphs.

(a) Usual representation (b) Planar representation (c) Bipartite representation

Figure 9: Three drawings of the cube

12Nowaday the city is russian and named Kaliningrad.
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Figure 10: A clique of maximum size with edges in dotted purple and a maximum size
stable set inside the dotted ellipse

A set of vertices S of a graph such that there is no edge between any pair of elements
of S is called a stable set or an independent set. Conversely, a graph such that every pair
of vertices are connected by an edge is called a clique. Let us make an example. Suppose
one wants to organize a diner with every parishioners of a church that never met. We can
model this with a graph: each parishioner is represented by a vertex and, two vertices are
connected by an edge if, and only if, the corresponding parishioners have already met. A
stable set of this graph provides a set of parishioners that we can invite to the diner (on
Figure 10, we can take all the vertices inside the ellipse). If, on the contrary, we want to
invite only people that already know each other, we can take a clique of the graph, which
is a set of vertices with a maximum number of edges (for instance, this is the case for the
purple dashed triangle on Figure 10). We called degree of a vertex its number of neighbours.
Then, a vertex of maximum degree represents a very popular parishioner! Finding a stable
set of maximum size is difficult in general13. The same goes for finding a clique of maximum
size within a graph: those problems are substantially identical since a clique in G is a stable
set in the complementary of G, which is the graph obtained from G when we invert the
adjacency relation.

A short history of graph theory

In 1852, two brothers, Francis and Frederick Guthrie, who were mathematicians, discovered
a surprising fact: every map can be colored with only 4 colors. More precisely, if one wants
to color every area of a map (for instance, the world map, the departments of France or
even those of a random country we may invent) so that two areas that share a border do
not have the same color14 then, there always exists a solution using at most four colors.

13This problem is NP-complete.
14We must forbid the borders that are not real lines. For instance, some borders are points between two

states of USA. Moreover, we choose a color for each area, not for each country.
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Frederick did not succeed in proving the conjecture so he asked his professor: Augustus De
Morgan. This brilliant mathematician did not succeed either. Alfred Kempe will make the
first proof of the result, or, we should say, attempt of proof as there was a mistake! Kempe
still managed to prove a weaker result: the five colors theorem which states that, under
the same hypothesis, five colors are enough. This map coloring problem can be formalized
with graphs by representing each area by a vertex and by connecting every pair of edges
if, and only if, they share a border. The graphs one can obtain from a map are said to be
planar because they can be drawn in the plane with no pair of edges crossing. Such a class
of graphs is actually more complex that one may think. Indeed, the fact that there exists
a drawing in which no pair of edges ever cross is hard to formalize mathematically and
to hard manipulate. For instance, Figure 11 represents twice the same graph: in a planar
way in 11b an in a non planar way in 11a. Beside, proving that a graph is not planar can
be difficult. For instance, the Petersen’s graph (see Figure 12) cannot be represented in a
planar way.

(a) prism (b) prism represented in a planar war

Figure 11: Two representations of the prism

Figure 12: Petersen’s graph
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Then, coloring the area of the map is the same as choosing one color for every vertices
of the underlying planar graph so that no two adjacent vertices share the same color. More
generally, a coloring for a graph is a choice of colors for each of the vertices so that no
adjacent vertices share the same color. In particular, the vertices with the same color is a
stable set. For convenience, we will use numbers instead of colors. For instance, the cube
can be colored with two colors (see Figure 13a). This is really obvious if we think of the
bipartite representation (see Figure 13b). Of course, this notion does not depend on how
the graph is represented. We will call proper coloring, or simply coloring, a labelling of the
vertices so that the condition stated above is verified. Conversely, when this condition is
not necessarily verified, we will simply speak of labelling.

1 0

10

0 1

01

(a) A 2-coloring of the cube

1

1

1

1

0

0

0

0

(b) A 2-coloring of the cube

Figure 13: Coloring of the cube with two colors

In case of a cube, we cannot use less than two colors. We say that the chromatic number
of the cube is 2. More generally, the chromatic number of a graph G is the minimal number
of colors one need in order to properly color this graph. Figure 14 shows a 3-coloring of
Petersen’s graph. This graph cannot be properly colored with less than 3 colors so, its
chromatic number is 3. Determining the chromatic number of a graph is a hard problem in
general15.

The four colors theorem states that the chromatic number of a planar graph is at most 4.
We need to wait 1976, which is more that one century after the Guthrie brothers found the
conjecture, to finally have a correct proof thanks to Kenneth Appel and Wolfgang Haken
([3]). For the first time, the proof is computer assisted. This may be problematic: how to be
sure that the computer is right despite a proof by case analysis of 1478 cases and more than
600 pages when printed16? Later, Robertson, Sanders, Seymour and Thomas will simplify

15This problem is NP-complete.
16By the way, a mistake has been found in the original proof!
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0

1
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1 2

1

0

2

2 1

Figure 14: A 3-coloring of Petersen’s graph

the proof leaving only 633 cases. Nowadays, this result remains mysterious and we do not
fully understand why the theorem is true. According to Paul Erdös, the four colors theorem
is a “subtle problem but not a complex one”, and a simple proof17 should exists because,
according to him, the class of planar graphs is a subset of the class of graphs to consider
for this theorem. A simple proof of this famous result would constitute a breakthrough in
computer science.

Graph coloring proves to be useful for many optimization problems. This is probably
why this problem is still widely studied. We provide here a few examples. Suppose one
wants to organize exams in a university with many rooms and many courses. Of course,
two exams concerning the same student cannot take place at the same time. How can we
organize the exams in an optimal way? Define G to be the graph whose vertices are the
exams and so that two exams are connected by an edge if, and only if, one student at least
must attend those two exams. In any coloring, the vertices of the same color are exams
that can take place at the same time. Hence, a coloring achieving χ(G) gives an optimal
schedule for the exams.

Let us see another example, which is in fact very similar: the seating plan. Suppose one
wants to make a seating plan for a wedding so that no pair of guests who dislike each other
are at the same table. (Unfortunately, this seems to be quite common.) Again, we can use
graphs to model this problem. The vertices are the guests and two guests are connected by
an edge if, and only if, they dislike each other. A table must be a stable set of the graph.
Hence, a coloring of the graph reaching the minimal number of colors gives a seating plan
that minimizes the number of required tables.

Finally, suppose one wants to create a phone network. A frequency range must be
allocated to each antenna. We would like to minimize the number of frequency ranges since
it comes with a cost. However, two antennas that are nearby must not share the same

17A proof from the Book!
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frequency range in order not to interfere. We can define a graph whose vertices are the
antenna and so that two antenna are connected by an edge if, and only if, the are nearby.
The chromatic number of this graph is the minimal number of required frequency ranges.

Since the chromatic number is hard to compute, we use to seek lower and upper bounds.
For instance:
Theorem. Let G be a graph, ω(G) the size of its largest clique and ∆(G) its maximum
degree. We have that

ω(G) ≤ χ(G) ≤ ∆(G) + 1
Unfortunately, χ(G) can be arbitrary far from those bounds. Indeed, there exists triangle
free graphs with arbitrary large chromatic number (see [25]) and, moreover, a graph com-
posed of one vertex with n neighbours has a chromatic number of 2 but maximum degree
of n.

The graph coloring problem is hard because, although the constraints are local, the
minimality of the number of colors depends on the whole graph. Hence, working only with
subgraphs cannot be enough in general18. Conversely, the notion of minor19 of a graph
seems promising. Let us cite the famous Hadwiger conjecture ([18]), opened since 1943.
Let us denote by H(G) the Hadwiger number of G, that is the least integer k such that G
admits the complete graph on k vertices for minor.
Conjecture (Hadwiger). For every graph G, χ(G) ≤ H(G).

The main ideas of this thesis

Proving that a graph G can be colored with k colors is one thing. Showing that this number
is minimal is another. One way to do so is by proving one cannot color G with k− 1 colors.
This allows to determine the chromatic number of G “from below”. This is the starting
point of this thesis. More generally, we would like, whenever χ(G) > k, a certificate of non
k-colorabiliy for G. Such a certificate could be several things. For instance, if G contains
a clique of size k + 1, then this clique is a proof, a certificate, that χ(G) > k. Figure 15
shows a graph that is not 3-colorable because it contains a clique of size 4 inside the dotted
ellipse.

Unfortunately, it is not always possible to find a subgraph that can be a certificate. In
this thesis, we will present a generic method to certify that a graph is not k-colorable. Our
work is related to the publications of Bayer ([5]), De Loera ([12], [13]) and Li, Lowenstein
and Omar ([6]). The common idea through those articles is to use multivariate polynomials
to encode the problem of the 3-colorability of a graph. Indeed, the Nullstellensatz theorem
of Hilbert (1.5.1) provides a certificate in case G is not k-colorable. This certificate is,
however, a family of polynomials which is a purely algebraic object. We will prove that it
is possible to create a “natural” extension of G in which such an algebraic certificate has a

18If it were the case, computing the chromatic number of a graph would be a polynomial time problem,
and so we would have P = NP. . .

19A minor of a graph G is a graph we can obtain from G after applying the following transformations,
delete an isolated vertex, delete and edge, contract an edge.
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Figure 15: A graph that contains a clique of size 4

combinatorial interpretation. For instance, to study the 3-colorability of a graph G, we can
define a graph denoted by 3G that satisfies χ(G) = 3 ⇔ χ

(
3G
)

= 3 (see Section 1.3). We
shall see that we can defined several such extensions in case k is not a prime number. We
will discuss the differences between those extensions in Section 1.4.

Having studied those graph extensions that we call power graphs, we discovered a con-
nection with what we named Fourier analysis on graphs. In order to illustrate this concept,
let us introduce a new way to color graphs: the edge-coloring. We must now chose one color
per edge and satisfy the condition that no pair of adjacent edges share the same color. Of
course, this problem is not fundamentally different from the vertex-coloring that we have
seen previously since an edge-coloring of a graph is a vertex-coloring of its line graph20.
Figure 16a shows a 3-edge-coloring of the cube. We can also represent this coloring on a
bipartite representation of the cube (see Figure 16b).

Our idea is to use the bipartite representation and the following remark: an edge-coloring
of a bipartite graph is correct if, and only if, the constraints are satisfied both on the right
and on the left. In other words, an edge-coloring of a bipartite graph is good if, and only
if, two incident edges on the right (resp. on the left) always have different colors. This
can be expressed with an inner product: define fL to be the vector of size 3m/2 (m being
the number of edges of the graph) indexed by all the possible 3-edge-labellings and which
has a 1 in front of a proper edge-labelling from the left perspective, and a 0 otherwise. In
an analogous way, we define fR to be the characteristic vector of the good 3-edge-colorings
from the right perspective. By construction, ⟨fL, fR⟩ is the number of good 3-edge-colorings
of G. Then, to prove that G admits a 3-edge-coloring, it suffices to prove that this inner
product is non zero. A formal introduction of this is made in Section 2.1.

Rather than computing directly this inner product, we compute
〈
f̃L, f̃R

〉
where ·̃ des-

ignates the multiplication with some appropriate Fourier matrix (see Section 2.2). Those
matrices have the nice property of being hermitian so ⟨fL, fR⟩ =

〈
f̃L, f̃R

〉
. In some cases,

20The line graph of a graph G, denoted by L(G), has the edges of G as vertex set. Moreover, two vertices
of L(G) are connected by an edge if, and only if, the corresponding edges are adjacent in G.
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(a) 3-coloring of the edges of the cube (b) 3-coloring of the edges of the cube

Figure 16: Two representations of an edge-coloring of the cube with three colors

we have a simple argument to assess that this last inner product is non zero. Our method
also works with non bipartite graphs up to some changes (see for instance Proposition 2.1.2)
and with vertex coloring as well. Using our tools, we made a new simple and elegant proof
of Fleischner and Stiebitz theorem ([16]) in Section 2.3.1.

The Fourier analysis on graphs developed in this thesis has a strong connection with
power graphs. The Fourier transforms of the good colorings form a basis of the linear
space of the precoloring which are functions that admits a simple characterization on power
graphs. For more details, please refer to Section 2.2.5.

Finally, there are several natural questions about power graphs. In particular, what
are the properties of G that are also true in its different power graphs? How a small edit
of G translates in its power graphs? Those questions are not trivial and many of them
remains open. When researching the effect of edge editings on power graphs, we have
studied the cograph editing problem: Given a graph G, how can we edit G (that is, revert
some adjacency relations), in an optimal way in terms of execution time but also in terms
of number of edited edges in order to make G a graph with no induced path of length 4?
An introduction of those edition problems is available at Section 3.1. We have improved a
result of Havet et al ([17]) going from a cubic kernel for this problem to a “quasi-quadratic”
kernel21. Our article has been accepted in Discrete Applied Maths and should be published
soon.

21Our kernel is in O
(
k2 log k

)
.
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Algebraic proofs on graphs: an introduction

In order to put in perspective the methods developed in this thesis, this section contains a
short survey on how polynomials have been used in graph theory. All the results presented
here are based on a theorem called combinatorial Nullstellensatz. Rather than trying to be
exhaustive in the proofs, we give the intuition and explain how algebraic proofs on graphs
work in general. Roughly speaking, the idea is to introduce a multivariate polynomial whose
roots are solutions of our problem. The combinatorial Nullstellensatz gives conditions on
the roots and allows us to conclude by contradiction.

Theorem (combinatorial Nullstellensatz). Let K be a field, n ∈ N∗ and P ∈ K[X1, . . . , Xn].
Let S1, . . . , Sn be finite subsets of K. If P vanishes on S1 × · · · × Sn, then

P ∈
〈 ∏

s∈Si

(Xi − s)
〉

i∈J 1 ; n K

Moreover, P can be written P =
n∑

i=1

( ∏
s∈Si

(Xi − s)
)
Hi

with ∀i ∈ J 1 ; n K deg(Hi) ≤ degP − |Si|

Remark. In case one of the Si is empty, the product S1 × · · · × Sn is empty. Hence, the
ideal generated by the ∏

s∈Si

(Xi − s) contains 1 so it is equal to K[X1, . . . , Xn].

This theorem generalizes the well known following result on univariate polynomials:

Theorem. Let K be a field and P ∈ K[X]. If α ∈ K satisfies P (α) = 0, then
(X − α) | P

The proof of the combinatorial Nullstellensatz can be done by induction. It relies of the
fact that a polynomial of K[X1, . . . , Xn+1] is a polynomial in Xn+1 whose coefficients are
elements of K[X1, . . . , Xn]. In other words,

K[X1, . . . , Xn+1] = K[X1, . . . , Xn][Xn+1]
The core idea is to use the well known fact that, for univariate polynomials, the zero
polynomial is the only one that has more roots than its degree. This is true even if the
coefficients are polynomials22. A proof of the combinatorial Nullstellensatz can be found
in [1] where Alon gives several applications to graph theory. He notably proves the following
theorem that generalizes a result which has been conjectured by Berge and Sauer and then
proved by Taśkinov in [33]: Every 4-regular graph contains a 3-regular subgraph.

Theorem. Let p be a prime number. Every graph with average degree bigger than 2p− 2
and maximum degree at most 2p− 1 contains a p-regular subgraph.

22An element of K[X1, . . . , Xn] is, in particular, an element of K(X1, . . . , Xn), the field of the algebraic
fractions in X1, . . . , Xn.
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Proof. Let p be a prime number and G = (V,E) be a graph with average degree bigger
than 2p − 2 and maximum degree at most 2p − 1. Let m = |E|. We consider the ring of
polynomials Zp[X1, . . . , Xm]. Let us define

P = ∏
v∈V

(
1 −

(∑
e∋v
Xe

)p−1
)

−
∏

e∈E
(1 −Xe)

We abuse notation here and consider that e = i where i is the index of the edge e. As we
will see later, almost every notion studied in this thesis, such as the rank of an adjacency
matrix, are independent of the numbering chosen for the vertices (or edges) of the graph.
Let us define

Q = ∏
v∈V

(
1 −

(∑
e∋v
Xe

)p−1
)

and R = ∏
e∈E

(1 −Xe)

Remark. The following calculus are made in Zp. Hence, every sums and every products are
modulo p.

Observe that, (x1, . . . , xm) ∈ {0, 1}m satisfies ∏
v∈V

(
1 −

(∑
e∋v
xe

)p−1
)

= 0 if, and only if,

∃v ∈ V
∑
e∋v
xe ̸= 0

Indeed, Zp is an integral domain which implies that ∏
v∈V

(
1 −

(∑
e∋v
xe

)p−1
)

is null if, and

only if, one of its terms, at least, is null. This is equivalent to the existence of v ∈ V such
that (∑

e∋v
xe

)p−1
= 1

Since p is prime, (Zp
∗,×) is a finite group of order p− 1. Moreover, the xe lies into {0, 1}.

Hence, Lagrange’s theorem23 gives that it is equivalent to ∑
e∋v
xe ̸= 0. However, such a sum

is not null in Zp if, and only if, its number of non zero terms is not divisible by p. Assume
by contradiction that there exists (x1, . . . , xm) ∈ {0, 1}m such that Q(x1, . . . , xm) ̸= 0.
Consider the subgraph formed by the edges e ∈ E such that xe = 1. By what we just did,
in such a subgraph, the degree of every vertex is a multiple of p. Since the maximum degree
of G is 2p− 1, every vertex has either degree 0 or degree p.

Let us now prove the existence of (x1, . . . , xm) ∈ {0, 1}m such that Q(x1, . . . , xm) ̸= 0.
Assume by contradiction that P vanishes on {0, 1}m. Hence, by the combinatorial Nullstel-
lensatz, P can be written

P =
m∑

i=1
Xi(Xi − 1)Hi

with Hi ∈ Zp[X1, · · · , Xm] such that
∀i ∈ J 1 ; m K deg(Xi(Xi − 1)Hi) ≤ deg(P )

Observe that deg(Q) ≤ (p − 1) |V |. Yet (p − 1) |V | < m. Indeed, the condition on the
average degree of G translates to

23In this case, this is Fermat’s little theorem.
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1
|V |

∑
v∈V

deg(v) > 2p− 2

where, by the handshaking lemma, m > (p− 1) |V |

However, deg(R) = m. As a consequence, the coefficient of the monomial
m∏

i=1
Xi in P is

(−1)m+1. Let us denote, as it will be done in Section 2.2.4,
(
X(x1,...,xm)

)∗
(P ) the coefficient

of
m∏

i=1
Xi

xi in P . We have that (
X(1,...,1)

)∗
(P ) = (−1)m+1

Hence,
m∑

i=1

(
X(1,...,1)

)∗
(Xi(Xi − 1)Hi) = (−1)m+1

Let us write mi = (1, . . . , 1, 0, 1, . . . , 1) the m-tuple of {0, 1}m which is zero only on coordi-
nate i. There exists i ∈ J 1 ; m K such that

(Xmi)∗ (Hi) ̸= 0
then deg(Hi) ≥ m− 1
so deg(Xi(Xi − 1)Hi) ≥ m+ 1
which is a contradiction. As a consequence, there exists (x1, . . . , xm) ∈ {0, 1}m such that
P (x1, . . . , xm) ̸= 0. Moreover, since P (0, . . . , 0) = 0 (and 1 ̸= 0 in Zp), we have that
(x1, . . . , xm) ∈ {0, 1}m \ {(0, . . . , 0)}. Hence, R(x1, . . . , xm) = 0. So Q(x1, . . . , xm) ̸= 0,
which concludes the proof.

Remark.

• The polynomial R has only a technical purpose in this proof. It aims at making
the degree of P big enough in order to use the combinatorial Nullstellensatz. As a
matter of fact, other polynomials could have been used for that proof. Choosing an
appropriate polynomial in order to make an algebraic proof easier is crucial. This
question will be addressed in this thesis and constitutes an important research axis.

• The proof is not constructive in the sense that one cannot use it to build such a
subgraph. Indeed, this is a proof of existence by contradiction. As we will see, it is
common for the proofs in this thesis.

We now give the main ideas of the proof of Fleischner and Stiebitz’s theorem (see [16]).
A new proof, using the tools developed in this thesis, will be made in Section 2.3.1. Like
Fleischner and Stiebitz, we use, at some point, a counting argument. In our proof, this
counting argument is based on a lemma from Petrov who also made a proof of Fleischner
and Stiebitz’s theorem (see [30]).

Theorem (Fleischner and Stiebitz). Every graph that decomposes into a Hamiltonian cycle
and a vertex disjoint union of triangles is 3-choosable.
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The notion of choosability is defined in the following way. Given a graph G, a total
function f ∈ NV (G), we say that G is f -choosable if, and only if, for every family of sets
(Sv)v∈V (G) such that

∀v ∈ V (G) |Sv| = f(v)
there exists a coloring c of G that satisfies

∀v ∈ V (G) c(v) ∈ Sv

In other words, given f(v) possible colors for every vertex v ∈ V , one can choose one
color for each in order to make a proper coloring of G. A graph is said to be k-choosable
(with k ∈ N) if, and only if, it is f -choosable where f is the function constant to k. A
k-choosable graph is, in particular, k-colorable (one just has to take Sv = J 0 ; k − 1 K for
every v ∈ V (G)). However, the converse is false in general: the complete bipartite graph
K3,3 is 2-colorable but not 2-choosable. Fleischner and Stiebitz’s theorem is then stronger
than the initial conjecture made by Erdös in 1990. Indeed, Erdös only claimed that such
a graph is 3-colorable. Another proof of that result, that does not use the combinatorial
Nullstellensatz, has been made in 1994 by Sachs (see [31]).

We denote by D = (V,E) the directed graph obtained from G by orienting the Hamil-
tonian cycle and every triangles cyclically. The main idea of Fleischner and Stiebitz’s proof
is to consider such an orientation D of G and to introduce the following polynomial:

PD = ∏
(u,v)∈E

(Xu −Xv)

Let us denote by EE(D) (resp. EO(D)) the number of Eulerian subgraphs which have
an even (resp. odd) number of edges. Thanks to some counting arguments, Fleischner and
Stiebitz show in [16], that∣∣∣(X(1,...,1)

)∗
(PD)

∣∣∣ = |EE(D) − EO(D)|
and that, moreover, EE(D)−EO(D) = 2 [4]. Hence, the coefficient of X(1,...,1) in PD is non
zero. As before, we show, using the combinatorial Nullstellensatz, that PD cannot vanish
on every point of {0, 1, 2}n.

Indeed, assume by contradiction that PD vanishes on {0, 1, 2}n. Then, by the combina-
torial Nullstellensatz, PD can be written

PD =
n∑

i=1
Xi(Xi − 1)(Xi − 2)Hi

with ∀i ∈ J 1 ; n K deg(Hi) ≤ deg (PD) − 3
Let us denote, as earlier, ni = (1, . . . , 1, 0, 1, . . . , 1) the n-tuple of {0, 1}n which has exactly
one zero on coordinate i. Since

(
X(1,...,1)

)∗
(PD) ̸= 0, there exists i ∈ J 1 ; n K such that

(Xni)∗ (Hi) ̸= 0. Again, this contradicts the hypothesis on the degree of Hi.

Remark. A proper coloring for a directed graph is the same as a proper coloring for the
underlying undirected graph. Actually, if G is an undirected graph and D is an orientation
of G, then we can define

PG = ∏
(u,v)∈E(G)

(Xu −Xv) and PD = ∏
(u,v)∈E(D)

(Xu −Xv)
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We have that PG = (−1)|E(D)|PD
2

As a consequence, PG and PD have the same roots. However, using a directed version of
the graph simplifies the proof of the counting argument.

Actually, a significant part of Fleischner and Stiebitz’s proof relies on the following result
of Alon and Tarsi (see [2]) :

Theorem. Let D = (V,E) be a directed graph such that EE(D) ̸= EO(D). Then, D is
f -choosable with

f :
{
V → N
v 7→ dv + 1

where dv is the outdegree of v ∈ V .

Proof. Define PD = ∏
(u,v)∈E

(Xu −Xv). Without loss of generality, we assume that the

vertices of D are the elements of J 1 ; n K. As before,∣∣∣(X(d1,...,dn)
)∗

(PD)
∣∣∣ = |EE(D) − EO(D)|

which proves that the coefficient of X(d1,...,dn) in PD is non zero. For every i ∈ J 1 ; n K,
let Si be a set of size di + 1. Assume by contradiction that PD vanishes on every point of
S1 × · · · × Sn. Then, by the combinatorial Nullstellensatz, PD can be written

PD =
n∑

i=1

( ∏
s∈Si

(Xi − s)
)
Hi

with ∀i ∈ J 1 ; n K deg(Hi) ≤ degPD − |Si|
Since

(
X(d1,...,dn)

)∗
(PD) ̸= 0, there exists i ∈ J 1 ; n K such that(

X(d1,...,dn)
)∗
(( ∏

s∈Si

(Xi − s)
)
Hi

)
̸= 0

which leads to a contradiction by considering the degree of Hi.

A simple corollary of that result is that a graph G of maximum degree ∆ is ∆ + 1-
choosable so, in particular, ∆ + 1-colorable. This is part of the Brooks’ theorem. Besides,
the complete proof of Brooks’ theorem using the combinatorial Nullstellensatz has been
made by Hladkýa, Král and Schauz (see [22]).

The ideas of Alon and Tarsi have really been fruitful, and not only for usual graph
coloring. For instance, Norine, Wong and Zhu used Alon and Tarsi ideas in order to prove
some results on (p, q)-list coloring (see [28]). If (p, q) ∈ N2 satisfies p > q, we call (p, q)-
coloring of a graph G a p-coloring that satisfies an additional constraint on the distance
between colors: two adjacent vertices must have colors at distance at least q. However, such
a definition has side effects which break the symmetry we usually have on colors. In order
to make a better definition, we consider Zp as the set of colors and define the following
distance:

d :
{

J 0 ; p− 1 K2 → R
(i, j) 7→ min (|i− j| , p− |i− j|)
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Intuitively, it is the length of the shortest path between i and j if one represents the
elements of Zp as equally distributed points of a circle. Hence, a (p, q)-coloring of some
graph G is a coloring of G with elements of Zp such that two vertices that are connected
by an edge have colors at distance at least q for the distance d. For q = 1 this is the usual
definition of a p-coloring.

We can also define the notion of f -(p, q)-choosability when f is bounded by p. Norine,
Wong et Zhu give an extension of the above result in [28]. Once again, the proof relies on
the combinatorial Nullstellensatz.

The proofs made in this thesis follow the general idea of the works presented here.
However, our work is innovative and offers a different point of view on those algebraic
proofs. One of the main novelty is the introduction of an object that is, somehow, the
dual of a polynomial that encodes the coloring problem (and more generally, problems on
graphs that can be expressed with polynomials): precolorings (see Section 1.10). One of the
difficulties of the previous proofs is the choice of a good polynomial to encode the problem.
The same difficulty arises in the choice of good precolorings. Nevertheless, we give hints to
choose them wisely. This is, perhaps, an exciting new path to explore.

After those years of doctoral studies, it is now time to write a final dot to this work. I
realize that this is only the beginning of that exploration. There is so much left to do!

We hope that, despite some heavy formalism, which is unfortunately mandatory due
to the complexity of the mathematical objects manipulated in this thesis, the reading of
this manuscript will be pleasant and inspiring. We hope that other mathematicians and
computer scientists will pursue the work humbly started here.

Finally, those years of doctoral studies are the final act of a long scholarship and this
manuscript, the last examination. We thank the jury members for accepting to review this
thesis despite the natural apprehension that this causes to any student.

“The hardship of an examination is useful and fair, and despite easy declama-
tions, he who has not overcome it will not overcome any.”

Paul Valéry



Chapter 0

Basic definitions

This section contains some common definitions. We will frequently refer to it when appro-
priate all along this thesis so the reader is invited to skip linear reading of this part.

0.0.1 General algebra

Definition 0.0.1. Let G be a group and H ⊆ G. The subgroup generated by H on G is
the smallest (for the inclusion) subgroup of G that contains H. We denote it by ⟨H⟩.

If a subgroup is generated by a finite set, we say that it is a subgroup of finite type.

Definition 0.0.2. Let A be a ring and S ⊆ A. The ideal generated by S on A is the
smallest (for the inclusion) ideal of A that contains S. We denote it by ⟨S⟩.

Remark. In case of a ring, these two notions do not necessarily coincide. For instance, the
subgroup generated by 1 on Fp[X] is finite (it is Fp) whereas the ideal generated by 1 on
Fp[X] is infinite (it is Fp[X]).

Definition 0.0.3 (characteristic). Let A be a ring. The characteristic of A is the unique
ξ ∈ N such that Kerϕ = ξZ where

ϕ :
{

Z → A
k 7→ k · 1A

Definition 0.0.4 (integral domain). A ring A is said to be an integral domain whenever
A ≠ {0}, A is commutative and

∀a, b ∈ A ab = 0 ⇒ a = 0 ∨ b = 0

Theorem 0.0.5. Let k ∈ N. If k cannot be written k = pℓ with p prime and ℓ ≥ 1, then
there is no field of cardinality k. Otherwise, there exists a unique (up to isomorphism) field
of cardinality k that we denote by Fk. It’s characteristic is p.

35
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Definition 0.0.6 (module). Let (A,+,×) be a ring and (M,+) be an Abelian group. We
say that (M,+, ·) is an A-module (or a left A-module) whenever

• ∀a ∈ A ∀x, y ∈ M a · (x+ y) = a · x+ a · y

• ∀a, b ∈ A ∀x ∈ M (a+ b) · x = a · x+ b · x

• ∀x ∈ M 1A · x = x

• ∀a, b ∈ A ∀x ∈ M (a× b) · x = a · (b · x)

0.0.2 Graph theory

Definition 0.0.7. A directed graph is a pair of sets (V,E) such that E ⊆ V 2. Such a graph
is said to be simple whenever

∀v ∈ V (v, v) /∈ E
The graph is said to be undirected whenever

∀u, v ∈ V (u, v) ∈ E ⇔ (v, u) ∈ E
In this case, we will write indifferently uv or vu for the edge (u, v) or (v, u).

Remark. Unless otherwise stated, all the graphs in this thesis are simple and undirected.

Notation. Let G = (V,E) be an undirected graph. For v ∈ V and e ∈ E, we write v ∈ e
for

∃u ∈ V e = (v, u) ∨ e = (u, v)

Definition 0.0.8. Let k ∈ N, the complete graph on k vertices, denoted by Kk is the graph(
J 1 ; k K , J 1 ; k K2 \ {(i, i) : i ∈ J 1 ; k K}

)
.

Definition 0.0.9 (graph factor). A graph factor of a graph G is a spanning subgraph or,
in other words, a subgraph that has the same vertex set as G. Such a subgraph is called
k-factor if it is k-regular.

Definition 0.0.10 (Eulerian graph). A graph is said to be Eulerian if each of its vertices
has even degree.

Definition 0.0.11 (Eulerian circuit). A graph has an Eulerian circuit if there exists a
closed walk that uses every edge exactly once.

Proposition 0.0.12. A graph is Eulerian if and only if it has an Eulerian circuit.

Definition 0.0.13 (Eulerian orientation). A graph G has an Eulerian orientation if and
only if there exists an orientation of its edges so that for every vertex, the in-degree is equal
to the out-degree.

Remark. In particular, if a graph has an Eulerian orientation then it is Eulerian. The
converse also holds.
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Example.

• A 1-factor is a perfect matching

• A 2-factor is a set of cycles that spans the vertex set. We also call it a cycle factor.

Definition 0.0.14 (graph morphism). Let G = (V,E) and G′ = (V ′, E′) be two graphs.
We say that the total function f : V → V ′ is a graph homomorphism (or simply a graph
morphism) from G to G′ whenever

∀u, v ∈ V uv ∈ E ⇒ f(u)f(v) ∈ E′

In other words, f maps an edge of G to an edge of G′. We say that f is an isomorphism if
f is bijective and f−1 is a graph morphism (from G′ to G).

Notation. If there exists a graph isomorphism between G and G′, we will write G ≃ G′.

Warning. In general, a bijective morphism (even in another context than in graph theory),
is not an isomorphism. Indeed, the inverse function may not be a morphism!
Remark. Most of the time, two isomorphic graphs will be considered equal. Indeed, in
this thesis, we are interested only by the structure of graphs which is preserved by graph
isomorphisms.

Definition 0.0.15 (graph coloring). Let G be a simple graph and k ≥ 1 be an integer. We
say that ρ : V (G) → J 0 ; k − 1 K is a k-coloring of G (or, a proper k-coloring of G) if
and only if

∀u, v ∈ V (G) uv ∈ E(G) ⇒ ρ(u) ̸= ρ(v)
The integers used to label the vertices are called colors. This terminology is related to the
history of combinatorics.

Remark. A graph k-coloring of G is actually a graph morphism from G to Kk, the complete
graph with k vertices.

Definition 0.0.16 (chromatic number). For any graph G, the chromatic number of G,
denoted by χ(G), is the smallest number of colors required to properly color G.

Definition 0.0.17 (vertex-transitive graph). A graph G = (V,E) is said to be vertex-
transitive whenever for every pair of vertices u, v ∈ V , there exists a graph isomorphism
f : V → V from G to G1 such that f(u) = v.

0.0.3 Modular arithmetic

Recall that for every n ∈ N∗, the relation defined on Z by
∀k, ℓ ∈ Z k ∼ ℓ ⇔ k − ℓ ∈ nZ

is an equivalence relation. The set Zn has a natural ring structure. We will often need to
convert an integer to its class of equivalence modulo n. Here are three useful functions to
achieve this.

1We call such an isomorphism, a automorphism.



38 CHAPTER 0. BASIC DEFINITIONS

Definition 0.0.18. The operator modulo will be written with the infix notation. For every
i ∈ Z and every n ∈ N∗, the modulo n of i is the remainder of the euclidean division of i by
n. We denote it by i%n. More formally, % is a total function from Z × N∗ such that for
every (i, n) ∈ Z × N∗, i%n = %(i, n) is the unique r ∈ J 0 ; n− 1 K such that i− r ∈ nZ.

Two integer i, j ∈ Z that satisfy i%n = j%n are said to be equal modulo n. We will
denote it by

i = j [n]

Definition 0.0.19. Let n ∈ N∗. The cast modulo n associates to an integer i its class of
equivalence modulo n in the quotient Zn = Z/nZ. We denote its class by in. More formally,

· n :
{

Z → Zn

i 7→ i+ nZ

Definition 0.0.20. Let n ∈ N∗ and i+nZ be a class of equivalence modulo n. The uncast
of iZ associates a canonical integer j = in such that jn = i+ nZ.

· n :
{

Zn → J 0 ; n− 1 K
i+ nZ 7→ i%n

0.0.4 Linear algebra

In this section, A is a ring and K a field.

Definition 0.0.21. We say that a matrix has full column rank when the dimension of its
image (linear space spanned by its columns) is equal to its number of rows. In other words,
the dimension of the image is maximum. We say that a matrix has full row rank when its
transpose has full column rank.

Warning 0.0.22. This terminology is different from the usual one. Usually, the column
(resp. row) rank of a matrix is the dimension of the space spanned by its columns (resp.
rows). This is the same here. However, a matrix is usually said to have full column rank
(resp. full row rank) whenever its columns (resp. rows) are linearly independent. So, the
linear map canonically associated (resp. canonically associated to the transposed of the
matrix) is injective.

In this thesis, full column rank (resp. full row rank) means that the space spanned by
the columns (resp. rows) has maximal (full) dimension. Hence, it is equal to the number
of rows (resp. columns). In this thesis, full columns rank (resp. full row rank) means that
the matrix is surjective (resp. injective).

Definition 0.0.23 (Kronecker product). Let n,m, p, q ≥ 1 be integers and A ∈ Mn,k(A),
B ∈ Mp,q(A). The Kronecker product (or tensor product) A ⊗ B is the np × kq block
matrix

A⊗B =

a11B · · · a1kB
... . . . ...

an1B · · · ankB


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Properties 1. The ⊗ operator is bilinear, associative, non-commutative.

Proposition 0.0.24. Let n, k, p, q,m, ℓ ≥ 1 be integers and A ∈ Mn,k(A), B ∈ Mp,q(A),
C ∈ Mk,m(A) and D ∈ Mq,ℓ(A). Then,

(A⊗B)(C ⊗D) = (AC) ⊗ (BD)

Remark. Observe that the only restriction in Proposition 0.0.24 is that the matrix products
AC and BD must be defined.

Definition 0.0.25. Let F and G be two sublinear spaces of a linear space E. We say that
the sum F +G is direct (and write it F ⊕G) whenever for every x ∈ F +G there is a unique
way to write x = f + g with f ∈ F and g ∈ G.

0.0.5 Some useful abuses

Abuses of language and/or notations are almost always evil. However, in some particular
cases it may make things clearer.

• We say that a graph H is included in a graph G (H ⊆ G) whenever there exists a
subgraph of G that is homomorphic to H.

• We will often omit to define the order of the rows and the columns of incidence
matrices. This is because we are only interested in the rank so it does not matter.

• The vectors of Kn will be sometimes represented as column vectors (which is, in my
opinion, the most natural way to draw them), or sometimes as row vectors (as it is
more convenient to draw them in a paragraph). However, we will always be cautious
that the matrix vector product are well defined.

• In the context of power graphs, since G ⊆ Γk
G, we will sometimes confound v ∈ V (G)

and its canonical map into Γk
G. We will do the same of abuse for the edges of G as

they naturally map to edges in Γk
G. This should not disturb the reader as the context

should always be clear. Besides, it will often be convenient to think about edges of
Γk

G as being edges of G.

• A vector of Kk will also be confounded with a map from J 0 ; k − 1 K to K.





Chapter 1

Power graphs

A connected graph G on n vertices is non-bipartite if and only if its incidence matrix
(vertices versus edges) has rank n over the reals. More generally, if the set of cliques of size
k is rich enough so that the incidence matrix of vertices versus copies of Kk has rank n,
the graph G is not k-colorable. However, the existence of such a “clique certificate” is far
from being equivalent to the non k-colorability. In this chapter, we introduce a graph Zk

G,
inspired from graph reconfiguration, which has the property that G is not k-colorable if and
only if Zk

G has a k-clique certificate. This can be seen as a graph interpretation of Hilbert’s
Nullstellensatz certificate for non k-colorability. However, even though the k-colorability
of G is equivalent to the k-colorability of Zk

G when k is a prime, this equivalence fails for
instance when k = 4. But, when k is a power of a prime number, G is k-colorable if and
only if another graph, Fk

G is k-colorable. This indicates that, for instance, the natural
object to investigate 4-colorability is the reconfiguration graph based on F4 rather than the
usual one based on the classical interpretation of colorability by polynomials. We discuss
the properties of these reconfiguration graphs at the end of this chapter.

1.1 Introduction

A k-coloring of a graphG on n vertices is a mapping from the vertex set ofG into J 0 ; k − 1 K
or any set of k elements. A coloring c is said to be a proper coloring if every edge is colored by
two distinct colors. A very popular approach to colorability is the study of reconfiguration
where one forms a graph over proper colorings by letting an edge between two of them
when they differ on one vertex. A good introduction to reconfiguration graphs can be
found in [27] and in [34]. We adopt a similar point of view by considering the set of all
k-labellings of G (rather than restricting to proper colorings) and letting an edge between
two labellings x and x′ of G with elements of Zk whenever they differ on two vertices u, v
which forms an edge of G and such that x(u) − x′(u) = x′(v) − x(v) [k], in other words, if
x′ is obtained from x by transferring some weight along the edge uv (A formal definition
will be made in 1.3.1.). We denote this graph by Zk

G. Observe that, potentially, a different
graph could have been obtained if the equality x(u) − x′(u) = x′(v) − x(v) would not have
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been computed modulo k but on another group Γ (we would write the graph ΓG as we will
see later). This (exponential size) reconfiguration graph Zk

G happens to be a very natural
object to investigate since, as we prove in Proposition 1.5.6, the set of cliques of size k in
Zk

G is full rank over the vertices (that has rank equal to kn) whenever G is not k-colorable.
In other words, when a graph is not k-colorable, there exists an associated exponential size
graph which is not k-colorable for some rather “obvious” reason (the existence of a clique
certificate).

Note that Zk
G is a vertex-transitive graph, and thus the existence of a clique certifi-

cate is equivalent to the existence of a linear combination of cliques which is equal to a
single vertex1. The reader familiar with the interpretation of k-colorability by multivariate
polynomials will recognize here the equation ∑QiPi = 1 and the classical Nullstellensatz
certificates of non k-colorability. And this is indeed the case: Zk

G is exactly the underlying
graph structure of the usual polynomial approach. The goal of this chapter is to investigate,
from the graph theory point of view, this reconfiguration-flavored graph.

Here is the first natural question to ask: is χ(G) > k equivalent to χ(Zk
G) > k? This is

indeed the case when k is a prime number, but surprisingly this equivalence fails even for
k = 4 and it turns out that the right object to consider in this case is not Z4

G but instead
F4

G (the field with 4 elements). We show in this chapter that χ(G) > k is equivalent to
χ(Fk

G) > k for finite fields, and that non k-colorability of G can be shown by a clique
certificate of Fk

G. This indicates for instance that the right power graph underlying four
colorability might be F4

G.
The rest of this chapter is dedicated to the general properties of these graphs.

1.2 Clique certificates
In the following, K designates an arbitrary field2.

1.2.1 Incidence matrices

Let E = {e1, . . . , en} be a set and F = {f1, . . . , fk} be a set of subsets of E. The incidence
matrix of E versus F is a n× k matrix M = (mi,j) with n = |E| and k = |F | such that

∀(i, j) ∈ J 1 ; n K × J 1 ; k K mi,j =
{

1 if and only if ei ∈ fj

0 otherwise

Example.

• Given a graph G, we can consider the incidence matrix of its vertices versus its edges.

• In an affine space over a finite field, we can consider the matrix of the points versus
the lines.

1This is an abuse, a vector with exactly one 1 and k − 1 zeros can be confound with the vertex of G that
corresponds to the coordinate of the 1. See Lemma 1.3.2.

2Note to french readers: In English, every field is, by default, assumed to be commutative. In this thesis,
we will always consider commutative fields.

def:vertexTransitive
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Remark. Writing “the incidence matrix of G” is actually a bit inappropriate as we would
need to specify the order of the rows and columns of the matrix. However, we will almost
always spare ourselves from doing this as we will only be interested in the rank of such
matrix. Also, in order to have lighter notations and when the context is clear, we will write
ImM , rkM instead of the heavy ImKM and rkKM to designate the image and the rank
of M in the field K.

1.2.2 Link with colorability

Let us start with an easy case. Assume one wants to show that some graph G is not
bipartite. Consider the incidence matrix M2 of the vertices versus the edges. Let us show
that if M2 has full column rank (see Def 0.0.21 and Warning 0.0.22), then G is not bipartite.
Assume for the sake of contradiction that G = (V,E) is bipartite. We write V = A ⊎ B
such that every edge is between A and B. Now consider a linear combination of columns
of M2 and observe that the sum of the coefficients over all vertices of A is the same as the
sum on B. Hence, M2 cannot have full column rank because, for instance, we cannot create
a vector such that all coordinates but one are zero.

Observe that this works in any field. The key point is that the color classes of a coloring
are stables sets that partition the set of vertices. We will now see how to generalize this
result.

Definition 1.2.1. We define Kr(G) to be the set of all the subgraphs of G that are r-cliques.
Let us denote by Mr (G) (or simply Mr) the incidence matrix of V (G) versus Kr(G).

Notation. Let E and F be two sets. For every e ∈ E, we denote by 1e the total function
from E to F defined by

∀x ∈ E 1e(x) =
{

1 if x = e
0 otherwise

Proposition 1.2.2. Let r ≥ 1 be an integer and G be a graph. If there exists v ∈ V (G)
such that 1v ∈ ImMr, then χ(G) > r.

Proof. Assume for the sake of contradiction that G has a proper r-coloring. The idea is
to partition the vertices of G into monochromatic stable sets. Such a partition of the
vertices naturally translates into a partition of the rows of Mr. Since every r-clique has
exactly r colors, any linear combination of the columns of Mr has the same weight on
each monochromatic part. This contradicts the fact that there exists v ∈ V (G) such that
1v ∈ ImMr.

We will see in Example 1.2.3 that the converse does not always hold. Actually, the
matrix Mr may be empty! For instance, there exists triangle-free graphs whose chromatic
number is 4 (see [25]). Even though, it could be that χ(G) > r and that Mr(G) does not
have any 1v in its image. In case there exists a v ∈ V (G) such that 1v ∈ Im(Mr(G)), any
linear combination of the columns of Mr(G) that gives 1v is called r-clique certificate in K.

def:fullrank
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Indeed, such a combination is a proof that G is not r-colorable. We say that v is the center
of the certificate.

Example. In Figure 1.1 we draw an example of a 3-clique certificate with weights in F2.
Every triangle has weight 1. In the end, every vertex but the bottom one sums to 0. More
generally, if every vertex of a graph G but one is in an even number of triangles, then G
has a 3-clique certificate (in F2) hence is not 3-colorable.

1

1

1

1

1

0 0 0

0 0

0 0

1

Figure 1.1: A 3-clique certificate in F2

The existence of a clique certificate may depend on the underlying field. Consider for
instance the 2-clique certificate of a triangle. The matrix M2(△) is represented in Figure 1.2
with an example of a 2-clique certificate.

M2(△) =

0 1 1 0
1 1 0 1
2 0 1 1

01 02 12


0

1 2

1
2

1
2

−1
2

Figure 1.2: A 2-clique certificate in R

The rank of M2(△) is 2 in F2 but 3 is R. Hence, there exists a 2-clique certificate in R but
not in F2. Indeed, if a linear combination of the columns of M2(△) in F2 would give 10
for instance, then, by symmetry, we would also have 11 and 12 which would contradict the
fact that the rank of M2 in F2 is 2.

So, the choice of the underlying field for matrices is crucial when it comes to clique-
certificates. Note that Proposition 1.2.2 only gives a sufficient condition for G to be not
r-colorable. Hence, it suffices to find a field3 K such that ImKMr(G) does not contain any
1v for v ∈ V . However, this does not always exists as we will see in Example 1.2.3.

3Actually, we may even weaken the algebraic structure by taking a ring instead of a field. However, being
able to divide in the end is useful to avoid technical details latter. The only parameter that matters is the
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Example 1.2.3. The Grötzsch’s graph (see Figure 1.3a) has no triangle. Hence, there is
no 3-clique certificate even though it is not 3-colorable (see [25]). The Moser spindle graph
(see Figure 1.3b) has triangles but its matrix M3 satisfies that for all v ∈ V , 1v /∈ ImRM3.
However, the Moser spindle graph is not 3-colorable.

(a) The Grötzsch’s graph (b) The Moser Spindle graph

The Moser Spindle graph has chromatic number 4. However, we can show that it has
no 3-clique certificate in R. To prove this, it suffices to check that the equation M3X = 1i

has no solution for X ∈ R7 for any i ∈ J 0 ; 6 K.

0

1
2

5 6

3
4



0 1 1 0 0
1 1 0 1 0
2 1 0 1 0
3 0 1 0 1
4 0 1 0 1
5 0 0 1 0
6 0 0 0 1

012 034 125 346



Figure 1.4: Moser Spindle graph and its matrix M3

characteristic of the field. Since it cannot be any number (the characteristic of a field is either zero or a
prime number), one may want to consider clique certificates in rings rather than in fields. The matrices form
a module and not a linear space which makes the study of the rank more complicated. . . Anyway, this is
only for clique-certificates. The new kind of certificates that are studied in this thesis are not more general
if one consider values in rings by Corollary 1.7.2.

def:characteristic
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1.3 Power graphs
In this section, Γk designates either Zk or, if k is a power of a prime number, the field with
k elements Fk.

Definition 1.3.1 (Γk
G). Let k ≥ 2 and G be graph. We define the graph Γk

G by

• V
(
Γk

G
)

= Γk
V (G)

• For every (x, y) ∈ V
(
Γk

G
)2

, (x, y) ∈ E
(
Γk

G
)

if and only if there exists (u, v) ∈ E

such that

i) ∀w ∈ V (G) \ {u, v} x(w) = y(w)
ii) x(u) − y(u) ̸= 0
iii) x(u) − y(u) = y(v) − x(v)

We denote the total functions from V (G) to Γk (the vertices of Γk
G) by vectors of

size |V (G)| whose values are in Γk. This is quite convenient to represent power graphs.
Examples are given in Figure 1.5.

[
0 0

]
[
1 2

]

[
2 1

]

[
1 0

]
[
0 1

]

[
2 2

]

[
2 0

]
[
0 2

]

[
1 1

]

(a) The graph Z3
•−•

[
0 0 0

]

[
0 1 1

]

[
1 1 0

] [
1 0 1

]

[
1 1 1

]
[
1 0 0

][
0 0 1

]

[
0 1 0

]

(b) The graph Z2

Figure 1.5: Examples of power graphs
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Remark.

• When k = p is prime, we have that Fp
G = Zp

G since Fp = Zp. In such case, we write
pG.

• When k = pℓ with p prime and ℓ ≥ 1, both Zk
G and Fk

G are defined but we will see
later that they are not isomorphic in general.

• We can reformulate the condition for cc′ to be an edge of Γk
G as

∃uv ∈ E(G) ∃a ∈ Γk \ {0} c′ − c = a (1u − 1v)

Lemma 1.3.2. For every k ≥ 2, the graph G is an induced subgraph of Γk
G.

Proof. The vertices of G can be seen as vertices of Γk
G. Indeed, one can identify u ∈ V (G)

and 1u ∈ V
(
Γk

G
)
. Now take uv ∈ E(G) and observe that

1u − 1v = 1 · (1u − 1v)
Hence, G is an induced subgraph of Γk

G.

Corollary 1.3.3. In particular, χ(G) ≤ χ
(
Γk

G
)
.

One can wonder whether the converse inequality holds. As we can see on Figure 1.5b, it
is false in general since χ(△) = 3 and χ

(
Z2

△
)

= 4. However, is it true that χ(G) = k if
and only if χ

(
Γk

G
)

= k? We will see in Section 1.4 that the answer depends on Γk being
a field or not. However, we will prove that G is not k-colorable if and only if Γk

G has some
certificate. Such a certificate will be called edge-clique certificate.

1.3.1 Edge-clique certificates

We have seen in Section 1.2 a sufficient condition for a graph G = (V,E) to be not k-
colorable using its cliques of size k. However, the condition was not necessary in general
(see Example 1.2.3). We define here a similar notion in the context of power graphs: the
edge-clique certificates. Our goal is to have an equivalence between the non k-colorability
of G and the existence of an edge-clique certificate in Γk

G.

Definition 1.3.4 (edge-clique certificate). For x, d ∈ Γk
V , we call d-line a set of the form

Lx(d) = {x+ λ d : λ ∈ Γk}
In the case d = 0, any 0-line is a point and we call it a trivial line. If d = 1u − 1v with

uv ∈ E, we call any (1u − 1v)-line an edge-clique. Observe that edge-cliques are k-cliques
of Γk

G.
An edge-clique certificate is a weight function on the edge-cliques such that every vertex

but one (which we call the center) sums to zero. It is a k-clique certificate of Γk
G that uses

only k-cliques that are edge-cliques.
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Remark 1.3.5. Thanks to the group structure of Γk
V , if there exists an edge-clique certificate,

we can choose its center to be any point. Indeed, applying a translation to an edge-clique
certificate gives an edge-clique certificate4. In particular, Γk

G has an edge-clique certificate
if and only if the incidence matrix of Γk

V versus the edge-cliques has full row rank.

Theorem 1.3.6. Let k ≥ 2 and G be a graph. G is not k-colorable if and only if Γk
G has

an edge-clique certificate.

This result can be surprising as edge-cliques are more constrained objects than cliques.
Indeed, any edge-clique of Γk

G is a k-clique but the converse is false in general (for k ≥ 3,
consider any k-clique of G). However, the k-clique certificate is now to be found in Γk

G

rather than G. Intuitively, we have more freedom since Γk
G is a much bigger graph than

G! The purpose of the next four sections is to establish the Theorem 1.3.6.

1.4 Differences between ZqG and FqG

When q is a non trivial power of a prime number p (namely, q = pℓ with ℓ ≥ 1), we have
defined two objects: Zq

G which is always defined and Fq
G which exists only in this context

since the cardinality of a finite field is always a power of a prime number (see Theorem 0.0.5).
When q = p, these two objects are identical as Zp = Fp. However, when ℓ ≥ 2, Zq and
Fq are not isomorphic: the characteristic of the first one is q but the characteristic of the
second one is p. In this section, we discuss the differences between these two objects. First,
let us prove the following theorem:

Theorem 1.4.1. For any graph G, any q that is a non trivial power of a prime, we have
that Fq

G is q-colorable if and only if G is q-colorable.

More precisely we will show how we can build a q-coloring of Fq
G from a q-coloring of

G = (V,E).

Definition 1.4.2 (linear coloring). For c ∈ Fq
V , we define a labelling of Fq

G c∗ : Fq
V → Fq

by
∀x ∈ Fq

V c∗(x) = ⟨c, x⟩

where ⟨c, x⟩ =
n∑

i=1
xici is the usual inner product5 of Fq

n seen as a Fq-linear space.

Lemma 1.4.3. For every c ∈ Fq
V , the labelling c is a proper coloring of G if and only if c∗

is a proper coloring of Fq
G.

4Actually, the graph Γk
G is vertex-transitive and for every u, v ∈ V

(
Γk

G
)
, there is a unique graph

automorphism of Γk
G that sends u to v: this is the translation of vector v − u.

5Beware that we are working with finite fields and not R or C. In particular, this inner product has
isotropic vectors!

def:vertexTransitive
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Proof. Take v ∈ V and c ∈ Fq
V . Observe that c∗(1v) = ⟨c,1v⟩ = c(v). So, if c∗ is a proper

q-coloring of Fq
G, then c is a proper q-coloring of G because G ⊆ Fq

G by Lemma 1.3.2.
Conversely, assume that c ∈ Fq

V is a proper q-coloring of G. Let xx′ ∈ E
(
Fq

G
)
. By

definition of Fq
G,

∃uv ∈ E ∃a ∈ Fq \ {0} x′ − x = a(1u − 1v)
so we have that c∗(x′) − c∗(x) = ⟨c, a(1u − 1v)⟩

= a (⟨c,1u⟩ − ⟨c,1v⟩)
= a (c(u) − c(v))

Since c is a proper q-coloring of G, we have that c(u) − c(v) ̸= 0. Since a ̸= 0 and Fq is a
field (which is an integral domain), a(c(u) − c(v)) ̸= 0. Hence, c∗(x′) ̸= c∗(x) and since this
is true for any edge xx′ of Fq

G, c∗ is a proper q-coloring of Fq
G.

This concludes the proof of Theorem 1.4.1. Indeed, we have that χ(G) ≤ χ
(
Fq

G
)

by
Corollary 1.3.3 and since we know how to extend a q-coloring of G to Fq

G we also have that
χ(G) ≥ χ

(
Fq

G
)
.

Remark 1.4.4.

• The proof of this result allows us to extend any proper q-coloring of G to a proper
q-coloring of Fq

G using the linear map c 7→ c∗ defined in the proof. One can wonder
what are the q-colorings of Fq

G and whether or not we can derive them from those of
G. We investigate these questions in Section 1.8.

• Beware that this proof only works for the q-colorings of Fq
G. Recall that we can see

on Figure 1.5b that χ (2 ) = 4.

• The fact that q is a power of a prime number is used to ensure that Fq is a field. In
the proof of Lemma 1.4.3, we would not be able to obtain that a(c(u)−c(v)) ̸= 0 if we
were not in an integral domain. For instance, F4

K4 is 4-colorable but if we consider
instead Z4

K4 , then the previous proof does not work anymore because Z4 is not an
integral domain. In particular, 2 × 2 = 0 although 2 ̸= 0. Actually, this graph is not
4-colorable:

Proposition 1.4.5. The graph Z4
K4 is not 4-colorable.

Proof. Let us try to 4-color Z4
K4 . We restrict ourselves to the connected component of[

0 0 0 0
]
. Without loss of generality, we can assume that 0000 is white (For clarity, we

will not draw the vector’s bracket.). Consider the subgraph H of Z4
K4 defined in Figure 1.6.

Since every vertex is connected by an edge to 0000, we have only three colors left. Up to a
permutation of these colors, there is only one way to 3-color H (see Figure 1.6).
Now, observe that each vertex with two 2’s and two 0’s is included into a triangle with
vertices which have two 0’s at the same position, one 1 and one 3. Hence, there are two
possible choices represented on Figures 1.7a and 1.7b.

def:integralDomain
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20022200

0202

2020

0220 0022

Figure 1.6: 3-coloring of a subgraph H of Z4
K4

0000

2002

10033001

(a) H1

0000

2002

10033001

(b) H2

Figure 1.7: Two choices for the colors of 3001 and 1003

Assume that the coloring is as in graph H1 (Figure 1.7a). Consider the subgraph G1
(Figure 1.8a) to obtain a contradiction. Indeed, both 2011 and 1012 must be colored white.
If the coloring is as in graph H2 (Figure 1.7b), take the subgraph G2 (Figure 1.8b).

So, the result of Theorem 1.4.1 is not true in general if we replace Fq
G by Γq

G, even if
q is a power of a prime number. We explained in Remark 1.4.4 that we cannot extend a
proper q-coloring of G to a proper q-coloring of Zq

G with the “inner product trick” if Zq is
not a field6. Moreover, we just proved in Proposition 1.4.5 that we can have χ

(
Zk

G
)
> k

even if χ(G) = k. We don’t know the chromatic number of Zk
Kk even for k = 4. Although

this could be done by a brute force algorithm, we would rather like to have a deeper
understanding of Proposition 1.4.5 an be able to know (or, at least to have a lower bound
on) the chromatic number of Zk

Kk .
To conclude this section, let us point out that although we will prove that Theorem 1.3.6

is true for both Zk
G and Fq

G, we will see in Section 1.5 and Section 1.7 that the proofs
differ. It may be relevant to try to unify these proofs but we didn’t work it out yet.

6Since Zq is a finite ring, it is an integral domain if and only if it is a field.
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0022

10033001

2020

2002

10122011

(a) G1

2200

30011003

0202

2002

21011102

(b) G2

Figure 1.8: The colorings of G1 and G2 cannot be extended as 4-colorings

1.5 Nullstellensatz certificates

In this section, we introduce the notion of Nullstellensatz certificate of non k-colorability
and explain the link with edge-clique certificates in power graphs. We recall here Hilbert’s
Nullstellensatz theorem.

Theorem 1.5.1 (Nullstellensatz). Let n ≥ 1 and ℓ ≥ 1 be integers, K be an algebraically
closed field and P1, . . . , Pℓ ∈ K[X1, . . . , Xn]. The following points are equivalent:

i) ∀x ∈ K ∃i ∈ J 1 ; ℓ K Pi(x) ̸= 0

ii) ∃Q1, . . . , Qℓ ∈ K[X1, . . . , Xn]
ℓ∑

i=1
Qi Pi = 1

Remark. In other words, the polynomials P1, . . . , Pℓ have a common root in K if and only
if the ideal generated by P1, . . . , Pℓ is not K[X1, . . . , Xn].

In the following, K is a field assumed to be algebraically closed. In particular, K has
kth roots of unity for any k ≥ 1. Namely, one can think of K as being the field of complex
numbers C.

1.5.1 The k-coloring ideal

Given a graph G and an integer k ≥ 2, we want to express the problem of the k-colorability
of G using polynomial equations. There are many ways to do it like in [5], [21], [12] or [6].
The method we use is inspired from [13] and [6]. We assume the vertices of G to be integers
between 1 and n. We use the following polynomials7 for every i ∈ V and every ij ∈ E:

7It is a slightly different formulation than Bayer’s (see [5]).
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Pi = Xi
k − 1

Pij = Xi
Xi

k −Xj
k

Xi −Xj

Observe that Pij is indeed a polynomial since

Pij = Xi

k−1∑
ℓ=0

Xi
k−1−ℓXj

ℓ = Xi
k +Xi

k−1Xj + · · · +Xi
2Xj

k−2 +XiXj
k−1

Moreover, it is a sum of monomials of degree k in K[X1, . . . , Xn].
Let us denote by S the following system of equations:

S = {Pi = 0}i∈V ∪ {Pij = 0}ij∈E

We define as in [13] the k-coloring ideal of G, denoted by Ik(G), to be the ideal generated
by the Pi’s and Pij ’s. We will see, provided that the characteristic of K does not divide k,
that this algebraic structure captures the k-colorability problem on G.

Theorem 1.5.2 (Bayer [5]). Let K be an algebraically closed field of characteristic not
dividing k. We assume that K has k roots of unity. For any graph G, G is not k-colorable
if and only if

Ik(G) = K[X1, . . . , Xn]

Although this proof is not new (see [5]), we found relevant to do it here.

Proof. First, notice that by Hilbert’s Nullstellensatz, Ik(G) = K[X1, . . . , Xn] if and only if
S has no solution (that is, our polynomials do not have a common root).

Let us assume that G is k-colorable and consider a proper k-coloring of G using the
kth roots of unity for the colors. Let xi denote the color of vertex i. First, by definition,
Pi(x1, . . . , xn) = 0 for every i ∈ J 1 ; n K. Now let ij ∈ E. Since xi ̸= 0 for every i ∈ J 1 ; n K,

Pij(x1, . . . , xn) = xi

k−1∑
ℓ=0

xi
k−1−ℓxj

ℓ = xi
k

k−1∑
ℓ=0

(
xj

xi

)ℓ

so this last sum is zero as xi ̸= xj . Hence, (x1, . . . , xn) is a solution of S.
Conversely, assume that (x1, . . . , xn) is a solution of S. Let us show that the coloring

that maps vertex i to xi for every i ∈ J 1 ; n K is a proper coloring of G. Notice that for all
i, xi is a kth root of unity as Pi(x1, . . . , xn) = 0. Take ij ∈ E and assume for the sake of
contradiction that xi = xj . Then,

Pij(x1, . . . , xn) = xi
k

k−1∑
ℓ=0

(
xj

xi

)ℓ

= 1 × k · 1
which is not null because the characteristic of K does not divide k. This contradicts the
fact that (x1, . . . , xn) is a solution of S.

Hence, by Hilbert’s Nullstellensatz, a graph G is k-colorable if and only if the associated
polynomials Pi’s and Pij ’s have a common root in Kn and any such root provides a proper
coloring for G.
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Example. We can encode the 2-colorability problem of K3 with the following polynomials:

P1 := X1
2 − 1 P2 := X2

2 − 1 P3 := X3
2 − 1

P1,2 := X1
2 +X1X2 P2,3 := X2

2 +X2X3 P3,1 := X3
2 +X1X3

Here is a Nullstellensatz certificate for this system:

Q1 = 0 Q2 = 0 Q3 = −X3
2 − 1

Q1,2 = X3
2 + X2X3

2 Q2,3 = X3
2

2

Q3,1 = X3
2 − X2X3

2 −X1X3 − X1X2
2 − X2

2

2

1.5.2 Nullstellensatz and edge-clique certificates

We now explain the link between Nullstellensatz certificates and edge-clique certificates in
a power graph. Let R := K[X1, . . . , Xn]. The next definition is derived from [13]. Define
the system of equations S′ := {Pij = 0}ij∈E over the ring

R′ := K[X1, . . . , Xn]〈
X1

k − 1, . . . , Xn
k − 1

〉
Remark. Observe that, intuitively, R′ is nothing but R where every exponent are taken mod-
ulo k.

Definition 1.5.3 (Nullstellensatz certificate in R). Let G be a non k-colorable graph.
We call Nullstellensatz certificate of non k-colorability for G in R any set of polynomials
{Qi}i∈V ∪ {Qij}ij∈E such that ∑

i∈V
Qi Pi + ∑

ij∈E
Qij Pij = 1

where the polynomials Pi and Pij are the elements of S defined above.

Definition 1.5.4 (Nullstellensatz certificate in R′). Let G be a non k-colorable graph.
We call Nullstellensatz certificate of non k-colorability for G in R′ any set of polynomials
{Qij}ij∈E such that ∑

ij∈E
Qij Pij = 1

where the polynomials Pij are the elements of S′ defined above.

Remark. If S (resp S′) has a solution, then G has no Nullstellensatz certificate in R (resp
in R′).

We will see that the existence of a Nullstellensatz certificate of non k-colorability for G
in R or in R′ is equivalent to χ(G) > k. In the following, the degree of a Nullstellensatz
certificate is the maximum degree of all the monomials involved in the Qi’s and Qi,j ’s.
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Warning. Since R′ is not K[X1, . . . , Xn], Hilbert’s Nullstellensatz theorem does not apply.
However, we still call for convenience Nullstellensatz certificate any set of elements Qij ∈ R′

such that the equality ∑
i,j
QijPij = 1 holds in R′.

Recall that S = {Pi = 0}i∈V ∪ {Pij = 0}ij∈E and S′ = {Pij = 0}ij∈E . The system of
equations S′ is equivalent to S in the sense of the next proposition.

Proposition 1.5.5. The system S has a solution over R if and only if S′ has a solution
over R′. Moreover, S has a Nullstellensatz certificate if and only if S′ has one.

Proof. Observe that any solution of S is a solution of S′. Moreover, if S has a Nullstellensatz
certificate over R then, mapping this certificate to R′ gives a certificate for S′ in R′. Indeed,
this is true because there is a ring homomorphism from R to R′ that sends every Pi’s to
zero.

Now assume that S′ has a Nullstellensatz certificate. This implies in particular that S′

has no solution over Uk
n. Hence, S cannot have a solution over Cn since any solution of

S over Cn would actually be a solution over Uk
n. So, by Hilbert’s Nullstellensatz, S has a

Nullstellensatz certificate.
Finally, if S′ has a solution over R′ then it does not have any Nullstellensatz certificate

so neither do S. Hence, by Hilbert’s Nullstellensatz, S has a solution.

Remark. We can easily compute a Nullstellensatz certificate for S′ if we are provided one
for S. Indeed, there is a natural ring homomorphism ψ : R → R′ defined by

∀i1, . . . , in ∈ J 0 ; n− 1 K ∀j ∈ N ψ
(
Xi

j
)

= Xi
j%k

However, it is not clear how to translate a Nullstellensatz certificate for S′ into one for S:
the proof of Proposition 1.5.5 gives no clue on how to do so.

In the following, we only consider a Nullstellensatz certificate of non k-colorability for
a graph G in R′. We now show that such a certificate and an edge-clique certificate in Zk

G

are somehow isomorphic.

Proposition 1.5.6. For any integer k ≥ 2, G is non k-colorable if and only if Zk
G has an

edge-clique certificate.

Proof. Observe that in R′, all the exponents are between 0 and k−1. Hence, the monomials
that can be involved are the elements of the set

M :=
{
X1

i1 · · ·Xn
in : i1, . . . , in ∈ J 0 ; k − 1 K

}
Assume that G has a Nullstellensatz certificate {Qij}ij∈E . For all ij ∈ E, write

Qij = ∑
M∈M

α
(ij)
M ·M

We have that ∑
ij∈E

QijPij = ∑
M∈M

∑
ij∈E

α
(ij)
M ·MPij = 1

Let us show that MPij can be seen as an edge-clique in Zk
G. Define
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ϕ :
{

M → Zk
V

X1
i1 · · ·Xn

in 7→ (i1, . . . , in)
This is a group isomorphism. Observe that in R′,

MPij = M +MXi
k−1Xj +MXi

k−2Xj
2 + · · ·MXiXj

k−1

If we apply ϕ to every term of this sum, we have every point of the edge clique containing
ϕ(M) in the direction of the edge ij. We will write (ϕ(M), ij) to designate such edge-clique.
If G has a Nullstellensatz certificate, then Zk

G has an edge-clique certificate. Indeed, for
every edge clique (ϕ(M), ij) we can take the weight α(ij)

M . Thanks, to the equality∑
ij∈E

QijPij = ∑
M∈M

∑
ij∈E

α
(ij)
M ·MPij = 1 = ϕ−1(0, · · · , 0)

the function that maps (ϕ(M), ij) to α
(ij)
M is an edge-clique certificate whose center is

(0, . . . , 0).
Conversely, let f be an edge-clique certificate. Up to translating, we can assume it’s

center to be (0, . . . , 0). We write f(x, ij) for the weight of the unique edge-clique directed
by ij and containing x. Define for every ij ∈ E

Qij := ∑
M∈M

f (ϕ(M), ij) M

and let us check that {Qij}ij∈E is a Nullstellensatz certificate.∑
ij∈E

QijPij = ∑
ij∈E

∑
M∈M

f (ϕ(M), ij) M Pij

= ∑
M∈M

∑
ij∈E

f (ϕ(M), ij)
k−1∑
ℓ=0

M Xi
k−ℓXj

ℓ

For every M ∈ M and every ij ∈ E, let us define
Mij =

{
M ′ ∈ M : ∃ℓ ∈ J 0 ; k − 1 K M = M ′Xi

k−ℓXj
ℓ
}

We then have that ∑
ij∈E

QijPij = ∑
M∈M

∑
ij∈E

∑
M ′∈Mij

f (ϕ(M ′), ij) M

Indeed, f
(
ϕ
(
M ′Xi

k−ℓXj
ℓ
)
, ij
)

= f (ϕ(M ′), ij). Hence, the coefficient of a monomial M
in the sum ∑

ij∈E
QijPij is the sum of all f(x, ij) where (x, ij) is an edge-clique containing

ϕ(M). This implies that the coefficient in front of M is always zero except when M = 1.

This concludes the proof of Theorem 1.3.6 in the particular case of Γk being Zk. We
prove in the next two sections the case where Γk is a finite field.

One can wonder why this proof does not apply to Fk. Actually, the function ϕ cannot
be defined anymore as the exponents of a monomial naturaly map to Zk but not to Fk.
Surprisingly, the result of Theorem 1.3.6 is still true for Γk being Fk but our proof is
completely different. We do not know any natural way to turn an edge-clique certificate
for Fk

G into a Nullstellensatz certificate neither we do for the converse. Intuitively, we
would have to consider polynomials whose exponents take values in Fk rather than in Zk.
Obviously, there is no analogous theorem to Hilbert’s Nullstellensatz in such context.
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1.6 A general geometry result
In order to prove Theorem 1.3.6 in the case where Γk is a finite field, we cannot use poly-
nomials and Nullstellensatz anymore. Indeed, when k = pℓ with p a prime number and
ℓ ≥ 2, Fpℓ and Zpℓ are different objects (the characteristic of Zpℓ is pℓ whereas Fpℓ has char-
acteristic p) and powers of monomials do not translate naturally into Fk. However, power
graphs of the form Fk

G have, in some sense, more structure than these of the form Zk
G.

The set of vertices of the former is a linear space (over Fk) whereas the later has a weaker
structure of module (over Zk). Hence, we can have a geometric interpretation of Fk

G. The
edge-cliques can be seen as lines. Finding an edge-clique certificate in Fk

G amounts to find
a set of weighted lines in Fk

n with some properties. The edge-cliques are mapped to lines
but not every line is mapped to an edge-clique. This is why some of the lines of Fk

n will be
“forbidden”.

In this section we characterize the set of directions D of an affine space over a finite field
such that the affine lines of direction in D span the space. In other words, the incidence
matrix of the points of the space versus the affine lines of direction in D has full column rank.
This result will be useful to study the certificate of non q-colorability for Fq

G in Section 1.7.
Indeed, the “authorized” directions will be those corresponding the edge-cliques.

For all this section, we fix a prime number p, ℓ ≥ 1 and r ≥ 2 two positive integers and
we let q = pℓ.
Definition 1.6.1 (d-line). Let Γ be a ring and E a module on Γ. For x, d ∈ ΓE , we call
d-line a set of the form Lx(d) = {x+ λ d : λ ∈ Γ}. We say that Lx(d) is a non trivial affine
line whenever d ̸= 0.
Lemma 1.6.2. Let E be an affine space over the finite field Fq of dimension 2 with q = pℓ

where p a prime number and ℓ ≥ 1. For every field K of characteristic ξ ̸= p, the non trivial
affine lines of E are full rank in K. More precisely, the matrix of E versus the non trivial
affine lines has full column rank in K.
Proof. Let M be the incidence matrix of the elements of E (called “points”) versus the non
trivial affine lines. More formally, we consider an enumeration {x1, . . . , xr} of the points
and an enumeration of the non trivial affine lines {ℓ1, . . . , ℓs} and we define M = (mij) ∈
Mr,s(K) by

∀i ∈ J 1 ; r K ∀j ∈ J 1 ; s K mij =
{

1 if xi ∈ ℓj
0 otherwise

We will show that M has rank r. If we sum all the columns corresponding to some partition
of the space into lines8, we get that t

[
1 · · · 1

]
∈ Kr. Now consider a point xi ∈ E.

Without loss of generality, we can assume that i = 1. If we sum every columns of M
corresponding to a line containing x1, we obtain, since r = q2,

t
[
r − 1
q − 1 1 · · · 1

]
= t

[
q + 1 1 · · · 1

]
8For instance, since E is a plane, one can consider all the “horizontal” lines. Actually, given a direction,

the lines with that directions form a partition of E.

def:module
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So, t
[
q + 1 1 · · · 1

]
− t

[
1 · · · 1

]
= t

[
q 0 · · · 0

]
Then, since ξ ̸= p, this last vector is non zero. We can do this for every point which proves
that M has full column rank hence rkM = r.

We will now see how this result can be generalized. First, let us prove a useful corollary:

Corollary 1.6.3. If a function S : E → K sums to zero on every non trivial line of E
then S = 0.

Proof. If we see S as a row of size r then, by hypothesis, SM = 0. By Lemma 1.6.2, M
has rank r hence tM is injective so S = 0.

We consider a set D ⊆ Fq
n \ {0}. The underlying idea is that D represents the allowed

directions of the affine space Fq
n. We denote by A(D) the incidence matrix of Fq

n versus
the affine lines of Fq

n directed by an element of D.

Lemma 1.6.4. Let K be a field of characteristic ξ with ξ ̸= p. A(D) has full column rank
in K if and only if, for every hyperplane H of Fq

n, H ∩ D ≠ ∅.

Proof. Assume that there exists a hyperplane H of Fq
n such that H ∩ D = ∅. By Corol-

lary A.1.10, H = Ker ⟨c, •⟩ for some c ∈ Fq
n.

Remark. This is not the Riesz representation theorem! Indeed, the linear space are not
real or complex but on the finite field Fq. Although the result is similar, the proof differ in
particular because ξ may be equal to 2 (see Lemma A.1.8 and Proposition A.1.6).
Now consider a d-line Lx(d) for some x ∈ Fq

n and d ∈ D. Since ⟨c, d⟩ ≠ 0, we have that
∀u, v ∈ Lx(d) u ̸= v ⇒ ⟨c, u⟩ ≠ ⟨c, v⟩

Indeed, if u, v ∈ Lx(d) with u ̸= v, then we can write u = v + λ d with λ ̸= 0. Hence,
⟨c, u⟩ = ⟨c, v⟩ + λ ⟨c, d⟩ and since λ ̸= 0 and ⟨c, d⟩ ̸= 0, we must9 have that ⟨c, u⟩ ̸= ⟨c, v⟩.
Define for every λ ∈ Fq and every c ∈ Fq

n,
Ic(λ) := {x ∈ Fq

n : ⟨c, x⟩ = λ}
and let us consider, for a fixed c ∈ Fq

n, the q-partition of Fq
n given by {Ic(λ) : λ ∈ Fq}.

Observe that for every d ∈ D, a d-line has exactly one point in each10 Ic(λ). Hence, any
linear combination of the columns of A(D) has the same sum on each Ic(λ). So A(D) has
not full column rank.
Remark. This is the same argument that we used in 1.2.2.

Now, if A(D) has not full column rank, then, by Corollary A.1.15, there exists a non
zero function S : Fq

n → K such that S sums to zero on every d-line for d ∈ D (that is, if
one sees S as a row matrix, SA(D) = 0). Our goal is to find some vector c ∈ Fq

n such that
⟨c, d⟩ ≠ 0 for every d ∈ D. To do so, let us divide the elements of Fq

n into three types:
9Observe that we use here the fact that Fq

n is an integral domain. . . This would not be true on any ring!
10This is because the map from Fq to Fq defined by λ 7→ ⟨c, x⟩ + λ ⟨c, d⟩ is injective.
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• the set S2 of x (called type 2 elements) for which S sums to zero on every x-line:

S2 =
{
x ∈ Fq

n \ {0} : ∀c ∈ Fq
r ∑

λ∈Fq

S(c+ λx) = 0
}

• the set S3 of x (called type 3 elements) such that S is constant on every x-line:

S3 = {x ∈ Fq
n : ∀c ∈ Fq

r ∀λ ∈ Fq S(c+ λx) = S(c)}

• the set S1 of every others (called type 1 elements):

S1 = Fq
n \ (S2 ∪ S3)

First, we show that if S2 ∩S3 ̸= ∅ then S = 0. Indeed, consider x ∈ S2 ∩S3 and observe
that for every c ∈ Fq

n,
0 = ∑

λ∈Fq

S(c+ λx) = qS(c)

so S(c) = 0 since ξ does not divide q. Moreover, observe that S3 is a linear subspace of Fq
n.

Indeed, S3 ⊆ Fq
n, 0 ∈ S3 and if x, y ∈ S3, λ ∈ Fq, then for every c ∈ Fq

n and every µ ∈ Fq,
S (c+ µ (λx+ y)) = S(c+ µλx+ µ y)

= S(c+ µλx) (since y ∈ S3)
= S(c) (since x ∈ S3)

Hence, S3 is a linear subspace of Fq
n. Finally, observe that what we just did is true for

every function S : Fq
n → K such that SA(D) = 0.

Observe that Corollary A.1.15 does not explicitly gives a function S nor that it says how
many such functions exists. For our proof, we would like that S1 = ∅. The idea is, starting
from any function S provided by Corollary A.1.15 (that is, such that SA(D) = 0), we can
define a new function S′ satisfying S′ A(D) = 0 and such that S′

1 = ∅. More precisely, we
will now describe an algorithm to make every element of type 1 becoming an element of
type 3. Let us define, S(0) = S and for every i ∈ N, if S(i)

1 (the set of elements of type 1
of the function S(i)) is non empty then pick xi ∈ S(i)

1 and define S(i+1) by
∀y ∈ Fq

n S(i+1)(y) = ∑
λ∈Fq

S(i)(y + λxi)

otherwise, let S(i+1) = S(i). The idea is to take an element of type 1 for S(i) and to make
it becoming of type 3 by taking the “average” over each xi-line.
Remark. Of course, this procedure depends on the choice of xi. However, the only thing
that matters is that it ends with a function S(i0) satisfying S(i0)

1 = ∅. This is shown by
the following Claim.

Claim 1.6.5. There exists i0 ∈ N such that

• Fq
n = S(i0)

2 ∪ S(i0)
3

• S(i0) ̸= 0

• S(i0)
3 is a hyperplane
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Proof. First, notice that for every i ∈ N, if xi exists (which means S(i)
1 ̸= ∅), then xn ∈

S(i+1)
3. Indeed, let c ∈ Fq

n, λ ∈ Fq and observe that
S(i+1)(c+ λxi) = ∑

µ∈Fq

S(i)(c+ λxi + µxi) = ∑
µ∈Fq

S(i)(c+ µxi) = S(i+1)(c)

Second, if y ∈ S(i)
2 then y ∈ S(i+1)

2. Indeed, if S(i+1) = S(i) there is nothing to do and
if not, let c ∈ Fq

n, ∑
λ∈Fq

S(i+1)(c+ λ y) = ∑
λ∈Fq

∑
µ∈Fq

S(i)(c+ λ y + µxi)

= ∑
µ∈Fq

∑
λ∈Fq

S(i)(c+ µxi + λ y) (Fq is finite)

= ∑
µ∈Fq

0 (y has type 2)∑
λ∈Fq

S(i+1)(c+ λ y) = 0

Finally, if y ∈ S(i)
3 then y ∈ S(i+1)

3. Indeed, if S(i+1) = S(i) there is nothing to do and
if not, let c ∈ Fq

n and λ ∈ Fq,
S(i+1)(c+ λ y) = ∑

µ∈Fq

S(i)(c+ λ y + µxi)

= ∑
µ∈Fq

S(i)(c+ µxi) (since y ∈ S(i)
3)

= S(i+1)(c)
Hence, our procedure can only make the number of type 1 elements decrease. Since there is
a finite number of such elements, this procedure terminates. Let i0 be the smallest integer
such that S(i0) = S(i0+1). Notice that this i0 may depends on the choice we made for the
xi’s.

Let us show that if S ̸= 0 then S(i0) ̸= 0. Assume for the sake of contradiction that it
is not the case, then i0 ≥ 1 and we have that

∀c ∈ Fq
n ∑

λ∈Fq

S(i0−1)(c+ λxi0−1) = 0

Then, every xi0−1-line sums to zero for S(i0−1) which means that xi0−1 ∈ S(i0−1)
2 which is

a contradiction since S(i0−1)
2 ∩ S(i0−1)

1 = ∅.
Let us now show that S(i0)

3 is a hyperplane. Consider x ∈ S(i0)
2. As x ̸= 0, it suffices

to prove that Fq
n = S(i0)

3 ⊕ Fqx (see Def 0.0.25). First, observe that S(i0)
3 ∩ S(i0)

2 = ∅
since S(i0) ̸= 0. Second, we show that Fq

n = S(i0)
3 + Fqx. Consider y ∈ Fq

n. If y ∈ Fqx
or if y ∈ S(i0)

3 then there is nothing to do. If not, take c ∈ Fq
n such that S(i0)(c) ̸= 0 and

define
P = {c+ a x+ b y : a, b ∈ Fq}

The affine space P has dimension 2 because y /∈ Fqx and x ̸= 0. Moreover, S(i0) is not zero
on the plane P . So, according to Corollary 1.6.3, there exists a non trivial line of this plane
on which S(i0) does not sum to zero. Let c′ + Fq (a x+ b y) be such a line. It must be that
a x+ b y ∈ S(i0)

3 as we have S(i0)
1 = ∅. Observe that b ̸= 0 since otherwise we would have

a x ∈ S(i0)
3 and because it is a linear subspace, x ∈ S(i0)

3 (since a ̸= 0) which is not the
case.
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Hence, y ∈ −a
b
x+ S(i0)

3

Finally, observe that the hyperplane S(i0)
3 does not contain any element of D because

D ⊆ S(0)
2 and the procedure cannot make element of type 2 becoming of type 3. This

concludes the proof of Lemma 1.6.4.

1.7 The case of FqG

In this Section, we conclude the proof of Theorem 1.3.6 by dealing with the special case of Γk

being a finite field of cardinality not a prime number. We already know by Theorem 1.4.1
that G is q-colorable if and only if Fq

G is q-colorable. We will prove that, as for Zk
G,

there exists an edge-clique certificate in Fq
G if and only if G is not q-colorable. However

this time, such an edge-clique certificate will not translate nicely into a Nullstellensatz
certificate. Indeed, we would need to allow exponents in Fq for our polynomials and so
to define other addition and multiplication laws on polynomials. In such context, we do
not know if Hilbert’s Nullstellensatz theorem holds in general. Although this would be an
interesting question to investigate, in particular if one wants to come up with a simpler
proof for Theorem 1.3.6, the study of Fq

G remains relevant since opposite to Zk
G with

k not prime, the absence of an edge-clique certificate implies that Fq
G is q-colorable (see

Prop 1.4.5).

Theorem 1.7.1. Let q = pℓ where p is a prime number and ℓ ≥ 1 is an integer. Let G be
a graph and K a field of characteristic ξ ̸= p. We have that G is not q-colorable if and only
if its power graph Fq

G has an edge-clique certificate in K.

Proof. We will show that, opposite to graphs in general, if Fq
G is not q-colorable, then it

has an edge-clique certificate. Let G be a connected graph with at least one edge. The
integer n always denotes the number of vertices of G. Let us consider the set

D = {1u − 1v : uv ∈ E(G)}
and the matrix A(D) to be the matrix of Fq

V versus the edge-cliques of Fq
G. This is exactly

the matrix of the points of Fq
n versus the d-lines, with d ∈ D.

First, if Fq
G has an edge-clique certificate, then A(D) and so Mq

(
Fq

G
)

has full column
rank. Hence, we know by Proposition 1.2.2 that Fq

G is not q-colorable. So G cannot be
q-colorable by Lemma 1.4.3.

Conversely, let us assume that Fq
G has no edge-clique certificate. Consider the matrix

A(D) which does not have full column rank since we assume that Fq
G has no edge-clique

certificate. So, by Lemma 1.6.4, there exists a hyperplane H of Fq
n such that H ∩ D = ∅.

By Corollary A.1.10, there exists c ∈ Fq
n such that H = Ker ⟨c, •⟩. For every uv ∈ E(G),

since u− v ∈ D, we must have that ⟨c, u− v⟩ ≠ 0. So c is a proper coloring of G.

This concludes the proof of Theorem 1.3.6 in the case of Γk being Fq. Since the case
Γk = Zk has been done in Section 1.5, we have proved the Theorem 1.3.6.
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This proof can be quite surprising as we didn’t explicitly build the coloring c. However,
this proof is constructive! Indeed, the proof of Proposition A.1.6 is constructive (We can
build a basis of Fq

n that is orthogonal for ⟨•, •⟩.) as the one of Lemma A.1.8 (provided a basis
of Fq

n). Moreover, the proof of Lemma A.1.14 is also constructive and we used an algorithm
to make every type 1 element becoming element of type 3 in the proof of Lemma 1.6.4.
Hence, one just has to compute a basis of Si0 3 (like in the proof of Proposition A.1.6) in
order to find a vector c such that Si0 3 = Ker ⟨c, •⟩. Obviously, this would end in a terrible
algorithm to compute a proper coloring of a graph. In particular, although determining
kernels can be done in polynomial time, the matrices at stake here (S and A(D)) have a
size which is exponential in n.

Corollary 1.7.2. If the graph Fq
G has an edge-clique certificate with weights in a field

of characteristic not p, then it has an edge-clique certificate with weights in any field of
characteristic not p.

Proof. Let us assume Fq
G has an edge-clique certificate with weights in a field K1 of char-

acteristic ξ1 with ξ1 ̸= p. By theorem 1.7.1, this implies G is not q-colorable. Hence, for
any field K2 of characteristic ξ2 ̸= p, there exists an edge-clique certificate for Fq

G in K2 by
theorem 1.7.1.

Remark 1.7.3. Changing the field may give completely different certificates! This means the
vertices and edge-cliques involved may not be the same. Actually, there is no edge-clique
certificate in R for 3K4 on the subgraph composed of the vertices of support less than 3
whereas there is one in F2. We know this thanks to our program (see E.1).

1.8 Some properties of power graphs

In this section, we present some properties of power graphs. We show that surprisingly,
there exists no graph G such that χ

(
2G
)

= 3. Since it is difficult to have a good intuition
on these objects, we study small examples (mainly powers of 2). We prove some results on
the properties that are transferred from G to Γk

G.

1.8.1 Basic properties

Proposition 1.8.1. If G is connected and non empty, then Γk
G has exactly k connected

components.

Proof. LetG be a connected and non empty graph. Consider the linear form ϕ : Γk
V → Γk

defined by

∀(x1, . . . , xn) ∈ Γk
V ϕ(xi, . . . , xn) =

n∑
i=1
xi

Observe that ϕ is constant on a connected component of Γk
G. Moreover, since G is non

empty, ϕ is surjective so Γk
G has at least k connected components.
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Moreover, since G is connected, for any λ ∈ Γk, any pair of vertices in ϕ−1(λ) can be
connected with a path in Γk

G.
This last point may not be that obvious. First, consider u, v ∈ V (G). These vertices are

naturally mapped into Γk
G (one just has to send u to 1u as in the proof of Lemma 1.3.2.

Since G is connected, there exists a path from u to v in G. Let us consider a minimal path
in term of distance so that there is no loop. We consider the edges involved following the
path and starting from u. Namely, we have the edges

u0u1, . . . , uk−1uk ∈ E(G) with u0 = u and uk = v

Define for all i ∈ J 0 ; k − 1 K, ei = 1ui+1 − 1ui and observe that

1v = 1u +
k−1∑
i=0

ei

Since ei ∈ E
(
Γk

G
)

for every i ∈ J 0 ; k − 1 K, this proves that there is a path from 1u to
1v in Γk

G. Actually, this path naturally translates to a path between λ1u and λ1v in the
connected component ϕ−1(λ) whatever is λ.
Remark. This path is nothing but the original path with a translation.
Now, to conclude the proof, let us consider two vertices x and y of the same connected
component of Γk

G, say, ϕ−1(λ). Let us see x and y as column vectors of size n and let i be
the first11 index where x and y differ. Since their sum is the same (equal to λ), there must
exists an index j > i such that xj ̸= yj . Since i and j are connected in G, and thanks to
what we just did, we can “transfer weight”. More precisely, there exists a path in Γk

G from
x to x′ such that x and x′ are the same up to index j − 1 and such that x′ and y are the
same from index j to the end. By induction, there exists a path from x to y in Γk

G.

Let us see a simple example. One of the most trivial we can do is 2K3 . It is represented
on Figure 1.9. This graph has indeed two connected components and, which may be a bit
surprising, each of these components is a K4.

[
0 0 0

]

[
0 1 1

]

[
1 1 0

] [
1 0 1

]

[
1 1 1

]
[
1 0 0

][
0 0 1

]

[
0 1 0

]

Figure 1.9: The graph Z2
△

11Up to down or down to up, it does not matter. . .
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Remark. When one study the power graphs of the form 2G, it is convenient to think of the
vertices of 2G as sets of elements of V with the law “+” being the symmetric difference. In
such context, it may be convenient to call the symmetric difference “union modulo 2”.

Actually, the chromatic number of a graph of the form 2G cannot be 3.

Theorem 1.8.2. For any graph G, either 2G is bipartite or χ
(
2G
)

≥ 4.

To prove this theorem, we study the case of 2C where C is an odd cycle. Indeed, a graph
is bipartite if and only if it has no odd cycle. Our goal is to find a subgraph of 2C which is
not 3-colorable.

Let us define C by

• V (C) = {x0, . . . , x2n}

• For every i, j ∈ J 0 ; 2n K, xixj ∈ E(C) if and only if i = j+1 [2]n+1 or j = i+1 [2]n+1.

In what follows, all the indices are taken modulo 2n + 1 and the “+” operation is the
symmetric difference12. Let us define

• C0 = ({xi})i∈J 0 ; 2n K

• ∀k ∈ J 1 ; n K Ck =
(
Ck−1(i)∆{xi−k, xi+k}

)
i∈J 0 ; 2n K

We then define Gn by

• V (Gn) = {Ck(i) : k ∈ J 0 ; n K i ∈ J 0 ; 2n K}

• For every u, v ∈ V (Gn), uv ∈ E(Gn) if and only if

∃i ∈ J 0 ; 2n K u∆v = {xi, xi+1}

Remark.

• Two vertices are connected in Gn if and only if their symmetric difference is a set of
two elements whose indices are consecutive modulo 2n+ 1.

• Cn(0) = · · · = Cn(2n)

Example 1.8.3. We have that G1 = K4 and, for n = 2, G2 is the famous Grötzsch graph.
Drawings of G2 and G3 can be found on Figure 1.10.

12This is due to the modulo 2. We have that
[
1 1

]
+
[
1 0

]
=
[
0 1

]
and similarly, {x, y}∆{y} = {x}.
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Proposition 1.8.4. For every n ≥ 1, χ(Gn) = 4.

Proof. The Figure 1.10 may be helpful to understand the following proof. First, we will
prove that χ(Gn) ≤ 4. To do so, we will build a 4-coloring of Gn. Let us start by choosing
a 3-coloring ρ of the external odd cycle {x0}, . . . , {x2n}. Let us extend ρ this way:

∀k ∈ J 1 ; n− 1 K ∀i ∈ J 0 ; 2n K ρ
(
Ck(i)

)
= ρ

(
Ck−1(i)

)
and chose an arbitrary new color for the last vertex. We now check that ρ is a proper
4-coloring of Gn.

• First, the external cycle is properly colored by definition.

• The last vertex (Cn(0) = · · · = Cn(2n)) is the only one in its color class hence any
edge involving this vertex is properly colored.

• The remaining edges are always between two consecutive levels (between a vertex of
Ck and a vertex of Ck+1). By construction, those vertices are well colored.

Let us now show that χ(Gn) > 3. Assume for the sake of contradiction that there
exists a proper 3-coloring c of G. Observe that for every color, there exists a vertex of
the external cycle with this color whose neighborhood has every other colors. This is
because an odd cycle is not 2-colorable. Indeed, the negation of this sentence would allow
us to remove one color on the external cycle which cannot be done. Hence, the subgraph
induced by C1(0), . . . , C1(2n) has every colors. Observe now that the subgraph induced by
C1(0), C2(0), C1(1), C2(1), . . . , C1(2n), C2(2n) is an even cycle. Moreover, there is a vertex
of each color on C1(0), . . . , C1(2n) so, between two distinct colors (say 0 and 1) on level 1,
there is an odd number of vertices on this cycle so there must exists a vertex with color 2 in
between. Hence, the level 2 (C2(0), . . . , C2(2n)) has every colors. By induction, it follows
that the level n− 1 has every colors. Since the last vertex is connected to every vertices of
level n− 1, we need an extra fourth color.

Example 1.8.5. Proper 4-colorings for G2 and G3 can be found on Figure 1.10.

Lemma 1.8.6. For any n ≥ 1, the graph 2C2n+1 contains Gn as an induced subgraph.

Proof. Consider an odd cycle C2n+1 = x0, . . . , x2n. All the indices are taken modulo 2n+1.
Again, we use the set representation for vertices of 2C2n+1 as it is more convenient for
writing the proof. First, C2n+1 ⊆ 2C2n+1 by Lemma 1.3.2. For any i ∈ J 0 ; 2n K, the vertex
{xi−1, xi, xi+1} belongs to 2C2n+1 and is connected by an edge to {xi−1} and to {xi+1}
(because xi−1, xi and xi, xi+1 are edges of C2n+1). Define

C0 = ({xi})i∈J 0 ; 2n K

and ∀k ∈ J 1 ; n K Ck =
(
Ck−1(i)∆{xi−k, xi+k}

)
i∈J 0 ; 2n K

By construction, we have that
∀k ∈ J 0 ; n K ∀i ∈ J 0 ; 2n K Ck(i) ∈ V

(
2C2n+1

)



1.8. SOME PROPERTIES OF POWER GRAPHS 65

0

1

2

3 4

012

123

234 340

401

01234

(a) A 4-coloring of the Grötzsch graph

1

2

3

4

5 6

7

123

234

345

456 567

671

712

12345

23456

34567 45671

56712

67123

71234

1234567

(b) A 4-coloring of G3

Figure 1.10: Proper 4-colorings of G2 and G3

Observe that
∀k ∈ J 0 ; n K ∀i ∈ J 0 ; 2n K Ck(i) = Ck(i+ 1)∆{xi−k, xi+1+k}

∀k ∈ J 1 ; n K ∀i ∈ J 0 ; 2n K Ck(i) = Ck−1(i+ 1)∆{xi−k, xi+1+k}∆{xi−k, xi+k}
= Ck−1(i+ 1)∆{xi+k, xi+1+k}

hence ∀k ∈ J 1 ; n K ∀i ∈ J 0 ; 2n K Ck(i)Ck−1(i+ 1) ∈ E
(
2C2n+1

)
which concludes the proof that Gn is an induced subgraph of 2C2n+1 .

We can now make a proof of Theorem 1.8.2. Observe that 2G is bipartite if and only if
G is bipartite by Theorem 1.7.1. Now, if G is not bipartite then it has an odd cycle and
so 2G contains Gn as an induced subgraph for some n ≥ 1 by Lemma 1.8.6. Finally, such
subgraph has a chromatic number equals to 4 by Prop 1.8.4.

The result of Theorem 1.8.2 may be surprising if the reader wrongly remember Theo-
rem 1.4.1 as “G and Fq

G have the same chromatic number”. As we have seen in the case
of K3 and 2K3 (see Figure 1.5b), this is not true. Which is true however is that Fq

G is
q colorable if and only if G is q-colorable. In other words, Fq

G is pertinent only for the
q-coloring problem on G, not any other coloring problem.

A natural question though is “what other properties remains true when we go from G
to one of its power graphs?”. If one wants to investigate these issues, there is a lot to do.
We just scratched the surface.
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1.8.2 Odd girth

Intuitively, for a non bipartite graph G, its shortest non trivial odd cycle is the smallest
certificate of its non 2-colorability. We know by Theorem 1.7.1 that 2G is bipartite if and
only if G is bipartite. It is then natural to ask whether 2G has, in case G is not bipartite, a
shorter odd cycle. We will prove it is not the case. In other word, the odd girth is preserved.

Definition 1.8.7. For any graph G we define the odd girth of G as the length of the
shortest odd cycle included in G. More formally,

og(G) = inf
k∈N∗

{2k + 1: C2k+1 ⊆ G}

Remark. We have that og(G) = +∞ if and only if G is bipartite.

Proposition 1.8.8. For any graph G, og(G) = og(2G).

Proof. First, since G ⊆ 2G by Lemma 1.3.2, we have that og(2G) ≤ og(G). If og(G) = +∞,
then G is bipartite hence 2G is bipartite by Theorem 1.4.1 so og(2G) = +∞. We now assume
+∞ > og(G) so og(G) ≥ 3. Let us define p = (og(G) − 1)/2 and assume for the sake of
contradiction that 2G has a cycle of length 2ℓ+ 1 with ℓ < p. Without loss of generality, we
assume that this cycle goes through 0 (one just has to translate the cycle). So, there exists
e1, . . . , e2ℓ+1 ∈ E(G) such that this cycle is of the form

0, e1, e1 + e2, . . . ,
2ℓ∑

i=1
ei

with
2ℓ+1∑
i=1

ei = 0. Now, in the sum
2ℓ+1∑
i=1

ei, there may be repeating terms. Define I to be the
set of terms that appear an odd number of time in this sum. More formally,

I := {ei : i ∈ J 1 ; 2ℓ+ 1 K |{j ∈ J 1 ; 2ℓ+ 1 K ej = ei}| ≡ 1 [2]}
Observe that I is of odd size since we started from an odd cycle. Indeed, if |I| is even

then the ei’s in I contributes to an even number of terms in
2ℓ+1∑
i=1

ei and the ei’s not in I, to
another even number of terms which contradicts the fact that this sum has an odd number
of terms. Let us rewrite the distinct elements of I as e1, . . . , ek. For every i ∈ J 1 ; k K,

there exists uiui+1 ∈ E(G) such that ei = ui +ui+1. Let e′
1 = e1. Since

k∑
i=1
ei = 0 and since

the ei’s are pairwise distinct, there exists j ∈ J 1 ; k K \ {1} such that ej = uj + u2. Define
e′

2 = ej and iterate this algorithm until you meet u1 that is, until e′
k0 = uk0−1 + u1. We

have that
k0∑

i=1
e′

i = 0.

• If k0 is odd, we have an odd cycle of G of size k0 < og(G) which is a contradiction.

• Otherwise, we start again the algorithm with I ′ equals I \ {e′
1, . . . , e

′
k0}.

Since |I| is odd, at some point, we will have an odd cycle of G of size strictly less that its
odd girth which is a contradiction.
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Remark.

• This result is false in general for even cycles. Indeed, consider C6 = u0, . . . , u5 and
observe that 2C6 contains the cycle 0, e1, e1 +e2, e2 with e1 = u0 +u1 and e2 = u2 +u3.
Actually, for any G with at least two edges, 2G has a C4.

• This theorem does not hold for 3G. Indeed, there is always triangles in 3G (provided
G has at least one edge) even if G is bipartite or triangle free.

1.8.3 Graphs’ logarithms

If G and G′ are isomorphic (which we write G ≃ G′), then for any k ≥ 2, Γk
G ≃ Γk

G′ . The
proof is straightforward. In the following, we prove the converse which is far from being
obvious.

Theorem 1.8.9. Let G and G′ be two graphs and k ≥ 2. If Γk
G ≃ Γk

G′ then G ≃ G′.

Proof. Assume that Γk
G ≃ Γk

G′ . By definition, there exists a graph isomorphism
f : Γk

V → Γk
V ′

for Γk
G to Γk

G′ which implies in particular that k|V | = k|V ′| and so that |V | = |V ′|. Let
ϵ1 be the vector

[
1 0 · · · 0

]
∈ Γk

|V |. We fix an ordering of the vertices of G and of the
vertices of G′. Then, ϵ1 can be seen as 1v1 (a vertex of Γk

G) or 1v′1 (a vertex of Γk
G′).

First, we explain why we can assume without loss of generality that f(ϵ1) = ϵ1. Indeed, for
every c ∈ Γk

|V |, if we define fc to be f + c, then fc is a graph morphism from Γk
G to Γk

G′

as for every xy ∈ E
(
Γk

G
)
,

(fc(x), fc(y)) = (f(x), f(y)) + (c, c)
which is an edge of Γk

G′ as (f(x), f(y)) ∈ E
(
Γk

G′
)
. Moreover, fc is a bijection and

fc
−1 = f−1(•−c) is a graph morphism as a composed function of graph morphisms. Hence,

up to considering f ′ = f − f(ϵ1) + ϵ1, we can assume that f(ϵ1) = ϵ1.
Since f is a graph isomorphism, it preserves the distances so the neighborhood of ϵ1 in

Γk
G is sent to the neighborhood of f(ϵ1) = ϵ1 in Γk

G′ . This means that
{1v : v ∈ V } = {1v′ : v′ ∈ V ′}

This allows us to define h : V ′ → V that associate to each v′ ∈ V ′ the unique v ∈ V such
that f(1v) = 1v′ .

We can now check that h is a graph isomorphism from G′ to G. Let u′v′ ∈ E(G′). Since
f−1 is a graph morphism,

f−1(1u′)f−1(1v′) = 1h(u′)1h(v′) ∈ E
(
Γk

G
)

so h(u′)h(v′) ∈ E(G). Moreover, since f|N(ϵ1) is a bijection, h is also a bijection. Using the
fact that f is a graph morphism, one can check that h−1 is also a graph morphism.

def:graph_morphism
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1.8.4 Colorings of power graphs

We proved in Lemma 1.4.3 that any q-coloring of G can be extended to a q-coloring of Fq
G.

Recall that this is false in general for Γk
G (see Proposition 1.4.5). The question whether

Fq
G can have other q-colorings is natural. Namely, does Fq

G have q-colorings that are not
linear extensions of colorings of G? Stated this way, this answer is trivial since Fq

G has
(at least) q connected components. We could just chose two different q-colorings for G
and extend the first one on one connected component and the second one on the others.
Moreover, if χ is a q-coloring of Fq

G, χ + λ is a proper q-coloring of Fq
G for any λ ∈ Fq.

Hence, the interesting question is: given a q-colorable connected graph G, does there exist
a proper q-coloring of one connected component of Fq

G (say the component of the vertices
whose sum is zero) that is not an affine extension of a q-coloring of G?

We will see in this section that the answer is “no” for q = 2 or q = 3 but “yes” if q is
any other prime number. When q is a non trivial power of a prime number, the question is
open.

Notation. We denote by C0
(
Fq

G
)

the component of Fq
G composed by the vertices that

sum to zero. More formally,

C0 :=
{
v ∈ Fq

V (G) :
n∑

i=1
vi = 0

}
Theorem 1.8.10. If G is a connected graph, then any 3-coloring of C0

(
3G
)

is an affine
extension of a 3-coloring of G.

Let us prove this theorem. Let G be a connected 3-colorable graph and χ be a 3-coloring
of C0

(
3G
)
. First of all, observe that without loss of generality, we can assume that χ(0) = 0.

Indeed, if it is not the case, define χ′ = χ− χ(0) and show it is linear so that χ is affine.

Notation. For e = uv ∈ E(G), we abuse notations and denote by e the vector 1u − 1v for
convenience.

Claim 1.8.11. ∀v ∈ C0
(
3G
)

∀e, e′ ∈ E(G) χ(v) + χ(v + e− e′) + χ(v + e′ − e) = 0

Proof. This is a simple check on the 4 proper colorings of the induced graph composed by
the vertices v, v+e, v−e, v+e′, v−e′, v+e+e′, v+e−e′, v+e′ −e, v−e−e′. A drawing
of this subgraph can be found on Figure 1.11. Basically, every row and every column forms
a triangle.
Finding a proper 3-coloring of this subgraph is nothing but solving some kind of “sudoku
game”. Without loss of generality, χ(v) = 0 and we have only two possibilities left (see
Figure 1.11).
In both cases, the equality χ(v) + χ(v + e− e′) + χ(v + e′ − e) = 0 is satisfied.
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v v + e v − e

v + e′ v + e+ e′ v + e′ − e

v − e′ v + e− e′ v − e− e′

0 1 2

1 2 0

2 0 1

0 1 2

2 0 1

1 2 0

Figure 1.11: Two kind of 3-colorings for a subgraph of 3G

Now, take e, e′ ∈ E(G) and observe that since χ sums to zero on every edge-clique, we
have that {

χ(e) + χ(e+ e′) + χ(e− e′) = 0
χ(e′) + χ(e′ + e) + χ(e′ − e) = 0

hence χ(e+ e′) = χ(e) + χ(e′) + χ(e− e′) + χ(e′ − e) = χ(e) + χ(e′)
because χ(0) + χ(0 + e− e′) + χ(0 − e+ e′) = 0
by Claim 1.8.11 with v = 0.

Claim 1.8.12. For any k ∈ N, for any e1, . . . , ek ∈ E(G),

χ

(
k∑

i=1
ei

)
=

k∑
i=1
χ(ei)
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Proof. We do an induction on k. For k ∈ {0, 1, 2} the result is true by what we have done
above. Consider k ≥ 3 and assume the result to be true for any k′ < k. Let e1, . . . , ek ∈
E(G). We have that

χ

(
k∑

i=2
ei

)
+ χ

(
k∑

i=1
ei

)
+ χ

(
e1 +

k∑
i=1
ei

)
= 0

because this is a sum on and edge-clique (directed by e1). The same goes for an edge-clique
directed by e2 so

χ

(
e1 +

k∑
i=3
ei

)
+ χ

(
k∑

i=1
ei

)
+ χ

(
e2 +

k∑
i=1
ei

)
= 0

hence χ

(
k∑

i=1
ei

)
= χ

(
k∑

i=2
ei

)
+ χ

(
e1 +

k∑
i=3
ei

)
+ χ

(
e1 +

k∑
i=1
ei

)
+ χ

(
e2 +

k∑
i=1
ei

)

but since χ

(
e1 +

k∑
i=1
ei

)
+ χ

(
e2 +

k∑
i=1
ei

)
= −χ

(
k∑

i=3
ei

)

by Claim 1.8.11 with v =
k∑

i=3
ei, e = e1 and e′ = e2, we have that

χ

(
k∑

i=1
ei

)
= χ

(
k∑

i=2
ei

)
+ χ

(
e1 +

k∑
i=3
ei

)
− χ

(
k∑

i=3
ei

)
By the induction hypothesis,

• χ

(
e1 +

k∑
i=3
ei

)
= χ(e1) +

k∑
i=3
χ(ei)

• χ

(
k∑

i=3
ei

)
=

k∑
i=3
χ(ei)

• χ

(
k∑

i=2
ei

)
=

k∑
i=2
χ(ei)

so χ

(
k∑

i=1
ei

)
=

k∑
i=1
χ(ei)

Hence, χ is additive on {1u − 1v : uv ∈ E(G)}.

We will now prove that χ is additive on Γk
V (G) by using this last property on paths

of G. Let u, v ∈ C0
(
3G
)
. Since G is connected, C0

(
3G
)

is a connected component (see
Proposition 1.8.1) so there exists e1, . . . , es ∈ E(G) and e1

′, . . . , et
′ ∈ E(G) such that

u =
s∑

i=1
ei and v =

t∑
i=1
ei

′
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Hence, χ(u+ v) = χ

(
s∑

i=1
ei +

t∑
i=1
ei

′
)

=
s∑

i=1
χ(ei) +

t∑
i=1
χ(ei

′) by Claim 1.8.12

= χ

(
s∑

i=1
ei

)
+ χ

(
t∑

i=1
ei

′
)

again by Claim 1.8.12

= χ(u) + χ(v)

Then, we have that ∀u, v ∈ C0
(
3G
)

χ(u+ v) = χ(u) + χ(v)
Moreover, since for every e ∈ E(G), {0, e,−e} is an edge-clique and because χ(0) = 0, we
have that χ(−e) = −χ(e). Hence,

∀v ∈ C0
(
3G
)

χ(−v) = −χ(v)
which concludes the proof of Theorem 1.8.10.

Remark. The same result is true for the 2-colorings of 2G. A short proof is provided below.

Proposition 1.8.13. If G is a connected graph, then any 2-coloring of C0
(
2G
)

is an affine
extension of a 2-coloring of G.

Proof. Let χ be a 2-coloring of C0
(
2G
)
. Without loss of generality, we assume that

χ(0) = 0. Observe that χ sums to 1 on every edge-clique that is
∀v ∈ 2V ∀e ∈ E(G) χ(v) + χ(v + e) = 1

In particular, since χ(0) = 0,
∀e ∈ E(G) χ(e) = 1

For e, e′ ∈ E(G), χ(e) +χ(e+ e′) = 1 so χ(e+ e′) = 0 = 1 + 1 = χ(e) +χ(e′). By induction,
for e1, . . . , ek ∈ E(G),

χ

(
k∑

i=1
ei

)
=
{

1 if k is odd
0 otherwise

so χ
(

k∑
i=1
ei

)
=

k∑
i=1
χ(ei).

Since G is connected, we show as in the proof of Theorem 1.8.10 that,
∀u, v ∈ C0

(
2G
)

χ(u+ v) = χ(u) + χ(v)
Since the ground field is F2, this suffices to prove the result.

Proposition 1.8.14. For any k ≥ 4, there exists G such that C0
(
Zk

G
)

has a proper
k-coloring which is not an affine extension of a proper k-coloring of G.

Proof. Take G = (V,E) any edge-critical k-chromatic graph. Consider a k-coloring c of
G and define χ = ⟨c, •⟩ the linear extension of c on Zk

G (see Definition 1.4.2). For any
i ∈ J 0 ; k − 1 K, define Si :=

{
a ∈ Zk

V : χ(a) = i
}

and let χ′ : Zk
V → Zk be defined by
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∀a ∈ Zk
V χ′(a) =



0 if a ∈ S0
1 if a ∈ S1
3 if a ∈ S2
2 if a ∈ S3
j if a ∈ Sj for any j ∈ J 4 ; k − 1 K

Observe that χ′ is a proper k-coloring of C0
(
Zk

G
)

since we just renamed the colors of
χ. Moreover, if χ′ is an affine extension of a proper coloring of G then χ′ is linear since
χ′(0) = 0. Consider now a, b ∈ C0

(
Zk

V
)

such that χ(a) = 1 and χ(b) = 3 which exists since
G is edge-critical and there is a copy of G inside C0

(
Zk

G
)
. We then have that χ′(a+b) = 4

but χ′(a) = 1 and χ′(b) = 2 so χ′ is not linear which concludes the proof.

Remark. The counter example we gave is a bit disappointing as it is still an affine extension
of a 4-coloring of G up to colors permutation. The question of the existence of other
k-colorings for Zk

V is open.

1.8.5 Structures of the cliques

When k is a power of a prime number, we have introduced two objects to study the k-
colorability problem: Zk

G and Fk
G. We know by Proposition 1.4.5 that (for a fixed G),

those graphs are not isomorphic in general. In particular, even though Fk
G has an edge-

clique certificate if and only if it is not k-colorable (see Theorem 1.7.1), this equivalence is
false in general for Zk

G. Indeed, by Proposition 1.4.5, the graph Z4
K4 is not 4-colorable but

it cannot have any edge-clique certificate as it would provide a Nullstellensatz13 certificate
for K4. However, we know by Proposition 1.5.6 that Zk

G has an edge-clique certificate
whenever G is not k-colorable (and, as we just said, this is a Nullstellensatz certificate). A
natural question is whether Zk

G has a clique-certificate when it is itself not k-colorable. In
this subsection, we prove this to be false in general. In order to establish this result, we
will consider the particular case of Γk

Kk (with Γk being either Zk or Fk when defined) and
explore the structure of the k-cliques of Γk

Kk .

Theorem 1.8.15. Let k ≥ 2 be an integer and Γk be either Zk or, when defined, Fk. The
k-cliques of Γk

Kk are either

• edge-cliques

• or homothetic translations of the canonical copy of Kk. More precisely, if ϵi is the ith
vector of the canonical basis of Γk

Kk , then there exists λ ∈ Γk and t ∈ Γk
k such that

{a1, . . . , ak} + t = λ {ϵ1, . . . , ϵk}

Proof. Let a1, . . . , ak be a subgraph of Γk
Kk that is a k-clique. Define for all i, j ∈ J 1 ; k K

with i < j, xij := aj − ai. First, let us show that if three points among a1, . . . , ak belongs
13This would be a Nullstellensatz certificate in the quotient described in Section 1.5.2. By Proposi-

tion 1.5.5, this contradicts the fact that K4 is 4-coloriable.
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to the same edge-clique, then a1, . . . , ak is an edge-clique. Assume that three points, say
a1, a2 and a3, belong to the same edge-clique. Observe that in general, for any graph G, two
vertices of Γk

G are connected by an edge if and only if they belong to the same connected
component Cλ

(
Γk

G
)

for λ ∈ Γk and if they differ on exactly two coordinates. Without
loss of generality, we assume that x12 = µ (1v1 − 1v2) for some µ ∈ Γk \ {0}. Hence,
x23 = λ (1v1 − 1v2) for some λ ∈ Γk \ {0} and a1, a2, a3 are equal on coordinates 3, . . . , k.
Since a1a4 ∈ E

(
Γk

Kk

)
, there are exactly two coordinates i and j (say i < j) where a1 and

a4 differ. We will show that x12 and x14 are collinear. Assume for the sake of contradiction
that {i, j} ≠ {1, 2}.

• Assume that i, j ≥ 3. Since a1 and a2 are equal on coordinates 3, . . . , k, a4 and a2
differ on coordinates i and j. Hence, a1, a2 and a4 belong to the same edge-clique
directed by the edge x14. However, two distinct edge-clique cannot share more than
one point so it must be that x12 and x14 are collinear.

• Assume that i ∈ {1, 2} and j ≥ 3. Take i = 1 for instance (the case i = 2 is
analogous). Observe that a4 and a2 differ on position j. If a4 and a2 differ on 1, then
a4 and a2 are identical on coordinate 2 so a1 and a2 are equal on coordinate 2 which is
a contradiction. Hence, a4 and a2 differ on coordinates 2 and j. For the same reason,
a4 and a3 differ on coordinates 2 and j. However, this implies that a4, a3 and a2 are
all equal on coordinate 1 which is again a contradiction.

Hence, a4 and a1 differ on coordinates 1 and 2 so x12 and x14 are collinear. This implies
that a1, a2, a3 and a4 belong to the same edge-clique. Since we can do the same reasoning
for a5, . . . , ak, in the end, we have that a1, . . . , ak is an edge-clique.

We now assume that a1, . . . , ak is a clique that is not an edge-clique. By what we just
did, this implies that x1,2, . . . , x1,k are pairwise not collinear. Then, for every i ∈ J 1 ; k K,
x1,i, . . . , xi−1,i, xi,i+1, . . . , xi,k are pairwise not collinear. Then, every direction can be found
in {xij : i, j ∈ J 1 ; k K with i < j}. We write

xij = λij

(
1uij − 1vij

)
with λij ∈ Γk and uij , vij ∈ V (Kk). First, observe that the λij must be the same, up to
a −1 factor. To prove this, simply consider the triangles, as we did previously. The three
edges implied in a triangle must have (up to some sign change), the same λ.

Denote by ϵi the ith vector of the canonical basis of Γk
k. Define t by

t = −a1 + λϵ1

We will show that {a1, . . . , ak} = λ {ϵ1, . . . , ϵk} − t
Of course, a1 + t = λϵ1. Since we have every directions among the xij , there exists i and j
such that

a1 + xij = λϵ2

so t+ a1 − ai + aj = λϵ2
Suppose by contradiction that 1,i and j are all different (that is, |{1, i, j}| = 3). Then,

in particular, ai ̸= a1 so we can write
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t+ a1 − (t+ ai) = a1 − ai = λ (1u − 1v)
for some u and v. Since t+ a1 − ai + aj = λϵ2, it must be that t+ aj has its support within
{2, u, v}. Moreover, t+ a1 and t+ aj are connected by an edge so |{1, 2, u, v}| = 2. Hence,

• either u = 1 and v = 2 but in that case, t+ aj = −λϵ1 + 2λϵ2 and t+ ai = λϵ2 which
leads to a1, ai and aj to be on the same edge-clique: contradiction

• or u = 2 and v = 1 but then t+aj = λϵ1 = t+a1 which leads to aj = a1: contradiction.

Then, either j or i is equal to 1. If i = 1, then we have t+a1 −a1 +aj = λϵ1 so t+aj = λϵ2.
However, if j = 1, then t+ a1 + a1 − ai = λϵ2 and we cannot conclude that t+ ai = λϵ2. It
is actually false. Consider the following example which represents a clique in 3K3 :

1
2
0


2

1
0



1
1
1



This is not an edge-clique and, indeed, every possible direction is used. If we take
t = ϵ1 − t

[
1 2 0

]
, this leads us to

1
0
0


1

2
1


2

2
0



which is problematic. The point is, we cannot send any vertex to λϵ1: we must choose it
wisely. For instance, in our example, if we use t = t

[
2 2 0

]
, the translation by t gives:
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0
1
0


0

0
1


1

0
0



Let us say that, once we have fixed a λ (namely, we chose between λ and −λ), a vertex
ai among a1, . . . , ak is nice if and only if ai satisfies that for every j ∈ J 1 ; k K \ {i},

aj − ai = λ
(
1uij − 1vij

)
with uij < vij .

Fact 1.8.16. There exists a vertex among a1, . . . , ak which is nice.

Proof. It suffices to notice that, since every directions exists in {aj − ai : 1 ≤ i < j ≤ k},{
λ
(
1ui − 1uj

)
: 1 ≤ i < j ≤ k

}
= {aj − ai : 1 ≤ i < j ≤ k}

Hence, renaming the ai’s is the same as choosing a permutation of the vertices of the ground
graph.

Without loss of generality, we may assume that a1 is nice. We define t = −a1 + λϵ1.
Recall that we proved that there exists i, j ∈ J 1 ; k K such that

t+ a1 − ai + aj = λϵ2
and that, either i = 1 or j = 1. Then, since a1 is nice, it must be that i = 1 and so
t+ aj = λϵ2. Indeed, if j = 1, then t+ a1 + a1 − ai = λϵ2 so

ai − a1 = λϵ2 − λϵ1
which contradicts the fact that a1 is nice.

We can now iterate the construction: there exists an edge as − ar with s > r such that
t+ a1 − ar + as = λϵ3

For the same reason as previously, either r = 1 or s = 1. The fact that a1 is nice allow us
to discard the case s = 1.

In the end, we have that
{a1, . . . , ak} = λ {ϵ1, . . . , ϵk} − t

In case {a1, . . . , ak} is not an edge-clique, it is not entirely true to speak of homothetic
translation. Indeed, we may not be able to divide by λ if Γk is not a field. For instance,
consider the following clique in Z4

K4 :
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
1
2
0
0




3
0
0
0




3
2
2
0




3
2
0
2



We can check that this is not an edge-clique (and that every directions are involved).
We fix λ = 2 and observe that vertex t

[
1 2 0 0

]
is nice. So, we may translate using

t = t
[
1 2 0 0

]
which leads to


2
0
0
0




0
2
0
0




0
0
2
0




0
0
0
2



In such case, we cannot divide by two as it is not invertible in Z4. One may wonder
if we can make some clever trick like multiplying by λ before taking the translation t.
However, precisely because λ may not be invertible, it fails. For instance, multiplying by 2
the previous example leads to


2
0
0
0




2
0
0
0




2
0
0
0




2
0
0
0



which is obviously not a clique since all the vertices “collapsed” to t
[
2 0 0 0

]
. This

example can be generalized to every Zk
Kk whenever k is not a power of a prime number.
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Corollary 1.8.17. Let k ≥ 2 and Γk be either Zk or, when defined, Fk. There is no
k + 1-clique in Γk

Kk .

Proof. Suppose a1, . . . , ak+1 is a clique of size k + 1 of Γk
Kk . First, let us show that it

does not contain an edge-clique. By contradiction assume without loss of generality that
a1, . . . , ak is an edge-clique directed by 1v1 − 1v2 (hence the weight transfer is done on the
two first coordinate). Let i, j be the coordinate on which a1 and ak+1 disagree (i < j).

• If i = 1 and j = 2 then ak+1 belongs to the edge-clique a1, . . . , ak which is a contra-
diction as an edge-clique has cardinality k.

• If i, j ≥ 3 then ak+1 and a2 have 4 different coordinates so they cannot be connected
by an edge which is a contradiction.

• If i ∈ {1, 2} (say i = 1) and j ≥ 3 (say j = 3) then, since ak+1 and a1 are the same on
coordinate 2, ak+1 and a2 must differ on coordinates 2 and 3 or on coordinates 1 and 2.
The latter is not possible since ak+1 would then belong to the edge-clique a1, . . . , ak.
Then, either a2 and ak+1 differ on coordinate 1 and we have a contradiction, or a3
and ak+1 differ on coordinates 1, 2 and 3 which is, again, a contradiction.

So, a clique of size k + 1 in Γk
Kk cannot contain an edge-clique. By Theorem 1.8.15,

the cliques of size k in a1, . . . , ak+1 are homothetic translations of the canonical k-clique of
Γk

Kk . One just has to check that there is no k+ 1-clique in the distance one neighborhood
of this canonical k-clique. Indeed, assume there is one vertex v connected by an edge to[
1 0k−1

]
. . .
[
0k−1 1

]
, then v and

[
1 0k−1

]
must be equal on k − 2 coordinates say for

instance the last ones. But in such case, v cannot be connected by an edge to
[
0k−1 1

]
.

Remark. We implicitly assumed k ≥ 3 in the proof. However, it is easy to check that the
result is true for 2K2 .

1.9 Generalizations

In this section, we explore an extension of the coloring problem using graph homomorphisms.
If there is a graph homomorphism from G to H, we denote it by G f→ H or even G → H.

Proposition 1.9.1. A graph G can be colored with k colors if and only if G → Kk.

Proof. Assume that G f→ Kk. Notice that any proper coloring for Kk gives a proper
coloring for G. Indeed, for u ∈ V (G), one just has to take the color of f(u). This proves
that χ(G) ≤ k.

Now, if we can color G with k colors, then we can map G to Kk using the coloring we
have on G. This gives a graph homomorphism.

def:graph_morphism
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Remark. More generally, we have shown that if G → H then χ(G) ≤ χ(H).
Hence, the existence of a graph homomorphism between two graphs can be seen as a more
general problem than graph coloring.

1.9.1 Cayley graphs

Since power graphs are useful to study chromatic numbers, one can be tempted to consider
a power graph of some power graph. The following results show that doing it does not
necessarily lead to a more interesting structure if one wants to study chromatic numbers.

In order to have a very general result, we study the case of ΓG where Γ is a finite Abelian
group. We will use the additive notation.

Definition 1.9.2 (Cayley graph). Let Γ be an Abelian group and ∆ be a symmetric14

subset of Γ. We define the graph H = C (Γ,∆) by
V (H) = Γ and E(H) =

{
(u, v) ∈ Γ2 : u− v ∈ ∆

}
Definition 1.9.3. Let G be a connected graph and H = C (Γ,∆). We define the graph
HG by

• V
(
HG

)
= ΓV (G)

• xy ∈ E
(
HG

)
if and only if there exists uv ∈ E(G) such that

i) ∀w ∈ V (G) − {u, v} x(w) = y(w)
ii) x(u) − y(u) ∈ ∆
iii) x(u) − y(u) = y(v) − x(v)

Remark. This definition is very similar to Definition 1.3.1. Actually, the graph Γk
G is a

particular case of C (Γ,∆)G where Γ = Γk and ∆ = Γk \ {0}.

Proposition 1.9.4. Let H = C (Γ,∆) be a Cayley graph with Γ a finite Abelian group.
For any graph G,

HHG → HG

Proof. Let us first recall the famous result on the structure of finite type Abelian groups.

Theorem 1.9.5 (Kronecker). Let Gr be a finite type Abelian group. There exists a unique
n ∈ N and a unique sequence (up to ordering) a1, . . . , ar such that ai+1 | ai for every i ∈
J 1 ; r − 1 K and that we have the group isomorphism

Gr ≃ Za1 × · · · × Zar × Zn

14∀x ∈ Γ x ∈ ∆ ⇒ −x ∈ ∆

def:subgroup
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Let us prove the result in the particular case where Γ is a group of the form
Γ = Za1 × · · · × Zar

and ∆ is any symmetric set of Za1 × · · · × Zar . Once it is done, we will use Kronecker’s
theorem in order to have the general result. Define

f :

 ΓΓV → ΓV

ϕ 7→
∑

x∈ΓV

ϕ(x)x

where we use the usual scalar multiplication that makes ΓV a module on Γ.
Consider ϕψ ∈ E

(
HHG

)
. By definition, there exists xy ∈ E(HG) and uv ∈ E(G) such

that

• ∀z ∈ V
(
HG

)
\ {x, y} ϕ(z) = ψ(z)

• ψ(x) − ϕ(x) ∈ ∆

• ψ(x) − ϕ(x) = ϕ(y) − ψ(y)

• ∀w ∈ V \ {u, v} x(w) = y(w)

• x(u) − y(u) ∈ ∆

• x(u) − y(u) = y(v) − x(v)

Let us show that f(ϕ)f(ψ) ∈ E(HG).

f(ψ) − f(ϕ) =
∑

γ∈ΓV

(ψ(γ) − ϕ(γ))γ

= (ψ(x) − ϕ(x))x+ (ψ(y) − ϕ(y))y
= (ψ(x) − ϕ(x))(x− y)

Hence, ∀w ∈ V \ {u, v} f(ψ)(w) = f(ϕ)(w)
Moreover, f(ψ)(u) − f(ϕ)(u) = (ψ(x) − ϕ(x))(x(u) − y(u))

= (ψ(x) − ϕ(x))(y(v) − x(v))
= f(ϕ)(v) − f(ψ)(v)

which concludes the proof that f(ϕ)f(ψ) ∈ E
(
HG

)
.

Consider now an arbitrary finite Abelian group Γ. We know by Kronecker’s theorem
(see 1.9.5) that there exists a group isomorphism

g : Γ → Za1 × · · · × Zar

with15 ai+1 | ai for every i ∈ J 1 ; r − 1 K. In order to prove the general statement, it
suffices to show that for any graph G and any symmetric set ∆ of Γ, there exists a graph
homomorphism

15This is useful to have the unicity in Theorem 1.9.5. We do not actually need it in our proof.

def:modul


80 CHAPTER 1. POWER GRAPHS

g̃ : C (Γ,∆)G → C (Za1 × · · · × Zar , g̃(∆))G

In the following, we will replace C (Γ,∆) by Γ to avoid the use of heavy notation. The
set ∆, as we will see, plays no role in the proof.

Define g̃ :
{

ΓV → (Za1 × · · · × Zar )V

x 7→ g ◦ x
Let us show that g̃ is a graph isomorphism. Take xy ∈ E

(
ΓG
)
. By definition, there exists

uv ∈ E(G) such that

• ∀w ∈ V \ {u, v} x(w) = y(w)

• x(u) − y(u) ∈ ∆

• x(u) − y(u) = y(v) − x(v)

Observe that for every w ∈ V \ {u, v},
g̃(x)(w) = g(x(w)) = g(y(w)) = g̃(y)(w)

Moreover, g̃(x)(u) − g̃(y)(u) = g(x(u)) − g(y(u))
= g(x(u) − y(u)) since g is a morphism
= g(y(v) − x(v))
= g(y(v)) − g(x(v)) since g is a morphism

g̃(x)(u) − g̃(y)(u) = g̃(y)(v) − g̃(x)(v)
Hence, g̃(x)g̃(y) is an edge of (Za1 × · · · × Zar )G.

Conversely, observe that g̃−1 = g−1 ◦ x. Since g−1 is a group morphism, it follows by
what we just did that that g̃−1 is also a graph homomorphism.

Since what we did is true for every graph G, we have the following graph homomor-
phisms:

ΓΓG → (Za1 × · · · × Zar )ΓG

→ (Za1 × · · · × Zar )(Za1 ×···×Zar )G

by Prop A.1.2
→ (Za1 × · · · × Zar )G

→ ΓG

Corollary 1.9.6. For any finite Abelian group and any graph G,

Γ···
ΓG

→ ΓG

Remark. Recall that we have chosen to omit the symmetric set ∆ in our notations. The
symmetric set involved in the Cayley graph of the right is the image of ∆ by the group
isomorphism.

Corollary 1.9.7. Let q be a non trivial power of a prime number and G be a graph.

Fq
···

Fq
G

→ Fq
G
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Recall that we always have χ(G) ≤ χ(Fq
G) because G ⊆ Fq

G. However, χ
(
Fq

Fq
G
)

≤

χ
(
Fq

G
)

by Lemma 1.4.3. So, the chromatic number cannot increase by taking iterated
exponents.

1.9.2 From k-coloring to H-coloring

In this section, we propose a definition of HG for any edge-labelled graph H and any graph
G. This very general definition unifies those of Zk

G and Fq
G. As we will see, the notation

HG is not entirely complete as we need an edge-labelling on H in order to define HG. The
idea is to have a similar tool as Zk

G or Fq
G for the H-coloring problem that is, is there a

graph homomorphism that sends G to H. This is indeed a generalization of the k-coloring
problem as a graph G is k-colorable if and only if there is a graph homomorphism from G
to Kk (see Proposition 1.9.1).

Definition 1.9.8. Let H be a directed simple graph, cH an edge-labelling of H and G a
graph (directed or not). We define the directed simple graph HG by:

• V
(
HG

)
= V (H)V (G)

• (c, c′) ∈ E
(
HG

)
if and only if there exists (u, v) ∈ E(G) such that

– ∀w ∈ V (G) \ {u, v} c′(w) = c(w)
– (c′(u), c(u)) ∈ E(H) and (c(v), c′(v)) ∈ E(H)
– cH(c′(u), c(u)) = cH(c(v), c′(v))

Example.

0

1

2

(a) Some graph H

[
0 0

]
[
1 2

]

[
2 1

]

[
1 0

]
[
0 1

]

[
2 2

]

[
2 0

]
[
0 2

]

[
1 1

]

(b) The graph H•−•

Here is how we can define Zk
G as a special case of this general definition:
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Definition 1.9.9 (Zk
G). Let k ≥ 1 be an integer. We see Kk as the simple complete

undirected graph on Zk and cKk
to be the map:

cKk
:
{
E(Kk) → Zk

(x, y) 7→ x− y

Proposition 1.9.10. For every graph G, Kk
G = Zk

G.

Here is how we can define Fq
G as a special case of this general definition:

Definition 1.9.11 (Fq
G). Let q = pℓ with ℓ ∈ N∗ and p a prime number. We define Lq by

• V (Lq) = Fq

• (x, y) ∈ E(Lq) ⇔ x ̸= y

• cLq :
{
E(Lq) → Fq

(x, y) 7→ x− y

Proposition 1.9.12. For every graph G, Lq
G = Fq

G.

The attentive reader may observe that in Definitions 1.9.9 and 1.9.11 are very similar.
Actually, whenever q is a power of a prime number, the graphs Hq and Lq are isomorphic.
One may think that Hq

G and Lq
G are also isomorphic for any graph G but we know

by Proposition 1.4.5 that this is false. This may seem contradictory with the proof of
Proposition 1.9.4 as we used, at some point, a morphism between Γ and Za1 × · · ·Zar to
conclude that ΓΓG → (Za1 × · · ·Zar )(Za1 ×···Zar )G

. It is not. Indeed, in that proof, g was
a group isomorphism and not only a graph homomorphism. In general, there is no group
isomorphism between Zq and Fq (except when q is prime).

1.10 Some edge-clique certificates
In this section, we will prove some general results and then show how they can be used in or-
der to compute edge-clique certificates in practice. First, we introduce a new concept called
precolorings which are dual objects of the edge-clique certificates. Basically, a precoloring
is a weight function on Γk

V such that every edge-clique has a global weight of zero. We
will show that there exists a non trivial precoloring if and only if there exists no edge-clique
certificate. Moreover, we will prove that we can easily construct a basis of the linear space
of precolorings which behaves well with the inner product.

Definition 1.10.1 (precoloring). Let G = (V,E) be a graph and K be a field of character-
istic ξ such that ξ ̸ | k. A function f : Γk

V → K is a precoloring of Γk
G in K if and only

if
∀x ∈ Γk

V ∀uv ∈ E
∑

λ∈Γk

f (x+ λ (1u − 1v)) = 0

In other words, f sums to zero on every edge-clique.
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Remark. Observe that if ξ | k, then the function constant to 1 sums to zero on every edge-
cliques. Actually, in such case, any constant function would be a precoloring. We forbid
that ξ | k as otherwise the next Proposition would be pointless.

We will now see how precolorings are related to edge-clique certificates. The short
proof of the next Proposition is enlightening. Recall that non trivial precoloring means a
precoloring that is not the null function.

Proposition 1.10.2. Let G = (V,E) be a graph and K a field of characteristic ξ such
that ξ ̸ | k. There exists a non trivial precoloring of Γk

G in K if and only if Γk
G has no

edge-clique certificate.

Proof. Let M be the incidence matrix of the edge-cliques of Γk
G versus the vertices of Γk

G.
Observe that KerK

(tM)
is the linear space of the precolorings. Moreover, by Fact A.1.13,

KerK
(tM)

= ImK(M)⊥

so KerK = {0} ⇔ ImKM = Kk|V |

because ⟨•, •⟩ is non degenerate.
The fact that Γk

G has no edge-clique certificate is equivalent to ImKM ̸= Kk|V | so
KerK

(tM)
̸= {0} hence the result.

1.10.1 A basis for the precolorings in F2

In this section, we restrict ourselves to the case of 3G with K = F2.
Recall that a precoloring in F2 is a map f : F3

V → F2 such that f sums to zero on
every edge-clique. The space of precolorings is the kernel of M , the incidence matrix of the
edge-cliques versus the vertices of 3G. In what follows, we will provide a useful basis of the
precolorings.

Consider G = (V,E) to be a graph with n ≥ 1 vertices. Let x1, . . . , xk be all the different
directions of F3

V . We have that k = (3n − 1)/2. Define

f0
xi

:
{

F3
V → F2
u 7→ ⟨u, xi⟩

and f1
xi

:
{

F3
V → F2
u 7→ ⟨u, xi⟩ + 1

where · : F3 → F2 is the cast function from F3 to F2 defined by

∀i ∈ F3 i =
{

0 if i = 0
1 otherwise

Notation. We denote by 1 the function constant to 1.

Theorem 1.10.3. The family (1, f0
x1 , f

1
x1 , . . . , f

0
xk
, f1

xk
) is a basis of the linear space of the

functions from F3
V to F2.

Proof. We will start by showing that these vectors are linearly independent. To do so, we
use the inner product. Then, we prove that the family is a basis by cardinality.

First, in order to compute the inner product of any pair of vectors in that family, we
introduce the notion of z-orbit. For z ∈ F3

V \ {0}, we call z-orbit any set {u, u+ z, u− z}
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where u ∈ F3
V . For every u, v ∈ F3

V , we write u ∼z v whenever u and v belongs to the
same z-orbit. More formally,

u ∼z v ⇔ ∃λ ∈ F3 u = v + λz

Observe that for any z ∈ F3
V , ∼z is an equivalence relation. Hence, the set F3

V can be
partitioned with z-orbits each of which having 3 elements. We can now compute the inner
product between any two vectors of the family using a relevant z-orbit.

Fact 1.10.4.

i) ⟨1,1⟩ = 1

ii) ∀i ∈ J 1 ; k K ∀j ∈ {0, 1}
〈
1, f j

xi

〉
= 0

iii) ∀i, j ∈ J 1 ; k K i ̸= j ⇒
〈
f0

xi
, f0

xj

〉
=
〈
f1

xi
, f0

xj

〉
=
〈
f0

xi
, f1

xj

〉
=
〈
f1

xi
, f1

xj

〉
= 0

iv) ∀i ∈ J 1 ; k K
〈
f0

xi
, f1

xi

〉
= 1

Proof. The first point is true because F3
V has an odd number of elements since V ̸= ∅.

For the second one, consider z ∈ F3
V \ {xi}⊥. It is possible because ⟨•, •⟩ is non degenerate

and xi ̸= 0 so {xi}⊥ ̸= F3
V . On any z-orbit, both f0

xi
and f1

xi
sums to zero. The point

iii) can be proved using the same trick. Consider z ⊥ xi and z ̸⊥ xj . Such a z exists by
Proposition A.1.12. On the z-orbits, f0

xi
and f1

xi
are constant whereas f0

xj
and f1

xj
sums to

zero. Let us now detail the last point. Consider z ⊥ xi and z ̸= 0. For every u ∈ F3
V ,

f0
xi

(u)f1
xi

(u) + f0
xi

(u+ z)f1
xi

(u+ z) + f0
xi

(u− z)f1
xi

(u− z) = 3f0
xi

(u)f1
xi

(u)
Moreover,

• if ⟨xi, u⟩ = 0, then f0
xi

(u)f1
xi

(u) = 0

• if ⟨xi, u⟩ = 1, then f0
xi

(u)f1
xi

(u) = 1

• if ⟨xi, u⟩ = 2, then f0
xi

(u)f1
xi

(u) = 0

Since there is an odd number (3n−1) of elements u ∈ F3
V such that ⟨xi, u⟩ = 1, we have

that
〈
f0

xi
, f1

xi

〉
= 1.

Let us show that the vectors of (1, f0
x1 , f

1
x1 , . . . , f

0
xk
, f1

xk
) are linearly independent. Let

g := a · 1 +
k∑

i=1

(
a0

i · f0
xi

+ a1
i · f1

xi

)
and assume that g = 0. By Fact 1.10.4, we have that

• 0 = ⟨1, g⟩ = a

• ∀i ∈ J 1 ; k K 0 =
〈
f0

xi
, g
〉

= a1
xi

and 0 =
〈
f1

xi
, g
〉

= a0
xi
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Hence, the vectors of the family (1, f0
x1 , f

1
x1 , . . . , f

0
xk
, f1

xk
) are linearly independent. Since

there are 1 + 2 × k = 3n vectors, it is a basis of the linear space of the total functions from
F3

V to F2.

Corollary 1.10.5. Consider all the colorings of G among x1, . . . , xk say, without loss of
generality, x1, . . . , xr. The family (f0

x1 , f
1
x1 , . . . , f

0
xr
, f1

xr
) is a basis of the precolorings.

Proof. Let f be a precoloring. Observe that ⟨1, f⟩ = 0 since f sums to zero on every edge-
clique so in particular, f sums to zero on any z-orbits where z = 1u − 1v with uv ∈ E.
Consider i ∈ J 1 ; k K such that xi is not a proper coloring of G. There exists uv ∈ E such
that xi(u) = xi(v). On any edge-clique directed by uv, f0

xi
and f1

xi
are constant. Hence,〈

f0
xi
, f
〉

= 0 =
〈
f1

xi
, f
〉
. However, if xi is a proper coloring of G then f0

xi
and f1

xi
are

precolorings.

1.10.2 Some tools for finding edge-clique certificates

In this section, we present some results useful to study edge-clique certificates on concrete
examples. First, we prove two general results that we will use to create some widgets. These
widgets can be seen as elementary pieces to build an edge-clique certificate.

In the following, M designates the incidence matrix of F3
V versus the edge-cliques of 3G.

Each column of M has 3n − 3 zeros and 3 ones. We denote by GC3(G) the set of all total
functions from V to F3 that are proper 3-colorings of G.

Theorem 1.10.6. Let x, y be two distinct vertices of G. Define t := −1x − 1y ∈ F3
V and

Xt := 11x + 11y + 1t ∈ F2
F3

V . We have that
Xt ∈ ImF2 M ⇔ ∀c ∈ GC3(G) c(x) ̸= c(y)

Proof. Let us start by proving that
∃c ∈ GC3(G) c(x) = c(y) ⇒ Xt /∈ ImF2 M

Take c ∈ GC3(G) such that c(x) = c(y). Up to permuting colors, we can assume that
c(x) = 1. Recall that ImF2 M =

(
KerF2

tM
)⊥ by Fact A.1.13. Moreover, KerF2

tM is the
space of all precolorings. Consider the precoloring

fc :
{

F3
V → F2
u 7→ ⟨c, u⟩

We have that ⟨fc, Xt⟩ = fc(1x) + fc(1y) + fc(−1x − 1y)

= ⟨c,1x⟩ + ⟨c,1y⟩ + ⟨c,−1x − 1y⟩

= c(x) + c(y) + −c(x) − c(y)

= 0 + c(x) + c(y)
⟨fc, Xt⟩ = 1

This implies, by Fact A.1.13, that Xt /∈
(
KerF2

tM
)⊥ hence Xt /∈ ImF2 M .
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We will now show that
∀x ∈ GC3(G) c(x) ̸= c(y) ⇒ Xt ∈ ImF2 M

By Corollary 1.10.5, there exists c1, . . . , cr ∈ GC3(G) such that (f0
c1 , f

1
c1 , . . . , f

0
cr
, f1

cr
) is a

basis of KerF2
tM .
∀i ∈ J 1 ; r K

〈
f0

ci
, Xt

〉
= ⟨ci,1x⟩ + ⟨ci,1y⟩ + ⟨ci,−1x − 1y⟩

• If ci(x) ̸= 0 and ci(y) ̸= 0, then ⟨ci,1x⟩ = 1 = ⟨ci,1y⟩ and ⟨ci,−1x − 1y⟩ =
−ci(x) − ci(y) = 0 since ci(x) ̸= ci(y).

• Otherwise, assume, without loss of generality, that ci(x) = 0 and ci(y) ̸= 0. We have
⟨ci,1x⟩ = 0, ⟨ci,1y⟩ = 1 and ⟨ci,−1x − 1y⟩ = 1.

In both case, the sum is zero. This proves that Xt ∈
(
KerF2

tM
)⊥ so Xt ∈ ImF2 M by

Fact A.1.13.
Remark. If KerF2

tM = {0} (which is the case if and only if the graph is not 3-colorable),
then ImF2 M = F2

F3
V so we still have that Xt ∈ ImF2 M .

Remark. In the particular case where xy ∈ E, the vector Xt is a column of M .

Proposition 1.10.7. Let x, y be two distinct vertices of G. For every u ∈ V , let Y x,y
u be

the characteristic vector of the set {1x − 1u,1y − 1u}. Namely,
Y x,y

u = 11x−1v + 11y−1u

We have that
∀c ∈ GC3(G) c(x) = c(y) ⇔ ∀u ∈ V Y x,y

u ∈ ImF2 M

Proof. Recall that, by Fact A.1.13, ImF2 M =
(
KerF2

tM
)⊥. By Corollary 1.10.5, there

exists c1, . . . , cr ∈ GC3(G) such that (f0
c1 , f

1
c1 , . . . , f

0
cr
, f1

cr
) is a basis of KerF2

tM . Observe
that for all c ∈ GC3(G),〈

f0
c , Y

x,y
u

〉
= ⟨c,1x − 1u⟩ + ⟨c,1y − 1u⟩ = c(x) − c(u) + c(y) − c(u)

Assume that for all c ∈ GC3(G), c(x) = c(y). Consider c ∈ GC3(G). Since c(x) = c(y),
it follows that c(x) − c(u) = c(y) − c(u) hence

〈
f0

ci
, Y x,y

u

〉
= 0. The same reasoning shows

that
〈
f1

ci
, Y x,y

u

〉
= 0. This proves that Y x,y

u ∈ ImF2 M .
Conversely, assume that Y x,y

u ∈ ImF2 M for every u ∈ V . Consider c ∈ GC3(G) and fix
u ∈ V . Since ImF2 M = KerF2

tM⊥, f0
c ⊥ Y x,y

u and f1
c ⊥ Y x,y

u . Hence,
c(x) − c(u) = c(y) − c(u) and c(x) − c(u) + 1 = c(y) − c(u) + 1

Assume for the sake of contradiction that c(x) ̸= c(y). Observe that c(x) − c(u) ̸= 0.
Indeed, since c(x) − c(u) = c(y) − c(u), this would imply that c(y) − c(u) = 0 so c(x) =
c(y). Suppose without loss of generality that c(x) − c(u) = 1. Then, c(y) − c(u) = 2 so
c(y) − c(u) + 1 = 0 and c(x) − c(u) + 1 = 1 which is a contradiction. In the end, we proved
that c(x) = c(y).
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1.10.3 Concrete examples of edge-clique certificates

In this section, we explain how to build edge-clique certificates for non 3-colorable graphs
called Moser spindles. A Moser spindle is a cycle of diamond closed by an edge. Examples
of such graphs are given on Figure 1.13.

Figure 1.13: Moser Spindle

In order to explicitly give an edge-clique certificate, we start by creating two widgets.
Consider a graph G with 3 vertices x, y and z. The pair x, y is dominated by z. This means
that G contains the edges xz and yz. We order the vertices lexicographically. For instance,
210 designates the vertex of 3G where x has weight 2, y has weight 1 and z has weight 0. In
order to have a graphical representation of the certificate, we will use the following drawing
conventions:

• For any vertex of 3G with exactly one vertex x weighted 2, one vertex y weighted 1
and every other weighted zero, we draw an arrow from x to y.

• For any vertex of 3G with exactly ℓ vertices weighted 1 (resp 2), every other weighted
zero, we draw a convex ℓ-polygon whose vertices are the vertices weighted 1 with a
plus inside (resp a minus).

• In the following, an edge clique will designate a weight function F3
V → F2 that is

0 everywhere except on three aligned vertices where it is 1. Hence, summing edge
cliques means summing those functions.

Let us sum two edge-cliques that contain 111 (so x, y and z all have weight 1):
{111, 210, 012} and {111, 120, 102}

The sum function is zero on 111 and 1 on the four other points (120, 102, 210, and 012).
With the drawing convention stated above, we can represent this sum function (called
widget) by Figure 1.14b.
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z

x y

(a) dominated pair

z

x y

(b) widget 1

Figure 1.14: Widget 1

Consider now an edge xy plus an isolated vertex z. We can build the following widget
thanks to the edge-clique

{111, 201, 021}

z

x y

(a) edge

z

x y
+

(b) widget 2

Figure 1.15: Widget 2

Let us now give a way to create a last widget. Consider a diamond plus an isolated vertex
u as in Figure 1.16. Observe that every 3-coloring c of this diamond satisfies c(x) = c(t).
Hence, by Proposition 1.10.7, we can build the widget represented on Figure 1.15. However,
this proposition does not tell how to build such widget. In particular, we don’t know how
many edge-clique are involved and what is the minimal support.

x

y z

t

u

(a) diamond plus vertex

x

y z

t

u

(b) widget 3

Figure 1.16: Widget 3
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Here is how we can build this widget. Consider the 8 following edge-cliques. We have
written the directions on the right.

{22002, 10002, 01002} xy
{22002, 21102, 20202} yz

{11202, 02202, 20202} xy
{11202, 01002, 21102} xz

{02022, 01002, 00012} yt
{02022, 01122, 00222} yz

{01212, 01122, 01002} zt
{01212, 00222, 02202} yt

After summing those 8 edge-clique in F2, we are left with 10002 and 00012 which cor-
responds to the drawing on Figure 1.16.

Let us see how we can apply this result. In what follows, we will produce an edge-
clique certificate for the Moser spindle graph with two diamonds. The proof can easily be
generalized for any Moser spindle. In order to make it simpler, let us add a new isolated
vertex that we call u. This is represented on Figure 1.17.

u

Figure 1.17: Moser Spindle

Let us sum two diamond widgets as described in Figure 1.18.
In order to conclude, one just has to use the “edge-widget” (see Figure 1.14b). In the

end, we have only one point in 3G with non zero coordinates: 1u,5,6. This is the center of
the edge-clique certificate.

Can we get rid of vertex u? Observe that removing u does not remove any edge-clique
since u is isolated. Hence, projecting the edge-clique certificate on F2

V \{u} gives an edge-
clique certificate for the initial graph.

Let us see how to build an edge-clique certificate for an odd wheel. For every triangle,
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0

1
2

5 6

3
4

u

+

0

1
2

5 6

3
4

u

=

0

1
2

5 6

3
4

u

Figure 1.18: Sum of two diamond widgets

z

x y

z

x y

0

1
2

5 6

3
4

u

+

we use the widget 1. Summing those 5 widgets gives a cycle of double red arrows because
the arrows along the radius cancel mod 2 (see Figure 1.19).

f

a

b

c d

e

(a) The graph W5

f

a

b

c d

e

(b) Widget 1

f

a

b

c d

e

(c) Sum

Figure 1.19: Building an edge-clique certificate for a wheel

Finally, observe that for any edge uv, the (1u − 1v)-line containing the zero of F3
V

creates a double red arrow between u and v and put weight 1 on zero. Hence, we can cancel
this cycle of double red arrows and retrieve weight 1 + 1 + 1 + 1 + 1 = 1 on zero which is
the center of our edge-clique certificate.
Remark. We used every edges of the odd wheel. It was expected since such graph is edge-
critical: removing any edge make it 3-colorable.



1.10. SOME EDGE-CLIQUE CERTIFICATES 91

1.10.4 Edge-clique certificates and homology

In this section, we discuss the link between coloring and homology. To do so, we need first
to associate a simplicial complex to every graph. This can be done thanks to the concept
of dominated pairs, dominated triples and more generally, dominated n-uples. Basically,
a dominated n-uple is a set of n vertices that are all linked to another one. Under some
hypothesis on the n-uples, we can prove lower bounds on the chromatic number. If this lower
bound is tight (χ(G) − 1), we say that the graph is not χ(G) − 1-colorable for homological
reasons. For 3-colorable graphs that are not 4-colorable for homological reasons, we proved
that there exists an edge-clique certificate of minimal degree. The converse is an open
question, as for the general problem of k-coloring.

Definition 1.10.8. Let G be a graph. For any integer n ∈ N, we define
Dn =

{
{x1, . . . , xn} ∈

(V
n

)
: ∃d ∈ V ∀i ∈ J 1 ; n K dxi ∈ E

}
In other words, Dn is the set of subsets of size n of vertices that have a common neighbour.
We call the elements of Dn dominated n-sets. When n = 3, we call it a dominated pair and
when n = 3, a dominated triple.

Example 1.10.9.

0 1

2

3

4

(a) The graph W4

D0 = {∅}
D1 = {{0}, {1}, {2}, {3}, {4}}
D2 = {{01}, {02}, {03}, {04}, {12}, {13}, {14}, {23}, {24}, {34}}
D3 = {{013}, {024}, {123}, {124}, {134}, {234}}
D4 = {{1234}}
D5 = ∅

Figure 1.20: The graph W4 and its dominated sets

Observe that in a dominated (n+ 1)-set, there are n+ 1 dominated n-sets.
Remark. The set {Dn : n ∈ N} is called the neighborhood complex of G.

For every n ≥ 1 such that Dn ̸= ∅ and Dn−1 ̸= ∅, let us define Mn to be the incidence
matrix of Dn−1 versus Dn.
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Example 1.10.10. Here are the matrices M2 and M3 for the graph W4 represented on
Figure 1.20a.

M2 =


01 02 03 04 12 13 14 23 24 34

0 1 1 1 1 0 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0 0
2 0 1 0 0 1 0 0 1 1 0
3 0 0 1 0 0 1 0 1 0 1
4 0 0 0 1 0 0 1 0 1 1


M3 =



013 024 123 124 134 234
01 1 0 0 0 0 0
02 0 1 0 0 0 0
03 1 0 0 0 0 0
04 0 1 0 0 0 0
12 0 0 1 1 0 0
13 1 0 1 0 1 0
14 0 0 0 1 1 0
23 0 0 1 0 0 1
24 0 1 0 1 0 1
34 0 0 0 0 1 1


Remark.

• We have that16 D0 = {∅}.

• If G has no isolated vertex, then D1 = V . In such a case, M1 is a row matrix of size
|V | that is full of 1’s.

In the following, we consider F2 for the ground field of every matrices. Hence, we simply
write ImM for ImF2 M and KerM for KerF2 M .

Proposition 1.10.11. For every n ≥ 2 such that Mn is defined, we have that
Mn−1 ×Mn = 0

Proof. Consider a row of Mn−1 and a column of Mn. Our goal is to prove that the inner
product (in F2) of this row and this column is zero. The row of Mn−1 is indexed by
a dominated (n − 2)-set {x1, . . . , xn−2}. If the dominated n-set that is the index of the
column of Mn we consider does not contain {x1, . . . , xn−2}, then the inner product is a sum
of zeros. Otherwise, let us denote by {x1, . . . , xn−2, xn−1, xn} the dominated n-set that is
the index of the column of Mn that we consider. We have that {x1, . . . , xn−2, xn−1} and
{x1, . . . , xn−2, xn} are dominated (n−1)-sets. Hence, in the sum defining the inner product,
there are exactly two 1’s.

Remark. We proved something a bit stronger: there are either zero 1’s or exactly two 1’s
in the sum defining the product of a row of Mn−1 by a column of Mn.
So we know that ImMn ⊆ KerMn−1. In the following, we are interested in the case where
this inclusion is an equality. For every n ≥ 1 such that Mn is defined, let Hn be the property

∀i ∈ J 1 ; n K ImMi = KerMi−1

16Except if V = ∅, then D0 = ∅.
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To illustrate this, let us give an interpretation of the properties H2 and H3.

1. The property H2 expresses the fact that the graph (D1, D2) is connected.

2. The property H3 expresses the fact that any cycle of dominated pairs can be obtained
by a sum (in F2) of dominated triples.

Indeed, KerM1 is the set of weight functions w from D1 to F2 that sums to zero i.e
so that ∑

v∈D1

w(v) = 0. Moreover, ImM2 is the linear space generated by the set of weight

functions w from D1 to F2 so that w is zero everywhere except on x and y so that xy
is a dominated pair. Observe that indeed, ImM2 ⊆ KerM1. If (D1, D2) is connected
then KerM1 ⊆ ImM2 and under the hypothesis that KerM1 ⊆ ImM2, then (D1, D2) is
connected.

The following result is not new. However, in order to generalize it, we wanted to find an
algebraic proof. Surprisingly, we found a proof that does not rely on the underlying graph.

Proposition 1.10.12. If H2 (and thus H1) holds for graph G, then χ(G) ≥ 3.

Proof. Let G be a connected graph such that properties H1 and H2 hold. First, observe
that implicitly, the fact that matrix M1 is defined tells us that D1 ̸= ∅. Hence, χ(G) ≥ 2.
Moreover, we can assume without loss of generality that G has no isolated vertex so that
D1 = V . Assume for the sake of contradiction that there exists a 2-coloring for G. Without
loss of generality, we can assume the colors to be the elements of F2

2 (0, 1) and (1, 0). Let
c : D1 → F2

2 be such a coloring. We can naturally extend c to a linear map from F2
n to

F2
2. To do so, we define Lc : F2

n → F2
2 to be the unique linear map such that

∀v ∈ V Lc (1v) = c(v)
Let us denote by C the matrix of Lc in the canonical basis (that is the basis of F2

n composed
by the vectors of the form 1v for every v ∈ V ). Since χ(G) ≥ 2, the rank of C must be at
least 2.
Observe that CM2 = 0. Indeed, given a dominated pair, its two vertices must have the
same color. So, ImM2 ⊆ KerC.
Thanks to the rank theorem, rk c = n− dim (Ker c)
However, the hypothesis H2 implies

rkM2 = dim (KerM1) = rkM1 − 1 = n− 1
Hence, rk c ≤ 1 which is absurd.

If the bound of Proposition 1.10.12 is tight, we say that G is not 2-colorable (i.e not
bipartite) for homological reasons.

One can wonder whether a non bipartite graph is always non bipartite for homological
reasons. The answer is “no” in general. Consider for instance the graph on Figure 1.21a. It
is non bipartite but the weight distribution represented on Figure 1.21b cannot be obtained
by a sum (in F2) of dominated pairs. However, this is a not relevant as the graph is not
connected: we used the part of the graph this is bipartite to argue that KerM1 ̸⊆ ImM2.
The answer is “yes” for connected non bipartite graph.
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(a) Some non bipartite graph

1

0 0
1

(b) Some weight function in KerM1 \ ImM2

Figure 1.21: Non connected graphs can be non bipartite not for homological reasons

Proposition 1.10.13. For every connected graph G, if G is not bipartite, then it is for
homological reasons.

Proof. First, observe that the square of an odd cycle is an odd cycle of the same length.
Our goal is to show that for every vertex v of V = D1, there exists a path in (D1, D2) that
connects v to an odd cycle. Since the graph is connected an non bipartite, we know that
there exists an odd cycle. Let C be a closest odd cycle for v in G.

• If v ∈ V (C), there is nothing to do.

• Otherwise, there exists a path of odd length (we count the vertices) that connects v
to a vertex c of C. The dominated pairs of this path is a path from v to c in (D1, D2).

Hence, (D1, D2) is connected so the property H2 is true for G.

Proposition 1.10.14. If H3 holds (and thus H2 and H1) for the graph G, then χ(G) ≥ 4.
Moreover, G has a Nullstellensatz certificate of degree 3.

Proof. Let G be a connected graph and let us assume that H1, H2 and H3 hold for G.
Thanks to Proposition 1.10.12 we know that χ(G) ≥ 3 so in particular, G has an odd cycle,
say v0, . . . , v2ℓ.

Our goal is to find an edge-clique certificate for 3G in F2. To do so, we will use the fact
that every cycle of dominated pairs is a sum of dominated triples (this is the hypothesis
H3). We will use the monomial notation from section 1.5 for the vertices of 3G. First,
recall that for every dominated pair xy, we have the widget of Figure 1.14. Consider now a
dominated triple xyz. Since such dominated triple contains three dominated pair, we can
build the widget represented on Figure 1.22.

x

y

z

Figure 1.22: Widget given by a dominated triple
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Now observe that the square of an odd cycle is a cycle of dominated pairs of same length.
Hence, thanks to the hypothesis H3, it is a sum of dominated triples. This gives us the
widget drawn on Figure 1.23a (we took a C5 for the example). For every dominated pair,
we use the dominated pair widget (Figure 1.14). In the end, we have the pattern drawn on
Figure 1.23b.

(a) Widget given by the square of a C5 (b) Remaining widget

Figure 1.23: Widget for a graph G with a C5 so that G satisfies H3

Observe that for every i ∈ J 0 ; 2ℓ K, the set {1, xixi+1
2, xi

2xi+1} is an edge-clique (we
consider the indices modulo 2ℓ). Hence, by summing all these edge-cliques along the cycle,
the only vertex with non zero weight is the vertex 1 (every vertices of the cycle cancel modulo
2 and there are an odd number of edge-cliques so, in the end, only vertex 1 remains). This
means there is an edge-clique certificate in 3G whose center is 1.

Moreover, all the monomials used in the proof are of degree 3. Hence, in the end, the
corresponding Nullstellensatz certificate has degree 3.

Notice that this proof relies on a particular structure within the graph that is the square
of an odd cycle. This is a problem because one cannot use the same technique if one wants to
show that H4(G) ⇒ χ(G) ≥ 5. Indeed, there is no standard certificate of non 3-colorability.
Unfortunately, we did not manage to find out an algebraic proof as for Proposition 1.10.14.

As for Proposition 1.10.12, we say that G is not 3-colorable for homological reasons
whenever H3(G) holds. However, contrary to what we proved in Proposition 1.10.13, there
exists graphs that not 3-colorable but this is not for homological reasons. One of the
simplest we can think about (we found it in [6]) is the so called Moser Spindle graph (see
Figure 1.13).
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1.11 From the Nullstellensatz to Fourier
Let us consider the ring

Ck,n = C[X1, . . . , Xn]〈
Xi

k − 1
〉

i∈J 1 ; n K
as defined in Section 1.5. Recall that for any graph G = (V,E), the polynomials defined for
every ij ∈ E by

Pij = Xi
k −Xj

k

Xi −Xj

have no common root in Uk
n if and only if G is not k-colorable. Let us assume that for

every x ∈ Uk
n, there exists an element of Ck,n, say ϕk,n(x), such that

∀y ∈ Uk
n ϕk,n(x)(y) =

{
1 if x = y
0 otherwise

We will see in Proposition 2.2.18 that it is indeed the case. Moreover, we will see in
Corollary 2.2.19 that the image of P ∈ Ck,n on Uk

n fully characterizes P . Thanks to those
results, we can make an elementary proof of the Nullstellensatz theorem in the specific case
we are interested in.

For any P ∈ Ck,n, define supP to be the set of elements of Uk
n on which P is not null.

More formally,
supP = {x ∈ Uk

n : P (x) ̸= 0}
Define P = ∑

ij∈E

∑
y∈sup Pij

ϕk,n(y)

and observe that P ∈ ⟨Pij⟩ij∈E . Indeed,

∀x ∈ Uk
n P (x) = ∑

ij∈E
Pij(x) ∑

y∈sup Pij

1
Pij(y)ϕk,n(y)(x)

so, by unicity (see Corollary 2.2.19),

P = ∑
ij∈E

Pij
∑

y∈sup Pij

1
Pij(y)ϕk,n(y)

which proves that P ∈ ⟨Pij⟩ij∈E . Moreover,

supP = ⋃
ij∈E

supPij = Uk
n \ GCk(G)

Indeed, for every x ∈ Uk
n, P (x) = ∑

ij∈E

∑
y∈sup Pij

ϕk,n(y)(x)

= ∑
ij∈E

∑
y∈sup Pij

δy(x)

= ∑
ij∈E

1sup Pij (x)

and as we have seen in 1.5, ⋂
ij∈E

(Uk
n \ supPij) = GCk(G)



1.11. FROM THE NULLSTELLENSATZ TO FOURIER 97

Now, we will prove that there exists a Nullstellensatz certificate in Ck,n for the Pij ’s if
and only if G is not k-colorable. We have that

GCk(G) = ∅ ⇔ supP = Uk
n

⇔ P ×
∑

x∈sup P

1
P (x)ϕk,n(x) = 1 (by unicity (2.2.19))

⇔ 1 ∈ ⟨Pij⟩ij∈E

For the last equivalence, if 1 ∈ ⟨Pij⟩ij∈E , then ⋃
ij∈E

supPij = Uk
n and so supP = Uk

n.

Actually we can even derive a Nullstellensatz certificate if we push the calculus a bit further.
Under the hypothesis that G is not k-colorable, we have that

1 = P ×
∑

x∈Uk
n

1
P (x)ϕk,n(x)

= ∑
ij∈E

Pij
∑

y∈sup Pij

1
Pij(y)ϕk,n(y) ×

∑
x∈Uk

n

1
P (x)ϕk,n(x)

= ∑
ij∈E

Pij ×
( ∑

y∈sup Pij

1
Pij(y)ϕk,n(y) ∑

x∈Uk
n

1
P (x)ϕk,n(x)

)

1 = ∑
ij∈E

Pij ×
( ∑

y∈sup Pij(y)

1
P (y)Pij(y)ϕk,n(y)

)
since ϕk,n(x) × ϕk,n(y) = δy(x)ϕk,n(x) by Proposition 2.2.18. Hence,

1 = ∑
ij∈E

Pij ×
( ∑

y∈sup Pij

1
Pij(y) |{ℓp ∈ E : Pℓm(y) ̸= 0}|

ϕk,n(y)
)

So, we have that ∑
ij∈E

PijQij = 1 with

Qij = ∑
y∈sup Pij

1
Pij(y) |{ℓp ∈ E : Pℓm(y) ̸= 0}|

ϕk,n(y)

Remark. Observe that {ℓp ∈ E : Pℓp(y) ̸= 0} is the set of edges that are not well colored
by y.

Remark. We did not use the algebraic expression of the Pij ’s nor did we used the good col-
orings! This is because what we have done is generic: it works for any system of polynomial
equation in Ck,n. It actually works in any field of characteristic zero and with kth roots of
unity.

One can wonder how we could effectively compute Qij . With the expression we just gave,
it suffices to know the decomposition of ϕk,n(y) on the basis M for every y ∈ Uk

n \GCk(G).
Let us emphasize here that there are two natural ways to represent an element of Ck,n. First,
we can give its coordinates on the basis M. For an element Q ∈ Ck,n, this corresponds to
the vector M∗(Q) defined by

M∗(Q) = [X∗(Q)]X∈M
where X∗(Q) is the coefficient of the monomial X in Q.

Remark. We implicitly assume the lexicographic order here.
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There is, however, another natural way to fully describe an element Q ∈ Ck,n. Indeed, we
know by Corollary 2.2.19 that an element of Ck,n is characterized by its image on Uk

n.
Hence, Q can be represented by the vector I(Q) defined by

I(Q) = [Q(x)]x∈Uk
n

Remark. Again, we do not specify the order of the rows here. In practice, the lexicographic
order of the exponents is useful.

Observe that ϕk,n(y) is easy to describe with the latter way but the values of the former,
that are given by M∗(ϕk,n(y)), are unclear. Let us see how we can compute this last vector.
Given an element Q ∈ Ck,n, we would like a way to go from I(Q) to M∗(Q). To do so, it is
natural to introduce a matrix whose rows are the vectors I(X) for X ∈ M. Let us define
F ′

k,n by
F ′

k,n = [I(X)(x)](X,x)∈M×Uk
n

Example. With k = n = 2, we have that

F ′
2,2 =


(1, 1) (1,−1) (−1, 1) (1, 1)

1 1 1 1 1
1 −1 1 −1 Y
1 1 −1 −1 X
1 −1 −1 1 XY


Remark. We used the lexicographic order on the exponent of the elements of U2

2. For
instance, (1, 1) < (1,−1) since (1, 1) = ((−1)0, (−1)0) and (1,−1) = ((−1)0, (−1)1). This is
the same for the rows, we use the fact that X = X1Y 0 and Y = X0Y 1 so X comes after Y .

Such matrices have nice properties. In particular, up to renormalization they are unitary.
This is why we prefer to define Fk,n by

Fk,n = 1√
k

n [I(X)(x)](X,x)∈M×Uk
n

This is why we will study how to use those matrices for graph coloring problems in the
next section.
Now M∗(ϕk,n(y)) is nothing but the transpose of the row of Fk,n that corresponds to y (up
to the renormalization coefficient

√
k

n). By linearity,
M∗(P ) = ∑

ij∈E

∑
y∈sup Pij

M∗(ϕk,n)(y)

So, G is not k-colorable if and only if supP = Uk
n.



Chapter 2

Fourier analysis on graphs

In this chapter, we present a new method to prove combinatorial results. This technique
relies on some kind of discrete Fourier transform and can be applied to a bunch of problems:
existence of a k-coloring, existence of a perfect matching, of a large enough stable set etc.
First, we illustrate how this proof method works in Section 2.1 by proving some simple and
already known results. Namely, we show the existence of a cycle factor in 4-regular graphs.
In a nutshell, the idea is to come up with an inner product of two vectors which is not
null if and only if a solution exists and then to argue that the inner product is indeed not
null. This can often be done in numerous ways, some being more clever than others which
makes this part of the proof quite challenging. Then, the beautiful idea is to change the
inner product using a Fourier matrix. Such matrix being unitary, the result of the inner
product is the same. However, this allows us to have a completely different viewpoint on the
problem since the vectors involved in the inner product are now the Fourier transform of the
original vectors. This proof sketch is completely new and in our opinion, quite promising
even though we do not have breakthrough results yet. Even so, we came up with a new
proof of the cycle + triangle conjecture (see [16], [30] and 2.3.1) thanks to this method. The
proof is very short once the reader has assimilated our theory. Surprisingly, some simple
results like Petersen’s theorem on the existence of a perfect matching in a bridgeless cubic
graph (see [29]) seem to be very difficult to prove even though our proof sketch can easily
be applied. Finally, our method is non constructive in the sense that it only proves that
objects (3-colorings, perfect matchings etc.) exist but one cannot build such objects with
to the Fourier proof.

2.1 Introductive problems

In this section, we will prove the existence of a cycle factor for some class of graphs. The
purpose is not the results themselves (they are already known and even quite easy to show)
but the proof sketch. Indeed, the proof method we invented, say the “Fourier method”,
can be applied to many combinatorial problems (existence of a perfect matching, of a cycle
factor, of a 3-coloring etc.). This section should help the reader to understand what is the

99
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scope of application for our Fourier method. We try to keep the examples as simple as
possible by deferring calculus in appendix.

Proposition 2.1.1. Every 4-regular bipartite graph has a cycle factor.

Figure 2.1: The complete bipartite graph K4,4 and a cycle factor in dotted purple

The usual proof is straightforward. Since every vertex of G has even degree, there exists
an Eulerian circuit for each connected component, hence an Eulerian orientation. Consider
all edges that are oriented from one side of the bipartition to the other: it gives disjoint
union of cycles that span the vertex set. More generally, Petersen proved in [29] that every
2k-regular graph has a factorization into two k-factors.

Despite this result is not new, we will now see how to prove it using our Fourier method.
This will be a good illustration of how Fourier based proofs work. In the following proof,
we will not write every calculus details (this can be found in Appendix, see C.1.1) as the
purpose is only to indicate what is our sketch proof. One can wonder why we took the
strong hypothesis of G being 4-regular (instead of simply G being Eulerian). This is to be
able the use some tensor product. It will become clear in the proof.

Proof. Let G = (A ⊎ B,E) be a 4-regular bipartite graph. Our goal is to show that there
exists a choice of edges such that every vertex has exactly 2 chosen edges. More formally,
we want to prove that there exists x : E → F2 such that

∀v ∈ V |{e ∈ E : v ∈ e ∧ x(e) = 1}| = 2 (2.1)
The idea is to split the constraints among the bipartition. This is fundamental when it
comes to Fourier based proof because we need an inner product somewhere. So, let us
define two functions fA, fB : F2

E → C by

∀x ∈ F2
E fA(x) =

{
1 if ∀v ∈ A |{e ∈ E : v ∈ e ∧ x(e) = 1}| = 2
0 otherwise

and ∀x ∈ F2
E fB(x) =

{
1 if ∀v ∈ B |{e ∈ E : v ∈ e ∧ x(e) = 1}| = 2
0 otherwise
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There exists a function x that fulfills the condition 2.1 if and only if ⟨fA, fB⟩ ≠ 0. Actually,
⟨fA, fB⟩ is exactly the number of such functions hence the number of cycle factors.

However, computing directly this inner product seems to be of little interest as it is
exactly the same than just counting the cycle factors. Rather than doing this, we will change
the inner product using a unitary matrix. We choose a specific one, the Fourier matrix. We
will see later why this choice is sound. Essentially, this is because Fourier behave well with
the tensor product. Hence, the idea is to compute

〈
f̂A, f̂B

〉
instead of ⟨fA, fB⟩ where the ·̂

symbol designates the result of the matrix vector product of an appropriate Fourier matrix
and fA. This idea is the core of our Fourier method. By changing the inner product, we
now have a completely different viewpoint on the sum used for the inner product. Our hope
is then to find a simple argument to justify that this inner product is not zero.

The details of the computation of f̂A and f̂B are not relevant in this introduction. They
can be found in appendix in the detailed proof of Prop C.1.1. However, we will now explain
the method used.

Obviously, we cannot compute directly a matrix vector product of the Fourier matrix
and fA as the size of fA is a variable (It is equal to 22n where n is the number of vertices
of G.). So, the idea is first to compute f̂A1 where fA1 is the function fA in the particular
case where |A| = 1. Then observe that fA = fA1

⊗n/2. Since Fourier matrices behave well
with tensor product, we have that f̂A = f̂A1

⊗n/2 which gives

∀x ∈ F2
E f̂A(x) =


1
2n

6|A0(x)|+|A4(x)|(−2)|A2(x)| if ∀v ∈ Av ∈ A0(x) ∪A2(x) ∪A4(x)

0 otherwise
where for every i ∈ J 0 ; 4 K, Ai(x) is the set of vertices of degree i in x. More formally,

Ai(x) := {v ∈ A : |{e ∈ E : v ∈ e ∧ x(e) = 1}| = i}
Since A and B plays symmetric roles, we have that

∀x ∈ F2
E f̂B(x) =


1
2n

6|B0(x)|+|B4(x)|(−2)|B2(x)| if ∀v ∈ B v ∈ B0(x) ∪B2(x) ∪B4(x)

0 otherwise
where Bi is the analogue of Ai. We can now compute the inner product:

⟨fA, fB⟩ =
〈
f̂A, f̂B

〉
= ∑

x∈F2
E

f̂A(x)f̂B(x)

We now need to come up with a simple argument to say that this inner product is non
zero. Recall that it suffices to prove that G has a cycle factor because the value of ⟨fA, fB⟩
is exactly the number of cycle factors of G. We will actually prove that every non zero term
in the sum are non negative.

Observe that if f̂A(x) ̸= 0 and f̂B(x) ̸= 0, then f̂A(x) (resp f̂B(x)) is negative if and only
if |x|1 = 2 [4] that is if and only if there is an odd number of degree 2 vertices in x. Hence,
f̂A(x) and f̂B(x) both have the same sign so the inner product is a sum of non negative
terms. In order to prove that this sum is non zero, we just have to provide one strictly
positive term: x = 0 for instance.
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Recall that ⟨fA, fB⟩ = ∑
x∈F2

E

fA(x)fB(x) is exactly the number of cycle factors. Moreover,

a term of this sum, fA(x)fB(x) is either 0 or 1 so it is non negative. However, finding
such a term that is strictly positive (so x such that fA(x)fB(x) = 1) is finding a cycle
factor! Once we have the Fourier transforms, we also have, at least for this proof, that〈
f̂A, f̂B

〉
= ∑

x∈F2
E

f̂A(x)f̂B(x) is a sum of non negative terms but this time, it is easy to find

a strictly positive term as x = 0 suits. Observe that moreover, this proof is not constructive
in the sense that it does not provide a cycle factor. We cannot even try to build one from
the proof! We only know that a cycle factor exists since the inner product is not null.

Finally, we relied on the fact that the graph G is bipartite in order to define the inner
product. This is essential for our proof method to work because we need an inner product
somewhere. We will now give another example to show how to deal with non bipartite
graphs.

Proposition 2.1.2. Every 4-regular graph has an Eulerian orientation.

Again, there exists a simple proof of this result. More generally, every Eulerian graph
has an Eulerian orientation. It has been proved by Hierholzer (see [20]) that a connected
graph is Eulerian if and only if it has an Eulerian circuit. One can simply consider each
connected component of some 4-regular graph, take an Eulerian circuit on each and choose
an orientation for every circuits. It provides an Eulerian orientation.

We will see how to prove this result using our Fourier method. This time, the graph is
not bipartite anymore. First, let us start with a definition that will be useful for this proof
and later on.

Definition 2.1.3. Let G = (V,E) be a graph. Define the subdivided graph G• = (V•, E•)
of G by

− V• = V ⊎ E

− E• = {ve : v ∈ V ∧ e ∈ E ∧ v ∈ e}

Remark. The graph G• is always bipartite. Again, this is mandatory so that we can use
the inner product trick.

Proof. LetG = (V,E) be a 4-regular graph. Our goal is to split the problem as a conjunction
of constraints: one on each side of the bipartite graph G•. Observe that G has an Eulerian
orientation if and only if there exists a function x : E• → F2 such that

• every v ∈ V is adjacent to exactly two edges e and e′ so that ve and ve′ are labelled 1

• every edge e ∈ E has exactly one of its endpoints v such that ve is labelled 1



2.1. INTRODUCTIVE PROBLEMS 103

0
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34
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(a) Some 4-regular graph G

0 1 2 3 4 5

01 02 03 04 12 14 15 23 25 34 35 45

(b) Its corresponding graph G•

Figure 2.2: Subdivision of a graph

More formally this correspond to the following pair of conditions:

∀v ∈ V |{e ∈ E : v ∈ e ∧ x(ve) = 1}| = 2
∀e ∈ E |{v ∈ V : v ∈ e ∧ x(ve) = 1}| = 1

(2.2)

Indeed, if such a function exists, then we orient the edge e = uv according to the following
rule:

• u → v if x(ue) = 1 (and so x(ve) = 0)

• v → u otherwise

Every edge e ∈ E has a well defined orientation because x satisfies that
|{v ∈ V : v ∈ e ∧ x(ve)}| = 1

and every vertex v ∈ V has its indegree equals to 2 because
|{e ∈ E : v ∈ e ∧ x(ve) = 1}| = 2

Conversely, given an Eulerian orientation, we define x(ue) = 1 if an only if e = uv with
u → v and 0 otherwise. Such an x satisfies the conditions 2.2.

Let us now prove that there exists such a function x. Define fV , fE : F2
E• → C by

∀x ∈ F2
E• fV (x) =

{
1 if ∀v ∈ V |{e ∈ E : v ∈ e ∧ x(e) = 1}| = 2
0 otherwise

and ∀x ∈ F2
E• fE(x) =

{
1 if ∀e ∈ E |{v ∈ V : v ∈ e ∧ x(e) = 1}| = 1
0 otherwise

Our goal is to show that the inner product ⟨fV , fE⟩ is non zero. Indeed, by definition,
⟨fV , fE⟩ = ∑

x∈F2
E•
fV (x)fE(x)
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For fV (x)fE(x) to be non zero, we need that x fulfills the two conditions 2.2. Such an x
provides an Eulerian orientation as we explained above. Moreover, fV (x)fE(x) is either 0
or 1. So, ⟨fV , fE⟩ is exactly the number of Eulerian orientations of G.

Now that we have an inner product, we will compute the Fourier transform of our two
vectors fV and FE . We already have computed f̂V in the proof of Proposition 2.1.1 so we
only have to deal with f̂E . Again, the trick is to look at what happen when |E| = 1 and
denote fE by fE1 in this case. Then, we use the fact that Fourier matrices behave nicely
with tensor product:

f̂E = f̂E1
⊗m = f̂E1

⊗m

The details can be found in Appendix (see C.1.2). In the end, we have that

∀x ∈ F2
E• fE(x) =


1

2m
(−1)

|x|1/2
if ∀e ∈ E

∑
v∈e
x(ve) = 0

0 otherwise
Moreover, recall that

∀x ∈ F2
E• f̂V (x) =


1

22n
6|V0(x)|+|V4(x)|(−2)|V2(x)| if ∀v ∈ V v ∈ V0(x) ∪ V2(x) ∪ V4(x)

0 otherwise
where for every i ∈ J 0 ; 4 K, Vi(x) is the set of vertices of degree i in x. More formally,

Vi(x) := {v ∈ V : |{e ∈ E : v ∈ e ∧ x(e) = 1}| = i}
This is the very same calculus we made in the proof of Proposition 2.1.1. (Note the 22n

instead of 2n, it is not a mistake since this time we work with G• rather than G.)
So, we can compute

〈
f̂V , f̂E

〉
which we know to be equal to ⟨fV , fE⟩, the number of

cycle factors of G. For f̂E(x) to be non zero, x must satisfies that every edge e ∈ E is
monochromatic in x. Let us call Γ the set of such x. If x ∈ Γ then f̂E(x) = 1/2m(−1)|x|1/2.
Hence, 〈

f̂V , f̂E

〉
= ∑

x∈F2
E•
f̂V (x) f̂E(x) = 1

2m

∑
x∈Γ

f̂V (x)(−1)
|x|1

2

Observe that f̂V (x)(−1)
|x|1

2 is always positive. Indeed,

• either |x|1 = 0 [4] and there is an even number of bichromatic vertices v ∈ V so
f̂V (x) ≥ 0

• or |x|1 = 2 [4] and there is an odd number of bichromatic vertices v ∈ V so f̂V (x) ≤ 0

Hence,
〈
f̂V , f̂E

〉
is a sum of non negative terms. Moreover, f̂V (0)f̂E(0) = 6n/2m+2n > 0

which concludes the proof.
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What we did is very similar to the proof of Proposition 2.1.1. However, it is interesting
to know that other choices could have been made for the functions fV and fE . For instance,
we could have defined fE by

∀x ∈ F2
E• fE(x) =

 1 if ∀e ∈ E
∑
e∋v
x(e) = 0

0 otherwise
One can check that there exists a Eulerian orientation of G if and only if there exists

x ∈ F2
E• such that both fV (x) and fE(x) are not null. Indeed, such an x provide a cycle

factor and since the graph is 4-regular, we can easily derive an Eulerian orientation. There
is no difficulty to compute f̂E is this case. However this time, the sum of the inner product〈
f̂V , f̂E

〉
contains positive and negative terms and it is not clear how to show that the inner

product is not null.
In the next section, we will properly define Fourier matrices and see some general proper-

ties of the Fourier transform in this context. We will also explain what are the link between
the precolorings (see 1.10.1), the Nullstellensatz (see 1.5) and this Fourier theory.

2.2 Definition and basic properties
Consider an integer k ≥ 1 and a field K with kth root of unity. We denote by wk the kth

root of unity. We define the Fourier matrix Fk by

Fk = 1√
k

(
wk

ij
)

i,j∈J 0 ; k−1 K

Then, for every n ≥ 1, we let Fk,n = Fk
⊗n =

n⊗
i=1
Fk

Consider the lexicographic order <lex on Zk
n and let x0 <lex x1 <lex · · · <lex xkn−1 be the

distinct elements of Zk
n. We have that

Fk,n = 1√
kn

(
ωk

⟨xi,xj⟩
)

i,j∈J 0 ; kn−1 K
In the following, we will conveniently forget about the order on the elements and simply
write

Fk,n = 1√
kn

(
wk

⟨x,y⟩
)

x,y∈Zk
n

Example 2.2.1. Let us index the rows with (0, 0), (0, 1), (1, 0) and (1, 1) (which are the
vectors of Z2 taken in lexicographic order) and use the same indices for the columns. On
can check that

F2,2 = 1√
2

× 1√
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Now, for every n ≥ 1 and every k ≥ 1, the (kth-)Fourier transform is the application

·̂ :
{

Kkn → Kkn

x 7→ Fk,n x
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Properties 2.2.2.

i) ∀x ∈ Kkn ̂̂x = x

ii) ∀λ ∈ K ∀x, y ∈ Kkn
λ̂x+ y = λx̂+ ŷ

iii) Fk,n
∗ = Fk,n

−1

iv) ∀x, y ∈ Kkn ⟨x, y⟩ = ⟨x̂, ŷ⟩

Proposition 2.2.3. Let k ≥ 2. Define f : Zk
2 → C by

∀(x0, x1) ∈ Zk
2 f(x0, x1) =

{
1 if x0 = x1
0 otherwise

Then, ∀x ∈ Zk
2 f̂(x0, x1) =

{
k if x0 + x1 = 0
0 otherwise

Remark 2.2.4. Up to a factor, the Fourier transform of the equality is the characteristic
function of the pairs that sums to zero.

2.2.1 Notes about the tensor product

Physicists (and more specifically those working in quantum mechanics) use the “braket”
notation. This consists of denoting by |ϕ⟩ the column vector ϕ and by ⟨ϕ| its conjugate
transpose (hence a row vector). With those notations, ⟨ϕ|ϕ⟩ is the square (hermitian) norm
of ϕ and |ϕ⟩ ⟨ϕ| is a rank one matrix: the projector on C · |ϕ⟩ that sends ϕ to ⟨ϕ|ϕ⟩ |ϕ⟩.

Example 2.2.5.

|x⟩ :=
[
1
0

]
so |x⟩ ⟨x| =

[
1
0

] [
1 0

]
=
[
1 0
0 0

]
and ⟨x|x⟩ =

[
1 0

] [1
0

]
= 1

Notation.

• The canonical basis of C2 is denoted by (|0⟩ , |1⟩).

• The tensor product |a⟩ ⊗ |b⟩ is usually denoted by |ab⟩.

• Hence, the canonical basis of C2n can be written

(|0 · · · 0⟩ , |0 · · · 01⟩ , . . . , |1 · · · 1⟩)

One just has to count in basis 2 with n digits.

One matrix is also very important in quantum mechanics: the Hadamard matrix. It is
exactly our Fourier matrix F2. Hence, if Hn is the Hadamard matrix of size 2n, we have
that Hn = F2,n = F2

⊗n.
Observe that for instance, |̂000⟩, the Fourier transform of t

[
1 0 0

]
(first vector of the

canonical basis of C3) is exactly H3 |000⟩. More generaly,
∀x1, . . . , xn ∈ {0; 1}n ̂|x1 · · ·xn⟩ = Hn |x1 · · ·xn⟩
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2.2.2 Uncertainty principle

The uncertainty principle is a well known result in Fourier analysis. It has fundamental
applications in quantum mechanics. Namely, the position and the momentum of some par-
ticle (say, an electron) cannot be both known with arbitrary precision. The more certainty
we have on its position in the space, the less we have on its velocity. This is due to the wave
nature of object (at least, according to the quantum mechanics) and is a mathematical
theorem. We will see that there exists an analogous theorem for discrete Fourier trans-
form. Intuitively, the more solution there exists to a combinatorial problem, the simpler
the Fourier transform. By “simpler” we mean small support.

The proof of the following result can be found in [14]. We do it here (with small changes)
for consistency.

Proposition 2.2.6. Let k ≥ 2. For every X ∈ Ck, |supX| |supFkX| ≥ k.

Proof. Let X ∈ Ck. We define t = |supX| to be the number of non zero coefficients of X.
We denote these coefficients by xi0 , . . . , xit−1 . Our goal is to prove that X̂ = FkX cannot
have t consecutive zeros. By “consecutive” we mean here “consecutive modulo k”. In other
words, if X̂ = t

[
y0 · · · yk

]
then

∀i ∈ J 0 ; k − 1 K {yi % k, . . . , yi+t−1 % k} ≠ {0}
For convenience, all indices are taken modulo k in the following. Assume for contradiction
that X̂ has t consecutive zeros yi, . . . , yi+t−1. Define A to be the matrix Fk where we
remove every rows but these of indices i, . . . , i+ t−1 and every columns but these of indices
i0, . . . , it−1. Hence, 

ωk
ii0 · · · ωk

iit−1

...
...

ωk
(i+t−1)i0 · · · ωk

(i+t−1)it−1


 xi0

...
xit−1

 =

0
...
0


However this is not possible. Indeed, this matrix is the transpose of a Vandermonde matrix
and the scalars ωk

i0 , . . . , ωk
it−1 are pairwise distinct since i0, . . . , it−1 ∈ J 0 ; k − 1 K hence

it is invertible.

We would like to extend this result to Fourier matrix of the form Fk,n with n ≥ 2. One
can wonder whether this result is true in general that is if for every k ≥ 2, every n ≥ 1 and
every X ∈ Ckn ,

|supX|
∣∣∣sup X̂

∣∣∣ ≥ kn

For sure, the argument used in the previous proof does not work anymore: a submatrix
(with consecutive rows) of Fk,n (for n ≥ 2) may not be invertible.

Example 2.2.7. Consider X = t
[
0 1 1 0

]
. We have that

X̂ = F2,2X = t
[
1 0 0 −1

]
which have |supX| = 2 consecutive zeros. Observe that X is not a tensor product.
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Corollary 2.2.8. Let X1, . . . , Xn ∈ Ck. Define X =
n⊗

i=1
Xi. We have that

|supX|
∣∣∣sup X̂

∣∣∣ ≥ kn

Proof. By the mixed product property (Proposition 0.0.24) of the Kronecker product,∣∣∣sup X̂
∣∣∣ =

∣∣∣∣sup
n⊗

i=1
X̂i

∣∣∣∣ =
n∏

i=1

∣∣∣sup X̂i

∣∣∣
so, by Proposition 2.2.6,

|supX|
∣∣∣sup X̂

∣∣∣ =
n∏

i=1
|supXi|

∣∣∣sup X̂i

∣∣∣ ≥
n∏

i=1
k = kn

2.2.3 Link with precolorings

We explain here the link between the precolorings that have been defined in Chapter 1.1
(see Definition 1.10.1) and the discrete Fourier transform defined above. Let us first recall
the definition of a precoloring in the case we are interested in here.

Definition 2.2.9. Let G = (V,E) be a graph and k ≥ 2 an integer. We say that the total
function f : Zk

V → C is a precoloring of Zk
G in C if and only if

∀x ∈ Zk
V ∀uv ∈ E

∑
λ∈Zk

f (x+ λ (1u − 1v)) = 0

Remark 2.2.10. We could make a more general definition by replacing Zk with some finite
group and C with any field of appropriate characteristic. However, this would not be useful
for Fourier related object.

Proposition 2.2.11. Let G = (V,E) be a graph such that E ̸= ∅ and k ≥ 2 be an integer.
The family of vectors

(
|̂x⟩
)

x∈GCk(G)
is a basis for the linear space of the precolorings of Zk

G

in C.

Remark. We abuse notations here. For x ∈ Zk
V , there is a canonical vector X ∈ Zk

V

associated to x if we fix an order on V . Namely, if V = {v0, . . . , vn−1}, then X =
t
[
x(v0) · · · x(vn−1)

]
.

Proof. First, observe that if x ∈ GCk(G) then |̂x⟩ is a precoloring of Zk
G in C. Indeed, take

y ∈ Zk
V and uv ∈ E. We have that∑

λ∈Zk

|̂x⟩ (y + λ (1u − 1v)) = ∑
λ∈Zk

ωk
⟨x,y+λ(1u−1v)⟩ = ωk

⟨x,y⟩ ∑
λ∈Zk

ωk
λ(x(u)−x(v)) = 0

since x(u) − x(v) ̸= 0 [k] by hypothesis.
Lastly, let x ∈ Zk

V \ GCk(G). There exists uv ∈ E such that x(u) = x(v) so
∀y ∈ Zk

V ∀λ ∈ Zk |̂x⟩ (y + λ(1u − 1v)) = ωk
⟨x|y⟩ ωk

λ(x(u)−x(v)) = ωk
⟨x|y⟩

So, if f is a precoloring of Zk
G in C, then

∀y ∈ Zk
V ∑

λ∈Zk

f (y + λ (1u − 1v)) |̂x⟩ (y + λ (1u − 1v)) = 0
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which proves that
〈
f, |̂x⟩

〉
= 0. Since

(
|̂x⟩
)

x∈ZV
is an orthonormal basis of Ckn , we have

the result.

This result is fundamental! It provides deep understanding of what precolorings are.
With this new point of view, it is easy to see why a non zero inner product of two pre-
colorings is a proof of the existence of a coloring: they must share an element of the basis(
|̂x⟩
)

x∈GCk(G)
. This result also provides an easy way to find precolorings for a given graph:

one just has to take any linear combination of these basis vectors. This offers a useful free-
dom as in many cases, there is probably a pair of precolorings that make the inner product
easier to understand. Moreover, we can use this result to find precolorings of small graphs
of one class of graphs (for instance, on the triangle and C5) and then extrapolate for the
whole class (in our example, for odd cycles) using the original definition of precolorings.

This result is similar to Corollary 1.10.5. However, the objects are very different. In-
deed, in Proposition 2.2.11, the precolorings are precolorings of Γk

G in C whereas in Corol-
lary 1.10.5, we deal with precolorings of 3G in F2. The field matters as we cannot really
define Fourier matrices in F2

1. Despite this technical issue, we still have that the proper
3-colorings somehow provide a basis of the precoloring of 3G in F2 but our proofs are really
different. Further investigations would be useful to generalize these results in any finite
field. However, our proof of Proposition 2.2.11 cannot be easily transposed to the case of
precolorings of Γk

G to Fq.

2.2.4 Link between polynomials and precolorings

Let K be a field, A be a K-algebra and n ∈ N∗. For every a ∈ An, the total function

ϕa :
{

A[X1, . . . , Xn] → A
P 7→ P (a)

is an algebra homomorphism. Indeed,

• ∀λ ∈ K ∀P,Q ∈ A[X1, . . . , Xn] ϕa(λP +Q) = λϕ(P ) + ϕ(Q)

• ∀P,Q ∈ A[X1, . . . , Xn] ϕa(PQ) = ϕa(P )ϕa(Q)

• ϕa(1) = 1(a) = 1

However, although Ak,n is an algebra, the evaluation function ϕa from Ak,n to A may
not be an algebra homomorphism. Here is a counterexample for k = 2 and n = 1.

ϕ2(X − 1) × ϕ2(X + 1) = 1 × 3 = 3
but ϕ2((X + 1)(X − 1)) = ϕ2

(
X2 − 1

)
= ϕ2(0) = 0

Remark. The question of an evaluation function being or not an algebra homomorphism
amounts to know whether the evaluation and the operations on the polynomial ring com-
mute.

1Actually, to define Fourier matrices we need the field to have a primitive kth root of unity. In F2, such
matrix is always full of ones. . .
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Proposition 2.2.12. Let k, n ∈ N∗. For every a ∈ Zk
n, ϕa is an algebra homomorphism.

Proof. Recall that the set

Ak,n = C[X1, . . . , Xn]〈
Xi

k − 1
〉

i∈J 1 ; n K
is the quotient of C[X1, . . . , Xn] by the equivalence relation ∼ defined by

∀f, g ∈ C[X1, . . . , Xn] f ∼ g ⇔ f − g ∈ I

where I is the ideal generated by
{
Xi

k − 1: i ∈ J 1 ; n K
}

. Let us define

π :
{

C[X1, . . . , Xn] → Ak,n

f 7→ f + I

It is a surjective algebra homomorphism. We have that
∀a ∈ Zk

n ∀f ∈ C[X1, . . . , Xn] π(f)(a) = f(a)
Indeed, let a ∈ Zk

n. If f, g ∈ C[X1, . . . , Xn] satisfy f ∼ g then f(a) = g(a) since f = g + h
with h ∈ I thus h(a) = 0. Then, every element g ∈ π(f) satisfies g(a) = f(a). This implies
that π(f)(a) is well defined as the common image of a by every elements of f + I. So,

∀a ∈ Zk
n ∀f ∈ C[X1, . . . , Xn] π(f)(a) = f(a)

Now let P,Q ∈ Ak,n. There exists f, g ∈ C[X1, . . . , Xn] such that P = π(f) and Q = π(g).
For a ∈ Zk

n, we have that
ϕa(P +Q) = ϕa (π(f) + π(g)) = ϕa (π(f + g)) = π(f + g)(a)

By what we did above, π(f + g)(a) = (f + g)(a) so
ϕa(P +Q) = (f + g)(a) = f(a) + g(a) = π(f)(a) + π(g)(a) = ϕa (π(f)) + ϕa (π(g))

Moreover, ϕa(P ×Q) = ϕa (π(f) × π(g)) = π(f × g)(a)
Again, since the evaluation function in a is an algebra homomorphism for a ∈ Zk

n, we have
that π(f × g)(a) = (f × g)(a). Hence,

ϕa(P ×Q) = (f × g)(a) = f(a) × g(a) = π(f)(a) × π(g)(a) = ϕa(P ) × ϕa(Q)

Corollary 2.2.13. ∀ℓ ≥ 1 ∀x ∈ Zk
n ϕk,n(x)ℓ = ϕk,n(x)

Proof. We know by Proposition 2.2.18 that ϕk,n(x) is the only element of Ak,n that satisfies
∀y ∈ Zk

n ϕk,n(x)(y) = δx(y)
By Proposition 2.2.12, ϕk,n(x)ℓ also satisfies this property

Notation. For x ∈ Zk
n, we designate the monomial

n−1∏
i=0

Xi
xi n by Xx.

For P ∈ Ak,n, we denote by (Xx)∗ (P ) the coefficient of Xx in P in the basis (Xx)x∈Zk
n .

Proposition 2.2.14. The total function

Ψk,n :
{

Ak,n → CZk
n

P 7→ (x 7→ (Xx)∗ (P ))
is a linear isomorphism.
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Proof. The fact that Ψk,n is linear is a direct consequence of the fact that (Xx)∗ is linear
for every x ∈ Zk

n.
Observe that if Ψk,n(P ) = 0 for some P ∈ Ak,n, then (Xx)∗ (P ) = 0 for every x ∈ Zk

n

so P = 0. Moreover, dim Ak,n = kn = dimCZk
n so Ψk,n is a linear isomorphism.

Proposition 2.2.15. Let P ∈ Ak,n. If P satisfies
∀a ∈ Zk

n \ GCk(G) P (a) = 0
where a = (ωk

a1 , . . . , ωk
an), then Ψk,n(P ) is a precoloring.

Proof. Let c ∈ Zk
n and uv ∈ E. We write fP := Ψk,n(P ).∑

λ∈Zk

fP (c+ λ (1u − 1v)) = 0 ⇔ ⟨P,Qc,uv⟩ = 0

with Qc,uv = ∑
λ∈Zk

Xc+λ(1u−1v). Observe that for every x ∈ Zk
n,

• either x(u) = x(v) and then P (x) = 0

• or x(u) ̸= x(v) and then Qc,uv(x) = 0

hence PQc,uv(x) = 0 for every x ∈ Zk
n. It follows that ⟨P,Qc,uv⟩ = 0.

Remark 2.2.16. The converse is false in general. For instance, consider a non empty graph
with no edge. For every P ∈ Ak,n \ {0}, we have that Ψk,n(P ) is a precoloring. We can
also provide a counterexample on the graph with one edge. Take P = X + Y . The roots
of P among U2

2 are exactly the good colorings of the edge: (1,−1) and (−1, 1). However,
fP := Ψk,n(P ) verifies fP ((0, 1)) + fP ((1, 0)) = 1 + 1 so fP is not a precoloring in C.

2.2.5 Link with the Nullstellensatz

Let k, n ∈ N∗. We will associate an element of

Ak,n = C[X1, . . . , Xn]〈
Xi

k − 1
〉

i∈J 1 ; n K
to each element of Zk

n using the Fourier matrix Fk,n. One natural way to do so is with the
following definition:

ϕk,n :


Zk

n → Ak,n

x 7→ 1√
k

n
∑

y∈Zk
n
[Fk,n]x,y

n∏
i=1
Xi

−yi n

Example 2.2.17. For convenience, we denote X1 by X when n = 1 and X2 by Y when
n = 2.

ϕ2,2(0, 1) = 1
4 (1 − Y +X −XY ) ϕ3,1(1) = 1

3
(
1 + jX2 + j̄X

)
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Proposition 2.2.18. For every k, n ∈ N∗ and every x ∈ Zk
n, ϕk,n(x) is the only element

of Ak,n that satisfies

∀y ∈ Zk
n ϕk,n(x)(y) =

{
1 if x = 0
0 otherwise

where y = (ωk
y1 , . . . , ωk

yn).

Proof. For z ∈ Zk
n,

ϕk,n(x)(z) =
(

1√
k

n
∑

y∈Zk
n
[Fk,n]x,y

n∏
i=1
Xi

−yi k

)
(z)

= 1√
k

n
∑

y∈Zk
n

1√
k

nωk
⟨x,y⟩

n∏
i=1

(ωk
zi)−yi by Proposition 2.2.12

= 1
kn

∑
y∈Zk

n
ωk

⟨x,y⟩ωk

n∑
i=1

zi×(−yi)

= 1
kn

∑
y∈Zk

n
ωk

⟨x,y⟩ωk
⟨−z,y⟩

ϕk,n(x)(z) = 1
kn

∑
y∈Zk

n
ωk

⟨x−z,y⟩

Hence, either x = z and ϕk,n(x)(z) = 1 or x ̸= z and ∑
y∈Zk

n
ωk

⟨x−z,y⟩ = 0. Indeed, for every

s ∈ Zk
n \ {0}, we have that

∀i ∈ Zk |{y ∈ Zk
n : ⟨s, y⟩ = i}| = kn−1

Let us now prove that (ϕk,n(x))x∈Zk
n is a basis of Ak,n. First, we show that these vectors

are linearly independent. Assume that∑
x∈Zk

n
αx ϕk,n(x) = 0

where αx ∈ C for every x ∈ Zk
n. Since ϕk,n(x) satisfies
∀y ∈ Zk

n ϕk,n(x)(y) = δx(y)
we have that αx = 0 for every x ∈ Zk

n. Moreover, Ak,n is a C-linear space of dimension kn.
This proves that (ϕk,n(x))x∈Zk

n is a basis (called Fourier basis) of Ak,n.
Now, for every P ∈ Ak,n there exists a unique family (αx)x∈Zk

n of C such that

P = ∑
x∈Zk

n
αx ϕk,n(x)

By evaluating P on (x)x∈Zk
n , we get that

∀P ∈ Ak,n P = ∑
x∈Zk

n
P (x)ϕk,n(x)

Corollary 2.2.19. For every family of complex numbers (αx)x∈Zk
n there exists exactly one

element of Ak,n that satisfies
∀x ∈ Zk

n P (x) = αx

Remark. This is nothing but polynomial interpolation on the kth roots of unity.
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We have already made a proof for the Nullstellensatz in Ak,n in Section 1.5 for the
particular case of Bayer’s system (see Prop 1.5.2). Recall that Ak,n is not a ring of poly-
nomials that satisfies the hypothesis of Hilbert’s Nullstellensatz (it is not even an integral
domain). However, this proof relies on the general Nullstellensatz theorem. We will see
here an elementary proof of the Nullstellensatz theorem in Ak,n that uses Fourier.

Theorem 2.2.20 (Nullstellensatz in Ak,n). Let S ⊆ Ak,n be a finite set. The elements of
S have a common root in Uk

n if and only if ⟨S⟩ ≠ Ak,n.

Proof. Let SS = {x ∈ Zk
n : ∀P ∈ S P (x) = 0}. If ⟨S⟩ = Ak,n then 1 ∈ ⟨S⟩ and so

SS = ∅. Conversely, let us assume that SS = ∅ and define for every P ∈ S

supP = {x ∈ Zk
n : P (x) ̸= 0} RP = ∑

x∈sup P
ϕk,n(x)

Observe that Rp ∈ ⟨P ⟩ since RP = P ×
∑

x∈sup P

1
P (x)ϕk,n(x)

by the interpolation result stated in Corollary 2.2.19. Let R = ∑
P ∈S

RP which is well defined

as S is finite. Observe that
∀x ∈ Zk

n R(x) = |{P ∈ S : x ∈ supP}|

Since SS = ∅, R has no root so R×
∑

x∈Zk
n

1
R(x)ϕk,n = 1 hence 1 ∈ ⟨S⟩ which concludes the

proof.

2.3 Some results using Fourier

2.3.1 Cycle + triangles

In July 1990, Paul Erdős proposed the following problem at the Julius Petersen Graph
Theory Conference: given a graph G on 3n vertices that is composed of a disjoint union of n
pairwise vertex disjoint triangles and a Hamiltonian cycle, is it true that G is 3-colorable? In
1992, Fleischner and Stiebitz proved (see [16]) the so called “cycle plus triangles conjecture”
using a result of Alon and Tarsi (see [2]).

In this section, we provide a new proof of this result using our theory of Fourier pre-
colorings. The key idea is to use some combinatorial lemma of Fedor (see [30]) in order to
prove that some inner product is not zero.

Theorem 2.3.1. Every 4-regular graph formed by a Hamiltonian cycle and ℓ pairwise
vertex disjoint triangles is 3-colorable.

Examples of such graphs are given on Figure 2.3. In the following we will talk of the
Hamiltonian cycle to refer to the “external” cycle. Of course, being Hamiltonian is not a
property of the cycle itself but it will be convenient to distinguish the external cycle from
the other cycles (and in particular, from the triangles).
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Figure 2.3: Examples of graphs of the form “cycle + triangles”

Proof. This problem is naturally expressed as the conjunction of two constraints: both the
Hamiltonian cycle and the triangles must be properly colored. Hence, we want to find
precolorings for the family of triangles and for the Hamiltonian cycle.

We will provide a family of precolorings for cycles of any length. Hence, it will be useful
for the Hamiltonian cycle and for one triangle. Since the triangles are pairwise vertex
disjoint, we can use the tensor product to make a precoloring for the family of triangles out
of a precoloring for one triangle.

Computing a precoloring for a cycle of arbitrary length with Fourier can be surprisingly
challenging. However, it is rather easy to check that a given complex function is indeed a
precoloring by using the Definition 1.10.1. Here is a good one we found after many trials:

Let n ≥ 3 and Cn be the cycle on n vertices that is (V (Cn), E(Cn)) where
V (Cn) = Zn and E(Cn) = {{i, i+ 1} : i ∈ Zn}

First, our precoloring will be non zero on x ∈ F3
Zn if and only if 1 and 2 “alternates”. This

means that if x(i) ̸= 0 then the next non zero coefficient x(j) must satisfy x(i) + x(j) = 0.
Figure 2.4 illustrates this. More formally, for every x ∈ F3

Zn , we define Nx
̸=0 : Zn → Zn

by

∀i ∈ Zn Nx
̸=0(i) =

 i+ min
j∈N∗

{x(i+ j
n) ̸= 0}

n
if ∃j ∈ Zn x(j) ̸= 0

i otherwise

0

10

2

1 2
1 and 2 alternate

2

01

0

0 0
1 and 2 alternate

2

01

1

2 0
1 and 2 do not alternate

Figure 2.4: Example of configuration where 1 and 2 alternate and where they do not
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Then, if n is even, we define
SGC3(Cn) :=

{
x ∈ F3

Zn : ∀i ∈ Zn x(i) ̸= 0 ⇒ x(i) + x
(
Nx

̸=0(i)
)

= 0
}

and if n is odd,
SGC3(Cn) :=

{
x ∈ F3

Zn \ {0} : ∀i ∈ Zn x(i) ̸= 0 ⇒ x(i) + x
(
Nx

̸=0(i)
)

= 0
}

Remark. SGC stands for “semi good colorings”. This is the support of our precoloring. In
some sense, semi good colorings are the Fourier pendant of proper colorings. Observe that

∀x ∈ SGC3(Cn) ∑
i∈Zn

x(i) = 0

Moreover, SGC3(Cn) contains 0 if and only if n is even.
Finally, we define the nth Bousquet precoloring by Bn : F3

Zn → C by

∀x ∈ F3
Zn Bn(x) =


0 if x /∈ SGC3(Cn)
1 + (−1)n if x = 0∏
i∈x−1({1})

(−1)
Nx

̸=0(i)−i
n otherwise

Remark. The cast is not just for the sake of being formal. Consider for instance the labelling
of C3 given by x = t

[
0 2 1

]
. We have that x−1({1}) = {2} and Nx

̸=0(2)−2 = 1−2. Since
3 is odd, we cannot take any integer congruent to −1 modulo 3 for the exponent as, for
instance, (−1)−1 ̸= (−1)2. In other words, the implicit ordering given by the cyclic order
on Zn matters. For instance, B3

(
t
[
0 1 2

])
̸= B3

(
t
[
0 2 1

])
, the first labelling being

“direct” and the second one “indirect”.
Here is the intuition behind this definition. ForBn(x) to be non zero, 1 and 2 must alternates
along the cycle. Then, for every couple of consecutive non zero values (1, 2), compute the
edge distance between this 1 and this 2 and multiply by (−1) to this distance.

Let us give some examples. First, our definition implicitly makes the assumption that
the cycle is oriented. This is ensured by the fact that vertices are elements of Zn which has
a natural cyclic order. We give examples on Figure 2.5. In these examples, the orientation
is trigonometric. Hence, for each 1, we go counterclockwise to the next 2 and count the
number of edges. These edges have arrows on Figure 2.5. We sum up these distances for
every 1: this is the exponent of the −1. Of course, if 1 and 2 do not alternate then the
Bousquet value is 0.

0

10

2

1 2
B6(x) = (−1)2+1 = −1

2

01

0

0 0
B6(x) = (−1)4 = 1

2

01

1

2 0
B6(x) = 0

Figure 2.5: Examples of value for Bousquet precoloring



116 CHAPTER 2. FOURIER ANALYSIS ON GRAPHS

Let us check that Bn is indeed a precoloring in C for Cn. Our goal is to prove that
∀x ∈ F3

V (Cn) ∀uv ∈ E(Cn) Bn(x) +Bn(x+ 1u − 1v) +Bn(x+ 1v − 1u) = 0
Let uv ∈ E(Cn). Without loss of generality, we assume that u = i and v = i + 1. By
definition,

• Bn(0) =
{

0 if n is odd
2 otherwise

• Bn(1u − 1v) = (−1)1 = −1

• Bn(1v − 1u) = (−1)i+1+n−1−(i+1)
n = (−1)n−1

n =
{

1 if n is odd
−1 otherwise

So Bn(0) + Bn(1u − 1v) + Bn(1v − 1u) = 0. Now take w = i + 2. The case w = i − 1 is
analog. We have that

• Bn(1u − 1v) = −1

• Bn(1u − 1v + 1v − 1w) = 1

• Bn(1u − 1v − 1v + 1w) = Bn(1u + 1v + 1w) = 0

So it sums to zero. Consider now x ∈ F3
Zn such that Bn(x) ̸= 0. We also assume that

0 /∈ {x, x+ 1u − 1v, x+ 1v − 1u} since we have already done the other cases above. Define
a and b to be respectively the first previous non zero vertex of u and the first next non zero
vertex of v. Namely,

b = Nx
̸=0(v) and Nx

̸=0(a) = b
Observe that a ̸= u and a ̸= v as x(u) = x(v) = 0. Moreover, a ̸= b since x must
have at least 2 non zero values. Assume that x(u) = x(v) = 0. First, we deal with case
x(a) = 1 and x(b) = 2. Figure 2.6 helps to understand what happens on the edge-clique
{x+ λ(1u − 1v) : λ ∈ F3} = {x, x′, x′′}.

· · ·

b

j

i

a x(b) = 2

x(v) = 0

x(u) = 0

x(a) = 1

· · ·

b

j

i

a x′(b) = 2

x′(v) = 2

x′(u) = 1

x′(a) = 1

· · ·

b

j

i

a x′′(b) = 2

x′′(v) = 1

x′′(u) = 2

x′′(a) = 1

Figure 2.6: Representation of the edge-clique {x, x′, x′′}

We have that Bn(x+ 1u − 1v) = 0 since 1 and 2 do not alternate along the cycle and that
Bn(x+ 1v − 1u) = Bn(x) × (−1) so

Bn(x) +Bn(x+ 1u − 1v) +Bn(x+ 1v − 1u) = 0
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· · ·

b

j

i

a x(b) = 1

x(v) = 0

x(u) = 0

x(a) = 2

· · ·

b

j

i

a x′(b) = 1

x′(v) = 2

x′(u) = 1

x′(a) = 2

· · ·

b

j

i

a x′′(b) = 1

x′′(v) = 1

x′′(u) = 2

x′′(a) = 2

Figure 2.7: Representation of the edge-clique {x, x′, x′′}

The case x(a) = 2 and x(b) = 1 is analogous. Figure 2.7 should be self-explanatory.
We now have to deal with the case x(u) ̸= 0 and x(v) ̸= 0. Without loss of generality,

we assume that x(u) = 1 and x(v) = 2. Figure 2.8 helps to understand what happen. Since
we assumed that Bn(x) ̸= 0, we must have that x(a) = 2 and x(b) = 1 otherwise 1 and 2 do
not alternate. In this last case also we can check that the sum is zero on the edge-clique.

· · ·

b

j

i

a x(b) = 1

x(v) = 2

x(u) = 1

x(a) = 2

· · ·

b

j

i

a x′(b) = 1

x′(v) = 1

x′(u) = 2

x′(a) = 2

· · ·

b

j

i

a x′′(b) = 1

x′′(v) = 0

x′′(u) = 0

x′′(a) = 2

Figure 2.8: Representation of the edge-clique {x, x′, x′′}

So, let us define f0 = B3. By what we just did, this is a precoloring for one triangle.
Since the triangles are pairwise vertex disjoint, the function f△ = f0

⊗ℓ is a precoloring for
the family of triangles.

Recall that our goal is to prove that ⟨f△, Bn⟩ ≠ 0. We will now prove that ⟨f△, Bn⟩ ≠ 0.
First, for Bn(x) to be non zero, x must have as many 1’s than 2’s and it must be non zero.
Moreover, we have that

∀x ∈ F3
Zn f△(−x)Bn(−x) = f△(x)Bn(x)

Indeed, let x ∈ F3
Zn . If n is even then

f△(−x) = f△(x) and Bn(−x) = Bn(x)
If n is odd then

f△(−x) = −f△(x) and Bn(−x) = −Bn(x)
Hence, if Γ is the quotient set of {x ∈ F3

Zn : f△(x)Bn(x) ̸= 0} by the equivalence relation
≡ defined by

∀x, y ∈ F3
Zn x ≡ y ⇔ ∃λ ∈ F3

∗ x = λy

then ⟨f△, Bn⟩ = 2∑
x∈Γ

f△(x)Bn(x) since 0 /∈ Γ.

In order to prove that this sum of +1 and −1 is non zero, it suffices to show that it has
an odd number of terms. We will use here a result of F. Petrov [30]:
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r

j
q

i

(a) Two crossing edges in dotted

r

j

i

q

(b) Two non crossing edges in dotted

Figure 2.9: Crossing and non crossing edges

Theorem (Petrov). Let V =
ℓ−1⊎
i=0
Vi be a finite set partitioned onto disjoint subsets Vi of

odd sizes. Let G be a graph on a ground set V such that each Vi is an independent set in G
and each subgraph induced on Vi ⊎ Vj is Eulerian. There exists an odd number of subsets
U ⊂ V that satisfy

• ∀i ∈ J 0 ; ℓ− 1 K |U ∩ Vi| = 1

• G[U ] is Eulerian

For every i ∈ J 0 ; ℓ− 1 K, we define Vi to be the set of edges of the triangle Ti and

Vp :=
ℓ−1⊎
i=0
Vi. For ij, qr ∈ Vp, we say that the edges ij and qr are crossing if and only if

either

• min
k∈N∗

(
i+ k

n = j
)
> min

k∈N∗

(
i+ k

n = q
)

and min
k∈N∗

(
i+ k

n = j
)
< min

k∈N∗

(
i+ k

n = r
)

• or min
k∈N∗

(
i+ k

n = j
)
> min

k∈N∗

(
i+ k

n = r
)

and min
k∈N∗

(
i+ k

n = j
)
< min

k∈N∗

(
i+ k

n = q
)

Figure 2.9 shows examples of edges crossing and not crossing. This corresponds to the
intuitive notion when the Hamiltonian cycle is drawn as a circle and such that every edges
of the triangles are inside. Let Ep be the set of crossing edges. The graph Gp = (Vp, Ep)
satisfies

• Vp =
ℓ−1⊎
i=0
Vi

• for every i ∈ J 0 ; ℓ− 1 K, Vi is a stable set
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• for every i, j ∈ J 0 ; ℓ− 1 K distinct, Gp[Vi ∪ Vj ] is Eulerian

By Theorem 2.3.1, there is an odd number of U ⊂ Vp such that

• ∀i ∈ J 0 ; ℓ− 1 K |U ∩ Vi| = 1

• Gp[U ] is Eulerian

Observe that such a set U gives an x ∈ Γ. Indeed, U contains exactly one edge per
triangle. For every i ∈ J 0 ; ℓ− 1 K, let vi be the vertex in Ti that does not belong to this
edge. We define x(vi) = 0. Take the edge uv ∈ U ∩ Vi and define x(u) = 1 and x(v) = 2.
There is a unique way to choose labels for the remaining vertices so that 1 and 2 alternates
along the cycle. This is true because Gp[U ] is Eulerian. Hence, such a set U defines one
element of Γ. Conversely, every element x ∈ Γ defines such a set U . Indeed, let y ∈ F3

Zn

be a representing element of x. By definition, 1 and 2 alternates along the cycle and every
triangle is properly colored. We define U to be the set of 1 − 2 edges: this is a Petrov set.
The result is illustrated by Figure 2.10.
Remark. Observe that a Petrov set U does not necessarily give a proper coloring of G. For
instance, the set U represented with the dotted edges on Figure 2.10b is a valid Petrov set.

(a) Some valid Petrov configuration

2

1

2
1

0

2

0
1

0

(b) Some valid Petrov configuration

Figure 2.10: A Petrov configuration gives two non zero terms of the inner product

Hence, there is an odd number of terms in the sum ∑
x∈Γ

f△(x)Bn(x) and moreover,

f△(x)Bn(x) = ±1 for every x ∈ Γ. So, it cannot be zero and the inner product ⟨f△, Bn⟩ ≠ 0
which concludes the proof.
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2.3.2 Further investigation on cycle + triangles

In the proof of Theorem 2.3.1, we used the precoloring f0 = g3 which is nothing but the
Bousquet precoloring in the particular case of a cycle of length 3. One can check that

f0 = −i (|012⟩ + |120⟩ + |201⟩ − |021⟩ − |210⟩ − |102⟩)
A proof of this fact is given in Proposition C.1.3. It has this particularity to use every
base vector (see Proposition 2.2.11). Although we did not define the precoloring Bn for
the (Hamiltonian) cycle in terms of Fourier decomposition, we know by Proposition 2.2.11
that Bn has such a decomposition on the basis of proper 3-colorings of Cn. However, it
could have been that we were unlucky and that ⟨f△, Bn⟩ have been zero despite the fact
that there exists a proper 3-coloring of G. Indeed, take for instance n = 6 and consider the
graph depicted on Figure 2.11.

Example. Define f = |001122⟩ and g = |010102⟩. The functions f and g are respectively
(non zero) precolorings of the triangles and of C6. However, ⟨f, g⟩ = 0 since (|x⟩)x∈F3

6 is
an orthogonal basis of CF3

6 .

0

12

3

4 5

Figure 2.11: Some 3-colorable graph

One can wonder whether the sum ∑
x∈Γ

f△(x)Bn(x) has only non negative terms as for the

proof of Propositions 2.1.1 and 2.1.2. If this were true, we would have a sum of +1 which
would be counting the number of labelling that are Bousquet on both the Hamiltonian cycle
and on every triangle. This is actually not the case in general. A counter example can be
found on Figure 2.12.



2.4. FURTHER INVESTIGATIONS ON FOURIER 121

2

00

1

2 1

f△(x)B6(x) = 1 × 1

1

02

1

2 0

f△(x)B6(x) = 1 × (−1)

0

02

1

2 1

f△(x)B6(x) = (−1) × 1

Figure 2.12: The inner product ⟨f△, Bn⟩ may have positive and negative terms

2.4 Further investigations on Fourier
In order to investigate the Fourier method, I created some programs in C++ to compute
inner products. In particular, in case G is bipartite, the sum∑

x∈SGC3(G)
2∆1(x)(−1)∆3(x)

counts (up to normalization), the number of 3-edge colorings of G. However, the fact that G
is bipartite is not necessary to define this sum. Hence, my program can compute it for any
cubic graph. Surprisingly, the result is always non negative. This leads us to the intuition
that this sum counts something. We did prove the following result:

Proposition 2.4.1. For any cubic graph G,∑
x∈SGC3(G)

2∆1(x)(−1)∆3(x) = 3 n
2

∑
C∈cf(G)

2cc(C)

where cf(G) is the set of all cycle factors of G and, for C ∈ cf(G), cc(C) is the number of
connected components of C.

When writing this thesis, I found a very simple proof of that result using Fourier! Hence,
we completely dropped the (quite long and technical) combinatorial proof.

Proof. The idea is to work with G• rather that G. Recall that G• is G where all edges
have been subdivided once (see 2.1.3). As a matter of fact, G• is bipartite. Define
fV : F3

E• → C and fE : F3
E• → C by

∀x ∈ F3
E• fV (x) =

{
1 if ∀v ∈ V |{x(e) : e ∋ v}| = 3
0 otherwise

and ∀x ∈ F3
E• fE(x) =

 1 if ∀v ∈ E
∑
e∋v
x(e) = 0

0 otherwise
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Observe that ⟨fV , fE⟩ is the number of 3-edge labellings of G• such that

• every degree 3 vertex is properly colored

• every degree 2 vertex is incident to either one edge labelled 1 and one edge labelled 2
or to two edges labelled 0.

Fix a cycle factor of G. Since G is cubic, the edges that are not in this cycle factor
form a perfect matching. We want to build x ∈ F3

E• that satisfies the two previous points.
Label (0, 0) the edges (seen in G) of the perfect matching. For each of the remaining cycle,
pick an edge and choose whether it is (1, 2) or (2, 1). There is only one way to complete x.
Hence, starting from a cycle factor C ∈ cc(G), there are 2cc(C) corresponding x. Conversely,
for every x ∈ F3

E• that satisfies the two previous points, the monochromatic edges form a
perfect matching and each cycle is determined by the image of one of its edges. Figure 2.13
may be helpful to visualize what happens. This proves that

⟨fV , fE⟩ = ∑
C∈cf(G)

2cc(C)

We now have to deal with
〈
f̂V , f̂E

〉
in order to achieve the proof. Let us compute f̂V

and f̂E . Once again, we use the fact that the constraints are the same on every degree 3
vertex so the tensor product trick can be used. First, consider the base case of a single
degree 3 vertex. Namely, we take G1 to be a claw. Our aim is to compute f̂V1 = F3,3fV1

where

fV1 :


F3

3 → C

(x0, x1, x2) 7→
{

1 if |{x0, x1, x2}| = 3
0 otherwise

Let c = (0, 1, 2). Observe that the 6 proper edge-colorings of G1 can be partitioned into
{c, c+ 1, c− 1} ⊎ {−c,−c+ 1,−c− 1}

Let x = (x0, x1, x2) ∈ F3
3. Observe that if x0 + x1 + x2 ̸= 0 then f̂V1(x) = 0. Indeed,

j⟨x,c⟩ + j⟨x,c+1⟩ + j⟨x,c−1⟩ = j⟨x,c⟩
(
1 + j⟨x,1⟩ + j−⟨x,1⟩

)
= 0

and j⟨x,−c⟩ + j⟨x,−c+1⟩ + j⟨x,−c−1⟩ = 0
as ⟨x,1⟩ ≠ 0. Now if x0 + x1 + x2 = 0,

√
33
f̂V1(x) = j⟨x,c⟩ + j⟨x,c+1⟩ + j⟨x,c−1⟩ + j⟨x,−c⟩ + j⟨x,−c+1⟩ + j⟨x,−c−1⟩

= 3j⟨x,c⟩ + 3j−⟨x,c⟩

= 6 Re
(
j⟨x,c⟩

)
Since x0 + x1 + x2 = 0, x is either monochromatic or trichromatic.

• If x is monochromatic then Re
(
j⟨x,c⟩

)
= 1 so

√
32
f̂V1(x) = 6.

• If x is trichromatic then Re
(
j⟨x,c⟩

)
= −1/2 so

√
33
f̂V1(x) = −3.
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Hence, the tensor product gives

∀x ∈ F3
E• f̂V (x) =


1

√
32m 6∆1(x)(−3)∆3(x) if ∀v ∈ V (G•) deg(v) = 3 ⇒

∑
e∋v
x(e) = 0

0 otherwise
where ∆1(x) (resp ∆3(x)) is the set of degree 3 vertices of G• that are monochromatic (resp
trichromatic). Now, since G is cubic, m = 3n/2 so

∀x ∈ F3
E• f̂V1(x) ̸= 0 ⇒ f̂V (x) = 3 −n

2 2∆1(x)(−1)∆3(x)

Let us now compute f̂E . As usual, we start by the case of a single degree 2 vertex. Let
G1 be the graph P3. By Prop 2.2.3, we have that

∀x ∈ F3
2 √

32
f̂E1(x0, x1) =

{
3 if x0 = x1
0 otherwise

Hence,

∀x ∈ F3
E•

√
32m

f̂E(x) =
{

3m if ∀v ∈ E |{x(e) : e ∈ E• ∧ e ∋ v}| = 1
0 otherwise

Let us compute
〈
f̂V , f̂E

〉
. Observe that for every x ∈ F3

E• , f̂V (x)f̂E(x) ̸= 0 if and only
if every degree 3 vertex is either monochromatic of trichromatic and every degree 2 vertex
is monochromatic. In such case, x can be thought of as a semi good edge coloring of G (see
Figure 2.13). 〈

f̂V , f̂E

〉
= 3 −n

2 × 1
√

32m

∑
x∈SGC3(G)

2∆1(x)(−1)∆3(x)3m

= 3 −n
2

∑
x∈SGC3(G)

2∆1(x)(−1)∆3(x)

which concludes the proof as
〈
f̂V , f̂E

〉
= ⟨fV , fE⟩.
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Figure 2.13: Some valid Fourier labelling for the subdivided prism





Chapter 3

A kernel for cograph edge editing

Our study of the power graphs has lead us to the Fourier analysis on graphs introduced in
Section 2.1. We proved that those graphs have interesting properties as in Theorem 1.8.15
or in Theorem 1.4.1. It is natural to wonder which other properties of the ground graphs
are also true for its power graphs. For instance, is the pathwidth, treewidth, clique-with,
“whatever”-width an invariant? What about the homology of a power graph given the
homology of its ground graph1? Although natural, those questions are far from being
trivial because power graphs are hard to understand in a combinatorial way. Another
natural question is the following: what if we slightly change the ground graph? How are
its power graphs affected? Assume for instance that one wants to make G a cograph, that
is a graph with no induced P4, a simple and well studied class of graphs. The goal is
to edit as few edges of G as possible. How does this translate into, say, Zχ(G)

G? This
question is, again, quite difficult. We did study the cograph editing problem with this in
mind. We found a O(k2 log k) vertex kernel for cograph edge editing. This improves the
cubic kernel found by Guillemot, Havet, Paul and Perez [17] which involved four reduction
rules. We generalize one of their rules, based on packing of induced paths of length four,
by introducing t-modules, which are modules up to t edge modifications. The key fact is
that large t-modules cannot be edited more than t times, and this allows to obtain a near
quadratic kernel. The extra log k factor seems tricky to remove as it is necessary in the
combinatorial lemma on trees which is central in our proof.

1Recall that the so called “ground graph” is unique by Theorem 1.8.9.
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3.1 Introduction

A particularly large class of graph algorithmic questions can be seen as modification prob-
lems. Such problems are defined by a target class of graphs C and the types of modifications
allowed on a graph, such as vertex deletion or edge addition for example. The question is,
given an input graph G, to find the minimum number of such modifications to be performed
on G in order to obtain a graph H ∈ C. For instance, the very popular vertex-cover problem
can be seen as a vertex deletion problem in which one wants to reach the class of edgeless
graphs. Also, the feedback-vertex-set problem can be seen as vertex deletion toward the
class of forests.

In these two examples, allowing vertex additions would not make sense as adding vertices
would not help to reach the target class. The situation is the same for all hereditary target
classes, i.e. classes closed by induced subgraphs, which turns out to be a property shared
by the vast majority of the target classes considered in modification problems (see [24]
for example). For the case of edge modification problems, which we consider here, the
situation is quite different as both deletion and addition of edges may help in order to reach
some hereditary target class. Consequently, three kinds of edge modification problems are
classically considered: the deletion problem, in which only deletion of edges is allowed, the
completion problem, allowing only addition of edges and the editing problem, where both
addition and deletion are allowed. The question asked by edge modification problems is
very natural in the sense that one can assume that the input graph G is a noisy version
of a graph H of C in which a small set S of k pairs of vertices has been modified [26].
This is the reason why several edge modification problems are successfully used in practice
to analyse real-world datasets. As an example of this success, the community detection
problem, which is a central topic in complex networks analysis, is formalised by the cluster
editing problem [32], which asks whether it is possible to edit at most k pairs of vertices to
make the input graph a disjoint union of cliques, also known as cluster graphs.

Unfortunately, most edge modification problems, including cluster editing, are NP -hard,
even if the target class is very simple [26]. One striking example of this is the NP -hardness
of the editing problem toward the class of graphs that are the disjoint union of a single
clique and an independent set, called clique + independent set. In order to deal with
this difficulty of computation, edge modification problems have often been studied in the
framework of parameterized complexity, see [11] for a survey on the topic. In this framework,
the complexity one wants to reach is f(k)nc, where c is a constant and k the maximum
number of edits allowed in the decision problem, and not the obvious O(nk) one can obtain
by brute force. A common technique to design such algorithms, called FPT (for Fixed
Parameter Tractable), is kernelization. A kernel is a preprocessing algorithm aiming at
reducing in polynomial time (in n) the instance of a problem to an equivalent instance of
size bounded by f(k). Such a kernel is said to be polynomial whenever its size f(k) is
(at most) polynomial in k. It is well-known that a problem is FPT if and only if it has a
kernel [15], but not all FPT problems admit a kernel of polynomial size [7] (under some
complexity hypothesis). The research for compact kernels for edge modification problems
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is very flourishing [11] and has achieved remarkable results. For example, there exists a
2k vertex kernel for cluster editing [8, 9] and very recently, [4] designed a sublinear vertex
kernel for edge deletion to clique + independent set, which is the first and, up to this day
only, sublinear vertex kernel for an edge modification problem.

Here, we aim at designing a kernel for the editing problem toward the class of cographs,
which is a proper and natural generalisation of the two classes mentioned above. Indeed,
cographs are the graphs obtained from single vertices under the closure of two operations:
the disjoint union of graphs and their complete union2. Equivalently, they can also be
defined as the graphs with no induced P4 (path on four vertices). Then, the purpose of
the editing problem is that no induced path on four vertices can be found in the edited
graph H. Cographs have received a huge amount of attention in algorithmic graph theory
and have been shown to admit very efficient solutions to various problems. For instance,
Liu et al prove in [23] that the cograph editing problem is FPT. More recently, Hellmuth
et al designed in [19] an FPT algorithm for the cograph editing problem that operates on
the modular decomposition of the input graph. Related to our concern here, Guillemot et
al [17] proved that all the three edge modification problems toward the class of cographs
admit a cubic vertex kernel. This kernel size may still appear a bit large compared to the
linear and sublinear vertex kernels mentioned above for two subclasses of cographs, but the
solution proposed in [17] to reach this cubic size is actually already far from being obvious.
Nevertheless, there may still be some room for improvement as it seems that the cubic
size instances provided in [17] in which none of the reduction rules apply can be reduced
further. This is the goal of this paper. Our hope is that a finer analysis of this (rather
simple) problem could provide some new reduction rules, maybe useful for other classes.
Our main idea is to provide tools in order to roughly localize where edits should happen.
More precisely, we provide upper bounds on the number of edits performed across a cut
(X,V \X). For this, we relax the notion of module to some approximate version (t-module),
and argue that not too many edits can cross a t-module. One very nice property of the
resulting reduction rule is that it can apply independently of the possibly large value of k,
which is crucial in practice to reduce difficult instances.

3.2 Notations

Let G = (V,E) be a graph and S be a subset of pairs of vertices of G. We call edit of G
by S the graph G′ obtained from G by changing the adjacency relation of the elements of
S, i.e. G′ differs from G for every pair of vertices in S and coincides for the pairs not in
S. More formally, G′ = (V,E △ S). Since all the graphs that we will consider are simple
graphs, such a set S will always satisfy that (x, y) ∈ S if and only if (y, x) ∈ S. The general
editing problem for a fixed class C of graphs is, given an input graph G and an integer k,
to ask for the existence of an edit H of G by some set of pairs S of size at most k such that
H ∈ C. This is the parameterized version of C-editing problem.

2The complete union of two graphs G1 and G2 is their disjoint union plus all the possible edges between
G1 and G2.
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In this paper we are interested in the case where C is the class of cographs. A cograph
is a graph which does not contain any induced P4 (where P4 is the path on four vertices).
Figure 3.1 shows an example of a cograph and an example of a graph that is not a cograph
with an induced P4 in dotted red.

(a) not a cograph (induced P4 in dotted red) (b) a cograph

Figure 3.1: Example of a cograph and a counter example

Observe that H is an edit of G by S whenever G is an edit of H by S. Taking the opposite
point of view will be useful as we understand better the structure of H since it is a cograph.
Though, all along this paper H is a cograph on vertex set V and G is an edge editing of H
by a set S of pairs of vertices of size at most k. Given a subset X of vertices, we denote
by δ(X) the set of pairs of vertices xy where x ∈ X and y /∈ X. The set of neighbors of
a vertex x is denoted by N(x) and if X ⊆ V , N(X) = ⋃

x∈X
N(x). When X is a subset of

vertices of a graph G, we denote by G[X] the subgraph induced by G on X.
Since cographs are exactly the graphs that can be built from isolated vertices using only

fulljoins (⊕) and disjoint unions (+), the most useful characterization of cographs is their
cotree. Precisely, for any cograph H, there exists a rooted tree T whose leaves are identified
to the vertices of H and whose internal vertices have at least two children and are labelled
by + or ⊕. Such tree explains how the cograph can be built as a sequence of disjoint unions
and fulljoins starting from isolated vertices. Moreover, two vertices x, y form an edge of H
if and only if their closest ancestor is labelled ⊕. A proof of this result can be found in [10].
There are several possible choices for this tree T , but there is a canonical one if every child
of a node labelled + has label ⊕ and every child of a node labelled ⊕ has label + (see [10]).
For instance, the cotree of a clique has a unique internal node labelled ⊕. Another cotree
for a less specific example is shown on Figure 3.2.
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Figure 3.2: A cograph and its cotree

3.3 Reduction rules
In [17], the authors show that the cograph editing problem has a cubic kernel. Their
reduction rules are mainly based on two features: the induced copies of P4 in G, and the
modules of G. A module is a set of vertices X such that all vertices in X have the same
neighborhood in V \X. We say that two vertices are twins if they form a module. Figure 3.3a
gives an example of a module in some graph and Figure 3.3b a counter example. In this
counter example, observe that we can make the set X inside the dotted circle a module by
editing 2 edges. We say that X is a 2-module since it is a module up to (at most) 2 edge
edits. In order to define our new reduction rule, we will need this notion of t-module.

Lemma 3.3.1. Let G = (V,E) be a graph and X ⊆ V be a module of G. An induced P4

• either is included in X

• or is included in V \X

• or has exactly one vertex in X

Proof. Let P be a P4 that is an induced subgraph of G. Observe that V (P ) ∩ X is a
module of P . The modules of P are the empty set, singletons and P itself which proves the
Lemma.

The crucial fact shown in [17] is that for every module X in G, one can assume that X
remains a module in some minimum cograph edit H. Here is a sketch of the argument.
Assume that S is a minimum cograph set of edits of G so that H = (V (G), E(G) △ S) and
X is a module of G. We consider a vertex x ∈ X which is incident to the least number
of pairs in S ∩ δ(X). We now modify S to S′ in such a way that all vertices in X have
the same neighborhood as x in V \ X. The new graph G′ = (V (G), E(G) △ S′) that we
obtain has no P4 since the only copy C of some P4 we could have created by modifying S
intersects both X and V \ X. But X is a module of G′, so C has only one vertex in X
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(a) a module (b) not a module

Figure 3.3: Example and counter example of modules

by Lemma 3.3.1, for instance x, which is impossible since C would be an induced P4 in H.
Therefore this new edit has at most as many edited pairs as S and leaves X a module. In
particular, if X has size more than k, there is no edited pair in δ(X).

We are now ready to introduce our reduction rules to apply to (G, k). We took the three
first reduction rules of [17] (see Rule 5, Rule 6 and Rule 7) and slightly change them to fit
our needs. In particular, we use the notion of comodule which proves to be convenient for
writing our proof. A module M is a comodule if either N(M) = ∅ or N(M) = V \ M .
Despite the fact that our three first rules are a bit different from these of Guillemot et al,
a graph G is reduced under our three first rules whenever it is reduced under the rules
of Guillemot et al. A proof of this fact can be found in Proposition 3.7.1. Moreover,
up to adding an extra rule that is not useful for our kernel, the converse also holds (see
Proposition 3.7.3).
Reduction rule 1. (comodule rule) If G has a comodule C which induces a cograph, remove
C.

The safeness of this rule is clear since if we do not edit any pair incident to C, no P4
can intersect C.
Reduction rule 2. (module reduction rule) If G has a module M of size |M | > k+1 inducing
an independent set, reduce M to size k + 1.

This rule is also safe since we can assume that M remains a module, and since its size
is at least k + 1, no pair of δ(M) can be edited.
Reduction rule 3. (module extraction rule) If X is a module of G which is not a comodule
and such that G[X] contains an edge, add a disjoint copy of G[X] to G (no edge between
them) and replace the original G[X] by an independent set of size |X|.

This is a very clever rule since it adds new vertices to G, which is precisely the opposite
idea of kernelization! To understand its safeness, consider a moduleX that is not a comodule
and such that G[X] contains an edge. Since X is a module, we know by Lemma 3.3.1 that
any induced P4
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• either is included in X

• or is included in V \X

• or has exactly one vertex in X

The induced P4 included in X are kept by Rule 3 since we add a copy of G[X] to the original
graph. The induced P4 included in V \ X are unchanged. The induced P4 crossing X are
still present after Rule 3 since we only remove internal edges of X and by Lemma 3.3.1,
such a P4 has no edge inside X. Therefore, the cotree (see [10]) has been simplified since
we “pushed G[X] to its root”.

After applying these three rules until none of them apply, the only modules of G which
are not independent sets are comodules. Hence we will always assume that our input (G, k)
is reduced under these rules before applying our new reduction rule.

The cubic kernel in [17] is obtained by adding a last rule: If G has k+ 1 induced copies
of P4 pairwise only intersecting on vertices x, y, then edit xy and decrease k by 1. This rule
is clearly safe since if xy is not edited, some P4 will survive. However, the fact that this
rule is really different in nature from the others three leaves too much slack, and results in
the cubic bound. The key is to be able to deduce that xy must be edited, even though we
only have ℓ + 1 copies of P4 where ℓ is smaller than k. We need for this to be able to say
that fewer editions than k are permitted in some zone of the graph G. Unsurprisingly, this
can be achieved via a relaxation of the notion of module.

3.4 The fourth rule: budget and t-modules
The key here is to introduce some control on how many editions can be done across a cut.
The budget of a set X of G is the minimum b such that all minimum cograph edits S of G
satisfy |S ∩ δ(X)| ≤ b.

A t-module in G is a set of vertices X of G such that by editing a set T of at most t
pairs in G, we obtain G′ in which X is a module. We usually assume that T is minimal for
this property, in particular T is included in δ(X). Figure 3.3b shows a 2-module inside the
dots.

Lemma 3.4.1. Let X be a t-module such that |X| > k + t. If there exists a cograph edge
editing set of size k, then the budget of X is at most t.

Proof. Assume that there is an editing of G by T ⊆ δ(X) with size at most t in which X
is a module. Assume also that H is a minimum cograph editing of G by S with size at
most k. Since |(S ∪ T ) ∩ δ(X)| ≤ |S| + |T | ≤ k + t and |X| ≥ k + t + 1, there exists a
vertex x ∈ X which is not incident to any pair in (S ∪ T ) ∩ δ(X). Consider now the set
S′ := T ∪ (S \ δ(X)) and denote by G′ the edition of G by S′. Observe that X is a module
of G′. Indeed, all vertices of X have the same neighborhood in V \ X since they coincide
with the one of x. Hence, by Lemma 3.3.1, the only copies of P4 which intersects δ(X)
have exactly one vertex in X but this is impossible since there would be a P4 in H using x.
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Indeed, δ({x}) is the same in H and G′ since x is not incident to any pair in S nor T . So
G′ is a cograph, and thus |S′| ≥ |S| so t = |T | ≥ |S ∩ δ(X)| which proves that the budget
of X is at most t.

Note that testing if a set X is a t-module with size at least k + t + 1 can be done in
polynomial time since we can first guess the vertex x ∈ X which is not incident to the
edited edges, and then check if making X a module with the same neighborhood as x in
V \X involves at most t edits.

We now turn Lemma 3.4.1 into a reduction rule. A nested t-module of G is a partition
of its vertex set into five nonempty pairwise disjoint sets A,B,C,K, I such that:

• The three sets A, A ∪B and A ∪B ∪ C are t-modules and A has size |A| > k + t.

• The set B⊕ is the subset of B which is completely joined to A and to K and such
that there is no edge between I and B⊕.

• The set B+ is the subset of B which is completely joined to K and such that there is
no edge between A and B+ and no edge between I and B+.

• The set C⊕ is the subset of C which is completely joined to A∪B and to K and such
that there is no edge between I and C⊕.

• The set C+ is the subset of C which is completely joined to K and such that there is
no edge between A ∪B and C+ and no edge between I and C+.

• Each of the sets B⊕, B+, C⊕ and C+ have at least 3t+ 1 elements.

Figure 3.4 shows a representation of a nested t-module. Before stating the reduction
rule, let us observe that if one can provide the sets A,B,C,K and I, then the subsets
B⊕, C⊕, B+, C+ are polynomial to compute.
Reduction rule 4. (nested t-module rule) If none of the three first rules apply and if G has
a nested t-module, edit every edge between A and I and every non-edge between A and K.

Lemma 3.4.2. The nested t-module reduction rule is safe.

Proof. First, observe that if t = 0 then A ∪ B ∪ C is a module which is not a comodule.
Indeed, since K ̸= ∅ and B⊕ ̸= ∅, there is an edge between B⊕ and K. Moreover, since
I ̸= ∅ and B⊕ ̸= ∅, there is a non edge between B⊕ and I. Thus, A ∪ B ∪ C should
have been reduced by Rule 3 since it is not an independent set as A ̸= ∅ and B⊕ ̸= ∅ and
A ∩B⊕ = ∅. Now consider the case t > 0 and assume that there is an edge xy with x ∈ A
and y ∈ I. Denote by H a minimum cograph edition of G by S with size at most k. By
Lemma 3.4.1, there are at most t pairs of S between A and C⊕ ∪ B+ (A is a t-module of
size |A| > k+ t) and at most t pairs of S between I and C⊕ ∪B+ (A∪B ∪C is a t-module
of size |A ∪B ∪ C| > k+ t). We denote by C ′

⊕ (resp B′
+) the subset of C⊕ (resp B+) which

is not incident to one of these 2t pairs. These sets have size at least t+ 1 as |B+| > 3t and
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Figure 3.4: Structure of a nested t-module

|C⊕| > 3t. Since A ∪ B is also a t-module of size |A ∪B| > k + t, not every pair between
C ′

⊕ and B′
+ are edited so there exists an edge cb with c ∈ C ′

⊕ and b ∈ B′
+ such that cb /∈ S.

A representation of these vertices on a nested t-module can be found on Figure 3.4. In
particular, the only pair of vertices inside {c, b, x, y} which can be in S is xy. Since yxcb is
an induced P4, the pair xy must belong to S. The same argument holds for any non-edge
between A and K (replace C⊕ by C+ and B+ by B⊕ and consider c ∈ C+ and b ∈ B⊕ such
that cb /∈ S).

It is not clear that one can check if the nested t-module rule applies in polynomial time.
However, it suffices to be able to correctly guess the sets A,B,C,K, and I. We will see
later (in the proof of Claim 3.6.4) that this can be done in polynomial time.

Now that we have stated our four reduction rules, let us describe how our kernel works
on input G.
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1. Apply these four reduction rules in any order until none is applicable. This gives us
a graph G′.

2. If k is small (less than 560 as we will see in Corollary 3.6.5), do a brute force to check
whether G′ can be made a cograph with less than k edge editions.

3. If |V (G′)| is less than some bound in k (a O
(
k2 log k

)
that will be given in Corol-

lary 3.6.5), return G′. If not, return any negative instance of size less than k2 log k of
the cograph k-editing problem (which is answering “no”).

As we will see later, this algorithm runs in polynomial time in n = |V (G)| so it is a
kernel of size O

(
k2 log k

)
for the cograph k-edge editing problem.

3.5 The combinatorial lemma
In a rooted tree (or forest), a path which starts from a node and ends in one of its descendants
is a descending path (see Figure 3.5). We assume here that T is a rooted tree or a forest
which is edge-covered by a collection P consisting of k descending paths P1, . . . , Pk. We do
not assume that P is minimum, and there could be some multiple copies of the same path.
Given some constant c ≥ 1, we say that a descending path Q which is a subpath of some
Pi with at least one edge is c-sparse if it intersects at most |E(Q)| /c paths of P on at least
one edge. We start by giving a sufficient condition for T to have a c-sparse path in P in
the particular case where T is a path. This will be useful for our proof of Lemma 3.5.2.

Lemma 3.5.1. Let T be a rooted tree which is a path and P be a set of k (descending)
paths that covers all the edges of T . If |E(T )| ≥ 4ck then there exists a c-sparse path Q.

Proof. Consider a minimum cover C of T by some paths of P. Free to reorder the paths,
we assume that C is the set P1, . . . , Pr and that the starting point of Pi is an ascendant of
the starting point of Pj when 1 ≤ i < j ≤ r. Note that since C is a minimum cover, Pi is
disjoint from Pj whenever 1 ≤ i < j − 1 ≤ r. Now we partition C into Co (paths with odd
indices) and Ce (paths with even indices). Without loss of generality, we assume that the
sum of the numbers of edges of the paths in Co is at least 2ck. We will show that some path
Pi ∈ Co is c-sparse.

Assume by contradiction that every path Pi ∈ Co is not c-sparse, and thus intersects
di paths of P with di > |E(Pi)| /c. By the fact that C is a minimum cover, no path in P
intersects more than two paths in Co. Since the paths of Co are disjoint, the total number
of paths in P intersecting a path of Co is at least

r∑
i=1

di

2 >
r∑

i=1

|E(Pi)|
2c ≥ k

which is a contradiction.
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(a) a descending path (in dotted green) (b) not a descending path

Figure 3.5: A descending path in green and a non-descending path (in dotted red)

Figure 3.6: Example of a subdivided tree

If Lemma 3.5.1 would be true for trees, we could derive a quadratic kernel for cograph
edge edition. Unfortunately the following tree provides a counter example: consider a
balanced binary tree with k leaves where k is a power of 2. Now subdivide the two top
edges k/2 times, the four next edges k/4 times, etc. In the end, the edge connected to the
leaves are subdivided once. Figure 3.6 illustrates this procedure for k = 8.

The family P consists of all the k root-leaf paths. The total size of the tree T is3

Ω(k log2 k). Let us prove that T does not contain any 3-sparse path Q. By contradiction,
assume that there exists a 3-sparse path Q. By definition, Q is a subpath of some element
of P hence it is a descending path. Denote by u0 the first node of Q, by x its last node and
by u1 its first node of degree 3 or r if r ∈ V (Q). For u, u′ two nodes of Q, we denote by
Q[u, u′] the subpath of Q delimited by u and u′. Finally, let d be the number of paths of P
that Q intersects on at least one edge. Figure 3.7 helps to understand the following counts.
We have,

|E(Q)| = |E(Q[u0, u1])| + |E(Q[u1, x])|
The idea is to count the number of nodes on this path. In the end, |E(Q)| is equal to this
number minus 1. The number of nodes can be decomposed as the original nodes (say No)
plus the added nodes (say N+).

• If u0 = u1, then No is k minus the depth of u1. Hence, No = log2(d) + 2. To get N+,
one simply has to count the added vertices on the path Q:

N+ = 1 + 2 + 4 + · · · + d =
log2(d)∑

i=0
2i = 2d− 1

3More precisely, the tree has k log2(k) + 2k − 1 nodes.
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Figure 3.7: some non-3-sparse paths

In the end, |E(Q)| = |E(Q[u1, x])|
= No +N+ − 1
= log2(d) + 2 + 2d− 1 − 1

|E(Q)| = log2(d) + 2d
Hence, |E(Q)| < 3d which is a contradiction.

• If u0 ̸= u1, then

|E(Q[u1, x])| = log2(d) + d− 1
(replace 2d by d in the last count) and moreover, |E(Q[u0, u1])| ≤ d. Hence,

|E(Q)| ≤ d+ log2(d) + d− 1 < 3d
which is a contradiction.

This proves that Lemma 3.5.1 is not true anymore when T is not a path as we just
provided a counter example for c = 3. Hence it seems that an extra log2 k factor is needed
for trees, and we indeed show that it suffices.
Lemma 3.5.2. Let T be a forest and P be a set of k descending paths that covers all edges
of T . If |E(T )| ≥ 4ck(1 + log2 k) then there exists a c-sparse path Q.
Proof. We proceed by induction on k. The case k = 1 is clear since any subpath of P1 with
at least c edges is c-sparse. If T is a forest, say T is composed by the trees T1, . . . , Tr with
r ≥ 2, we define for all 1 ≤ i ≤ r, the set Pi of the paths of P whose vertices belong to Ti

and we denote by ki the size of Pi. Let us show that there exists Ti such that |E(Ti)| ≥
4cki(1 + log2 ki). Assume by contradiction that for all 1 ≤ i ≤ r, |E(Ti)| < 4cki(1 + log2 ki).
Then

|E(T )| =
r∑

i=1
|E(Ti)| < 4c

r∑
i=1
ki(1 + log2 ki) = 4ck + 4c

r∑
i=1
ki log2 ki

Since x 7→ x log2 x is convex on [ 1 ; k ],

∀x ∈ [ 1 ; k ] x log2 x ≤ k log2(k)
k − 1 (x− 1)

hence
r∑

i=1
ki log2 ki ≤ k log2 k

k − 1
r∑

i=1
(ki − 1)

≤ k log2(k) k − r

k − 1
< k log2 k (since r ≥ 2)
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Figure 3.8: exploding a tree with path R (in dotted red)

which leads to the contradiction |E(T )| < 4ck(1 + log2 k). We can now apply the induction
hypothesis to Ti. In what follows, we assume T to be a (rooted) tree.

Let us construct a descending path R of P which starts at the root r of T and such
that for every node u ∈ R, the child v of u whose subtree intersects the maximum number
of paths of P is in R. In other words, R follows the subtree that intersects the maximum
number of paths of P. If R has at least 4ck edges, we conclude by Lemma 3.5.1. If not, we
remove from T every edge and every vertex of R and for any node u of R and any v child
of u in T not in R, we add a new vertex v′ and add the edge v′v. We obtain a forest F as
illustrated on Figure 3.8. Observe that we can identify any new edge v′v with the old edge
uv and thus every connected component in the new forest is edge covered by P.

We denote by C1, . . . , Cp the connected components obtained. Observe that every com-
ponent intersects at most k/2 paths of P by our choice of R. For 1 ≤ i ≤ p we denote
by ki the number of paths of P intersecting the component Ci. There exist 1 ≤ i ≤ p so
that Ci has at least 4cki(1+log2 ki) edges (hence we conclude by the induction hypothesis).
Indeed, assume by contradiction that every Ci has strictly less than 4cki(1 + log2 ki) edges,
then the total number of edges in T satisfies

|E(T )| < 4ck +
p∑

i=1
4cki(1 + log2 ki) with

p∑
i=1
ki ≤ k and ki ≤ k/2 for all i

Since x 7→ x log2 x is convex on [ 1 ; k/2 ],

∀x ∈ [ 1 ; k/2 ] x log2 x ≤ k/2 log2(k/2)
k/2 − 1 (x− 1)

so
p∑

i=1
ki log2 ki ≤ k/2 (log2(k) − 1)

k/2 − 1

( p∑
i=1
ki − p

)
≤ k/2 (log2(k) − 1)

k/2 − 1 (k − p)

then 4ck +
p∑

i=1
4cki(1 + log2 ki) ≤ 4ck + 4ck + 4c k log2(k) − k

k − 2 (k − p)

≤ 4ck + 4ck + 4c(k log2(k) − k) since p ≥ 2
≤ 4ck(1 + log2 k)

Thus T has strictly less than 4ck(1 + log2 k) edges, a contradiction.
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3.6 The k2 log k kernel

In what follows, k is an integer, G has n vertices and H is a minimum cograph edit of G by
S where S has size at most k. Since our goal is to show a quasi-quadratic vertex kernel, we
assume moreover that n > k + 1, otherwise we would be done. Moreover, we assume that
none of the first three rules apply to G. Our goal is to show that the fourth rule applies if
G is large enough (more than a quasi-quadratic function of k). A vertex of G is edited if it
belongs to some pair in S.

We consider T to be the cotree of the cograph H. If u is a node of T , the set of
descendants of u which are leaves is denoted by De(u). We also see it as a set of vertices
of G. We now define a particular subtree T ′ of T induced by the nodes u such that
|De(u)| ≥ k + 2. It is indeed a subtree since we have De(u) ⊆ De(parent(u)) for all node
u which is not the root of T .

Lemma 3.6.1. The tree T ′ has at least n/(k + 1) − 2k nodes.

Proof. For u ∈ V (T ′), we denote by AT ′(u) the set of x ∈ De(u) such that the path from u
to x in T does not contain any node of T ′ except u. In other words, for a vertex x ∈ V (G),
we have that x ∈ AT ′(u) if and only if u is the closest ancestor of x in T that belongs to
T ′. Define

L(T ′) := {u ∈ V (T ′) | AT ′(u) ̸= ∅}
For u ∈ V (T ′), define Be(u) (resp Bn(u)) to be the set of children v of u in T such

that v /∈ V (T ′) and De(v) contains (resp does not contain) an edited vertex. Figure 3.9
illustrates this setting. Observe that

V (G) = ⋃
u∈L(T ′)

(( ⋃
v∈Be(u)

De(v)
)

∪
( ⋃

v∈Bn(u)
De(v)

))
Indeed, take x ∈ V (G) and consider its closest ancestor u in T which belongs to T ′. This
is well defined since V (T ′) ∋ r as n ≥ k + 2. Let v be the child of u on this path (we could
have v = x). By definition of u, we have that v /∈ V (T ′) and either v ∈ Be(u) or v ∈ Bn(u).
In both case, x ∈ De(v) so

V (G) ⊆
⋃

u∈L(T ′)

(( ⋃
v∈Be(u)

De(v)
)

∪
( ⋃

v∈Bn(u)
De(v)

))
Observe that since there are at most 2k edited vertices and since for all u ∈ L(T ′) and

all v ∈ Be(u), |De(v)| ≤ k + 1, we have that∣∣∣∣∣ ⋃
u∈L(T ′)

⋃
v∈Be(u)

De(v)
∣∣∣∣∣ ≤ 2k(k + 1)

Hence
∣∣∣∣∣ ⋃
u∈L(T ′)

⋃
v∈Bn(u)

De(v)
∣∣∣∣∣ ≥ n− 2k(k + 1)

Observe that the sets involved in the union on u ∈ L(T ′) are pairwise disjoint. Indeed, for
all x ∈ V (G) there exists a unique u ∈ L(T ′) such that x ∈ AT ′(u). So,
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Bn(u) Be(u)

De(u)

u

Figure 3.9: Structure of T ′ with an edited edge in dotted red

∑
u∈L(T ′)

∣∣∣∣∣ ⋃
v∈Bn(u)

De(v)
∣∣∣∣∣ ≥ n− 2k(k + 1)

Moreover, for all u ∈ L(T ′), the set ⋃
v∈Bn(u)

De(v) is a module as it does not contain any

edited vertex. Moreover, it is not a comodule as it would have been removed by Rule 1.
Hence, by Rule 2 and Rule 3, its size is at most k + 1. Hence,

|V (T ′)| ≥ |L(T ′)| ≥ n− 2k(k + 1)
k + 1 = n

k + 1 − 2k

The edited pairs xy in S can be analyzed with respect to the tree T . In particular, every
pair xy in S corresponds to the path Pxy of T which connects the leaves x and y. If we
denote by z the least common ancestor of x and y in T , we obtain two descending paths
Pzx and Pzy which form an edge-partition of Pxy. There are at most 2k such descending
paths in T called edit paths.

Lemma 3.6.2. Every edge of T ′ belongs to an edit path, except possibly k edges incident
to the root of T ′.

Proof. Let u ∈ V (T ′) and assume that u is not the root of T ′. Let p be its parent node.
Assume that the edge up does not belong to any edit path. Then De(u) is a module. By
definition of T ′, |De(u)| ≥ k + 2 > k + 1 so De(u) must be a comodule by Rules 2 and 3.
Hence, p is the root of T ′. This proves that every edge of T ′ not incident to its root belongs
to an edit path. Moreover, De(u) must contain an edited pair since it would have been
removed by Rule 1 otherwise. Hence, T ′ has at most k edges which does not belong to an
edit path and all of these edges are incident to its root.

Let us denote by T ′′ the forest obtained from T ′ when we remove the edges that does
not belong to an edit path. By definition, T ′′ is edge covered by the edit paths.
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Theorem 3.6.3. If T ′′ has a 51-sparse path with respect to the edit paths, then the nested
t-module reduction rule applies to G′. Moreover, one can detect such a nested t-module in
polynomial time.

Proof. Let Q0 be a 51-sparse path with respect to the edit paths. Recall that by definition,

• Q0 is a subpath of some edit path

• Q0 intersects (on at least one edge) at most ℓ edit paths

• 1 ≤ ℓ ≤ |E(Q0)| /51

We consider a subpath Q of Q0 with |E(Q)| = 51ℓ edges. For every node u of Q which
is not the first or the last node (and hence has a descendant u′ in Q), we define FQ(u) =
De(u)\De(u′). Such a node u is said to be free if FQ(u) does not contain any edited vertex.
In particular, FQ(u) is a module of G which is not a comodule since u is not the root of T
(it is not the first node of Q). Hence, by Rules 2 and 3, FQ(u) is an independent set. Let
us prove that any non-free node u ∈ V (Q) satisfies that u parent(u) or uu′ belong to an
edit path where u′ is the child of u in Q. First, if there exists an edited pair xy such that
x ∈ FQ(u) and y ∈ (V \De(u)) ∪De(u′) then

• either y ∈ V \De(u) in which case Pxy intersects Q on the edge u parent(u)

• or y ∈ De(u′) and so Pxy intersects Q on uu′.

In both cases, the edit path Pxy intersects Q hence intersects Q0. Now, let us assume by
contradiction that for every edited pair xy such that x ∈ FQ(u), y also belongs to FQ(u).
Define

S′ := {xy ∈ S | x /∈ FQ(u) ∨ y /∈ FQ(u)}
and observe that |S′| < |S| as there must exist an edited vertex in FQ(u). Denote by G′ the
edition of G by S′. Let us show that G′ is a cograph. Indeed, G′ coincide with H except on
FQ(u). Assume by contradiction that G′[FQ(u)] contains an induced P4 say x1, x2, x3, x4.
Since FQ(u) is an independent set in H (recall that T is the cotree of the cograph H),
each of the pairs x1x2, x2x3 and x3x4 belong to S as S′ ⊆ S. So we could have made G a
cograph with fewer edits by removing x1x2 from S. Moreover, observe that there cannot be
an induced P4 in G′ crossing FQ(u). Indeed, FQ(u) is a module of H (even an independent
set) and S \S′ ⊆ FQ(u)2. So, FQ(u) is also a module of G′. By Lemma 3.3.1, if an induced
P4 crosses a module, then it has only one vertex inside this module. Hence, this P4 is also
an induced P4 in H as S \ S′ ⊆ FQ(u)2. This contradicts the fact that H is a cograph.
Finally, G′ is a cograph which again contradicts the minimality of S.

This implies that Q cannot have more than 2ℓ non-free nodes since Q0 intersects per
definition exactly ℓ edit paths (two consecutive non-free nodes may correspond to the same
intersection).

Consider a free node u so that its child in Q is also free and u is labelled ⊕ (thus u′ is
labelled +). Since FQ(u) and FQ(u′) are independent sets, all vertices of FQ(u′) are children
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FQ(u) FQ(u′)

+

⊕ u

+ u′

⊕

+ u′′

+

x x′

Figure 3.10: Consecutive free nodes in the path Q drawn in dotted red

of u′ and all vertices of FQ(u) are children of u′′, a child of u not in Q (Figure 3.10 illustrates
this situation). Pick a vertex x ∈ FQ(u) and a vertex x′ ∈ FQ(u′). The crucial observation
is that V \De(u) is exactly the set of vertices y distinct from x and x′ such that {x, x′} is
a module of G[{x, x′, y}]. Indeed,

• the vertices of V \ De(u) have this property as both x and x′ are unedited and u is
labelled ⊕,

• the vertices in De(u′) \ {x′} are joined to x and not to x′

• and the vertices of FQ(u) \ {x} are joined to x′ and not to x.

Hence, if one provides x and x′, we can compute De(u) in polynomial time (in n). In the
following, we refer to such a couple (u, u′) in Q as a cut.

Fact 3.6.4. There exists a cut in any subpath of Q that has at least 8ℓ edges.

Proof. Let Q′ be a subpath of Q that has at least 8ℓ edges. It suffices to show that there
exists three consecutive nodes in Q′ that are free (either a sequence +,⊕,+ or a sequence
⊕,+,⊕). Assume by contradiction that every sequence of three consecutive nodes in Q′

contains a non-free node. Then, the number of intersections between Q′ and some edit
paths is at least

1
2 × |V (Q′)|

3 ≥ 1
2 × 8ℓ

3 = 4ℓ
3 > ℓ

which contradicts the fact that Q0 intersects at most ℓ edits paths.

We now pick three cuts (u, u′), (v, v′) and (w,w′) in Q such that (u, u′) is chosen in the
range J 43ℓ ; 50ℓ K (set of integers between 43ℓ and 50ℓ) so among the 9ℓ last nodes of Q
but not among the ℓ last ones, (v, v′) are in the middle of Q (precisely chosen in the range
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⊕

+

⊕ w

+ w′

⊕

+

⊕ v

+ v′

⊕

+

⊕ u

+ u′

⊕

+

+

+

z z′

y y′

x x′

Figure 3.11: Representation of our nested ℓ-module (the path Q is in dotted red)

J 23ℓ ; 30ℓ K) and (w,w′) are chosen in the first 10ℓ nodes ofQ but not among the 2ℓ first ones
(in the range J 3ℓ ; 10ℓ K). Take x ∈ FQ(u), x′ ∈ FQ(u′), y ∈ FQ(v), y′ ∈ FQ(v′), z ∈ FQ(w)
and z′ ∈ FQ(w′). Define A := De(u), then B := De(v)\A and finally C := De(w)\(A∪B).
The vertices of V (G) \ (A ∪ B ∪ C) (which is equal to V \ De(w)) which are connected to
x form the set K, and the other vertices form the set I. Figure 3.11 illustrates how these
elements are distributed on the tree T .
By construction, these five sets are pairwise disjoint. Moreover, A,B and C are nonempty.
Let us check that K ̸= ∅ and I ̸= ∅. Since w is not the first node of Q, it has a parent
p and p is labelled +. Consider t ∈ De(p) \ De(w) and observe that since x is not edited,
t is not connected to x. Hence, I ̸= ∅. Moreover, p is not the first node of Q (we took
w not among the first 2ℓ nodes of Q) so it has a parent p′ and p′ is labelled ⊕. Consider
t′ ∈ De(p′) \De(p) and observe that t′ is connected to x. Hence, K ̸= ∅.

Observe that A, A ∪B and A ∪B ∪ C are ℓ-modules of size at least k + ℓ+ 1. Indeed,
since Q intersects at most ℓ edit paths, there is less than ℓ edges to edit to make any of them
a module. Moreover, let us show that A (hence A∪B and A∪B ∪C) has at least k+ ℓ+ 1
elements. Let γ be the last node of Q. Since γ ∈ V (T ′), we have that |De(γ)| > k + 1.
Observe that De(γ) ⊆ De(u) = A and that u has at least ℓ descendants in Q since we did
not take u among the last ℓ nodes of Q. So there exists ℓ−1 vertices of G in De(u)\De(γ).
Hence, |A| ≥ k + 1 + ℓ.

Another important point is that A,B,C,K and I can be constructed if one correctly
guesses (in time O

(
n6)) the six vertices x, x′, y, y′, z and z′. Indeed, we proved that V \ A

which is V \De(u) is exactly the set of vertices t distinct from x and x′ such that {x, x′} is
a module of G[{x, x′, t}]. In other words, since both x and x′ are not edited,

A = {a ∈ V | ax ∈ E(G) ∧ ax′ /∈ E(G)} ∪ {a ∈ V | ax /∈ E(G) ∧ ax′ ∈ E(G)}
Similarly, B and C can be constructed in polynomial time given y, y′, z and z′.
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Let us define the sets B⊕, C⊕, B+ and C+ as in the definition of nested t-module. We de-
note by U⊕ the subset of internal nodes of the subpath Q[v′, u] which are free and labelled ⊕.
Since Q[v′, u] has at least 12ℓ internal nodes and since there are at most 2ℓ non-free nodes,
the size of U⊕ is at least 12ℓ/2−2ℓ = 4ℓ. Observe that for any α ∈ U⊕, FQ(α) is completely
joined to K and to A and there is no edge between I and FQ(α). Moreover, FQ(α) ⊆ B by
definition. Hence,

B⊕ ⊇
⋃

α∈U⊕

FQ(α)

which proves that |B⊕| ≥ 4ℓ > 3ℓ. We prove in a similar manner that the sets B+, C⊕
and C+ have size at least 3ℓ + 1. Recall that we can construct B⊕, B+, C⊕ and C+ in
polynomial time if we are provided A,B,C,K and I. Therefore, if indeed A,B,C,K, I is a
nested ℓ-module, we can find it in polynomial time.

In order to show that the t-module rule applies, we need to check that there is at least
one edge or one non-edge to edit. In other words, we have to prove that there is either an
edge between A and I or a non-edge between A and K in G. Since Q is an edit path, there
exists a ∈ A and s ∈ V \ (A ∪ B ∪ C) such that as ∈ S. Since V \ (A ∪ B ∪ C) = K ∪ I,
either s ∈ K and in that case as is a non-edge in G or s ∈ I and as is an edge. In both
cases, the t-module rule applies.

Corollary 3.6.5. Cograph editing has a vertex kernel of size O
(
k2 log k

)
.

Proof. We assume that we apply the three first rules until none is applicable. We consider
the cotree T of H and the forest T ′′ as previously defined. Recall that T ′′ is obtained from
T ′ by removing every edge of T ′ which does not belong to an edit path. By Lemma 3.6.2,
there are at most k such edges. Since the value of k can be supposed larger than some fixed
constant, say k ≥ 560 here (otherwise we conclude by brute force), we can assume that the
number of edges in T ′′ is at least

n

k + 1 − 2k − 1 − k ≥ 409k2(1 + log2 2k)
k + 1 − 3k − 1 ≥ 408k(1 + log2 2k)

The forest T ′′ is covered by at most 2k edit paths, so, by Lemma 3.5.2, it contains a 51-
sparse descending path, and we conclude by Theorem 3.6.3. If k ≥ 560 and n ≥ 409k2(1 +
log2 2k) and if none of our four rules is applicable, we return any graph of size at most
409k2(1 + log2 2k) which cannot be made a cograph with less than k edge editions (this
is returning « no »). Hence, we have designed a polynomial time (in n) algorithm that
transforms any graph Gin into a graph Gout of size at most 409k2(1 + log2 2k) such that
Gin and Gout are equivalent instances of the cograph k editing problem.

3.7 Link with the rules by Guillemot et al

We reproduce here the three first reduction rules given by Guillemot et al in [17] for com-
pleteness.
Reduction rule 5. Remove the connected components of G which are cographs.
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Reduction rule 6. If C = G1⊕G2 is a connected component of G, then replace C by G1+G2.
Reduction rule 7. If M is a non-trivial module of G which is strictly contained in a connected
component and is not an independent set of size at most k + 1, then return the graph
G′ + G[M ] where G′ is obtained from G by deleting M and adding an independent set of
size min{|M | , k + 1} having the same neighborhood as M in G.

We will see that if a graph is reduced under these three rules of Guillemot et al, it is
also reduced under our three first rules.

Proposition 3.7.1. A graph G is reduced for our three first rules whenever it is reduced
under Rule 5, Rule 6 and Rule 7.

Let us first prove a simple property of comodules.

Lemma 3.7.2. Let G be a graph and let C be a comodule of G such that N(C) = V \ C.
Then,

G = G[C] ⊕G[V \ C]
Moreover, if C ̸= ∅ and C ̸= V , then G is connected.

Proof. If C = ∅ or V \ C = ∅, then the equality is clear. Otherwise, take x ∈ C and
y ∈ V \C. Since N(C) = V \C, there exists u ∈ C such that uy ∈ E. Since C is a module,
xy ∈ E. Hence,

G = G[C] ⊕G[V \ C]
Let us assume that C ̸= ∅ and C ̸= V . We will prove that G is connected. Consider

u, v ∈ V . Since G = G[C] ⊕G[V \ C],

• if u ∈ C and v ∈ V \ C, then we have that uv ∈ E,

• if u ∈ C and v ∈ C, take x ∈ V \C and observe that ux ∈ E and that vx ∈ E, hence,
u and v are connected by a path.

• if u ∈ V \ C and v ∈ V \ C, take x ∈ C and observe that vx ∈ E and ux ∈ E, hence,
u and v are connected by a path.

Let us now prove Proposition 3.7.1.

Proof. Let G be a graph that is reduced under Rule 5, Rule 6 and Rule 7.
Assume by contradiction that Rule 1 applies. Then, there exists a comodule C that

induces a cograph in G.

• If N(C) = ∅, then Rule 5 applies inside C as C is a disjoint union of connected
components of G (and C ̸= ∅ since otherwise no rule applies to C): contradiction.



3.7. LINK WITH THE RULES BY GUILLEMOT ET AL 145

• Otherwise, N(C) = V \ C, we have, by Lemma 3.7.2 that

G = G[C] ⊕G[V \ C]
Moreover, since C ̸= V (otherwise Rule 5 applies) and C ̸= ∅ (otherwise no rule
applies to C), we have that G is connected. Hence, Rule 6 applies: contradiction.

Assume by contradiction that Rule 2 applies. Then, there exists a module M in G such
that |M | > k + 1 and M is an independent set.

• If N(M) = ∅, then take any vertex v ∈ M (again, M ̸= ∅ as Rule 2 applies). Such
a vertex is by itself a connected component of G that induces a cograph. So, Rule 5
applies.

• Otherwise, since M is a module,

∃x ∈ V \M ∀v ∈ M vx ∈ E

Hence, M is a non-trivial module that is not an independent set of size at most k+ 1
(we assumed that |M | > k+1) and M is strictly contained in a connected component
of G so Rule 7 applies: contradiction.

Assume by contradiction that Rule 3 applies. Then, there exists a module X of G such
that X is not a comodule and G[X] contains an edge. Since X is a not a comodule, there
exists x, y ∈ V \X such that

∀v ∈ X vx ∈ E ∧ vy /∈ E
Let H be the connected component of x. We have that X is strictly contained in H. Besides,
X is a non-trivial module and is not an independent set as G[X] contains an edge. Hence,
Rule 7 applies: contradiction.

There exists graphs that are reduced under our three first reduction rules but not under
Rule 5, Rule 6 and Rule 7. For instance, consider a graph that is a fulljoin between two P4:
it is reduced under our rules but Rule 6 applies. In order to have the equivalence, we can
add the following rule:
Reduction rule 8. If G = X ⊕ Y , replace G by X + Y .

Proposition 3.7.3. Let G be a graph. If G is reduced under Rule 8, Rule 1, Rule 2 and
Rule 3, then it is reduced under Rule 5, Rule 6 and Rule 7.

Proof. Let G be a graph that is reduced under Rule 8, Rule 1, Rule 2 and Rule 3.
Assume by contradiction that Rule 5 applies. Then, G has a connected component C

that is a cograph and Rule 1 applies: contradiction.
Assume by contradiction that Rule 6 applies. Then, there exists a connected component

C of G such that
C = G1 ⊕G2

where G1 and G2 are subgraphs of G.
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• If C = G then Rule 8 applies: contradiction.

• Otherwise, C is a comodule.

– If C is a cograph, then Rule 1 applies: contradiction.
– Otherwise, C has an induced P4. Observe that G1 and G2 are modules. Hence,

by Lemma 3.3.1, such a P4 is either included in G1 or included in G2. Assume,
without loss of generality that it is included in G1. Then, G1 is a module that
is not a comodule and such that G[G1] contains an edge. Hence, Rule 3 applies:
contradiction.

Assume by contradiction that Rule 7 applies. Then, there exists a non-trivial module
M strictly contains in a connected component of G such that M is not an independent set
of size at most k + 1.

• If M is an independent set, then |M | > k + 1 and Rule 2 applies: contradiction.

• Otherwise, G[M ] contains an edge.

– If M is a comodule, then, since N(M) ̸= ∅, we have, by Lemma 3.7.2, that
G = G[M ] ⊕G[V \M ]

and Rule 8 applies: contradiction.
– Otherwise, M is a module that is not a comodule and such that G[M ] contains

an edge. Hence, Rule 3 applies: contradiction.
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Conclusion

In this thesis, we developed algebraic tools in order to study combinatorial problems on
graphs, mainly about coloring.

First, we defined power graphs, a structure that enhances the ground graph G. We did
study essentially to kinds of power graphs:

• Zk
G, in which Nullstellensatz certificates have a combinatorial meaning in terms of

edge-cliques

• Fq
G, when q is a non trivial power of a prime number, which we proved to be a

different object in general (see Proposition 1.4.5)

Those graphs have interesting properties in general and allow us to have, whenever G is
not k-colorable, a generic certificate of non k-colorability (see Theorem 1.3.6). However, in
order to prove it, we made two distinct proofs: one for Zk

G and another for Fk
G. The former

uses Nullstellensatz whereas the latter relies on the property that, in a field, a product of
two non zero elements cannot be zero. Thanks to this property that we do not have in
Zk (except1 if k is prime), we proved that χ(G) ≤ q ⇔ χ

(
Fq

G
)

≤ q (see Theorem 1.4.1).
We did study the structure of power graphs and did wonder about edge editing of those
constrained structures. When working on edge editing, we improved a result of Guillemot
et al ([17]) by providing a O(k2 log k) kernel for the edge editing problem on cographs.

When studying the k-colorings of Γk
G, we found that this graph could also be used in

order to prove colorability results. Indeed, one can make a certificate of absence of edge-
clique certificate. This is what we called precoloring. The existence of a non zero precoloring
for Zk

G or Fk
G provides a proof that χ(G) ≤ k. Moreover, the set of all precolorings is a

linear space. Finding a basis was then a natural goal.
We found such a basis for the precolorings in C (see Proposition 2.2.11) and discovered

a link with Fourier matrices. The vectors of that basis are nothing but Fourier transform
of the indicator vectors of the good k-colorings of G. Unfortunately, these vectors are hard

1A finite ring that is an integral domain is a field.

147



148 CHAPTER 4. CONCLUSION

to understand and to manipulate as there support is maximal. However, by making some
well chosen linear combinations, we managed to create rather simple precolorings for usual
graphs like cycles.

This allows for a new proof method in case one wants to prove colorability results on
graphs that naturally decompose as the union of two graphs G1 ∪ G2 on the same vertex
set. Indeed, if the inner product of two precolorings f (for G1) and g (for G2), is non zero,
then, there must exists a k-labelling that is a proper coloring for both G1 and G2. Although
promising, this method is hard to use in practice. Indeed, arguing that the inner product is
non zero is the tricky part: we must find “good” precolorings, which is also hard. Moreover,
it could be that we are unlucky and that the two chosen precolorings are orthogonal. Using
this technique, we managed to prove the Erdös conjecture on cycle+triangle , which has
already been proven by Fleischner and Stiebitz in [30].

We hope that, despite the fact that some proofs which are usually straightforward
becomes hard with Fourier, this is because Fourier proofs are really different from combina-
torial ones. Perhaps, some results which have complex combinatorial proofs will be easier
with Fourier. The uncertainty principle allows us to hope that small support in the real
worlds (which means, only a few solutions), translates to big support in the Fourier world.



Appendix A

Useful lemma

A.1 Some useful lemma

A.1.1 Definitions

Definition A.1.1. Let E be a K-linear space. A bilinear form is a map ⟨•, •⟩ : E×E → K
such that for every x ∈ E, both ⟨x, •⟩ and ⟨•, x⟩ are linear. We say that ⟨•, •⟩ is symmetric
whenever

∀x, y ∈ E ⟨x, y⟩ = ⟨y, x⟩
We define Ker ⟨•, •⟩ := {x ∈ Kn : ⟨x, •⟩ = 0}. We say that ⟨•, •⟩ is non degenerate

whenever Ker ⟨•, •⟩ = {0}.

Definition A.1.2. Let K be a field and n ≥ 1 an integer. We define the bilinear form
⟨•, •⟩ : Kn × Kn → K by

∀((x1, · · · , xn), (y1, · · · , yn)) ∈ Kn × Kn ⟨(x1, . . . , xn), (y1, . . . , yn)⟩ =
n∑

i=1
xiyi

Fact A.1.3. This bilinear form is symmetric and non degenerate.

Warning. This bilinear form could have non zero isotropic vectors (vectors x such that
⟨x, x⟩ = 0). For instance, consider the vector full of 1 on Fp

p with p a prime number.

Definition A.1.4. Let K be a field, E be a K-linear space and ⟨•, •⟩ be a symmetric bilinear
form on E × E. If F is a subspace of E, then we define the linear subspace

F⊥ =
{
x ∈ E | ⟨x, •⟩|F = 0

}
Notation. If x ∈ E, we denote {x}⊥ by x⊥.

Warning. We always have that F⊥⊥ ⊇ F but without other assumptions on ⟨•, •⟩, it may
be that F ̸= F⊥⊥. Moreover, we could not have the usual property E = F ⊕F⊥. However,
if ⟨•, •⟩ is non degenerate and if E has finite dimension, then F⊥⊥ = F . If we also have
that ⟨•, •⟩ has no isotropic vector then E = F ⊕ F⊥.

149



150 APPENDIX A. USEFUL LEMMA

Definition A.1.5. Let E be a K-linear space and ⟨•, •⟩ a symmetric bilinear form. Let
(e1, . . . , ek) be a family of vectors of E. We say that the family (e1, . . . , ek) is orthogonal
whenever every pair or vectors of this family are orthogonal. More formally,

∀i, j ∈ J 1 ; k K i ̸= j ⇒ ⟨ei, ej⟩ = 0

Notation. When x and y are orthogonal (that is, satisfy ⟨x, y⟩ = 0), we write x ⊥ y.

Proposition A.1.6. Let E be a K-linear space of finite dimension and ⟨•, •⟩ be a bilinear
symmetric form. There exists an orthogonal basis for ⟨•, •⟩.

Proof. If ⟨•, •⟩ is the zero function then any basis of E is fine. Assume ⟨•, •⟩ ̸= 0. We do
an induction on the dimension n of E.

If n = 1 then any basis of E is fine. Assume the result to be true for every K-linear spaces
of dimension n. Consider a K-linear space E of dimension n + 1. Let v ∈ E \ {0}. Since
⟨•, •⟩ is non degenerate and v ̸= 0, ⟨v, •⟩ is not the zero linear form. Hence, H := Ker ⟨v, •⟩
is a hyperplane. By induction hypothesis (⟨•, •⟩|H×H is a symmetric bilinear form), there
exists an orthogonal basis of H, say (e1, . . . , en). Since v ̸= 0 and v /∈ H, E = H ⊕ Kv.
Hence, (e1, . . . , en, v) is a basis of E. Moreover, this basis is orthogonal by construction.

Definition A.1.7. Let E be a K-linear space of finite dimension. We define E∗ to be the
set of linear forms. In other words, E∗ is the set of every linear map from E to K.

Remark. The set E∗ is a K-linear space.

Lemma A.1.8. Let E be a K-linear space of finite dimension and ⟨•, •⟩ be a non degenerate
bilinear symmetric form.

∀f ∈ E∗ ∃!x ∈ E f = ⟨x, •⟩

Proof. By Proposition A.1.6, there exists an orthogonal basis of E (e1, . . . , en). For every
f ∈ E∗ and every x =

n∑
i=1
xiei ∈ E,

f(x) =
n∑

i=1
xif(ei) =

n∑
i=1
f(ei)xi =

(
n∑

i=1
f(ei)ei

∗
)

(x)

where ei
∗ is the coordinate function on ei. Since ⟨•, •⟩ is non degenerate and (e1, . . . , en)

orthogonal, we have that
∀i ∈ J 1 ; n K ⟨ei, ei⟩ ≠ 0

Indeed, assume by contradiction that for some i ∈ J 1 ; n K we have that ⟨ei, ei⟩ = 0. Then,
since ei is orthogonal to every vector of the basis, ei ∈ E⊥. However, because ⟨•, •⟩ is non
degenerate, this means ei = 0 and so (e1, . . . , en) cannot be a basis of E. It follows that

∀i ∈ J 1 ; n K ei
∗ = 1

⟨ei, ei⟩
⟨ei, •⟩

so f =
n∑

i=1
f(ei)

1
⟨ei, ei⟩

⟨ei, •⟩ =
〈

n∑
i=1
f(ei)

1
⟨ei, ei⟩

ei, •
〉

Assume that there exists x, y ∈ E such that f = ⟨x, •⟩ = ⟨y, •⟩. Then, ⟨x− y, •⟩ = 0
and so x = y since ⟨•, •⟩ is non degenerate.
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Warning. This is not a corollary of the Riesz representation theorem! Indeed, our linear
spaces are not over R or C and we assumed the dimension to be finite. Indeed, the existence
of a basis is crucial in the proof.

Corollary A.1.9. Let E be a K-linear space of finite dimension and ⟨•, •⟩ a non degenerate
symmetric bilinear form. The linear map x 7→ ⟨x, •⟩ is an isomorphism between E and
E∗.

Corollary A.1.10. Let E be a K-linear space of finite dimension and ⟨•, •⟩ a non degenerate
symmetric bilinear form. For every hyperplane H of E, there exists a vector x ∈ E such
that H = Ker ⟨x, •⟩.

Proposition A.1.11. Let E be a K-linear space of finite dimension and let ⟨•, •⟩ be a non
degenerate bilinear symmetric form. For every linear subspace F , F⊥⊥ = F .

Proof. First, observe that F ⊆ F⊥⊥. We will show that dimF⊥⊥ ≤ dimF . To do so, let
us consider an orthogonal basis (e1, . . . , ep) of F (which exists by Proposition A.1.6) and
define

ϕ :
{
E → F⊥∗

x 7→ ⟨x, •⟩|F ⊥
and pF :


E → F

x 7→
p∑

i=1
⟨ei, x⟩ ei

Observe that F⊥ ⊆ Ker pF and Kerϕ = F⊥⊥. We will now show that Ker pF = F⊥. Let
x ∈ Ker pF . Since (e1, . . . , ep) is a free family, we have that

∀i ∈ J 1 ; p K ⟨ei, x⟩ = 0
hence x ∈ F⊥. So, F⊥ = Ker pF . Let us show that rkϕ = dimF⊥. By Corollary A.1.9,
dimF⊥∗ = dimF⊥ and moreover, Imϕ = F⊥∗ so rkϕ = dimF⊥∗ = dimF⊥. Hence, by
rank theorem,

dimF⊥⊥ = dimE − rkϕ = dimE − dimF⊥ = rk pF ≤ dimF

Proposition A.1.12. Let E be a K-linear space of finite dimension and let ⟨•, •⟩ be a non
degenerate bilinear symmetric form. For every x, y ∈ E \{0} such that x /∈ Ky and y /∈ Kx,
there exists z ∈ x⊥ such that z ̸⊥ y.

Proof. Consider x, y ∈ E \ {0} such that x /∈ Ky and y /∈ Kx. Observe that Ky ̸⊆ Kx.
Assume for the sake of contradiction that

∀z ∈ x⊥ ⟨z, y⟩ = 0
Observe that x⊥ = (Kx)⊥. Hence we have that

(Kx)⊥ ⊆ (Ky)⊥

then (Ky)⊥⊥ ⊆ (Kx)⊥⊥

by Proposition A.1.11, it follows that Ky ⊆ Kx which is a contradiction.
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A.1.2 Duality lemma

In the following, K will be a field and k, n will be integers greater than 1.

Fact A.1.13. For any matrix M ∈ Mn,k (K), we have that

• (ImM)⊥ = Ker tM

• ImM =
(
Ker tM

)⊥
Proof. Let M ∈ Mn,k (K) and y ∈ Kn. We denote by C1, · · · , Ck the columns of M . We
have that

y ∈ Ker tM ⇔ ∀i ∈ J 1 ; k K ⟨Ci, y⟩ = 0
⇔ y ∈ (ImM)⊥

Since ⟨•, •⟩ is non degenerate and the dimension of Kn is finite, we have (ImM)⊥⊥ = ImM
by Proposition A.1.11.

Lemma A.1.14. Let M ∈ Mn,k (K). For every y ∈ Kn, the equation of the variable x
“Mx = y” has a solution over Kk if and only if

∀z ∈ Kn tzM = 0 ⇒ tzy = 0

Proof. This equation has a solution if and only if y ∈ ImM but thanks to Fact A.1.13 this
is equivalent to y ∈

(
Ker tM

)⊥.

Corollary A.1.15. If a matrix M ∈ Mn,k(K) has not full column rank, then there exists
S ∈ Kn \ {0} such that tSM = 0.

Proof. The fact that M has not full column rank means that ImM ̸= Kn. In particular,
there exists a vector x with exactly one non zero coordinate such that x /∈ ImM (otherwise,
we would have that ImM = Kn). By Lemma A.1.14, there exists S ∈ Kn such that
tSM = 0 and tSx ̸= 0. In particular, S ̸= 0.

Lemma A.1.16. Let p be a prime number, ℓ ≥ 1 an integer and K a field of characteristic ξ
such that ξ ̸= p. Let E be a Fpℓ-affine space of dimension 2. For every function S : E → K,
if S sums to zero on every non trivial line of E then S = 0.

Proof. Let us write m = |E| and q = pℓ. We know that m = q2. Let k be the number
of non trivial lines of E1. Consider an enumeration {x1, . . . , xm} of the points of E and
an enumeration {ℓ1, . . . , ℓk} of the non trivial lines. Let M be the incidence matrix of
{x1, . . . , xm} versus {ℓ1, . . . , ℓk}. We will show that M has rank m.

1More precisely we have that k =
(

q2

2

)(
q
2

) = q(q + 1).
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If we sum all the columns corresponding to some partition of the space2, we get the
vector

t
[
1 · · · 1

]
∈ Km

Now consider a point xi ∈ E. Without loss of generality, we can assume that i = 1. If we
sum every columns of M corresponding to lines containing x1, we obtain the vector

t
[
m− 1
q − 1 1 · · · 1

]
= t

[
q + 1 1 · · · 1

]
So, the vector

t
[
q + 1 1 · · · 1

]
− t

[
1 · · · 1

]
= t

[
q 0 · · · 0

]
belongs to ImM . Moreover, since ξ ̸= p, this last vector is non zero so ϵ1 ∈ ImM⊤. We can
do this for every vector of the standard basis which proves that M has rank m. Therefore,
the only solution of Mx = ϵi over Km is zero which concludes the proof.

Remark. Beware that this result may not hold if the characteristic of the field K is the same
of the one of Fpℓ (that is p). For a counter example consider

S :


(
Fpℓ

)2
→ Fpℓ

x 7→ 1

Proposition A.1.17. Let G and G′ be two isomorphic graphs. For every graph H and
every edge-labelling cH of H, the graphs HG and HG′ defined with cH are isomorphic.

Proof. Let f : V (G) → V (G′) be a graph isomorphism between G and G′. Define

fH :
{
V (H)V (G) → V (H)V (G′)

ϕ 7→ ϕ ◦ f−1

and let us show that fH is a graph isomorphism between HG and HG′ .
Take ϕψ ∈ E

(
HG

)
. By definition, there exists uv ∈ E(G) such that

∀w ∈ V − {u, v} ϕ(w) = ψ(w)
ϕ(u)ψ(u) ∈ E(H)
ϕ(v)ψ(v) ∈ E(H)
cH (ψ(u), ϕ(u)) = cH (ϕ(v), ψ(v))

Observe that
∀w ∈ V − {u, v} fH(ϕ)(f(w)) = fH(ψ)(f(w))

Moreover,

cH(fH(ψ)(f(u)), fH(ϕ)(f(u))) = cH(ψ(u), ϕ(u))
= cH(ϕ(v), ψ(v))

cH(fH(ψ)(f(u)), fH(ϕ)(f(u))) = cH(fH(ϕ)(f(v)), fH(ψ)(f(v)))
2For instance, since E is a plane, one can consider all the "horizontal" lines.
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Since f is an isomorphism, this proves that fH is a bijective graph homomorphism between
HG and HG′ . Moreover, the same calculus applied to fH−1 = • ◦ f proves that fH−1 is a
graph homomorphism.



Appendix B

Some Fourier matrices

1 1 1
1 j j̄
1 j̄ j




1 1 1 1 1 1 1 1 1
1 j j̄ 1 j j̄ 1 j j̄
1 j̄ j 1 j̄ j 1 j̄ j
1 1 1 j j j j̄ j̄ j̄
1 j̄ j j j̄ 1 j̄ 1 j
1 j̄ j j 1 j̄ j̄ j 1
1 1 1 j̄ j̄ j̄ j j j
1 j j̄ j̄ 1 j j j̄ 1
1 j̄ j j̄ j 1 j 1 j̄




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 j 1 1 j j̄ 1 j j̄ 1 j j̄ 1 j j̄ 1 j j̄ 1 j j̄ 1 j j̄ 1 j j̄
1 j̄ j 1 j̄ j 1 j̄ j 1 j̄ j 1 j̄ j 1 j̄ j 1 j̄ j 1 j̄ j 1 j̄ j
1 1 1 j j j j̄ j̄ j̄ 1 1 1 j j j j̄ j̄ j̄ 1 1 1 j j j j̄ j̄ j̄
1 j̄ j j j̄ 1 j̄ 1 j 1 j̄ j j j̄ 1 j̄ 1 j 1 j̄ j j j̄ 1 j̄ 1 j
1 j̄ j j 1 j̄ j̄ j 1 1 j̄ j j 1 j̄ j̄ j 1 1 j̄ j j 1 j̄ j̄ j 1
1 1 1 j̄ j̄ j̄ j j j 1 1 1 j̄ j̄ j̄ j j j 1 1 1 j̄ j̄ j̄ j j j
1 j j̄ j̄ 1 j j j̄ 1 1 j j̄ j̄ 1 j j j̄ 1 1 j j̄ j̄ 1 j j j̄ 1
1 j̄ j j̄ j 1 j 1 j̄ 1 j̄ j j̄ j 1 j 1 j̄ 1 j̄ j j̄ j 1 j 1 j̄
1 1 1 1 1 1 1 1 1 j j j j j j j j j j̄ j̄ j̄ j̄ j̄ j̄ j̄ j̄ j̄
1 j j̄ 1 j j̄ 1 j j̄ j j̄ 1 j j̄ 1 j j̄ 1 j̄ 1 j j̄ 1 j j̄ 1 j
1 j̄ j 1 j̄ j 1 j̄ j j 1 j̄ j 1 j̄ j 1 j̄ j̄ j 1 j̄ j 1 j̄ j 1
1 1 1 j j j j̄ j̄ j̄ j j j j̄ j̄ j̄ 1 1 1 j̄ j̄ j̄ 1 1 1 j j j
1 j̄ j j j̄ 1 j̄ 1 j j 1 j̄ j̄ 1 j 1 j j̄ j̄ j 1 1 j j̄ j j̄ 1
1 j̄ j j 1 j̄ j̄ j 1 j 1 j̄ j̄ j 1 1 j̄ j j̄ j 1 1 j̄ j j 1 j̄
1 1 1 j̄ j̄ j̄ j j j j j j 1 1 1 j̄ j̄ j̄ j̄ j̄ j̄ j j j 1 1 1
1 j j̄ j̄ 1 j j j̄ 1 j j̄ 1 1 j j̄ j̄ 1 j j̄ 1 j j j̄ 1 1 j j̄
1 j̄ j j̄ j 1 j 1 j̄ j 1 j̄ 1 j̄ j j̄ j 1 j̄ j 1 j 1 j̄ 1 j̄ j
1 1 1 1 1 1 1 1 1 j̄ j̄ j̄ j̄ j̄ j̄ j̄ j̄ j̄ j j j j j j j j j
1 j j̄ 1 j j̄ 1 j j̄ j̄ 1 j j̄ 1 j j̄ 1 j j j̄ 1 j j̄ 1 j j̄ 1
1 j̄ j 1 j̄ j 1 j̄ j j̄ j 1 j̄ j 1 j̄ j 1 j 1 j̄ j 1 j̄ j 1 j̄
1 1 1 j j j j̄ j̄ j̄ j̄ j̄ j̄ 1 1 1 j j j j j j j̄ j̄ j̄ 1 1 1
1 j̄ j j j̄ 1 j̄ 1 j j̄ j 1 1 j j̄ j j̄ 1 j 1 j̄ j̄ 1 j 1 j j̄
1 j̄ j j 1 j̄ j̄ j 1 j̄ j 1 1 j̄ j j 1 j̄ j 1 j̄ j̄ j 1 1 j̄ j
1 1 1 j̄ j̄ j̄ j j j j̄ j̄ j̄ j j j 1 1 1 j j j 1 1 1 j̄ j̄ j̄
1 j j̄ j̄ 1 j j j̄ 1 j̄ 1 j j j̄ 1 1 j j̄ j j̄ 1 1 j j̄ j̄ 1 j
1 j̄ j j̄ j 1 j 1 j̄ j̄ j 1 j 1 j̄ 1 j̄ j j 1 j̄ 1 j̄ j j̄ j 1


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Deferred proofs

C.1 Detailed proof of the introductive problem of Section 2.1
Proposition C.1.1. Every simple 4-regular bipartite graph has a cycle factor.
Proof. Let G = (A ⊎ B,E) be a simple 4-regular bipartite graph. Our goal is to show
that there exists a choice of edges such that every vertex has exactly 2 chosen edges. More
formally, we want to prove that there exists x : E → F2 such that

∀v ∈ V |{e ∈ E : v ∈ e ∧ x(e) = 1}| = 2 (C.1)
The idea is to split the constraints among the bipartition. Let us define

fA :


F2

E → C

x 7→
{

1 if ∀v ∈ A |{e ∈ E : v ∈ e ∧ x(e) = 1}| = 2
0 otherwise

and fB :


F2

E → C

x 7→
{

1 if ∀v ∈ B |{e ∈ E : v ∈ e ∧ x(e) = 1}| = 2
0 otherwise

There exists a function x that fulfills the condition C.1 if and only if ⟨fA, fB⟩ ≠ 0. Actually,
⟨fA, fB⟩ is exactly the number of such functions hence the number of cycle factors.

The idea is to compute
〈
f̂A, f̂B

〉
instead of ⟨fA, fB⟩. We start by computing these two

vectors. Let x ∈ F2
E . First, we prove that f̂A(x) = 0 whenever x has an odd number of

ones (more formally, when |x|1 ∈ 2N + 1). Let us start by examining what happen on a
single vertex, that is, in the hypothetical case where |A| = 1. We denote fA by fA1 and we
let Γ to be the set of y ∈ F2

E that have exactly 2 ones. More formally,
Γ =

{
y ∈ F2

E : |{e ∈ E : y(e) = 1}| = 2
}

Observe that if y ∈ Γ then ȳ = 1 − y ∈ Γ, ȳ ̸= y and ⟨x, y⟩ ̸= ⟨x, ȳ⟩ [2] since x has an odd
number of ones. Hence,

f̂A1(x) = 1
√

24
∑

y∈Γ
(−1)⟨x,y⟩ = 0
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Moreover, the value f̂A1(x) only depends on the number of ones in x which we denote
by |x|1. We say that v ∈ A is monochromatic (in x) if

• either x(e) = 0 for every e ∈ E such that e ∋ v

• or x(e) = 1 for every e ∈ E such that e ∋ v

and that v is bichromatic (in x) if v is not monochromatic. More generally, we say that v
has degree k in x if v has degree k in the subgraph obtained by removing the edges e such
that x(e) = 0. We have that

∀x ∈ F2
E 4f̂A1(x) =


0 if |x|1 ∈ 2N + 1
6 if |x|1 = 0 ∨ |x|1 = 4
−2 if |x|1 = 2

Now, observe that fA = fA1
⊗n/2 hence

f̂A = F2,2nfA = F2
⊗2nfA1

⊗n/2 =
(
F2

⊗4fA1

)⊗n/2
= f̂A1

⊗n/2

so,

∀x ∈ F2
E f̂A(x) =


1
2n

6|A0(x)|+|A4(x)|(−2)|A2(x)| if ∀v ∈ Av ∈ A0(x) ∪A2(x) ∪A4(x)

0 otherwise
where for every i ∈ J 0 ; 4 K, Ai(x) is the set of vertices of degree i in x. More formally,

Ai(x) := {v ∈ A : |{e ∈ E : v ∈ e ∧ x(e) = 1}| = i}
Since A and B plays symmetric roles, we have that

∀x ∈ F2
E f̂B(x) =


1
2n

6B0(x)+B4(x)(−2)B2(x) if ∀v ∈ B v ∈ B0(x) ∪B2(x) ∪B4(x)

0 otherwise
where Bi is the analog of Ai. We can now compute the inner product:

⟨fA, fB⟩ =
〈
f̂A, f̂B

〉
= ∑

x∈F2
E

f̂A(x)f̂B(x)

Observe that if f̂A(x) ̸= 0 and f̂B(x) ̸= 0, then f̂A(x) (resp f̂B(x)) is negative if and only
if |x|1 = 2 [4] that is if and only if there is an odd number of degree 2 vertices in x. Hence,
f̂A(x) and f̂B(x) both have the same sign so the inner product is a sum of non negative
terms. In order to prove it is non zero, we just have to provide one strictly positive term:
x = 0 for instance.

Proposition C.1.2. Every 4-regular graph has an Eulerian orientation.

Proof. Let G = (V,E) be a 4-regular graph. We consider the subdivided graph G• (see
Definition 2.1.3). Observe that G has an Eulerian orientation if and only if there exists a
function x : E• → F2 such that

• every v ∈ V is adjacent to exactly two edges e and e′ so that ve and ve′ are labelled 1

• every edge e ∈ E has exactly one of its endpoints v such that ve is labelled 1
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More formally this correspond to the following pair of conditions:

∀v ∈ V |{e ∈ E : v ∈ e ∧ x(ve) = 1}| = 2
∀e ∈ E |{v ∈ V : v ∈ e ∧ x(ve) = 1}| = 1

(C.2)

Let us prove that there exists such a function x. Define fV , fE : F2
E• → C by

∀x ∈ F2
E• fV (x) =

{
1 if ∀v ∈ V |{e ∈ E : v ∈ e ∧ x(e) = 1}| = 2
0 otherwise

and ∀x ∈ F2
E• fE(x) =

{
1 if ∀e ∈ E |{v ∈ V : v ∈ e ∧ x(e) = 1}| = 1
0 otherwise

Our goal is to show that the inner product ⟨fV , fE⟩ is non negative.
First, let us compute f̂V = F2,2mfV and f̂E = F2,2mfE . We already have computed f̂V

in the proof of Proposition C.1.1. We then examine the case of fE when |E| = 1 and denote
fE by fE1 .

f̂E1 = 1
√

22


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

×


0
1
1
0

 =


1
0
0

−1


Since the constraints on each edge of G are independent, we can use the tensor product.

In the general setting, fE = fE1
⊗m hence f̂E = f̂E1

⊗m. Moreover, we have that

∀x ∈ F2
E• f̂V (x) =


1

22n
6|V0(x)|+|V4(x)|(−2)|V2(x)| if ∀v ∈ V v ∈ V0(x) ∪ V2(x) ∪ V4(x)

0 otherwise
where for i ∈ J 0 ; 4 K, Vi(x) is the set of vertices of degree i in x. More formally,

Vi(x) := {v ∈ V : |{e ∈ E : v ∈ e ∧ x(e) = 1}| = i}
This is the very same calculus we made in the proof of Proposition C.1.1. (Note the 22n

instead of 2n, it is not a mistake since this time we take one tensor product per vertex of
G.)

So, we can compute
〈
f̂V , f̂E

〉
which we know to be equal to ⟨fV , fE⟩, the number of

cycle factors of G. For f̂E(x) to be non zero, x must satisfies that every edge e ∈ E is
monochromatic in x. Let us call Γ the set of such x. If x ∈ Γ then f̂E(x) = 1/2m(−1)|x|1/2.
Hence, 〈

f̂V , f̂E

〉
= ∑

x∈F2
E•
f̂V (x) f̂E(x) = 1

2m

∑
x∈Γ

f̂V (x)(−1)
|x|1

2

Observe that f̂V (x)(−1)
|x|1

2 is always positive. Indeed,

• either |x|1 = 0[4] and there is an even number of bichromatic vertices v ∈ V so
f̂V (x) ≥ 0

• or |x|1 = 2 [4] and there is an odd number of bichromatic vertices v ∈ V so f̂V (x) ≤ 0
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Hence,
〈
f̂V , f̂E

〉
is a sum of non negative terms. Moreover, f̂V (0)f̂E(0) = 6n/2m+2n > 0

which concludes the proof.

Proposition C.1.3. The Bousquet precoloring B3 satisfies
B3 = −i (|012⟩ + |120⟩ + |201⟩ − |021⟩ − |210⟩ − |102⟩)

Proof. The Fourier matrix F3,2 is already quite big (27 × 27). It can be found in appendix
(see B). Let us define

f0 = −i (|012⟩ + |120⟩ + |201⟩ − |021⟩ − |210⟩ − |102⟩)
First, observe that ∀x ∈ F3

V (△) ∑
v∈V (△)

x(v) ̸= 0 ⇒ f̂0(x) = 0

Indeed, define SGC3(△) :=
{
x ∈ F3

V (△) : ∑
v∈V (△)

x(v) = 0
}

Remark. This stands for “semi-good 3-colorings”.

We introduce the equivalence relation ∼ on F3
V (△) defined by

∀x, y ∈ F3
V (△) x ∼ y ⇔ ∃λ ∈ F3 x− y = 1

The set GC3(△) can be partitioned into two orbits for this equivalence relation. Moreover,
if we fix x ∈ F3

V (△) \ SGC3(△), then, for every y ∈ GC3(△),
{⟨y + λ1, x⟩ : λ ∈ F3} = ⟨x, y⟩ + {λ ⟨1, x⟩ : λ ∈ F3}

= ⟨x, y⟩ + F3 (as ⟨1, x⟩ ∈ F3
∗)

= F3

so ∑
λ∈F3

j⟨y+λ1,x⟩ = 0 which proves that

∀x ∈ F3
V (△) \ SGC3(△) f̂0(x) = 0

We now have to compute the value of f0 on the semi-good colorings. By the calculus
we just did, we know that

{⟨y + λ1, x⟩ : λ ∈ F3} = {⟨x, y⟩}
so ∀x ∈ SGC3(△) ∀y ∈ GC3(△) ∑

λ∈F3

j⟨y+λ1,x⟩ = 3j⟨x,y⟩

Take x ∈ SGC3(△). Recall that f̂0(x) = −i
√

33
∑

y∈GC3(△)
j⟨x,y⟩.

• If x is monochromatic then f̂0(x) = −i/
√

33(3 − 3) = 0.

• Otherwise,

f̂0(x) =


−i

√
33
(
3̄j − 3j

)
= −1 if x ∼ |012⟩

−i
√

33
(
3j − 3̄j

)
= 1 otherwise



Finally, ∀x ∈ F3
V (△) f̂0(x) =


0 if x /∈ SGC3(△)
0 if x is monochromatic
1 if x ̸∼ |012⟩
−1 otherwise

In other words, f̂0(x) is 0 if the triangle is not properly 3-colored and +1 or −1 depending on
the orientation (+1 if “direct”, −1 “indirect”). We can check that it is indeed a precoloring.
For instance, see Figure C.1.

0 2

1

1 2

0

2 2

2

Figure C.1: The configuration of f̂0 on some edge-clique

Proposition C.1.4. Let n ≥ 3 be an odd integer. The support of the Bousquet precoloring
Bn is 2 [4].

Proof. Let us count the number of labellings x of Cn that satisfies Bn(x) ̸= 0. Such an
x must have an even number of 1 and 2 and these values must alternates along Cn. Let
us assume that we have chosen the elements v ∈ V (Cn) such that x(v) = 0. There must
remain an even number of elements. Moreover, since n is odd, Bn(0) = 0 so there must
remain at least 2 elements. Once the zeros are chosen, there is two way to complete x since
1 and 2 must alternates. Hence,

|supBn| = 2
⌊ n

2 ⌋∑
i=0

(n
2i

)
The sum

⌊ n
2 ⌋−1∑
i=0

(n
2i

)
is equal to the number of subsets of J 1 ; n K of even size. This number

is even. Indeed, one can pair a subset X of J 1 ; n K of even size with its complement
J 1 ; n K \X (and we always have that X ̸= J 1 ; n K \X because n ≥ 1. Hence, |supBn| is
2 [4].
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Appendix D

Bestiary of precolorings

D.1 Bestiary of precolorings

We give here a list of some useful precolorings.

D.1.1 In general

Definition D.1.1 (Universal/Charbit). Take G a directed1 graph. Define

Ω :


2E → 3V

ω 7→
[ ∑

(u,v)∈E
ω(u, v) −

∑
(v,u)∈E

ω(v, u)
3
]

v∈V
Where ·̄ is the usual cast of F2 in F3.

We now define the Universal/Charbit precoloring by

ChG :


3V → Z
x 7→

∑
ω∈Ω−1(x)

(−2)|ω−1(0)|

Remark.

• For every x ∈ 3V , either x does not sum to zero and ChG(x) = 0, or x sums to zero
and then

∣∣Ω−1(x)
∣∣ =

∣∣Ω−1(0)
∣∣.

• In particular, the number of realisation of any semi good coloring on a cycle is 3.

Proposition D.1.2. For every graph G, UG = (−1)|E| ChG.

Proof. Let G be a graph with n vertices. Let’s define

A := K[X1, · · · , Xn]〈
Xi

3 − 1
〉

i∈J 1 ; n K

1Actually the definition does not depend on the orientation but it is more convenient if we first orient G.
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and PG := 1
3|E|

∏
ij∈E

(
2 −XiXj

2 −Xi
2Xj

)
For every x = (x1, . . . , xn) ∈ 3V , we denote by jx the vector

jx = (jx1 , · · · , jxn)
Observe that ∀x ∈ 3V PG(jx) ̸= 0 ⇔ x ∈ GC(G)

More precisely, ∀x ∈ 3V PG(jx) =
{

1 ifx ∈ GC(G)
0 otherwise

Hence, PG = ∑
y∈GC(G)

1̂y

Remark. This last result is a direct consequence of Fourier interpolation. Observe that,

∀x, y ∈ 3V 1̂x · 1̂y =
{

1 ifx = y
0 otherwise

So, ∀x ∈ 3V PG(jx) = 1̂x ·
∑

y∈GC(G)
1̂y

We know that when we have such a polynomial P , then the function

fP :
{

3V → K
x 7→ [P ]x

where [P ]x is the cœfficient of the monomial x, is a precoloring of G.
Remark. Actually, if P = ∑

1̂y, then

fP = x 7→ 1x ·
∑
1̂y

So, for our polynomial PG, we have that fPG
= UG.

D.1.2 Triangles

Definition D.1.3 (Universal/Charbit). U∆ :
3V → Z

x 7→


0 if x does not sum to 0
2 if x is monochromatic
−1 otherwise (trichromatic)

Definition D.1.4 (The "1jj̄"). We need first to be given an orientation of the triangles
(cyclic order of the vertices).

f :



3V → C

x 7→


0 if x does not sum to 0
1 if x is monochromatic
j if trichromatic and direct
j̄ if trichromatic and undirect
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D.1.3 Cycles

Definition D.1.5 (Bousquet). Let n ≥ 3 and Cn be the cycle (0, . . . , n − 1) where the
vertices are in Zn. For every x ∈ 3Zn , we define

Nx
̸=0 :


Zn → Zn

i 7→


i if x(i) = 0

inf
j∈N∗

{x(i+ j) ̸= 0}n otherwise
where ·̄n is the usual injective ring homomorphism from Z to Zn.

We define the Bousquet set of Cn to be
B(Cn) := {x ∈ 3Zn | ∀i ∈ Zn x(i) ̸= 0 ⇒ Nx

̸=0(i) ̸= x(i)}
We now can define the Bousquet precoloring as

Bn :


3Zn → Z

x 7→

 0 ifx /∈ B(Cn) − {0}∏
i∈x−1({1})

(−1)Nx
̸=0(i)

Remark.

• The Bousquet set is the set of labellings of Cn such that 1 and 2 alternate along the
cycle.

• One can observe that B(Cn) ⊆ SGC(Cn). Hence, the Bousquet precoloring is, as
every precoloring we consider, 0 on 3V − SGC(G).

• The Bousquet precoloring has the particularity to be zero on zero.



Appendix E

Programs documentation

E.1 Programs documentation
In this section, we give a short documentation of the programs we made. We also give some
details about the algorithms involved.

We chose to program using the C programming language (C89). We originally imple-
mented simple programs in Python to explore power graphs but the time and memory
consumption made us chose C for its ability to give control over the memory usage.

E.1.1 A program to find edge-clique certificate

Remark. Our programs currently have no option to deal with Fq
G in general.

Example E.1.1. Here is an example of input file and the corresponding graph:
10
0-1
1-2
2-3
3-4
4-0
5-7
5-8
5-0
6-8
6-9
6-1
7-9
7-2
8-3
9-4

0

1

23

4
5

6

78

9

The field provided at the end of the command line is the field for the coefficients of
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the edge-clique certificates. It can be either F2 (F2) or R (R). In the later, the program
uses arbitrary precision arithmetic with the GMP library. This can be (very) memory
consuming.

In order to find an edge-clique certificate, our programs list every possible edge-clique
in the component of the vertices that sum to zero (remember that all these component are
isomorphic) and build the incidence matrix M of the vertices of Zk

G versus these edge-
cliques. Then, we use the Gauss elimination algorithm. This (very well known) algorithm
consists in making elementary operation on the column of M to obtain a matrix of the form

Jr =



1
0 . . .
... 1
... 0
... . . .
0 · · · · · · · · · · · · 0


where r = rkM is the number of 1’s on the diagonal. This algorithm also provide a matrix
R such that M ×R = Jr. The first column of R is an edge-clique certificate.

Of course, the certificate we come up at the end depends on the order of the column of
M . Everywhere else in this thesis, the order of the columns of such matrix is not specified
as it has no impact on the results (on the rank in particular). Here however, the order
is relevant since a permutation of the column of M can result in a different edge-clique
certificate. In order to find an edge-clique certificate of small degree and/or small support,
the edge-cliques generated are limited at the step of creation of the power graph. To have
an edge-clique certificate with a few edge-cliques as possible, we apply several rounds of
Gauss pivoting. Before each round, we apply a random permutation on the columns of M .
This can probably be improved.
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