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L’homme et la mer

Homme libre, toujours tu chériras la mer !

La mer est ton miroir ; tu contemples ton dme
Dans le déroulement infini de sa lame,

Et ton esprit n’est pas un gouffre moins amer.

Tu te plais a plonger au sein de ton image ;
Tu I’embrasses des yeux et des bras, et ton coeur
Se distrait quelquefois de sa propre rumeur
Au bruit de cette plainte indomptable et sauvage.

Vous étes tous les deux ténébreux et discrets :
Homme, nul n’a sondé le fond de tes abimes ;
O mer, nul ne connait tes richesses intimes,
Tant vous étes jaloux de garder vos secrets !

Et cependant voila des si¢cles innombrables
Que vous vous combattez sans pitié ni remord,
Tellement vous aimez le carnage et la mort,

O lutteurs éternels, 6 fréres implacables !

Charles Baudelaire
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Abstract

Abstract

Space weather is a broad scientific field focused on understanding the causes and consequences
of the interactions between Earth and its surrounding space environment. It encompasses studies
on solar activity, geomagnetic storms, or cosmic rays, and aims to improve our knowledge of the
sun, interplanetary, and planetary environments, as well as to refine predictions and models of the
disturbances that affect them. Indeed, phenomena in space weather can have direct implications
on space systems, terrestrial structures, and even astronauts. In this context, methods and tools
from artificial intelligence could play a pivotal role in modeling, forecasting, and understanding
various phenomena.

This PhD thesis is part of a CIFRE program, signifying a collaboration between industry,
specifically the company SpaceAble, and academia. The goal is to develop operational products
to better apprise satellite operators and insurers of potential risks. The thesis is structured into a
theoretical section, serving as a repository of information, and a practical section, where codes
and models are delineated. The former is intended to act as a comprehensive reference for the
partner company, covering a wide range of topics in space weather and artificial intelligence, and
suggesting future avenues of research. The latter section is dedicated to fulfilling our objectives.
Here, we model and seek to forecast auroral electron total energy fluxes (in the low-energy range,
< 30 keV) as measured by the SSJ/4 and SSJ/5 instruments aboard the DMSP satellites. Two
types of machine learning models are employed: Fully Connected Neural Networks (FCNN) and
Temporal Convolutional Networks (TCN). Both are trained using measurements of the solar wind,
interplanetary magnetic field, and specific near-Earth indices, collected by the ACE satellite and
on NASA’s OMNIWeb database. Practicality and industrial applicability have guided our choice
of the PyTorch and PyTorch-Lightning libraries. Each model and database has been meticulously
analyzed and evaluated, with the results compared to two established models: OVATION, widely
recognized in the community, and PrecipNet, an FCNN, and the currently most proficient model.

The FCNN and TCN architectures show higher performances than OVATION across all basic
metrics (MSE, MAE, and RMSE) employed but are marginally superior than PrecipNet’s. How-
ever, adapting PrecipNet to new problems is challenging due to its code structure and data pre-
processing, making our model a preferred solution in terms of industrialization and transparency.
Importantly, while FCNNs have set robust foundations, TCNs have emerged as more promising,
managing extensive temporal data ranges, albeit with longer training times and a requirement for
continuous data. Several solutions, including specific interpolations, new datasets, and architec-
ture combinations, are considered to address these limitations and will be explored in future work.

A notable advantage of this study is the establishment of a framework of methods and ideas
that can be amalgamated or adapted with new datasets to tackle other challenges. A significant
insight is the promising integration of TCN with the "integrated gradients" method, enhancing
model interpretability by attributing "importance” to each input parameter. This will also enable
tracing information such as input-output delay and determining which solar wind parameter exerts
the most influence near Earth.

In conclusion, this thesis provides a comprehensive overview of space weather and methodolo-
gies used in analyses, with a focus on the applicability of machine learning techniques. It serves
both as a reflection of our current understanding of several phenomena and as a stepping stone
towards deeper collaborations with industries and private companies, which hold a significant role
in protecting and preserving the space environment.
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Résumé

Résumé

La métérologie de I’espace (SWE) explore les causes et conséquences des interactions Terre-
environnement spatial, de I’activité solaire aux tempétes géomagnétiques, en passant par la dy-
namique ionosphérique et les rayons cosmiques. Elle tente de comprendre I’état du soleil, du
milieu interplanétaire et planétaire, et de prévoir et modéliser les perturbations qui les affectent.
En effet, les phénomenes en jeu impactent directement les systémes spatiaux, les structures sol et
méme les astronautes. Dans ce contexte, les méthodes et outils d’intelligence artificielle (IA) ont
un role a jouer et peuvent nous aider a modéliser, prévoir et comprendre certains phénomenes.

Cette these est une collaboration entre 1’industrie et la recherche. Son objectif est de fournir
des produits opérationnels utilisés pour mieux informer les opérateurs ou assureurs de satellite
des dangers qu’ils encourent. Elle se découpe en une partie théorique, fonctionnant comme un
recueil d’informations, et une partie plus pratique, ou les codes et les modeles sont présentés. La
premiére sert d’encyclopédie pour I’entreprise partenaire et balaye plus largement les sujets de
SWE et d’IA, englobant par la méme occasion de futures pistes de recherche pour I’entreprise.
La deuxieéme partie se concentre sur la modélisation et la prévision des flux d’électrons auroraux
de basse énergie (< 30 keV) tels que mesurés par les instruments SSJ/4 et SSJ/5 du programme
DMSP. Pour cela, deux familles de modeles d’IA sont utilisées: les Réseaux Neuronaux Entiere-
ment Connectés (FCNN) et les Réseaux Convolutionnels Temporels (TCN). Pour les entrainer,
nous utilisons les mesures de vent solaire, les composantes du champ magnétique interplanétaire
et certains indices proche-Terre, mesurés par le satellite ACE et par la base de données OMNI-
Web de la NASA. Pour des raisons pratiques et d’applications industrielles, nous avons utilisé les
librairies PyTorch et PyTorch-Lightning. Données, modeles et résultats ont été méticuleusement
évalués et comparés a OVATION, modele le plus largement utilisé par la communauté, et Precip-
Net, un FCNN, et le plus performant aujourd’hui.

Nos FCNN et TCN obtiennent des performances bien supérieures 8 OVATION sur les métriques
utilisées mais que tres 1égerement meilleures que PrecipNet. En revanche, PrecipNet est, par con-
struction et prétraitement des données, difficile a adapter a de nouvelles problématiques, ce qui
fait de notre produit une meilleure réponse aux besoins d’industrialisation. Enfin, si le FCNN a
posé des bases et performances solides, c’est le TCN qui s’est révélé le plus prometteur, par sa ca-
pacité a gérer d’importantes plages de données temporelles et ce malgré son temps d’entrainement
plus long et son besoin en données continues. Des solutions a ces problemes telles que des inter-
polations spécifiques, de nouveaux jeux de données, ou des combinaisons d’architectures ont été
envisagées et feront I’objet de travaux futurs.

Un des avantages de cette étude est qu’elle pose une base réadaptable et combinable avec
de nouvelles données pour répondre a d’autres problématiques. En particulier, une idée promet-
teuse est la combinaison du TCN avec la méthode des "gradients intégrés" qui permet de renforcer
Iinterprétabilité du modele. Il sera ainsi possible de remonter a des informations comme le délai
entre 'entrée et la sortie ou savoir quel parametre de vent solaire a le plus d’influence sur ce qu’il
se passe pres de la Terre.

En conclusion, la thése offre une vue d’ensemble des méthodes et approches utilisées pour
I’analyse du SWE, avec une attention particuliere portée aux techniques d’apprentissage automa-
tique et a leur applicabilité dans ce domaine. En essence, elle sert a la fois de témoignage de notre
compréhension actuelle de certains phénomenes, et marque un pas vers des collaborations plus
profondes avec I’industrie et les entreprises privées, qui ont également un réle important a jouer
dans la protection et la préservation de 1’environnement spatial.
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Introduction

Introduction (frangais)

Cette these est le fruit de trois ans de collaboration entre I’entreprise SpaceAble et les labora-
toires IPAG (Institut de Planétologie et d’ Astrophysique de Grenoble) et Gipsa-Lab (Grenoble Im-
ages Parole Signal Automatique) dans le cadre d’un dispositif CIFRE (Conventions Industrielles
de Formation par la REcherche). Ce dispositif, mis en place par I’ANRT (Association Nationale
Recherche Technologie), a pour objectif de "favoriser le développement de la recherche partenar-
iale publique-privée et de placer les doctorants dans des conditions d’emploi" '. Dans ce cadre, le
salarié-doctorant travaille avec les laboratoires et I’entreprise afin d’oeuvrer pour un but commun.
Cette these a été cosupervisée par les Dr. Mathieu BARTHELEMY et Jocelyn CHANUSSOT, une
cosupervision importante ot chacun d’eux a su transmettre ses connaissances afin que les deux
domaines se mélangent efficacement et, on I’espere, harmonieusement.

SpaceAble est une start up francaise créée en 2018 par M. Julien CANTEGREIL. Elle est spé-
cialisée dans le domaine du Space Situational Awareness et offre donc dans ce cadre un service de
gestion du trafic spatial (ou Space Traffic Management - STM), de compréhension et prévision de
la météorologie de I’espace (ou Space Weather - SWE) ainsi qu’un service "en-orbite" (In Orbit
Services - IOS) pour les orbites basses. L’objectif de ses solutions est d’assurer la sécurité des
opérations et de contribuer a la durabilité des satellites en orbite basse. Elle a également pour
vocation de contribuer a 1’élaboration des normes européennes pour réguler les activités en orbite
basse. Au sein de cette entreprise, j’occupe le poste d’ingénieur et scientifique en météorologie de
I’espace. J'oeuvre ainsi a la fois a porter une expertise en SWE pour I’entreprise, mais également
a développer des solutions opérationnelles utilisables par des clients. De cela découlent diverses
compétences : gestion de projet, mise en place de partenariats, analyse de données, état de 1’art,
développement de modeles de risques, et bien d’autres, ce qui me permet de bénéficier d’une dou-
ble formation académique et professionnelle.

L’ objectif de cette thése est la modélisation et la prévision des flux d’électrons auroraux de
basse énergie (< 30 keV) tels que mesurés par les instruments SSJ/4 et SSJ/5 du Defense Mete-
orological Satellite Program des Etats-Unis pour lequel plus de 20 ans de données viables sont
disponibles. Une fois la modélisation fonctionnelle, les résultats sont a la fois comparés a des
modeles existants (OVATION Prime, le plus utilisé et PrecipNet, le plus récent et performant)
et étendus spatialement afin de produire des cartes polaires qui représentent ces flux d’électrons
dits précipités. Les parametres utilisés pour cette modélisation sont les parametres du vent solaire
(vitesse, densité, pression), les composantes X, Y et Z du champ magnétique interplanétaire (en
coordonnées GSE), et les indices AL, AU et SYM-H. Les architectures utilisées sont des réseaux
de neurones entierement connectés (FCNN - Fully Connected Neural Network) et des réseaux de
neurones convolutionnels temporels (TCN - Temporal Convolutional Network). Nos travaux sont
ici présentés en cinq chapitres distincts. Du chapitre 1 au chapitre 3, cette these est aussi structurée
comme une compilation de connaissances du domaine et sert donc de référence pour les recherches

1. https://www.anrt.asso.fr/fr/le-dispositif-cifre-7844
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qui sont menées au sein de 1’entreprise SpaceAble. Par conséquent, certaines des informations qui
s’y trouvent sortent du cadre de notre étude et allonge quelque peu ces trois premiers chapitres.

Au travers du chapitre 1 nous espérons présenter un panorama exhaustif des acteurs de la
météorologie de I’espace, révélant leurs interactions captivantes, les phénomenes et théories qui
les composent. Depuis notre Soleil et jusqu’au champ magnétique de notre Terre, ce chapitre tente
de saisir comment les éruptions solaires, les éjections de masse coronale ou encore les tempétes
géomagnétiques sont liées. Bien entendu, il ne s’agit pas d’un apercu théorique détaillé et plusieurs
sujets sont volontairement omis. Ce chapitre invite plutot le lecteur a explorer la physique spatiale,
a acquérir une compréhension plus profonde de I’'influence significative de la météorologie spatiale
sur notre vie quotidienne. Comme annoncé, ¢’est donc un chapitre qui pourra servir de connais-
sance de base pour I’entreprise SpaceAble et qui permettra a des non-initiés de saisir I’essentiel.

De facon analogue, le chapitre 2 expose le domaine de I’intelligence artificielle (IA), en met-
tant 1’accent sur les branches de I’apprentissage machine (Machine Learning) et profond (Deep
Learning). Ce chapitre vise a fournir une compréhension approfondie des mécanismes, des algo-
rithmes et des principes sous-jacents a ces technologies émergentes, établissant ainsi une fonda-
tion solide pour les discussions et analyses ultérieures dans le reste de 1’ouvrage. Aussi, nous y
expliquons les concepts d’apprentissage supervisé, non-supervisé ou de renforcement, que nous
ponctuons d’exemple inhérent a la météorologie de I’espace. Nous présentons également les math-
ématiques qui se cachent derriere des réseaux de neurones simples, les notions d’hyperparametres
et les axes principaux sur lesquels agit le "data scientist". Enfin nous le concluons avec une tres
bréve présentation de la place qu’occupe le choix du matériel (hardware, GPU et CPU), des li-
brairies et des outils d’IA.

Le chapitre 3 marque le début de 1’étude spécifique et la fin de la partie théorique. Apres
avoir posé le contexte et clarifié la problématique, il se consacre entierement a la présentation et a
I’analyse des données a notre disposition. Effectuer une analyse de données avant de se lancer dans
des projets d’Intelligence Artificielle (IA) est essentiel car cela permet de comprendre la structure,
la qualité et les tendances inhérentes aux données. Cette démarche assure que nos modeles d’IA
seront bien adaptés, augmente la précision des prédictions en réduisant le risque d’erreurs liées a
des données mal interprétées ou de mauvaise qualité. Cette étape est, selon nous, le coeur de la
these, 1’étape la plus importante et la plus chronophage. Dans un premier temps, nous y présentons
les données : les mesures des satellites de DMSP, les données extraites de OMNIWeb, et les don-
nées du satellites Advanced Composition Explorer (ACE). Puis nous les analysons sous le prisme
de I'IA ce qui a, dans le cas des données de ACE, donné lieu a un papier de recherche (Bouriat
et al., 2022) dont I’objectif était également de présenter une méthode pour ce genre d’analyses.
Enfin, nous tentons de démontrer, hors IA, si un lien existe bien entre les données d’entrée et les
données de sortie, ce qui a également donné lieu a une publication (Bouriat et al., 2023). Une
fois toutes ces analyses effectuées, nous pouvons conclure en exposant le pré-traitement le plus
adéquat pour notre problématique.

Ce qui nous amene au chapitre 4 : I’implémentation des algorithmes et la présentation des
résultats. Pour ce faire, initialement, nous nous sommes concentrés sur PrecipNet, compte tenu
de ses résultats pertinents. Notre objectif principal y est de reproduire ses résultats en interne,
afin d’avoir une meilleure compréhension de son fonctionnement et de ses limitations. Ensuite, a
partir de ce que nous avons appris, nous introduisons notre FCNN. Une comparaison approfondie
de nos résultats avec ceux de PrecipNet (McGranaghan et al., 2021) et d’OVATION Prime suivra.
Par la suite, nous présenterons des prévisions court-terme (10 min) des flux d’électrons précipités
afin de valider la faisabilité de futurs travaux de recherche. Enfin nous présentons notre TCN. Il
a I’avantage d’étre une méthode beaucoup plus récente qui a fait ses preuves avec les séries tem-
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porelles (Bai et al., 2018), et il vient corriger I’un des principaux problémes de PrecipNet et de nos
FCNN : le choix subjectif des données historiques a utiliser. 11 utilise en effet une plage temporelle
entiere du passé, dont la taille ne dépend que de nous. Dans cette thése, nous nous restreignons a
30 minutes pour des raisons de puissance de calcul.

Enfin, nous concluons cette thése avec le chapitre 5 qui est I’occasion de rassembler nos résul-
tats et de conclure. Ce chapitre présente les améliorations concretes des algorithmes sur lesquelles
nous travaillons déja, mais il sert également d’ouverture vers les nombreuses recherches qu’il
restera a faire, tant dans le domaine académique que dans le domaine industriel. Ce domaine étant
étroitement li€ avec celui des dangers concrets pour les acteurs du spatial, nous sommes confiants
quant a I’avenir qu’il aura aupres des entreprises privées.

Avant d’entamer le manuscrit et pour terminer cette introduction, nous tenions a remercier
OMNIWeb ? et le Coordinated Data Analysis Web* de la NASA, ainsi que le ACE Science Cen-
ter* de I’Université de Caltech pour avoir rendu disponible et publique 1’ensemble des données
utilisées ici. Je tiens également personnellement a remercier toutes les personnes impliquées dans
le projet, I'TPAG, le Gipsa-Lab et, bien slir, SpaceAble.

2. https://omniweb.gsfc.nasa.gov/
3. https://cdaweb.gsfc.nasa.gov/
4. https://izwl.caltech.edu/ACE/ASC/
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Introduction

This dissertation marks the completion of a three-year collaborative project between Space-
Able, the IPAG (Institute of Planetology and Astrophysics of Grenoble) and the Gipsa-Lab (Greno-
ble Images Speech Signal Automatic) laboratories, carried out within the framework of a CIFRE
arrangement (Conventions Industrielles de Formation par la REcherche). This program, estab-
lished by the ANRT (Association Nationale Recherche Technologie), aims to "promote collabo-
rative research between public and private sectors and to create conditions conducive to employ-
ment" . In this setting, the doctoral candidate, while employed, works with both the laboratories
and the company towards a common goal. The dissertation was co-supervised by Dr. Mathieu
BARTHELEMY and Jocelyn CHANUSSOT, a valuable relationship where each could share his
expertise, aiding in an effective, and hopefully, seamless integration of the two fields.

SpaceAble is a French start-up, founded in 2018 by Mr. Julien CANTEGREIL, that special-
izes in Space Situational Awareness. As such, it offers a wide range of services including Space
Traffic Management (STM), Space Weather (SWE) understanding and forecasting, as well as in-
orbit services (IOS) for low-Earth orbits. The main goal of these solutions is to ensure operational
safety and contribute to the sustainability of satellites in low-Earth orbit. Additionally, the com-
pany is committed to contributing to the development of European standards to regulate activities
in low-Earth orbit.

In this innovative company, I serve as an Engineer and Scientist in Space Weather. My role
is varied, involving both providing SWE expertise to the company and developing operational so-
lutions that are suitable for our clients. This role requires the development of a diverse skill set,
including project management, forming partnerships, data analysis, cutting-edge research, devel-
opment of risk models, and more. This wide range of responsibilities has allowed me to gain a
well-rounded mix of academic and professional experience.

The goal of this thesis is to model and forecast the electron total energy fluxes for low-energy
auroral electrons (< 30 keV) as measured by the SSJ/4 and SSJ/5 instruments of the United States
Defense Meteorological Satellite Program, for which over two decades of viable data are avail-
able. Once the model is operational, the outcomes are compared to existing models — specifi-
cally OVATION Prime, the most commonly used, and PrecipNet, the newest and most efficient.
Additionally, the results are spatially expanded to produce polar maps depicting these so-called
precipitating electron fluxes. The parameters used for this modeling include solar wind parame-
ters (speed, density, pressure), the X, Y, and Z components of the interplanetary magnetic field (in
GSE coordinates), and the AL, AU, and SYM-H indices. The architectural frameworks utilized in
this study are Fully Connected Neural Networks (FCNN) and Temporal Convolutional Networks
(TCN). Our work is presented in five distinct chapters in this document. Chapters 1 to 3 of this
thesis serve as a comprehensive compilation of domain knowledge, acting as a reference for re-
search within SpaceAble. Consequently, some included information extends beyond our study’s

5. https://www.anrt.asso.fr/en/cifre-scheme-7844
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scope, slightly lengthening these initial chapters.

In the scope of Chapter 1, we aim to provide a broad overview of the main players in space
meteorology, explaining their interesting interactions and the various phenomena and theories that
make up this field. From our powerful Sun to Earth’s complex magnetic field, this chapter seeks
to understand the intricate relationships between solar flares, coronal mass ejections, and geomag-
netic storms. It is important to mention that this is not intended to be an exhaustive theoretical
overview, as several topics are intentionally left out for the sake of brevity and clarity. Instead,
this chapter invites the reader to explore the complexities of space physics and to gain a deeper
understanding of the widespread impact of space weather on our everyday lives. In this way, this
chapter is designed to act as a foundational source of knowledge for SpaceAble in the field, offer-
ing an essential understanding of the subject for those previously unfamiliar with it.

Similarly, Chapter 2 sheds light on the field of Artificial Intelligence (Al), highlighting the
branches of Machine Learning and Deep Learning. The goal of this chapter is to provide a detailed
understanding of the mechanisms, algorithms, and foundational principles driving these growing
technologies, thus laying a strong foundation for further discussions and analyses throughout the
rest of this manuscript. Additionally, we explain the concepts of supervised, unsupervised, and
reinforcement learning, illustrating each with examples directly related to space meteorology. We
also uncover the basic mathematics behind elementary neural networks, introduce the idea of hy-
perparameters, and examine the main areas where a data scientist works. Finally, the chapter
concludes with a brief but informative overview of the crucial role of hardware selection (includ-
ing GPUs and CPUs), libraries, and Artificial Intelligence tools in this field.

Chapter 3 marks the initiation of the specific study and concludes the theoretical portion. With
the context established and the problem statement clarified, this chapter is entirely dedicated to
the presentation and analysis of the available data. Undertaking a data analysis before diving into
Artificial Intelligence (Al) projects is crucial, as it fosters an understanding of the data’s structure,
quality, and inherent trends. This strategy ensures that our Al models are aptly tailored, heightens
the accuracy of predictions, and reduces the risk of errors stemming from misinterpreted or inferior
data. In our viewpoint, this stage is the linchpin of the thesis and represents the most critical and
time-intensive phase. Initially, we introduce the data: measurements from the DMSP satellites,
data harvested from OMNIWeb, and measures from the Advanced Composition Explorer (ACE)
satellite. Following this, we scrutinize them through the AI prism, which, in the case of ACE
data, culminated in a research paper (Bouriat et al., 2022). The paper’s goal was also to propose
a methodology for such analyses. Ultimately, we seek to determine, beyond the confines of Al,
whether a palpable link truly exists between the input and output data, a pursuit that also yielded a
publication (Bouriat et al., 2023). Once all these analyses have been conducted, we are positioned
to conclude by outlining the most apt preprocessing for our problem statement.

This brings us to Chapter 4, which is dedicated to the implementation of algorithms and the
presentation of the resultant findings. Our initial focus is directed towards PrecipNet, attributable
to its salient outcomes. Our first objective within this chapter is to internally replicate its results,
thereby having a better understanding of its operational mechanisms and inherent limitations. Fol-
lowing this, informed by the insights gained, we introduce our Fully Connected Neural Network
(FCNN). A meticulous comparison of our results with those procured by PrecipNet (McGranaghan
et al., 2021) and OVATION Prime will ensue. Next, we will present short-term (10-minute) fore-
casts of precipitating electron fluxes to validate the possibility of future research work. Conclud-
ing this chapter, we present our Temporal Convolutional Network (TCN). This approach offers the
benefit of being a comparatively recent method that has exhibited proficiency with time series (Bai
et al., 2018). Furthermore, it remedies a fundamental concern associated with PrecipNet and our
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FCNN - the subjective determination of historical data to incorporate. It makes use of an entire
temporal range from the past, the duration of which is determined solely by us. In this thesis, we
restrict this to 30 minutes due to limitations in computational capacity.

This thesis ends with Chapter 5, acting as a key moment to combine our findings and form
definitive conclusions. This chapter both outlines the advancements in the algorithms we are still
refining and opens the door to a multitude of future research opportunities, covering both the aca-
demic and industrial fields. Given that this area is closely connected with real risks facing space
stakeholders, we maintain a positive view on its likely importance within private enterprises.

Before diving into the manuscript and to conclude this introduction, we would like to express
our sincere thanks to NASA’s OMNIWeb °, Coordinated Data Analysis Web 7, and to the ACE
Science Center® of the Caltech University, for generously making all the used data available and
public. On a personal note, I would like to extend heartfelt thanks to everyone involved in the
project, including the teams at IPAG, Gipsa-Lab, and, of course, SpaceAble.

6. https://omniweb.gsfc.nasa.gov/
7. https://cdaweb.gsfc.nasa.gov/
8. https://izwl.caltech.edu/ACE/ASC/
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Space Weather and its Measure

"On s’apercevra vite que la nuit a la belle étoile est néfaste. La voiite céleste rend
insomniaque : trop de beauté, trop de grandeur pour songer a dormir."

Sylvain Tesson - Petit traité sur [’immensité du monde

Contents
1.1 Introduction to Plasma Physics . . . . . . . . . v v v v vt i i it ot e 9
1.1.1  Plasmas . . . . . . . oo e 9
1.1.2 Charged Particle Motions . . . . . . ... ... ... .......... 10
1.1.3 Kinetic theory: Vlasovequation . . . ... ... ... ... ...... 17
1.1.4  Fluid theory: Magnetohydrodynamics . . . . . . ... ... ...... 18
12 TheSun-EarthChain . ............ ... e 21
1.2.1  Startingpoint: the Sun . . . . . ... ... oL o 21
1.2.2  Solar Wind in the Interplanetary Medium . . . . . ... ... ... .. 27
1.2.3  Solar Wind’s interaction with Earth’s Magnetosphere . . . . . . . . .. 36
1.24 Geomagnetic Storms and Substorms . . . . . . .. ... ... 47
1.2.5 Plasma Waves in the Magnetosphere . . . . . . . ... ... ...... 48
1.2.6 Tonosphere . . . . . . . . . . . . 52
1.2.7 Auroral Physics . . . . . . ... 56
1.3 Space Weather Measures and Forecasts . . .. ................ 62
1.3.1 Measuring Space Weather through Indices . . . . . ... ... ... .. 62
1.3.2 The Role of Modeling and Forecasting . . . . ... ... ....... 64
1.3.3 Impacts on space and ground systems . . . . . . ... ... ... ... 67
1.3.4 A Danger for Humanity . . ... ... ... ... ........ 77
1.3.5 TheRiseofthe New Space . . . . . ... ... ... ... ....... 81




1.1. Introduction to Plasma Physics

1.1 Introduction to Plasma Physics

The objective of this thesis is to leverage artificial intelligence tools for modeling and predict-
ing particle flows in low Earth orbit. To accomplish this objective, it is crucial to have a thorough
understanding of the physical reality of these phenomena and of the equations that governs them.
The particle flows are an important aspect and one of the final components in the Sun-Earth chain.
Grasping their origin entails comprehending all aspects of this chain. Additionally, comprehend-
ing the equations that underlie these phenomena is vital for selecting suitable Al algorithms and
developing precise prediction models.

In this section, we will introduce and explain the physical and mathematical concepts under-
lying plasmas. The aim here is to introduce those necessary for understanding this thesis and the
following chapters, and not to provide a comprehensive presentation. If the reader wishes to obtain
more information, there are excellent references in French such as Delcroix and Bers (1994) or in
English like Bellan (2006), Cravens (1997), or Kivelson and Russell (1995). With this introduc-
tion, we aim to provide sufficient background, eliminating the need for equations in parts 2 and 3.

1.1.1 Plasmas

Plasma, often referred to as the fourth state of matter, is an ionized gas that contains a signif-
icant fraction of free electrons and protons. Plasma physics is a relatively recent science, which
emerged shortly after World War II and was intimately linked to the beginnings of space explo-
ration. Plasma constitutes approximately 99% of the visible matter in the Universe. It exists under
very high temperatures, which can arise in various conditions:

e through heating, for temperatures above 10* Kelvin, conditions found in stellar atmospheres.

e through radiation, for wavelengths below 100 nanometers, conditions reached by UV radia-
tion, which impact the ionosphere of certain planets.

e through electron or proton bombardment, conditions that are notably found in polar auroras.
e through electrical discharge, as is the case in neon lamps.

e under extreme pressures, such as inside stars.

In neutral gases, interactions between particles, called Van der Waals interactions, occur over
very short distances (the influence decreases as 1/r’ with r being the distance from the center of
the relevant particle). In contrast, in plasmas, a particle is influenced by all other particles even at
great distances (the influence decreases as 1/ r?). It is then said that collective effects are dominant
over binary collisions, which will only be considered here as minor perturbations. Thus, hot and
dilute plasmas can be considered as non-collisional because the mean free path (average distance
traveled by a particle between successive impacts) of charged particles is much greater than the
time and distance scales considered. This is the case for the plasmas involved in the Sun-Earth
interactions. It will suffice to consider the movements of the particles and their responses to the
forces in which they evolve.

Without going too much into details, it is important to note a fundamental property of plasmas:
they are considered electrically neutral on macroscopic scales (from a distance called the Debye
length - see below). In other words, at such scales, the density of positive charge particles is equal
to the density of negative charge particles. In the next three sections, we will present three different
approaches to plasma physics and their limitations:

e The motion of a charged particle in an electromagnetic field (E, B).
o Kinetic theory
e Fluid theory or magnetohydrodynamics (MHD for short)
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The choice of one approach over the other is fundamental and depends on the objectives and
issues at hand. The fluid approach is more relevant for modeling global events, whereas the kinetic
theory is relevant for describing radiative processes, for example.

Finally, let us recall some parameters of a plasma:

o Kinetic energy density: E. ~ nk,T

e Potential energy density: E, ~ ne* /4mweod, where d is the average distance between each
particle

e Plasma parameter: A = 47nA3, also equal to the ratio of potential energy density to kinetic
energy density. Space plasmas all have a parameter A < 1, meaning their kinetic energy
dominates over potential energy. Only metals have A > 1 due to strong electrostatic coupling
between particles.

e Debye length: Ap = 4;%, which can be interpreted as the radius of the sphere of influ-
ence of a charge on the quasi-neutrality of a plasma. To simplify, when a positive charge is
placed in a sea of electrons, the electrons will clump around it and compensate for the posi-
tive charge. The Debye length is the distance from the positive charge at which the overall

system appears neutral, i.e., where the positive charge is compensated.

1.1.2 Charged Particle Motions
1.1.2.1 Maxwell’s Equations

A stationary charged particle creates an electric field E around it. When it moves, it carries
this electric field with it. However, a variation in the electric field in turn creates a magnetic field
H often approximated (rightly so) as B. This idea is encapsulated in four fundamental equations of
electromagnetism discovered by James Clerk Maxwell (1831 — 1879), aptly named the Maxwell
equations. Without these equations, we cannot describe the motion of a charged particle in an
electromagnetic field because they allow for the description of the electromagnetic field and its
variations in a vacuum. They are as follows:

Gauss’s law for electric fields V-E= SBO (1.1)
Magnetic monopoles V-B=0 (1.2)
Faraday’s law of induction VXxE= —aa]: (1.3)
Ampere’s law with Maxwell’s correction VB = <J + bhif) 1.4)

The Gauss’ law tells us that the divergence of the electric field directly comes from the vol-
umetric electric charge density p in the considered medium. Simply put, the electric field comes
from the electric charges and is divergent.

The magnetic monopole law (or local magnetic flux equation) tells us that magnetic field
lines do not diverge: for a given surface immersed in a magnetic field, there are as many incoming
field lines as outgoing ones. In fact, simply put, this equation tells us that there are no magnetic
monopoles, that is, particles carrying a magnetic charge.

In the Ampere-Maxwell law, the right-hand side term is separated into two pieces. The
first indicates that a charged particle in motion creates a magnetic field, as we explained at the
beginning of this section. The second piece, on the other hand, tells us that even in the absence of
a charged particle in motion, a variation in the electric field alone creates a magnetic field.

The Faraday’s law can be seen from the opposite perspective. It tells us that a variation in a
magnetic field generates an electric field.

10
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1.1.2.2 The Cyclotron & Guiding Center Approximation

Let’s consider a particle with mass m, charge q, and velocity v, immersed in an electromag-
netic field (E,B). The particle then undergoes two forces: the Lorentz force (1.2.1) due to the
electromagnetic field, and gravitational forces denoted F, that we neglect here. We can now apply
the fundamental principle of dynamics (FPD, or second law of Newton) stating that mass times
acceleration is equal to the sum of forces (1.2.2). This equation is useful for describing the first
interesting motion for us: the cyclotron.

Lorentz force: F=¢g(E+vxB) (1.5)
FPD: ma=qE+qvxB+Fg (1.6)

Let’s take a reference frame ((ex), (ey), (e;)) in which the electric field is zero and the magnetic
field is only along (e;), so B = (0,0,B). We then project the FPD onto the three axes and obtain
two coupled equations that need to be differentiated to solve.

= then ¢ ¢ (1.7)
my = —qvyB y=wy
where
B
w. =2 (1.8)
m

is the cyclotron frequency, which depends on the charge. The radius of the circular motion or
Larmor radius is

nmy

=145 (1.9)

rL
Thus, a positively charged particle will rotate clockwise, while a negatively charged particle will
rotate counterclockwise. The motion can be more easily visualized directly with the Lorentz force.
A positively charged particle launched on a horizontal plane with velocity v and immersed in an
upward-oriented magnetic field will tend to be pushed to the right (right-hand rule for the cross

product or right-handedness). The particle will then have a constant speed v| along the B axis and
a circular velocity v perpendicular to the field. The resulting motion is shown in Figure 1.1.

Figure 1.1 — Gyration motion of a particle along a magnetic field B.

Let’s keep in mind a very important approximation pointed out by Alfvén: the guiding center
approximation, which states that the Larmor radius remains much smaller than the characteristic
dimensions of the particle motion and that the field does not change much with the particle motion
along the magnetic field during one gyro period (Koskinen and Kilpua, 2022).

1.1.2.3 Drift Motions in Electromagnetic Fields

We have seen the gyratory motion of a particle in a magnetic field, which is at the basis of
the functioning principle of cyclotrons, and also allows for the separation of isotopic charges
(a phenomenon present in certain space instruments). However, when we add another uniform
force field F, or when the E and B fields vary (as shown by the Maxwell equations), the particle
undergoes other drifts. Here are some examples:

11
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o If the F field is parallel to the B field, the perpendicular motion is preserved and the force
field modifies the parallel velocity, so the effect will be to vary the pitch of the helix. The
particle completes turns following B and covers for each turn a distance that increases along
the axis.

o If the F field is perpendicular to the B field, the drift occurs in a direction perpendicular to
F and B. The general motion is therefore a gyratory motion around the guide center, plus a
drift at constant velocity, given by:

_F><B

= 1.1
w="p (1.10)

From this formula, we see that if the force F does not depend on the charge, a current is
generated. An important particular case for us is the presence of an electric field F = gE.
As we have just seen, such a field creates a drift in a direction perpendicular to E and B.
The drift velocity is the same as above, but the charges cancel out, and we obtain vg =
(EAB)/B?. This motion is at the origin of a global convection of the plasma. Moreover,
since the kinetic energy is conserved over one gyratory motion, a parallel electric field is
necessary for acceleration.

e,

Figure 1.2 — Motion of a positive ion and an electron in a field (E,B) from Kivelson and Russell
(1995). Accelerated by the E field, the gyroradius is larger in the direction of E, causing a drift u
perpendicular to both B and E.

e Finally, particles also encounter spatial variations in the magnetic field B. These also give
rise to drifts:

o A first drift that deserves to be mentioned is the centrifugal force resulting from a
particle following a curved field line. The resulting velocity is as follows:

mvﬁ nx VB

- 29gB R,

(1.11)

c

o If B varies along an axis perpendicular to the field lines, a drift velocity appears ac-
cording to the formula:

(1.12)

which is actually the same formula seen earlier. Therefore, a drift occurs perpendicular
to both B and VB. This formula is only valid under certain conditions of the ratio
between the value of the magnetic field B and its variation, which we will detail a little
more in the next section. It will be noted that the drift velocity depends on the charge
of the particle.

o If B varies along an axis parallel to the field lines, the particle then experiences a
force opposite to the magnetic gradient, F = —uVB. One of the consequences of

12
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Figure 1.3 — Movement of a positive ion and an electron in a non-uniform magnetic field B in the
plane, with a variation of the gyration radius resulting in a drift u for positively charged particles.
Inspired by Kivelson and Russell (1995).

this physics on particles in the radiation belts is called the mirror effect. This effect is
simply explained by the fact that a strong enough magnetic field slows down a particle
to the point where the parallel velocity module v becomes zero at a point called the
mirror point, from which the particle would start moving in the opposite direction. Not
all particles can be trapped and the next section (1.1.2.4) explains this effect as well as
the first adiabatic invariant u.

In summary, once the gyration motion is applied, three drifts are generally sufficient to describe
the orbital motion of particles alone in electromagnetic fields:
e The E x B dfrift, also called vp above.

e The gradient drift: drift due to magnetic field gradients, called vg above. This effect is
particularly observable when ions (resp. electrons) from the magnetotail heading towards
the Earth drift westward (resp. eastward) - see Figure 1.3.

e The curvature drift: drift due to the centrifugal force experienced by the particle in its
gyration, called v, above.

FAB
=" 1.13
Vo= (1.13)
1 ,BAVB
Vg = Eva e (1.14)
2
mvy (f
ve— M1 (AAVB) (1.15)
2gqB R,

1.1.2.4 Adiabatic Invariants

The radiation belts (see Section 1.2.3.8) are made of charged particles that are trapped in the in-
ner magnetosphere, following quasi-periodic motions. We usually only describe three of these
motions through what we call adiabatic invariants. But before diving into the subject and the re-
sulting motions that are of interest to us, we need to quickly jump by the Hamiltonian mechanics.
To better understand the concepts and mathematics behind, I highly recommend the reader to read
chapters 3.2 to 3.4 of Bellan (2006) where a proper proof is given to the following information.

If a dynamical system has an equation of motion of the form of

d2
d7§+w2<t>x: 0 (1.16)

13



Chapter 1. Space Weather and its Measure

then S, the action integral over one period, is a constant of the motion (Bellan, 2006).
to+7T
S= / Ldt with L being the Lagrangian 1.17)
To

Even with a time-dependent w, one element is conserved if the movement is slow enough: the
action integral. This can be extended to general Hamiltonian systems with a general form of the
action integral (Eq.1.18) where P, Q are the relevant canonical momentum-coordinate conjugate
pair. The action integral is an adiabatic invariant, i.e. a conserved quantity.

s:fpdg (1.18)

Approximations that should be made here are called adiabatic approximations and then depends
on very slow variations of the system parameters (which explains the term "adiabatic"). In our
context:

o The ratio of the temporal variation of the magnetic field to the magnetic field itself must be
much smaller than the gyration period. Mathematically: % <L 0.

e The ratio of the spatial variation of the magnetic field to the magnetic field itself must be
much smaller than the Larmor radius. Mathematically: % < Rr.

First Adiabatic Invariant & Mirror Effect

In the frame of reference where v| = 0, the charged particle motion creates a current / along its
circular path, with an associated magnetic moment y = I7r?.
qu. Vv’ B mv3

H=im= o "2 ~ 28

(1.19)

The magnetic moment tends to create a magnetic field opposed to the background magnetic field,
hence weakening it (Koskinen and Kilpua, 2022) and it is our first adiabatic invariant.

If, and only if, the adiabatic approximations are satisfied (in other words, if B varies slowly
enough), then the ratio u = mvzl /2B is constant. To show its invariance, we can start from the
action integral or from the projected equation of motion along the axis parallel to B in the case of
a varying magnetic field. The only force in the parallel axis is thus due to the variation of B.

maH = —[.LVHB (1.20)

By multiplying both sides by the parallel velocity, we obtain on one side the derivative of mvﬁ /2
and on the other side a gradient not in space but in time.

dv| dz 9B d (1 ,\ dB d(1 , du
" <V| dt > Raa: = a <2mv> Ty =0 = <2mv| T dt

By conservation of the total kinetic energy, % (%mvﬁ+ %mvi) =0, ie., %(%mvﬁ + uB) = 0.

Thus, we have Bd /dt = 0, which implies that u is constant.

Two consequences directly follow the time invariance of u.

e First, if u remains constant, then the magnetic flux through the surface of a gyration must
remain the same, which means that if B increases, then the radius of the orbit decreases.

14
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e Second, we can deduce a criterion for a mirror point. With a being the angle of attack of
the particle, v; = vsina and then we have:

2 gin2
my-sin“o,
= — 1.21
u 2B (1.21)
If u and the kinetic energy are conserved, then the only two parameters that can vary are
o and B. A particle following an increasing magnetic field will then see its angle of attack
increase. Hence, it might exist a value of the magnetic field B, for which sinox = 1. As a
consequence, the particle will stop moving along B and will turn back. This point is called

the mirror point.

In line with what we just said, we can explain how a particle can be trapped in a magnetic bottle.
Let’s take the following equality for two different locations of the particle in a varying magnetic
field by taking u; = Up:

sin2 (04} B,
sin? (0%) B>

(1.22)

The direct consequence of this equality is that, for our magnetic field maximum value B, and
for a By being the minimum of the magnetic field (at the center of the "bottle"), it exists a limit
angle o at point O such that the mirror point will be located where B = B4, (at both ends of the
bottle). If the angle of attack at the center of the bottle is smaller then the mirror point will happen
for a By, > By, and the particle will not be trapped. Our trapping criterion then corresponds to
the particle being outside a cone called the loss cone that can be imagined at the injection level. A
particle injected into this cone would not experience a mirror point and then will be lost. In our
magnetosphere, the magnetic bottle could be thought of as being a magnetic field line connecting
North and South poles. A particle would then be lost if it reaches an altitude where it collides with
atmospheric particles.

Injection outside
the loss cone

Figure 1.4 — Mirror Effect and Loss Cone Near Earth.

Second Adiabatic Invariant

A trapped particle moving along a magnetic field line experiences the deceleration described
earlier and eventually reaches its mirror point, after which it bounces back towards the opposite
pole. Assuming conservation of kinetic energy (and hence speed), we observe a nearly periodic
motion between two mirror points with a bounce period denoted as 7,. By employing canonical
coordinates, considering momentum, and under the assumption of quasi-periodic motion in the
adiabatic approximation, we can establish an adiabatic invariant (initially proven by Northrop and
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Teller (1960)). For the canonical momentum reduced to p| = mv|, and the canonical position
represented by the projected position of the particle on the magnetic field line (with s denoting the
arc length), the second adiabatic invariant can be expressed as follows:

J:m%vuds (1.23)
where the integral is performed along a field line. It is called the bounce or longitudinal-invariant.

This second adiabatic invariant is associated with the periodic bouncing motion of a particle
trapped between two mirror points on a magnetic field line. This invariant holds significant im-
portance in understanding particle dynamics. Due to the impact of the solar wind on the magneto-
sphere, the latter undergoes distortions, acquiring a comet-like shape and losing its axisymmetry.
Consequently, it is reasonable to expect that a particle, while orbiting Earth, will transition from
one magnetic field line to another. However, all magnetic field line at a specific azimuthal angle
correspond to a distinct value of J for a particle with a given energy and momentum. Conse-
quently, the conservation of J prevents the radial movement of particles in or out of the radiation
belts as they drift around Earth (Fitzpatrick, 2011).

Third Adiabatic Invariant

We have presented the adiabatic invariants associated with gyro-motion around the field line
and the bouncing motion along field lines. The final adiabatic invariant is related to the quasi-
periodic precession of particles around Earth and can be expressed as follows:

o= 7{Adl (1.24)

where the integration path represents the trajectory of the middle of the flux tube (at the equator)
around Earth, known as the drift path. Here, A represents the vector potential of the field. It
is called the flux invariant or the L-shell. As explained by Koskinen and Kilpua (2022), this
invariant is weaker than the first two invariants, as smaller changes can disrupt its invariance. This
is primarily because the drift period 7; should be much larger than both 7, and 7;. Considering that
the drift period is approximately one hour (for MeV energy protons and electrons), this condition
holds true only when the magnetosphere is relatively inactive. A notable consequence of this is the
radially inward (outward) motion of the radiation belts in the case of increasing (decreasing) solar
wind intensity, assuming that the variation in solar wind intensity occurs on timescales greater
than 7.

1.1.2.5 Summary of Motions in the Radiation Belts

At this point, we have already mentioned several times the existence of radiation belts, but
these are structures that we will revisit a little later in this chapter, during the journey from Earth
to the Sun. Here, let’s summarize the three different motions of particles in the belts that results
from everything said above:

e The guiding center approximation can be applied if r; is very small in front of the character-
istic dimensions. For us here, it means that r; < R¢ with R the curvature of the magnetic
field lines 1.1.2.2. A charged particle has a gyro motion of period 7; around its center, the
axis of the field line. The magnetic moment g is invariant.

e A particle has an equatorial pitch angle @, corresponding to a mirror point on the field line.
Depending on this angle, the particle is or is not in a loss cone. If it is not, it experiments a
bounce motion between the two mirror points (see Section 1.1.2.4), of period 7. There is a
longitudinal / bounce invariant J if characteristic times are very large compared to 7, and
Tp > TL.
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e As it moves from the equator towards a pole, the particle experiences an increasing ||B||
and a curvature of the magnetic field lines, leading to both a gradient and a curvature drift
around the Earth, with electrons drifting to the east and protons drifting to the west, with a
period 7;. This motion is associated with a L-shell invariant stating that the magnetic flux
enclosed by the drifting particle is invariant. It is invariant provided that the characteristic
times are very large compared to 7, and T; > T, > Tp.

o It is interesting to notice that low-energy particles motions are dominated by the E x B drift
(Russell et al., 2016).
This set of phenomena is what gives rise to the Van Allen belts, the plasmasphere, and the ring
current. These structures will be more detailed in Section 1.2.3.8. A summary of these movements
can be seen in Figure 1.5.

Flux tube

Mirror point / .

Drifts, Drift of

Drift of
protons ki“"aria“t L-shell] / clectrons

Bounce motion
invariant J

Magnetic conjugate NS
point

Gyration,

invariant p

Figure 1.5 — Summary of basic motions of trapped particles in the Earth’s magnetic field.

Finally, two accelerations are worth mentioning:

e The betatron accelerations can be decomposed into two phenomenon: gyro betatron ac-
celeration and drift betatron acceleration.The gyro betatron acceleration occurs when the
magnetic field strength gradually increases over time, relative to the gyroperiod, resulting in
an increase in the perpendicular energy of the particle. This is due to the fact that the kinetic
energy of the particle is not constant due to the presence of electric fields associated with
the time-varying magnetic field but t remains constant due to slow gradual increase.

e Fermi acceleration is a special case of betatron acceleration where the drift of particles bring
them where the mirror field increases. This leads to the mirror point getting closer to each
other, which is compensated by an increase in parallel energy of the particle.

1.1.3 Kinetic theory: Vlasov equation

The movements of charged particles allow us to understand many phenomena, but when we
look at a plasma at larger scales, it is not possible to solve propagation problems by focusing on
each individual particle. This is where the kinetic description of the plasma comes into play.

The idea is simple: instead of looking at each individual particle independently, we say that the
number of particles located in a 6-dimensional space (3 dimensions for position and 3 dimensions
for velocity) follows a distribution law f, (r,v,t)d>rd>v. Thus, the quantity f, (r,v,t) is the parti-
cle distribution function. Depending on the problem and constraints, this distribution function can
take on different forms, one of the best known and most used being the Maxwell distribution in
the case of independent particles at thermal equilibrium. Furthermore, by integrating over velocity
space, it is possible to identify moments:
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e The moment of order O which is the particle density: ny(r,t) = [ fo(r,v,t)d>v
e The moment of order 1 which is the particle flux: ny/(r,?)(ug(r,)) = [ Vfo(r,v,t)d>v

e And so on to obtain the moment of order 2 (the stress tensor) or the moment of order 3 (the
heat flux tensor).

To describe the time evolution of the distribution function, for simplicity, we can consider a
two-dimensional space with f(¢) in the form of f(x,v,#)dvdx. We will not go into the details of
the calculation here, but by taking the difference between the number of incoming and outgoing
particles from a cell of our 2D space at time ¢ and the number of incoming and outgoing particles
at time ¢ + dt, we obtain the following equation:

of _ df daf)

e e 1.2
o = Vox  ov (1.25)
This can be generalized to 3D space:
of (.o dlta) (1.26)

otV or T oy

The acceleration a is determined by external forces via the PFD. If we only consider an elec-
tromagnetic field (E,B), we only consider the Lorentz force, a = % (E+v xB). Thus, we see that
each component of the acceleration (ay,ay,a;) will depend only on v, and v,, v, and vy, v, and v,
respectively by the principle of the cross product. We can therefore remove the acceleration from

the derivative. This gives us the Vlasov equation:

of  9f 4 af
—+v-—4+—(E+vxB)-=—=0 1.27
o TV ar T ETYVB Gy (127
Although it seems quite simple, it is actually one of the most difficult equations to solve. The
Vlasov equation corresponds to the Boltzmann equation without the collision terms. In conclusion,
the Vlasov equation here describes the time evolution of the distribution function of particles of

mass m and charge ¢q in a plasma, neglecting collisions between particles.

1.1.4 Fluid theory: Magnetohydrodynamics

Magnetohydrodynamics is a branch that aims to combine vacuum electromagnetism and the
fluid dynamics equations known as the Navier-Stokes equations. It consists of assimilating a
current-carrying conductor medium (such as a plasma) to a fluid. For the study of plasma, we
therefore consider larger scales and treat plasma as a continuous medium. It should be recalled
that the objective of this chapter is to understand the physical foundations that will allow us to
understand the Sun-Earth chain without equations. Several concepts are presented, such as plasma
frozen in magnetic fields, convection, magnetic pressure, and tension.

To describe the plasma in this theory, it must always remain close to electroneutrality, a con-
dition that was already mentioned in part 1.2. It is also necessary to define macroscopic quantities
that describe the plasma: a velocity V, a temperature 7, a pressure P, and a density p. Finally, we
will use Ohm’s law, which gives us a relationship between the current density j and the electric
field E.

j::](E—FVxB) (1.28)

Where 1) is the electrical resistivity.
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1.1.4.1 MHD’s equations

Reminder of the conditions: we assume that the plasma consists of a single fluid. The assumed
variables are p for density, V for the fluid’s overall velocity, B for its magnetic field, P for pressure,
its current density j, and its electric field E. We will construct the induction equation from the
two Maxwell’s curl equations and Ohm’s law. Macroscopic movements are much slower than
microscopic movements.

Equations:

ap o :

5 +V-(pV)=0 Continuity equation (1.29)
oV . o .
> +p(V-V)V=—-VP+jxB+pF, Momentum conservation in a fluid (1.30)

JB

5 = Vx(VxB)+ “EVZB Induction equation (1.31)

0
P
ﬁ = constant Thermodynamic equation of state (1.32)

The momentum conservation equation in magnetohydrodynamics corresponds to the equation
of motion, which is the direct implication of the Navier-Stokes equation. Fg represents different
gravitational forces.

The induction equation informs us that if the fluid is at rest, then

9B _ 1 AB (1.33)
at o

This is a diffusion equation, so the magnetic field decreases in a uniform sphere. The first
term, on the other hand, is a convection term. Thus we see two opposing terms (diffusion and
convection). In fact, this equation allows us to highlight what is called the magnetic Reynolds
number Z%,,, which is the ratio of the magnitudes of these two terms. If %,, < 1, the diffusion
term dominates, and collisions responsible for the plasma’s resistivity dissipate magnetic energy.
If %, > 1, the dominant term is convection, and we are in the ideal MHD case.

1.1.4.2 Magnetic field lines ''frozen' in the plasma

The easiest approach is the so-called ideal approach, in which %, > 1. It assumes a collision-
less moving plasma (which is often a good first approximation for space plasmas (Kivelson and
Russell, 1995)), which gives then a conductivity ¢ so large that we can consider it infinite (or a
nul resistivity 1 = 0). The induction equation becomes:

B
a—:V><(V><B) (1.34)

ot

This also means that Ohm’s law becomes:
E+VxB=0 (1.35)

This last Equation 1.35 shows that the electric field is exclusively written as a convective term. We
can deduce a property from this: the conservation of magnetic flux, which also implies the notion
of plasma and field being "frozen" together.

The conservation of magnetic flux can be easily shown by calculation. Consider a volume of
plasma with velocity v moving in a magnetic field B. We can then write the temporal variations of

magnetic flux as:
10 JB
o =] Gast foxpa (10
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According to Stokes’ theorem, we can also write this equation as:

g‘f://a;-dS—//Vx(va)-dS (137)

And according to the equations resulting from ideal MHD seen above, we arrive at:

210

5 =

The temporal variation of the flux is zero, therefore the flux is constant. This means that a flux

( By ) through a surface S; will become a higher flux (B,) if the surface narrows into a smaller
surface S, a phenomenon observable in the solar wind.

0 (1.38)

B, >Bj

Figure 1.6 — Magnetic flux conservation in a field line from Lilensten and Bornarel (2001).

Thus, the plasma is "frozen" in the field lines, but the field is also "frozen" in the plasma. The
particles have their trajectories modified by the fields, and in turn create fields themselves, it is the
frozen-in field condition. Therefore, all the particles on a given field line will remain on that field
line. So, if we have a magnetized plasma that moves, it carries the magnetic field with it. In this
case, the line can deform depending on the different movements of the plasma. But if a plasma is
not magnetized and encounters a magnetic field of different origin, there will be no mixing and the
particles will simply push the encountered magnetic field (Figure 1.7). This is the phenomenon
we encounter when particles magnetized by the interplanetary magnetic field encounter the Earth’s
magnetic field.

a) b) c)

‘ “\ v
ﬁi

Figure 1.7 — Plasma and frozen-in condition. In (a) and (b), we can see the deformation of field
lines caused by the plasma motion. In (c) and (d), we can see the plasma pushing against a flux
tube that it cannot cross (Brekke, 1997).

1.1.4.3 Magnetic pressure and magnetic tension

Without going into detail on the calculations, the magnetic term of the equation of motion can
be expressed as:
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B2 B2
jxB=-V, <> + ng (1.39)
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In this new form, we can identify a first term which resembles a pressure gradient term where
the magnetic pressure F,, is expressed as: P, = 23—20. The second term on the right-hand side
contains r., which is the radius of curvature of the magnetic field line, and resembles a tension
term like that of a stretched elastic. This notion has interesting consequences for the dynamics of
the magnetospheric tail, which we will discuss later. We define the plasma beta parameter as the
ratio of thermal and magnetic pressures. Thus, plasmas considered "cold" (low 3) are dominated
by magnetic forces, while "hot" plasmas (high ) are controlled by thermal effects, and magnetic

fields are induced by plasma motions.

1.2 The Sun-Earth Chain

1.2.1 Starting point: the Sun
1.2.1.1 Structure and characteristics

In this section, we will review the characteristics of the Sun. For the sake of clarity, we will
try to break down the different zones of the Sun and its surroundings into discernible pieces as it
has been done in the book Lilensten and Blelly (2008). However, it should be kept in mind that it
is practically impossible to fully describe solar physics this way. The purpose of this thesis is not
to delve into the technical details of this subject, but only to provide the reader with the keys to
understanding how our star works.

Some key features of our star include:

e Equatorial diameter: 1,392,000 km, approximately 109 times that of Earth.

e Mass: 1.99 x 10°° kg, which is 99.97% of the total mass of the solar system, with 50 to 70%
located in the first quarter of the solar radius known as the nuclear core.

e Average density: 1.4 x 10° kg.m ™3, which is a quarter of that of Earth.
e Total radiated power: 4 x 106 W, of which Earth receives about 1.743 x 10'7W.

e Components and their percentages (Lilensten and Blelly, 2008):
Hydrogen (93.96%), Helium (5.919%), Oxygen (0.0648%), Carbon (0.0395%), Nitrogen
(0.0082%), Silicon (0.0042%), Magnesium (0.0037%), Neon (0.0035%), Iron (0.0030%),
Sulfur (0.0015%), Aluminum (0.0003%), Calcium (0.0002%), Sodium (0.0002%), Nickel
(0.0002%), Argon (0.0001%).

1.2.1.2 A Dynamic Activity

The Sun is a hot ball of plasma and a magnetic star with highly dynamic activity. It is tilted
at 7.25° to the ecliptic plane and exhibits a differential rotation, which means that the angular ve-
locity decreases with increasing latitude. In fact, the Sun’s equatorial regions rotate faster, taking
only about 24 days, compared to the polar regions, which rotate once in more than 30 days.

Turbulent motions in the rotating, electrically conducting convective zone generate a chaotic
interior dynamo and produce the solar magnetic field. Solar magnetic activity essentially controls
the entire outer solar atmosphere, heating the coronal gas to millions of degrees, producing flares

21



Chapter 1. Space Weather and its Measure

i Prominence
Convective zone

Radiative
zone

Photosphere

Figure 1.8 — Sun parts from Steele Hill / NASA. Courtesy of SOHO consortium. SOHO is a project
of international cooperation between ESA and NASA.

that interact with planetary atmospheres, guiding the solar wind, and protecting our solar system
from cosmic rays (Giidel, 2007). This tumultuous magnetic activity follows an 11-year cycle,
as evidenced by the number of dark spots on the photosphere (see Figure 1.8), which have been
measured for centuries and are known as sunspots.

Solar Magnetic Activity

Solar activity is historically modeled by the presence of these solar spots. These dark regions
on the photosphere, with diameters reaching hundreds of thousands of kilometers, are mainly
localized between 40° latitude north and 40° latitude south. They contain a magnetic field that is
100 to 5000 times more intense than elsewhere (Lilensten and Bornarel, 2001). Additionally, their
lower temperature (1000— 1900 K cooler than the quiet Sun - Solanki (2003)) explains their dark
appearance. The formation of these spots falls slightly outside the scope of this thesis, but we can
provide a brief explanation inspired by Lilensten and Bornarel (2001).

As mentioned, the Sun’s magnetic field originates from the convective zone, which is not at
its center. The Sun’s differential rotation distorts the magnetic field lines and complexifies the
configuration of the solar magnetic field, causing locally intense magnetic field tubes that are per-
pendicular to the surface. In this zone, matter carried by the field lines hinders heat transfer from
neighboring regions, resulting in gas cooling and the appearance of the spot. Subsequently, fila-
ments may form above the spot: dark, long, and narrow meandering features that rise towards the
chromosphere.

Solar spots have been observed since the 11th century, but it was not until the 17th century
that their numbers were observed with the help of the first telescopes. It was then noticed that
between two periods without solar spots, approximately 10 to 13 years would pass, and the Sun
would return to its initial state. This is known as the "Schwabe cycle," which lasts about 11 years.
Around the 1850s, Rudolf Wolf had the idea of computing the amount of sunspots that is still
used today. The formula is the following R = k.o(10G + T') with G the number of groups, T the
number of spots and k., an observatory factor that depends on the instrument used to account
for different methods and instruments observing. Following, the very first butterfly diagram was
plotted in 1886 (Russell et al., 2016). A butterfly diagram represents the spots or groups of spots
as a function of solar latitude. Figure 1.9(b) shows that, over the course of the solar cycle, these
spots tend to migrate towards the equator. Figure 1.9(a) also illustrates the solar cycle, depicted by
the number of visible solar spots over time. Although the measurement of solar activity through
sunspots is debatable due to the significant improvement in observation instruments, it remains
one of the longest available data series. As shown in Figure 1.9(a), over the long term, the cy-
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0,25 R

15 000 km

Nuclear core: As previously mentioned, the nuclear core contains 50 to 70%
of the total mass of the sun, extending from the center to 0.25 R with R, the
radius of the Sun (approx. 696,340 km). Hydrogen is transformed into helium
through nuclear fusion, following the proton-proton cycle. The temperature at
its core is around 15.6 million Kelvin, and the pressure is 2.2 x 10! times the
average pressure at the surface of the Earth (Lilensten and Blelly, 2008)

Radiative zone: The zone extending from 0.3 R to 0.8 R is called the
radiative zone. From its base to its summit, the pressure and temperature
decrease. The pressure drops from a few tens of billions of Earth’s atmosphere
to about 6 million, while the temperature decreases from a few tens to
slightly over one million Kelvin. It takes several million years for the photons
emerging from the nuclear reactions in the core to traverse this zone. As they
collide with solar matter, they experience a spectral spread up to the domain
of X-rays, which explains the strong UV radiation and white light (Lilensten
and Blelly, 2008). Note that, unlike the convective zone, the radiative zone
rotates uniformly.

Convective zone: The convective zone is a turbulent zone, with differential
rotation, composed of ionized matter in convective motion: hot protons and
electrons rise to the surface where they cool before descending. This creates
convection cells visible from the surface as granulations. They come in vary-
ing sizes, but separated into two distinct categories: granules, with a diameter
of thousands of kilometers and a lifetime of approx. 5 to 10 minutes, and
supergranules, with a diameter around tens of thousands of kilometers and a
lifetime of nearly 20 hours (Lilensten and Bornarel, 2001; Russell et al., 2016).

Photosphere: Approx. 500 km thick starting at R, the temperature in the
photosphere drops from 6000 to around 4000 K. Various structures can be
found here, such as spicules and macrospicules, which emerge respectively
between granules and supergranules. They expel solar matter and are respon-
sible for what is called slow solar wind.

Chromosphere: Between approximately 500 and 2000 km high lies the chro-
mosphere. Here, the temperature increases from 4200 to nearly 10,000 Kelvin.

Transition region: Initially, the temperature remains relatively low. Then,
around 3000 km, it increases suddenly to several million degrees K. It then
gradually continues to increase up to 15,000 km altitude, at the level of the
corona.

Corona: At this distance, we reach the corona, where we can observe less
dense and therefore colder areas called coronal holes. Plumes emerge from
these areas, which are responsible for the emission of what is called fast so-
lar wind. From this zone, we are in the high solar atmosphere and are then
touching what is called the interplanetary medium, which the sun has filled
with solar wind (fast, slow, and even explosive), radiation (EUV, gamma, and
others), and energetic particles (protons, electrons, alpha particles). All of
these are a result of the dynamics of our star, which will be the subject of next
sections.
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cles have varying durations, maximum spot counts, periods of activity increase and decrease, and
different lengths. Furthermore, during each solar minimum, the polarities between the Northern
and Southern hemispheres reverse, which actually results in a 22-year solar cycle (the Hale cycle),
contrary to the commonly mentioned 11 years (Hathaway, 2015).

_—~
e
|

Sunspot number
o

—
o
N

[2]

o

13, 14

1112,
40 -\ 3 A\

Latitude
o

RS A S AN S A W |

1880 1900 1920 1940 1960 1980 2000

Date

Figure 1.9 — (a) International Sunspot Number (ISSN); (b) butterfly diagram : latitudes of sunspots
as a function of time; (Russell et al., 2016).

From Coronal Holes to CMEs

The solar corona is the outermost part of the Sun and is directly linked to the solar wind and the
interplanetary magnetic field. It should be noted that to reach this region, the temperature abruptly
increases from 10,000 to 100,000 degrees and then suddenly rises to several million degrees. In
the solar corona, the solar atmosphere becomes rarified, and the movements of fully ionized con-
stituents are constrained by the magnetic field lines (see Section 1.1.4.2). Thus, the corona is a
relatively collisionless medium, and the intense heating in this region appears to result from the
generation and absorption of various types of waves, such as mechanical oscillations at its base
(Russell et al., 2016).

Observations of the Sun in X-rays or extreme ultraviolet (EUV) reveal dark and cool regions
of varying sizes called coronal holes, which can cover up to one-third of the solar surface. They
are considered regions of low density where the magnetic field lines are open to space. Because of
this density, they are considered to behave as a collisionless plasma. Ionized protons and electrons
escape along the open magnetic fields and form the starting point of fast solar winds, which will
be discussed in Section 1.2.2. According to Cranmer (2009), this gives us three definitions (the
darkest patches seen in UV and X-ray; the lowest-intensity regions observed with a coronagraph;
or open-field footpoints of time-steady solar wind flows) which do not completely overlap. For
more information on coronal holes, we encourage the reader to look at the vast number of existing
reviews on the topic such as Cranmer (2002, 2009); Harvey and Sheeley (1979); Hudson (2002);
Jones (2005); Kohl and Cranmer (1999); Ofman (2005); Parker (1991); Suess (1979); Toma and
Arge (2005); Wang (2009); Zirker (1977).

During periods of low solar activity, large coronal holes cover the polar caps, while in more
active periods, they can exist at all latitudes but evolve over time. Coronal holes are of interest for
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theoretical modeling, as they represent a time-steady state and provide insights into collisionless
kinetic processes and their dissipation mechanisms. As they are also associated with high-speed
solar wind streams, they can contribute to major geomagnetic storms and corotating interaction
regions.

The various methods of observing the solar corona, from EUV to X-rays, as well as corona-
graph images, have highlighted two other important transient phenomena: solar flares and coronal
mass ejections (CMEs). Initially, these two phenomena were not distinct, and it is important to
keep in mind that the wide range of eruptive events sometimes makes it difficult to distinguish
between flares and CMEs. During both phenomena, which we will describe here, large quantities
of particles are emitted, including protons, electrons, and heavy ions.

e Solar flares (Figure 1.11(b)) are phenomena involving significant energies and temperatures
(up to 1032 ergs (Harra et al., 2023) and theoretically between 6 MK and 100 MK (Shibata
and Yokoyama, 2002)). They can be interpreted as the result of the restructuring of the
photospheric magnetic field, which becomes twisted during differential rotations. Most
flares are associated with active regions that possess intense magnetic fields and complex
magnetic polarities. Russell, Luhmann, and Strangeway describe them as follows (Russell
et al., 2016):

"A flare is an impulsive brightening in the low corona associated with active re-
gions. Flares produce enhanced (by orders of magnitude) emissions in energetic
photon fluxes from their locale, including EUV and X-rays. They are thought to
be a signature of the localized release of magnetic stresses resulting in low coro-
nal heating. They are sometimes, especially in large flare cases, accompanied by
energetic particle emissions and coronal mass ejections."

The simplest or "standard" model for flares (Figure 1.10) considers that magnetic reconnec-
tion occurs at the top of a closed loop of magnetic field or between two close loops, at the
chromosphere level. This results in the acceleration of electrons towards both the surface
and space. Magnetic reconnections will be discussed in Section 1.2.3.3. Although widely
debated, this model provides a good foundation for understanding flares.

Electrons + ions (?)

Reconnection

(point or line)

Flare energy ..

Accelerated He® (?)  release —==c N\
+ heated plasma =

Radiation
(x-rays to radio)

Accelerated
electrons
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Sun Field lines

Flare ribbons i» Hard x-rays
(H-alpha)
Nuclear
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Figure 1.10 — Standard flare model from Russell et al. (2016).

e Coronal Mass Ejections (CMEs) are the most significant solar phenomena in space weather.
They are eruptions of matter originally in the corona, expelled into space at an average speed
of 300 km/s. However, depending on the CME, velocities can range from 100 to 2000 km/s,
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with higher velocities associated with more violent CMEs originating from more active
regions and sometimes associated with major flares, such as the example in October 2003
(Figure 1.11). Their size can reach several tens of solar radii (Gruet, 2018). CMEs appear as
large loops, magnetic bubbles, or sometimes fine jets (Figure 1.11(c)). They are responsible
for most large-scale disturbances in the plasma and magnetic field of the Sun, as well as
most geomagnetic storms. It takes several hours to three days for a CME to travel from its
origin to Earth. They can evolve slowly, taking several hours to leave the corona, or escape
abruptly within minutes (Russell et al., 2016). The duration of the effects of a CME on Earth
also depends on its intensity but typically ranges from 24 to 72 hours.

2003/10/28 06:24

2003/10/28 11:30 2003/10/28 12:47.."

Figure 1.11 — Solar flare and CME from October 2003, during what is known as Halloween solar
storms. (a) Michelson Doppler Imager (MDI) image of the Sun’s disk, showing the large group
of sunspots of active region 10486, (b) EUV Imaging Telescope (EIT) image of solar flare; (c) C2
camera of the Large Angle and Spectrometric Coronagraph (LASCO) showing the CME cloud; (d)
LASCO C3 camera showing the CME cloud. Energetic particles show up in this image as bright
points and streaks, when hitting the instrument’s detectors. (Copyright: SOHO/MDI, SOHO/EIT,
SOHO/LASCO (ESA & NASA)).
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Figure 1.12 — Overall solar emission spectrum from Russell et al. (2016) adapted from Golub and
Pasachoff (1997).

Radiations

As explained in the introduction, this thesis focuses on the Sun-Earth chain and aims to un-
derstand how solar activity measured in the interplanetary medium provides us with information
about precipitating electrons, which are responsible for polar auroras. Since solar radiation is out-
side the scope of this study, we will provide only a brief introduction here and will not mention
certain phenomena such as solar radio bursts.

So far, we have described the structure of the Sun and some of the main phenomena and
energy sources originating from the Sun. The energy we receive on Earth can be divided into
two categories: particles and electromagnetic radiation. Flares, coronal mass ejections, and the
solar wind (the subject of the next section) are accompanied by particle emissions and often a
significant increase in electromagnetic radiation. The solar emission spectrum ranges from the
gamma domain to the radio domain, including X-rays, ultraviolet, infrared, and visible light. Solar
flares are classified in several categories (A, B, C, M, X) based on the intensity of their emission in
the 0.1 - 0.8 nm range (X-rays). Figure 1.12 provides an overview of the solar emission spectrum
and highlights the importance of X-rays and EUV radiation. The solar radiative output can reach
up to 100 billion watts per square meter.

1.2.2 Solar Wind in the Interplanetary Medium

The solar wind is a flow of ionized solar plasma and the remnants of the solar magnetic field
that permeate interplanetary space. It is the result of a large difference in gas pressure between
the solar corona and the interplanetary medium. Indeed, despite the Sun’s gravitational force, the
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thermal pressure and ionizing photon flux produce an highly ionized plasma in the corona with a
speed above the Sun’s escape velocity (Russell et al., 2016). The solar wind is heavily influenced
by variations in the coronal magnetic field that cannot contain it globally. Once escaped in the
interplanetary medium, the solar wind contains a weak magnetic field mainly oriented parallel to
the ecliptic plane at an angle of approximately 45° called the interplanetary magnetic field (IMF).
The solar wind is one of the most important elements when it comes to space weather, if not the
most important (along with CMEs that can strongly enhance solar wind parameters), producing,
among other things, auroras and geomagnetic storms.

In this section, we begin by introducing the general properties of the Solar Wind. In the foll-
woing section we present the idealized fluid model for the Solar Wind, which serves as a valuable
framework for understanding the theoretical basis and spatial configuration of this phenomenon.
We then explore the influence of the solar magnetic field, leading us to consider a more com-
prehensive magnetohydrodynamic (MHD) system of equations. While we do not delve into the
mathematical details of these equations here, we discuss the implications and recent perspectives
regarding the existence of the Solar Wind. Finally, we provide a comprehensive list of intriguing
phenomena associated with the Solar Wind.

1.2.2.1 Properties of the Solar Wind

The Solar Wind, a hot, tenuous, and fast stream of charged particles emitted by the Sun, has
been the subject of observations and measurements since the 1970s (Parker, 1959). These obser-
vations have been conducted from Earth’s orbit and from the Lagrange point 1, located approxi-
mately 200 times the radius of the Earth in the direction of the Sun. This Lagrange point, being a
stable point in the gravitational potentials of the Earth-Sun system, offers an advantageous vantage
point for measurements as it lies upstream of Earth, beyond the influence of the magnetosphere.

The characteristics of the Solar Wind exhibit variations across a range of timescales, spanning
from minutes to the duration of a solar cycle. These characteristics primarily include plasma den-
sity, bulk speed, ion temperature, and the interplanetary magnetic field and its components. Recent
advancements in observations have enabled the identification of ion compositions and the distri-
bution functions for ions and electrons. It is primarily composed of ionized hydrogen with a small
percentage (~5%) of ionized helium and even fewer heavier ions (Carbon, Nitrogen, Oxygen, Iron
and Silicon). A detailed statistical analysis of solar wind data, which serves as the foundation for
this research, will be presented in Chapter 3.

The Solar Wind is commonly described in terms of two distinct classes, each stemming from
different physical processes. Observations of bulk speed and density reveal intervals where high
bulk speed is associated with low density, and low bulk speed is associated with high density.
Although the statistical distribution of solar wind speed highlights a continuity between the peak
corresponding to the most common case of slow solar wind (< 350 km/s) and the tail for high
speeds (> 600 km/s), it is generally recognized that there are two varieties of solar wind on either
side of the threshold of 450 km/s. Table 1.1 provides an overview of the characteristics of these
two varieties. Observations suggest that slow solar wind originates from the boundaries of coro-
nal holes, while fast solar wind emanates from the central regions of coronal holes (see Section
1.2.2.3).

1.2.2.2 Idealized Model for Solar Wind

Explaining the standard vision for the existence of solar wind does not take into account the
magnetic effect of the corona. It requires us to mainly focus on:
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Property Fast solar wind Slow solar wind

Time Variation quasi-steady typically variable

Speed Range ~600-800 km.s~! ~300-500 km.s~!

Density at 1AU ~1-7cm™3 ~7-15cm™3

Proton temperatures ~4x 10*K ~2x10°

Electron temperatures  ~1 x 10° K ~1x10° K

Composition higher He**+ (~4%)  higher O™7/0%% Fe/O

Field structure Alfvén waves Current sheet(s), roational discontinuity
Sources Coronal hole centers  Coronal hole, streamers, boundaries

Table 1.1 — Fast and slow solar wind properties according to Russell et al. (2016)

o A fluid model, explaining the equilibrium state of the solar corona and its relate supersonic
continuous flow of plasma from the corona into the interplanetary medium.

e Then a description of the spatial configuration of magnetic field lines that are frozen in the
expanding plasma and are therefore carried into the interplanetary medium by the solar wind
(Kivelson and Russell, 1995; Russell et al., 2016).

e And finally the boundary condition: the formation of a shock region in distant regions of the
solar system.

Before we delve into this, let’s have a quick reminder of some physical concepts. The continuity
equation is the equation that accounts for the conservation of mass in a flow. To derive it, we con-
sider an infinitesimal volume element and sum up the inflow and outflow of matter. The resulting
equation is as follows:

dp

L4V (pu=0 (1.40)

with u being the flow velocity speed (or vector field describing the movement of the quantity we
are looking at, ¢) and ¢ gives the net rate of our quantity ¢ (amount per unit volume per unit time).
In plasma for instance, numbers of particles can be added by ionization of neutrals or removed by
recombination of ions and electrons.

e For a steady flow (no time variation), the left-hand term vanishes.

e For a conservative flow (no sources or sinks), the right-hand term vanishes.

e For an incompressible flow (constant density), the left-hand term vanishes.

e For a conservative and incompressible flow, only V- (pu) = 0 remains.
Fluid Model

In fluid mechanics, the principle of mass conservation is described by the continuity Equation
1.41 in several different forms: local conservative (normal time derivative), local non-conservative
(time derivative following the particle in its motion), or integral form. The continuity equation
represents the conservation of mass. The conservation of momentum in a fluid is reflected in
Equation 1.42.

afp—l-V-(pu)ZO (1.41)
ot
du .
PE‘FPII'VUZ—VP-F,]XB—Fng (1.42)
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These equations are solved using several approximations:

e The flow is assumed to be at equilibrium, hence independent of time, resulting in zero time
derivatives.

e The system is spherically symmetric, and all physical properties are functions of the dis-
tance from the center of the Sun, denoted as r. The equations are expressed in spherical
coordinates.

o The flow velocity is assumed to be strictly radial.
e Magnetic effects j x B are neglected for now (see Section 1.2.2.3).

This leads to the following equations:

——(pur’)=0 (1.43)

(1.44)

From here, two main approaches have emerged for solving these equations.

First attempt: Hypothesis of hydrostatic equilibrium. The first and simplest approach is to
consider that u(r) = 0 everywhere. The first equation is directly satisfied, and the second equation
balances the pressure gradient of a static atmosphere with the gravitational forces. By solving for
the pressure in a static, isothermal atmosphere, we obtain:

p(r) =poexp<GM®’" <1—1>) (1.45)

2kT r R

This equation is a generalization of the familiar formula for decreasing pressure with increasing

altitude in a static, isothermal atmosphere. However, the problem with this formulation is that as

r — 00, p = poexp (— C;fn’g’) . This pressure value at infinity is several orders of magnitude higher

than the pressure of the ambient interplanetary medium, and thus cannot represent an equilibrium
between the two.

Second attempt: Towards the solar wind. The second resolution is based on the work of E.N.
Parker in the 1950s. It starts with the relation pur®> = const. from Equation 1.43. Parker derived
the following differential equation for u(r) and du/dr in an isothermal, expanding atmosphere:

1du . a4kT GM@
= r2

w27
m ‘udr mr
This is a differential equation for u(r) and du/dr in an isothermal, expanding atmosphere.
This equation led to the idea of the existence of a solar wind. For any temperature T of the solar
corona, the second term on the right-hand side (GM.,/r?) is larger than the first term at the base
of the corona, 4kT /mr. This means that regardless of its temperature, the solar corona is trapped
by gravity. At the critical radius r, = %—‘}m, the right-hand side of the equation becomes positive
again. At this critical radius, the left-hand side of the equation must be zero, which can be solved
in two ways. The first is to consider that % . = 0, which would mean that the solar wind solutions
have their minimum or maximum velocity at .. As a slight Doppler shift has been detected at the
level of the corona, we know that u is smaller in this region. By observing the signs, we would
have u increasing until r, and then decreasing again. All solutions based on this approach share
the issue of the first formulation (the value of pressure at infinity). The second way is to consider
that at r = r., we have u? — ZI‘TT = 0 meaning that u has the sound speed. It is by exploring this
solution that we obtain the correct version, i.e. a wind that smoothly passes from sub to supersonic

consistent with both the coronal and outer boundary requirements: the solar wind.

(Parker) (1.46)
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Spatial Configuration of the Interplanetary Magnetic Field in Fluid Model

The plasma outflow from the corona carries the open coronal field embedded within it: it is the
frozen-in condition (see Section 1.1.4.2). Hence, the plasma flows is dragging the magnetic struc-
ture with it. The instensity of such purely radial magnetic field decreases at a 1/r? rate. However,
as mentioned before, the Sun has a differential rotation which varies with latitude. Looking at the
equator, the result would be a archimedean spiral pattern of outflow as shown Figure 1.13, often
presented by Parker as analogous to a "garden sprinkler”. Figure 1.13(b) is showing this result in
the case of an equatorial, constant speed flow. The angle between a magnetic field line and the
orbit of the Earth located at 1 astronomical unit (AU) ! is approximately 45°.
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Figure 1.13 — Parker’s model of Interplanetary Magnetic Field from Russell et al. (2016). (a)
Motion of a single parcel of solar-wind fluid carrying the Sun’s open field line (Russell et al.,

2016). (b) Parker spiral field in the equatorial plane in case of a constant solar-wind speed of
400km.s~" from Kivelson and Russell (1995).

Boundary Conditions and Shock

We find ourselves in the opposite problem compared to earlier. At infinity, everything tends
toward zero, making it difficult to connect the solar wind with the conditions of the interplanetary
medium. In reality, the momentum flux density pu? is a property of the fluid that approximates
pressure. Since p follows a 1/r? dependence according to the continuity equation, the momentum
flux density falls below the pressure value of the interplanetary medium. To address this problem,
one would expect the solar wind to slow down, but it is not easy to decelerate it. In fact, the only
way to resolve this dilemma is to assume the formation of a shock wave that abruptly decelerates
the solar wind. After this shock, the solar wind can gradually adjust to the equilibrium of pressures.
Based on calculations, the distance between the Sun and this shock is estimated to be 160 AU.

1.2.2.3 Influence of the Solar Magnetic Field

In order to obtain a more realistic representation of the solar wind, it is necessary to consider
the interaction between the expansion of the solar corona and the solar magnetic field, specifically
the term j X B in Equation 1.42. However, solving this system of equations becomes considerably
more challenging compared to the ideal model. The assumption of a spherically symmetric MHD
flow describing the corona is no longer valid, and the assumption of purely radial velocity u needs

1. 1 AU = 149,597,870,700 m
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to be abandoned (Kivelson and Russell, 1995).

To simplify the problem, one approach is to impose the magnetic dipole as a boundary con-
dition at the base of the corona, which allows for a more tractable solution within the MHD
framework. Pneuman and Kopp (1971) adopted this approach and obtained a configuration con-
sisting of a mixture of closed field lines below a certain latitude and open field lines above it.
The open-field lines again provide us a model for solar wind formation. Figure 1.14 illustrates
this configuration. We can notice two field lines, very close to each other along the equatorial
plane, exhibiting different polarities. This results in a thin layer of high current density normal to
the equatorial plane, known as the "interplanetary” or "heliospheric" current sheet (highlighted in
yellow in Figure 1.14). Taking into account the dipole’s tilt relative to the Sun’s rotational axis,
we obtain a configuration often referred to as the "ballerina’s skirt"-shaped heliospheric current
sheet, as depicted in Figure 1.15. It is important to note that modern 3D rendering from MHD
models, incorporating realistic source distributions, present a more intricate picture. However, the
tilted dipole representation serves as a useful baseline for describing the heliospheric current sheet.

2

Figure 1.14 — Isothermal coronal-expansion model from Pneuman and Kopp (1971) for a dipole
magnetic field considered at the base of the corona. Dashed lines are field lines for classical dipole
field. Yellow zone corresponds to a thin layer of high current density. Adapted from Kivelson and
Russell (1995).

Figure 1.15 — 3D rendering of the interplanetary current sheet in a Parker solar wind model for a
tilted dipole, from (Orcinha et al., 2019).
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Figure 1.16 — Complete solar-wind extension into interplanetary medium. The + (respect. -)
symbol indicates positive outward (respect. negative inward) magnetic field. Region of slow solar
wind are shaded (Russell et al., 2016).

Through various models, such as the potential field source surface (PFSS) model (Altschuler
and Newkirk, 1969; Hoeksema, 1984; Schatten et al., 1969; Wang and Sheeley, 1992), we can
determine a critical radius where the combined effects of solar gravity and the corotations of the
solar magnetic field diminish significantly, allowing the solar wind to flow outward unimpeded.
This radius lies well beyond the region where the last closed coronal loops exist and is theoreti-
cally situated around ~10-20 solar radii (Russell et al., 2016). One other important finding from
these models is the understanding that most of the slower solar wind originates from the bound-
aries of coronal holes, which serve as sources of higher-speed solar wind streams. This suggests a
relationship where the lower-speed solar wind sets a boundary for the higher-speed streams, which
is seen in measurements at 1AU.

Figure 1.16 from Russell et al. (2016) (adapted from Schatten et al. (1969)) encapsulates most of
the ideas presented here.

e The Solar-wind source surface is the starting point of our roughly spiral-shaped flow in the
interplanetary medium.

e The heliospheric current sheet is the boundary between positive field and negative field
sectors (see also Figures 1.14 and 1.15). From Earth (1AU) we recurrently see magnetic
field change when going above and below the interplanetary current sheet (we can imagine
Earth’s orbit in image 1.15). Last Sun’s magnetic field flip happened around December
20137

e Lower-speed solar wind bounds the open field regions thus separating higher-speed streams
from different sources.

1.2.2.4 Associated Phenomena

In this final section about the solar wind, we will present several effects and consequences
associated with it. Firstly, we will discuss the corotating interaction regions (CIRs) and the shocks

2. https://www.nasa.gov/content/goddard/the-suns-magnetic-field-is-about-to-flip/
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they generate. Next, we will examine the propagation of coronal mass ejections (CMEs) in the
solar wind, specifically focusing on the resulting interplanetary coronal mass ejections (ICMEs)
and their associated shocks. Furthermore, we will explore the particle acceleration mechanisms
within these shocks, leading to the formation of solar energetic particle (SEP) events. Finally, we
will briefly touch upon the interaction between the solar wind and non-solar particles.

When looking at Figure 1.16, we notice the propagation of the fast and slow solar winds. It is
straightforward to understand that a fast solar wind tends to overtake a slow solar wind. However,
due to the frozen-in nature of the magnetic field within the plasma, these regions of interaction
between the flows correspond to areas where both plasma density and magnetic fields experience
compression ahead of the fast solar wind. A clear understanding of this phenomenon is provided
by Figure 1.17. These regions, known as corotating interaction regions (CIRs), reappear peri-
odically every 27 days as they corotate with the Sun. Notably, these regions persist in density
measurements taken near Earth, even as one moves farther away from the Sun. Moreover, it is
important to note that within these regions, the slower solar winds are subject to acceleration
while the faster solar winds experience deceleration, primarily due to momentum redistribution.
Additionally, the sudden changes in velocity profiles can trigger shock waves, resulting in abrupt
alterations in solar wind properties, such as elevated pressure, density, and temperature. The ori-
entation of CIRs also plays a role in the frequency and regularity of shocks. Forward shocks (in
front of the high speed-stream) tend to occur more frequently than reverse shocks (behind the high
speed stream) (Riley et al., 2012).

Ambient
solar wind

Ambient

Slow Slow solar wind\

Figure 1.17 — Visual representation of a corotating interaction region (CIR) forming compression
and rarefaction zones. From Russell et al. (2016).

The steady-state of the solar wind, as previously described, consistently fills the interplane-
tary medium. However, it is subject to temporal evolution, influenced by coronal conditions and
occasionally exhibiting violent transient behaviors, particularly during interactions with coronal
mass ejections (CMEs). As previously mentioned, certain explosive CMEs can attain velocities of
several thousand kilometers per second within a few tens of solar radii. These events leave evi-
dent signatures in the interplanetary medium when measured at a distance from the Sun. Referred
to as interplanetary coronal mass ejections (ICMEs), the term "interplanetary" emphasizes the in
situ measurements of the CME. As outlined by Russell et al. (2016), ICMEs exhibit the following
characteristics:
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e The compression and deflection of the solar wind by the ejecta generate a leading shock that
imparts additional heat to the solar wind.

e ICMEs typically display normal density, lower ion temperature, and enhanced magnetic
field compared to the prevailing solar wind conditions.

e Unusual ion composition signatures may be observed within ICME:s.

e In certain instances, particularly at high heliolatitudes, ICMEs may also induce a reverse
shock.

e The occurrence of ICMEs follows the solar cycle, as expected based on the occurrence rates
of CMEs.

e Statistics on the speed of CMEs have revealed that CMEs initially moving slower than the
solar wind tend to accelerate as they reach 1 AU, whereas CMEs moving faster tend to
decelerate. The modeling efforts aimed at understanding the underlying mechanisms behind
these effects are still ongoing.

Both shocks generated by ICMEs and CIRs are categorized as interplanetary shocks. While shocks
originating from CIRs intensify with radial distance, they remain relatively weak compared to
those caused by ICMEs. But overall, both CIR shocks and ICME shocks are considerably weaker
compared to the bow shock (see Section 1.2.3.1).

Solar energetic particles (SEPs) are ions, particularly protons, that originate from particle ac-
celeration mechanisms occurring in interplanetary shocks or solar flares and exhibit energy levels
ranging from keV to GeV. Hence, they usually are classified as coming from two type of event:
"impulsive" for the flares or "gradual" for the ICME shocks. They are distinguished through their
duration (hours vs days), their composition (higher proportion of heavy ions such as Fe vs solar-
wind ion composition) and the radio burst type that they are associated with (type IIT vs type II) >.

There are a variety of particles and processes that do not come from the Sun: interstellar neu-
trals, dust, or galactic and anomalous cosmic rays (GCRs and ACRs). Here, we will not present
the complex heliospheric pickup ions (and the ion pickup process) or interactions with dust but we
will stick to a brief introduction on GCRs. GCRs come from interplanetary and interstellar space
and are present throughout the Solar System. Their energy range span from sub-GeV to beyond
TeV. They have astrophysical origins, such as supernovae explosions and active galactic nuclei,
which could explain their incredible energy. GCRs consist mainly of protons (~70-90%), helium
nuclei (~7-10%), heavy elements (~1%), and electrons (~1%). During periods of heightened so-
lar activity, the interplanetary magnetic field (IMF) is intensified, creating a stronger shield that
hampers the penetration of GCRs into the inner heliosphere. Conversely, during solar minimum
phases, the weaker IMF allows for greater GCR influx towards Earth’s atmosphere (Bothmer and
Daglis, 2007).

Let us recall that what we have presented in Sections 1.2.1 and 1.2.2 is a condensed and
simplified overview of the Sun’s activity and its associated phenomena. We have intentionally ex-
cluded comprehensive topics such as coronal heating. For a more comprehensive understanding
of Sun-related topics, readers are advised to use the many resources available, such as Schrijver

3. A radio burst is a brief period during which the Sun’s radio emission is above background level. A type II radio
burst is a relatively slow drift from high to low frequencies of around 1 MHz.s~! while a type III is a rapid frequency
drift from high to low frequencies of around 100 MHz.s !
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and Siscoe (2010) or Priest (2014).

In summary, the Sun exhibits a very dynamic activity starting at its nuclear core. The con-
vective zone, in particular, plays a crucial role in generating the solar magnetic field through a
dynamo-like mechanism. This magnetic field controls the structure of the coronal field, which
can be envisioned as a network of interconnected loops. In the corona, the Sun’s outermost ion-
ized atmosphere, plasma outflows caused by high pressure gradients are observed. These outflows
lead to the formation of coronal holes, members of the family of active regions. The location,
distribution, and emergence of active regions change throughout the solar cycle, influencing the
coronal field and, consequently, impacting Earth. Solar cycle-related phenomena such as flares
and coronal mass ejections (CMEs) generate energetic particles and radiation. Moving to higher
altitudes, the solar atmosphere transitions into the solar wind, which can be described using mag-
netohydrodynamics (MHD). Parker’s MHD fluid description, developed in the 1960s, provides
an initial framework for understanding the solar wind’s continuity from subsonic to supersonic
regimes and exhibits the existence of the heliospheric current sheet and its distinctive skirt-like
geometry. Other models (e.g., PFSS) have aided in comprehending the sources of slow and fast
solar wind outflows. Farther in the interplanetary medium appear interaction regions forming
compression and shocks that depend on the ~27 day solar rotation (CIRs). We have also examined
the propagation of coronal mass ejections (CMEs) within the solar wind, which subsequently lead
to the formation of ICMEs. These ICMEs often trigger significant solar energetic particle (SEP)
events. Finally, we briefly mentioned galactic cosmic rays (GCRs), an extraordinarily energetic
population of particle. All these elements will be actors around the Earth’s Magnetosphere and
main protagonists of Space Weather.

1.2.3 Solar Wind’s interaction with Earth’s Magnetosphere

In this section, we shift our focus to the interaction between the solar wind and the Earth’s
magnetic field, building upon our previous explanation of the solar wind’s nature and its propa-
gation in the interplanetary medium. Our objective is to examine how the solar wind influences
the Earth’s magnetosphere. To lay the groundwork for subsequent discussions, we will first in-
troduce the key features of the magnetosphere, without delving into technical intricacies, thereby
establishing a common vocabulary for the remainder of this section. Subsequently, we will delve
into a detailed analysis of the interactions between the solar wind and the outer magnetosphere.
Lastly, we will explore the processes occurring within the inner magnetosphere, which also arise
as a result of its coupling with the solar wind. Our references include Koskinen and Kilpua (2022)
and Russell et al. (2016), among others, which guided the structuring of this section. Nonetheless,
we encourage readers to explore the extensive literature available on the subject of the Earth’s
magnetosphere, including notable works like Bothmer and Daglis (2007).

1.2.3.1 Introduction to Earth’s Magnetosphere

The Earth’s magnetic field, like that of the Sun, originates from a hidden dynamo effect within
the planet. This phenomenon is driven by the convective motion of liquid iron in the Earth’s liquid
core, located more than 1200 km from the planet’s center. Initially, we adopt a simplified approach
by considering the Earth’s magnetic field as a dipole inclined at an 11° angle relative to the Earth’s
rotational axis. However, this dipole is not perfectly centered but instead offset by approximately
450 km from the rotational axis. As a result, the magnetic field intensity is higher at the magnetic
North Pole than at the magnetic South Pole, with a minimum value occurring within a region
known as the South Atlantic Anomaly. We refer to the region influenced by this magnetic field
as the magnetosphere, where particle motion is governed not by the solar wind but by the Earth’s
magnetic field. The term "magnetosphere” is used when a planetary magnetic field is confined
by the solar wind. In the simplified dipolar field model, the equation describing a magnetic field
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line is given by r = rysin® @, where 0 represents the magnetic colatitude and ry is the distance
between the dipole center and the point where the field line crosses the equator. This equation
can be transformed into r = Lcos? A, where A denotes the magnetic latitude. Here, L is a distance
measured in planetary radii and is commonly used to identify field lines and associated field in-
tensities, providing an explanation for the earlier reference to the "L-shell" term.

In the ideal scenario where the Earth’s magnetic field and the interplanetary magnetic field
(IMF) coexist without collisions or dissipations, they would act as impenetrable barriers to each
other. However, reality differs as the solar wind encounters difficulties in penetrating the Earth’s
magnetosphere, resulting in the formation of a distinct boundary. This boundary, referred to as
the magnetopause, represents a discontinuity in the flow and serves as the interface between the
influence regions of the solar wind and the Earth’s magnetic field. The position of the magne-
topause directly depends on the equilibrium between the pressure exerted by the solar wind and
the magnetic pressure within the magnetosphere. In the Earth’s reference frame, the solar wind
attains velocities significantly higher than the maximum speed at which disturbances propagate

through the fluid. This speed, the magnetosonic velocity (Vs = 1/ v2 +v§, where v4 represents
the Alfvén velocity, to be discussed later), leads to the formation of a collisionless shock ahead
of the magnetopause. This shock converts the substantial kinetic energy of the solar wind into
electromagnetic energy and heat. Consequently, a region of high disturbance arises between this
shock and the magnetopause, known as the magnetosheath. On the day side, the front point of this
shock is the bow shock nose (BSN), with its distance from Earth varying between 13 and 6 Earth
radii during calm and active periods, respectively (with an average distance of approximately 10
Earth radii under typical conditions). On the night side, the interactions cause the initial dipole
shape to stretch, resulting in the formation of a long tail known as the magnetotail. Observations
have revealed that this magnetotail extends far beyond the Moon (Kallio and Facsk6, 2015), sup-
porting the notion that a significant amount of energy is transferred from the solar wind to the
magnetosphere. Additionally, magnetospheric models emphasize the existence of neutral points
known as polar cusps, located at the north and south poles. These points persist regardless of the
IMF configuration in which the magnetosphere is immersed and provide direct access for magne-
tosheath plasma to the ionized region of the upper atmosphere, known as the ionosphere (Russell,
2000).

A substantial portion of the magnetosphere comprises two regions referred to as the tail lobes,
which are magnetically connected to the polar caps, themselves bounded by the auroras. Further-
more, there is a plasma sheet containing an electric current known as the cross-tail current, which
forms a closed loop around the lobes where it forms the nightside of the magnetopause current.
Later in this section, we will delve into greater detail regarding additional currents such as the ring
current. Figures 1.18 and 1.19 provide visual representations of the various elements discussed
here.

In the following sections, we will explore in detail various phenomena occurring within the
magnetosphere. This will enable us to elucidate the origin of the main magnetospheric currents.

1.2.3.2 Magnetopause & Magnetopause Current

The magnetopause and its associated current serve as the initial indicators of the solar wind’s
arrival in the vicinity of our planet. As previously discussed, in an ideal scenario of collisionless
plasma without any reconnection processes, magnetic plasmas would remain distinct and unable
to mix. If there is no activity in the magnetosheath, characterized by a vacuum magnetic field on
the magnetosphere side, the boundary between the magnetosphere and the solar wind represents a
balance between plasma pressure and magnetic pressure. Within this context, the magnetopause
hosts a specific current known as the magnetopause current or Chapman-Ferraro current.
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Figure 1.18 — 3D representation of the magnetoshere showing the major regions and currents,
from Russell et al. (2016)
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Figure 1.19 — Cross section of the magnetosphere showing the majore regions, including the outer
magnetosphere and the magnetotail. From Russell et al. (2016).
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Conceptualizing this current is relatively straightforward. The magnetopause, situated at the
interface between the vacuum magnetic field and a plasma of near-infinite conductivity, signifies
the last region where particles undergo gyration. Consequently, certain particles, specifically elec-
trons moving westward and protons moving eastward, become detached from the magnetopause.
This collective motion across the entire magnetopause-solar wind interface generates a current
flowing in an eastward direction (denoted as j,,, in Figure 1.20).

On the dayside, this current manifests approximately 10 Earth radii from the planet and com-
pletes its circuit by encircling a neutral point on the magnetopause. The magnetopause current
induces noteworthy effects at the Earth’s surface, including magnetic disturbances parallel to the
terrestrial magnetic field and directed toward the north. Additionally, it amplifies the magnetic
field intensity within the magnetosphere and along the dayside surface of the Earth.

While the actual behavior of the magnetopause is more intricate, it is important to acknowledge
the existence of this current, and the explanation here is a valuable approximation. In the absence
of other influencing processes, the entirety of the Earth’s magnetic field would be confined within
the boundaries of the magnetopause.

(b) Field line

| ’P" e #
Neutral point 7
f Electric
current

line

Net electric
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charges in Magnetopause
solar wind

Solar wind

Figure 1.20 — (a) 3-D view from above of the magnetopause and the currents jiq; and jy,, from Dr.
A. Marchaudon’s class, found online ht tps: //www. sl ides erve.com/%ion/l e-champ-
magn -tique-d-origine-externe-aur-1lie-marchaudon-1lpcle and (b) identical
perspective view of the northern portion of the magnetopause current, as seen from above the
ecliptic plane. Charged particles in the solar wind are deflected in opposite directions by Earth’s
main field, creating a boundary current (from Encyclopcedia Britannica, ht tp s: //www. br it
anntca.com/science/geomagnetic-field/The-tonosphertc-dynamo, last
accessed September 2023).

1.2.3.3 Magnetic Reconnections & Dungey Cycle

The interaction between the solar wind and the Earth’s magnetosphere locally involves mag-
netic reconnection processes. We have previously mentioned the phenomenon of magnetic re-
connection (see Section 1.2.1.2), but now we will delve into its mechanism and the pivotal role
it plays in the Sun-Earth system. Our discussion will try to provide a comprehensive overview,
although no consensus about some fundamental questions "is presently available, thus indicating
that the subject of magnetic reconnection remains open for further theoretical, computational, and

39


https://www.slideserve.com/ion/le-champ-magn-tique-d-origine-externe-aur-lie-marchaudon-lpc2e
https://www.slideserve.com/ion/le-champ-magn-tique-d-origine-externe-aur-lie-marchaudon-lpc2e
https://www.britannica.com/science/geomagnetic-field/The-ionospheric-dynamo
https://www.britannica.com/science/geomagnetic-field/The-ionospheric-dynamo

Chapter 1. Space Weather and its Measure

observational studies" (Gonzalez and Parker, 2016).

Without delving into the mathematical intricacies of the process, magnetic reconnection is
defined as a localized rearrangement of the magnetic field topology, wherein antiparallel fields
annihilate each other, converting a fraction of magnetic energy into kinetic, thermal, and particle
acceleration energy (see Figure 1.21). This phenomenon primarily occurs in plasma environments
where collisions are negligible. Initially distinct antiparallel magnetic fields connect as a result
of the instability within the magnetic configuration. The principal reconnection processes in the
magnetosphere manifest at the magnetopause, in the magnetotail, and within the solar atmosphere.
The first occurs at the interface between the interplanetary magnetic field (IMF) and the magneto-
spheric field, as elaborated below. The second arises from the stretching of magnetic fields into a
thin sheet geometry. The third is driven by diverse dynamic motions of the solar magnetic field,
giving rise to phenomena like coronal mass ejections (CMEs). Various models and simulations
have observed the existence of this process in magnetohydrodynamic (MHD), hybrid, and fully
kinetic scenarios, facilitating an understanding of its underlying mechanisms. For instance, P. A.
Sweet’s model (Sweet, 1958) restricted diffusion to a localized region, while H. E. Petschek’s
model (Petschek, 1964) incorporated the influence of MHD waves. RG. Giovanelli and J. W.
Dungey, on the other hand, highlighted the three-dimensional nature of reconnection.

' Magnetosphere

Exhaust Exhaust

‘ Magnetosheath

Figure 1.21 — Schematic view of the reconnection geometry at the magnetopause. NIF = normal
incidence frame. Adapted from Russell et al. (2016).

The reconnection process is the dominant mechanism responsible for momentum transfer from
the solar wind. J.W. Dungey was the first to establish the connection between magnetic reconnec-
tion at the magnetosphere’s leading edge and this energy transfer, known as the Dungey cycle
(Figure 9.19 from Dungey (1961)). He was the first to propose the idea of an “open magne-
tosphere”, where coupling between the geomagnetic field and the interplanetary magnetic field
(IMF) leads to a large-scale, global, circulatory flow of magnetic field lines and plasma within the
magnetosphere (Sandhu et al., 2019).

Initially, an interplanetary magnetic field (IMF) line (as seen Figure 1.22) connects with a ter-
restrial magnetic field line, leading to plasma ejection and acceleration on both sides of the recon-
nection point. The magnetic field lines relax and retreat behind the Earth, resulting in deceleration
of the plasma, while the incoming magnetic flux adds energy to the magnetotail. Subsequently,
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a secondary reconnection event can occur at the center of the tail, between lines 6 and 6° (Figure
1.22), enabling the plasma to continue its journey. This plasma flow bifurcates, with one portion
heading towards the Earth and the other moving in the opposite direction. Upon rapid return,
field line 7 can also undergo reconnection within the ionosphere, redirecting plasma back to the
dayside. Conversely, field line 7° becomes entirely detached and transforms into an interplanetary
field line. The plasma pressure likely propels the high-altitude flux towards the dayside, gradually
transforming field line 7 into field line 9. During this process, the footpoint of the field lines,
located in the ionosphere, rotates counter to the Earth’s rotation, thereby counteracting the iono-
sphere’s drag force. This equilibrium between the ionosphere and the magnetosphere necessitates
the entrainment of magnetospheric field lines at high altitudes, leading to shear in the magnetic
field between the magnetospheric and ionospheric field lines. A shear in magnetic field results
in the bending of magnetic field lines. Consequently, charged particles, primarily electrons and
protons, moving along these magnetic field lines experience disparate velocities and relative mo-
tions. This relative motion generates electric currents parallel to the magnetic field lines that can
accelerate electrons towards the Earth, cose within the ionosphere, and form dawn to dusk currents
along the polar cap. These currents themselves generate lateral forces through Lorentz force j x B,
pushing the footpoints of the magnetic field lines.

As represented on the spheres of Figures 1.22 and 1.29, the plasma flow produces two foci
in the circulating pattern. The electric potential difference between the two serves as a valuable
indicator of magnetospheric activity. The voltage drop measured here is directly proportional to
the rate of magnetic reconnection (Russell et al., 2016). This reconnection process enables the
transfer of kinetic energy flux from the solar wind (e.g., for a proton density of 10 cm™>, the solar
wind typically exhibits a kinetic energy flux of 1 mJ m~2 s~!) into the magnetosphere, specifically
the magnetotail region. Consequently, the kinetic energy of the solar wind undergoes conversion
into magnetic energy, which becomes stored in the tail and is available for subsequent release. The
thickness of the reconnection layer and the magnetic connectivity play critical roles in determining
the magnitude of energy transfer.

In summary:

e The magnetosphere, in conjunction with solar wind interactions, exerts a pulling effect on
magnetic field lines, as illustrated by the sequence from 1 to 9 in Figure 1.22.

e Shearing between the magnetosphere at high altitudes and the ionosphere results in rela-
tive motions among particles, leading to the formation of currents that accelerate charged
particles along magnetic field lines.

e These currents close when the magnetic field lines meet at the ionosphere level along the
polar cap (see 1.2.6.3 to better understand all the field-aligned currents in the ionosphere-
magnetosphere coupling).

e The consequent j x B force can overcome the ionosphere drag, causing the footpoint of
magnetic field lines to shift, creating a circulating pattern for plasma flow.

e Remark: The reconnection also comes with an energy flow into the magnetosphere. The
kinetic energy carried by the solar wind is converted into magnetic energy, effectively stored
within the magnetotail, and available for subsequent release in various phenomena. We will
be explore some of them in the following sections.

1.2.3.4 Polar Cusps

We have previously discussed polar cusps, which are regions where magnetosheath plasma
has "direct access" to the ionosphere and experiences strong interaction with the solar wind. In a
2D cross-section of the magnetosphere (Figure 1.19), the polar cusps are located at the north and

41



Chapter 1. Space Weather and its Measure

3 4
Magnetosheath

Magnetopause

Plasma flow lines
Polar cap
Midnight

Auroral zone

Figure 1.22 — Dungey cycle from Kivelson and Russell (1995). Magnetospheric convection due to
the magnetic reconnections. A field line labeled I connects with a field line labeled 1’ causing a
change of topology of the field line. Numbers show the successive configurations of the field line,
in the antisunward direction, in the magnetosphere, polar cap and auroral ionosphere.
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south, separating magnetic loops directed towards the Sun from those going in the opposite direc-
tion. These regions represent "weak points" where the intensity of the magnetic field approaches
zZero.

The polar cusps are particularly significant in terms of the coupling between the solar wind
and the magnetosphere, as they are in direct contact with the magnetosheath plasma. During
transient events in the solar wind, the density in the polar cusps can reach similar levels to that of
the magnetosheath.

While the existence of polar cusps does not depend on reconnection phenomena or the pres-
ence of the solar wind, their properties are directly influenced by these factors. In a non-reconnecting
magnetosphere, the location of the cusp is determined by the shape of the magnetopause. How-
ever, when the magnetosphere undergoes reconnection with either a southward or northward in-
terplanetary magnetic field, the position of the cusp is altered (Russell, 2000). During signifi-
cant reconnection events, the polar cusps move towards lower latitudes, closer to the Sun. Some
observations from Russell (2000) include the following: the cusp moves equatorward when the
IMF turns southward and also shows a tendency to move equatorward for increasingly northward
IMF. As the IMF By component becomes more negative, the cusp shifts to earlier local times in
the northern hemisphere, indicating a displacement of the reconnection site away from the noon
meridian when the IMF is not predominantly southward. Conversely, when the IMF By compo-
nent is positive, the northern cusp moves to later local times. Additionally, an increase in solar
wind dynamic pressure causes the polar cusp to widen both in terms of local time and latitude.

1.2.3.5 Ring Current

When discussing the inner magnetosphere, we generally refer to the region where the Earth’s
magnetic field exhibits quasi-dipolar characteristics. Within this region, three specific regions of
interest can be distinguished: the plasmasphere, the ring current, and the radiation belts. The ring
current and radiation belts are directly formed through the trapping of particles within the mag-
netic field (see Section 1.1.2). In this context, the ring current arises as a direct consequence of
particle drift, with protons drifting westward and electrons drifting eastward. It primarily consists
of ions drifting in the energy range of 10-200 keV, with electrons playing a lesser role. It encircles
the Earth in the equatorial region at a distance of approximately 3 to 4 Earth radii (Rg). The ring
current is then one of the main cause of perturbations of the north component of the magnetic field
measured on ground at the equator. As we will see in Section 1.3, on-ground magnetic indices
such as the Disturbance Storm-Time Index (Dst) are then good witness of the ring-current activ-
ity, itself a good witness of geomagnetic storms (Lin, 2021). We can define geomagnetic storms
simply as the energetization of the plasma on closed field lines in the magnetosphere. It is mainly
the response of the Earth’s magnetosphere to a violent phenomenon such as ICMEs, SIRs, and
fast solar wind. A storm is characterized through a specific pattern in the Dst and hence will be
described in more details Section 1.3.

Energetic protons and O+ ions serve as the main carriers of the ring current. It is primarily
sourced from the ionosphere and the solar wind. While oxygen originates from the ionosphere,
protons usually come from both sources. Based on AMPTE/CCE and CRRES observations found
in Daglis et al. (1999) solar wind (respect. ionosphere) contributes to approximately 65% (respect.
35%) of species in quiet times and 30% (respect. 70%) during intense storms. Ion outflow from
the ionosphere occurs mainly in auroral and polar cap latitudes. Ions are transported to the magne-
tospheric tail and gradually accelerated before reaching the inner magnetosphere. The heating and
acceleration processes occur through multiple steps, including the influence of fluctuating electric
fields and magnetic field-aligned electric potential structures. The enhancement of the ring cur-
rent is a fast process as seen in the Dst signatures of geomagnetic storms. However, to recover
from this change, the ring current experiences a loss of energetic ions, mainly through collisions
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between charged particles and neutral atoms from the geocorona. The geocorona, a cloud of hy-
drogen atoms, extends beyond the Moon’s orbit, reaching up to 630,000 km above Earth’s surface.

1.2.3.6 Plasma Sheet & Cross-Tail Current

The plasma sheet is a thin, elongated layer within the magnetosphere of Earth, where a dense
and hot plasma exists (see Figure 1.19). It is located at the equatorial plane of the magnetosphere,
approximately 6 Earth radii away from the planet’s surface. The plasma sheet extends outward,
reaching distances of 100 to 200 Earth radii. It contains a high concentration of charged particles,
including ions and electrons. The energy levels of these particles within the plasma sheet typically
range from 2 to 5 keV for ions and 0.5 to 1 keV for electrons. These energetic particles contribute
to the dynamic behavior and various phenomena observed in the magnetosphere.

One significant process that occurs is magnetic reconnection as seen Figure 1.22 with field
lines quoted 6 and 6’. This reconnection process leads to the accumulation of plasma and ener-
getic particles in the central region of the magnetotail, forming the plasma sheet. Moreover, as
particles move within the plasma sheet and travel towards the polar regions, they can undergo fur-
ther acceleration. Electrons, in particular, can be accelerated to higher energies ranging from 10 to
100 keV. These accelerated particles play a crucial role in generating polar auroras and contribute
to the formation of the outer radiation belt, which consists of particles with MeV (mega-electron
volt) energies.

The cross-tail current is a circulating current at the interface between the two magnetospheric
lobes. It corresponds to j,,; in Figure 1.20 and traverses the plasma sheet we just described. It
forms a narrow sheet of current flowing westward and diverging at the magnetopause towards
the north and south. Its effects include a decrease in the intensity of the magnetic field within
the magnetosphere and at the Earth’s surface, with a significantly stronger decrease on the night
side. In ideal magnetohydrodynamics (MHD), the electric field and plasma velocity are related by
E = —v x B. Consequently, in the tail plasma, where the electric field points from dawn to dusk
and the magnetic field points northward, particles are directed toward Earth. A portion of these
particles then contribute to the formation of the ring current and radiation belts.

1.2.3.7 Plasmasphere

The plasmasphere (see Figure 1.19) extends from the ionosphere to the innermost part of
the magnetosphere and is primarily composed of low-energy (~ 1 eV) and dense (> 10° cm™3)
plasma originating from the ionosphere. It was already known that the plasmasphere exists due to
ionospheric processes. The plasmasphere is then regarded as a cold plasma with particle motion
dominated entirely by the geomagnetic field, hence (mostly) co-rotating (Helmboldt, 2020). The
outer boundary of the plasmasphere, known as the plasmapause, is characterized by a significant
drop in proton density, varying by several orders of magnitude depending on solar activity.

The location of the plasmapause varies widely based on geomagnetic activity. During periods
of high activity (Kp > 4, see Section 1.3), the plasmapause is more distinct and closer to Earth
(refer to Figure 1.24).

1.2.3.8 Radiation Belts

In the various structures of the magnetosphere that we have discussed (polar cusps, ring cur-
rent, plasma sheet, and plasmasphere), low-energy particles are greatly influenced by variations
in the electric and magnetic fields resulting from reconnections at the magnetopause and in the
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tail. However, there are high-energy particles that remain unaffected by the energy exchanges and
become trapped in specific regions of the magnetosphere known as the radiation belts.

The discovery of the radiation belts dates back to February 1958 with the Explorer I mission
and its Geiger-Miiller instrument, followed by subsequent missions such as Explorer III and Pi-
oneer III. At that time, it was understood that there were two radiation belts as in Figure 1.23,
namely the inner belt and outer belt. Observations and measurements quickly provided insights
into their main characteristics, which are summarized in Table 1.2. Subsequent missions, such as
the Van Allen Probes, have revealed an extremely complex and variable structure of the radiation
belts.

Outer Belt
12,000 — 25,000 miles

GPS Satellites
12,500 miles

Geosynchronous Orbit (GSO)
NASA's Solar
Dynamics Observatory
22,000 miles

Inner Belt 2
1,000 — 8,000 miles
y

Low-Earth Orbit (LEO)
International Space Station
230 miles .

=

Van Allen Probe-A

Van Allen Probe-B

Figure 1.23 — Cutaway model of the radiation belts with the 2 Van Allen Probes satellites flying
through them. Credit: NASA (NASA, 2013).

In terms of particle population, the inner belt consists of protons and electrons (see Table 1.2),
while the outer belt is predominantly composed of electrons. The particles are trapped and ex-
perience the three main motion described in Section 1.1.2 and Figure 1.5: the cyclotron motion,
the bounce motion and the drift motion. The inner belt maintains a relatively stable population,
while the outer belt can undergo significant changes within minutes, varying by several orders of
magnitude. The Van Allen Probes have observed a few events where the slot region (the region
between the two belts) was filled with ultra-relativistic electrons, which remained trapped there
for several months. Additionally, the plasmasphere, which is influenced by geomagnetic activity
(see Figure 1.24), has a significant impact on the dynamics of the outer radiation belt.

The sources of particles for the radiation belts are also complex. Waves in the magnetosphere,
such as chorus waves or ULF waves, are known to scatter and energize electrons depending on
factors such as particle energy, wave amplitude, and direction of wave propagation (Koskinen and
Kilpua, 2022). Section 1.2.5 provides a detailed description of these wave phenomena.

In the inner belt, the primary source of particles is the CRAND mechanism, which stands
for Cosmic Ray Albedo Neutron Decay. The CRAND effect occurs when cosmic rays (including
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GCRs and SEPs) bombard the upper atmosphere. Highly energetic cosmic rays collide with oxy-
gen and nitrogen atoms, producing multi-MeV neutrons. Most of these neutrons will either escape
the magnetosphere or interact with the Earth’s atmosphere or surface, but a small fraction will
decay into protons, electrons, and neutrinos while still within the inner magnetosphere. Neutrinos
can escape, but electrons and protons may become trapped by the magnetic field in the inner Van
Allen belt through the mirror effect.

In terms of the electron population in the outer radiation belt, we can categorize them into three
groups (Koskinen and Kilpua, 2022): seed electrons, relativistic electrons, and ultra-relativistic
electrons. Seed electrons represent electrons in the medium energy range that mainly originate
from substorm injections. The highest energy populations are solely derived from the acceleration
of these electrons through chorus and ULF waves. Therefore, seed electrons serve as the exclusive
source, or "seed", for the highest energy electrons. The core population encompasses electrons
with energies ranging from 0.5 to 2 MeV, while electrons with kinetic energies above 2 MeV are
referred to as ultra-relativistic electrons.

Proton Inner Belt Electron Inner Belt | Outer Electron Belt

Population Protons Electrons (1) Seed electrons
(2) Relativistic, core electrons
(3) Ultra-relativistic electrons

Location 1.1to 3RE 1.1to 2RE 3REto 7-10R
Energy Range | 10 to 100 MeV, and | 30 keV - 200 keV (1) 200 keV - 500 keV
up to 1-2 GeV (2) 500 keV - 2 MeV
(3) >2MeV
Source CRAND effect Substorms, (1) Substorms, global convection
global convection (2) Acceleration by chorus waves, inward

transport by ULF waves
(3) Acceleration by chorus waves, inward
transport by ULF waves

Table 1.2 — Inner and outer belts characteristics

Figure 1.24 — Radiation belts (red) and plasmasphere (blue) under low (a) moderate (b) and high
(c) geomagnetic activity. From ESA website - (Carreau, 2013).
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1.2.4 Geomagnetic Storms and Substorms

Geomagnetic storms and substorms serve as important indicators of geomagnetic activity but
exhibit distinct causes and characteristics. Geomagnetic storms are triggered by phenomena such
as coronal mass ejections (CMEs), solar flares, or high-speed solar wind streams. Their effects are
observed through measurements of disturbances in the horizontal component of the Earth’s mag-
netic field at the equatorial region, quantified by the Disturbance Storm-Time (Dst) index. In fact
Geomagnetic storms are characterized by perturbations at low latitudes. In contrast, substorms
primarily arise from the broader influence of the solar wind and manifest as disturbances in the
horizontal magnetic field component caused by electric currents in the ionosphere, represented by
the auroral electrojet (AE), measured at high latitudes. Both storms and substorms predominantly
result from magnetic reconnection processes and involve similar energy transfer mechanisms, al-
beit occurring at different spatial and temporal scales (Lakhina et al., 2006).

Geomagnetic storms occur during intense solar events (e.g., CMEs, high-speed streams) mostly
together with a southward-oriented interplanetary magnetic field (Kamide, 1992; Lakhina et al.,
2006). The primary mechanism driving these storms is the reconnection process at the magne-
topause, whereby energy transfer is significantly amplified by the southward IMF component, as
elucidated in Section 1.2.3.3. Consequently, a substantial amount of plasma is injected into the
inner magnetosphere from the magnetotail (Dungey, 1961), leading to intense auroral activity at
high latitudes on the nightside (refer to Section 1.2.7). As previously discussed in Section 1.2.3.5,
protons move westward while electrons move eastward upon arrival from the magnetotail, result-
ing in the formation of a ring current. This current system becomes highly charged with particles,
exerting a considerable influence on the near-equatorial ground-level magnetic field. Geomag-
netic storms are characterized by a distinct pattern observed in the measurement of the horizontal
component of the magnetic field (see Figure 1.25): a rapid increase known as the sudden storm
commencement (SSC), followed by a significant drop referred to as the main phase. The subse-
quent recovery phase, spanning several days, signifies the gradual dissipation of excess energy
until the system returns to its pre-storm state (Figure 1.25). It is worth noting the SYM-H index
also exists, and bears similarity to Dst but provides a temporal resolution of one minute, as op-
posed to one hour. According to Wanliss and Showalter (2006), it should "be used as a de facto
high-resolution Dst index".

50——

|
1 2 3 t [days]

Dst [nT]

50—
-100——

15071

initial] main
phase| phase recovery phase

Figure 1.25 — Characteristic signature of a geomagnetic storm in the Dst index [nT] (Amory-
Mazaudier et al., 2017).

On the other hand, substorms typically persist for durations ranging from one to several hours
(Lakhina et al., 20006), are initiated in the nightside magnetosphere on closed magnetic field lines
(Liou et al., 2018). They usually arise from the release of stored energy in the form of particles in
the magnetotail, with energies spanning from 5 to 50 keV. This release is accompanied by a fast
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plasma flow ranging from 100 to 1000 km/s. The dissipation of this energy manifests as the for-
mation of auroras on the nightside. Substorms are intimately linked to auroral electrojets, which
will be further explored in the context of the coupling between the ionosphere and magnetosphere.
Two primary theories regarding the triggering of substorms have been proposed (Lui, 1991): the
Near-Earth neutral line (NENL) model and the cross-tail current disruption (CD) model. The
NENL model suggests that substorms are triggered by magnetic field reconnection in the midtail
region (Hones, 1973; Liou et al., 2018; Shiokawa et al., 1998). The CD model suggests that they
are triggered by plasma instabilities, such as the cross-tail current instability, in the near-Earth tail
resulting in cross-tail current disruption (Liou et al., 2018; Lui, 1991). For a more comprehensive
understanding, readers are encouraged to refer to the review by Sandhu et al. (2019).

It is important to emphasize that both phenomena involve multiple aspects of the coupling be-
tween the solar wind, magnetosphere, ionosphere, and thermosphere. Currently, no single dataset
or model can comprehensively describe these phenomena (Sandhu et al., 2019). Both storms and
substorms leave identifiable signatures in ground-based magnetic observations. Furthermore, they
have adverse effects on ground power networks, can induce communication blackouts, and pose
risks to satellite systems (see Section 1.3.3).

1.2.5 Plasma Waves in the Magnetosphere

We have presented the particle motions within our magnetosphere, specifically the adiabatic
invariants, under certain conditions. However, what happens when these conditions are not met?
Perturbations and non-adiabatic behaviors in the radiation belts primarily arise from interactions
between particles and plasma waves present within the magnetosphere, which facilitate the trans-
fer of energy and momentum. Magnetic storms, as discussed previously, serve as an excellent
example of disturbances in the outer belt. They are the main source of a global decrease in the
Earth’s magnetic field through injections into the ring current. The resulting reduction in magnetic
field intensity impacts the adiabatic drift of particles, leading to belt motion, energy loss, parti-
cle diffusion into the loss cone, and subsequent precipitation into the atmosphere, among other
effects. The following section will present plasma waves, their origin and impacts on particles
mainly based on the work by Kletzing et al. (2013); Koskinen and Kilpua (2022).

Plasma waves in our magnetosphere serve multiple purposes, including achieving a balance be-
tween the injection and loss of high-energy particles. These waves originate from various mech-
anisms: external sources, such as VLF transmitters, lightning strokes, or interplanetary shocks
impacting the magnetopause, or internal sources, such as plasma instabilities arising from unsta-
ble particle distributions or magnetic field configurations. For example, the THEMIS mission has
demonstrated that under repeated solar assaults, our magnetopause vibrates like a drum (Johnson-
Groh, 2019). Waves can act as both sources and losses of particles, where accelerating electrons
can be seen as a loss of low-energy electrons and a source of high-energy electrons. The main
wave-particle interaction mechanism is resonant scattering, where resonances provide energy and
can increase or decrease the parallel or perpendicular energy of particles. We will now distinguish
four main resonances:

e Gyro resonance: Resonance of the wave with the particle’s gyro-frequency, which alters
the particle’s momentum.

e Landau resonance: Particles traveling at speeds close to the phase speed of the wave can
interact with it and exchange energy, akin to a surfer riding a wave. Particles with speeds
above the phase speed slow down and transfer energy to the wave, while particles with
speeds below accelerate and gain energy from the wave. This resonance is influenced by
an electric field parallel to the magnetic field, which either accelerates or decelerates the
particle’s parallel velocity.
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e Bounce resonance: Resonance of the wave at the particle’s bounce frequency between two
mirror points.

o Drift resonance: Resonance with the particle’s drift frequency around Earth.

Waves in the inner magnetosphere can be regarded as simple oscillations of the particle-field mix-
ture and are observed from both ground-based and space-based platforms. They span a range of
frequencies, from ultra-low-frequency (ULF) oscillations in the millihertz (mHz) range to very-
low-frequency whistler-mode emissions in the kilohertz range. ULF waves, with periods in the
tens of minutes, violate the third adiabatic invariant, leading to radial diffusion and the potential
for energetic electron acceleration or loss during storm conditions. Higher-frequency extremely
low frequency (ELF) and very low frequency (VLF) waves violate the first two invariants, result-
ing in pitch angle scattering loss to the atmosphere or local stochastic energy diffusion. During
storm conditions, all three adiabatic invariants can be simultaneously violated, necessitating mul-
tidimensional diffusion models to differentiate between source and loss processes. The basic char-
acteristics of these waves can be described using plasma theories, including cold plasma theory,
magnetohydrodynamics (MHD), or Vlasov theory.We will not go into the details of the mathemat-
ical equations here but will present the dominant wave modes found in the radiation belts, as seen
Figure 1.26:

e Whistler-mode chorus waves: these waves are short, right-hand polarized emissions in
the kHz range. We can find them around the equator and outside the plasmasphere up to
the magnetopause. They are driven by anisotropic electron populations in the energy range
1-100 keV that have been injected from the magnetotail. Hence, we find them in the mid-
night to dawn sector as electrons drift eastwards. They propagate away from the equator but
are attenuated before reaching the ionosphere, mainly through wave-particle interactions
(probably Landau damping by suprathermal electrons around 1 keV) (Koskinen and Kilpua,
2022). These waves can interact with particles through gyro and Landau resonances. Gyro
resonance will scatter < 100 keV electrons around the equator, and MeV electrons at higher
latitudes (A < 15°), leading to pitch-angle diffusion toward the atmospheric loss cone. This
resonance will also break the first adiabatic invariant, accelerating electrons from a few hun-
dred keV to MeV energies. Landau resonance will interact with 30 keV to MeVs electrons
(Koskinen and Kilpua, 2022).

e EMIC waves: Electromagnetic ion cyclotron waves or Alfvén ion cyclotron waves also play
an important role in the loss of ultra-relativistic radiation belt electrons, and in heating ions.
They are observed in the afternoon sector close the plasmapause and beyond. They are
left-hand polarized and their frequency range is 0.2 to 5 Hz, close to the ions’ gyro-motion
frequency, and they are driven by anisotropic proton populations in the energy range 1-100
keV that have been injected from the magnetotail. They interact with particles through
gyro, Landau and bounce resonances. During storm time, EMIC waves lead to electron
pitch-angle diffusion but do not accelerate them. The gyro resonance affects = 1-2 MeV
electrons with pitch angles between 30 and 70°. Landau resonance affects 30 keV to MeVs
electrons with = 85° pitch angles and bounce resonance affects 50-100keV electrons with
2 85° pitch angles.

e Hiss waves: Plasmasphere hiss waves are one of the main wave modes inside the plas-
masphere and can be found mostly on the dayside (dawn to post-noon, see Figure 1.26).
They have a large range of frequencies but mostly interact with radiation belt electrons at
frequency below 100 Hz. Hiss waves play a crucial role in electron scattering to the loss
cone and the formation of the slot region. They are thought to originate from interaction
between particles from the radiation belt and the plasmasphere, or from terrestrial lightning
strikes, but their origin remains unclear. They interact with electrons through gyro, Landau
and bounce resonances. The gyro resonance affects ~ 100 keV to meV electrons with pitch
angles between 30 and 70°. Landau resonance affects 100 keV electrons with pitch angles
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between 30 and 70° and bounce resonance affects = 1 MeV electrons with pitch angles
between 30 and 70°.

o Magnetosonic waves: Equatorial magnetosonic noise are the second main wave modes
inside the plasmasphere but can occur inside and outside of it. These waves can resonate
with energetic electrons through gyro, Landau and bounce resonances and transfer energy
from ring current protons to radiation belt electrons.

o ULF waves: The Ultra-Low Frequency waves discussed here have frequencies ranging from
2 to around 20 mHz, which are below the local ion gyro frequency. These waves are gener-
ated at the magnetopause boundary due to velocity shear, solar wind pressure fluctuations,
or inherent plasma instability. ULF waves induce radial diffusion transport, causing changes
in the energy distribution of trapped particles. The rate of radial transport depends on the
power spectral density of the waves, with faster transport typically observed in the outer
magnetosphere (Kletzing et al., 2013).

In table 1.3, we summarized all the info gathered on wave modes and their effect on the parti-
cles in the inner magnetosphere. This section was a very broad view to help the reader understand
the vocabulary associated. But we encourage to take a look at references concerning this topic,
including the two used to build this section (Kletzing et al., 2013; Koskinen and Kilpua, 2022).

Magnetosonic Chorus
Equatorial VAL Waves

Enhanced
EMIC
WEWES

Ultra-Low
Frequency
Waves

MAGNETOSPHERE

Figure 1.26 — Plasma waves and their region in the inner magnetosphere. Adapted from both
NASA’s Goddard Space Flight Center/Mary Pat Hrybyk-Keith image and Kletzing et al. (2013).

Finally, we will briefly introduce the broader category of Alfvén waves, which play a crucial
role in the electron acceleration process. Alfvén waves typically have frequencies ranging from a
few millihertz to a few hertz and propagate purely as shear waves along the magnetic field lines.
When we refer to Alfvén waves, we are primarily describing waves with a dominant shear (trans-
verse) component, although they do not necessarily require a purely transverse component. One
way to envision these waves is to imagine vibrations on a guitar string connected to the Earth
on both ends. Alfvén waves can originate from various phenomena, including solar activity, re-
connection processes, plasma instabilities, particle-wave interactions, and even seismic activity or
volcanic eruptions and they propagate perturbations along the oscillating field lines. They globally
affect particles of the inner magnetosphere through heating, acceleration, scattering, trapping or
loss.
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Wave Frequency | Region Direction of | Origin Reso- Main effects
mode propagation nances
Whistler- | 0.5-10 Midnight to | Along mag- | Convective in- | Gyro Dominant scattering
mode kHz (ULF | dawn  (even | netic field | jection of plasma | & Landau | process leading to
chorus & VLF) early dusk) lines near | sheet elec- diffuse auroral precip-
Outside  the | equator and | trons leading to itation
plasmasphere | obliquely anisotropic distri- Loss of radiation belt
Up to the | at higher | butions of 1-100 electrons
magnetopause | latitudes keV electrons Local acceleration
of radiation  belt
electrons
EMIC 0.1-5 Hz | Noon to dusk Along mag- | Ring current | Gyro, Rapid scattering and
(ULF) Dayside netic field | ions injection | Landau loss of ring current
outside the | lines near | (during magnetic | & Bounce | ions
plasmas- equator and | storm) leading to Rapid scattering and
phere up to | obliquely anisotropic distri- loss for electrons >0.5
magnetopause | at higher | butions of 1-100 MeV
latitudes keV protons
Plasma- < 100 | Dawn to post- | Along mag- | Local generation | Gyro, Formation of the quiet
spheric Hz (ULF) | noon netic field | Subset of chorus | Landau time electron slot be-
hiss &  from | Inside the | lines near | waves avoiding | & Bounce | tween inner and outer
100  Hz | plasmasphere | equator and | Landau damping radiation belts
to several | only obliquely
kHz at higher
latitudes
Equatorial | few Hz to | Noon to dusk Perpendicular | Changes in ion | Landau Scattering of electrons
magne- few 100h | Inside and out- | to  magnetic | ring distributions | & Bounce | ~30 keV - 1 MeV
tosonic Hz (ULF) | side the plas- | field lines through Landau reso-
noise masphere nance
ULF Pc5 | 2-20mHz | Global, most | Can exhibit | Excited at the | Drift Radial diffusion trans-
& Pc4 frequent in the | all directions, | magnetopause port and change of en-
dawn and dusk | from field- | in response to ergy in the population
sector aligned to | velocity shear of trapped particles
perpendicular | and or  solar
wind pressure
fluctuations

Table 1.3 — Summary of frequencies, regions, sources and main impacts of different wave modes in
the inner magnetosphere. Table built using Koskinen and Kilpua (2022) and Kletzing et al. (2013)
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1.2.6 Ionosphere

This section is dedicated to the ionosphere, which is crucial for understanding the concepts
related to polar auroras. We will begin by introducing the Earth’s atmosphere to provide context
for the ionosphere. Then, we will describe the ionosphere itself. Finally, we will explore the
various currents present in the ionosphere, which play a vital role in the ionosphere-magnetosphere
coupling.

1.2.6.1 Introduction to the Earth’s Atmosphere

In order to discuss the ionosphere, it is important to familiarize ourselves with the different
layers of the Earth’s atmosphere:

e Troposphere: This is the first layer starting from the surface and it extends up to approxi-
mately 12 km in altitude. The troposphere is the densest layer of the atmosphere, and the
temperature decreases by about 70 degrees until it reaches its upper boundary, known as the
tropopause.

e Stratosphere: The stratosphere is the second layer, extending from the troposphere up to
around 50 km in altitude. This is where the ozone layer is found. In the stratosphere,
the temperature increases, and it reaches near-zero degrees at the upper limit called the
stratopause.

e Mesosphere: The mesosphere is the layer situated between approximately 50 and 80 km in
altitude. The temperature gradually decreases in this region and reaches about -80°C (190
K), making it the coldest part of the Earth’s system.

e Thermosphere: This layer is located just before the exosphere and can extend up to 700 km,
depending on the exobase boundary. The temperature in the thermosphere increases rapidly
between 80 and 200 km and then stabilizes at what is known as the "thermospheric tem-
perature." This temperature varies between 750 K during periods of low solar activity and
1500 K during periods of high activity (Gruet, 2018). The thermosphere is predominantly
composed of atomic oxygen, along with molecular oxygen and nitrogen. It is within this
layer that polar auroras can be observed.

e Exosphere*: The exosphere is the outermost layer of the atmosphere, spanning from ap-
proximately 500 (the exobase) to 10,000 km. The atoms in this region are sparsely dis-
tributed, and particles tend to escape into space. At the lower part of the exosphere, it is also
possible to observe polar auroras.

Above a boundary known as the turbopause, located at around a hundred kilometers in altitude
and extending into space, the components of the atmosphere stratify under the influence of gravity,
forming what is referred to as the heterosphere. The lowest layer of the heterosphere consists of
nitrogen, followed by oxygen, helium, and finally hydrogen. Below the turbopause, down to the
surface, it is known as the homosphere.

1.2.6.2 TIonosphere
In certain regions, the components of the heterosphere can become ionized, leading to the
formation of the ionosphere. There are two main processes of ionization:

e Photoionization, which occurs when solar emissions in the UV and EUV range ionize the
particles.

4. Note that, in general, we categorize atmospheric zones based on their thermal properties, such as Troposphere,
Stratosphere, Mesosphere and Thermosphere, and their fluid properties, such as Homosphere, Heterosphere, and Exo-
sphere
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e Particle precipitation in polar regions, where particles are injected along the magnetic field
lines, often due to storms or geomagnetic substorms. As explained earlier in this chapter
(see Section 1.1.2.4), some particles can enter the loss cone through various impacts and
"precipitate" into the upper atmosphere by colliding with the molecules present there.

These two processes create distinct regions in the ionosphere, which exhibit differences be-
tween day and night. Figure 1.27 and Table 1.4 provide an overview of the presence and char-
acteristics of these layers. During the day, photoionization prevails, exciting particles and atoms
in the thermosphere, resulting in the formation of the D, E, F1, and F2 layers, also known as the
"Chapman layers." On the other hand, during the night, particle precipitation from the magnetotail
leads to ionization, excitation, and heating through the Joule effect. This gives rise to the E and F
layers.

Region | Altitude Peak alti- | Electron Recombination Major Tonization source
range tude density [m—3] coefficient components
[km] [km] m3s~!
D 50-90 75 102 (night) 1014 NO™, 02+ Solar Lyman alpha (121.5 nm)
to 10° (day) and hard solar x-rays (1nm)
E 90-150 120 2% 10° 5x 10714 NO*, 0F Solar x-rays (1-10 nm) and solar
to 10! UV (80-102.7 nm)
Es 95-105 100 1-2 x10" 5x 1071 NO*, 05 Precipitaion electrons and mete-
orites
F1 120-200 | 180 —t02-5x10" | 5x 10715 NO*, 03, | EUV (10-100 nm)
O+
F2 200 300-350 2-5 x 101 1016 Of,N*,Ht | EUV (10-100 nm)
to 1-2 x10'2

Table 1.4 — Characteristics of the various ionospheric regions. From Pisacane (2008)

ENE |

Atlantic
Ocean

Africa

Indian
Ocean

Figure 1.27 — Layers of the ionosphere in our atmosphere by the Encyclopaedia Britannica, Inc
(Britannica, 2012).
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1.2.6.3 Field Aligned Currents

The field-aligned currents (FACs) were first suggested to connect the ionosphere to space
(Birkeland, 1908) and were later observed by satellites (Cummings and Dessler, 1967; Zmuda
et al., 1966) through observations of magnetic field variations. A very complete review has re-
cently been made by Palmroth et al. (2021). Particles are accelerated from the magnetotail along
magnetic field lines, scattered by plasma waves, subject to complex trajectories and can end up
in the loss cone, precipitating in the ionosphere. FACs connect together magnetospheric regions
with different controlling parameters, like the plasma sheet or the low-latitude boundary layer, to
the auroral zone in the ionosphere (see Figure 1.28a). FAC structures, consisting of upward and
downward currents with planar or filamentary geometry (Bostrom, 1964). The Figure 1.29 shows
the full three-dimensional structure of the FACs. The black lines represent the convection from
the Dungey cycle, seen when the IMF is oriented southward.

There are essentially two main regions of upward and downward currents called region 1 (R1)
and region 2 (R2), as seen in Figure 1.29), based on their location relative to the polar cap (lijima
and Potemra, 1976). R1 is located at higher latitudes (poleward) and R2 at lower latitudes (equator-
ward). These two regions form thick concentric rings around each magnetic pole (Figure 1.28b).
The currents exhibit opposite signs between the two regions and on both sides of the midnight-
midday axis. R1 downward in the dawn sector and upward in the dusk sector and R2 flows in
the opposite direction. Although they originate from different sources, these regions converge
within the ionosphere, creating a circuit that serves as the core of the magnetosphere-ionosphere
coupling. R1 is considered flowing along magnetic field lines closing in the flank (low-latitude)
magnetopause while R2 is often considered to flow along magnetic field lines closing in the ring
current (Figure 1.28a). However, the location of generation regions for these currents is still in-
vestigated today (Ebihara and Tanaka, 2022).

partial ring Region 1
current current

ring current

6 LT

.......

/N g
(a) tail currel{ \ (b) ‘-1 Igut

midnight

Figure 1.28 — (a) Field-aligned currents system from Britannica (1994), (b) Currents towards and
away from the ionosphere, from Russell et al. (2016).

FAC:s close in the high latitude ionosphere forming the Pedersen and Hall currents. Pedersen
currents close the FACs both from R1 currents to R2 currents in the pole-to-equator direction, and
in the polar cap from downward R1 to upward R1. Anisotropic magnetized medium generates
another ionospheric current known as Hall currents or electrojets. In the presence of orthogonal
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electric field (E) and magnetic field (B) (as observed between the field lines and the Pedersen cur-
rent), electrons and ions drift in the same direction, perpendicular to E and B (known as the E x B
drift). However, within the ionosphere, ions experience more collisions with neutral atoms, caus-
ing them to drift slower compared to electrons, which have fewer collisions. As a result, a current
is generated in the opposite direction to the particle drift, known as the Hall current. Thus, two
counter-rotating Hall ionospheric current cells are formed (Figure 1.29). These cells flow from
midnight to noon in the polar cap, westward on the morning side, and eastward on the evening
side, and are referred to as the auroral electrojets.

Substorm
current wedge
field-aligned

currents
Upward Birkeland or

field-aligned currents

electrojet
(Hall current)

electrojet
(Hall current)

Figure 1.29 — Overview of the field-aligned current systems, showing Hall and Pedersen currents.
Figure from Palmroth et al. (2021).

These currents are measured using 12 high-latitude ground-based stations (around 60° lati-
tude). These stations employ magnetometers with a resolution of 1 minute to capture the "auroral
electrojet index" (AE) and its components (AL, AU) in nanotesla. This index represents the mag-
netic signature of eastward and westward auroral electrojets in the northern hemisphere. For more
detailed information, readers are advised to refer to the International Service of Geomagnetic In-
dices”. These currents play a crucial role in quantifying geomagnetic activity specifically in the
auroral region, particularly during geomagnetic substorms.

As presented by Palmroth et al. (2021) smaller-scale FAC current systems can also be ob-
served, especially within auroral arcs (Partamies et al., 2010). Within the context of auroral arcs,
an upward FAC, primarily composed of precipitating electrons, is accompanied by a downward
FAC sheet (Elphic et al., 1998), 1998). This mechanism can accelerate electrons downward pre-
cipitating them in the ionosphere and creating auroras (see 1.2.7.1). Multiple arcs can comprise
numerous pairs of upward and downward FACs, while also exhibiting a distinct shared current
system, with all the arcs aligned along the upward FAC leg (Palmroth et al., 2021; Wu et al., 2017).

5. https://isgi.unistra.fr
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We have provided a brief overview of the fundamental mechanisms involved in the coupling
between the magnetosphere and the ionosphere. Moving forward, we will delve into the finer
details of polar auroras and conclude by discussing their variations during geomagnetic substorms,
along with the current modeling approaches available today.

1.2.7 Auroral Physics

Auroras represent the final stage and visible outcome of a complex chain that connects so-
lar wind, the magnetosphere, and the atmosphere. In this section, we will explore the range of
phenomena that give rise to these mesmerizing light displays, as well as their distinctive char-
acteristics. To begin with, we will delve into the primary particle acceleration effects and the
resulting classification of auroras. It’s worth noting that these particle accelerations are intricately
linked to ionospheric currents, which we have discussed in Section 1.2.6.3. We will then provide
a broader overview of the different types of auroras, including discrete and diffuse auroras, and
their associated emissions. Finally, we will examine the morphology of auroras and their dynamic
evolution, particularly during geomagnetic substorms.

1.2.7.1 Related Particle Acceleration Processes

As we saw when we discussed the existence, origins and impacts of plasma waves in the inner
magnetosphere, particles can be accelerated through several processes and end up in the loss cone,
hence precipitating in the Earth’s ionosphere, producing auroras. Usually, we distinguish several
type of auroras based on the related precipitation mechanisms in Earth’s auroral zone. We usually
consider that three precipitation mechanisms predominate: quasi-static potential structure (QSPS,
also called inverted-V or monoenergetic) acceleration, Alfvénic (or broadband) acceleration, and
wave scattering of plasma sheet electrons into the loss cone (also called diffuse precipitation)
(Dombeck et al., 2018). Here are short introductions to these mechanisms:

e The first mechanism considered is the potential drop or quasi-static potential structure
(QSPS). The resulting auroras are called inverted-V auroras(1.2.7.2). They correspond
to regions of upward field-aligned region carried by electrons that have been accelerated
through an electrostatic potential (Russell et al., 2016). The parallel acceleration due to
parallel electric field then enhance the energy flux of precipitated electrons. A QSPS with a
large potential drop usually results in a narrow intense electron energy spectrum that appears
almost monoenergetic (Dombeck et al., 2018).

e The second mechanim considered is the Alfvénic or broadband acceleration. Alfvénic accel-
eration occurs when the electric field of the wave has a component parallel to the magnetic
field, hence accelerating electrons with parallel velocities similar to the local Alfvén speed
(Dombeck et al., 2018). Acceleration by Alfvén waves is dependent on the relative veloc-
ities of the waves and particles. Since electrons are not uniformly accelerated, it leads to a
broad and often intense energy spectrum. The resulting auroras are called alfvénic auroras
(1.2.7.2).

o The third mechanism is the wave scattering of plasma sheet particles into the loss cone,
generally by chorus whistler waves as discussed in 1.2.5. Diffusion through whistler mode
is associated with an energy spectrum that closely resembles a Maxwellian distribution and
is comparatively less intense. The resulting auroras are the diffuse auroras 1.2.7.

Acceleration of particles in the magnetosphere occurs through various processes, leading to
precipitation in the Earth’s ionosphere and the production of auroras. Here we have only discussed
three predominant precipitation mechanisms: quasi-static potential structure (QSPS) acceleration,
Alfvénic acceleration, and wave scattering of plasma sheet electrons. These mechanisms result
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in inverted-V auroras, Alfvénic auroras, and diffuse auroras, respectively. In the following sec-
tions, we will shortly present the different types of auroras and their emissions and end up with a

summary of these two Sections 1.2.7.1 and 1.2.7.2.

1.2.7.2 Auroral Types

Even if we will not delve into detailed descriptions of auroras (as our study focuses solely on
the measurement of precipitated particles without considering the specific types of auroras they

produce) we would like to highlight a few key points that might be of interest to the reader:

e The most significant consequence of auroras is the enhancement of ionospheric electric

currents. The associated magnetic fields can be readily measured using magnetometers.
The strength of these electric currents, in turn, can be utilized to quantify the magnitude of
geomagnetic activity during a geomagnetic storm.

The emissions are predominantly concentrated around an altitude of 100 km. Generally, the
arcs exhibit an east-to-west orientation, but they can exhibit complex twisting patterns.

e Discrete auroras are characterized by highly intense arcs that can be narrower than 100 m

(Hui and Seyler, 1992; Knudsen et al., 2021). They originate directly from ionization and
excitation caused by accelerated electrons through two mechanisms:

o Alfvén waves, wherein electrons with energies between 1 and 5 keV generate dynamic
auroras and arcs spanning approximately 1 to 10 km. These phenomena are commonly
referred to as Alfvénic auroras. The acceleration of electrons is believed to occur due
to the parallel electric field resulting from the interaction of electrons with Alfvén
waves (Hui and Seyler, 1992).

o Quasi-Static Potential Structure (QSPS), which involves lower-energy electrons (5 to
10 keV) producing more stable waves (than alfvénic ones - Karlsson et al. (2020)) with
arcs on the order of 100 km. The characteristic pyramid-shaped signature in energy
fluxes leads to their designation as inverted-V auroras.

The diffuse auroras (Nishimura et al., 2020) can extend over widths exceeding 100 km in the
north-south direction and stretch up to 1000 km in the east-west direction along magnetic
field lines. These auroras lack well-defined structures and are associated with the whistler
mode discussed in Section 1.2.5. The electrons responsible for the diffuse auroras primarily
originate from the plasma sheet with energies between 100 eV and 10 keV (Ni et al., 2016).

o A subset of diffuse auroras is the pulsating aurora, characterized by visible flicker-
ing patches lasting approximately 2 to 20 seconds, with series lasting several tens of
minutes. The electrons responsible for these auroras have energies ranging from 1
to 100 keV. Pulsating auroras thickness varies from 10 to 200 km, and emissions are
predominantly green. They are typically located in the equatorward part of the auroral
oval.

e The colors of the emissions directly correlate with the types of ionized molecules:

o Oxygen atoms emit mainly yellow-green light (557.7 nm) and, at higher altitudes, red
light (630.0 nm and 636.4 nm).

o Nitrogen molecules N, emit mainly in the dark red light (first positive band: 650-680
nm).

o N;’ ions emit dark blue (391.4 nm), violet (427 nm) and intense red-near infrared
(Meinel Band (Piper et al., 1986)) light.

As a conclusion, presented below is table 1.5 summarizing the aurora types discussed.
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Auroras Acceleration Electron energy Size Energetic distribu-
process range tion
Discrete QSPS 5-10 keV > 100 km Monoenergetic
Discrete Alfvén waves 1-5 keV ~1-10 km Broad and intense
spectrum

Diffuse Whistler mode ~ 100eV - 10 keV can reach >100 km | Maxwellian
wide

can reach >1000 km
in the east-west di-
rection

Pulsating | Whistler mode | few keV - 100 keV 10 - 200 km Maxwellian

Table 1.5 — Summary of aurora types and their characteristics

1.2.7.3 Auroral Morphology & Models

What about the shape and morphology of polar auroras? We have already mentioned the oval
shape of auroras in Section 1.2.6.3, but as one would expect, it evolves with solar activity. Auroras
form on both sides of the Earth in ovals centered around the geomagnetic poles (not the geo-
graphic poles). On each side, the oval doesn’t extend all the way to the pole but stops short. The
region without auroras, centered on the pole, is called the polar cap. Occasionally, auroras can
be observed within this region during theta auroras (named after their shape, where a north-south
auroral band connects two edges of the oval, passing through the pole). This pattern is typically
observed from space, but space-based instruments have the disadvantage of not capturing the fine
structures of the auroras. Ground-based instruments compensate for this but have the drawback of
intermittent coverage (due to clouds, moonlight, etc.). The shape of the auroral oval varies with
geomagnetic activity (assessed through the Kp index). For low activity, the oval is generally situ-
ated at latitudes close to 75° on the day side and 70° on the night side, but during active periods,
it descends to around 70° on the day side and drops below 60° on the night side (Feldstein and
Starkov, 1967).

When the morphology of auroras abruptly changes, primarily due to activity in the magneto-
sphere, we refer to it as auroral substorms. They follow the cycle described below (Figure 1.30),
first observed by Akasofu in the 1960s (Akasofu, 1968):

o Initially, there is a calm interval where the arcs are not very intense.
e Suddenly, an arc near the equator lights up. This is known as the substorm onset.

e [t then rapidly moves poleward while expanding westward, referred to as the westward
traveling surge.

e After several tens of minutes, the auroral activity diminishes, and the substorm enters its
recovery phase.

To wrap up our exploration of the Sun-Earth chain, let’s briefly mention common models for
polar auroras or, more generally, for precipitated particles. Full reviews of these models can be
found in the literature such as Machol et al. (2012); McGranaghan (2016); McGranaghan et al.
(2021); Newell et al. (2015).

o Feldstein-Starkov: In 1994, Starkov (1994) started working on an auroral oval model based
on the Kp index (1.3.1). It is a mathematical framework that relates the Kp index to the loca-
tion of the auroral oval boudnaries, especially their latitudes. The model starts by deriving
the AL index from the Kp index, then uses polynomial equations to obtain coefficients, used
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Figure 1.30 — First observation of the cycle of auroral substorm in the pole from Akasofu (1968).
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to determine the shape and position of the auroral oval. As the Kp index increases, the model
predicts that the auroral oval expands smoothly, indicating higher geomagnetic activity.

e Zhang-Paxton: In 2008, Zhang and Paxton (2008) developed an auroral oval model based
on measures by the Ultraviolet Imager (GUVI) on board the TIMED (Thermosphere Iono-
sphere Mesosphere Energetics and Dynamics) satellite. This model uses Epstein functions
to calculate either the electron flux or the mean energy flux for precipitating electrons based
on data from the GUVI on board the TIMED satellite. The Figure 1.31 from Sigernes et al.
(2011) compares simulations from the two models at different K p levels.

Figure 1.31 — "Animated model aurora ovals as a function of Kp index for 24th December 2009 at
08:50 UT. The transparent polygons represent Feldstein-Starkov ovals (A). The faint white outer
ring is the equatorward boundary of the diffuse aurora (C). The Zhang-Paxton ovals are displayed
on top with green intensity values scaled according to the electron energy flux (B). The yellow
scaled intensity areas are the intersection (A N B) between the two models." from Sigernes et al.
(2011).

e Hardy et al. (1985, 1987) presented a statistical model of auroral electron precipitation based
on the Defense Meteorological Satellite Program F2 and F4 and the Satellite Test Program
P78-1 satellites. They determined the statistical characteristics of auroral electron precipi-
tation as a function of magnetic local time, magnetic latitude, and geomagnetic activity as
measured by Kp. They did so using a 2° latitude 0.5 h local time grid.

o Fuller-Rowell and Evans (1987): The Polar-orbiting NOAA spacecrafts monitor particle in-
flux into the atmosphere since 1978. They used these data to create statistical patterns of
height-integrated conductivities and ionization rates. The observations are organized based
on an auroral activity index, providing valuable information for ionospheric and thermo-
spheric research.

e OVATION Prime: OVATION (Oval variation, assessment, tracking, intensity, and online
nowcasting) Prime is an auroral precipitation model parameterized by solar wind driving,
the most used and widely available aurora model today. First introduced in 2002 (Newell
etal., 2002), and improved in 2010 (Newell et al., 2010), the recent upgraded version comes
from Newell et al. (2014). According to it, "distinguishing features of the model include
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an optimized solar wind-magnetosphere coupling function which predicts auroral power
significantly better than Kp or other traditional parameters, the separation of aurora into
categories (diffuse aurora, monoenergetic, broadband, and ion), the inclusion of seasonal
variations, and separate parameter fits for each magnetic latitude (MLAT) x magnetic local
time (MLT) bin, thus permitting each type of aurora and each location to have differing
responses to season and solar wind input—as indeed they do." We will come back on this
model during our study as it will serve as a comparison to the results we will produce
when modeling precipitations. Below, Figure 1.32 is an example of OVATION’s result
as presented on the NOAA website ©. Machol et al. (2012) evaluates OVATION prime by
comparing them with Polar UVI (Horwitz et al., 1998) images and concludes that it provides
accurate forecasts 77% of the time.

e PrecipNet (McGranaghan et al., 2021): Researchers compiled 51 years of Defense Mete-
orological Satellite Program (DMSP) observations to create an improved particle precip-
itation database. They developed PrecipNet, a neural network that effectively integrated
diverse information from solar wind and geomagnetic activity, including their time histo-
ries. PrecipNet achieved a significant reduction of over 50% in errors compared to the
current state-of-the-art model (considered to be OVATION Prime). It also better captured
dynamic changes in the auroral flux and demonstrated effective reconstruction of mesoscale
phenomena. Our work in this thesis builds upon the advancements made by the PrecipNet
team, using the same comprehensive particle precipitation database.

Figure 1.32 — Short-term 30 to 90 minute forecast of the location and intensity of the aurora
based on the OVATION model. Credits: NOAA Space Weather Prediction Center; ht tp s:

//www. swpc .noaa. gov/products/aurora-30-minute-forecast.

In Part 1.2, we explored the Sun-Earth chain, which encompasses the interconnected phenom-
ena among the Sun, the solar wind, Earth’s magnetosphere, ionosphere, and auroras. We began
by examining the Sun as the starting point and learned about the solar wind and its interaction
with the interplanetary medium. We then delved into the solar wind’s interaction with Earth’s
magnetosphere, discussing geomagnetic storms, substorms, and the role of plasma waves in the
magnetosphere. Additionally, we explored the ionosphere and its coupling with the magneto-
sphere, highlighting its significance in the formation of auroras. Finally, we showed how auroras
are the visible manifestations of these complex interactions. These topics provide a foundation for
understanding the intricate dynamics of space weather, but they alone do not suffice, and readers
are encouraged to delve deeper into the subjects. To conclude our discussion on Space Weather,

6. https://www.swpc.noaa.gov/products/aurora-30-minute-forecast
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we must now explore the methods used for measuring it over the years and examine its impacts
on our systems and everyday life. We will emphasize the role of modeling and forecasting in
mitigating these effects, particularly in the context of New Space.

1.3 Space Weather Measures and Forecasts

All the main actors of Space Weather have been introduced, from the Sun to the IMF, the
magnetosphere and the ionosphere. A definition of what Space Weather is has been properly
given by Lilensten and Blelly (2008) as follows:

“Space weather is the physical and phenomenological state of natural space environ-
ments. The associated discipline aims, through observation, monitoring, analysis and
modelling, at understanding and predicting the state of the sun, the interplanetary and
planetary environments, and the solar and non-solar driven perturbations that affect
them; and also, at forecasting and nowcasting the possible impacts on biological and
technological systems.”

The Sun’s dynamic and complex activity conditions the properties of electromagnetic fields
and space particles and has direct and indirect influences on space and ground-based infrastruc-
tures. Geomagnetically induced currents, spacecraft charging, single-event effects, erosion, or
even atmospheric drag are examples of the dangerous consequences coming from the Sun. Its
activity coupled with the increasing dependence of our society on critical space technologies em-
phasizes the need to better understand and prevent these risks.

Space weather as a whole poses a danger to us, but how can we quantify it? Most satel-
lites positioned throughout the Sun-Earth chain measure phenomena that are considered part of
"space weather". Examples include satellites like Parker Solar Probe, Solar Orbiter, STEREO,
and Ulysses near the Sun, satellites like WIND, ACE, DSCVR, and SOHO at Lagrange point 1
in the interplanetary medium, and satellites like NOAA POES, DMSP, and MetOp in low Earth
orbit near our planet. However, as we have seen, the complexity of these phenomena and their
interconnected relationships make it difficult to establish a direct link between measurements and
the associated risks. While each of these measurements plays a role in risk prediction and infras-
tructure protection, the development of more comprehensive and representative indices became
necessary. These indices serve as indicators of solar and geomagnetic activities. We have al-
ready mentioned some of them, such as the Dst, and the Auroral Electrojet, but let’s make a brief
overview and present them once again.

1.3.1 Measuring Space Weather through Indices

There are several measurements that provide scientists with information about the state of
space weather, but indices offer a quick and effective way to get a comprehensive understanding.
Of course, indices do not replace direct data but rather serve as a summary. In the following sec-
tions, we provide a brief description and then summarize all the indices in a table. To accomplish
this, we primarily relied on the platform provided by the International Service of Geomagnetic
Indices 7 (ISGI). It’s important to note that we are presenting only the main geomagnetic and solar
indices in this discussion.

7. https://isgi.unistra.fr/
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e AE, AU, AL: The AE (for Auroral Electrojet) index monitors the magnetic signature of
the eastward and westward auroral electrojets in the Northern hemisphere by measuring
the horizontal component disturbances in the geomagnetic field in nanotesla, through 12
observatories in the Northern auroral zone (namely, BRW, CMO, YKC, FCC, SNK, NAQ,
LRV, ABK, DIK, CCS, TIK, PBK, Figure 1.33). According to ISGI, the magnetograms
of the horizontal components from the AE stations are superimposed: the upper envelope
defines the AU (for "upper") index, and the lower envelope defines the AL (for "lower")
index and we have AE = (AU - AL).

e PCN, PCS: The Polar Cap North (PCN) and South (PCS) indices monitor the geomagnetic
activity over the polar caps caused by changes in the interplanetary magnetic field (IMF)
and solar wind, driven by the geoeffective interplanetary electric field irrespective of time,
season and solar cycle. They do so by measuring the horizontal component disturbances in
the geomagnetic field with two different stations: one in the north (THL, see Figure 1.33)
and one in the south (VOS).

e Kp: We already mentioned Kp several times but did not explain what it is. The purpose
of Kp is to characterize the intensity of geomagnetic activity on a planetary (hence, the
"p") scale by computing the arithmetic mean of the 3-hour standardized K-indices for 13
Kp-observatories (11 northern and 2 southern stations between 44° and 60° northern or
southern geomagnetic latitude). According to ISGI, a K-index is an integer between 0 and
9 corresponding to a class that contains the largest range of geomagnetic disturbances (ay
and ay) in the two horizontal components (X and Y) during a 3-hour UT interval. Because
of the historical context at the time of its creation, the Kp network is heavily weighted
towards Europe and Northern America. The observatories as located on the Figure 1.33 are
SIT, MEA, OTT, FRD, LER, ESK, HAD, BFE, UPS, NGK, WNG. Kp is usually used to
characterize the severity of geomagnetic storms. The NOAA Space Weather Scales describe
them as follows: minor storm (Kp = 5), moderate (Kp = 6), strong (Kp = 7), severe (Kp =
8 including 9-) and extreme (Kp = 9). We can also quickly mention the half-hourly Hp30
and hourly Hp60 (or the Hpo indices) developed at GFZ during the Horizon 2020-project
SWAMI (Yamazaki et al., 2022). Hpo can be used as a higher time-resolution Kp, and is not
limited to 9 (i.e., open-ended) hence better characterizing the severe geomagnetic storms.

e ap: The ap index is obtained from Kp through a conversion table (that can be found on
ISGI’s website) and with a linear scale in unit 2nT.

e Km, am: The am index is supposed characterize the global geomagnetic activity using a
large set of 24 stations representing all longitudes and possible hemispheric discrepancies
(more than Kp and ap). The stations as seen in Figure 1.33 are VIC, NEW, TUC, OTT, FRD,
HAD, CLF, NGK, ARS, NVS, IRT, MMB, PET, MGD around 50°N and PST, AIA, KEP,
HER, CZT, PAF, AMS, GNG, CNB, EYR around 50°S. An average of an for the north and
as for the south is made (am = (an+as)/2). As for the link between ap and Kp, Kpm is a
quasi-logarithmic scale as a third of am units (28 values) through a conversion table that can
be found on ISGI’s website.

e Dst, ASY/SYM: Dst stands for Disturbance Storm-Time Index. It consists in 1-hour values
of the horizontal component disturbances in the geomagnetic field through 4 low latitudes
stations (HON, SJG, HER, KAK in Figure 1.33). The World Data Center for Geomagnetism
in Kyoto (WDC Kyoto) is responsible for monitoring and reporting the Dst index in near
real-time. The Dst is also largely used to evaluate the presence and severity of geomagnetic
storms. Usually, a geomagnetic storm is defined with a Dst index of less than -50 nT.
According to Park et al. (2021), an event start time is defined as the maximum Dst time at
the main phase and the recovery phase (hence the storm) ends when Dst exceeds -30 nT
(1.2.4). The severity is linked to the minimum reached by the Dst during the storm. A weak
storm ranges from -30nT to -50nT, moderate from -50nT to -100nT, strong from -100nT to
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-200nT, severe from -200nT to -350nT, and a minimum Dst index below -350nT is classified
as a great storm (Zhao et al., 2022). Alternatively, some researchers consider a minimum
Dst index below -200nT as a great storm. Finally, we can quickly mention the ASY/SYM
indices (such as SYM-H already mentioned 1.2.4). They measure 1-minute geomagnetic
disturbances at mid-latitudes in terms of longitudinally asymmetric (ASY) and symmetric
(8YM) disturbances for components parallel (H) and perpendicular (D) to the dipole axis,
hence creating four indices: ASY-H, ASY-D, SYM-H, SYM-D. According to ISGI, the SYM-H
index and the DST index are more or less the same and differ only in terms of their time
resolution.

e Fip7: As defined by NOAA, Fg7 is the solar radio flux at 10.7 cm (2800 MHz) and is
an excellent indicator of solar activity. It has been measured continuously for over seven
decades and has proven very valuable in specifying and forecasting space weather (Space
Weather Prediction Center, 2023). The measurements for Fjg7 are obtained from ground-
based observatories and satellite data that monitor the solar radio emissions and they are not
specifically associated with individual stations or sources. However, the National Research
Council of Canada is measuring it since 1947 and has become the international responsible
for it. It goes from approximately 70 when the Sun’s activity is low to around 300 for a high
activity and the overall variations are very close to the solar spot number mentioned Section
1.2.1.2

e F3): F30, the solar radio flux at 30 cm, has been recorded since the 1950s (more details can
be found in Dudok de Wit et al. (2014)). It has proven to be a valuable alternative to F10.7
and has shown superior performance in density modeling, as observed in Dudok de Wit and
Bruinsma (2017), particularly when integrated into the DTM model (which we describe in
Section 1.3.3.2) Bruinsma and Boniface (2021).

Extensive research is being conducted in the field of space weather indices, aiming to enhance
their accuracy, refine their parameters, develop new indices, and establish their correlations with
specific events and their impacts. The ultimate goal is to improve our monitoring of the space
environment and deepen our understanding of it. One significant advantage of such indices lies
in their retrospective applicability. Some of them have been measured for a considerable period
(e.g., ISSN, Fy.7), offering extensive time series data encompassing multiple solar cycles. Others
help determine if we are experiencing a geomagnetic storm or not. When combined with actual
measurements, all these indices serve as ideal candidates for modeling and predicting the dynamics
of our space environment.

1.3.2 The Role of Modeling and Forecasting

The space weather community is dedicated to understanding and quantifying the threats as-
sociated with space weather, mitigating them, and ideally preventing them altogether. A recent
scientific program called PRESTO, led by the Scientific Committee on Solar-Terrestrial Physics
(SCOSTPE) and detailed by Daglis et al. (2021), aims to predict the variability of the Solar-
Terrestrial coupling. This program has shed light on remaining questions regarding the under-
standing of the connection between the Sun and Earth.

One of the key inquiries focuses on how different solar wind conditions, such as IMF com-
ponents, speed, density, and turbulence levels, along with various large-scale drivers, control the
efficiency of coupling and the transfer of energy and mass from the solar wind to the magne-
tosphere. Additionally, researchers seek to understand how solar wind conditions influence the
occurrence frequency and location of different magnetospheric plasma waves. These questions
highlight the significance of the solar wind in predicting the space environment around Earth. To
gain a better understanding, it is crucial to conduct studies that integrate space- and ground-based
data analysis with models, particularly in relation to the solar wind and interplanetary magnetic
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Index Description Time res- | Unit Source / Stations
olution
AE / AU/ | Auroral index; magnetic | 1-minute nT 12 observatories in the
AL horizontal component dis- Northern auroral zone
turbances (above 60°N)
PCN / | Polar Cap index; mag- | 1-minute mV/m 2 polar cap stations
PCS netic horizontal compo- (~80°N and ~80°S)
nent disturbances, PCN in
the North and PCS in the
South
am Global geomagnetic activ- | 3-hour nT 14 north stations and 10
ity north and south com- south stations
bined (average between
north an and south as)
Kpm Same as am but differ- | 3-hour quasi-logarithmic
ent scale obtained from am scale as a third of K
through a conversion ta- units (28 values): Oo,
ble® 0+, 1-, lo, 1+, 2-, ...
, 8+,9-,90
Kp Kp is the arithmetic mean | 3-hour quasi-logarithmic 11 northern and 2 south-
of the 3-hour standardized scale as a third of K | ern stations between 44°
K-indices for the 13 Kp- units (28 values): 0o, | and 60° northern or south-
observatories. 0+, 1-, 1o, 1+, 2-, ... | ern geomagnetic latitude
, 8+, 9-, 9%
ap ap is obtained from Kp | 3-hour linear scale in unit
through a conversion ta- ~2nT
ble®
Dst Equatorial index; geomag- | 1-hour nT 4 low latitude, near-
netic horizontal compo- equator stations
nent disturbances
ASY/SYM | Geomagnetic longitu- | 1-hour nT 6 stations evenly dis-
dinally asymmetric and tributed in  longitude
symmetric horizontal (11 observatories whose
component disturbances data are interchange-
able depending on their
availability)
Fio07 Called solar radio flux at | 1-day Solar flux units (sfu)
a wavelength of 10.7 cen- =102W.m 2. Hz!
timeters, even if it is a flux
density
 32%) Solar radio flux at a wave- | 1-day Solar flux units (sfu)

length of 30 centimeters

=10”W.m 2 Hz"!

Table 1.6 — Summary of main geomagnetic and solar indices
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Figure 1.33 — Most stations and observatories used for geomagnetic indices. ABK = Abisko, Swe-
den; AIA = Argentine Islands, Antarctica (Ukraine); AMS = Martin De Vivies-Amsterdam Island,
French Southern and Antarctic Lands (France); ARS = Arti, Russia; BFE = Brorfelde, Denmark;
BRW = Barrow, United States of America;, CCS = Cape Chelyuskin, Russia; CLF = Chambon
La Foret, France; CNB = Canberra, Australia;, CMO = College, United States of America; CZT
= Port Alfred, French Southern and Antarctic Lands (France); DIK = Dixon, Russia; ESK = Es-
kdalemuir, United Kingdom; EYR = Eyrewell, New Zealand; FCC = Fort Churchill, Canada; FRD
= Fredericksburg, United States of America; GNG = Gingin, Australia;, HAD = Hartland, United
Kingdom; HER = Hermanus, South Africa; HON = Honolulu, United States of America; IRT =
Irkutsk, Russia; KAK = Kakioka, Japan; KEP = King Edward Point, United Kingdom; LER =
Lerwick, United Kingdom; LRV = Leirvogur, Iceland; MEA = Meanook, Canada; MGD = Mag-
adan, Russia; MMB = Memambetsu, Japan; NAQ = Narsarsuaq, Greenland (Denmark); NEW =
Newport, United States of America; NGK = Niemegk, Germany,; NVS = Novosibirsk, Russia; OTT
= Ottawa, Canada; PAF = Port-Aux-Francais, French Southern and Antarctic Lands (France);
PBK = Pebek, Russia;, PET = Paratunka/Petropavilovsk, Russia; PST = Port Stanley, Falkland
Islands (United Kingdom); SIT = Sitka, United States of America; SJG = San Juan, United States
of America; SNK = Sanikiluaqg, Canada; THL = Qaanaaq (Thule), Greenland (Denmark); TIK
= Tixie Bay, Russia; TUC = Tucson, United States of America; UPS = Uppsala, Sweden; VIC
= Victoria, Canada; VOS = Vostok, Antarctica (Russia); WNG = Wingst, Germany; YKC = Yel-
lowknife, Canada. From ISGI is g1 .unistra.fr/.
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field.

Machine learning algorithms have emerged as a promising solution in the field of space
weather, allowing for the nowcasting and forecasting of space weather phenomena. Recent stud-
ies have demonstrated the potential of machine learning, including deep learning, in this domain.
Notably, papers such as those by Reiss et al. (2021), Zewdie et al. (2021), Stumpo et al. (2021),
and Reep and Barnes (2021) have showcased the utilization of machine learning in space weather
research. These developments have provided valuable insights into the application of machine
learning algorithms for improved space weather predictions (see Chapter 2).

In 2018, the National Science Foundation (NSF) initiated a Research Coordination Network
(RCN) known as "Towards Integration of Heliophysics Data, Modelling, and Analysis Tools"
(@HDMIEC). This network aimed to advance our understanding of physical mechanisms occur-
ring on the Sun, as well as the modeling, accessibility, and analysis of heliophysics data. Within
this framework, workshops and discussions were conducted to explore the intersection of machine
learning and space weather. Opinions were gathered from the community, and several notewor-
thy outcomes from the Q&A sessions, as highlighted by Nita et al. (2020), emerged. Attendees
at these sessions expressed concerns regarding the heliophysics community’s limited understand-
ing of machine learning capabilities and limitations. It was generally agreed upon that there is
currently no substantial collaboration between machine learning and heliophysics. However, it
was recognized that machine learning methods have shown greater success in handling the ex-
tensive data environment of heliophysics compared to traditional physics-based methods. Despite
this, there was no consensus on specific areas where machine learning outperforms physics-based
approaches. A significant majority of attendees strongly advocated for the combination of physics-
based and machine learning models to enhance space weather predictions. Moreover, attendees
generally did not perceive machine learning as a "bubble" that is at risk of bursting, indicating
ongoing confidence in its potential for advancements in space weather research.

1.3.3 Impacts on space and ground systems

Since the launch of Sputnik in 1957, scientists have observed that the natural environment
can pose risks to satellites. This realization gave birth to the idea of analyzing, quantifying, and
mitigating these risks. It is important to note that this thesis was developed in partnership with
the company SpaceAble, which aligns perfectly with this objective. Consequently, extensive re-
search has been conducted to gain a better understanding of the various risks associated with space
weather. In the following sections, we will provide an overview of the main risks identified by the
scientific community and their consequences. We will give more details for spacecraft charging
and drag as they can be directly related to precipitated particles. Most of what is explained here
comes from researches made with SpaceAble’s scientists, especially Dr. Elisa Robert, and these
results can also be found in her PhD thesis (Robert, 2023).

1.3.3.1 Spacecraft Charging

Spacecraft charging refers to the accumulation of electric charges on the surface (surface
charging) or inside (internal charging) of a spacecraft due to the spacecraft’s direct contact with a
charged medium like the ionosphere and poses significant risks for satellites. In Low Earth Orbit
(LEO), the risk resides mainly in surface charging, which is influenced by particle precipitation.
Overall, spacecraft charging can impact scientific measurements, electronic instruments, teleme-
try, navigation systems, and even lead to spacecraft termination. Monitoring it and its intensity
is crucial for measurement accuracy and safety. For more detailed information, we recommend
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referring to Mikaelian (2009) and Lai (2011).

Surface & Internal Charging

How exactly do we dissociate internal and surface charging? Surface charging results in an accu-
mulation of charges (keV electrons and ions) around and on the surface of the spacecraft which
travels through plasma. Internal charging occurs when high-energy electrons and ions (MeV and
higher) penetrate satellite shielding materials and deposit charge on internal spacecraft compo-
nents. In the literature, we often see “deep dielectric” or “bulk” charging. This refers to charge
densities that accumulate within insulating (or dielectric) materials when exposed to penetration
radiation. The more generic term “internal charging” includes charge densities that accumulate
on the surfaces of conducting materials within the shielding afforded by the outer structure of a
spacecraft.

Both processes result in electric fields within spacecraft structures and materials and represent
a threat to arcing which can damage spacecraft components. The natural fluxes of the ambient
electrons and ions responsible for surface charging are orders of magnitude higher than those for
deep dielectric charging. Indeed, surface charging responds almost instantaneously to the ambient
flux temperature and can be easily measured.

What causes Surface Charging?

Spacecraft charging is a complex phenomenon that can occur in the orbits of most satellites (GEO,
LEO, polar, interplanetary and so on). It is influenced by various environmental factors, including
day-night variations, semi-annual variations, eclipses, as well as solar and geomagnetic activity.
Additionally, it is directly impacted by the characteristics and orbital parameters of the satellite,
such as its orbit, attitude, design, geometry, as well as the properties of the materials used in its
construction. Consequently, modeling and predicting the interaction between the spacecraft and
its environment is a highly intricate task.

In LEO orbit, spacecraft charging can be attributed to two primary sources: the cold plasma
environment, suprathermal electrons and free protons, and solar radiation.

e The cold plasma in LEO has a density of 10% to 10° cm™> and a temperature of approx-
imately 0.1 eV, contributing to spacecraft charging. In polar orbits, the ionosphere is ad-
ditionally influenced by charged particles from the solar wind, including electrons. The
precipitation of higher-energy electrons (1-100 keV) in this region intensifies spacecraft
charging effects.

e According to Mikaelian (2009), the sources beside the cold plasma environment are suprather-
mal electrons and free protons of both low energy (eV-10 keV) and high energy (> 10 keV).
These particles originate from precipitating electrons in polar regions but are also protons
and electrons generated by the CRAND effect (discussed in Section 1.2.3.8). A given energy
will mean a different particle penetration depth (see Figure 1.34) hence we often differenti-
ate surface and internal charging regarding the related energy of particles.

e The flux of UV and EUV solar radiation, specifically in the range of 100nm to 400nm,
exhibits seasonal variations and is influenced by the 11-year solar cycle. During periods of
high solar activity, the radiation flux is more intense compared to periods of low activity.
When these EUV and UV photons interact with a spacecraft, they induce the photoelectric
effect, leading to the ejection of electrons from the surface of metallized materials, referred
to as photoelectrons. The presence of photoelectrons creates a current that flows out of the
spacecraft’s surface, potentially mitigating the negative effects of surface charging.
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Figure 1.34 — Table from the presentation of Dr. Linda Neergaard Parker (Parker, 2017) repre-
senting surface and internal charging based on particle energy.

Figure 1.35 gives a good overview on the different phenomena at stake (upcoming photon, low
and high energies protons, low and high energies electrons). We can note that most currents on the
satellite usually come from the deposition of negative charges. The positive currents generally re-
sult from emission of low energy secondary or backscattered electrons and photoelectrons (ejected
by the photoionisation) but the positive potentials that can be attained are relatively modest.
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Figure 1.35 — Overview of the different processes during spacecraft charging. Figure from the
presentation of Dr. Linda Neergaard Parker (Parker, 2017).

Consequences of Surface Charging

One of the consequences of spacecraft charging is Electrostatic Discharge (ESD), one of the
prominent sources of anomalies on spacecraft. It’s the sudden flow of electricity between two
electrically charged objects caused by contact, an electrical short, or dielectric breakdown. Its
effects are a combination of the electron environment and its interaction with specific spacecraft
surfaces and components, resulting in current flow through wires to sensitive instruments and
electromagnetic wave interference to telemetry. This discharge is usually presented into three
categories:

e Flashover: Discharge from one surface to another.
e Discharge to space: Discharge from spacecraft to the surrounding plasma.
e Punch-through : Discharge from the interior structure of a spacecraft through its surface.

Main impacts of the electrostatic discharges are compromised function or destruction of sensitive
electronics. This includes damage to solar arrays, power loss and failures. System states may ex-
perience un-commanded changes. Timing circuits can lose synchronization, leading to disruptions
in operations. Additionally, there can be spurious mode switching, power-on resets, or erroneous
sensor signals that can further result in telemetry noise or loss of data.
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Beside electrostatic discharges, spacecraft charging can lead to other to more simple electro-
magnetic interferences or power drains from parasite currents on or in the satellites.

Studying and Modeling Spacecraft charging

In order to study spacecraft charging, numerous missions have been launched by the scientific
community. Among them is SCATHA (Spacecraft Charging At High Altitude), a mission con-
ducted by NASA and the US Air Force, which confirmed the presence of spacecraft charging in
geostationary orbit (an orbit approximately 36,000 km above the Earth’s surface where a satellite
remains stationary). Another mission, CRRES (Combined Release and Radiation Effects on Satel-
lite), also carried out by NASA and the US Air Force, successfully detected over 4,000 electrostatic
discharges using its internal discharge monitor (IDM). Furthermore, the Defense Meteorological
Satellite Program (DMSP) and POES missions, both situated in low Earth orbit, played crucial
roles. DMSP, equipped with instruments such as SSJ/4 and SSJ/5, and POES, with the Space
Environment Monitor (SEM), were able to establish discharge initiation thresholds, which will be
discussed in detail later on in this thesis.

In addition to in-situ measurements that aid in understanding and localizing the phenomenon,
scientists also endeavor to model spacecraft charging. Below is a non-exhaustive list of existing
models that simulate spacecraft charging:

e NASCAP-2K - Maxwell Technologies: NASCAP, developed by Maxwell Technologies, is
an American model with various variants designed for specific orbits: NASCAP-LEO (Man-
dell and Davis, 1990) for LEO, NASCAP-GEO (Katz et al., 1977) for GEO, and POLAR
(Potentials Of Large objects in the Auroral Region) (Lilley Jr et al., 1989) for the auroral
region. NASCAP-2K, the most recent model, combines NASCAP-GEO, NASCAP-LEO,
and POLAR (Mandell et al., 2004).

e Space Plasma Interaction System (SPIS) - ESA: SPIS is a model developed by the European
community SPINE (Roussel et al., 2008).

e SPacecRaft Charging Software (SPARCS) - Thales Alenia Space (Clerc et al., 2003).

e Space Environment Information System (SPENVIS) - ESA: SPENVIS, the most widely
used model in the European community, extends beyond spacecraft charging modeling
(Heynderickx et al., 2000).

e Space Hazards Induced Near Earth by Large Dynamic Storms (SHIELDS) - LANL: SHIELDS,
a recent model introduced by Los Alamos National Lab (LANL) (Jordanova, 2017), fo-
cuses on modeling and predicting space hazards, particularly surface charging, and facili-
tates forensic analyses of space-system failures.

e Multi-Use Spacecraft Charging Analysis Tool (MUSCAT) - JAXA: Developed in collabo-
ration between JAXA and the Kyushu Institute of Technology (Muranaka et al., 2008).

Mitigating Spacecraft Charging Effects

Surface charging can be mitigated using various techniques. Electron emission is one such method
where electron guns, sharp spikes, or hot filaments are utilized to reduce the negative voltage level.
Plasma emission is considered one of the most effective mitigation technique as it allows electrons
to escape while positive ions return to the highly charged areas. Another approach is through the
use of plasma contactors, which create a large, localized plasma cloud to establish good electrical
contact with the surrounding plasma. This effectively grounds the satellite structure to the ambient
plasma. Polar molecule emission and surface materials with high secondary emission coefficients
can also help mitigate surface charging. Autonomous devices such as sharp cones can facilitate
field emission, removing excess electrons from spacecraft surfaces connected to the devices.
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Internal charging, on the other hand, can be mitigated using different strategies. Materials of
finite conductivity are required to prevent the buildup of internal charge while still serving insula-
tion purposes. The choice of conductivity depends on the specific system requirements. Partially
conductive paint, like indium oxide, can also be used. However, covering the entire spacecraft
with a uniform paint to prevent differential charging may obstruct instruments and solar arrays.
Thin materials are also beneficial in mitigating internal charging as high-energy electrons or ions
can pass through them without leaving significant deposits. Finally, shielding is another approach,
where different energies of ions and electrons penetrate materials to varying depths. By employing
shielding, electrons or ions below a certain desired energy level can be prevented from reaching
sensitive instruments. However, there is a tradeoff as excessive shielding can impede instrument
functionality and add weight at launch.

Space weather forecasting plays a crucial role in mitigating both surface charging and internal
charging. Major magnetic storms often lead to internal charging in dielectrics one to several
days later. As we now know, the occurrence of a magnetic storm serves as a warning of the
potential presence of high-energy (MeV) electrons in the radiation belts. Forecasting methods
have been developed using linear prediction filters and neural networks to anticipate environmental
conditions that may lead to electrostatic discharge (ESD). However, these prediction methods are
limited because they often assume stationary time series. Coronal mass ejections (CMEs) can also
cause a rapid increase in energetic (MeV) electrons upon arrival at the Earth’s magnetosphere,
resulting in internal charging. Finally, monitoring solar activity also helps us understand substorms
and injection of particles in polar areas, as well as precipitated particles that are often responsible
for surface charging.

1.3.3.2 Drag

The phenomenon of atmospheric drag or friction occurs primarily in the high-altitude atmo-
sphere. Despite the decrease in density with altitude, there is still sufficient matter to induce
aerodynamic friction on the satellite, resulting in trajectory alteration. The layer responsible for
this braking effect is the thermosphere, composed of neutral components consisting of non-ionized
atoms and molecules. With an altitude range of 95 km to 500-1000 km, depending on the ther-
mopause limit, the thermosphere is predominantly composed of O, O?, N2, and He, with oxygen
and helium being the most responsible for the drag effect (Thayer et al., 2012).

At this altitude, the thermosphere is intertwined with the ionosphere, the ionized portion of
the thermosphere referred to as plasma. While the ionosphere also contributes to drag through
ionospheric aerodynamic effects (Capon et al., 2019), its detailed discussion is beyond the scope
of this section.

The calculation of drag can be easily performed using Equation 1.47(Zheng et al., 2019),
which incorporates the thermospheric density (p), satellite velocity (u), the area subjected to fric-
tion (A), and the ballistic coefficient (Cp). Most of these parameters are contingent on the satel-
lite’s design or orbit, with atmospheric density being the sole factor dependent on the medium
traversed. As such, the density plays a central role in the drag calculation and is the primary focus
of investigations when we try to model the drag forces.

1
Fp = 5puZCDA (1.47)

Thermosphere Density & Solar Activity
There are two primary sources responsible for the deceleration of satellites in orbit and their impact
on the thermospheric density:
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1. Solar activity, specifically the EUV solar flux at 170 nm.

2. Geomagnetic activity, involving particle precipitation at the poles and the Joule effect caused
by ionospheric electric currents.

These two processes exert varying influences on the thermosphere depending on solar activity
levels. During periods of low activity, the energy deposition from precipitating particles amounts
to one-fourth of the energy deposition from the EUV solar flux. Conversely, during periods of
high activity, the contribution from precipitating particles can reach up to twice that of the EUV
solar flux. In such scenarios, the thermospheric density becomes approximately ten times greater
compared to periods of low activity (Doornbos, 2012).

The EUV solar flux and precipitating particles have a specific impact on the thermosphere,
causing heating, excitation, and dissociation of the atoms and molecules present. Dissociation
leads to an increase in the atmospheric atom density, resulting in higher thermospheric density.
Hence solar activity significantly influences the concentration of species in the thermosphere, lead-
ing to changes in thermospheric density.

The temperature of the thermosphere is primarily driven by solar radiation. However, heat-
ing occurs indirectly, as it is not directly caused by the interaction between the atmosphere and
solar radiation. Instead, it arises from the frictional forces between the excited particles and their
non-excited counterparts. Additionally, chemical reactions contribute to atmospheric heating. In
the thermosphere, the absence of convective and conductive heat transfer mechanisms maintains a
constant temperature known as the thermospheric temperature. This temperature ranges from 750
K during periods of low solar activity to as high as 1,500 K during periods of high activity. The
term "thermosphere" derives from the pronounced temperature gradient observed in this region
(Vallado et al., 2006).

Studying & Modeling Drag

The calculation of atmospheric drag necessitates an accurate density estimation. First, a model
should acquire satellite position measurements to observe orbital perturbations, either through in-
situ or remote sensing techniques. Then it estimates or, in some cases, predicts the thermospheric
density based on these measurements, employing various methodologies. Subsequently, the drag
calculation uses this density measurements, along with satellite-specific parameters such as the
friction coefficient and reference area. In practice, operators and space agencies often employ
modeling tools or simulation software, such as the STELA software developed by CNES.

During the 1990s, the increasing interest in thermospheric density measurements led to the
development of diverse methods: ground-based satellite tracking techniques, including radar ob-
servations, GPS measurements, and direct utilization of Two-Line Elements (TLEs), or onboard
in-situ instruments, such as accelerometers.

To get the positions of satellites and recover the thermospheric density, there are four precise
tracking systems: GPS, Satellite Laser Ranging (SLR), one-way Doppler radio tracking (DORIS),
and ground-based radars used for space surveillance. However, accessing accurate raw data, such
as radar measurements, is difficult because most available, public data have already been processed
and averaged. This poses challenges for precise density measurements, and there are political ob-
stacles to sharing information. Resolving these issues would require partnerships and agreements.

Another way of getting the thermosphere density is through in-situ measurements. However,
to date, no instrument for direct, in-situ measurement of thermospheric density has been designed.
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Instead, accelerometers are used to indirectly retrieve the density. Satellites such as CHAMP
(Reigber et al., 1999), GRACE (Tapley et al., 2004), GRACE-FO (Kornfeld et al., 2019), GOCE
(Drinkwater et al., 2003), and SWARM (Friis-Christensen et al., 2008), can indirectly provide us
with access to the frictional force. However, the use of an accelerometer as an instrument poses
limitations due to its size and high sensitivity. Consequently, alternative approaches have been
explored in recent years. A promising, but not yet achieved, candidate is the mass spectrometer,
which enables direct measurement of thermospheric density. This possibility is being considered
with the development of the Cosmorbitrap instrument as part of the ICARUS project (Selliez-
Vandernotte, 2018).

Finally, some models exist to approximate or predict the thermosphere density (and hence, the
atmospheric drag) and they are the main source of information for operators. We can mention
the following models: the Drag Temperature Models (DTM), the Jacchia-Bowman (JB) model,
the Mass Spectrometer Incoherent Scatter (MSIS) model and the US Space Force High Accuracy
Satellite Drag Model (HASDM).

The HASDM (Storz et al., 2005) developed by the US Air Force is currently the only model
capable of real-time estimation and prediction of thermospheric density up to 72 hours in advance.
Implemented within the Space Battlelab project, HASDM assimilates trajectories of over 75 inac-
tive satellites and space debris in LEO, providing atmospheric corrections every 3 hours using the
Dynamic Calibration Atmosphere (DCA) algorithm. By extrapolating density correction coeffi-
cients from the past 27 days and estimating ballistic coefficients through the Segmented Solution
for Ballistic coefficient (SSB) technique, HASDM achieves precise density predictions. However,
it should be noted that HASDM is not available in open-source.

The JB2008 (Bowman et al., 2008), DTM-2020 (Bruinsma and Boniface, 2021), and NRLMSISE-

00 (Picone et al., 2002) models are the latest versions within each family and differ in terms
of historical databases, solar and geomagnetic indices used as inputs, and parametric equations
for deriving thermospheric density from exospheric temperature. These models primarily utilize
accelerometer-based drag coefficient and density data, with JB2008 and DTM2020 assimilating
density values from satellites for higher precision. All models employ the Fjg7 solar index, and
JB2008 stands out by using additional solar indices to capture a broader range of thermospheric
heating. Geomagnetic indices (Kp or Ap - daily average of eight ap values, see 1.3.1) are used by
all models, with DTM-2020 introducing the Am index to cover disturbances in the Northern and
Southern hemispheres. Finally, the parametric equations for density calculation vary among the
models, with JB2008 incorporating latitude-dependent parameters for semi-annual and seasonal
variations.

Consequences of Drag

The main consequence associated with drag is the alteration of satellite trajectories. An unfore-
seen deviation in trajectory can lead to satellite loss for operators, thereby substantially impeding
preemptive avoidance maneuvers and amplifying the collision risk. The collision risk is also highly
increased because of unpredictable movements of already existing debris in LEO.

Moreover, the increase in thermospheric density can impose a greater fuel consumption for
satellites trying to reach their designated orbits, consequently diminishing the mission’s lifespan.
In February 2022, the Starlink satellites operated by SpaceX encountered this issue related to
atmospheric drag, resulting in the disintegration of several satellites before they could reach their
intended final orbits. These satellites were launched right after a geomagnetic storm which led
to an elevated density in the thermosphere and consequently an increase in atmospheric drag. As

73



Chapter 1. Space Weather and its Measure

a consequence, out of the 49 satellites launched, 40 were unable to escape their transfer orbits,
situated at an altitude of approximately 210 km, and ultimately disintegrated within the Earth’s
atmosphere at lower altitudes (Fang et al., 2022).

1.3.3.3 Geomagnetically Induced Currents

Geomagnetically Induced Currents (GICs) are electric currents generated on the ground through
the process of electromagnetic induction caused by rapid changes in the geomagnetic field, par-
ticularly during Coronal Mass Ejections (CMEs). As discussed in Section 1.2.6.3, the auroral
electrojets in the ionosphere follow circular paths around the geomagnetic poles. During periods
of low magnetic activity, the electrojet remains within the auroral oval. However, during disturbed
periods, the electrojet intensifies, expanding to both higher and lower latitudes, which can cause
fluctuations in the geomagnetic field. Therefore, to assess the generation of GICs, it is crucial to
measure the time derivative of the geomagnetic field, rather than relying solely on indices like Kp
or Dst, as they are not directly correlated with GICs production.

Severe geomagnetic storms can result in Earth-surface potential values ranging from 1 to 7
V/km, particularly in high-latitude regions with low earth conductivity, such as areas with igneous
rock formations or coastal regions. Regions in North America, in particular, are at higher risk due
to the positioning of the north magnetic pole in relation to the north geographic pole, which in-
creases their vulnerability to elevated Earth-surface potential values. Consequently, electric power
systems in these areas are more prone to disturbances in the geomagnetic field. The Earth-surface
potential acts as an ideal voltage source between grounded neutrals of specific transformers within
a power system, causing geomagnetically induced currents to flow between the neutrals (see Fig-
ure 1.36). Power networks with long transmission lines spanning hundreds of kilometers are more
susceptible to magnetic field disturbances, while smaller grids are less exposed to such phenom-
ena. Table 1.7 summarizes the different risks from GICs.
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Figure 1.36 — Formation of the induced eletric field and the GICs as a consequence. Figure from
McKay (2004).

1.3.3.4 Radiation Effects: Single Event Effects

A single event effect (SEE) results from, as the term suggests, a single, highly energetic parti-
cle. It is an electrical disturbance that disrupts the normal operation of a circuit and can be either
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Transformer
saturation

GIC acts as a DC current source which determines a bias in transformer opera-
tion, shifting it to the saturated region of the magnetization curve.

Reactive power
losses

Saturated operation yields augmented current demand which generates linearly
increasing (i.e. with the current) re- active power consumption.

Harmonics Operation in saturated region is highly non-linear and dis- torted, harmonics gen-
erated in current/voltage waveforms.

Transformer The excess flux induced by saturation flows externally to the core into the trans-

overheating former tank and can generate localized heating spots of over 170°C.

Generator Generators are subject to harmonics and voltage unbalance caused by trans-

overheating

former saturation. The ensuing harmonic currents can potentially generate ex-
cessive heating and mechanical vibrations, although no serious generator damage
due to GICs has been documented.

Protective
relaying issues

Relays reacting to the peak value of the current are sensitive to the harmonics
injected by saturated transformers and can erroneously trip.

Telecom-
munication
systems

Geomagnetic disturbances affect phone lines and Internet cables, however opti-
cal fibres (increasingly used nowadays in the high- bandwidth lines of SCADA
networks) are immune to electro-magnetic interference. Satellite systems are

directly prone to interference from geomagnetic disturbances.

Table 1.7 — Summary of effects of GICs and overall disturbances in the geomagnetic field on power
systems, from Beccutti (2013)

“destructive” (cause permanent damage) or “non-destructive” (Gomez Toro et al., 2014). The
possibility of single-event upsets was first postulated by Wallmark and Marcus (1962). There are
three main sources of SEEs (Poivey, 2019):

1. Solar Energetic Particles (SEP, see Section 1.2.2.4): mostly protons (~96.4%), alpha par-
ticles (~3.5%), and heavy ions (~0.1%), in an energy range between 10 and 100 MeV
(Bothmer and Daglis, 2007)

2. Galactic Cosmic Rays (GCR): mostly protons (~90-95%), helium (~7-10%), heavy ions
(~1%) and electrons (~1%) from interplanetary and interstellar space, all in the GeV to TeV
energy range (Bothmer and Daglis, 2007). GCRs are the most energetic particles (energies
up to 10?1 eV) found in our Solar System and are fully ionized: that is, they consist of nuclei
only.

3. Trapped energetic proton (TP) from the inner Van Allen belt produced by the CRAND
effect, itself caused by the GCRs (Bothmer and Daglis, 2007). When GCRs population
increase, so are the trapped protons populations. Usually, the inner radiation zone is avoided
by operators because the total radiation dose is very large there. However, some low-altitude
missions still experience effects from the energetic protons in the South Atlantic Anomaly.
The asymmetries in the geomagnetic field cause the radiation belts to "dip" closer to the
Earth in the south Atlantic regions, and satellites that pass through this region experience
more single-event effects (Koons and Fennell, 2006).

The fundamental process is the following: first, an incident ion loses energy, ionizes and
interacts with material along its track in the device, producing free charge carriers (electrons and
holes). Then, electrons and holes move by diffusion and drift through the material (oxides and
semiconductors) to sensitive node while they also recombine. Finally, the additional charge on the
node alters the voltage that ultimately leads to SEEs. Voltage glitches may propagate through a
circuit. An ion can also undergo a nuclear interaction with the atoms in the device. This generates
a shower of energetic nuclei that then suffer ionization losses.
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Figure 1.37 — Classifications of SEEs, from Gomez Toro et al. (2014).

The term SEEs is used to encompass the various effects resulting from the interaction of an
energetic ion with a device. Historically, these different types of SEEs have been categorized
based on the response of the microelectronic device, as shown in Figure 1.37. While we won’t
discuss all of them in detail, let’s touch upon a few. Among the non-destructive phenomena, we
have the Single Event Upset (SEU), which arises from transient radiation effects in electronics
and leads to changes in the memory or bit states. According to Koons and Fennell (2006), SEUs
account for the second most common cause of anomalies in satellites, representing 28.4% of cases.
The Single Event Transient (SET) introduces voltage issues in circuits and can induce changes in
logical states in both combinational and sequential logic circuits. On the other hand, among the
destructive phenomena, the Single Event Latchup (SEL) causes an undesired short-circuit in an
integrated circuit, typically triggered by heavy ions or protons. Lastly, the Single Event Burnout
(SEB) poses a risk of device destruction due to high current in a power transistor.

1.3.3.5 Radiation Effects: Cumulative Effects

The second category in which radiation can affect electronics is called cumulative effects and
encompasses two subcategories: Total lonizing Dose (TID) and Displacement (or Atomic) Damage
Dose (DDD).

Total Ionizing Dose

The total ionizing dose arises from the satellite’s continuous exposure to and absorption of
space radiation, especially electrons and protons. This dose involves the ionization of the ma-
terials that constitute the satellite. It is measured in Gray (Gy), where 1 Gy corresponds to the
absorbed energy in exposed material of 1J/kg. The old unit, rad, is still widely used in the com-
munity (100 rad = 1 Gy). When the satellite is exposed to these particles, it generates a number
of electron-hole pairs proportionally to the energy transfer. The term "electron-hole pair" refers to
the phenomenon where each moving electron leaves behind a vacant position or hole.

The primary sources of particles responsible for TID are high-energy protons (MeV) from
Solar Energetic Particle Events, typically observed during solar flares, and the South Atlantic
Anomaly.
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According to Poivey (2019), the Total Ionizing Dose primarily affects semiconductor oxides.
Within the semiconductor oxide, electron-hole pairs are capable of mobility and can recombine,
which does not result in any damage. The rate of recombination is influenced by the electric field
applied to the oxide, as well as the type and energy of the incident particle. When a device is
biased, electrons are expelled from the oxide, while holes remain, leading to the accumulation of
trapped charges within the oxide or interface traps at the oxide-silicon interface. The degradation
of components is highly dependent on the device technology, the manufacturing process, and the
bias conditions.

Total Ionizing Dose leads to substantial degradation of components, especially semiconductors
and insulators, and in certain instances, even their destruction. The flow of current, stemming from
electron-hole pairs, can result in heightened power consumption within the device, decreased com-
ponent gain, or changes in the threshold voltage of a metal-oxide-semiconductor gate (Pisacane,
2008).

Displacement Damage Dose

Displacement Damage Dose, also known as Total Non-Ionizing Dose (TNID), is a form of
damage caused by the energy accumulated inside the satellite due to high-energy particles. These
particles displace atoms within the crystalline structure of components, resulting in weakened
structures with imperfections, reduced lifespans, changes in the electrical properties of the af-
fected region (see Figure 1.38).

Displacement damage (DDD) can have various effects on electronic devices. In gate-oxide
breakdown, accumulated defects can lead to a complete short circuit, melting the insulating layer
and causing structural destruction. Solar panels are also particularly vulnerable to DDD that
reduces their overall performances. In lasers, irradiation-induced defects act as recombination
centers, increasing the threshold current and broadening the lasing wavelength. In image sen-
sors, DDD can cause bright spots (clusters of defects) and signal streaks (defects acting as charge
traps), reducing pointing accuracy and resolution in star trackers and Earth-observation detectors,
respectively.

Single event effects Cumulative effects

on J /et lonising dose Atomic displacement
o B

Oxide

Trapped
charges
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lonisation Interface
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lon 2nd

Figure 1.38 — All three categories of radiation effects, from Poivey (2019).

1.3.4 A Danger for Humanity

In order to conclude our discussion on the impacts of Space Weather, we aimed to provide a
comprehensive overview of past events and emphasize the different sectors affected by space me-
teorology. To compile this section, we drew upon the insights and research presented in Lilensten
et al. (2021), which not only explores historical events associated with Space Weather but also
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serves as an excellent, accessible, resource for understanding the subject. We highly recommend
this book to all readers.

1.3.4.1 Events From the Past

Before delving into the numerous human domains that can be impacted by Space Weather, we
wanted to first present few impressive events that already happened in our close past.

e To this date, the "Carrington Event" that happened in September 1859, during solar cycle
10, is the most intense geomagnetic storm ever recorded, and resulted from a CME impact
on Earth. At first, Richard Carrington observed very intense flashes emitted on the sur-
face of the Sun (Carrington, 1859). These flashes were actually several solar eruptions that
ultimately caused disruptions in telegraph communications (Bothmer and Daglis, 2007).
Auroras could be seen in regions close to the equator.

e In March 1989, during solar cycle 22, a series of severe solar storms hit Earth. Among
them, the worst one struck Earth on March 13 and caused, in less than 90 seconds, a nine
hour outage of the Hydro-Québec’s electricity transmission system, plunging people into
darkness.

e In July 2000, during solar cycle 23, Earth experienced the impact of a severe solar flare,
accompanied by a solar particle event and a coronal mass ejection (CME). This event, known
as the "Bastille Day Event," marked the first major solar storm following the launch of
the Solar and Heliospheric Observatory (SOHO). The groundbreaking data collected by
the pioneering SOHO satellite provided researchers with rapid insights into the physics of
extreme flares. The effects of this event were felt not only by satellites like the Astro-D
(ASCA), which experienced drag and spacecraft charging issues (Cannon et al., 2013), but
also by individuals aboard commercial flights at high latitudes.

e In October 2003, Earth experienced a series of solar flares and coronal mass ejections
(CMEs) that are commonly referred to as the "Halloween Storms" (Gopalswamy et al.,
2005). These events had a significant impact on our planet. One consequence was the dis-
ruption of civil aviation radiocommunications above 57°N due to variations in ionospheric
density (Bothmer and Daglis, 2007). Additionally, there was a one-hour shutdown of a sec-
tion of the high-voltage electricity transmission system in Malmo, southern Sweden (Pulkki-
nen et al., 2017).

e In 2012, during solar cycle 24, a large CME missed passed close to Earth but missed it.
Several studies tried to evaluate the risk that this CME represented for Earth and concluded
that it was an equivalent to the event from 1989 and 2003 (Ngwira et al., 2013).

e As we previously mentioned in Section 1.3.3.2, there was a notable incident in 2022 where
SpaceX experienced the loss of 40 satellites during a geomagnetic storm. This unfortunate
event occurred as a result of an upsurge in thermospheric density, causing a significant
increase in drag force. Consequently, the satellites used all their fuel in their attempt to
reach their designated orbit, ultimately leading to their incineration upon reentry into the
atmosphere (Fang et al., 2022).

1.3.4.2 Dangers

Space Weather represents a significant hazard, as evidenced by the various events that have
occurred in the past. Numerous human domains are susceptible to solar activity. Below, we have
compiled a non-exhaustive list of domains that can be impacted, along with a few examples, thanks
to the work by Lilensten, Jean et al. (2021).

e Human health: The most severe solar flares are lethal to humans. In 1972, the estimated
dose received on the Moon was 7 sieverts per hour (averaging 0.0024 per year, with a lethal
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dose at 2). At conventional aircraft altitudes, the dose is approximately 20 microsieverts per
hour, but a solar event could increase these values by a factor of 1000.

e Constellations: A "Carrington-type" event could potentially disrupt satellite constellations,
resulting in a catastrophe with costs 10 to 100 times higher than the most powerful terrestrial
cyclones. Clients, operators, and especially insurers would be severely impacted, potentially
leading to insurer bankruptcies and destabilizing the banking system.

e Debris: A solar flare can increase ultraviolet radiation, which excites the upper atmosphere,
causing it to heat up and expand (section 1.3.3.2). This leads to increased friction on Low
Earth Orbit (LEO) satellites and carries away debris. Consequently, the two global tracking
centers (NASA Langley & ESA Darmstadt) lose track of the debris.

e Corrosion: Satellites below 1000 km are exposed to atomic oxygen, which ionizes during
solar activity and corrodes spacecraft surfaces more effectively. This could potentially lead
to a runaway Kessler effect.

e GPS: Solar activity affects the electronic content of the ionosphere, leading to signal de-
viations and inaccuracies in GPS navigation. This can result in misguidance for missiles,
triggering dam sirens to evacuate cities, and causing disruptions to autonomous vehicles.

e Embedded Electronics: During periods of low solar activity, cosmic radiation, including
gamma rays, muons, positrons, and mesons, can penetrate the atmosphere and damage em-
bedded electronics in various systems, such as trains and aircraft.

e Telecommunications: The military uses radars that rely on ionospheric bounce to detect
missiles.

e Power Plants: Geomagnetically induced currents (GICs) generate low-intensity continuous
currents in conductive ground, which can flow into power plants and melt transformers.

e Oil Exploration: Underground drilling locations rely on Earth’s magnetic field for position-
ing. A magnetic storm can cause pointing inaccuracies.

e Airspaces: Airports use primary and secondary radars for aircraft detection and communi-
cation within airspace. On November 4, 2015, increased solar activity resulted in a series
of eruptions accompanied by radio emissions within the relevant frequency band, impacting
Western Europe. The effects included flight delays, passenger diversions, traffic congestion,
and other disruptions. These radio bursts and their frequency range remain unpredictable to
this day.

1.3.4.3 Worst Case Scenario

To persuade operators, states or the private sector of the importance of allocating resources to
protect against an imminent catastrophe, it is crucial to emphasize the potential risks and finan-
cially devastating consequences associated with geomagnetic storms, particularly Carrington-type
events.

In 2013, Lloyd’s published a report emphasizing the inevitability of a new Carrington-type
storm (Maynard et al., 2013). According to this report, Quebec-like storms occur every 50 years,
while Carrington-like event could occur every 150 years. The consequences could be catastrophic,
with an estimated 20 to 40 million Americans enduring prolonged power outages lasting from 16
days to 2 years, resulting in costs estimated between $600 billion and $2.6 trillion. Furthermore,
the Swiss Academy of Sciences suggests that a complete recovery after such a storm would take
between 4 and 10 years. This evaluation illustrates the magnitude of potential financial losses,
highlighting the importance of investing in adequate protective measures. IN 2011, the Organiza-
tion for Economic Co-operation and Development (OECD) classified geomagnetic storms as one
of the five major global risks, alongside financial risks, cyber-risks, social unrest, and pandemics.
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Figure 1.39 — Space Weather Effects Overview. Credits: ESA.

An additional study conducted in England concluded that the probability of a Carrington-
like event occurring within the next decade is approximately 12% (Riley, 2012). Moreover, re-
searchers, through the observation of solar-type stars, have estimated that a storm 1000 times
more powerful than Carrington could arise approximately once every 5000 years, while a storm
100 times more energetic may occur about once every 800 years (Maehara et al., 2012). Additional
evidence from tree-ring observations by Dr. Fusa Miyake and colleagues also suggests that such
events have happened in our past (Miyake et al., 2012). Although these findings remain subjects of
ongoing discussion and controversy, they highlight the gravity of addressing the risks associated
with geomagnetic storms earnestly. The repercussions of such an event would be catastrophic, in-
cluding potential fatalities among astronauts, core meltdowns in power plants, and fatal radiation
exposure for airline passengers.

1.3.4.4 International Programs

Several international programs appeared, such as the recent E-SWAN (European Space Weather
and Space Climate Association, initially Quo Vadis) community '°, an international non-profit as-
sociation established in 2022 which mission is to "unite, sustain, and develop Space Weather and
Space Climate activities in Europe" (Lilensten, Jean et al., 2021).

ESA’s Space Safety Program (S2P), a two-aspect programme, successor of the ESA’s Space
Situationnal Awareness (SSA) program. On one hand, research and development activities and
pre-operational services aimed at warning users and protecting them against various threats from
the space environment. Three threats are considered: space weather, near-earth object (NEO)
including threats of asteroid collisions with our planet or our infrastructure and space surveillance

10. https://eswan.eu/
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and tracking (SST) including all risks of collisions between satellites or with debris. On the other
hand, the S2P Program focuses on the development of observational satellites or ground stations
to study the three aforementioned threats. We can mention several missions:

e In space weather:The Vigil mission '' mission is being developed to monitor the trajectory

of solar ejecta from the Sun towards Earth. Within the S2P Program, instrumentation is
being developed for observing space weather phenomena, which will be integrated into
planned satellite launches. The Program also funds the operations of the PROBA-2 satellite,
made in Belgium, which has been observing the solar atmosphere since 2009.

e In NEO: The HERA mission will observe and characterize the asteroid Dimorphos. This
mission is supposed to help us determine how much we can alter orbits of asteroids that
could potentially collide with Earth.

o In SST: the development of radar systems to monitor orbits of satellites and debris. Missions
like ClearSpace-1 for instance are part of the larger Active Debris Removal/In-Orbit Servic-
ing missions and will remove large piece of debris from space. An automatic system called
CREAM (Collision Risk Estimation and Automated Mitigation) is also under development
to prevent collisions.

1.3.5 The Rise of the New Space

Since the dawn of the space age, the space industry has predominantly been driven by major
space agencies such as NASA, ESA, and Russian Roscosmos, along with prominent aerospace
players like Airbus, Thales, Boeing, and Dassault. This situation was primarily shaped by the
exorbitant costs associated with space missions, requiring extensive expertise and advanced tech-
nologies. For instance, the Apollo mission alone employed over 400,000 individuals, with a total
cost equivalent to over 100 billion dollars in today’s terms (Vernile, 2018). However, in recent
decades, a wave of young actors and entrepreneurs has entered the arena, seeking their share
of the space market. Technological advancements, increased private sector investments, and the
soaring demand for space-related data have provided opportunities for young private companies to
carve out their niche (with some even becoming major players) and allowed non-space companies,
including tech giants like Google and Facebook, to venture into this domain and explore synergies
between ICT and space applications (Vernile, 2018). Notable figures in this emerging landscape
include Elon Musk with SpaceX, Jeff Bezos with Blue Origin, and Richard Branson with Virgin
Galactic. In 2021, a report by SpaceTech Analytics '? (Analytics, 2021) identified over 10,000
companies (52% of which were American) operating in the space sector, a number that continues
to grow. Consequently, space, once solely governed by government institutions, has gradually
come under the influence of American giants (Pasco, 2017).

The development of reusable launch vehicles, SmallSats, and CubeSats has significantly re-
duced the cost of space system development and payload deployment into space. Private sector
investments in the space industry have soared (with an average of $1.5 billion invested annually in
space start-ups in the US during the period 2010-2015), resulting in heightened competition, inno-
vation, and the emergence of novel business models like mega-constellations. Noteworthy projects
such as Starlink, OneWeb, Kuiper, Lynk, SatRevolution, Sfera, and Guowan plan to launch be-
tween 600 to 12,000 satellites per constellation, primarily focusing on satellite communications
(Kodheli et al., 2021). Furthermore, space data is now considered a valuable resource 13 and the
integration of advanced technologies such as Al, big data, and blockchains with new satellite capa-
bilities has given rise to innovative applications. As a result, there is a significant surge in activities

11. https://www.esa.int/Space_Safety/Vigil
12. https://analytics.dkv.global/spacetech/SpaceTech-Industry-2021-Report.pdf
13. https://www.mews-partners.com/space-data-the-golden-age/
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related to space data, as well as the development of ancillary products and services such as on-orbit
servicing. Specialized companies now provide high-quality data directly to customers, making it
possible for non-space companies to send their own satellites into orbit by leveraging comprehen-
sive service providers throughout the entire value chain, from design and manufacturing to launch.

The imperative to develop a more extensive space ecosystem has never been greater, neces-
sitating collaboration among various stakeholders, including space companies, government agen-
cies, non-space enterprises, and academia. As an example, in order to nurture the most innovative
initiatives on the continent and support startups at every stage of their development, European
institutions have launched the Cassini Fund '“. This initiative was unveiled during the fourteenth
European Space Conference held in Brussels on January 25, 2022. With a budget of one billion
euros, the Cassini Fund will be backed by the European Investment Fund and the European In-
vestment Bank.

Nevertheless, the space sector faces numerous challenges, as highlighted in a recent report
by Deloitte '°: supply chain disruptions, developing cost-competitive space-grade products, reg-
ulatory requirements, a shortage of qualified talent, reduced capital investment, mass production,
miniaturization of electronic components, government acquisition timelines, funding, shifting de-
fense priorities, security concerns, greenhouse gas emissions, environmental impact at launch
sites, radiofrequency congestion, and perhaps the most emblematic challenge of all, space de-
bris. Numerous companies, including SpaceAble, LeoLabs, and ShareMySpace, have emerged to
tackle these challenges and contribute to the growth and sustainability of the space sector.

14. https://defence-industry-space.ec.europa.eu/eu-space-policy/space-entrepreneurship-
initiative-cassini_en

15. https://www2.deloitte.com/us/en/insights/industry/aerospace-defense/future-of-space-
economy . html
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Machine Learning, Deep Learning and Their

Application in Space Weather Research

"I am putting myself to the fullest possible use, which is all I think that any conscious
entity can ever hope to do."

HAL 9000 - 2001: A Space Odyssey - Stanley Kubrick
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2.1. Introduction to Artificial Intelligence

2.1 Introduction to Artificial Intelligence

Everyone has heard the term "Artificial Intelligence" at least once. Although these terms and
the associated research topics have been around for several decades, Al is now a topic of discus-
sion in various contexts. It represents either a promising future or invokes fear, being seen as a
threat to employment (Huang and Rust, 2018) and even speculated to bring about the end of the
human species (Cellan-Jones, 2014) by some, while others view it as an extension of human intel-
ligence (Quifionero Candela and LeCun, 2016) and an opportunity to improve our everyday lives.

In recent years, there has been a great increase in the use of Al across diverse domains. Today,
thousands of applications and software incorporate Al methods, ranging from social networks,
online shopping and security systems to arts, politics, science, or literature. Industry giants like
Google, Meta, and OpenAl have established themselves as leaders in the field. Well-known al-
gorithms include Google’s FaceNet and DeepDream, respectively capable of identifying faces
and generating psychedelic-like images from real-world images. We can also mention OpenAl’s
DALL-E algorithm which generates images based on textual descriptions; OpenAl’s ChatGPT,
"a state-of-the-art conversational ATl model" '; DeepMind’s AlphaGo that garnered attention for
defeating the world’s top Go player in 2016 (see Figure 2.1). Based on McKinsey’s projections,
Al is anticipated to make a contribution of $13 trillion to the global economy by 2030.

At last — a computer program that
can beat a champion Go player PAGE484

ALL SYSTEMS 90

Figure 2.1 — (a) AlphaGo’s victory over Go champion Lee Sedol in the Google DeepMind Chal-
lenge Match, featured in Nature (January 28th, 2016). (b) DALL-E’s impressive image extension
capability demonstrated on Johannes Vermeer’s "Meisje met de parel.” (c) DeepDream output ex-
ample.

To delve into the understanding of Machine Learning, we first need to take a step back and
talk about the broader topic of Artificial Intelligence (Al). Al can be defined as "a system’s ability
to correctly interpret external data, to learn from such data, and to use those learnings to achieve
specific goals and tasks through flexible adaptation.” (Kaplan and Haenlein, 2019). As explained
by Quifionero Candela and LeCun (2016), "Al is a rigorous science focused on designing intel-
ligent systems and machines, using algorithmic techniques somewhat inspired by what we know
about the brain". The word "intelligence" comes more from what we would like Al to do instead

1. Description generated by ChatGpt on 20 June 2023
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of what it is really doing, which is closer to "learning".

Artificial intelligence is a field of computer science that seeks to simulate the abilities of the
brain. To put it simply, it functions like a large funnel where we input information and from which
new information, desired by the user, emerges. Although this description closely aligns with the
idea of a model, Al encompasses a wide range of techniques and methods that go beyond simple
modeling. Overall, it is focused on developing systems that can perform tasks requiring human-
like intelligence. Figure 2.2 provides an overview of the various research branches within AI. We
will now briefly describe these branches, but it’s important to note that this categorization does not
represent a consensus, and there are many different approaches:

e Machine Learning: This is the branch we will focus on throughout this thesis. Its goal
is to analyze data, learn from it, and discover relationships, patterns, or models to make
intelligent decisions or perform tasks.

e Natural Language Processing (NLP): NLP involves understanding and generating human
language, whether in textual or audio form. It includes tasks such as language translation,
sentiment analysis, or creating chatbots capable of conversation (e.g., ChatGPT ?).

e Computer Vision: This branch focuses on enabling machines to understand, analyze, and in-
terpret images or videos (e.g., FaceNet, Schroff et al. (2015)). It encompasses facial recog-
nition, object detection, and has numerous applications in areas like autonomous vehicles
and medical imaging.

e Robotics: This field involves designing, developing, and programming physical robots ca-
pable of sensing real-world data (such as temperature, movement, sound), interacting with
their environment, and autonomously performing tasks.

e FExpert Systems: In Al, an expert system is a program that aims to replicate the behavior and
decision-making of a human expert (or organization) in a specific domain.

o Planning and Decision Making: This branch focuses on developing strategies or sequences
of actions that are typically executed by robots or autonomous vehicles. It often works in
conjunction with decision theory.

e Knowledge Representation: This field aims to represent information and data in a form that
a computer system can understand and utilize to solve complex tasks.

e Al Ethics: With the advent of Al, a new branch that is not strictly part of Al has emerged.
Its objective is to question and ensure ethical considerations in the use of Al

When considering an Al solution to address a problem, its implementation typically follows
a similar procedure: data preparation, model creation, design of the system on which the model
will run, and deployment on hardware or enterprise systems. Throughout this process, the data
preparation stage undoubtedly demands the most time and resources. It requires domain expertise
in dealing with often massive amounts of data, and it is generally this stage that determines the
feasibility of the mission. We will further discuss the importance of data preparation within the
context of machine learning, which is the focus of our interest.

2. https://openai.com/chatgpt
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Machine Learning Expert Systems

INTELLIGENCE

Computer Vision

ARTIFICIAL

Knowledge
Representation
Figure 2.2 — Different branches of Al. Note that "Al Ethics and Responsible Al" could be repre-

sented differently from other branches, as it is not exactly a branch in itself but rather a cross-
cutting consideration across all branches.

2.2 Machine Learning

Machine Learning techniques comprise a collection of algorithms employing statistics and
mathematics to extract knowledge from data. According to the Oxford Dictionary, machine learn-
ing is defined as "the use and development of computer systems capable of learning and adapting
without explicit instructions, employing algorithms and statistical models to analyze and draw
inferences from patterns in data." The outcomes of machine learning encompass models, fore-
casts, as well as the identification of patterns, anomalies, relationships, and even causalities within
the data. Generally, machine learning involves supervised and unsupervised learning, although
modern approaches like reinforcement learning and semi-supervised learning are also worth men-
tioning. Figure 2.3 illustrates the different categories of machine learning algorithms.

MACHINE
LEARNING

Reinforcement
Learning

Figure 2.3 — Categories of Machine Learning algorithms.

In the subsequent sections, we will provide an introductory overview of the interplay between
machine learning and space weather, elucidating the emergence of novel opportunities stemming
from the availability of large datasets in the field of Space Weather and recent advancements in
machine learning. Subsequently, we will delve into comprehensive descriptions of supervised,
unsupervised, and reinforcement learning techniques, accompanied by selected examples show-
casing the application of these algorithms within the domain of space weather. For most of the
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descriptions, we rely on the very comprehensive resources from IBM Jones (2017) °.

2.2.1 Machine Learning & Space Weather

In the field of space weather, there have been numerous endeavors to utilize machine learning
since the 1990s, particularly the application of neural networks for predicting geomagnetic indices.
Dr. Enrico Camporeale conducted a comprehensive review of machine learning works in space
weather (Camporeale, 2019), which yielded two primary reasons to continue exploring machine
learning techniques. Firstly, not all possibilities have been exhausted. For instance, convolutional
neural networks (to be discussed in Section 2.3.6.3), one of the most successful applications in
machine learning (LeCun et al., 2015), have received limited attention within our community.
Secondly, the recent success of ML can be attributed to three significant factors: the increased
availability of large datasets, the advancements in software with open-source libraries, and the im-
proved hardware capabilities, particularly powerful GPUs. Consequently, it is an opportune time
to reevaluate ideas proposed 10 or 20 years ago, as approaches that previously seemed ineffective
may now yield remarkable results. As such, the amount of papers in the field of machine learning
applied to space weather has drastically increased. Figure 2.4 reflects this trend in AGU Space
Weather Journal.
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Figure 2.4 — Search results highlighting the occurrence of the words 'machine learning’ in the
AGU Space Weather Journal website’s search bar ht tps: //agupubs. onlinelibrary.

wi ley. com/ journal/ 154273 90. 183 results that can be research articles (158), technical
articles (7), editorial (5), issue information (4), commentary (3), commissioned manuscript (1),
feature (2), meeting report (1), news article (1). Words can appear in either the title, keywords,
abstract, author affiliation or funding agency of the results.

Regarding datasets, as indicated in Camporeale (2019), the Space Weather community offers
an extensive and openly accessible dataset comprising decades of in situ and remote observations.
The utilization of large datasets holds significant importance in the development of successful

3. https://developer.ibm.com/articles/cc-models-machine-learning/, last accessed June 22 2023
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neural network models. Depending on one’s objectives and given the 11-year duration of the solar
cycle, it can be imperative to possess sizable datasets that encompass several solar cycles. In the
following tables (2.1 & 2.2) multiple examples of significantly large datasets suitable for Al appli-
cations in Space Weather are presented, as well as libraries, software or already processed datasets
for machine learning. This list is non-exhaustive but gives a great glimpse of the vast work done
on the topic. However, as we elaborate in Chapter 3, it’s crucial to recognize that while these data
may be available, their suitability for direct application in machine learning tasks can be limited
or non-trivial, requiring preprocessing or transformation steps to enhance usability.

Mission Website

ACE http://www.srl.caltech.edu/ACE/

Wind https://wind.nasa.gov/

DSCOVR https://www.nesdis.noaa.gov/content/dscovr-deep-space-climate-observatory
SOHO https://sohowww.nascom.nasa.gov/

STEREO https://stereo.gsfc.nasa.gov/

SDO https://sdo.gsfc.nasa.gov/

OMNI https://omniweb.gsfc.nasa.gov/index.html

VAP http://vanallenprobes. jhuapl.edu/

GOES https://www.goes.noaa.gov

POES https://www.ospo.noaa.gov/Operations/POES/index.html

GPS https://www.ngdc.noaa.gov/stp/space-weather/satellite-data/satellite-systems/gps/
DMSP https://www.ngdc.noaa.gov

On-ground magnetometers | http://www.intermagnet.org

GONG https://gong.nso.edu/

Table 2.1 — Examples of large datasets used in Space Weather, from Camporeale (2019). Note:
ACE = Advanced Composition Explorer; DSCOVR = Deep Space Climate Observatory; SOHO =
Solar and Heliospheric Observatory; STEREO = Solar Terrestrial Relations Observatory; SDO
= Solar Dynamics Observatory; VAP = Van Allen Probes; GOES = Geostationary Operational
Environmental Satellite system; POES = Polar Operational Environmental Satellites;, DMSP =
Defense Meteorological Satellite Program; GONG = Global OscillationNetwork Group.

Finally, it is worth mentioning that while not the primary approach utilized here, Space Weather
is ideally suited for what is known as grey-box models (Bohlin, 2006; Camporeale, 2019). A grey-
box model is a combination of a white-box model and a black-box model. In our field, a white-box
model refers to a physics-based model that operates on established formulas and physics approxi-
mations, where the relationship between input and output is known. On the other hand, a black-box
model is characterized by its unknown internal functioning, typically limited to specific datasets,
as seen in most neural networks. In our context, we define a grey-box model as one that lever-
ages physics-based insights to transform inputs and/or outputs of black-box models (Kroll, 2000).
Space Weather is well-suited for these models due to the inherent challenges posed by vast spatial
and temporal scales, the limited time lag between causes and effects, and the computational power
needs. The Space Weather community recognizes the limitations of a first-principle approach for
forecasting and, instead, explores the potential of combining data-driven methods (black-box) with
identified gaps in physics-based models (white-box) to enhance prediction capabilities.

2.2.2 Supervised Learning

Supervised learning relies on annotated training data, and is referred to as "supervised" be-
cause there is a ’supervisor’ that guides the learning system by providing labels for training ex-
amples (class labels in classification tasks for instance) (Cunningham et al., 2008). By using this
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Name Description Url

pyHC A community knowledge base for performing heliophysics research | https://heliopython.org/
in Python

sunpy The community-developed, free and open-source solar data analysis | https://sunpy.org/
environment for Python

SolarNet Deep learning research toolbox focusing on self-supervised learning | https://jdonzallaz.gitla
on solar data. b.io/solarnet/

SpaceML A machine learning toolbox and developer community building open | https://spaceml.org/
science Al applications for space science and exploration.

pysat The Python Satellite Data Analysis Toolkit (pysat) is a flexible pack- | https://pypi.org/project
age for handling and analyzing various scientific measurements. It | /pysat/
supports diverse types of ground- and space-based data, providing a
user-friendly interface.

HelioML This book features interactive Jupyter notebooks in Python that show- | https://helioml.org/Intr
case the use of machine learning, statistics, and data mining tech- | oduction/title.html
niques on heliophysics datasets to reproduce published results.

AIDApy AIDApy is a high level Python package for the analysis of spacecraft | https://gitlab.com/aidas
data from heliospheric missions using modern techniques pace/aidapy

SDOML A curated data set from the NASA Solar Dynamics Observatory | https://sdoml.github.io/
(SDO) mission in a format suitable for machine-learning research.

DMSP A DMSP ready-to-use dataset for Al linked to the work by https://zenodo.org/recor

Al-ready d/4281122

SDO Al-ready | A Machine learning-ready dataset prepared from the NASA’s SDO | https://doi.org/10.3847/
mission 1538-4365/aba82f

MVTS Multivariate time series (MVTS) data extracted for space weather data | https://doi.org/10.1038/
analytics s41597-020-0548-x

Table 2.2 — Examples of librairies (top) and Al-ready datasets (bottom) for applying machine
learning in space weather.
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labeled data, supervised learning algorithms generate models that can classify unlabeled data.
Supervised learning mainly consists of regression algorithms and classification algorithms, each
serving different purposes.

Deep learning, as we will see Section 2.3 can be considered as a subfield or an extension of
supervised learning. While supervised learning encompasses various algorithms and techniques,
deep learning is a specific approach that utilizes neural networks with multiple layers (hence the
term "deep") to learn and extract representations from data.

2.2.2.1 Regression

Regression tasks focus on identifying relationships between input and output data, usually pre-
dicting results within a continuous output. They encompass a variety of techniques and methods
such as linear and polynomial regressions, decision trees, neural networks, or ensemble methods.
Regressions are commonly used to approximate functions or predict future values of continu-
ous functions. For instance, they can be employed to forecast weather, estimate housing prices,
or model temperature trends, and hence are largely used within the space weather community
(Bouriat et al., 2022).

2.2.2.2 Classification

Classifications are designed to map input variable to specific classes or categories. Algorithms
to perform this task assign labels or class memberships to input instances based on their features.
Examples of algorithms used to perform classifications include support vector machines (Vapnik,
1999), discriminant analysis, naive Bayes, and k-nearest neighbors. Classifications are frequently
used to solve problems such as spam detection, sentiment analysis, or medical diagnosis, where
the goal is to assign a predefined class to each input sample such as a True/False problem.

Among the algorithms that exist, we find the logistic regression, detailed Section 2.3.1, that
simply models the relationship between the input variables and the probability of belonging to a
particular class. This type of classification may fail when the relationship between input and output
is nonlinear. In such cases, algorithms like decision trees can be used. Tree-based models make
binary decisions at each node, leading to the "splitting" of data, classifying instances by following
a sequence of rules (Figure 2.5). During the training process, the decision tree algorithm searches
for the features and cutoff values that provide the best division of the data based on the objective.

2.2.2.3 Supervised Learning and Space Weather

Supervised learning is the most commonly used method in space weather meteorology. As
discussed in Section 2.2.1, machine learning has made significant advancements in the field of
space weather meteorology in recent years. However, as early as the 1990s, applications of these
methods were already found in nowcasting and forecasting certain variables, such as geomagnetic
indices using data located at the Lagrange point L1 (Gleisner et al., 1996; Lundstedt and Wintoft,
1994; Macpherson et al., 1995), or the solar cycle (Ashmall and Moore, 1997; Calvo et al., 1995;
Fessant et al., 1996). The review by Camporeale (2019) provides numerous citations and examples
of supervised algorithms applied to space weather meteorology, which will not be reiterated here.
To complement this, we can present some recent research that has been published since that review.
Similar to previous years, advancements have been made in predicting geomagnetic indices such
as SYMH (Bhaskar and Vichare, 2019; Siciliano et al., 2021), Kp (Sexton et al., 2019), or Dst
(Hu et al., 2023; Park et al., 2021). Furthermore, studies have been conducted on modeling and
predicting solar wind properties, such as speed (Brown et al., 2022) and magnetic field (Reiss
etal., 2021), as well as geomagnetically induced currents (GICs) (Bailey et al., 2022; Smith et al.,
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Figure 2.5 — Decision tree with artificial data. Instances with a value greater than 3 for feature
x1 end up in node 5. All other instances are assigned to node 3 or node 4, depending on whether
values of feature x2 exceed 1. Credits: Christophe Molnar, Interpretable Machine Learning,
https://christophm.github. to/interpretable-ml-book/.

2021), solar proton events (Stumpo et al., 2021), solar energetic particles (SEPs) (Kasapis et al.,
2022), electron fluxes in radiation belts (Tang et al., 2022), and Total Electron Content (TEC) (Lee
et al., 2021; Liu et al., 2020; Zewdie et al., 2021).

2.2.3 Unsupervised Learning

In unsupervised learning, we have limited or no prior knowledge of the desired outcome (Bar-
low, 1989). Unlike supervised learning, where we provide labeled data and specify expected re-
sults to the algorithm, unsupervised learning involves analyzing and clustering unlabeled datasets.
Through these algorithms, hidden patterns or data groupings can be discovered without requiring
human intervention. The capacity to identify similarities and differences in information makes
unsupervised learning an ideal solution for exploratory data analysis, cross-selling strategies, cus-
tomer segmentation, and image recognition (Ghahramani, 2004). Common examples of unsuper-
vised learning include clustering and dimensionality reduction algorithms.

2.23.1 Clustering

Clustering algorithms are used to group input data into specific categories based on identifiable
structures or patterns within the data, such as segmenting customer profiles They fall under the
category of unsupervised learning because the desired output, such as the number of groups, is
unknown (IBM, 2021).

One prominent example of a clustering algorithm is the widely known and extensively used
k-means clustering. The k-means algorithm aims to group similar data points together by itera-
tively adjusting cluster centers until the points are effectively organized into meaningful clusters.
Although k-means is an unsupervised algorithm, it requires prior knowledge of the desired number
of clusters. To address this limitation, a solution called U-k-means has been proposed in (Sinaga
and Yang, 2020). Figure 2.6 illustrates the results of the U-k-means algorithm.

92


https://christophm.github.io/interpretable-ml-book/

2.2. Machine Learning

Original data Iteration = 28, Number of clusters = 6

Figure 2.6 — Example of the U-k-means clustering ending in a 6-cluster dataset, from Sinaga and
Yang (2020). Unlike the classical k-means algorithm, the amount of clusters is here an output.

2.2.3.2 Dimensionality Reduction

As we can see in Figure 2.6, the number of inputs or features also represents the dimension-
ality of our data "space." Each feature denotes a distinct aspect or property of the data, and the
dimensionality is determined by the total number of these features. In Figure 2.6, we only have
two features (x; and x,), representing a 2D space in which we seek clusters. Intuitively, one might
think that having more features would result in more accurate outcomes. However, an excessive
number of features (or dimensions) can lead to a decline in model performance, even if all fea-
tures are relevant to the task at hand. This issue is particularly pronounced in empirical modeling
within machine learning, impacting the performance of machine learning algorithms (e.g., leading
to overfitting - see Section 2.3.4.3) and making datasets challenging to visualize. This challenge
underscores the importance of dimensionality reduction.

Dimensionality reduction aims to mitigate this issue by reducing the number of data inputs
to a manageable size while preserving the dataset’s integrity as much as possible. It is a com-
mon preprocessing technique. Notable methods include principal component analysis (PCA), and
Autoencoders. PCA is a linear method, while Autoencoders, being neural networks, can capture
non-linear relationships as well.

Additionally, beyond these methods, classical (non-deep learning) non-linear techniques play
a significant role in dimensionality reduction. Some examples include:

o Diffusion Map (Coifman et al., 2005): This method is particularly useful for capturing the
underlying geometric structure of high-dimensional data by modeling the diffusion process
on the data manifold.

e Locally Linear Embedding (LLE) (Roweis and Saul, 2000): LLE aims to preserve local
relationships between data points, capturing the intrinsic geometry of the data manifold. It
works by reconstructing each data point as a linear combination of its neighbors.

o Isometric Mapping or ISOMAP (Tenenbaum et al., 2000): ISOMAP is a technique for
dimensionality reduction that seeks to preserve the geodesic distances between all pairs of
data points. It does so by approximating the intrinsic geometry of the data manifold.

o t-Distributed Stochastic Neighbor Embedding (t-SNE) (Hinton and Roweis, 2002): t-SNE
is particularly effective for visualizing high-dimensional data by mapping them to a lower-
dimensional space while preserving the local structure of the data. It is often used for
exploratory data analysis and visualization.
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Integrating these classical non-linear methods into dimensionality reduction discussions pro-
vides a more comprehensive understanding of the techniques available and their respective strengths
and weaknesses. They offer valuable alternatives to PCA and Autoencoders, especially when deal-
ing with complex data distributions and non-linear relationships.

2.2.3.3 Unsupervised Learning and Space Weather

A significant majority of machine learning projects in space weather applications belong to
the category of supervised learning. However, there are a few noteworthy projects in the unsuper-
vised domain as well. These include the automatic classification of plasma regions or distributions
(Bakrania et al., 2020; Olshevsky et al., 2021) and magnetospheric particle distributions (Souza
et al., 2018). More recently, unsupervised learning has also been employed to identify coronal
holes in solar images (Inceoglu et al., 2022), classify solar wind (Amaya, 2019; Amaya et al.,
2020; Heidrich-Meisner and Wimmer-Schweingruber, 2018; Teichmann et al., 2023), and recog-
nize specific space weather events (Bals et al., 2022; Marlowe, 2022; Yeakel et al., 2022).

2.2.4 Reinforcement Learning

Reinforcement learning is a powerful learning model that goes beyond mapping individual in-
puts to outputs. It learns to map sequences of inputs to outputs, considering dependencies as seen
in Markov decision processes. In reinforcement learning, the focus is on states within an environ-
ment and the available actions at each state. The learning process involves exploring state-action
pairs randomly to build a table of these pairs. Subsequently, the algorithm utilizes the acquired
knowledge to exploit state-action pair rewards and select the optimal action for a given state, ulti-
mately aiming to reach a desired goal state. Unlike supervised learning, where a user grades each
output from the algorithm, in reinforcement learning, the user may only provide a grade when a
goal state is achieved. Figure 2.7 provides a visual representation of how it works.

A notable example is showcased in IBM’s resources (referenced in the caption of Figure 2.7)
using a blackjack player scenario. In blackjack, an algorithm or agent learns to play by considering
the sum of its cards as the state and deciding whether to hit or stand. The agent undergoes training
through numerous hands of blackjack, receiving rewards for winning or losing. Each hand is
assigned an arbitrary state number. Here are some examples:

e For a state of "10," hitting is the optimal choice with a reward of 1.0, while standing has a
reward of 0.0.

o In the state of "20," standing is the best option with a reward of 1.0, while hitting has a
reward of 0.0.

e For a more complex situation, a state of 17 may have action values of 0.95 for standing and
0.05 for hitting. Consequently, the agent would predominantly stand (95% of the time) and
occasionally hit (5% of the time) based on probabilities.

The rewards are acquired over multiple poker hands, aiding the agent in making optimal
choices for different states or hands, with the goal of reaching a total card sum of 21. In this
context, similar to other reinforcement learning methods, the agent must determine the actions
that led to receiving rewards or punishments.

2.2.,5 Summary

With these three types of machine learning models, we usually cover most of what exists in
the field. Despite recent advancements in techniques and capacities, newly developed algorithms
typically fall into one of these three categories. The structures for the three types are summarized
in Figure 2.8. We can synthetize their functioning as follows:
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Actions

States

Reward

Reinforcement

signal O

User's critic

Figure 2.7 — Simplified structure of reinforcement learning algorithms, adapted from IBM’s re-
sources, https://developer. tbm. com/articles/cc-models-machine-
learning/ (Jones, 2017).

e Supervised learning: A dataset includes desired outputs called labels. By comparing the
predicted output to the desired output, the algorithm learns from the resulting error and
adjusts its mapping.

e Unsupervised learning: No labels, so the algorithm aims to segment the dataset into classes,
grouping similar data based on common features.

e Reinforcement learning: Here, the algorithm learns actions for states that lead to a goal
state. Errors are not provided after each example but are received through reinforcement
signals, similar to how humans learn with feedback based on rewards.

Finally, it is worth mentioning that other types exist such as semi-supervised learning. Semi-
supervised learning uses both supervised and unsupervised learning. During training, it employs a
smaller labeled dataset to guide classification or feature extraction from a larger unlabeled dataset.
This approach can address issues like limited amount of labeled data for supervised learning algo-
rithms.

2.3 From Supervised Machine Learning to Deep Learning

Deep learning is a field of artificial intelligence that empowers computers to learn and make
intelligent decisions by mimicking the workings of the human brain through the utilization of deep
neural networks. It "allows computational models that are composed of multiple processing layers
to learn representations of data with multiple levels of abstraction” (LeCun et al., 2015). We will
delve into the mathematical aspects of deep learning, exploring its fundamental foundations and
principles. Starting with a simple supervised learning technique called linear regression, we will
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Figure 2.8 — Simplified and summarized structures for all main three types of machine learning
algorithms: supervised, unsupervised and reinforcement learning, adapted from IBM’s resources,
https://developer. ibm. com/articles/cc-models-machine-learning/,
last accessed June 22, 2023 (Jones, 2017).

progressively expand our knowledge, eventually culminating in a comprehensive understanding
of neural networks.

2.3.1 Mathematical Introduction of Supervised Learning Models

Let’s introduce the fundamental mathematical concepts underlying some basic supervised
learning models. We specifically focus on supervised learning, as it is the predominant approach
in machine learning for Space Weather applications. Furthermore, the mathematical principles
presented in this section will serve as a foundation for understanding the mathematics behind neu-
ral networks (NNs) and temporal convolutional networks (TCNs), which will be elaborated upon
in Section 2.3. These two algorithms constitute the primary focus of this thesis.

We will start with linear regression and subsequently extend our exploration to encompass
linear regression with multiple variables and then logistic regression. This will give us the keys to
understanding the concept of neural networks.

Linear Regression

In a supervised learning algorithm we have a set of the feature x containing i values (our inputs)
and a corresponding set y containing i values (our outputs) to train our algorithm (see Section
2.2.2). Hence, one training example is denoted (xi,yi) and our training set is (x,y) containing,
let’s say, m training examples. Our goal from there is to approximate a function 2 : X — Y such
that i(x) is a good approximation of y. The letter 4 stands for hypothesis.

Let’s imagine a linear approximation for A:
ho(x') = 60+ 61X’ (2.1)

The goal there is to find the values of the set 6y, 0; such that for all i, hg (xi) (also written )?i) is
as close as possible to y'. This is actually an optimization problem. We want to minimize a cost
Sfunction J:

1 & . .
J(60,01) = 5.} (ho(x') —»)? (2.2)
i=1

1
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Please disregard the specific parameters in the function notation. We only wrote 6, 8; as param-
eters, but the cost function obviously depends on the expected and predicted outputs (and so on
inputs), as well as on regularization parameters (explained Section 2.3.4). One possible way to
minimize such function is to use the gradient descent method. The method is quite straightfor-
ward. Imagine being on a surface in a 3-D space where the x and y directions represent the values
of 6 and z represents the altitude corresponding to the value of J(6y,0;). We want to find the
minimum on this surface. First, we choose a starting point for 6y, 8; . Then by differentiating the
cost function at this specific location, we obtain the slope direction. We then modify 6y, 8; so that
we go in this direction to reduce the cost function. We can see this as taking a step going down in
the surface. The "length" of our step is called the learning rate oc. We then obtain a new location,
and do the all process again.

Mathematically we repeat until convergence (i.e. until we are close enough to a local or global
minima) for j = 0 and j = 1 simultaneously:

0;:=0;— J(60,6) (2.3)

o d

d0;
The first 6; on the left side is the new value, while the 6; on the right side was the old value. As
we approach a local minimum, the gradient descent must slow down i.e. the learning rate must
decrease. We can easily imagine that with a large learning rate (big "steps") we can overshoot the
minimum in our surface. On the other hand, with small learning rate, the gradient descent can be
too slow and stay stuck in a local minimum.

In our case of linear regression with one variable, we obtain:

J 1 & i
76 J(60,6:) = ;1; (60 + 61x' — ')
i.1(9 ;) = lf(e +01x' —y')x’
26, 0,01 oy 0 X =y )X

1

It is usually more efficient to use linear algebra to write down these equations. Our equations are
the following:

he(?)| = |1 2| x 2.4)

Now, let’s do everything again in the case of multiple variables. Let’s first imagine one simple
problem that we are trying to resolve: find the age of a tree based on several characteristics (trunk
diameter, height, etc.) that are called features. Let’s say that we have n features and m training
examples. They are denoted x;. As we previously wrote, one training example is then denoted x§
which is the i example of the j" feature (let’s say for instance the trunk diameter is the feature
and the example is 25 cm). Each tree is represented by a set of features and represent for us one
training example. As we have n features we can now write the hypothesis function for a given
example as follow:

ho(x') = 60+ 01x) + ...+ 0,x (2.5)
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If we write, x6 =1 for all i, then we can write:

6o
i P - n+1 01 n+1
X = [xf) xpo. x;] eR"™ and ® = eR (2.6)
_en_
And if we write
x! x(l) x} xé x,lz y!
2 2 2 2 2 2
X X5 Xy X5 ... X
X = — |70 "t "| andY = y
Rl I B i x| "
Then we have
ho(X) =XO© 2.7)

All values in ® have to be found such that we minimize the difference between X® and Y. From
there, we have two possibilities to solve the problem: using the normal equation, or using the
gradient descent as we previously explained.

Several gradient descent methods are detailed in Section 2.3.3.2 (and in Ruder (2016)) but the
idea remains exactly the same as for one variable: we update weights by iteratively adjusting them
in the direction opposite to the gradient of the cost function, aiming to minimize the loss.

0j:=0;—a——3 (ho(x)—)') (2.8)

with x' now being an ensemble of n values, for all corresponding # features.

Concerning the normal equation, our cost function is the squared difference between our output
X O that we will note ¥ and what we want Y. If we take € as the error such that € =Y — Y (a vector),
we can write the sum of the squared E = £’ ¢. By replacing with X®, and by linear algebra, we
have:

E=@Y"-(x0)")(ry-Xx0)
— E=YTy -2(x0)"Y - (X0)" (Xx0)
— E=YTy -20"X"Y - (X0)" (X0)

Note that both (X®) and Y are vectors with same dimension so when we multiply one by another,
it doesn’t matter what the order is (i.e., (X®)”"Y = Y7 (X®)). Then, we derive by each component
of the vector, and combine the derivatives into a new vector again, which corresponds to:

JE

— =0-2XTy+2xTxX®@ =0
20 +

— x'xe=x"y
And hence, we obtain the normal equation:

o= x"x)"'xTy (2.9)
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The Normal Equation is an analytical solution to the linear regression problem with a least-squares
cost function and is, in some cases, more effective than applying gradient descent. We can use it
to directly compute the parameters of a model that minimizes the sum of the squared difference
between the actual and predicted terms. This method is quite useful when the dataset is small but
may not be able to give us the best parameter of the model for large dataset. The inverse operation
involved in solving for the parameters has a runtime complexity of O(n?), making it slow for large
values of n. Using the normal equation can be advantageous for datasets with 10,000 features or
less, as it eliminates the need to select a learning rate, reducing the number of hyperparameters to
tune. Table 2.3 wraps up all these information.

Gradient Descent \& Normal Equation
Need to chose a learning rate o No need to chose a learning rate
Needs many iterations Don’t need to iterate
Works well even when 7 is large Difficult if n is very large (ok for n=100 or
1000 but difficult starting 10 000)
Complexity O(kn?) Complexity O(n?)
Converges iteratively, potentially slower Converges
(but suitable for large datasets) immedi-
ately (but
computa-
tionally
expensive
for large
datasets
due to
matrix
inversion)

Table 2.3 — Brief comparison between the gradient descent and normal equation methods

Logistic Regression

With what we just presented, we have the foundations to understand the logistic regression. As a
reminder, while the name contains the word "regression”, the logistic regression is a classification
algorithm which means that the output will belong to a class. The simplest problem is the binary
classification, with y € 0, 1. The notion that we miss is the activation function.

The role of the activation function is described in section 2.3.3.5 and its main role is to intro-
duce non-linearity in a network. Here, it is also used to change the output of our continuous linear
regression in a binary output (either category A or category B - say 0 and 1 respectively). We want
0 < hg(x) <1 and we want to fix a threshold classifier output at 0.5 and say: if hg(x) > 0.5 then
y=1and if hg(x) < 0.5 then y = 0. The "classical" function used in this case is the sigmoid or
logistic function (see Figure 2.9). It is defined as follows:

1
a(z) = ——— 2.10
(2) 14 exp(—2) (10)
From this, we then change the hypothesis function into:
1
ho(X)=¢(X®) = ———— 2.11
o(X) = 8(X0) = v @11)

Now, our prediction is not simply a binary value, but rather a probability indicating the likeli-
hood of belonging to either category A or category B. Taking our example with trees, let’s consider
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(1)

o)
g

Figure 2.9 — Sigmoid function.

that our input consists of certain characteristics, and our output is either being a deciduous tree (0)
or a coniferous tree (1). In this case, our output represents the probability of an observation (a set
of features) belonging to one of the two categories.

To convert these probabilities into actual class predictions, we can introduce a threshold func-
tion. This function helps determine whether the output should be classified as one of the two
classes, rather than a probability value. While we won’t delve further into this concept here, it’s
worth noting that besides the logistic function used in the logistic regression model, various acti-
vation functions can be employed, as we will explore in Section 2.3.3.5.

To provide an overview of logistic regression, refer to Figure 2.10 for the schematic diagram
illustrating the overall process.

_@_ Predicted class label

Net input Sigmoid Threshold
function activation | function
function |

Conditional probability that a
sample belongs to class | given its
input vector x

Figure 2.10 — Schematic diagram of the logistic regression classification, adapted from Raschka
and Mirjalili (2017).

With the appropriate parameters ®, we can determine the corresponding category for a given
set of features. How do we train our model to learn these parameters? There are multiple methods
to train a Logistic Regression model. Essentially, we aim to fit the sigmoid function to our data,
although sometimes another activation function may be more suitable. To learn the parameters,
we can employ iterative optimization algorithms like gradient descent to minimize a cost function,
as we have previously explained. For logistic regression, our goal is to minimize the cross-entropy
loss (see Section 2.3.3.1). Alternatively, probabilistic methods such as Maximum Likelihood can
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be utilized*. The training process is the central focus of Section 2.3.3, where we will delve into
all the relevant aspects.

However, the information presented thus far may raise a question. When we stack several
linear regressions one after the other, taking the output of one linear regression as the input for
another, nothing remarkable occurs as it simply results in a linear combination of linear regres-
sions, ultimately yielding one large linear regression. However, with the introduction of activation
functions, such as in logistic regression, non-linear combinations arise. So, what happens when
we combine multiple logistic regressions together? In such cases, we create a network where each
logistic regression can be seen as a neuron — a neural network.

2.3.2 A First Neural Network

As soon as we talk about neural networks, we also talk about Deep Learning. Let’s delve into
what a neural network is mathematically, starting with a simple two layer neural-network.

First, let’s go back to the example represented in Figure 2.10 and let’s introduce some new
notations. From the figure we see we have the following multiplication at the first node:

2(x) = 6+ O1x1 + 62x2 + B33

After the sigmoid now , we obtain:

1 1
- 14 e - 1+ e—f0—61x1—62x2—63x3

8(2)

Now, let’s add what we call a second layer that is fully connected to the first one, meaning that
all starting node (our inputs) will be connected to the nodes of the second layer called the hidden
layer. The diagram will then evolve in Figure 2.11.

bias bias

Input layer Hidden layer Output layer

Figure 2.11 — Schematic diagram of a 2-layer neural network.

Here are some information needed to fully understand the diagram Figure 2.11:

4. For those familiar with the field of Machine Learning, it is worth noting that we intentionally omitted discussing
certain probabilistic methods, as they are more complex for beginners and were not employed in this thesis

101



Chapter 2. Machine Learning, Deep Learning and Their Application in Space Weather Research

e Our input X can be written as:

X0
X1

X2

X3

e We now have 12 links between the first four inputs and the 3 nodes of the hidden layer. All
this links represent one parameter. We previously had 4 parameters (6 to 63) and we now
have 4 parameters times 3 new nodes. The new matrix ® is now oW to express the idea
that they are the parameters to go to from layer 1 to layer 2 (more generally @) from layer
jto layer j+ 1). Using the color-code found on Figure 2.11, we can write the matrix °:

6orange 0 eorange 1 6oramge 2 eorange 3

®(1) - eblue 0 Gblue 1 Gblue 2 eblue 3

ered 0 ered 1 ered 2 ered 3
e We note zl(.j ™1 the different results of the linear combinations and zU*1) the corresponding
matrix to account for the fact that we are now in the next layer, hence:

[0 — ey 2.12)

e We note agj ) the result of g(zfj )) and a/) the corresponding vector such that:
a? =g <Z(2>> (2.13)

Now with a given input X what is the whole process? From X we get z(2) = @)X, then we ob-
tain a® = g(z(?)) (our non-linear transformation). Then from a(®, we obtain z(3) = ®®4?), and
finally a® = g(z(3)) our final result. This process is called forward propagation, and corresponds
to how the neural network computes an output from an input.

We just created a simple fully connected neural network. Our next step is to train it to identify
the best parameters, i.e., the optimal values in O with [ = 1,2,...,L € N (L the number of hidden
layers) in order to approximate the known outputs.

2.3.3 Training Neural Networks

Let’s take a moment to revisit a few concepts we have already discussed. In machine learning
algorithms, learning occurs through the utilization of a cost or loss function. The primary objective
of these algorithms is to identify the optimal parameters that minimize this function. Typically, a
cost function is constructed by measuring the difference between the expected output y (remem-
ber, we are in a supervised learning scenario) and the predicted output (often denoted as y), which
represents the error. Beginning from an initial random point in the parameter space, the algorithm
navigates its way towards finding a local minimum.

5. Note that these new ® and X matrices are the transposed version of the previous ® and X such that the linear
combination is now X
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As we have seen in the case of neural networks, a given input can yield one or multiple out-
puts. The loss function is responsible for quantifying the disparity between these outputs and the
expected values (i.e., the ground truth). Through the utilization of optimization methods, such as
gradient descent, and by performing a process known asbackpropagation, the network’s parame-
ters are adjusted to minimize this error. Through iterative steps, our aim is to observe a reduction
in the computed loss function.

2.3.3.1 Loss Function

Determining the most suitable loss function for machine learning algorithms is a task that de-
pends on various factors, such as the specific machine learning algorithm employed, the ease of
computing derivatives, and the potential presence of outliers in the dataset. Loss functions can
be broadly categorized into two main types, namely Regression losses and Classification losses,
which are based on the type of learning task at hand. The loss function represents the gap between
what you desire and what you actually achieve, acting as a measure of distance. Ideally, it should
satisfy the triangular inequality, and at the minimum, it should always be positive.

Let’s begin by introducing a widely used classification loss known as the cross-entropy loss.
This loss function is particularly common in classification problems, such as logistic regression.
The cross-entropy function, denoted as C, can be expressed as follows:

m

1 . . . .
C9) = —— Y (' = Diog(1 —3') —y'log(5") (2.14)
i=1

with m the amount of training example depending on the parameters hidden in §'. As evident from
the formula, the loss function diverges to infinity when the error is 1 and approaches zero when
the error tends to 0. A noteworthy characteristic of the cross entropy loss is its significant penalty
on predictions that are both confident and incorrect. Similarly, another noteworthy classification
loss is the hinge loss or multi-class SVM loss. While we won’t delve into its details here, we en-
courage the reader to explore this loss function independently. It provides an alternative approach
to classification and can offer valuable insights into the realm of machine learning.

In this thesis, our focus is primarily on regression problems. Therefore, the losses that we will
present in the following table 2.4 hold significant importance for our analysis and study.

Regression Losses (deterministic) Formula
Mean-Square Error (MSE) ,%Z?:l (vi —9:)?

Root Mean-Square Error (RMSE) VMSE

Normalized Mean-Square Error (NMSE) lyn, (m) ’
Mean Absolute Error (MAE) iyn lyi—3il

Table 2.4 — Example of loss functions for regression in the case of deterministic forecasts

MSE, or Mean Square Error, measures the average squared difference between predicted and
actual values. MSE emphasizes larger errors due to its squaring operation, and hence "punishes"
more large errors during the training. It is computationally efficient and disregards error direction.

RMSE, the square root of MSE, provides an interpretable measure of the average magnitude
of the errors. It is commonly used when the scale of the error needs to be presented in the original
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units of the target variable.

NMSE normalizes the MSE by dividing it by the squared range of the target variable. This
allows for a standardized comparison of the error across different datasets with varying scales.
NMSE is particularly useful when comparing performance between different regression models
or datasets with different ranges of the target variable.

MAE, or Mean Absolute Error, calculates the average absolute difference between predictions
and actual values, making it more robust to outliers. It does not involve squaring and requires
more complex gradient computations. The choice between MSE and MAE depends on the spe-
cific problem and desired model characteristics.

Now that we have a grasp of how to measure the error between the ground truth and the
prediction, our goal is to enable our algorithm to utilize this loss function to update its parameters.
This is accomplished through the application of optimization methods, such as gradient descent,
along with the implementation of backpropagation. To gain insight into their workings, let’s revisit
the neural network example discussed in Section 2.3.2 and incorporate the cross-entropy loss that
we have just introduced.

2.3.3.2 Backpropagation

From what we have seen, what does it mean for an algorithm to learn? It means updating
the parameters or weights (denoted 8 but often denoted w in the literature) to minimize the loss
function, computing the error. The weights are optimized through a chosen method called the
optimizer such as batch or stochastic gradient descent as presented in the Section 2.3.4 (Ruder,
2016).

Before delving any further in the backpropagation explanation, let’s put some notations we are
about to use in table 2.5.

We already presented the gradient descent when presenting the linear regression. It is a well-
known method used to modify the weight in order to minimize the loss function by finding the
slope of the cost function with respect to each parameters. From there, we modify the weight by
going down each slope by a certain amount called the learning rate. The weights are updated as
such:

6. =0—-q %,VG (see linear regression)

Recall that during forward propagation, data travels through the network from the input to the
output layer. Nodes in each layer receive input from the preceding layer, consisting of a weighted
sum of connections multiplied by the previous layer’s output. This input is then passed through
an activation function to generate the output for that node. This output serves as the input for the
nodes in the subsequent layer. This iterative process continues until the data reaches the output
layer.

To update the weight, the optimizer computes the derivative (or the gradient) of the loss func-
tion with respect to the weights in the model. Intuitively, the optimizer understands if values in
the output nodes should each increase or decrease compared to what is expected. For instance
for a classification algorithm, we will want one output node value to increase and all the other to
decrease.
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Symbol Definition

L Number of layers in the network

m Number of training samples

n Number of features

Vj The value of node j in the output layer L for a single training sample

x0 Vector of n values, the i training input

C Individual cost function for a single training sample

J(®) Cost / Error / Loss function. J also depends on inputs, outputs and hyperparameters.
Gj(l) The vector of weights connecting all nodes in layer / — 1 to node j in layer
6;,? The weight that connects node k in layer / — 1 to node j in layer [

Zy) The input for node j in layer /

g The activation function used for layer /

ay) The activation output of node j in layer /

Table 2.5 — All notation used to understand the training process of an algorithm. Some notations,
such as the

The values of the output nodes are determined by the weighted sum of connections in the
output layer, multiplied by the output of the previous layer and passed through the activation func-
tion. To update the output node values as discussed earlier, we can modify the weights connected
to the output layer or alter the activation output of the previous layer. Although we cannot directly
change the activation output since it depends on weights and the previous layer’s output, we can
indirectly influence it by updating the weights in a similar manner as we did for the output layer.

This process continues backwards through the network until reaching the input layer. It’s cru-
cial to keep the values of the nodes in the input layer unchanged because they represent the actual
input data. As we move backward, we update the weights from right to left to nudge the values of
the output nodes in the direction they should be heading to minimize the loss.

Let’s consider the simpler case of a squared difference for the loss function. We apply this

difference to the outputs a&L) for all j. To avoid excessive indices, we do not specify the number

of elements in the output layer, but it corresponds to the number of expected outputs (e.g., 2 for a
classification problem of deciduous vs coniferous trees). We sum over all these elements, which
is:

2
c=Y <a§.” —yj) (2.15)
J
This can also be expressed as:
2
c=Y (¢ -) 216)
J

or even:

2
C= Z (g(L) (Zk: Gf,f)a,(f_])> —y,-) (2.17)
J
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We can easily understand the transition from Equation 2.15 to 2.17 by referring to what we dis-
cussed in Section 2.3.2 and examining table 2.5.

(L)

Now, based on Equation 2.15, we can infer that C depends on a;~. Additionally, we know

(L)

that a(‘ ) is the result of applying the activation function to the output of the weighted sum z;”,

(L) (L)

which, in turn, depends on it. Lastly, z; . To differentiate the loss function C with

respect to one specific weight O(k), Wthh connects node k in layer L — 1 to node j in the output

layer, we can apply the chain mle

acC ( oC ) <8a§L)> 825L 2.18)
L) L L :
g6l \ad" ) \al" ) \ a6y

Let’s break down each of the three terms in this equation:

depends on 6

o For the first term, we know that the loss function has the form seen in Equation 2.15 and we
(L)

want to derive it with respect to only one element in a"), let’s say a;” for clarity.

8C 8 (L) 2
—_— a . —y
i (T
(L)

If we expand the sum, we will have terms that do not depend on a; ~ except for (agL) —y1)2.
Thus, the result is:

aC - (L)
30 —2(a1 —y1> (2.19)

e For the second term, since aE.L) = g( )( 5L) ) for each node j in the output layer L, we have a

straightforward expression:

9a'P
J__ i) < (_L)>
2.0 g Z; (2.20)
J
e As we have previously seen, z =Y 6 LD o compute the derivative of sz) with

respect to a specific index 9;/()’ let’s con51der the example of 91%) (the weight connecting

node 2 in layer L — 1 to node 1 in the output layer L). In the derivative calculation:

8z1
= 0
96, 8612 (Z e >

(L)

we observe that the only term in this sum that depends on 6;," is when k = 2. The derivative
for the other terms will be zero. Therefore, we obtain:

o7 o wy _ wn
12 12
Taking altogether Equations 2.19,2.20,2.21, and for a given weight G;If) we obtain the following:
aC _
i =2(al =) g () e 2.22)

L
99},
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Please note that, up until now, we have only examined the derivative of the loss function for
the final parameters just before the output. How can we generalize this process, and where does
the concept of "back" propagation originate? Let’s start by considering the derivative of the loss
function with respect to a single weight that connects layer L — 2 and L — 1, for instance 6,2(-~ 1.
If we visualize it, this parameter corresponds to the connection between node 2 in layer L — 1 and
node 4 in layer L — 1. The calculation is as follows:

ac [ ac \[ad VY (ot 223
26\ 24tV ) \ oz ) \ otV @29

e Here, the second and third terms on the right-hand side will be computed using the same
approach as before and we will obtain:

2C oC H(L—1)( (L=1)y (L-=2)
= g (z )a (2.24)
20y " <8aﬁ“)> P

o The first term requires our attention. The loss function C is what we saw in the three Equa-
tions 2.15, 2.16 and 2.17. Equation 2.17 clearly shows how the loss function is a composi-
tion of functions. When we looked at the derivative with respect to a parameter linking to
the output layer we just had to look at the corresponding output node. Now, it is different.
When we look at one parameter linking layers L—2and L—1, we look at the output of a
node in the layer L — 1 (namely here a4 ) and this output will then go (by multiplication

with all parameters linking L — 1 and L) in all the final outputs of layer L. Hence, for all

j, all a( ) , and hence all z( ) depends on our agL Y This will add a sum over all j’s in our

computatlon So, we use agam the chain rule and the derivative of the loss with respect to
the activation output for node 4 in layer L — 1 is:

aoc aC 3a5~L) 9ZS~L) 5 a5
8a§L71) _; aaﬁ.L) asz) aaE‘Lfl) 222

So finally we have:

L 1) Z

d 942 J

aa(_L) (92(»L)
j J (L—=1) ¢ (L=1)y (L-2)
g (zy a (2.26)

What does the very first term in the sum on the right side of the Equation 2.26 mean? To
compute the gradient of the cost function with respect to any weight, such as 9‘%—1) in this case,
we then need the gradient of the cost function with respect to all of the activation outputs between
the cost computation af the end and the weight of interest. By starting at the end and going back
layer by layer, we recursively have all these gradients. This process is known as backpropagation.
We start by computing the initial gradients of the cost function for all the weights in the last layer.
Then, we move one layer back and utilize these gradients to compute the new gradients, and so
on. This backpropagation journey allows us to determine the gradient of the cost function with
respect to all the weights in the network.

Before summarizing the information, it is important to address a well-known issue that can
arise during algorithm training: the vanishing gradient. As demonstrated earlier, when computing
gradients during the backpropagation process, the derivatives of the cost function with respect to
the parameters in each layer are recursively obtained using the chain rule. In layers preceding
the current one, the gradient is multiplied by the derivative of the activation function (represented
by the term g’ in Equation 2.26). Activation functions like the sigmoid or hyperbolic tangent
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function have derivatives that are less than 1 in magnitude (e.g., the sigmoid derivative is given
by g'(x) = g(x)(1 — g(x)) and has a maximum around 0.25). This means that small derivatives
are repeatedly multiplied together during backpropagation, resulting in exponentially diminishing
gradient values as they propagate backward. Consequently, the vanishing gradient problem occurs
when the gradient becomes extremely small, impeding the weight values from changing effec-
tively. In severe cases, this can halt the training of the neural network altogether (Basodi et al.,
2020). A major factor contributing to the vanishing gradient problem is then an excessively large
number of layers in a network. To address this issue, various techniques, including careful weight
initialization, activation function choices, and architectural modifications, have been developed.

Now, let’s summarize the information and outline the process of algorithm training.
1. Randomly initialize weights 9](,? for all j,k and /.

2. Implement the forward propagation to get hg(x') for all i from O to m, where x\ is here a
vector of features corresponding to one training sample over m available. So we compute
all outputs for all inputs. ke (x) € RX if we have K outputs, or classes for instance.

3. Compute the cost function J (®). In the example of logistic regression we would get:

1

= B 3o (holo)) + (1) es (o))

m

where the & indices here refers to output number k among K outputs.
4. Implement the backpropagation to compute all partial derivatives:
e Perform the forward propagation for one sample, hence obtaining a() for all /.

e Perform the backpropagation to obtain the gradient of the cost function with respect to
any weight.

o Iterate these two steps for all training samples and obtain not only the gradient of the
cost function but the average gradient of the cost function with respect to any weight
over all samples

5. Update all the weight using an optimizer (several optimizers will be presented in the Section
2.3.4) such as the gradient descent.

6. Iterate steps 2 to 5 and observe how the overall cost function (the average of all cost func-
tions) behaves

Now that we have a general understanding of how an algorithm can train a model, there are
two important aspects that we need to delve into to gain a complete understanding of the training
process: optimizers and schedulers. These two methods play crucial roles in enhancing the training
process and optimizing model performance. Finally, we will end by giving a brief overview of
activation functions and some examples.

2.3.3.3 Optimizers

The "optimizer" is a central aspect of deep learning algorithms. It constitutes the "search" tech-
nique to find the optimization values of parameters to minimize the loss function. These values
"cannot be reasonably obtained by using a deterministic optimization technique" (Okewu et al.,
2019). This highlights the need for an iterative approach that randomly selects data segments and
assigns initial values to optimization parameters. Through this process, error functions are con-
tinuously calculated until an acceptable level of error is achieved, as deterministic optimization
techniques alone cannot feasibly obtain these values. Previously, we discussed the gradient de-
scent algorithm as the typical stochastic optimization approach for training deep neural networks.
It treats the training process as a non-convex optimization problem. Now, we will delve into
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several (but not all) extensions of gradient descent, including Stochastic Gradient Descent, Mo-
mentum, Adagrad, RMSProp, or ADAM. These variations have been developed to further improve
accuracy, convergence rate, and training time (Okewu et al., 2019). To date, there is no theory that
adequately explains how to choose among all the existing optimizers (Choi et al., 2019). Instead,
the community relies on empirical studies (Wilson et al., 2017) and benchmarking (Schneider
etal., 2019).

e The traditional gradient descent method we have previously discussed is not ideal when
dealing with large datasets, as it requires computing the gradient for every individual sam-
ple. SGD addresses this issue by computing and updating the gradient based on a single
randomly selected training example in each iteration. It randomly selects a training exam-
ple, calculates the gradients of the loss function with respect to the weights, and updates the
weights using the gradient descent rule. As only a single data point is used instead of the
entire dataset, the loss curve will appear more erratic, and SGD may require more iterations
to converge to a minimum. Howeyver, it still offers lower overall computational cost.

e Momentum: The momentum optimization algorithm builds upon SGD by introducing a
momentum term. It accumulates a weighted average of the past gradients and uses it to
update the parameters. This helps to accelerate convergence, especially in scenarios with
high curvature or noisy gradients.

o AdaGrad (Adaptive Gradient Descent, Duchi et al. (2011)): Adagrad is a specific gradient
descent method as it adapts the learning rate for each parameter individually. It maintains a
separate learning rate for each parameter based on the historical gradient information. The
formula is as follows:

aoJ
0ir =061 — Uit =g 1
it —
o
O 1

With
e The learning rate for the parameter 6; at iteration ¢ is ¢,
e ¢ a small value added for numerical stability to prevent division by zero
e ¢ a small value added for numerical stability to prevent division by zero
e G, is the accumulated sum of squared gradients for parameter 6; up to iteration ¢.
e (1 is the initial learning rate (a hyperparameter set by the user).

e RMSProp (Tieleman and Hinton, 2012): RMSProp modifies Adagrad by introducing an ad-
ditional parameter to control the accumulation of historical gradients. By using an exponen-
tially decaying average of squared gradients, RMSProp mitigates the diminishing learning
rate issue and improves convergence, it reduces the monotonically decreasing learning rate
in AdaGrad. RMSprop penalizes the parameter causing excessive oscillation in the cost
function. For example, if a fish classification model heavily relies on "color" and makes
many errors, RMSprop discourages over-reliance on "color" and encourages consideration
of other features. It converges faster and requires less tuning than traditional gradient de-
scent algorithms (see Gupta (2023) article).

o ADAM (Adaptative Moment estimation, Kingma and Ba (2014)): It combines the benefits
of both momentum-based methods and adaptive learning rate methods. ADAM maintains
an exponentially decaying average of past gradients and their squared values, which are
used to adaptively update the learning rates for each parameter. In other words, it uses first
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moment (mean, m) and second moment (v) of the gradients to update the parameters:

aJ

my = Bimy_1 + (1 _ﬁl)ﬁ
1,

vi = PBavi-1 + (1= ) (3891)2

with then a bias correction that we don’t present here that gives i, ;. B is a hyperparameter
that controls the decay rate of the first moment estimate (typically 0.9) and 3, a hyperpa-
rameter that controls the decay rate of the second moment estimate (typically 0.999). Then
the update is as follows:

&
o —=
V0i+e
Where: 0 represents the parameters to be optimized, « is the learning rate,rt; is the bias-

corrected first moment estimate, v, is the bias-corrected second moment estimate, and € is a
small constant for numerical stability.

0i; =611 —

Although the Adam optimizer combines the strengths of various algorithms and is highly regarded,
it may not always be the optimal choice for every application. Algorithms like stochastic gradient
descent prioritize individual data points and can provide better generalization, albeit with slower
computation speed. The selection of an optimization algorithm should consider specific require-
ments and the characteristics of the data being analyzed. While optimizers adapt the learning rate
to each parameter, the learning rate still remains an input to the optimizer. This is where sched-
ulers come into play, dynamically updating the learning rate during training. Optimizers handle
the actual parameter updates using algorithms like Adam, while schedulers focus on optimizing
the learning process by adapting the learning rate. Together, these components work to improve
training and model performance.

2.3.3.4 Schedulers

Schedulers are an ensemble of functions that dynamically update the learning rate during
the training (as a function of the epochs or steps). There are several commonly used learn-
ing rate schedulers in deep learning. Some of the main ones include StepLR, ReduceLROn-
Plateau, CosineAnnealingLR, OneCycleLR, ExponentialLR. In the following description, the
variable epoch corresponds to the current epoch at which we update the learning rate. All sched-
ulers curve (except for ReduceLROnPlateau) can be seen in Figure 2.12.

e StepLR: The learning rate is multiplied by a factor y < 1 every K epochs.

epoch J

a:aoxyL K

e ReduceLROnPlateau: The learning rate is reduced when a monitored metric has stopped
improving for a certain number of epochs that we call the patience. For instance we can
take the validation loss as this metric, and the patience to be 3, this would mean that if
for three consecutive epochs the validation loss does not improve, the learning rate is hten
multiplied by a factor (< 1).

if metric < threshold: o := a X factor

e CosineAnnealingLR: The learning rate follows a cosine annealing schedule that gradually
decreases from the maximum value to the minimum value over 7,,,, epochs (see Figure

2.12)
1 epoch
O = Oin + (Oax — Omin) X = | 1+ cos X T
2 Tmax
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e OneCycleLR (Smith and Topin, 2019): The learning rate follows a cyclical schedule where
the user has to specify several parameters such asmax_1r,div_factor and final_div_factor,
among others (see PyTorch documentation on this function ®). The learning rate that starts

at % and enters a warm-up phase where it increases to reach a maximum value

(max_1r), and then decays for the remaining epochs to finally reach

max_lr
final_div_factor"

e ExponentialLR: The learning rate decreases exponentially by a factor of y every K epochs
(see Figure 2.12).
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Figure 2.12 — Lineplots of learning rate evolution as a function of the epoch, from Monigatti
(2022). Of course, the shape of the curve depends on the parameters specified by the user.

Several reasons justify the use of schedulers. The main reason usually invoked is the speed
of convergence. A learning rate scheduler can help accelerate the training process by converging
faster to a local minima. A high learning rate means quick movement in the loss space. It is clas-
sic to start with high learning rates and then reduce their values to slow down before reaching the
minima. Indeed, one of the risk is to "miss" the minima and start increasing again if the steps we
are taken in our space are too big (when we are close to a minimum, which can be visualized as a
hole, taking a too large step can cause us to end up on the other side, potentially higher than our
initial position).

6. https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.0OneCycleLR.html
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In complex optimization landscapes, a fixed learning rate can lead to oscillations or getting
stuck in suboptimal solutions and it can then be essential to use a scheduler to help the model
navigate and avoid local minima to look for a global minima.

Overall, learning rate schedulers can lead to faster convergence, improve generalization, and
increase robustness. They contribute to the optimization process by providing better control over
learning dynamics in a loss landscape that can be very complex. We have explored some popular
schedulers, such as StepLR, ReduceLROnPlateau, CosineAnnealingl.R, OneCycleLR, and Expo-
nentialLR, each offering unique strategies for adapting the learning rate. Now, let’s shift our focus
to another fundamental component of deep learning models: activation functions.

2.3.3.5 Activation Functions

To conclude our exploration of various aspects of training neural networks, let’s delve into
the topic of activation functions. We have previously mentioned the sigmoid function and briefly
discussed its role in introducing non-linearity to models, enabling them to capture complex repre-
sentations.

By employing a diverse range of activation functions, we can unleash the full capacity of
the network to model non-linear and intricate phenomena. Each activation function possesses
unique properties and characteristics that profoundly influence the flow of information within the
network. Some functions, such as the sigmoid or hyperbolic tangent, compress the input into a
specific range, while others, like the rectified linear unit (ReLU), allow positive values to pass
through unchanged.

Furthermore, different activation functions exhibit distinct computational properties that can
impact training dynamics, convergence speed, and the network’s ability to handle gradients that
vanish or explode. Therefore, the selection of an appropriate activation function relies on the spe-
cific task, dataset, and network architecture.

Here is a non-exhaustive list of several activation functions and their properties. For further infor-
mation, the reader can find several surveys on the topic such as Dubey et al. (2022).

e The sigmoid function is often preferred for binary classification problems as it can simulate
Heaviside functions. However, it may struggle to effectively separate closely spaced data
points or handle overlapping classes in a narrow range. Normalizing the input is crucial for
optimal performance.

¢ Linear activation functions maintain the linearity of the input and are generally not recom-
mended to be stacked consecutively. Multiple linear layers can be mathematically factored
into a single layer, resulting in redundant computations.

e The hyperbolic tangent function, similar to the sigmoid function, provides a symmetric
range of output values from -1 to 1. However, it is less commonly used compared to other
activation functions.

e ReLU (Rectified Linear Unit) is widely adopted due to its simplicity and efficiency (see
Figure 2.13). It divides the parameter space into segments, activating when inputs are pos-
itive and putting to zero when inputs are negative. Dead neurons can be a concern during
training if they consistently produce zero output, rendering a portion of the network unused.

e LeakyReLU addresses the issue of dead neurons in ReLU by introducing a small slope
for negative input values. This non-zero slope ensures that neurons with negative inputs
contribute some information to the overall computation.
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e SiLU (Sigmoid Linear Unit), also known as Swish, combines properties of sigmoid and
linear activation functions. It provides a slightly smoothed slope, preventing gradient insta-
bility at zero and offering improved training dynamics compared to the traditional sigmoid
function.

e Softmax activation function is commonly employed in multiclass classification tasks. It
transforms the outputs into probabilities, amplifying larger values and suppressing smaller
ones, ensuring that the output values sum up to 1 and represent class probabilities.

Each activation function has its own advantages and disadvantages, and the choice should align
with the specific problem that the user is facing. They can effectively contribute to the performance
of the model.

Activation function Equation Example 1D Graph
Unit step 0, z<0, Perceptron —
(Heaviside) #(z) =405 z=0, variant —_— 1
1, z>0,
Sign (Signum) -1, g<l Perceptron I
=40, z=0, variant -
1; z> 0, —
Linear Adaline, linear
$(2) =z regression
Piece-wise linear 1; z2 % Support vector
$@)=1{z+%, -3<z<gz, machine
0, < -1,
Logistic (sigmoid) ; Logistic
P2) = T— regression,
e Multi-layer NN
Hyperbolic tangent et —et Multi-layer I
Yp g = Y :
et + e—Z Neural
Networks :
Rectifier, ReLU Multi-layer t
(Rectified Linear ¢(z) = max(0, z) Neural —L»
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(http://sebastianraschka.com)

Figure 2.13 — Non-exhaustive list of activation functions for artificial neural networks. Credits:
Sebastian Raschka, 2016 ht tps: //sebast ianras chka .com.

2.3.4 Evaluation & Diagnostic of Neural Networks

We have discussed the training process of an algorithm, from the use of loss functions to the
useful optimizers, schedulers or activation functions, but how can we assess the quality of a given
training? How can we determine if it is performing well? As we have observed the existence of
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potential issues such as the vanishing gradient, it becomes crucial to monitor and diagnose a neural
network in order to enhance its training. Therefore, the question arises: how can we effectively
evaluate the performance of a neural network and identify areas for improvement?

2.3.4.1 Metrics

To determine the success of a training process, it is crucial to have a measurable outcome to
evaluate. This outcome, referred to as a metric, serves as an objective criterion that enables users
or data scientists to assess the performance and effectiveness of their algorithm. While certain loss
functions can also be used as metrics since they quantify errors, it’s important to note that loss
functions and metrics serve distinct purposes in the field of machine learning. The loss function
is employed by the algorithm during training to optimize its performance, whereas the metric is
utilized solely for evaluating and grading the algorithm’s performance. Metrics facilitate model
comparisons, progress tracking, identification of areas for improvement, and informed decision-
making regarding model selection or optimization strategies. The table 2.6 showcases various
metrics, including accuracy, confusion matrix, F1 score, and the already-familiar MAE, MSE, and
RMSE. Precision and Recall are also listed and presented below.

Metric Formula Description
. . Number of Correct Predictions . . .
Classification Total Number of Predictions Measures. the proportlon of correctly classified instances
Accuracy in a classification task.
ol True Positives * ol s C
Precision True Positives + False Posives | Precision measures the accuracy of positive predictions.

It is the ratio of correctly predicted positive observations
to the total predicted positives.

True Positives
Recall True Positives + False Negatives

Recall, also known as sensitivity, measures the ability of
a classifier to find all positive instances. It is the ratio
of correctly predicted positive observations to all actual

positives.
Confusion N/A A table that summarizes the performance of a binary clas-
Matrix sification model by displaying the counts of true positive,
true negative, false positive, and false negative predic-
tions.

F1 Score 2 - Precision - Recall

recisiontRecall Combines precision and recall into a single metric, pro-

viding a balanced measure of a classifier’s performance.

Mean Ab- %Zﬁi 1 i = 9l Measures the average absolute difference between pre-
solute  Error dicted and true values, commonly used in regression
(MAE) tasks.

Mean %Zﬁil(yi —9)? Calculates the average squared difference between pre-
Squared dicted and true values, commonly used in regression
Error (MSE) tasks.

Root  Mean \/ % vazl (yi—9i)? Provides the square root of the mean squared difference
Squared Error between predicted and true values, offering a more inter-
(RMSE) pretable measure than MSE.

Table 2.6 — Example of metrics

We can provide more detailed explanations for the confusion matrix and the F1 score. The confu-
sion matrix is a table that summarizes the performance of a binary classification problem, showing
the counts of true positives, true negatives, false positives, and false negatives. An example of
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a confusion matrix is shown in Figure 2.14. From the values in the confusion matrix, we can
calculate the following metrics:

e The sensivity or true positive rate

TruePositive

TruePositiveRate = - —
FalseNegative + TruePositive

e The specificity or true negative rate

o TrueNegative
TruePositiveRate = - -
TrueNegative + FalsePositive
e The precision
o TruePositive
Precision =

TruePositive + FalsePositive

e The recall
TruePositive

Recall = — -
TruePositive + FalseNegative

When a classifier has high precision but lower recall, it means that it is very accurate in clas-
sifying instances, but it may miss a large number of instances that are difficult to classify. The F1
score addresses this by computing the harmonic mean between precision and recall, resulting in a
value between 0 and 1. A higher F1 score indicates better performance of the model. It provides an
evaluation of both the precision (how many instances are classified correctly) and the robustness
(how many instances are not missed). For more information about metric selection, the reader can
refer to Molnar (2023).

Flog— 1

precision + recall
N = 1000 Predicted: | Predicted:

True False

Expected: 350 (TP) 180 (FN)
True
Expected: 58 (FP) 412 (TN)
False

Figure 2.14 — Example of confusion matrix for 1000 training samples in a binary classification.
Note: TP = True Positives; TN = True Negatives; FN = False Negatives; FP = False Poisitives.

Now, we have a way to assess the performance of a model, but an important question arises.
After training our model extensively on a large dataset and achieving improved metrics, we may
encounter a situation where the model fails to perform well on a new dataset with similar infor-
mation. What could be the reason behind this discrepancy? The issue arises when the model, due
to intensive training, is biased towards our dataset and gives a false impression of understanding
the underlying patterns and relationships between inputs and outputs. This phenomenon is known
as overfitting. To avoid this problem, we need to implement techniques that promote generaliza-
tion and prevent the model from over-relying on the training data. The first essential technique to
address this issue is to split our dataset into three distinct subsets: the training set, the validation
set, and the test set. Up until now, we have been referring to the entire dataset as the training set.
However, in order to properly evaluate and optimize our model, we need to allocate a portion of
the data specifically for validation and testing purposes.
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2.3.4.2 Training, Validation and Test Sets

Splitting our data into training, validation, and test sets is actually considered part (and actually
one of the last steps) of the data preprocessing, developed in Section 2.3.6. It allows the user to
observe phenomena such as the overfitting (section 2.3.4.3) and improve the training. So what are
the purposes behind each of these sets:

o The training set comprises the data that will be used to train the algorithm. It forms the
basis for the model to learn and adjust its parameters and undergoes the whole process that
we have seen already.

e The validation set is used to evaluate the performances and make the necessary adjustments.
It consists of the same loss computation, but the weights are not updated according to it
and it never goes through the backpropagation process. It allows the user to assess the
accuracy, speed, and effectiveness of the model on a dataset never seen by the algorithm.
This enables the user to take informed decisions and to fine-tune the algorithm (architecture,
hyperparameters, optimizers, etc.). The performance of the algorithm on the validation set,
which is not used in the cost function minimization, serves as a gauge of quality, indicating
whether the model has learned generic features that are not specific to the training set.

o The fest set is a dataset that remains untouched until the final stages (Bouriat et al., 2022). It
serves as a benchmark to assess the model’s accuracy on new, unseen data and then gives an
unbiased final model performance metric in terms of accuracy, precision, etc. The result of
applying our model to the test set is the answer to the question "how well does the algorithm
model/predict?"

There is no universally optimal split size for training, validation, and test sets, but a common
practice is to allocate 60% for training, 20% for validation, and 20% for testing. The chosen
allocation aims to strike a balance by utilizing a significant portion of data for training the model
while still ensuring sufficient data in the validation and test sets for effective model evaluation.
This brings the idea of dataset equilibrium. During dataset analysis and preprocessing (Section
2.3.6), it is crucial to maintain well-balanced datasets, preserving all relevant information such as
outliers, distributions, means, term frequencies, classes, or backgrounds after the split (Bouriat
et al., 2022).

A technique that can be introduced here is the cross-validation technique. Cross-validation
partitions the available dataset into multiple subsets, typically referred to as "folds." The model is
then trained on a subset of the data and evaluated on the remaining data. This process is repeated
multiple times, with each fold serving as the validation set exactly once. The results from each
iteration are then averaged to provide a more robust estimate of the model’s performance, helping
to mitigate the potential bias introduced by a single train-test split. Cross-validation can assist in
hyperparameter tuning and model selection.

2.3.4.3 Overfitting & Loss Curves

As we said, overfitting appears when the algorithm is not learning generic features and not un-
derstanding how inputs and outputs are linked. Instead, it starts memorizing the training dataset.
In Figure 2.15, we can see two examples of overfitting, the first one in a support vector machine
classification and the second one in a regression model. Figure 2.15 also showcases underfitting
altough it is rare to end up in this case. Overfitting is one of the main issues that we are trying to
avoid when training machine learning algorithms and is often due to either a too complex model
that memorizes subtle patterns only happening in the training set, or when the training set is too
small or contains too many irrelevant data points.

As we said, splitting the data allows the user to actually see the overfitting. How so? By
plotting the curves of the changing loss functions during the training. If you are a bit familiar with
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Figure 2.15 — Example of overfitting and underfitting fits on simple cases. Credits: MathWorks
courses ht tps: //www. mathworks. com/discovery/overfitting. html, last
accessed in June 2023.

machine learning you might have seen these lineplots, essential to diagnose one’s algorithm per-
formances. Usually, we plot both the training loss (i.e., the loss function computed on the training
set) and the validation loss (i.e., the loss function computed on the validation set) on the y-axis
and the epochs or steps on the x-axis. To understand the difference between steps and epochs, we
need to introduce the notion of batch.

A batch is a subset of the training set that is processed together during each iteration of the
training algorithm. This means that instead of updating the model’s weights after each training
sample, we update the weigths once b training samples went through the forward propagation. b
is called the batch size. In this context, one step corresponds to one update of the weights after b
training samples passed in the network. After 100 steps, we updated the weights 100 times. One
epoch represents a complete iteration over the entire training dataset. hence for a training set of
size N, we have N /b steps to obtain one epoch. The total amount of epochs, as well as the batch
size, are examples of hyperparameters that the user has to choose before training. The batch size
allows for a trade-off between computational efficiency and convergence speed. A larger batch
size (e.g., using the entire training set as a single batch) provides a more accurate estimate of the
gradients but requires more memory and computational resources. On the other hand, a smaller
batch size (e.g., a mini-batch) introduces more noise in the gradient estimation but can converge
faster and allows for parallel processing. As an example, in the loop presented at the end of Section
2.3.3.2 the batch size would be m (but as we did not consider batch yet, one epoch corresponds to
one step and the batch size is the size of the dataset).

Now equipped with the knowledge we have gained, we are prepared to comprehend and, more
importantly, interpret the following plots Figure 2.16 illustrating training and validation losses.
From there, we will introduce several methods and tools such as the early stopping criterion, the
schedulers, dropout, or the L1 and L2 regularizations.

Let’s briefly interpret the curves shown in Figure 2.16:

e Panel (a): The curves in panel (a) can be considered as underfitting. The curves are still
descending, indicating that the training was stopped prematurely. We are facing underfit-
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Validation and Train Loss functions
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Figure 2.16 — Example of validation and training loss curves from Brownlee (2019).

118




2.3. From Supervised Machine Learning to Deep Learning

ting, not due to model limitations, but rather because the model requires further training.
Typically, underfitting is identified solely by observing the training loss, which may exhibit
a noisy or flat line with relatively high values. This suggests that the model failed to learn
from the training dataset.

e Panel (b): Panel (b) illustrates a classic example of overfitting. Initially, both the training
and validation losses decrease, indicating that the model is successfully learning meaningful
patterns. However, at some point, the validation loss starts to rise while the training loss
continues to decrease. This implies that the model performs well on the training dataset but
struggles to generalize on the validation set. In other words, it is memorizing the training
set which is an example of overfitting. One possible solution is to stop the training at the
inflection point, using a technique called the early stopping criterion.

e Panel (c): This example in panel (c) represents a good learning curve where both the training
loss and validation loss decrease initially and then reach a plateau. This indicates that the
algorithm is no longer learning new information with each epoch.

e Panel (d): In panel (d), both curves are initially decreasing (indicating successful training)
but then level off with a gap between them. This suggests that our training set is not repre-
sentative of the validation set. In other words, there are too few examples in the training set
that reflect what occurs in the validation set. This is an issue of data balance.

e Panels (e) and (f): Both panels highlight the same issue, which is a validation set that is not
representative of the information we are seeking. In panel (e), the algorithm is learning from
the training set, but no meaningful conclusions can be drawn from the validation set. This
could be due to the amount of data used in the validation set or another data balance issue.
In panel (f), the validation loss is lower than the training loss, suggesting that perhaps some
challenging patterns still exist in the training set but not in the validation set. This makes
the validation set easier to predict. Again, this reflects the issue of the validation set’s lack
of representativeness.

This provides the reader with an understanding of how to interpret and diagnose the loss
curves. However, once we identify an issue like overfitting, what tools and techniques can be
used to address it?

We can now shift our focus to the crucial step of fine-tuning a deep learning model. This entails
wrapping up the various methods and hyperparameters already presented that require attention in
order to optimize the model’s performance. This discussion will provide an opportunity to explore
the concept of regularization and its role in enhancing the model’s generalization capabilities.

2.3.5 Fine-tuning Neural Networks

In this section, we will explore the topics that have been covered thus far and provide a com-
prehensive summary of how users can modify the loss curves to achieve desirable outcomes. Prior
to this summary, we will introduce regularization techniques, a topic that we intentionally omitted
in Section 2.3.3, but is crucial for enhancing a model’s performance and effectively combating
overfitting. Once we have presented regularization, we will then proceed to discuss what we refer
to as "tunable parameters." This part will provide an insightful list of the various factors that have
already been presented, which users can leverage to fine-tune their models. The summary will
encompass essential hyperparameters and useful functions, ranging from the learning rate to the
activation functions.

2.3.5.1 Regularization techniques

The objective behind regularization is to reduce the complexity of the model by adding some
constraints. Regularization techniques are widely used in order to prevent overfitting (by prevent-
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ing the model from becoming overly complex and memorizing training data), improve generaliza-
tion by promoting simpler weights configuration (avoiding noise and focusing on trends), select
features (pushing some weights to zero to ignore redundant features) and, as we said, control the
trade-off between model complexity and data fitting.

Here, we present three regularizations techniques and how they are used:

e Dropout: In dropout regularization, each neuron outputs only a single value. During the
training loop, dropout randomly deactivates some neuron outputs by setting them to zero.
This technique is employed to mitigate overfitting by introducing noise and promoting re-
dundancy in the network. By randomly disabling neurons, dropout encourages other neu-
rons to develop multiple patterns to compensate, thus reducing the reliance on any individual
neuron. This helps prevent the network from relying too heavily on specific features and im-
proves its generalization ability. Dropout is particularly effective for larger networks with a
higher risk of overfitting, but it can also be beneficial for smaller networks. It is important
to note that dropout is applied during training and is typically turned off during inference or
testing.

e L1 Regularization: L1 regularization, also known as Lasso regularization, adds a penalty
term to the loss function proportional to the L1 norm of the weight vector. This regular-
ization technique promotes sparsity in the model by driving some weights to exactly zero.
It encourages feature selection and can be beneficial when dealing with high-dimensional
datasets, as it helps identify the most relevant features for the task at hand. In order to
perform it, we add a term to the loss function:

1 ) ) m
J(©) =5 Y (ho()~y) +2 Y |6
i=1 j=1

During the gradient descent, a term will appear:

Jd 1¢ N _ i .
0 := Gj—aa—ej% Z (ho(x') — ") — aAsign(6;)

i=1

The term added penalizes the loss function and we call A the regularization parameter.
It is another hyperparameter that the user will have to choose and it controls the trade-off
between minimizing the chosen cost function and reducing the magnitude of the weights.

e [.2 Regularization: L2 regularization, also known as Ridge regularization, adds a penalty
term to the loss function proportional to the L2 norm of the weight vector. The L2 regular-
ization works the same way as the L1 does mathematically but encourages smaller weights
without driving them to exactly zero. It helps prevent overfitting and reduces the impact
of individual weights on the overall model. L2 regularization is commonly used and can
improve the generalization performance of the model.

e Combining L1 and L2 is known as Elastic Net regularization and leverages the benefit of
both regularizations (Jin et al., 2009). The L1 component promotes sparsity and feature
selection, while the L2 component encourages small but non-zero coefficients. This can be
particularly useful when dealing with high-dimensional datasets where there may be many
irrelevant or redundant features.

By incorporating dropout and regularization techniques such as L1 and L2 regularization, ma-
chine learning models can achieve better performance, handle overfitting, and enhance their ability
to generalize well to unseen data. Even if they’re not considered to be stricto sensu regularization
techniques, we can mention two other techniques usually used to solve issues of overfitting or bad
training in general: the early stopping criterion and the data augmentation. We already explained
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the early stopping criterion, it then determine when to stop the training process based on a pre-
defined condition. Usually, it monitors a specific metric, such as validation loss, and stops the
training if the metric does not improve or starts to deteriorate.

Data augmentation is an ensemble of techniques to artificially increase the size and diversity
of the training dataset by applying various transformations. The transformations can be operations
such as rotation, flipping, or cropping for images, as well as scaling or adding noise. the data then
created are considered to be other data and the size of the whole dataset is increased. Data aug-
mentation helps improve the model’s ability to generalize by exposing it to different variations of
the training examples, thereby reducing overfitting and improving its performance on unseen data.
Data augmentation techniques is a wide field in the artificial intelligence domain still improved
everyday (Maharana et al., 2022; Shorten and Khoshgoftaar, 2019; van Dyk and Meng, 2001).

2.3.5.2 Tunable Parameters

Henceforth, the reader possesses all the foundational knowledge necessary to refine a model
to address the majority of challenges they may encounter. In the subsequent table, we encapsulate
all of this information, which represents the entirety of parameters upon which the user can exert
influence. All values that require predefined settings, such as the learning rate or the number of
layers, are referred to as hyperparameters. Indeed, the term "parameter" is generally reserved for
the weights of the model. Consequently, all elements in table 2.7 must be selected by the user and
can subsequently be adjusted to overcome specific learning challenges.

One might observe that certain elements, such as the proportions of the dataset designated for
the training, validation, and test subsets, have not been expounded upon in this section. Indeed,
these constitute decisions that fall within the user’s purview. We have, in actuality, reserved the dis-
cussion related to data preparation and all its associated facets for the subsequent section. Efforts
will be made to to outline the principles that constitute sound analysis and proficient preprocessing
of the data.

2.3.6 Deep Learning System Design
2.3.6.1 Data Analysis

The primary objective of a learning algorithm is to achieve high performance, and sometimes,
it is easier to achieve high performance by picking up on peculiarities in the data rather than
learning what the user intends (Ribeiro et al., 2016). A well-known example in the Al commu-
nity involves a neural network trained to differentiate between wolf and husky pictures. Despite
achieving high performance during training, the algorithm had a tendency to misclassify clear and
obvious images. Further investigation revealed that the model had developed a bias and learned to
classify based on the presence of snow in the background. This bias emerged due to all the training
images of wolves featuring snow, while the images of huskies did not. Analyzing, understanding,
and preparing a dataset is the cornerstone of building a successful machine learning model.

There are several risks associated with a dataset that need to be carefully checked for errors:

e Firstly, insufficient data for analysis can pose a significant challenge. In the case of an
Artificial Neural Network (ANN), a rule of thumb is to have a number of samples (Nygmpie)
that exceeds twice the number of parameters (2Nparamerers)-

e Secondly, it is crucial for the samples to exhibit sufficient correlation with the underlying
physical problem being investigated. Training on noisy data can lead to inaccurate results.

e Furthermore, excessive correlation among samples should be avoided, as it can introduce
bias and hinder the generalizability of the model.
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Notation Hyperparameter Description
a Learning rate Controls the step size during gradient descent and affects the
speed of convergence.
Nepochs Number of epochs Determines the number of times the entire dataset is passed
through the network during training.
b or Npyich Batch size Specifies the number of training examples processed in each it-
eration, or each step.
g Activation function Determines the non-linearity applied to the output of each neu-
ron.
MNiayers Number of layers Defines the depth of the neural network by specifying the num-
ber of hidden layers, i.e. the number of "columns" of neurons.
Nheurons Number of neurons | Specifies the number of neurons or units in each hidden layer.
per layer
J Loss function Measures the discrepancy between the predicted and actual val-
ues during training.
A1 and/or Ay For  regularization | Parameters for the L1 and L2 regularizations, used to prevent
techniques overfitting.
D and the | Dropout In the dropout strategy, the dropout rate D (between 0 and 1) is

chosen layer

the proportion of neurons randomly "dropped out" during train-
ing to prevent overfitting, and the user has to choose on which
layer to put the dropout

Weight initialization
Strategy

Determines how the initial weights of the network are set. We
usually initialize them randomly.

Optimizer

Selects the optimization algorithm used to update the network
weights, such as Adam, RMSProp, or SGD.

Learning rate sched-
uler

Controls the dynamic adjustment of the learning rate during
training.

Early stopping crite-
rion

Stops training if the model’s performance on a validation set fails
to improve after a certain number of epochs.

Table 2.7 — Non-exhaustive list of the main hyperparameters and factors which can be modified by

the user.
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e Data corruption is yet another potential pitfall, encompassing issues like incorrect formats
or conversion errors, which need to be addressed.

e Errors in labeling the data can also have a substantial impact on the performance of machine
learning models.

Overall, a high-quality dataset should be flexible, allowing for easy manipulation and modifica-
tion. When working on a problem, the dataset should establish the boundaries within which your
algorithm operates, while also ensuring that the data accurately represents the problem domain.
This highlights the importance of data preprocessing, which involves addressing measurement un-
certainties, mitigating noise originating from the measurement chain, ensuring appropriate data
formatting, and verifying the quality of the collected information.

A well-curated dataset provides the necessary context for your problem, facilitating seamless
analysis within a specific environment, such as Python. To assess the robustness of a dataset,
several techniques can be employed:

e Direct visualization such as histograms or lineplots.
e Construction of a correlation matrix to evaluate relationships between different samples.
e Examination of the correlation matrix between different classes.

e Utilization of Principal Component Analysis (PCA) on the dataset to discern the relevance
of specific variables (Bro and Smilde, 2014). PCA will be introduced in Bouriat et al.
(2022), presented in Chapter 3.

e Conducting statistical analyses to explore inter-sample correlations, such as spatial corre-
lation for images, temporal correlation for time series data, or radiometric correlation for
multi/hyperspectral training.

e Study of the noise present in the dataset.
o Study of the presence and frequence of missing values.

By following this non-exhaustive list, valuable insights can be gained into the dataset’s re-
liability, the relationships between variables, and the impact of noise on the data. Typically, a
pipeline is established—a methodical and automated procedure for managing and refining data
from its raw form to its ultimate state of readiness for machine learning tasks. It is crucial to bear
in mind the importance of not constructing a machine learning algorithm based on an unverified
and unstructured dataset. In this context, it is crucial to engage in discussions with domain experts
who are familiar with the field from which the data originates. This collaboration allows for valu-
able insights, as they may already possess knowledge about potential issues, ideas, or processing
techniques relevant to the analysis. As a data scientist, it is essential to grasp and comprehend
any findings that arise during the analysis, benefiting from the expertise and understanding shared
within the community. Two fundamental principles to uphold are prioritizing result visualization
and consistently scrutinizing the data prior to the models to address any potential malfunctions.
We will not develop any further the notion of data analysis because a full analysis of the ACE
dataset, which is specific to our problem, is given in Chapter 3, by Bouriat et al. (2022).

By discussing data analysis, we gained valuable insights into our dataset. The point was to
explore its characteristics through visualization, identify biases or correlations, gain a deeper un-
derstanding of the relationships between variables or observe the presence of missing values. This
knowledge serves as the foundation to perform effective data preprocessing. By understanding
the data through this kind of analysis, we can make informed decisions about how to clean, trans-
form, and prepare the dataset. The idea is to enhance its quality and relevance for a given machine
learning tasks (we will not prepare time series as we prepare images). Data analysis provides the
necessary context and understanding that helps us to perform effective preprocessing and build
accurate and robust models.
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2.3.6.2 Data Preprocessing

In the context of our discussion on data analysis, data preprocessing is directly influenced
by the user’s desired objective. The effectiveness of our model in addressing a specific problem
greatly hinges on the quality of data preprocessing, which must be tailored to suit the particular
problem at hand. Data preprocessing encompasses various techniques that depend on the dataset
itself, and although there are numerous approaches, several key domains frequently emerge:

e Data Cleaning: This category encompasses methods dedicated to cleaning the data, such
as handling outliers or resolving inconsistencies that may arise within the dataset. It is not
uncommon for data to undergo different processes prior to analysis, leading to variations
in units within a single feature (e.g., velocity data expressed in both meters per second
and kilometers per hour). Therefore, data cleaning becomes a crucial initial step following
analysis.

o Feature Selection and Extraction: Not all features in a dataset necessarily contribute
meaningfully to the problem at hand. As mentioned before, an excess of features can po-
tentially result in overfitting or hinder the model’s convergence during training. Thus, iden-
tifying and selecting the most relevant features, as well as reducing dimensionality when
appropriate (e.g., extracting features exhibiting high correlations), are essential steps. This
process often follows techniques like PCA or correlation analysis.

e Missing Values: Dealing with missing data is a challenging task that requires careful con-
sideration. While it falls under the umbrella of data cleaning, it warrants specific attention.
Thoroughly analyzing the quantity, location, and significance of missing data can be par-
ticularly challenging, especially in fields like space meteorology and time-series in general.
In some cases, missing data indicates instrument measurement saturation, and for extreme
value identification, missing data itself becomes valuable information. After analysis, se-
lecting the appropriate method for handling missing values, whether through simple impu-
tation or more advanced techniques like spline interpolation, becomes essential. For further
insights, the paper by Bouriat et al. (2022) in Chapter 3 can be referenced.

e Scaling and Normalization: Normalization is a specific type of scaling technique. It aims
to bring each feature to a comparable scale, ensuring that the model assigns equal impor-
tance to each of them during training. Maintaining proportional contributions from each
feature is crucial. Consequently, the responsibility of performing normalization or scal-
ing lies with the user, except in specific scenarios. Scaling, in a broader sense, refers to
transforming the data while preserving its shape and distribution. Among scaling and nor-
malization methods, we can mention:

e Min-Max Scaling: Rescales the dataset X to a specific range, typically between 0
and 1. The minimum value of the feature is mapped to 0, and the maximum value is
mapped to 1, with other values scaled proportionally in between. Values x € X are
changed to X474 following:

x —min(X)
max(X) —min(X)

Xscaled =

e Z-Score Normalization: It transforms the data to have zero mean and unit standard
deviation. Each data point x is subtracted by the mean of the feature X and divided by
its standard deviation as follows:

x —mean(X)
Xnormalized = W
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e Standardization: It transforms the data to have zero mean and unit variance, similar
to z-score normalization.

x —mean(x)
std(x)

Xstandardized =

However, standardization does not restrict the data to a specific range (scaling method,
not normalization).

¢ Robust Scaling: It scales the data using statistical measures that are robust to outliers.
Robust scaling utilizes measures like median and interquartile range to reduce the
influence of extreme values on the scaling process.

x —median(X)

Q3(X) —QI(X)

Xscaled =

o Time-Series Data: Time-series data requires a specific set of treatments based on the de-
sired objective, such as temporal resolution changes or temporal correlations.

e Imbalanced Data: As previously mentioned, a dataset should be representative of the real-
world scenario. In classification problems, it often happens that one class is overrepresented
compared to others, which can negatively impact the algorithm’s performance in modeling
that class. Various techniques exist to address this issue, such as undersampling (deliber-
ately removing instances from the majority class), oversampling (repeating instances from
the minority class while potentially applying transformations), and, more generally, data
augmentation methods. Readers can refer to existing reviews in the field, such as Kotsiantis
et al. (2005); Spelmen and Porkodi (2018), or explore literature on data augmentation more
broadly (Maharana et al., 2022; Shorten and Khoshgoftaar, 2019; Shorten et al., 2021).

e Splitting into Training, Validation, and Test Sets: It is crucial to split the dataset into sep-

arate subsets for training, validation, and testing, and we consider this step to be part of the
data preprocessing. As we already explained, this ensures that the model’s performance is
evaluated on unseen data. Common splitting techniques include random sampling, stratified
sampling, or time-based splitting for temporal data (James et al., 2021).
This might also be a good moment to mention cross-validation, a method that doesn’t sim-
ply split the dataset into three subsets. Firstly, a portion of the dataset is kept aside as the test
set. Instead of just dividing the data into a single training-validation pair, cross-validation
repeats this process multiple times, each time with different data partitions. One of the most
commonly used techniques is k-fold cross-validation. It involves dividing the dataset into
k equally sized parts, or "folds". The model is then trained k times, using k-1 folds as the
training set and the remaining fold as the validation set. The model’s performance is eval-
uated by averaging the results obtained from the k iterations. This method provides a more
reliable estimate of the model’s performance and its ability to generalize to new data.

e Transformation of Categorical Data: Sometimes, categories need to be explicitly modified
to match the model’s expected outputs. For example, in the case of MNIST digit recog-
nition (Modified National Institute of Standards and Technology - a collection of hand-
written digits represented as grayscale images), the model’s output should not be a single
digit from O to 9, but rather a vector of size 10. This vector consists of nine zeros and a
single 1, where the position of the 1 corresponds to the digit. This transformation is com-
monly referred to as one-hot encoding (for instance, transforming the digit 3 into the vector
[0,0,0,1,0,0,0,0,0,0]).

e Distributions: Asymmetry in the distribution of certain data can present challenges during
training. Some statistical models assume that the target values follow a normal distribution,
as is the case with linear regression. Certain loss functions used in neural networks, such as
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mean squared error (MSE) or mean absolute error (MAE), implicitly assume symmetric er-
rors and may perform better with normal distributions. However, it’s important to note that
deep learning models are flexible and can handle a wide range of data distributions without
explicit assumptions (Goodfellow et al., 2016). This highlights the importance of under-
standing the distribution we are working with and the occasional need to adapt them. Note
that, currently we are considering the possibility of conducting a research paper, exploring
the quantification of the impact of various distributions in input features on model efficiency
and training time.

In general, it is also possible to explore the generation of new data by combining existing
datasets, aggregating them, adjusting their granularity, and more. The possibilities are limitless.
Each user should leverage their data analysis skills and consult domain experts to evaluate the op-
timal preprocessing techniques. For example, let’s consider a scenario where the goal is to predict
extreme earthquakes. The dataset would likely consist of time series data, and extreme earthquake
events would be relatively rare. In this context, a data scientist could focus their preprocessing
efforts on determining the appropriate temporal resolution, addressing the imbalanced nature of
the dataset, handling missing data, and seeking guidance from seismic experts on intelligent data
fusion techniques.

After completing the data analysis and preprocessing stages, the next crucial step is selecting
an appropriate architecture for the model. It is important to consider that certain aspects of data
preprocessing are intertwined with the choice of architecture. The preprocessing techniques ap-
plied should align with and complement the selected architecture to ensure optimal performance
and meaningful results.

2.3.6.3 Architecture

How to choose an architecture?

The choice of architecture is a critical aspect of problem-solving, but there is no universal
method, and finding the right architecture can be quite challenging. A significant area of current
research focuses on automating architecture selection. This area is known as Neural Architecture
Search (NAS) and encompasses techniques such as reinforcement learning-based methods, evolu-
tionary algorithms, and parameter sharing techniques (Elsken et al., 2019; Liu et al., 2017; Pham
et al., 2018; Zoph and Le, 2016).

Currently, the search for the optimal architecture is largely empirical. When starting out in
deep learning, it is easier to focus on well-established architectures that have proven to be effective
in their respective domains. In the following sections, we will introduce some of the most well-
known architecture families, including Convolutional Neural Networks (CNNs), Autoencoders,
Gated Recurrent Units (GRUs), and Long-Short Term Memory (LSTMs). We will also delve into
the Temporal Convolutional Network (TCNs), as it is the main architecture used in this thesis.
It is important to note that the fully-connected neural network (FCNN), which we have already
discussed and used as a starting point for explanations, is also an architecture employed in this
thesis.

The architecture depends on the type of data we’re using. CNNs are specifically designed to
analyze and process image data and are great at identifying patterns in images. Recurrent Neural
Networks (RNNs) such as GRUs and LSTMs are designed to process sequential data by maintain-
ing an internal state that allows them to remember previous inputs. This makes them well-suited
for tasks such as speech recognition, language translation, and natural language processing. For
classification tasks, FCNNs can be used. In case we have missing data, Generative Adversarial
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Networks (GANSs), an architecture that pits a generator network against a discriminator network,
working in tandem to generate realistic synthetic data, are commonly used for generating new data
similar to the ones we already have.

The architecture also depends on the amount of available data. As we have seen, applying a
complex model to a small dataset can result in overfitting. It is crucial to provide sufficient data
to the algorithm so that it can comprehend the intricate relationships between inputs and outputs.
Moreover, the number of parameters in the model needs to be chosen carefully. In the case of
linear regression, if the number of parameters exceeds or equals the number of training samples,
overfitting is guaranteed. However, when it comes to neural networks, Zhang et al. (2016) have
shown that a simple two-layer neural network with 2n + d parameters can perfectly fit any dataset
consisting of n samples with a dimension of d (indicating overfitting). Nevertheless, deep neural
networks often perform well despite the potential overfitting issues, thanks to regularization ef-
fects inherent in the optimization algorithm and the network architecture. Additionally, explicit
regularization methods such as dropout or data augmentation are commonly employed. Neural
networks model highly complex relationships, and using a small network (i.e., making the data
appear larger by employing a smaller model) can lead to the problem of the network being too
simplistic and incapable of representing the desired mapping. These considerations emphasize
the significance of selecting the appropriate architecture (alongside a well-preprocessed dataset).
Lastly, when choosing a neural network architecture, it is important to examine existing models
and benchmarks for the targeted task. This can provide valuable insights into commonly used neu-
ral network architectures for similar tasks and their performance. In the subsequent subsections,
we will introduce several renowned architectures; however, it is important to note the existence of
numerous additional architectures.

Convolutional Neural Networks

As we mentioned, Convolutional Neural Networks widely used for image and video recogni-
tion and are designed to used hierarchical pattern recognition to automatically learn and extract
features from input data. A lot of litterature exist on the topic (Krizhevsky et al., 2012; LeCun
et al., 2015), and we’ll try to quickly explain their functionning here.

The basic building blocks of a CNN are convolutional layers, non-linearity layers, pooling
layers and fully-connected layers (Albawi et al., 2017)). We already known what fully connected
layers are, but let’s explain convolutional and pooling layers. For this, let’s imagine that our
purpose is to recognize dogs in pictures. Our dataset is then a set of images and yes/no labels
associated.

e Convolutional layers: Convolutional layers play a crucial role in detecting local patterns or
features in the input data by applying learnable filters, also known as kernels. These filters
are matrices of weights that the algorithm learns. The objective is to identify patterns in
images. The basic principle of a convolutional layer is illustrated in Figure 2.17.

In this process, the filter slides across the image and performs element-wise multiplications
and summations, including the bias term, to generate a feature map. Initially, the filter is
positioned at the top-left corner of the input image, where it undergoes element-wise mul-
tiplication with the corresponding values of the image patch it covers. The results are then
summed to obtain a value that becomes the top-left entry of a new matrix. Subsequently,
the filter is shifted one position to the right, and this procedure continues. Figure 2.18 illus-
trates the first two steps of this computation. Note that the RGB channels of the image are
separated, and each filter comprises three matrices.

The amount by which the filter moves horizontally and vertically is determined by the stride,
which can be adjusted. Additionally, padding can be introduced by adding a row and column
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A Convolution Layer
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Figure 2.17 — Example of a convolutional layer applied to a 6x6 input with 3 channels, using
4x4 filters (3 channels). No padding and a stride of one are applied. Adapted from ht tp s:
// indoml .com.
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Figure 2.18 — Example of the filter sliding over the three channels. Padding has been applied, and
the stride is set to one.
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of zeros to the image, as seen in Figure 2.18. Padding helps maintain the spatial dimensions
of the input data, ensuring that the output has the same size as the input. Finally, a dilation
factor can be defined that dilates each pixel when the filters is patched over the image (see
Figure 2.19).

OUTPUT

Figure 2.19 — Example of the a dilation factor of 2 where the filter skips one pixel in between
each value, creating a sparse sampling pattern. Here, the filter is patched on the input (in blue) to
create the first value of the output matrix (in cyan).

When an image with height H;, and width W, passes through a convolutional layer, the
output dimensions are calculated using the following formulas:

Hi, + 2P — dilation x (K —1)— 1
s
Wi, + 2P — dilation x (K — 1) — 1
Wom:[ nt la“;nx( w=1) +1]

Here, P represents the padding, Ky and Ky denote the height and width of the kernel,
S represents the stride, and dilation indicates the dilation factor. The stride and padding
values can differ for the height and width dimensions.

e Pooling layer: Pooling layers are commonly utilized to reduce the spatial dimensions of the
input feature maps. Here are three pooling techniques:

e Max pooling: Max pooling scans the values within a pooling window, similar to a
kernel, and selects the highest value. It replaces the entire window in the output feature
map with this maximum value. Figure 2.20 illustrates an example of max pooling with
a window size of 2x2 and a stride of 2, resulting in non-overlapping regions.

12 120 | 30 [ O

8 |12 2 0 2x2 Max-Pool‘ 20 | 30

34 |70 [ 37 | 4 112 37

112 (100 25 | 12

Figure 2.20 — Example of a pooling layer using the max pooling method. Source: Computer
Science Wiki ht tps: //comput ersciencewiki. org/index. php/File: MazpoolS
ampl e2 .png, last accessed in July 2023.

e Average Pooling: Similar to max pooling, average pooling operates within a pooling
window but computes the average of all the values instead of selecting the maximum
value.
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e Global Pooling: Global pooling performs average or max pooling over the entire ma-
trix for each channel. Consequently, the output is a single value per channel. In the
example shown in Figure 2.18, there would be three values corresponding to the Red,
Green, and Blue channels.

Now, we can understand the family of convolutional neural networks, as with the example
depicted in Figure 2.21. In this illustration, the convolutional and pooling layers are utilized to
extract and identify features within the image. The output from these layers consists of condensed
vectors containing the relevant information. The subsequent fully-connected layers then function
as a classifier to determine whether the image is that of a dog or not.

Feature Extractor Classifier

VGG-16 VGG-16
Convolutional Base Dense Classifier
Conv-2

FC-6 FC-7  FC-8
Input Image

224x224x3

14x 14 %512 ’ 1x1x4096 1x1x1000

28 x 28 x 512
56 x 56 x 256

Tx7x512

@ convolution+ReLU

@ max pooling
| fully connected+ReLU

11/ 112 x 128

224 x 224 x 64

Conv-1 Conv-2 Conv-3 FC-6 FC-7 FC-8

Vv
N
g »

Figure 2.21 — Example of a convolutional neural network with 5 convolutional layers and 5 pooling
layers, culminating in three fully-connected layers. These final layers can be employed because the
pixel values have been transformed into vectors through a "flatten" operation, allowing us to return
to the familiar concept of classic neural networks. Image from ht tps: //learnopencv. co
m/understanding-convolut ional-neural -networks-cnn/#Convo lutional -
Blocks-and-Pool ing-Layers, last accessed in July 2023.
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Dense

Convolution is a mathematical operation, and since convolutions are linear, we can represent
them here as a matrix product. CNNs are particularly effective and efficient in locating specific
features in images. Furthermore, CNNs exhibit translation invariance, enabling them to recognize
patterns within images regardless of their position. They can even recognize high-dimensional
patterns, such as handwriting, with minimal image preprocessing (Lecun et al., 1998). In CNNs,
the initial layers seem to capture simple features like edges or textures, while deeper layers capture
object parts or semantic information (Zeiler and Fergus, 2013). This hierarchical structure allows
CNN s to gain a better understanding of the relationships among different pieces of data.

On the other hand, the large number of parameters involved makes these architectures com-
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putationally demanding. Moreover, CNN architectures require an extensive amount of data for
training, meaning that a large number of inputs have to be labeled. Additionally, CNNs are prone
to overfitting, meaning that they can memorize the noise and details of the training data, which
may hinder their ability to generalize to new and diverse data. Lastly, these models offer limited
interpretability and are often considered black boxes, which is an important limitation when we
want to look towards grey-box models.

Autoencoders

Autoencoders (AE) are unsupervised algorithms that compress data into a lower-dimensional
representation (the encoder part) and reconstruct it back to the initial dimension (the decoder part)
(Hinton and Salakhutdinov, 2006; Vincent et al., 2010), as illustrated in Figure 2.22.

Input Hidden Output
layer layer layer

The encoder The decoder

Figure 2.22 — Architecture of a basic autoencoder with W representing the weights of the encoder
part and W' representing the weights of the decoder part. Figure adapted from Zhang et al. (2020).

Over the past decades, AEs have proven to be highly efficient in data dimensionality reduc-
tion, feature extraction, and data reconstruction (Zhang et al., 2020). They can be integrated into
architectures such as CNNs or FCNNs. By reducing the dimension before reconstructing the data,
AEs might lose some information from the original data but often also reduce noise and keep the
"high-level" information. As well, they can be trained independently to mitigate noise, following
the scheme presented in Figure 2.23, and subsequently utilized to clean a dataset.

In summary, AEs serve multiple purposes, such as dimensionality reduction, denoising, unsu-
pervised learning, and even anomaly detection. In fact, AEs can identify anomalies or outliers in
the data by computing the error between the input and the reconstructed output. Anomalous data
points often yield higher reconstruction errors.

LSTM & GRU

There are plenty of accessible descriptions and articles out there that delve into the workings
of Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) (Cho et al., 2014a,b;
Hochreiter and Schmidhuber, 1997). Both of these belong to what we call recurrent neural net-
works (RNNs) (Tsoi, 1997), which are neural network setups used for handling sequential or
time-based data.
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Figure 2.23 — Example of a denoising autoencoder where the corrupted input image is encoded to
a representation and then decoded. Figure adapted from Bank et al. (2020).

Unlike the usual feedforward networks, RNNs come with recurrent connections. This lets
them hold onto an internal memory and make use of past contextual information when dealing
with new input, as you can see in Figure 2.24. This knack for retaining information across various
time points makes RNNs pretty potent models for tasks like predicting sequences, generating text,
auto-translation, and natural language processing. But, they can run into snags, like vanishing gra-
dients over lengthy sequences. This hitch led to the creation of variations like LSTMs and GRU s,
which aim to tackle these limitations head-on.
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Figure 2.24 — Schematic view of the functionning of a Recurrent Neual Network. From Ye et al.
(2022).

LSTM networks belong to the subset of RNNs and are designed to capture long-term depen-
dencies. First introduced by Hochreiter and Schmidhuber (1997), one of their standout features is
the gate mechanism that effectively controls the information flow within the network. This mech-
anism comprises three primary gates: the forget gate, the input gate, and the output gate (refer to
Figure 2.25). These gates empower the LSTM to handle both historical and current information,
as well as the generated output. This unique capability enables the LSTM to selectively retain
or discard information over extended sequences, thereby proving to be exceptionally efficient in
tackling long-term dependencies.

GRU stands for Gated Recurrent Unit and is another type of RNN designed to tackle the issue
of vanishing or exploding gradients. Like LSTM, GRU aims to solve this challenge. However,
GRU takes a different approach by simplifying the architecture. It combines the input and forget
gates into a single "update gate," and it merges the output gate and cell memory into a unified
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Figure 2.25 — Schematic view of a LSTM cell. Several cells are then put together to form the LSTM
architecture. Figure adapted from Hairy (2021).

component known as the "hidden state."

GRU introduces an adaptive update mechanism, which determines how much of the past infor-
mation should be forgotten or utilized based on new input data. This streamlined design of GRU
makes it easier to train and involves fewer parameters compared to LSTM. Remarkably, GRU
maintains competitive performance in various natural language processing tasks, highlighting its
effectiveness despite its architectural simplicity.

Temporal-Convolutional Network

In the realm of deep learning, recurrent neural networks (LSTM and GRU) have convention-
ally been the go-to for sequence modeling. However, a recent development by Bai et al. (2018)
suggests that convolutional networks should also be explored for handling sequential data. In
their study, they demonstrated that convolutional networks can actually outperform RNNs in var-
ious tasks, while sidestepping the common issues often associated with recurrent models, such
as the vanishing or exploding gradient problems, as well as challenges with memory retention.
What’s more, using convolutional networks enables parallel computation of outputs, which could
potentially lead to performance boosts. This led them to propose an architecture later coined the
Temporal Convolutional Network (TCN) (Bai et al., 2018; van den Oord et al., 2016). In what fol-
lows, much of the explanation draws heavily from a highly elucidating article penned by Francesco
Lissig available on the https://unit8.com’ website, from which we gathered figures 26 to 30.

Starting with the basics, let’s dive into the concept of 1D convolution, as depicted in Figure
2.26. This mirrors the workings of 2D convolutional layers. Imagine a kernel or filter in play,
which slides along the input vector(s) (one filter assigned to each input variable). The dot product
between this filter and the observed window is computed, and then the window shifts by a set
stride. To ensure the output sequence maintains the same length as the input sequence, zero-

7. Last accessed on July 6, 2023: https://unit8.com/resources/temporal-convolutional-networks-
and-forecasting/
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padding comes into play, illustrated in Figure 2.27. Crucially, the convolution must retain a causal
nature. In simpler terms, the i-th element of the output sequence can solely hinge on elements
ranging from O to i in the input sequence. For time series data, the algorithm should steer clear
of training on future values. Therefore, zero-padding is exclusively applied to the left side of the
input sequence. Without delving into dilation, it’s worth noting that the number of added zeros
always equals the filter length minus one.

[ | | | | ] | output tensor

dot product

J nr_input_channels

IS
kernel_size

nr_input_channels |: input tensor

input_length

Figure 2.26 — This figure illustrates 1D convolution for nr_input_channels, the number of input
features, on a sequence of length input_length (for example, 30 minutes of data for two temporal
variables).

ay

L JL J
input_length

zero-padding
Figure 2.27 — Explanation of zero padding in the case of no dilation.

As we reach the end of our TCN, we’ll end up with just a single value for a given input
sequence. So, it’s crucial that the entire input sequence is effectively utilized to produce this output
— a concept referred to as "full history coverage". Building on the previous point, we can infer that
a 1D convolutional network with n layers (the number of "stages"), employing a filter of length
k yields a receptive field size of r = 1+ n(k — 1) as showcased in Figure 2.28. The key notion
is to set r = input_length to ensure a comprehensive full history coverage, which necessitates a
minimum of n layers. This leads to the following expression:

input_length — 1
n—
k—1

Now, introducing dilation into the picture — following a pattern resembling what we see in
Figure 2.19, albeit in 1D — enables us to decrease the number of layers needed for full history
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Figure 2.28 — Schematic view of the receptive field. A full history coverage would mean no blue
squared in the bottom row.

coverage. Yet, a linear input tensor length remains a prerequisite for complete coverage. To tackle
this, a gradual adjustment of dilation as layers are added can be employed, illustrated in Figure
2.29. In the example illustrated in this figure, the process begins with a dilation factor of 2 and
increments it using d = b', where i denotes the particular layer and b represents the dilation base
(the initial value). The width of the receptive field is then:

bnfl

n—1
n=1+Y (k—1)-b'=1+(k—1)-
i=0

Figure 2.29 — Example of dilation 2! over several layers.

Important note: In a general context, in order to prevent any "gaps" in a receptive field (missing
values), the kernel size k should be at least as large as the dilation base b. Ultimately, to ensure
complete coverage, our TCN must adhere to the following rule:

n—1
b—1

Lastly, the necessary amount of zero-padding becomes:

1+ (k—1)-

> input_length 2.27)

P=b'(k—1)

Now, with all the necessary components at hand, we can delve into understanding the TCN,
illustrated in Figure 2.30. It consists of a sequence of what we term as "residual blocks," each
composed of convolutional layers. Instead of individual layers, these residual blocks are connected
to one another, distinguished by their filter size and dilation (which increases as b’). These blocks
replace the standalone "layers" we’ve encountered thus far. Moreover, there are a few noteworthy
changes:
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Figure 2.30 — Architecture of a TCN.

Convolution is performed twice, as opposed to a single time. The first convolution acts
as a local receptive field, capturing proximate dependencies within a specific context win-
dow. The subsequent convolution layer amalgamates these local features further to capture
higher-level dependencies and patterns across a wider context window.

To introduce non-linearity and sidestep a purely linear regression model, activation func-
tions like ReLU are applied to the convolutional layers within the TCN.

Weight normalization is utilized to standardize the input of hidden layers, addressing issues
like the exploding gradient problem.

Dropout regularization is incorporated after each convolutional layer in the residual blocks
to prevent overfitting.

A 1x1 convolution is included in both the first and last residual blocks (optional for the rest)
to maintain consistent sizes.

In conclusion, TCNs present a robust alternative approach for sequence modeling. They out-

shine traditional recurrent networks by circumventing problems associated with gradient explo-
sions and memory retention. By utilizing 1D convolutional layers, they capture temporal de-
pendencies and intricate patterns within sequential data. Thanks to their capacity for parallel
computations, they enhance computational efficiency. Through non-linear activations, weight nor-
malization, and dropout regularization, they can be fine-tuned for various tasks. All these factors
make TCNs a prime candidate for our study, displaying significant potential as an architecture
for handling sequential data. Their recent emergence means they’ve never been applied to space
weather problems before. We’ll return to this point. It’s also worth highlighting that the choice
of employing 1D temporal convolution enables the input not only of a chosen set of past data but
also of a vector of past data, facilitating a more comprehensive exploration of connections between
phenomena that may have unfolded over time, leading to delayed effects.
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2.4 Librairies & Needed Tools

To successfully implement all of the above, a combination of computational power and high-
level libraries is essential. Calculations need to be swift and efficient. The choice of library or
hardware has, over the past few years, become a crucial part of problem-solving. A few misguided
decisions in this realm can render certain problems insurmountable. Therefore, let’s briefly discuss
the importance of hardware. We’ll wrap up by introducing the libraries that have been employed
throughout this study: PyTorch ® and PyTorch-Lightning °.

2.4.1 Hardware

There are two types of computing units: central processing units (CPUs) and graphics pro-
cessing units (GPUs), each serving distinct roles.

What is a CPU?

The CPU serves as the central processor of a computer, whether it’s referred to as Core 2 Duo
or Athlon 64. Its acronym stands for Central Processing Unit. The CPU can feature multiple
processing cores and is often referred to as the "brain" of the computer. It is essential for all mod-
ern computer systems, as it executes commands and processes necessary for the computer and
operating system to function. Additionally, the CPU plays a crucial role in determining program
execution speed, whether it involves web browsing or spreadsheet creation.

What is a GPU?

A GPU, on the other hand, is the processor responsible for powering the graphics card. GPU
stands for Graphics Processing Unit. The primary distinction lies in the tasks they handle. The
GPU consists of numerous smaller and specialized cores. Working in unison, these cores deliver
exceptional performance when processing tasks that can be divided and executed across multiple
cores. Originally, the GPU’s main responsibilities included rendering pixels, textures, shapes on
the screen, and video processing.

What sets a CPU apart from a GPU?
Although CPUs and GPUs share many similarities as essential processing engines, they possess
different architectures and serve distinct purposes.

CPUs are well-suited for a broad range of workloads, particularly those that demand low
latency and strong per-core performance. Operating as a powerful execution engine, the CPU al-
locates its fewer cores to individual tasks, emphasizing speedy execution. This makes it highly
effective for tasks spanning from sequential processing to database operations.

Initially developed as specialized Application-Specific Integrated Circuits (ASICs) to acceler-
ate specific 3D rendering tasks, GPUs have evolved over time to become more programmable and
flexible. While their primary function remains handling graphics and increasingly realistic visuals
in modern games, GPUs have also transformed into more versatile parallel processors, capable of
handling an expanding array of applications.

In a broader context, the central distinction lies in the operational characteristics of CPUs and
GPUs. CPUs are designed to execute a single operation per thread, implying limited parallelization
capabilities. In contrast, GPUs excel at concurrently handling multiple, simpler operations, often

8. https://pytorch.org/
9. https://lightning.ai/
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numbering in the hundreds or even thousands. By harnessing the computational power of GPUs,
one can achieve a speedup factor defined by Amdahl’s Law:

1
Speedup = —
(P47
Here, "Speedup” represents the total acceleration anticipated through task parallelization, P
denotes the proportion of the task amenable to parallelization (ranging from O to 1), and N signi-
fies the quantity of available processors.

As we said, deep learning models require intensive computations, often involving large datasets
and complex operations. Libraries like TensorFlow and PyTorch are optimized to leverage the full
power of hardware resources, such as GPUs, in order to accelerate model training and inference.
A GPU can handle several thousands of operations per seconde but managing the memory should
be handled by a good librairy.

2.4.2 Libraries

There are many libraries, and we won’t be able to cover them all. Among them, TensorFlow
and PyTorch are two extremely popular libraries in the field of deep learning. Both of them serve
as matrix and tensor managers, providing advanced features to simplify differential calculations
on both CPUs and GPUs. Learning these libraries can be challenging, but it is absolutely essential
for efficient work in these domains.

Two primary languages are commonly used to utilize these libraries: C++ and Python. C++
is a lower-level, more technical language that is often employed for model production. In this
realm, a manager called Eigen, developed by INRIA, is widely used. On the other hand, Python is
primarily utilized for artificial intelligence development and rapid prototyping of models.

PyTorch is an exceedingly flexible Python library that enables easy tensor management. With
PyTorch, you can directly manipulate your variables and construct models in a more localized
manner. In contrast, TensorFlow is more focused on classes and provides a more industrial and
standardized approach. TensorFlow employs a graph system to define and execute computations,
making it efficient for large-scale deployments.

In terms of philosophy, PyTorch is often favored in the research field, as it offers greater free-
dom and a more a la carte approach to building custom models, which we will briefly explain in
the next section. On the other hand, TensorFlow is frequently preferred in industrial applications
where standardization and scalability are crucial.

In summary, TensorFlow and PyTorch are powerful libraries for deep learning, offering ad-
vanced features for tensor manipulation and model construction. The choice between the two
often depends on the specific use case, with PyTorch being favored in research and TensorFlow in
industrial applications.

2.4.2.1 Getting Started with PyTorch

In this section, we’ll provide an overview of how PyTorch functions are organized and how
the library operates in general. This serves as a brief introduction that is necessary to understand
PyTorch-Lightning. Subsequently, we’ll delve into the different aspects of PyTorch-Lightning,
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which form the fundamental building blocks of our code. The code is freely available on GitHub '°
for anyone to access.

According to the PyTorch website, organizing code for data sample processing can become
convoluted and difficult to maintain. It is preferable to have separate and modular code for dataset
handling, independent from the model training code, to enhance readability and modularity. Py-
Torch provides two useful data primitives: torch.utils.data.DataLoader (shown in Figure
2.31) and torch.utils.data.Dataset. These tools allow you to work with pre-loaded datasets
or your own custom data.

The Dataset object stores the samples along with their corresponding labels, and a Dataset
object in PyTorch represents the data to be loaded. On the other hand, the DataLoader object
creates an iterable interface to the Dataset, making it convenient to access the samples easily. To
define a dataset class, we need to define three functions: __init__, __len__,and __getitem__.

With these three functions, the Dataset class allows us to retrieve the features and labels of our
dataset one sample at a time.

When coding in PyTorch (and most other libraries), it is recommended to follow these seven
steps:
1. Import the necessary modules.

2. Define the model class by inheriting from torch.nn.Module (or LightningModule from
PyTorch-Lightning, as we will see). In the example shown in Figure 2.31, the model has one
input layer, a hidden layer with a ReL U activation function, and an output layer. Layers can
be called through the "Layers" module of PyTorch. We can observe in the forward method
that our input x passes through all the layers.

3. Instantiate the model by specifying the size of the layers (variables when initializing the
SimpleNet class need to be defined). input_size and output_size represent the size of
our input sample and the size of our prediction vector (e.g., 10 for MNIST).

4. Choose a loss function and an optimizer.

5. Prepare the training data by using the Dataset and Dataloader modules from PyTorch.
Here, we did not create a custom Dataset or DataLoader and did not redefine __init__,
len__,and __getitem__.

- —_—

6. Write the training loop, which involves forward propagation, loss computation, backpropa-
gation to obtain gradients, and weight updates. You can refer to the PyTorch documentation
for detailed explanations of loss.backward() and optimizer.step(). In this loop, Py-
Torch iterates through the train_loader object and knows what to do.

7. Finally, apply the model to an input to obtain a prediction.

Then, during model training, it is more efficient to pass samples in batches, shuffle the data
at each epoch to prevent overfitting, and utilize multiprocessing in Python to speed up the data
retrieval process. To simplify this process, PyTorch provides the Datal.oader class. It acts as an
iterable and abstracts away the complexities mentioned above, offering a user-friendly API for
handling batching, shuffling, and multiprocessing.

To visualize and track the training progress of our model, we utilize Tensorboard '!, a visu-
alization tool provided by TensorFlow. It offers graphical functionalities for visualizing learning
curves, histograms, model graphs, images, embeddings, as well as performance profiling. Tensor-
board greatly simplifies the exploration and understanding of our model’s results.

10. https://github.com/simonbouriat/DMSP-Auroral-Forecast
11. https://www.tensorflow.org/tensorboard
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Figure 2.31 — Example of a very simple network with PyTorch, demonstrating the 7 essential steps
to create a functioning machine learning algorithm. All 7 steps are explained in Section 2.4.2.1.

2.4.2.2 PyTorch-Lightning

PyTorch Lightning is a library built on top of PyTorch (and is also open-source) that aims to
streamline the model development and training process by providing a structured framework and
additional functionalities. PyTorch Lightning notably abstracts the training code, allowing for a
clear separation between model-specific components and the training code itself. This enhances
code readability, comprehension, and maintainability. Additionally, it offers a predefined training
loop that facilitates the implementation of the standard training process, including training, vali-
dation, and testing steps. An example illustrating this can be seen in Figure 2.32. This reduces
the amount of repetitive code and enables developers to focus more on the specific aspects of the
model. Furthermore, PyTorch Lightning provides built-in features for parallelism and distribution,
simplifying accelerated training on large datasets using multiple GPUs or nodes.

Thus, we conclude this comprehensive introduction to Machine Learning and Deep Learning.
We have covered various topics, from the presence of Al in the space weather community to
the mathematical reasoning behind neural networks, while also introducing the roles of CPUs
and GPUs in the process. We concluded this section by presenting the general functioning of
the PyTorch library and PyTorch Lightning, which allowed us to introduce the organization of our
code, publicly accessible. In this way, we hope that the vocabulary, methods, and results will make
more sense to the reader. We also hope that through these explanations, the reader will be able to
reproduce the results presented throughout this thesis without much difficulty. Finally, the broader
objective of this section, as well as the previous one, is to create a repository of information from
which the reader can draw what interests them. Some topics may have slightly deviated from
the scope of our study, but were necessary to open a (small) window into the world of artificial
intelligence to make it accessible, while demonstrating its complexity.
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Figure 2.32 — Comparison between PyTorch and PyTorch Lightning, highlighting key differences.
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g. readthedocs. 10/en/0.7. 1/4introduction_guide.html, last accessed in July
2023.
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Chapter 3. Problem Statement, Data Analysis & Preprocessing

3.1 Clarifying the Research Problem

Now that we have set the framework and provided a detailed introduction to the two domains
at the core of this thesis, we can present the problem we have chosen to address.

As we discussed in Chapter 1, electron precipitation into the ionosphere is driven by various
mechanisms. Electrons precipitate as they enter the loss cone, traveling along magnetic field lines
and often undergoing acceleration through mechanisms such as Quasi Static Potential Structure
(QSPS) and Alfvénic. Some of the precipitating particles have been trapped in various magneto-
spheric regions (e.g., radiation belts, magnetospheric tail, etc.) and others can originate directly
from the solar wind (e.g., via polar cusps). In this intricate series of events, particles interact with
various factors like plasma waves, magnetic reconnection, and magnetospheric currents. These
interactions lead the particles to carry current, transfer energy, and ultimately precipitate into the
ionosphere.

Particle precipitation is a crucial link between the ionosphere and the magnetosphere, (Mc-
Granaghan et al., 2021), widely used in most Global Circulation Models (GCMs), such as the
Global Ionosphere Thermosphere Model (GITM) (Ridley et al., 2006), the Thermosphere Iono-
sphere Electrodynamics General Circulation Model (TIE-GCM) (Roble et al., 1988), and the
Whole Atmosphere Model-lonosphere Plasmasphere Electrodynamics (WAM-IPE) model (Fuller-
Rowell et al., 2008; Millward et al., 1996). This suggests that electron precipitation is a direct
indicator of abrupt and intense electrical events in the ionosphere, which, in turn, leads to various
impacts as we discussed in Section 1.3.3 of Chapter 1. Among these impacts, surface charging
(Section 1.3.3.1) represents the greatest risk for LEO satellites in polar orbits (i.e., passing over
the poles, where particles precipitate).

Several models of particle precipitation at the poles exist, such as Hardy et al. (1985), Fuller-
Rowell and Evans (1987), and OVATION (Newell et al., 2014) (see Section 1.2.7.3). The first
two models produce two-dimensional spatial distributions (2D) of energy and particle flux based
on certain assumed parameters. They are generally limited to the northern hemisphere and are
constrained by their input parameters. For example, the Hardy model relies on Kp and thus has
a temporal resolution limited to 3 hours, preventing it from predicting changes on shorter time
scales. The arrival of the third model, OVATION, brought a fresh perspective to precipitation
modeling by using solar wind parameters as the sole driver of precipitation, a piece of information
derived from outside the magnetosphere. OVATION became the first tool "to locate the auroral
oval or to quantify its intensity" (Newell et al., 2002). Its success was evident, and OVATION
became one of the most downloaded products from the National Oceanic and Atmospheric Ad-
ministration (NOAA) Space Weather Prediction Center (SWPC) : (McGranaghan et al., 2021).

Subsequently, Newell et al. (2015) conducted a detailed analysis, and evaluated these models,
leading to proposed improvements. They emphasized that the efficiency and usefulness of auroral
particle precipitation models are heavily reliant on their input parameters and the choices made
for their representation and organization. These limited choices often fail to capture the complex-
ity of the system, including non-linearities. Consequently, as (McGranaghan et al., 2021) points
out, existing models lack the ability to provide crucial information to users and fully understand
the underlying physics. Additionally, merely aggregating different data is insufficient to produce
reliable results, and it is sometimes essential to use direct in-situ observations of precipitation
for model development (such as DMSP, instead of indices like Kp). McGranaghan et al. (2021)
addressed these issues with their PrecipNet model, considering that Machine Learning meets the

1. https://www.swpc.noaa.gov/products/aurora-30-minute-forecast
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expectations regarding the choice and representation of parameters.

Developing models with greater expressive capacity is imperative to effectively capture and
represent the intricacies of precipitated electrons. PrecipNet has been a remarkable success in this
regard, but it does exhibit some limitations concerning data representation. Given our approach
closely aligns with the fundamental objectives of PrecipNet (i.e., contributing to a framework for
employing machine learning models along the Sun-Earth chain), this thesis dedicates an entire
section, in Chapter 4, to replicating, analyzing, and enhancing PrecipNet’s outcomes. There, we
will delve into the limitations and challenges inherent in utilizing the PrecipNet network.

Drawing from the various limitations identified by Newell et al. (2015) and McGranaghan
etal. (2021), our approach aims to address needs, both using data and algorithms. Indeed, machine
learning allows us to:

e Integrate a wide range of features and analyze them to identify the most relevant ones for
better precipitation modeling.

e Integrate data with different temporal resolutions and measured from distinct locations
(e.g., near-Earth geomagnetic indices and solar wind characteristics in the interplanetary
medium).

e Utilize a variety of algorithms, including recurrent or convolutional neural networks, to
tackle diverse challenges and even combine them synergistically.

e Fine-tune the model through carefully chosen hyperparameters tailored to our specific prob-
lem.

As we said, our work builds upon and runs parallel to the research done by McGranaghan et al.
(2021), but covers two main objectives that are the core of this CIFRE (Convention industrielle de
formation par la recherche) project. A CIFRE is a tight research collaboration between a laboratory
and a French company, accomplished through the thesis of a doctoral candidate working within the
company. In this case, the project serves two main purposes: first, it involves purely fundamental
research objectives to tackle scientific inquiries, and second, it aims at product development (and
subsequent commercialization) for SpaceAble.

e As part of our research project, our approach involves modeling the electron energy flux us-
ing a wide range of information, including solar wind parameters and geomagnetic indices.
The research project’s importance lies in advancing the understanding of electron precipita-
tion in LEO and of the magnetosphere-ionosphere system by developing a more robust and
accurate model for electron energy flux. It also has practical applications in various fields,
including mitigating the potential impacts on modern technological systems.

e As part of SpaceAble’s > objectives, our approach focuses on creating a highly adaptable
and robust Al model with flexible inputs, outputs, and methods. Beyond modeling the
electron total energy flux, we prioritize practicality, security, tangible value delivery, adapt-
ability to new data over time, interpretability, explainability, optimization, and low latency.
Cost-effectiveness is also paramount, ensuring a reasonable and justifiable investment for
the company. This collaborative process necessitates a perfect understanding of every line
of code, python file, and library used, aligning the AI model precisely with the company’s
vision.

Hence, this thesis strives to be descriptive, as a thorough understanding is essential to distin-
guish the algorithmic aspects from problem-specific considerations. Yet, the algorithmic choices

2. https://spaceable.org
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and modern tools raise broader questions about the application of machine learning in modeling
and predicting phenomena along the Sun-Earth chain. How crucial is data quality for predictive
capabilities? How should we tackle spatio-temporal challenges in satellite data? Can we effec-
tively model highly dynamic phenomena intertwined with cyclical events? Is it even feasible to
model such complex phenomena? This PhD also serves as a starting point for addressing some of
these open questions.

In this chapter, you’ll find a detailed analysis of the different data we want to compare. On
one side, we have information from outside the magnetosphere (solar wind characteristics), and
on the other side, we have measurements of particle precipitation spanning over 50 years (DMSP).
Following that, we’ll describe the final choices we made regarding the data and the preprocessing
applied.

3.2 Data Description

3.2.1 Defense Meteorological Satellite Program (DMSP)

To begin with, we will introduce the satellite family of the Defense Meteorological Satellite
Program (DMSP) and the measurements that our algorithm will utilize, specifically the data from
the SSJ4 and SSJ5 instruments within the DMSP family. These data will serve as the "ground
truth" or reference for our analysis. It’s crucial to comprehend, analyze, and ascertain their ap-
plicability. A concise description of the DMSP satellites and the data used can also be found in
Section 3.3.4 of the paper Bouriat et al. (2023). For the description of DMSP and its instruments,
we drew upon information from the dedicated website of Boston College * as well as the site of
the NCEI (US National Centers for Environmental Information) .

The DMSP (Defense Meteorological Satellite Program, Dickinson (1974); Nichols (1975))
spacecrafts are a series of LEO, polar-orbiting spacecraft whose primary mission is to observe
the tropospheric weather (through the Operational Linescan System”). Its secondary mission is
to monitor the space environment and mainly the in-situ plasma environment. DMSP satellites
belong to the US DoD (Department of Defense), are managed by USAF (United States Air Force)
and operated by the 6th Satellite Operations Group at Offutt AFB (Air Force Base), Nebraska.
They are polar orbiting, Sun synchronous (i.e., with a fixed local time), axis stabilized (since
DMSP 5A/F1) and have an orbital period of 101 min, an inclination of 98.9°, and an altitude of
840 km (Redmon et al., 2017).

Lots of studies use DMSP data to observe the space environment and its effects such as space-
craft charging. This is mainly done through the Space Environment Monitoring (SEM) sensors.
Among them we can find:

e SSJ/4 & SSJ/5 (Special Sensor Precipitating Electron and Ion Spectrometer - 4 & 5)
e SSM (Special Sensor Microwave)

o SSIE (Special Sensor Imager Experiment) on the first two DMSP satellites and then SSIES
(Special Sensor Imager for Environmental Sensing)

3. https://dmsp.bc.edu/
4. https://wuw.ncei.noaa.gov/products/dmsp- j4-precipitating-electron-ion-spectrometer
5. https://dmsp.bc.edu/html2/dmsp_ols.html
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e SSULI( (Special Sensor Ultraviolet Limb Imager)
e SSUSI (Special Sensor Ultraviolet Spectrographic Imager)

In our study, we are interested in SSJ/4 and 5 precipitating particle sensors. DMSP SSJ/4 and
5 data provide a complete energy spectrum of the low energy particles that cause the aurora and
other high latitude phenomena. The data set consists of electron and ion particle fluxes between
30 eV and 30 KeV recorded every second, satellite ephemeris and magnetic coordinates where the
particles are likely to be absorbed by the atmosphere.

3.2.1.1 SSJ/4

The Precipitation Electron/Proton Spectrometer, developed by Ampek Inc. based in Bedford,
MA, is an advanced instrument designed to measure the transfer energy, mass, and momentum
of charged particles as they pass through the magnetosphere-ionosphere within Earth’s magnetic
field. The SSJ/4 is a significant upgrade from its predecessor, the SSJ/3, and provides valuable
data for missions that require a thorough understanding of the polar and high-latitude ionosphere.
Applications of this data, as we have seen in Chapter 1, include enhancing communication sys-
tems, surveillance operations, and detection systems that rely on energy propagation either off or
through the ionosphere.

Mounted on the Flight 6 (F6) to F15 satellites, the SSJ/4 utilizes 20 energy channels loga-
rithmically distributed from 30 eV to 30 keV (see Figure 3.2), employing four cylindrical curved
plate electrostatic analyzers arranged in two pairs. Each pair consists of an analyzer with a radius
of curvature of 127° and another with a radius of curvature of 60°. These analyzers operate at
varying voltage levels, with the 127° (60°) analyzers capturing particles within energy channels
ranging from 1 keV to 30 keV (30 keV to 1 keV).

To ensure stability, the detector remains in each energy channel for 98 milliseconds, with a
2-millisecond interval between steps to stabilize the voltage. The two analyzers are synchronized,
enabling the retrieval of a comprehensive 20-point ion and electron spectrum every second. De-
tailed illustrations of the SSJ/4 analyzer’s aperture and curved plate configuration are provided in
Figure 3.1.

While the analyzers for ions and electrons are identical in design, the voltage polarity on the
plates and the size of the low-energy apertures differ. The low-energy ion apertures are larger
compared to the low-energy electron apertures. Compact and efficient, the SSJ/4 sensor package
weighs only 5 pounds and consumes a mere 0.25 watts of power.

In order to improve measurement consistency, the CEMs employed in the refurbished F8 sen-
sors differ from those utilized in the DMSP series F6 — F10 sensors described in Hardy et al.
(1985). The new design replaces the previous two overlapping CEM cones with a single CEM
featuring a larger collecting cone. This modification ensures a more consistent coverage of the
effective particle collecting area behind the detector’s exit aperture.

3.2.1.2 SSJ/5

SSJ/5 is an electrostatic analyzer detector developed and constructed by Amptek Inc. Its initial
deployment occurred on the DMSP F16 satellite, launched on October 18, 2003. The SSJ/5 rep-
resents an enhanced version of the SSJ/4 instrument. Just like the SSJ/4, the collected data aids in
missions that necessitate an understanding of the polar and high-latitude ionosphere and supports
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Detector Detail

NOTE: Three apertures identical

High Energy Low Energy
ESA ESA i \

A — Telescope Length 1.1I5¢cm 1.88cm
B - Telescope to ESA 0.36 1.75 /
C - ESA to Exit Ap. 0.25 0.75
H - Plate Height 2.85 2.85
AR- Plate Separation 0.25 0.75
R - Mean Plate Radius 10.01 3.00
8o - Plate Arc 60° 127°
Aperture Width 0.20 0.20 (Electron)
0.51 (lon)
Aperture Height 1.80 0.60(Electron)
1.59(lon)
Detectors,Cone Dia. 1.09 0.38 (Electron)
1.09(lon)

Figure 3.1 — Details of the configuration of the aperture and curved plates of an SSJ/4 Electrostatic
Analyzer (ESA), from Schumaker (1988).
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Epeak AE GOE) sk , ©
Channel (eV) (eV) (cm” ster) (cm” ster eV)
1 31,300 3050 1.70x 10°% 5,35 x 107}
2 21,100 2000 2.30x 107 4.60x 107!
3 14, 300 1330 2.65x% 1074 3.60x 107!
4 9720 860 s.10x 1074 2,65 x 107!
5 6610 615 3.80x 10°% 2,30 x 107}
6 4500 430 4.50x 1000 1,85 x 107}
7 3050 284 5.35X 10°% 1,50 x 107}
8 2070 184 6.70x 104 1,25 x 107}
9 1400 125 7.25x 10°% 9,30 x 1072
10 950 88 9.05x 10°% 7,90 1072
1 950 85 7.10x 10°%  5,60x 1072
12 640 63 7.10x 10°% 4,15 x 1072
13 440 42 7.10x 1074 2,60 x 1072
14" 310 29 7.10x 107% 1,85 x 1072
15 210 20 7.10x 1074 1,35 % 1072
16" 144 13 7.10x 1077 8,30x 107%
17" 98 o.1  7.10x10Y  5,80x 1078
18" 68 6.3 7.10x 107 4,00x 107°
19" 45 4.2 710x10%  2.70x 1073
20 31 29  7.0x10°% 1,85 x 1073

QChannel response curve not determined by electron beam

Figure 3.2 — Adjusted channel response characteristics of the SSJ/4 F8 electron detector, taken as
an example to understand energy channels in the SSJ/4 instrument, from Schumaker (1988).
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various applications, that rely on energy propagation off or through the ionosphere.

The primary objective of the instrument is the same: detect and analyze electrons and ions
that precipitate in the ionosphere, ultimately leading to the generation of an aurora display. It also
operates in the low-energy range of 0.3 to 30 keV.

To achieve its goals, the instrument utilizes a nested spherical deflection plate system, enabling
simultaneous analysis of electrons and ions across a 90° field of view (see Figure 3.3). Further-
more, it incorporates a space-qualified microprocessor, facilitating customization of data rates,
measurement ranges, on-board storage, and specific analysis algorithms. These algorithms can
include tasks such as auroral boundary detection or real-time charging measurements.

ELECTRON
APERTURE

ION
APERTURE

ICROCHANNEL -
ANODE STACK

AR
Ri

Figure 3.3 — Details of the configuration of the SSJ/5 Electrostatic Analyzer (ESA) field of view.
Taken from Boston College DMSP website, ht tps: //dmsp .bc. edu/html2/ss 76 _ins
t. ht ml, last accessed September 2023.

3.2.1.3 Precipitating Electron Data

Typically, the data obtained from precipitating electrons (and ions) can be effectively visual-
ized using a color spectrogram, as depicted in the example shown in Figure 3.4. This spectrogram
provides a graphical representation of the differential number flux, which represents the number
of particles falling onto a square centimeter per second within each steradian of solid angle per eV
of energy range. The spectrogram displays this flux in relation to both the energy of the particles
and the corresponding time of particle observation. By presenting the data in this format, patterns
and trends in the particle behavior can be easily identified and analyzed.

In order to obtain a comprehensive understanding of the data collected by the instrument, it
is often beneficial to aggregate or integrate the data across the entire energy range covered by the
instrument and this is what we are doing in this study. This integration allows for the calculation
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Figure 3.4 —Typical color spectrogram of the SSJ4 data obtained in one polar pass of a DMSP F13
spacecraft during the crossing of the northern polar region on 97 May 15 during a geomagnetic
storm. Credits: Boston College website, ht tps: //dmsp .bc. eduw/html 2/dmsp ss 74 _d
at a. ht ml, last accessed in July 2023.

of three key parameters: average energy (Eayg), total energy flux (Jgror), and total number flux
(Jror). The formulas used to calculate Jror and Jgror are as follows:

19
Ei 1 —Ei
Jror = Z‘,J(E)l—zhL
i=1
o Ei 1 —Eit)
Jeror = Y Ei J(Ei)T
i=1
Jeror
Eave = Tror

In these equations, J(E;) represents the differential number flux for the channel with a central
energy of E;. Jror is measured in units of particles per cm? per steradian per second, while Jgror
is measured in units of eV per cm? per steradian per second. Nnote that the integration is per-
formed across only 19 channels (although 20 channels can be seen on Figure 3.2). This is because
channels 10 and 11 of the instrument are set at the same energy peak (950 eV), and the data at this
energy should be used only once to avoid duplication. The average energy, Eayg, is measured in
units of eV.

As we explained in Section 3.1, we will only study here the electron total energy flux Jzror,
but our code is made such that it is also possible to change the input to the electron average
energy.

3.2.2 Advanced Composition Explorer (ACE)

The Advanced Composition Explorer (Stone et al., 1998) satellite observes and measures mag-
netic fields and particles in space from the L1 (Lagrange 1) libration point (Farquhar, 1969) be-
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tween the Earth and the Sun, about 1,500,000 km forward of Earth. Launched in 1997, ACE carries
nine instruments seen Figure 3.5: six high-resolution spectrometers measuring the elemental, iso-
topic, and ionic charge-state composition of nuclei (within the solar wind and the galactic cosmic
rays) and three instruments that provide the heliospheric context. We are introducing all the instru-
ments below. ACE records different types of radiation, including bursts of particles from the Sun
that can potentially impact near-Earth space and cause disruptions to satellites, radio communica-
tion, and navigation systems. ACE detects these bursts 20 to 60 minutes before they reach Earth,
allowing us to assess their strength and prepare for potential impacts. The spacecraft’s observa-

tions are still utilized by the US NOAA’s SWPC to give advance warning of geomagnetic storms °.

ACE is a compact, eight-faceted cylindrical satellite, measuring 1.6 meters in diameter and 1
meter in height. It weighs 785 kg, with 156 kg dedicated to scientific instruments and 185 kg of
hydrazine fuel for orbital insertion and maintenance. The satellite boasts four solar panels attached
to its upper deck, while six scientific instruments are strategically positioned around it to ensure
an unobstructed field of view. Additionally, two more instruments are fixed to its sides, and the
magnetometer masts extend from two of the solar panels. ACE maintains a constant alignment
with the line connecting the Sun and Earth, keeping its upper deck pointed towards the Sun while
gently rotating around its vertical axis to maintain orientation. Communication with Earth is fa-
cilitated through the S-band, allowing for data transmission rates of 7 kilobits in real-time and 78
kilobits in deferred mode. Data can be conveniently stored in a 2-gigabit mass memory (Margolies
and von Rosenvinge, 1998).

The instruments on ACE are the following:
e Six spectrometers all optimized for a given energy range:

e CRIS (Cosmic Ray Isotope Spectrometer) measures the isotopic composition of cos-
mic rays, ranging from helium to nickel with energies of 100 to 600 MeV per nucleon.

e SIS (Solar Isotope Spectrometer) identifies and measures the isotopic composition of
the same atomic nuclei with energies of 10 to 100 MeV. It detects particles emitted by
the Sun during solar storms, capturing their trajectory and energy.

e ULEIS (Ultra Low Energy Isotope Spectrometer) idem with energies ranging from 45
keV to a few MeV per nucleon. It can also detect heavier ions with energies around
0.5 MeV per nucleon.

o SEPICA (Solar Energetic Particle Ionic Charge Analyzer) determines the electric charge,
element type, and energy of ions emitted by the Sun with energies from 0.5 to 10 MeV
per nucleon.

e SWIMS (Solar Wind Ion Mass Spectrometer) measures the composition and speed of
the solar wind.

e SWICS (Solar Wind Ion Composition Spectrometer) measures the charge, tempera-
ture, and speed of ions in the solar wind, ranging from 145 km/s (protons) to 1,532
km/s (iron).

e Three standard instrument for the context of the interplanetary medium. The description
here come from the OSCAR 7 (Observing Systems Capability Analysis and Review Tool)
database:

o SWEPAM (Solar Wind Electron, Proton, and Alpha Monitor): SWEPAM serves the
purpose of measuring electron and ion fluxes in the low energy solar wind range.

6. https://wuw.swpc.noaa.gov/products/ace-real-time-solar-wind
7. https://space.oscar.wmo.int/
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SEPICA

SWEPAM

ELECTR
#

SWEPAM
ION

Figure 3.5 — Schematic details of the ACE satellite and its instruments (image credit: NASA,
accessed through the ESA’s eoportal, ht tps: //www. eoportal .org/satel lite-miss
ions /ace#r f-commun icat tons, last accessed September 2023).
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With two separate sensors, it conducts simultaneous and independent electron and
ion spectroscopy. The instrument covers a wide energy range, detecting electrons with
energies from 0.0016 to 1.35 keV, protons with energies from 0.26 to 36 keV, and
alpha-particles with energies from 0.52 to 72 keV. Positioned to view the Sun from
the L1 Lagrange libration point, SWEPAM continuously observes the full solar disk,
providing valuable data for solar observation.

e EPAM (Electron, Proton, and Alpha-particle Monitor): EPAM is designed to measure
the flux and energy of protons, alpha particles, and electrons emitted during solar
storms. It can process particles with energies ranging from 30 keV to 4 MeV per
nucleon for elements from helium to iron.

e MAG (Magnetic Field Monitor) in ACE: The MAG’s primary function is to measure
the three components of the solar magnetic field. This instrument includes twin, triax-
ial fluxgate magnetometers mounted on a boom. With eight dynamic ranges ranging
from + 4 nT to + 65,536 nT, MAG can precisely measure the solar magnetic field’s
strength. Situated at the L1 Lagrange libration point and pointed towards the Sun,
MAG continuously scans the full solar disk at intervals of 0.09 seconds, providing
essential data for solar observation and magnetic field analysis.

As part of this study, we specifically narrowed our focus to the solar wind data (i.e., its speed,
temperature, and density) and the components of the interplanetary magnetic field (i.e., the com-
ponents along X, Y, and Z, as well as the overall magnitude of the magnetic field). Consequently,
the only instruments we considered for this analysis are SWEPAM for the solar wind parameters
and MAG for the IMF components.

3.2.3 High-Resolution OMNIWeb

OMNIWeb ® is a WWW-based system that enables users to generate plots and access data
seamlessly, facilitating researchers in identifying trends and obtaining data efficiently (Mathews
and Towheed, 1995). It is updated regularly with new data and is widely used in the heliospheric
community (Papitashvili et al., 2014). Today, it contains two categories of spacecraft-interspersed,
near-Earth solar wind data according to the OMNI Website descriptions:

e Low resolution OMNI (LRO) is Hourly "Near-Earth" solar wind magnetic field and plasma
data, energetic proton fluxes (>1 to >60 MeV), and geomagnetic and solar activity indices.
There are Daily, 27-day, and Yearly resolution derived from hourly data also. All details
about that data descriptions and about the data access can be found at https://omniweb.
gsfc.nasa.gov/ow.html.

e High 1-min and 5-min resolution OMNI (HRO) : Solar wind magnetic field and plasma data
at Earth’s Bow Shock Nose, and geomagnetic activity indices. 5-min resolution derived
from 1-min data with added 5-min energetic proton fluxes. All details about high resolution
OMNI data descriptions and about data access can be found at https://omniweb.gsfc.n
asa.gov/ow_min.html

OMNI provides solar wind parameters at the Earth’s Bow Shock Nose (BSN) using measure-
ments from L1 King and Papitashvili (2006). To do that, it combines and propagates data from
different spacecraft such as ACE, Wind, IMP 8, and Geotail, to the Earth’s bow shock nose. To
shift the data, it considers the magnetic field "frozen" in the plasma. The assumption made is that
solar wind magnetic field values observed by a spacecraft at a particular time and location form a
planar surface (phase front) that moves along straight wave fronts at the plasma velocity between
L1 and the BSN. The Earth’s orbital motion around the Sun is also taken into account. This is used

8. https://omniweb.gsfc.nasa.gov/
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to calculate the time difference between when an parameter is observed at its original location (L1)
and when it arrives at the target location (BSN). This propagation time is determined through the
formula given in Equation 3.1 (King and Papitashvili, 2006), where 7 represents the wave front
normal, and Ry, Ro indicate the positions of the upstream measuring satellite and the bow shock
nose, while V denotes the plasma velocity.

i (Ra— Ro)
iV

In this context, we are only interested in high-resolution data. As we’ll look into the data

analysis, some difficulties arise with ACE satellite data, which led us to consider the data from

OMNIWeb only. However, OMNI high resolution data also face some difficulties and limitations
that will be explained.

At = 3.1)

3.3 Data Analysis & Preprocessing

3.3.1 ACE

To begin with, we’ll delve into the data analysis of the ACE satellite. This is because the in-
depth analysis carried out in the article Bouriat et al. (2022), which follows, sets the groundwork
for sound data analysis practices, and its conclusions will be further utilized in the subsequent
sections.

In the paper, we present an analysis of the Level-2 ACE SWEPAM and MAG measurements
from 1998 to 2021 by the ACE Science Center. The study focuses on the challenges and potential
issues encountered in this dataset, widely used within the Space Weather community. The paper
addresses the data’s quality and the impact it has on artificial intelligence models, exploring is-
sues like non-uniform distributions in histograms, data reproducibility, rounding errors, missing
values, and the presence of non-linear relationships. The findings provide valuable insights and
offer suggestions to overcome these challenges, enabling the dataset’s effective usage despite its
complexities. The objective behind such paper is also to give an overview on how a data analysis
should be conducted.
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All artificial intelligence models today require preprocessed and cleaned data
to work properly. This crucial step depends on the quality of the data analysis
being done. The Space Weather community increased its use of Al in the past
few years, but a thorough data analysis addressing all the potential issues is
not always performed beforehand. Here is an analysis of a largely used dataset:
Level-2 Advanced Composition Explorer's SWEPAM and MAG measurements
from 1998 to 2021 by the ACE Science Center. This work contains guidelines
and highlights issues in the ACE data that are likely to be found in other
space weather datasets: missing values, inconsistency in distributions, hidden
information in statistics, etc. Amongst all specificities of this data, the following
can seriously impact the use of algorithms:

Histograms are not uniform distributions at all, but sometime Gaussian or
Laplacian. Algorithms will be inconsistent in the learning samples as some rare
cases will be underrepresented. Gaussian distributions could be overly brought
by Gaussian noise from measurements and the signal-to-noise ratio is difficult
to estimate.

Models will not be reproducible from year to year due to high changes in
histograms over time. This high dependence on the solar cycle suggests that
one should have at least 11 consecutive years of data to train the algorithm.

Rounding of ion temperatures values to different orders of magnitude
throughout the data, (probably due to a fixed number of bits on which
measurements are coded) will bias the model by wrongly over-representing
or under-representing some values.

There is an extensive number of missing values (e.g., 41.59% for ion
density) that cannot be implemented without pre-processing. Each possible
pre-processing is different and subjective depending on one's underlying
objectives

A linear model will not be able to accurately model the data.
Our linear analysis (e.g., PCA), struggles to explain the data and their
relationships. However, non-linear relationships between data seem to exist.

01 frontiersin.org
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Data seem cyclic: we witness the apparition of the solar cycle and the
synodic rotation period of the Sun when looking at autocorrelations.

Some suggestions are given to address the issues described to enable
usage of the dataset despite these challenges.

KEYWORDS

data analysis, solar wind, MAG, SWEPAM, machine learning, ACE

1 Introduction

The space weather community aims to understand and
quantify the associated threats, mitigate them, and in the best
cases, prevent them altogether. Recently, Daglis et al. (2020)
detailed a new scientific program of the Scientific Committee
on Solar-Terrestrial Physics (COSTEP) called PRESTO, for
Predictability of the variable Solar-Terrestrial coupling. Such
a study highlighted the remaining questions surrounding the
understanding of the Sun-Earth coupling. Among these open
questions, we can find:

e How do various solar wind conditions (e.g., IMF
components, speed, density, level of turbulence) and
different large-scale drivers control the coupling efficiency
and the energy/mass transfer from the solar wind to the
magnetosphere?

e How do solar wind conditions control the occurrence
frequency and location of different magnetospheric plasma
waves?

the
wind as it is indeed one of the key issues in the

These questions emphasize role of the solar
predictability of the Earth space environment. Studies to
better understand both solar wind and the interplanetary
magnetic field using coordinated space- and ground-
based data along with models are of essential importance.
Recently, the emergence of machine learning algorithms in
space weather Camporeale etal. (2018), Camporeale (2019),
Camporeale (2020) appeared as one of the most promising
solutions to nowcast and forecast phenomena in space weather.
More and more papers using machine learning, and especially
deep learning, are published in the field of space weather
Reiss et al. (2021), Zewdie etal. (2021), Stumpo et al. (2021),
Reep and Barnes (2021).

Initiated in 2018, a Research Coordination Network (RCN)
supported by the National Science Foundation (NSF) named
“Towards Integration of Heliophysics Data, Modelling, and
Analysis Tools” (@HDMIEC) planned to make progress in
the understanding of physical mechanisms in the Sun and
on modelling and the data accessibility and analysis. In

this regard, workshops, and discussions around the topic
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of Machine Learning in Space Weather were held and the
opinion of the community was gathered. Several outcomes
from the Q&A sessions are worth to be noticed from
Nita et al. (2020):

Half of the attendees (46.7%) agreed that the heliophysics
community does not even have a fair understanding of
machine learning capabilities and limitations.

e There was a consensus that cooperation between ML and
heliophysics does not exist.

e ML methods are more successful regarding the Big
Data environment behind heliophysics than physics-
based methods. But there is no consensus around which
areas could ML methods outperform physics-based
ones.

o The overwhelming majority of attendees strongly agreed

(73.3%) that there is a need to combine physics-based and

ML models.

Most of the attendees did not feel that the ML was a “bubble”

ready to burst.

In this paper, we decided to discuss the use of solar wind
data in the context of artificial intelligence. Firstly, because the
solar wind is a central data as seen through PRESTO. Secondly,
because most of the space weather community is not so familiar
with AT and its good practices but seems ready to use it more in
the future Nita et al. (2020). Hence, we present here a complete
data analysis of the ACE solar wind and IMF measurements, an
essential and largely used data when forecasting on-Earth events,
even today (Myagkova et al. (2020), Wintoft et al. (2015), etc.).
While we will not expand on this in this paper, it is interesting
to notice that a lot of studies use the NASAs OMNIWeb dataset
(see https://omniweb.gsfc.nasa.gov/html/ow_data.html) such as
Wihayati et al. (2021) or Gombosietal. (2018) for instance.
High-Resolution OMNIWeb data are made of ACE, IMP 8,
Wind and Geotail satellites data gathered and time-shifted to
the Bow Shock Nose. Although they are really interesting data,
we did not want to add here any complexity through the
fact that this time-shifting was based on several asumptions
and needed an intercalibration between satellites. This data
preparation is largely documented on OMNIWeb (https://
omniweb.gsfc.nasa.gov/html/HROdocum.html).
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These kinds of analyses are “required to correct for scattering,
baselines changes, peak shifts, noises, missing values and several
other artefacts so that the “true” relevant underlying structure
can be highlighted and/or, if required, the property of interest
can be predicted correctly” Mishra et al. (2020). The chosen
data go from 1998 to 2021, including a large part of the 23rd
and the full 24th solar cycles (for a schematic view, see the
Supplementary Figure S1, showing the Solar radio flux index
at 10.7 cm, a good representation of the solar activity). The
objective of this paper is to extract all possible useful information
that can be found in solar wind data and highlight the issues
that could arise when applying machine learning algorithms and
techniques.

Before diving into the subject, it is worth noticing that
impressive work has been done by Smith et al. (2022) on a similar
topic. Their paper consists of an analysis of the quality and
continuity of the data that are available in Near-Real-Time from
the Advanced Composition Explorer and Deep Space Climate
Observatory (DSCOVR) spacecraft. Part five (Discussion
and Conclusion) of our work details how our two studies
differ.

2 A quick introduction to machine
learning concepts

In order to better understand the data analysis presented
here, we first need to quickly introduce some concepts in
Machine Learning. According to Oxford Dictionary, Machine
Learning is “the use and development of computer systems
that are able to learn and adapt without following explicit
instructions, by using algorithms and statistical models to
The
products include models, forecasts, identification of patterns,

analyse and draw inferences from patterns in data’.

anomalies, or even relationships among data. Machine learning
is usually described through two categories of algorithms:
supervised learning and unsupervised learning (although it
exists a wealky-supervised algorithm that embraces both
ideas).

e Supervised learning LeCun et al. (2015) includes regression
algorithms and classification algorithms. The first aims at
discovering connections between input and output data
and is often employed to approximate functions or predict
future values of continuous functions. It comprises linear
regressions, decision trees, most of neural networks, and
ensemble methods, among others. The second aims at
mapping input data to classes and is therefore usually
employed to classify data (e.g., True/False problems). It
includes support vector machines (SVM), discriminant
analysis, naive Bayes classifiers, and K-nearest neighbour,
among others. Such algorithms are called supervised because
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they require to be fed examples of output data to
train.
Storrs et al. (2021)  includes

clustering algorithms, which group data together. Clustering

e Unsupervised Learning

algorithms map input data to a set of categories initially
identified by the system (e.g., Gaussian Mixture Model,
K-mean). They are referred to as unsupervised because
one does not know their output. A simple example is the
grouping of customer profiles, where the final quantity of
groups is unknown at first.

The procedure is often the same: access, scrap, analyse and
pre-process the data (format, missing values, etc.), choose and
compute the features that will be used for the model and train
the model thanks to a loss function taking or not the label into
account (subjective choice from the user). We then iterate the last
three steps to find the best model. As introduced in this paper, the
key and most time-consuming parts are the data analysis and the
pre-processing, as we need to build a scalable and efficient ready-
to-use dataset to answer a given problem. The pre-process ends
with a split of our data into three groups:

o The train set: a dataset that will be used by our algorithm to
train itself.

o The validation set: a dataset used by the algorithm to test
itself. The accuracy of the model on this dataset allows the
user to see how good it is at predicting, how fast and how
well it is training and allows him to make some changes
accordingly.

e The test set: a dataset that will never be used by the
user and the model until the very last moment. The user
applies his trained and ready-to-use model to this dataset to
ultimately know the final accuracy of his model and to avoid
a human/user bias from hyperparameter tuning.

Finally, it is worth noticing that the train and validation
sets have to be “well-balanced” This means that all possible
cases should appear in both datasets and, ideally, in the same
quantities. A model will easily get used to recurrent cases. If we
only have one or two samples of fast solar wind in our train set,
and thousands of slow solar wind samples, the model will not be
able to accurately predict fast-solar wind cases. One possibility to
address this issue is to perform what we call data augmentation,
but we will not expand it here Shorten and Khoshgoftaar (2019),
Chen et al. (2020).

3 Data description
The Advanced Composition Explorer (ACE) satellite is

located in the Lagrange point 1 (L1), a stable point in space,
between the Earth and the Sun, where the gravitational attraction
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from both bodies and the centrifugal force all balance each other.
Satellites at this location are at the front line to see phenomena
coming from the Sun.

ACE Solar Wind Data are Level-2 Real-Time Solar Wind
(RTSW) data. “Level 2” means that raw data from the
instruments have been processed by the instrument teams.
According to the Ace Science Center Level 2, it includes such
operations as calibration, organization into energy and time bins,
or application of ancillary data. The frequency of measurements
for instruments MAG (Magnetometer) and SWEPAM (Solar
Wind Electron Proton Alpha Monitor) are respectively 16-s
and 64-s, from 1998 to 2020. The data have been gathered
from the following link: srl. caltech.edu/ACE/ASC/level2/where
they are considered to be official and verified'. A lot of
research needing solar wind data also uses OMNIWeb 1-min and
5-min solar wind datasets mathematically time-shifted from the
Lagrange one point to the Earth’s bow shock nose King and
Papitashvili (2006). Choosing these manually propagated data as
input to nowcast or forecast near-Earth data Shprits et al. (2019),
McGranaghan et al. (2021), Bentley et al. (2018) is a good idea
to prevent a machine-learning-made propagation which can be
subject to unidentified errors. However, as the point of this paper
is to highlight the dangers of using in situ data, it was more
relevant to take in situ solar wind values.

We focus on the data from two main instruments of the ACE
satellite:

e SWEPAM McComas et al. (1998), for Solar Wind Electron,
Proton and Alpha Monitor measures rates of electron and
ion flows with two distinct electrostatic analyzers with fan-
shaped fields of view that use the spacecraft’s rotation to
observe in all directions. The first one observes electrons in
the 1eV-1.35keV energy range and the second one ions
in the 0.26-36 keV energy range. For this instrument, we
only focus on ion data, spanning 23 years from 1998 to 2020
with a 64-s resolution. This corresponds to 11, 299, 710
measurements.

e MAG, for Magnetic Field Monitor, consists of a
set of twin sensors (triaxial fluxgate magnetometers,
Stone et al. (1998)) measuring the three components of the
interplanetary magnetic field at L1. For this instrument, we
have 25 years of 16-s data from 1997 to 2021. We removed
the years 1997 and 2021 to have the same time range as
the SWEPAM instrument. In the end, we have 45, 365,
393 data points for this instrument. For the first part of
our analysis, we decided to subsample the dataset every
64 s. With both years removed, we obtain 11, 341, 349
measurements. However, the corresponding times of each

1 A special thanks to Andrew Davis from the ACE Science Center for his
answers and advice on the use of data
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sample do not correspond to SWEPAM’s ones, and another
post-process (presented further) had to be done to compare
data between the two instruments.

Here are the analyzed in situ measurements and their unit:

e IMF X, Y and Z-component, GSE coordinates [nT]
e Solar wind proton density [em™]

e Solar wind proton speed [km.s™]

e Solar wind ion temperature [K]

For the interplanetary magnetic field, X, Y and Z-component
are in the GSE (Geocentric Solar Ecliptic) coordinates instead of
the GSM. By definition Russell (1971) the X-axis points from the
Earth towards the Sun, the Y-axis is chosen to be in the ecliptic
plane opposing the planetary motion, and the Z-axis is parallel
to the ecliptic pole. This system has been chosen instead of GSM
because the aberration of the solar wind due to the orbital motion
of Earth around the Sun representing a 30 km/s vector oriented
in the minus Y direction axis is easier to remove Russell (1971).
According to Russell (1971), GSE coordinates have been widely
used to display satellite trajectories, interplanetary magnetic field
observations, and solar wind velocity data.

4 Data analysis

In this part, we present the full analysis along with related
conclusions.

e In the first part, statistical distributions of the data are
plotted and explained, and every variable will be looked at
independently of others. In all the datasets, there are some
missing values that perturb the statistics computations. We
removed all of them in this first part.

e The second part is an example of how to handle the
aforementioned missing and extreme values.

o The third part will study the classical linear relationships
between the different variables. Aside from being important
to better understand our data, it is worth reminding
that too many intercorrelated input features may give
redundant information to an Al algorithm and then lower its
performance. The topic of interdependencies in solar wind
data has already been looked at in the literature (e.g., in
Bentley et al. (2018)) but will be done here in the light of
neural networks and deep learning.

4.1 Linear analysis of the IMF, and
Plasma’s parameters

Before studying neural networks, it is important to begin
with a simple linear analysis. Theses analysis allow to reveal
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TABLE 1 Mean, median, 0.005th and 99.995th percentile from ACE MAG and SWEPAM data.

10.3389/fspas.2022.980759

Variables Mean Median 0.005th percentile 99.995th percentile % Of missing data
Bx (GSE) [nT] 6.93x 1072 8.4x1072 -36.6 255 0.128

By (GSE) [nT] 2.98x 1072 ~9.00x 1073 -30.7 38.7 0.128

Bz (GSE) [nT] 9.34x 1073 2.20% 1072 —43.5 32.3 0.128

Bt (GSE) [nT] 5.76 5.04 0.32 545 0.128

Proton density [p/cc] 5.88 4.54 0.1 80.0 41.59

Proton speed [km/s] 430 % 102 4.08 x 102 2.38x 102 1.03x10° 6.80

Ton temperature [K] 9.20x 10* 7.05x 10* 2.84x10° 1.00 x 10° 20.10

some important information and features about data with simple
computations which will help you save a lot of time during the
deep learning study.

Observing various parameters of the Solar Wind and the
interplanetary field gives us a good insight into their nature. The
first step is to look at their histogram and statistical parameters
such as mean, median, maximum or the standard deviation,
globally, yearly and potentially in a shorter time period. Both
solar wind and the IMF are influenced by the solar activity which
evolves on 11-year cycles. Recall that all the statistics in this part
are computed on non-missing values only.

It is essential to understand how values can fluctuate, evolve,
or change in time when we are dealing with time series. The
following Table 1 highlights two interesting things: the great
number of missing values in SWEPAM data, and the large
distance between the 99.995th percentiles and mean values for Bt
and the Ton Temperature. Such spread values seem dangerous to
implement in a deep-learning algorithm without a pre-process.

Figure 1A shows the yearly standard deviation of the three
components of the IME It is a direct witness to the obvious the
dependencies of some of our parameters over the solar cycle
because it follows the global trend of the solar activity index F10.7
throughout the year. All possible figures to detect dependence of
distribution parameters over time have been plotted. Only some
of them are shwon in this paper.

Figure 1B is another example of how values can change
over time and shows that the evolution of the yearly average
temperature and speed of the solar wind already suggests a
dependence between the two. In other words, different periods
in our dataset imply different distributions depending on the
solar activity. Although it may seem obvious for a space weather
expert, it is information of prime importance for the data scientist
dealing with these datasets. Such observations suggest that the
solar activity in the name of F10.7 has to be part of the inputs as
we will have to know where we are in the solar cycle. Moreover,
this highlights the need to have at least one full solar cycle in our
training set to span all possible cases.

4.1.1 Histograms
Distributions are essential for the data scientist to
assess the information contained in a dataset. For instance,
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FIGURE 1

(A) Standard deviations per year of the three-components of the
interplanetary magnetic field (Bx, By, Bz) in GSE coordinates
compared to the mean per year of the solar radio flux at 10.7 cm
from NASA's OMNIWeb (omniweb.gsfc.nasa.gov/)—1998 to
2020. Values are not normalized here. (B) Mean of Proton
Density, Temperature, Speed and Solar Radio Index F10.7 per
year, from 1998 to 2020. All values are normalized (center 0 and
standard deviation 1) to plot them on the same scale.

under-represented values will have a more important high error
on average than most-represented values. Although a limited
number of plots are shown here, all histograms have been plotted
and analyzed.

4111 SWEPAM

Most of SWEPAM variables distributions (i.e., plasma
parameters) were close to lognormal distributions Burlaga and
Lazarus (2000). Hence, for clarity purposes and to enhance our
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phases of the solar activity. The maximum of the distribution (i.e., the most probable value) and median are also plotted on the two figures. The
white dotted lines are an approximation of the shape of the distribution during the ascending phase (2b), while the yellow dotted line represent
the potential contribution of the coronal-hole-origin plasma with a peak at 600 km st (pointed by the black arrow)

understanding, we also plot the distribution of the logarithm
applied to these varaibles.

Ion velocity is the only plasma parameter that differs from a
lognormal distribution. The most probable value is 364 km s™",
lower than its median value 408 kms™'. Most conclusions
from Veselovsky etal. (2010) still hold when adding all the
data until 2021. Although solar wind speed can reach values
such as 1,000 km s}, 94.2% of all values are contained in the
300 km s™* to 700 km s™! window. Moreover, 500 km s™! seems
to be a breaking point, suggesting that two different distributions
could overlap with a local maximum of around 600 kms™.
According to Burlaga and Lazarus (2000), this could be due to
corotating interactions regions where fast solar wind catches
up slow solar wind, when corotating streams from coronal
holes are numerous. As these phenomena appear more during
declining solar activity, we plotted distribution for 2002-2009,
2015-2020 (two cumulated declining phases of solar activity)
and distribution on the remaining dates (ascending phases). If
needed as a comparison, the full distribution can be observed in
the Supplementary Figure S2.

Figures 2A, B confirm a 600kms™ peak during the
declining phases of the solar activity, as suggested by Burlaga and
Lazarus (2000) with data from 1995 to 1998 (here confirmed with
new data from 1998 to 2020). If we approximate the distribution
of speed as lognormal, it then appears that the two declining
phases of the solar activity are adding a Gaussian distribution of
speed centered around 580-600 km s™'. This is confirmed when
looking at Figure 8 in Xu and Borovsky (2015). They classified
solar wind into four plasmas: coronal-hole-origin plasma,
streamer-belt-origin plasma, sector-reversal-region plasma, and
ejecta. We see in Figure 2A the coronal-hole-origin plasma
(black arrow). Let’s keep in mind that a lot of work is being done
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to have the solar wind classified (e.g., Camporeale et al. (2017)).
This information is of prime importance if we want to use the
solar wind to forecast other parameters.

Proton density follows a lognormal distribution with the
most probable value being 2.94 cm™ (Figures 3A, B). As seen
Figure 1B, this value is highly influenced by the solar cycle. The
peak of the density distribution is moving through our 23-years
period, roughly following the solar cycle (represented here by
F10.7 averaged each year).

Unlike Burlaga and Lazarus (2000), we do not observe
any double peak in our ion density distributions, and our
most probable value is far from their 8.0 cm™ value (our is
approximately 2.94 cm™). One can imagine this to be related to
the global decline in solar activity since solar cycle 22 (solar cycles
can be seen in the Supplementary Figure S1) but we do not have
a proper explanation. This suggests, again, that we should not use
less than 11 years of data to train our algorithm (ideally at least
three cycles).

Temperature is well approximated by a lognormal
distribution, and the most probable value is around 30,000 K.
The two distributions have a similar shape to the ones in Figure 3
(if needed, this can be seen in the Supplementary Figure S4 for
normal and logarithmic histograms). However, our computation
of the most probable value shows an offset to the right instead
of representing the peak of the distribution. This is one of the
major issues that we will have with SWEPAM data in general,
mentioned in Veselovsky et al. (2010): rounding of numbers is
performed to different orders, with different significant digits.
To highlight this issue, we plotted another histogram of the
ion temperature with a higher number of bins (1,000,000) and
zoomed on corresponding zones (Figure4). As an example,
when the temperature reaches 10,000K, the measures start to
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magnitude when rounding the measures.

be rounded every 1K (instead of every 0.1 K for values below
10,000 K). The same goes when reaching 100,000K, the measures
start to be rounded every 10 K. The distribution when taking the
logarithm values of the ion temperature is an even better view
of the “jumps” in scale. Although these changes are anecdotic in
most astrophysical applications, they are far from negligible in
the AI context. Such changes in scale multiply the amount of data
having identical values (as seen in Figure 4, where the maximum
is shifted to the right). Yet, a deep-learning algorithm will
wrongly interpret these values as being more probable and will
give them more importance during the training although they
are not supposed to be so (maximum probability of temperature
should stay around 30,000 K). As a consequence, the algorithm
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will only focus on the most-probable value and the others will
not be able to lead to coherent and correct results.

4112 MAG

Histograms of the X, Y, and Z-components of the IMF seem
close to Gaussian distributions. The norm of the IMF magnetic
field vector seems close to a lognormal distribution. All plots can
be found in the Supplementary Figures S5-58). Some observed
characteristics:

e X and Y-components could be interpreted as two

superposed Gaussian, with two different most probable
results each. X and Y components seem to have opposite
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values and are linked by the orientation of the IMF
when coming from the Sun (i.e., magnetic field lines
are either oriented towards or away from the Sun). In
addition, plotting the median of all values each year
for these components suggest also suggests a strong
relationship between the two, that should be considered
before implementing them as input. The yearly median of
both distributions seems to evolve in opposite directions
over time and this is in line with the investigation shown in
part 4.3. (report to part 4.3. for a better understanding but
this can still be checked Supplementary Figure S3).

o The Z-component of the IMF is strangely following a perfect
Gaussian curve with a center close to 0. Without any
additional information from the space weather scientific
community, one might assimilate the Z-component to a
white-noise signal i.e., consider Bz as random. However,
it is known (see for example Kivelson etal. (1995)) that
the Bz-component orientation is responsible for magnetic
reconnection at the front of the magnetosphere. When
pointing southward, the IMF can connect to the Earth’s
northward magnetic field, allowing plasma to enter the
dayside magnetosphere. When using ACE data to nowcast
or forecast possible impacts of solar phenomena on in-space
and on-ground systems, it is not possible to exclude the Bz-
component. In general, analyzing data to answer a specific
need using Machine Learning cannot be properly done
without including the physical systems and phenomena
responsible for the observations. The physics lying behind
the data has to be addressed and understood to avoid absurd
solutions and errors.

o Finally, the total IMF—B— distribution seems very close to
a Laplacian distribution.

As a conclusion on histograms:

e Data shown here cannot be put in the algorithm as such.
Distributions are everything but uniform and will lead to
unequal training over samples. A possible consequence is
having an algorithm incapable of dealing with rare cases
(tails of the Gaussian and Laplacian curves).

o Gaussian noise is inherent to instruments. It might be very
difficult (but useful) to evaluate the signal-to-noise ratio.
A possible consequence on the training loss curve is to
observe a steep drop followed by a flat trend, meaning that
the algorithm quickly trained on the information it has and
then started training on noise.

e Relation (linear or not) between data cannot be overlooked
(we investigate them in part 4.3.).

e Particular attention is required on data values, as shown by
the changes in the order of magnitude in the ion temperature
(which, furthermore, could not be seen without manually
increasing the number of bins).
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4.1.2 Autocorrelations

The autocorrelation function (ACF) gives the data analyst
indications on how future values are influenced by past values
in time series. It helps identify randomness or periodic patterns,
seasonality, and trends. When plotting ACF on the different
features here, no autocorrelation is noticed, except for two trends.

e IMF norm, X and Y-components reveal a 27-day periodicity,
corresponding either to the Carrington synodic rotation
period of the Sun or the Bartels Rotation Number. Solar
rotation varies with latitude, with a maximum of 38 days at
the poles and less than 25 days at the equator. In this context,
the synodic period is 27.2753 days Wilcox (1972), and the
Bartels Rotation Number is chosen to be exactly 27 days
Bartels (1934) (the number of apparent rotations of the Sun
as viewed from Earth and from L1 in our case).

o IMF norm also reveals the 11-year solar activity cycle.

e Density, temperature, and speed reveal the same two
periodicities.

Graphs do not bring enough information and will just appear
in the Supplementary Figures S9-S12 for the reader’s curiosity.
It is important to notice that the lack of a clear autocorrelation is
good news to apply machine learning technics. Time series data
tend to be autocorrelated by having consecutive data with quite
similar values. The risk when trying to forecast the next value is to
end up using a persistence model, where the algorithm just picks
the last value as being the best approximation for the next one.
This is avoided when we have almost no autocorrelation, which
is our case here.

4.2 Missing and extreme values

Missing and extreme values is a real struggle when working
on Al algorithms but are more than usual in the Space Weather
field. Table 1 also presents the percentages of missing data in
our dataset and Figure 5 represents through a black and white
image the missing values in our dataset. On the left side of
Figure 5 are the MAG measurements and on the right side are the
SWEPAM measurements. At a glance, we can see that the time
tags for missing values in the interplanetary magnetic field are the
same, meaning that the instrument measures the components of
the IMF altogether and that one missing value on a component
means missing values on all components.

What we noticed from MAG does not hold for SWEPAM.
Although most of the missing data happen at the same moment,
they are still not distributed in the exact same way. However, it
seems like when speed is missing, all of them are. This type of
visualization is easy to create, and very useful to make a first
opinion on how missing values are organized (in which variables,
around which year, efc.).
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FIGURE 5

Visualization of missing values (i.e., NaN—Not a Number) in the dataset. Each black and white column here represent all values of one variable
(see x-axis). Each line of pixels within these columns represent the presence (horizontal white lines) or absence (horizontal black lines) of values
for a given datetime (y-axis). All dataset is shown from first to last datetime, every 64 s. These maps help quickly visualize when in time are the

missing values and which parameter is the most affected
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FIGURE 6

Percentage of data that are missing in the SWEPAM measurements (i.e., proton speed, proton density, and proton temperature) per year, from

1998 to 2020

Finally, there are much more missing data in the SWEPAM
dataset than in the MAG one, and almost half of the proton
density data is missing: a very high amount that cannot be
ignored when dealing with AL Such high percentages require
that we take a closer look as done in Figure 6 (and, later, in
Table 2).

Data here are Level-2 data, meaning that a group of experts
analyzed them and kept reliable measures. Starting from
2009/2010, the amount of missing data is greatly increasing.
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This information seen in Figure 6 is confirmed when looking at
the data status update of the ACE Science Center on 23 October
2012:

“The SWEPAM observations, in particular the proton
density and to a lesser extent the temperature, became increasing
sparse starting in 2010 as the primary channel electron multiplier
(CEM) detectors have aged. [...] In response, the ACE science
team has developed and implemented, starting 23 Oct 2012,
an innovative mission operations concept that more frequently
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one missing data surrounded by non-missing values, size 3

TABLE 2 Size of the biggest gap (number of consecutive missing values in the data) and number of gaps having a certain size (e.g., size 1

consecutive missing data) in the X, Y and Z-components of the IMF, and in the solar wind density, speed and temperature.

# Gaps of size > 100 # Gaps of size > 1350

Size of biggest gap # Gaps of size 1 # Gaps of size 2 # Gaps of size 3 # Gaps of size > 10

Variable

52

R N

17
17
17
17

72

43

39
39
39
39

1075
1075
1075
1075

2255

Bx GSE
By GSE
Bz GSE
Bt GSE

72

43

2255

72

43

2255

72

43

2255

2700
286

19794 6378 7413

23214

299046
446233

75182
7007

Density

2418

6157
8217

Speed

416

1,616

5223

28534

413177

20037

Temperature

10

repoints the ACE spacecraft’s spin axis further away from the
Sun” (Skoug et al. (2012)).

This information is of high value for Machine Learning
scientists. As we saw, when working with an AI algorithm,
we split the data into a train, a validation, and a test dataset.
What is usually done in AI applied to Space Weather (and
even broader when dealing with time series) is to pick a
whole period (e.g., an entire year) as the validation or test
set McGranaghan etal. (2021). A random choice would be
dangerous as we might end up with a year with 81% of missing
values (e.g., 2010).

The next question to answer is how these missing values will
be processed. First, let’s check the gaps of consecutive missing
data and their size.

Table 2 shows the variety of gaps in our data. The biggest
gap in the SWEPAM instrument is made of 75,182 consecutive
missing data, approximately 55.6 consecutive days in the proton
density. The density also has 752 gaps longer than a day. The
longest gap in the speed is 5.2-day long, and the longest gap in the
temperature is almost 15-day long. They have respectively 41 and
416 gaps more than 24 h long. Once again, we confirm the issue
already seen for the density and temperature measurements:
more than a lot of missing data, there are a lot of consecutive
missing data.

Concerning the interplanetary magnetic field, this table also
goes in the same direction as Figure 5. It confirms that the
missing data are at the same time for all components of the
magnetic field: only four gaps longer than a day and the longest
gap is approximately 40-h long. Several processes exist to deal
with missing data. Here are some examples:

e Removing all the rows containing missing data. The main
advantage of this method is the robustness of the resulting
model. However, using this method usually also removes
some non-missing data. Here, the total loss of rows will
be based on the ion density’s data, as it has 41.51% of
missing data. It will result in a loss of almost four million
proton speed data and 2.4 million proton temperature data
points.

Imputing missing values (especially for time series) with
mean, median, last seen value, or through linear, spline
or other interpolations. Such methods are quite easy to
implement but might result in unplausible results. In
the following (Figures 10, 11), we applied the spline
interpolation (as seen in some literature concerning Al in
Space Weather - e.g., Gruet (2018)) on a few hours’ gaps
in our SWEPAM’s ion temperature data around November
2020.

Figure 7B represents Figure 7A with gaps filled with spline
interpolation. As expected, a spline interpolation cannot be used
when a gap is too large, it fills the dataset with values at different
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FIGURE 7

(A) SWEPAM's lon Temperature from the 16th of July to the 10th of September 2009. This period has been chosen to evaluate the efficiency of
using spline interpolation when we have large gaps in the data. (B) SWEPAM's lon Temperature from the 16th of July to the 10th of September
2009. Gaps seen in Figure 7A are now filled using a spline interpolation. On the right is a zoom on a particular period to highlight the large

divergence caused by the interpolation.

orders of magnitudes. The risk lies in the divergences such as the
one between 13 August and 20 August 2009, giving very high
values compared to the initial curve that now seems flat. Such
extreme values will highly disturb algorithms, especially neural
networks and can restrain them from learning. Even more, neural
networks will tend to give high importance to these values, that
were not even in our dataset at first.

However, it is efficient with smaller gaps in (around 10
to 15 missing values according to Andriambahoaka (2008)).
The gaps seen in Figure 8A between 28 August and 30
August 1998, are good examples on how efficient the spline
interpolation can be for small gaps. Figure 8B shows the result
when interpolating with spline.

It is essential to keep in mind this dependence on gaps’ sizes
when trying to impute values to missing data. The best way
to deal with it is to have a detailed analysis of missing data
(as we saw in Table 2, or in Figures 5, 6), and use the best
available method by first isolating characteristic gaps and
testing methods on them independently.
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e Finally, it is worth noticing that in astrophysics, gaps in
the data could be filled by using other instruments and
satellites that are measuring the same variables. In our case,
satellites such as DSCOVR, also located in L1, represent viable
solutions. However, inter-calibration between instruments will
then have to be double-checked and can become critical if not
considered.

As a conclusion on missing values:

e Missing data cannot be left aside and have to be looked at
and processed, especially when dealing with time series.

e An analysis of the missing data should at least include
percentages per variable, amount of missing data in time,
size and number of gaps, few plots along with the data. It
is advised to also consult the data suppliers and experts to
better understand the analysis.

While a large number of processes exist (e.g., removing
rows or interpolating), they are not equivalent, and their use
should depend on the aforementioned dataset analysis.
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FIGURE 8

(A) SWEPAM's lon Temperature from 28 August to 30 August
1998. This period has been chosen to evaluate the efficiency of
using spline interpolation when we have small (here
minutes-long) gaps in the data. We zoomed on two of them for
easier observation. (B) SWEPAM's lon Temperature from the 28th
of August to the 30th of August 1998. Gaps seen in Figure 8A
are now filled using a spline interpolation. We zoomed on the
same two periods for easier observation

4.3 Interdependencies between variables

After analyzing every data independently, we now focus on
comparing them together through three assessments:

o Two-dimensional statistical distributions
e Correlation matrices
e Principal Component Analysis

4.3.1 Two-dimensional statistical distributions

We analyzed the two-dimensional statistical distributions of
values for the logarithm of the solar wind’s speed, temperature,
and velocity. We are using the logarithm as an answer to the
lognormal distributions observed in part 4.1.1.1. Here are the
figures for speed and temperature (Figure 9A) and for speed
and density (Figure 9B). The distribution for temperature and
density did not highlight anything interesting.

These 2D statistical distributions highlighted well-known
results:

e Proton temperature increases with solar wind speed and

a linear correlation appears between the two (Figure 9A).
In 1986, this linear correlation has been approximated by
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FIGURE 9

(A) 2-D statistical distribution for logarithmic (base 10) values of
solar wind speed and logarithmic (base 10) values of solar wind
temperature. The two curves (respct. red and black) are the
empirical equations from Lopez and Freeman (1986)
(respectively for a solar wind speed smaller and greater than
500 km s’l). (B) 2-D statistical distribution for logarithmic (base
10) values of solar wind speed and logarithmic (base 10) values
of solar wind density. (C) 2-D statistical distribution for the X and
Y-components of the IMF [nT] from MAG data

Lopez and Freeman (1986) with a difference for speeds
above and below 500 km s™'. We verified the accuracy of
their following equations in the graph:

T=(0.77+0.021) V- (265 + 12.5) for V > 500km.s"* (1)

T%% = (0.031 +0.002) V — (4.39 £ 0.08) forV < 500km.s*  (2)

The first one appears in black in Figure 9A while the second

appears in red. It is interesting to notice that a model built in
1986 seems quite valid on these data from 1998 to December
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Matrices of correlation (A) coefficients for the IMF absolute value and its three components (from ACE's MAG instrument) and the three
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2020. During CMEs however, temperature is usually lower

Richardson and Cane (1995).

e Density and speed are well correlated. Fast solar wind

is usually less dense, and slow solar wind varies a lot
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Geiss et al. (1995). Recall that fast solar wind can catch up
slow solar wind and compress it creating what is called
corotating interaction regions Jian etal. (2006). This is a
known result but the corresponding figure is shown here
(Figure 9B)

Concerning MAG, the two-dimensional statistical
distribution for the X and Y-components of the IMF has two
maxima and shows the approximate 45° angle between the
IMF vector and the radial Sun-Earth direction. This angle
is the direct consequence of the characteristic Parker’s spiral
(first theoretically predicted by Chapman) flow of the solar
wind Parker, 1963; Kivelson et al. (1995). These two maxima
can be found in Figure 9C. Two-dimensional plots including
the Bz were not adding new information and are not shown
here.

4.3.2 Linear correlation matrices

Until now, we subsampled MAG data to obtain one data point
every 64 s. Now, to compare MAG and SWEPAM together, it
is important to have the same timestamp for every data. The
choice made was to keep SWEPAM data and its corresponding
timestamps and, for every data point of SWEPAM, take the
closest MAG 16sec-data point in time and change its timestamp
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to the SWEPAM’s one?. The result is a dataset of 11, 282,
160 data points, from the 04th of February 1998 to the 22nd
of December 2020. After removing all rows where data were
missing, we end up with 6,559,840 samples from which we
can compute the correlations and the corresponding p-values
matrices (Figure 10).

As expected, the correlations between the proton’s speed and
temperature, and between density and temperature (although
smaller) appear. Two small negative correlations (between
proton’s speed and density and between X and Y-components of
the IMF) also appear. Oddly enough, there is a high p-value for
the correlation coefficient between speed and the Z-component
of the IME, but the correlation is inexistent (Figure 10). Finally,
let’s recall that the correlation coefficient is none other than
the cosine of the angle between the two centered vectors and
that the cosine function is not linear. Hence, a 0.685 (our
higher correlation coefficient here) corresponds to a 46.76° angle
between the two vectors. In other words, no significant enough
correlation has been obtained here. From an Al point of view,
and without nonlinear pre-processing, this means that we want
to keep all the parameters as they might contain different relevant
information. But would it be possible to combine parameters
together to reduce the total amount of parameters needed? The
principal component analysis will answer this question.

4.3.3 Principal component analysis (PCA)

What is the idea behind the PCA? As an example, let’s assume
that we have a dataset made of p different variables and let’s
suppose that each observation is close to a specific n-dimension
hyperplane in R (n <p). The idea of the PCA is to find this
possible “best plane” (the plane such that the sum of the distances
of the points to that plane is the smallest). PCA then gives us
this new coordinate system (or affine space of dimension n)
and data are projected in it. Note that the distances between
observations in this new system best reflect the distances between
observations in the starting space R,,. PCA answers the problem
of finding the n-dimensional linear space which best represents
the observations in the sense that the orthogonal projection on
this space moves them as little as possible. In Al it is widely
used when preprocessing the data either to reduce the number of
features needed or to target the most relevant features in a given
dataset.

Following in Figure 11 is the PCA applied to our dataset
(IMF |B|, X, Y and Z-components, proton density, temperature,
and speed). In the output of the PCA are the principal
components, which are the vectors of the new coordinate
system. The first component is such that it contains the greatest

2 Special thanks to Pierre Porchet and his generous help in preparing this
massive dataset (processing 45 million data points for MAG and 11 million
for SWEPAM - respectively 6.3 and 2.6 Gigabytes of data).
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variance of some scalar projection of the data points on it.
For further understanding, a handmade example (for which
data have nothing to do with ours) can be seen in the
Supplementary Figure S13.

Hence, from Figure 11, it appears that the PCA does not
find any good coordinate system in which to project the data
points, justifying the use of more complex models for data
analysis and data processing (e.g., non-linear models, Hinton’s
t-distributed stochastic neighbour embedding—Van der Maaten
and Hinton (2008)). This can be seen in the quasi-linear
augmentation of the cumulative percentage of variance
explained. An ideal case would have been to have a major (90%)
percentage of the variance explained by the first three principal
components but almost all components here explain the same
amount of variance.

As a conclusion on dependencies between variables:

o There is a dependency between speed and temperature that
will need further observations.

There is a non-linear relationship between the X and the Y-
components of the IME. Hence, they cannot be considered
independently.

Most of the graphs did not show any linear dependency (this
will be checked further with correlation matrices) and hence
might imply the use of non-linear models. This has been
confirmed by the correlation matrix and the PCA.

5 How to use the data for Al

Once we observed and analyzed the data, we need to
preprocess it, which usually means:

e Choosing the final set of input features and labels. The
selection of variables to pass as input into the model is
essential. The model must be informed of the possible
relationships between inputs and outputs. Some information
might not be sufficient for the model to understand
these relationships and it is then highly recommended to
discuss the underlying objectives with experts from the
field. In astrophysics problematics, the physical relationships
between variables have to be used to construct the set
of features McGranaghan et al. (2021). However, too many
features carrying the same information might also impact
the performance of the model. It is better to avoid redundant
information Khalid et al. (2014). Intercorrelations and PCA
are quite useful to remove some unwanted features.
Moreover, the final samples will be built as a vector
containing all the input features and the label (labelled
data appear in supervised learning algorithms only) and,
in the case of time series, one has to choose the temporal
resolution for it (usually the resolution of the labels).
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Features with a lower resolution will have missing values
and features with a higher resolution will be transformed
(e.g., mean, max, standard deviation, etc.). Indeed, the
set of features can include transformed variables (e.g., the
square of the density). Of course, it might also contain
passed values of variables (e.g, the magnetic field B, and
the same magnetic field B 1 hour ago, or 1 day ago). In
this case, autocorrelations are useful to identify redundant
information in time. Overall, choosing the input features
will depend on our objectives (whether it is forecasting
or classifying for example) and our knowledge of the
underlying physical phenomena (depending on our aims,
the algorithm might find better solutions with the density
squared or with the past 3 h of magnetic field).

Handling the missing values. Null values are quite a
challenge as they are abundant in the space weather field.
Removing entire rows of data will result in significant
information loss, and we just saw that interpolation depends
on the sizes of gaps in the data. In our context, a good
response might be to find another satellite or data source
when talking with experts (e.g., DSCOVR) and fill the gaps
using interpolation with these new data points. If we do
not have other data sources, a compromise should be found
between removing and interpolating.

Standardizing or normalizing the data. We will not detail
here the differences between these two, but rescaling
the data is required for the model to compare inputs
together. It avoids placing too much emphasis on variables
with large values (e.g., speed would be considered more
important than density). The field of astrophysics also faces
observations with high variance and a large number of
outliers (defined as extreme values far from the initial
distribution, often thought to be generated by a different
mechanism-Hawkins (1980)). Outliers are particularly
problematic when located in the labels of the dataset. The
extent to which a label-outlier disrupts the training will be
discussed in a subsequent paper. One way to remove these
outliers is to remove entire samples where labels are behind
certain quantiles in their probability distribution. For
instance, McGranaghan et al. (2021) removed all samples
where the labels’ values were out of the 99.995th percentiles.
However, in space weather we are often concerned about
the extreme values since they pose the most risk. A user
must be able to differentiate between real anomalies and
extreme values that are accouting for extreme phenomenon
and treat them differently. The algorithm cannot distinguish
them by itself. Another possibility would be to do anomaly
detection (another field of Machine Learning) but, again,
it is impossible to assess the efficiency of the algorithm
without an expert able to differentiate anomalies and
relevant exteme values. Finally, a user could adapt the
loss function to account for physical phenomenon. Loss
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functions are functions allowing the algorithm to learn,
they are cost function Wang et al. (2022) such as the Mean
Squared Error function. The difficulty in adapting a loss
function is that one must very well understand the physics
behind the phenomena, but trying to understand these
phenomena is often the very point of using Al in the first
place.

6 Discussion and Conclusion

In the field of Space Weather, the use of Al is progressively
gaining importance. First mentions of machine learning
techniques or neural networks at the European Space Weather
Week appeared around 2011 and dedicated “Machine learning
and statistical inference techniques” sessions only appeared in
2016. In this context, proper understanding and pre-processing
of the data is central. Here, we decided to focus on ACE satellite
data as it has been widely used by the community and considered
a good indicator to forecast the near-Earth phenomena. Its
location (L1) and measurements (IMF, solar wind parameters
and particle fluxes) made it the perfect candidate for our study.
Obviously, the methods presented here have to be adjusted
depending on the dataset and one’s objectives. Concerning our
dataset, the conclusions are the following:

e Some parameter distributions are well approximated by
Gaussian distributions while others are closer to lognormal
laws. As said in Veselovsky etal. (2010) lognormal laws
can testify of “multiple multiplicative transformations of
local characteristics at intermitting random intensifications
and attenuations of waves, compression and rarefaction of
irregularities in turbulent processes of transporting mass,
energy, and momentum on the Sun and in the heliosphere”
Overall, histograms are not uniform distributions at all. If
we use data as such, algorithms will perform well on more
frequent samples and poorly on rare cases. For example,
if the purpose is to forecast events related to very fast
and dangerous solar winds, our algorithm will struggle
to obtain anything interesting. Moreover, it is important
to keep in mind the possible noise in our measurements.
The signal-to-noise ratio seems difficult to estimate here
and the interesting information may be hidden in noisy
data.

Histograms are not steady and change from year to year,

maybe due to dependence to the solar cycle. This means
that a model built on a single (or limited number of) year(s)
might not be reproducible and usable in the future. At best,
one should know the origin of such changes. In any case,
the training set has to be well-balanced and has to include
several different years of data (e.g., both ascending and
descending phases of the solar cycle).
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e We must pay special attention to rounded measurements
when there are changes in the order of magnitude within the
data, as seen with the ion temperature data. The consequence
could be an over-attention of the algorithm on higher values
as they would appear more frequent. Two possible solutions
here: either round all the data to the highest order of
magnitude, or artificially re-distribute values following the
closest Gaussian distribution (when looking at the logarithm
of proton temperature).

o The number of missing values in our dataset is significant
and has to be addressed (e.g., 41.59% of proton density data
missing). For the analysis, we removed the corresponding
samples, but it is not a solution for the training when
the number of missing values is very high. The best
solution here would be to use DSCOVR data. Either way,
when filling missing data, sizes of gaps have to be looked
at to choose a corresponding interpolation method for
instance.

e Even if we noticed the well-known linear relationship
between speed and temperature of the solar wind, a linear
model might not be enough to accurately model the data.
It seems that non-linear relationships between data exist
(e.g., X-component and Y-component of the interplanetary
magnetic field). PCA, correlation matrix and 2-D statistical
distributions suggest that all parameters should be kept and
that non-linear models should be preferred.

e Overall, some cycles appear in the dataset. Proton speed
seems highly dependent on the solar cycle and the
synodic rotation period of the Sun appears in most of
the autocorrelations. We advise having several solar cycles
included in the training set to avoid biases. Solar cycle could
also be part of our input features through the solar radio flux
at 10.7 cm or the sunspots number.

As mentioned in the introduction, Smith et al. (2022) study
is very complementary to ours. The differences lie in the methods
and data chosen.

e First, Smith et al. (2022) take into account both ACE and
DSCOVR data while we only focused on level-2 ACE data.

o They compare together Near-Real-Time (NRT) raw data to
the same data post-processed by the scientific community.
On our side, we do not assess the quality and relevance of
raw data as we considered level-2 data as the entry point of
any Al study in this field. Smith et al. (2022) indeed show
that the NRT values are subject to short-term variability and
anomalous values, confirming our choice.

Smith et al. (2022)

compare NRT and scientific data. They draw some

e Concerning missing values, again

conclusions about the amount data gaps, but we go slightly

beyond in Table 2 and through the testing of filling methods.
However, their analysis on windowed data validity (part
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3.2.2.) is very interesting. Indeed, some Al algorithms need
windows of consecutive data (e.g., Temporal Convolutional
Network) to learn properly. Here, as shown in their study:
“if 2 hours (120 min) of continuous input are required
then [...
Missing values is then an even bigger problem and it

] approximately 1% of plasma data are available”

is required to choose a method to deal with missing
values.

e Finally, concerning autocorrelations, the difference lies in
the use of data. Smith et al. (2022) do autocorrelations on
NRT data and only on 1 h-long windows of consecutive data
without missing values. On our side, we do autocorrelations
on level-2 ACE data and we take all the data as input and
omit the computation for missing values.

Data analysis goes hand in hand with the field’s expertise.
Some of the solutions suggested here will not be ideal depending
on one’s objectives and the conclusions one might have when
looking only at the statistics could also be wrong. As an
example, even if Gaussian distributions are often associated
with random processes, we know that the mechanisms lying
behind the values of the IMF and solar wind are everything but
random. We also know that very fast and powerful CMEs can
saturate instruments and create missing values, hence changing
how we would consider replacing them. Knowing how AI
algorithms work can give us clues on what to focus on when
analyzing a dataset and where a problem might arise. However,
it is the understanding of these data and a space weather
expertise together that will allow us to favor one solution over
another.

Data availability statement

Publicly available datasets were analyzed in this study. This
data can be found here: https://izwl.caltech.edu/ACE/ASC/
level2/.

Author contributions

SB: Conceived and designed the analysis; Collected
and organized the data; Contributed data or analysis tools;
Contributed astrophysics analysis; Performed the analysis
and created graphs; Wrote the paper PV: Contributed to the
data science part of the analysis; Conceived and designed the
analysis; Contributed data or analysis tools; Helped writing
paper; Contributed to the redaction with major corrections and
changes MB: Contributed to the astrophysics part of the analysis;
Corrected several parts of the manuscript JC: Correction and
guidance All authors contributed to manuscript revision, read,
and approved the submitted version.

frontiersin.org

171



Chapter 3. Problem Statement, Data Analysis & Preprocessing

Bouriat et al.

Acknowledgments

The authors would like to acknowledge the ACE Science
Center for providing the data and especially Andrew Davis for
answering our concerns. In addition, the authors would like to
thank Data Science Expert and the PNST (Programme National
Soleil-Terre). A special thanks to Pierre Porchet for his precious
help in understanding, processing, and drawing conclusions
from the data. Special thanks to Elisa Robert and Angélique
Woellflé for their support and expertise. The authors would
also like to thank SpaceAble for their support and expertise.
The company was not involved in the study design, collection,
analysis or interpretation of data.

Conflict of interest

Author SB was employed by SpaceAble.
The remaining authors declare that the research was
conducted in the absence of any commercial or financial

References

Andriambahoaka, Z. (2008). “Modélisation régionale du champ magnétique
terrestre et établissement de cartes magnétiques détaillées appliqués a Madagascar,”
(Strasbourg, France: Université Louis Pasteur). Ph.D. thesis.

Bartels, J. (1934). Twenty-seven day recurrences in terrestrial-
magnetic and solar activity, 1923-1933. J. Geophys. Res. 39 (3), 201-202a.
doi:10.1029/TE039i003p00201

Bentley, S., Watt, C., Owens, M., and Rae, I. (2018). ULF wave activity
in the magnetosphere: Resolving solar wind interdependencies to identify
driving mechanisms. J. Geophys. Res. Space Phys. 123 (4), 2745-2771.
doi:10.1002/2017JA024740

Burlaga, L., and Lazarus, A. (2000). Lognormal distributions and spectra of solar
wind plasma fluctuations: Wind 1995-1998. J. Geophys. Res. 105 (A2), 2357-2364.
doi:10.1029/1999JA900442

Camporeale, E., Care, A, and Borovsky, J. E. (2017). Classification of solar
wind with machine learning. J. Geophys. Res. Space Phys. 122 (11), 10-910.
doi:10.1002/2017JA024383

Camporeale, E., and S. O. C. of ML-Helio (2020). ML-Helio: An emerging
community at the intersection between heliophysics and machine learning. JGR.
Space Phys. 125 (2), €2019JA027502. doi:10.1029/2019JA027502

Camporeale, E. (2019). The challenge of machine learning in space
weather: Nowcasting and forecasting. Space weather. 17 (8), 1166-1207.
doi:10.1029/2018SW 002061

Camporeale, E., Wing, S., and Johnson, J. (2018). Machine learning techniques
for space weather. Amsterdam, Netherlands: Elsevier.

Chen, S., Dobriban, E., and Lee, J. H. (2020). A group-theoretic

framework for data augmentation. J. Mach. Learn. Res. 21 (1), 9885-9955.
do0i:10.48550/arXiv.1907.10905

Daglis, I, Chang, L., Dasso, S., Gopalswamy, N., and Khabarova, O. (2020).
Predictability of the variable solar-terrestrial coupling. Annales Geophysicae.
doi:10.5194/angeo-39-1013-2021

Geiss, J., Gloeckler, G., and Von Steiger, R. (1995). Origin of the solar wind from
composition data. Space Sci. Rev. 72 (1), 49-60. doi:10.1007/BF00768753

Gombosi, T. I, Chen, Y., Manchester, W., Zou, S., Hero, A. O., Landi, E.,
et al. (2018). Machine learning and the” holy grail” of space weather forecasting.
SM54A-02.

Frontiers in Astronomy and Space Sciences

17

10.3389/fspas.2022.980759

relationships that could be construed as a potential conflict of
interest.

Publisher’'s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The this
be found online at: https://www.frontiersin.org/articles/
10.3389/fspas.2022.980759/full#supplementary-material

Supplementary Material for article can

Gruet, M. (2018). “Intelligence artificielle et prévision de I'impact de lactivité
solaire sur lenvironnement magnétique terrestre,” (Toulouse, ISAE. Ph.D. thesis.

Hawkins, D. M. (1980). Identification of outliers. Berlin, Germany: Springer.

Jian, L., Russell, C., Luhmann, ], and Skoug, R. (2006). Properties of
stream interactions at one AU during 1995-2004. Sol. Phys. 239 (1), 337-392.
doi:10.1007/s11207-006-0132-3

Khalid, S., Khalil, T., and Nasreen, S. (2014). “A survey of feature selection and
feature extraction techniques in machine learning,” in Proceedings of the 2014
Science and Information Conference, London, UK, 27-29, Aug. 2014, 372-378.
doi:10.1109/SA1.2014.6918213

King, J., and Papitashvili, N. (2006). One min and 5-min solar wind data sets at
the Earth’s bow shock nose. Greenbelt, Md: NASA Goddard Space Flight Cent.

Kivelson, M. G., Kivelson, M. G., and Russell, C. T. (1995). Introduction to space
Pphysics. Cambrindge, United Kingdom: Cambridge University Press.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature 521 (7553),
436-444. doi:10.1038/nature14539

Lopez, R. E., and Freeman, J. W. (1986). Solar wind proton temperature-velocity
relationship. J. Geophys. Res. 91 (A2), 1701-1705. doi:10.1029/JA091iA02p01701

McComas, D., Bame, S., Barker, P, Feldman, W.,, Phillips, ., Riley, P, et al.
(1998). “Solar wind electron proton alpha monitor (SWEPAM) for the Advanced
Composition Explorer;” in The advanced composition explorer mission (Berlin,
Germany: Springer), 563-612. doi:10.1007/978-94-011-4762-020

McGranaghan, R. M., Ziegler, ., Bloch, T., Hatch, S., Camporeale, E., Lynch,
K., et al. (2021). Toward a next generation particle precipitation model: Mesoscale
prediction through machine learning (a case study and framework for progress).
Space weather. 19 (6), €2020SW002684. doi:10.1029/2020SW 002684

Mishra, P, Biancolillo, A., Roger, J. M., Marini, E, and Rutledge, D. N. (2020).
New data preprocessing trends based on ensemble of multiple preprocessing
techniques. TrAC Trends Anal. Chem. 132, 116045. doi:10.1016/j.trac.2020.
116045

Myagkova, I, Shirokii, V., Vladimirov, R., Barinov, O., and Dolenko, S. (2020).
“Comparative efficiency of prediction of relativistic electron flux in the near-earth
space using various machine learning methods,” in International conference on
neuroinformatics (Berlin, Germany: Springer), 222-227. doi:10.1007/978-3-030-
60577-325

frontiersin.org

172



3.3. Data Analysis & Preprocessing

Bouriat et al.

Nita, G., Georgoulis, M., Kitiashvili, I., Sadykov, V., and Camporeale, E.,
2020. Machine learning in heliophysics and space weather forecasting: A
white paper of findings and recommendations. arXiv preprint arXiv:2006.12224.
10.48550/arXiv.2006.12224.

Parker, E. N. (1963). The Solar-Flare Phenomenon and the Theory of
Reconnection and Annihiliation of Magnetic Fields. The Astrophysical Journal
Supplement Series 8, 177

Reep, J. W, and Barnes, W. T. (2021). Forecasting the remaining
duration of an ongoing solar flare. Space weather. 19 (10), e2021SW002754.
doi:10.1029/2021SW002754

Reiss, M. A., Mostl, C., Bailey, R. L., Riidisser, H. T., Amerstorfer, U. V.,
Amerstorfer, T., et al. (2021). Machine learning for predicting the Bz magnetic field
component from upstream in situ observations of solar coronal mass ejections.
Space weather. 19 (12), €2021SW002859. doi:10.1029/2021SW002859

Richardson, I, and Cane, H. (1995). Regions of abnormally low proton
temperature in the solar wind (1965-1991) and their association with ejecta. J.
Geophys. Res. 100 (A12), 23397-23412. doi:10.1029/95JA02684

Russell, C. T. (1971). Geophysical coordinate transformations. Cosm. Electrodyn.
2(2), 184-196.

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on image data
augmentation for deep learning. J. Big Data 6 (1), 60-48. doi:10.1186/s40537-019-
0197-0

Shprits, Y. Y, Vasile, R, and Zhelavskaya, I. S. (2019). Nowcasting and predicting

the K p index using historical values and real-time observations. Space weather. 17
(8), 1219-1229. d0i:10.1029/2018SW002141

Skoug, R., Mccomas, D., and Elliott, H. (2012). Effect of ACE spacecraft repointing
on SWEPAM calculated moments.

Smith, A., Forsyth, C., Rae, L, Garton, T., Jackman, C., Bakrania, M., et al.
(2022). On the considerations of using near real time data for space weather hazard
forecasting. Space weather. 20 (7), €2022SW003098. doi:10.1029/2022sw003098

Stone, E. C,, Frandsen, A., Mewaldt, R., Christian, E., Margolies, D., Ormes,
J., et al. (1998). The advanced composition explorer. Space Sci. Rev. 86 (1), 1-22.
doi:10.1023/A:1005082526237

Frontiers in Astronomy and Space Sciences

18

10.3389/fspas.2022.980759

Storrs, K. R, Anderson, B. L., and Fleming, R. W. (2021). Unsupervised learning
predicts human perception and misperception of gloss. Nat. Hum. Behav. 5 (10),
1402-1417. doi:10.1038/s41562-021-1097-6

Stumpo, M., Benella, S., Laurenza, M., Alberti, T., Consolini, G., and
Marcucci, M. E (2021). Open issues in statistical forecasting of solar proton
events: A machine learning perspective. Space weather. 19 (10), €2021SW002794.
doi:10.1029/2021SW 002794

Van der Maaten, L., and Hinton, G. (2008). Visualizing non-metric similarities
in multiple maps. Mach. Learn. 9 (11), 33-55. doi:10.1007/s10994-011-5273-4

Veselovsky, 1., Dmitriev, A., and Suvorova, A. (2010). Algebra and statistics of
the solar wind. Cosm. Res. 48 (2), 113-128. doi:10.1134/S0010952510020012

Wang, Q., Ma, Y., Zhao, K., and Tian, Y. (2022). A comprehensive survey of loss
functions in machine learning. Ann. Data Sci. 9 (2), 187-212. doi:10.1007/s40745-
020-00253-5

Wihayati, Purnomo, H. D., and Trihandaru, S, (2021). “Disturbance
storm time index prediction using long short-term memory machine
learning,” in 2021 4th International Conference of Computer and Informatics
Engineering (IC2IE), Depok, Indonesia, 14-15 Sep. 2021 (IEEE), 311-316.
doi:10.1109/IC2IE53219.2021.9649119

Wilcox, J. M. (1972). “Divers solar rotations,” in Cosmic plasma physics (Berlin,
Germany: Springer), 157-164. doi:10.1007/978-1-4615-6758-520

Wintoft, P., Wik, M., and Viljanen, A. (2015). Solar wind driven empirical
forecast models of the time derivative of the ground magnetic field. . Space Weather
Space Clim. 5, A7. d0i:10.1051/swsc/2015008

Xu, E, and Borovsky, J. E. (2015). A new four-plasma categorization
scheme for the solar wind. J. Geophys. Res. Space Phys. 120 (1), 70-100.
doi:10.1002/2014ja020412, Available at: https://agupubs.onlinelibrary.wiley.com/
d()i/pd[’/’l().l()()l/;’lil'1],-\1)2()112,

Zewdie, G. K., Valladares, C., Cohen, M. B,, Lary, D. J., Ramani, D., and Tsidu,
G. M. (2021). Data-Driven forecasting of low-latitude ionospheric total electron
content using the random forest and LSTM machine learning methods. Space
weather. 19 (6), e2020SW002639. doi:10.1029/2020SW 002639, Available at: https://
agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020SW002639.

frontiersin.org

173



Chapter 3. Problem Statement, Data Analysis & Preprocessing

To summarize the conclusion of our paper, proper data understanding and preprocessing are
crucial, and we focused here on ACE satellite data, known for forecasting near-Earth phenomena.
The conclusions about these ACE data are numerous: parameter distributions are not uniform;
histograms change over time, likely due to the solar cycle; attention must be paid to rounded mea-
surements to avoid bias; significant missing values require addressing; linear models may not be
sufficient, and non-linear relationships exist; cycles appear in the dataset, with proton speed highly
dependent on the solar cycle. Including multiple solar cycles in the training set is recommended
to avoid biases.

As a consequence of this analysis (and after several trials of applying Al) to the ACE satellite
data, it became evident that the challenges posed by the dataset necessitated a change in approach.
Due especially to the extensive number of missing values in regard of our deep learning approach,
we made the decision to focus solely on the OMNIWeb dataset for its better suitability and po-
tential for addressing these issues. Utilizing the OMNI data allowed us to proceed with greater
confidence in achieving meaningful results. However, as we will see in the following section,
OMNI web dataset also face some difficulties.

3.3.2 DMSP

Regarding our target data, the primary analyses and preprocessing that need to be performed
actually concern the raw physical data itself: Are there too many measurement errors and noise in
the data? Can it be quantified? Has the instrument remained reliable throughout all these years?
Do we have a solid understanding of its position? Are the instruments comparable and properly
intercalibrated? As it turns out, most of these analyses, along with appropriate data treatments to
make it more usable and reliable, were conducted by Redmon et al. (2017) when they created a
new database for precipitated auroral electrons and ions from DMSP. This database is considered
robust, highly reliable, and will be the one we use. Hence, in this section, we will start by giving a
brief overview of the work done by Redmon et al. (2017). Afterward, we will proceed to a concise
analysis of the data distributions and check for the presence of any outliers.

3.3.2.1 New DMSP database from Redmon et al. (2017)

Redmon et al. (2017) established a comprehensive public database featuring SSJ instrument
data onboard DMSP spacecraft. Spanning over 30 years, it includes data from DMSP missions
launched between 1982 and 2009 (F06 to F18). The database encompasses crucial information
on precipitating electrons and ions, encompassing original counts, calibrated differential fluxes
accounting for penetrating radiation, total kinetic energy flux, characteristic energy, and uncer-
tainty estimates. Additionally, precise ephemerides (spacecraft positions and orientations) are
provided after improved estimation. Accessible through the National Centers for Environmental
Information and the Coordinated Data Analysis Web (NCEI, CDAWeb), this database is poised
to facilitate diverse space science research, spanning from individual observatory investigations
to comprehensive system science studies. In their article, Redmon et al. (2017) provide their
ephemeris calculations, the calculations used to arrive at particle fluxes, and the known issues,
that we summarized here:

e Ephemeris: The ephemeris refers to the spacecraft’s position and orientation in three differ-
ent coordinate frames: Earth Centered Inertial (ECI) True of Date (TOD) Epoch, geographic
(GEO), and Altitude Adjusted Corrected Geomagnetic (AACGM). The authors employed
two methods to calculate the spacecraft’s ephemeris, which refers to its position and orienta-
tion in different coordinate frames. The first method involved using the Simplified General
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Perturbations (SGP, Vallado et al. (2006)) theory to propagate two line elements (TLE). The
second method interpolated ECITOD estimates from the NASA Space Physics Data Facility
(SPDF). The latter approach was their standard processing method and utilized an eight-
order interpolation to align with the timestamps of environmental measurements, resulting
in an accurate RMSE of less than 6 meters per axis. The authors then rotated the ECITOD
locations to the geographic (GEO) frame using the IDL. Astronomy User’s Library (IDLAs-
tro) "eci2geo" routine, followed by transforming GEO to AACGM latitude, longitude, and
magnetic local time (MLT) using the Super Dual Auroral Radar Network IDL. AACGM
library. A minor adjustment was made for the geocentric radius discrepancy between the
two calculators (6378.137 km in IDLAstro and 6371.2 km in AACGM). To account for the
lack of time-varying magnetic field coefficients in the version of AACGM used, the authors
linearly interpolated the AACGM estimates at the two nearest 5-year epochs onto the in-
strument timestamps. The ephemeris parameters provided in their data repository include
ECITOD in Cartesian coordinates (in kilometers), geographic latitude, longitude, geocen-
tric radius (in kilometers), and AACGM latitude, longitude, and local time. Limitations
include discrepancies between estimated and retrospectively computed ephemerides and
the lack of time-varying magnetic field coefficients in the AACGM version used. However,
the AACGM magnetic local time (MLT) and magnetic latitude (MLAT) are the coordinates
used in our study.

e Particle Fluxes: The authors used two methods to calculate particle fluxes from instrument
counts, also seen in Hardy et al. (2008). They adjusted the original observed (telemetered)
counts (0) by estimating and subtracting background counts (B) to account for contami-
nation by penetrating protons and electrons, obtaining corrected counts (C). O and B (and
hence, C) are considered Poisson distributed by the authors and hence compute the asso-
ciated 1 sigma uncertainty. The uncertainties in the computed fluxes arise mainly from
Poisson counting statistics and telemetry compression. The relative uncertainty in the mea-
surement of corrected counts is primarily due to Poisson uncertainty, with telemetry com-
pression playing a minor role. The uncertainties in the differential energy and number fluxes
are considered identical. Additionally, calibration uncertainty dominates the effective un-
certainty under significant particle flux, estimated to be approximately 20% for electrons
and 50% for ions. The total number and energy fluxes are obtained by integrating the dif-
ferential fluxes over energy. As we already said Section 3.2.1, the characteristic energy is
computed as the ratio of the total energy flux to the total number flux. The uncertainties are
smallest under significant auroral signal and increase dramatically outside the auroral zone
due to low count Poisson uncertainty.

e Known issues:

e On-orbit degradation factors for F6 and F7 cannot be estimated before 1987.

e The accuracy of the lowest energy channels is affected by ground calibration chal-
lenges and on-orbit spacecraft charging, which were not accounted for in their error
analysis.

e The low-energy ion detectors on F13 and F15 are suspected to be less sensitive than
originally planned, resulting in slightly higher uncertainties, which are considered in
the error analysis.

e In January 2000, F15’s low-energy ion detector became insensitive, further affecting
the data quality.
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3.3.2.2 Our database

The DMSP data we needed was directly obtained from NASA CDAWeb, accessible at: https:
//cdaweb.gsfc.nasa.gov/pub/data/dmsp/’. These data consisted of measurements from
the SSJ/4 and SSJ/5 instruments, taken every second, for each of the satellites FO6 to FO9 and
F12 to F18, in eV/cm?/sec/ster (using AACGM coordinates - Baker and Wing (1989); Shepherd
(2014)). In Section 3.3.4 of the paper Bouriat et al. (2023), Table 1 provides an overview of the
data availability based on years, instruments, and satellites. From the CDAWeb, we selected data
points with magnetic latitudes greater than 45° or less than -45°, focusing specifically on the polar
regions. The complete set of measurements amounted to 54.5 Gigabytes, comprising over 555

million lines of values '°.

To ensure better compatibility with ACE data, sampled every 64 seconds, or OMNI data, sam-
pled every minute, we needed to reduce the temporal resolution to one minute. We considered two
options: either subsampling the data to retain only one measurement per minute or averaging the
data at the minute level (median could also be an option). We opted for subsampling for two pri-
mary reasons: first, it preserved the original data integrity without introducing further alterations,
and second, it allowed us to compare our results with existing studies, particularly the work by
McGranaghan et al. (2021), who also followed this approach.

After eliminating missing data and subsampling the DMSP data, we obtained 7,121,301 mea-
surements of total electron energy flux for analysis. It is crucial to note that this dataset serves
as our target data. To create a supervised learning dataset for training our algorithm, we need to
associate these "labels" with corresponding input data (in our case, solar wind data or indices). As
a result, the final size of our dataset may be further reduced if there are missing input data during
the sample creation process.

3.3.2.3 Histograms and Characteristics

Understanding the distribution of our training data and making adjustments accordingly are
key steps in creating a quality model as we will see when analyzing the ACE dataset. Imbalanced
datasets are especially likely to occur when trying to predict something infrequent, which might be
the case for extreme events in our case (e.g., high-speed streams, CMEs). Rare or unusual events
in our datasets (e.g., eruptive events) will be harder to model than frequent, background events
(e.g., slow solar wind). However, regardless our domain, we always need to assess the distribution
of our target, here, the DMSP SSJ precipitating electron observations, upgraded by Redmon et al.
(2017). We will not spend too much time on this analysis as it has also been done by McGranaghan
et al. (2021).

During our analysis, we plotted the overall distribution as seen in Figure 3.6, along with the
distributions for each individual satellite. We also explored the distributions for each year, al-
though we don’t display them here to avoid clutter. Additionally, we examined the data distribu-
tion in the magnetic latitude and magnetic local time space. Here are several observations and
decisions made based on this analysis:

e As we can observe from the distribution, the data spreads over such a large range (in powers
of 10) that it is preferable to take the logarithm (base 10) of the flux data. The initial dis-
tribution exhibits heavy-tailed characteristics with a significant right-skew. Algorithms can

9. Last accessed: July 24, 2023
10. The number of measurement points (accounting for missing data in the CDAWeb dataset) were: 4,480,416 for
F06; 8,320,803 for FO7; 3,983,147 for FO8; 878,177 for F09; 5,891,846 for F12; 135,339,042 for F13; 46,907,479 for
F14; 109,423,643 for F15; 65,638,107 for F16; 91,348,090 for F17; 83,088,504 for F18
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Figure 3.6 — Histogram of the DMSP SSJ Electron total energy flux, from F06 to F18, after apply-
ing a base-10 logarithm.

be sensitive to such value distributions and may underperform if not properly normalized.
Therefore, we applied a base 10 logarithm to the data, resulting in the distribution shown in
Figure 3.6. This logarithmic transformation stabilizes the data variance and can improve the
model’s performance (Liitkepohl and Xu, 2012).

e The distribution is neither uniform nor Gaussian. As a result, it may pose a challenge for the
algorithm, which might initially try to approximate it with a normal distribution. To handle
this, we may need to adjust the loss function to account for extremely high values, and we
may also need to experiment with the number of epochs and network complexity to capture
the non-linear dependencies that seem to exist.

e By plotting the year-wise distributions of observations, we noticed a correlation between
the years and the position of the first peak in the double Gaussian distribution. As expected,
the first peak shifts to the left gradually between 2000 and 2010, and then gradually returns
to the right after 2010. This trend corresponds to the decline and growth phases of the solar
cycle (see Figure 3.7). This strong dependence between the distribution and the observed
period reinforces the idea of a relationship between our inputs and outputs (which we will
confirm in Section 3.3.4). To maintain dataset balance, we decided to remove data from the
green region in Figure 3.7. These data points do not belong to the main red period, are quite
sparse (with only a few months having scattered data), and may disproportionately represent
a specific solar cycle phase (specifically, the growth phase). Moreover, they account for only
2.8% of the entire dataset, and after some experimentation, we found that their absence did
not significantly impact the training quality. The dependence to the location in the solar
cycle implies that we should avoid isolating a single year of data in any of the datasets
(train, validation, or test).

o Since the data distribution in space (Figure 3.8) is not evenly distributed, we decided to com-
bine the polar regions. To achieve this, we simply took the absolute value of the magnetic
latitude for each measurement. It’s important to note that while this choice helps maintain
a sufficiently large dataset, it may not be ideal. Combining the polar regions could result in
certain effects, especially those related to the X and Y components of the IMF, canceling out
and becoming unobservable. For instance, negative Bx tends to cause stronger polar rain in
the northern hemisphere, while positive Bx does the same in the southern hemisphere (Fair-
field and Scudder, 1985; Newell et al., 2009; Yeager and Frank, 1976). Similar opposite
effects have been observed in the northern and southern lobes for By positive or negative
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(Baker et al., 1986; Gosling et al., 1985, 1986; Newell et al., 2009).

e As for the magnetic local time histogram (Figure 3.9), it illustrates the orbit followed by each
satellite, with the two main peaks consistently separated by 12 hours, corresponding to the
same two hours traversed in both poles. The graph shown here represents the contribution of
each satellite, with the final peak positions in the combined histogram being dominated by
F13, F17, and F18. Lastly, the magnetic latitude histogram of this Figure 3.10) displays two
peaks, representing the two latitudes most frequently covered by the satellite - one in the
northern hemisphere (around 75° MLAT) and the other in the southern hemisphere (around
-68° MLAT). The presented histogram combines both mentioned hemispheres. Figures 3.9
and 3.10 highlight the spatial bias in the DMSP measurements, which varies across differ-
ent satellites. This bias needs to be considered while modeling sparsely represented areas
and implies that we should avoid isolating a single satellite in any of the datasets (train,
validation, or test).
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Figure 3.7 — Solar cycle represented by Fio7 measures in solar flux units. The green region rep-
resents the measures by F06 to F09 in 1987 and 1988. The red region represents the measures by
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Figure 3.8 — 2D 24x24 polar grid plotting DMSP observational density with (a) the combined
north and south pole, (b) the south pole data only and (c) the north pole data.
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Figure 3.9 — Histogram of the Magnetic Local Time observations (in hours) for all satellites com-
bined (black) and separately (lineplots). Differences arise from the slightly different orbits of the
satellites, as well as their progressive shifts over time.
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3.3.2.4 Outliers

Outliers are data points that significantly deviate from the majority of the data points and can
skew statistical measures and affect the accuracy of predictive models. A first quick observation
of outliers involves plotting the data (in this case, its logarithm in base 10) over time (see Figure
3.11 were we plot the Electron Energy Flux for each satellite in time, separately). We can notice
the presence of horizontal patterns for the smaller flux values. These patterns may arise due to
the instrument’s resolution limitations, where it cannot detect very fine variations, resulting in
value rounding for the lower ranges. Notably, the positions of these patterns vary across satellites,
indicating differences between sensors. Additionally, even for the same satellite (e.g., F15), the
lower limit changes regularly. This might be due to regular recalibrations performed by operators,
as the measurements are plotted for each satellite over time.

DMSP SS) Electron Total Energy Flux per satellite

17

Wt TR

F17

Logm(EIectron Total Energy Flux)

Fo06
Fo7
FO8
FOQ | | | 1 |
F12 Index «10°

Figure 3.11 — DMSP SSJ data points ordered per satellite. Data values in logo(eV/cm?/sec/ster).

As we can see in Figure 3.11, many data points appear to be significantly higher than the "nor-
mal" range ("normal” based on visually inspecting the main area where the data is concentrated).
There don’t seem to be any outliers in the lower values, as expected based on the histogram. How-
ever, some very high and rare values appear to be unrealistic (McGranaghan et al., 2021), and they
could potentially cause issues for the algorithm. Several methods are available to handle these
outliers. Here are two examples:

e Using the z-score, a measure that indicates how many standard deviations a data point de-
viates from the mean of our dataset. This method, which also helps standardize datasets,
allows us to compare data points with each other.

X—H
(6

=

where U is the mean of our dataset, o is the standard deviation of the dataset, and x is the
observed data point. The z-score shows the "distance from the mean" in terms of the number
of standard deviations. By setting a threshold on the absolute value of the z-score, we can
identify data points that significantly deviate from the mean and consider them as outliers.

e Using the IQR (InterQuartile Range), a statistical measure of dispersion that provides in-
formation about the spread of the middle half of the data. It is calculated as the difference
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between the 75th percentile (Q3) and the 25th percentile (Q1) of the data. To identify out-
liers using the IQR method, a common approach is to define lower and upper thresholds,
generally considering data points below Q1 — 1.5 X IQR or above Q3+ 1.5 X IQR as outliers.
The values falling above and below this range represent approximately 13% each.

Both of these methods are commonly used and it appears empirically that the problematic
data points are those exceeding 14log10(eV/cm2 /sec), which represent less than 1% of the data.
Therefore, we chose to use the z-score approach, which simply involves removing data points
beyond a certain quantile threshold. After analysis, this threshold corresponds approximately to a
z-score of 4.7. This choice is also based on empirical evidence from McGranaghan et al. (2021),
as it corresponds to the 99.995th quantile, which, for us, is 1.4435 x 10'* eV/cm?/sec. Figure 3.12
shows the data points that were removed. This approach significantly reduces the number of lost
data points (only 356 out of 7,121,301).

Data Points above the 99.995th Quantile
T Y T

”.".-__.:-1‘-‘:'_ i At S - Data ]
LR Data above 99.995th Quantile|]

-t o W

Logm(EIectron Total Energy Flux)

Index «108

Figure 3.12 — DMSP SSJ data points in log,0(eV/cm?/sec/ster) ordered per satellite, and in time
as in Figure 3.11, with data points above the 99.995th quantile highlighted in red.

3.3.2.5 Uncertainties

Regarding the uncertainties in the DMSP data, the best that can be done today has been ad-
dressed in Redmon et al. (2017) and was mentioned in the section above. Essentially, at low fluxes
(counts), the estimated Signal-to-Noise Ratio (SNR) is dominated by Poisson statistics, and at
higher fluxes, it is influenced by overall instrument calibration estimates. However, this does not
fully account for other sources of uncertainties, such as telescope pointing, potential increased
noise due to on-orbit degradation, and geophysical variations.

An interesting study by Kilcommons et al. (2017) focused on magnetic field measurements
from DMSP. According to their findings, there are two main types of undesired fields in the
data: on-off jumps and a long-period baseline. On-off jumps occur due to intermittently oper-
ating high-current equipment on the spacecraft and can be corrected using an automatic algorithm
they developed. The long-period baseline is a slowly evolving, sinusoid-like variation caused by
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a combination of geophysical and instrumental effects. They address it using a process called
"MFIT," which fits polynomials to the baseline and subtracts them from the perturbations.

The text also mentions the challenge of quantifying the reliability of space-based observa-
tions and presents calibration efforts to reduce uncertainties. These efforts involve correcting
known sources of error, including core misalignment/non-orthogonality, scalar offset, and time
slips. Calibration against high-order models of the Earth’s main field significantly reduces aver-
age residuals between observed and model fields, thereby improving the accuracy and reliability
of the magnetometer data. These meticulous calibration efforts contribute to the overall reduction
of uncertainties in the measurements, ensuring more robust and reliable space-based observations.
All these considerations highlight the complexity of the datasets and the difficulty of dealing with
uncertainties. Note that each instrument has its own issues and requires tailored tools. We encour-
age the reader to

3.3.3 High-Resolution OMNIWeb

The primary source of errors in OMNI arises from the interaction of a slow solar wind stream
followed by a fast solar wind stream. OMNI tends to predict that the faster wave front will reach
the bow shock nose first, but do not take into account the compression phenomena that arise.
Vokhmyanin et al. (2019) conducted a detailed study to assess OMNI data quality (through the
Pearson correlation coefficient and the precision efficiency), specifically comparing it to solar
wind measurements from satellites (Geotail) passing the bow shock.

The article’s findings reveal that 42% of the data exhibit excellent agreement, 33% show rel-
atively good consistency, 10% exhibit the right trend but inaccurate absolute values, and 15% are
considered very poor data. Additionally, the study establishes a correlation between the satellite’s
distance from the Earth-Sun axis orbiting at L1 and the quality of the data.

Overall, authors identifyied several physical factors that can introduce errors in the database,
such as the size of the solar wind flow tube interacting with the magnetosphere and the evolution
of solar wind structures. Additionally, they find that data measured far from the Sun-Earth line are
often wrong, indicating that the database’s quality improves when spacecraft are closer to this line.

Here are all the variables from the HR-OMNIWeb dataset that we kept for our study. The
period :

e Year: Year of the data record.

e Day: Day of the year (1-365 or 366).

e Hour: Hour of the day (0-23).

e Minute: Minute of the hour (0-59 at the start of average).

e Bx, nT (GSE, GSM): Magnetic field component (X) in GSE and GSM coordinates.
e By, nT (GSE): Magnetic field component (Y) in GSE coordinates.

e Bz, nT (GSE): Magnetic field component (Z) in GSE coordinates.

e By, nT (GSM): Magnetic field component (Y) in GSM coordinates.

e Bz, nT (GSM): Magnetic field component (Z) in GSM coordinates.

o Flow speed, km/s: Solar wind flow speed in kilometers per second.

e Proton Density, n/cc: Proton density in particles per cubic centimeter.
e Flow pressure, nPa: Flow pressure in nanoPascal.

e AL-index, nT: AL-index in nanoTesla.
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e AU-index, nT: AU-index in nanoTesla.
e SYM/H index, nT: SYM/H index in nanoTesla.

The main ideas behind these choices are: minimizing the amount of inputs, to have the main
inputs used by McGranaghan et al. (2021) and to use variables that can be found when using the
ACE (or other L1-located) satellites. Beside the IMF, speed, density and pressure, we decided to
also take AL, AU (and by linearity, AE and AO) and the SYM/H index to account for geomagnetic
storms and substorms Vorobjev et al. (2013). However, as we will see, a lot of tests have been re-
alised without them. The idea behind is that if we obtain good results with only BSN’s data, this
will give us a small forecasting capability, equivalent to the delay between what is happening at
the BSN and the near-Earth environment.

As said before, we favored this data over the ACE dataset for several reasons: ACE dataset had
too many missing values, the OMNI dataset combines data from several other satellites, the "solar
wind observations at ACE are not a good indication of the solar wind reaching the Earth" (Ashour-
Abdalla et al., 2008). However, ultimately, our code should be able to use ACE (or other) datasets
allowing to avoid the debatable OMNIweb processing (King and Papitashvili, 2006; Vokhmyanin
et al., 2019) and to have an even larger delay between inputs and outputs, increasing the fore-
casting performance. For now, this choice remains subjective: the ACE dataset is free of heavy
process like OMNIweb’s one (and several satellites combined makes data inhomogeneous, which
makes the analysis much trickier), but taking ACE dataset implies that the model performs the
propagation.

However, it’s important to mention that for the IMF components, and the speed and density
of the solar wind, our conclusions remain consistent with those presented in Section 3.3.1. The
distributions exhibit similar shapes. As for the behavior of the solar wind pressure, no detailed
analysis uncovers any attributes that might have been overlooked after reviewing the speed and
density of the solar wind. Notably, the "ram" pressure is proportional to the product of density and
the square of speed. The observed distribution doesn’t reveal anomalies or additional insights that
challenge its application. It follows a log-normal pattern with a pronounced peak and an extensive
tail to the right. After applying a base 10 logarithm, this distribution becomes a clean Gaussian, a
transformation we employ for these three data sets in our study. The primary issue we addressed
with OMNI was the abundance of missing data, which has been significantly reduced compared
to ACE data.

Analyzing the OMNI data over the same timeframe as the DMSP data (from late 2000 to the
end of 2014), we found:

e For the X, Y, and Z components of the IMF in both GSM and GSE coordinates, 6.73% of
the data is missing, which translates to 495,557 missing data points out of 7,368,089.

e For the solar wind flow speed, 18.87% of the data is missing, or 1,390,458 missing data
points out of 7,368,089.

e The solar wind proton density is missing 18.87% of its data, again 1,390,458 data points out
of 7,368,089.

e The solar wind pressure has 18.41% of its data missing, or 1,356,399 missing data points
out of 7,368,089.

e AL, AU, and SYM/H datasets have no missing entries.

Given this analysis, we opted to implement an interpolation method to account for certain
missing data. This approach is inherent to the TCN’s operation and isn’t employed in a fully-
connected neural network. For the TCN, input data should be sequential time measurements
(in our case, 30-minute intervals, thus 30 data points, per parameter). A single missing data
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point in this series renders the entire sample unusable. Hence, one absent piece of data can ef-
fectively diminish the sample size by 30. During hyperparameter selection, one can opt for an
OMNI dataset where gaps (i.e., sequences of missing data) have been interpolated using a selected
method. It’s ideal to fill smaller gaps (1 to 4 data points) to maximize sample availability. How-
ever, there’s an increasing risk of inaccurate interpolation as the gap size expands (Bouriat et al.,
2022). While our code is adaptable and allows different interpolation methods, we consistently uti-
lized the Piecewise Cubic Hermite Interpolating Polynomial ("pchip") ''. This method guarantees
shape-preserving piecewise cubic interpolation (Yang and Huiyan, 1996). A cubic polynomial is a
polynomial of degree 3, hence its terms reach up to x>. Hermite polynomials are specialized types
that let us define both function values and derivatives at segment endpoints. This ensures smooth,
continuous curves, offering superior results, especially when interpolating data characteristics of
the solar wind. As a preparatory step for our research, we curated two datasets using this method,
filling gaps of size 1 (first set) and those up to size 4 (second set). The subsequent missing data
metrics are:

e For the X, Y, and Z components of the IMF in both GSM and GSE coordinates: from an
initial 6.73% missing data, it’s reduced to 5.30% with gaps of size 1 interpolated, and further
to 4.34% when gaps up to size 4 are interpolated.

e For the solar wind flow speed: from an initial 18.87% missing data, it’s reduced to 15.25%
with gaps of size 1 interpolated, and down to 9.08% when gaps up to size 4 are interpolated.

e For the solar wind proton density: similarly, from an initial 18.87% missing data, it drops to
15.25% with gaps of size 1 interpolated, and to 9.08% with gaps up to size 4 interpolated.

e For the solar wind pressure: from an initial 18.41% missing data, it decreases to 14.89%
with gaps of size 1 interpolated, and to 8.79% when interpolating gaps up to size 4.

The literature presents numerous intriguing interpolation methods for addressing gaps in solar
wind data (e.g., singular specturm analysis from Kondrashov et al. (2010) or the use of the Lomb-
Scargle periodogram from Hocke and Kidmpfer (2009)). While we opted for the simpler pchip
interpolation due to time constraints, a comprehensive exploration of these methods is warranted
for future stages of this project. Further investigation is essential to determine the most suitable
approach.

Extensive statistical analyses already exist on AL, AU and SYM/H (Amariutei and Ganushk-
ina, 2012; Bergin et al., 2023; Makarov, 2022; Nakamura et al., 2015; Pulkkinen et al., 2011;
Wanliss and Showalter, 2006) so we will not spend time on it. The only remark we can make on
the corresponding distributions (seen Figure 3.13) is that they should not represent difficulties like
the bimodal By or By or the complex DMSP SSJ distirbutions. AL and AU distributions both look
like log-normal distributions (with a right and left skewed distribution) and the SYM-H index has
an approximately normal distribution.

We will now perform an analysis of the relationship between both inputs and outputs, namely
OMNIWeb HRO and DMSP measurements, focusing only on the data that are in the interplanetary
medium (IMF, speed, density and pressure). It is very important for data scientists to be sure that
there is a causal effect between the two. Proving the existence of this causal effect is the purpose
of the next section.

3.3.4 Input-Output Relationship: Justification for Al Implementation

The proper identification and understanding of input-output relationships play an essential role
in ensuring accurate and meaningful analysis. Before delving into any Al-driven investigation, it
is essential to observe and comprehend the relationship between the input parameters and the

11. https://www.mathworks.com/help/matlab/ref/pchip.html
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Figure 3.13 — Histograms of SYM-H (nT), AL(nT) and AU (nT).

corresponding output, be it apparent to the human eye, suggested by domain experts, or inferred
through rigorous dataset testing. This subsection introduces our paper that addresses precisely this
fundamental aspect, focusing on the analysis of the relationship between Lagrange 1 solar wind
data and DMSP SSJ electron total energy flux.

In Chapter 1 of this PhD, evidence has been provided that there exists a correlation between
solar wind parameters and electron low-energy fluxes measured by DMSP in LEO on the magnetic
poles. However, acknowledging the significance of thoroughly understanding this relationship, the
present study endeavors to further investigate and expand on the identified link between solar wind
conditions and precipitated electron.

The paper shown below, entitled "Electron Aurora and Polar Rain dependencies on Solar Wind
Parameters" presents the findings of an extensive data analysis conducted on DMSP SSJ/4/5 data
with Dr. Simon Wing from John Hopkins University and Dr. Mathieu Barthélémy. The primary
objective of this investigation is to characterize the relationship between solar wind parameters,
including velocity, density, dynamic pressure, and Bz of the interplanetary magnetic field, and
the corresponding median of electron energy flux for each magnetic latitude-magnetic local time
(MLAT-MLT) pair. By examining this relationship, the study aims to shed light on the implica-
tions of high solar wind velocity, density, and pressure on electron energy flux variations, polar
rain energy fluxes, and oval shape.
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Abstract Data analysis was performed using 17 years of Defense Meteorological Satellite Program

SSJ/4/5 data to characterize the relations between the solar wind parameters and the electron low-energy

fluxes measured on both magnetic poles (magnetic latitude above 55°). Inputs are solar wind velocity, density,
dynamic pressure, and B, of the interplanetary magnetic field. The median of electron energy flux for each
MLAT-MLT pair has been computed for given values of solar wind condition parameters. Results highlight that
high velocity, density or pressure implies higher energy flux overall, higher polar rain energy fluxes, and wider
nightside oval. There seems to be a positive correlation between polar rain and solar wind density, contrary to a
previous study. As a function of B,, the oval width has a “U” shape and the polar cap activity a “V” shape, with
their minimum at B, around zero.

Plain Language Summary Auroral precipitations are indicators of the magnetosphere-ionosphere
coupling. Here, data analysis was performed using 17 years of Defense Meteorological Satellite Program
SSJ/4/5 data to characterize the relations between the solar wind condition parameters and the electron
low-energy fluxes measured on both magnetic poles (magnetic latitude above 55°). Inputs are solar wind
velocity, density, dynamic pressure, and B, of the interplanetary magnetic field, from NASA's OMNIWeb
database. Median of electron energy flux for each MLAT-MLT pair has been computed for given values of
solar wind parameters. Results highlight that high velocity, density or pressure implies higher energy flux
overall, higher polar rain energy fluxes, and wider nightside oval. There seems to be a positive correlation
between polar rain and solar wind density, contrary to a previous study. As a function of B, the oval width has a
“U” shape and the polar cap activity a ““V” shape, with their minimum at B, around zero. This work is a unique
contribution to the field as it put together a global picture of the electron precipitation that scientific community
can use as a reference for how the oval and polar rain vary at different magnetic local time (MLTs) values as a
function of solar wind parameters.

1. Introduction

The aurora, also known as the northern lights, has fascinated people since ancient times. The area above the
Earth's poles where auroras are visible is commonly referred to as the auroral zone. However, it was not until the
early 1960s that scientists realized that this region has a distinct shape resembling a ring or an oval. As a result,
it was given the name auroral oval (Feldstein, 2016, see review).

The aurora light emission is primarily caused by ions and electrons. These particles originate from the solar
wind and the magnetosphere and interact with the neutral components of the upper atmosphere, causing them
to ionize and excite. The majority of the precipitating particles on the dayside oval, including the cusp, mantle,
low-latitude boundary layer (LLBL), open-field line LLBL (open-LLBL), and high-latitude boundary layer
regions, come from the solar wind (Fujimoto et al., 1998; Lockwood et al., 1993; Lyons et al., 1994; Newell
& Meng, 1992; Shi et al., 2013, 2009; Wing et al., 1996, 2001), while those at the equatorward portion of
the oval such as boundary plasma sheet (BPS) and central plasma sheet (CPS) come from the magnetosphere
(Newell & Meng, 1992; Newell et al., 2004). On the nightside oval, the majority of precipitating particles
are magnetospheric in origin (Newell et al., 2004, 1991). The dayside and nightside particle precipitation
regions have different characteristics, but there are similarities and connections between the two regions. For
example, the particles in the BPS and CPS are the nightside plasma sheet particles that have curvature and
gradient-drifted to the dayside and then precipitate (Newell & Meng, 1992; Wing et al., 2023). However, it
should be noted that these magnetospheric particles whether on the dayside or nightside, originate from solar
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wind plasma that has entered the magnetosphere several hours to over 15 hr earlier, depending on the location
within the magnetosphere and the prevailing solar wind conditions (Berchem et al., 2014, 2016; Borovsky
et al., 1998; Sorathia et al., 2019; Wing et al., 2014, 2006, 2005; Wing & Newell, 1998). Hence, the particle
precipitation in the polar region, whether on open or closed field lines, should have dependencies on the solar
wind properties.

The position, structure, intensity, and latitudinal width of the auroral oval can vary significantly due to fluctua-
tions in the solar wind. Previous studies investigating the drivers of auroral oval variability have primarily focused
on the micro or mesoscale structures within the auroral oval, typically limited to a few magnetic local time (MLT)
(Gabrielse et al., 2021; Johnson et al., 2021; Sergeev et al., 2004; Zhu et al., 2018). Fewer studies examined the
global scale of electron precipitation within the entire auroral oval or polar region across all MLTs. For example,
Wing et al. (2013) studied the evolution of the electron aurora oval as a function of the substorm phase at the
global scale. Likewise, Newell, Sotirelis, and Wing (2009) studied the dependencies of the electron aurora on
the strength of solar wind driving, as determined by solar wind-magnetosphere coupling functions, and seasonal
variations at a global scale. Seasonal dependence of global-scale auroral particle precipitation has been studied
both with models (Wiltberger et al., 2009) and with observations from the Defense Meteorological Satellite
Program (DMSP) satellites (Newell et al., 2010). Finally, Liou et al. (2007) presented a case study of the auroral
oval response to a long duration of high solar wind dynamic pressure.

The precipitating electrons are the field-aligned plasma sheet electrons that are in the loss cone and precipitate
in the ionosphere. Most of these electrons would not mirror back to the magnetosphere. However, in the magne-
tosphere, the electrons in the loss cone can be replenished by pitch angle scattering of the non-field aligned elec-
trons through wave-electron interactions. Energy exchange between electrons and waves can occur when the wave
frequency and the frequency of the electron periodic motion match, resulting in violation of adiabatic invariant
and diffusion in phase space, which can effectively alter the electrons' pitch angles. Very low frequency (VLF)
whistler-mode chorus waves have been proposed as a leading mechanism for pitch angle scattering of the plasma
sheet electrons (Ni et al., 2016; Summers et al., 1998). Thorne (2010) showed that the VLF whistler-mode chorus
waves are particularly active from midnight to noon (see their Figure 1). The local time distribution of these
waves and their intensities should have an impact on the local time distribution and intensity of the precipitating
electrons, particularly diffuse electrons.

The present study investigates statistically the global scale of the position, structure, intensity, and latitudinal
width of the precipitating electrons within the entire auroral oval and polar cap due to solar wind velocity, density,
dynamic pressure, and the B, component of the interplanetary magnetic field (IMF).

2. Data and Methodology
2.1. DMSP Satellites and Data

The DMSP satellites are in Sun-synchronous nearly circular polar orbits at about 845 km altitude, with orbital
inclinations of 98.7°. The areas with the least amount of coverage occur around post-noon and post-midnight
local time, with the exception of regions at high magnetic latitudes where the coverage is more uniform. A signif-
icant number of measurements obtained from DMSP are concentrated within the intervals of 5-10 MLT and
16-21 MLT (as seen in Figures A5—AS).

The SSJ/4 and SSJ/5 instruments (Special Sensor Precipitating Electron and Ion Spectrometer [SESS]) are
respectively part of the Space Environment Monitor and SESS packages. They measure the flux of precipitating
electrons and ions through a curved plate electrostatic analyzer for electrons protons and alpha-particles in the
energy range 0.03—-30 keV, with one complete spectrum each obtained per second (Hardy et al., 1984). The SSJ/4
instrument was deployed on spacecraft belonging to the DMSP series, specifically from F6 to F15, while the
SSJ/5 instrument was deployed on satellites F16-F19. The satellites are three-axis stabilized, and the detector
apertures always point toward local zenith. At the latitudes of interest in this paper, this means that only highly
field-aligned particles well within the atmospheric loss cone are observed.

Data from the SSJ/4 and SSJ/5 were used to highlight changes in polar auroras. The satellites (and correspond-
ing years and instrument) were available on the Coordinated Data Analysis Web (CDAWeb) interface of the
Goddard Space Flight Center, spanning 17 different years as shown in Table 1. The data collected include the
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This Table Shows the Available Data Years for Each Defense Meteorological Satellite Program Satellite
[1987[1988]...[2000]2001]2002[2003]2004]2005]2006]2007[2008]2009]2010[2011]2012[2013]2014
SJ4
F06
Fo7
F08
F09
F12
F13
F14
F15
SSJ5
F16
F17
F18
Note. Green cells indicate data availability.
1 s resolution total electron energy flux (in eV/cm?/ster/s), which is obtained by integrating the differential
energy fluxes measured by DMSP across the energy range. Data are displayed in AACGM coordinates (Baker
& Wing, 1989).
As pointed out by Newell, Sotirelis, and Wing (2009), the operational lifespan of several detectors has led to
degradation of sensitivity and consequently, decreased reliability in boundary identification in recent years.
Furthermore, the low-energy ion head of certain SSJ/4 detectors has been launched in a sub-optimal condition,
thereby diminishing the quality of ion precipitation data.
2.2. Solar Wind Data
The solar wind data gathered on NASA's OMNIWeb database are not in situ measurements. They consist of
high-resolution (1 min) solar wind and IMF data at the Earth's magnetopause: data from ACE, WIND, IMP
8, and Geotail spacecraft that have been processed and time-shifted to the Bow Shock Nose (BSN) (King &
Papitashvili, 2006). The solar wind and IMF data used in this paper are only the IMF B, in GSM coordinates (in
nT), the solar wind proton density (in cm™3), velocity, (in km-s~!), and ram pressure (in nPa and derived from
particles' densities, speeds, and masses o nv?).
In this study, we combined the data from both the north and south hemispheres, as we considered it more appro-
priate for our research objectives. Therefore, we removed the X- and Y-components of the magnetic field, assum-
ing that their effects are symmetric in both hemispheres and will cancel each other out.
2.3. Methodology
As previously mentioned, we combined data from the North and South poles (above and below 45° and —45°
MLAT, respectively) and averaged it instead of subsampling to maintain a 1 min resolution. We obtained 1 min
resolution solar wind, magnetic field, and plasma data from the OMNI interface at Earth's BSN and applied a 30
min wide moving average. Specifically, we replaced each data point at time 7, with the mean value of all data
points in the time window [Ty — 29 : Tp]. We required a minimum of 10 points in the window for us to accept the
average and discard other data points.
We binned the four solar parameters (solar wind flow speed, density, temperature, and dynamic pressure) into
eight bins each, with each bin having specified limits. Here are the limits for each parameter:
e IMF B, in GSM coordinates: [-c0, =9, —6, =3, 0, 3, 6, 9, +oo0] nT.
e Solar wind pressure: [0, 1, 2, 3,4, 5, 8, 15, +c0] nPa.
e Solar wind proton density: [0, 2, 4, 6, 8, 10, 15, 20, +o00] cm~>.
e Solar wind flow speed: [0, 300, 400, 500, 600, 700, 800, 900, +oco0] km-s~".
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In these limits, the right endpoint is not included. For example, the first bin for solar wind flow speed is from 0 to
300 km-s~!, including all values between 0 and 300 km-s~!, but not including 300 km-s~".

Finally, we grouped DMSP data falling into a given bin (e.g., all DMSP measurements for B, between —9 and
—6 nT). Then, we computed the median of these DMSP data for all given MLAT-MLT pairs. We plotted the
resulting medians in a polar plot, where each compartment represents a 1°(MLAT) X 1 hr(MLT) area and shows
the corresponding median value of DMSP measurements using a base-10 a logarithm for clarity. Essentially, we
generated a polar plot of DMSP measurements for each instance where the average of a solar wind driver in the
past 30 min fell within a particular range (e.g., when the average of B, in the past 30 min was between —9 and
—6 nT—see Figure 4b).

The outcome was one graph per solar wind parameter per bin, with each compartment on the polar graphs
measuring 1°(MLAT) X 1 hr(MLT) and displaying the corresponding median value of DMSP measurements. To
improve clarity, the graphs shown in Figures 1—4 display only MLAT values above 55°.

Throughout the following descriptions, when we refer to the electron energy flux, we are referring to the base-10
logarithm of the total electron energy flux, which represents the amount of energy carried by the electrons and is
measured in eV/cm?/ster/s.

3. Results
3.1. Dependence of Electron Energy Flux on Solar Wind Speed

Figure 1 shows the base-10 logarithm of the total electron energy flux within the entire auroral oval as a
function of solar wind speed. Several things are worth noting. First, the electron energy flux is higher around
midnight to noon than from noon to midnight. This can be explained by the electron gradient and curvature
drifts and the VLF whistler-mode chorus waves. Electrons coming earthwards following reconnections in the
magnetotail would also curvature and gradient drift eastward toward dawn. Electrons that are field-aligned
(pitch angle 0°) are quickly lost through precipitation, but the field-aligned electrons are replenished by
pitch angle scattering. The leading mechanism for pitch angle scattering is the electron interactions with
the VLF whistler-mode chorus waves, which have been shown to be active at midnight-noon local time (Ni
et al., 2016; Reeves et al., 2009; Summers et al., 1998; Thorne, 2010). Once we enter the post-noon region, the
whistler-mode chorus wave’s activity is reduced and we see less pitch angle scattering, and hence a reduction
in electron energy flux. The MLT profile and the dawn-dusk asymmetry seen in Figure 1 are similar to those
of the diffuse electron precipitation in Wing et al. (2013), which is not surprising because most of the electrons
are diffuse electrons.

As the solar wind speed increases, the electron energy flux also increases, from the smallest velocities to the
largest velocities. This relationship can be attributed to the increased occurrence of substorms and subsequent
wave activities, which would increase with higher solar wind speeds (Newell et al., 2016). Substorm injections
would energize and transport particles from the plasma sheet inward, resulting in ion temperature anisotropy and
the growth of VLF whistler-mode chorus waves. These waves, in turn, can enhance electron pitch angle scatter-
ing. Additionally, Figure 1 shows that the auroral oval extends equatorward to smaller latitudes as the solar wind
velocity increases.

Understanding the increase in the width of the auroral oval is more challenging since it is not consistent across
different MLT regions. By setting the boundary of the oval to 10 eV/cm?/ster/s, we can see that the approximate
width of the auroral oval generally increases with as the solar wind velocity enhances, except for the 11-16 MLT
region, where it appears to remain roughly the same and increase only in the last two panels. Note that whenever
we mention MLT regions in the format X-X’, we include the X’ bin (meaning including the zone between line X’
and X’ + 1). Figure Alc in appendix confirms several trends: the oval width in 20-7 MLT region mostly displays
a linear increase as the solar wind velocity enhances, the 17-19 MLT region somehow shows an exponential
increase, and the 8—10 MLT region exhibits a rapid increase in the oval width from panel A to panel C, followed
by a slower increase from panel C to panel F. Finally, computing the oval width over all MLT regions except for
region 1 MLT (due to missing values), we observe an increase from an average width of 6.4 MLAT for a median
speed of 288 km/s (panel A) to 11.7 MLAT for a median speed of 733 km/s (panel F), corresponding to an 83%
increase.
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Figure 1. Median of Log,, (/;,) [eV/cm?/ster/s] for solar wind speed respectively between 0 and 300 km-s~' (a), 300 and
400 km-s~! (b), 400 and 500 km-s~! (c), 500 and 600 km-s~! (d), 600 and 700 km-s~! (e), 700 and 800 km-s~" (f), 800 and
900 km-s~! (g), 900 km-s~! and infinity (h).
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The configuration of the magnetic field lines within the polar cap (poleward of the auroral oval) is believed to
be open, that is, connected to the solar wind. Also we set the boundary of the oval to 10 eV/cm?ster/s, the polar
cap is the region of MLAT above the poleward boundary of the oval, extending from this limit to 90 MLAT. The
electron precipitation in the polar cap, which is known as polar rain, originates from the suprathermal (strahl)
component of the solar wind electrons (Fairfield & Scudder, 1985). Figure 1 and Figure A1b show that the polar
rain electron flux appears to increase with the solar wind velocity, but this effect is not strong. However, we
have taken great care to ensure the reliability of the data by retaining only the bins with a minimum of 10 data
points. Additionally, we have computed the median of these data points to mitigate any influence from individual
anomalous events.

In the polar cap, few solar wind ions can enter the magnetosphere and hence a parallel electric field or poten-
tial arises to prevent most solar wind core electrons from entering in order to maintain charge quasi-neutrality
(Fairfield et al., 2008; Wing et al., 2015, 1996). However, the solar wind suprathermal electrons (strahl),
having higher temperature/energy, can overcome the parallel electric potential and enter the magnetosphere.
Borovsky (2021) showed that solar wind velocity is correlated with solar wind strahl. This correlation is consist-
ent with the increase of polar cap electron precipitation (polar rain) energy flux with solar wind velocity seen in
Figure 1, although the trend is not strong.

3.2. Dependence of Electron Energy Flux on Solar Wind Density

Figure 2 depicts the relationship between the base-10 logarithm of the electron energy fluxes and the solar wind
density. Several observations are evident from Figure 2. First, the same asymmetry observed in Figure 1 is also
evident in Figure 2. Specifically, the energy flux is higher at midnight-noon compared to noon-midnight. This
can be attributed to the electron curvature and gradient drifts, as well as VLF whistler mode chorus waves, as
discussed in Section 3.1.

Second, it appears that an increase in the solar wind density would increase the energy flux in the polar cap,
but this effect is weak. When plotting this increase, it seems to behave as a logarithmic function. Figure 2 and
Figure A2b show that the mean value of energy flux in the polar cap for panel A is lower than for panel H. When
computing it, we see an increase from 8.82 to 9.09 log,,(eV/cm?/ster/s). Borovsky (2021) showed that solar wind
density is correlated with solar wind strahl. The increase of polar cap electron precipitation (polar rain) energy
flux with solar wind density seen in Figure 2 is consistent with Borovsky (2021) result. Riehl and Hardy (1986)
analyzed 262 DMSP passes and found no correlation between polar rain flux and solar wind density. It is not
clear why they found no correlation, but their study used a much smaller data set than the present study. One of
the explanations given for the Riehl and Hardy (1986) result was that the origin of the polar rain is the solar wind
suprathermal electrons, rather than the solar wind core electrons and hence little or no correlation can be expected
(Newell, Liou, & Wilson, 2009). However, the positive correlation between solar wind density and strahl intensity
found in the more recent study by Borovsky (2021) can help explain why the positive correlation between polar
rain electron fluxes and the solar wind density can be expected albeit this effect is rather weak.

However, there is an anomaly. It can be seen that going from panels A (solar wind density 0-2 cm~3) to B (solar
wind density 2-4 cm~3), the polar cap energy flux actually decreases slightly from 8.82 to 8.76 eV/cm?/ster/s on
average rather than increases. This seems to be due to the depression in energy flux in the polar cap observed in
panel B between 20:00 and 02:00 MLT. It is not clear what causes this anomaly.

Third, as the solar wind density increases, the energy flux in the auroral oval also increases, but the change is not
as significant as it is with the velocity. In the case of low density, as in panel A, there is already a high energy flux
in the auroral oval. This can be explained by the fact that solar wind density is generally negatively correlated with
solar wind velocity, so low solar wind density would correspond to high solar wind velocity (Borovsky, 2020;
Maggiolo et al., 2017; Wing et al., 2016, 2022). However, high solar wind density can also result in high solar
wind dynamic pressure, which can lead to storms and substorms, thus creating a competing effect that can be
observed in this study.

Fourth, as the solar wind density increases, the behavior of the auroral oval width becomes more complex.
While Figure 2 provides a visual representation, the full range of variations can be better understood by referring
to Figure A2c. Observations show that the 20-7 MLT region experiences a slight decrease in width, followed
by an increase. The 8—13 MLT region also shows a small decrease in width. On the other hand, the width in the
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14-19 MLT region appears to increase as the solar wind density enhances. Overall, the thickness of the auro-
ral oval seems to transfer from the morning-to-noon region to the evening-to-midnight region, as observed in
Figure 2.

3.3. Dependence of Electron Energy Flux on Solar Wind Dynamic Pressure

Figure 3 demonstrates that the electron energy flux increases almost monotonically as the solar wind dynamic
pressure enhances. This result is expected as dynamic pressure (or so-called ram pressure) is proportional to nv?,
where 7 is the solar wind density and v is the solar wind velocity. This pattern for dynamic pressure is consistent
with what we have observed for both density and velocity, as shown in Figures Ala and A2a in appendix. In
particular, we can see in Figure 3 that the electron energy flux starts at higher values in panel A than in panel A of
Figure 1, and does not reach the high values observed in panel H of Figure 1 for high solar wind velocity. Density
and velocity anti-correlation can explain this trend.

The effect of dynamic pressure on the width of the auroral oval is also apparent in Figure 3, as we can observe an
increase in width and a significant extension of the oval equatorward from panels A to H.

Finally, Figure 3 shows that the polar rain increases as the dynamic pressure enhances. This trend is even clearer
than that for solar wind velocity (Figure 1) and solar wind density (Figure 2). This is perhaps unsurprising since
the energy fluxes of polar rain increase with n and v, as discussed in Sections 3.1 and 3.2. This increase is further
amplified by the dynamic pressure of the solar wind.

3.4. Dependence of Electron Energy Flux on B, GSM

Figure 4 displays the electron energy flux as a function of the southward component of the IMF B,. Studies have
shown that as the southward B, increases, the magnetosphere can become more active due to substorms or storms,
resulting in particle injections and energization of the particle population in the magnetotail (Kamide et al., 1977;
Wing & Johnson, 2009). In Figure 4, a clear dependence can be observed between the north-south component
of the IMF and the shapes of both the oval and the polar cap. The polar cap area is delimited by the open-closed
field line boundary (OCB), and the B, component of the IMF is often responsible for magnetic reconnections
that impact the OCB's shape (Tulegenov et al., 2023). As demonstrated here, a large southward component of
the IMF generally causes the boundary to move equatorward, while a northward component moves the boundary
poleward (Tulegenov et al., 2023). Moreover, for positive B,, a boundary layer can form poleward of the cusp
(Shi et al., 2013, 2009), which can shift the poleward edge of the oval to higher latitudes. On the other hand, a
large negative B, corresponds to a lower-latitude average position for the oval (Burch, 1979) and a higher activity
in the polar cap. The observations suggest that substorms occurring in isolation or during storms can increase
the width and intensity of the oval, as shown in Figure 4, panel A. When the width of the oval is plotted from
panels A to H (see Appendix A, Figure A4c), a “U” shape is suggested, with the exception of the 8—16 MLT
region, which shows an increasing trend. On average, the width of the oval appears to decrease from panels A
to D, with a reduction of the poleward boundary, and then increase again from panels E to H, with an extension
of the poleward boundary. From panel A to panel H, the oval evolves from a very asymmetric shape with a thin
oval on the dayside and a wide oval on the night side to an approximately symmetric and wide oval centered on
the magnetic pole.

The peak value of electron energy flux, which is located between 22:00 and 06:00 MLT in panel A, gradually
shifts to the interval between 05:00 and 10:00 MLT as the southward component of the IMF B, increases from
negative to positive values. This phenomenon may be analogous to the effect of solar wind velocity on substorm
probability, where high solar wind velocity tends to increase the likelihood of substorms and shifts the peak
substorm occurrence toward the nightside. One possible explanation for this behavior is that a strong southward
IMF can enhance the generation of whistler mode waves in the magnetosphere, which tend to peak in intensity
between 22:00 and 06:00 MLT during substorms. During quieter times, the peak of whistler mode waves may
shift to the morning sector, although this cannot be confirmed without direct wave measurements which are not
available in our study. The total electron energy flux in the oval exhibits a decreasing trend from panels A to D,
corresponding to the shift of the poleward boundary toward lower latitudes. However, it appears that all MLT
regions have relatively stable activity levels from panels E to H, on average. These observations are supported
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by Figure A4a in appendix, which depicts the median electron energy flux as a function of MLT for various B,
intervals.

The polar cap activity exhibits a distinct V-shape pattern as a function of B,, as shown in Figure A4b. Accord-
ing to Gussenhoven et al. (1984), the polar rain number and energy fluxes increase as the geomagnetic activity
enhances and as IMF B, reduces when IMF BB, < 0. However, their investigation of IMF B, only used two bins:
IMF B, < =2.5 and 0 nT < IMF B, < —2.5 nT. By using a smaller bin size and more data points, Figure 4 confirms
that the polar rain energy fluxes indeed increase when IMF B, < 0 and becomes more negative.

It appears that the polar rain energy flux increases with the [IMF B . For the case of IMF B_ < 0, as IMF B,
becomes more negative, the reconnection strength and rate would increase, which would increase the polar rain
electron flux (Newell, Liou, & Wilson, 2009), as shown in Figure 4. For the case of IMF B_ > 0, it appears that
an electron flux also increases with increasing B, perhaps for the same reason, but there could be other reasons
as well. An increase in B, can reduce the polar cap size (open-closed boundary moves to higher latitude) (Milan
et al., 2004; Newell et al., 1997; Tulegenov et al., 2023). Moreover, an increase in IMF B, can also increase the
occurrence of the polar cap arcs, which could be considered an extension of the auroral oval and which have
higher fluxes than polar rain (Newell et al., 1997; Troshichev et al., 1988). The effect of the polar cap arcs,
whose locations can vary depending on solar wind conditions, would be smeared out in the statistical map
shown in Figure 4. All these effects can complicate the determination of the electron flux in the polar cap in
Figure 4.

4. Summary and Discussion

In this study, we investigated the global-scale position, structure, intensity, and latitudinal width of the precipi-
tating electrons above 55° MLAT (within both the auroral oval and polar cap) due to solar wind velocity, density,
dynamic pressure, and the Z-component of the IMF. Here is a summary of the observations made for each solar
wind driver considered.

For solar wind velocity, density, and dynamic pressure, the electron energy flux is always observed to be
higher from midnight to noon than from noon to midnight. This phenomenon can be attributed to the electron
curvature and gradient drifts, as well as VLF whistler mode chorus waves. This is also true for positive B,
values. However, for negative B,, this asymmetry seems to appear on either side of the 19:00-07:00 MLTs
line.

As a consequence of increasing the solar wind velocity at the BSN:

¢ The electron energy flux within the auroral oval increases by 83% on average, with the highest flux from
midnight to noon. The increase is due to electron gradient and curvature drifts, as well as VLF whistler-mode
chorus waves.

e The auroral oval extends equatorward to smaller latitudes as the solar wind velocity increases.

e The polar cap energy flux increases as the solar wind velocity increases, due to an increase in the strahl
component of solar wind electrons entering the magnetosphere.

¢ The approximate width of the auroral oval generally increases as the solar wind velocity enhances, except for
the 11-16 MLT region, where it remains roughly the same and increases only in the last two panels.

As a consequence of increasing the solar wind density at the BSN:

¢ The energy flux in the auroral oval also increases, but the change is not as significant as it is with the velocity.
It is higher at midnight-noon compared to noon-midnight, attributed to electron curvature and gradient drifts,
as well as VLF whistler mode chorus waves.

e The energy flux in the polar cap increases as the solar wind density enhances, behaving as a logarithmic
function. There seems to be a correlation between polar rain and solar wind density, as opposed to what
Riehl and Hardy (1986) found, explained by the positive correlation between density and strahl intensity
(Borovsky, 2021). However, there is a small decrease when moving from panels A to B, mainly located
between 20:00 and 02:00 MLT.
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Figure 2. Median of Log, (J, Etor) [eV/em?/ster/s] for proton density respectively between 0 and 2 cm™ (a), 2 and 4 cm ™ (b),
4and 6 cm™ (c), 6 and 8 cm~ (d), 8 and 10 cm~3 (e), 10 and 15 cm=3 (f), 15 and 20 cm~ (g), 20 cm~ and infinity (h).
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Figure 3. Median of Log,, (/) [eV/cm?/ster/s] for solar wind pressure respectively between 0 and 1 nPa (a), 1 and 2 nPa
(b), 2 and 3 nPa (c), 3 and 4 nPa (d), 4 and 5 nPa (e), 5 and 8 nPa (f), 8 and 15 nPa (g), 15 nPa and infinity (h).

BOURIAT ET AL.

10 of 22

195

851801 SUOLULLOD SAIES.1D 3ot idde au Aq peuienob e Se[oie O ‘8N oS3 Joj ARIq1T8UIUO AB|IA UO (SUONIPUOO-PUE-SWLISYW00" AB| 1 ARe1q 1jBul Uo//SANY) SUORIPUOD pue SLLe | 84} 89S *[£202/60/ST] Uo AkeiqiT suljuo A8|IM '8ouel aueIyo00 Aq 865TEOVIEZO0Z/620T OT/I0p/LI0Y A8 (1M Ake.qpuiuo'sandnBe//sdiy wouj pepeojumod ‘6 ‘€202 ‘2066912



Chapter 3. Problem Statement, Data Analysis & Preprocessing

J.¥eld ) .
NI Journal of Geophysical Research: Space Physics 10.1029/2023JA031598
11

A

80 85 9.0 95 10.0 105 11.0 115 12.0
Median of Log10(Electron Energy Flux (Jg «t)), [log10(eV/cm?/ster/s)]

Figure 4. Median of Log,, (/) [eV/cm?/ster/s] for B, GSM respectively below —9 nT (a), between —9 and —6 nT (b), —6
and —3 nT (c¢), —3 and 0 nT (d), 0 and 3 nT (e), 3 and 6 nT (f), 6 and 9 nT (g), and above 9 nT (h).
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e As the solar wind density increases, the behavior of the auroral oval width becomes more complex, with vari-
ations observed in different regions at different times.

As a consequence of increasing the solar wind dynamic pressure at the BSN:

e Electron energy flux increases almost monotonically, as expected by the correlation between velocity and
pressure.

e Auroral oval width increases and extends equatorward.

¢ Polar rain increases as the dynamic pressure enhances. The increase is even clearer than that for solar wind
velocity and density.

Concerning the IMF Z-component:

¢ As the southward component of the IMF B, increases, the magnetosphere can become more active due to
substorms or storms, resulting in particle injections and energization of the particle population in the magne-
totail. The peak value of electron energy flux gradually shifts to the interval between 05:00 and 10:00 MLT
as the southward component of the IMF B, increases from negative to positive values. Overall energy flux
increases with IB,| but large negative B, means more intense oval than for large positive values.

e A clear dependence can be observed with the shapes of both the oval and the polar cap. A large southward
component of the IMF generally causes the boundary to move equatorward, while a northward component
moves the boundary poleward. The oval width as a function B, seems to have a “U” shape.

e The polar cap activity as a function B, has a “V” shape.

e The polar rain energy fluxes increase when IB,| increases.

These results can be useful for comparisons to electron precipitation models (Newell et al., 2014, 2002; Wiltberger
et al., 2009; Zhu et al., 2021) and to electron precipitation reconstructions based on ionospheric simulations
(Simon Wedlund et al., 2013). As a follow-up study, we will examine the effects of IMF B and B, on the auro-
ral oval and polar cap (polar rain) electron precipitation, and we will investigate the depehdence of solar wind
clock angle (arctan(IMF-B /IMF-B,)), cone angle (arctan(IMF-B /IMF-B,)), and azimuthal angle (arctan(IMF-B /
IMF-B))) on the polar cap electron flux enhancements. (

Appendix A: Additional Figures

Figures A1-A4 presented in this appendix show line plots of three subfigures for each solar wind parameter
considered. These subfigures depict the median of the total electron flux inside the auroral oval, the median of
the total electron flux inside the polar cap, and the approximate width of the auroral oval. It is important to note
that we defined the boundary of the auroral oval arbitrarily as 10 log10 (eV/cm?s/ster). In each of the line plots
shown in the four figures presented in this appendix, the x-axis represents the median value of either the total
electron flux inside the auroral oval or the approximate width of the auroral oval, depending on the subfigure. The
y-axis represents the median value of the solar wind parameter considered in the bin considered, as described in
the main text of the paper. Thus, each point on the line plots represents a specific combination of the solar wind
parameter and the electron flux. By including these additional figures in the appendix, we aim to provide a more
comprehensive understanding of the complex interactions between the solar wind parameters and the Earth's
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magnetosphere. We hope these figures provide a clear and more detailed visualization of the relationship between
the polar zone activity, the DMSP electron flux in LEO, and the solar wind parameters.
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