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RESUME EN FRANÇAIS 

Le cerveau humain est reconnu comme un système hautement complexe qui repose sur 

l'activité collaborative de milliards de neurones (Fornito et al., 2016). Ces neurones sont 

interconnectés par un réseau sophistiqué de synapses possédant une structure et une 

connectivité méticuleusement organisées, gouvernant la dynamique collective sous-jacente du 

fonctionnement cérébral (Sporns et al., 2004). Des preuves émergentes suggèrent que dans les 

premiers stades des troubles neurodégénératifs, une dysfonction synaptique et un repliement 

anormal des protéines peuvent survenir dans de petites populations neuronales vulnérables dans 

des régions spécifiques du cerveau (Dugger et Dickson, 2017; Seeley et al., 2009; Stam, 2014). 

Cependant, à mesure que la maladie progresse, le processus pathologique peut se propager à 

travers le réseau à grande échelle (Fornito et al., 2015; Fornito et Bullmore, 2015), causant des 

anomalies structurelles et fonctionnelles dans le réseau cérébral (Catani et ffytche, 2005), 

reflétées par une dysfonction cognitive, comportementale et motrice progressive chez les 

personnes affectées (Dugger et Dickson, 2017). Comprendre les altérations du fonctionnement 

cérébral dues aux troubles neurologiques et leur progression tout au long de la maladie reste 

l'un des principaux défis de la neuroscience clinique. 

La maladie de Parkinson (MP) est le trouble du mouvement le plus courant et le deuxième 

trouble neurologique le plus répandu, touchant 2 à 3 % de la population âgée de plus de 65 ans 

(Bloem et al., 2021 ; Poewe et al., 2017 ; Simon et al., 2020). Parmi les affections 

neurologiques, la MP présente le taux de croissance le plus élevé et devrait augmenter de 

manière spectaculaire, doublant dans les deux prochaines décennies et contribuant 

significativement à la charge mondiale d'incapacité (Dorsey et al., 2018 ; Feigin et al., 2017). 

Bien qu'elle soit principalement caractérisée par plusieurs caractéristiques motrices clés, la MP 

entraîne également une large gamme de symptômes non moteurs tels que les déclins cognitifs 

et les comorbidités neuropsychiatriques. Cliniquement, la présentation des symptômes de la 

MP est très hétérogène chez les personnes affectées et leur progression graduelle réduit la 

qualité de vie des patients (Bloem et al., 2021 ; Poewe et al., 2017). Par conséquent, la 

compréhension des corrélats neuronaux sous-jacents à la progression de la maladie ainsi que 

les profils hétérogènes des patients sont des sujets prédominants dans la recherche récente sur 

la MP. 
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Les techniques avancées d'imagerie cérébrale ont considérablement avancé notre 

compréhension des mécanismes cérébraux sous-jacents à ces aspects dans la MP. En utilisant 

la tomographie par émission de positons (TEP), l'imagerie par résonance magnétique (IRM) 

structurelle et fonctionnelle et la magnétoencéphalographie (MEG), les chercheurs ont identifié 

des anomalies dans plusieurs schémas d'activité cérébrale et de réseaux fonctionnels associés 

à la manifestation de symptômes moteurs et non moteurs de la MP, ainsi qu'à leur progression 

des stades précoces aux stades avancés de la maladie (Devignes et al., 2022; Pourzinal et al., 

2022; Boonstra et al., 2021; Mitchell et al., 2021; Wolters et al., 2019; Boon et al., 2019; Barber 

et al., 2017; Wen et al., 2016). Bien que ces techniques aient considérablement amélioré la 

recherche et la pratique cliniques en fournissant des informations précieuses sur la dysfonction 

pathologique de ce trouble multisystémique, elles présentent également plusieurs limitations 

en milieu clinique, telles que leur coût élevé et leur impraticabilité. En revanche, 

l'électroencéphalographie (EEG) est devenue une technique d'imagerie cérébrale pratique dans 

les applications cliniques en raison de sa facilité d'utilisation, de sa non-invasivité, de son coût 

abordable et de son potentiel de mobilité (Müller-Putz, 2020). Lorsqu'elle est combinée à des 

méthodes de traitement de signal appropriées, l'EEG a démontré sa capacité à fournir des 

informations précieuses sur la dysfonction des réseaux cérébraux dans la MP (Shirahige et al., 

2020; Q. Wang et al., 2020; Geraedts et al., 2018; Cozac, Gschwandtner, et al., 2016) et d'autres 

maladies neurodégénératives (Sánchez-Reyes et al., 2021; Al-Ezzi et al., 2020; Livint Popa et 

al., 2020; de Aguiar Neto & Rosa, 2019; Cassani et al., 2018; J. Wang et al., 2013; Acharya et 

al., 2013; Arns et al., 2013). Ainsi, l'utilisation de l'EEG à haute résolution (combinée avec des 

méthodes de localisation de sources) a bien amélioré la résolution spatiale de l’EEG et son 

exploitation dans des études longitudinales pourraient présenter un cadre prometteur pour 

identifier des marqueurs fiables de la maladie et suivre leur progression au fil du temps. 

Dans ce contexte, l'objectif globale de cette thèse est d'étudier dans quelle mesure l'EEG à haute 

résolution en état de repos peut caractériser de manière précise les dysfonctionnements 

cérébraux anormaux associés à différents aspects cliniques de la MP et identifier des mesures 

basées sur l'EEG qui peuvent prédire les résultats de la maladie, dans le but de combler 

certaines des lacunes de la littérature. Dans ce but, nous avons mené trois études différentes en 

utilisant des enregistrements EEG à haute résolution en état de repos longitudinal et une batterie 

de tests neuropsychologiques et cliniques pour des patients atteints de la MP et des sujets sains 

au début de l'étude ainsi qu'aux suivis après 3 ans et 5 ans.  
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● Premièrement, nous avons proposé d'examiner le changement longitudinal des réseaux 

fonctionnels cérébraux des patients atteints de la MP sur 5 ans et d'associer différents 

schémas d'anomalies avec les scores cognitifs des patients et la latéralisation des 

symptômes moteurs. Les résultats ont révélé des schémas de connectivité décroissante 

progressive, principalement entre les lobes fronto-temporal de l'hémisphère droit, dans 

les bandes alpha2 et bêta. Ces réseaux de dysconnectivité sont propres aux patients 

atteints de la MP et ne sont pas observés chez les sujets sains et sont corrélés au profil 

cognitif global des patients. De plus, des motifs de connectivité diminuée, 

principalement dans l'hémisphère droit, caractérisent l'évolution de la maladie chez les 

patients atteints de la MP avec des symptômes du côté gauche, contre des schémas de 

dysconnectivité fonctionnelle, principalement dominants dans l'hémisphère gauche qui 

délimitent la progression de la maladie chez les patients atteints de la MP avec des 

symptômes du côté droit. 

● Dans notre deuxième étude, nous avons cherché à identifier les sous-types de la MP en 

exploitant l'hétérogénéité de la maladie en fonction des caractéristiques basées sur 

l'EEG. Nous avons effectué une analyse de “clustering” pour identifier ces sous-types 

et les associer à des motifs uniques de perturbations. Nous avons montré que l'EEG en 

état de repos peut identifier trois sous-types distincts de patients atteints de la MP, 

caractérisés par différents niveaux de perturbations dans le réseau somatomoteur 

(bandes delta et bêta), le réseau fronto-temporal (bande alpha2) et le réseau du mode 

par défaut (bande alpha1). Ces sous-types sont associés à différents profils cliniques et 

peuvent être classés en tant que modérément-moteur ou diffus-maligne à 5 ans. Notre 

suivi longitudinal a révélé que les caractéristiques basées sur l'EEG, qui caractérisent 

les sous-types modérés uniquement moteurs des sous-types diffus-malignes à 5 ans, 

sont pertinentes tout au long de la trajectoire de la maladie et peuvent prédire le déclin 

cognitif chez les patients à partir de la ligne de base, lorsque les scores cliniques 

cognitifs étaient en chevauchement important. 

● Enfin, notre troisième étude visait à exploiter les empreintes électrophysiologiques 

caractérisant l'anxiété chez les patients atteints de la MP et qui se corrèle aux résultats 

cliniques liés à l'anxiété tout au long de la progression de la maladie. Les résultats ont 

montré des schémas de puissance spectrale altérée dépendant de la fréquence, ainsi que 

des réseaux de fonctionnement hyper- et hypo-connectivité, distinguant le groupe de 

patients atteints MP-anxieux des patients MP-non-anxieux et des sujets sains. Nous 
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avons également constaté que les scores électrophysiologiques quantifiables 

correspondants étaient corrélés avec les résultats cliniques de l'anxiété tout au long de 

la progression de la maladie. 

Nous croyons que cette thèse démontre le potentiel de l'EEG à haute résolution en état de repos 

pour développer des biomarqueurs fiables des symptômes et de la progression de la MP, ce qui 

peut éventuellement conduire à un pronostic et un diagnostic plus précis ainsi qu'à de 

meilleures stratégies thérapeutiques. 

 

  



vii 
 

ABSTRACT 

Understanding how neurological disorders affect brain functions from disease onset and 

throughout progression is a significant challenge in clinical neuroscience. Parkinson's disease 

(PD) is the most common movement disorder and a prevalent neurological condition that 

significantly contributes to the global burden of disability due to its variability in symptoms 

and progression. Therefore, accurately predicting PD's severity and progression is a significant 

step towards optimal patient counselling, symptom-specific care, and effective treatments. 

However, achieving this objective depends on developing reliable biomarkers that not only 

characterize the disease but also accurately track and predict its evolution. In recent years, 

electroencephalography (EEG) has emerged as a valuable tool in clinical practice for this 

purpose. This direct, non-invasive, inexpensive, and relatively easy-to-use neuroimaging 

technique allows for the extraction of key information about alterations in brain activity 

associated with neurological conditions such as PD. Within this context, this dissertation aims 

to investigate the extent to which resting-state high-density (HD)-EEG can precisely 

characterize the abnormal brain functions associated with different clinical aspects in PD and 

identify EEG-based measures that can predict disease outcomes. To this end, we conducted 

three different studies using longitudinal resting-state HD-EEG recordings and a battery of 

neuropsychological and clinical tests for PD patients and healthy controls at baseline as well 

as at follow-ups after 3 years and 5 years. We first examine the longitudinal changes in brain 

functional networks of PD patients over 5 years and associate different patterns of 

abnormalities with patients’ cognitive scores and lateralization of motor symptoms. Second, 

we identify PD subtypes by deconstructing disease heterogeneity using EEG features. We 

conducted a clustering analysis to identify these subtypes and associated them with unique 

patterns of disruptions. We investigated their ability to predict cognitive decline in patients, as 

well as to characterize the clinical disease trajectory over the course of the disease. Third, we 

investigate the electrophysiological fingerprints that characterize the anxiety in PD patients and 

correlate with clinical disease outcomes related to anxiety throughout disease progression. 

Overall, our results showed different patterns of abnormalities that characterized the distinct 

aspects of interest and we were able to identify EEG-based markers that can correlate with the 

clinical outcomes of the disease and can predict its evolutions. We believe that this dissertation 

demonstrates the potential of resting-state HD-EEG in developing reliable biomarkers of PD 
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symptoms and progression, which can ultimately lead to more accurate prognosis and diagnosis 

as well as better therapeutics strategies.  
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CHAPTER 1: GENERAL INTRODUCTION 

1.1. Context 

The human brain is increasingly recognized as a highly complex and self-regulating system 

that relies on the collaborative activity of billions of neurons (Fornito et al., 2016). These 

neurons are interconnected through a sophisticated network of synapses possessing a 

meticulously organized structure and connectivity, governing the collective dynamics 

underlying brain functions (Sporns et al., 2004). Compelling evidence suggests that in the early 

stages of neurodegenerative disorders, synaptic dysfunction and aberrant protein misfolding 

may occur in small vulnerable neuronal populations within specific brain regions (Dugger & 

Dickson, 2017; Seeley et al., 2009; Stam, 2014). However, as the disease progresses, the 

pathological process may propagate through the large-scale network (Fornito et al., 2015; 

Fornito & Bullmore, 2015), causing structural and functional abnormalities in the brain (Catani 

& ffytche, 2005), reflected by progressive cognitive, behavioural and motor dysfunction in the 

affected individuals (Dugger & Dickson, 2017). Understanding alterations in brain function 

due to neurological disorders and their progression throughout the disease remains one of the 

foremost challenges facing modern clinical neuroscience. 

Parkinson's disease (PD) is the most common movement disorder and the second most 

prevalent neurological disorder, affecting 2 to 3% of the population above 65 years of age 

(Bloem et al., 2021; Poewe et al., 2017; Simon et al., 2020). Among neurological conditions, 

PD has the highest growth rate and is expected to double in prevalence by 2040, contributing 

significantly to the worldwide burden of disability (Dorsey et al., 2018; Feigin et al., 2017). 

Despite being primarily characterized by several key motor features, PD also leads to a wide 

range of non-motor symptoms such as cognitive impairment and neuropsychiatric 

comorbidities. Clinically, the presentation of PD symptoms is very heterogeneous among 

affected individuals and their gradual progression reduces patients’ quality of life (Bloem et 

al., 2021; Poewe et al., 2017). Therefore, understanding the neural correlates underlying 

disease progression as well as the heterogeneous profiles of the patients have been prominent 

subjects in recent PD research. 
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Neuroimaging techniques have made significant strides in enhancing our comprehension of the 

physiopathological mechanisms of PD. By using positron emission tomography (PET), 

structural and functional magnetic resonance imaging (MRI), and magnetoencephalography 

(MEG), researchers have identified abnormalities in multiple patterns of brain activity and 

structural/functional networks associated with the manifestation of motor and non-motor PD 

symptoms, as well as their progression from the early to advanced stages of the disease 

(Devignes et al., 2022; Pourzinal et al., 2022; Boonstra et al., 2021; Mitchell et al., 2021; 

Wolters et al., 2019; Boon et al., 2019; Barber et al., 2017; Wen et al., 2016). While these 

techniques have greatly enhanced clinical research and practice by providing valuable insights 

into the pathological dysfunction of this multisystem disorder, they also have several 

limitations in clinical settings, such as their high cost and impracticality. On the other hand, 

electroencephalography (EEG) has emerged as a convenient neuroimaging technique in 

clinical applications due to its ease of use, non-invasiveness, affordability, and potential for 

mobility (Müller-Putz, 2020). When combined with appropriate signal processing methods, 

EEG has demonstrated its ability to provide valuable information about brain network 

dysfunction in PD (Shirahige et al., 2020; Q. Wang et al., 2020; Geraedts et al., 2018; Cozac, 

Gschwandtner, et al., 2016) and other neurodegenerative diseases (Sánchez-Reyes et al., 2021; 

Al-Ezzi et al., 2020; Livint Popa et al., 2020; de Aguiar Neto & Rosa, 2019; Cassani et al., 

2018; J. Wang et al., 2013; Acharya et al., 2013; Arns et al., 2013). Thus, we hypothesised that 

the use of high-density (HD)-EEG in longitudinal studies may present a promising framework 

to identify reliable markers of the disease and track their progression over time. 

1.2. Objectives, contributions and overview  

The general objective of this thesis is to investigate to what extent longitudinal resting-state 

HD-EEG can accurately characterize the abnormal brain functions associated with different 

clinical aspects of PD and identify EEG-based measures that can predict disease outcomes, 

with the aim of addressing some of the gaps in the literature.  

● First, investigates the longitudinal progression in functional brain networks of PD 

patients over 5 years. 

- To this end we conducted the first study published in Movement Disorders 

journal (Yassine et al., 2022). 
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● Second, explores the potential of resting-state EEG-based features in identifying 

clinically relevant PD subphenotypes with distinct electrophysiological profiles. 

- To this end, we carried out the second study under revision for publication in 

the Movement Disorder journal as a full paper and in the American Academy 

of Neurology (AAN-2023) annual meeting as well as in the Organization for 

Human Brain Mapping (OHBM-2023) annual meeting as a poster presentation 

for scientific abstract.  

● Third, investigates the electrophysiological signatures that characterize the anxiety in 

PD. 

- To this end, we conducted the third study to be submitted soon for revision in a 

journal, and accepted for oral presentation in AAN-2023 and for poster 

presentation in OHBM-2023. 

This manuscript is organized as follow: 

● Chapter 2 cover the background of the work performed in this thesis: 

- The first section introduces PD history, epidemiology and risk factors, 

symptomatology, pathophysiology, and treatments. 

- The second section outlines the background work of neuroimaging research in 

PD and introduces thesis objectives.  

● Chapter 3 outlines the materials and methods used in this thesis: we introduce EEG and 

the longitudinal study cohort and we detail the different analyses conducted in the 

studies presented in this thesis. 

● Chapter 4 presents the results of the thesis in the form of articles that have been 

published, submitted for publication, or are in preparation. For each article, we provide 

details on the corresponding objectives, methodology, results, and discussion. 

● Chapter 5 concludes the thesis by summarizing the general conclusions. This includes 

an overall discussion that covers several clinical and methodological considerations, as 

well as suggestions for future directions. 
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CHAPTER 2: BACKGROUND 

This thesis investigates the electrophysiological markers of progression, heterogeneity and 

anxiety in PD using resting state HD-EEG. This research topic encompasses various 

background knowledge that should be presented. Therefore, in this chapter, we introduce PD 

from a clinical point of view, as well as the current outcomes of neuroimaging studies 

addressing our three aspects of interests in PD. We conclude with the thesis objectives. 

2.1. Parkinson’s disease - Clinical overview 

2.1.1. History of PD 

James Parkinson’s essay on the “Shaking Palsy”, published in 1817, marked the first 

comprehensive clinical description of what is now widely known as Parkinson’s disease. 

Parkinson wrote the monograph prior to his retirement from medical practice with the intention 

of raising awareness among the medical community about a condition that had not yet been 

formally defined. In the essay, Parkinson reported six cases he had seen as a physician or 

observed in his neighborhood, he defined the disorder as “Involuntary tremulous motion with 

lessened muscular power, in parts in action and even when supported; with a propensity to 

bend the trunk forwards and to pass from a walking to a running pace: the senses and intellects 

being uninjured”. He referred to the condition as “paralysis agitans” (Lees, 2007; Parkinson, 

2002). 

Few decades later in the mid-1800s, Jean Martin Charot, the father of modern neurology, made 

significant contributions in understanding and disseminating information about this disorder 

(Gomes & Engelhardt, 2013). He refined and expanded upon Parkinson’s early description, 

separating it from multiple sclerosis and other tremor-inducing disorders and recognized cases 

that would be later classified as Parkinsonism-plus syndromes. With his students, Charcot has 

described the full clinical spectrum of the disease, including two prototypes, the tremorous and 

the rigid/akinetic form, as well as introducing several typical non-motor symptoms such as 

muscle pain and fatigue. Charcot also distinguished bradykinesia as a separate cardinal feature 

of PD (Goetz, 2011; Jm Charcot, 1861; Lees, 2007). 
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In the late 19th and early 20th centuries, both Gowers and Oppenheim wrote extensively on 

PD (Garcia-Ruiz et al., 2014; Goetz, 2011). Gowers described PD's motor and non-motor 

symptoms, including pain, sensory changes, autonomic dysfunction, cognitive decline, and 

neuropsychiatric disturbances (Gowers William R., 1899). While Oppenheim, summarized the 

known clinical characteristics of the disorder, and included hyperhidrosis, salivation, anxiety, 

and depression as common late-stage symptoms (Oppenheim, 1905). Both authors recognized 

the heterogeneity of PD symptoms with Gowers considering cognitive decline as a potential 

feature. Moreover, throughout this period, tremendous progress has been made by neurologists 

to understand PD progression and its underlying mechanisms. In 1953, Greenfield and 

Bosanquet performed the most in-depth analysis of PD including a clear definition of brain 

stem lesions (Greenfield & Bosanquet, 1953). Later, Hoehn and Yahr introduced the widely 

accepted staging system for PD based on the distinction between unilateral and bilateral disease 

and the onset of postural reflex impairment (Hoehn M.M. & Yahr M.D., 1976). All these early 

works emphasized the importance of considering the diverse symptoms of PD and its 

progressive aspect in diagnosis and management.  

2.1.2. Epidemiology and risk factors of PD 

PD is a neurodegenerative disorder that becomes increasingly prevalent with age (Twelves et 

al., 2003). The worldwide incidence of PD ranges from 5 to over 35 cases per 100,000 people 

annually with higher rates in male population (Simon et al., 2020; Twelves et al., 2003; Wooten 

et al., 2004). PD is rare before the age of 50, but the incidence rises 5 to 10 fold from the 6th 

to the 9th decade of life, and its estimated prevalence of 0.3% in the overall population 

increases to over 3% in individuals over 80 years of age (Poewe et al., 2017; Savica et al., 2013; 

Simon et al., 2020). Although mortality rates are unchanged in the first decade after diagnosis, 

they increase later on with the progression of the disease (Pinter et al., 2015). Current estimates 

suggest that PD prevalence is expected to dramatically escalate, doubling in the next two 

decades, as the global population ages (Dorsey et al., 2018; Feigin et al., 2017). This rise in 

prevalence will heighten the social and economic burden of PD unless more effective treatment, 

cures or means of prevention are found.  

Moreover, PD has a multifactorial aetiology from a combination of environmental and genetic 

factors (Simon et al., 2020). Environmental exposures such as toxicant chemicals, viral 

infections and head injury increase the risk of PD (S. M. Goldman, 2014; Kenborg et al., 2015; 
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Olsen et al., 2018; Tanner et al., 2014), while certain lifestyle factors, such as caffeine 

consumption, smoking and physical activity, may have a protective effect (Ascherio & 

Schwarzschild, 2016; Ritz et al., 2007). Nonetheless, environmental exposures may be 

influenced by genetic susceptibility factors. Genome-wide association studies have linked PD 

with 90 genetic loci and these genetic variants account for 16-36% of PD’s heritability (Nalls 

et al., 2019). Gene mutations, specifically those in LRRK2 and SNCA, are known to cause 

inherited forms of PD. LRRK2 mutations are responsible for a significant proportion (3-41%) 

of cases with familial inheritance and are also found in a smaller number of sporadic cases 

(Corti et al., 2011; Trinh et al., 2018). Additionally, mutations in the Glucocerebrosidase GBA 

gene have been linked to 5-10% of cases of sporadic PD (Beavan & Schapira, 2013; S. M. 

Goldman et al., 2019). Nevertheless, these mutations are not present in most PD patients and 

have incomplete penetrance suggesting the complex interaction of multiple contributing factors 

in the manifestation of PD (Bloem et al., 2021).  

2.1.3. Clinical presentation of PD 

2.1.3.1. Motor Symptoms 

The three cardinal motor symptoms of PD are bradykinesia, rigidity, and rest tremor (R. Xia & 

Mao, 2012). Bradykinesia (slowness of movement) may be associated with akinesia (difficulty 

initiating movement) and hypokinesia (reduced movement amplitude) and are all 

characteristics of basal ganglia disorders, which affect movement planning and execution 

(Moustafa et al., 2016). Their initial manifestation usually includes slow performances in daily 

activities and difficulties with tasks requiring precise motor control such as handwriting 

(Jankovic, 2008; Kalia & Lang, 2015). Rigidity in PD is characterized by increased muscle 

resistance during limb movements, often accompanied by a “cogwheel’’ phenomenon at 

different joints of the body such as neck, shoulder, wrists, ankles… (Jankovic, 2008). While 

tremor at rest, the most recognizable symptom of PD, is characterized by unilateral tremors 

occurring at frequency between 4 to 6 Hz and is prominent in distal part of extremities, 

particularly the hands. It can also affect the lips, chin, jaw and legs and is likely to disappear 

during action or sleep (Dovzhenok & Rubchinsky, 2012; Jankovic, 2008). Postural instability 

and gait freezing are also common gait abnormalities in PD that typically appear after the onset 

of other symptoms. They can lead to falls and flexed postures in later stages of the disease 

(Jankovic, 2008; Lees et al., 2009). 
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Clinical studies have shown varying rates of progression for the hallmark motor symptoms of 

PD, with patients displaying heterogeneity in progression (Poewe & Mahlknecht, 2009). Those 

with rigidity, bradykinesia and postural instability tend to experience faster progression 

compared to those with tremor-dominant PD, who have slower progression (Lees et al., 2009; 

R. Xia & Mao, 2012). In addition, PD typically starts as a unilateral-disorder with motor 

symptoms appearing on one side of the body and later spreading to the other (Djaldetti et al., 

2006; Riederer & Sian-Hülsmann, 2012). Interestingly, rates of progression of PD were also 

linked with the initially affected-side of the disease. More rapid worsening was associated with 

right-dominant symptoms profiles whereas longer disease durations correlated with left-

dominant symptomatology (Baumann et al., 2014; Heinrichs-Graham et al., 2017; Munhoz et 

al., 2013).  

2.1.3.2. Non-Motor Symptoms 

Although the diagnosis of PD traditionally occur with the onset of motor symptoms, evidence 

shows that this disease is a heterogeneous multisystem disorder comprising various non-motor 

symptoms that may predate the emergence of motor features by years or even decades (Figure 

1), and impact the quality of life of patients (Gonzalez-Latapi et al., 2021; Hiseman & Fackrell, 

2017; Pfeiffer, 2016; Poewe, 2008). These non-motor symptoms are often overlooked and 

undertreated due to under-recognition in clinical practice and lack of awareness or 

embarrassment from the patients (Chaudhuri & Schapira, 2009). Among the most common 

non-motor symptoms of PD are pain, fatigue, olfactory dysfunction (hyposmia), rapid eye 

movement sleep behaviour disorder (RBD) and those related to autonomic dysfunction such as 

constipation, erectile dysfunction and urinary urgency (Chaudhuri et al., 2006; A. Park & 

Stacy, 2009; Pfeiffer, 2016).  

Additionally, cognitive declines and neuropsychiatric symptoms are particularly common 

during the course of PD. Mild cognitive impairment (MCI) can occur in up to 40% of PD 

patients with high prevalence estimated at about 31% for the multiple-domain subtype (Baiano 

et al., 2020) and with executive and visuo-spatial abilities being the most affected (J. Goldman 

& Litvan, 2011). Cognitive declines can occur at any stage of the disease, even prior to 

diagnosis, and PD-MCI patients are at higher risk to develop dementia (PDD) with the disease 

progression (Aarsland et al., 2021). The estimated cumulative prevalence  of PDD for patients 

who have lived with the disease for over 10 years is around 80% (Gonzalez-Latapi et al., 2021), 
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and these patients commonly experience visual hallucinations, visuo-spatial difficulties, 

delusions and fluctuations in alertness (Emre et al., 2007).  

 

Figure 1. Clinical symptoms and time course of Parkinson’s disease progression. Adapted from 

(Kalia & Lang, 2015). The diagnosis of PD is established when motor symptoms begin (0 years) but 
can be preceded by a prodromal phase, characterized by several non-motor symptoms, that can last for 

20 years or more. Further non-motor symptoms emerge after diagnosis and as the disease progresses, 

they lead to significant disability. Advanced stages to disease tend to involve axial motor symptoms, 

such as postural instability with frequent falls and freezing of gait. Long-term consequences of 
dopaminergic treatment, such as fluctuations, dyskinesia and psychosis also contribute to disability. 

RBD: Rapid Eye Movement Sleep Behaviour Disorder. EDS: Excessive Daytime Sleepiness. MCI: Mild 

Cognitive Impairment. 

Furthermore, common neuropsychiatric symptoms in PD including depression, anxiety, apathy 

and psychosis, often comorbid with the existing symptoms and increase disease burden 

(Aarsland et al., 2009; Eichel et al., 2022). In particular, anxiety is among the highly prevalent 

neuropsychiatric symptoms occurring in 31% of PD patients (Broen et al., 2016), a frequency 

greater than that found in age-matched control of the general population (N. N. W. Dissanayaka 

et al., 2010; Pontone et al., 2011). It can arise at any stage of the disease, worsening the existing 

motor (Coakeley et al., 2014; Pirogovsky-Turk et al., 2017; Siemers et al., 1993) and cognitive 

symptoms (Toloraia et al., 2022; Ehgoetz Martens et al., 2018; N. N. W. Dissanayaka et al., 

2017; Reynolds et al., 2017) and exacerbating the challenges for patients and caregivers over 

the course of the disease (Eichel et al., 2022; S. Jones et al., 2020; Balestrino & Martinez-

Martin, 2017; Sagna et al., 2014; Aarsland et al., 2009). Anxiety can present with a range of 

subtypes including general anxiety disorder, non-episodic and episodic anxiety, panic attacks, 
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and social phobia (N. N. N. W. Dissanayaka et al., 2014; Ishihara & Brayne, 2006; Shiba et al., 

2000). However, Anxiety in PD can also co-occur with depression and apathy and the 

substantial overlap in their features often hampers their clinical dissociation (Rutten et al., 

2015; Wen et al., 2016), thus this comorbidity is often under-diagnosed and undertreated and 

little is known about its underlying PD-related mechanisms.   

Considering the widespread heterogeneity in the clinical spectrum of PD, it is important to 

acknowledge the existence of different subtypes with distinct clusters of symptoms and diverse 

disease trajectories. Recognizing these subtypes is important in understanding the disease 

process and in providing insights into prognosis and personalized treatments (Bloem et al., 

2021; A. J. Espay et al., 2017, 2020). 

2.1.4. Pathophysiology of PD 

The pathophysiological hallmark of idiopathic PD is the loss of dopaminergic neurons in the 

pars-compacta of the substantia nigra, accompanied by the accumulation of intracellular α-

synuclein in the form of Lewy bodies (Bloem et al., 2021; Kalia & Lang, 2015). Although these 

two major neuropathologies are not specific to PD, when combined they form its definitive 

diagnosis (Poewe et al., 2017). 

Clinical-pathological studies of PD have revealed that the loss of pigmented dopaminergic 

neurons in the ventrolateral area of the substantia nigra creates a gradient of dopamine depletion 

in the region (Dickson, 2018; Dickson et al., 2009). This leads to an imbalance between the 

direct and indirect pathways in the basal ganglia, resulting in motor features, in particular 

bradykinesia and rigidity (Bloem et al., 2021; Calabresi et al., 2014) (Figure 2-A). The dramatic 

loss of nigral neurons, even in the early stages of the disease, suggests that degeneration in this 

region begins prior to the onset of motor symptoms and becomes more widespread as the 

disease progresses (Dijkstra et al., 2014; Kordower et al., 2013). 
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Figure 2. The pathological hallmarks of Parkinson’s disease, adapted from (Bridi & Hirth, 2018). 

A) The loss of dopaminergic neurons in the striatal system: the degeneration of the dopaminergic 

neurons in the substantia nigra (SN) is preceded by dysfunction and subsequent degeneration of the 

nigrostriatal pathway. This pathway connects the SN to the caudate nucleus and the putamen, which 
together form the striatum. As a result of nigrostriatal degeneration, the neurotransmitter dopamine is 

depleted and ultimately lost on the synaptic terminals of striatal neurons. This stands in contrast to 

healthy controls, whose striatal neurons have normal dopamine levels. B) The progressive 
accumulation of intracellular α-synuclein in presynaptic terminals: under normal conditions, α-

synuclein functions as monomers in synaptic transmission (left). Toxic species like oligomers and fibrils 

start to accumulate at presynaptic terminals implicating the pathogenesis of PD (middle). These toxic 
species alter protein involved in synaptic transmission, causing synaptic dysfunction, loss of neuronal 

connections and ultimately death of neuronal cells (right). 

Furthermore, the loss of dopaminergic neurons in PD is accompanied by the formation of Lewy 

bodies, which are intracellular inclusions in the cytoplasm of affected neurons. Lewy bodies 

have a complex composition of α-synuclein and ubiquitin, and when α-synuclein misfolds, it 

becomes insoluble and aggregates to form Lewy bodies and Lewy neurites (Goedert et al., 
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2013) (Figure 2-B). Their propagation in the central nervous system is proposed to be 

associated with the disease progression (Brás & Outeiro, 2021; Recasens & Dehay, 2014).  

Braak and colleagues have proposed a 6-stage model for the progression of Lewy pathology in 

PD. The model outlines a stereotypical pattern that corresponds with the clinical course of the 

disease, with stages 1-2 associated with the onset of premotor symptoms, stage 3 with motor 

symptoms due to dopamine deficiency, and stages 4-6 with non-motor symptoms of advanced 

PD (Braak et al., 2003). The complex mechanisms underpinning the pathology of PD are 

thought to begin in the peripheral nervous system and to spread, with the disease progression, 

to the mesocortex and neocortex in a caudal-to-rostral direction, leading to structural and 

functional changes (Bove & Travagli, 2019; Michely et al., 2015). 

2.1.5. Treatments of PD 

Given that the cardinal motor features of PD result from the loss of dopaminergic neurons and 

the depletion of dopamine in the nigrostriatal system, the dopamine replacement therapies have 

been established for over 5 decades as the simplest and most effective treatments in alleviating 

these symptoms (Poewe et al., 2017). In particular, Levodopa is widely regarded as the most 

effective treatment for the motor symptoms of PD and is eventually required by the majority 

of patients with the disease (LeWitt & Fahn, 2016; Nemade et al., 2021). It is administered in 

low doses and adjusted based on the patient's response and side effects. Despite its efficacy, 

long-term use can result in motor complications such as motor response oscillations and drug-

induced dyskinesias caused by discontinuous drug delivery due to its short half-life and 

variability in absorption and transport across the blood-brain barrier (Cenci, 2014; Poewe & 

Antonini, 2015; Zahoor et al., 2018). Additionally, levodopa is not effective in treating various 

motor (such as gait and speech) and non-motor (such as cognitive, sensory, and vegetative) 

symptoms of PD (You et al., 2018).  

Other introduced therapies include non-ergot derived dopamine receptor agonists, which have 

been associated with a lower risk of dyskinesias compared to levodopa (Nemade et al., 2021; 

Zahoor et al., 2018). However, they are less potent and less well-tolerated, as they have been 

reported to cause higher rates of adverse effects such as nausea, vomiting, insomnia, sleepiness, 

and hallucinations, particularly in the elderly population (Goldenberg, 2008). Another class of 

drugs in PD includes the inhibitors of levodopa metabolism which aim to block the activity of 

enzymes involving in the breakdown of dopamine, such as the monoamine oxidase B (MAO-
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B) and the Catechol-O-methyltransferase (COMT). These inhibitors could be used as a first-

line treatment for mild motor symptoms or in combination with levodopa and dopamine 

receptor agonists, however they also have several side effects such as dyskinesia, headache and 

diarrhea (Nemade et al., 2021; Goldenberg, 2008; National Collaborating Centre for Chronic 

Conditions (UK), 2006).  

Other than pharmacological treatments, Deep Brain Stimulation (DBS) is a highly effective 

surgical treatment of PD that uses high-frequency electrical stimulation to improve motor 

symptoms (Limousin et al., 1995). The complex procedure involves implanting electrodes into 

specific targets within the basal ganglia and connecting them to a stimulator in the chest wall 

(Foltynie & Hariz, 2010). The subthalamic nucleus (STN) is the preferred target for DBS in 

PD due to the extensive documentation of its efficacy in reducing motor symptoms (Nemade 

et al., 2021; Hartmann et al., 2019; S. H. Fox et al., 2011; Follett et al., 2010; Benabid et al., 

2009). Studies have shown that DBS can result in reductions in dopaminergic medications in 

the order of 40-60% and improvement in motor function of 30-50% with enhanced quality of 

life for the patients (Mahlknecht et al., 2022; Aquino et al., 2019; Deuschl & Agid, 2013; 

Schuepbach et al., 2013). However, there are many potential side effects of DBS affecting its 

long-term efficacy, including intracranial bleeding, device complications like infections and 

misplacements and neuro-psychiatric sequelae (apathy, depression, impulsiveness, mania, and 

increased risk of suicide) that result from a complex interplay between disease-related 

psychiatric symptoms, dopaminergic imbalance, and stimulation-induced effects on limbic 

basal ganglia circuits (Limousin & Foltynie, 2019; Bronstein et al., 2011; Volkmann et al., 

2010; Voges et al., 2007). Cognitive decline is also a major adverse event of DBS that occurs 

in 15-20% of operated PD patients and can be caused by surgical neuronal damage or 

stimulation (Witt et al., 2013). Although the risks can be managed by adjusting DBS settings, 

there is currently no effective way to predict or avoid stimulation-induced cognitive decline in 

PD patients (Limousin & Foltynie, 2019; Witt et al., 2013; Frankemolle et al., 2010). 

The non-motor symptoms of PD, which can be just as or even more debilitating than the motor 

symptoms, do not respond well to dopamine replacement therapies and may even be 

exacerbated by it (Nemade et al., 2021; Seppi et al., 2019; Storch et al., 2013). Cholinesterase 

inhibitors, however, can have significant positive effects on cognitive disturbances in PD 

patients with dementia (Seppi et al., 2019, 2011). Concerning the neuropsychiatric symptoms 

such as depression and anxiety, their underlying mechanisms in PD patients are uncertain and 

may differ from those in the general population. This raises questions about the effectiveness 
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of antidepressant and anxiolytic medications in treating these symptoms in PD patients 

(Connolly & Fox, 2014; Seppi et al., 2011, 2019).  

Currently, PD therapies only alleviate symptoms and over time, as the disease progresses, most 

patients end up taking a combination of drugs that must be carefully balanced for optimal 

symptom improvement and minimal side effects (Bloem et al., 2021; Lees et al., 2009). Indeed, 

this explains the elusive and highest priority in current PD research to develop convergent 

biomarkers in order to improve disease modifying and neuroprotective interventions.  

2.1.6. Objectives of the thesis 

The heterogeneous profile of patients with PD in terms of symptoms and progression is due to 

various underlying causes originating from multiple neurodegenerative processes in the brain. 

As such, there is a need to explore markers that reflect the pathophysiology of disease 

progression, while also acknowledging the heterogeneity among patients and the neural 

correlates of distinct symptoms. These efforts may lead to better biomarkers and improved 

disease management strategies. Therefore, in this thesis, we focused on addressing three 

clinical problems in PD: 

1. The electrophysiological mechanisms underlying the progression of PD 

2. The heterogeneity in PD patients and disease phenotyping 

3. The neural correlates associated with the anxiety in PD 

2.2. Neuroimaging research in Parkinson’s disease 

2.2.1. Progression of PD 

The neurodegeneration process in PD begins prior to the onset of motor signs and the 

progression of the neuropathology typically corresponds to the evolution of the clinical 

symptomatology (Braak et al., 2004, 2005). Over the past decades, neuroimaging studies have 

been trying to understand the progressive nature of PD and its underlying brain mechanisms. 

Using advanced techniques such as dopaminergic positron emission tomography (PET), single-

photon emission computed tomography (SPECT), structural and functional magnetic 

resonance imaging (MRI and fMRI), magnetoencephalography (MEG), and 
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electroencephalography (EEG), there are great efforts to identify biomarkers of progression 

from early to advance stages of the disease. 

2.2.1.1. PET / SPECT 

PET and SPECT can monitor the dopaminergic damage in the nigrostriatal system of PD 

patients (Shen et al., 2012; Thobois et al., 2001). In preclinical and prodromal stages of PD, 

researchers have focused mainly on individuals with idiopathic RBD, which is considered a 

promising clinical prodromal marker (Boeve, 2013; Howell & Schenck, 2015; Iranzo et al., 

2014). PET/SPECT scans have revealed that individuals with RBD experienced progressive 

dopaminergic deficits in striatal regions compared to healthy controls (Heller et al., 2017; 

Iranzo et al., 2011). Further, during early stages of PD, declines in striatal dopamine 

transporter’s binding and fluorodopa uptake were reported to be more rapid in the first two 

years after diagnosis compared to the following three years (Brück et al., 2009; Simuni, 

Siderowf, et al., 2018). The progression of striatal dopaminergic markers showed an 

exponential decline and mostly plateaued after five years of diagnosis suggesting the 

propagation of the pathology towards midbrain and cortical regions (Mitchell et al., 2021; 

Nandhagopal et al., 2011). Indeed, the cortical dopaminergic activity becomes more impaired 

with the disease progression as cognitive impairment in PD has been associated with reductions 

in dopaminergic receptors and diminished glucose metabolism in the insular, cingulate, 

temporal and frontal cortices (Christopher et al., 2015; González-Redondo et al., 2014; Pappatà 

et al., 2011; Sasikumar & Strafella, 2020). Despite these findings, a major drawback of both 

PET and SPECT is that they require the exposure of subjects to ionizing radiation. This presents 

a particular challenge for younger individuals and for serial longitudinal studies where the 

cumulative risk of repeated scans may not be acceptable. 

2.2.1.2. Structural and functional MRI 

T1-based structural MRI methods, such as cortical thickness and voxel-based morphometry 

(VBM), provide a sensitive measure of the pathophysiology progression in different stages of 

the disease. In the prodromal stage,  a VBM study revealed reduction in the volume of the 

hippocampal in RBD patients without dementia (Scherfler et al., 2011), whereas more 

widespread reductions in cortical thickness within several cortices (temporal, frontal, occipital 

and cingulate) were reported in RBM patients with pronounced cognitive impairments 

(Rahayel et al., 2018). Further, several studies on early stage PD patients have reported thinning 

in subcortical and cortical regions, mainly in the parietal and premotor cortices, and this 
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thinning has been linked to poorer cognitive performance in the patients (Ibarretxe-Bilbao et 

al., 2012; Mak et al., 2015; Pereira et al., 2014; Zarei et al., 2013; Zeighami et al., 2015). 

Another recent longitudinal study on de novo PD patients from the Parkinson’s disease 

Progression Marker Initiative (PPMI) cohort have shown that MRI-derived patterns of brain 

atrophy can predict subsequent disease progression over 4.5 years in terms of motor, cognitive 

and global functioning (Zeighami et al., 2019). Moreover, structural changes in the brain are 

more prominent with the advanced stages of the disease. PD patient with mild cognitive 

impairment (PD-MCI) and PD patients with dementia (PDD) showed consistent gray matter 

atrophy associated with the cognitive functioning, mainly in the frontal, temporal, and parietal 

cortices as well as in the hippocampus (Delgado-Alvarado et al., 2016; Mak et al., 2014; Segura 

et al., 2014; Zarei et al., 2013). Also, the increased cortical thinning and the transition from 

unilateral to bilateral loss in gray matter were shown to be predictors for the progression from 

PD-MCI to PDD (Gasca-Salas et al., 2019; Xu et al., 2016). 

Regarding fMRI, this technique provides indirect insight into the regional activation of the 

brain and the functional connectivity between different anatomic locations through the blood-

oxygen-level dependent (BOLD) response (M. D. Fox & Raichle, 2007; Hall et al., 2016). In 

pre-symptomatic PD gene carriers’ individuals, resting state fMRI studies have shown altered 

connectivity in subcortical and cortical regions of motor networks preceding the manifestation 

of PD (Helmich et al., 2015; Meles et al., 2021; Vilas et al., 2016). Decreased functional 

connectivity within basal ganglia networks have been also shown in RBD patients with much 

lower connectivity observed in diagnosed PD patients, suggesting a gradual decline along a 

continuous spectrum (Dayan & Browner, 2017; Ellmore et al., 2013; Rolinski et al., 2016). 

Moreover, fMRI studies of de novo PD patients have reported varying patterns of alterations 

in the cortico-subcortical functional connectivities that correlate with the clinical outcome of 

the patients, suggesting the propagation of the pathology throughout the brain (Prodoehl et al., 

2014; Tessitore et al., 2019; Tuovinen et al., 2018). In moderate and late stages of the disease, 

cognitive impairment in PD patients was associated with reduced functional connectivity in the 

default mode network (DMN) as well as in fronto-parietal, parieto-temporal and fronto-

occcipital (long-range) networks (Wolters et al., 2019; Díez-Cirarda et al., 2018; Zhan et al., 

2018; Amboni et al., 2015; Baggio et al., 2015; Borroni et al., 2015). Consistent alterations in 

the functional connectivity of sensorimotor network (SMN) have been also reported across 

various stages of the disease (Strafella et al., 2018; Tessitore et al., 2014). The deterioration in 
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functional connectivity associated with the disease progression was also shown in several 

longitudinal fMRI studies (Olde Dubbelink et al., 2014; Burciu et al., 2016; Filippi et al., 2020). 

Both structural and functional MRI studies have shown significant advancement in tracking 

the progression of PD. However, these tools are expensive and cumbersome, which poses a 

significant challenge in low-resource environments (McMackin et al., 2019).  

2.2.1.3. MEG 

MEG is a noninvasive technique that records the weak magnetic fields induced by electrical 

activity in the brain. With its high temporal resolution, it allows for in-depth analysis of 

neuronal activity and functional connections between brain regions (Cohen, 1972). At early 

disease stages, Stoffers and colleagues have shown widespread slowing of background MEG 

activity in de novo PD patients relative to controls while investigating the cortical resting state 

oscillations. They have also linked higher alpha1 power in central and parietal regions with 

early cognitive deficits in newly diagnosed patients (Stoffers et al., 2007). With the disease 

progression, longitudinal examinations of the power spectrum revealed an increase of the 

power of slower frequencies (theta and alpha) in contrast to a decrease in the power of faster 

frequencies (beta and gamma) , that correlate with the clinical course of both motor and 

cognitive symptomatology (Olde Dubbelink, Stoffers, Deijen, Twisk, Stam, & Berendse, 

2013). The diffuse slowing of spectral power was also shown to characterize the progression 

toward late stages of the disease where patients develop dementia (Dubbelink et al., 2014; 

Ponsen et al., 2013).  Regarding assessments of functional connectivity, a cross-sectional MEG 

study has shown that increased connectivity between cortical regions in the alpha1 frequency 

band is a characteristic of PD from early stages of the disease onward (Stoffers et al., 2008), 

while other studies have reported reductions in the functional connectivity in alpha and beta 

bands, mainly in the fronto-temporal networks, to characterize the progression into late stages 

of the disease (Bosboom et al., 2008; Ponsen et al., 2013). Longitudinally, Olde Dubbelink and 

colleagues have shown that global decreases in the source-space functional connectivity of 

alpha1 and alpha2 in several seed regions can characterize the progression of the disease over 

4 years and correlate with motor and cognitive deteriorations of the patients (Olde Dubbelink, 

Stoffers, Deijen, Twisk, Stam, Hillebrand, et al., 2013). Despite these promising insights, the 

use of current MEG systems in clinical settings is limited due to the requirement for costly 

superconductive heavy systems, which hinders biomarkers development efforts. 
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2.2.1.4. EEG 

EEG is a non-invasive method of measuring brain activity through the recording of scalp-level 

electric potentials. It provides a direct measure of the cortical neural activity and the functional 

interaction between brain regions on a millisecond timescale (Biasiucci et al., 2019). Like 

MEG, global spectral analysis of resting-state EEG data in PD patients showed a general 

slowing of cortical activity, characterized by an increase in slower band waves and a decrease 

in faster band waves compared to healthy controls (Caviness et al., 2016; Geraedts et al., 2018; 

Shirahige et al., 2020). These spectral patterns were reported to be present from early disease 

stages and were found to correlate with cognitive functioning and to predict cognitive decline 

in advanced disease stages, not only in cross-sectional cohorts but also in longitudinal studies 

(Caviness et al., 2007, 2015; Cozac, Gschwandtner, et al., 2016; Fonseca et al., 2009; Han et 

al., 2013; Klassen et al., 2011; Latreille et al., 2016; Zimmermann et al., 2015). Further, when 

assessing the functional connectivity in PD patients with the disease progression, most 

researchers have addressed the manifestation of cognitive impairments at advanced stages. In 

fact, several studies have reported functional dysconnectivity, mainly in alpha and beta bands, 

that characterize the cognitive decline in PD patients and correlate with their global or domain 

specific cognitive scores (Carmona Arroyave et al., 2019; Chaturvedi et al., 2019; Hassan, 

Chaton, et al., 2017; Peláez Suárez et al., 2021). Nevertheless, these EEG-based functional 

connectivity studies were all conducted at a single point in time rather than longitudinally, a 

key point for the development of biomarkers of progression in PD. 

To facilitate the comparison between the aforementioned studies on different stages of the 

disease, we have summerized their major findings in Table 1, reporting the most pertinent 

information.  

Finally, all of these neuroimaging studies have approached the progression of PD as a group 

average, considering PD as a single entity and grouping patients regardless of their 

heterogeneous phenotypes. They have focused on their pathological commonalities rather than 

targeting smaller groups and investigating their individualized disease trajectories. Therefore, 

prior distinction of patients’ phenotypes, on the clinical and neurophysiological levels, is a step 

toward stratified medicine and may certainly enhance biomarker development strategies and 

disease modification therapies (A. J. Espay et al., 2017, 2020).  
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Table 1. Summary of the main findings of different neuroimaging techniques addressing the 

progression of PD through different stages of the disease. MCI: mild cognitive impairment, PDD: PD 

dementia, RBD: rapid eye movement sleep behaviour disorder, FC: functional connectivity, DMN: 

default mode network, FTN: fronto-temporal network, FP: fronto-parietal network, FON: fronto-

occipital network 

 Prodromal stage Early stage MCI/PDD 
Progression 

remarks  

PET/ 

SPECT 

Striatal 
dopaminergic 

deficits in RBD 

patients 

Exponential 
declines dopamine 

transporter’s 

binding and 
fluorodopa uptake 

in the striatal 

system 

Reductions in 
dopaminergic 

receptors and 

diminished glucose 
metabolism in the 

insular, cingulate, 

temporal and 

frontal cortices 

Dopaminergic 
deficits start in the 

striatal system and 

propagate toward 
cortical regions 

with disease 

progression 

Structural 

MRI 

Reduced volume of 
the hippocampal 

and reductions in 

cortical thickness 
of several cortices 

in RBM patients  

Thinning in 
subcortical and 

cortical regions, 

mainly in the 
parietal and 

premotor cortices. 

Consistent grey 
matter atrophy 

mainly in the 

frontal, temporal, 
and parietal 

cortices as well as 

in the hippocampus 

Gray matter 
atrophy and 

reductions in 

cortical thickness 
over the course of 

the disease 

Functional 

MRI 

Altered FC in 
subcortical and 

cortical regions of 

motor networks in 

PD gene carriers’ 
individuals and 

RBD patients 

Alterations in the 
cortico-subcortical 

FC 

Reduced functional 
connectivity in the 

DMN, FPN, FTN 

and FON 

Deterioration in FC 
associated with the 

disease progression 

MEG - 

Slowing of 

background 
activity and 

increased FC in 

alpha1 

Diffuse slowing of 

spectral power and 
reductions in the 

FC in alpha and 

beta bands, mainly 
in the FTN 

 

Increase of the 

cortical power of 
slower frequencies 

and decrease in the 

power of faster 
frequencies.  

Decreased FC in 

alpha band 

EEG - 

General slowing of 
cortical activity 

Diffuse slowing of 
spectral power and  

reduced FC mainly 

in alpha and beta 

bands 

Increase power of 
slower band waves 

and decrease 

power in faster 

band waves 
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2.2.2. Heterogeneity in PD and disease phenotyping 

There is emerging evidence suggesting that PD is not a single entity, but rather a group of 

diverse, clinically, genetically and epidemiologically heterogeneous diseases (A. J. Espay et 

al., 2020; Farrow et al., 2022). Individuals with PD may experience a wide range of symptoms, 

and the substantial phenotypic heterogeneity is further complicated by differences in age of 

onset and progression rate (Bloem et al., 2021; Kalia & Lang, 2015; Poewe et al., 2017). This 

variability in PD can be better understood by identifying subtypes and defining groups of 

patients with unique features not only at the clinical level, but also in terms of biological and 

pathological mechanisms (A. Espay et al., 2017; A. J. Espay et al., 2017; Mestre et al., 2021).  

The earliest attempts to address the heterogeneity of PD were carried out through hypothesis-

free, data-driven subtyping studies based on clinical and behavioural assessments (van Rooden 

et al., 2010, 2011; Erro et al., 2013; Mu et al., 2017). Most of these studies relied on cross-

sectional analysis and there was limited longitudinal assessment to evaluate the prognosis of 

subtypes. Although they uncovered clinically relevant PD subtypes, the depth of phenotypic 

information was inconsistent and their limited scope prevented a full understanding of the 

underlying pathophysiology (A. J. Espay & Marras, 2019; Fereshtehnejad et al., 2015; Landau 

et al., 2016; Lawton et al., 2018; Mestre et al., 2021; Rodriguez-Sanchez et al., 2021). In 

contrast, the integration of genetic, biochemical and neuroimaging data in PD studies has 

significantly enhanced our understanding of the biological basis of the disease (Farrow et al., 

2022). Through genome wide association studies, researchers have linked various genetic 

variants with the onset of PD (Nalls et al., 2019), varying rates of cognitive decline (Szwedo 

et al., 2022) and different progression patterns of the disease (G. Liu et al., 2021; Tan et al., 

2021). Other studies using levels of cerebrospinal fluid markers have associated different PD 

phenotypes with the severity of both motor (Kang et al., 2013, 2016; Majbour et al., 2021) and 

cognitive signs (Leaver & Poston, 2015; Montine et al., 2010). Neuroimaging studies have also 

shown correlations between specific neurophysiological processes and different forms of PD, 

including its clinical features (Boon et al., 2019; Boonstra et al., 2021; Geraedts et al., 2018; 

Hassan, Chaton, et al., 2017; Ma et al., 2018; W. Song et al., 2021; Wen et al., 2016; Wolters 

et al., 2019), treatment responsiveness (Ballarini et al., 2019; Yang et al., 2021) and progression 

rates (Filippi et al., 2020; Majbour et al., 2016; Olde Dubbelink, Stoffers, Deijen, Twisk, Stam, 

Hillebrand, et al., 2013). Indeed, by integrating information from such data modalities in 

clustering techniques, a more accurate identification of PD subtypes could be achieved. The 
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obtained subtypes would share common pathological processes and well-defined disease 

trajectories, which are major elements in supporting the discovery of biomarkers and promoting 

the development of stratified medicine strategies (A. Espay et al., 2017; A. J. Espay et al., 2017, 

2020). 

In this context, several PD studies, mainly on the PPMI cohort, have integrated clinical and 

biological data into supervised and unsupervised learning techniques to define different PD 

subtypes and assess their longitudinal progression. Fereshtehnejad and colleagues have used 

clinical, genetic and neuroimaging data in agglomerative hierarchical clustering to define three 

clinically relevant PD subtypes (mild motor predominant, intermediate and diffuse malignant) 

and associate them with significantly different rates of dopaminergic deficits and brain atrophy 

(Fereshtehnejad et al., 2017). Other studies have shown that applying machine learning and 

deep learning methods on a combination of comprehensive clinical and neuroimaging data can 

yield to identifying three PD subtypes and to categorize patients not only based on their 

baseline severity, but also according to their progression rates (Dadu et al., 2022; X. Zhang et 

al., 2019). Another study conducted by Markello and colleagues have shown that using 

Similarity Network Fusion (SNF) method combined with spectral clustering on multimodal 

clinical and neuroimaging data can lead to identifying three biotypes of PD patients with 

distinct underlying pathological dissimilarities. They have also demonstrated the 

preponderance of the neuroimaging data in such clustering approaches for yielding meaningful 

clusters with distinct biological profiles (Markello et al., 2021). Although the integration of 

EEG in clustering techniques has been previously employed to identify subtypes of different 

neurodegenerative disorders (Byeon et al., 2020; Dukic et al., 2021; Y. Zhang et al., 2021), the 

use of EEG-based features in a longitudinal framework to establish PD phenotyping is still 

missing. 

Although clustering approaches in PD can effectively reduce the dimensionality of this 

heterogeneous disorder and lead to better biomarkers discoveries and stratified medicine, 

understanding the neural basis of each clinical symptom separately is still a crucial step in this 

process. Anxiety, in particular, is among the poorly understood non-motor symptoms of PD. 

2.2.3. Anxiety in PD 

PD is not just a movement disorder, but a multidimensional disease reflecting multiple 

pathologies including psychiatric comorbidities (Aarsland et al., 2009; Bloem et al., 2021; 
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Farrow et al., 2022; S. Jones et al., 2020). Anxiety is among the highest prevalent psychiatric 

symptoms occurring in at least one-third of PD patients (Broen et al., 2016). In the general 

population, studies have shown that the human brain process fear and anxiety through two main 

circuits: the fear circuit involving the amygdala, the anterior cingulate cortex (ACC), the medial 

prefrontal cortex (mPFC), the insular cortex, the hippocampus and the striatum, as well as the 

limbic cortico-striato-thalamocortical circuit involving the PFC, basal ganglia and thalamus 

(Daffre et al., 2020; Hartley & Phelps, 2010; Shin & Liberzon, 2010; Volkmann et al., 2010). 

In PD patients, the abnormalities in several regions within these circuits due to PD pathology 

may explain the high prevalence of anxiety in this population (Thobois et al., 2017). Still, the 

neural correlates of the PD-related anxiety have not been sufficiently addressed by previous 

PD research. 

Neuroimaging studies have investigated the brain mechanisms underlying anxiety in PD 

through various techniques (Carey et al., 2021; Perepezko et al., 2021). PET/SPECT studies 

have shown that increased anxiety in PD patients is linked to decreased binding of dopamine, 

norepinephrine and serotonin transporters in various subcortical regions, including the bilateral 

amygdala (Bayram et al., 2020; Carey et al., 2021; Joling et al., 2018; Picillo et al., 2017) as 

well as reduced metabolism in the prefrontal and cingulate cortices (X. Wang, Zhang, et al., 

2017). Anatomical MRI studies using VBM have also associated higher levels of anxiety with 

reduced volumes in several brain regions including the bilateral ACC, the bilateral precuneus 

and the left amygdala (Carey et al., 2020; Vriend et al., 2016; Wee et al., 2016). Resting state 

fMRI studies have reported increased functional connectivity (hyperconnectivity) between the 

amygdala and various brain regions including the striatum, the PFC, temporal and parietal 

cortices, characterizing the anxiety in PD patients (Dan et al., 2017; X. Wang, Li, et al., 2017; 

X. Wang et al., 2018; H. Zhang et al., 2019). Carey and colleagues have also shown 

hyperactivity between the fear circuit and the salience network in anxious PD patients 

compared to non-anxious PD patients (Carey et al., 2020). Patterns of decreased functional 

connectivity between the amygdala and PFC and between the orbitofrontal cortex and PFC 

were also associated with the severity of anxiety in PD patients (Dan et al., 2017; X. Wang et 

al., 2018). Further, only one study, conducted by Betrouni and colleagues, has utilized EEG to 

examine the electrophysiological characteristics of anxiety in PD patients (Betrouni et al., 

2022). They found that the anxious PD group exhibited generally increased delta power and 

decreased alpha power, primarily in the frontal cortex, compared to the non-anxious PD group. 

Additionally, their functional connectivity analysis showed hyperconnectivity between the left 
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insula and various regions of the right prefrontal cortex, associated with the PD-related anxiety. 

However, a drawback of this study is the lack of a control group. Although neuroimaging 

studies have provided valuable insights in understanding the PD-related anxiety, the use of 

EEG in case-control longitudinal studies to investigate the neural correlate of anxiety in PD is 

still missing. 

2.2.3. Thesis objectives 

Taken together, the aforementioned findings from various neuroimaging techniques have 

shown promising insights into understanding the pathophysiology underlying the progression 

of PD and its heterogeneous clinical presentation. However, when it comes to developing 

reliable imaging biomarkers, EEG can be considered as a very advantageous neuroimaging tool 

due to its ease of use, non-insaviness, cost-effectiveness, availability (even in underprivileged 

countries) and potential to be a mobile technology. Additionally, the literature has largely 

highlighted that EEG with its high temporal resolution and when combined with adequate 

signal processing techniques, can provide valuable information on both normal and impaired 

brain networks. Therefore, the use of EEG in longitudinal studies of PD patients may provide 

a promising framework to identify markers of the disease and track their progression over time. 

This thesis focuses on extracting, selecting and analyzing pertinent resting-state EEG markers 

of PD in a longitudinal perspective, aiming to address some of the literature’s gaps and provide 

new insights into biomarkers development strategies. Mainly, this thesis focuses on addressing 

three clinical aspects of PD using longitudinal resting-state HD-EEG data. This was achieved 

by conducting three studies: 

1. The first study focuses on the progression of PD. We investigated the longitudinal 

evolution in the functional brain networks of PD patients over 5 years and associate 

markers of progression with cognitive outcomes and lateralization of motor symptoms. 

2. The second study aims to characterize the heterogeneity in PD by subtyping patients 

based on their EEG-based features. We sought to identify different PD subgroups with 

distinct electrophysiological profiles and appraise their clinical significance and their 

neurophysiological/clinical progression longitudinally.  

3. The third study investigates the electrophysiological processes underlying PD-related 

anxiety. We aimed to identify the electrophysiological fingerprints characterizing 
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anxious PD patients compared to non-anxious patients and healthy control and to assess 

their capacity in predicting the clinical scores of anxiety over the course of the disease. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1. Electroencephalography 

EEG is a neuroimaging technique that records the brain's electrical activity by measuring 

rhythmic fluctuations in neurons, also known as brainwaves (Biasiucci et al., 2019; Borck, 

2018). Although Richard Caton was the first to record the neurophysiological activity of 

animals in 1875, it was the German psychiatrist Hans Berger who introduced EEG on humans 

in 1924 by developing a recording technique that involved connecting electrodes to the scalp 

(Borck, 2018). After almost 100 years, EEG has been growingly used in evaluating the dynamic 

functioning of the brain, particularly in medical applications (Acharya et al., 2013; Arns et al., 

2013; de Aguiar Neto & Rosa, 2019; Geraedts et al., 2018; Jeong, 2004; Müller-Putz, 2020; J. 

Wang et al., 2013). 

3.1.1. Electric source of EEG signals 

The human brain forms a vast and electrically active neuronal network. Synaptic activity in 

these networks generates a subtle electrical impulse called the postsynaptic potential. If a large 

population of neurons is spatially aligned and has synchronous activity, a superimposed 

electrical field may be produced. Cortical pyramidal neurons are usually aligned 

perpendicularly to the cortical surface, and when firing in synchrony, the summation of their 

extracellular ionic currents is powerful enough to flow through the brain tissue, bone, and skull 

to the electrodes on the scalp where EEG signals are recorded (Figure 3).  Due to the low 

magnitude of the electrical activity measured at the scalp electrodes, which is typically in the 

microvolt range, the recorded data is amplified and converted into a digital format (Bear et al., 

2020; Buzsáki et al., 2012; Müller-Putz, 2020).  

Of note, the measurement of brain activity with EEG can be complicated by the presence of 

various biological and instrumental noises, which can interfere with the neural signals of 

interest. Biological noise, such as ocular, muscular, and cardiac activity, is caused by non-

neuronal ionic currents or potentials. Meanwhile, instrumental noise is due to the recording 

system and environmental electromagnetic sources. These artifacts must be accounted for 

during preprocessing of the raw EEG signals to extract the clean EEG data (Müller-Putz, 2020). 
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obtained subtypes would share common pathological processes and well-defined disease 

trajectories, which are major elements in supporting the discovery of biomarkers and promoting 

the development of stratified medicine strategies (A. Espay et al., 2017; A. J. Espay et al., 2017, 

2020). 

In this context, several PD studies, mainly on the PPMI cohort, have integrated clinical and 

biological data into supervised and unsupervised learning techniques to define different PD 

subtypes and assess their longitudinal progression. Fereshtehnejad and colleagues have used 

clinical, genetic and neuroimaging data in agglomerative hierarchical clustering to define three 

clinically relevant PD subtypes (mild motor predominant, intermediate and diffuse malignant) 

and associate them with significantly different rates of dopaminergic deficits and brain atrophy 

(Fereshtehnejad et al., 2017). Other studies have shown that applying machine learning and 

deep learning methods on a combination of comprehensive clinical and neuroimaging data can 

yield to identifying three PD subtypes and to categorize patients not only based on their 

baseline severity, but also according to their progression rates (Dadu et al., 2022; X. Zhang et 

al., 2019). Another study conducted by Markello and colleagues have shown that using 

Similarity Network Fusion (SNF) method combined with spectral clustering on multimodal 

clinical and neuroimaging data can lead to identifying three biotypes of PD patients with 

distinct underlying pathological dissimilarities. They have also demonstrated the 

preponderance of the neuroimaging data in such clustering approaches for yielding meaningful 

clusters with distinct biological profiles (Markello et al., 2021). Although the integration of 

EEG in clustering techniques has been previously employed to identify subtypes of different 

neurodegenerative disorders (Byeon et al., 2020; Dukic et al., 2021; Y. Zhang et al., 2021), the 

use of EEG-based features in a longitudinal framework to establish PD phenotyping is still 

missing. 

Although clustering approaches in PD can effectively reduce the dimensionality of this 

heterogeneous disorder and lead to better biomarkers discoveries and stratified medicine, 

understanding the neural basis of each clinical symptom separately is still a crucial step in this 

process. Anxiety, in particular, is among the poorly understood non-motor symptoms of PD. 

2.2.3. Anxiety in PD 

PD is not just a movement disorder, but a multidimensional disease reflecting multiple 

pathologies including psychiatric comorbidities (Aarsland et al., 2009; Bloem et al., 2021; 
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Figure 3. EEG principle: Electric field generated by aligned pyramidal cells. Adapted from (Bear et 

al., 2020). 

Finally, the distance between the electrodes and the actual source of neuronal activity is a 

significant limitation of EEG measurements, resulting in lower spatial resolution compared to 

other neuroimaging techniques such as functional MRI and PET (Binnie & Prior, 1994; 

Buzsáki et al., 2012). Despite this drawback, EEG offers a major advantage in providing 

neuronal information with high temporal resolution, allowing for a better understanding of 

neuronal dynamics in a millisecond timescale. Additionally, EEG is relatively simple to use, 

inexpensive, and a mobile neuroimaging technology. While MEG shares the high temporal 

resolution of EEG, EEG surpasses MEG in terms of practicality and cost-effectiveness. Figure 

4 shows the classification of some neuroimaging techniques in terms of temporal and spatial 

resolution. 
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Figure 4. Temporal and spatial resolution of the most commonly used neuroimaging techniques. 

Adapted from (Pfister et al., 2014; Wein et al., 2021). 

3.1.2. EEG systems 

EEG signals are recorded by placing electrodes (sensors) on the scalp, either with the use of 

gel substance (wet electrodes) or directly on the scalp (dry electrodes). Gel electrodes, made of 

silver with a coating of silver chloride, are the most commonly used sensors in clinical practice 

and EEG research. They require applying a chloride ion-containing gel between the skin and 

the electrode prior to recordings, to improve the conductivity and reduce the impedance at the 

skin-electrode interface, which results in a better-quality signal. The placement of scalp 

electrodes follows the international 10-20 system, which relies on four stable skull landmarks: 

nasion, inion, and two pre-auricular points (Figure 5) (Müller-Putz, 2020). Standard EEG 

systems usually consist of arrays with 19, 32, 64, 128 or 256 electrodes. Several studies have 

shown that a higher number of channels is necessary for more precise characterization of spatial 

electrophysiological information, and as such, high-density configurations (HD-EEG) such as 

128 and 256 electrodes are the most suitable for achieving decent reconstruction of cortical 

activity (Allouch et al., 2023; Q. Liu et al., 2017; Sohrabpour et al., 2015; J. Song et al., 2015). 
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Figure 5. Scheme of a 10-5 electrode system. Based on (Oostenveld & Praamstra, 2001) and adapted 

from (Müller-Putz, 2020). Selected electrode positions are shown. A1 is the earlobe, P shows the 

preauricular point. 

3.2. Longitudinal cohort of PD patients 

3.2.1. Study population 

As previously stated in the thesis objectives, our aim was to investigate three distinct clinical 

questions in PD through the use of EEG in a longitudinal cohort. To accomplish this, all 

experimental studies conducted in this thesis exploit a longitudinal database of resting state 

HD-EEG recording obtained from PD patients and age-matched healthy controls (HC) 

recruited from the Movement Disorder Clinic of University Hospitals of Basel (City of Basel, 

Switzerland). The patients cohort was selected based on specific criteria including a diagnosis 

of PD according to the UK Parkinson's Disease Brain Bank criteria (Movement Disorder 

Society Task Force on Rating Scales for Parkinson’s Disease, 2003), a Mini-Mental State 

Examination (MMSE) score of 24 or above, no previous history of vascular or demyelinating 

brain disease, and adequate proficiency in the German language. All participants provided 

written informed consent and the study was approved by the local ethics committees 

(Ethikkommission beider Basel, Basel; Switzerland; EK 74/09). Specialists who performed the 

assessment of the patients were unaware of the details of the study. Recruited participants 

underwent resting-state HD-EEG recordings and a battery of neuropsychological and 

neuropsychiatric assessments at baseline (BL) and at follow-up visits after a mean interval of 

three years (3Y) and five years (5Y). The main cohort included 77 PD patients and 32 HC at 
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BL, 45 PD patients and 21 HC at 3Y, and 44 PD patients and 3 HC at 5Y. Due to the specific 

research objectives in each of the three conducted studies, it was necessary to exclude several 

subjects in each study accordingly. The flowchart of the main and sub-cohorts are presented in 

Figure 6 and complete details are provided in the materials and methods section of the studies 

in Chapter 4.  

 

Figure 6. Flowcharts of the main longitudinal cohort and sub-cohorts employed in each of the three 

studies conducted in this thesis. 

3.2.2. Clinical, neuropsychological and neuropsychiatric evaluations 

All participants underwent basic neurological and comprehensive neuropsychological 

examinations. Patients were evaluated while on their regular dopaminergic medication, in the 

'ON' state, with reporting of antidepressant and anxiolytics treatments. Global cognitive scores 

were assessed using the Montreal Cognitive Assessment score (MoCA) (Nasreddine et al., 

2005), and patients were classified as having or not having mild cognitive impairment (MCI), 

using the criteria described by the Movement Society Task Force Level II, as reported by 

(Litvan et al., 2012). The Unified Parkinson's Disease Rating Scale for motor experiences of 

daily living (UPDRS-II) and for motor examinations (UPDRS-III) were assessed by a trained 

physician. The lateralized items of the UPDRS-III score (item 20-26) were used in our first 

study to assess the patient’s lateralization of motor symptoms. A comprehensive battery of 

neuropsychological tests was conducted to assess the following cognitive domains: attention 

and working memory, executive functions, verbal memory, semantic memory, language, and 

visuospatial functions. Anxiety symptoms were assessed in the PD patients using the German 
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version of the Beck Anxiety Inventory (BAI), a 21-item self-rating scale. The BAI items are 

evaluated on a four-point Likert scale ranging from 0 to 3 (e.g., not at all; a little; moderate; or 

many), and the total score ranges from 0 to 63, with higher scores indicating more severe 

symptoms. The use of BAI in PD has been validated by (Leentjens et al., 2011), with a score 

greater than 13 indicating clinically significant anxiety. As such, this threshold was considered 

in our third study to classify PD patients into two groups based on the presence or the absence 

of anxiety. Table 2 reports information about demographic, clinical and main 

neuropsychological characteristics of the initial cohort. 

  



30 
 

Table 2. Demographic, clinical and main neuropsychological characteristics of the main cohorts 

longitudinally expressed as: mean (standard deviation). y: years, M/F: Male/Female, MoCA: 

Montreal Cognitive Assessment, MCI (Y/N): Mild Cognitive Impairment (yes/no), MMSE: Mini Mental 

State Examination, UPDRS: Unified Parkinson’s Disease Rating Scale, LEDD: Levodopa Equivalent 

Daily Dose, WM: working memory, BAI: Beck Anxiety Inventory score, BDI-II: Beck Depression 

Inventory, second edition score, AES: Apathy Evaluation Scale. 

 Baseline 3 years 5 years 

 PD  

(N=77) 

HC  

(N=32) 

PD  

(N=45) 

HC 

 (N=21) 

PD 

 (N=44) 

HC 

 (N=3) 

Demographic       

Age (y) 66.2 (8.2) 65.3 (5.6) 70.9 (7.9) 68.7 (4.9) 71.7 (7.8) 65.6 (4.1) 

Sex (M/F) 51/26 18/14 31/14 9/12 28/14 2/1 

Education (y) 14.6 (3.2) 13.8 (2.9) 14.8 (3.1) 13.6 (3.1) 15.1 (3.1) 11 (2) 

Clinical       

Disease duration (y) 5.4 (5.2) - 8 (5.2) - 10.4 (4.9) - 

MoCA (/30) 26 (2.4) 26.8 (2.5) 25.2 (3.5) 27.4 (2.2) 25.1 (5.1)  

MCI (Y/N) 25/52 - 16/29 - 16/28 - 

MMSE (/30) 28.7 (1.2) 29.4 (1) 28.2 (2.3) 29 (1.5) 28.3 (1.9)  

UPDRS-II 6.6 (4.7) - 10.8 (5.7) - 9.6 (6.6) - 

UPDRS-III 15.5 (11) - 20.5 (12.1) - 19.5 (13.1) - 

Medication       

LEDD (mg/day) 676 (466) - 707 (445) - 633 (386) - 

Neuropsychological tests 

z-scores by domain 

      

Attention + WM -0.29 (0.5) 0.05 (0.6) -0.29 (0.6) 0.4 (2.4) -0.42 (0.5) -0.12 (0.8) 

Executive function -0.22 (0.6) 0.07 (0.6) -0.14 (0.7) 0.57 (0.4) -0.18 (0.9) 0.24 (0.5) 

Verbal memory -0.93 (1) -0.9 (1) -1.38 (1.6) -0.8 (1.2) -0.77 (1.3) -1.22 (1.1) 

Semantic memory -0.46 (0.8) 0.36 (1.2) -0.47 (1.3) 0.88 (1.1) -0.49 (1.2) -0.2 (0.3) 

Language -0.23 (0.6) 0.35 (0.7) -0.19 (1) 0.74 (0.9) -0.09 (1.1) 0.14 (0.6) 

Visuo-spatial abilities -0.46 (0.9) 0.04 (0.8) -0.14 (1.1) 0.71 (1) 0.09 (1) 0.46 (1) 

Neuropsychiatric tests       

BAI (/63) 9.7 (8) 2.9 (4) 11.5 (7.5) 2.3 (2.6) 9.6 (6.9) 3.3 (4.9) 

BDI-II (/63) 7.9 (4.9) 2.6 (2.4) 7.8 (4.7) 1.8 (1.7) 6.7 (6.1) 4 (3.6) 

AES (/63)  32.9 (8.4) 24.1 (5.1) 31.2 (7.1) 25.1 (5.7) 31.7 (8.6) 27.7 (9) 
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3.2.3. EEG recording and preprocessing 

The resting state EEG data were recorded in the afternoons using a 256-channel EEG system 

(Netstation 300, EGI, Eugene, OR) during continuous sessions of 12 minutes. The sampling 

rate was set to 1000 Hz. Participants were comfortably seated in a relaxing chair and instructed 

to close their eyes, relax, and minimize eye and body movements while remaining awake. To 

ensure patient vigilance, an EEG technician was present in the recording room. The HD-EEG 

signals were segmented into 40-second epochs and the first epoch from each recording was 

discarded from the analysis. Segmented epochs were preprocessed automatically using the 

open-source toolbox Automagic (https://github.com/methlabUZH/automagic) (Pedroni et al., 

2019). In summary, the toolbox is utilized with several preconfigured steps. Firstly, signals are 

band-pass filtered between 1 and 45 Hz, and the electrooculography (EOG) regression is 

performed on 17 frontal electrodes to remove ocular artifacts. This reduces the number of 

channels to 239 (Figure 7-A). Next, bad channels with high variance (above 20 μV) or 

amplitude exceeding ±80 μV are detected and then interpolated. Further remaining artifacts 

were removed by the independent component analysis implemented in the toolbox. Epochs 

with a Ratio of Bad Channels (RBC) metric exceeding 0.15 (equivalent to 15% of the total 

number of electrodes) are excluded, and the remaining epochs are sorted based on the Overall 

High Amplitude (OHA) metric. For the remainder of the analysis, we decided to keep only the 

first six epochs with the best quality metrics. We also visually inspected the epochs to confirm 

the removal of artifacts and ensured their quality. Any remaining epochs with artifacts were 

either substituted with clean ones or excluded entirely from the study. 

3.4. Functional connectivity analysis 

3.4.1. EEG source connectivity 

Previously, EEG/MEG functional connectivity studies primarily focused on scalp-level 

analysis, which involved evaluating the statistical interdependence among the recorded scalp 

potentials (Ahirwal et al., 2016; Fraga González et al., 2016; Huang et al., 2018; Sargolzaei et 

al., 2015). However, due to the electromagnetic volume conduction properties of the head and 

the fact that each scalp electrode can captures approximately 10 cm2 of synchronous cortical 

activity, EEG can be viewed as a complex amalgamation of overlapping electrical signals 

generated simultaneously across multiple regions of the brain and detected by multiple sensors 
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(Figure 7-B) (Buzsáki et al., 2012; Schoffelen & Gross, 2009). As a result, the so-called scalp-

connectivity may not accurately reflect the actual interaction between underlying brain regions 

(Lai et al., 2018). Therefore, estimating intracranial activity from scalp EEG presents a 

significant challenge in neuronal data processing (Brunner et al., 2016; Hassan & Wendling, 

2018; Schoffelen & Gross, 2009; Van de Steen et al., 2019).  

 

Figure 7. EEG sensor layout and volume conduction problem. A) EGI 256-channels sensor layout 

adapted from (Luu et al., 2011). The 17 frontal channels used for electrooculography (EOG) regression 

are marked in green. B) Illustration of the volume conduction problem. Brain sources contribute to 

signals recorded at different electrodes. The statistical dependencies measured in the electrode space 
do not provide a direct interpretation of the functional connectivity between the cortical regions 

generating the signals. Adapted from (https://ikuz.eu/supervision/eeg-source-localization-a-machine-

learning-approach-by-gagandeep-singh/) 

In recent years, the "EEG source connectivity" method has been proposed to reduce the 

aforementioned limitations (Hassan & Wendling, 2018; Hassan et al., 2014; Mehrkanoon et 

al., 2014). Rather than assessing connectivity between recorded EEG signals, this method 

involves analyzing connectivity between cortical sources which reduces source-leakage effects 

and provides higher spatial resolution (Lai et al., 2018). The EEG source connectivity method 

is a two-step process, the first step involves solving the EEG inverse problem to estimate the 

cortical sources and reconstruct their temporal dynamics, while the second step involves 

measuring the functional connectivity between the reconstructed sources (Hassan et al., 2014; 

Hassan & Wendling, 2018). The full analysis pipeline is illustrated in Figure 8.  
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Figure 8. Schematic diagram illustrating the fundamental processing steps of the EEG source connectivity 

pipeline. The process includes recording of EEG signals at the scalp level, preprocessing the signals, 

computing the lead field (gain) matrix, solving the inverse problem and reconstruct the source time series, 

clustering source signals into predefined ROIs and compute their time series, estimate the statistical 

couplings between ROIs and obtain both dynamic and static functional networks. 
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3.4.2. Inverse problem and source reconstruction 

To estimate the intracranial neural activity that generates a scalp potential map, an inverse 

problem needs to be solved (Baillet et al., 2001; Grech et al., 2008; Hassan & Wendling, 2018; 

He et al., 2018; Michel et al., 2004; Michel & Brunet, 2019). The dipole theory states that 

recorded EEG signals !(") from # sensors can be expressed as a linear combination of $ 

dynamic dipolar sources %("): 

!(") = 	*. %(") 	+ 	-(")	

where *(# × $) is the lead field matrix (gain) that indicates the contribution of each cortical 

source to the sensors and -(") represents the additive noise. The lead field matrix can be 

computed using the positions of the # electrodes and a realistic multiple-layer head model that 

accounts for the flow of electric activity from sources to sensors through the head tissues (brain, 

skull, and skin). A commonly used numerical approach for building realistic head models is 

the Boundary Element Method (BEM), which takes into account detailed head anatomy 

characteristics (Gramfort et al., 2010).  

Due to the ill-posed nature of the inverse problem (where $>>#), additional mathematical and 

physical constraints are necessary to obtain an approximate solution. One common approach 

is to assume that sources (mainly the pyramidal cells) are homogeneously distributed over the 

cortex and are normally constrained to the cortical surface (Dale & Sereno, 1993; Grech et al., 

2008; He et al., 2018). This reduces the problem to estimating the magnitude of the dipolar 

sources using the equation: 

%(") = 	.. !(")	

Where . is the inverse matrix, also known as spatial filters or weights. To estimate ., several 

algorithms have been proposed (Baillet et al., 2001), including beamforming family methods 

(Van Veen et al., 1997) and two commonly used least-squares minimum-norm type estimates: 

the weighted minimum norm estimate (wMNE) (Fuchs et al., 1999; Lin et al., 2006; 

Hämäläinen & Ilmoniemi, 1994) and the standardized/exact low-resolution brain 

electromagnetic tomography (s/eLORETA) (Pascual-Marqui et al., 1999). These methods are 

typically applied to a high-resolution surface mesh with approximately 15000 vertices. The 

selection of the appropriate inverse method to achieve more accurate source estimation has 

been the subject of numerous studies (Allouch et al., 2022, 2023; Anzolin et al., 2019; Halder 
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et al., 2019; Hassan et al., 2014; Hedrich et al., 2017; Tait et al., 2021). Despite these efforts, 

no consistent conclusions have been reached regarding a single method that outperforms the 

others in terms of performance. In the studies presented in this thesis, we chose to adopt the 

weighted minimum norm estimate (wMNE) to estimate the inverse matrix, as it was shown to 

perform better than other methods in (Hassan et al., 2014) as well as in (Allouch et al., 2022, 

2023; Hassan, Merlet, et al., 2017) in the context of resting-state real and simulated 

epileptiform activity. 

wMNE, which has been described in (Fuchs et al., 1999; Lin et al., 2006), is based on the 

minimum norm estimate (MNE) (Hämäläinen & Ilmoniemi, 1994). MNE offers a solution that 

minimizes the square error to fit the measurements. However, wMNE goes beyond MNE by 

compensating for MNE's tendency to prioritize surface and weak sources: 

.!"#$ 	= 	/*%(*/*% 	+ 	0C)&'	

Where 0 is the regularization parameter (set to default value of 1/SNR; SNR=3 as 

recommended by the brainstorm toolbox (Tadel et al., 2011)) and 2 is the noise covariance 

matrix obtained from a noisy epoch in the recordings. Matrix / is diagonal matrix built from 

the lead field (gain) matrix *. The non-zero terms of / are inversely proportional to the norm 

of the lead field vectors. This matrix is used to adjust the solution by reducing the bias that is 

typically found in the standard MNE solution: 

 

Once the temporal dynamics at the cortical source level have been estimated, it is crucial to 

define a source space comprising precise regions of interest (ROIs) to accurately calculate the 

corresponding regional time series. Typically, brain sources are clustered into ROIs, which can 

be defined based on anatomical brain parcellations such as the Desikan-Killiany atlas (68 ROIs) 

(Desikan et al., 2006) or Destrieux atlas (148 ROIs) (Destrieux et al., 2010), or based on 

functional parcellations such as the Brainnetome functional atlas (246 ROIs) (Fan et al., 2016; 

Yu et al., 2011). To obtain a single representative time series for each ROI, there are several 

approaches available, with signal averaging being the most common. Therefore, the regional 

time series can be calculated by averaging the source time series across the corresponding 

ROIs. In our studies, we aimed to obtain the dynamics of the brain regions with high spatial 
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resolution. Thus, we chose the Brainnetome atlas, which includes 210 cortical ROIs, to define 

our source space (Fan et al., 2016). 

3.4.3. Functional connectivity estimation 

After reconstructing the cortical dynamics, the next step is to assess functional connectivity, 

which refers to the statistical coupling between distinct brain regions (ROIs). The literature 

proposes various methods to characterize and quantify the large-scale functional organization 

of the human brain, including linear or nonlinear approaches, phase and/or amplitude-based 

synchronization, temporal and/or spectral measures, with or without correction for source 

leakage, see (Cao et al., 2022; Friston, 2011; Pereda et al., 2005) for reviews. However, similar 

to the inverse solutions, these methods have shown considerable variation in performance and 

interpretation (Allouch et al., 2022, 2023; Colclough et al., 2016; Hassan et al., 2014; Hassan, 

Merlet, et al., 2017; H. E. Wang et al., 2014; Wendling et al., 2009), making it difficult to 

determine the ideal approach that outperforms others. In the context of detecting epileptic 

spikes,  (Hassan et al., 2014) and (Hassan, Merlet, et al., 2017) found that the Phase-locking 

Value (PLV) connectivity method (Lachaux et al., 1999) combined with wMNE inverse 

method have higher accuracy compared to other algorithms. This approach also performed well 

in the context of simulated epileptic activity (Allouch et al., 2022). Additionally, methods that 

correct for source leakage, such as orthogonalized Amplitude Envelope Correlation (AEC) 

(Brookes et al., 2011; Colclough et al., 2015), have been shown to perform well when combined 

with wMNE for reconstructing resting-state networks (Allouch et al., 2023). Thus, in this 

thesis, we chose to use PLV and AEC as functional connectivity metrics. 

The PLV (Lachaux et al., 2000) for two brain signals 3(") and 4(")	is defined as follows: 

$56 = 3(")789:((*!(+)&*"(+));7	

where 8{. } is the expected value operator and >(") is the instantaneous phase derived from the 

Hilbert transform. To compute PLV, we used consecutive non-overlapping sliding windows 

with a length of  
-

./0+123	51/67/0.8
 as recommended in (Lachaux et al., 1999), with 6 being the 

number of cycles in a given frequency band. 

As for the AEC with source leakage correction, zero-lag signal overlaps caused by spatial 

leakage were removed using a multivariate symmetric orthogonalization approach (Colclough 

et al., 2015). Briefly, the approach involves computing the closest orthonormal matrix to the 
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uncorrected regional time courses, and then iteratively adjusting the magnitudes of the 

orthogonalized vectors to minimize the least-squares distances between corrected and 

uncorrected signals. Orthogonalization is applied to the entire data segment. Following the 

orthogonalization procedure, AEC is computed as the Pearson correlation between signals’ 

envelopes derived from the Hilbert transform (Brookes et al., 2011). Here, we used the 

brainstorm implementation of the method with windows of 5 seconds each without overlap. 

At the end of this step, the human brain is depicted as a network consisting of a set of nodes 

(brain regions) and a set of edges that represent the functional interaction between these nodes. 

Mathematically, a -1 	3	-1 connectivity matrix is obtained, where -1 is the number of ROIs 

and each element ?(	9 in the matrix represents the strength of the connection between region @ 

and region A.  

In our studies, we calculated the dynamic functional connectivity matrices in the six different 

EEG frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-13 Hz), 

beta (13-30 Hz) and gamma (30-45 Hz). The dynamic matrices were computed for each epoch 

and subsequently averaged across time and trials to obtain a single static connectivity matrix 

that represents the functional brain networks of the participants. 

3.3. Power spectral analysis 

Power spectral analysis is a widely used technique in EEG signal analysis. It involves 

decomposing the complex EEG signal into its component frequencies using the Fourier 

transform (Kim & Im, 2018), which allows for the quantification of the amount of rhythmic or 

oscillatory activity (power) across different frequency bands. Spectral power can be assessed 

at the scalp level from preprocessed EEG signals or at the cortical level from the temporal 

dynamics of the reconstructed sources. In our studies, the Welch method was used to estimate 

the power spectrum of signals (Welch, 1967). The periodogram was computed using the 

Hamming window and averaged across segments with 50% overlap to obtain the final spectral 

estimate. The relative power was used to assess the relative contribution of a specific frequency 

to the EEG signal (Heisz & McIntosh, 2013) and was calculated by dividing the absolute power 

in a given frequency band by the total power of the broadband (1-45 Hz). Here, we investigated 

the relative power in the six different EEG frequency bands: delta (1-4 Hz), theta (4-8 Hz), 

alpha1 (8-10 Hz), alpha2 (10-13 Hz), beta (13-30 Hz) and gamma (30- 45 Hz). 
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3.5. Clustering analysis 

In our second study, the main objective was to cluster PD patients based exclusively on their 

EEG-based features. To achieve this, we used a data-driven unsupervised clustering approach 

that relied on the Similarity Network Fusion (SNF) method (B. Wang et al., 2014). SNF is a 

novel technique that allows the combination of features from multiple data sources into a single 

fused similarity network or graph. This graph captures both mutual and complementary 

information between features. SNF constructs similarity networks for each data source using a 

K-nearest neighbours weighted kernel and iteratively combines them using a non-linear 

message passing protocol (Pearl, 1988). The final fused network contains sample relationships 

representing information from all data sources and can be subjected to clustering or other types 

of graph analysis. We opted to use SNF because it has been shown to be effective in 

disentangling heterogeneity in PD, amyotrophic lateral sclerosis and psychiatric disorders 

(Dukic et al., 2021; Jacobs et al., 2021; Markello et al., 2021; Stefanik et al., 2018).  

In our study, we used SNF to extract and combine similarity networks corresponding to the 

power spectral and/or functional connectivity features from different frequency bands (Figure 

9-A). To summarize, the initial step involved normalizing the features, followed by 

constructing distance matrices using the squared Euclidean distance. Subsequently, a scaled 

exponential kernel was applied to transform the distance matrices into unique similarity 

matrices: 

.(@, A) =
1

√2FG:
	:&	

;#(<$	,<%)

:># 	

where H(3( − 39) is the Euclidean distance between patients 3( and 39 and G is defined as: 

G	 = 	J	
H:(3( 	, -() +	H:(39 	, -9) 	+	H:(3( 	, 39)	

3
	

where H(3( 	, -()	represents the average value of distances between 3( and each of its neighbors 

-'..@. Both L and J are hyperparameters that need to be chosen beforehand. The value of k 

should be selected from the range [1, j], where j is an integer to control the number of L-nearest 

neighbors. The parameter J, on the other hand, should be chosen from the range of [0.3, 1] in 

order to scale the exponential kernel. Once the similarity matrices are constructed, they are 

fused together using a nonlinear message-passing method. This involves iteratively updating 
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each similarity network with complementary information from the other networks to maximize 

their similarity until convergence or a pre-specified number of iterations is reached. Lastly, the 

resulting fused similarity network undergoes spectral clustering, which necessitates a pre-

selection of the number of clusters. The entire process was conducted using the MATLAB 

implementation of the SNF method (http://compbio.cs.toronto.edu/SNF/SNF/Software.html). 

To prevent bias in our results due to the choice of hyperparameters and the number of clusters, 

we adopted an approach proposed by (Markello et al., 2021), which involved an exhaustive 

parameter search combined with a consensus analysis. We performed SNF with various 

combinations of L (L = 1, 2, 3, ..., --1) and (J	= 0.3, 0.35, 0.4, ..., 1), resulting in a set of fused 

networks. Using spectral clustering (Yu & Shi, 2003), these networks were then partitioned 

into two, three, and four clusters, as these were the most reasonable choices reported in previous 

studies on PD subtyping (Figure 9-B) (Dadu et al., 2022; Fereshtehnejad et al., 2017; Markello 

et al., 2021; X. Zhang et al., 2019). To ensure the stability of the clustering solutions, we 

retained only the combinations of hyperparameters where slight changes in either k or did not 

significantly affect the clustering outcome. For each number of clusters, we calculated a 

pairwise z-Rand similarity index (Traud et al., 2016) between the clustering solutions of each 

combination of hyperparameters (L, J) and their four closest combinations (L-1,	J), (L+1, J), 

(L,	J-0.05), and (L, J+0.05). We retained the clustering solutions corresponding to the highest 

5% of z-Rand similarity indexes, which were then used in a consensus analysis inspired by 

community detection studies (Bassett et al., 2012; Lancichinetti & Fortunato, 2012). The 

resulting -3- co-assignment matrix contained normalized probabilities of two patients 

belonging to the same cluster across assignments. This matrix was thresholded by comparing 

it with another matrix generated from a permuted null model (Bassett et al., 2012), and the 

resulting matrix was then clustered using a modularity maximization procedure (Blondel et al., 

2008) to obtain the final clustering partition representing PD subtypes (Figure 9-C). 

To evaluate the stability of the identified clusters against data perturbations, we conducted a 

sensitivity analysis by repeating the entire clustering process 100 times, each time randomly 

removing 10% of the patients. To estimate the robustness of the clusters, we calculated a 

robustness coefficient at each iteration by comparing the resulting cluster assignments with 

those obtained in the original analysis. We corrected for chance agreement between the cluster 

assignments using the Rand index (Hubert & Arabie, 1985). All codes used in this analysis are 

available at: https://github.com/yassinesahar/ClusteringPD. 
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Figure 9. Clustering analysis pipeline adapted and modified from (Markello et al., 2021). A) The 

process of Similarity Network Fusion involves creating separate similarity networks for each data type 

(frequency bands), which are then combined through iterative fusion. The patients’ nodes, depicted as 
circles, are connected by edges that reflect the similarity of their disease phenotype. B) The obtained 

fused similarity network can be subjected to spectral clustering to produce two, three or four clusters’ 

solutions. C) Exhaustive parameter search and consensus analysis to generate the final patient clusters. 

3.6. Statistical analysis 

3.6.1. Network Based Statistic (NBS) 

In our first study on PD progression, we aimed to uncover the functional brain networks that 

underwent significant changes in connectivity weight over the course of the disease. To achieve 

this, we utilized the Network Based Statistic toolbox (NBS) to compare the brain networks of 

PD patients at baseline (BL) and at the five-year follow-up (5Y). This method assumes that 

subnetworks of disrupted connections are more indicative of real alterations than isolated 

disconnections and provides a more powerful statistical analysis than generic methods (Zalesky 

et al., 2010). To identify the significant networks, NBS conducts a t-test to assess the significant 

differences in connectivity values along the (N2-N)/2 edges of the [N x N] connectivity matrices 
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of the PD patients between the BL and 5Y. A primary component-forming threshold of p<0.05 

is then applied to identify supra-threshold connections, from which all possible connected 

components and their sizes were determined. Next, a corrected p-value is evaluated for each 

component with respect to the null distribution of maximal connected component size obtained 

using a nonparametric permutation approach (2000 permutations). We performed this analysis 

with different thresholds for the t-test (ranging from 2.6 to 3.7) to assess the consistency of the 

results. Age, gender, education, levodopa equivalent daily dose (LEDD), and dominant side of 

motor symptoms were considered as confounding factors in this analysis. 

3.6.2. Permutation-based statistical analysis 

In our third study, our primary objective was to identify the electrophysiological signature of 

anxiety in PD. We aimed to compare EEG-based features of the anxious PD group (PD-A) with 

those of non-anxious PD patients (PD-NA) and healthy controls (HC). To perform this three-

group comparison, we used a two-step process involving a permutation-based non-parametric 

analysis of covariance (Perm-ANCOVA), followed by a two-tailed between-groups Wilcoxon 

test. The Perm-ANCOVA was applied to the relative power spectrum and functional 

connectivity networks of the three groups at BL, with 1000 permutations used to determine a 

first set of significant power/connectivity features (p<0.05). We then defined two conditions: 

the PD-Ahigh condition, where the power/connectivity values of the PD-A group were 

significantly higher than those of both the PD-NA and HC groups (PD-A > PD-NA & PD-A > 

HC), and the PD-Alow condition, where the power/connectivity features had significantly lower 

values in the PD-A group compared to both other groups (PD-A < PD-NA & PD-A < HC). 

Next, we applied a two-tailed between-groups Wilcoxon test (corrected for multiple 

comparisons, p<0.0167) on the previous set of statistically significant features to identify those 

that primarily represent the PD-A group. Thus, features meeting one of the above conditions 

were retained and considered as electrophysiological signatures of anxiety in PD. 
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4.1. Study I- Functional brain dysconnectivity in 

Parkinson’s disease: A 5-years longitudinal study 
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Mahmoud Hassan. 
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Figure 10. Graphical abstract of the first study published in Movement Disorders journal. 
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ABSTRACT: Background: Tracking longitudinal func-

tional brain dysconnectivity in Parkinson’s disease

(PD) is a key element to decoding the underlying physio-

pathology and understanding PD progression.

Objectives: The objectives of this follow-up study were

to explore, for the first time, the longitudinal changes in

the functional brain networks of PD patients over 5 years

and to associate them with their cognitive performance

and the lateralization of motor symptoms.

Methods: We used a 5-year longitudinal cohort of PD

patients (n = 35) who completed motor and non-motor

assessments and sequent resting state (RS) high-density

electroencephalography (HD-EEG) recordings at three

timepoints: baseline (BL), 3 years follow-up (3YFU) and

5 years follow-up (5YFU). We assessed disruptions in

frequency-dependent functional networks over the

course of the disease and explored their relation to clini-

cal symptomatology.

Results: In contrast with HC (n = 32), PD patients

showed a gradual connectivity impairment in α2 (10-13

Hz) and β (13–30 Hz) frequency bands. The deterioration

in the global cognitive assessment was strongly corre-

lated with the disconnected networks. These discon-

nected networks were also associated with the

lateralization of motor symptoms, revealing a domi-

nance of the right hemisphere in terms of impaired

connections in the left-affected PD patients in contrast

to dominance of the left hemisphere in the right-

affected PD patients.

Conclusions: Taken together, our findings suggest that

with disease progression, dysconnectivity in the brain

networks in PD can reflect the deterioration of global

cognitive deficits and the lateralization of motor symp-

toms. RS HD-EEG may be an early biomarker of PD

motor and non-motor progression. © 2022 The Authors.

Movement Disorders published by Wiley Periodicals LLC

on behalf of International Parkinson and Movement Dis-

order Society

Key Words: Parkinson’s disease; functional brain

networks; electroencephalography; follow-up study;
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Introduction

Parkinson’s disease (PD) is one of the most frequent
neurodegenerative disorders in the elderly population.1

Along with its well-known prominent motor symptoms
(resting tremor, bradykinesia, rigidity, and postural
imbalance), a broad spectrum of non-motor distur-
bances (cognitive impairment up to dementia, neuro-
psychiatric disturbances, autonomic or sleep disorders,
etc.) can manifest from early (even prodromal) disease
stages onward diminishing the quality of life of the
patients.2-4 Pathologically, the most prevalent hypothe-
ses suggest that the degeneration of dopaminergic neu-
rons in the nigrostriatal system associated with Lewy
body inclusions are the leading features in most forms
of PD at early stages.5,6 However, with the disease pro-
gression, the neuropathological process may propagate
across interconnected networks reaching the cortex and
causing functional alterations within and between brain
regions.7 Still, these neuropathological insights do not
sufficiently expound the heterogeneous phenotype8,9 of
the patients and the progression-related changes in their
brain activity.
Functional disruptions related to both motor and

cognitive deficits at early and advanced PD stages were
reported using mainly functional magnetic resonance
imaging techniques (fMRI).10-13 Moreover, electro/
magneto-encephalography (EEG/MEG) are increasingly
shown as powerful, cost-effective, and non-invasive
electrophysiological techniques, to explore functional
brain networks in neurodegenerative disorders.14-18 In
PD, MEG/EEG studies uncovered an increase in the
cortico-cortical connectivity, characterizing PD patients
from earliest disease clinical stages onward,19,20

whereas decreases in the functional connectivity, mainly
in the frontotemporal networks, were proclaimed to
reflect the development of mild cognitive impairment
and dementia conditions in advanced stages.17,21,22

Reductions in the weight of the functional connections
associated with the cognitive phenotype of PD patients
were also revealed in several EEG studies.23,24 How-
ever, an important limitation in these findings lies in the
fact that these studies were all achieved in a single time
point rather than longitudinally, a key point to ulti-
mately develop biomarkers in PD.
Here, we used resting state high density (HD)-EEG

recordings of 77 PD patients that underwent a follow-
up study at baseline (BL), 3-year follow-up (3YFU) and
5-yearfollow-up (5YFU) at the Basel university hospital.
Our primary goal was to explore the disruptions in the
functional brain networks of those PD patients between
the BL, 3YFU, and the 5YFU. We examined their pro-
gressive evolution and compared it to that of age-
matched healthy control subjects. In addition, we corre-
lated the patient-specific altered network with the

change in the clinical scores. Finally, to link the
disrupted networks with the lateralized motor symp-
toms of the patients, we revealed different altered net-
works between BL and 5YFU characterizing the
progression of the disease in the left-affected (LPD) and
right-affected (RPD) patients.

Materials and Methods

Participants

Patients were selected from a longitudinal study
cohort of patients with idiopathic PD and healthy
controls (HC). Patients were recruited from the out-
patient clinic of the Department of Neurology and
Neurophysiology of the Hospital of the University of
Basel (City of Basel, Switzerland) in the period from
2011 to 2015 based on the following selection
criteria: PD according to United Kingdom
Parkinson’s Disease Society Brain Bank criteria,25

Mini-Mental State Examination (MMSE) above
24/30, no history of vascular and/or demyelinating
brain pathology, and sufficient knowledge of the Ger-
man language. HC were matched in age and educa-
tion. Included patients underwent neurological,
cognitive, and EEG examinations at BL and follow-
ups after a mean interval of 3 years and 5 years. The
study was approved by the local ethics committees
(Ethikkommission beider Basel, Basel; Switzerland;
EK 74/09) and all patients gave written informed
consent before the study inclusion. Specialists who
performed the assessment of the patients were
unaware of the details of this study. The main cohort
included 77 patients at BL, from which 42 did not
complete all the follow-ups examinations (see Table
S1 for the detailed demographic and clinical measures
of the main cohort). All patients were under dopami-
nergic medications during the examinations. To be
noted, 10 patients used cholinesterase inhibitors. We
first analyzed the subgroup of 35 PD patients who
underwent all the examinations at BL, 3YFU, and
5YFU, and we then cross-validated the results on the
remaining patients. The HC group included 32 partic-
ipants at BL, from which 21 completed the 3YFU and
3 the 5YFU (see Fig. S1 for details of the subject’s
study flow). The 35 PD patients were also classified
into two subgroups by a specialist based on the domi-
nant side of their motor symptoms in all the three
visits: LPD patients (n = 23) and RPD patients
(n = 10). The division was done using the lateralized
items of the Unified Parkinson’s Disease Rating Scale
III (UPDRS-III) score (items 20–26). Patients with
symmetric symptoms in all visits (n = 2) were
excluded from this subgroup division.
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Data Acquisition and Preprocessing

Resting state EEG data were recorded in the after-
noons using a 256-channel EEG System (Netstation
300, EGI, Eugene, OR) during continuous 12 minutes.
Patients were seated comfortably in a relaxing chair,
instructed to close their eyes and relax while staying
awake with minimum eye and body movements. An
EEG technician present in the recording room con-
trolled for vigilance of the patients. The sampling rate
of the signals was set to 1000 Hz. The high density
(HD-EEG) signals were segmented into epochs of
40 seconds each and the first epoch from each record-
ing was discarded from the study. They were
preprocessed automatically using the open-source tool-
box Automagic26 and the first six epochs with best
quality metrics were retained for the rest of the analysis.
See Appendix S1, method section, for more technical
details about the preprocessing.

Brain Networks Reconstruction

After preprocessing, the functional brain networks
were estimated using the EEG source-connectivity
method.27 First the dynamics of cortical brain sources
were reconstructed by solving the inverse problem. To
do so, EEG channels and magnetic resonance imaging
(MRI) template (ICBM152) were co-registered, and
using the OpenMEEG toolbox,28 a realistic head model
was built. The weighted minimum norm estimate
(wMNE)29 was used to calculate the regional time
series of the 210 cortical regions of interest (ROIs) of
the Brainnetome atlas.30 Afterward, the regional time
series were filtered in different EEG frequency bands: θ
(4–8 Hz), α1 (8–10 Hz), α2 (10–13 Hz), and β (13–
30 Hz). For each frequency band, functional connectiv-
ity was computed between the reconstructed sources

using the phase locking value (PLV).31 We obtained for
each participant six dynamic connectivity matrices in
each frequency band. Those matrices were ultimately
averaged across time and epochs to obtain a single
static functional connectivity matrix per frequency
band, used in the further analysis.

Statistical Analysis

The network-based statistic (NBS)32 was used to
identify the brain networks of PD patients that are sig-
nificantly different between BL and 5YFU visits. This
approach assumes that subnetworks of disrupted con-
nections are more likely to indicate real alterations than
isolated disconnections and has been shown to provide
considerably greater statistical power than generic
methods. Age, gender, education, levodopa equivalent
daily dose (LEDD), and dominant side of motor symp-
toms were considered as confounding factors in this
analysis. More details about the statistical analysis are
provided in the Appendix S1, methods section.

Network Index and Correlation Analysis

We defined a metric called network index (NI),
inspired from previous work of Hassan et al,23 as the
average weight (connectivity) of the output significant
networks issued from NBS:

NI¼

P
N

i
W i

N
,

where W i represents the connectivity value of the edge i
of the significant network from NBS and N represents
the total number of edges in this network. This NI was
computed for each patient in each of the three visits to
quantify the longitudinal disruptions in the networks as

TABLE 1 Demographic and clinical characteristics of the participants at BL, 3YFU, and 5YFU visits

Baseline 3YFU 5YFU

PD

(n = 35)

HC

(n = 32) P value

PD

(n = 35)

HC

(n = 21) P value

PD

(n = 35)

HC

(n = 3)

Sex (M/F) 26/9 18/14 0.13 — 10/11 — — 2/1

Age (y) 67.4 (8.2) 65.3 (5.6) 0.24 70.4 (8.2) 68.7 (5.5) 0.37 72.5 (8.2) 65.7 (4.2)

Education (y) 15.2 (3.2) 13.8 (2.9) 0.07 — 13.6 (3) — — 11 (2)

Disease dur. (y) 4.1 (3.7) NA — 7.1 (3.7) NA — 9.2 (3.8) NA

LEDD

(mg/day)

555 (430) NA — 660 (449) NA — 647 (396) NA

UPDRS-III 13.9 (10.2) NA — 18.4 (9.7) NA — 18 (12.4) NA

MoCA 26.2 (2.4) 26.8 (2.5) 0.26 25.1 (3.8) 27.3 (2.1) 0.016* 24.5 (5.5) 23.3 (4.6)

Values are expressed as mean (standard deviation). *Indicates results are significant.

BL, baseline; 3YFU, 3 year follow-up; 5YFU, 5 year follow-up; PD, Parkinson’s disease patients; HC, healthy controls; M/F, male/female; y, years; LEDD, Levodopa equivalent

daily dose; UPDRS-III, Unified Parkinson’s Disease Rating Scales motor ratings; MoCA, Montreal Cognitive Assessment, NA, Not Applicable.
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the disease progressed in time. For the correlation anal-
ysis, the Pearson’s correlation was computed to evaluate
the relationship between the NI and the clinical scores of
PD patients at and between different timepoints. All
parameters are described in the shared GitHub containing
the codes necessary to reproduce the results (https://
github.com/yassinesahar/FuncDysconnectivityPD).

Results

Participant Characteristics

Table 1 summarized the demographic and clinical
characteristics of the PD patients and HC subjects
included in this study. Their complete neuropsychologi-
cal and neuropsychiatric assessments are shown in
Table S2. There was no significance difference in age,
sex, or duration of formal education between the PD
patients and the HC at BL.

Longitudinal Alterations in Functional

Connectivity Networks of PD Patients

The overall pipeline of the study is summarized in
Figure 1. We followed a data-driven approach suppos-
ing that the networks at BL are different from those at
5YFU. The longitudinal change in the NI for both PD
patients and HC was explored for the three
timepoints. This includes the intermediate timepoint
3YFU whose networks were not used in the compari-
sons to confirm the overall tendency in the networks
and to evaluate the potential correlations with the
clinical scores.

Decreasing Networks of PD Patients

(BL > 5YFU)

At the α2 band (10–13 Hz), results revealed a statisti-
cally significant network (t = 3.2, P = 0.021, corrected
using permutation), where the connectivity at 5YFU
was significantly lower than BL. This network included
125 connections and 72 regions located principally
within the right hemisphere (88.8% of the edges and
88.9% of the regions). Regions with the highest num-
ber of connections (highest degree) were mainly part of
the right superior and inferior frontal gyrus, right
precentral gyrus and the right precuneus, with a domi-
nance of the frontotemporal (12%), the frontofrontal
(11.2%), and frontocentral (11.2%) connections
(Fig. 2A). These results are in line with previous studies
that linked the decrease in frontotemporal connectivity
at the α band with the severity of disease progres-
sion.17,23 The remarkable dominance of the right hemi-
sphere will be explored later when conducting the
analysis on the lateralized subgroups. Furthermore, to
better understand the longitudinal changes in the net-
work, the NI was computed for the three visits: BL,
3YFU, and 5YFU. Results showed that the NI
undergoes a significant decrease between BL and 5YFU
(P < 0.001). This decrease was progressive and signifi-
cant between BL and 3YFU (P < 0.01) and likewise
between 3YFU and 5YFU (P < 0.05). All P values were
corrected using Bonferroni for multiple comparisons.
This NI applied on the functional connectivity networks
of the HC showed no significant longitudinal changes
between BL and 3YFU (Fig. 2B).
Regarding the β band (13–30 Hz), the obtained net-

work (t = 3.7, P = 0.009, corrected using permutation)
comprised 103 connections issued from 58 regions. The

FIG. 1. General description of the analysis. The connectivity networks of the PD patients at BL and 5YFU were compared using the Network-Based

Statistics (NBS) to retrieve a subnetwork of significantly hypo (BL > 5Y)/hyper (BL < 5Y) connectivity. From this significant network, A network index

(NI) was attributed to each PD patient in each of the three visits to evaluate their progression in time and to correlate their longitudinal change with the

change in clinical scores. [Color figure can be viewed at wileyonlinelibrary.com]
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right hemisphere was also dominant in terms of number
of local edges (56.3%) and regions (58.6%). Highest
degree regions were largely located in the right superior
and inferior frontal, precentral and occipital cortex
with a dominance of the frontotemporal (12.6%),
fronto-occipital (9.7%), and frontofrontal (8.7%) con-
nections (Fig. 2C). A significant decrease in the NI was
observed between BL and 5YFU (P < 0.001). This
decrease was more severe in terms of linear slope
between 3YFU and 5YFU (P < 0.001) than between BL
and 3YFU (P < 0.05). As for the HC, they showed no
significant change in their NI between BL and 3YFU,
and because of their small sample size at 5YFU, we
were not able to statistically test the decrease observed
between 3YFU and 5YFU (Fig. 2D). Results of the
other frequency bands, the increasing networks and the
cross validation on the entire cohort are provided in the
Appendix S1.

Relationship between the NI and the Global

Cognitive and Motor Scores

Results showed a global positive correlation between
the NI of PD patients and their global cognitive score
represented by the Montreal Cognitive Assessment
score (MoCA) at both follow-up timepoints with a sta-
tistical significance at the intermediate timepoint 3YFU
(r = 0.36, P < 0.05) (Fig. 3A,B). In addition, we

uncovered a subnetwork issued from the previously
found dysconnectivity networks, in which the longitudi-
nal changes in the connectivity of its edges correlates
with the longitudinal changes in the MoCA scores
between BL and 5YFU. In α2, a subnetwork was rev-
ealed comprising 16 connections located mostly in the
right hemisphere and its corresponding NI was com-
puted (Fig. 3C). A positive significant correlation was
observed between the change in both NI and MoCA
between BL and 5YFU (r = 0.64, P < 0.001). This posi-
tive correlation persists also when introducing the NI of
the intermediate timepoint (3YFU) reaching a signifi-
cant level mainly between 3YFU and 5YFU (r = 0.40,
P < 0.05). Concerning the subnetwork of the β band, it
involved 40 connections distributed between both hemi-
spheres (Fig. 3E). The longitudinal change of its
corresponding NI was highly correlated with the
change in MoCA score between BL and 5YFU
(r = 0.72, P < 0.001) as well as between 3YFU and
5YFU (r = 0.55, P < 0.01). To ensure that the signifi-
cant correlation observed in the change between BL
and 5Y in both bands was not driven by the 2 patients
that showed a sharp decrease in their MoCA scores
(as it might be shown in the Fig. S4), we computed the
correlation after excluding these patients. Results show
that the correlation remains significant in α2 (r = 0.38,
P < 0.05) (Fig. 3D) and β (r = 0.49, P < 0.01) (Fig. 3F).
We also found significant correlation between the

FIG. 2. Dysconnectivity networks between BL and 5YFU and their corresponding highest degree regions in (A) α2, (C) β. Violin plot representing the lon-

gitudinal change of the network index of the PD patients and HC in (B) α2, (D) β. ***P < 0.001, **P < 0.01, *P < 0.05 (corrected for multiple comparisons

using Bonferroni). [Color figure can be viewed at wileyonlinelibrary.com]
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changes in NI and the changes in motor score (the
UPDRS-III) at α2 (r = !0.38, P < 0.05) and β

(r = !0.41, P < 0.05) between 3YFU and 5YFU. Figure
and more details are provided in the Appendix S1.

Disrupted Networks of PD Patients with

Lateralized Motor Symptoms

The above obtained networks showed a majority of
disrupted connections located in the right hemisphere
in α2 and β bands. To investigate this asymmetry, we
divided the PD patients into two subgroups according
to the dominance of their lateralized motor symptoms:
LPD and RPD. No significant difference in demo-
graphic and clinical tests was observed between both

subgroups at baseline or within the same subgroup
across the different visits (Table S3). To retrieve the
specific dysconnectivity networks associated with the
affected side of motor symptoms, we conducted the
same previous analysis using NBS on the two
lateralized subgroups of PD patients independently.
For the LPD patients, the α2 band revealed a

disrupted network (t = 3, P = 0.039, corrected)
between BL and 5YFU comprising predominantly
regions (71%) and connections (63%) within the right
hemisphere. Highest degree regions were located princi-
pally in the frontal, occipital, and central lobes of the
right hemisphere. The corresponding NI of those LPD
patients showed a significant decrease between BL and
3YFU (P < 0.05), 3YFU and 5YFU (P < 0.05), BL and

FIG. 3. Longitudinal change in the NI and in the MoCA score of PD patients. Correlation between the NI (issued from the hypo-connectivity networks

reported above) and the MoCA score of PD patients at (A) 3YFU and (B) 5YFU. Dysconnectivity subnetworks and corresponding highest degree

regions where the longitudinal change in the value of connectivity correlates with the longitudinal change in MoCA score of PD patients in (C) α2 and

(E) β. Correlation between the change in NI and the change in MoCA observed between BL and 5YFU (left), 3YFU, and 5YFU (right) in (D) α2 and (F) β.

[Color figure can be viewed at wileyonlinelibrary.com]
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5YFU (P < 0.001). However, this same NI does not
reveal any significant differences between the three
timepoints when applied on the RPD patients (Fig. 4A)
and between BL and 3YFU when applied on the HC
(P = 0.65). In contrast, dysconnectivity networks of the
RPD patients between BL and 5YFU revealed a domi-
nance of the left hemisphere in terms of altered connec-
tions. In α2 (t = 3.2, P = 0.044, corrected using
permutation), the disrupted network encompassed a
total of 167 connections and 83 regions. Although the

majority of the edges (52.7%) were located within the
left hemisphere with the highest degree regions among
the left-frontal and left-central lobes, the right hemi-
sphere comprises 40.1% of the disrupted edges mainly
issued from regions in right-central, right-frontal, and
right-parietal lobes. The corresponding NI presented a
significant decrease between BL and 3YFU (P < 0.05)
and between BL and 5YFU (P < 0.001) in RPD
patients. Yet, it did not mark any significant change
between timepoints in LPD patients (Fig. 4C) and

FIG. 4. Dysconnectivity networks with their corresponding highest degree regions (left) and the longitudinal change of the NI in both LPD and RPD

patients (right). (A) Network of the LPD patients in α2, (B) network of the LPD patients in β, (C) network of the RPD patients in α2, (D) network of the

RPD patients in β. **P < 0.001, *P < 0.05 (corrected for multiple comparisons using Bonferroni). [Color figure can be viewed at wileyonlinelibrary.com]
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between BL and 3YFU in HC (P = 0.08). More details
about these results in the βband are described in the
Appendix S1.

Discussion

In this longitudinal study, we investigated the evolu-
tion of the functional brain networks over a 5-year
period in PD patients using resting state HD-EEG
recordings. We unveiled disrupted networks in both α2
and β frequency bands where the functional connectiv-
ity decreases progressively between BL, 3YFU, and
5YFU, only in PD patients and not in HC. We also
showed a positive correlation between the loss of func-
tional connectivity in time and the deterioration in the
MoCA score that is used largely to examine the global
cognitive performance of PD patients. Furthermore, we
noticed a dominance of the right hemisphere in terms
of altered connections that led us to inspect more in
depth the relationship between the motor symptoms lat-
eralization of PD patients and the disruptions in their
functional brain networks.
Our main findings revealed disrupted networks in α2

and β bands where the functional connectivity drops in
function of time. Several previous cross-sectional and
longitudinal studies reported a decrease in the power of
both alpha and beta bands in PD patients at early and
advanced stages of the disease.33-36 Likewise, these fre-
quency bands were relevant in highlighting reductions
in the functional connectivity associated with the motor
and cognitive deteriorations over the course of the dis-
ease.17,22,23,37 Our results are in line with these previ-
ous findings. In addition, our network index (computed
at the patient-level) derived from these networks has
encountered a progressive decrease only in PD patients
and not in healthy subjects in both bands, which could
express the progression of the disease rather than the
progression in age. Note that we obtained no significant
differences when we performed the NBS analysis on PD
patients between consecutive timepoints.
Regarding the spatial distribution of the disrupted

connections and regions in α2 and β, the right hemi-
sphere was predominant. In particular, the dominance
of the right-frontal and right-central lobes was clear in
both bands because they included most of the highest
degree regions (involving most of the altered connec-
tions). A recent meta-analysis showed that both right-
superior-frontal and right-central gyrus presented a
reduced functional connectivity in cognitively impaired
PD patients compared to HC.38 Besides, reductions in
the functional connectivity of the right frontal and right
somatomotor-sensory cortex were previously reported
to reflect reductions in cortical thinning in PD
patients.39,40 Moreover, we unfold here, that the
frontotemporal connections were dominant in terms of

altered connections in α2 and β. Indeed, functional dis-
turbances between the frontal and temporal lobes in the
α band were observed when comparing non-demented
to demented PD patients in several MEG study.17,22 In
EEG, these patterns of connections were relevant in α2
when comparing cognitively intact to cognitively
impaired PD patients.23

We have also investigated the potential relationships
between the lateralization of motor symptoms and the
longitudinal change of the functional brain networks in
PD patients. Although previous studies have reported
changes in the cortical and subcortical areas related to
the asymmetry of the motor symptoms41,42 and linked
them with the progression of both motor and cognitive
symptoms of the disease,43-45 to date, no functional
connectivity study has tackled their relationship longi-
tudinally. When we conducted the same analysis based
on NBS on the two subgroups separately, we found
hypo-connectivity networks in both α2 and β bands
predominantly located in the right hemisphere and
characterizing the longitudinal progression of the dis-
ease in the LPD patients in contrast to a dominance of
the left hemisphere in the RPD patients. This contra-
laterality observed between the altered hemisphere and
the side of the symptoms may be in line with previous
studies that showed the correspondence between the
side of the motor symptoms and the dopaminergic neu-
ronal loss in the contralateral substantia nigra.46,47 Fur-
thermore, we found that the α2 frequency band
revealed disturbances in the right hemisphere in RPD
patients. Notably, when we first compared the evolu-
tion of the original NI over time in LPD and RPD
patients, both subgroups showed significant decrease
between different timepoints (Fig. S6). Therefore, alter-
ations in the right hemisphere could be associated with
the progression of the disease in both subgroups. More-
over, the previous results revealing the dominance of
the right hemisphere in PD patients of the initial group
could be related not only to the outnumber of the LPD
patients over the RPD patients, (N=23 vs. N=10,
respectively) but also to a pertinent pattern of distur-
bances within the right hemisphere that could reflect a
common clinical deterioration in all patients. Another
interpretation for these patterns of disturbances could
be the fact that after more than 5 years of evolution,
and despite the worsening of motor symptoms on the
predominant side, the disease may become bilateral.47

This may also explain why the loss of connectivity in
the left hemisphere characterizing the RPD patients in β

band appears to be significant also in LPD patients
(Fig. 4D).
In this study, we used the data of the PD patients that

complete both follow-up examinations to retrieve the
disrupted networks in time, which relatively reduced
the sample size from 77 to 35. However, we cross-
validated our results on the initial cohort to confirm the
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hypoconnectivity found between timepoints (Fig. S3 in
Appendix S1). Unfortunately, having only three healthy
subjects at 5YFU is not representative and prevents us
from validating the longitudinal change in the network
statistically in HC. We, therefore, only took into con-
sideration the corresponding evolution occurring
between BL and 3YFU. The relatively small sample size
of RPD patients (n = 10) might also affect the statistical
power of this comparison. As for the correlation analy-
sis, we chose the global cognitive score MoCA (that
covers several cognitive domains) rather than domain
specific tests because our dysconnectivity analysis is
more likely to reveal a large-scale network rather than
a domain-specific one. For instance, the NI showed no
correlation with tests that assessed only the visuospatial
abilities. Finally, all patients were under dopaminergic
treatments (on state) during both the EEG recordings
and the neuropsychological assessments, which may
mask the magnitude of their motor symptoms as well
as their global cognitive performance and may, ulti-
mately, affect our analysis. To overcome this issue, the
affected side of PD patients was computed based on the
lateralized items of the UPDRS-III in the three
timepoints, whereas the LEDD was considered as con-
founding in the correlation analysis. Despite these con-
siderations, the effect of the dopaminergic medications
could still be present in the measures of functional con-
nectivity as shown by several studies.48,49

In conclusion, the current study is the first to date to
assess longitudinal changes in the functional brain net-
works of PD patients with the disease progression using
HD-EEG. Our findings suggest that disruptions in the
networks may characterize not only the evolution of
the disease, but also the evolution in the cognitive per-
formance of the patients and the lateralization of their
motor symptoms. Further investigations may lead to
the identification of potential neuromarkers assisting in
subtyping PD patients and predicting the evolution of
their motor and cognitive symptoms in time.
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Methods 

Data acquisition and preprocessing 

Briefly, the Automagic toolbox is configured to filter the signals between 1 and 45 Hz, perform the 

electroencephalography (EOG) regression to eliminate the ocular artifacts (therefore the final number of 

channels is reduced to 239), and to detect and interpolate bad channels with high variance (higher than 20 μV) 

or whose amplitude exceeds the ±80 μV at any temporal point of the signal. The independent component 

analysis was also chosen in the configuration to remove further artefacts. Epochs whose Ratio of Bad Channels 

(RBC), one of Automagic quality metrics, exceeds the 0.15 threshold (representing 15% of the total number 

of electrodes) were excluded and the rest were sorted according the Overall High Amplitude (OHA) metric 

and only the first six epochs were chosen for the rest of the study. This step was confirmed manually by a 

visual inspection of the epochs and those with remaining artefacts were modified or removed totally from the 

study.  All these parameters are described in the shared GitHub containing the codes necessary to reproduce 

the results (https://github.com/yassinesahar/FuncDysconnectivityPD) . 

Statistical Analysis 

In brief, to identify the significant networks in NBS, a t-test was performed to evaluate the significant 

difference in the value of connectivity along the (N2-N)/2 = 21945 edges of the [210 x 210] connectivity 

matrices of the PD patients between the BL and 5YFU visits. A primary component-forming threshold 

(p<0.05) was then applied to identify a set of supra-threshold connections, within which all the possible 

connected components and their size could be determined. A corrected p-value was then evaluated for each 

component with respect to the null distribution of maximal connected component size obtained using a 

nonparametric permutation approach (2000 permutations). The analysis was performed with different 

thresholds for the t-test (range from 2.6 to 3.7) which affect the final size of the resulting significant networks. 

The statistical differences in demographic and clinical characteristics between PD patients and HC as well as 

between PD patients at different timepoints were computed using the t-test and the fisher’s test. The Wilcoxon 

test (two-tailed) corrected for multiple comparisons (Bonferroni) was used to examine the difference in the 

network between different visits. 

Correlation analysis 

The Pearson’s correlation was computed to evaluate the relationship between the Network Index (NI) and the 

global clinical score of PD patients represented by the Montreal Cognitive Assessment score (MoCA)1 at 



 55 

different timepoints. Further, in order to emphasize the disrupted connections that reflect the fluctuations in 

the MoCA score over time, we sought also to identify a subnetwork from the significant network already 

uncovered in NBS, in which the change in the connectivity values of its edges correlates significantly with 

the change in the MoCA. For this purpose and inspired by the edges selection approach used in the 

Connectome-based Predictive modeling (CPM) studies2, the Pearson’s correlation was computed between the 

difference in the weight of the connections (!!

"# - !!

$%&') and the difference in the MoCA score ("#$%!
"# - 

"#$%!
$%&') in both BL and 5YFU visits. Connections that show significant correlation (p<0.05) were 

considered as part of this subnetwork and their corresponding NI was computed. 

We estimated also the correlation between the longitudinal change of NI and the longitudinal change in the 

UPDRS-III to assess the relationship between the loss of connectivity in PD patients and their motor 

impairments. The dose of antiparkinsonian medications (LEDD) was considered as a confounding factor when 

estimating the Pearson’s correlation at each timepoint (and its average between timepoints when correlating 

the longitudinal changes).  

Results 

Decreasing networks of PD patients in alpha1 and theta bands (BL>5YFU) 

 The alpha1 band (8-10 Hz) showed similar results to those observed in alpha2 concerning the predominance 

of connections in the right hemisphere as well as the significant progressive decreasing trend of NI between 

different visits in PD patients and not in HC (figure S2 A, B). 

Another decreasing network was observed in the theta band (t=3.2, p=0.036, corrected using permutation) 

involving 83 connections and 65 regions distributed quasi-equally between both hemispheres. The highest 

degree regions were parts of the left-temporal, left-central and right-parietal lobes (figure S2 C). The NI in 

this band decreases significantly between BL and 5YFU (p<0.001) notably between 3YFU and 5YFU 

(p<0.05). However, this decreasing trend was also observed in HC with a significant difference between BL 

and 3YFU (p<0.05) (figure S2 D). We should note that results were consistent across different thresholds of 

the t-test in NBS, in all frequency bands (see table S2). 

Increasing networks of PD patients (BL<5YFU) 

Concerning the network where the connectivity in 5YFU was significantly higher than in BL (a hyper-

connectivity), the alpha2 was the only frequency band to reveal significant components in NBS. The network 
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(t=3.1, p=0.025, corrected using permutation) comprises 93 connections and 64 regions. Highest degree 

regions were among the right-parietal, right-frontal, right-occipital and left-parietal lobes and a predominance 

in the interhemispheric connections was observed (73.1%) (figure S2 E). These results are in line with the 

findings of Stoffers et al. that reported a positive association between the connectivity of the interhemispheric 

connections and the duration of the disease in alpha23. However, we found that the associated NI goes through 

a progressive increase between BL and 5YFU (p<0.001) not only in PD patients, but also in HC between BL 

and 3YFU (p<0.05) (figure S2 F). This increase may be interpreted as age-related and not pathology- specific. 

However, this was not confirmed statistically as the correlation between the NI and the age was unsignificant 

(p=0.62). 

Cross-validating the results on the entire cohort 

In order to cross-validate the hypoconnectivity associated with the disrupted networks shown previously, we 

computed the corresponding NI on the initial cohort that includes in addition to the 35 PD patients of the 

analysis, the PD patients who did not complete the follow up-visits (total of 77 PD patients at BL, 45 PD at 

3YFU and 42 PD at 5YFU).We chose to apply this validation on the decreasing networks of the alpha2 and 

beta bands as their corresponding NI showed a significant decrease in PD and not in HC. Results revealed that 

in alpha2, the significant progressive decreasing trend of NI persists on this larger dataset between BL and 

3YFU (p<0.05) and BL and 5YFU (p<0.001). The same decreasing trend was also observed in beta mainly 

between BL and 5YFU (p<0.001) and 3YFU and 5YFU (p<0.05). Results are represented in the figure S3. 

Relationship between the longitudinal change in the network and in the UPDRS-III score 

In order to assess the relationship between the loss of the connectivity and the motor impairment in PD 

patients, we evaluated the correlation between the change in their NI and the change in their UPDRS-III score 

between different timepoints. A significant negative correlation was found in both frequency bands alpha2 

(r=-0.38, p<0.05) and beta (r=-0.41, p<0.05) only between 3YFU and 5YFU (figure S5). This negative 

correlation reflects a worsening of motor symptoms associated with the loss of connectivity when the disease 

progress in time. 

Disrupted networks of PD patients with lateralized motor symptoms in beta band. 

The dominance of the right hemisphere was observed in the detected dysconnectivity network of the beta band 

in LPD patients (t=3.2, p=0.045, corrected) that included 69.4% of the detected connections and 67.2% of 

the detected regions. The regions with the highest number of connections were part of the right-frontal, right-
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occipital and right-central lobes. The fronto-temporal and fronto-frontal were among the highest altered 

connections. the decrease in the NI was significant between BL and 5YFU (p<0.001) in LPD patients and not 

in RPD patients (figure 4 B) nor in HC between BL and 3YFU (p=0.26).  

As for the RPD patients, the beta band revealed a network (t=3.5, p=0.035, corrected using permutation) with 

a confirmed dominance of the left hemisphere which comprises 86.1% of the total connections and 81.8% of 

the involved regions. The fronto-temporal and the fronto-parietal were the prominent altered interactions and 

the highest degree regions were among the frontal, central and occipital lobes of the left hemisphere. A 

progressive significant decrease in the corresponding NI was perceived in RPD patients between different 

visits: BL and 5YFU visits (p<0.001), BL and 3YFU (p<0.05), 3YFU and 5YFU (p<0.05). However, we 

observed this decrease also in the NI of the LPD patients between BL and 5YFU (p<0.05) (figure 4 D) while 

the change in HC between BL and 3YFU was not significant (p=0.07). All of these results were consistent 

independently from the chosen t-threshold for the t-test in NBS (see table S5). 

Supplementary figures 

 

 

 
Figure S1-Flowchart of the enrolled and followed subjects with Parkinson’s disease (PD) and healthy controls (HC) 

during the three timepoints of the study. The analysis cohort included only the 35 patients that underwent all three visits 

and all the HC. Seven patients from the 5YFU dataset were discarded from the analysis cohort as they were DBS patients at 

BL or at 3YFU (or at both timepoints) with no EEG recordings at that time. 
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Figure S2- Disrupted networks with corresponding highest degree regions in A) alpha1-decreasing C) theta-decreasing E) 

alpha2-increasing. The longitudinal change of the network index of the PD patients and HC in B) alpha1-decreasing D) 

theta-decreasing F) alpha2-increasing. 

** p<0.001, * p<0.05 (corrected for multiple comparisons using Bonferroni). 

 

 
Figure S3-Cross validation on the main cohort: the longitudinal change in the NI of PD patients and HC corresponding to the 

decreasing network of alpha2 (up) and the decreasing network of beta (down). 

** p<0.001, * p<0.05 (corrected for multiple comparisons using Bonferroni) 
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Figure S4- Correlation between the change in Network Index (NI) and the change in MoCA observed between BL and 

5YFU in A) Alpha2 and B) Beta 

.

 

Figure S5- Correlation between the change in Network Index (NI) and the change in UPDRS-III score observed 

between 3YFU and 5YFU in A) Alpha2 and B) Beta. 
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Figure S6- The longitudinal change of the Network Index (NI) (derived from the dysconnectivity networks of all PD 
patients (N=35)) of the left-affected PD patients (LPD, N=23) and the right-affected PD patients (RPD, N=10) 

separately in A) alpha2 and B) beta frequency bands. 

** p<0.01, * p<0.05 (corrected for multiple comparisons using Bonferroni). 

 

Supplementary tables 

 
Table S1- Demographic and clinical data of the initial cohort in Baseline, 3YFU and 5YFU expressed as mean (standard 

deviation). PD: Parkinson’s disease patients; HC: Healthy Controls; M/F: Male/Female; y: years; LEDD: Levodopa 

equivalent daily dose; UPDRS-III: Unified Parkinson’s Disease Rating Scales motor ratings; MoCA: Montreal 

Cognitive Assessment, MMSE: Mini-Mental State Examinations. 

 Baseline  3 Years Follow UP  5 Years Follow UP 

 PD (N=77)  PD (N=45)  PD (N=42) 

Sex (M/F) 51/26  31/14  28/14 

Age (y) 66.2 (8.2)  70.9 (7.9)  71.9 (7.9) 

Education (y) 14.6 (3.2)  14.8 (3.1)  15.0 (3.1) 

Disease Duration (y) 5.4 (5.2)  8.0 (5.2)  10.5 (5.0) 

LEDD (mg/day) 676 (466)  707 (447)  642 (386) 

UPDRS-III 15.5 (11.0)  20.5 (12.1)  20.1 (13.1) 

MoCA 26 (2.4)  25.2 (3.5)  24.9 (5.2) 
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Table S2- Performance at the neuropsychological and neuropsychiatric tests of the 35 PD patient in the three visits: 

Baseline (BL), 3 years follow-up (3YFU) and 5 years follow-up (5YFU), expressed as mean (standard deviation). 

Domain Name of the test BL 3YFU 5YFU 

Attention and 

working memory 

TAP-Alertness, reaction time without alerting sound (ms) 295 (61) 312 (69) 318 (64) 

TAP-Alertness, reaction time with alerting sound (ms) 281 (47) 300 (67) 304 (55) 

Trail Making Test, time for Part A 47.9 (15.4) 52.8 (28.9) 59.7 (36.4) 

Digit Span, correct forward 7.3 (2.1) 7.8 (2.1) 7.5 (1.7) 

Digit span, correct backward 5.9 (2.1) 6.1 (1.7) 5.7 (1.7) 

Corsi block, correct forward 7.9 (1.4) 7.9 (1.7) 7.5 (1.9) 

Corsi block, correct backward 7.5 (1.3) 7.1 (1.7) 5.9 (1.7) 

Episodic Memory 

California Verbal Learning Test, trial 1 5.5 (2) 4.7 (2.4) 4.9 (1.7) 

California Verbal Learning Test, trial 5 10.9 (3) 11 (3.4) 10.4 (3.4) 

California Verbal Learning Test, saving 94.8 (21.2) 82.4 (24.3) 88.4 (24.8) 

California Verbal Learning Test, discriminability 98.8 (5.5) 90.6 (8.7) 90.8 (11.3) 

Rey-Osterrieth Complex Figure, savings 66.9 (15.5) 70.6 (19.8) 70 (20.2) 

Executive 

Function 

Five-Point test, correct answers 24.7 (7.7) 24.8 (7.1) 25.6 (7) 

Semantic verbal fluency test, correct answers 20.2 (4.8) 19.8 (6.5) 19.3 (5.8) 

Phonemic verbal fluency, correct answers 13.2 (4.1) 13 (4.9) 13.7 (4.9) 

Trail Making Test,time for Part B / time for Part A 2.5 (0.8) 2.6 (1.6) 3 (1.6) 

Stroop, interference index 1.9 (0.6) 1.8 (0.5) 1.9 (0.7) 

Visuo-spatial 

function 

Rey-Osterrieth Complex Figure, copy 29.9 (4) 29.3 (5.6) 30 (5.4) 

Block design test, sum score 26.4 (8.6) 26.4 (8.8) 24.5 (7.7) 

Language Boston Naming Test, correct answers 14.1 (1) 13.9 (1.7) 13.8 (2.6) 

Neuropsychiatry 

Beck Depression Inventory, total 7.6 (5) 8.2 (5) 7.5 (6.8) 

Beck Anxiety Inventory, total 10.5 (7.1) 11.9 (8) 10.2 (7.4) 

Perceived deficits questionnaire - depression, total 32.7 (21.1) 37.4 (22.2) 36 (20) 
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Table S3- Demographic and clinical characteristics of the Left-affected (LPD) and right-affected (RPD) patients in 
BL, 3YFU and 5YFU expressed as Median [min, max]. M/F: Male/Female; y: years; LEDD: Levodopa equivalent 

daily dose; UPDRS-III: Unified Parkinson’s Disease Rating Scales motor ratings; MoCA: Montreal Cognitive 

Assessment (score between 0 and 30). P-values between groups are calculated using the Wilcoxon’s statistical test. 

 Baseline 

 
LPD 

 (N=23) 

RPD 

(N=10) 
p-value 

Sex (M/F) 19M/4F 5M/5F 0.09 

Age (y) 69 [47-82] 65.5 [55-84] 0.46 

Education (y) 16 [9-20] 13.5 [9-20] 0.19 

Disease Duration (y) 2.8 [0-15.3] 4.2 [0.1-8.2] 0.54 

LEDD (mg/day) 460 [0-1425] 575 [150-1148] 0.31 

UPDRS-III 16 [0-34] 11.5 [1-35] 0.37 

MoCA 27 [22-29] 25 [19-29] 0.1 

 

 3 Years Follow Up 

 
LPD 

(N=23) 

RPD 

(N=10) 
p-value 

Sex (M/F) - - - 

Age (y) 72 [50-85] 68.5 [58-87] 0.43 

Education (y) - - - 

Disease Duration (y) 5.9 [3.1-18.5] 7.25 [3.5-11.8] 0.57 

LEDD (mg/day) 512.5 [0-2028] 585 [114-1480] 0.85 

UPDRS-III 17 [1-34] 18.5 [10-38] 0.48 

MoCA 26 [15-29] 26 [12-30] 0.96 

 

 
   

 5 Years Follow Up 

 
LPD 

(N=23) 

RPD 

(N=10) 
p-value 

Sex (M/F) - - - 

Age (y) 74 [52-87] 70.5 [60-89] 0.44 

Education (y) - - - 

Disease Duration (y) 8.1 [5.2-20.5] 9.3 [5.5-13.3] 0.57 

LEDD (mg/day) 574.5 [0-1330] 537 [94-1629] 0.96 

UPDRS-III 15 [1-52] 11 [0-37] 0.38 

MoCA 27 [4-29] 26 [17-30] 0.94 
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Table S4- Results using different t-test thresholds in NBS when finding the hypo/hyperconnectivity networks between 
BL and 5YFU of the PD patients in different frequency bands. t-thresh: the t-test threshold used in NBS, p-value: the 

corrected p-value using NBS, N° Edges: the number of edges in the significant network, N° Regions: the number of 

regions in significant network, Edges within RH: the percentage of edges within the right hemisphere, NI-PD/HC (p-
value): the significance of the Wilcoxon test (corrected for multiple comparison using Bonferroni) computed to evaluate 

the difference between the network index of PD patients between different timepoints and of Healthy controls between 

BL and 3YFU. Significant p-values are corrected for multiple comparisons using Bonferroni. 

* p-value<0.05 without correction for multiple comparison. 

      NI-PD (p-value) NI-HC (p-value) 

 t-thresh p-value N° Edges N° Regions Edges in RH BL - 5Y BL - 3Y 3Y - 5Y BL - 3Y 

Alpha 2 
hypo-Con 

2.6 0.050 466 151 69% <0.001 <0.01 <0.05 0.86 

2.9 0.034 275 128 73% <0.001 <0.01 <0.05 0.87 

3.0 0.033 209 109 78% <0.001 <0.01 <0.05 0.89 

3.1 0.033 182 104 78% <0.001 <0.01 <0.05 0.86 

3.2 0.021 125 72 89% <0.001 <0.01 <0.05 0.86 

3.5 0.028 29 27 93% <0.001 <0.01 <0.05 0.69 

3.7 0.023 20 18 90% <0.001 <0.01 <0.05 0.24 

Beta 

hypo-Con 

2.6 0.038 817 158 39% <0.001 0.031* <0.001 0.69 

2.9 0.025 500 139 41% <0.001 0.017* <0.001 0.67 

3.0 0.022 420 130 43% <0.001 <0.05 <0.001 0.64 

3.1 0.019 359 123 45% <0.001 <0.05 <0.001 0.61 

3.2 0.018 302 118 46% <0.001 <0.05 <0.001 0.61 

3.5 0.011 158 76 55% <0.001 <0.05 <0.001 0.92 

3.7 0.009 103 58 56% <0.001 <0.05 <0.001 0.75 

Theta 

hypo-Con 

2.6 - - - - - - - - 

2.9 - - - - - - - - 

3.0 - - - - - - - - 

3.1 0.045 104 73 - <0.001 0.034* <0.05 0.05 

3.2 0.036 83 65 - <0.001 0.028* <0.05 0.037 

3.5 0.041 17 18 - <0.001 0.135 <0.01 0.035 

3.7 - - - - - - - - 

Alpha1 

hypo-Con 

2.6 0.044 488 161 51% <0.001 0.038* <0.05 0.21 

2.9 0.038 248 118 51% <0.001 0.024* <0.01 0.13 

3.0 0.035 195 105 53% <0.001 0.022* <0.01 0.13 

3.1 0.033 149 93 51% <0.001 0.02* <0.01 0.14 

3.2 0.031 121 81 47% <0.001 0.019* <0.01 0.09 

3.5 0.020 52 49 50% <0.001 0.018* <0.01 0.06 

3.7 0.023 18 19 55% <0.001 <0.05 <0.001 0.26 

Alpha2 

hyper-Con 

2.6 0.049 334 105 - <0.01 0.23 <0.05 0.025 

2.9 0.035 168 79 - <0.01 0.12 <0.05 0.023 

3.0 0.028 139 75 - <0.01 0.14 <0.05 0.023 

3.1 0.026 106 66 - <0.01 0.13 <0.05 0.023 

3.2 0.023 75 55 - <0.01 0.18 <0.05 0.016 

3.5 0.015 20 21 - <0.01 0.32 <0.05 0.015 

3.7 - - - - - - - - 
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Table S5- Results using different t-test thresholds in NBS when finding the hypo-connectivity networks between BL and 
5YFU of the PD patients in different frequency bands. t-thresh: the t-test threshold used in NBS, p-value: the corrected 

p-value using NBS, N° Edges: the number of edges in the significant network, N° Regions: the number of regions in 

significant network, Edges within LH/RH: the percentage of edges within the left/right hemisphere, NI (p-value): the 
significance of the Wilcoxon test computed to evaluate the difference between the network index of LPD or RPD patients 

between different timepoints. Significant p-values are corrected for multiple comparisons using Bonferroni. 

* p-value<0.05 without correction for multiple comparison. 

       NI (p-value) 

 t-thresh p-value N° Edges N° Regions Edges in LH Edges in RH BL - 5Y BL - 3Y 3Y - 5Y 

LPD 
Alpha2 

2.7 - - - - - - - - 

2.9 0.045 103 71 9% 60% <0.001 0.027* <0.05 

3.0 0.039 81 62 6% 63% <0.001 0.033* <0.05 

3.1 0.038 53 46 8% 66% <0.001 0.028* <0.05 

3.2 0.038 28 24 0% 89% <0.001 0.023* <0.05 

3.5 0.039 5 6 0% 100% <0.05 0.048* 0.071 

3.7 - - - - - - - - 

LPD 
Beta 

2.7 - - - - - - - - 

2.9 - - - - - - - - 

3.0 0.046 217 57 6% 67% <0.001 0.061 <0.05 

3.1 0.049 181 67 6% 70% <0.001 0.058 0.022* 

3.2 0.045 147 61 5% 69% <0.001 0.048* 0.025* 

3.5 0.025 88 44 1% 80% <0.001 0.031* 0.028* 

3.7 0.017 59 32 2% 83% <0.001 0.029* 0.026* 

RPD 
Alpha2 

2.7 0.046 501 164 47% 42% <0.001 <0.05 <0.05 

2.9 0.042 301 114 54% 36% <0.01 <0.05 0.017* 

3.0 0.049 262 107 55% 37% <0.001 <0.05 <0.05 

3.1 0.035 215 100 53% 38% <0.01 <0.05 0.017* 

3.2 0.044 167 83 53% 40% <0.001 <0.01 0.017* 

3.5 0.029 94 56 52% 44% <0.01 <0.05 <0.05 

3.7 0.022 - - 51% 45% <0.001 <0.05 <0.05 

RPD  
Beta 

2.7 0.045 686 174 66% 16% <0.001 <0.05 <0.05 

2.9 0.040 520 159 70% 14% <0.001 <0.05 <0.05 

3.0 0.048 445 149 73% 13% <0.001 <0.05 <0.05 

3.1 0.037 387 141 75% 11% <0.001 <0.05 <0.05 

3.2 0.035 323 131 75% 11% <0.001 <0.05 <0.05 

3.5 0.035 194 88 86% 5% <0.001 <0.05 <0.05 

3.7 0.028 113 48 97% 0% <0.001 <0.05 0.037* 
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Abstract 

Background: Parkinson’s Disease (PD) patients present with a heterogeneous clinical 

phenotype, including motor, cognitive, sleep, and affective disruptions. However, this 

heterogeneity is often either ignored or assessed using only clinical assessments.  

Objectives: We aimed to identify different PD sub-phenotypes in a longitudinal follow-up 

analysis and their electrophysiological profile based on resting-state electroencephalography 

(RS-EEG) and to assess their clinical significance over the course of the disease. 

Methods: Using electrophysiological features obtained from RS-EEG recordings and data-

driven methods (similarity network fusion and source-space spectral analysis), we have 

performed a clustering analysis to identify disease sub-phenotypes and we examined whether 

their different patterns of disruption are predictive of disease outcome. 

Results: We showed that PD patients (N = 44) can be sub-grouped into three phenotypes with 

distinct electrophysiological profiles. These clusters are characterized by different levels of 

disruptions in the somatomotor network (delta and beta band), the frontotemporal network 

(alpha2 band) and the default mode network (alpha1 band), which consistently correlate with 

clinical profiles and disease courses. We demonstrated that these clusters are statistically 

robust, and can be classified into either moderate (only-motor) or mild-to-severe (diffuse) 

disease. Using follow-up data, we showed that EEG-based features characterzing these 

subtypes remain relevant throughout the disease trajectory and can predict the cognitive 

evolution of PD patients from baseline, when the cognitive clinical scores were overlapped. 

Conclusions: The identification of novel PD subtypes based on electrical brain activity 

signatures may provide a more accurate prognosis in individual patients in clinical practice and 

help to stratify subgroups in clinical trials. Innovative profiling in PD can also support new 

therapeutic strategies that are brain-based and designed to modulate brain activity disruption. 
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1. Introduction 

Parkinson’s disease (PD) is a neurodegenerative disorder characterised by significant clinical 

(presentation and prognosis) and pathological heterogeneity1–4. This heterogeneity is 

delineated by a constellation of motor and non-motor symptoms (sleep disturbance, cognitive 

decline, emotional and vegetative disorders…) and associated with multiple genetic, 

environmental and comorbidity factors. It has therefore largely endorsed the emerging concept 

of approaching PD as the final common pathway of multiple disease mechanisms rather than a 

single entity5–7. Considering PD as a single disorder has been indeed ineffective when 

attempting disease modification6. To take this heterogeneity in PD into account, efforts are 

currently focused on what is known as ‘precision (or stratified) medicine’, that requires a prior 

identification of distinct prodromal PD subtypes7–10 probably based on differing primary 

disease processes. 

Most previous PD subtyping studies are based only on clinical/behavioural assessments11–14. 

Despite revealing clinically relevant PD subtypes, uncovering the extent of the underlying 

physiopathology remained very limited. In contrast, genome-wide association studies, 

cerebrospinal fluid analysis and neuroimaging studies have led to better understanding of the 

biological underpinnings of the disease by associating common genetic variants, proteins or 

neurophysiological processes with different forms of PD in terms of clinical features15–17, 

treatment’s responsiveness18,19 and rates of progression20,21. Indeed, integrating features from 

such data modalities in the clustering approaches would result in better identification of PD 

subtypes that share latent pathological mechanisms22–25. 

Moreover, stratifying PD patients according to their individual disease trajectories is 

fundamental to improve biomarkers development strategies9. This can not be done without an 

adequate methodological framework that includes sufficient longitudinal assessments. In 

recent years, electroencephalography (EEG) has shown its worthiness as a promising low-cost 

technique for biomarkers discoveries providing non-invasive access to the electrophysiological 

activity of the whole brain at the millisecond26,27.  Several studies used EEG features and 

clustering techniques to identify subphenotypes of different brain disorders28–30. In parallel, the 

advent of longitudinal studies assessing the evolution of clinical and biological features of 

different PD subtypes has afforded reliable tracking of the clinical trajectory and disease 

progression by attributing a well-defined biological/clinical profile for each subphenotype13,22–
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25,31. Yet, the use of EEG in a longitudinal framework to establish PD phenotyping based on 

neurophysiological brain activity is still missing. 

In this study, we used resting-state high-density (HD)-EEG recordings of 44 PD patients from 

their 5-year follow-up examinations to perform a clustering analysis based on an unsupervised 

learning technique called Similarity Network Fusion (SNF)32. We aimed to identify different 

PD subgroups with distinct electrophysiological profiles and appraise their clinical significance 

and neurophysiological progression longitudinally. We also investigated the ability of the 

relevant electrophysiological features to distinguish between PD subtypes from early disease 

stages at baseline and associate them with the global cognitive state of patients. Finally, we 

validated the categorical subtyping by applying a dimensionality reduction analysis on the 

input features of the clustering analysis and associating the low-dimensional representations 

with the significant EEG measures. 

2. Materials and Methods 

2.1. Participants  

Patients with idiopathic Parkinson’s disease (PD) were prospectively recruited from the 

Movement Disorders Clinic of University Hospital of Basel (City of Basel, Switzerland) as 

part of a 5-year longitudinal cohort described in our previous study33. HD-EEG examinations 

along with neurological and cognitive assessments were performed for the included patients at 

Baseline (BL) and at follow-up visits after a mean interval of three years (3Y) and five years 

(5Y). All patients gave written informed consent to the research protocol, which was approved 

by the local ethics committees (Ethikkommission beider Basel, Basel; Switzerland; EK 74/09). 

Out of the 77 PD patients recruited for the main cohort BL, only 45 who participated in the 5Y 

examinations were selected for this study. One patient was subsequently excluded due to 

significant artifacts in their corresponding EEG recordings. Therefore, the final sample size for 

the clustering analysis at 5Y is N=44 PD patients. Among these patients, nine did not complete 

the 3Y follow-up examinations and were excluded due to missing EEG recordings, and two 

patients had significant artifacts in their corresponding EEG recordings at baseline and were 

excluded from the study cohort. As a result, the sample size was subsequently reduced to 35 

PD patients at 3Y and 42 PD patients at BL. Patients were evaluated while taking their regular 
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dopaminergic medication. The demographic and clinical characteristics of this longitudinal 

study cohort are presented in the supplementary materials and methods section.  

2.2. Data acquisition, preprocessing and source 

reconstruction 

The experimental paradigm consisted of 12 minutes of continuous resting state with closed 

eyes. Patients were seated in a comfortable chair and asked to relax while staying awake with 

minimum body movements. HD-EEG data were collected using a 256-channel system 

(Netstation 300, EGI, Inc, Eugene, OR) and sampled at 1000 Hz. Segmentation and 

preprocessing procedures are detailed in the supplementary material, methods section. Further, 

to estimate brain activity at the cortical level rather than at the scalp level, we applied the first 

step of the EEG source connectivity method34. This involved reconstructing the dynamics of 

the brain at the cortical-source level from the artifact-free data segments by solving the inverse 

problem. The procedure included co-registering EEG channels with an MRI template 

(ICBM152), building a realistic head model (using the OpenMEEG toolbox35), and applying 

the weighted minimum norm estimate method36. The outputs were the time-varying signals of 

the 210 cortical regions of interest (ROIs) from the Brainnetome atlas37. 

2.3. Power spectral and functional connectivity features 

The 210 source-reconstructed signals were used to estimate the power spectrum at the cortical 

level using the Welch method38. Relative band power features were then estimated in five 

different EEG frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-

13 Hz) and beta (13-30 Hz) and a total of 210 x 5 power spectral features were obtained for 

each patient for further analysis. Regarding functional connectivity features, in each frequency 

band, statistical couplings were estimated between the 210 regional time series using the 

“Amplitude Envelope Correlation (AEC)” method39 with leakage correction to reduce the 

volume conduction effect and a total of 21945*5 unique connectivity features were attributed 

to each patient for further analysis. More details about these approaches are provided in the 

supplementary materials, methods section. 
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2.4. Clustering analysis and dimensionality reduction 

In order to retrieve clusters of patients with distinct neurophysiological profiles, we followed 

a data-driven unsupervised clustering approach based on the Similarity Network Fusion (SNF) 

method32. SNF is a novel approach for combining features from different data sources into a 

single fused similarity network that captures both mutual and complementary information 

between features offering insights into the strength of relationship between patients. Here, we 

used SNF to extract and combine similarity networks corresponding to the power spectral 

(or/and functional connectivity) features from the different frequency bands. More details 

about the method and the clustering pipeline can be found in the supplementary materials, 

method section.  

Further, to validate the categorical representation derived from the clustering analysis, we 

conducted a dimensionality reduction analysis using diffusion map embedding as described 

in23. This approach produced a continuous low-dimensional representation that contained the 

most meaningful properties of the original data (i.e., the underlying pathology). See 

supplementary materials, method section, for more technical details about the process.  

2.5. Neurophysiological profiles of the clusters and 

correlation analysis 

In order to attribute a specific neurophysiological profile for each of the identified clusters, we 

defined four spectral power/connectivity measures corresponding to the average relative 

power/connectivity of regions within four brain networks (SMN: somatomotor network, DMN: 

default mode network, FTN: fronto-temporal network and FPN: fronto-parietal network). 

Those networks are recognized to be activated at rest40 and to be disrupted in PD41,42. The 

affiliation of brain regions to each of these networks are presented in the Supplementary Table 

S3. More in depth details about the statistical and correlation analysis are provided in the 

method section of the supplementary materials. 
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3. Results 

3.1. EEG reveals three PD clusters with distinct 

electrophysiological profiles 

The clustering analysis applied to the EEG power spectral features at the five different 

frequency bands yielded the identification of three PD subgroups: G1(N=9), G2 (N=22) and 

G3 (N=13) (Fig. 1A). The clusters were stable under perturbations in the data with an average 

robustness coefficient of 91% over 100 iterations. The overall changes in their relative spectral 

power over all brain regions are illustrated in Fig. 1B. Higher relative power appears to 

characterise the neural activity of G3 compared to G1 and G2 at low frequency bands (delta, 

theta), in contrast a shift toward slower neural activity for G3 compared to G1 and G2 was 

observed for both alpha and beta frequency bands.  

Concerning the most relevant brain networks in maximally dissociating the identified clusters 

in terms of relative spectral power, results showed that the somatomotor network (SMN) was 

the most significant in both delta (F=20.2, p<0.001) and beta (F=30.6, p<0.001), the Default 

Mode Network (DMN) in alpha1 (F=11.5, p<0.05) and the fronto-temporal network (FTN) in 

alpha2 (F=18.6, p<0.001). No network appeared to significantly distinguish between groups in 

the theta band. This approach allowed us to attribute a distinctive neurophysiological profile to 

each subgroup (Fig. 1C). For example, G1 is characterized with low SMN power in delta and 

high SMN power in beta, whereas G2 shows a high power within the DMN in alpha1. 

Moreover, high power within the FTN in alpha2 appeared to represent both G1 and G2. Finally, 

high delta power for the SMN in contrast with low powers for the DMN in alpha1, the FTN in 

alpha2 and the SMN in beta were characteristic of the neurophysiological profile of G3. 

Furthermore, by associating a relevant brain network for each frequency band, we computed a 

quantifiable power measure at the patient level to investigate their distributions across 

subtypes. At 5Y, results revealed significantly higher values for G3 compared to G1 (p<0.01) 

and G2 in terms of SMN-delta power (p<0.001). Conversely, this metric presented 

significantly lower values for G3 when computed for the DMN in alpha1 (G3<G2, p<0.01), 

the FTN in alpha2 (G3<G1, p<0.01; G3<G2, p<0.001) and the SMN in beta (G3<G1, p<0.01). 

Differences between G1 and G2 were only significant for the SMN-beta power (G1>G2, 

p<0.001) (Fig. 1D). All reported p-values were corrected using Bonferroni for multiple 

comparisons. 
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We then investigated the longitudinal evolution of the EEG-based clusters between BL, 3Y and 

5Y. Post-hoc analysis revealed that both G1 and G2 showed a relatively constant power 

spectrum over time compared to G3 where an increase in EEG power between BL and 5Y was 

clearly observed mainly at lower frequency bands delta and theta (Supplementary Fig.S1). A 

broad examination on the longitudinal progression of the significant EEG-based features that 

characterize the three groups was also assessed for the different frequency bands. We also 

validated the categorical representation over continuous severity dimension showing that the 

three groups are dissociable along the first two dimensions of the embedding.  Detailed results 

are provided in the supplementary materials. 

 

Figure 1- PD subtypes and their electrophysiological profiles. (A) Patient co-assignment matrix 

representing the three identified subgroups and indicating the probability of two patients being 

assigned to the same cluster across clustering solutions. (B) Changes in the relative power spectra for 
the three PD subtypes. (C) Distinct neurophysiological profiles characterizing PD patients in each 

subgroup across frequency bands. For representation purposes, the average power in each brain 

network was converted to z-score. (D) Distribution of the quantifiable power measures between the 

three PD subgroups: average power of somatomotor network (SMN) in delta and beta, default mode 
network (DMN) in alpha1, fronto-temporal network (FTN) in alpha2. Significant differences between 

subgroups are marked as ** for p<0.01 and *** for p<0.001. P-values were corrected for multiple 

comparisons using Bonferroni. 
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3.2. Clinical profiles of EEG clusters 

The demographic and clinical characteristics of the identified clusters are represented in Table 

1. Significant inter-group differences were observed only for age (p=0.021) between G1 and 

G3, with the latter group being older, and for the Montreal Cognitive Assessment score 

(MoCA) (p=0.001) with G3 having significantly lower scores compared to G1 and G2. To 

assess the clinical relevance of each subgroup, we conducted a series of one-way ANOVAs on 

the different neuropsychological tests. Performances of each PD subgroup in those tests are 

represented in the Supplementary Table S4. Significant inter-groups differences were found 

mainly in tests assessing the executive function with G3 having significantly lower scores than 

G1 and G2. Overall, G3 showed lower scores in all cognitive domains (Fig. 2A, C) with 

significantly lower global cognitive score MoCA which express a more severe cognitive state 

compared to G1 and G2, in contrast it showed higher UPDRS-II and UPDRS-III scores which 

reflects more severe motor deficits (Fig. 2B). We also investigated for the three subtypes, the 

longitudinal patterns of progression of the MoCA scores (Fig. 2D), the UPDRS-III scores (Fig. 

2F) and the mean Z-score of the tests assessing the executive function (as several tests assessing 

this domain were discriminable between subgroups at 5Y; Fig. 2E). Results showed that at BL, 

these scores overlapped with no significant differences between subgroups, however 

longitudinally, G3 had the most prominent decline in general cognitive ability and executive 

function in contrast to relatively unchanged patterns in G1 and G2. When considering the 

different scores collectively (Fig. 2), G3 can be categorized as a mild-to-severe (diffuse) PD 

group with progressive decline in cognitive function, whereas both G1 and G2 can be viewed 

as moderate (motor only) groups, with G1 exhibiting a more rapid motor progression. 

Finally, to further investigate the plausibility of the spectral power features in identifying 

clinically relevant PD subtypes with distinct neurophysiological profiles, we conducted the 

same previous analysis using source-space functional connectivity solely and on the 

combination of both functional connectivity and spectral power features. Detailed results are 

available in the supplementary materials.  
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Table 1- Demographic and clinical characteristics of the three identified subgroups of PD patients 

expressed as mean (standard deviation). M/F: Male/Female, y: years, LPD: Left-affected PD, RPD: 

Right-affected PD, both: bilateral PD, UPDRS-II: Unified Parkinson’s Disease Rating Scale motor 

experiences of daily living, UPDRS-III: Unified Parkinson’s Disease Rating Scale motor examinations, 

LEDD: Levodopa Equivalent Daily Dose, MoCA: Montreal Cognitive Assessment, MMSE: Mini Mental 
State Examinations 

  G1 (N=9) G2 (N=22) G3 (N=13) p-value  

Demographic Age (y) 65.6 (6.4) 72.6 (7.8) 74.4 (6.7) 0.021 G1<G3 

Sex (M/F) 6/3 15/7 9/4 0.992 - 

Education (y) 14.8 (2.9) 14.9 (3.4) 15.6 (2.8) 0.785 - 

Clinical Disease duration (y) 12.25 (5.8) 9.3 (5.2) 10.9 (3.5) 0.301 - 

Disease side 

(LPD/RPD/both) 

7/2/0 14/8/0 7/4/2 - - 

UPDRS-II 10.4 (7.1) 8.3 (6.6) 11.6 (6.5) 0.420 - 

UPDRS-III 21.5(12.7) 15.9 (12.8) 25.3 (13) 0.209 - 

Medication LEDD (mg/day) 839 (399) 613 (411) 524 (292) 0.160 - 

Global cognition MoCA 27.7 (1.6) 26.3 (1.9) 21 (8) 0.001 G1,G2>G3 

MMSE 28.9 (1.7) 28.6 (1.3) 27.2 (2.6) 0.051 - 
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Figure 2- PD subtypes and their clinical significance. (A) Heatmap illustration of the main global 

clinical scores (UPDRS-II, UPDRS-III and MoCA) and the average of the neuropsychological scores 

per domain (attention + working memory (att + WM), executive function (Exe), verbal memory (VM), 
semantic memory (SM), language (Lang) and visuo-spatial abilities (VS)) across the three identified 

PD subtypes. Darker colours represent more severe deficits for the variable. Spider plots of (B) the 

main global clinical scores and (C) the average of the neuropsychological z-scores per cognitive 

domain. Longitudinal progression in time of each of the (D) MoCA, (E) average Z-score of the tests 
assessing the executive function and (F) UPDRS-III score. Error bars represent the standard error and 

significant differences between subgroups are marked as * for p<0.05. 

3.3. EEG distinguish mild-to-severe PD from moderate 

PD longitudinally 

Here, we investigate further the effectiveness of the EEG-based features that characterize these 

subtypes at 5Y in discriminating between the mild-to-severe PD group and the moderate PD 

groups from early disease stages at BL, where the clinical scores were not discriminative yet. 

To do so, we aggregated both G1 and G2 into one moderate only-motor group (G1+G2) and 

we compared their corresponding discriminative measures with those of the mild-to-severe 

group G3 longitudinally. Results showed that the DMN power in alpha1 and the FTN power 

in alpha2 were the most prominent in significantly distinguishing both PD groups 
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longitudinally. In particular, the power of the FTN in alpha2 was the most relevant in terms of 

statistical differences between PD subgroups throughout the disease trajectory. The statistical 

differences were significant from BL even after eliminating the outliers (Cohen’s d = 1.9, 

p<0.001) toward the follow-up examinations at 3Y (Cohen’s d = 1.5, p<0.01) and at 5Y 

(Cohen’s d = 2.2, p<0.001) (Fig. 3A). The power of the FTN in alpha2 could thus be considered 

predictive of the disease's evolution towards either only-motor or diffuse disease.  

We also computed Spearman correlation (with covariate control) between EEG measures and 

the MoCA scores. Results revealed a significant positive correlation between the DMN-alpha1 

power and the Moca Score at 3Y (R=0.39, p=0.027) and not at 5Y. As for the FTN-alpha2 

power measures, they were positively correlated with the MoCA scores at 3Y (R=0.34, 

p=0.054) and at 5Y (R=0.31, p=0.051) but without reaching the significance level (Fig. 3B).  

 

Figure 3- Longitudinal dissociation between the severe and the moderate groups.  (A) Longitudinal 

progression of the default mode network (DMN) power in alpha1 and the fronto-temporal network 

(FTN) power in alpha2 for the moderate group G1+G2 against the severe group G3. Significant 

differences between both groups are marked as ** for p<0.01 and *** for p<0.001. (B) Correlation 
between DMN-alpha1/FTN-alpha2 power measures and the global cognitive score MoCA at 3Y and 

5Y. 
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4. Discussion  

As the wide spectrum of motor and non-motor symptoms in PD advocates for an undoubtable 

heterogeneity between patients, there is a need for disease subtyping frameworks to deal with 

this heterogeneity and empower disease-modification strategies6,7,9. Until recently, defining PD 

subtypes was based mainly on clinical features, lacking a characterisation of the underlying 

pathobiology of the identified phenotypes2,13. In the present study, we used resting state HD-

EEG to reveal subtypes of PD patients using an unsupervised data-driven clustering approach. 

The analysis led to identifying three different clinically relevant PD subtypes with distinct 

electrophysiological profiles. 

4.1. Resting state EEG-based PD clusters 

Several studies have used quantitative EEG to characterize PD electrophysiological 

abnormalities43–45. Higher spectral power in the low frequency bands (delta and theta) and 

lower power in the high frequency bands (alpha and beta) were associated with cognitive 

deterioration of PD patients in several electrophysiological cross-sectional46,47 and longitudinal 

studies48–50. Interestingly, those spectral patterns appeared to characterize our identified 

subgroup G3 compared to G1 and G2. Moreover, the electrophysiological profile attributed to 

this cluster is characterized by prominent low powers within the default mode network and the 

fronto-temporal networks. Intrinsic metabolic51, oscillatory brain activity52 and functional 

connectivity17,50,53–55 abnormalities within those networks were strongly associated with PD-

related cognitive decline and dementias. This may suggest that patients of G3 are more 

cognitively impaired than those of G1 and G2 which was confirmed by the high proportion of 

patients classified clinically with Mild Cognitive Impairment (MCI) within G3 (9/13 = 69%) 

and by their clinical assessments with stronger deficits in both their motor and non-motor 

scores.  

Concerning the electrophysiological differences between G1 and G2, both groups had 

relatively similar EEG characteristics in all frequency bands except for beta where G1 showed 

significantly higher power than G2, mainly within the somatomotor network. Accordingly, the 

clinical profile of those clusters overlapped in almost all assessments. However, only the motor 

functionalities of G1 have decayed more rapidly over time than G2, suggesting a motor 

predominant profile for this cluster. These observations correlated with previous EEG findings 
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that associated the increase in beta power with low non-dopaminergic disease severity56 and 

impairments in motor symptoms57. 

Furthermore, disruptions in functional connectivity have been broadly associated with clinical 

phenotyping of PD using EEG54,58, MEG55,59 or fMRI31 studies. Here, investigating the 

prospect of HD-EEG functional connectivity features in dissociating multiple phenotypes of 

PD was also promising and has led to identify three subgroups different from those issued using 

the spectral power features. Despite presenting inter-group statistical differences, some 

eccentric values of connectivity for few patients have weakened the relevance of the 

corresponding electrophysiological profiles of the clusters (Supplementary Fig. S3). This was 

confirmed later by the lack of pronounced clinical differences between subtypes and the major 

overlap endorsed by the low-dimensional projections of the input connectivity features. 

Additionally, integrating both spectral power and functional connectivity features has also 

generated three clusters but with more similar affiliations to those yielded when using only the 

spectral power features. One possible interpretation of these findings could be the 

preponderance of information derived from power features over those of connectivity. It is 

worth mentioning that handling the same analysis by using spectral power features computed 

at the scalp level rather than at source level yielded to the identification of two subtypes rather 

than three, the first combining G1 and G2 and the second involving the same patients of G3. 

Although this approach has separated the moderate group from the mild-to-severe group 

clinically, features computed at source level were more effective in splitting the moderate group 

into two subtypes with different clinical and electrophysiological profiles.  

Finally, several longitudinal studies on PD subtyping, mainly on the PPMI cohort, have used 

clustering, machine learning and deep learning techniques. Inline with our study, they also 

identified three PD subgroups with different disease severity and progression rates22–25. In 

particular, Fereshtehnejad et al.22 and Markello et al.23 have demonstrated that integrating 

functional data into clustering approaches is relevant in identifying clinically meaningful 

clusters attributed with several patterns of functional disruptions, in terms of brain atrophy and 

dopamine binding.   

4.2. Clinical prominence of EEG clusters 

Our longitudinal assessment has enabled an accurate clinical/electrophysiological tracking of 

the disease progression in each subphenotype. The most clinically distinct identified subtype 

was the mild-to-severe group G3 that showed longitudinal deteriorations in both motor and 
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non-motor scores. Patients of this cluster were older with relatively shorter disease durations 

than those of the moderate groups, endorsing thus the association of older age at onset with the 

severity of motor and non-motor features60. In addition, a rapid motor progression has 

differentiated the moderate subtype G1 from the moderate subtype G2 despite the ‘ON’ 

dopaminergic medication state of the patients and the heterogeneity of their LEDD intakes. 

Indeed, those findings would suggest that the unique neurophysiological patterns of the EEG-

based subphenotypes presumably reflect their distinction in terms of non-dopaminergic disease 

severity, in accordance with a previous quantitative EEG study56.  

Furthermore, the longitudinal assessment has also shown an extensive overlap between the 

cognitive scores of the mild-to-severe subgroup and the moderate subgroups at baseline. 

However, their distinct electrophysiological profiles, mainly in the alpha band, remained 

separable not only at the 5Y examinations but at earlier stages of the disease. The presented 

work has therefore emphasised a potential predictive ability for the resting state EEG in 

distinguishing between patients according to their future clinical deterioration trajectories. This 

is in line with several longitudinal subtyping studies that showed that identifying biological-

based subphenotypes of PD22–25 or other neurodegenerative disorders28,29 provides a link 

toward causative pathological mechanisms with a confirmed clinical relevance contrary to 

exclusively clinical-based subtyping studies. In this context, insights provided by the EEG are 

promising for what is known as “stratified medicine” since prior biologically and clinically 

relevant subtyping would ultimately yield to improve disease modifying/ interventions 

strategies in well-defined targeted patients6,7,9.  

4.3. Limitations 

Despite the 5-year longitudinal assessments provided for this work, the number of patients who 

participated in the 5Y examinations and included in the clustering analysis was relatively low 

due to the complexity in upholding long-term follow-up studies. It's important to acknowledge 

the limitations of the study and the exploratory nature of the results, particularly when dealing 

with small sample sizes and a large number of features and statistical tests. In our study, this 

issue specifically impacted the statistical comparisons for G2, which consisted of only four 

patients at the 3Y assessment. On another note, although the ‘ON’ dopaminergic medication 

state of the patients appraised the non-dopaminergic severity of the disease in the identified 

subphenotypes, nevertheless it may also conceal the magnitude of the motor signs in patients, 

hindering thus the clinical interpretation of the inter-group motor dissimilarities. Lastly, a 
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more-in-depth analysis that explores the consistency of the presented results to be replicated 

on independent longitudinal cohorts is much needed for further validation. Such endeavours 

will verify the capacity of spectral power and connectivity features in predicting patient’s 

stratification without prior knowledge of their disease severity. 

4.4. Conclusion 

To sum up, we showed for the first time that EEG spectral and connectivity features can be 

used to cluster PD patients into subphenotypes with distinct clinical/electrophysiological 

profiles and disease trajectories. This electrophysiological profiling showed potential 

stratification capabilities at early disease stages before the clear manifestation of the clinical 

symptoms. Further investigations would enhance biomarkers discovery efforts addressing the 

heterogeneity of PD and improve the development of neuroprotective therapies. 
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Methods 

Data characteristics and clinical neurological/neuropsychological 

assessments 

The demographic and clinical characteristics of the Patients are presented in Table S1. All 

patients underwent basic neurological examinations. Unified Parkinson’s Disease Rating Scale 

(motor experiences of daily living: UPDRS-II and motor examinations: UPDRS-III) were 

obtained in the ‘ON’ medication state by a trained physician. A comprehensive battery of 

neuropsychological tests was carried out to test for the following cognitive domains: attention 

and working memory, executive functions, verbal memory, semantic memory, language and 

visuo-spatial functions. The individual tests grouped into domains are shown in Table S2. 

Data segmentation and preprocessing 

Among the 12 minutes of the continuous eyes-closed RS-EEG recordings, only the first 10 

minutes of the signals were considered for the analysis. They were segmented into epochs of 

40 seconds each and the first epoch was excluded from the study. Epochs were then 

preprocessed automatically using the open-source toolbox Automagic1. The preprocessing 

steps are similar to those described in our previous study2 and only six epochs with the best 

quality metrics were considered for the rest of the analysis.  

Power spectral and functional connectivity analysis 

The Welch method was used to estimate the power spectrum at the cortical level from the 210 

source reconstructed signals. For each time-series epoch, a periodogram is computed using the 

Hamming window and averaged across 8 segments with 50% overlap to compute the spectral 

estimate. Then, the average power was calculated in five different EEG frequency bands: delta 

(1-4 Hz), theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-13 Hz) and beta (13-30 Hz). Spectral 

activity within the gamma band (30-45 Hz) was excluded from this study due to abnormal noise 

during the recordings in most of the patients. For each patient, the oscillatory power at each of 

the five frequency bands was averaged across the six time-series epochs. To assess the relative 

contribution of each particular frequency to the EEG signal, the relative band power was 
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calculated by dividing the absolute power of the band by the total power. Thus, we obtained 

for each patient a total of 210 x 5 power spectral features.  

Regarding functional connectivity estimations, the “Amplitude Envelope Correlation (AEC)” 

method34 with leakage correction was used. It consists of estimating and orthogonalizing the 

pairwise correlation (Pearson’s correlation) between the power envelope of two oscillatory 

time series obtained by computing the Hilbert transform. Connectivity measures were 

computed using the brainstorm implementation of the method3 on 8 windows of 5 seconds each 

without overlap. They were ultimately averaged across the six time-series epochs and time in 

each frequency band. This resulted for each patient, a 210 x 210 symmetrical connectivity 

matrix from which 210 x 209/2 = 21945 features were unique in each frequency band. Thus, 

we obtained for each patient a total of 21945*5 connectivity features. 

Similarity Network Fusion and clustering analysis 

Power spectral and/or functional connectivity features (from different frequency bands) were 

first normalised and distance matrices were constructed using the squared Euclidean distance. 

Then, a scaled exponential kernel is used to convert distance matrices into unique similarity 

matrices:  

!(#, %) =
!

√#$%!
	)
&	
"!($%	,$()

!*! 	  (1) 

where *(+( − +)) is the Euclidean distance between patients +( and +) and ! is defined as:  

-	 = 	.	
*!(,%	,.%)0	*

!(,(	,.()	0	*
!(,%	,,()	

1
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where "(+2	, /2)	represents the average value of distances between +( and each of its neighbors 

/!..4. Both 0 and # are hyperparameters that should be pre-selected with 0	1	(1,2, . . , %), %1	5, 

controlling for the number of k-nearest neighbours and #, a scaling factor in the range of [0.3, 

1]1	60. Afterwards, the separate similarity matrices issued from different data sources are 

fused via a nonlinear method based on message-passing theory. This step consists in iteratively 

updating every similarity network with the complementary information from the other 

networks, owing to maximising the similarity between them until convergence or after a pre-

specified number of iterations. Finally, the obtained fused similarity network is subjected to 

spectral clustering4 which requires an a priori choice of the number of clusters. Those steps 

were performed using the MATLAB implementation of the SNF package 

(http://compbio.cs.toronto.edu/SNF/SNF/Software.html).  
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To avoid biasing our results by the choice of the two hyperparameters 0 and # and the number 

of clusters, we followed an approach proposed by Markello et al.5 based on an exhaustive 

parameter search combined with a consensus analysis. To do so, SNF was performed with 

different possible combination of 0 (0		= 1,2, 3, .. ,N-1) where N is the number of patients, and 

# (# = 0.3,0.35,0.4,...,1) resulting in a set of 645 fused networks. Subsequently, these networks 

were subjected to a spectral clustering for two, three and four cluster’s solutions selected for 

being the most reasonable choices reported in previous PD subtyping studies6,7. Among the 

clustering solutions, only those generated from a stable combination of hyperparameters were 

retained for the further analysis. This includes the combinations where slight changes in either 

k or # do not impact the final clustering solutions remarkably. For this purpose, and for each 

number of clusters separately, a pairwise z-Rand similarity index8 was calculated and averaged 

between the clustering solutions of each combination of hyperparameters (0,#) and their  four 

closest combinations (0-1,#), (0+1,#), (0,#-0.05) and  (0,#+0.05). Clustering solutions 

corresponding to the highest 5% of z-Rand similarity indexes (32 x 3= 96 assignments) were 

retained and injected in the consensus analysis inspired from community detection studies9,10. 

A NxN co-assignment matrix was consequently generated from these solutions with each 

element representing the normalised probability of two patients belonging to the same cluster 

across assignments. This matrix was ultimately thresholded by comparing it with another 

generated from a permuted null model10. Finally, the thresholded matrix is clustered by 

applying a modularity maximization procedure11 in order to obtain a final clustering partition 

representing PD subtypes. 

We also wanted to assess the robustness of the identified clusters under small perturbations in 

the data. For this purpose, we repeated the clustering pipeline 100 times after randomly 

removing 10% of the subjects (i.e., 4 patients) at each iteration. A robustness coefficient was 

estimated at each iteration by comparing the obtained assignments with those of the same 

patients issued from the main analysis with correction to chance using the Rand index12. All 

codes necessary to reproduce the results are available at: 

https://github.com/yassinesahar/ClusteringPD. 

Dimensionality reduction using diffusion maps embedding 

Different from linear dimensionality reduction methods such as Principal Component Analysis 

(PCA), diffusion map embedding is relatively robust to noise perturbations and relies on non-
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linear approximations using the Fokker-Planck diffusion equation to provide a low-

dimensional representation of graph structures13,14. The diffusion process involves specifying 

a time-parameter t, which serves also as a scaling parameter for the geometry of the input data. 

Here, the fused similarity networks corresponding to the stable combinations of 

hyperparameters for the three different clustering solutions (32 x 3 = 96 similarity networks) 

were the inputs of our analysis. We set the diffusion time to zero (t=0) in order to obtain the 

most global representation of the stable fused networks. The obtained embeddings were aligned 

via rotations and reflections using a generalised orthogonal Procrustes analysis and then 

averaged to obtain a final set of low-dimensional representation (composed of 5 final 

components/embeddings) used in further analysis.  MATLAB codes used for the diffusion 

procedure were obtained from the Brainspace toolbox 

(https://brainspace.readthedocs.io/en/latest/index.html). 

Neurophysiological profiles of the clusters and correlation 

analysis 

To retrieve the most discriminable networks between subgroups, we performed a series of 

separate one-way ANOVA across groups for each network in each frequency band. Age, sex, 

education and the levodopa equivalent daily dose (LEDD) were considered as confounding 

factors and the reported results were corrected for multiple comparisons using Bonferroni 

(number of comparisons= 4 networks x 5 bands = 20, p<0.05/20, p<0.0025). Within each 

frequency band, the network with the lowest p-value was considered as the most discriminable 

between subtypes and characterizing their dissimilarities in the corresponding frequency band. 

The average power/connectivity within each of these networks were later used as a single 

electrophysiological quantifiable measure computed at the patient level in each frequency 

band. Statistical differences between groups were assessed using the Wilcoxon test (two-tailed) 

and results were corrected for multiple comparisons using Bonferroni (number of comparisons 

= 3 groups x 5 bands=15, p<0.05/15, p<0.0033). Spearman correlation, with covariate control, 

was computed to evaluate the relationships between the EEG-based metrics, the clinical scores 

and the components of the embeddings.   
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Results 

Longitudinal progression of the EEG clusters 

Results on the longitudinal progression of the quantifiable power measures of the three groups 

showed that the SMN power in delta was not discriminable between PD subtypes defined by 

the HD-EEG at BL nor at 3Y (Fig. S2-A). As for the DMN power in alpha1 (Fig. S2-B), 

differences between G2 and G3 started to be significant at the follow-up examinations 3Y 

(p<0.01) and 5Y (p<0.001). Furthermore, the FTN power in alpha2 significantly distinguish 

between G3 and both G1 and G2 not only at 5Y, but earlier at 3Y (G3 vs G2, p<0.01) and at 

BL (G3 vs G1, p<0.05; G3 vs G2, p<0.01) (Fig. S2-C). In addition, the SMN power in beta of 

G1 showed statistically higher values compared to G2 (p<0.01) and G3 (p<0.01) at BL and at 

5Y (Fig. S2-D). Finally, we were not able to test statistical differences between G1 and other 

groups at 3Y due to low sample size (N=4) after eliminating the missing data. All reported p-

values were corrected using Bonferroni for multiple comparisons. 

Patient clusters distinct over continuous severity dimensions 

To validate the categorical representation issued from the clustering approach, we used 

diffusion maps embeddings to generate a continuous low-dimensional space of components 

that highlight the most prevalent features of the data. Results showed that the three PD subtypes 

were dissociable along the first two dimensions of the embedding with limited overlap between 

the moderate groups G1 and G2 (Fig. S3-A). Further, we wanted to examine the relationships 

between the primary components encoding the most prominent features and general clinical 

scores reflecting both cognitive and motor deficiencies. Indeed, the first dimension of the 

embedded space positively correlated with the general cognitive score MoCA (R=0.27, 

p=0.09) whereas the second dimension negatively correlated with the motor score UPDRS-III 

(R=-0.44, p<0.01) (Fig. S3-B). Moreover, exploring the extent to which the quantifiable power 

measures issued from the clustering approach are likely to correlate with the first dimension of 

the embedding space revealed a robust significant correlation for the SMN-delta power (R=-

0.81, p<0.001), the DMN-alpha1 power (R=0.66, p<0.001), the FTN-alpha2 power (R=0.84, 

p<0.001) and the SMN-beta power (R=0.72, p<0.001) (Fig. 4C). 
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Clustering using functional connectivity features 

Applying the clustering pipeline on the orthogonalized AEC features from the five different 

frequency bands, we obtained three different subtypes g1 (N=10), g2 (N=13) and g3 (N=21). 

When assessing the clinical relevance of the subgroups, the largest group g3 was clinically 

different from g1 and g2 with lower scores in all cognitive domains and a longitudinal 

decreasing trend in MoCA between BL and 3Y. g1 and g2 were not dissociable along any of 

the clinical features. However, the clustering was not robust as for the dimensionality reduction 

analysis, a major overlap was perceived between the three clusters along the first two 

dimensions of the embeddings (Supplementary Fig. S4).  

Moreover, combining both functional connectivity and spectral power features yielded to 

identify also three groups of n=15, 16 and 13 PD patients. Interestingly, comparing these 

groups (g1, g2, g3) with the ones issued when using only spectral power features (G1, G2, G3), 

we found that the latter group comprised the same 13 PD patients as the mild-to-severe group 

G3 defined previously, while 15 out of the 16 PD patients of the second group were also part 

of the moderate group G2 and 8 out of 15 were also attributed previously to the moderate group 

G1. Nevertheless, no significant differences were found between the first two groups in terms 

of clinical tests. Concerning the electrophysiological features, differences between groups were 

found only for power spectral features and not for connectivity features and the three groups 

were separable along the first two dimensions of the embeddings (Fig. S5).  
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Supplementary figures 

Figure S1- Longitudinal evolution of the relative power spectrum between BL and 5Y for the 

three PD subtypes. 

 

 

Figure S2- Longitudinal progression in time of the quantifiable power measures for the three PD 

subgroups. (A) Somatomotor network (SMN) power in delta power, (B) Default mode network (DMN) 

power in alpha1, (C) Fronto-temporal network (FTN) power in alpha2 and (D) SMN power in beta. 

Significant differences between subgroups are marked as * for p<0.05, ** for p<0.01 and *** for 

p<0.001. P-values were corrected for multiple comparisons using Bonferroni. 
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Figure S3- Low-dimensional representation of the three PD subtypes. (A) Representation of the 
patients from each subtype along the first two dimensions of the embedding space. (B) Correlation 

between MoCA score/UPDRS-III score and first/second dimensions of the embedding space. (C) 

Correlation between the first component of the embedding space and the SMN-delta, DMN-alpha1, 
FTN-alpha2 and SMN-beta powers. 

 

 

Figure S4- PD clustering using functional connectivity features. (A) Distribution of the average 

functional connectivity of the relevant brain networks (fronto-temporal network (FTN in alpha2 and the 
default mode network (DMN) in beta) between the three PD subtypes. (B) Spider plot of the average of 

the neuropsychological z-scores per cognitive domain (attention + working memory (att + WM), 

executive function (Exe), verbal memory (VM), semantic memory (SM), language (Lang) and visuo-

spatial abilities (VS)) for the three subtypes. (C) Longitudinal progression in time of the global 
cognitive score MoCA. (D) Representation of the patients from each subtype along the first two 
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dimensions of the embedding space. Error bars represent the standard error and significant differences 
between subgroups are marked as * for p<0.05.  

 

 

 

Figure S5- PD clustering using spectral power and functional connectivity features combined. (A) 
Common PD patients between subtypes issued from using only power spectral density (PSD) features 

and those issues of combining both PSD and connectivity features. (B) Representation of the patients 

from each subtype along the first two dimensions of the embedding space, PD subtypes are issued from 
applying clustering on both PSD and connectivity features.
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Supplementary tables 

Table S1- Demographic and clinical characteristics of the study cohort of PD patients at Baseline 

(BL) and at both follow-up examinations after 3-years (3Y) and 5-years (5Y) expressed as Mean 

(standard deviation). M/F: Male/Female, y: years, LPD: Left-affected PD, RPD: Right-affected PD, 
both: bilateral PD, UPDRS-III: Unified Parkinson’s Disease Rating Scale motor experiences of daily 

living, UPDRS-III: Unified Parkinson’s Disease Rating Scale motor examinations, LEDD: Levodopa 

Equivalent Daily Dose, MoCA: Montreal Cognitive Assessment, MMSE: Mini Mental State 
Examinations 

  BL (N=42) 3Y (N=35) 5Y (N=44) 

Study design Time between 
visits (y) 

- 3.1 (0.3) 5.2 (0.1) 

Demographic Age (y) 66.7 (8) 70.5 (8.2) 71.7 (7.8) 

Sex (M/F) 28/14 26/9 30/14 

Education (y) 15 (3) 15.2 (3.2) 15.1 (3.1) 

Clinical Disease 
duration (y) 

4.5 (3.8) 7.1 (3.7) 10.4 (4.9) 

Disease side 
(LPD/RPD/both) 

27/13/2 23/10/2 28/14/2 

UPDRS-II 5.9 (4.2) 10.5 (5.9) 9.6 (6.6) 

UPDRS-III 14 (10.5) 18.3 (9.9) 20.1 (13.1) 

Medication LEDD (mg/day) 646 (505) 692 (442) 633 (386) 

Global 
cognition 

MoCA 26.4 (2.3) 25.1 (3.8) 25.1 (5.1) 

MMSE 28.7 (1.4) 28.3 (2.6) 28.3 (1.9) 
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Table S2- Individual neuropsychological tests grouped into six different domains 

Domain Neuropsychological Tests 

Attention and 

working memory 

Test of Attentional Performance (TAP)-Alertness, reaction time without 

alerting sound 

Test of Attentional Performance (TAP)-Alertness, reaction time with alerting 

sound 

Corsi block correct forward 

 Corsi block correct backward 

 Digit span correct forward 

 Digit span correct backward 

Executive 

Function 

Constructive Praxis test 

Trail Making test: time for part B/ time for part A 

Stroop test: interference index 

 Wisconsin Card Sorting test: categories and errors 

 Five Point test: correct, strategic and repeated answers 

 Mosaik test 

 Rey-Osterrieth Complex figure: copy, immediate recall, delayed recall 

 Fluency test: Semantic and phonemic 

Verbal and 

episodic memory 

Basel Verbal Learning Test (BVLT): correct answers trial 1 to 5 

 BVLT - SDCR: Short Delay Cued Recall 

 BVLT - SDFR: Short Delay Free Recall 

 BVLT - LDCR: Long Delay Cued Recall 

 BVLT - LDFR: Long Delay Free Recall 

Semantic Memory Semantic fluency test: correct answers 

Language Boston Naming test: correct answers 

 Fluency test: Semantic and phonemic 

Visuo-Spatial 

abilities 

Rey-Osterrieth Complex figure: copy, immediate recall, delayed recall 

Benton judgement of line Orientation test 
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Table S3- Affiliation of brain regions to the four brain networks activated at rest and 

mostly affected in Parkinson’s disease 

Brain networks Brain regions 

Somatomotor network (SMN) Precentral gyrus (L/R) 

Paracentral lobule (L/R) 

 Postcentral gyrus (L/R) 

Default mode network (DMN) Superior frontal gyrus (L/R) 

Cingulate gyrus (L/R) 

Precuneus (L/R) 

 Inferior parietal lobule (L/R) 

 Superior temporal gyrus, temporal pole (L/R) 

Fronto-temporal network (FTN) Orbito-frontal gyrus (L/R) 

 Middle frontal gyrus (L/R) 

 Inferior frontal gyrus (L/R) 

 Superior temporal gyrus (L/R) 

 Middle temporal gyrus (L/R) 

 Posterior superior temporal sulcus (L/R) 

Fronto-parietal network (FPN) Middle frontal gyrus (L/R) 

Inferior frontal gyrus (L/R) 

Inferior parietal lobule (L/R) 

Insular lobule (L/R) 
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Table S4- Performances at the main neuropsychological tests in each domain for three 
identified subgroups of PD patients expressed as mean (standard deviation).  

  G1 (N=9) G2 (N=22) G3 (N=13) p-value  

Attention and 
working 
memory 
(Att_WM) 

Test of Attentional 
Performance - 
reaction time (ms) 

621 (172) 618 (110) 645 (68) 0.829 - 

Corsi Block 
forward 

7.4 (1.7) 8.1 (1.5) 6.3 (2.1) 0.023 G2>G3 

Corsi Block 
backward 

7.4 (1.6) 6.9 (1.2) 7.1 (2.3) 0.704 - 

Digit Span forward 7 (1.4) 7.8 (1.8) 6.9 (1.4) 0.289 - 

Digit Span 
backward 

5.9 (1.9) 5.7 (1.9) 5.4 (1) 0.783 - 

Z-score Att_WM -0.39 (0.73) -0.32 (0.47) -0.67 (0.45) 0.211 - 

Executive 
Function 
(Exe_Fun) 

Constructive 
Praxis test 

7.9 (2.9) 9 (2.1) 6.7 (2.6) 0.051 - 

Trail Making Test 
B/A 

3.1 (2.4) 2.5 (0.9) 3.5 (1.6) 0.196 - 

Stroop Test 
interference  

2 (0.6) 1.8 (0.4) 2.4 (0.9) 0.033 G2>G3 

Wisconsin card 
sorting test 

5.6 (1) 5.8 (0.5) 5.3 (1.2) 0.331 - 

Five Point Test- 
correct 

27.3 (5.9) 26.4 (8.2) 20 (4.7) 0.043 G1, G2>G3 

Phonemic fluency-
correct 

15.4 (5.5) 13.1 (4.2) 13.8 (4.4) 0.431 - 

Mosaik test 25.2 (9.7) 25.9 (5.9) 18.6 (9.1) 0.048 G2>G3 

Z-score Exe_Fun -0.14 (0.67) 0.13 (0.57) -0.77 (1.3) 0.017 G2>G3 

Verbal 
Memory (VM) 

BVLT-trial 1 to 5 53.6 (14) 42.1 (10.3) 43.9 (19) 0.114 - 

BVLT-SDCR 12.7 (3.8) 10.5 (2.5) 9.3 (5.3) 0.133 - 

BVLT-SDFR 12.1 (3.6) 8.3 (3.8) 8.7 (7.4) 0.078 - 

BVLT-LDCR 13.2 (3.5) 10 (3) 9.9 (4.6) 0.062 - 

BVLT-LDFR 12.6 (4.4) 9.5 (3) 9.4 (5.1) 0.128 - 

Z-score VM 0.04 (1.2) -0.97 (1.1) -1.1 (1.7) 0.108 - 

Semantic 
Memory (SM) 

Semantic Fluency 22.9 (4.7) 19.5 (4.6) 17 (7.2) 0.061 - 

Z-score SM -0.04 (1) -0.39 (1) -1 (1.5) 0.163 - 

Language 
(Lang) 

Boston Naming 
Test 

14.7 (0.7) 14.4 (0.8) 12.7 (4.2) 0.081 - 

Z-score Lang 0.3 (0.8) 0 (0.77) -0.55 (1.5) 0.169 - 

Visuo-Spatial 
abilities (VS) 

BJLO Test 27.1 (2.5) 27.9 (1.6) 28 (2.1) 0.533 - 

Rey Osterrieth Test 27.9 (6.2) 31 (4.7) 28.6 (4.7) 0.212 - 

Z-score VS -0.22 (1.3) 0.34 (0.84) -0.17 (1.1) 0.254 - 
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Abstract 

Anxiety is a common non-motor symptom in Parkinson’s disease (PD) occurring in up to 31% 

of the patients and affecting their quality of life. Despite the high prevalence, anxiety symptoms 

in PD are often underdiagnosed and, therefore, undertreated. To date, functional and structural 

neuroimaging studies have contributed to our understanding of the motor and cognitive 

symptomatology of PD. Yet, the underlying pathophysiology of anxiety symptoms in PD 

remains largely unknown and studies on their neural correlates are missing. Here, we used 

resting state electroencephalography (RS-EEG) of 68 non-demented PD patients with or 

without clinically-defined anxiety and 25 healthy controls (HC) to assess spectral and 

functional connectivity fingerprints characterizing the PD-related anxiety. When comparing 

the brain activity of the PD anxious group (PD-A, N=18) to both PD non-anxious (PD-NA, 

N=50) and HC groups (N=25) at baseline, our results showed increased fronto-parietal delta 

power and decreased frontal beta power depicting the PD-A group. Results also revealed hyper-

connectivity networks predominating in delta, theta and gamma bands against prominent hypo-

connectivity networks in alpha and beta bands as network signatures of anxiety in PD where 

the frontal, temporal, limbic and insular lobes exhibited the majority of significant connections. 

Moreover, the revealed EEG-based electrophysiological signatures were strongly associated 

with the clinical scores of anxiety over the course of the disease. We believe that the 

identification of the electrophysiological correlates of anxiety in PD using EEG is conducive 

toward more accurate prognosis and diagnosis and can ultimately support the development of 

new therapeutics strategies.  
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Introduction 

Anxiety is a highly prevalent psychiatric comorbidity in Parkinson’s Disease (PD), affecting 

up to 31% of the patients1, which is three times more prevalent than the general elderly 

population2. It can emerge at any stage of the disease, and be present even during the prodromal 

stage3,4. The clinical presentation of this disorder can include various subtypes 1,5,6 such as 

General Anxiety Disorder, non-episodic and episodic anxiety, panic attacks, social phobia, 

which can worsen motor symptoms 7–9 and cognitive functioning 10–13 and decrease the quality 

of life of patients14,15. Moreover, anxiety in PD comorbid often with other psychiatric 

symptoms such as depression and apathy 16,17, and the extensive overlap in their relevant 

features has hindered their clinical dissociation18. As a result, anxiety in PD is often 

underdiagnosed1,19 and undertreated20 yet limited scientific attention has been given to 

understand its underlying pathophysiology.  

Non-invasive neuroimaging techniques are increasingly used to investigate the neural 

mechanisms of anxiety in PD17,21. Positron emission tomography (PET) and anatomical 

magnetic resonance imaging (MRI) studies have associated the anxiety in PD with reduced 

metabolism and cortical thickness in several subcortical regions including the amygdala, as 

well as in the bilateral anterior cingulate and prefrontal cortex21–25. Using fMRI resting state 

studies, functional disruptions in emotional-related cortical and subcortical regions were 

reported to correlate with anxiety symptoms21,26–28. 

Electroencephalography (EEG) has been growingly employed to uncover the neural correlates 

of complex neuropathologies, such as neuropsychiatric disorders29,30. Providing direct 

measures of the neural activity, EEG has proven to be a valuable, non-invasive and  cost-

effective tool for biomarkers development. To date, only one study has compared anxious and 

non-anxious PD patients using EEG, revealing frequency-related spectral and functional 

disruptions, mainly in the frontal cortex, that characterize the anxiety in PD31. Yet, the use of 

EEG in case-control longitudinal studies to assess the neural correlates of anxiety in PD is still 

missing. 

Here, we used High-Density (HD)-EEG recordings to excerpt the electrophysiological 

signature of anxiety in PD by comparing the spectral patterns and functional networks of 

anxious PD patients (PD-A) to non-anxious PD patients (PD-NA) and healthy controls (HC). 

We quantified the spectral signature in terms of network signature in terms of lobes-interactions 
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and highest degree regions. We also explored the relationship between the EEG signatures at 

baseline and the clinical scores assessing anxiety at three and five years. 

Materials and Methods 

Participants  

The study population, described in our previous studies32,33, was composed of PD patients and 

healthy controls (HC) enrolled from the Movement Disorders Clinic of University Hospital of 

Basel (city of Basel, Switzerland) as a part of a longitudinal study approved by the local ethics 

committees (Ethikkommission beider Basel, Basel; Switzerland; EK 74/09). The diagnosis of 

PD was based on the United Kingdom Brain Bank criteria for idiopathic Parkinson's disease34. 

To be included in the study, patients had to meet specific criteria including a Mini-Mental State 

Examination (MMSE) score of 24 or above, no previous history of vascular or demyelinating 

brain disease, and sufficient proficiency in the German language. All participants provided 

written informed consent and were fully informed of the nature of the study. Included patients 

underwent neurological, neuropsychological, neuropsychiatric and EEG examinations at 

baseline (BL) and follow-up after a mean interval of 3 years (3Y) and 5 years (5Y).  

As we focused on anxiety in PD, only participants that presented anxiety assessments were 

included in this study. Accordingly, 68 non-demented PD patients (22 females, age : 66.4 ± 

8.3) and 25 HC (10 females, age: 66.4 ± 4) were selected at BL. As for the 3Y follow-up, the 

sample size was set to 42 PD patients (14 females, age: 70.5 ± 7.9)  and 17 HC (9 females, 

age: 68.9 ± 6). Finally at 5Y, only 29 PD patients (12 females, age: 71 ± 7) and one healthy 

control presented anxiety assessments and were included only for the correlation analysis. A 

flowchart of the study (Figure S1) as well as the main demographic, clinical and 

neuropsychological characteristics of the main cohort (Tables S1) and analysis cohort (Table 

S2) are presented in the supplementary materials. 

Neurological, neuropsychological and neuropsychiatric evaluations  

Basic neurological and comprehensive neuropsychological examinations were carried out in 

all the participants. Patients were evaluated on their regular dopaminergic medication (''ON'' 

state) and the use of antidepressant and anxiolytics treatments was reported. The global 

cognitive score was assessed using the Montreal cognitive assessment score35 (MoCA), and 

patients were classified as with or without mild cognitive impairment (MCI) according to the 

Movement Society Task Force Level II criterias described in Litvan et al.36. Depression was 
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measured using the Beck Depressive Inventory, second edition37 (BDI-II, German version) and 

apathy was assessed based on the Apathy Evaluation Scale38 (AES, German version).  

Anxiety symptoms were evaluated using the German version of the Beck Anxiety Inventory39 

(BAI),  a 21 items self-rating scale. Each item is evaluated on a four-point Likert scale ranging 

from 0 to 3 (e.g., not at all; a little; moderate; or many). The total score ranges from 0 to 63 

with higher scores representing increased symptoms severity. Leentjens et al.40 have validated 

the use of BAI in PD. As a score higher than 13 has been identified to show clinically significant 

anxiety, this cut-off was considered to divide the PD patients into two groups: PD patients with 

clinically relevant anxiety PD-A (N=18) and PD patients without anxiety PD-NA (N=50).  

EEG acquisition and preprocessing 

Resting state EEG data were recorded for all participants using a HD-EEG system with 256 

channels (Netstation 300, EGI, Inc., Eugene, OR). Participants were asked to relax, close their 

eyes and stay awake while seated in a comfortable chair for 12 minutes. The sampling rate was 

set to 1000 Hz. The raw EEG data were segmented into epochs of 40 seconds each and the first 

epoch of each recording was discarded from the analysis. As described in our previous study32, 

epochs were preprocessed automatically using the open-source toolbox Automagic41. Briefly, 

signals are subjected to band-pass filtering between 1 and 45 Hz, followed by the 

electrooculography (EOG) regression on 17 frontal electrodes to eliminate ocular artifacts. This 

step reduces the final number of channels to 239 which are mapped to four lobes of interest: 

frontal, parietal, temporal and occipital (see Table S3  and Figure S2 of the supplementary 

materials). Subsequently, bad channels exhibiting high variance (higher than 20 μV) or 

amplitude exceeding ± 80 μV are identified and interpolated. Finally, the artefact-free epochs 

were sorted according to their quality metrics32 and only the best six were retained for the rest 

of the analysis. 

Power spectral analysis 

The Welch method 42 was used to estimate the power spectrum of signals at the scalp level. It 

consisted of computing a modified periodogram using the Hamming window with 20 seconds 

duration and 50% overlap to obtain the absolute power spectral density (PSD). The relative 

power spectrum was then computed by normalising each value of the absolute power spectrum 

by the total sum of the powers at each frequency of the EEG broadband (1-45 Hz). A [239 x 

45] relative power features at the scalp level were thus obtained and used for further analysis.  
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Functional connectivity analysis 

The functional brain networks were estimated using the source-connectivity method43. First, 

the inverse problem was solved to reconstruct the dynamics of the cortical brain sources: the 

EEG channels and the MRI template (ICBM152) were co-registered, a realistic head-model 

was built using the OpenMEEG44 toolbox, and the weighted Minimum Norm Estimate 

(wMNE) method45 was applied on the cortical signals. The obtained source signals were then 

averaged into the 210 regions of interest (ROIs) of the brainnetome atlas46, which are mapped 

into seven cortical lobes of interest: Prefrontal (PFC), Motor (Mot), Parietal (Par), Temporal 

(Tmp), Occipital (Occ), Limbic (Lmb) and insular (Ins). Their affiliation is presented in Table  

S4 of the supplementary materials. Afterwards, the phase synchrony between different ROIs 

was computed using the Phase Locking Value (PLV) method47 and the dynamic functional 

connectivity matrices were estimated for six different EEG frequency bands: delta (1-4 Hz), 

theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-13 Hz), beta (13-30 Hz) and gamma (30-45 Hz). 

Those matrices were ultimately averaged across time and trials and their 21945 unique 

connections [=210 x 209/2]  in each frequency band were used for further analysis.  

Statistical analysis 

The statistical differences in demographic and clinical characteristics between the PD-A, PD-

NA and HC groups were examined using the one-way analysis of variance (ANOVA). The chi-

square test (for the categorical variables) and the independent samples t-test (for the continuous 

variables) were applied to examine the difference between the PD-A and PD-NA groups. 

Covariates such as age, sex, education levels and variables that showed significant differences 

between groups were included in the subsequent analysis.  

Our main objective was to compare EEG-based features of the PD-A group to both PD-NA 

and HC groups. To accomplish this three-group comparison, we employed a two-step statistical 

process. First, we used a permutation-based non-parametric analysis of covariance (Perm-

ANCOVA) to examine statistical differences in the relative power spectrum [239 channels x 

45 frequencies] and functional connectivity networks [21945 connections x 6 bands] of the 

three groups at BL. We used 1000 permutations to identify the first set of significant 

power/connectivity features (p<0.05). As we were interested in identifying the features that 

predominantly represent the PD-A group, we defined two conditions: the PD-Ahigh condition, 

where the power/connectivity values of the PD-A group were significantly higher than both the 

PD-NA and HC groups (PD-A > PD-NA & PD-A > HC),  and the PD-Alow condition,  where 
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the power/connectivity values of the PD-A groups were significantly lower than both other 

groups (PD-A < PD-NA & PD-NA < HC). Next, the second step of the process involved 

applying a two-tailed between-groups Wilcoxon test (corrected for multiple comparisons, 

p<0.0167) on the previous set of statistically significant features. Significant features that meet 

one of the above conditions were subsequently retained and considered as electrophysiological 

signatures of anxiety in PD. 

Anxiety signature scores and correlation analysis 

In order to quantify the electrophysiological signature of anxiety in PD, two separate signature 

scores were defined: the spectral signature score (SSS) and the network signature score (NSS). 

The SSS is delineated as the ratio between the power indexes (PI) of the two  previously defined 

conditions: PD-A high → "# !"#! and PD-A low → "# $%&: 

$$$	 = 	 '( !"#!

'( $%&
						(1)          

where "# is the mean relative power of the significant channels in the significant frequency 

slices and defined as:  

"#	 = 1
*+,-./+ 	 0

)!*+

",-

	 0
./01

2,-

	$-1"23/4(-, 6) 	∗ "$8/0$(-, 6)					(2)	 

Where $-1"23/4 is a [239 x 45] binary matrix obtained from the statistical analysis 

representing the significant channels and their corresponding frequency slices, "$8/0$ is the 

[239 x 45] matrix of the relative power features, .ℎ;< is the total number of channels,  =4/> 

is the total number of examined frequencies and *+,-./+ is the total number of significant 

slices in $-1"23/4. 

Similarly, the NSS is defined as the ratio between the network indexes (NI) obtained from the 

significant edges of both conditions: PD-A high → *# !"#! and PD-A low → *# $%&: 

*$$	 = 	*# !"#!

*# $%&

						(3) 

where *# is the mean connectivity of the significant edges (connections) in all frequency bands: 

*#	 = 1
*.2<</.@-2<+	0

)%+

",-

	 0
3*+4

2,-

	$-1*/@324A(-, 6) 	∗ B(-, 6)						(4)	 

Where $-1*/@324A is a [21945 x 6] binary matrix obtained from the statistical analysis 

representing the significant connectivity features in each frequency band, B is the [21945 x 6] 

matrix containing the functional connectivity features, .2< is the total number of unique 
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connections, D;<E is the total number of EEG frequency bands and *.2<</.@-2<+ is the total 

number of significant connections in $-1*/@324A.  

A general mixed signature score (MSS) was also computed as the sum of the normalized SSS 

and NSS, representing thus both spectral and network signatures of anxiety in PD. Pearson's 

correlation was used to examine the relationship between the electrophysiological signature 

scores (SSS/ NSS/ MSS) and the clinical anxiety score (BAI) not only at BL but also at 3Y and 

5Y to assess their prediction capacity. 

Results 

Participant’s characteristics 

Table 1 shows the demographic and clinical characteristics of the participants. No significant 

differences were found neither in the demographic features (age, sex and education) between 

all groups nor in the clinical assessments and the antiparkinsonian medication doses between 

the PD groups. Evidently, the BAI score was significantly discriminable between the three 

groups (p<0.0001). Also, both depression score (BDI-II) and apathy score (AES) presented a 

significant difference between groups (p<0.001) and significantly correlated with the BAI 

score. Therefore, they were both considered as covariates in the statistical analysis. 

Table 1- Demographic and clinical characteristics of the three groups expressed as: mean 

(standard deviation). PD-A: PD patients with anxiety, PD-NA: PD patients without anxiety, 

HC: healthy controls, y: years, M/F: Male/Female, MoCA: Montreal Cognitive Assessment, 

MCI (Y/N): Mild Cognitive Impairment (yes/no), LEDD: Levodopa Equivalent Daily Dose, 

BAI: Beck Anxiety Inventory score, BDI-II: Beck Depression Inventory, second edition score, 

AES: Apathy Evaluation Scale. Significant p-values are marked in bold. 

 PD-A 

 (N=18) 

PD-NA 

(N=50) 

HC  

(N=25) 

P-value of 

ANOVA 

P-value of t-test 

PD-A vs PD-NA 

Demographic      

Age (y) 65.7 (8) 66.6 (8.4) 66.6 (4) 0.89 0.68 

Sex (M/F) 12/6 34/16 15/10 0.79 0.92 

Education (y) 14.9 (3.7) 14.7 (3.1) 14.2 (2.9) 0.74 0.78 

Clinical      

Disease duration (y) 4.9 (5.6) 5.3 (5.1) - - 0.79 

MoCA (/30) 26 (2.8) 26 (2.3) 26.6 (2.7) 0.63 0.99 

MCI (Y/N) 5/13 17/33 - - 0.73 

Medication      
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LEDD48 (mg/day) 616 (461) 664 (470) - - 0.71 

Antidepressant (Y/N) 5/13 8/42 - - 0.28 

Anxiolytics (Y/N) 4/14 8/42 - - 0.20 

Neuropsychiatric tests      

BAI (/63) 20.3 (7.2) 6.2 (3.9) 2.4 (3.2) <0.0001 <0.0001 

BDI-II (/63) 11.2 (5.1) 6.4 (4.1) 2.6 (2.5) <0.0001 <0.001 

AES (/63)  17.5 (10) 6 (7) 1(4) <0.001 0.29 

 

Spectral signature of anxiety in PD  

The average relative spectral power over all EEG channels for the three groups is illustrated in 

Figure 1-A. Our statistical analysis on the overall [239 x 45] spectral features at BL allowed us 

to identify the spectral signature of anxiety in PD. This includes the EEG channels with their 

corresponding frequency slices where the PD-A group has either significantly higher or 

significantly lower spectral power than both the PD-NA and HC groups (PD-Ahigh and PD-Alow 

conditions). For the PD-Ahigh condition, results showed 20 significant channels with 

corresponding frequency slices mainly within the delta band (between 1 and 4 Hz). Those 

channels were presented notably in the parietal and frontal lobes. As for the PD-Alow condition, 

11 channels mainly located within the frontal lobe and presenting significant frequency slices 

between 13 and 25 Hz (within the beta band) were revealed (Figure 1-B). The cortical 

topography of the relative spectral power observed in each group for the relevant frequency 

slices (delta and beta bands) of both conditions, along with the spatial distribution of the 

corresponding significant channels are illustrated in Figure 1-C. 
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Figure 1- Spectral signature of  anxiety in PD. A) the relative power spectra of the three 

groups: PD patients with anxiety (PD-A) and without anxiety (PD-NA) and healthy controls 

(HC). B) Significant channels and frequency slices of the PD-Ahigh (PD-A > PD-NA, HC) 

condition in red and PD-Alow (PD-A< PD-NA, HC) condition in blue. C) Cortical topography 

of the relative spectral power of the relevant frequency bands (delta in PD-Ahigh and beta in 

PD-Alow) for the three groups and the corresponding spatial distribution of the significant 

channels (significant channels are marked in red for delta band and in blue for beta band). 

NS: no-significance. 

Spectral signature score 

In order to appraise the spectral signature of  anxiety in PD and associate it with clinical scores, 

we computed the SSS as the ratio between the average power of the significant channels/slices 

of the PD-Ahigh condition  over the PD-Alow condition. Consequently, this resulted in 

investigating the spectral ratio between delta and beta bands. Results showed that the SSS of 

the PD-A group was significantly higher than both the PD-NA and HC groups (p<0.001, 
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Bonferroni corrected, Figure 2-A). This SSS was significantly correlated with the BAI score 

(R=0.39, p<0.001) of the participants at BL (Figure 2-B). Additionally, when assessing the 

capacity of the SSS at BL in predicting the clinical scores of anxiety, results showed that the 

correlation remained significant with the BAI score at 3Y (R=0.41, p=0.011, Figure 2-C). A 

positive trend toward significance was also shown at 5Y (R=0.33, p=0.07, Figure 2-D).  

 

Figure 2- Spectral signature score (SSS) of anxiety in PD and its relationship with the BAI 

score. A) Distribution of the SSS between the three groups: PD patients with anxiety (PD-A), 

without anxiety (PD-NA) and healthy controls (HC). Relationship between the SSS at BL and 

the BAI score: B) at BL, C) at 3Y, D) at 5Y. *** p<0.001 (Bonferroni corrected for multiple 

comparisons). 

Network signature of anxiety in PD 

Owing to uncovering the network signature of anxiety in PD, we repeated the same statistical 

analysis described above on the 21945 unique functional connectivity features of the six 

examined frequency bands. This resulted in identifying for each frequency band, a significant 

network of both hyper-connectivity edges (PD-Ahigh condition: where the connectivity in PD-

A is significantly higher than in PD-NA and HC)  and hypo-connectivity edges (PD-Alow 

condition: where the connectivity in PD-A is significantly lower than in PD-NA and HC).  
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Results showed that hyper-connectivity networks characterizing the PD-A group were 

dominant in delta, theta and gamma bands, while hypo-connectivity networks were more 

prevalent in alpha and beta bands (Figure 3-A). Further investigation of brian regions with the 

most number of connections (highest degree regions) in these significant networks revealed 

that regions within the temporal lobes were present in almost all bands. In particular the middle 

temporal gyrus (MTG) appeared in theta, alpha2 and beta bands. Additionally, the inferior 

frontal gyrus (IFG) was featured in networks of higher frequencies (alpha2, beta and gamma). 

Regions within the salience network (SAN) were among the most prevalent in theta (the 

caudodorsal region of the anterior cingulate gyrus (CG-cd)), alpha1 and gamma (the insula 

(INS)) (Figure 3-B). 

 

Figure 3- Network signature of anxiety in patients with PD. A) Significant networks of the 

different investigated frequency bands. The networks were thresholded for visualisation 

purposes. Edges presenting hyper-connectivity in PD-A are illustrated in red (PD-Ahigh) and 

those presenting hypo-connectivity in PD-A are illustrated in blue (PD-Alow). B) Highest 

degree regions (thresholded for visualisation purposes) represented with different views 

(lateral and medial) of the left hemisphere (LH) and right hemisphere (RH). ITG: Inferior 

Temporal Gyrus, PhG: Parahippocampal Gyrus, MFG: Middle Frontal Gyrus, PoG: 

Postcentral Gyrus, pSTS: posterior Superior Temporal Sulcus, MTG: Medial Temporal Gyrus, 

CG-cd: Cingulate Gyrus caudodorsal region, INS: Insula, IFG: Inferior Frontal Gyrus, IPL: 

Inferior Parietal Lobule, STG: Superior Temporal Gyrus, PCun: Precuneus. 
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Figure 4- Representation of the network signature of anxiety in patients with PD. Circular 

plots (left) and matrix plot (right) of the significant networks Delta, Theta, Alpha1, Alpha2, 

Beta and Gamma frequency bands. Red and blue shades represent the number of connections 

in the hyper-connectivity networks and hypo-connectivity networks respectively. 
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Upon examining the interactions between the cortical lobes within these networks, we observed 

that the hyper-connectivity networks displayed dense functional connections primarily between 

the temporal, limbic and insular lobes. Specifically, the most prominent connections were 

temporo-temporal in delta, temporo-limbic in theta, motor-limbic in beta and insular-parietal 

in gamma bands. Regarding the hypo-connectivity networks, the insular lobe exhibited denser 

connections in the alpha band, with insular-parietal connections being the most dominant in 

alpha1 and insular-frontal connections prevailing in alpha2. Additionally, fronto-temporal 

hypo-connections were prevalent in beta bands. To illustrate these findings, circular and matrix 

plots displaying the interaction between the lobes of interest in the hypo/hyper connectivity 

networks across all bands are illustrated in Figure 4. 

Network signature score 

Following the analysis of the spectral signature, we also investigated the association between 

the network signature score (NSS) and the clinical evaluation of anxiety. This score represents 

the ratio between the average connectivity of the hyper-connectivity edges and that of the hypo-

connectivity edges in all frequency bands. Results showed that this NSS was significantly 

higher in the PD-A group compared to both PD-NA and HC groups (p<0.001, Bonferroni 

corrected, Figure 5-A). The NSS at BL showed a strong correlation with the BAI score not only 

at BL (R=0.61, p<10-10, Figure 5-B) but also at 3Y (R=0.77, p<10-7, Figure 5-C). A positive 

trend toward significance was also shown after 5Y (R=0.33, p=0.07, Figure 5-D) demonstrating 

notable predictive ability. 



 118 

 

Figure 5- Network signature score (NSS) of anxiety in PD and its relationship with the BAI 

score. A) Distribution of the NSS between the three groups: PD patients with anxiety (PD-A), 

without anxiety (PD-NA) and healthy controls (HC). Relationship between the NSS at BL and 

BAI score: B) at BL, C) at 3Y, D) at 5Y. *** p<0.001, ** p<0.01, * p<0.05 (p-values are 

corrected using Bonferroni for multiple comparisons). 

General mixed signature score 

The general mixed signature score, which combines both spectral and network signatures of 

anxiety in PD, demonstrated significant differences between the PD-A group and both PD-NA 

and HC groups (p<0.001, Bonferroni corrected, Figure 6-A). When examining its correlation 

with the clinical score of anxiety, the results showed that the MSS was strongly correlated with 

the BAI score not only at BL (R=0.52, p<10-6, Figure 6-B) but also at both follow-up 

examinations after 3Y (R=0.61, p<10-4, Figure 6-C) and 5Y (R=0.37, p<0.05, Figure 6-D).  
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Figure 6- The general mixed signature score of anxiety in PD and its relationship with the 

BAI score. A) Distribution of the mixed signature score between the three groups: PD patients 

with anxiety (PD-A), without anxiety (PD-NA) and healthy controls (HC). Relationship 

between the mixed signature score at BL and BAI score: B) at BL, C) at 3Y, D) at 5Y. *** 

p<0.001 (p-values are corrected using Bonferroni for multiple comparisons). 

Discussion 

In the present study, we aimed to identify the electrophysiological signatures of PD-related 

anxiety using resting state HD-EEG. While controlling the presence of other neuropsychiatric 

symptoms (depression and apathy), we showed that anxiety in PD is characterized by increased 

delta power -at the scalp level- in the frontal and parietal lobes as well as reduced beta power 

in the frontal lobe. Our functional connectivity analysis revealed that hyper-connectivity 

networks dominate in delta, theta and gamma bands while hypo-connectivity networks are 

more present in alpha and beta bands, with the frontal, temporal, limbic and insular lobes 

exhibiting the majority of significant connections. Electrophysiological scores (SSS/ NSS/ 

MSS) computed from the spectral/network signatures distinguish the PD-A group from both 

PD-NA and HC groups and are correlated with the clinical scores of anxiety at BL as well as 

at 3Y and 5Y, demonstrating predictive capacity. 
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Our spectral analysis at the channel-frequency level allowed for an accurate spatial-spectral 

mapping of the power features that characterize the PD-A group compared to both the PD-NA 

and HC groups. The increased power in delta and decreased power in low beta (13-20 Hz) are 

consistent with the global spectral patterns observed in the single previous EEG study that 

compared PD-A and PD-NA patients31. Our findings were also consistent with spectral patterns 

observed in anxious non-parkinsonian subjects. Increased delta power in frontal and parietal 

lobes was reported to characterize induced anxiety in obsessive compulsive-disorder patients49. 

Negative correlation between the powers of delta and beta bands in frontal regions was also 

shown in highly anxious healthy females performing a social task50. In addition, decreases in 

absolute and relative powers of slow and fast beta were observed in anxious adolescents51 and 

in patients with social phobia52. Nonetheless, positive delta-beta correlations and decreases in 

delta power have been also reported in social anxiety disorders but in studies with low-density 

EEG systems 52,53. Spatially, the frontal lobe was the most featured in our PD-anxiety spectral 

signature. Of interest, disruptions in the prefrontal cortex were consistently reported in 

neuroimaging studies, characterizing anxiety disorders not only in PD patients 22,23,25,26,31 but 

also in non-PD individuals 50,52,54. 

Regarding the network signature of PD-related anxiety, we have demonstrated that hyper-

connectivity networks were mostly dominant in delta, theta and gamma bands. Previous 

functional connectivity studies have associated increased severity of anxiety in PD patients 

with increased functional connectivity between cortical regions of the orbito-frontal cortex and 

both the inferior-middle temporal and parahippocampal gyri28 as well as between the insular 

lobe and both the prefrontal, and cingulate cortices31. These findings support the manifestation 

of the insula, the caudodorsal region of the cingulate gyrus, and the regions within the temporal 

and frontal lobes as well as their interactions as the most implicated in the hyper-connectivity 

networks of our results. Indeed, the insula along with the dorsal anterior cingulate (limbic) 

cortex and the medial prefrontal cortex are all parts of the fear/anxiety circuitry55 and 

activations and abnormalities in those regions have been consistently reported in different types 

of anxiety disorders in the general population 56–59 and in PD subjects21,25,31.  This can be 

interpreted by the pivotal role of these core regions in processing fear, negative affect, 

worrisome thoughts and emotions 60–62. Additionally, hyperconnectivity between subcortical 

regions, mainly the amygdala and the putamen, and cortical regions of the fear/anxiety circuitry 

were also persistently associated with anxiety in PD21,28,63. While our analysis included only 

cortical regions, the dominance of the hyperconnectivity networks suggests a positive cortical-

subcortical correlation between oscillations that stem from these regions.  
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Furthermore, we observed hypo-connectivity networks in alpha and beta bands, predominantly 

in the frontal and insular lobes. Consistent with our findings, previous research has shown that 

patterns of decreased connectivity within the frontal lobe are indicative of anxiety in PD 

patients 25,28. Moreover, functional dysconnectivity within and between the salience network, 

which involves mainly the insular lobe, has also been reported to reflect anxiety disorders in 

non-PD individuals57,64–66.  

Importantly, our hypo/hyper-connectivity networks were also shown to be associated with the 

clinical traits of anxiety in all participants not only at baseline but also longitudinally after 3 

years and 5 years. This association, validated also when combining both spectral and network 

signatures, can highlight the predictive capacity of our EEG-based markers of anxiety. 

However, despite this internal/longitudinal validation of our anxiety signature, external 

validation on an independent cohort is necessary for further endorsement.  

Finally, some patients in both PD-A and PD-NA groups were under antidepressant and 

anxiolytic medications during EEG and neuropsychological assessments sessions. Here, we 

controlled for this issue by demonstrating that the anxiety and depression medication statuses 

did not differ significantly between PD groups. Besides, topographic EEG changes reported in 

generalized anxiety disorders during anxiety treatments67,68 suggested decreased spectral power 

of delta and alpha bands along with increased power of beta band69–71. Antidepressant 

medication72 has also been shown to reduce slow wave EEG activity and increase the power in 

alpha band73,74. Notably, these spectral patterns were not reported in our study to characterize 

the PD-A group, which included patients taking anxiolytics and antidepressants. Excluding 

these patients would have been an alternative solution in this study, however this would have 

reduced the sample size in the PD-A group by half and subsequently restricted our statistical 

analysis. Therefore, further research studying the neural correlates of anxiety in PD patients 

without anxiety/depression medications is still necessary for further validation. 

Conclusion 

To summarize, this is the first case-control resting-state HD-EEG study to investigate the 

neural correlates of anxiety in PD. Our findings suggest that increased fronto-parietal delta 

power, decreased frontal beta power, and prevailed hyperconnectivity in several frequency 

bands are all EEG-based signatures of the PD-related anxiety. These signatures have the 

longitudinal predictive capacity for clinical outcomes. Identifiying such non-invasive markers 

may provide new perceptions into the development of advanced biomarkers. Further research 
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could also establish resting-satte HD-EEG as a tool for more accurate prognosis and diagnosis 

of anxiety in PD and contribute in elevating the development of corresponding effective 

therapies.   
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Table S1- Demographic, clinical and main neuropsychiatric characteristics of the main cohort 

longitudinally expressed as: mean (standard deviation). y: years, M/F: Male/Female, MoCA: 

Montreal Cognitive Assessment, MCI (Y/N): Mild Cognitive Impairment (yes/no), UPDRS-III: Unified 

Parkinson’s Disease Rating Scale-motor examination, LEDD: Levodopa Equivalent Daily Dose, BAI: 

Beck Anxiety Inventory score, BDI-II: Beck Depression Inventory, second edition score, AES: Apathy 

Evaluation Scale.  

 
Baseline 3 years 5 years 

 PD  

(N=77) 

HC  

(N=32) 

PD  

(N=45) 

HC 

 (N=21) 

PD 

 (N=44) 

HC 

 (N=3) 

Demographic       

Age (y) 66.2 (8.2) 65.3 (5.6) 70.9 (7.9) 68.7 (4.9) 71.7 (7.8) 65.6 (4.1) 

Sex (M/F) 51/26 18/14 31/14 9/12 28/14 2/1 

Education (y) 14.6 (3.2) 13.8 (2.9) 14.8 (3.1) 13.6 (3.1) 15.1 (3.1) 11 (2) 

Clinical       

Disease duration (y) 5.4 (5.2) - 8 (5.2) - 10.4 (4.9) - 

MoCA (/30) 26 (2.4) 26.8 (2.5) 25.2 (3.5) 27.4 (2.2) 25.1 (5.1)  

MCI (Y/N) 25/52 - 16/29 - 16/28 - 

MMSE (/30) 28.7 (1.2) 29.4 (1) 28.2 (2.3) 29 (1.5) 28.3 (1.9)  

UPDRS-II 6.6 (4.7) - 10.8 (5.7) - 9.6 (6.6) - 

UPDRS-III 15.5 (11) - 20.5 (12.1) - 19.5 (13.1) - 

Medication       

LEDD (mg/day) 676 (466) - 707 (445) - 633 (386) - 

Neuropsychiatric tests       

BAI (/63) 9.7 (8) 2.9 (4) 11.5 (7.5) 2.3 (2.6) 9.6 (6.9) 3.3 (4.9) 

BDI-II (/63) 7.9 (4.9) 2.6 (2.4) 7.8 (4.7) 1.8 (1.7) 6.7 (6.1) 4 (3.6) 

AES (/63)  32.9 (8.4) 24.1 (5.1) 31.2 (7.1) 25.1 (5.7) 31.7 (8.6) 27.7 (9) 
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Table S2- Demographic, clinical and main neuropsychiatric characteristics of the study cohort 

longitudinally expressed as: mean (standard deviation). y: years, M/F: Male/Female, MoCA: 

Montreal Cognitive Assessment, MCI (Y/N): Mild Cognitive Impairment (yes/no), UPDRS-III: Unified 

Parkinson’s Disease Rating Scale-motor examination, LEDD: Levodopa Equivalent Daily Dose, BAI: 

Beck Anxiety Inventory score, BDI-II: Beck Depression Inventory, second edition score, AES: Apathy 

Evaluation Scale.  

 
Baseline 3 years 5 years 

 PD  

(N=68) 

HC  

(N=25) 

PD  

(N=42) 

HC 

 (N=17) 

PD 

 (N=29) 

HC 

 (N=1) 

Demographic       

Age (y) 66.4 (8.3) 66.6 (4) 70.5 (7.9) 68.9 (6.1) 71 (7) 69 

Sex (M/F) 46/22 15/10 28/14 8/9 17/12 1/0 

Education (y) 14.8 (3.1) 14.2 (2.9) 14.8 (3.1) 13.4 (3.2) 14.1 (3.1) 13 

Clinical       

Disease duration (y) 5.2 (5.2) - 7.5 (4.7) - 9.4 (3.8) - 

MoCA (/30) 26 (2.4) 26.6 (2.7) 25.2 (3.6) 27.2 (2.3) 25.7 (3.6)  

MCI (Y/N) 22/46 - 15/27 - 7/22 - 

UPDRS-III 14.8 (11.2) - 20.1 (12) - 17.6 (12.8) - 

Medication       

LEDD (mg/day) 652 (465) - 667 (436) - 558 (343) - 

Neuropsychiatric tests       

BAI (/63) 9.9 (7.9) 2.4 (3.2) 11.5 (7.4) 2.2 (2.6) 10.2 (7) 1 

BDI-II (/63) 7.7 (4.9) 2.6 (2.5) 7.8 (4.8) 1.9 (1.7) 7.1 (6.6) 5 

AES (/63)  33(8.6) 24.1 (5.1) 31.4 (7.1) 25.1 (5.7) 30.9 (7.6) 37 
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Table S3- Affiliation of the EEG channels to the four lobes of interest 

Lobes EEG channels 

Frontal lobe E2, E3, E4, E5, E6, E7, E8, E11, E12, E13, E14, E15, E16, E17, E19, E20, 

E21, E22, E23, E24, E26, E27, E28, E29, E30, E33, E34, E35, E36, E38, 

E39, E40, E41, E42, E43, E47, E48, E49, E50, E51, E55, E56, E57, E58, 

E61, E62, E63, E64, E68, E69, E194, E195, E196, E197, E198, E202, E203, 

E204, E205, E206, E207, E210, E211, E212, E213, E214, E215, E220, 

E221, E222, E223, E224. 

Parietal lobe E9, E44, E45, E52, E53, E59, E60, E65, E66, E70, E71, E72, E74, E75, 

E76, E77, E78, E79, E80, E81, E84, E85, E86, E87, E88, E89, E90, E96, 

E97, E98, E99, E100, E101, E109, E110, E119, E128, E129, E130, E131, 

E132, E140, E141, E142, E143, E144, E152, E153, E154, E155, E161, 

E162, E163, E164, E170, E171, E172, E173, E179, E180, E181, E182, 

E183, E184, E185, E186, E192, E193.  

Temporal lobe E67, E73, E82, E83, E91, E92, E93, E94, E95, E102, E103, E104, E105, 

E111, E112, E177, E178, E188, E189, E190, E191, E199, E200, E201, 

E208, E209, E216, E217, E218, E219, E225, E227, E228, E229, E231, 

E232, E233, E235, E236, E237, E239, E240, E242, E243, E245, E246, 

E247, E249, E250, E251, E253, E254, E255, E256. 

Occipital lobe E106, E107, E108, E113, E114, E115, E116, E117, E118, E120, E121, 

E122, E123, E124, E125, E126, E127, E133, E134, E135, E136, E137, 

E138, E139, E145, E146, E147, E148, E149, E150, E151, E156, E157, 

E158, E159, E160, E165, E166, E167, E168, E169, E174, E175, E176, 

E187.  
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Table S4- Affiliation of brain regions to the seven lobes of interest 

Lobes of Interest Brain regions 

Prefrontal cortex (PFC) Middle frontal gyrus (L/R) 

Orbito-frontal cortex (L/R) 

 Superior frontal gyrus (L/R) 

 Inferior frontal gyrus (L/R) 

Motorstrip (Mot) Precentral gyrus (L/R) 

Paracentral lobule (L/R) 

 Postcentral gyrus (L/R) 

Parietal lobe (Par) Inferior parietal lobule (L/R) 

Superior parietal lobule (L/R) 

Precuneus (L/R) 

Temporal network (Tmp) Inferior temporal gyrus (L/R) 

 Middle temporal gyrus (L/R) 

 Superior temporal gyrus (L/R) 

 Parahippocampal gyrus (L/R) 

 Fusiform gyrus (L/R) 

 Posterior superior temporal sulcus (L/R) 

Occipital lobe (Occ) Lateral occipital cortex (L/R) 

MedioVentral occipital cortex (L/R) 

Limbic lobe (Lmb) Caudal cingulate gyrus (L/R) 

 Ventral cingulate gyrus (L/R) 

 Dorsal cingulate gyrus (L/R) 

Insular lobe (Ins) Insular gyrus (L/R) 
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Figure S1- Flowchart of the main study cohort and the subcohort of participants included in 

this study. 

 

 

 

 

Figure S2- EGI 256-channels sensor layout and the affiliation of the channels to the four lobes of 

interest: Frontal lobe (orange), Parietal lobe (green), temporal lobe (yellow) and occipital lobe (purple). 

The 17 channels used for EOG regression are marked in blue. 
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CHAPTER 5: GENERAL DISCUSSION 

5.1. Overview of the thesis aims and results 

One of the key challenges in clinical neuroscience is understanding how neurological disorders, 

such as PD, affect brain function from disease onset and throughout their progression. PD is 

one of the most prevalent neurological conditions that contributes significantly to the global 

burden of disability due to its variability in symptoms and progression (Bloem et al., 2021; 

Kalia & Lang, 2015; Poewe et al., 2017). This highlights the critical clinical need to develop 

novel biomarkers that can accurately and reliably characterize the pathological mechanisms 

underlying these prominent aspects in PD and track their longitudinal evolution, to ultimately 

monitor the efficacy of disease-modifying and therapeutic interventions. In recent years, EEG 

has emerged as a promising tool for this purpose. It is a direct, non-invasive, inexpensive, and 

easy-to-use neuroimaging technique that has been recognized to enable the extraction of 

relevant information about brain activity alterations in several pathological conditions (Müller-

Putz, 2020; Shirahige et al., 2020; Geraedts et al., 2018; Cozac, Gschwandtner, et al., 2016; Q. 

Wang et al., 2020). Despite extensive literature and important strides in biomarker research for 

disease symptoms and progression via various neuroimaging techniques, the use of EEG in 

longitudinal studies has been rarely explored. Therefore, in this thesis, we used longitudinal 

resting-state high-density EEG to track the progression of brain activity in PD patients, 

deconstruct their heterogeneity, assess their subgroups' disease trajectories, and identify the 

neural correlates of their PD-related anxiety. The main results of this thesis are summarized as 

follows: 

1. The longitudinal tracking of functional brain networks in PD patients using resting state 

EEG over a period of 5 years revealed patterns of progressively decreased connectivity, 

primarily between the fronto-temporal lobes of the right hemisphere, in alpha2 and beta 

bands. These large-scale dysconnectivity networks are unique to PD patients and are 

not observed in healthy controls and are correlated with the global cognitive profile of 

the patients. 

2. When investigating the longitudinal progression in subgroups of patients based on the 

lateralization of motor symptoms, we discovered that patterns of decreased 
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connectivity, mainly in the right hemisphere, characterize the evolution of the disease 

in PD patients with left-sided symptoms (LPD). In contrast, patterns of functional 

dysconnectivity, mostly dominant in the left hemisphere, delineate the progression of 

the disease in PD patients with right-sided symptoms (RPD). 

3. Resting state EEG can identify three distinct subtypes of PD patients, characterized by 

different levels of disruptions in the somatomotor network (delta and beta bands), 

frontotemporal network (alpha2 band), and default mode network (alpha1 band). These 

subtypes are associated with different clinical profiles and can be classified into either 

moderate-only-motor or diffuse-malignant at 5 years. 

4. EEG-based features characterizing the moderate-only-motor subtypes from the diffuse-

malignant subtype at 5 years are relevant throughout the disease trajectory and can 

predict the cognitive decline in the patients from baseline, when the cognitive clinical 

scores were in extensive overlap. 

5. Through an investigation of the electrophysiological fingerprints of PD-related anxiety, 

we observed frequency-dependent patterns of altered spectral power, as well as 

functional hyper- and hypo-connectivity networks, distinguishing the anxious PD group 

from both non-anxious PD patients and healthy controls. We also found that the 

corresponding quantifiable electrophysiological scores correlated with the clinical 

outcome of anxiety throughout the disease progression. 

5.2. Reliable biomarkers in PD: key elements and pitfalls  

The accurate prediction of the onset and progression of complex heterogeneous diseases, such 

as PD, is a vital challenge in providing optimal patient counseling, symptom-specific care and 

effective treatments. Meeting this challenge is dependent on the development of reliable 

biomarkers that not only characterize the disease but also accurately track and predict its 

evolution. Cross-sectional studies are shown to be prevalent in neuroimaging research targeting 

biomarkers of PD, offering insights about the underlying pathophysiology of different motor 

and non-motor symptoms (McGhee et al., 2013; Mitchell et al., 2021; Parnetti et al., 2019; 

Surguchov, 2022). However, when it comes to disease progression and predicting disease 

outcome, longitudinal studies are more relevant. In fact, longitudinal studies offer the 

opportunity to extract biomarkers with regards to the influence of time. They provide a causal 

link between the changes in the brain patterns and later outcomes of the disease at the clinical 
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and neurophysiological level. This constitutes a fundamental step toward prediction/prognosis 

assessments not only at the group average level but also at the individual scale. One of the 

major examples in this premise is the Parkinson Progression Marker Initiative (PPMI) cohort 

which provided a longitudinal dataset of clinical, biological and neuroimaging data 

conceptualized mainly to improve and validate biomarkers development strategies (Marek et 

al., 2011). Multiple studies have used this cohort to derive biomarkers of progression, disease 

heterogeneity, cognitive decline and specific symptoms (Dadu et al., 2022; Fereshtehnejad et 

al., 2017; Fiorenzato et al., 2018; Kang et al., 2016; Markello et al., 2021; J. H. Park et al., 

2020; Schrag et al., 2017; Simuni, Caspell-Garcia, et al., 2018; Zeighami et al., 2019). 

Unfortunately, this cohort does not include any electrophysiological data (EEG/MEG), and to 

date, very few longitudinal studies have used such neuroimaging techniques to investigate such 

biomarkers (Arnaldi et al., 2017; Caviness et al., 2015; Chaturvedi et al., 2019; Cozac, 

Chaturvedi, et al., 2016; Olde Dubbelink, Stoffers, Deijen, Twisk, Stam, & Berendse, 2013; 

Olde Dubbelink, Stoffers, Deijen, Twisk, Stam, Hillebrand, et al., 2013). Direct, non-invasive, 

easy-to-use and potential mobile neuroimaging technologies such as EEG could be considered 

as an advantageous tool for biomarkers frameworks in clinical settings (Müller-Putz, 2020). 

This emphasizes the importance of the longitudinal EEG dataset used in this thesis to 

characterize multiple aspects-of-interest in PD and to subsequently derive EEG-based markers 

and assess their evolution over time and their predictive capacity. Despite the significant 

advantage of longitudinal studies in general and this dataset particularly, one of their main 

limitations is the decreasing sample size over time, mainly at the follow-up timepoints. This is 

due to the difficulty in upholding longitudinal studies as participants tend to drop off after a 

relatively long period (5 years) for several reasons, including losing interest in participating, 

travelling, moving from the area, illness or even death... 

Another factor that has emerged recently as a key element in biomarker discovery efforts is the 

prior definition of disease subtypes based on their shared patterns of biological abnormalities, 

rather than their common clinical features (A. Espay et al., 2017; A. J. Espay et al., 2017, 2020). 

In fact, the debate whether PD should be viewed as a single, cohesive entity or a complex 

multisystem disorder with distinct etiologic and pathophysiologic entities is relatively new (A. 

J. Espay et al., 2020; Farrow et al., 2022; Weiner, 2008). The traditional hypothesis that 

considers PD as a whole and partitions patients based on their clinical similarities has proven 

useful in comprehending the underlying mechanisms of the symptoms and developing effective 

treatments that alleviate them (Paolini Paoletti et al., 2019). However, when it comes to 
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targeting disease-modifying and neuroprotective interventions, multiple phase-three clinical 

trials have failed (A. Espay & Stecher, 2020). This has led to an increased recognition of PD 

as a complex-heterogeneous interaction of intrinsic and extrinsic factors, suggesting the need 

to reevaluate biomarker discovery efforts by targeting smaller, well-defined subsets of PD 

patients that share subsequent biological aberrations (A. J. Espay et al., 2017).  

Indeed, the concept of discrete clusters with mutual underlying abnormalities could offer a 

valuable approach to retrieve biomarkers that can predict, at early stages of the disease, which 

individuals are likely to experience a benign disease course versus those who will have a more 

aggressive slope of declines toward a malignant disease course (A. J. Espay & Marras, 2019). 

In fact, this was one of our main motivations to conduct the disease subtyping study of this 

thesis. We wanted  to examine to which extent can EEG-based features bring relevant 

information about disease trajectories in subgroups of patients. In other words, we aimed to 

identify subgroup-specific biomarkers and investigate whether they can predict the only-motor 

versus the diffuse malignant trajectories at earlier stages of the disease when the clinical scores 

were not sufficient for making accurate judgment. Evidently, insights gained from such 

research would be of utmost interest not only for novel disease modifying therapies, but also 

for the existing surgical interventions, such as deep brain stimulation, as early identification of 

patients at risk for cognitive impairment could prevent future side-effects of the procedure 

(Limousin & Foltynie, 2019; Witt et al., 2013). Convergent biomarkers of neurophysiological-

based subtypes would ultimately enhance the emerging stratified medicine model toward better 

neuroprotection interventions and clinical trials. 

Finally, it is worth mentioning that reliable biomarkers of PD, or any other neurodegenerative 

disorders, need to be validated and replicated on external cohorts. Although our results were 

consistent with several other studies using different or similar neuroimaging techniques, it is 

essential to replicate the findings in new longitudinal cohorts to validate them. Unfortunately, 

this was not possible in this thesis due to the absence of publicly available longitudinal EEG 

cohorts of PD patients.  

5.3. Clinical and methodological considerations 

One of the main clinical considerations that should be pointed out in this thesis is that the EEG 

data of PD patients were obtained during their "ON" medication state, when patients self-

administered their daily dopaminergic medication. Despite the advantage of the medication in 
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reducing the magnitude of motor symptoms in patients and subsequently decreasing movement 

artifacts in their EEG data and improving the quality of their recordings, the effect of 

dopaminergic medication may still be present in the measures of brian oscillations and 

functional connectivity, as demonstrated by several studies (Esposito et al., 2013; Silberstein 

et al., 2005). However, we attempted to reduce the effect of this issue by accounting for the 

levodopa equivalent daily dose (LEDD) as a confounding factor in all our statistical analyses. 

Further validation of our results independently from the medication state of the patients is 

highly recommended in this context. 

Regarding the methodological considerations, while we carefully selected the most appropriate 

and previously validated EEG processing methods for our analysis pipeline to obtain the EEG-

based features used in our three studies, the large number of methodological choices in this 

pipeline raises concerns about analytical variability. Starting from the preprocessing of the 

EEG signals, we applied a “quasi automatic” preprocessing pipeline using the Automagic 

toolbox, with minimum subjective intervention to ensure the quality of the data. Currently there 

is no standardized preprocessing pipeline for EEG data and a recent comparative study has 

shown considerable variability in results when using different software tools to preprocess EEG 

signals (Kabbara et al., 2022). Despite the robust preprocessing steps implemented in the 

chosen toolbox Automagic, we believe that further validation of our results using other 

preprocessing toolboxes is necessary in the future.  

Furthermore, another methodological consideration that presents a challenge in the processing 

pipeline is the selection of the most accurate combination of inverse solution and functional 

connectivity method for the “EEG source connectivity” approach, which aims to reconstruct 

the dynamics of brain regions at the source level. Extensive investigations were recently carried 

out in the team by (Allouch et al., 2022, 2023) to study the effect of the choice of inverse 

solution and connectivity method on studies outcomes in both real and simulated EEG data. 

While they found that no single combination of methods outperforms all others, they did 

identify wMNE as one of the most effective methods for accurately resolving the inverse 

problem, consistent with previous findings (Hassan et al., 2014; Hassan, Merlet, et al., 2017). 

Furthermore, concerning the choice of connectivity method, the debate regarding whether to 

consider or ignore spurious connections between reconstructed adjacent sources is still 

ongoing. While some studies have suggested disregarding zero-lag interactions among signals 

at the cortical level to reduce the effect of source leakage (Brookes et al., 2012; Colclough et 

al., 2015), others have shown that such approaches may overlook genuine connectivity 
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occurring at zero-lag or between closely situated brain sources (Brookes et al., 2014; Finger et 

al., 2016; Schoffelen & Gross, 2009). In their studies, Allouch and colleagues have shown that 

PLV performed well as a connectivity method without source leakage correction, and 

orthogonalized AEC was a robust choice for connectivity method with source leakage 

correction. Based on these findings, we chose these methods for our analysis. However, it is 

important to acknowledge the potential influence of these choices on our results. 

Finally, regarding our methodological choice for the clustering analysis in the disease 

subtyping study, we opted for a robust approach that combined the SNF method and spectral 

clustering. This approach has been previously validated as effective in partitioning PD patients 

into meaningful subgroups (Markello et al., 2021). However, other disease subtyping studies 

have utilized machine learning or deep learning models in this context (Dadu et al., 2022; 

Salmanpour et al., 2021; X. Zhang et al., 2019). While these techniques have shown promise 

in disease subtyping, their main limitations are the lack of interpretability, particularly in deep 

learning models, and the need for large datasets for model construction and validation. In our 

case, the limited sample size precluded the use of such techniques. 

5.4. Conclusion and perspectives 

In this thesis, our primary objective was to investigate the extent to which longitudinal resting-

state EEG can accurately characterize the abnormal brain functions related to PD such as 

disease progression, disease subtypes and PD-related anxiety. We also sought to identify 

corresponding EEG-based markers that correlate with and predict the clinical outcomes of the 

patients. Overall, our results were promising in this context, yet they can be definitely further 

extended in light of the aforementioned limitations, in order to obtain more reliable markers 

validated and replicated on larger datasets. 

In a currently undergoing study, we are aiming to adopt the opposite approach of our disease 

subtyping study by performing a clustering analysis on the clinical features to identify clinically 

relevant subtypes at later stages of the disease and subsequently investigate their retrospective 

markers of severity and progression. 

In future work, we believe that along with EEG, integrating additional data modalities into the 

biomarker identification models for PD in the context of longitudinal studies would be of great 

interest. Such approaches would offer a simultaneous multi-view of the neuropathological 
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processes and add extra dimensions that may be relevant for the biomarker measures. An 

example of such frameworks would be the use of simultaneously recorded scalp-EEG data with 

lead field potential data at the subcortical level from implemented electrodes after surgical 

interventions. Such data modalities could provide complementary information about both 

cortical and subcortical altered brain mechanisms occurring in the patients.  

Another possible aspect that could be investigated using such longitudinal EEG datasets in PD 

is the longitudinal effect of the PD-related medications in patients. By considering the “On” 

medication state of the patients and the evolution of their doses in time, one could be interested 

in investigating the related changes in the brain networks with the medication’s intake and the 

evolution of both motor and cognitive clinical scores of the patients. This could ultimately 

illustrate the long-term effect of the medications in PD patients and potentially derive adequate 

biomarkers of treatments responsiveness at the individual level. 

In addition, and inspired from our first study of disease progression, one future interest could 

be predicting the evolution of the clinical trajectories of the patients based on the hemisphere 

of the disease onset. Several studies have shown a direct relationship between the laterality of 

the disease and the deterioration of motor and non-motor symptoms. By investigating these 

aspects using longitudinal EEG, we could provide potential progression markers that may aid 

in predicting disease trajectories. 

Finally, in light of our second study, we showed that the integration of static EEG-based 

spectral power and functional connectivity features into data-driven models can be useful in 

resolving complex problems such as disease subtyping and may lead to meaningful outcomes. 

However, an extension of this work could be integrating additional EEG-based features derived 

from dynamic characteristics, network topology features and modular network organizations. 

These features could be obtained not only from resting-state data but also from specific-task 

paradigms.          
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Résumé : La maladie de Parkinson (MP) 
est le trouble du mouvement le plus courant 
et une affection neurologique complexe qui 
a un impact significatif sur le fardeau 
mondial de l'incapacité en raison de sa 
variabilité de symptômes et de progression. 
Des biomarqueurs fiables capables de 
prédire la gravité et la progression de la MP 
sont essentiels pour des soins optimaux des 
patients et des traitements efficaces. 
l'électroencéphalographie (EEG) a montré 
qu’il est un outil utile à cette fin dans la 
pratique clinique.  Cette thèse vise à étudier 
le potentiel de l'EEG pour caractériser les 
fonctions cérébrales anormales associées à 
différents aspects de la MP et identifier des 
mesures basées sur l'EEG qui peuvent 
prédire les résultats de la maladie. 
 

La première étude examine le 
changement longitudinal des réseaux 
fonctionnels cérébraux des patients 
atteints de MP sur une période de 5 ans, 
tandis que la deuxième étude vise à 
identifier les sous-types de MP en 
déconstruisant l'hétérogénéité de la 
maladie basée sur des caractéristiques 
dérivées de l'EEG. La troisième étude 
exploite les empreintes 
électrophysiologiques qui caractérisent 
l'anxiété chez les patients atteints de MP. 
Dans l'ensemble, les résultats montrent 
différents schémas d'anomalies qui 
caractérisent les aspects distincts 
d'intérêt, et les mesures basées sur l’EEG 
se corréle et prédit l’évolution clinique de 
la maladie. Cette thèse montre le potentiel 
de l'EEG dans le développement de 
biomarqueurs fiables des symptômes et 
de la progression de la MP. 
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Abstract : Parkinson’s disease (PD) is the 
most common movement disorder and a 
complex neurological condition that 
significantly impacts the global burden of 
disability due to its variability in symptoms 
and progression. Reliable biomarkers that 
can predict PD severity and progression are 
essential for optimal patient care and 
effective treatments. In recent years, 
electroencephalography has emerged as a 
useful tool for this purpose in clinical 
practice.This dissertation aims to investigate 
the potential of longitudinal resting-state HD-
EEG to characterize abnormal brain 
functions associated with different aspects of 
PD and identify EEG-based measures that 
can predict disease outcomes. The first study 
examines the longitudinal change in brain  
 

functional networks of PD patients over 5 
years, while the second study aims to identify 
PD subtypes by deconstructing disease 
heterogeneity based on  EEG-derived features. 
The third study exploits the electrophysiological 
fingerprints that characterize anxiety in PD 
patients and correlate with clinical disease 
outcomes related to anxiety throughout disease 
progression. Overall, the results show different 
patterns of abnormalities that characterize the 
distinct aspects of interest, and EEG-based 
measures can correlate with the clinical 
outcomes of the disease and predict its 
evolutions. The study demonstrates the 
potential of resting-state HD-EEG in developing 
reliable biomarkers of PD symptoms and 
progression, leading to more accurate 
prognosis, diagnosis, and better therapeutics 
strategies. 


