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Chapter 1
Introduction

This thesis delves into the dynamics of Brownian motion [1, 2], a phenomenon typical
of intermediate length and time scales where the dynamical influence of molecules
can be observed with naked eye [3]. The phenomenon corresponds to the apparently
erratic movement of particles suspended in a fluid (liquid or gas) caused by the random
collisions of these particles with the atoms or molecules of the fluid.

In this Introduction, some recent methods and problematics in the field of Brownian
motion will be presented. The aim is to emphasize how such a “stmple” phenomenon
yields such rich landscape for research, enabling to re-investigate with new tools funda-
mental aspects of non-equilibrium thermodynamics. This renewal of approaches gives
new entities in understanding stochastic systems from a mechanical and thermody-

namic points of view, with even relevant potential technological applications ahead.

1.1 Engineering the energetic landscapes of Brow-

nian particles

The harmonic oscillator is a paradigmatic model for both classical and quantum phys-
ical systems, whose dynamics can be further complexified when driven by an external
stochastic field. This is one of the main models used in the investigation of the dynam-
ics of microscopic systems in the area known as stochastic thermodynamics [4, 5, 6].
To illustrate the behavior of this paradigmatic system, we will present a few repre-
sentative experiments in the field of levitodynamics [7], with nano or micro particles
trapped in air [8] or vacuum [9]. The dynamics of single particles trapped under such
conditions are described by the evolution of their instantaneous position and velocity,
that in turn define their instantaneous potential and kinetic energies.

Due to its isolation from external influences, this system can serve as precision

sensors. One example how precise it can be is the measurement of a trapped sil-
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1.1. ENGINEERING THE ENERGETIC LANDSCAPES OF BROWNIAN
PARTICLES

ica nanospheres mass, performed by different groups, down to the range of femto to
picograms [10, 11]. Another example is the control and rapid measurement of charging

and discharging events at the level of single elementary charge [12, 13].

Concerted effort to reduce the center-of-mass temperature of these vacuum, trapped
particles has been made recently, exploiting two main techniques: autonomous feed-
back mediated through cavities [14], in which the light scattered by the particle is
reflected by the cavity and, based on self-regulating mechanisms, lead to counter act
on the particle. The other technique corresponds to measurement-based feedback
schemes, using both electrical [15] or optical means [16, 17], as exemplified in Figure
1.1. The core of these methods is to dynamically adjust a counter reacting force on

the nanoparticle, based on real-time measurements of its instantaneous position.

In the case described in Figure 1.1, the temperature of the center of mass of a
silica nanoparticle, measured from its position spectrum, is cooled from the ambient
temperature T' = 269 K to a temperature of 7= 50 mK, as shown in panel ¢). In this
work, the cooling technique employed is called parametric feedback cooling, sketched in
panel a). From the measurement of the position of the nanosphere, a signal is processed
so that the trapping laser intensity increases when the particle moves away from the
equilibrium position while the intensity decreases when the particle approaches. This
signal, which has twice the resonance frequency 2{2 and phase A¢ adjusted accordingly,
has the effect of reducing the amplitude of the nanoparticle’s movement. In this
scheme, the counteracting force to the nanoparticle’s movement is the gradient force,
always directed towards the center of the trap. Since the resonance frequency €2 for
each of the directions is different, as shown in panel b), this technique allows the center
of mass to be cooled in all three spatial directions simultaneously by the action of a

single laser.

For those kind of systems, in which the center of mass of the particle gets cooler,
a significant milestone reached in 2020 is the quantum ground state [18], followed by
other groups [19, 20]. Although such a cooling process can be described mechanically
from an additional damping in the equation of motion, its thermodynamic description
is far from being trivial. For such systems, the temperature change, either autonomous
or induced, is based on information processing and feedback. We note that the intro-
duction of a feedback loop to modify the system dynamics for both isothermal pro-
cesses [21, 22, 23], or non-isothermal ones [24, 25], has been already connected with
thermodynamics. One example of such a connection is given through the concept of a
Maxwell’s demon [26], where it is necessary to take into account the thermodynamic

cost of the measurement process itself [27].

Recent progress has been made in the field of thermodynamics of information [28],

for example in relation with finite time features associated with measurement pro-
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cesses [29, 30].This has open new means in addressing the actual thermodynamic cost

e
40 80 120 160 30 35 40 45 50
frequency (kHz) frequency (kHz)

Figure 1.1: a) Mechanism of parametric feedback cooling. The center
of mass position of a nanosphere is measured using three detectors. A
signal with twice the resonance frequency 22 (for the 3 independent
directions) of the oscillator is obtained by multiplying the instanta-
neous position with its derivative, z(t)v(t). There,  is the natural
mechanical resonance frequency of the nanosphere in the harmonic
optical trap. This signal is continuously subjected to a phase-shift to
ensure the damping of the center of mass position oscillations. This
signal is then used to control the intensity of the trapping laser. b)
Spectral density of the center of mass motion along the 3 indepen-
dent directions. A difference in resonance frequency € for each of the
directions can be observed: while the focus on the axial direction is
more extended, leading to smaller stiffness compare with the trans-
verse plane, polarization breaks the symmetry on this plane, leading
to different stiffness on the = and y directions. ¢) Spectral density of
the motion evaluated for different temperatures along the axial direc-
tion, proportional to the area of the spectrum, and the corresponding

pressure, in mBar. Reproduced from ref. [17]



1.1. ENGINEERING THE ENERGETIC LANDSCAPES OF BROWNIAN
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of information processing, with the problem of the minimum energy that must be
dissipated to erase one bit of information limited by the Landauer’s bound [31, 32].
Clearly, the non-equilibrium nature of changing the center of mass temperature by the
action of feedback is rich. We will here however discuss simpler temperature controls.

Instead of cooling the center of mass of the trapped nanosphere, experimental efforts
have also been directed towards heating the Brownian particle, either by directly
heating the fluid [34], also involving feedback techniques [35], or by adding stochastic

forces, such as an external electric field [33]. In panel a) of Figure 1.2, a polystyrene

a)

.

‘ :
10 10 10° 10° -200 0 200
Frequency (Hz) X (nm)

Figure 1.2: a) Polystyrene microsphere trapped in water by optical
tweezers. Custom-made electrodes exert a stochastic force through
electrostatic interactions with the residual surface charges of the mi-
crosphere. b) Position power spectral density (PSD) of the micro-
sphere without the action of the additional stochastic force in blue and
after the addition of this force in green. The superimposed curves in
black correspond to Lorentzian fits. The PSD of the stochastic force,
measured from the input of the electrodes, corresponds to the black
spectrum. This verifies the effective “white noise” action of the elec-
trostatic forcing. ¢) Histograms of the position of the microsphere in
the absence and presence of the extra stochastic force. Same color
code. The change in the variances of the corresponding Gaussian
distribution is interpreted as a change in the effective temperature.

Reproduced from ref. [33].
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microsphere is trapped in water and, through the action of an additional stochastic
force produced by a time-dependent electric field, the temperature of its center of
mass increases compared to the expected temperature considering only the action of
the surrounding water. In panel b), the nature of this white noise force is characterized
by its power spectral density (PSD), in black, that it is flat up to a frequency of 103 Hz.
Due to the effect of this additional force, the position PSD of the trapped microsphere
in blue is transformed into the green one, in which there is a significant increase in the
position PSD area. Both spectra display the same characteristic frequency, confirming
that the temperature modification does not change the trapping potential. Such an
increase in area, directly linked to the increase in position variance, is evident in panel
¢) from the increase in the variance of the position distribution. The increase in

variance is interpreted via equipartition as rise in temperature.

When the temperature is changed by controlling the amplitude of an external
stochastic force, relevant time scales, such the bandwidth in which this force is consid-
ered as a white noise, sampling frequency, and characteristic time of relaxation of the
system under study need to be taken into account carefully [36]. Temperature control
makes it possible, for instance, to investigate asymmetries between heating and cooling
processes [37], thermalization process towards equilibrium [38], memory effects such
like Kovacs [39] and Mpemba [40] effects, and the implementation of colloidal thermal
machines [41], in which exchanges of thermal and mechanical energy are investigated
[35, 42, 43].

The case of the Kovacs effect is, in this sense, interesting to analyze. Initially
observed in attempts to accelerate thermalization through different “heat treatments”
in polymer glass systems [44], it was recently verified in the dynamics of an optically
trapped nanoparticle at atmospheric pressure (around 1 bar), as described in Figure
1.3. There, the dynamics of the particle, which shows just small deviations from the
spectral point of view with respect to the overdamped motion, panel b), attests the
need to consider additional state variables to explain such memory effects [45]. In this
case, the resonance frequency of the trap is 27 x 159 kHz, related to the relaxation
time of potential energy, and the dissipation rate is 27 x 399 kHz, related to the
relaxation of kinetic energy. This implies that, throughout the thermalization process,

the non-equilibrium nature of both degrees of freedom must be taken into account.

The memory effect is observed when a sequential change in temperature is per-
formed, starting from a situation where the center of mass is hot Ty = 2450 K,
followed by an evolution toward a cold temperature T = 298 K, and then to a inter-
mediate warm temperature, Tyy = 1290 K. The change T — Tw is made after a time
interval tyw, chosen as the instant when the potential energy of the particle reaches the

expected value for equilibrium with a target temperature Tyw. This process results in a
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non-monotonic evolution of the potential energy — see red curve in panel d). Whereas
the light blue curves in panel ¢) and d) correspond to the relaxation processes for tem-
perature Ty in diamonds and 7¢ in triangles, both relaxation processes are monotonic
and they have the same characteristic thermalization time. When the Kovacs protocol
is used, this experiment shows that the cooling process is not accelerated by using the

lowest possible temperature T from t = 0 to t = tw, and a non-monotonic evolution

S (bits?/Hz)

frequency (kHz)

Figure 1.3: a) Experimental scheme for trapping a silica nanosphere
in which the temperature of its center of mass is altered by two elec-
trodes, which in turn are controlled by a field-programmable gate
array (FPGA). b) Position PSD in which the complete model, con-
sidering a second-order differential equation of motion for position,
is compared with the PSD expected for the overdamped regime. c)
Protocols for changing the temperature Ty > Ty > T as a function
of time. In light blue, a single change is considered, where the dash-
dotted line corresponds to Ty — Tw and the dashed line to Ty — 1.
The Kovacs protocol corresponds to two temperature changes, in red.
d) Evolution of the potential energy for the three previous protocols
in which the curves correspond to those expected by the theoretical
model, same color code as before. The measurement of the processes
Ty — Tw correspond to diamonds, Ty — T to triangles and the red
circles to the Kovacs protocol. While the vertical dashed line corre-
sponds to the instant of change T — Tw for the Kovacs protocol,
the horizontal dashed line correspond to the expected potential en-
ergy when the particle is in equilibrium with the temperature Tyy.
Reproduced from ref. [39].
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1.2. ACCELERATION AND OPTIMIZATION OF BROWNIAN SYSTEMS

of the potential energy, measured from the position variance, is verified. The Kovacs
protocol is an example of how the flow of thermal to kinetic and potential energy,
analyzed from Brownian particle dynamics, is still an interesting research topic to be
explored.

In those systems in which the center of mass of a trapped particle gets hotter,
temperature is linked to the amplitude of a stochastic force described by a Gaussian
distribution and with a flat spectrum. Although any physical process that produces
stochastic forces necessarily has an associated characteristic time scale associated with,
since the fluid molecules that drive the Brownian particle are very fast, the white
noise approximation for this stochastic force is sufficient to describe the dynamics of
a Brownian particle in equilibrium. In this case, the thermal bath does not add any
characteristic time scale to the Brownian dynamics. However, when the time scale of
the stochastic forces is comparable to the time scale of the Brownian particle, or when
the distribution of the stochastic force is not Gaussian [46, 47, 48], the characteristic
times of the Brownian dynamics are altered, and one of the consequences is the emer-
gence of processes with anomalous diffusion [49, 50]. In such cases, the system is said
to be immersed in an “active bath”.

Engineering the properties of the thermal bath in the context of active matter is
thus of primary importance. Using these techniques, for instance, it becomes feasible
to verify the dependence of the efficiency of molecular motors, such as the kinesin
molecules moving along a microtubule, with respect to the properties of the thermal
bath [51]. By applying external noise forces that mimic the intracellular environment,
faster motions of these molecular motor were observed, demonstrating direct connec-
tions between the efficiency of molecular motors and the fluctuation properties of the
thermal bath.

In this thesis, the focus will be directed towards engineering the thermal bath using
a stochastic force with a flat spectrum and an effective Gaussian distribution, aiming

for a thermodynamic description of state-to-state transitions.

1.2 Acceleration and optimization of Brownian sys-

tems

The ability to control the state of a Brownian particle using external parameters
naturally leads to the study of the evolution between two equilibrium states, as in the
case of the Kovacs protocol discussed in the previous section. Here we will discuss a
few specific strategies for speeding up transitions between two equilibrium states.

The process of accelerating such transitions is one of the main goal of the research

13
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area “shortcut to adiabaticity ” for quantum systems [52] or swift state-to-state trans-
formations in the classical regime [53]. Within this framework, time is explicitly in-
corporated to the thermodynamic discussion as a dynamical variable. To illustrate
these acceleration processes, we will provide some details of the paradigmatic case
called engineered swift equilibration (ESE) [54], initially developed in the overdamping
regime, adapted to combine thermal and confinement changes [55] and, more recently,
applied in the underdamping regime [56], as described in Figure 1.4. In this work, a
nanosphere is trapped in a low pressure chamber (5 mbar) and the intensity of the
trapping laser is controlled by an acousto-optic modulator (AOM). In the upper panel
a), the process of changing the stiffness x; — x; is schematized, where the relaxation
time t,e01ax, associated with a discontinuous change in the stiffness, is displayed together
with #; < t,e1ax, the transition time obtained when the acceleration process is carried

out.

When the dissipation is weak enough, the Brownian particle responds to an external
stimulus with a cyclical transfer between potential and kinetic energies, as can be seen
in the blue curves of panel b), when a discontinuous change on the confinement poten-
tial k; — Ky is produced. Consequently, after #,..x that span several oscillations, the
position standard deviation o, (t) increases to compensate the reduction in & induced
by the protocol. Conversely, after this same characteristic time, the velocity standard
deviation o, (t) returns to its initial value, since a change on the velocity distribution

is not expected after equilibrium is reached in an isothermal process.

By introducing an ESE protocol, which in this context corresponds to a polynomial
function obtained as an ansatz satisfying a system of differential equations plus equili-
bration boundary conditions [57], the equilibration of the Brownian particle is reached
after a time t; < t.ax. Specific details of the system’s out-of-equilibrium evolution
can be seen in panel ¢). While «(t) is associated with the evolution of the instan-
taneous potential energy, 3(t) refers to the evolution of the kinetic energy, and §(t)
captures the correlation between position and velocity. Such acceleration strategies
require an additional energy input to suppress non-equilibrium fluctuations, or in this
context, also the oscillations produced by the external stimulus, in which a trade-off
relationship between the cost and the accelerated relaxation t; is anticipated. In these
ESE protocols that accelerate the transition, their derivation is based on the condition
that the Browinain particle reaches equilibrium at the time interval t¢; however, the
relationship between ¢; and the thermodynamic cost associated with this processes is
not taken into account. Naturally, this gives rise to the issue of optimization in which

some methods have been proposed.

To do in the realm of both isothermal [58] and non-isothermal processes [59], the

concept of “instantaneous equilibrium” has been introduced. The energetic expen-
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Figure 1.4: a) Experimental scheme where a nanosphere is subjected
to the action of two lasers: one that traps the particle (in red), whose
intensity is controlled by an acousto-optic modulator (AOM), and
another used to detect the position of the microsphere (in green).
Two times are considered in the expansion process k; — Kf, lrelax
related to a discontinuous change in potential, and ¢; when acceler-
ated expansion is considered t; < tiax. b) Temporal evolution of
the stiffness for the case of a discontinuous change (in blue) and the
ESE acceleration protocol (in orange). ¢) and d) Temporal evolution
of the standard deviation of position o,(t) and speed o,,(t) for the
two protocols, with the same color code. The stabilization time cor-
responds to t; = 26 us. Inset: close-up of the oscillations in o,(t). e)
Evolution of the coefficients «(t), 5(t), and 6(t) that determine the
evolution of the potential energy, the kinetic energy, and the correla-
tion between position and speed. Measured values correspond to the
continuous curves and theoretical model values to the dashed curves.

Reproduced from ref. [56].
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diture, intrinsically associated with the acceleration, is evaluated by introducing an
auxiliary potential that quantifies the cost of keeping the Brownian particle in an
instantaneous equilibrium state during an acceleration protocol. In these works, the
relationship between cost and transition time is evaluated, but no trade-off relationship
is established.

Alternative strategies focus on the direct minimization of the transition time [60,
61, 62] in which “bang-bang” protocols, forcing the control parameter (stiffness or
temperature of the bath) to undergo maximum changes during the transition, serve
this purpose. Other approaches involve protocols for minimizing the transition time
in the “slow drive” regime, in which the modulations of the control parameters are
slower than the system’s intrinsic relaxation time. These techniques relay on the
formalism of information geometry [63]. The optimization problem is then directly
linked to the determination of a geodesic path [64], which is defined using the concept of
thermodynamic length [65], which in turn quantifies “distance between distributions”.
In these contexts, there is no direct relationship between transition time and relative
cost that allows the derivation of a state-to-state optimal transfer protocol.

By considering isothermal processes in which the cost of a transition can be identi-
fied directly as the work dissipated throughout the process, in the references [66, 67, 68]
an energy dissipation functional, for a given transition time, is constructed. In this
context therefore, the optimal protocol corresponds to minimizing this functional.
These approaches are directly related to the strategies proposed and developed in this
thesis, where the focus is put on the optimization state-to-state transition involving

temperature changes.

1.3 Content of this thesis

This thesis aims to present the experimental and theoretical methods to produce and
describe both dynamically and thermodynamically isothermal and isochoric processes,
implemented on a Brownian particle in the overdamped regime. These procedures are

described throughout three chapters:

e Chapter 2: in this chapter the experimental methods used to implement the
bath engineering techniques are presented. Starting with a discussion on the
time scales involved in the description of a microsphere in an aqueous solution
(overdamped regime), confined by a harmonic potential, the experimental plat-
form for trapping, monitoring and adding external optical forces is presented.
An important development of this experimental platform is the control of the

statistical properties of the laser that exerts radiation pressure on the trapped
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microsphere. The methods for introducing such procedures using an acousto-optic
modulator will be presented in details, together with the description of the dy-
namics of this microsphere, via the Langevin equation. This formalism allows the
description of processes in which the amplitude of the additional stochastic force
changes in time. The case of discontinuous changes and protocols that speeds up

state-to-state transitions are presented.

e Chapter 3: the thermodynamic description of isothermal and isochoric processes
in which the internal energy of the system is defined solely from the potential
energy is developed in this chapter. The description of such processes is based on
the introduction of state functions when the system is out of equilibrium. While
the extension of the internal energy to non-equilibrium states is straightforward,
this is not the case for the entropy of the system. Therefore, a new definition
of entropy associated with a stochastic trajectory is introduced. To quantify the
cost of out-of-equilibrium processes, dissipative energy and entropy production
are introduced and discussed in detail when discontinuous changes in the control

parameters are considered.

e Chapter 4: exploiting the functional approach, we address in this last chap-
ter state-to-state transitions by balancing the trade-off between cost and tran-
sition time of isochoric processes. This methodology enables us to derive opti-
mal transformations with associated time-entropy constraints. Building on the
thermodynamic framework introduced in Chapter 3, we characterize isochoric
transformations influenced by time-varying modulations in the amplitude of the
external stochastic radiation pressure force. In addition, we explore the asym-
metries between heating and cooling processes along three different aspects: for
abrupt changes in temperature, for different acceleration techniques, and finally
comparing the cost for heating and cooling processes as a function of the tran-
sition time and the total temperature change produced in the optimal isochoric

process.
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loring bistability in optical tweezers with vortex beams and spherical aberration.
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Chapter 2

Time dependent temperature in an

optical trap

This chapter details the experimental platform on which the stochastic dynamics of a
Brownian particle trapped in an optical tweezers is probed and controlled. An essential
development of this platform is the addition of a laser that exerts radiation pressure
on such a particle. This addition allows to fix and tune the properties of the thermal
bath via the mere control of an external parameter.

After presenting the power spectrum and position distribution associated with the
stochastic trajectory of the Brownian particle in a stationary state, the dynamical de-
scription of time dependent temperature protocols that connect two different stationary

states will be presented.

2.1 Introduction

2.1.1 Characteristic times

Temperature is a common concept linked to the “thermal sensation” of hot or cold.
This perception only makes sense in the range of meters and seconds since for objects
at the micrometer length scales, “thermal sensation” corresponds to a completely
different effect. Particles at these length scales are subjected to collisions with fluid
molecules with variable intensities, which result in erratic trajectories of these particles
known as Brownian motion. From a fundamental point of view, these collisions have
a characteristic time related to the frequency at which they occur. This frequency, in
turn, depends on the average speed of the fluid molecules, typically 600 m/s for water
at room temperature Tgry. The other parameter entering the definition of this time is
the average distance between molecules, of the order of 0.3 nm, leading to a typical

time interval between successive collisions of water molecules of 0.5 x 10712 s.
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2.1. INTRODUCTION

Then, the diffusion of a Brownian particle confined in a potential is characterized
by additional times associated with its dynamic variables, position x;(¢) and velocity
vj(t). While the first characteristic time 7, corresponds to the average time the par-
ticle spends in each energy level, which determines the correlation between successive
measurements of x;(t), the second characteristic time 7, describes how far on average
the particle continues moving in a direction before collisions randomize that direction,
which in turn determines the correlation between successive velocity measurements
v;j(t). Such characteristic times can be estimated when the drag force is linear with
the velocity, fus(t) = —vyv;(t) and the confining force is associated with a harmonic
potential, that is linear with the displacement, fi..p(t) = —xx;(¢). In this case, for a
micrometric particle in water, 7, = v/k ~ 1073 s and 7, = m/y ~ 107% s, where m is

the mass of the trapped Brownian particle.

With such time scales in mind, the fundamental question of this chapter can be
formulated: how does the dynamics of a Brownian particle measured on the millisecond
time scale tpeas ~ 1072 s evolve when subjected to a change of its “thermal sensation”?
To answer this question, an experimental platform that makes it possible to measure
such dynamics is not sufficient. It is also necessary to have a technique at hand
by which it is possible to alter the “thermal sensation” of the Brownian particle in a
reliable and repetitive manner. To be more precise, this technique should be capable of
changing the statistical properties of the random variables (z;(t), v;(t)), while keeping
the confining potential constant. Note that these random variables are described by
probability distributions that in turn are related with Boltzmann distributions when
the trapped particle is in thermal equilibrium with the fluid. In the case of a harmonic
trapping potential, these distributions are Gaussian, being entirely determined by

variances of position s and velocity s, only.

To solve the dynamics of the Brownian particle in time, it is necessary to define,
in addition to tmeas, the rate at which the position of the particle is measured, faq.
This rate will lead to define another characteristic time, 1/ f,q = dt ~ 0.015 ms, when

sampling typically at f,, = 2'® Hz. Under this rate, it is possible to
of x;(t), since 21 X faq > 1/7,, but not those of v;(t). In an overdamped dy-

namic, the consequences imposed by f,, are appropriate, as they can be understood
by Einstein’s argument for free Brownian motion: from an initial position at ¢ = 0,
the position variance of a free Brownian particle increases as s(t) o< ¢t [69]. To make
it short, if we introduce the root mean square velocity as vps(t) = /s(t)/t, it will
lead to vems(t) o 1/y/t. As t — 0, the denominator approaches zero and therefore
vrms diverges leading to a ill-definition of velocity at very short time scales. These
considerations thus justify making the entire description of the dynamics of the Brow-

nian particle only in terms of “instantaneous” positions z;(t). In turn, this allows us
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2.2. OPTICALLY TRAPPED BROWNIAN PARTICLES

to interpret the particle as a thermometer whose position variances can be used as a
measure of the fluid temperature 7', when in equilibrium, through the equipartition

theorem setting that T = ks /kg.

2.1.2 From stochastic variables to mobility distributions

Usually, it is standard to define x(7) or z; as a stochastic variable associated with
a physical process - see typically [5] and [70]. Note that in this last reference the
notation used for a stochastic physical process corresponds to X;. This lead to define
a trajectory associeted to a given process as a temporal series of position recorded over
a time interval [0, tmeas] 8S [0 trnens] = 1%t }te[0,tmens]s that is a succession of time ordered
stochastic realizations of the stochastic variable x;. For each time, x; takes on values in
the set X = R. Elements of this set are denoted by x € X', while for this process, it is
possible to introduce a probability density P (20 4,,...)- Here a different notation will be
used for the stochastic variable (), to highlight the difference between measuring the
distribution of this variable over time, which corresponds to P (z[o,...]) and measuring
the distribution obtained from an ensemble {j} of independent realizations of the
variable z;(t), for the same time ¢. In this case, this distribution is necessarily Gaussian
and given by p(z, s(t)). One of the outstanding aspects of the Brownian particle model
is the possibility to measure the evolution of the stochastic trajectory for the same
process x;(t), thus determining P (o 4,...]), and the probability distribution associated
with the stochastic variable z;(¢) for each instant of time, thus determining p(z, s(t)),
even for the case in which the instantaneous s(t) position variance evolve in time.
From these basic notations, the experimental technique and procedures to carry out
both the measurements and the controls over the Brownian particle will be presented.
Once the stationary situation is characterized, the methods that make it possible to
study the change in the statistical properties of x;(¢) in time will be described. Then,
the mathematical description of processes that connect two stationary states, defined
through their probability distributions as p(x, s; = kgT;/k) and p(z, sy = kgTy/k) will
provide the right framework to introduce the thermodynamic description of out-of-

equilibrium processes that will be carried out in the next chapters.

2.2 Optically trapped Brownian particles

2.2.1 Experimental platform

The optical part of the experimental setup is shown in Figure 2.1. It can be divided
into 4 blocks that together allow the manipulation of polystyrene microspheres (Duke

Scientific Corp 3 pm in diameter) in aqueous solution. Each block corresponds to a
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2.2. OPTICALLY TRAPPED BROWNIAN PARTICLES

function: block 1 illuminating the focal region (yellow laser), block 2 optically trapping
the microspheres (red laser), block 3 detecting motion (orange laser) and block 4
corresponds to the fourth laser responsible for applying radiation pressure (brown

laser).

Pushing ¥ IIIumlnatlon IN EE Trapping

Block 4 E§ — Block 1 § § Block 2

. ' Photodetector

Det. OUT:

Block 3

Detection IN

Figure 2.1: Sketch of the optical part of the experimental setup. This
setup is divided into 4 blocks that correspond to illumination (594 nm,
yellow laser), trapping (785 nm, red laser), detection (639 nm, orange
laser) and a laser that exerts radiation pressure (tuned at 800 nm,
brown laser), on a Brownian particle, trapped in the focal region
of both the two objectives placed in the center of the panel. The
divergence and waist of each beam are controlled by telescopes and
the intensity of the red and brown lasers can be controlled using
acousto-optic modulators (AOM). The yellow laser is directed to a
CCD camera providing an image of the focal region, as in the image
illustrated on the bottom right panel. When scattered by a trapped
particle, the intensity of the detection laser (orange) is modulated by
the Brownian motion of the trapped particle, measured using a fast

photodetector.
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2.2. OPTICALLY TRAPPED BROWNIAN PARTICLES

Optical imaging system (block 1)

To form an image of a Brownian particle shown in the bottom right panel of Figure 2.1
we use the yellow laser (594 nm, Excelsior-594-50-CDRH). This laser is first expanded
by a telescope and then focused on the back focal plane of a microscope objective
(Nikon Plan-fluo extra large working distance 60x, NA=0.7), resulting in a plane
wave in the sample region. This can be understood from the concept of front and
back focal planes for paraxial rays [71]: while a collimated beam incident on the back
focal plane of an objective is focused at the front focal plane, a beam with a center
of divergence in the back focal plane is collimated after passing through the objective.
This condition is met by the yellow laser when using a converging lens of focal length
30 cm, positioned at this separation distance from the back focal plane of this objective.
To produce an image, another objective is used (Nikon Plan Apochomat 60x, NA =
1.2), in a situation in which both focal planes coincide. Then, this second objective
collects the collimated beam, along with the light scattered by microspheres diffusing
within this shared focal region. The interference pattern is then projected onto a
CCD camera (Allied Guppy Pro, 1292 x 964 pxl?). The objective of NA = 1.2 will be
referred to as objective 1 and the objective of NA=0.7 will be referred to as objective
2 henceforth.

Trapping system (block 2)

In optical tweezers, the condition for trapping dielectric objects having a refractive in-
dex larger than that of the surrounding medium [72, 73], is the presence of a gradient
force, proportional to the spatial intensity distribution of a highly focused laser beams,
faraa x OI(z,y, z)/0x [74]. This gradient force must be stronger than the inevitable
radiation pressure, that in turn is proportional to the laser intensity, fiaqa < (2,9, 2).
This condition requires the use of lenses with large numerical apertures, such as ob-
jective 1. When examining displacements around the equilibrium position that are
significantly smaller than the radius of the trapped microsphere, one can approximate
the optical potential as a harmonic potential. This is a significant simplification, as it
implies a linear relationship between the trapping force and the displacement from the
equilibrium. The validity of this harmonic approximation has been proven through
various experimental results [75, 76, 77]. Notably, by observing the position distribu-
tion of trapped microspheres, as shown in Figure 2.5, we find it to closely resemble a
Gaussian distribution, a hallmark of a harmonic potential. We note however that non-
linearities can also emerge from the interplay between gradient forces (conservative)
and radiation pressure forces (non-conservative) in overdamped [78] and underdamped

[79] regimes.
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The trapping laser that we use, (785 nm, 110 mW OBIS Coherent, CW) has a
Gaussian intensity profile, and is expanded by a telescope system so that its waist
satisfies the overfilling condition at the entry of objective 1. This condition maximizes
the ratio fgrad/ fraa. Under such conditions, polystyrene microspheres in water (refrac-
tive indices npoy = 1.59 and ny,e = 1.33) are attracted towards the focal region of
the laser.
slides, separated by a spacer (Grace Bio-Labs) of thickness 120 gm. The microsphere

solution is diluted to 0.5 x 10~ %, thus ensuring that mainly one microsphere is found

2.2. OPTICALLY TRAPPED BROWNIAN PARTICLES

inside the trapping region during the experiments.

Detection system (block 3)

— O
= e e V™ [V]
ol Digital/ . J ] -

o analog

= converter

Objective 2 Objective 1 n

—_—

Detection

b)

Figure 2.2: Sketch of the detection system. a) The orange laser pass-
ing through objectives 2 and 1 is separated from the red one by a
dichroic mirror and directed to a photodiode. This signal is ampli-
fied and frequency filtered by a low-noise preamplifier and sent to a
digital-to-analog conversion board. The digital signal is then saved
on a computer. The dashed line corresponds to the position of a bulk-
head, used to take a picture of the laser spot and roughly align the
detection laser in relation to the trapped microsphere. This bulkhead
allows us to see the intensity distribution with and with out a micro-
sphere on its way. b) Intensity pattern of the orange laser scattered
by a microparticle (left) and without scattering (right) obtained from
a photograph of the spot of this laser on the bulkhead.
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2.2. OPTICALLY TRAPPED BROWNIAN PARTICLES

The detection laser (639 nm, Thorlabs HL632MG CW) is directed by objective 2 to-
wards the microsphere trapped by objective 1. Both incident beam and scattered light
are collected by objective 1 and separated from the trapping laser by a dichroic mirror.
A sketch of the detection process, together with a photograph of the projection of this
laser onto a bulkhead — which plays the role of an image plane represented by a vertical
dashed orange line before the photodetector — are shown in Figure 2.2, respectively on
panels a) and b). Panel b) shows the difference on the intensity distribution, viewed
by a simple photograph, when this laser is scattered by a trapped particle (image on
the left), to the case in which there is no particle on the optical path of the detection
laser (image on the right). For the case in which the detection laser is scattered by
a trapped particle, the light spreads over a large area, when compared to the case in

which there is no particle scattering light along the optical path.

Due to the inherent nature of Brownian motion, the spatial relationship between
the trapped microsphere and the focal position of the detection laser is continuously
fluctuating over time. This continuous spatial fluctuation induces a time-varying mod-
ulation in the detected intensity. This modulation is quantitatively captured in real
time by the photodiode as an instantaneous voltage signal, represented as V{ia%(t).

This raw signal then undergoes a series of processing steps to refine its utility and

accuracy.

First, it is routed to an amplifier and bandpass filter (Stanford Research, SR560).
This selective filtering effectively isolates a specific bandwidth [0.3; 100.000] Hz from

raw
traj *

nents, which are predominantly influenced by drift effects as for example mechanical

The high-pass component of the filter serves to eliminate low-frequency compo-

oscillations of optical elements that are not entirely neutralized by the pneumatic me-
chanical filtering stage of the optical table, or even subtle drifts in the optical pathways
of the lasers. On the other end of the frequency spectrum, the low-pass filter prevents
aliasing during the analog-to-digital conversion process executed by the acquisition
card (specifically, the National Instrument PCI-6251 paired with BNC-2110).

Radiation pressure (block 4)

The last block sketches a Spectra Physics 3900S Ti:Sapphire CW laser, tuned at
800 nm. This Ti:Sapphire is used to exert unidirectional radiation pressure on the
trapped sphere, the pushing laser. The details of the intensity control of this laser
using an acousto-optic modulator (AOM - 3200 S Gooch & Housego) will be discussed

in a following section.
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2.2. OPTICALLY TRAPPED BROWNIAN PARTICLES

Force diagram

When under control of this experimental platform, the dynamics of a single Brownian
particle can be understood from the force diagram shown in Figure 2.3 [80], in which
the forces depicted are the trapping force, exerted by the trapping laser fi..p(f), and a
time dependent external force fox(t), defined by the intensity of the pushing laser. By
the action of the fluid, the Brownian particle is subject to the unavoidable viscous force
fuis(t) and thermal force finer(t) = 2ksTrrVE;(t), connected through the fluctuation
dissipation theorem [81]. Here &;(¢) is a stochastic variable with zero mean (&;(t)) =0
and delta correlated (§;(t)&;/(t')) = d;;0(t —t'). The sub index j accounts for a label
taken on the ensemble of different realization of this stochastic variable, at the same
instant of time ¢ and (...) correspond to the ensemble average over those different

j—trajectories, for the same time instant.

ftlher(t )

fext(t)
f\./is(t) H

% ﬁrap(t)

Figure 2.3: Force diagram that determines the dynamics of the Brow-
nian particle. While the trapping force fi.ap(f) and the external force
fext(t) respectively correspond to the action of the trapping laser and
the laser exerting unidirectional radiation pressure, the pair viscous
force fyis(t) and thermal force fiper(t) are connected by the fluctuation

dissipation theorem.

2.2.2 Observables

The processed time series V;.,j(t), derived from the raw signal Via¥(t) after filtering
and amplification, is depicted in Figure 2.4, panel a). Captured at an acquisition rate
faq = 2'° Hz, this series acts as a primary measurement, in which all observables are
derived from. A brief interlude is taken to explain the method of position and stiffness

calibration [82], based on a linear relation between the microsphere displacements and
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2.2. OPTICALLY TRAPPED BROWNIAN PARTICLES

the scattered laser intensity (x;(t) = Viwj(t)/5, with 8 a constant calibration factor),
using the Power Spectral Density (PSD(f)) of Visj(t), that in turn is measured from
a discrete Fourier transform [83].

A discrete Fourier transform consists into the mapping of the time series Viy,;(t) =
Viraj(k/ faq), where k spans from 0 to N — 1, and N = 655.360 is the total of measure-

ments over a total acquisition time tpeas = N/ faq = 20 s, to the series ‘N/traj (mfaq/N),

mk’) .

with m ranging from 0 to N/2, by the transformation:
k

N-1
féraj (%faq) = ; Vtraj (faq) exp (

From this, the PSD(f) can be measured as PSDy (f) = |Vieaj(f)[?, illustrating

the signal’s power distribution across frequencies. Effectively, PSD(f) provides a

—mi— (2.1)

N

comprehensive frequency component spectrum of the signal, highlighting dominant

contributors.
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Figure 2.4: a) Trajectory of a Brownian particle in Volts measured
using the setup shown in Figure 2.2 at f,, = 2'5 Hz. b) PSDy(f)
measured for this time series. In black a Lorentzian function is fitted
in the typical interval [10; 10?] Hz, in which f, is measured (dashed line
in red). For frequencies lower than 8 Hz, the PSDy (f) deviates from
the Lorentzian behavior, due to low-frequency drift, but this deviation
can be excluded from the analysis by decreasing the bandwidth used

to perform the Lorentzian fit.

At equilibrium, the associated PSD,(f) of z(t) corresponds to a Lorentzian profile,

determined by its area (time series variance) and the roll-off frequency f, = 1/(277,)
in Hz. Thus, using the Lorentzian profile PSDy (f) = Gy /(7*(f2 + f?)), it is possible
to relate the integrals as: [~ PSD,(f) df = (1/8%) [;° PSDv(f) df = ksT/k. Those
measurements are shown in panel b). While the left axis corresponds to the PSDy (f)

in units of V2/Hz, on the right axis the calibration factor § was used, turning to
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2.2. OPTICALLY TRAPPED BROWNIAN PARTICLES

PSD,(f) in units of m?/Hz. The black curve corresponds to the Lorentzian fit from

which Gy and f. are determined.

Uncertainty of the direct measurement

In order to estimate the error obtained for converting volts into units of length, with
g = \/W , the variability of the Gy is important to account for. We do so
from the standard deviation of 3 independent measurements of PSDy (f), in which
Gy = 0.86 + 0.03 V2/Hz. In addition to the uncertainty related to the determination
of Gy, we also take into account room temperature uncertainty Tgr = 293 £1 K
that impact on the drag coefficient v = 67n(Tgr)r', which in turn depends on the

viscosity of the water, n(Trr), and the radius of the microsphere r. The error in ~

can thus be estimated as 6y = v+/(dn/n)%+ (6r/r)?, that in turn, by considering
om = (T =292) — n(T = 294))/2, n = 1.00 £ 0.02 mPa.s and the size dispersion
of the microspheres given by the manufacturer » = 1.50 & 0.02 pm, is evaluated as
v = 2.70 + 0.07 x 1078 kg/s. This implies finally that, 3 = 2.3 + 0.1 x 105 V/m, is
determined with a relative error of §3/6 = 5 %. This uncertainty means that, even
with a large number of independent measurements of x;(¢) that minimize the statistical
errors associated with a finite sample, the measurement of observables obtained from
this time series will necessarily have a relative error greater than 5%.

The characteristic frequency, also obtained from a set of 3 PSD(f), is fo = 79 +
2 Hz, which corresponds to a characteristic time 7, = 1/(2nf.) = 2.01 £ 0.06 ms.
Consequently, this sets the error on the trap stiffness k = 13.1 + 0.5 fN/nm. One of
the advantages of using the position spectrum to determine such measurements is that
non-thermal noises that necessarily deviate from the Lorentzian spectrum are easily
identified, and can therefore be disregarded from the analysis, straightforwardly. In
general, a bandwidth of [10; 10?] Hz is chosen to perform the fitting of P.SDy (f) with

a Lorentzian function.

Trapping characteristic time signature

To interpret the characteristic time 7, it is worth analyzing the panel a) in Figure
2.4. On a time scale of tyes = 57, the correlation of the data is evident. For
tmeas < Tz, SUccessive measurements of z;(t) are close to each other and grouped
into clusters with length of ~ 0.01 V that corresponding to a spatial extension of
4 nm. Over this time scale, the dynamics of the Brownian particle is dominated by

the high-frequency components of the thermal force fine:(t), which are not capable

Valid in the regime of small Reynolds numbers and when a spherical object is far enough from

any surface.
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2.2. OPTICALLY TRAPPED BROWNIAN PARTICLES

of producing significant displacements. When measuring z,(¢;), the probability that
another measurement z;(t,) made on this short time interval, t; —t; < 7., is in the
neighbourhood of z;(t1), at a distance of the order of 4 nm is larger when compared
to separation distances > 4 nm. On the other hand, for ¢, — t; > 7., the correlation
between measurements of x;(¢;) and z;(t2) decreases, and it is equally probable to find
z(ty) on the neighbourhood of x;(t;), or at slightly larger distances. In this second
case, low frequency components of fipe:(t) start to contribute on this time scale, making

significant displacements more likely.

Position distributions

While a power spectral density requires measuring the particle dynamics over only
tmeas ~ T, at a high rate, the series represented in Figure 2.5 is measured on a larger

time scale, teas > 7o
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Figure 2.5: a) Position distribution with a Gaussian fit built from
the temporal series shown on panel b). b) Successive points, in a
total of 7200, that correspond to position measurements taken over
successive time intervals of 4.57, = 9.2 ms, thus corresponding to
successive uncorrelated measurements. c) Position distribution using
the time series shown on panel d), superimposed by the Gaussian
fit obtained from panel a). d) Successive points, totaling also 7200,
correspond to position measurements made at each time interval of
0.0157, = 0.031 ms, thus corresponding this time to successive corre-

lated measurements.

29



2.3. BATH ENGINEERING

Over such time-scale, it is possible to measure the position distribution P (2o4,,...])
- here N = 7200 events - associated with the temporal series of the stochastic variable
x(t). Such distributions are displayed in panel a) and c) and their respective time
series shown in b) and d).

For tmeas ~ Tz, the Brownian particle, initially at a position x;(0), has no time
to explore by diffusion the entire spatial region associated with the Boltzmann dis-
tribution, p(z, kgT/k) = \/k/(27ksT) exp(—rz?/(2kgT)), determined by the macro-
scopic parameters k,T. In panel a) and c), these regimes are considered: in panel
a), tmeas = 330007, while in panel ¢), tyeas = 1007,. These distributions will be an-
alyzed in order to clarify the relation between probability distribution measurements
and correlation, in other words, the necessity to have enough statistically independent
measurements of z;(t) to probe p(x, kgT'/k).

Since the time difference between successive measurements of x;(t1) and x;(t) in
panel a) and b) corresponds to a time separation to — t; = 4.57, = 9.2 ms, successive
measurements of z;(¢) are uncorrelated. As a consequence, fewer realizations of x;(t)
are sufficient to determine the stationary distribution associated with this stochastic
variable. For the panels ¢) and d), the time difference between successive measure-
ments is to — t; = 0.0157, = 0.031 ms leading to high correlation between successive
measurements. We compare the two distributions in panels a) and c), constructed
with N = 7200 measurements of z,(t) by the kurtosis of 100 distributions with the
same N. While for the set of cases measured under the same conditions as panel a),
the kurtosis is 3.04 £0.04, for panel ¢) we get 3.0+0.4. Although the two distributions
are GGaussian on average, there is a higher dispersion around the Gaussian behavior
for the case in which successive measurements are correlated, when compared to the
case of a set of uncorrelated data. From now on, the effect of correlation on the mea-
surement of the position distribution will not be relevant since position distributions
will be measured from the {j} ensemble of statistically independent trajectories, not

from time averages.

2.3 Bath engineering

When the system is at equilibrium, the temperature of the thermal bath defines
through equipartition the normalisation condition, s = kgT'/k, for both PSD(f) and
position distributions. In this way, the reverse process can be used to determine the
temperature of the thermal reservoir: the measurements of x and s, when the system
is at equilibrium, can be used to determine 7" in a situation where external forces pro-
duce extra fluctuations, thus increasing the value of s, compared to the one expected

if only room temperature Trr is considered.
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In order to extra fluctuations be considered as analogous to a change in temperature,
the temporal distribution of the magnitude of this external fluctuation must not inject
correlations into the dynamics of the Brownian particle. From a practical point of
view, this condition requires a physical system with a response time much shorter
than the characteristic times of the Brownian particle. This section will discuss the
methods developed to add additional fluctuations to the dynamics of the Brownian
particle by controlling the intensity of a laser that exerts random radiation pressure

directly on the particle.

2.3.1 Acousto-optic modulator (AOM)

Intensity modulations are implemented in the experimental set-up using an AOM by
which a laser beam is diffracted by an optical medium (tellurium dioxide) within a

spatial inhomogeneity in the refractive index produced by the presence of sound waves
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Figure 2.6: a) Diagram for controlling the radio frequency generator
(RFG) through an input voltage Vi,. Its output V;AOM is measured
by an oscilloscope. b) Time response of the RFG for Vi, constant in
time with an intensity of 1.0 V in orange and 0.5 V in blue. The oscil-
lation period is 5 ns. ¢) Linear variation of Vi, in time and associated
response V;AM of the RFG. Since the periods of the two signals have
a few orders of magnitude of difference and the trigger on the oscillo-
scope was set on the linear variation of Vi, it is not possible to resolve
the fast oscillations shown in b) for V;AOM. As a consequence, this

signal corresponds to a series of uncorrelated points with amplitudes

that change in time.
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2.3. BATH ENGINEERING

in this medium, the so-called acousto-optic effect [84]. In the case of an AOM, the
sound waves are produced by a piezoelectric transducer, powered by a radio frequency
generator (RFG), with driving frequency fqrive = 200 MHz, that limits the maximum
bandwidth for intensity modulation. The wavelength of the sound wave in the optical
medium defines regions of higher and lower density, which in turn generate modulation
in the refractive index with the same characteristic length as these waves.

As the optical oscillation frequency ~ 5 x 10'® Hz is much higher than the frequency
at which the properties of the medium change, it is possible to use an adiabatic ap-
proach to describe the response of the laser beam to the effect of the inhomogeneity
of the optical medium at each time instant. Thus, the incident light beam experiences
a periodic network in which, for an angle of incidence that satisfies Bragg’s condition,
the beam is reflected with an efficiency proportional to the amplitude of variation of
the effective refractive index, defined by the amplitude of the sound wave.

The RFG control is illustrated in Figure 2.6. In panel a), a digital signal corre-
sponding to a time series with values in Volts, at a generation frequency fgen = 2'° Hz
is sent to a digital analog converter (same model as in Figure 2.2). The analog signal
Vin(t) is then sent to the RFG. An oscilloscope was used” to visualise the output signal
from the RFG, which in turn will be sent to the piezoelectric transducer of the AOM,
VAOM " Tn panel b), VAM is measured for Vi, = 0.5 V, blue dots, and Vi, = 1.0 V,
orange dots. In panel ¢), we see that the amplitude of the GRF output signal varies
non-linearly for a time linear input signal Vj,, in blue. While the period of Vi, is 200 us,
VAOM VAOM changes

the period of a single oscillation of is 5 ns. Since the amplitude of

in time, it cannot be used as a trigger for the oscilloscope. Using Vj, as a trigger, the
difference in time scales between these two signals leads the rapid oscillations of V;AOM

that corresponds to the scattering of red dots in panel c).

AOM calibration

An important procedure for controlling the intensity of a laser using an AOM is to
determine a function pean(Vin) that allows the functional behavior of Vi, and Vi
to be identical, schematized in Figure 2.7. The diagram in panel a) shows how to
measure Vg, proportional to the intensity of the light beam diffracted by the AOM.
The measurement of Vi, and V, for a linear variation of Vi, in time with a frequency
of 1 Hz is shown in panel b). While the unit of Vi, is relevant since this quantity
determines the amplitude of V2™ (the input voltage range to control the RFG is
[0;1.0] V), the unit of V., measured by a photodiode, is arbitrary. The axis on

the left is then normalized and varies between [0;1.0]. This can be understood as a

2The RFG output signal of the order of 30 V is too intense to be acquired by our conversion board

directly.
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2.3. BATH ENGINEERING

relative measurement of the diffracted light amplitude produced by the AOM, that
varies between 0 % to 100 %. The AOM calibration procedure is thus based on the
relation between Vi, and V,,;, measured both at the same time. This relation is shown

by the blue points and axis in panel c).
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Figure 2.7: a) Diagram displaying how the diffraction efficiency of an
AOM is controlled. It also shows the consequent intensity modulation
of a diffracted beam via the output V., of a photodiode, after this
signal has been amplified and filtered by a preamplifier. This setup is
used to perform the AOM calibration and to characterize the statis-
tical properties of the brown laser intensity discussed on the Figure
2.8. b) For a signal that controls the RFG with Vj, linear in time (in
red) the intensity of the diffracted laser is measured in blue. While
the red axis on the right corresponds to V;,, in Volts, sent to the RFG,
the blue axis on the left corresponds to the V,,; normalized between
[0; 1.0]. As the two measurements are taken at the same time instants,
the black axis is shared among them. ¢) The measurement of Vg, as
a function of Vi, and its respective axes are represented in blue. This
measurement is inverted, in red, and a polynomial of degree 7, peaiib,
is fitted to this red curve. d) As a consequence, when sending the
signal pearin(Vin) to the RFG, where Vi, corresponds to a signal that
varies linearly in time, V,; measured in blue has the same functional
behavior. The oscillations produced by the calibration procedure cor-
responds to a deviation smaller than 1 % in average, with respect to
a linear fit implemented on these data.
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In the same panel, in red, the relation Vi, = f(Vi,) is inverted. Then, the input
control Vi, is expressed as a function of the relative diffracted intensity V., cor-
responding to the axis on the right and on the top in panel ¢). On this curve, a
polynomial of degree 7 is fitted in black. This fit corresponds to pean. Thus, using
the same linear dependence in time but sending peann(Vin) to the GRF, in panel d) the
intensity of the laser diffracted by the AOM is measured, again in arbitrary units. It
is possible to verify the linearity of this signal, that follows the same functional time
dependence of Vi,, but with some oscillations, generated by the calibration process.
These oscillations correspond on average to a deviation of less then 1 % in with respect

to the linear function used to fit these data, see panel d).

2.3.2 Bath engineering exploiting radiation pressure

The effect of the laser that exerts radiation pressure on the Brownian particle can be
divided into two contributions, one associated with its average intensity, responsible
for producing a shift in the equilibrium position of the particle, the larger the more
intense this laser is, and a contribution related to its time dependence. While external
harmonic forcing result in the appearance of a peak on PSD(f), at a the frequency
corresponding to the modulation of the external force, it is possible to imagine that
the consequence of an external force that has components on several frequencies is
to produce a shift on PSD(f), where, for each frequency, the shift is proportional
to the intensity of the external force for this particular frequency. This is the simple
spectral picture that will lead us to the concept of effective temperature of the bath,

and thereby its control.

External noise characterization

In order to change such an effective temperature of the bath in which the Brownian
particle is immersed using an external force, the spectral distribution of this force
must have the same properties as the heat reservoir itself. These spectral properties
correspond to a force in which “all” frequency components have the same amplitude.
While from a spectral point of view this property corresponds to a constant spectrum,
from a temporal point of view it corresponds to a series that has a §(t —t') correlation:
the intensity of this force does not depend on previous instants.

In practice, these considerations are only valid over a finite bandwidth, that in
the case considered here, should be broad enough to produce the same change on the
spectral properties of x;(t). The setup presented in Figure 2.7 is used to probe the
characteristic features of fe(t), when emulating an effective bath. In Figure 2.8, a

temporal series of Vi, proportional to fe(t), is measured in panel a) and b). While
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Vin is generated at fyen = 2" Hz as a uniform random distribution, it is acquired at
faq = 2'® Hz.

Since faq > feen, it can be seen that Vi, corresponds to a plateau of constant
value, at time intervals of 0.03 ms, which corresponds to the green spectrum measured
and shown in panel ¢). The frequency fgen separates two regimes. For f < foen, i.e.

between different plateaus, there is no correlation and the PSD intensity is constant.
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Figure 2.8: a) Time series of the laser diffracted by an AOM with
a constant average and uniformly distributed in time. The AOM
diffraction efficiency changes at a rate of fgn = 2'° Hz while it is
acquired at a rate of f,, = 2'® Hz. Due to the difference between
these rates, expected constant intensity plateaus with a duration of
30.5 ps are observed. b) Same time series as a), but over a total
measurement time of t,.,s = 12.3 ms, where the constancy of the
peak-to-peak voltage Vj,;,, can be verified. c¢) Power spectrum of Vi
for different feen. Green, fen = 2%, yellow fyen = 2'% and blue
feen = 2'7, measured at a rate f,q = 2'® Hz. Since the bandwidth over
which V. is considered as a white noise, defined by a constant power
spectrum, increases as high generation frequencies are considered, the
value of the corresponding plateau should decrease. This is why the
blue spectrum, that has the highest fgen, corresponds to the lower
power spectrum plateau. For frequencies f > foen, it is possible to
verify the correlation in V, as measured by the decrease in spectral

intensity for these frequencies.
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For f > feen, the measured bandwidth is associated with time intervals small enough
to probe the variation of V,; at points that correspond to the same plateau, i.e. com-
pletely correlated. Thus, PSD(f > feen) < PSD(f < feen). When Vi, is generated
at higher rates, yellow curve fgen = 2'6 Hz and blue curve fye, = 2'7 Hz in panel ¢), it
is possible to see a decrease in the plateau of the PSD(f), for f < feen. As for these
) must be constant, the wider the bandwidth is, the lower the
plateau for PSD(f < fgen) must be. As the effective temperature 7" is a function of
(Var

out

cases the variance (V2,
), and frequencies of the order of f ~ 1/7, have a more significant impact than
f > 1/7, the signal with fee, = 2'° Hz was chosen to modify this effective temperature
T in order to produce higher ones for the same (V2.).

Another factor that affects (V2

out

) is the distribution used to generate the digital
random signal Vi, (¢). While a normal distribution is defined by its mean and standard
deviation, a uniform distribution is defined by its maximum and minimum values,
which in turn define the peak-to-peak value V,,,. Thus, for a given V,,;,, a uniform dis-
tribution will necessarily have a larger variance, compared to a Gaussian distribution
with the largest possible variance, for a given V,,. The convergence from a uniform
distribution to an effective effect associated with a stochastic force having thus a nor-
mal distribution is an interesting topic. We will discuss a few more aspects of this
relation below.

In all protocols involving additional stochastic forces, the distribution used to gener-
ate Vi, is uniform, where the effective temperature of the thermal bath will be directly

related to V,,, illustrated in panel b).

Temperature calibration

To determine the effective temperature of the particle, when at equilibrium with the
thermal bath, we now look at a stationary situation, depicted in Figure 2.9. For
Vpp = 0, using the same calibration discussed in Figure 2.4, it is possible to determine
the relation x;(t) = Viya;(t)/ 3, since in this case the Brownian particle is at equilibrium
at a temperature Ty, and trapped with a corner frequency f., extracted from the
Lorentzian fit, as discussed in the Section 2.2.2. When the particle is subjected to
Vop # 0, its position spectrum will be shifted, as can be seen in panel a), in which
Vop = 0 (blue), V;,, = 0.5V (yellow), and V;,, = 1.0 V (green).

Using the adjusted values of § and f., it is possible to set T" as the only fitting
parameter for the Lorentzian function that will describe the PSD(f) in the situations
for which V,, # 0. The relationship between the adjusted 7" and the amplitude of
Vin is shown in panel b). To assess the uncertainty associated with this calibration
method, it is possible to measure the average deviation from the linear fit, as we did
for the AOM calibration on Section 2.3.1. In this case, 6T'/T x 100 % = 7.4 %.
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Figure 2.9: a) PSD(f) of z;(t) for which different V,, of the AOM
that controls the radiation pressure intensity are considered, in a sta-
tionary situation for the Brownian particle. In blue, V,, = 0, in
yellow V,, = 0.5 V and in green V,, = 1.0 V. Using § and f, mea-
sured from the blue data by fitting a Lorentzian function, these pa-
rameters are used in the fit for V,,, # 0. For those cases, the only
fitting parameter left is the equilibrium temperature 7', responsible
for the displacement in the spectrum. b) From 3 measurements for
Vop = 0, and 11 measurements of 7" with different V;,;,, a linear func-
tion is fitted, in which the proportionality coefficient between T" and
v,
of these measurements from the liner adjustment, an uncertainty of

0T/T = 7.4 % is obtained.

T(Vy) = aV2 + Tgr, is measured. From the average deviation

Instantaneous temperature

It is important to note that the relationship between the position variance s and the
temperature of the thermal bath 7" is only valid in a stationary situation. But once the
relationship has been established, it is possible to define the instantaneous temperature
of the heat reservoir, even when the system is not at equilibrium with it.

Indeed, by introducing a time dependence V,, = V,,(¢), it is legitimate to define
a time evolution in the temperature of the thermal bath T'(t) oc Vi (), determined
unambiguously for each instant of time, and regardless of the measured value of the
instantaneous variance position s(t) for that same instant, as explained in detail below.

In this context, we can propose protocols for changing the temperature of the
thermal bath as shown for the case of a discontinuous change of V,,,(t) at ¢ = 0 in Figure
2.10. As a consequence of this temperature change, the position distribution of x;(t)
will evolve in time, being described by the time dependent probability distribution
p(z, s(t)), where for each instant of time it is possible to define an instantaneous
variance s(t). For this process, initial equilibration for ¢ < 0 corresponds to s; =
kg(T; + Trr)/k and, after evolving through a transient region, at a sufficiently long

times t/7, > 1, the Brownian particle must be again in equilibrium with the thermal
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bath but at the new temperature, where sy = kg(Ty + Trr)/k. For these two cases,
the distributions of position p(z, s;) and p(z, sy) can be measured in the same way as
in Figure 2.5, but this measurement procedure cannot be used within the transient.
In this case, we measure p(z, s(t)) from an ensemble {j} of independent realizations

of the same process T'(t), as now explained.

oul

Water at Ty

k

Figure 2.10: The laser (in brown on the left side of the diagram),
exerts unidirectional radiation pressure on the harmonically trapped
microsphere and adds noise to its diffusive motion. At t < 0 the
brown laser peak-to-peak intensity Vj,, is maximum, and the system
is at equilibrium with a high temperature bath with T'(t < 0) =
T; 4+ Trr. At t =0, V,, is changed instantaneously to a lower value,
and the temperature of the thermal bath is instantaneously considered
to be T'(t > 0) = T§ + Try. After this time instant, the Brownian
particle is considered to be in a non-equilibrium state: the statistical
properties of z;(t), characterized by s(t), will evolve in time through
a transient with a natural relaxation time of 27,. For t > 7., the
Brownian particle is again at equilibrium, but now with a temperature
Ty +Trr, different from the initial one. Such abrupt change of effective
temperature will be hereafter named “STEP-like T'(¢) protocol”, see
Section 2.4.2 below.
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Building the ensemble {j}

To measure p(z,s(t)), the protocol T'(t) is repeated many thousand times so that it
is possible to obtain independent realizations of the stochastic variable x;(t) to build
precisely the distribution p(x, s(t)), depicted in Figure 2.11. Initially, a reference signal
Viet(t) is generated, panel a), so that it is possible to reliably identify the start of a
protocol. This measurement corresponds to the difference between consecutive mea-
surements Vier(t + dt) — Viee(t), and corresponds to the black vertical lines in panel d).
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Figure 2.11: a) Reference signal Vi, () used to generate the time series
Vin(t) using Eq. (2.2). The difference between two consecutive values
of this signal is used to identify the start time of the protocol T'(t)
represented in the vertical lines in ¢). b) Time series Vi, (¢) sent to the
RFG to generate a stochastic force whose amplitude changes discon-
tinuously. This signal controls the intensity of the force that generates
radiation pressure on the Brownian particle Vi, (t) o fext(t) ¢) While
the panel on the left corresponds to the distribution of Vi, for a time
interval of 107,, an interval in which V¢ is constant, the panel on
the right corresponds to the average distribution of two consecutive
values of V,, considering that same time interval. d) Measurement
of the temporal evolution of the Brownian particle’s position when
subjected to fext(t). The vertical black lines correspond to the start
of a heating or cooling protocol.
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This quantity is used to define the values V,, that will correspond to the maximum and
minimum values at which random numbers will be generated Random|[—V,,/2, V;,,/2],
following a uniform distribution, shown on the left panel of ¢). These values correspond

to Viu(t), shown in panel b), and are determined by

‘/ref(t>
2

in which we set (Vi,(t)) = 0.5 V so as not to have V;,(t) < 0. From this average

value, the maximum modulation amplitude V,, = 1 V can be implemented, since

‘/ref<t>

Vin(t) = Random[0.5 — ,0.5 + T], (2.2)

1 V corresponds to the maximum voltage value that can be sent to the RFG (our
equipment does not allow negative voltages neither).

The time interval in this protocol in which the temperature of the thermal bath
is constant corresponds to 107, in which 580 realizations of Vi, are made, whose
distribution is shown in the left-hand c) panel. Otherwise, the time interval between
two consecutive impulses of this stochastic force is set to 0.03 ms, and it is legitimate to
interpret the effective forcing on the dynamics of the Brownian particle by an average of
consecutive realizations of Vi, (¢). Thus, the right-hand c¢) panel shows the distributions
of Vi, values when considering the average between two consecutive values.

To analyze the relationship between an uniform and normal distribution, it is then
convenient to compare the average kurtosis for different distributions of Vi,. When
considering 50 uniform distributions, the kurtosis value obtained is 1.80 4+ 0.05, as
expected. For a distribution obtained from the average of two consecutive values,
2.5+ 0.2 and, if 5 consecutive points are considered to make the average, 2.7 £ 0.3,
already compatible with the description of a Gaussian noise. This analysis shows
the relationship between the frequency of generation of the stochastic force added to
the system and the effective distribution corresponding to this force. For all intents
and purposes, the stochastic force in this work will be implemented from a uniform
distribution, but in the theoretical description it will be considered as coming from a
Gaussian distribution.

From a total acquisition time of ¢,,c,s = 6 min, a long time series x(t) is obtained.
The beginning of this temporal series, that last a few realizations of a cyclical heating
and cooling protocols, are shown in panel d). Thus, by identifying the instant of the
discontinuity, which the black vertical line corresponds to, the ensemble of realizations
of the protocol T'(¢) is built, and the time dependent ensemble average properties of
the stochastic variable x;(t) can be measured.

For each of these independent realizations, the initial position z;(0) is a stochastic
variable from a distribution p(x, s; = kg(T; + Trr)/k), defined in a thermal bath with
temperature Ty 4+ Trr. In order for this initial condition to be realized, before any

change in temperature is induced, a waiting time interval of 107, is introduced. This
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waiting time ensures that the Brownian particle has enough time to reach equilibrium
with T; +Tgrr or T +Trr for both the sequences of heating and cooling protocols. The
different realizations {j} are combined in such a way that for each time instant, a set
of values () is obtained, with the same initial condition p(z, s;), and in such a way
that for each instant, it is possible to determine the distribution p(z, s(t)) associated
to x;(t).

2.4 From discontinuous changes to finite-time pro-

cesses

2.4.1 Dynamical description

This section details the mathematical formalism that we will use to describe the dy-
namical evolution of a Brownian particle between two equilibrium states when sub-

jected to temperature T'(t) protocols.

At the level of one trajectory j, the motion z;(¢) of the trapped microsphere along
the optical axis & of the optical trap is described by a Langevin equation. When
subjected to an external force fe(t) = fpc + df(t) of constant mean, (foxt(t)) = fpc
and delta correlated, (6f(t)0f(t')) o §(t — t'), as discussed in the previous section,
the particle will see a change in the effective temperature of the heat reservoir. The
consequence of this is a change in the magnitude of the resulting stochastic force, that

can be quantitatively described in the equation of motion as:

9 (1) =~y (1) + T (1), (2:3)

where the stochastic variable £;(¢) has zero mean (£;(¢)) = 0 and delta correlated
(€ ()& (t")) = 0;70(t —t'). Note that the effect of fpc is to simply induce a change
in the equilibrium position xy, measured from the initial averaged position (x;(t)) =
z9 =0 to zg = fpc/k. By incorporating a change of variables x;(t) — z;(t) + fpoc/k,
and assuming that x and fpc are constant during the process, the effect of fpc can be
incorporated into Eq. (2.3), and the change of variable will corresponds to (x;(t)) = 0.
Of course, more complex processes can be considered by introducing time dependence
on £(t) or fpc(t), leading to (x;(t)) # 0.

Eq. (2.3) can be used to describe the temporal evolution of z;(t) associated with a
single trajectory j, or to describe the statistical properties of z;(t) at one given time

t considering an ensemble {j} of N realizations of this variable.
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Single trajectory evolution

In the first case, the solution for a single stochastic trajectory will depend on the
initial condition x;(0) (since it is a first-order differential equation) and the knowledge
of &;(t) for each instant of time. Then, x;(t) can be obtained in terms of z;(0), T'(¢)

and &;(t) using a Laplace transform, leading to

25(t) = 2;(07) expl—t /7] + / J Z’“BTT(%@ expl(C — )/mldc.  (2.4)

We emphasize that the non-local nature of the temporal evolution of () is made
explicit from the correlation introduced by the integral in the time interval [0,¢]. In
addition, the necessity to know a priori the protocol T'(t) clearly appear since the
stochastic variable z;(t) at time a ¢ depends on the evolution of the protocol T'(¢) at

previous times.

Variance evolution

In the second case, the description in terms of the position probability distribution
p(z, s(t)) corresponds to a deterministic evolution in which the temporal correlation
relating z;(¢) and &;(t) is no longer made explicit. Due to the Gaussian nature of z;(t),
the definition of p(x, s(t)) only demands to determine the average of 273 (t), considering
independent realizations in the {j} ensemble, at each instant of time.

The differential equation describing the evolution of this stochastic quantity is ob-
tained by multiplying Eq. (2.3) by x;(t) — with 7, = 7/k the characteristic time with

the damped motion of the particle inside the trap, see Section 2.1.1 above

def =~ 2, 8kpT(t)
E(t)__f_xxj(t)jL Tﬁj(t)%’(t)a (2:5)

where it is possible to determine the autocorrelation for zero lag (#3(t)) = s(t), and the
correlation for zero lag for the two stochastic variables (x;(t)&;(t)) = \/ksT(t)/(27),
calculated from Eq. (2.4).

Although the evolution of x;(t) is non-local in time, since the initial condition z;(0)
is independent of &;(¢), and £;(¢) is local, the correlation (x;(t)&;(t)) is a local quantity,
since it does not depends on the previous values of z,(t).

Using these relationships, the evolution of the position variance obtained from an

ensemble of independent realizations of a protocol T'(t) corresponds to

ds(t) _ 2 (kBT(t) _S(t)>7 (2.6)

dt Ta K
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where the effective nature of T'(¢) implies that thermal changes affect the diffusion
coefficient simply as D(t) = kgT'(t)/~v with the relaxation time of the system 7, remains
constant.
To interpret the dynamical impact that T'(t) has on s(t), it is convenient to compare
Eq. (2.6) with the equation of a RC' circuit
AVout (1) 1

sl = 56 Mhalt) = Vo 1), (2.7

where the time variation of the output voltage V. () is determined by the charac-
teristic time of the circuit given by its capacitance C' and its resistance R and the
instantaneous input voltage Vi, (¢). In this context, by varying the amount of energy
per charge carrier in time, defined by Vi, (t), Vou(t) will also vary in time, limited by
the response time given by RC.

In the case of the Brownian particle, by changing the thermal energy kgT'(¢) in a
finite time interval, the term rs(t) will evolve in time towards a stationary situation,
which corresponds to ds(t)/dt = 0. This stationary limit corresponds to the situation
in which kgT'(t) = ks(t). If the protocol T'(t) has a very slow time dependence with
respect to 7, in other words, if the time derivative of the temperature protocol 7' =
dT'/dt obeys the condition T'/T < 1/7,, s(t) will correspond to a stationary evolution
with a time dependence determined by the protocol kgT'(t)/k.

2.4.2 Isochocric discontinous transformations: STEP-like T'(t)

protocol

We will now look at the evolution s(t) derived from protocols T'(t) that connect two
stationary states. We start here with the evolution of the motion variance s(t) along
the STEP-like temperature protocol plotted in Figure 2.10, T'(t) = (Trr + T;) +
O(t)(Ty — T;), where O(t) = 0, for t < 0 and O(t) =1, for t > 0.

A discontinuous change in a control parameter can be understood as a free evolu-
tion starting from an out-of-equilibrium initial condition, since <x§(0)> # kgT(0)/k.
In this case, the initial probability distribution is set to p(z,s(0)) = p(x,s;) =
1/\/27s; exp[—2%/(2s;)], where s; = kg(Trr + T}) /K.

The evolution of the probability distribution p(z, s(t)) associated with z;(t) is de-
termined by the initial condition s; and by the macroscopic parameters x and Ty + 7%

according to

s(t) = s eXp[—zt] + ks (Ty + Ter) (

T K

- exp[—zt]> | (2.8)

Tz

The procedure outlined by Eq. (2.8) and the kurtosis 2.914+0.03 along the process is
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2.4. FROM DISCONTINUOUS CHANGES TO FINITE-TIME PROCESSES

depicted in Figure 2.12. The initial thermal bath temperature is denoted as T; +Tgrr =
2000 £ 70 K, transitioning to a final temperature of Ty + Ty = 1000 £ 35 K.

The error bars arise from a x? method, employed to compute a 95% confidence
interval, which is applied over an ensemble of j,.x = 17980 realizations [85]. This

method assumes a true variance Sge in which the quantity (jmax — 1)$/Srue 1S associ-
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Figure 2.12: a) Kurtosis 2.91 4+ 0.03 and evolution of s(t) for a set
of 17980 independent realizations of a STEP-like T'(t) protocol, as
described in Figure 2.10. The vertical line at t/7, = 0, in which
T, = 2.01 & 0.06 ms, corresponds to the start of the protocol which
is followed by a transient sequence in which s(¢) evolves in time with
an exponential decay. This evolution towards a new equilibrium state
is superimposed to the solution of Eq. (2.8). b) Position probability
distribution built from the set of trajectories before (in red), and
after equilibrium is reached (in blue), and at a given time within the
transient region (in green). While the distributions in red and blue are
described by equilibrium Boltzmanns distribution with temperatures
T; +Twr and T+ TRy, respectively, the green one remaining Gaussian

yields a measure of an instantaneous non-equilibrium distribution.
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2.4. FROM DISCONTINUOUS CHANGES TO FINITE-TIME PROCESSES

ated to a x? distribution with (juax—1) degrees of freedom. With a specified confidence
interval, both the minimum (jmax — 1)8/X%per and maximum (Jmax — 1)8/Xjyer vari-
ances are inferred from the cumulative distribution function of the y? distribution.
Computations for these values were done using the software Mathematica.

In panel a), the kurtosis displays a deviation of 3% from the expected value of
a truly Gaussian distribution. We believe that this deviation is reminiscent of the
fact that the distribution of external noise is not Gaussian, or that it can also be
related to an experimental residual misalignment between the radiation pressure laser,
injected into the optical trap, and the detection laser that slightly distorts the recorded
distributions. Since the kurtosis is however clearly constant all along the process, from
the initial, through the transient, until the final state, this deviation should not be
related to the time dependence of the temperature protocol itself. The instantaneous
position distribution p(x, s(t)), fitted by a Gaussian, is measured for 3 different times
in panel b). These distributions corresponds to an equilibrium situation, before and
after the discontinuity, and for one instant taken in the transient, the distribution

corresponds to out of equilibrium.

2.4.3 Thermal engineered swift equilibration

In contrast with the case discussed in the previous section where the initial state of the
Brownian particle is an out-of-equilibrium state and that, after ¢ = 0, freely evolves
towards a relaxed, equilibrium state, this section will study a type of T'(t) process that
speeds up the state evolution and the relaxation towards equilibrium.

The necessary condition behind such protocols that accelerate equilibration is that
they must be non-monotonic: the variation in the control parameter must occur with
a characteristic time that is shorter than the system’s correlation time (where, for
overdamped dynamics, it corresponds to the position correlation time 7, = v/k) and
reach an extreme value at a certain instant throughout the protocol. This is what has
been coined as engineered swift equilibration (ESE), developed for stiffness-type r(t)
protocols [54]. Our purpose here is to adapt such strategies to temperature protocols,
aiming at defining thermal engineered swift equilibration processes, hereafter called
ThESE.

For such type of protocol, a third-degree polynomial ansatz is used, just like for
k(t) protocols. With this ansatz, one describes the temporal evolution of the position
variance as s(t) = At® + Bt? + Ct + D, where equilibrium conditions are imposed
initially for t = 0, with s(0) = s; = kg(T; + Trr)/k, and finally at the end of the
protocol at ¢t = At, with s(At) = sy = kg(Tf + Trr)/x. We also impose stationary

conditions at initial and final times of the process with $(0) = $(At) = 0. These
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2.4. FROM DISCONTINUOUS CHANGES TO FINITE-TIME PROCESSES

ingredients are sufficient to determine A, B,C, D leading to the following solution
for the time evolution of the motional variance throughout the protocol, at the time
interval 0 <t < At

k
s(t) = =

3 12
( AT — + 3AT— + Txr + T) (2.9)
K

At3 At?
By substituting Eq. (2.9) and its derivative 5(¢) into Eq. (2.6), the explicit time
dependence of the protocol T'(t) can be derived. It corresponds here to

2

3
INE +3AT<—E+1> AtQJr:),ATA + Ty + T (2.10)

This derivation is valid for heating Ty > T; and cooling, Ty < T}, processes where

T(t) = —2AT—

the two cases are shown in Figure 2.13. In the upper panels, the protocol T'(t) is
directly measured from the variation of V,(t) over time. The transition times are
given by At = 0.397,, for 7, = 1.37 + 0.06 ms in the case of a heating process
with T, + Trr = 350 £ 13 K and Ty + Tgr = 1100 £ 40 K and At = 0.727,, for
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Figure 2.13: a) Temperature protocol (top panel) for a heating pro-
cess (bottom panel) that accelerates the thermalization with At =
0.397, = 0.53 ms. For this heating protocol T; + Trr = 350 £ 13 K
and Ty +Trr —1100£40 K. The top panel shows the effective temper-
ature measured by the peak-to-peak intensity of the fluctuating laser
that exerts radiation pressure, V,,, and superimposed to Eq. (2.10).
The bottom panel corresponds to s(t), superimposed to Eq. (2.9)
over the time interval [0, A¢]. b) Similar to panel a), but this time
for an accelerated cooling process At = 0.727, = 0.85 ms in which
T; + Trr = 2160 £ 76 K and Ty + Trr = 1160 £ 41 K.
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T, = 1.18 £0.05 ms in the case of a cooling process with T; 4+ Trr = 2160 + 76 K and
Ty + Trr = 1160 + 41 K. Eq. (2.10) is superimposed to both protocols, top panels
in a) and b), and in the bottom panels, Eq. (2.9) is superimposed on the s(t)/s;
measurements for these same parameters, accordingly.

Based on the idea of “connecting states” for the Brownian particle (states are
defined from the particle position distributions), the next chapter will focus on pre-
senting the appropriate thermodynamic formulation that makes it possible to quantify
this connection. The great advantage of the formulation we propose in Chapter 3 is
that it can also be used to quantify the cost related to connecting states. This asset

will be exploited in Chapter 4 when discussing optimization for thermal protocols.

2.5 Conclusion

The control of the Brownian motion of a single particle using one specific platform
was presented in this chapter. Specifically, this control corresponds to trapping the
particle, tracking its trajectory, and adjusting its dynamics based on the modulation
of the trapping potential and the influence of an external radiation pressure force.
By controlling the statistical characteristics of this external force, we can perform
thermal bath engineering protocols and develop procedures to increase the center of
mass temperature of the Brownian particle by several thousand Kelvin.

At the core of this technique is the notion of the center of mass temperature, mea-
sured by the position power spectral density (PSD) of the Brownian particle when at
equilibrium with the thermal bath. Building on the connection between this temper-
ature and the amplitude of the external force, the bath temperature is considered as
a time-dependent control parameter T'(t).

The characterization of the Brownian motion was undertaken by analyzing directly
the measurement: the time-dependent intensity of a laser scattered by the Brownian
particle. By considering a linear relation between this intensity and the instantaneous
position displacement of the particle, several observables are built. These include
trajectories measured in length units, position distributions, and position PSDs.

An important discussion of the chapter is the relationship between the nature of
the stochastic force distribution—be it uniform or normal—and the frequency of its
generation. While the center of mass temperature diminishes when the radiation
pressure intensity is modified at high generation frequencies, at this limit, a stochastic
force with an initially uniform distribution converges towards a normal one. This
interplay becomes even more relevant when stochastic forces with other distributions
are employed to modify the Brownian dynamics. It’s crucial to understand that the

distribution and generation frequency of a stochastic force are intertwined and cannot

47
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be consider independently.

Another aspect of bath engineering corresponds to introduce correlation on the
stochastic forcing that drives the Brownain particle, that we discuss in details in the
case of “active bath” engineering in our publication [48], and it is presented on the
PhD thesis of Rémi Goerlich [86].

We them illustrate how the Browinan dynamics can be modified through the ac-
tion of two T'(t) protocols. While a discontinuous temperature change generates a
non-equilibrium evolution, where the system’s variance s(t) relaxes with an exponen-
tial decay towards a final equilibrium state, more intricate temporal dependences on
T(t) can be introduced, leading for instance to an accelerated transition and thermal-
ization. The concept of connecting states will drive the thermodynamic description

for isothermal and isochoric processes that we propose in the next chapter.
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Chapter 3

Thermodynamics of a Brownian

particle

Considering that the instantaneous variation of the internal energy of a particle is
given solely by its potential energy AUys(t) = (1/2)(k(t)s(t) — K;si), this chapter will
describe how thermodynamic functions are affected when isothermal (k(t),T = cte)
or isochoric (k = cte,T(t)) protocols are considered. This description will be based
on state functions and path-dependent functions for out-of-equilibrium processes. To
this aim, a new definition of the entropy of the system associated with a stochastic
trajectory ogys(xj(t)) will be considered.

After determining, on one side state, instantaneous functions of the protocol (k(t), T =
cte) or (k = cte,T(t)) and of the process, measured through s(t), and, on an other
side, path-dependent functions as functionals of the protocols (k(s),T = cte) or (k =
cte,T(s)), the thermodynamic cost associated with a given protocol that connects two
equilibrium states via a discontinuous change of a control parameter will be discussed.
The functional formulation introduced here will be exploited in the next chapter when

optimal isochoric processes will be derived.

3.1 From stationary to dynamical state

In both thermodynamics and mechanics, the concept of state refers to the set of param-
eters or variables that completely describe a given system at a given time. However,
the specific meaning and the nature of the variables involved in the description differ
from the two fields. While in thermodynamics, the equilibrium state is associated to a
set of macroscopic variables, in classical mechanics the state of a system is described
by positions and velocities of all the constituent particles in the system at a given

time.
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3.1. FROM STATIONARY TO DYNAMICAL STATE

In the context of Brownian particle inside a harmonic potential, those two levels
of description are mixed. On the one side, the thermodynamic content is imprinted
on the collisions between the molecules and the mesoscopic particle and energy is
exchanged within the confining potential through work and heat. The heat reservoir
is defined by temperature 7" and the work reservoir with stiffness k. The mechanical
content on the other side relies on the position and velocity of the Brownian particle.

At the level of single trajectories of this Brownian particle, the coupling with the
reservoir leads to stochastic quantities (z;(t),dz;(t)/dt = v;(t)), for each time in-
stant ¢ and independent stochastic realization j. Those stochastic variables in turn
define probability distributions, measured after averaging over an ensemble of {j} in-
dependent stochastic realizations. At the ensemble average or macroscopic level of
description, the whole dynamics related to the harmonic confinement is Gaussian, as
discussed in the previous chapter. As a consequence, only the variances of those dis-
tributions <:1c§(t)> = s(t) and <v]2(t)> = s,(t) are needed to define the mechanical state
of the Brownian particle.

That state evolves according to the laws of motion in which position and velocity
change over time due to forces acting on it. At the stochastic level, the lack of knowl-
edge of the position and velocities of all the surrounding molecules lead to an effective
description of a stochastic thermal force that drive the Brownian particle. Otherwise,
at the macroscopic level of description, from the time dependence of the control pa-
rameters x(t) = (k(t), T(t)), the trajectories (s(t), s,(t)) are determined unequivocally
as a solution of a differential equation. If x(¢) changes sufficiently slowly so that its
instantaneous value is sufficient to determine (s(t), s,(t)), the system will evolve as a
succession of equilibrium states within the work and heat reservoirs. Otherwise, the
system is considered to perform a non-equilibrium evolution and (s(t), s,(t)) will also

depend on the rate of change x(t) of the control parameters.

3.1.1 Time scales

Since the discussion below is based on such dynamical processes, it is important to
define time scales that set how fast x(¢) changes. We assume it to change over times of
the order of the position correlation time (for microspheres in water 7, = /K ~ ms),
but at a time scale much larger than the velocity correlation time (7, = m/y ~ us).
In such conditions, the non-equilibrium discussion will be based only on how potential
energy (1/2)r(t)s(t) of the microsphere change in time. With respect to kinetic energy,
all processes considered here correspond to a succession of equilibrium states, a quasi-
static transformation in which, for each instant of time, ms,(t) = kg7'(t). This leads

to the absence of an energetic cost associated with the change in velocity distribution.
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3.1. FROM STATIONARY TO DYNAMICAL STATE

Another important time scale is related to the measurement process itself: the
system evolution is followed at discrete time steps dt, corresponding to time intervals
between successive measurements. In practical terms, time corresponds to the index
in a list of successive values of the control parameter y(t) and system and response
z;(t) or s(t), for the micro or macroscale description, respectively. Again, for dt > 7,,
it is not possible to reconstruct the time dependence of the particle’s velocity. We

however ensure dt < 7.

3.1.2 Connecting states and time dependent processes

A cornerstone of thermodynamic description is the identification of two kinds of quan-
tities: state functions, whose variations depend only on the initial and final states, and
path dependent quantities that depend on the actual process that connects those two
states. It is therefore convenient to separate the thermodynamic analysis of a process
in terms of these two quantities. By considering the initial and final states, defined in
turn by the distributions p(x,s; = kgT;/k;) and p(x, sy = kgTs/ky), the variation of
the state functions, such as internal energy AUy, free energy AF and entropy of the
system AXy, associated with any protocol x(t), are completely defined by (k;, ky)
and (T3, TY).

Otherwise, when path-dependent quantities such as the work W, the heat that
corresponds to the energy exchanged between the Brownian particle and the thermal
reservoir (), the entropy of the medium ¥,,.4 and the total entropy ¥, are considered,
these quantities will depend on the x(¢) protocol, which connects such states. Path
dependent quantities measure how far from equilibrium the system is when it is driven
by the control parameters x(t).

Before defining the thermodynamic quantities along an out-of-equilibrium process
s; — sf, some considerations will be made on how to measure the infinitesimal vari-
ation of the position variance of the Brownian particle ds in a given time interval dt,

and along the process As(t) = s(t) — s; (see below).

Description in terms of instantaneous values

When a temporal dependence on the state functions is considered, care should be
taken to extend their definition to non-equilibrium states. Generalizing the discussion
of T'(t) protocols introduced in the previous chapter by considering also x(t) ones, an
infinitesimal variance change ds, derived from the ensemble average of the dynamical
equation of dz?(t)/dt, Eq. (2.5), can be obtained. Then, by the instantaneous differ-
ence between the the control parameters x(¢) and s(t), it is possible to measure ds for

a given time interval dt as
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3.1. FROM STATIONARY TO DYNAMICAL STATE

ds — % (ks T (t) — r(t)s(t)) dt. (3.1)

This equation defines ds as an instantaneous deviation from a quasi-static evolution.
Stationary solutions means either that there is no time dependence on the control
parameters, or that for each successive time increment kgT'(t) = k(t)s(t). We stress
that, once ds is used to evaluate an infinitesimal variation of a given state function
(for instance system internal energy or system entropy — as discussed below), Eq.
(3.1) cannot be used since it only measure a deviation from the quasi-static limit and
does not give access to the actual variation induced by the protocol x(¢) on that state
function. The protocol to measure ds expressed by Eq. (3.1) can only be used to
measure variations on pure dissipative quantities, 7.e. path dependent quantities that

are identically zero for quasi-static processes.

Description in terms of increments

Along the process, measuring s(t) corresponds to the ensemble average of the stochastic
quantity x?(t), measured in each time interval dt, by the average of a set of independent
trajectories {j}, subjected to the same protocol x(¢). All those {j} trajectories share
the same protocol initial condition x(0), but corresponds to a different realization of
the stochastic variable 23(t). Once the list of s(t) is measured, by solely considering the
difference between consecutive measurements s(¢) and s(t+dt), an infinitesimal change
on s(t) can be evaluated as ds = s(t+dt)—s(t) = s(t)dt. This way to measure ds leads
to the definition of a time dependent variance difference along a trajectory as As(t) =
fg ds, in which the integral is performed as a cumulative sum of infinitesimal changes
SV (s((n 4 1)dt) — s(ndt)), when N is the number of measurements performed on
the time interval [0,t], and ¢t = Ndt.

Our method analyses how increments dxy = x(t + dt) — x(t) impacts ds. By in-
crements, we mean that dy can be in principle arbitrary large between two consecu-
tive measurements. While x(¢) can be discontinuous, the change on the mechanical
response of the system s(t) is a continuous function. Since dx and ds are measured
independently, a quasi-static transformation corresponds to the case in which, for each
dt, the control parameter changes in a sufficiently small amount so that for each inter-
mediary change, measurements of dy can be identified as infinitesimal variations, and
ds will be obey the relation ds/s = dT'/T —dk/k. The consequences of a discontinuous
change in the control parameters will be considered at the end of this chapter. Before
that, the control parameters y(¢) will be considered to be a continuous function with
infinitesimal variations dx able to drive the evolution of the system s(t) away from a

quasi-static transformation.
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3.2. ISOTHERM AND ISOCHORIC PROCESSES

Then, using the definition of ds as a difference between successive measurements
of s(t), one can discuss an important difference. While state functions depend on the
instantaneous values (x(), s(t)), path-dependent quantities are defined according to
how those quantities are affected by a change in the control parameters dy. Before
introducing the expressions used to determine the thermodynamic functions associated
with x(t), we will first establish the relationships between the state functions and their

corresponding path-dependent functions.

3.2 Isotherm and isochoric processes

This section aims to define thermodynamic quantities, evaluated from ensemble av-
erages of stochastic trajectories, in which protocols of x(t) and T'(t) are considered
on an equal footing. In terms of control parameters, we define an isotherm protocol
as x"(t) = (k(t),T) and an isochoric one T (t) = (k,T(t)). The control parameters
X (t) are assumed to change in a finite interval of time At, producing an evolution of
the system from an initial state, defined by (x;,s;), to a final state (xy, s¢), in which
equilibrium is verified by the condition x;s; = kgT; e kysy = kgT}y.

The equilibrium condition can be interpreted from the equality between the in-
stantaneous potential energy of the Brownian particle, identified as its internal energy
Usys(t) = (1/2)k(t)s(t) and the thermal energy identified as the internal energy of the
thermal bath Upeq(t) = (1/2)kgT(t). As these quantities are state functions, regard-
less of the protocol x(t) that connects two equilibrium states, (x;,s;) = (xs,sy) it is
possible to identify the total variation of these quantities when isothermal or isochoric

processes are considered

K K 1 1
AUsys = AUmed =0—= 5’%1'81' = §/ﬁ]f$f, (32)
1 1
AUS; = AUL , — 3 (sp—si) = §kB (T —T5) . (3.3)

Those relations defines the total variation of a state function, AUsys (whenever the
index k or T' is no shown, the relation is valid for both processes), in terms of the the

initial x; and final x s values of the control parameters x(t).

3.2.1 Thermodynamic First law

In contrast, path-dependent energetic quantities, such as work and heat, must be
introduced at the differential level, considering infinitesimal changes of the system
internal energy, dUsys between two consecutive measurements, with a time difference

dt. Since after equilibrium there is no information regarding the evolution of the
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3.2. ISOTHERM AND ISOCHORIC PROCESSES

control parameter x(¢) imprinted on AUy, it is necessary to consider the differential
first law in order to introduce path dependent quantities. At this differential level, dUsys
can be understood as the relation of the rate of change between two path-dependent
quantities: 1) the amount of heat discarded into the heat reservoir dQ', and 2) the
total work dW done by the work reservoir®, at each time interval dt. This relation

between rates leads them to the instantaneous change of dUsy as
AUgys = AW — dQ. (3.4)

While dW arises from a change in the potential, and thus does not arise from a
temperature change, d() corresponds to a change in the position variance, that in

contrast to dWW can be provoked by both a potential or a temperature change.

The differential relations account for the fact that the change on control parameters
dx can be discontinuous for a given dt, leading for this case to discontinuous thermo-
dynamic functions. On the other hand, the mechanical state of the system, described
by s(t), has a continuous evolution, since an infinitesimal change of the variance ds is
constrained by the position variance relaxation time 27,. While for thermodynamic
quantities, d accounts for total differential, for the mechanical description, as for ds,

d accounts for infinitesimal changes.

Along a non-equilibrium process

Along quasi-static transformations dUsys = dUpeq, for each dt, so that the system
evolves as a succession of equilibrium states. In contrast, along a non-equilibrium
process, dUsys # dUmea and Egs. (3.2) and (3.3) are valid only in the end of the
transformation, after the system is in equilibrium. We then identify the instantaneous
potential energy as the system internal energy, even for a non-equilibrium process.
Differentiating it as dUss = (1/2)d(sk) = (1/2)sdr + (1/2)kds, leads to define the
work rate at time dt, dW = (1/2)sdk and the heat rate dQ = —(1/2)kds.

From Eq. (3.4), the signature of a non-equilibrium isothermal process is imprinted
on the imbalance between dW, that takes into account instantaneous exchange of
energy between system and work reservoir, and d@), proportional to ds, that remains
constrained by the system natural relaxation time. This is what is sketched on Fig.
3.1 where the arrows represent the flux of energy for an isothermal compression or an

expansion of the harmonic potential.

14 means an inexact differential.
2Defined on Figure 3.1
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3.2.2 Dissipated energy

For the isothermal case, it is convenient to split after equilibrium is reached the total
work W into two contributions: one that is path independent and that can be identified
as the total difference in the free energy AF, and another that is associated with a pure
dissipative part, W, . The former being a free energy is defined as the work extracted
if the process s; — s; were performed as a succession of quasi-static transformations
AF = f;if dW = (1/2)kgT In(k/k;). Since this definition involves quasi-static trans-
formations, the infinitesimal work rate is considered to be a total differential dW¥/, that
in turn, for each step on this quasi-static protocol, ds/s(t) = —dr/k(t). This split of
contributions leads to a new infinitesimal rate equation between two path dependent

quantities that yields a state function in the form of the free energy as

dF = dW — dW}.. (3.5)

Dissipative work

The total difference in the free energy, AF' is interpreted for a given temperature, as
the reversible amount of energy exchanged with the work reservoir in order to modify
the spatial region probed by the Brownian particle as fixed by the total change in
variance As = sy — s;, once equilibrium conditions are reach.

In contrast, the mechanical interpretation of W, is more subtle. This energetic
quantity is related to the average imbalance between the three forces involved on the
description of the Brownian particle dynamics when a change dx is considered. The
three forces are: (i) thermal, provided by the collision of the Brownian particle with
the surrounding molecules, (ii) confining, pulling the particle to the center of the trap,
and (447) friction, inevitable since the medium is viscous. Whenever there is an average
imbalance between them, dissipative forces oppose the motion.

The dissipative nature of the W, can be better understood if a single discontinuity
ki — Ky is considered. We note here that the sign of W, is independent of whether
a compression or an expansion is considered, as expected from a pure dissipative
quantity.

From an energetic viewpoint, the system can be considered to be in a non-equilibrium
state immediately after the discontinuity x; — k; with Usys(t = 07) = (1/2)kys;, de-
parting from equipartition. From ¢ = 0, the system evolution is such that Ug(t —
00) — Ugys(t = 07) < 0 for a compression, while Ugys(t — 00) — Ugys(t = 07) > 0 for
an expansion. Such energy fluxes are represented by the vertical arrows on Figure 3.1.
From the force perspective, the instantaneous change on stiffness will lead to an imbal-
ance between the averaged trapping force (i7), always directed toward the center of the

trap, and the averaged thermal force (i), isotropic. For a compression, the Brownian

%)



3.2. ISOTHERM AND ISOCHORIC PROCESSES
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Figure 3.1: Schematic representation of isothermal processes, with a
compression on the left panels and an expansion on the right ones.
If a discontinuous change dx = Ky — k; is considered, at the instant
of the discontinuity, an amount of energy dW = (1/2)(k; — K;)s; is
exchanged between the system and the work reservoir. After this
instant, energy is exchanged at a rate dQ) = —(1/2)k¢ds between the
system and the heat reservoir. The top diagrams represent the flux
of energy between work and heat reservoirs and the system, when a
change in the control parameter is performed. While for compression
the system receives energy from the heat reservoir, in the case of an
expansion, the energy is released by the system. The two bottom
diagrams represent the consequence of a change x;, — Ky, that will
lead, when equilibrium is reached, to a modification of the position
variance of the system s; — s;. Since the thermal energy is constant
for these processes, the initial and final internal energies of the system

do not change, as represented by the dashed black lines.
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particle is pulled more strongly towards the center of the trap. For an expansion, this
pulling is reduced. The net effect of both processes will be to produce a non-vanishing
averaged velocity (v;(t)) # 0, that in turn leads to an extra viscous force (4i7), greater
than the one necessary to maintain the system in equilibrium. This extra viscous force
generates an extra amount of heat dissipated from the trapped bead to the fluid. This

dissipation corresponds to Wi, a positive definite quantity.

Thermal work

When isochoric transitions are considered, a similar discussion for the energy dissipated
in the medium Wy can be performed. This leads us to introduce the concept of
thermal work W1 induced by a temperature change, as proposed already in [43]. One
key aspect is that despite the fact that the processes of heating and cooling, represented
in Figure 3.2, are symmetrical from the energetic viewpoint (since the absolute value
of total variation on the system internal energy |AUsys| is the same when the absolute
variation on the temperature |AT)| is considered) W, always represents an amount of
energy dissipated towards the heat reservoir. This can be understood by looking at
the force balance. For heating, the thermal force (i) increases, causing the Brownian
particle to move away from the equilibrium position, and in relation to the averaged
confining force (i7), generate an instantaneous lack of balance that in turns increases
the viscous force (ii). For cooling, the thermal force decreases: the particle is, on
average, pulled towards to the center of the trap, and again by the fact that (v;(t)) # 0,

the drag force will produce some dissipation of energy into the medium.

While the first law allowed the definition of AF, that in turn led us to identify Wi
as a pure dissipative quantity associated with an isothermal process, the same pro-
cedure is not possible for isochoric transformations, since energetic relations for such
process only determine the balance between the total heat, accumulated along the pro-
cess, and the total variation on the system internal energy, according to AUsj;S—i-QT =0.
The crucial aspect of isochoric changes is that the exchange of energy between the sys-
tem and the heat reservoir involves different temperatures along the process. This
has an impact on the entropic description of the system and of the heat reservoir.
Therefore, the first law must be complemented by an entropic description in order to
precisely account for the different nature of the energy exchanges between the system

and the heat reservoir when 7'(t) protocols are considered.
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Figure 3.2: Schematic representation of isochoric processes, with a
heating process on the left panels and a cooling one on the right ones.
If a discontinuous change dT" = Ty — T; is induced, at the instant of
the discontinuity, an amount of energy (1/2)kgdT is instantaneously
supplied to, or removed from, the thermal bath, depending on whether
a heating or cooling process is considered. After this instant, energy
is exchanged at a rate d@QQ = —(1/2)kds between the system and the
heat reservoir. The top diagrams represent the flux of energy by which
an external agent modifies the temperature of the heat reservoir, by
the instantaneous change of the control parameter d7". While for a
heating process the system receives energy from the heat reservoir,
a cooling process sees the energy released by the system. The two
bottom diagrams represent the consequence of a change T, — T}
that will lead, when equilibrium is reached, to a modification of the
position variance of the system s; — s¢. Since the internal energy of

the heat reservoir AUyeq changes for these processes, AUgys # 0.
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3.2. ISOTHERM AND ISOCHORIC PROCESSES

3.2.3 Thermodynamic Second law

First, and following the same approach developed for the first law, we choose to define
the state function associated with entropy, so called the system entropy, from the
balance between the incremental productions of medium entropy, that accounts for
the exchange of energy with the heat reservoir, d¥,,cqa = dQ/T, and a pure dissipative
quantity, the total entropy dXge,, generated along a non-equilibrium process within a
time dt

Ay = A% gen — AEmea. (3.6)

Defining d¥ge, then demands to identify dXgys. From the difference between two
equilibrium states, connected by a protocol in which the control parameters change
from initial to final values x; — Xy, the total variation on the system entropy AXg
can be derived by analyzing the corresponding quasi-static process, in which A¥g s +
Ymeda = 0 at all times. This is the same type of analysis used to define the total
variation of the free energy AF above (see Eq. (3.5)). For such a process, at each
infinitesimal change dy of the control parameter, the energy exchanged between the
system and the heat reservoir corresponds to an infinitesimal increment of a specific
state function. For an isothermal process, it corresponds to an infinitesimal change
dF of free energy. For an isochoric process, it corresponds to an infinitesimal change
of the internal energy dUgys.

The corresponding quasi-static processes (with d¥g., = 0) provides an approach to
define the total variation on the system entropy A related to two equilibrium states
defined by s; and sy. These states are connected by an isothermal x(t) = kgT'/s(t) or
isochoric T'(t) = ks(t)/kp protocol, in which Eqgs. (3.2) and (3.3) are valid for each
time instant along the process s; — sy. For these processes, the infinitesimal heat turns
to be a total differential dQ — d@Q = —(1/2)kds, and the medium entropy associated
to those quasi-static processes can be determined as Xyeq, s = —(kp/2) fsif ds/s.
Then, the total variation of the system entropy AXgys for any isothermal and isochoric

processes connecting two equilibrium states is given by

AS,. = MB35 (3.7)

sys
Y 2 S;

From entropy to dissipative energy

For an isothermal process, integrating Eq. (3.4) between two equilibrium states, leads
to the total work associated to the process equal to the total heat W = ). The
integration of Eq. (3.5) can be rewritten as AF = @ — W,.. Then, as T(t) = cte,
those relations can be interpreted as entropic ones by solely dividing them by T', even

after integration. The total variation on the medium entropy is given by the total heat
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3.3. NON-EQUILIBRIUM STATE FUNCTIONS

divided by the temperature 3,4 = @/7T and the total change in the free energy divided
by temperature is the opposite of the system entropy AF/T = (kg/2)In(ks/k;) =
—AXyy, since kf/k; = s;/sy when equilibrium states at the beginning and at the end
of an isothermal process is considered.

The comparison between energetic quantities with entropic ones, leads to the re-
lation X, = WE/T between the total dissipative work W{, and the total entropy

production X

K

gen- DBy analogy with this isothermal case, a similar relation between

energetic and entropic quantities can be set between the total thermal work W[ and

T

gens When isochoric processes are considered. But, since in this

the generated entropy X
case temperature is modified along the non-equilibrium process, this relation should
be evaluated as Wi, = [T(t)d%,,

Two aspects will be clarified below. After the system reaches equilibrium, AF" and
A are equivalent quantities, but a subtle point emerges since it is not necessarily
the case for a non-equilibrium intermediary state. The first aspect to be clarified
corresponds to the difference between the instantaneous variation of the free energy
AF(t) = F(t) — F(0) and system entropy AX(t) = Egys(t) — Xsys(0) along a non-
equilibrium process. The second aspect corresponds to the explicit dependence of the

dissipative and thermal work for a given time dependence on the control parameter
x(t)-

3.3 Non-equilibrium state functions

Extending in the previous section the definition of AUgy(t) to non-equilibrium pro-
cesses was straightforward, since for each time instant Usys(t) = (1/2)k(¢)s(t) is defined
as the potential confinement energy of the Brownian particle. However, such extension
is not trivial for state function variations like AF(¢) and AX(¢). Variations of those
state functions through a transition between two equilibrium states s; — s; have been
defined above at the limit of quasi-static transformations. In this section, we propose
a stochastic version of the system entropy og(), along a trajectory x;(t) to quantify

the pure dissipative quantities associated with isothermal and isochoric processes.

3.3.1 Non-equilibrium free energy

In order to define the instantaneous free energy associated with a non-equilibrium
state when a isothermal process is considered, M. Espositio and C. van den Broeck
[87] introduce the relative entropy between the non-equilibrium distribution, p(z, s(t))
and the corresponding equilibrium one peq(z, £(t),T') as the “[...] amount of informa-

tion 1(t) that needs to be processed to switch from the known equilibrium distribution
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3.3. NON-EQUILIBRIUM STATE FUNCTIONS

Peq(, £(t),T) to the distribution p(x,s(t)) under consideration.” For us, those two

probabilities distributions are defined as:

1 2
x,s(t)) = e 2, 3.8
plas(0) = (35)
1 _N(t)fl‘Q
Peq(z, K(t),T) = e 2T (3.9)
9 kT

While Eq. (3.8) defines the non-equilibrium evolution of the system, imprinted on
the time dependence of the position variance s(t), Eq. (3.9) is a probability distribution
defined by the instantaneous value of the external control parameters, the protocol
k(t), in this case. Eq. (3.9) defines the equilibrium position distribution defined
by the macroscopic parameters (k(t),T), as required by the definition of equilibrium
state in thermodynamics, as discussed at the beginning of this chapter. Eq. (3.9)
also defines the partition function for isothemal protocos as Z%(t) = \/W/I{(t) .
While the actual process s(t) performed by the Brownian particle defines Eq. (3.8),
the protocol k(t) defines Eq. (3.9).

In this context, corresponding equilibrium means that, for each instant of time ¢
there is an instantaneous position variance that corresponds to the one expected if
the system were in equilibrium, seq(t) = kgT'/k(t). This variance of course is different
from the measured value s(t¢) for a non-equilibrium state.

Then the two probability distributions, which in turn are associated with a single
instantaneous state, are used to determine the difference between the non-equilibrium

free energy Fion—eq(t), and the equivalent equilibrium free energy Fe,(t), as follows

Faoneq(t) — Fag(t) = ksTI(t) (3.10)

> p(z, s(t))
I(t :/ p(x,s(t)) In —————=dx. 3.11
0= | oty FEE (3.11)

This is precisely how information plays its role according [87] since one recognize
I(t) = Dkn(p || peq) as the Kullback-Leibler divergence measuring the “distance”
between the two distributions Egs. (3.8) and (3.9).

If a quasi-static k(t) protocol is considered, one recovers for each time instant that
p(x, s(t)) = peq(z, k(t), T), leading to the identification of Fion—eq(t) = Feq(t). If not,
substituting Eqgs. (3.8) and (3.9) into Eq. (3.11) yields the free energy of a non-
equilibrium state as
kgT kgT 1

I g (R0 — ke T). (3.12)
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Based on these definitions, it is possible to identify the instantaneous equilibrium
free energy as Foo(t) = —kpT'In Z*(t) and then infinitesimal variation of those func-
tions. The infinitesimal variation in the out-of-equilibrium free energy dF,on—eq from
dFeq = (kgT/2)(dk/k) and dUL, = (1/2)d(ks) leads to dXf, on oq = (AUL, —
dFyon—eq)/T = (kg/2)(ds/s). Thus, Eq. (3.12) allows to identify the variation of
the system entropy along an out-of-equilibrium process as an extension to a non-
equilibrium evolution s; — s(t), obtained by differentiating Eq. (3.7) in relation to
s(t). In fact, this definition for d¥f . ., is also obtained if the entropy along a
stochastic trajectory introduced in [88] is considered.

In Section 3.4, we will discuss how to relate entropic quantities, starting from the
First Law, Eq. (3.27), and based on the Langevin equation, in an approach similar to
that introduced by Ken Sekimoto [89], Egs. (3.37) and (3.38). In these discussions,
when the infinitesimal variation of the system’s energy is defined as dUsys = %d(ms), a
different definition for dX needs to be considered. Therefore, we propose to carry out
the thermodynamic description for non-equilibrium processes based on a new definition

of the system entropy ogys(t), considered at the stochastic level.

3.3.2 Non-equilibrium system entropy

Udo Seifert [88] suggests to define a trajectory-dependent entropy for a Brownian
particle at the stochastic level as o5 " (t) = —kglnp(z;(t),s(t)) by evaluating the
probability distribution p(x,s(t)), Eq. (3.8), along the stochastic trajectory z;(t).
He then defines rate equations for the system and medium entropies leading to the
full entropy production rate. For this definition, p(z;(t), s(t)) can be interpreted as a
stochastic probability distribution, since it corresponds to the probability to find the
system at position x = z,(t) for a given stochastic realization.

Here we suggest a different definition to evaluate the system entropy along a stochas-
tic trajectory z;(t), when only one control parameter x(t) is varied, whether the trap

stiffness or the bath temperature, respectively:

/ﬁ(t) _m(t)z?(t)
t(t)=—kgl 2kpT 3.13
Usys< ) B i1l 27TkBT6 B ) ( )
‘L2 t
oT (£) = —kpIn , |— T (3.14)
s 2k T (1)

While U. Seifert suggests to evaluate z;(t) along Eq. (3.8), we suggest here to
evaluate z;(t) along Eq. (3.9). For the case of an isothermal process, peq(z;(t), k(t),T')
is no longer interpreted as probability distribution, since it is not even normalized. This
assumption implies that the Boltzmann weight still applies to a non-equilibrium state
exp(—usys(25(t), 5(t)) /(ksT'(t))) = exp(—r(t)z3(t)/(2kgT'(t))). An interpretation for
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Peq(xj(t), K(t), T) is thus that it relates a system microstate z;(t) at a given time,
distributed accordingly to p(z, s(t)), with the corresponding equilibrium distribution
Peq(, k(t),T) defined by the instantaneous value of the external control parameter
K(t).

The condition that only one control parameter can be time-dependent in order to
define ogys(t) by Egs. (3.13) and (3.14), corresponds to the fact that non-equilibrium
states of the system are unambiguously defined only by the instantaneous values
(k(t),T,s(t)) or (k, T(t),s(t)). If a protocol with two simultaneously changing control
parameters (k(t), T(t)) is considered, (k(t),T(t),s(t)) does not completely define the
non-equilibrium state of the system.

This more general case goes beyond the discussion we want to develop here. Note
however that the consideration of velocity distribution on overdamped system has been
discussed recently in the literature, for example in [90] in which the “Kinetic energy
estimates are obtained from measurements of the mean square velocity of the trapped
bead sampled at frequencies several orders of magnitude smaller than the momentum
relazation frequency.” In this case, the equipartition theorem that relates s,(t) to the
instantaneous temperature 7'(t) is modified in order to consider the under-sampling
rate of experimental measurements, in which the acquisition frequency is much smaller
than the inverse of the velocity correlation time 27 f,, < 1/7,. The fact that the kinetic
energy should be considered in a thermodynamic description is a topic that is currently
under debate [91, 92]. Here we will stick to the thermodynamic discussion limited only

to isothermal and isochoric processes for which the definition of ogys(t) given by Egs.
(3.13) and (3.14) is valid.

Infinitesimal changes

Back to isothermal and isochoric processes, it is convenient to relate the change in
the system entropy dogys associated with an increment of a control parameter dy, by
differentiating Eq. (3.13) with respect to (z;(t),s(t)) and Eq. (3.14) with respect
to (x;(t),T(t)). Then, an infinitesimal change on the system entropy dogys produced
when an isothermal change dx or an isochoric change dT' is applied on the confining

potential or on the temperature of the thermal reservoir corresponds to

do* (1) = —F”(t);fj(t) dz; + %B (—”(2:%@ - 1) %, (3.15)
T _ KTj (t) kg Hl’?(t) dT’
dog(t) = T dej — 5 (kJBT(t) — 1) @ (3.16)

While the first terms on the right hand side of Eqs. (3.15) and (3.16) are identified
as a medium entropy —domeq(t) = —dq(t)/T(t), that can be a positive or negative
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quantity, the other terms given by dogys + domea describes the entropic impact of
the external parameters x(t) on the change of dog,s when a non-equilibrium process
is performed. Independently whether a compression/expansion or a heating/cooling
process is considered, this term corresponds to a positive quantity identified as dogen,
the infinitesimal production of entropy associated with such non-equilibrium processes.

In order to characterize the system entropy associated to protocols at the macro-
scopic level, in which the system is described by <x§(t)> = s(t), as measured on Figures
2.12 and 2.13, in Chapter 2, the ensemble averaged system entropy dXs(t) = (dogys)

can be evaluated for each time instant for a given variation of the control parameters

dx as
dEg,(t) = %ds + %B (“(,;ZE” — 1> % (3.17)
TN K kg [ rks(t) dT
A (t) = D) ds — 5 (kBT(t) — 1) T (3.18)

Pure dissipative quantities

The infinitesimal second law introduced on Eq. (3.6) will be now considered to in-
terpret the different contributions of d¥(t). From the Egs. (3.17) and (3.18), the
total differential d¥y is decomposed into two non-exact differentials. The first terms
on the right hand side on both Egs. (3.17) and (3.18) are identified as the negative
of the medium entropy d¥.q = dQ/T = —(1/2T)kds for each process. Based on
this identification, the remaining terms on the right hand side on Egs. (3.17) and
(3.18) will be defined as infinitesimal variations of the total entropy dXge,(t) for an
infinitesimal isothermal or isochoric change. This pure dissipative entropic quantity is

then related to the pure dissipative energetic quantities by T'd%,., according to

AWE (1) = % (k(1)s(t) — EgT) %, (3.19)
AWT (1) = —% (ks(t) — ksT(1) %. (3.20)

Egs. (3.19) and (3.20) should be interpreted as how much energy is dissipated in
a time interval dt, for an infinitesimal variation on the control parameter dy. It is
important to stress that Eq. (3.20) corresponds to a new energetic quantity, that is
not described by the first law, and that accounts for the energetic cost of an isochoric
transition.

Those pure dissipative quantities corresponds to evaluating the change in thermody-
namic functions by the action of a protocol. Another possibility to measure dissipative

quantities is to consider the rate of change of these quantities over time, as for example
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to determine the temporal evolution of entropy production ¥, (t), that in turn obeys
a differential equation [93]. In opposition to this formalism of rate equations, the pure
dissipative quantities introduced here associate these quantities with a change in the
control parameter dx produced in the time interval dt.

Since x(t) does not correspond experimentally to a continuous function, but rather
to increments in either the intensity of the trapping laser or the amplitude of the
stochastic radiation pressure (that in turn is also associated to a change in intensity of
alaser), the measurement of entropy production or energy dissipation over the course of
a protocol, Ygen = f AYigen or Wais = f dWgis requires a more detailed discussion. Such
a discussion will be made at the end of this chapter based on a functional formulation
of these functions. Before that, a brief digression will be made on the consistency of
the definition of oy (f) given in Egs. (3.13) and (3.14).

3.4 Thermodynamics consistence

The consistency required for the definition of ogs(t) will be discussed through two
approaches. The first consists of obtaining the Second Law from the First Law by
considering the instantaneous values of thermodynamic functions, assuming that y(¢)
is a piece-wise continuous function. This condition is necessary so that the integration
of the thermodynamic functions that depend directly on the variation of the control
parameter dx can be rewritten from an integration by parts, to integrals determined
by the infinitesimal ds plus a surface term. The second approach follows the thermo-
dynamic interpretation of the Langevin equation, introduced by Ken Sekimoto [89],

rewritten here to handle properly the relation between the different entropic quantities.

3.4.1 From the first to the second law

Since there is no ambiguity in the definition of the instantaneous value of the difference
in internal energy AUg(t), this quantity can be determined by integrating the total
differential AUsys
t, not necessarily in equilibrium. Thus, when considering an isothermal or isochoric

(t) = f(f d(ks), from an initial state at t = 0 to a generic state at time

process, we write

s(t)
AL =5 [ A1) = 5 (K0 — s, (3.21)
ko [0 K
AUL, (1) =% / ds(t) = 5 (s(t) = s2). (3.22)

For an isothermal protocol k(t), Eq. (3.21) is related to two path-dependent func-

tions, the work and the heat. In contrast, for an isochoric protocol T'(t), the work is
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zero WT =0, and Eq. (3.22) can then also be used to determine —Q7(¢).
It is also possible to analyze how entropic quantities vary throughout these pro-
cesses. Despite the First Law for this type of isochoric process does not contain any

dissipative quantities, since dQ7 — dQ7, it is possible to derive inexact differentials
by dividing dUZ and dQ* by T'(t).

sys

First, considering just the heat, it immediately yields the entropy of the medium
vl . =dQT /T, as a functional of the process s(t) and the protocol T'(t). Likewise
for isothermal changes, both medium entropy for isothermal and isochoric processes

along a non-equilibrium process is determined as

1 (@)

med(t) = — 57 K(t)ds, (3.23)
2T (84,K4)
(s(t),T(t))
K ds
DIEN(’ :——/ —. 3.24
d( ) 2 (s4,T3) T(t) ( )

Entropic exact differentials

By analyzing the inexact differential dUsys/T'(t), this quantity can be identified as part
of an exact differential, in which isothermal and isochoric protocols, when considered

individually, lead to the following respective expressions

p (M) _ 4 (n(t)s(t)> _ k(t)ds N s(t)dﬁ’ (3.25)

T 2T 2T 2T

() o) -y o

in which the isotherm case considered in Eq. (3.25) correspond to the same relation
given by Eq. (3.4).

The dimensionless version of the total differential Eqs. (3.25), (3.26) obtained by
normalizing the terms by kg, can be interpreted as the infinitesimal variation of the
ratio between system and medium internal energies d(Usys/Umed). As discussed in
the Figure 3.2 the difference AUsys(t) # AUnea(t) is the instantaneous signature of a

non-equilibrium state.

Entropic inexact differentials

By considering then the infinitesimal change d(Usys/Umed), two kinds of non-exact

differentials are derived:

e one that takes into account the change in the system’s state defined by the instan-
taneous variation on the process performed of the Brownian particle, xds/(27)
that is the first term on the right hand side of Egs. (3.25) and (3.26).
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e another related to the external drive x(t), that depends if a isothermal or isochoric

process is considered.

For an isothermal transformation, the second term on the right hand side of Eq.
(3.25) is identified as the infinitesimal work divided by temperature dW/T = sdx/(2T).
The last term on the right hand side of Eq. (3.26), by analogy, should them have
the same nature, but this time associated with isochoric processes. This quantity
was measured in [43] and indeed characterizes the non-equilibrium nature of a time

dependent temperature T'(t).

Returning to the analysis of the isochoric case, Eq. (3.26) can be used to rewrite
the relation [(dUsys + dQ)/T = 0 over the course of a process as follows

, (s(8),T(t))
. (ﬂ - S—) +5hu0=-5 [ U ar, (3.27)
(

2\T() T, 2 oy T20)

where the first term on the left-hand side corresponds to the integral of the total
differential given by Eq. (3.26). Eq. (3.24) was used to replace the term related to

the entropy of the medium.

At this point, Eq. (3.27) relates entropic quantities, but cannot be identified as
the Second Law for isochoric processes. As discussed in Eq. (3.6), the Second Law
relates two quantities that are a functional of the x(t) protocol, ¥yeq and Xge,, to
a quantity that is a instantaneous function of x(t), AXgys(t). In the case where the
time dependence of the Second Law is given explicitly for isochoric processes, Eq.
(3.27) needs to be modified so that it is possible to identify AX(¢) along an out-of-
equilibrium process. This quantity cannot be identified in Eq. (3.27) since the only
term that is an instantaneous function of s(¢) and 7'(¢), the term on the left hand side,
is only different from zero when the system is out of equilibrium and it does not have
the features required for the instantaneous variation of the system entropy AX(?).

This issue will be solved below.

Entropy along a process

In order for Eq. (3.27) to be interpreted as the second law, it is necessary to identify
the right features for AX(¢). To do so, Egs. (3.17) and (3.18), derived from the

definition of og(t), once integrated over isothermal and isochoric processes, lead to
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the respective expressions

1 s0.s0) G0 e RO g
AYE (t) = / k(t)ds + — s(t)dr — — —Fé, (3.28)
(

VAT S 2T Jisima) 2 e K
1 kB H(t)
= f (Usys(t) — USyS(O)) — 7 In H—i, (329)

(s(0),7(0) (s(0),7(0) W g
Azz;s(t) = E/ ﬁ — Ij/ 52(t) dT + k_B/ d_’ (330)
2 (s:,T3) T(t) 2 (s,T5) T (t) 2 T T(t)

_ (Usys(t) UsyS(O)) I %Sln Tj(;)7 (3.31)

T(t) T,

where Eqgs. (3.29) and (3.31) can be obtained from the combination of the two first
integrals on Eq. (3.28) and (3.30) respectively, using integration by parts. From this
combination, a surface term (coming from [ d(ks/T')) is obtained. Then, only Eq.
(3.31) leads to the definition of AXL (t) which can be substituted in Eq. (3.27),
leading to an expression with the required features for the Second Law.

It is important to point out that identifying the total entropy variation of the system
Eq. (3.7), derived for initial and final states in equilibrium, to non-equilibrium states
as sy — s(t), does not lead to a consistent definition of the entropy of the system when
Eq. (3.27) is taking into account. Here, since the stochastic system entropy is defined
in a different manner, its instantaneous value at the macroscopic level is given by Egs.
(3.29) and (3.31), depending on the protocol. On those equations, the property of
AYys(t) being a state function is obvious, since this quantity only depends on the
instantaneous values of the process s(t), the values of the control parameters x(t) and
the initial condition.

The production of entropy along a non-equilibrium process can be evaluated based

on the sum of Eqgs. (3.29) and (3.23) in the case of an isothermal process X5 (t) =

gen
AYE (1) + X2 .q(t), and by the sum of Eqs. (3.31) and (3.24) X1, (t) = AXL (t) +
YT 4(t), in the case of an isochoric process. These relationships will be explored in

more detail in the following sections and in the next chapter.

Instantaneous free energy difference

When isothermal processes are considered, it is necessary to define an expression for
AF(t) throughout the processes consistent with AUZ (t), Eq. (3.21) and AXE (%),

Sys Sys

Eq. (3.29). At an infinitesimal level, those quantities are related, with

Uss — F aQr AWk,
sys _ dis
d( T )+ T T

(3.32)

obtained from the combination of Eqs. (3.4) and (3.5).
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While the second term on the left-hand side of Eq. (3.32) is identified as the
entropy of the medium d¥% , = dQ/T, the term on the right-hand side is identified
as the entropy production d¥f,, = dWp/T. Thus, the first term on the left hand
side of Eq. (3.32) corresponds to d¥gys, Eq. (3.17). As a consequence, an infinitesimal
change on the free energy should be explicitly calculated as dF' = (kgT/2)dk/k, and
one integrated along the process, its instantaneous variation at all times is given by
AF(t) = (kgT/2) In(k(t)/K;).

Comparing AF(t) with Eq. (3.29) clearly reveal the difference between this quantity
and AYg(t) for a transient non-equilibrium state. In an isothermal process, there
is a change in the instantaneous value of the internal energy of the system if the
conditions of equilibrium are not met. If a transition moving the system from a non-
equilibrium state toward an equilibrium one is considered, that difference in internal
energy should be accounted for. If only transitions between equilibrium states are
considered, AXE (t) = AF(t).

sys

3.4.2 Ken Sekimoto’s approach to non-equilibrium system en-

tropy

Ken Sekimoto’s seminal work [89], endowed the Langevin equation with a thermody-
namic interpretation, providing a mechanical description for thermodynamic processes
at the level of stochastic trajectories. The general idea was to transform a relation
between thermal, viscous and confining forces into energetics relations, when the sys-
tem is subjected to an infinitesimal displacement dz;, ending writing the Langevin

equation in this energetic form
d
0= < I] — 1/ ZkBT fj ) dl’j + /ﬁUj(f)dLUj. (333)

Stochastic first law

For the particular case in which there is no time dependent external parameters
X(t) = cte, that in turn describes an equilibrium state, the differential stochastic
version of the system internal energy dugys = d(kx7/2) = kxjdz; is identified as the
last term on the left hand-side, because this term corresponds to a total differential.
Then, the combination of a source of energy, provided by the collisions between the
surrounding molecules of the medium and the Brownian particle, and accompanied by
energy dissipation when the particle moves across the medium, defines the stochastic
heat discarded by the system into the heat bath

( V2ksTE;(t dt(t))dxj, (3.34)
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3.4. THERMODYNAMICS CONSISTENCE

we stress that this incremental term is a non-exact differential and it can not be
expressed as a simple gradient of another function.

To recover the first law, let us consider an isothermal process. Since ugys = (1/2)kz3,
it is necessary to add on both sides of Eq. (3.33) the stochastic work dw = (1/2)z3dx,

playing the role of a “missing term” needed to recover a total differential

dusys = dw — dq, (3.35)

%x?(t)d/i 4 wt);(t)da; — %x?(t)dka - (—\/%BTW () + ydxé—'f”) de;. (3.36)

Stochastic second law

When temperature becomes a time dependent parameter, a “new contribution to the
energy change has to be taken into account” as stated in [43]. To identify this new
contribution, the approach is to transform the energetic relation expressed on Eq.
(3.36) into an entropic relation, dividing each term by the temperature 7. Just like
the case of an isothermal process, in which the identification of the first law consists
in building a total differential quantity, the same procedure will be performed here.
But now by the dividing action, the total differential must also take into account the
temperature change. It will corresponds to the stochastic version of Eqgs. (3.25) and
(3.26) for isothermal and isochoric processes, respectively.

As discussed at the macroscopic level, on Eq. (3.6), the Second Law can be formu-
lated as a relation between one term that describes the exchange of energy between
the system and the heat reservoir, in the form of the stochastic medium entropy
domea = dq/T, a second term that is a total differential, the stochastic system entropy
dogys, and a third term corresponding to a purely dissipative quantity, characterizing
the stochastic entropy production dog.,. By dividing Eq. (3.36) by T', and also add
on both sides —(kg/2)dr/k or (kg/2)dT /T, respectively for the case of isothermal or
isochoric processes, it is possible to identify a purely dissipative quantity (different
from zero only when a non-equilibrium process is considered), leading to the following

definitions for an infinitesimal change on the system stochastic entropy dogys

kg [ k(t)x2(t) dr k(t)x;(t)
do® = B (Y N 1 = do® — do” .
T T ( ks T ) T T ke T e (3.87)
kg [ kzi(t) dT kx;(t)
do? = B2 g} 42 L R el — dol .
sys 2 (k;BT(t) T T T Wen T WOmeas (3.38)

that are consistent with Eqgs. (3.15) and (3.16), that in turn were derived directly from
the definition of ogy(t), Eqgs. (3.13) and (3.14).
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3.5 Functional approach

In this section, we will explain the discussion mentioned above (at the end of Section
3.3) in which the pure dissipative quantities, such as the total entropy X, the dissi-
pative work and the thermal work, W4 and Wi, can be considered as a function of
the protocol x(t) that connects two states, s; and sy, not necessarily in equilibrium.

For the case of Yg,, such a functional corresponds to the sums of Eqs. (3.29) and
(3.23) or Egs. (3.31) and (3.24)

i 1 kg, w1 [V
Yen[Sis 853 K (8)] = 5T (sfhf — Siki) — 5 In T or g k(s)ds, (3.39)
; k T, kK [° ds
ST = 5 (- 2) T |
gen[s 7Sf7 (S>] 2 <Tf z‘vz + 2 n E 2 s T(S) (3 0)

If either s; or sy does not correspond to an equilibrium state, the first term on the
right-hand side of Eqs. (3.39) and (3.40), interpreted as a surface term, will be non-
zero. The second term, In(x¢/x;), is independent of the details of the x(t) protocol and
depends only on the value of the control parameter at the start and at the end of the
process under study. The third term f;f kds/(2T), corresponds to an integral of the
protocol y, parameterized by the evolution of the system x(s), through its variance.

To illustrate how the functional relationship Ygen[si, s£; x(5)] can be used to quantify
the cost of a specific process, Egs. (3.39) and (3.40) will be used to characterize the
cost of a discontinuous change xy — x; where s; and sy correspond to equilibrium
states. Since, in this case, s; = kpT;/k; and sy = kgT;/ky, the surface term will be

identically zero and the integrals can be easily calculated, leading to

" kﬁB K kJB K
Egen, STEP — _? In H_f - ? ( - ?f) ) (341)
ks Tp kg ( n)
»r =—In=t-—>2(1--). (3.42)
gen, STEP 2 7’; 2 Tf

Some consequences of Eqs. (3.41) and (3.42) will be explained by analyzing Figure
3.3, in which these equations are plotted on a Linear x Log scale for the interval
Xr/xi = [0.1;10]. As expected, for any physical process ¥z, > 0. The asymmetry of
this quantity for expansion vs. compression and cooling vs. heating is evident.

Another analysis that can be made from Eqs. (3.41) and (3.42) are the conditions
under which a discontinuous transformation can be considered quasi-static in a more
quantitative way. This analysis consists in determining the relationship between a
variation dy = xy — x; and the equivalent entropy production Y., step. In the case
where (x; — xi)/xi: < 1, it is possible to expand Egs. (3.41) and (3.42), where the
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Figure 3.3: Plot of Eqgs. (3.41), in green, and (3.42), in black , a) and
b) respectively, in Linear x Log scale. It corresponds to the generated
entropy for a given ratio between final and initial values of the control
parameter x¢/x; for a instantaneous change x; — x . The horizontal
dashed lines correspond to ¥, = 0 and the vertical lines to x5 = xi.
a) In the vicinity of the region x¢/x; = 1, the approximation given
by Eq. (3.43), in red, is verified for all the processes (here a Linear x
Linear scale is used).

first non-zero term corresponds to a symmetrical relationship between complementary

processes (compression vs. expansion and cooling vs. heating), as seen in panel c)
ks [ x ?
Egen, Qs — Z (_f - ) . (343)

The same functional analysis done for Yge,[si, sf; x(s)] is compatible with purely

dissipative energy quantities. These quantities can be expressed from an integration
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by parts of Eqgs. (3.19) and (3.20)

1 kgT 1 [
Wiaislsi sf; 5(s)] = B (Kpsp — Kisi) — BT ln% - 5/ k(s)ds, (3.44)
T T; k sf T
(3.45)

where in the case of an isochoric transformation, Eq. (3.45), a constant with tem-
perature unit Tgre was introduced to make the argument of the logarithmic function
dimensionless.

While for the isothermal case, Eq. (3.44) is completely analogous to Eq. (3.39),
for the isochoric case significant differences exist between Eq. (3.45) and (3.40). For
the surface term present in W1 | this term is non-zero, even if the final and initial
states are in equilibrium. The second term on the right-hand side of Eq. (3.45)
corresponds to the change in the internal energy of the medium, which is given by
AUpea = (1/2)ks(Ty — T;). Finally, the integral corresponding to the third term on
the right-hand side of Eq. (3.45) corresponds to a functional with a different structure
from the one considered in Eq. (3.40). This discrepancy in the functional approach
for entropy and energy is only found in the case of isochoric processes. For isothermal
ones, there is a close analogy in the entropic Eq. (3.41) and energetic Eq. (3.44)
functionals.

3.6 Conclusion

This chapter aimed to relate thermodynamic functions, both from the stochastic view-
point described by the stochastic variable x?(t), and from its average behavior, depicted
through the evolution of the position variance s(t), when considering isothermal pro-
cesses, described by (k(t), T, s(t)), or isochoric processes, described by (k,T'(t), s(t)).
The relationships constructed here are rooted in the initial hypothesis that the sys-
tem’s internal energy is described by its potential energy. Consequently, functional
relationships quantifying both the energetic and entropic costs associated with non-
equilibrium processes. As will be discussed in the next chapter, this approach to cost
quantification, when associated with a transition between equilibrium states occurring
over a specific time interval At, allows for the determination of an optimal protocol
through the minimization of a functional defined by the trade-off between such cost
and At.

An essential aspect considered was the infinitesimal variations of thermodynamic

state functions, like internal energy, free energy, and system entropy, occurring over a
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specific time span, such as the interval dt between two consecutive measurements of
2

z$(t), or even an arbitrary time instant ¢, where the initial condition is specified from
the Gaussian position distribution p(x,s; = <$§(O)>)

In this context, while state functions correspond to instantaneous functions of the
protocol x(t) and the process s(t), path-dependent functions are determined by func-
tionals J[s;, s(t); x(s)]. To illustrate this methodology, we discussed how these func-
tionals enable the determination of dissipated energy and generation of entropy, when
discontinuous changes in control parameters dx = x s —x; are produced over an interval
dt.

The difference in nature of the path dependent thermodynamic functions, if their
infinitesimal variations depend on the change in position variance ds, like heat and
environment entropy, or on the change in control parameters dy, such as work, its
dissipative contributions, and the production of entropy, are pivotal when considering

the temporal evolution of such functions. While on the one hand

e the energy exchange rate between the system and the heat reservoir corresponds
to a continuous process, limited by the position variance relaxation time 27,,, that

in turn constrain the variation ds, on the other hand,

e the energy exchanges with the work reservoir and the variation on the internal
energy of the heat reservoir depend on dk and dT' respectively, quantities whose

variation is not limited by relaxation processes.

This different nature of how energy exchanges happen, is fundamental when con-
sidering the evolution of the thermodynamic functions developed here.

To make these definitions consistent with each other, we introduced a new definition
of system entropy. An essential property characterized by an entropy measure is the
relationship between micro and macro states. In our definition, such a relationship is
measured over a stochastic trajectory from the microstate x?(t) and the correspond-

ing position variance defined from the instantaneous values of the control parameter

K
eq

cesses. This measure can be executed when one can define averages in the ensemble

sg(t) = kgT/k(t) for isothermal processes, and sl (t) = kgT'(t)/x for isochoric pro-
{j} of trajectories that share the initial condition p(z, s; = (23(0))).

An interesting aspect of the simultaneous dynamic and thermodynamic discussion
of the Brownian motion developed here is, for example, the possibility of relating the
dissipated energy in non-equilibrium processes from the balance of trapping forces,
stochastic forces, and viscous force: when some protocol x(t) is fast enough to generate
an increase ds(t) > 0 or decrease ds(t) < 0 in position variance.

When these processes occur, the average collision force in the interval dt is not

counteracted by the trapping force, causing the average speed in this time interval to
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differ from zero. As a result, energy is dissipated by the viscous force. This system
serves as a didactic model to discuss thermodynamic processes where the time scale
of processes and the quasi-static limit, which in this case corresponds to processes
where the average speed is zero, can be discussed from a mechanical approach, from

the analysis of force balance.

(0]






Chapter 4

Isochoric transformation

In this chapter the techniques presented in Chapter 2 and the thermodynamic analysis
and interpretation methodology developed in Chapter 3 will be used to characterize the
entropy and energy exchanges involved in isochoric transformations performed on a
Brownian particle. In such processes, the amplitude of the stochastic force produced by
the radiation pressure changes over time, generating an evolution of the temperature

of the center of mass of the Brownian particle.

First, we will derive the protocol that minimizes the production of entropy for a
gwen transition time At. Next, the thermodynamic characterization for a discontin-
uous change in the temperature of the heat reservoir will be presented, in which the
asymmetry between heating and cooling processes will be explored. Finally, optimal
protocols will be presented, in which a new dimension - the time At of the transition -
also presents asymmetry between heating and cooling processes. Different acceleration
rates will be considered, and the optimal protocols derived here will be compared with

the ThESE acceleration protocols derived in Chapter 2.

4.1 Optimal isochoric finite time transformations

Isochoric processes are characterized by a change in the system internal energy at
constant volume: there is no work performed in this type of process. The First Law
guarantees that the total amount of heat exchanged between the system and the heat
reservoir corresponds to the change in internal energy, which leads to an apparent con-
tradiction about how to deal with the energy dissipated in a non-equilibrium process.
How is it possible to quantify the dissipated energy? This question was resolved in

Chapter 3 by resorting to an entropic analysis.

This analysis consisted in quantifying the difference between i) the variation in
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the instantaneous system entropy AXg(t)!

and 7i) with the entropy produced by
the exchange of energy between the system and the medium throughout a process,
quantified by the entropy of the medium ¥,,.q(¢). Based on this comparison, whenever
there is an imbalance between these quantities, entropy is generated according to
AYys(t) + Emed () = Bgen ().

To establish the relationship between these entropic quantities, Chapter 3 also
considered that within a time interval dt along a protocol, the instantaneous temper-
ature of the heat reservoir is given by T'(¢), and an increase in entropy production
is proportional to the temperature variation d¥g, o< d7. Thus, in this approach,
it is possible to quantify an increase in dissipated energy, so-called thermal work, as
dWais = T'(t)dXgen. By determining such purely dissipative quantities over an entire
protocol, we can then write these quantities as a functional of a process. Such func-
tionals can then be used to quantify the cost of a given process that connects two
states, be then in equilibrium or not. This idea is the basis for deriving the optimal

protocols developed in this section.

4.1.1 Optimal protocol derivation

As discussed in Chapter 3, the entropy production and energy dissipation (dissipative
work) functionals for isothermal processes have the same structure. However, for
isochoric processes, this is not the case. Here, we will choose the entropy production
functional as a way to quantifying the cost of connecting two states, defined by the

initial s; and final s; position variance, which we recall

K (s S; kg . T k [ ds
Ygen[Si, 573 T(s)] = 5 (77’; — T) + TIH% -3 / ()" (4.1)

This expression is valid even if s; and/or sy do not correspond to equilibrium states.

In this case, T; and Ty correspond to the temperature of the heat reservoir associated
with the considered states, not the one given by the initial and final position variance
of the Brownian particle, xs;; # kgT; . Here we will consider processes in which
the initial and final states are in equilibrium, then the conditions s; = kgT;/x and
sy = kT /K are obeyed.

An important aspect of the functional formulation given by Eq. (4.1) is the implicit
nature of time evolution: in this formulation, the protocol T'(s) can be expressed
through s(t), for each time instant ¢, given the monotonic nature of s(t). In order to

parameterize T'(s(t)) in this way, only one parameter can change over time.

1Since only isochoric processes will be considered in this chapter, we will suppress from now the

index T
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In parallel, we introduce a functional for the total process time At for a given transi-
tion from s; to sy, using the approach developed in [68] for isothermal transformations,

for isochoric processes with

At s
1 [ ~vds
At = dt = = _ 4.2
/0 2 /SZ kgT(s) — sk’ (4.2)

where the differential relation ds = (2/v)(kgT'(t) — ks(t))dt deduced in Chapter 2 and
discussed in Chapter 3 is written here as an integral.

Once combined, Eqgs. (4.1) and (4.2) allow to identify the optimal protocol Tt (%).
This protocol corresponds to the minimal entropy production Y,., when the states
s; and sy are connected in a given time interval A¢, determined by minimizing the

functional

/S _Sf L[s, T(s)|ds = /f (kBT( :) _— kB?ﬁ(g)) ds, (4.3)

2

which combines the transition time and the entropic cost on an equal footing by the
Lagrange multiplier A\/kg. This expression corresponds to the adaptation for isochoric
transformations of the methodology proposed in [68] for isothermal ones. While in the
latter case the cost was addressed as work, here we framed it as entropy.

The minimization of the functional given by Eq. (4.3) is performed using the Euler-
Lagrange equation d/ds(OL/0T") — OL/OT = 0, with T" = dT'/ds. This equation will

lead to )
A A\ A\
(1 . —> A SRl S (;) ~0. (4.4)
B

T Ty kp Ta

This minimization procedure yields two families of optimized thermal protocols
T /C(s) in which the sub-index “h” refers to heating 7; < Tt and the sub-index “c”
refers to cooling T; > Ty. Such families are based on the fact that Eq. (4.4) is a
second-order polynomial equation for T'(s). As each of the solutions are related to
different processes, the Lagrange multiplier that regulates the relationship between
cost and transition time corresponds to different functions when heating and cooling
processes are considered.

Thus, the two roots of Eq. (4.4) determine the functions Tj,/c(s), with their respec-

tive Lagrange multiplier Ay /.

RS

ko (1-VA/n)

"k (1 + N/Tx/AC>’

where the kT = ks quasi-static limit corresponds to 7, = v/k < Ay Jc-

Th(S)

T.(s)
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In order to implement optimal protocols experimentally, it is necessary to obtain
explicit time dependent solutions. Such solutions sy, .(f) can be obtained by integrating
Eq. (4.2) up to an intermediate instant ¢ using 7j,/.(s) given by Eqgs. (4.5) and (4.6).

The optimal heating and cooling processes then correspond to

2 1 ]
sn(t) = s;exp | —— (1 — 1—) : (4.7)
2t

Ty \/Tx//\h
1
Sc(t) = S; eXp —: (1 — W)

Another way of expressing these optimal solutions is through the transfer time

(4.8)

At itself. For a given At for both heating and cooling processes, different values are
required for A\, and A.. Thus, by changing the parameterization of Eqs. (4.7) and (4.8)
and also using the initial s,,.(0) = s; = kgT;/x and the final sy, (At) = sy = kgTy/K

equilibrium conditions, it is possible to write the Lagrange multipliers as

1—\/735/—)\h:(1+ Ta 1nﬁ)_l, (4.9)

2At T,
T, Tf -1
14+ T/ = (1 oA In f-) . (4.10)

Egs. (4.9) and (4.10) allow us to parameterize the process sh.(t) into a single

expression, which we define as the optimal isochoric process

T t/At
%Mw:&(%) . (4.11)

From the explicit time dependence given by Eq. (4.11) and Eqs. (4.9) or (4.10), for
heating and cooling respectively, which define the Lagrange multipliers as a function
of transition time At and the initial and final equilibrium temperatures, 7; and T, it
is possible to determine the time dependence of the optimal protocol Topt ().

Equilibrium conditions between the system and the heat reservoir need to be guar-
anteed at the beginning and end of the optimal protocol. To ensure that the initial
temperature, at ¢t = 0, and the final temperature, at ¢t = At, of the heat reservoir
correspond to that expected by the instantaneous variance of the system, xs;/kp and
ks¢/kg, two discontinuous transitions are supplemented on this protocol, just like in
the case of optimal isothermal processes [66, 67, 68]. The Ti,p protocol is then divided

into three steps

T at, t=0,
Topi(t) = %§Q+%m% for, At>t>0, (4.12)
=L at, t=At.
B
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In general, acceleration protocols involve an overshooting (“os”) in the control pa-
rameter. In the case of the optimal protocol derived here, it corresponds to kgTys =
kSp(1 + 7,/(2At) In(T/T;)). In the case of heating processes, the minimum value of
At experimentally accessible will then depend only on the maximum temperature that
can be implemented. For cooling processes, the minimum value of At accessed experi-
mentally is also constrained by the experimental technique used, but in contrast to the
heating case, an asymmetry arises associated with the fundamental limit temperature
T = 0 K. This limit implies that for the cooling case, the maximum acceleration that

can be reached corresponds to

T, T,
Atpin = — In —. 4.13
ST (4.13)

The asymmetry related to At,;, will be discussed below in the context of entropy
production for different accelerations Ye,(At). For now, Eqgs. (4.11) and (4.12) will
be used to determine ¥, from Eq. (4.1).

4.1.2 Time-entropy bound

In this section we will derive the expression for the minimum entropy production, i,
for a given system entropy variation AX,s = (kg/2) In(7}/T;), and transition time At.
The derivation needs to take into account the 3 stages of the optimal protocol; the
two discontinuities at the beginning ¢ = 0~ — 0" and at the end t = At~ — At*
of the protocol, and the entropic evolution along the process sqp(t) between those
discontinuities. The minimal entropy production is the result of the sum of those

three intermediate steps:

e from ¢t = 0 to t = 0". In this first step, T(07) = T; and T(0%) = T;[1 +
7./ (2At) In(T¢/T;)], while s(07) = s(0%) = s,. Thus, by substituting these quan-
tities into Eq. (4.1), one gets:

k T, T k 1
IS o L [ i LN . ——— 4.14
min = 9 +2AtnTi + 2 1+T_z1n¥ ( )

2A¢

e from ¢ = 0" to ¢t = At™. In this second step, T(07) = T;[1 + 7./ (2At) In(T}/T;)]
and T(At™) = T¢[1 + 7,,/(2At) In(Ty/T;)], while s(07) = s; and s(At™) = sy.
During this step, the time dependence of sop(t) and Top(t) are described by Egs.
(4.11) and (4.12) and, again, by substituting these quantities into Eq. (4.1), one

arrives at: .
kg T kg ln =L
@ Byt I __ (4.15)
200 2 (1+ )
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e from ¢t = At~ to t = At*. In this last step, the second discontinuity is produced
with T(At™) = T¢[l + 7,/(2At) In(T}/T;)] and T(AtT) = Ty, while s(At™) =
s(AtT) = sy. Finally, by substituting these quantities into Eq. (4.1):

k 1 k 1
1+2Axtlnf 1+2Axth'l?i

It is interesting to note that connecting states in equilibrium necessarily yields

Ygen = 0, but that when one of the states (initial or final) is not in equilibrium, it
is possible that Yz, < 0. This can be checked with Eqs. (4.14) and (4.16), since
SO 3(C)

rmin o This situation however will not be explored in this work since for our
protocols only intermediate states are out of equilibrium.

The minimal entropy production associated with the optimal protocol is then eval-
uated as X, = Efii)n + Efji’n + Zfﬁi)n = Zgi)n.

of the system entropy AX,s = (kg/2) In(T;/T;) associated with two equilibrium states

Using the definition of the total variation

with different temperatures, it is possible to write this minimal entropy production

associated with the optimal protocol as

Adlgys

ks At
1 + Te Adsys

Sinin = (4.17)

We emphasize that this expression is valid both for cooling and heating protocols

but with different thermodynamic consequences, as discussed below.

4.2 Thermodynamic analyses of isochoric transfor-

mations

4.2.1 STEP-like T'(t) protocol

In Section 2.4.2 and Figures 2.10 and 2.11, we discussed the methods for producing
and measuring over time the evolution of the position variance of the Brownian par-
ticle s(t) when subjected to a discontinuous change in the amplitude of a stochastic
radiation pressure force. Here, we will present the methods used for describing the
thermodynamic observables associated with these processes. This corresponds to the
description of the entropic and energetic evolutions, respectively shown in Figure 4.1
and Figure 4.2, in which the asymmetries between heating (when the amplitude of the
modulation of the external stochastic force increases) and cooling (when the amplitude
decreases) are discussed.

The thermodynamic observables associated with these measurements depend on

the trap stiffness k = 13.1 £ 0.5 f{N/nm, the position correlation time 7, = v/k =
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2.0140.06 ms and the time series acquired for monitoring the position variance s(t) and
the temperature 7'(t). While s(¢) is measured from a set of jy,.c = 17980 independent
realizations of the stochastic trajectory z;(t), subjected to the protocol T'(t) = T; +
O(t)(Ty — T;), where O(t < 0) = 0 and O(t > 0) = 1, the series T'(¢) is measured
from the peak-to-peak signal szp(t) sent to the AOM, which in turn determines the
modulation amplitude of the laser exerting radiation pressure on the Brownian particle.
The uncertainties of these time series, ds(t)/s(t) = 0.04 are determined within a
confidence interval of 95% based on a x? distribution with ju.. degrees of freedom,
and 07 /T = 0.07 is estimated from the relationship between szp and the temperature
of the center of mass of the Brownian particle, as discussed in Section 2.3.2 and in
Figures 2.8 and 2.9. For the measurements presented in this section, T, = 1200 £90 K
and T3, = 2200 £+ 160 K, in which the sub-index ., referees to the cold and to the hot

temperature used on the heating and cooling processes.

As the procedures for measuring s(t) require repeating the 7'(¢) protocol thousands
of times, the total time of the measurements presented here is At eas = 6 min. Over
such a big acquisition time, it is very hard to avoid any positional drifts of the different
optical beams involved in the experiment. Such drifts generate a difference between
i) the value of T; and Ty measured from V2 (t) and i) the value s;/kp and rsy/kp
measured when the Brownian particle is at equilibrium, before the start of the protocol
for s(t < 0), and after the final temperature has been reached for s(t > 7,). For the
heating process, ks;/kg = 1290 £ 50 K and xsy/kg = 2310 £ 90 K. In this case, the
uncertainties were propagated, with xs/kgv/(0s/s)% + (0r/k)2.

As one sees, there is not a sensible difference between such values and those given
above based on Vp2p(t) measurements. We consider that measuring the temperature

from rs/kg is more accurate than from V2 since a change over time in the relationship

pp’
between Vp2p (t) and the actual effective temperature of the thermal bath is expected to
change due to the drift effects, as mentioned above. For these reasons, 7'(t) used in this
section corresponds to the temperatures measured from the initial and final equilibrium

position variations, built with the same acquisition frequency f,q = 2'¢ Hz = 65536 Hz.

The first entropic observable to be considered is the evolution of the entropy of the
medium Y,,0q(f). The evolution of this observable is determined from the cumulative
sum, according to Eq. (3.24), and using the “Accumulate[list(k)]”* function of the

software Mathematica, with its corresponding uncertainty

2Accumulate[{a, b, c}] = {a,a +b,a + b+ c}
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ds(t
Ymed(t) = —gAccumulate {;((t;} : (4.18)

5t = i () 5 () (45 (119

where in this case t = k/ faq, with {k} a sequence of integers defined in the interval
k = [—299,800], and ds(t) = s(t + dt) — s(t).

Entropic quantities are show in Figure 4.1. Medium entropy is measured by Eq.
(4.18) and shown in panel a) for heating process and in panel ¢) for cooling, by substi-
tuting the measures of k, ds(t) and T'(t) into Eq. (4.18). In order to ensure the initial
condition Y.q(t = 0) = 0 an additional procedure is required. The averaged entropy
is measured before the beginning of the protocol, and it is subtracted respectively for
the heating and cooling cases, 942 x 1073 /kg and 0 4+2 x 1073 /kg. This procedure
was also used for the measurement of A¥,(t), leading respectively for heating and
cooling 2 +2 x 1073 /kg and 3 +3 x 1073/kg. These subtraction then ensures the
initial condition that X.q(t < 0) and AXg(t < 0) = 0.

In panels 4.1 a) and c), the black curve is obtained by substituting the values T;,
Ty and Eq. (2.8) into Eq. (3.24), giving the plotted curve:

Sea(t) /b = % (% - 1) (1 —exp [—QTL]) | (4.20)

In the limit ¢/7, > 1, the dashed lines in a) and c¢) corresponds to Xyeq(t >
7.)/ ks = (1/2)(T;/Ty — 1). In the case of heating, X ean/kp(t > 7,) = —0.23 £ 0.02
and in the case of cooling Xpeq.c/kp(t > 7,) = 0.34 + 0.04.

The other entropic observable corresponds to the system entropy variation AX (%),
shown in panels b) and d) respectively for heating and cooling processes, measured
from Eq. (3.31). In the case where the initial state of the system is in equilibrium,
Eq. (3.31) simplifies to

ASs(t) /kp = % (k’;‘?zi) - 1) + %m Tg), (4.21)

where the uncertainty is determined analogously to 0% ,eq (), from Eq. (4.19).

As discussed in Chapter 3, A¥g(¢) is an instantaneous function of the protocol
T'(t). Since T'(t) corresponds to a discontinuous function, so does A¥(t). For t > 0,
the black curve in these figures corresponds to substituting 7;, Ty and Eq. (2.8) into
Eq. (3.31) and leads to the expression

1 /T, t
AEsys(t)/kB =3 (Tf — 1) exp [—2—} + éln—. (4.22)

Tx
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Figure 4.1: Entropic analysis, in units of kg for time intervals normal-
ized by the position correlation time 7., for a STEP-like T'(t) proto-
col. While the measurements in red correspond to heating processes,
cooling is represented in blue. The black curves correspond to the
theoretical predictions for the entropic observables (medium and sys-
tem) and dashed lines correspond to the values of those observables
after the processes, when the Brownian particle is at equilibrium with
the temperature 7y. The uncertainty of these measurements corre-
sponds to the propagation of the errors of the three parameters used
to determine those entropic observables, dk/k, ds/s and 6T /T. a)
Medium entropy for heating. b) System entropy variation for heat-
ing. ¢) Medium entropy for cooling. d) System entropy variation for
cooling. e) Entropy produced for both the heating and cooling pro-

cesses.
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Panels b) and d) show, at the moment of the discontinuity AX(t = 0) > 0, an in-
crease in the entropy of the system for the heating and cooling processes. Through the
heating process AYn(t) continues to increase until the equilibrium value is reached
AYgysn/kp(t > 7,) = (1/2)In(T},/T.) = 0.30 £ 0.03. In the cooling process after
an initial increase, A¥gy.(t) decreases in time until it reaches the equilibrium value
AYgysc/kp(t > 7,) = (1/2) In(T,./T}) = —0.29 £ 0.03. These values correspond to the
dashed lines in panels b) and d). Although the total entropy variation of the system
is symmetrical at the end of the processes with, AXgn(t > 7)) = —AXgysc(t > 7,),
throughout the process it is possible to see a clear difference between the heating
and cooling processes, since the initial system entropy variation for both processes is
positive.

In order to better evaluate the difference between heating and cooling processes, the
entropy production Xgen(t) = AXgs(t)+EXmed(t) is plotted in panel e). The equilibrium
value corresponding to the dashed line in this panel and it is given by the sum of Egs.
(4.18) and (4.22), and corresponds to Eq. (3.42)

5 =-nt - (1-2%). 4.2
gen/kB 2 n E 92 ( Tf) ( 3)

It is clear in this figure that the entropic cost of cooling processes is higher than
that of heating processes, when the same total temperature variation is considered.
The entropy values for ¢/7, > 1, corresponding to the dashed lines in this figure, are
Ygenn/kg = 0.07 £ 0.03 and Xgeno/kg = 0.10 £ 0.04, respectively for the heating and
cooling processes. Another interesting consequence of this measurement is the decay
of Xgen(t) observed within the transient region, in particular in the case of the cooling
process.

We note here that the decay on the entropy production after a STEP-like T'(¢)
protocol is not predicted in our model, since Eq. (4.23) is time independent. One
possible explanation for this decay can be related to the relaxation of the kinetic energy
contribution. Indeed, through a variation of temperature 7t —7T; = 1000 K is produced,
the velocity variance s, should change accordingly, mAs, = kg AT, in which m is the
mass of the Brownian particle. Although this relaxation process occurs on a much
shorter time scale than the one we are probing, typically on the us scale as discussed
in Section 2.1.1, the observed decay can be reminiscent of this relaxation process. But,
since in our thermodynamic description we consider instantaneous equilibration for the
kinetic degree of freedom, such a decay cannot be predicted nor evaluated within this
overdamped framework.

An important aspect to consider is the simplicity of the time dependence of the T'(¢)
protocol that generates the decay in the measured Yge,(t). Thus, this decay cannot

thus be simply explained by calibration issues generated by the drift of the different
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beams. Another interesting feature is the asymmetry of the decay for the heating
and cooling processes, while experiments were carried out in a temporal sequence, one
repetition after the other. This asymmetry is compatible with the recent observation
that the thermalization of a Brownian particle is faster for heating than for cooling

processes [37].

x 10721 x 1072

Figure 4.2: Energetic analysis for a STEP-like T'(t) protocol, with
the same temporal normalization, color coding and propagation of
uncertainties used in Figure 4.1. Since temperature is a time depen-
dent parameter, and for reasons explained in details on the main
text, we express those quantities in Joules rather than kgTj, =
30.4 x 1072t J, kT, = 16.6 x 102! J or by the room temperature
kTrr = 4.04 x 10721 J. a) System internal energy variation (nega-
tive of heat) for heating and cooling processes. b) Dissipative thermal

work for both processes.

The other set of thermodynamic observables that characterize isochoric processes
is provided through an energetic analysis. According to the First Law, the variation
in the system’s internal energy must equal the quantity of heat AUys(t) = —Q(t) =
(1/2)k(s(t) — s;), produced along the process. This quantity is shown in Figure 4.2
for heating and cooling processes. From the viewpoint of AUs(t) and Q(t), these two
processes are completely symmetrical, AUy n(t) = —AUgys, o(t), with an absolute
value of the total variation given by |AUss| = 7.1 £0.4 x 1072! J.

When isochoric transitions are considered, different energy scales can be used to
normalize the data. In relation to the thermal energy given by room temperature,
we have |AUgys|/kgTrr ~ 1.76. This energy scale defines our precision, as this is
the temperature of our photodiode detector. To make it short, one of the factors
affecting the precision of a photodiode is thermal noise, also known as Johnson-Nyquist
noise. This noise is related to the thermal agitation of the charge carriers in the

photodiode, which in turn is proportional to the temperature of the photodiode. As
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kg(Ty — T.) > kpTgrr, the magnitude of the energy change in the isochoric transition
we produce is large compared to kgTrr.

Then, based on the precision given by kgTrr, we are able to characterize the differ-
ent decay time of the forward and backward isochoric process. This characterization
is based on two aspects: i) by increasing the total variation of the energy in the tran-
sition (above kgTgrr), and #i) using our thermodynamic model to take into account
the entropy production along a non-equilibrium potential energy relaxation. This is
why we claim that we are able to see the sub-dominant kinetic energy relaxation in
the overdamped dynamics, as shown in panel e).

When considering a STEP-like T'(¢) protocol in the functional expression of the
thermal work Wy, given by Eq. (3.45), the energy dissipated is determined as

ke(Ty = T;) | ksTi

Ty
WjS: 1 Rl
d 2 ty T

(4.24)

and shown in Figure 4.2, panel b). In the case of heating, Wy, = 1.94+0.1 x 107! J
and in the case of cooling, Wy = 2.3 £0.2 x 1072! J, where the uncertainty on
those quantities are given by éWais = Waisd0T'/T. Unlike the case of Y, (t) measured
by the sum of AX¥ ,(t) and ¥yeq(t), in which it is possible to verify a decay when
a STEP-type T'(t) protocol is considered, Wy;s measured from Eq. (4.24) follows the
STEP-type evolution.

The thermodynamic analysis of protocols that accelerate isochoric processes will be
presented below, in particular the optimal protocols that minimize entropy production

for a given transition time At.

4.2.2 Thermodynamics of an optimal change

In this section, the measurements associated with optimal isochoric protocols will be
presented in detail. While in the previous section the thermodynamic analysis allows
to probe some aspects of the asymmetry between heating and cooling processes, the
thermodynamic analysis of the measurements presented in this section also consider
those asymmetry, but more than that, also consider the relationship between the
entropy production g, and the transition time At < 7,. To this end, an entropic
analysis of optimal processes, derived in the section 4.1, for heating, with At = 0.567,,
and cooling, with At = 0.397,, will be presented now.

While the drift on the beams cause in the previous protocol only a change in
the total temperature variation, as the Tyu(t) protocols used in this section have a
non-trivial dependence on time, the drift effects on T, (f) are more significant. It
will be first discussed in the case of an optimal heating process illustrated in Figure

4.3. In panel a), the evolution of temperature in terms of “frames”, or consecutive
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measurements spaced by dt, is shown from two different measurement methods. The
blue curve corresponds to Eq. (4.12) where ks;/kp = 390£20 K, rsy/kg = 1170£70 K.
Otherwise, the orange curve corresponds to 7T; = 350 £ 25 K and 7} = 1100 £ 80 K,

measured from V;)Qp.
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Figure 4.3: Accelerated optimal heating, for A = 0.567,. a) Com-
parison of two ways of characterizing the T, (t) protocol, from the
measurement of V2 (t) in yellow, and from Eq. (4.12) using the mea-
surements of s; and sy and At, in blue. The z—axis corresponds to
“frames”, the index of consecutive measurements time spaced by
dt. b) Measurement of the evolution of the position variance. The
black line corresponds to Eq. (4.11). ¢), d) and e) Measurements of
entropic quantities — medium, system and generated entropy, respec-
tively — using the methods described in the previous section.
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The main consequence of the drift is present on the measurement of s(t), shown in
panel b). After ¢t > At, it is possible to see a small decay s(t > At) # 0. Furthermore,
as larger accelerations are produced, the process sqp(t) becomes even more sensitive
to those effects. In this panel, the black curve corresponds to Eq. (4.11).

To illustrate the limitations of the acceleration method, we will now present the
highest acceleration measure that we were able to implement for a cooling process in
Figure 4.4. In panel a) it is clear that after finalizing the T, (¢) protocol, a signifi-
cant decay was still observed, s(t > At) # 0. In this experiment, the temperatures
used were ks;/kp = 2210 £ 180 K and xsy/kg = 1250 & 100 K. This measurement
corresponds to the maximum acceleration accessed experimentally since the minimum
temperature of this process, the overshooting temperature, was given by Trr = 293 K.

In any case, since at the end of the T (t) protocol, AXgys(t > At) + Speal(t >
At) = 0, as can be seen from the total entropy measurement in panel e), we have
evidence that the main contribution to the decay observed in s(t > At) is due to
the relaxation of the potential energy. During this time interval, the evolution of the
system entropy is such that it is completely counterbalanced by the medium entropy.
We do not see any signature of the decay, as observed in Figure 4.1.

Regarding measures of the evolution of entropic quantities, on both Figures 4.3 and
4.4, the same expressions considered in the previous section are used, but considering
the optimal process sopt(f), Eq. (4.11), and optimal protocol Ty, (t), Eq. (4.12),
instead those ones for the STEP-like T'(t) protocol. In the case of heating, we verified
the linear behavior in time predicted by our model for the optimal protocol for all the
measured entropic quantites, Figure 4.3, panels c), d) and e). Another striking feature
of this measure is the decrease in entropy produced at the second discontinuity, as
discussed at the end of Section 4.1: when transitions involving non-equilibrium states
take place, the entropy production associated with these processes can be negative.

The last discussion we present consists of the measure of entropy production com-
pared to different accelerations protocols, the optimal and the ThESE ones, the later
derived in section 2.4.3. The discussion of the features when different accelerations are
considered for processes of cooling and heating, presented in Figure 4.5, was made in
[94].

In Figures 4.5, we first plot Eq. (4.17) for cooling (upper panel) and heating (lower
panel) for the optimal protocols (solid black lines). The curves draw exclusion regions
for entropy production that correspond to the minimal amount of entropy that can
be generated in an isochore for a given At.> They thus correspond to optimal time-

entropy bounds. Our experimental results obtained for different optimal cooling and

3In these measurements, At corresponds to the nominal value at which the respective protocol
Topt(t) is used.
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Figure 4.4: Optimal accelerated cooling, designed to have an accel-
eration rate of A = 0.397,. The quantities presented in this figure

correspond to the same methods presented in Figure 4.3

heating protocols i, (t) injected within our optical trap (same set of temperatures

but different transfer durations) all precisely fall on the expected bounds.

In the upper panel of this figure, accelerated cooling processes with AXg,s < 0
are shown, while in the lower panel, measurements of accelerated heating processes,

AYgs > 0, are shown. In these measurements, Eq. (4.17) corresponds to the transfer
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rate limit for a given entropy production. In the case of cooling, this equation puts an
asymptotic limit to the transfer rate with a minimal transfer duration of At /7, =
—AXys/kp = 0.3, for the ratio Ty /T; considered in this experiment. Such a divergence
in the entropic cost is clearly seen experimentally in Figure 4.5 for the shortest transfer
rate that we probed (vertical gray dashed line).

| V\T - ar<o |

m04; | | I AT>6—

0.4 081 1418
Atlt,

Figure 4.5: Minimal time-entropy bound (solid black lines) corre-
sponding to an optimal (7; = 2200,7 = 1200) K cooling process
(upper) and heating protocols performed between 7; = 350 K to
Ty = 1100 K (lower). The gray shaded region are forbidden to any
acceleration method. Experimental measurements for optimal proto-
cols are shown with green open circles and with blue open squares
for ThESE protocols. The error bars correspond to the experimental
errors propagated in the same way as in Eq. (4.19). The fundamental
limit put on ThESE cooling protocols set at At/7, = 0.6 for the cho-
sen experimental parameters is depicted as a second exclusion region

(blue shaded region) for such overshooting temperature protocols.

This divergence corresponds to the fact that for cooling the overshooting tempera-
ture Tos = Tope(ty) = Ty(1+ %%) through which the temperature along a protocol
passes cannot be less than 0 K. However, experimentally, we necessarily have T, > Trr

and, for the case shown in Figure 4.5, this implies that the shortest achievable transfer
AEs S

Fa(—Tier /T7)

Room temperature obviously bounds from below all overshoot temperatures that

rate for cooling At /7 = ~ (.39, a measurement shown in Figure 4.4.
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can be physically hit. This leads to an interesting consequence when comparing op-
timal and ThESE cooling protocols for identical shortening rates and target temper-
atures 1; > T;. Because the overshoot temperature for the ThESE protocol is neces-
sarily lower than T, for the optimal protocol for a given At, the room temperature
bound is reached by the ThESE protocol before the optimal one. More precisely, the
ThESE protocol cannot accelerate cooling beyond At/7, = 0.6, while remarkably and
as perfectly measured, the optimal protocols can still have access to stronger accelera-
tion rates with ratios between At/7, = 0.6 to 0.4 that remain available experimentally.
This important result reveals another, yet unexpected, thermodynamic advantage of
optimization giving access to time-entropy regions that are simply forbidden to non-

optimized protocols.

kg

0.5
Sy 15 10
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Figure 4.6: 3D plot of Eq. (4.17) considering the optimal heating
(red) and cooling (blue) protocols. To combine them, the entropy
generated is given as a function of the acceleration rate normalized by
the position relaxation time A7 /7, and the ratio between the highest

and lowest temperature 75 /7.

Contrasting with cooling, optimal heating protocols are not limited by any fun-
damental limit. With A¥gs > 0 in Eq. (4.17), the production of entropy does
not diverge and the system can be forced to thermalize arbitrary fast. The optimal
time-entropy bound for heating protocols is plotted in the bottom panel in Figure 4.5
together with the experimental measurements obtained when implementing heating
ThESE and optimal protocols.

To further quantify the difference between optimal heating and cooling protocols,
in Figure 4.6, Eq. (4.17) is plotted on a 3D graph. By exploring the ratio between

the highest and lowest temperature 75 /7., as a function of the acceleration rate At,
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it is possible to see the striking difference in cost between cooling and heating when

the transition time is taken into account in the analyses.

4.3 Conclusion

By identifying the thermodynamic cost associated with an isochoric process as en-
tropy production, we derived a protocol Top(t) that minimizes such cost for a given
transition time. This theoretical result, deduced in the first section, was followed by
the thermodynamic characterization of different isochoric processes. The analysis of
these processes is based on the construction of two quantities, the change in entropy
of the system AXg(t) and the evolution in entropy of the medium ,,eq(%), from the
measurements of s(¢) and T'(¢). This analysis allows us to consider the changes in the
state of the system due to energy transfer from thermal to potential energy, since it
was only this degree of freedom that was considered in the thermodynamic analysis
presented in Chapter 3.

The fact that the realizations of the stochastic variable x;(¢) for the heating and
cooling processes are probed in temporal sequences when STEP-like T'(t) protocols are
considered, makes the difference between the measurement of these two processes less
impacted by the drift of the different beams. Such a drift generates a modification
on the expected temperature over time, but on a scale of minutes, i.e. on a scale of
hundreds of heating and cooling cycles. We argue that this measurement methodology
is an important condition for attributing a physical meaning to the difference in decay
between the two processes shown in Figure 4.1, panel e).

We stress that the method presented to characterize STEP-like T'(¢) protocols relies
on the measurements of AX(t), using Eq. (4.21), and X,eq(t), measured from
the difference s(t + dt) — s(t) using Eq. (4.18). This was exactly the discussion
presented in Section 3.1.2, when Eq. (3.1) was introduced. In that section, two
different ways of measuring infinitesimal quantities were introduced. While in one
of the forms, the change of position variance in time dt is measured as i) ds(t) =
2/v(kpT'(t) — ks(t))dt, the other form corresponds to ii) ds(t) = s(t+dt) —s(t). While
in 7), ds(t) corresponds to an instantaneous function, which measures the deviation
from a quasi-static process, in i) ds(t) measures the increase in position variance
between two successive measurements.

Next, the thermodynamic analysis for optimal heating and cooling processes was
presented. For the heating case, excellent agreement was obtained between the mea-
surements of entropic quantities and the theoretical model presented in Chapter 3.
In this case, AX(t) and Xeq(t) correspond to linear functions in time. As higher

acceleration rates are produced, the drift effects of the lasers affect the acceleration
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process more significantly, generating a spurious residual decay in the position vari-
ance, s(t > At) # 0. We claim that this is the most significant source of deviation
from our thermodynamic model when optimal cooling processes are probed, Figure
4.4.

Finally, we evaluate the entropy production for different acceleration rates, for
two different acceleration protocols. When the transition time is taken into account,
the asymmetry between heating and cooling processes is even more striking. While
cooling processes have obviously a fundamental limit, since the minimum temperature
allowed during cooling acceleration protocols is 7' = 0 K, heating processes have no

such limitation.
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Chapter 5
Conclusion and perspectives

In this thesis we presented an experimental platform that allows us to measure with
high precision the dynamics of a Brownian particle subject to controllable time de-
pendent stochastic forces. We then developed a thermodynamic model to describe
isothermal and isochoric processes by considering that the variation of the instanta-
neous internal energy of such a particle is measured as AUgys(t) = (1/2)(k(t)s(t)—kis;),
where k corresponds to the stiffness of a linear restoring force and s is the position
variance of this particle. Finally, we used the thermodynamic model to describe iso-
choric processes implemented on our platform, in which the temporal evolution of
thermodynamic functions became a central ingredient in our discussion.

The possibility of controlling and carrying out experiments with high precision,
together with a theoretical model to describe the observed processes, resulted in the
two main experimental results of this thesis: i) measuring the asymmetry of decay
when heating and cooling processes are performed and i) quantifying the relationship
between cost and transition time in accelerated isochoric processes. These results were
based on the thermodynamic model presented here, in which a new methodology for
measuring the entropy of stochastic systems was introduced.

These results open interesting perspectives. We now present a few of these.

Optimal Stirling cycle

From the combination of optimal protocols developed earlier in the group during the
PhD thesis of Yoseline Rosales Cabara [95] for the isothermal case [68], and the devel-
opment presented here for the isochoric one, the ingredients needed to build an optimal
Stirling cycle, shown in Figure 5.1, are now gathered. On this optimal cycle, each of
the intermediate processes corresponds to an optimal process. The thermodynamic
formulation presented in this thesis makes it possible to discuss the maximization of

power and efficiency from the construction of an asymmetric cycle as discussed below.
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Figure 5.1: State diagram of temperature x stiffness for a Stirling
cycle. Such a cycle is composed of 4 intermediate states defined by two
values of stiffness k-, k. and two values of temperature Ty, T.. Each
intermediate state is connected by isothermal or isochoric processes
of duration At®, with i = I, 11, III,1V. The total time of this cycle,

At, is given by the sum of these 4 intermediate transition times.

For a given expansion process ks — k. that lasts a time AtY), and a compression
process ko — k- that lasts a time AtY/D it is possible to establish a relationship
between the duration of these two processes, given a total time for the two isothermal
processes At, = At 4 AtUID  Next, we can address the question of what the
maximum power is when optimal isothermal processes are considered, for a total time
duration given by At,. This question is answered by establishing a relation between
At and At so that the total energy dissipated on those isothermal processes is

minimal, given the temperatures of the hot and cold reservoir, T}, and T..

In parallel, using the same formalism, it is possible to establish the relationship
between the cooling time AtU!) and the heating one AtUY") which define the total
time of the isochoric processes Aty = AtUD + AtUV) | This time relation can also be
used to optimize a constraint, for example, the entropic cost of isochoric branches, for

a given Atr.

Finally, it would be possible to establish a relationship between the time of isother-
mal and isochoric processes, defining the total cycle time At = At, 4+ Atp, constrained
by different criteria, such as the total entropy production associated with this cycle.

Such approaches, now reasonably simple to develop, would yield a new type of analysis
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regarding power and efficiency for such “fully optimized” type of cycles.

Connecting non-equilibrium states

While the functional formulation presented in Section 3.5 is valid for transitions be-
tween non-equilibrium states, this formulation has been explored to only characterize
the transition between initial and final states in equilibrium. To illustrate how such an
approach can be used to quantify the cost related to connecting non-equilibrium states,
we will sketch the lines of an alternative interpretation of the experiment presented in
our manuscript on stochastic resetting, put in the arXiv recently [32].

In this experiment, by controlling the stiffness between two values Kpax > Fmin,
it is possible to implement a stochastic resetting mechanism, when the change from
Kmin — Kmax happens after a time interval 7, in general shorter than the relaxation
time of the Brownian particle 7 < 7, = 7/Kmin, drawn from a Poissonnian distribution.

To thermodynamically analyze such a process, it is possible to separate the discus-
sion of the cost into two steps ¢) the cost related to connecting instantaneously two
non-equilibrium states and i7) the cost induced when considering the specific protocol
used in a certain time interval to connect such states. In Figure 5.2 we illustrate these
processes, and discuss here how to quantify both costs.

Initially, the position distribution that defines the state of the Brownian particle is
given by the position variance s(t = 0) = s; = kgT'/Kmax, but subject to a confining
potential with stiffness x(f = 0) = Kyin. This particle will diffuse towards the distribu-
tion defined by the variance seq = kgT'/kmm. The resetting process then corresponds
to interrupting this free diffusion at time 7 < 7,,, causing the position distribution to
“return” to the initial distribution, defined by s;. As s(7) < seq, there is a thermody-
namic cost associated with the variation in the entropy of the system associated with
this process that can be quantified from Eq. (3.29), applied on the difference between
the states at s(7) and s;. This cost then depends only on Kuyax, Kmin and 7.

On the other hand, if the details of the process connecting these states are consid-
ered to take place from time 7 to time 7,, it is possible to quantify the cost related
to specific protocols. When the protocol corresponds to x(t), as is the case of the
experiment presented in this work, it is possible to quantify this cost using Eq. (3.23).
The combination of those two costs defines the total entropy produced in a single
stochastic resetting event.

The thermodynamic analysis proposed here is therefore directly linked to the prob-
lem of quantifying the information contained in non-equilibrium states. Such quantifi-
cation can be explored in the context of thermal machines that perform useful work

from the information content present in non-equilibrium states.
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Figure 5.2: Diagram representing the connection of two out of equi-
librium states. While the initial state corresponds to a Gaussian
distribution of variance s;, this distribution evolves freely over time 7
towards another distribution, also Gaussian, defined by the variance
s(7). It is then possible to evaluate the change in the system entropy
when we consider that the distribution s(7) is “transformed” into
the initial distribution s;. If the heat exchanges during this trans-
formation are evaluated, it is then possible to measure the change in
the entropy of the system that occurs when connecting these non-
equilibrium states. The sum of these two quantities corresponds to
the total entropy production associated with connecting these two

non-equilibrium states.

Combination of x(t) and T'(t)

When the thermodynamic model presented here is used to quantify the cost of pro-
cesses, it is based on the assumption that only one control parameter is changed in
time. Thus, our method can be applied directly to a process in which x(t) and T'(¢)
are changed sequentially, as illustrated in Figure 5.3. In this type of process, the total
transition time between two states At is given by the sum of the times in each of the
intermediate transformations At = Zn(Atg1 )+ At,(fn)) where 6y = 07, 0k correspond
to the increments in the control parameters for each intermediate step.

For this type of process, it would then be necessary to define the protocol p(t)
that connects each of the intermediate states. In other words, an intermediate change
defined as x, — Xx»n + 0x would be defined from the protocol x(t) = xn + pa(t)0X,
where at the beginning of this intermediate step p,(0) = 0 and at the end of this
intermediate step pu(t = At{") = 1.

We think that this type of approach can be considered for describing infinitesimal
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Figure 5.3: State diagram of temperature x stiffness for a sequential
change of these two parameters. Each of these changes occurs in a
time interval At&"), in which an increment dx is introduced in one of
the control parameters. In such a diagram, the intermediate states,
defined by the edges between consecutive lines, correspond to equi-

librium states.

processes occurring at finite time, establishing a methodology compatible with the
geometric formulation of stochastic thermodynamics, when different protocols ()

are considered, in particular the optimal protocols discussed in this thesis.

Asymmetrical decay in isochoric processes

One of the great strengths of our thermodynamic model was that it made it possible
to characterize the production of entropy associated with the decay process of the
potential energy of a particle confined in a harmonic potential. In our model, we
consider that decay processes related to kinetic energy are instantaneous. As such,
therefore our model is unable to quantify the energy dissipation processes related to
this velocity degree of freedom, as discussed in Figure 4.2.

But since we were able to identify the entropy production related to the potential
energy decay process, we can isolate this effect from the one related to the change in
the velocity distribution, that in turn is connected with the kinetic energy degree of
freedom. This asymmetrical decay is shown in Figure 4.1, panel e).

A natural perspective would then consider a theoretical model in which the exchange
of energy between the Brownian particle and the medium is taken into account for the
change in the velocity distribution. In such a model, the entropy of the system for a
STEP-like T'(t) protocol A¥(t) would still be measured by Eq. (4.21) and described
by Eq. (4.22), while the entropy of the medium X,.q(f) would be measured by Eq.
(4.18), but the theoretical model that determines ¥,,.q4(¢) would no longer be given by
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Eq. (4.20).

When considering the heat involved in a process in which the velocity distribution is
altered, an extra term of the type o (7;/7) exp [—2ty/m] should be considered. Such
a term would thus explain the asymmetry between the cooling and heating processes
since the prefactor T;/Ty would be greater for cooling processes than for heating ones,
thus making such a decay longer.

Experiments with larger temperature variations can be implemented our experi-
mental platform, where this effect involving velocity distributions can be measured
more precisely.

Presenting such perspectives draws some of the lines of research that will now be
pursued in the laboratory. They will involve the new methods and approaches that
are developed in this thesis and by doing so, will refine some of the specific features
that still demand to be fully analyzed.

The question of the role of the velocity degrees of freedom in the entropic analysis
of state-to-state transformation will play in particular a central role when turning our
attention to Brownian systems diffusing in critical and underdamped regimes.

New experiments are currently under way in the laboratory to explore the subtle re-
lations that emerge when looking at the thermodynamic stochastic processes discussed
throughout this work.
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Chapter 6

Résmé de la these

Cette thése s’intéresse a la dynamique du mouvement brownien [1, 2], un phénoméne
typique des échelles de temps et de longueur intermédiaires ou l'influence dynamique
des molécules peut étre observée a l'eeil nu [3]. Le phénomeéne correspond au mou-
vement apparemment erratique de particules en suspension dans un fluide (liquide ou

gaz) causé par les collisions aléatoires de ces particules avec les atomes ou les molécules

du fluide.

6.1 Température dépendante du temps dans un piege
optique

Ce chapitre présente les méthodes expérimentales utilisées pour mettre en ceuvre
les techniques d’ingénierie des bains. En commencant par une discussion sur les
échelles de temps impliquées dans la description d’une microsphere dans une solu-
tion aqueuse (régime sur-amorti), confinée par un potentiel harmonique, la plate-
forme expérimentale pour le piégeage, le controle et I’ajout de forces optiques externes
est présentée. Un développement important de cette plateforme expérimentale est le
controle des propriétés statistiques du laser qui exerce une pression de radiation sur
la microsphere piégée. Les méthodes d’introduction de telles procédures a 1’aide d’un
modulateur acousto-optique seront présentées en détail, ainsi que la description de la
dynamique de cette microsphere, via ’équation de Langevin. Ce formalisme permet
de décrire des processus dans lesquels 'amplitude de la force stochastique addition-
nelle évolue dans le temps. Le cas des changements discontinus et des protocoles qui
accélerent les transitions d’état a état est présenté.

Le controle du mouvement brownien d’une seule particule a ’aide d’une plate-
forme spécifique correspond au piégeage de la particule, au suivi de sa trajectoire et a

I’ajustement de sa dynamique en fonction de la modulation du potentiel de piégeage
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et de I'influence d’une force de pression de radiation externe. En controlant les car-
actéristiques statistiques de cette force externe, nous pouvons réaliser des protocoles
d’ingénierie des bains thermiques et développer des procédures pour augmenter la
température du centre de masse de la particule brownienne de plusieurs milliers de

kelvins.

Au coeur de cette technique se trouve la notion de température du centre de masse,
mesurée par la densité spectrale de puissance de la position de la particule brownienne
lorsqu’elle est en équilibre avec le bain thermique. En s’appuyant sur le lien entre cette
température et 'amplitude de la force externe, la température du bain est considérée
comme un parametre de controle dépendant du temps 7'(¢).

La caractérisation du mouvement brownien a été entreprise en analysant directe-
ment la mesure : l'intensité en fonction du temps d’un laser diffusé par la particule
brownienne. En considérant une relation linéaire entre cette intensité et le déplacement
instantané de la position de la particule, plusieurs observables sont construits. Il s’agit
notamment des trajectoires mesurées en unités de longueur, des distributions de posi-
tion et de la densité spectrale de puissance de la position.

Une discussion importante du chapitre est la relation entre la nature de la distribu-
tion stochastique de la force - qu’elle soit uniforme ou normale - et la fréquence de sa
génération. Alors que la température du centre de masse diminue lorsque l'intensité
de la pression de radiation est modifiée a des fréquences de génération élevées, a cette
limite, une force stochastique avec une distribution initialement uniforme converge vers
une distribution normale. Cette interaction devient encore plus pertinente lorsque des
forces stochastiques ayant d’autres distributions sont employées pour modifier la dy-
namique brownienne. Il est essentiel de comprendre que la distribution et la fréquence
de génération d’une force stochastique sont étroitement liées et ne peuvent étre con-
sidérées indépendamment.

Un autre aspect de I'ingénierie des bains correspond a 'introduction d’une corrélation
sur le forgage stochastique qui entraine la particule brownienne, que nous discutons
en détail dans le cas de l'ingénierie du “bain actif’ dans notre publication [48], et qui
est présentée dans la these de doctorat de Rémi Goerlich [86].

Nous illustrons ensuite comment la dynamique de Browinan peut étre modifiée par
I'action de deux protocoles T'(t). Alors quun changement de température discontinu
génere une évolution hors équilibre, ou la variance du systéeme s(t) se détend avec une
décroissance exponentielle vers un état d’équilibre final, des dépendances temporelles
plus complexes sur T'(t) peuvent étre introduites, conduisant par exemple & une tran-
sition accélérée et a une thermalisation. Le concept de connecting states guidera la
description thermodynamique des processus isothermes et isochoriques que nous pro-

posons dans le chapitre suivant.
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6.2 Thermodynamique d’une particule brownienne

la description thermodynamique des processus isothermes et isochores dans lesquels
I’énergie interne du systeme est définie uniquement a partir de 1’énergie potentielle est
développée dans ce chapitre. La description de ces processus est basée sur I'introduction
de fonctions d’état lorsque le systeme est hors équilibre. Si ’extension de 1’énergie in-
terne aux états hors équilibre est simple, ce n’est pas le cas pour 'entropie du systeme.
C’est pourquoi une nouvelle définition de I’entropie associée a une trajectoire stochas-
tique est introduite. Pour quantifier le cott des processus hors d’équilibre, ’énergie
dissipative et la production d’entropie sont introduites et discutées en détail lorsque
des changements discontinus des parametres de controle sont considérés.

Tant du point de vue stochastique, décrit par la variable stochastique x?(t), que de
son comportement moyen, représenté par 1’évolution de la variance de position s(t), les
fonctions thermodynamiques pour les processus isothermes, décrits par (k(t), T, s(t)),

ou les processus isochoriques, décrits par (k,T'(t), s(t)) ont été discutées.

Les relations construites ici sont ancrées dans I’hypothese initiale selon laquelle
I’énergie interne du systeme est décrite par son énergie potentielle. Par conséquent,
les relations fonctionnelles quantifient les cotits énergétiques et entropiques associés
aux processus de non-équilibre. Comme nous le verrons dans le chapitre suivant, cette
approche de la quantification des couts, lorsqu’elle est associée a une transition entre
des états d’équilibre se produisant sur un intervalle de temps spécifique At, permet de
déterminer un protocole optimal par la minimisation d’une fonctionnelle définie par le
compromis entre ce cotut et At.

Un aspect essentiel pris en compte est celui des variations infinitésimales des fonc-
tions d’état thermodynamiques, telles que I’énergie interne, 1’énergie libre et ’entropie
du systeme, survenant sur une période de temps spécifique, telle que l'intervalle dt
entre deux mesures consécutives de z%(t), ou méme un instant arbitraire ¢, ou la

J
condition initiale est spécifiée a partir de la distribution gaussienne de la position

p(z,s; = <xf(0)>)

Dans ce contexte, alors que les fonctions d’état correspondent a des fonctions instan-
tanées du protocole x(t) et du processus s(t), les fonctions dépendant du chemin sont
déterminées par les fonctionnelles J[s;, s(t); x(s)]. Pour illustrer cette méthodologie,
nous avons examiné comment ces fonctions permettent de déterminer I’énergie dis-
sipée et la génération d’entropie, lorsque des changements discontinus des parametres

de controle dx = x s — x; sont produits sur un intervalle dt.

La différence de nature des fonctions thermodynamiques dépendantes du chemin,
si leurs variations infinitésimales dépendent du changement de la variance de posi-

tion ds, comme la chaleur et I'entropie de I’environnement, ou du changement des
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parametres de controle dy, comme le travail, ses contributions dissipatives et la pro-
duction d’entropie, est essentielle lorsque 'on considere I'évolution temporelle de ces
fonctions. Alors que d’une part le taux d’échange d’énergie entre le systeme et le
réservoir de chaleur correspond a un processus continu, limité par le temps de relax-
ation de la variance de position 27,, qui a son tour contraint la variation ds, d’autre

part,

e ¢changes d’énergie avec le réservoir de chaleur correspondent a un processus con-

tinu, limité par le temps de relaxation de la variance de position 27,

e ¢échanges d’énergie avec le réservoir de travail et la variation de 1’énergie interne
du réservoir de chaleur dépendent respectivement de dk et de dT', quantités dont

la variation n’est pas limitée par les processus de relaxation.

Cette nature différente de la maniere dont les échanges d’énergie se produisent
est fondamentale lorsque 1'on considere 1’évolution des fonctions thermodynamiques
développées ici.

Pour rendre ces définitions cohérentes entre elles, nous avons introduit une nouvelle
définition de l'entropie du systeme. Une propriété essentielle caractérisée par une
mesure d’entropie est la relation entre les micro- et macro-états. Dans notre définition,
cette relation est mesurée sur une trajectoire stochastique a partir du micro-état sz (t)
et de la variance de position correspondante définie a partir des valeurs instantanées
du parametre de controle sf (t) = kgT'/k(t) pour les processus isothermes, et sl (t) =
kgT(t)/rk pour les processus isochoriques. Cette mesure peut étre exécutée lorsque
I'on peut définir des moyennes dans l'ensemble {j} des trajectoires qui partagent la
condition initiale p(z, s; = (23(0))).

Un aspect intéressant de la discussion dynamique et thermodynamique simultanée
du mouvement brownien développée ici est, par exemple, la possibilité de relier I’énergie
dissipée dans les processus de non-équilibre a 1’équilibre des forces de piégeage, des
forces stochastiques et de la force visqueuse : lorsqu’un protocole x(t) est suffisamment
rapide pour générer une augmentation ds(t) > 0 ou une diminution ds(t) < 0 de la
variance de la position.

Lorsque ces processus se produisent, la force de collision moyenne dans l'intervalle dt
n’est pas contrebalancée par la force de piégeage, ce qui fait que la vitesse moyenne dans
cet intervalle de temps est différente de zéro. Par conséquent, 1’énergie est dissipée par
la force visqueuse. Ce systeme sert de modele didactique pour discuter des processus
thermodynamiques ou 1’échelle de temps des processus et la limite quasi-statique, qui
dans ce cas correspond aux processus ou la vitesse moyenne est nulle, peuvent étre

discutées a partir d’'une approche mécanique, de 'analyse de 1’équilibre des forces.
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6.3 Transformation isochorique

En exploitant ’approche fonctionnelle, nous abordons dans ce dernier chapitre les
transitions d’état a état en équilibrant le compromis entre le cott et le temps de
transition des processus isochoriques. Cette méthodologie nous permet de dériver
des transformations optimales avec des contraintes de temps-entropie associées. En
nous appuyant sur le cadre thermodynamique introduit dans le chapitre 7?7, nous
caractérisons les transformations isochoriques influencées par des modulations tem-
porelles de I'amplitude de la force de pression de radiation stochastique externe. En
outre, nous explorons les asymétries entre les processus de chauffage et de refroidisse-
ment selon trois aspects différents : pour les changements brusques de température,
pour différentes techniques d’accélération, et enfin en comparant le cotit des processus
de chauffage et de refroidissement en fonction du temps de transition et du changement

de température total produit dans le processus isochorique optimal.

En identifiant le colit thermodynamique associé a un processus isochore comme
étant la production d’entropie, nous avons dérivé un protocole Ti,,(t) qui minimise
ce colt pour un temps de transition donné. Ce résultat théorique, déduit dans la
premiere section, a été suivi par la caractérisation thermodynamique de différents
processus isochoriques. L’analyse de ces processus est basée sur la construction de deux
quantités, le changement d’entropie du systeme AX(t) et I'évolution de I'entropie
du milieu ¥,.q(t), & partir des mesures de s(¢) et T'(t). Cette analyse permet de
considérer les changements d’état du systéeme dus au transfert d’énergie de 1'énergie
thermique a ’énergie potentielle, puisque c¢’est uniquement ce degré de liberté qui a

été considéré dans I'analyse thermodynamique présentée au chapitre 3.

Le fait que les réalisations de la variable stochastique x;(¢) pour les processus de
chauffage et de refroidissement soient sondées dans des séquences temporelles lorsque
des protocoles T'(t) de type STEP sont considérés, rend la différence entre la mesure
de ces deux processus moins impactée par la dérive des différents faisceaux. Une telle
dérive génere une modification de la température attendue au fil du temps, mais a
I’échelle de quelques minutes, c¢’est-a-dire a 1’échelle de centaines de cycles de chauffage
et de refroidissement. Nous soutenons que cette méthode de mesure est une condition
importante pour attribuer une signification physique a la différence de décroissance
entre les deux processus illustrés a la figure 4.1, panneau e).

Nous soulignons que la méthode présentée pour caractériser les protocoles T'(t) de
type STEP repose sur les mesures de AXg (), en utilisant 'Eq. (4.21), et Xpea(?),
mesuré a partir de la différence s(t + dt) — s(t) en utilisant 'Eq. (4.18). C’est ex-
actement la discussion présentée dans la section 3.1.2, lorsque ’équation (3.1) a été

introduite. Dans cette section, deux facons différentes de mesurer des quantités in-
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finitésimales ont été présentées. Alors que dans I'une des formes, la variation de la vari-
ance de position dans le temps dt est mesurée comme i) ds(t) = 2/~(kgT'(t) — rs(t))dt,
I'autre forme correspond a ii) ds(t) = s(t + dt) — s(t). Alors que dans i), ds(t) cor-
respond a une fonction instantanée, qui mesure la déviation d’un processus quasi-
statique, dans i) ds(t) mesure 'augmentation de la variance de la position entre deux
mesures successives.

Ensuite, ’analyse thermodynamique pour les processus optimaux de chauffage et
de refroidissement a été présentée. Dans le cas du chauffage, un excellent accord a été
obtenu entre les mesures des quantités entropiques et le modele théorique présenté au
chapitre 3. Dans ce cas, AXqs(t) et Lea(t) correspondent a des fonctions linéaires
dans le temps. Lorsque les taux d’accélération sont plus élevés, les effets de dérive des
lasers affectent le processus d’accélération de maniere plus significative, générant une
décroissance résiduelle parasite de la variance de position, s(t > At) # 0. Nous affir-
mons qu’il s’agit de la source la plus importante d’écart par rapport a notre modele
thermodynamique lorsque les processus de refroidissement optimaux sont étudiés, Fig-
ure 4.4.

Enfin, nous évaluons la production d’entropie pour différents taux d’accélération,
pour deux protocoles d’accélération différents. Lorsque le temps de transition est pris
en compte, I'asymétrie entre les processus de chauffage et de refroidissement est encore
plus frappante. Alors que les processus de refroidissement ont manifestement une
limite fondamentale, puisque la température minimale autorisée pendant les protocoles
d’accélération par refroidissement est de T = 0K, les processus de chauffage n’ont pas
cette limite.
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Résumé

Cette these présente une approche expérimentale pour contréler le paysage
énergétique d'une particule Brownienne piégée par ingénierie du bain thermique par
pression de radiation modulée stochastiquement. Cette approche permet la mesure
des colts énergétiques et entropiques impliqués dans les protocoles hors-équilibre
dépendant du temps. Ces colts permettent de définir des protocoles isothermes et
isochores (changements de température dans un potentiel constant) optimaux et de
révéler des propriétés intéressantes, telles qu'une asymétrie entre processus de
chauffe et de refroidissement. Pour obtenir une description thermodynamique
cohérente, nous proposons une nouvelle méthode pour mesurer I'entropie du systéme
le long d'une trajectoire stochastique, basée sur la relation entre le micro-état
instantané de non-équilibre et le macro-état d'équilibre correspondant. Ce travail
etudie la mécanique et de la thermodynamique des processus Browniens isothermes
et isochores hors équilibre.

Mots-clés : mouvement brownien confiné, ingénierie des bains thermiques,
thermodynamique hors équilibre, colts thermodynamiques, optimisation.

Résumé en anglais

This thesis presents an experimental approach to control the energetic landscape of a
confined Brownian particle through thermal bath engineering using a stochastically
modulated radiation pressure force. This approach motivates the quantitative
assessment of the energetic and entropic costs involved in time-dependent non-
equilibrium protocols. These costs once identified make it possible to design optimal
isothermal and isochoric protocols (temperature changes in a constant potential) and
to reveal interesting features, such as an asymmetry between heating and cooling
processes. To make a consistent thermodynamic description, we propose a new
method for measuring the system entropy along a stochastic trajectory based on the
relationship between the instantaneous non-equilibrium micro-state and the
corresponding equilibrium macro-state. This work provides a comprehensive study of
the mechanics and thermodynamics of non-equilibrium isothermal and isochoric
Brownian processes.

Keywords: confined Brownian motion, thermal bath engineering, non-equilibrium
thermodynamic, thermodynamic costs, optimisation.
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